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Abstract 

Diabetes mellitus is costly to both individuals and health systems and affects almost 500 million 

adults worldwide. The scientific literature strongly advocates that maintaining blood glucose 

level (BGL) within the optimal range as the best means of reducing diabetes complications and 

improving quality of life and health outcomes for those living with diabetes. Optimal 

management and monitoring of BGL may be significantly improved by combining data on an 

individual’s heart rate variability (HRV) – a non-invasive autonomic marker – with data from 

currently-available invasive glucose monitoring systems. As part of this PhD candidature and 

thesis, groups of people with type 1 diabetes, type 2 diabetes, or without any chronic illness, 

were recruited to investigate correlations between HRV measures and BGL. Correlation analysis 

demonstrated that multiple different HRV measures were significantly and inversely correlated 

with BGL measured in a fasting and postprandial state. Multiple linear regression analyses 

determined that HRV measures account for 27-55% of the total variation in BGL measured in 

different metabolic states. However, further research is needed. Continuous glucose monitoring 

(CGM) remains the gold-standard for measurement of BGL in diabetes, however HRV represents 

a promising area which can add to detection of diabetes and glycaemic events in tandem with 

CGM. 
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Chapter 1. Introduction 

With the advent of the 21st century, new challenges have emerged for medical science. Driven by 

global shifts in culture and influence, as well as technological advancements related to food, 

travel, and entertainment, the lifestyles of modern humans have strayed from those of our 

Palaeolithic ancestors. Eaten and Konner (1985) were among the first to suggest that though the 

habits and diets of humans have evolved dramatically over time, the genetic traits passed down 

with each generation have not experienced the same pressures of natural selection as our 

Palaeolithic predecessors.1 As such, the genome of modern humans is more suited to the hunter-

gatherer lifestyles that were adapted over 12,000 years ago,2 resulting in a ‘gene-culture’ 

misalignment in the 21st century. In light of this, there is growing recognition in the scientific 

community that the discordance between modern and Palaeolithic lifestyles is associated with 

the current rise in ‘diseases of civilisation’, though the extent to which this is true is debated 

within the literature.3, 4 Regardless, diseases attributed to modern ways of life are emerging at 

alarming rates and represent a significant burden to society, and this must be addressed. 

 

1.1 Diabetes Mellitus: A Disease of Civilisation 

There is a growing awareness of the rise of non-communicable diseases related to modern 

civilisation. In the 1970s, epidemiologists observed an increase in the prevalence of obesity, 

cardiovascular diseases, and type 2 diabetes (T2D) among indigenous populations that had 

renounced their traditional lifestyles in favour of ‘Westernised’ lifestyles,5, 6 and recent research 

conducted by Balick and colleagues (2019) supports these findings.7 This causal relationship 

was reinforced by O’dea (1984) who demonstrated that Australian Aborigines with T2D who 

temporarily reverted to their highly-active hunter-gatherer lifestyle and low energy density diet 

showed significant improvements in blood pressure, glucose tolerance, and lipid profiles.8 This 

has also been ratified by more recent research conducted by Frassetto and colleagues (2009).9 

Despite this evidence, adherence to traditional hunter-gatherer diets, which are protective 

factors against diseases of civilisation, remains in decline.10 The literature is generally critical of 

the habits and diets characteristic of Western civilisation, defined by a high-fat, high-sugar diet 

and a largely sedentary lifestyle lacking in meaningful levels of physical activity.10, 11 Though 

some authors contend that trends in physical inactivity have changed little over the last 30-40 

years,12 there is a consensus that the widely popular Western diet is an underlying cause of 

many emerging diseases of civilisation.13, 14 Because of this spread, these diseases of civilization 

are not endemic to Western nations, and many have reached epidemic proportions 

worldwide.15, 16 



–

–
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1.2 Epidemiology 

Diabetes mellitus – referred to hereon as diabetes – is a group of metabolic disorders 

characterised by chronic hyperglycaemia, or chronically-elevated levels of blood glucose.25 

Though diabetes has been introduced in this thesis as a Disease of Civilization, this is only true 

for T2D, which constitutes the vast majority of diabetes cases. Other types, such as T1D which 

will be distinguished in a later section, are not typically considered ‘lifestyle’ disorders. 

However, all types of diabetes share a common end point of dysglycaemia, or abnormal blood 

glucose, and this is the focus of the thesis. For this reason, the term ‘diabetes’ is used in this 

thesis in the context of dysglycaemia and refers to both T1D and T2D. Ranges for blood glucose 

level (BGL) indicative of diabetes are provided in Table 1.1.  In the past, discrepancies in the 

classification of diabetes between the American Diabetes Association (ADA) and the World 

Health Organization (WHO) – two leading global authorities on diabetes – caused 

inconsistencies in epidemiological data.26 Estimates of some types of diabetes were affected 

more severely as they were sensitive to the identifying criteria.27 Now, WHO and ADA use 

consistent criteria for diagnosing diabetes, providing a gold-standard approach for 

identification.28, 29 These criteria are the most widely-accepted ranges for optimal and 

suboptimal BGL, also referred to as plasma glucose concentration. 

Table 1.1 Ranges of blood glucose levels that are considered ‘optimal, ‘impaired’, ‘pre-diabetes’ 
or ‘diabetes’, as determined by fasting blood glucose and 2-hour glucose tolerance test. Fasting 
is defined as no caloric intake for at least 8 hours. Individuals need to meet criteria for both 
fasting and 2-hour glucose tolerance ranges for diagnosis. * = 2-hour glucose tolerance test is 
standardised by 75 grams of glucose solution. mmol/L = Millimoles per litre. Adapted from the 
American Diabetes Association (2016) and the World Health Organization (2016).28, 29 

Diagnosis 
Fasting blood glucose 

(mmol/L) 
2-hour glucose tolerance 

test (mmol/L) * 

Optimal 4.0 – 5.5 ≤ 7.7 

Impaired fasting glucose 6.1 – 6.9 ≤ 7.7 

Pre-diabetes 5.6 – 6.9 7.8 – 11.1 

Diabetes ≥ 7.0 ≥ 11.1 

 

Epidemiological evidence suggests that fasting BGL has been on the rise since 1980 

(n=2,700,000), increasing by 0.07 millimoles per litre (mmol/L) in men and 0.09 mmol/L in 

women per decade on average.30 The current burden of this is already high – the global health 

expenditure for diabetes was estimated to be 850 billion USD in 2017.31 On an individual level, 

diabetes is also the cause of significant emotional distress and financial burden,32 which is due 
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to a combination of medical costs and reduced capacity for work.33 Health expenditure for 

people living with diabetes is higher for individuals with complications, such as retinopathy and 

kidney failure, though this depends on various factors such as the type of diabetes and it’s 

duration.34 To better understand the scope of diabetes, the following sections will discuss the 

specific attributes which need to be addressed, such as the rising prevalence, concerns with 

classification, short and long term complications, and limitations of current treatment. 

 

1.3 Prevalence 

According to a systematic literature review of 221 data sources conducted by the International 

Diabetes Federation, the percentage of people affected by diabetes is expected to increase from  

8.4% in 2017 to 9.9% by 2045.31 Figure 1.2 shows that total cases have been steadily rising for 

the past 30 years. Note the large increase in the Eastern Mediterranean region – the origin of the 

Mediterranean diet, one of the healthiest modern diets35, 36 In their 2011 paper, Musaiger 

reasoned that this was because many people living in the Mediterranean region, particularly 

those in Arab countries, are renouncing their traditional diet in favour of the Western diet.37 

Prevalence may also be rising as a result of increased screening in some regions. 

Figure 1.2 Prevalence of diabetes in major regions between 1980 and 2014. 

 

Figure 1.2 portrays the rising prevalence of diabetes across six major regions worldwide, from 
1980 to 2014. Diabetes in the South-East Asia Region, of which Australia is part, has been 
steadily rising over the past 30 years. The Eastern Mediterranean Region is undergoing the 
highest increase in new cases of diabetes worldwide. The black dotted line indicates average 
prevalence of diabetes across all regions. Image from World Health Organization (2016).29 
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Data on the prevalence of diabetes in Australia is reported every six months by the National 

Diabetes Services Scheme, an Australian Government initiative which is administered by 

Diabetes Australia. As of the 31st of December 2021, there were 1,426,245 people with diabetes 

registered. Of those, 9% had T1D, 87% had T2D, 3% had gestational diabetes, and less than 1% 

had some other type of diabetes.38 Per census data provided by the Australia Bureau of 

Statistics, the population of Australia at the end of 2021 was 25,766,605.39 As such, at the end of 

2021, 5.54% of all Australians had some type of diabetes. Other studies report lower rates of 

T1D, such as a recent study in the United States which found that 5.8% of all diabetes cases 

were T1D and 90.9% were T2D.40 This discrepancy may be due to many cases of ‘insulin-treated 

T2D’ being misclassified as ‘T1D’ in the Australian Health Survey and National Diabetes Services 

Scheme. Discrepancies may also arise in cases of ‘double diabetes’, where people with T1D may 

also develop metabolic syndrome, which shares clinical features with T2D such as insulin 

resistance.41 As such, an individual with T1D may register as both someone with T1D and T2D 

in the prevalence reports. This raises an important issue with diabetes classification in the 

literature: many cases of diabetes do not fit perfectly into a single category, and there is some 

overlap between the different types of diabetes.42 Future studies should recognise these 

problems with diabetes classification when approaching study design and when distinguishing 

sample groups. 

 

1.4 Classification 

Both ADA and WHO recognise two main types of diabetes which constitute majority of cases: 

T1D and T2D.28, 29 Largely, they are caused by defects in multiple genes and, in the case of T2D, 

also lifestyle risk factors such as obesity.43 Less common forms of diabetes exist, such as: 

monogenic forms of diabetes which relate to a defect in a single gene; secondary diabetes which 

can result from cystic fibrosis or other medical conditions; and latent autoimmune diabetes in 

adults.44 There is an emphasis in the literature on separating non-classical forms of diabetes 

from T1D and T2D, as they have distinguishable clinical manifestations and treatments.45 Given 

that T1D and T2D are the most common types of diabetes and collectively account for over 95% 

of all types of diabetes, these will be the focus of this thesis, and any research conducted as part 

of the PhD candidature will focus on T1D and T2D. This chapter will also provide evidence as to 

why T1D and T2D should be studied independently, including the relevance of their distinct 

aetiology and pathophysiology.46 
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1.4.1 Type 1 Diabetes 

T1D and T2D are characterised by a dysfunction of insulin which results in long-term 

hyperglycaemia. For T1D, this dysfunction is due to a total or near-total deficiency in insulin 

production.47 In short, insulin is a hormone which promotes glucose uptake by somatic cells to 

reduce levels of glucose circulating in the blood. As a result, T1D is associated with chronically-

elevated levels of plasma glucose, as the body lacks insulin-related mechanisms to maintain 

glucose homeostasis.48 The exact mechanisms of T1D pathophysiology are still widely debated, 

and this has inhibited the development of effective preventive measures.49 However, there is a 

general consensus that insulin depletion is caused by immune-mediated destruction of insulin-

producing β-cells in the pancreas.50, 51 Various genetic, epigenetic, and exogenous risk factors 

have been implicated in the development of T1D, however causative mechanisms are poorly-

understood.52, 53 This may be because of the sheer number of regions of the human genome 

which confer susceptibility to the condition, which make it difficult to isolate a single cause, as 

well as the fact that a human pancreas cannot be studied non-invasively in living subjects.54 

The human leukocyte antigen (HLA) complex is comprised of 128 genes densely clustered on 

chromosome-6, and variations in this complex can explain 35-50% of the genetic predisposition 

to T1D.55 Familial clustering is prominent in T1D, and the HLA haplotypes which predispose one 

to T1D are the strongest genetic association to T1D identified to date. However, genetic studies 

have not been able to identify specific genes of the HLA complex which cause T1D, and there are 

various non-HLA genes implicated in the pathogenesis of T1D.56 Increased expression of HLA-1 

antigens in the insulin-producing beta cells of the pancreas has been associated with the onset 

of T1D. It is hypothesised in recent work that HLA-1 antigens increase the action of influent 

CD8+ T cells specific to defined islet antigens.57 In this autoimmune model, CD8+ T cells target 

the beta cells of the pancreas and destroy them, leading to a deficiency in insulin production and 

thus dysglycaemia. 

Studies on hereditary links in T1D, including the inheritance of susceptibility genes, are 

criticised as being underpowered and thus insufficient to detect complex interactions between 

genes.58 Exogenous or environmental agents represent a divided area of study within the 

literature, as those agents that have been identified so far vary significantly. These include: 

infection by enteroviruses or retroviruses, pathological gut flora, consumption of certain milk 

proteins, and exposure to environmental pollutants.59 A range of genetic and environmental 

factors are involved in the pathogenesis of T1D, and future research may need to focus on 

developing current understandings so that more therapeutic options for T1D may be explored.60 
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1.4.2 Type 2 Diabetes 

As with T1D, T2D is associated with a dysfunction of insulin that causes chronically high levels 

of blood glucose. By comparison, T2D is associated with a progressive impairment of insulin 

secretion and efficacy,28 which leads to profound, chronic elevations in BGL.61 Associated with 

the pathogenesis of T2D is insulin resistance, a term which refers to the way in which long term 

over-production of insulin, which may be exacerbated by high carbohydrate load of diets, leads 

to a progressive loss of sensitivity to insulin. The risk factors for developing T2D are more well-

known than T1D and, as such, T2D is theoretically easier to prevent compared to T1D.62 This 

also facilitates health programs and strategies to target groups at risk of T2D, such as 

overweight individuals and indigenous populations. Other groups at risk include the elderly, 

smokers, and heavy drinkers, though generally preventative programs are not targeted at these 

populations in the context of preventing diabetes.63 There is also a large genetic component to 

T2D, and studies in this area need to improve sample sizes, diversify populations, and improve 

phenotyping and sub-phenotyping.64 

The traditional risk factors for T2D are well-established, and include increased waist 

circumference, obesity, smoking, high blood pressure, and physical inactivity.65, 66 Large-scale 

clinical trials have shown promising results in reducing the prevalence of T2D in at-risk groups 

by targeting these specific lifestyle-related risk factors.67, 68 There are consistent findings that 

proper management of blood glucose and blood pressure, as well as smoking cessation and 

weight loss, are important strategies for managing T2D and its complications such as 

cardiovascular disease.69, 70 Recent literature also advocates the importance of non-traditional 

risk factors for cardiovascular disease (Figure 1.3), which are also implicated in T2D. These 

include insulin resistance, glycaemic variability, thrombogenic factors, and others.71 In 

particular, insulin resistance and glycaemic variability are non-traditional risk factors for 

cardiovascular disease which are also important in the prevention of microvascular and 

macrovascular complications of diabetes. Future studies may need to consider the complex 

interactions of these risk factors in the pathogenesis of T2D. 
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Figure 1.3 Interaction of traditional and non-traditional risk factors in the progression of 
cardiovascular disease. 

 

Figure 1.3 shows the complex relationships between the various risk factors present in T2D that 
are also implicated in cardiovascular disease. Traditional risk factors include: ‘increased blood 
pressure’, which has a direct correlation with cardiovascular disease; ‘visceral obesity’; and 
certain ‘genetic factors’. The other risk factors featured in this figure are considered non-
traditional and represent an emerging awareness of the complex interactions between risk 
factors and disease onset. Adapted from Martín-Timón et al. (2014).71 

 

Evidently, the two main types of diabetes share few similarities in terms of pathophysiology. 

Due to the spread of poor lifestyles, traditional risk factors for T2D have reached epidemic 

proportions. Though the mechanisms of its aetiology are debated, T1D is also rising. Reasons for 

this increase in prevalence are also debated, as correlations between T1D and proposed risk 

factors such as air pollution and certain infections have been inconclusive,72, 73 supporting the 

need for further research. Though T1D constitutes a smaller proportion of all cases of diabetes 

at only 9%, this statistic has remained static in recent years. This indicates the prevalence of 

T1D is also increasing in line with the T2D epidemic,40 which is driven by the rise of traditional 

risk factors for T2D such as obesity and hypertension.43 According to the literature, this level of 

comorbidity and interconnectedness between lifestyle-related diseases and risk factors is 

difficult to quantify. Additionally, living with diabetes is a risk factor for developing 

complications of diabetes. More specifically, the severity of complications of diabetes is 

associated with the amount of time an individual lives with suboptimal levels of BGL.74 This 

chapter will now explore the short and long-term complications of diabetes and why prevention 

of these complications is a core component of reducing the burden of diabetes. 
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1.5 Complications 

Complications of diabetes may arise in the short-term and the long-term, and are the direct 

consequence of hyperglycaemia.75 Maintaining optimal BGL reduces the risk for these 

complications. However, for reasons that will be discussed later in this chapter, many people 

living with diabetes are unable to optimise their BGL sufficiently. Some reasons include 

intercurrent illness and infection, or as a consequence of treatment for dysglycaemia. Acute 

symptoms can arise when BGL rises above the optimal upper limit of 7.7 mmol/L, including 

acute hyperglycaemia, diabetic ketoacidosis, and the hyperglycaemic hyperosmolar state, and 

when BGL drops below the lower limit of 4.0 mmol/L, which is known as hypoglycaemia. 

Roughly one third of all hospitalisations caused by diabetes are due to unmanaged diabetes 

conditions, representing a significant burden to health care systems.76  

 

1.5.1 Short-Term 

As one of the defining features of diabetes, persistent hyperglycaemia is the most common 

symptom experienced by people living with diabetes.77 Acute symptoms of hyperglycaemia are 

generally mild, and include feelings of hunger and thirst, as well as frequent urination.78 The 

lack of seriousness of these symptoms, combined with the fact that they generally develop 

slowly over time in T2D, contributes to unawareness of diabetes. In turn, the lack of awareness 

that these symptoms may be related to diabetes contributes to the large percentage of 

untreated hyperglycaemia. 

 

1.5.1.1 Hyperglycaemia 

In cases of unmanaged or undiagnosed diabetes, the deficiency of insulin activity can result in 

very high levels of glycaemia, which can cause two serious acute complications: diabetic 

ketoacidosis, which is particularly prevalent in T1D, and the hyperglycaemic hyperosmolar 

state, which is the more common presentation for people with T2D. Ketoacidosis is a 

complication of acute insulin deficiency and is a common acute complication for people living 

with T1D.79 It is associated with high levels of circulating ketone bodies (hyperketonaemia) 

which can cause metabolic acidosis, and people usually experience excessive hunger, thirst, and 

weight loss.80 In their systematic review of 19 studies, Marcovecchio (2017) concluded that the 

prevalence of diabetic ketoacidosis was higher in women, younger people, and in people treated 

with insulin injections.81 Most present with a BGL greater than 16.7 mmol/L, and treatment 

involves insulin therapy to correct the hyperglycaemia, as well as replacing lost fluids.82 The 
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literature is critical of additional supplement treatments such as bicarbonate infusion, as they 

are almost never required. For example, a systematic review of 12 randomized trials conducted 

by Chua, Schneider, and Bellomo (2011) demonstrated that bicarbonate infusion did not 

improve treatment outcomes in people with diabetic ketoacidosis.83 Another acute complication 

of hyperglycaemia is the hyperglycaemic hyperosmolar state, and treatment involves insulin 

therapy and correction of fluid deficit.82 Though ketoacidosis does occur in people with T2D, the 

more common presentation of acute hyperglycaemia is the hyperglycaemic hyperosmolar state. 

Diagnosis of this condition is when BGL is greater than 33.3 mmol/L with no metabolic acidosis 

or ketonemia, and the mortality rate is between 10-20%, or 10 times higher than the rate in 

people with diabetic ketoacidosis.84 Stringent monitoring and regulation of BGL is important for 

prevention. 

 

1.5.1.2 Hypoglycaemia 

Just as acute complications can arise from BGL rising above the optimal range, complications 

can be caused by BGL falling below the optimal lower limit of 4.0 mmol/L. This is more common 

in cases of diabetes where there is a total dependence on insulin to be supplied exogenously, or 

externally.85 Such cases are referred to as ‘insulin-dependent diabetes’, and do not necessarily 

refer to T1D, though most cases of T1D are insulin dependent, as well as the more severe cases 

of T2D. As a result of this trend, severe hypoglycaemia – defined as an event requiring third 

party assistance – occurs more commonly in T1D compared to T2D. The Global HAT study 

(n=27,585) reported that people with T1D experience hypoglycaemia at a rate of 73.3 events 

per year, compared to 19.3 per year for people with T2D. In terms of severe hypoglycaemia, 

people with T1D experience 4.9 events per year compared to 2.5 for insulin-treated T2D 

patients.86 

People with insulin-dependent diabetes are educated on how to measure insulin doses and self-

administer them to maintain their BGL in a euglycaemic, or optimal, range. However, due to the 

multitude of day-to-day factors which influence BGL, including exercise and food intake, this 

euglycaemic target can be difficult to maintain. It is commonplace for exogenous insulin to 

reduce BGL below the optimal range, causing hypoglycaemia. This is sometimes referred to as 

iatrogenic hypoglycaemia because it results from an error in medical treatment. Richard and 

colleagues (2019) cite three main causes of severe hypoglycaemia in diabetes as missed meals, 

incorrect use of antidiabetic medication, and mismatch between antidiabetic medication and 

carbohydrate intake.87 This is reinforced by Tourkmani and colleagues (2018), who also add 

physical exercise and alcohol consumption as common causes.88 Confusion, difficulty 
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concentrating, and dizziness are known neuroglycopenic symptoms of hypoglycaemia, and 

occur because glucose is the major source of energy for the brain. Sweating, heart palpitations, 

and trembling are the autonomic symptoms of hypoglycaemia, and usually occur before the 

onset of neuroglycopenic symptoms and can act as a ‘warning system’.89 Coma and death result 

from prolonged severe hypoglycaemia, and loss of consciousness may precede these at 

undefined levels of BGL.90 As such, the literature advocates that people living with T1D be aware 

of the autonomic signs and symptoms of hypoglycaemia and be prepared with a plan of action,88 

for example having a snack containing 15g of carbohydrate and a protein source in between 

meals to prevent repeated hypoglycaemia.85 The literature emphasizes the importance of 

optimizing glycaemia without compromising the safety of people with severe hypoglycaemic 

events, though this is a difficult balance to maintain.91 

 

1.5.1.3 Impaired Awareness of Hypoglycaemia 

Impaired awareness of hypoglycaemia, also known as hypoglycaemia unawareness, is a 

complication of diabetes that results from repeated iatrogenic hypoglycaemia. It involves 

reduced responsiveness of the autonomic nervous system to low BGL, resulting in a loss of the 

body’s natural alarm system for hypoglycaemia.92 People with this impaired awareness are six 

times more likely to experience severe hypoglycaemic events compared to those with optimal 

awareness.93 In a study of n=98 young adults with T1D, conducted by Paes and colleagues 

(2020), hypoglycaemia unawareness was observed in 28% of the subjects.94 In a cross-sectional 

study on T2D participants undergoing insulin therapy (n=2,350), Meijel and colleagues (2018) 

observed impaired awareness of hypoglycaemia in nearly 10% of the sample.95 Evidently, this 

unawareness affects a significant proportion of people with diabetes, roughly one in four people 

with T1D, and roughly one in ten of those with T2D on insulin therapy. This is especially 

concerning when considering the threat level of hypoglycaemia. Frequent hypoglycaemia 

leading to hypoglycaemia unawareness is reversible in the short term through stringent 

avoidance of hypoglycaemia for 2-3 weeks.92 However, as demonstrated in the HypoCOMPass 

trial (n=96), awareness of hypoglycaemia was restored after 24-weeks without compromising 

glycaemic target, and thus autonomic function may take up to 24 weeks or longer to be 

restored.96 

One hypothesis is that iatrogenic hypoglycaemia, caused by pharmacotherapy and other factors, 

is a major cause of hypoglycaemia-associated autonomic failure. According to Cryer (1992), the 

reduced ability of the autonomic nervous system to activate or respond to critically low BGL 

reduces the ability of people who rely on autonomic symptoms to self-monitor their own BGL, 
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leading to recurrent severe hypoglycaemia.97 Under ideal circumstances, people can recognize 

the onset of sweating and heart palpitations as early warning indicators of hypoglycaemia. The 

absence of these indicators creates a cycle where unmanaged hypoglycaemia predisposes one to 

subsequent instances of hypoglycaemia, further removing defenses against detecting it. This 

mechanism is still largely misunderstood, and a recent review published by Rickels (2019) 

determined that there was a lack of consensus on this pathological mechanism.98 Though 

autonomic failure is involved in hypoglycaemia unawareness, it is unlikely to be related to 

cardiac autonomic neuropathy, a long-term complication of diabetes. It has been shown that 

only subject age and duration of diabetes is associated with hypoglycaemia unawareness, and 

cardiac autonomic neuropathy is not.94 Research indicates that people commonly make errors 

when estimating BGL in very high ranges, such as above 22.0 mmol/L, or in the very low ranges, 

such as below 3.0 mmol/L, due to the presence of neuroglycopenic symptoms which affect 

concentration and alertness.99 As such, self-diagnosis of low BGL can be unreliable, and future 

research may aim to improve this. 

Evidently, the threat of BGL falling below the optimal lower limit is of great concern. A simple 

solution to this problem is to implement a system of continuous monitoring as part of standard 

diabetes management. In theory, continuous monitoring is currently the most reliable means of 

detecting hypoglycaemia early and facilitating self-intervention,100 but in practice it is expensive 

and usually reserved for T1D. A more detailed discussion of the strengths and limitations of 

current glucose monitoring will be provided in a later section. It should be noted at this point 

that the literature advocates strongly for stringent monitoring of glycaemic events, as it is also 

associated with improved long-term outcomes,101 which will be explored in Section 1.5.2. 

 

1.5.2 Long-Term 

In the long-term, unmanaged BGL can also lead to life-threatening conditions, as well as 

increased morbidity and mortality. For hypoglycaemia, the long-term consequences are poorly 

understood, and this an area of research that is severely lacking. Generally, the main long-term 

complications of hypoglycaemia are impaired awareness of hypoglycaemia and hypoglycaemia-

associated autonomic failure, as well as predisposition to cardiovascular events.102 Fortunately, 

almost all episodes of hypoglycaemia occur in people that are taking medication and are thus 

aware of the risk of iatrogenic hypoglycaemia, so there is increased opportunity to intervene.87 

As for long-term complications of hyperglycaemia, there is an abundance of research in the 

literature, and it defines these complications as the result of various factors. Based on estimates 

provided by Beagley and colleagues (2014), 46% of all people living with diabetes worldwide 
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are undiagnosed or unaware of their condition, and are thus likely to be untreated cases.103 The 

lack of diagnosis is due to progressive increase in BGL over time in people with T2D. As the 

condition progresses, the individual had an adaptive physiological response to the high levels of 

glucose which become the new ‘normal’ for them. As such, symptoms may be absent despite 

high BGL.82. Even in individuals with symptoms, medical intervention may not be a priority for 

symptoms such as increased thirst and hunger. However, sustained hyperglycaemia causes 

serious complications in the long term. Among those who are aware of their condition (56% of 

total diabetes cases worldwide), glycaemic management is better, but not optimal. In an 

Australian study, roughly half of a large population of diagnosed diabetes cases were unable to 

maintain their BGL at the optimal target level, such as through medications and lifestyle 

interventions.104 The reasons for this will be provided in a later section. At this point, it is only 

important to note that long-term complications are common in diabetes and the main reason is 

because of persistent hyperglycaemia. Specifically, when hyperglycaemia remains at chronically 

high levels for longer than 2 years, causing long-term microvascular and macrovascular damage 

to the cardiovascular system, kidneys, nerves, and retinas (Figure 1.4). There is abundant 

evidence from a range of populations which show that duration of diabetes – or the length of 

time since diagnosis – is strongly correlated with complications of diabetes, and that this 

correlation with levels of HbA1c is a measure of longer term glycemia.105-107 The next section will 

describe these complications and their severity in more detail. 
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1.5.2.1 Macrovascular 

Macrovascular complications affect arterioles, capillaries, and venules, which play an important 

role in supplying blood to organs. As such, the main macrovascular complications of diabetes 

are cardiovascular diseases, and include stroke, peripheral vascular disease, and coronary heart 

disease.74 There is some debate over whether microvascular complications precede 

macrovascular complications in terms of pathogenesis and development, or whether they are 

distinct entities which progress separately.108 Al-Wakeel and colleagues (2009) and Krentz and 

colleagues (2007) concluded that both types of complications develop simultaneously.109, 110 It is 

also possible that macrovascular and microvascular complications develop simultaneously and 

independently, though more research is needed to clarify the interaction between risk-factors of 

diabetes and it’s complications. 

 

1.5.2.2 Microvascular 

End-stage renal disease, retinopathy, and neuropathy are the common microvascular 

complications of diabetes.111. An estimated 80% of all end-stage renal disease cases are caused 

by diabetes or hypertension, and of those related to diabetes, 91% were due to T2D.74 Figure 1.5 

summarises the general process by which hyperglycaemia leads to tissue damage in certain 

organs. Pettus and colleagues (2019) determined that suboptimal glycaemia in T1D adults 

(n=31,430) was associated with higher prevalence of acute complications, such as severe 

hypoglycaemia and diabetic ketoacidosis, as well as chronic complications, such as neuropathy 

and nephropathy.112 Brownlee (2005) has suggested that certain cells in the renal nephrons, 

eyes, and neurons of the autonomic nervous system cannot regulate their internal glucose 

concentrations efficiently, and thus are susceptible to damage from hyperglycaemia.113 

Consequently, the progression of diabetes is associated with a decline in autonomic modulation 

of the heart and cardiovascular disease.114-116 Clinical research has shown that autonomic 

function is significantly diminished in diabetes compared to people without diabetes.117 There is 

widespread acceptance that chronic hyperglycaemia causes irreparable damage to nerves of the 

autonomic nervous system, and diabetes is the most common cause of neuropathy.118 
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Figure 1.5 Flow chart for the pathogenesis of tissue damage in chronic hyperglycaemia. 

 

Figure 1.5 outlines the process of hyperglycaemia-induced tissue damage. There is a strong 
genetic component to diabetes, which contributes to hyperglycaemia as well as cellular damage. 
Hyperglycaemia is associated with changes in cellular metabolism and structure. *Other 
accelerating factors include hypertension and hyperlipidaemia, which act independently to 
exacerbate hyperglycaemia and accelerate tissue damage. Adapted from Brownlee (2005).113 

 

1.5.2.3 Diabetic Autonomic Neuropathy 

As with most adverse complications of diabetes, diabetic autonomic neuropathy is more 

common with chronic hyperglycaemia, and there is a strong agreement in the literature that 

duration of diabetes is correlated with increased risk for diabetic autonomic neuropathy.107, 119 

This reinforces the current understanding that untreated hyperglycaemia accelerates tissue 

damage in diabetes. Degeneration of the autonomic nervous system is caused by the 

accumulation of oxidising agents which compromise vascular supply to the nerves.120 

Consequently, diabetic autonomic neuropathy is associated with the development of diabetic 

foot disease, ulcers, and vascular disease,121, 122 and longitudinal research published by Morbach 

and colleagues (2012) reports that the prognosis of subjects with foot ulcers is especially 

poor.123 In their literature review, Vinik, Erbas, and Casellini consider diabetic autonomic 

neuropathy to be one of the least understood complications of diabetes.115 One of the problems 

that has been identified in the treatment of diabetic autonomic neuropathy is the lack of simple 

methods for evaluating autonomic function.124 Based on the MONA LISA Hypothesis (Most 

Obesities k/Nown Are Low In Sympathetic Activity), the measurement of sympathetic activity – 

a component of the autonomic nervous system that can be partially measured by low frequency 

heart rate variability – may be useful in monitoring the progression of complications.125 Lagani 

and colleagues (2018) advocate for the development of prognostic tools, such as models which 

include clinical data on age, sex, smoking habits, blood pressure and HbA1c, as these are strongly 

correlated with diabetes complications.126 Hyperglycaemia is a leading cause of diabetic 

autonomic neuropathy, and people with diabetes who are affected by diabetic autonomic 

neuropathy have increased mortality.127, 128 
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1.5.3 Neurophysiology of Blood Glucose Level and Autonomic Activity 

The autonomic nervous system modulates glucose metabolism and BGL through its two counter 

regulatory branches.129 The sympathetic nervous system acts to increase BGL through direct 

innervation of the liver and skeletal muscles to increase glucose production, as well as through 

activating the adrenal medulla and pancreas to produce epinephrine and glucagon, 

respectively.129 During exercise or exposure to cold, the sympathetic nervous system may also 

be involved in increasing glucose uptake by skeletal muscles, despite unchanged BGL.130 This is 

likely related to survival mechanisms, rather than conventional glucose homeostasis. The 

autonomic nervous system can also directly innervate the liver in response to pancreatic 

glucagon or insulin release, and the effects of direct sympathetic neural innervation of the liver 

are stronger compared to parasympathetic innervation.131 The parasympathetic nervous system 

effectively decreases BGL by increasing insulin release from the pancreas, as well as by directly 

innervating the liver.132 Evidently, autonomic innervation of endocrine organs is an important 

component of glucose regulation. Activation of the vagus nerve, the main parasympathetic 

nerve, leads to increased gastric acid secretion to facilitate digestion, and also leads to 

decreased heart rate, a staple of parasympathetic control.129 Insulin and glucagon, as well as 

epinephrine and norepinephrine, cause neural activation of the liver. Epinephrine is released by 

the adrenal medulla and the sympathetic nerve terminals, and rapidly increases BGL by 

promoting liver glucose production and inhibiting insulin-mediated glucose uptake in skeletal 

muscles. By comparison, norepinephrine contributes little to liver glucose production, but is 

involved in glucose uptake and use in skeletal muscles independently of insulin.132 

Over the past 20 years, there has been a shift in the fundamental ways in which diabetes affects 

quality of life. Mortality rates for people with diabetes are declining, and there have been 

decreases in the incidence of classic complications such as cardiovascular diseases and lower 

limb amputation.133 Current understandings of the underlying mechanisms of diabetes 

complications are insufficient, and future research should consider how this affects the 

development of better therapeutic options and treatment outcomes.134 Based on the 

information provided in this section, improving access to technologies that can evaluate 

autonomic function in everyday clinical practice may be invaluable in the early detection, and 

thus early intervention, of diabetic tissue damage, as the peripheral nervous system is an early 

target of hyperglycaemic damage.135 The role of the autonomic nervous system in glucose 

regulation is an important component of this PhD candidature, and will be discussed in a later 

section. Now that the nature and severity of diabetes complications have been established, it is 

clear these represent a significant burden to both individuals and national health systems. 
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1.6 Importance of Glycaemic Management 

There is a strong consensus in the literature that stringent management of BGL, which involves 

maintaining BGL within the target glycaemic range, significantly reduces the risk and severity of 

diabetes complications.136-138 This has been reinforced by the ADVANCE trial139 (n=11,140) and 

the follow-up study of the Veterans Affairs Diabetes Trial140 (n=1,791), both of which 

demonstrated a reduction in microvascular and macrovascular complications of diabetes in 

groups randomly assigned to intensive glucose management compared to less intensive. Large-

scale longitudinal studies have reinforced this understanding as well. In the United Kingdom 

Prospective Diabetes Study (n= 4,209), T2D subjects undergoing intensive insulin therapy to 

manage their BGL over 10 years showed a 24% reduction in microvascular disease, a 15% 

reduction in myocardial infarction, and a 13% reduction in all-cause mortality compared to the 

group treated with a simple dietary restriction.141 The results from the Diabetes Control and 

Complications Trial and its long-term observational follow-up, the Epidemiology of Diabetes 

Interventions and Complications study (n=1,441), also demonstrated that stringent glycaemic 

management, facilitated by intensive insulin therapy and vigilant glucose monitoring, 

substantially reduce the long-term complications of diabetes in people living with T1D.142 

 

1.6.1 Glycaemic Variability 

There is growing recognition that glycaemic variability, attributed to large, acute fluctuations in 

BGL, such as those associated with glucose spikes after a meal, is also relevant in the 

pathogenesis of autonomic complications. Glycaemic variability indicates the presence of 

glycaemic excursions,143 and BGL falling outside the optimal limits leads to complications in the 

short and long term, as discussed. As a therapeutic target, it is under-recognized, and recent 

literature reviews advocate for the importance of targeting glycaemic variability as a means of 

reducing the risk of complications of diabetes.144 In the Verona Diabetes Study, higher 

variability in long term fasting BGL was shown to be associated with high total mortality, as well 

as higher mortality from cardiovascular disease and cancer.145 Greater glycaemic variability is 

associated with lower autonomic function in T2D, and stringent glucose monitoring and 

intervention is crucial in reducing glycaemic variaiblity.146 Nusca and colleagues (2018) contend 

that the two major aspects of glycaemic variability are as follows: the magnitude of glucose 

fluctuations, including the height from the nadir to the peak; and the length of time between 

glucose fluctuations. Both are important in glycaemic variability, which is associated with 

coronary heart disease and other vascular complications.147 Damage from glycaemic variability 

occurs at a cellular level, and there are several pathways in which this is theorized to occur. 
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1.6.2 Oxidative Stress and Hyperglycaemia 

A popular long-held theory is that complications of diabetes, particularly neuropathy, are the 

result of an increase in oxidative stress.148 To elaborate, there are four key processes which link 

hyperglycaemia and neuropathy in diabetes, and they all involve excess production of reactive 

oxygen species (ROS) by the electron transport chain in the mitochondria. The electron 

transport chain is a major source of ROS, including superoxide, hydroxyl radical, and hydrogen 

peroxide, and these arise from oxidative phosphorylation, glucose autoxidation, and multiple 

enzymatic processes, which are all heightened in hyperglycaemia.149 This is because high BGL 

leads to glucose molecules accumulating in the cells of the muscles, adipose, and pancreas, 

where these cellular processes which produce ROS are increased. ROS are likely helpful in cell 

signaling, acting as second messengers in intracellular signaling pathways. However, in excess, 

these cause damage to the membranes, protein structure, lipids, and DNA of cells, and thus 

contribute to oxidative stress.149 As such, chronic hyperglycaemia leads to degeneration of 

autonomic nerves by way of affecting the biochemistry of free radicals. 

Oxidative stress causes harm to many types of cells, however, there are certain types of cells 

which show signs of damage sooner than others in response to chronic hyperglycaemic 

conditions. Clinical studies have shown that parasympathetic neuropathy can have a relatively 

early onset in T2D.150 It has been proposed that increased oxidative stress, caused by 

hyperglycaemia, affects the parasympathetic nerves first because their myelinated 

preganglionic fibres are longer and thicker compared to sympathetic nerves.151 This is related to 

the work of Ewing and Clarke (1985) who proposed a battery of five non-invasive reflex tests 

for early detection of autonomic neuropathy in diabetes. Since parasympathetic neuropathy 

occurs early in T2D, Ewing and Clarke (1985) proposed the ‘Ewing battery’ which includes the 

Valsalva manoeuvre, lying to standing heart rate response, deep breathing heart rate response, 

postural blood pressure change, and sustained handgrip test.152 Worsening of autonomic 

function can be detected using the Ewing battery, a gold-standard in clinical practice, and early 

detection is important in diabetes as autonomic neuropathy is linked to myocardial ischemia, 

coronary artery disease, and stroke.153 

Autonomic neuropathy in diabetes also presents low-grade chronic inflammation. Cytokines 

such as interleukin-1, 6, and 8, as well as C-reactive protein, TNF-α, and monocyte 

chemoattractant protein-1, contribute to inflammatory reactions.154 These are produced by 

activated immune cells and resident macrophages and adipocytes, and play a key role in 

inflammatory signalling. Activation of receptor-mediated inflammatory signalling leads to 

increased oxidative stress, which as discussed contributes to degeneration of autonomic nerves, 

particular those of the parasympathetic nervous system.155 Several  therapeutic drugs have 
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demonstrated reductions in microvascular complications in T2D by reducing inflammation. For 

example, melatonin reduces elevated levels of proinflammatory cytokines and increases blood 

circulation to the nerves.156 Targeting inflammation signalling in chronic hyperglycaemia has 

important clinical implications for reducing the risk and severity of autonomic neuropathy. 

Given the background of diabetes complications and the cellular processes involved, it is clear 

that stringent glycaemic management is a priority in reducing the current cost of diabetes on 

individuals and society. Now that it is clear why glycaemic management is important, the next 

sections will explain how this is possible and discuss current limitations. 

 

1.6.3 Treatment 

Adopting the best course of treatment of diabetes is complicated by a range of factors. Primarily, 

therapies will differ based on the type of diabetes, as pathological differences between T1D and 

T2D lead to profound differences in treatment.46 The severity of the diabetes as well as other 

comorbidities are also key factors to consider. Although therapeutic strategies differ 

significantly, T1D and T2D are both characterised by high levels of blood glucose that cannot be 

controlled by the body’s own insulin. Left untreated, chronic hyperglycaemia leads to 

debilitating, life-threatening complications in the long-term. As such, it is possible to generalize 

the main objective of diabetes treatment as such: maintain target glycaemia by use of 

antidiabetic mediation in combination with lifestyle modification.157 The extent of diet and 

exercise changes, as well as the nature of the pharmacotherapy, can differ significantly among 

people with diabetes. 

Most cells in the human body require insulin signalling to take in glucose from the blood. In 

conditions defined by insulin dysfunction, such as diabetes, the lack of signalling causes glucose 

to reach high levels in the blood.158 Therefore, pharmaceutical insulin therapy is a common 

method for supplying exogenous insulin to people living with diabetes who cannot use or 

produce their own. This usually applies to those living with T1D, as insulin production is 

limited, but it may also apply to end-stage T2D where insulin resistance has progressively 

worsened, and pancreatic insulin supply may also be limited. According to Riddle and 

colleagues in their 2021 consensus report, pharmaceutical therapies targeting glycaemic 

management in diabetes have improved greatly in recent years.159 This section aims to describe 

the role of medications in dealing with dysglycaemia (Figure 1.6), as well as explain why insulin 

therapy is important in diabetes management. 
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Figure 1.6 Anatomical structures involved in glucose, insulin, and glucagon regulation. 

 

Figure 1.6 illustrates the production, regulation, and role of insulin in maintaining glucose 
homeostasis. Following the absorption of glucose-containing nutrients in the gastrointestinal 
tract, glucose sensors in the liver detect an increase in blood glucose concentration. In a person 
without diabetes, this is followed by the release of insulin from the pancreas to promote glucose 
uptake by somatic cells, such as those in skeletal muscle, and thus reduce blood glucose to an 
optimal level. In diabetes, reduced insulin activity causes glucose levels to rise, without a 
mechanism for maintaining homeostasis. Adapted from Grayson, Seeley & Sandoval (2013).48 
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1.6.3.1 Type 1 Diabetes Treatment 

As T1D results in a total or near-total deficit of insulin, the condition is managed with insulin 

therapy paired with frequent monitoring of BGL to remain vigilant of hypoglycaemia.160 Insulin 

therapy can be achieved with 3-4 injections of basal (slow-acting) and prandial (fast-acting) 

insulin per day, or continuous insulin infusion.161 Automated insulin delivery, combined with  

currently available CGM, significantly improves the length of time people with T1D can have 

target glycaemia. With T1D, complete remission is possible through pancreas transplant, though 

novel research is also exploring the potential for gene therapy to restore insulin production in 

T1D and result in remission.162 Regardless of the method, the main objective of T1D treatment is 

clear: maintain BGL in the optimal range for as long as possible and reduce glycaemic 

variability. Among common diabetes treatment strategies, more stringent methods are 

correlated with improved glycaemic management; however, based on a meta-analysis of 37 

articles, there is little data on whether engagement with treatment improves quality of life in 

diabetes.163 Future research may need to consider how current treatment methods do not 

necessarily lead to better quality of life. 

In T1D, the effects of a pancreas transplant on long-term complications is an area of research 

that is lacking, though available literature suggests that a transplant is effective in restoring 

euglycaemia in T1D and improving quality of life.164 However, the availability of donors and the 

lifelong immunosuppression therapy are major factors which limit the viability of transplant 

surgery for most people living with T1D.165 Surgery in general is invasive and is generally not 

applicable in most cases. There is growing interest in islet cell transplant and stem cell 

generation of islet cells prior to gene therapy, though currently this is not used in clinical 

settings. Transplanting islet cells has shown improvements in insulin independence up to five 

years following the transplant, with minimal complications.166 20-year follow-up data is 

available for a cohort of n=29 females and n=20 males.167 At the end of the follow-up, from the 

year 2000 to 2020, 86% of the subjects had no albuminuria, 12% had microalbuminuria, and 

2% had macroalbuminuria. Two subjects (4.08%) died during the follow-up period. Since 

pancreas transplantation has been in clinical use for longer, there is 30-year follow-up data for 

subjects. In a cohort of n=2,796 subjects with T1D, simultaneous pancreas-kidney transplant 

improved survival and resulted in an almost twofold lower 10-year mortality rate.168 Data from 

the International Pancreas Transplant Registry of n=18,159 pancreas transplants demonstrated 

that simultaneous pancreas-kidney transplanting is superior to pancreas transplants alone in 

terms of survival. At 5-year, 10-year, and 20-year follow-up, survival rate was 80%, 68%, and 

45%, respectively, for simultaneous pancreas-kidney transplants versus 59%, 39% and 12%, 

respectively, for pancreas transplants alone.169 
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Transplants restore euglycemia in people with T1D, and in turn these reduce the progression of 

diabetes complications, such as retinopathy. However, large epidemiological data has shown 

that early metabolic control is critical in the overall development of complications of diabetes, 

despite the short-term benefits provided by intensive glycaemic control. This is hypothesised to 

be due to ‘metabolic memory’, a phenomenon where cellular pathways, such as excessive 

cellular ROS at the level of glycated-mitochondrial proteins, maintain stress signalling and 

contribute to long-term diabetes complications.170 Metabolic memory is one issue which has 

been used to justify the importance of early intervention and prevention of diabetes, as early 

control is critical in preventing the progression of complications. 

 

1.6.3.2 Type 2 Diabetes Treatment 

Conversely, management of T2D typically involves improving physical activity and diet in 

combination with pharmacotherapy.67 Lifestyle changes include: daily physical activity;171 

dietary changes and restrictions,172 such as minimising processed foods and high energy density 

foods;173 and reducing alcohol consumption and smoking.174 The objective of these lifestyle 

interventions is to improve glycaemic management in the short term and restore insulin 

sensitivity in the long term, which in theory can result in remission from T2D.175 Such treatment 

is considerably less invasive and more affordable compared to surgery, though it is important to 

note that sustained remission of T2D is very rare, even with intensive lifestyle and 

pharmaceutical intervention,176 though it is more common with surgery.177 Remission is 

described as achieving target glycaemia at least three months after ceasing antidiabetic 

medication, as the person’s natural homeostatic processes have been restored and optimal 

glycaemia can be achieved without pharmacotherapy.159 

Lifestyle interventions are often difficult to maintain, and weight that is initially lost can be 

regained over time as people with T2D age. As such, pharmacotherapy is considered a first-line 

therapy, and some drugs are even used in the prevention of T2D. A common therapeutic agent 

in the treatment of prediabetes and T2D is metformin, an oral glucose-lowering drug which 

helps to draw glucose out of the bloods by enhancing insulin action in the liver and skeletal 

muscles.178 Metformin use is associated with reduced oxidative stress in T2D subjects compared 

with subjects treated with lifestyle interventions179 or with sulfonylureas.180 Albumin in the 

blood is an important antioxidant, and it has been proposed that an added benefit of metformin 

use is the protection it provides to serum albumin. By this process, people with T2D treated 

with metformin show reduced oxidative stress and glycation.180 Metformin use also provides 

sustained cardiovascular benefits, which are unlikely related to its glucose-lowering effects 
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since this sustained benefit has not been observed with sulfonylureas or insulin therapy.181 

Clinical research has suggested that metformin may improve sympathovagal balance in T2D.182 

For most cases of T2D, maintaining euglycaemia – or optimal levels of BGL – involves 

medication and lifestyle interventions. However, there is data which supports more non-

conventional options. According to a meta-analysis of 10 studies (n=17,532) conducted by 

Billeter and colleagues (2018), metabolic surgery such as bariatric surgery prevents 

microvascular complications to a better extent in T2D than treatment by medication, which 

includes insulin therapy and glucose-lowering medications.183 Chang and colleagues (2014) 

confirm in their meta-analysis and review (n=161,756) that bariatric surgery works to slow or 

even reverse the progression of T2D by restricting hunger, and thus also caloric intake.184 

However, as with any surgery the invasive nature of bariatric surgery provides a risk for serious 

complications, limiting the application of this treatment. 

Insulin therapy is required when non-insulin therapy, such as metformin or other glucose-

lowering drugs, is unable to maintain glucose homeostasis and euglycaemia.185 In T2D, multiple 

drugs may be used to achieve euglycemia, and insulin can be added on to multiple oral 

therapies, and in T1D treatment is typically just insulin therapy. In a person without diabetes, 

homeostasis is the process by which BGL is maintained within a narrow range (Figure 1.7), 

between 4.0 and 7.7 mmol/L.186 As with other homeostatic systems, such as core body 

temperature, BGL must be maintained within its optimal range to ensure an individual’s 

health.187 Intensive insulin therapy reduces the risk of complications in the long-term, but 

researchers warn that the risks of severe hypoglycaemia in the short-term may outweigh this.188 

In insulin-dependent diabetes, it is important to consider diet and medication guidelines set by 

the physician to reduce the incidence of hypoglycaemia, as glucose monitoring systems cannot 

always be relied on for the detection of hypoglycaemia. The reasons for this unreliability will be 

explored in depth in a later section which discusses the applications of glucose monitoring. 



, homeostatic processes seek to maintain an individual’s BGL above 4.0 mmol/L 

BGL mmol/L

around an individual’s metabolic state, such as whether they are fasting, eating, exercising, or at 

measuring BGL in the morning before breakfast is an example of ‘fasting 
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BGL’, as the absence of food or medications in the last eight hours results in a glucose 

baseline.189 The importance of fasting and postprandial BGL are highlighted in the literature as 

they are key indicators of health. For example, fasting BGL is useful for diagnosing diabetes and 

monitoring its progression, and postprandial BGL is predictive of cardiovascular complications 

in diabetes.191-193 The ability to measure BGL in different metabolic states may to relevant to the 

development of future measures of BGL, and thus is relevant to this thesis. This will also be 

relevant to the methodology chapters, where it will be discussed how BGL can be measured in 

fasting and postprandial states. 

 

1.6.4 Homeostasis 

Consider that with any physiological system, there is significant minute-to-minute variation due 

to ongoing homeostatic processes. In the case of glucose homeostasis, BGL fluctuates in 

response to metabolic demands, such as the change between exercising and being at rest, as 

well as in response to the digestion of energy sources after consuming a meal.194 These are just 

two of the main pressures which cause BGL to fluctuate across the day. In the absence of these – 

a state which is referred to as ‘fasting’ – BGL remains very stable in a person without diabetes: 

between 4.0 and 5.5 mmol/L.189 Following the consumption of a meal, an individual would 

expect their BGL to fluctuate between 5.6 and 7.7 mmol/L. Therefore, individuals who present 

with a fasting BGL greater than 5.5 mmol/L or a postprandial BGL greater than 7.7 mmol/L are 

classified as having impaired glycaemia and may have diabetes or pre-diabetes (refer to Table 

1.1). Clinicians may also order a ‘random’ blood glucose assessment, where BGL is assessed at 

an undefined point where a person is not necessarily fasting nor postprandial. The objective of 

this is the determine whether a person’s BGL is above 11.1 mmol/L, because BGL above this 

threshold at any point is indicative of diabetes and warrants further investigation with a glucose 

tolerance test. Current literature indicates that random BGL is difficult to interpret, as it may be 

affected by confounders such as recent food intake and medications,194 and so for the purposes 

of this thesis the focus will be on BGL assessed in fasting or postprandial states. 

 

1.6.5 Metabolic State 

Though BGL is most often assessed in a fasting state in a clinical setting, there is a strong 

consensus in the literature that postprandial BGL is a better predictor of diabetes complications. 

Cavalot and colleagues (2006) contend that postprandial BGL, but not fasting BGL, predicts 

cardiovascular events in T2D, with stronger prediction in women compared to men.195 Some 
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research suggests that fasting BGL is independently associated with cardiovascular disease risk, 

however this only holds true for groups in the ‘high-optimal’ range of BGL, between 5.3 and 5.6 

mmol/L.193 A more recent study conducted by Jingjing and colleagues (2017) found that 

postprandial BGL performed better in screening for coronary heart disease compared to fasting 

BGL and HbA1c.192 Clinical research has also shown that specifically targeting and lowering 

postprandial BGL in T2D, compared to fasting BGL, leads to better glycaemic management 

overall and better HbA1c.191 Clearly, postprandial BGL offers key insights into diabetes 

prognosis, and a convenient method of measuring postprandial BGL may provide meaningful 

information to people currently living with diabetes. To reiterate, the specifics of how fasting 

and postprandial BGL are measured will be described in the methodology chapters. As previous 

sections have explored in detail how diabetes can be treated by current standards, the next 

section will explore how diabetes – and blood glucose – can be monitored, as this is critical to 

making clinical decisions and improving treatment efficacy. 

 

1.7 Invasive Glucose Monitoring: The Current Standard 

Stringent monitoring of blood glucose is strongly advocated for people living with diabetes for 

several reasons. The first reason has been discussed throughout previous sections: stringent 

BGL monitoring is a requirement for the continued health and wellbeing of certain people living 

with diabetes (Section 1.5). This is most relevant for those with T1D or end-stage T2D on insulin 

therapy, as the reliance on external insulin is associated with increased risk for severe 

hypoglycaemic events. In these groups of people, glycaemic excursions occur often in the high 

range of BGL (hyperglycaemia) and in the low range (hypoglycaemia), and current guidelines 

recommend BGL be assessed 4-10 times per day.196 Vigilant monitoring of BGL is therefore 

critical for detecting these glycaemic excursions early and intervening.197 The literature 

advocates strongly that glucose monitoring be a priority even for those with early T2D and 

other non-severe forms of diabetes.198 It is important that individuals take responsibility for 

monitoring their glycaemia, as diabetes is a chronic condition that affects everyone differently. 

Current literature advocates for frequent monitoring of blood glucose and proactive 

intervention to achieve target glycaemia and improve quality of life in both the short-term and 

long-term.136-138 

Technologies used to monitor glucose levels can be categorised by the frequency in which they 

assess glucose levels. Intermittent methods are characterised by their ability to only provide 

‘snapshot’ data, such as a blood glucose assessment which directly measures BGL at a specific 

point in time, and continuous methods offer constant monitoring of BGL, which may be useful 
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for vigilant monitoring of potential hypoglycaemia.199 Both technologies fill different roles and 

have their own uses in T1D and T2D, and each have different advantages and disadvantages. As 

a rule, there is a trade-off between accuracy and frequency when it comes to current methods of 

monitoring of BGL. For example, technologies that are more accurate are impractical to use 

frequently,200 and technologies that measure glucose levels frequently, such as continuous 

systems, are less accurate, as they measure interstitial glucose instead of blood glucose.201 

However, continuous monitoring systems have the advantage of being more useful for detecting 

hypoglycaemic events, as they may occur unexpectantly and require constant monitoring. 

Intermittent measures of BGL are praised in the literature for their accuracy but criticised for 

their invasive nature.202 They are defined as ‘intermittent’ because they provide only a snapshot 

measure of BGL and cannot provide information on BGL over long periods of time. Though it is 

possible to take many intermittent measurements in quick succession, allowing for changes in 

BGL data to be tracked similarly to continuous measures, this is impractical due to the invasive 

nature of these measures. This will become clearer in the following sections, as the nature and 

role of these intermittent technologies is discussed. There are a range of devices capable of 

measuring or estimating BGL. The following sections will focus on those which are most used, 

and which have the most significant clinical significance at present. 

 

1.7.1 Blood Glucose Assessment 

A core feature of many chronic conditions that do not require constant hospitalisation or care is 

that there is a heavy reliance on the individual to self-monitor their condition. In the case of T1D 

and T2D, this involves self-administering prescribed medication, adopting lifestyle 

recommendations set by their primary care physician, and self-monitoring of blood glucose 

(SMBG). However, the ability of a person to monitor their own BGL is based on the strengths 

and limitations of the blood glucose monitoring tool, as well as how well they understand the 

tool itself. Therefore, tools that are more convenient or easier to can be more effective 

compared with tools which require more education for effective use. 

According to WHO guidelines, SMBG is synonymous with the blood glucose assessment – the 

most commonly-used intermittent measure of BGL.203 SMBG describes the routine of 

performing blood glucose assessments at specific intervals in one’s own home, such as before or 

after meals, and using the information to adjust their medication or lifestyle in conjunction with 

advice from their primary care physician. The blood glucose assessment requires a glucose 

meter, or glucometer, to assess a small sample of blood typically drawn from the finger. As such, 

it is often referred to as the ‘fingerspot’ check. Capillary BGL measured at the fingertip 
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correlates strongly with BGL measured in the arteries.199 BGL is recorded by the glucometer in 

millimoles per litre, and the optimal ranges are dependent on the metabolic state of the 

individual when they perform the blood glucose assessment. For example, fasting BGL ranges 

between 4.0 and 5.5 mmol/L in people without diabetes, and is above 7.0 mmol/L in people 

with diabetes before taking medication.47 

In n=30 non-insulin-treated T2D subjects, SMBG led to significant improvements in HbA1c 

compared to the control group, and was an effective tool for determining antidiabetic drug 

dosage.204 Importantly, the authors of this study confirmed that detailed training was not 

required for subjects with suboptimal glycaemic to interpret the results of SMBG and adjust 

their drug treatment. Per the 2011 Consensus Report from the Coalition for Clinical Research – 

SMBG Scientific Board, SMBG is most effective when subjects can use it as a tool to guide their 

own treatment, and both patients and health care providers should be educated on how to 

interpret and respond to information provided from SMBG.205 Amongst the board members, 

there was also a consensus that the non-insulin-treated T2D trials support the efficacy of SMBG, 

and that further studies are required to assess the cost-benefits of SMBG across different end 

points, for example not limited to HbA1c. 

 

1.7.1.1 Strengths 

The blood glucose assessment may be performed in a clinical setting by physicians as part of a 

routine check-up, similar to blood pressure monitoring, though it is more commonly used in 

SMBG as the primary home-monitoring tool.202 Studies from Halldorsdottir and colleagues 

(2013) and Tack and colleagues (2012) indicate that glucometers are performing accurately in 

the context of diabetes management,206, 207 and there are a wide range of affordable and cost-

effective glucometers convenient for at-home SMBG.208 Though there are minor variations in 

SMBG approaches in the literature, SMBG almost always involves a glucometer and blood 

glucose assessment, and there are no significant clinical differences between the different SMBG 

approaches in T2D (n=453) according to a randomised trial conducted by Farmer and 

colleagues (2007). 209 

For glucose monitoring, the complexity of the diabetes is related to how often BGL needs to be 

monitored. For example, in cases of insulin-dependent diabetes, which includes most cases of 

T1D as well as cases of end-stage T2D, the individual’s health and wellbeing depends on their 

ability to supply themselves with insulin in the form of medication.47 Dieting and exercise are 

insufficient as the primary means of lowering BGL to optimal levels. Allemann and colleagues 

(2009) advocate for stringent BGL monitoring in insulin-dependent diabetes, including blood 
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glucose assessments before and after meals, as well as continuous monitoring of BGL.210 These 

tools empower insulin-dependent individuals with the means to self-monitor spikes in BGL 

after meals, as well as respond to hypoglycaemic events instigated by their medication to 

prevent hospitalisation. Nagelkerk, Reick, and Meengs (2006) claim that empowering people 

living with diabetes with the knowledge of specific diet strategies and plan of care are important 

for improving SMBG and overall glycaemia.211 This may be related to an individual’s tendency to 

“take what I think works for me”, as it has been observed that a person’s understanding of their 

diabetes treatment, including their knowledge of the benefits and risks, is positively correlated 

with how closely they follow that treatment.212 Improving the accessibility and ease of use of 

current SMBG technologies may therefore also improve people’s knowledge of their condition, 

including diabetes progression, glycaemic management, and treatment effectiveness. 

 

1.7.1.2 Limitations 

Though the blood glucose assessment is an accurate estimate of BGL, glucose concentration is 

only recorded at the one specific point in time.28, 29 As a consequence, this recording can be 

significantly affected by recent food ingestion or recent exercise, as well as  acute illness.213 It is 

important to control for these confounding variables when assessing BGL using the blood 

glucose assessment, because the glucometer will provide only a single measurement, and it is 

impractical to perform additional assessments in a short period of time.214 A common method of 

controlling for these confounders is for subjects to refrain from any food or drink, except water, 

in the eight hours leading up to their appointment. This allows for the blood glucose assessment 

to record a fasting BGL. Clinical research has shown that SMBG is an effective tool on its own 

and can improve glycaemia in diabetes without intensive drug treatment.215 Specifically, SMBG 

leads to better glycaemic management in the short term, but over time that management shows 

diminishing returns. To elaborate, a systematic review and meta-analysis found significant 

reductions in long-term glycaemia in people with T2D after 12 weeks and after 24 weeks of 

SMBG, but changes in long-term glycaemia were non-significant after 52 weeks.216 

There is considerable variability in the guidelines of different international diabetes 

organizations regarding optimal SMBG and what it involves.217 The lack of consistent guidelines 

may lead to confusion about the most optimal frequency and timing of SMBG. Additionally, some 

studies indicate that the cost-benefit analysis of SMBG is unfavourable. The results from a 

parallel group randomised controlled trial (n=453) suggest that SMBG after 12 months leads to 

increased healthcare costs and is unlikely to be cost-effective when used routinely.218 This is 

ratified by a systematic review of the literature by Clar and colleagues (2010) which found that 
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SMBG is not cost-effective and only offers limited improvements in glycaemic influence in non-

insulin dependent diabetes, including T2D treated with oral antidiabetic medication or diet 

alone.219 However, a meta-analysis of seven randomised controlled trials found a significant 

decrease in overall glycaemia in response to SMBG, providing large-scale results which suggest 

that people who utilise SMBG have better glycaemia compared to those who do not.220 

Clearly, there is value to SMBG. It is suggested that SMBG may lead to more cost-effective 

glycaemic management when it is cheaper, more convenient, and when it is supplemented with 

healthcare education.219 Cost effectiveness is generally evaluated in the context of an 

individual’s current glycemia. SMBG is important for those with highly-fluctuating glycaemia, 

such as people with T2D who take oral medications which cause hypoglycaemia, but has limited 

benefit when glycaemia does not fluctuate significantly or where HbA1c is <7.5%.221 Where 

insulin treatment is involved, and an individual is more reliant on exogenous insulin, SMBG is 

cost effective and essential to managing the dosing of insulin. 

 

1.7.2 Continuous Glucose Monitoring 

Continuous glucose monitoring (CGM) describes any technology capable of assessing BGL in a 

constant manner without pause. This allows for changes in BGL to be tracked in real-time, as 

data is continuously transmitted from a sensor, which is directly inserted into the tissue of 

interest, to a receiver which can display data as a glucose level.199 The major advantage of CGM 

is that life-threatening increases or decreases in BGL can be detected as long as the device is 

being worn, which can be all hours of the day if necessary. CGM systems with better alarm 

features, such as the Dexcom G6, are associated with superior avoidance and intervention of 

glycaemic events.222 As discussed, CGM is strongly recommended in insulin-dependent diabetes, 

as the reliance on externally-delivered insulin increases the individual’s risk of hypoglycaemia.28 

CGM systems measure glucose levels in real-time and can identify severely low blood glucose, 

which can occur unexpectantly or even when asleep, which is known as nocturnal 

hypoglycaemia.223 

CGM systems – devices which incorporate CGM technology – allow people to monitor their BGL 

vigilantly for glycaemic events and intervene in a timely manner. The use of a CGM system is 

associated with more optimal glycaemia.224 Most commercially-available CGM systems function 

by measuring interstitial glucose concentrations (Figure 1.8), which is the concentration of 

glucose surrounding cells.225 In a steady state, levels of glucose in the interstitial space are 

strongly correlated with capillary and arterial glucose levels, however they lag behind arterial 

concentrations only when BGL is changing rapidly, such as after the consumption of a meal.226 
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Unlike the blood glucose assessment, which directly measures glucose concentrations from a 

fingerspot blood sample which is strongly correlated with arterial BGL, a CGM sensor relies on 

minimally-invasive means to estimate arterial BGL. Based on data from Medtronic MiniMed 

CGM system, one of the most common systems in use, interstitial glucose concentration 

estimates can lag behind BGLs by 4-10 minutes.225 

Figure 1.8 Measurement of interstitial glucose concentration using a continuous glucose 
monitoring system. 

 

Figure 1.8 highlights the components involved in the continuous monitoring of interstitial 
glucose concentration, a close approximation of blood glucose concentration. The glucose 
sensor is inserted beneath the skin where it can contact the interstitial fluid. It then relays 
glucose data back to the continuous glucose monitoring system, which can process the data and 
report values digitally through an interface. Adapted from Medtronic MiniMed, Inc (2017).227 

 

1.7.2.1 Strengths 

A major strength of CGM is that is has been consistently shown to increase glycaemic 

management and quality of life in T1D228 and T2D229 with better outcomes seen in those who 

use CGM for at least 6 days per week.230, 231 This is not specific to insulin-dependent diabetes, as 

researchers also advocate the use of CGM in early T2D groups that have not progressed to 

insulin therapy.232 At present, blood glucose is monitored in T2D on a more intermittent basis 

because the threat posed by hypoglycaemia is much lower233 and lifestyle-interventions take 

longer to become effective in achieving target levels of glycaemia.67 Some justify the use of CGM 

in T2D because it is beneficial in reducing glycaemic variaiblity.198 Studies have consistently 

shown that glycaemic variability is associated with dangerous microvascular complications, and 

this variability occurs in early T2D as well as end-stage.234 Glucose variability it also associated 

with nocturnal hypoglycaemia episodes.235 CGM can detect large variations in blood glucose and 
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empower individuals with the information to intervene.236 This is not possible by measuring 

HbA1c levels, as this only provides meaningful information about long-term trends in BGL, and 

the retrospective analysis does not allow for immediate intervention. Though convenient in 

some aspects, many SMBG tools used in T2D lack the ability to track daily glucose fluctuations, 

which may be more relevant in ideal management of diabetes.237 

Many CGM systems are programmed to alert the wearer with an alarm when they detect 

glycaemic excursions. This allows for the wearer to intervene in a timely manner, and is 

especially useful in people with hypoglycaemia unawareness.238 Few alternatives to CGM exist 

for insulin-dependent diabetes, as hypoglycaemia onset can occur quickly, and can cause 

confusion, drowsiness, and can lead to coma.239 In T1D, CGM is often paired with SMBG, such as 

using blood glucose assessments to calibrate their CGM systems and to provide more accurate 

reference values when BGL is fluctuating rapidly after a meal. Some modern CGM systems in 

use, such as the Dexcom G5 and G6, are approved for non-adjunctive use, meaning they do not 

require calibration with routine blood glucose assessments.240, 241 This removes one of the core 

problems with CGM and increases its viability for use in both T1D and T2D. 

To summarise, a review of recent studies has shown that there has been steady improvement in 

the reliability of CGM systems, in that devices require less calibration and more accurately 

detect glycaemic excursions.242 Moreover, many recent studies are attempting to address 

specific concerns with CGM. For example, the PRECISE Study243 and the PRECISE II244 trial 

demonstrated the use of a CGM system that is intended to be used with sensors that last for 90 

days, to reduce the discomfort and pain associated with weekly sensor replacements. To 

summarise, CGM is ideal in both T1D and T2D, in people with and without insulin-dependence. 

This is because hypoglycaemia, which is more prevalent in insulin dependent diabetes, is not 

the only clinically significant complication that can be reduced with CGM. Glycaemic variability, 

caused by sudden spikes in BGL, can also be reduced with CGM, and this is responsible for 

significant risk of complications in all diabetes cases.144 Clearly, the ability to constantly track 

BGL changes in real-time is a major strength.238 However, for reasons that will be presented in 

the following section, modern CGM systems face many problems that make it difficult for people 

with diabetes and their primary care physicians to justify their use. 

 

1.7.2.2 Limitations 

CGM systems provide valuable data – irreplaceable in many circumstances – which forms the 

basis of many clinical decisions for people living with diabetes. However, concerns about the 

accuracy and reliability of CGM systems have been prominent since their introduction.245 
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Generally, performance of CGM systems is poor in the very low BGL range,246, 247 raising 

concerns that hypoglycaemia may not be detected in time or at all in some cases. Two widely-

used CGM systems show low accuracy in the hypoglycaemic range.248 For these reasons, people 

with diabetes often cannot rely on readings from CGM systems alone when making treatment 

decisions, such as insulin dosage and timing, and may need to rely on glucometers (SMBG) 

because of their higher accuracy, even at very low ranges of glycaemia.245, 249 Though some 

specific CGM systems do not require calibration with a blood glucose assessment, many people 

with T1D continue to utilise SMBG, or the intermittent blood glucose assessment method, 

routinely because of its superior accuracy.238 For example, it can be used if a person is 

experiencing autonomic symptoms of early hypoglycaemia, such as sweating and heart 

palpitations, in circumstances where their CGM system has not yet detected the glycaemic 

excursion due to lag-time.136 The concept of this ‘lag-time’ is illustrated in Figure 1.9. Severe 

hypoglycaemia represents a significant threat to those with insulin-dependent diabetes, and 

timely intervention of these glycaemic events is key to improving quality of life and preventing 

subsequent hypoglycaemic events. 

Though there have been major improvements in the reliability and accuracy of CGM systems in 

recent years,250, 251 the core problems of affordability and convenience have yet to be solved by 

any current CGM system. The issue of affordability is prevalent across most commercial CGM 

systems. CGM systems have a high upfront cost and maintenance costs, and the question of cost-

effectiveness is difficult to answer when the benefit of using a CGM system is potentially 

lifesaving, depending on the severity of diabetes. Generally, though, the literature is in 

consensus that CGM is cost effective relative to SMBG and other health interventions.252 Mean 

total lifetime costs of running a Dexcom G6, for example, are an estimated 18% higher 

compared to SMBG, and the mean quality-adjusted life years are 16% higher compared to 

SMBG, so there is an approximately equal value to the higher cost of using a CGM system.253 This 

cost analysis is largely dependent on the severity of the insulin-dependence, and differs greatly 

between individuals. The results of the DIAMOND randomized trial show that CGM is cost-

effective below a certain threshold, depending on the price an individual is willing or able to pay 

for their healthcare, with increased glycaemic management and reduced hypoglycaemic 

events.254 This is ratified by other studies which have concluded that CGM systems are cost 

effective in people living with T1D,255 and also people with T2D who do not use insulin,256 but 

people must be able to pay the initial out-of-pocket expenses to achieve the better quality of life 

associated with long-term CGM use. However, many individuals, particularly those in 

developing nations, may simply be unable to afford the high initial cost of the CGM system, as 
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well as the maintenance costs such as replacing sensors, even if it does provide superior quality 

of life. 

Figure 1.9 Line graph comparing the glucose levels recorded by a continuous glucose 
monitoring system, a glucometer, and a laboratory glucose analyzer. 

 

Figure 1.9 shows the readings observed by three different glucose monitoring technologies. The 
red line indicates data recorded by a CGM system, the black stars are data points measured from 
multiple blood glucose assessments (SMBG) performed in quick succession, and the blue circles 
represent data from a YSI 2300 START Plus laboratory glucose analyzer. The CGM system used 
in this example does not necessarily represent the accuracy of all CGM systems – it is simply an 
example showcasing a common problem with many devices. As seen, the readings from the CGM 
system (red line) lag behind the other two measures when glucose levels are changing rapidly, 
such as between 08:00 and 09:00am when the subject consumed a meal. The red line also lags 
behind the other two measures around the 12:00pm mark, when glucose levels drop into the 
low range. Adapted from Schrangl and colleagues (2018).257 

 

1.7.3 Additional Measures 

At present, there are a range of measures of blood glucose that are used in many different 

clinical settings. Two additional measures of glycaemia that have yet to be discussed in this 

section are the HbA1c assessment and the glucose tolerance test. These do not fit neatly under 
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the definitions of ‘intermittent’ or ‘continuous’ as they are assessed in laboratory settings and 

provide unique measures of glycaemia. Compared to CGM and SMBG, these additional measures 

are less relevant to this thesis as they cannot provide information that can be used in real-time 

to make clinical decisions – they are outside the scope of this PhD candidature. However, they 

still provide meaningful information and are used routinely in diabetes diagnosis and 

monitoring. As such, they will be discussed only briefly to provide additional context for glucose 

monitoring. 

 

1.7.3.1 Glucose Tolerance Test 

The glucose tolerance test is the gold-standard for diagnosing diabetes, prediabetes, and 

gestational diabetes, as well as and impaired glucose tolerance.258 It involves a fasting BGL 

assessment, followed by oral ingestion of a standardized glucose load (75 gram glucose solution 

diluted in water).259 Blood glucose is assessed at standard times at 0, 1 hour, and 2 hours post-

consumption. The results of the 2-hour oral glucose tolerance test may indicate normal, 

impaired, or diabetes levels of blood glucose.259 Additional measurements may be taken during 

the two hour period, for example BGL measured at the 30-minute and 60-minute mark can 

predict risk of diabetes and all-cause mortality.260 Some authors contend that BGL assessed at 

the 60-minute mark is a stronger predictor of lifetime risk of diabetes and diabetes 

complications compared to the 2-hour mark.261 The glucose tolerance test is a strong clinical 

marker of diabetes and the gold-standard for diagnosis. 

 

1.7.3.2 HbA1c Assessment 

One of the key outcomes used to assess diabetes progression is HbA1c, or the percentage 

saturation of haemoglobin by glucose molecules carried in the blood.262 This is a biomarker 

found in the blood which represents glycated haemoglobin levels and is routinely assessed in a 

laboratory setting from a person’s blood sample.263 HbA1c is often viewed as the long-term 

average of an individual’s BGL over the past 120 days, which is the lifespan of the average red 

blood cell.264 As such, it can provide longitudinal averages of BGL, and this can be used to 

determine the effectiveness of the person’s treatment and lifestyle interventions in maintaining 

the glycaemic target. HbA1c levels are strongly correlated with fasting BGL,265 and they are often 

interpreted to represent ‘mean blood glucose’, however this is a distinguishable metric which 

can be measured using a glucose monitoring system. An analysis of 387 participants across 

three randomized trials demonstrated that HbA1c may sometimes underestimate or 

overestimate mean glucose,266 and therefore they are distinguishable metrics with specific 
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clinical uses. Many authors agree that an assessment of HbA1c is sufficient as an estimate of 

long-term glycaemia, as supported by the results of the Diabetes Control and Complications 

Trial,267 and this assessment is usually conducted every six months for people with T2D. 

However, an open cohort study conducted by Ohde and colleagues (2018) concluded that HbA1c 

monitoring is sufficient once every 12 months for people with stable glycaemia, and this should 

become the clinical standard to reduce over-testing.268 Though there are minor discrepancies 

here in the literature, there is a clear consensus that long-term measures of BGL are useful in 

tailoring specific treatments to individuals to achieve glycaemic targets, supporting their use in 

clinical settings. 

The HbA1c assessment is a useful diagnostic tool for diabetes,269 and is also the gold standard for 

monitoring long-term glycaemic management in diabetes.264 The available evidence for the 

prevention of diabetes complications is to maintain HbA1c below 7%, and there is significant 

literature to support this, such as the Diabetes Control and Complications Trial in T1D270 and 

the United Kingdom Prospective Diabetes Study for T2D.271 However, some authors contend 

that HbA1c levels are insufficient in predicting the risk for diabetes complications. Frequent 

glycaemic excursions, which occur mostly around meals and when antidiabetic medication is 

taken incorrectly, also contribute to glycaemic variability, but do not necessarily contribute to 

HbA1c.232 As discussed, glycaemic variability is associated with the progression of complications 

such as retinopathy, and this is speculated to be related to hyperglycaemia-induced oxidative 

stress.272 Though this physiological model is theoretical, new evidence suggests that reducing 

glycaemic variability may aid with maintaining target HbA1c in reducing risk of complications.144 

To add to this, neither the HbA1c assessment nor the blood glucose assessment are able to 

accurately measure short-term fluctuations in BGL.273 This is important because significant, 

acute variations in BGL contribute to glycaemic variability, and are associated with diabetes 

complications.274, 275 The literature advocates for the prevention of glycaemic spikes that arise 

commonly around mealtimes, as a means of reducing glycaemic variability.144 Systems which 

track BGL continuously and allow real-time analysis of that data may therefore have another 

advantage over the static, snapshot readings provided by intermittent measures of BGL.276 It is 

important to consider, however, that the relationship between glycaemic variability and 

diabetes complications is new and has only a few studies to support it. Further research is 

needed in this area. 

The glycaemic target for diabetes, which has been referenced throughout this chapter, is 

generally defined by HbA1c < 7.0%.262 For some people with diabetes, such as those also living 

with known cardiovascular disease, this target may be stricter, such as < 6.5%.277 Prevention of 

long-term complications of diabetes is an important goal for individuals and their physicians to 
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work toward, and can be achieved through tracking of HbA1c with routine assessments.278 T2D 

is a progressive condition, and complications are often viewed as an inevitability as opposed to 

a risk. Treatment with oral medication that lowers BGL is a frontline treatment, and 

consequently most patients with T2D will eventually require treatment with multiple drugs, 

known as poly-pharmacy, and also in combination with insulin.279 The literature stresses the 

importance of meeting HbA1c targets at all stages of diabetes, though this becomes more 

complicated as diabetes progresses, due to the increased likelihood of comorbidities and 

concomitant medications with age and diabetes progression.280 The results from the GUIDANCE 

study (n=7,597) indicate there are many barriers to effectively meeting HbA1c targets.281 As with 

similar studies, only approximately half of their total sample were able to meet the optimal 

glycaemic target of HbA1c < 7.0%. There were findings in this study that the authors claimed 

were counterintuitive, for example, subjects using diabetes medication and antihypertensives 

were less likely to meet targets for optimal glycaemia and blood pressure, respectively, 

suggesting that treatments are being allocated correctly, but on their own are not effective in 

terms of ensuring clinical endpoints. The authors Stone and colleagues (2013) also considered it 

surprising that the presence of one or more macrovascular complications was a predictor for 

optimal glycaemia, and suggested that this was because these people were more likely to have 

frequent appointments with their health care providers and more intensive care compared to 

subjects without any macrovascular complications. 

In terms of early detection and screening for diabetes, HbA1c is also important. A reading of 

HbA1c that is greater than or equal to 6.5% is indicative of diabetes. These percentages roughly 

equate with long-term averages in BGL and can be converted to millimoles per litre. For 

example, an HbA1c value of 6.5% equates to an average of 7.7 mmol/L BGL over the past 120 

days.282 An individual with < 7.0% HbA1c may be described as an unmanaged diabetes case, but 

they will not be considered in remission from diabetes unless they are able to maintain this 

glycaemic threshold in the absence of medication.263 As discussed, sustained remission from 

diabetes is rare without surgery, but possible. A HbA1c level above 7.5% indicates a person’s 

diabetes is unmanaged, as they are at risk of long-term complications, and a person with HbA1c 

between 7.0% and 7.5% is not necessarily unmanaged, but their glycaemic is not optimal and 

they should aim to reduce their glycaemia to the target level of 7.0%.283 However, a large 

proportion of people living with diabetes do not consistently reach the target of HbA1c < 7.0%.175 

Many factors contribute to this, however the literature has identified that a key factor in the 

inability of many people living with diabetes to maintain target glycaemia is that current 

glucose monitoring tools are limited. The inability of people with diabetes to meet glycaemic 

targets is not entirely caused by limitations of glucose monitoring tools – lifestyle interventions 
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are often difficult to meet due to the social and commercial pressures of the Western lifestyle, as 

discussed in the first section of this chapter, and treatments should also be improved. However, 

this thesis focuses only on glucose monitoring tools. The following sections will provide further 

evidence for why current standards in glucose monitoring are insufficient given the scope of 

diabetes. 

 

1.7.4 Achieving Glycaemic Targets 

A core concept of this chapter is that glucose monitoring, when applied properly, leads to 

significant improvements in glycaemic management and allows people to achieve target 

glycaemia for longer periods. This ultimately leads to a better quality of life as well as a reduced 

risk for acute and chronic diabetes complications. As diabetes is a rising global health issue and 

a leading cause of premature death and illness, extra significance is awarded to technologies 

which aim to reduce the burden of diabetes, including those which aim to improve glucose 

management.23 However, despite the overwhelming consensus that stringent glycaemic 

management is the most ideal course of diabetes management, many people living with diabetes 

are unable to achieve consistent glycaemic management.284 This is determined by the ability of a 

person to maintain their HbA1c, or long-term blood glucose, below 7% (Section 1.7.3.2). A large-

scale study concluded that almost 50% of the Australian diabetes population were unable to 

maintain their HbA1c levels at the recommended level of <7.0%.104 Other studies suggest this is a 

global trend, and confirm that about half of all people living with diabetes are unable to reach 

this glycaemic target.284 Furthermore, this trend is more apparent in groups that are insulin 

dependent. Between 2016 and 2018 in the United States, only 21% of people with T1D receiving 

specialized care achieved the glycaemic target of HbA1c < 7.0%.285 According to Rickels (2020), 

advancements in glucose monitoring and insulin delivering technology in recent years have not 

led to corresponding improvements in glycaemic management for insulin-dependent adults or 

youths with diabetes.98 Grenier and colleagues (2016) agree that there is an important 

opportunity to improve on the current standards in diabetes care and treatment outcomes.286 

To reiterate, the main concern is that 7% HbA1c represents a major clinical threshold in 

diabetes, and that the inability to maintain HbA1c below this threshold is associated with 

increased risk for diabetes complications. The DIALECT-1 study found that 64% of a T2D group 

(n=450) were unable to achieve target glycaemia, and the authors attributed this to increased 

resistance to insulin and antidiabetic medication, which occur over time as diabetes 

progresses.175 Despite this, it has been discussed that the inability to achieve target glycaemia is 

not necessarily an inevitability of diabetes progression, but is something that can be amended 
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by improving medication and glucose monitoring.287 There is growing recognition that the 

major problems of CGM systems and SMBG are key drivers of not meeting optimal glycaemic 

targets.288 

 

1.7.5 Barriers 

Barriers to diabetes management generally refer to factors which reduce the effectiveness of 

management strategies and overall treatment effectiveness. However, of particular importance 

to the literature are barriers specific to SMBG. Since so much of diabetes management relies on 

day-to-day self-medication and self-monitoring performed by the individual, effective SMBG is 

of critical importance to proper diabetes management.289, 290 However, several systematic 

reviews have recognised that there are many barriers to SMBG which reduce its effectiveness, 

and research in this area is severely lacking given the scope of diabetes.291-293 The review 

conducted by Saha (2019) labelled current evidence of barriers to SMBG as inadequate and 

weak.292 Even among primary care physicians, attitudes toward the adequacy of SMBG lack a 

consensus.294 However, there is an association between education and efficacy in regards to 

SMBG. The use of smartphone technology, integrated with healthcare systems, was also shown 

to be associated with better use of SMBG and increased effectiveness of diabetes 

management.292 This is promising because it indicates that convenience is important to people 

who rely on themselves to monitor their own chronic condition, such as SMBG in diabetes. 

Improving convenience of SMBG technologies may also improve use, and thus improve 

treatment outcomes.295 This is reinforced by Ng and colleagues (2020) who list inconvenience 

as a major barrier to SMBG. Other barriers listed in this 2020 paper include fear of pain and 

injection, fear of side effects of medication, and concern that resorting to insulin indicated the 

individual had reached end stage diabetes.291 Though SMBG by blood glucose assessment is 

generally cheaper than CGM, many people with T1D or T2D still report high cost as a barrier to 

SMBG.296 Consequently, SMBG is low in people with diabetes, and it is even lower in groups with 

less severe symptoms, such as those who are at low risk of hypoglycaemia or acute 

hyperglycaemic.297 

Another barrier to maintaining target glycaemia is the fact that many people with diabetes are 

undiagnosed or otherwise unaware of their condition. Approximately 50% of all people with 

diabetes are unaware of their condition, and though rates of undiagnosed diabetes are lower in 

developed nations (25-33%),298 they are estimated to be as high as 75% in some developing 

nations.103 As discussed, this is likely related to the rising prevalence of diabetes worldwide and 

the fact that symptoms of hyperglycaemia can be quite mild and have a slow onset.82 The 
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probability that people who are unaware of their diabetes are actively managing their condition 

are near zero. As such, the prevalence of undiagnosed diabetes and current limitations of SMBG 

and CGM are key factors that are implicated in the inability of half of all people living with 

diabetes to achieve target glycaemia. The development of a new glucose monitoring technology 

which addresses the concerns facing current SMBG and CGM could lead to significant 

improvements in glycaemic management in those with diabetes. If implemented as a routine 

health assessment conducted by general practitioners and other primary care physicians, this 

technology could also reduce the prevalence of diabetes unawareness. 

Engaging with recommended treatment and lifestyle changes is an important consideration for 

any chronic condition, but it is especially relevant in diabetes. This is because lifestyle and diet 

interventions can be difficult to maintain over long periods of time,299 and medications such as 

glucose-lowering drugs can lose their efficacy over time as diabetes progresses.300 This can lead 

to increases in medication dosage or addition of other medications, such as insulin, to influence 

BGL. Consequently, even those who do engage strongly with their treatment plan may not be 

able to prevent their diabetes from progressing or worsening.301 The feeling of frustration 

associated with this is one of the most commonly reported barriers to stringent diabetes 

management – another is frustration from lack of glycaemic management.211 The effect of these 

barriers may be alleviated by improving SMBG techniques, such as improving their ease of use, 

as SMBG in general is associated with better glycaemic management.210 The results of a large 

international study (n=5,104) indicated that use of SMBG was 44% in T1D adults and 24% in 

T2D adults.302 Other studies have reported similar trends in T1D303 and in T2D.304 The need to 

overcome barriers to diabetes management is a core component of this PhD candidature, as it 

can improve treatment outcomes and lead to a significantly reduced burden from diabetes. To 

summarise the previous sections: complications of diabetes are highly prevalent and represent 

a significant burden to those living with diabetes, and SMBG is an important tool for both T1D 

and T2D to improve glycaemia and reduce these complications. 

 

1.7.5.1 Invasive Technologies 

A common element to all the measures of glycaemia discussed so far is that they are all invasive. 

This refers to their nature as tools which can only function by breaking the skin and accessing 

the tissues underneath. This is an unfortunate component of current diabetes management and 

glucose monitoring. The most accurate measures of BGL currently available require direct 

access to the blood, which is invasive and painful, and tools that estimate BGL by accessing 

alternative tissues, such as skin, mucous, and saliva, are less accurate.200 These will be discussed 
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further in the following sections. CGM represents a strong middle-ground, where a sensor 

requires subcutaneous access for continuous monitoring, which is only minimally invasive, and 

the trade off in accuracy is acceptable.201 However, even with minimally invasive technologies, 

there is still a requirement that the skin layer is penetrated. The pain associated with these 

procedures represents a psychological barrier to diligent BGL monitoring,302 and is a common 

reason for suboptimal CGM.305 This problem is not exclusive to CGM however, as all 

commercially-successful and clinically-relevant glucose monitoring tools are invasive, including 

the blood glucose assessment used in SMBG.306 Research by Tanaka and colleagues (2018) 

demonstrates that people who experience pain from SMBG place less value on SMBG, and pain is 

associated with lower health-related quality of life, higher mental distress, and higher HbA1c 

regardless of their number of daily blood glucose assessments.307 According to one study, 

people who experience fewer barriers to SMBG, such as pain, inconvenience, and cost, are more 

likely to use SMBG (n=933).308 The literature agrees that the invasive nature of all 

commercially-available glucose monitors is cause for inefficiency in diabetes management.288 A 

non-invasive alternative to current SMBG standards can improve routine glucose monitoring as 

it removes a key barrier, which is pain and fear of invasive procedures.288 However, such a 

technology would need to match or improve on the accuracy and reliability of current glucose 

monitors, whilst meeting certain other criteria of ideal monitoring. 

 

1.7.6 Ideal Monitoring 

Firstly, glucose monitoring should ideally be continuous in nature. As discussed, a clear strength 

of CGM systems is they can track glucose levels in real-time and provide meaningful information 

to people with diabetes and their physicians for optimising treatment. This is true for both T1D 

and T2D. CGM provides better glycaemic management than non-continuous measures309, 310 – it 

is simply a matter of weighing the costs against the benefits, as current CGM systems are 

expensive. The ability to monitor BGL constantly cannot be understated in its importance. It 

allows for individuals to intervene when their glucose levels elevate or drop outside the target 

range. This can occur frequently and unexpectantly in response to meals, exercise, and 

medication, and can occur even when a person is asleep. It is not sufficient to simply maintain 

BGL at an optimal range for long periods of time – these spikes in BGL, even if they are very 

short in duration, should also be avoided to reduce the risk of diabetes complications. Combined 

with the fact that hypoglycaemia is prevalent in insulin-dependent diabetes, and may present at 

unpredictable times, it should be clear that glucose monitoring is more effective when it is 

continuous in nature.311 
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Secondly, glucose monitoring should provide data in real-time. According to a meta-analysis, 

CGM is more effective and leads to better glycaemic management compared to SMBG when it 

provides glucose data in real-time, but not when it is retrospective.312 This means that a 

continuous measure of blood glucose should ideally provide information immediately to the 

individual, and many studies have indicated that integrating real-time CGM with smartphone 

applications may significantly improve convenience and thus efficacy of stringent glucose 

monitoring.295, 313 Systems which alert people with diabetes in real-time to the onset of 

hypoglycaemia provide a significant decrease in the rate of severe hypoglycaemia, compared to 

systems with no alert.314 Additionally, a major concern with current glucose monitoring tools is 

that they are all invasive. An ideal measure of BGL would combine elements of SMBG and CGM 

and be non-invasive. Therefore, an ideal glucose monitoring system should be continuous, non-

invasive, accurate, cost-effective, and provide data in real-time with little to no lag time.315 The 

ability to predict glucose levels in the near future may also be beneficial. Of significance to the 

present research is a technology that is both continuous and non-invasive, as no commercially-

available technology has managed to achieve this to date, and this would represent a significant 

improvement for those currently utilising SMBG, as well as some who utilise CGM.311 

 

1.8 Non-Invasive Glucose Monitoring: The Future Standard 

Emerging technologies seek to develop an ideal method for monitoring BGL, which would 

involve a non-invasive, accurate measure of BGL that provides information continuously and in 

real-time. SMBG and CGM are the most used methods of glucose monitoring in T1D and T2D and 

are both invasive. Non-invasive technologies are those which analyse physiological variables, 

including glucose-containing fluids such as saliva and urine, without drawing fluid out of the 

skin.316. They aim to avoid the pain and irritation associated with invasive and minimally 

invasive devices, though it is important to note that some of these fluid-based technologies, such 

as those which rely on urine samples, can only provide intermittent measures of glycaemia due 

to limited supply.317 Figure 1.10 summarises the invasive technologies discussed so far (left 

side) as well as the emerging non-invasive technologies (right side), some of which will be 

discussed in the next section. At present, none of these are sufficiently accurate and at best only 

estimate BGL.318 
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Figure 1.10 Current methods for invasive and non-invasive measurements of blood glucose. 

 

Figure 1.10 broadly outlines the different types of invasive and non-invasive technologies used 
to measure blood glucose. Invasive systems involve inserting a sensor through the skin to 
achieve direct access to the blood or interstitial fluid. Non-invasive systems use sensors that do 
not require the skin to be broken to access the target tissues or fluids. The HbA1c assessment 
(not shown here) is also an invasive technology as it requires a blood sample. Adapted from do 
Amaral & Wolf (2008).319 

 

1.8.1 Absorption Spectroscopy 

Many efforts to develop a non-invasive measure of BGL employ some form of absorption 

spectroscopy, including near-infrared or mid-infrared.320 Changes in the absorption of light at 

different wavelengths reflect characteristics of glucose molecules in the blood.321 However, the 

optimal range of the electromagnetic spectrum to use in these investigations remains a 

controversial topic, and there is no standardised method. The use of wavelengths in the mid-

infrared region, mostly between 8382 and 9708 nm, produces more distinct glucose peaks, 

compared to spectra produced at lower wavelengths, but there is limited light penetration.319 

Studies conducted in the therapeutic range between 600 and 2500 nm, such as the visible and 

near-infrared spectrum, are favourable because they allow for deep tissue analysis.319 However, 

molecules other than glucose absorb in the near-infrared range as well, such as water and fat. In 

general, the precision of this technology is too poor for clinical use,226 and requires significant 

work and modification to be viable. 

 

1.8.2 Fluorescence 

The use of fluorescent measurements in the development of a non-invasive measure of BGL is 

another emerging technology. It relies on the principle that glucose levels in tears reflect similar 

concentrations to those in blood.319 Some of the major benefits of fluorescence include its 

extreme sensitivity to glucose and its resistance to fluctuations in ambient light intensity.322 

Additionally, this technology is promising due to its convenience, as the sensor can be 
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incorporated into clear contact lenses that can be worn by the individual.323 However, since 

glucose levels are tracked with a 30-minute lag time, this may be a concern as current CGM 

systems have much shorter lag times.319 Due to the poor accuracy of these emerging 

technologies, Tronstad and colleagues (2018) suggested a multi-sensor approach may work 

better, whereby information from multiple non-invasive devices, such as fluorescence sensors, 

bioimpedance, and skin temperature measurements, is combined to improve accuracy in 

detecting glycaemic events, making them fit for clinical use.324 Though interest in this area is 

still gathering, more larger-scale studies are required to address some of these concerns. 

 

1.8.3 Reverse Iontophoresis 

Another technology that was developed in the pursuit of a non-invasive measure of BGL is 

reverse iontophoresis. This relies on a transdermal method, whereby small amounts of 

interstitial fluid are extracted through the skin with a device.325 Devices can produce glucose 

estimations at 10 minute intervals, and this is comparable to current CGM systems. 

Traditionally, iontophoresis is used to electrically-charge drug molecules to transport them 

across the skin and into the blood, and thus this technology works in reverse by drawing fluid 

out of the initial space onto the surface of the skin, where it can be analysed.326 The Food and 

Drug Administration approved a wrist-watch device capable estimating BGL by reverse 

iontophoresis, though the use of this technology in this example is technically minimally 

invasive, as fluid is being drawn through the skin.327 Some of the problems with reverse 

iontophoresis include long calibration periods, skin irritation, and poor accuracy resulting from 

movement, exercising, and sweating.319 

 

1.8.4 Summary 

In conclusion, though much interest has been gathering in these areas, the development of a 

non-invasive, continuous marker of BGL has, to date, been unsuccessful. A recent systematic 

review and meta-analysis conducted in 2021 concluded that there were no minimally or non-

invasive glucose monitoring systems fit for routine monitoring of hypoglycaemia.288 In this 

paper, the authors Lindner, Kuwabara, and Holt state that current systems are not sufficiently 

accurate for detecting hypoglycaemia in routine use.288 Lin and colleagues (2017) have also 

highlighted the lack of a commercially successful non-invasive glucose monitor, despite new 

technologies emerging in the past 10 years.318 As such, there is an important opportunity to 

develop a novel non-invasive measure of BGL. If sufficiently accurate, this technology could 
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significantly decrease medical costs and deaths related to diabetes, as the convenience of non-

invasive monitoring may improve glycaemic management and therefore glycaemic control.328 

 

1.9 Glucose Prediction: Novel Applications 

With the advent of machine learning, artificial neural networks, and deep learning algorithms, 

new computer-based approaches to glucose monitoring are emerging. Models are trained on 

large amounts of data, and when used in a clinical setting these models can provide an estimate 

of an outcome variable (such as BGL) based on several predictor variables, which could be 

related to medical history, demographics, or other physiological variables. There is a consensus 

that some of the problems with current CGM systems, including lag time and low accuracy in the 

hypoglycaemic range, can be improved by integrating machine learning algorithms and other 

predictive models into CGM systems.329, 330 These models aim to improve the accuracy and 

reliability of current glucose monitors, such as CGM systems, to deliver more personalised care 

to individuals with diabetes331 and allow for more timely detection and intervention of 

hypoglycaemia and hyperglycaemia (the outcome variables).332 However, a core problem of 

these models is that they rely on data recorded by glucose monitors that are already in use, 

including CGM systems. Although machine learning models have led to more accurate 

prediction of dysglycaemia in combination with glucose monitors, glucose monitors are still 

invasive in nature and are not used routinely outside of T1D. Most people living with diabetes 

do not use CGM systems and will not benefit from algorithms which increase their accuracy. 

Therefore, this thesis is interested in predictive models that use information from non-invasive 

tools, as it is the invasive nature of current glucose monitoring systems that is cause for 

concern. 

 

1.9.1 Based on Alternative Measures 

Alternative means of predicting BGL – such as those which do not involve a CGM system or 

SMBG – represents a novel but growing area of interest in the literature. One example is the use 

of diabetes alert dogs, which can be trained to detect the onset of hypoglycaemia by smell.333 

However, Los and colleagues (2016) demonstrated that service dogs tend to raise an alert with 

a high false-positive rate, and by comparison a CGM system detects hypoglycaemia significantly 

earlier than a trained dog, with a median difference of 22 minutes.334 As such, there is a need for 

a non-invasive marker of diabetes, with good potential for screening diabetes risk as well as the 

ability to estimate or predict BGL. 
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Based on work from Jung (2016), machine learning may be able to predict a person’s risk of 

hypoglycaemia using information that can be entered into a smartphone, such as surveys, 

interviews, and diaries.335 In a hospital setting, the risk of hypoglycaemia may be predicted 

using electronic medical records alone. A machine learning model developed by Ruan and 

colleagues (2020) was trained on a data set from 17,658 subjects with diabetes using their 

oxygen saturation, medications, type of diabetes, and type of procedures the person was 

undergoing.336 Though the work of Jung (2016) and Ruan and colleagues (2020) may have 

limited applications, they highlight the importance of demographic data – such as age, height, 

and weight – and medical history in strengthening the value of predictive models. Recent work 

from Lama and colleagues (2021) indicates that there is still current interest in the capabilities 

of machine learning to predict glycaemia. Their algorithm was able to predict the risk of 

developing T2D in people without diagnosed diabetes based on their demographic and 

physiological data. They concluded that the strongest predictors of diabetes risk were body 

mass index, waist-hip ratio, age, systolic and diastolic blood pressure, and family history of 

T2D.337 Foss-Freitas and colleagues (2019) contend that heart rate may be an important 

predictor of hypoglycaemic events, as their algorithm learned from data from a continuous 

heart rate monitor and provided useful predictions.338 This is significant because heart rate 

monitors are non-invasive, relying on access to the surface of the skin only. The relevance of 

cardiac rhythms in predicting BGL is growing in recognition in the literature and is based on the 

principle that autonomic control of the heart reflects autonomic control of BGL. In theory, 

autonomic activity may predict BGL. 

 

1.9.1.1 Neural Regulation of Blood Glucose 

Both the central and peripheral nervous system are involved in glucose homeostasis. However, 

neural regulation of the pancreas, liver, and gastrointestinal tract, which are the primary organs 

involved in actioning glucose homeostasis, is the domain of the autonomic nervous system.339 

The autonomic nervous system is the branch of the peripheral nervous system which regulates 

the metabolic, visceral, and vascular systems of the body. As such, neurodegeneration of 

autonomic nerves, as seen in diabetic autonomic neuropathy, affects many parts of the body.115 

Combined, the autonomic nervous system and the somatic motor system constitute the entire 

neural output of the peripheral nervous system.340 The somatic motor system controls skeletal 

muscles, and the autonomic nervous system controls every other tissue and organ in the body 

that is innervated, including secretory glands, the heart, blood vessels, organs of the digestive 

and excretory systems, and many others.340 There are two counter regulatory branches which 

comprise the autonomic nervous system (Figure 1.11). Activation of the sympathetic nervous 
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system is associated with increased heart rate, vascular constriction, and dilation of the pupils, 

and is often characterised as the ‘fight or flight’ response.341 Activation of the parasympathetic 

nervous system has an opposite effect, lowering heart rate, increasing digestion by dilating 

blood vessels in the gut, and constricting the pupils. It is thus characterised by the ‘rest and 

digest’ state.342, 343 At rest, restorative and vegetative functions aim to conserve energy by way of 

parasympathetic innervation of the heart and other organs.344 

As the autonomic nervous system is responsible for restoring glucose homeostasis through 

innervation of the pancreas, liver, and gut, the ability to measure sympathetic or 

parasympathetic innervation of these organs may theoretically provide meaningful predictions 

of glycaemia, or indicate if current BGL is high or low. However, autonomic control of these 

organs cannot be directly measured by non-invasive means.345 This is due to the complex neural 

processes involved and the lack of a dedicated technology that can non-invasively measure 

autonomic input to the organs of interest.346 However, autonomic activity in general is strongly 

correlated with autonomic control of the heart, which can be non-invasively measured.347 

Though there are various means of assessing autonomic function in a clinical setting, such as the 

Valsalva manoeuvre, there is a clear consensus in the literature that heart rate variability (HRV) 

is the best non-invasive measure of autonomic activity.348-351 
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Figure 1.11 Sympathetic and parasympathetic innervation of the human body. 

 

Figure 1.11 illustrates the two branches of the autonomic nervous system: the sympathetic and 
parasympathetic divisions. These branches maintain homeostasis of internal systems through 
opposite, counter regulatory actions. For example, sympathetic innervation of the stomach 
inhibits digestion, whilst parasympathetic innervation stimulates digestion. Adapted from Bear 
et al. (2016).340 
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1.10 Heart Rate Variability: An Autonomic Marker 

Understanding how HRV is distinguishable from heart rate is relevant to this thesis. An 

individual’s heart rate is a measure of how many times their heart contracts or beats per 

minute. Acute increases in heart rate can be related to exercise, as there is increased metabolic 

demand, or even stressful periods, as the nervous system prepares for a ‘fight-or-flight’ scenario 

in response to a perceived threat.352 Heart rate also fluctuates naturally in a resting state, 

synchronised with the respiratory cycle. When breathing in, heart rate increases momentarily 

to increase the efficiency of the exchange of oxygen and carbon dioxide between the fresh air 

and the alveoli in the lungs.353 Heart rate increases when inhaling, as the return of blood to the 

heart decreases due to increase in thoracic pressure on blood vessels. This leads to the 

corresponding increase in heart rate, as per Frank Starling Law. When exhaling, pressure in 

thoracic cavity decreases, which increases blood flow to the heart, and therefore a decrease in 

heart rate to maintain blood pressure.354 When exhaling, heart rate decreases momentarily to 

allow for a rest period. This is known as respiratory sinus arrhythmia, a reflection of vagal or 

parasympathetic control of the heart.355 The effects of metabolic state, respiration, and the 

autonomic nervous system on the cardiac cycle are well-known topics in the literature, with 

new understandings emerging in novel areas.356 In the 1990s, it was determined that the 

optimal rhythms of a heart are not like a metronome; rather, they are complex and non-

linear.357 This variability in heart rate, or HRV, describes the natural tendency of the cardiac 

cycle to vary between subsequent cycles, a process which reflects the body’s ability to adapt to 

environmental and psychological challenges. Optimal HRV is associated with good health and 

cardiac adaptability and resilience.358 Blood pressure, including systolic and diastolic indices, is 

another example of a physiological variable which fluctuates on a minute-to-minute basis in 

response to changing demands.359, 360 

Of significance to this thesis is the notion that HRV is assessed through non-invasive means, 

usually an electrocardiogram (ECG) or heart rate recording, and that HRV is the best marker of 

autonomic activity. This is due to a combination of various factors, such as accuracy and 

reliability, the ability to assess it non-invasively, and the ability to measure specific components 

of autonomic tone. The latter point is possible because different HRV measures reflect different 

autonomic influences over cardiac activity, including sympathetic and parasympathetic 

influences.361 These unique HRV measures are not measured in beats per minute. Rather, they 

are calculated by applying complex mathematical equations (see Section 2.1.5.1 and 2.1.5.2 in 

Methods for more details) to an ECG waveform or heart rate recording.362 Figure 1.12 illustrates 

the main features of a typical ECG waveform, from which computer programs can extrapolate 

HRV measures. Specifically, the calculation of HRV measures requires a recording of many R-R 
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intervals, which can also be achieved with a simple heart rate monitor. A heart rate monitor 

measures the pulse wave, and from this the pulse rate is determined. An R-wave on an ECG 

waveform denotes the electrical activity of the heart during its main ventricular contraction, or 

heartbeat, and an R-R interval denotes the time in milliseconds between two successive 

heartbeats. Although the main rhythm of the heart is determined by the sinus node – the natural 

pacemaker of the heart – it is the autonomic nervous system which determines the final heart 

rhythms through the innervation of sympathetic and parasympathetic nerve fibres.363 

Parasympathetic innervation of the heart is achieved via the vagus nerve, though this nerve 

shows dysfunction in the early stages of diabetic autonomic neuropathy.364 It has been proposed 

that the vagus nerve is an early target of neuropathy because it is the longest nerve of the 

autonomic nervous system.365 The vagus nerve is also continuously active as it is an integral 

autonomic nerve, and as such is more susceptible to free radical damage, which is increased 

with hyperglycaemia. 

Figure 1.12 Electrocardiogram waveform with QRS complex and R-R intervals. 

 

Figure 1.12 illustrates how heart rate variability can be determined from an ECG waveform. A 
typical waveform provides five ‘landmarks’ of cardiac activity, including the ‘P-wave’, ‘T-wave’, 
and the ‘QRS complex’. P = atrial depolarisation. Q = depolarisation of interventricular septum. 
R1,2,3 = depolarisation of the main ventricular mass, which is the ‘heartbeat’. S = ventricular 
depolarisation. T = ventricular repolarisation. The R-wave is the most important component of 
an ECG waveform in determining heart rate variability. The QRS interval precedes ventricular 
contraction and measures the electrical activity of the ventricle. Adapted from Ortiz Guzmán et 
al. (2012).366 
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1.10.1 Applications in Diabetes 

Autonomic neuropathy is a major complication of diabetes, driven by unmanaged 

hyperglycaemia and duration of diabetes,350 as long-term hyperglycaemia causes 

neurodegeneration in the peripheral nervous system.367 Neuropathy of the autonomic nerves is 

also driven by hypoglycaemia, and reduced autonomic function then predisposes individuals to 

further hypoglycaemic events.368 This can lead to a cycle of impaired awareness of 

hypoglycaemia, as described in Section 1.5.1.3. Neuropathy is an independent risk factor for 

myocardial infarction and other major cardiovascular events, and early detection of neuropathy 

is essential in reducing the risk of morbidity and mortality in people living with diabetes.369 The 

ADA advocates the importance of monitoring autonomic function in diabetes due to the severe 

nature and prevalence of neuropathy.370 Though some clinicians prefer a symptomatic approach 

to monitor the onset or progression of neuropathy, HRV can reliably detect autonomic decline 

before it becomes symptomatic, providing the opportunity for early intervention and 

prevention of further autonomic decline.371 Recent interest in the applications of computational 

methods in medical science has indicated that models derived from machine learning may be 

embedded with clinical information systems to predict a person’s risk of developing 

complications.372 This may assist with specific treatment and improving treatment outcomes. 

There is a consensus that lower HRV correlates with impaired autonomic activity, and all 

measures of HRV are reduced in diabetes.373-376 This represents a large area of research. 

Significant decreases in HRV related to diabetes occur within the first 5-10 years of diabetes 

onset.350 HRV is an excellent measure of vagal tone, which represents the function of the 

primary parasympathetic nerve: the vagus nerve.344 Cardiac vagal tone is a predictor of 

parasympathetic tone in diabetes, and since it can be measured non-invasively with an ECG or 

heart rate monitor, it represents a convenient method of monitoring autonomic decline in 

diabetes.377 Other authors concur that cardiac vagal tone is sensitive to autonomic neuropathy 

in diabetes, and thus HRV provides an affordable, accessible, and easily applicable screening 

method for autonomic dysfunction.378 There is significant literature to justify the use of HRV in 

the prognosis of autonomic neuropathy in diabetes.348, 352, 379 Though HRV may be a useful tool 

for primary care physicians to monitor the progression of a major long-term complication of 

diabetes, this thesis is only interested in the novel application of HRV measures in monitoring 

glycaemia. 
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1.10.2 Applications in Glucose Monitoring 

In cross-sectional studies, HRV measures are inversely associated with BGL. In general, people 

with diabetes have suboptimal glycaemia, and this is associated with increased hypoglycaemia 

and hyperglycaemia. Glycaemic excursions contribute to autonomic neuropathy, and as 

demonstrated by Deshmukh and colleagues (2021), this is not reversible with euglycaemia 

restored by islet cell transplantation in T1D.380 People who live with persistent hyperglycaemia 

and reoccurring hypoglycaemia, have lower HRV measures, which indicates poorer autonomic 

function.381, 382 This relationship is strongest in cases of unmanaged glycaemia, as well as long-

term cases of diabetes. This correlation may be due to a range of independent risk factors such 

as obesity, hypertension, and increasing age which all contribute to both lower HRV and higher 

BGL.313, 371 Measures of HRV and BGL are also general indicators of health, which may explain 

why many different cross-sectional studies agree that there is an association between the two 

variables. As such, it has been proposed that HRV, determined by an ECG or heart rate monitor, 

may be a useful non-invasive measure of general glycaemic health. Machine learning may be 

useful in strengthening the ability of HRV measures to predict diabetes or high BGL in an 

individual. The use of HRV measures as predictors of glycaemia has been proposed previously in 

the Neuroscience Research Unit at the University of Technology Sydney (UTS) by Rothberg and 

colleagues (2016).383 This PhD candidature is a continuation of this research, and aims to 

further investigate the viability of non-invasive HRV parameters as a measure of BGL in people 

with or without diabetes. 

 

1.11 Basis for Research 

This chapter has so far discussed the global nature of diabetes as well as the specific threats 

posed by diabetes and their significance. To generalize: diabetes causes significant burden to 

affected individuals and to world governments, both developed and developing, and due to a 

combination of various cultural and commercial pressures, the prevalence of diabetes is 

projected to continue increasing.384, 385 There is a question of whether the global response to 

diabetes is adequate, given the large scope of diabetes, especially T2D.384, 386 In this thesis, 

however, the focus is on whether current standards in diabetes management are adequate. 

Given the information provided in this chapter, current management strategies are inadequate 

for those living with diabetes. Current technologies need to be improved, or a new technology 

needs to be introduced, to address this inadequacy. The aim of this thesis is to address some of 

the main concerns facing current standards in glucose monitoring by proposing an alternative 

marker of diabetes and BGL which may have clinical utility. A non-invasive measure of BGL, 



 

Luke Jarman | 54  
 

relying on predictive models trained on alternative physiological data points, such as cardiac 

rhythms, is clearly an area of interest in the literature. A novel non-invasive technology may be 

implemented in clinical settings alongside the glucose tolerance test, blood glucose assessment, 

or even used in combination with CGM to improve accuracy and sensitivity of these existing 

tools for managing dysglycaemia.387 Though there are many non-invasive measures of BGL 

under development, such as those which record glucose levels in the saliva and sweat, none are 

commercially successful or clinically relevant. In this thesis, a novel predictor of BGL is 

proposed, and the aim is to justify further research into HRV measures as novel markers of BGL. 

The long-term effects of suboptimal BGL on autonomic function are well-established within the 

literature, 352, 367 and HRV is widely considered to be the best marker of autonomic activity.348-351 

Also, HRV is more sensitive to glycaemic fluctuations compared to conventional assessments of 

autonomic function, including the orthostatic test, the Valsalva manoeuvre, and the controlled 

and deep breathing test.388 The current literature on associations between HRV and BGL is 

limited,350 and is summarised in Table 1.2. Though limited, current literature has established 

that measures of HRV are diminished in T1D and T2D, and that HRV is inversely associated with 

BGL. A recent systematic review and meta-analysis of 25 studies (n=2,932) conducted by 

Benichou and colleagues (2018) reinforced this consensus. The main link that requires further 

investigation is whether HRV measures can predict short-term fluctuations in glucose levels, 

including hypoglycaemia and hyperglycaemia, as well as non-pathological fluctuations in BGL 

such as those seen after a meal. During certain glycaemic excursions, such as hypoglycaemia, 

there is a distinct autonomic response defined by autonomic symptoms, such as heart 

palpitations and sweating. HRV, measured non-invasively, may be able to identify distinct 

patterns in autonomic activity preceding hypoglycaemia or responding to declining BGL. In 

general, the ability for HRV measures to predict glycaemia is a novel area that requires further 

research. Specifically, it is only well-known that HRV is related to BGL when assessed cross-

sectionally, and not whether short-term fluctuations in BGL may also correspond with changes 

in HRV measures. This may lead to the development of an regression model capable of 

estimating the direction and magnitude of BGL based on non-invasive means, as suggested by 

previous work.389 

On a minute-to-minute basis, this relationship between HRV measures and BGL is complex. 

Acute changes in autonomic activity precede certain glycaemic events, such as the increase in 

BGL after a meal (postprandial BGL). The work of D’alessio and colleagues (2001) in rhesus 

macaques demonstrated parasympathetic innervation of the pancreas increases the secretion of 

insulin, which lowers BGL in anticipation of a postprandial glucose spike.390 This suggests an 

association between autonomic activity whilst eating and postprandial BGL. However, no study 
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to date has demonstrated an association between postprandial BGL and HRV measures 

recorded in a prandial state (whilst eating). Such research could justify the development as HRV 

measures as predictors of postprandial BGL. Furthermore, in response to hypoglycaemia, the 

autonomic nervous system increases sympathetic innervation of the pancreas to secrete 

glucagon and restore euglycaemia.391 Therefore, HRV measures observed during specific time 

periods or metabolic states may provide meaningful information for estimating current or 

future BGL. Currently, there is a lack of consensus regarding the specific changes in autonomic 

activity, reflected by HRV measures, during hypoglycaemia and hyperglycaemia. The aims and 

hypotheses in this thesis are based on these gaps in the literature. 
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Table 1.2 Summary of key findings from studies assessing frequency-domain heart rate 
variability parameters and blood glucose levels in groups with diabetes and groups without 
diabetes. *All correlations are significant. BGL = Blood glucose level, CGM = Continuous glucose 
monitoring, ECG = Electrocardiogram, HF = High frequency, LF = Low frequency, LF:HF = low to 
high frequency ratio, T1D = Type 1 diabetes, T2D = Type 2 diabetes. 

Authors 

and year 

Sample 

group 

Sample 

size 

(n) 

Mean 

age 

(years) 

HRV 

method 

BGL 

method 

Was BGL 

inversely related 

to LF and HF? 

Limitations 

Singh et al. 

(2000)392 

Adults 

without 

diabetes 

1779 47.4 

2-hour 

ambulatory 

ECG 

Fasting BGL 

Yes. Also, BGL 

inversely 

correlated with 

LF:HF. 

Data was pooled 

for all 3 groups. 

HRV vs. BGL was 

not analysed in 

each group 

separately. 

Impaired 

fasting 

glucose 

56 54.9 

Diabetes 84 55.4 

Weissman 

et al. 

(2006)393 

Pregnant 

adults 

without 

diabetes 

15 
Not 

shown. 
ECG 

Oral glucose 

tolerance 

test 

Mostly yes. 

Increase in BGL 

led to decrease in 

HF and increase in 

LF:HF. LF was not 

correlated with 

BGL. 

Autonomic 

processes are 

complicated by 

pregnancy. Small 

sample size. 

Stein et al. 

(2007)394 

Adults 

without 

diabetes 

1089 

72 
24-hour 

Holter ECG 
Fasting BGL Yes 

Sample was 

mostly elderly 

(mean age 72). 
Diabetes 178 

Jarczok et 

al. 

(2013)395 

Adults 

without 

diabetes 

2441 41.9 

24-hour 

ambulatory 

heart rate 

recording 

Fasting BGL Yes 

Did not control 

for medications 

or illness. 

Predominately 

male (75%). 

Tarvainen 

et al. 

(2014)350 

Adults 

without 

diabetes 

189  
64 

20-min 

ECG 
Fasting BGL 

Only for LF power. 

HF power not 

significantly 

correlated. 

Older sample 

and mostly 

female (~60%). 
T2D 93  

Klimontov, 

Myakina & 

Tyan 

(2016)396 

T2D 

women 
67 65 

24-hour 

Holter ECG 

24-hour 

CGM 

Postprandial BGL 

reflected lower LF, 

but not  HF. Eating 

caused a decrease 

in LF only. 

Conditions of 

study did not 

reflect a regular 

daily routine. 

Lutfi & 

Elhakeem 

(2016)397 

Adults 

without 

diabetes 

42 25.8 
5-minute 

ECG 
Fasting BGL 

No. BGL positively 

correlated with 

HF, and inversely 

correlated with 

LF:HF. 

Small sample 

size. ECG 

recordings were 

only 5-minutes 

long. 

Rothberg 

et al. 

(2016)383 

Adults 

without 

diabetes 

31 27.9 

10-minute 

ECG 

Fasting and 

postprandial 

BGL 

Yes, but only in 

T2D sample. Also, 

BGL inversely 

related to total 

power in T2D. 

Small sample 

size. Did not 

adjust for 

kilojoule intake 

as a covariate in 

postprandial 

analysis. 

T1D 21 31.5 

T2D 11 56.2 

Jarman et 

al. 

(2021)389 

Adults 

without 

diabetes 

25 27 
10-minute 

ECG 

Fasting and 

postprandial 

BGL 

Yes, but only for 

postprandial BGL. 

Small sample 

size. No diabetes 

sample 



 

Luke Jarman | 57  
 

In Table 1.2, note the similarities between the studies by Rothberg and colleagues (2016) and 

Jarman and colleagues (2021). This is because the latter was a continuation of the former, 

conducted in the same research group: the Neuroscience Research Unit. In these studies, low 

frequency (LF) power, which represents sympathetic and parasympathetic nervous system 

activity,398 and high frequency (HF) power, which reflects parasympathetic nervous system 

activity, were inversely associated with BGL. The low to high frequency ratio (LF:HF) is also 

mentioned in Table 1.2, and relates to sympathovagal balance. LF power, HF power, and LF:HF 

are three common measures of HRV used in the literature and in this thesis. The specific 

physiological correlates of these HRV measures will be discussed in more detail in later sections. 

At this point it is relevant only to understand that many different measures of HRV can be 

extrapolated from an ECG waveform or heart rate recording by mathematical equations, and 

that these HRV measures reflect autonomic activity. 

In their 2016 paper, Rothberg and colleagues observed people with diabetes (n=33) and people 

without any chronic illness (n=31) before and after a meal and assessed fasting and 

postprandial HRV and BGL. They identified several associations between BGL and HRV 

parameters recorded in a fasting and a postprandial state, though these findings were only 

significant in the diabetes group.383 The work of Jarman and colleagues (2021) continued this 

initial exploratory research by only studying people without any chronic illness or regular 

medications, and making improvements based on recommendations from previous literature. In 

this 2021 paper, n=25 individuals were observed before and after a meal, and several significant 

correlations were identified between HRV measures and BGL.389 Kilojoule intake was controlled 

for in the statistical analysis to account for differences in meal composition, and the multiple 

linear regression analysis demonstrated that roughly 50% of the variance observed in 

postprandial BGL could be attributed to measures of HRV. This strongly suggests HRV measures 

may be clinically relevant in the prediction of BGL. To describe this in a real-world scenario, a 

simple 10-minute heart rate recording may be used to determine HRV measures, which in turn 

may provide an estimate or prediction of BGL around the same time. Combined with other 

routinely measured variables, such as age, body mass index, and blood pressure, HRV measures 

may reliably predict glycaemia. Future research should continue exploring the predictive 

quality of HRV measures, as well as the relationship between HRV and BGL. 

The aims and hypotheses established in this research were based around a central thesis: that 

HRV measures can predict BGL, and thus HRV may be a viable non-invasive marker of BGL. This 

research may address some of the core concerns with current glucose monitoring. When 

developing these aims, the scope of a PhD candidature was considered as well as the specific 

needs of the main types of diabetes. Though T1D and T2D are similar in that they are 
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characterised by persistent hyperglycaemia related to insulin dysfunction, there are meaningful 

differences in their pathophysiology, epidemiology, treatment, and severity (Section 1.4). 

Importantly, CGM is more useful in T1D, and SMBG is a staple of T2D management. Considering 

this, two separate methodologies were designed for studies with distinct aims and hypothesis. 

The first of these was the UTS T2D Study, conducted on people with T2D. The second of these 

was conducted at Royal North Shore Hospital (RNSH) on people with T1D and is referred to in 

this thesis as the RNSH T1D Study. Prior to these two main studies, one initial, exploratory study 

was also conducted based on previous work published by Rothberg and colleagues (2016) and 

Jarman and colleagues (2021). This was known as the UTS Pilot Study. As such, this thesis is 

comprised of three separate studies, and the Methods, Results, and Discussion sections of each 

of these studies are compiled separately. 

The UTS Pilot Study was a small exploratory study which investigated the relationship between 

HRV and BGL in people after they ate a meal and was conducted to provide preliminary data to 

assist with the design of larger subsequent studies. As such, it was also in part a feasibility 

study. The second study addressed a broader aim in people with T2D as well as people without 

and was known as the UTS T2D Study. This was launched after the UTS Pilot Study concluded, as 

the findings of this initial study, such as time to peak BGL, were used in the design of the UTS 

T2D Study. The importance of assessing BGL at specific time points and in specific metabolic 

states was discussed in Section 1.6.5. Additionally, it is recommended that people living with 

diabetes obtain glucose readings by SMBG before and/or after breakfast to monitor day-to-day 

variations in BGL data.399 Due to the threat of glycaemic variability and its prevalence in 

postprandial states, it is also relevant for a novel technology to predict the change in BGL 

following a meal, as this may allow for adjustments in medication to intervene.400, 401 In 

recognition of this, the methodology of the UTS T2D Study was designed around obtaining 

fasting and postprandial BGL, where appropriate. The third study focused on people with T1D. 

As discussed, people with T1D were studied separately to those with T2D due to differences in 

treatment and management of these distinct conditions, thus the need to dedicate a separate set 

of aims and studies for each of the main types of diabetes. This third study, the RNSH T1D Study, 

did not recruit non-diabetes participants for comparison, and reasons for this are provided in 

Section 4.1.1. The aims and hypotheses of these three studies are provided below, and this novel 

research may improve current standards in glucose monitoring and improve quality of care in 

diabetes. 
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1.12 Aims 

1. UTS Pilot Study (Chapter 2) – Investigate changes in HRV measures and BGL over a two-

hour period in a small pilot study on people without any chronic illness or regular 

medications. 

2. UTS T2D Study (Chapter 3) – Investigate correlations between HRV measures and 

fasting and postprandial BGL in people with T2D and people without T2D. 

3. RNSH T1D Study (Chapter 4) – Investigate acute changes in HRV measures preceding 

and during hypoglycaemia and hyperglycaemia events in T1D. 

 

1.13 Hypotheses 

1. UTS Pilot Study (Chapter 2) – HRV measures and BGL will change significantly between 

the start, middle, and end of a two-hour period. 

2. UTS T2D Study (Chapter 3) – LF power, HF power, and total power will be significantly 

and negatively correlated with both fasting and postprandial BGL in both groups. LF:HF 

will be positively correlated with both fasting and postprandial BGL in both groups. 

3. RNSH T1D Study (Chapter 4) – LF power, HF power, total power, LF:HF, normalised LF 

power, normalised HF power, RMSSD, and SDNN will increase significantly from 

euglycaemia to hypoglycaemia and from euglycaemia to hyperglycaemia. 
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Chapter 2. UTS Pilot Study 

 

2.1 Methods 

The aim of the Pilot Study was to investigate changes in HRV measures and BGL over a short 

period of time. More specifically, the Pilot Study aimed to determine the magnitude of changes 

in HRV and BGL in response to food intake, an important foundation for subsequent research, 

and was also in part a feasibility study. The research was based on previous work conducted in 

an Honours year,389 in which n=25 individuals were assessed over a six-hour period. The 

Honours research presented novel findings on the acute associations between HRV measures 

and BGL across various timepoints over a six-hour period. In this, it was concluded that the 

timing of assessments was important in determining the strength of the association between 

HRV and BGL. As such, this was considered when developing the study design for the Pilot 

Study. A major difference between the Honours research and the UTS Pilot Study was the Pilot 

Study aimed to investigate whether changes in HRV and BGL would be significant across a 

shorter period of two hours, instead of six hours. This research is not novel, but it was an 

important precursor study, and the Methods are relevant to the second and third studies also 

conducted as part of this PhD. 

 

2.1.1 Subjects 

Participants were recruited from the Sydney Metropolitan region and were contacted about the 

study through local advertising, such as posters, social media, and word-of-mouth. Potential 

subjects were notified by email about the study protocol and exclusion criteria, and eligible 

participants were invited to attend the research laboratory at the University of Technology 

Sydney (UTS). The protocol was conducted with approval from the UTS Human Research Ethics 

Committee (HREC) (2014000110) and was developed to address the aims and hypotheses 

stated in Section 1.12 and Section 1.13, respectively. The sample consisted of individuals who 

were uninhibited by any chronic illness or regular medications, as verified by a 

questionnaire.402, 403 

 

2.1.2 Exclusion Criteria 

Prior to study commencement, participants were informed of the exclusion criteria by email, 

and were excluded from the study if, at present, they: were living with a chronic health 



 

Luke Jarman | 61  
 

condition;403 were taking regular medication, prescribed or otherwise;402 had an acute illness;146 

smoked more than 10 cigarettes per day or consumed more than 10 standard alcoholic 

beverages per day, as required by UTS HREC; or were currently pregnant.402 Additional criteria 

were included to adhere to guidelines set by UTS HREC (see Section 2.1.3). Participants were 

also required to be between the ages of 18 and 69. Eligible subjects were invited to meet with 

the researcher at the UTS City Campus after a caloric restriction of eight hours.404 This meant 

that participants were required to abstain from food and drink (only water was permitted), as 

well as nicotine, medications, and alcohol for at least eight hours prior to study commencement. 

Participants who were unable to meet this restriction, such as if they needed to take pain killers 

for a headache, were to inform the researcher so that their appointment could be rescheduled 

for another day. As a final pre-study requirement, both the researcher and participant signed 

two copies of a consent form, and each party retained one copy. 

 

2.1.3 Blood Pressure 

Participants were screened for high blood pressure (BP) as per ethics protocol. BP was 

measured using an OMRON HEM-7000 (OMRON, Kyoto, Japan) automated BP monitor (Figure 

2.1), after each participant had been allowed to rest in a seated position for five minutes, with a 

two-minute rest interval between each recording.146 Due to the dynamic nature of BP, the mean 

of three left-arm BP recordings were used to provide better accuracy of the BP recording.405 If 

the average of these three BP readings was < 140 mmHg systolic and < 90 mmHg diastolic, the 

participant was included in the study. If systolic BP was between 140 - 160 mmHg, or diastolic 

BP was between 90 - 100 mmHg, the subject was included in the study, but they were also 

advised to inform their general practitioner of their blood pressure recordings, if not already 

aware. Subjects with a systolic BP > 160 mmHg and/or diastolic BP > 100 mmHg were excluded 

from the study and offered to be escorted to the nearest medical centre. These were based on 

HREC requirements. 
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Figure 2.1 Example of participant with an automated blood pressure monitor. 

 

Figure 2.1 shows a participant with an OMRON HEM-7000 automated blood pressure monitor 
attached to their left arm by an inflatable cuff. Blood flow to the brachial artery was slowly 
constricted until arterial pressure was exceeded by the cuff pressure. This allowed the monitor 
to detect the maximum amount of force exerted by the heart on the brachial artery, which was 
an estimation of systolic blood pressure. In this case, it was given as 111 milligrams of mercury. 
The cuff then gradually deflated until the diastole of the cardiac cycle was detected, which is an 
estimation of diastolic blood pressure, or 70 milligrams of mercury. Heart rate is also provided 
by the monitor and was 80 beats per minute. Image used with consent from the participant. 

 

2.1.4 Blood Glucose Assessment 

Provided they were not excluded for high BP or for any other reason stated in Section 2.1.2, 

participants underwent an initial BGL assessment. Given that they had been asked to fast 

overnight or restrict their caloric intake to zero for at least eight hours prior, their metabolic 

state fulfilled the requirements for ‘fasting’.406 Fasting BGL was an approximation of baseline 

level, as it was not confounded by carbohydrate or caloric intake, which may vary considerably 

between individuals depending on their diet. The fasting assessment was undertaken at roughly 

9:00am for each participant, as a way of diminishing the effect of circadian rhythms. These 

rhythms are responsible for natural fluctuation of physiological functions over the course of the 

day, including those related to the management of glycaemia.407 As such, it was important to 

control for circadian rhythms by standardising the time at which each participant was assessed. 



The subject’s

A) The participant’s finger was 
B)

C) The subject’s fingertip was squeezed 
D)
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2.1.5 Heart Rate Variability 

This section outlines the multi-step process used to obtain HRV data during this study. There 

are many reputable methods for calculating HRV, though nearly all of them involve collecting R-

R interval data as a common step, followed by some form of computer processing to extrapolate 

HRV measures from the R-R interval data. For the purposes of the UTS Pilot Study, the 

philosophy was to utilise gold standards and common techniques where possible. The use of 

highly recognised techniques may facilitate the integration of this novel technology with clinical 

systems. ECG is considered the gold standard for collecting R-R interval data for HRV 

analysis.409, 410 Though HRV can be recorded over 24-hours for additional clinical utility, it is 

important to develop this technology over short-term recordings, as this would be more 

convenient for diabetes screening and for SMBG. For example, a physician could perform a 10-

minute ECG to predict diabetes risk, or a simple heart-rate monitor could be used by a person at 

home to predict current BGL. For this reason, 10-minute ECG recordings were suitable for the 

aims and scope of this PhD. 

HRV measures may be expressed as units of time or frequency, and there are specific steps 

involved in extrapolating time-domain HRV measures compared to frequency-domain. Time-

domain HRV directly reflects the variation in heart-rate over time, and is a measure of the 

intervals between successive regular cardiac cycles.411 There are multiple types of time-domain 

HRV measures, and these are generally calculated from longer recordings, traditionally 24 hours 

or longer.412 For these longer periods, more complex statistical time-domain measures can be 

extrapolated. For one time-domain HRV measure, this 24-hour recording provides the gold 

standard for stratification of cardiac morbidity and mortality risk.358 As only short-term 

recordings were used in the UTS Pilot Study, time-domain measures were not utilised. However, 

frequency-domain HRV measures are a set of highly reputable variables which are favoured in 

this area of study as they reflect specific types of autonomic modulation.383, 397 The specific 

neuroanatomical correlates of each frequency-domain measure will be outlined in this chapter. 

 

2.1.5.1 Recording R-R Interval Data by Electrocardiogram 

Subjects underwent a 10-minute ECG after resting in a seated position for 10 minutes to ensure 

their cardiac activity was not in an excited state. The ECG device was a three-lead FlexComp 

Infiniti (SA7550) encoder (Thought Technology Ltd., Montreal, Canada), which sampled 

electrical activity of the heart at a rate of 2,048 Hz.413 Electrodes were placed according to the 

Einthoven configuration,414 as shown in Figure 2.3. 10-minute recordings have better 

reproducibility and provide more accurate representations of autonomic activity in comparison 
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to other short-term HRV recordings, such as 5-minute or 2-minute recordings.415 When the ECG 

was complete, the electrical waveform was downloaded from the device for further processing. 

Figure 2.3 Einthoven electrode placement for the 10-minute electrocardiogram recording. 

 

Figure 2.3 illustrates the reference positions for the Einthoven electrode placement. Electrical 
current flows from the negative electrodes (yellow) to the positive electrodes, as indicated by 
the arrows. The resulting potential is used to produce an ECG of the heart’s electrical activity. 
Adapted from Combatalade (2010).  

 

To derive the R-R intervals from the waveform, the 10-minute ECG waveform was processed 

using Kubios HRV Premium (ver. 3.3). This software applied a QRS detection algorithm to the 

waveform to detect the peaks in electrical activity apparent in each cardiac cycle. Each peak 

corresponded with a single heartbeat, which represents the main depolarisation of the heart as 

it contracts. On an ECG waveform, heartbeats are referred to as R-waves, and the distance in 

time between successive heartbeats is known as an R-R interval.416 Once the R-R intervals for 

the 10-minute segment were determined, an artefact-detection algorithm was applied using 

Kubios HRV Premium to remove abnormal values or outliers. The automatic correction method 
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2.1.5.2 Extrapolation of Frequency-Domain Measures
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313, 382 There are two common methods favoured by researchers in this area of study: 

autoregressive spectral analysis and fast Fourier transform. The measures extrapolated through 

these methods are not interchangeable, and investigations in people living with diabetes usually 

determine HRV measures by fast Fourier transform as the preferred method.418 The time-series 

graph was converted to a power frequency spectrogram using Welch’s method, which is a 

periodogram-based method to solve the discrete Fourier transform.313, 419 An example 

spectrogram, derived from a participant’s ECG waveform that was processed, is shown in Figure 

2.5. Within the spectrogram, three frequency bands were categorised: very low frequency (VLF) 

power, which ranged from 0.00-0.040 Hz on the spectrogram; low frequency (LF) power, from 

0.04-0.15 Hz; and high frequency (HF) power, from 0.15-0.40 Hz.382, 420 The power of each of 

these bands, calculated from the area under the curve, is expressed in milliseconds squared 

(ms2). For example, LF power for a participant at baseline may be 900 ms2. This power is 

correlated with both sympathetic and parasympathetic nervous system activity, and changes in 

the magnitude of this power reflect changes in autonomic control.  

Figure 2.5 Frequency spectrogram derived from fast Fourier transform. 

 

Figure 2.5 represents a frequency spectrogram obtained by fast Fourier transform. The power 
of each frequency is denoted by the area under the curve, and the units are in milliseconds 
squared. Low frequency typically has the greatest power, as shown in this example, though this 
has no noteworthy implications. The power of each measure is usually not compared with 
different measures, for example low frequency is not compared with high frequency. However, 
high frequency may be compared at post-intervention versus baseline to determine a change in 
autonomic activity, or compared between different sample groups to determine if autonomic 
function is different between them. Hz = Hertz, s2 = Seconds squared. 
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LF power is associated with sympathetic and parasympathetic nervous system activity, and 

individuals with higher levels of sympathetic activity, such as during stressful periods, would 

expect their LF power to increase above their baseline levels.421 HF power correlates with 

parasympathetic nervous system activity and the activity of the vagus nerve, and thus 

predominates at rest.422 Vagus nerve activity is sometimes referred to as vagal tone. Individuals 

would expect their HF power to be higher when at rest, and particularly during sleep.421 The 

VLF band represents mostly background noise for short-term recordings, as 10-minutes of 

recording is not long enough per the Nyquist frequency, which is defined as half the average 

sampling frequency. For heart rate analysis, this is the mean heart rate. In addition to VLF, LF, 

and HF power, there were two other measures of HRV that were used in this study. The first of 

these was total power, which was calculated by measuring the area under the curve for the 

entire spectrogram from 0.00-0.40 Hz. As such, it can be thought of as the sum of VLF, LF, and 

HF, as the resulting power is identical to total power. The second of these was the low to high 

frequency ratio (LF:HF), which is calculated by dividing LF power by HF power. LF:HF 

represents sympathovagal balance, and increases in LF:HF over time indicate an increase in 

sympathetic activity relative to parasympathetic activity.421 Due to short-term VLF power being 

largely composed of meaningless background noise, it was not used as an individual measure of 

HRV. As such, the four HRV measures were LF power, HF power, LF:HF, and total power. Of 

these, LF power, HF power, and total power were natural logarithm transformed as their 

distribution was highly skewed, though this is typical of HRV studies.146, 423, 424 For a summary of 

the steps in Section 2.1.5.1 and 2.1.5.2, see Figure 2.6. 



*QRS
ECG

HRV

2.1.6 Follow-up
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and BGL across a two-hour period, participants were asked to return to the laboratory for 

additional assessments. Given that the first assessment occurred at roughly 9:00am, the second 

assessment was scheduled for 10:00am and the third assessment was at 11:00am. These three 

times were agreeable with all participants. The selection of these times was arbitrary – the 

priority was to ensure that participants were assessed at roughly similar times of the day to 

remove the confounding effect of circadian rhythms. This methodology was expanded through 

future research. 

 

2.1.6.1 Meal and Additional Assessments 

As discussed in Section 1.6.4, BGL remains highly stable in the absence of caloric intake or 

certain drugs. Without some form of intervention, the BGL of participants in this study would 

have fluctuated very little from fasting levels, and there would have been few noteworthy 

observations over a two-hour period. As such, once fasting BGL was recorded in participants at 

9:00am, they were asked to leave the laboratory and enjoy a meal of their choice. This allowed 

for the second assessment at 10:00am to capture an important change in BGL – that which 

naturally occurs after consuming a meal. Changes in HRV measures during this time were also 

observed. Though participants were expected to skip breakfast until after the study 

commenced, which may be considered an irregular meal schedule, research has shown that day-

to-day changes in BGL are not significantly affected by consuming meals at irregular times.425 

For the 10:00am assessment, participants underwent a second blood glucose assessment and a 

second 10-minute ECG recording. They were then instructed to leave the laboratory and return 

at 11:00am for the third blood glucose assessment and third ECG, and they were not permitted 

to eat during this break. For each of these follow-up assessments, BGL and HRV were assessed 

as described in Section 2.1.4 and 2.1.5, which is to say that the methodology remained constant 

regardless of what time of day the assessment related to. The main significant difference 

between the 9:00am, 10:00am, and 11:00am assessments was the metabolic state of 

participants, as this changed over the course of the day and with the introduction of caloric 

intake. However, all participants were required to undergo all three assessments at the 

specified times, as well as follow the instructions related to the meal. 

 

2.1.6.2 Food Diary 

To reduce participation burden, subjects were free to consume a regular meal between the 

9:00am and 10:00am assessment, rather than undergo a standardised glucose load such as the 
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oral glucose tolerance test, which may cause nausea.426 Research suggests that glucose peaks 

observed after a 2-hour glucose tolerance test are similar to glucose peaks that occur after a 

regular, standardized meal.427 However, standardized meals do not reflect realistic daily 

routines, and this study aimed to observe fluctuations in HRV and BGL under loosely-routine 

circumstances. Therefore, participants were free to eat a meal of their own choosing. To account 

for differences in the composition of subject’s chosen meals, which may have confounded their 

glucose profiles,402 participants were instructed to report on all food and drink consumed 

between the 9:00am assessment and the 10:00am assessment. This quantitative information 

was converted by the researcher into kilojoule data, such that kilojoule intake could be used as a 

covariate in the statistical analysis. 

The MyFitnessPal™ calorie counter search tool was used to estimate nutritional values for food 

and drink products consumed by participants in this study. Commonly, subjects consumed 

products from popular brands and chain restaurants, and accurate kilojoule data for these 

products was available from the MyFitnessPal™ website. For all other food items, including 

homemade products, kilojoule data was estimated using values uploaded by users of the 

MyFitnessPal™ website. Certain types of food are known to confound postprandial BGL; for 

example, some food increases BGL disproportionate to the serving of kilojoules in the food. 

Participants were asked to avoid any of the following common foods known to exaggerate or 

diminish glycaemia: cinnamon,428 vinegar,429 green tea,430 and black tea.431 Otherwise, subjects 

were not restricted in what or how much they could eat or drink, only that they had to return to 

the laboratory for the follow-up assessment at 10:00am (Figure 2.7). 
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would provide sufficient power for the study. For a comparison of means between 3 timepoints 

in a single group and a significance set to 0.05 and a large effect size of 0.5, a sample size of n=30 

would provide a power level of 0.8, or an 80% probability of rejecting a false null hypothesis at 

the 5% significance level. As such, the recruitment goal was at least 30 people. 

 

2.2 Results 

The goal of the UTS Pilot Study was to recruit n=30 subjects and investigate changes in HRV 

measures and BGL between the start, middle, and end of a two-hour period. Concerns were 

raised during recruitment that the ECG data collected from participants was unfit for HRV 

analysis due to faulty equipment. Efforts were made to resolve the issue and to continue 

recruitment, however the study was eventually terminated early with n=14 participants 

assessed, which did not meet the sample power requirements. The total data set was 42 data 

points (n=14 participants with three assessments each), however, 17 of the 42 ECG recordings 

were unusable due to considerable levels of noise (Figure 2.8), and some of those that were 

usable had to be cut and shortened to reduce the effects of noise and artefacts. In terms of 

demographics, the age range of the sample was 19-55 years with a mean age of 28 ± 11 years. 

The mean body mass index was 24 ± 4 kg/m2 with a sex breakdown of 50% male and 50% 

female. The mean kilojoule intake after the fasting assessment was 3700 ± 1700 kilojoules. 
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2.2.1 Glucose Level and Blood Pressure
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2.9 compares the means for each of these four variables at the three time points assessed and 

includes a visual representation of standard deviations. 

Table 2.1 Blood glucose and blood pressure means and standard deviations recorded in the UTS 
Pilot Study sample (n=14). Blood glucose measurements were taken at the start, middle, and 
end of a two-hour period, at 9:00am, 10:00am, and 11:00am, respectively. Blood pressure and 
heart rate were recorded only at the start and conclusion of the study as per ethics requirement, 
and so data was provided for the 9:00am and 11:00am assessments only. ** = p<0.01, BGL = 
Blood glucose level, BP = Blood pressure, bpm = Beats per minute, mmHg = Millimetres of 
mercury, mmol/L = Millimoles per litre. 

 p 

Variable 9:00am 10:00am 11:00am 
9:00am vs. 
10:00am 

10:00am vs. 
11:00am 

9:00am vs. 
11:00am 

BGL 
(mmol/L) 

4.8 ± 0.3 6.1 ± 0.6 5.6 ± 0.8 <0.01** 0.32 <0.01** 

Heart rate 
(bpm) 

71 ± 13 - 70 ± 13 - - 0.35 

Systolic BP 
(mmHg) 

114 ± 11 - 112 ± 9 - - 0.42 

Diastolic 
BP (mmHg) 

73 ± 11 - 73 ± 8 - - 0.72 
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2.2.2 Heart Rate Variability Measures 

ECG recordings were obtained in 10-minute epochs at each of the three assessments. In turn, 

these were transformed into HRV measures, reflecting autonomic activity at each of the three 

assessments. LF power, HF power, LF:HF, and total power were the HRV measures of interest in 

this study, and mean values are provided in Table 2.2. Note that the values provided here are 

natural log-transformed – raw HRV values are rarely presented in the literature as they are 

highly skewed. The only significant changes in these HRV measures were between 9:00am and 

11:00am, as LF power (p<0.001), HF power (p<0.05), and total power (p<0.01) were all 

significantly lower in the 11:00am assessment compared to the 9:00am assessment. For a visual 

reference and comparison of these means and standard deviations, see Figure 2.10. 

Table 2.2 Heart rate variability measures means and standard deviations recorded in the UTS 
Pilot Study sample (n=14). LF:HF is a ratio calculated by dividing LF power by HF power, and 
thus has no units. * = p<0.05, ** = p<0.01, *** = p<0.001, HF = High frequency, LF = Low 
frequency, LF:HF = low to high frequency ratio, ms2 = Milliseconds squared. 

 p-value 

Variable 9:00am 10:00am 11:00am 
9:00am vs. 
10:00am 

10:00am vs. 
11:00am 

9:00am vs. 
11:00am 

LF power 
(ms2) 

7.0 ± 0.9 7.0 ± 0.7 6.4 ± 0.9 0.80 0.60 <0.01*** 

HF power 
(ms2) 

5.8 ± 1.3 6.0 ± 1.1 5.0 ± 1.3 0.49 0.90 <0.05* 

Total 
power 
(ms2) 

7.5 ± 1.0 7.4 ± 0.9 6.8 ± 0.9 0.94 0.69 <0.01** 

LF:HF 4.8 ± 4.1 2.8 ± 1.7 5.3 ± 4.1 0.72 0.53 0.94 
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2.2.3 Summary of Results 

Though the recruitment target was not met in this pilot study due to technical issues, statistical 

analysis was conducted on the data set to provide information for subsequent research. In this 

sample, BGL – as assessed by invasive blood glucose assessment – rose significantly (p<0.01) 

after the ingestion of a meal by an average of 1.3 mmol/L. BGL was also slow to return to 

baseline or fasting levels, as the difference between BGL from 9:00am to 11:00am was also 

significant (p<0.01). There was no change in heart rate or blood pressure between the start and 

end of the study, though certain HRV measures changed over the course of the two hours. LF 

power, HF power, and total power were all significantly lower at the end of the study (11:00am) 

compared to the start of the study (9:00am). 
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2.3 Discussion 

The ability to estimate BGL in certain metabolic states, such as before and after meals, without 

using invasive measures represents an important milestone in diabetes research. A non-

invasive marker of fasting or postprandial BGL may address the limitations of current glucose 

monitoring technologies. In this study, frequency-domain HRV measures and blood glucose 

concentrations were monitored in a small sample to determine how they fluctuate over a short 

period of time. Specifically, the aim was to determine the magnitude of changes in HRV and BGL 

in response to acute food intake. This study was conducted to obtain pilot data and to address a 

broader set of aims which relate to how HRV measures may be capable of predicting BGL in 

adults. Though the quality of data collected in this study was poor, there was meaningful 

information gathered which was implemented in other components of this PhD candidature. For 

example, this study investigated the dynamics of HRV measures and BGL from baseline to post-

meal, and this information was considered when designing future studies. These will be 

expanded on in later chapters. The following sections will discuss results of the present study 

and present them in the context of the wider literature. 

 

2.3.1 Dynamics of Heart Rate Variability 

The values of the HRV measures observed in this sample of 14 participants were within 

expected ranges for subjects with no chronic illness or regular medications.432 However, as with 

many physiological variables, there was considerable variation in the data set as indicated by 

the standard deviation values (Figure 2.10). This was expected, though it is important that the 

reasons for this variability be explored. Variability in HRV data may be attributed to several 

factors, such as sex, age, and general health of individuals.433 Research by Yamasaki and 

colleagues (1996) showed that LF power peaks between 8:00am and 12:00pm in males and 

12:00pm and 0:00am in females. To clarify, the average male would expect their LF power to be 

highest in the morning and the average female would expect their LF power to be highest any 

time between midday and midnight. Therefore, variability in HRV measures between males and 

females may be related to the timing of assessments. In this study, all participants were 

assessed at 9:00am, 10:00am, and 11:00am to attempt to control for circadian effects on HRV 

measures. However, circadian rhythms may be difficult to control for stringently as the 

literature suggests daily fluctuations in HRV measures are different between males and females. 

Future studies may consider normalizing the data by subtracting each follow-up assessment 

from the baseline. This may also control for the differences in baseline HRV between males and 

females. Additionally, though the mean age of the sample was relatively young (28 ± 11 years), 
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the presence of some older participants – as old as 55 years of age – may have contributed to 

the variability of the HRV data observed in the sample. This is because all measures of HRV 

decline with age.434 

Interpretation of the findings of the present study requires an understanding of the different 

measures of HRV and their neurophysiological correlates. To reiterate, LF power is correlated 

with both sympathetic and parasympathetic nervous system activity, HF power is correlated 

with parasympathetic nervous system, total power represents total autonomic activity, and 

LF:HF is an index of sympathovagal balance, whereby increases in LF:HF indicate a shift toward 

sympathetic predominance. There is no specific way of determining sympathetic activity from 

HRV. In this study, mean HRV measures, including LF power, HF power, and total power, were 

all significantly lower at the end of the study (11:00am) compared to baseline levels (9:00am). 

When discussing these findings, it also important to consider that LF:HF did not change 

significantly, which indicates that there was no meaningful shift toward sympathetic or 

parasympathetic dominance. With this information, we can conclude that mean sympathetic 

and parasympathetic tone were reduced at 11:00am compared to 9:00am, as both LF power and 

HF power were significantly lower at 11:00am. This explanation is consistent with the findings 

that total power was also significantly lower at 11:00am, and that LF:HF did not change 

significantly. Whether this decline in LF power and HF power was related to the consumption of 

the meal or the change in time of day – which would likely be related to circadian fluctuations in 

HRV – is not a conclusion that can be made based on the data from this study. By chance, there 

were relatively more ECG recordings from the 10:00am assessments which were unusable 

compared to the 9:00am and 11:00am, and thus fewer data points were included in the 

statistical analysis. This contributed to a smaller standard deviation for LF:HF at the 10:00am 

assessment, and may have also contributed to LF:HF being misaligned from the values of LF 

power and HF power at 10:00am. 

With reference to the literature, Klimontov, Myakina & Tyan (2016) measured morning fasting 

HRV as well as afternoon postprandial HRV in n=67 women with T2D and found LF power was 

significantly lower in the afternoon compared to the morning, and HF power was not 

significantly different.396 In their paper, the authors argued that the reduction in LF power was 

due to either the consumption of the meal or the associated rise in BGL, but could not specify 

which of these was more important based on their analyses. Differences in the findings between 

Klimontov, Myakina & Tyan (2016) and the UTS Pilot Study may be due to differences in the 

sample groups, as women with T2D are physiologically distinct to people without diabetes in 

terms of autonomic activity and glucose management. In a study comparing fasting measures 

with postprandial measures Lu and colleagues (1999) showed that LF power does not change 
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after a meal, and HF power increases significantly.435 In a sample of n=30 young subjects (mean 

age 21 ± 4 years), Soni and colleagues (2017) showed there was an increase in sympathetic 

activity and a decrease in parasympathetic activity two hours after a meal.436 In this study, 

participants did not eat at exactly 9:00am, so though the study period was two-hours long, it 

was not technically two-hours since meal, so a comparison with the work of Soni and colleagues 

(2017) is not ideal. More recent literature agrees that sympathetic tone, as measured partly by 

LF power, increases after a meal, however blocking of these sympathetic pathways does not 

affect postprandial effects.437 This may be because sympathetic activity during absorptive phase 

of digestion may not be related to postprandial BGL. 

Three studies in this area of study on groups of people without diabetes provide conflicting 

results. In their study of n=68 adults (66% male; mean age 26 ± 4 years), Choi, Choi & Kim 

(2008) found that HF power and total power were significantly lower in the afternoon (1:30pm 

to 4:00pm) compared to the morning (8:30am to 11:00am), whilst LF power and LF:HF were 

unchanged over this time period.438 However, Armstrong and colleagues (2011) reported no 

change in HF power from the morning to the afternoon in n=12 young adults aged 19-25.439 

Lipsitz and colleagues (1993) observed an increase in mean LF power after n=11 young adults 

(mean age 26 ± 5 years) consumed a mixed meal. Due to the lack of change in plasma 

norepinephrine, they concluded that this increase in LF power represented cardiac sympatho-

excitation. Discrepancies in these findings may be due to differences in the age of samples 

between the studies, as well as sample sizes. 

For LF:HF, two studies on people without diabetes or any other chronic illness demonstrated 

consistent results. Paolisso and colleagues (1997) showed that ingestion of glucose in subjects 

was associated with an increase in LF:HF, indicating an increase in sympathetic nervous system 

activity.440 Tentolouris and colleagues (2003) demonstrated that LF:HF increased significantly 

in lean women (n=15, mean age 35 ± 11 years) in response to carbohydrate ingestion.441 

However, this study did not assess other traditional frequency-domain measures, including LF 

power, HF power, or total power. It is important to provide context for changes in 

sympathovagal balance, as indicated by LF:HF. As demonstrated in the present study, changes in 

LF power and HF power were shown to be consistent, as demonstrated by the lack of change in 

LF:HF and the decrease in total power. Though this is not a conclusive understanding of the HRV 

dynamics involved, as there are other factors which may have been involved, this study 

successfully demonstrated acute fluctuations in HRV measures in response to food intake. As 

outlined in Chapter 1, this is a novel area of research. It was not the aim of the UTS Pilot Study to 

conduct rigorous research and consolidate the current literature in this area, but rather to 

obtain real-world pilot data to use in the development of more rigorous studies. 
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2.3.2 Dynamics of Postprandial Blood Glucose 

In this pilot study, mean BGL of the sample increased significantly (p<0.01) from 9:00am to 

10:00am by an average of 1.3 mmol/L after the consumption of a regular meal. Though an 

increase in BGL was expected, the magnitude of this increase was difficult to anticipate. In a 

postprandial state, shortly after an individual has consumed food, glucose levels in the blood 

rise rapidly as nutrients are broken down in the gastrointestinal tract and absorbed into the 

blood. There is also an associated rise in circulating insulin, which aims to reduce the glycaemic 

spike following the meal,442 though insulin levels were not assessed in this study. Most 

participants in this study finished their meal at 9:15am, and therefore the blood glucose 

assessment was performed roughly 45 minutes after the meal. Generally, the timing of this 

assessment should have captured the peak BGL of participants post-meal. However, the time 

required for glucose levels to peak after a meal, as well as the magnitude of that peak, are 

affected by a range of variables, including the composition of the meal and the health of the 

individual. These variables will be discussed in this section to determine if the results of the UTS 

Pilot Study are consistent with previous literature. 

For meals composed entirely of carbohydrates, BGL increases rapidly for the first 30 minutes 

after consumption until it peaks, and then steadily declines until BGL returns to baseline levels 

120-180 minutes after consumption.443 However, according to Brand-Miller and colleagues 

(2009), this is not just true for carbohydrates. Analysis of a database of over 1000 foods showed 

that peak BGL occurs after 30 minutes for most meals consisting solely of one type of food, 

including milk, yoghurt, legumes, vegetables, soft drinks, or fruit.444 This is generally 

irrespective of the glycaemic index of the food, for example white wheat bread has a higher 

index compared to rye bran bread, but both foods produce peak BGL 30 minutes after 

consumption.443 The glycaemic index of a food is more accurately used to estimate the total 

change in BGL from fasting to postprandial that can be expected from eating the food, rather 

than the time taken to achieve that peak BGL.445 This change is known as the incremental 

glucose peak, which can be obtained by subtracting the peak BGL after a meal from the baseline, 

or the fasting BGL. Esposito and colleagues (2008) contend that incremental glucose peak is a 

better marker of certain cardiovascular complications of diabetes compared to traditional 

markers, such as HbA1c and fasting BGL.446 This is because incremental glucose peak is a general 

measure of glucose variability, and higher levels of variability are associated with long-term 

cardiovascular disease. Incremental glucose peak is higher in homogenous meals, for example a 

meal like yoghurt which is composed entirely of dairy products, which means BGL will increase 

rapidly to a peak within 30 minutes and then decline relatively quickly. 
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For meals consisting of more than one type of food product, which represents most meals and 

thus are referred to as ‘regular meals’, peak BGL is achieved after 40-45 minutes.447 Other 

studies, such as one conducted by Elizondo-Montemayor and colleagues (2015), show that BGL 

peaks between 30-45 minutes post-meal in subjects without diabetes (n=38),448 though 

differences in methodology may contribute to these slight differences in timing. Based on this 

evidence, meals consisting of multiple food types take longer to produce peak BGL. This is 

because of the ‘food matrix’ phenomenon, which effectively slows the rate at which nutrients 

are absorbed across the gastrointestinal tract, such that glucose levels in the blood do not rise as 

quickly. This results in a ‘flattening’ of the glucose curve. The matrix effect is greater in mixed 

meals, for example mashed potatoes eaten alongside high-protein foods such as chicken breast 

or salad produce a lower but more sustained glycaemic response compared to mashed potatoes 

eaten on their own.449 Adding different food types to a meal reduces the glycaemic response, 

which is a desirable outcome when considering that larger glucose fluctuations over time are 

associated with complications of cardiovascular disease, such as aortic stiffness.450 Additionally, 

there are short-term benefits to glucose regulation. A study conducted by Nilsson and 

colleagues (2012) highlighted that low, but sustained BGL profiles produced by low glycaemic 

index carbohydrates enhance cognitive function.451 

In summary, regular meals cause low, sustained increases in BGL. This low increase in BGL was 

observed in the UTS Pilot Study, recorded as a mean 1.3 mmol/L increase from 9:00am to 

10:00am. Of note, there was no significant change observed in sympathetic or parasympathetic 

tone between 9:00am and 10:00am. The results of this study do not indicate a real-time 

relationship between HRV and BGL, as BGL increased without a measurable response in HRV 

measures. The change in HRV was delayed, indicated a delayed relationship. The lack of findings 

here may be due to the poor quality of ECG data. A more rigorous study design and statistical 

analysis with high quality data should follow-up this study to confirm. Also in this study, 

kilojoule intake was identified as a useful measure in this area of research, as it predicts the 

total glucose response, such as the magnitude of the BGL peak and the time for which 

postprandial BGL is sustained.445 The glycaemic index of the meal and kilojoule value 

determines the height of the glycaemic response when it reaches its peak. This information, 

including the timing of assessments and the magnitude of the changes in BGL observed between 

assessments, was used to develop future studies that were also conducted as part of this PhD 

candidate. These will be described in later chapters. 
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2.3.3 Strengths and Limitations 

The main purpose of this study was to provide early pilot data to assist with the design of future 

studies. To that end, a strength of this research was that it condensed and focused previous 

research, which was conducted in an Honours year, whilst allowing for preliminary analyses to 

be conducted on HRV measures and BGL. The six-hour methodology utilised in the Honours 

research was identified to be excessive, and the UTS Pilot Study successfully implemented a 

shorter study design of two hours whilst maintaining the same number of assessments, at 

9:00am, 10:00am, and 11:00am, instead of 9:00am, 12:00pm, and 3:00pm. The ‘trial-and-error’ 

approach that was taken with this pilot study, as a prelude to larger, more robust experiments, 

allowed for significant limitations to be identified so they could be accounted for in the future 

studies. Though the poor quality of the data reduced the credibility of the results, there were 

several meaningful limitations identified in this study which were improved in larger, future 

studies. 

Firstly, the use of a stationary ECG instead of a portable ECG was not ideal for this specific area 

of research. The ECG did not allow for long-term monitoring of HRV, as it required participants 

to be seated, and movement artefacts were common. This also made it difficult to observe HRV 

in participants whilst they ate – as participants would have been required to be seated for the 

entire two-hours of the study. Recording autonomic data during mealtime may have yielded 

noteworthy data. Future studies should consider using a Holter monitor, which is a smaller, 

lightweight ECG, or even a simple heart rate monitor to continuously record HRV in participants 

for longer periods of time. This would allow participants to leave the laboratory and eat a 

regular meal of their choosing whilst being continuously monitored. 

Secondly, the timing of blood glucose assessments was not an accurate reflection of specific 

metabolic states in all cases. For the 9:00am assessment, the blood glucose assessment was an 

accurate representation of fasting or baseline BGL. This is because participants were required to 

abstain from caloric intake for eight hours prior to the 9:00am assessment. However, the second 

assessment at 10:00am did not necessarily equate with postprandial BGL. True postprandial 

BGL reflects the peak glucose level in a participant after a meal, which occurs 40-50 minutes 

after most regular meals. The second assessment was conducted at 10:00am for all participants, 

and this standardisation was to control for circadian rhythms, however this may have not been 

a stringent method of control given that HRV circadian rhythms are different between males 

and females. Due to differences in how long it took participants to leave the laboratory and 

finish their meal, this 10:00am assessment was not performed 40-50 minutes after many 

participants finished their meal, and thus was not a true reflection of postprandial BGL. As 

discussed in Section 1.6.5, there is a strong consensus in the literature that postprandial BGL is a 
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better predictor of diabetes complications such as cardiovascular disease.191, 192, 195 Therefore, 

future studies of a longitudinal design should aim to assess both fasting and postprandial BGL, 

as the ability to predict BGL in their metabolic states may provide meaningful clinical data. 

Another limitation of this study, as well as the following experiments conducted as part of this 

PhD, is that the exclusion criteria for daily alcoholic beverage consumption of no more than 10 

standard drinks per day was substantially higher than the regular daily intake of 2 standard 

drinks per day. This exclusion criteria was based on requirements set by the UTS HREC, rather 

than based on examples set in the literature. This is a limitation since excessive alcohol 

consumption has been associated with autonomic neuropathy. Additionally, participants were 

free to leave the UTS laboratory between recordings, however this may have increased 

metabolic demand and reduced glycaemia, as well as caused changes in HRV. Future research 

should consider restricting the activity of participants whilst they are being monitored. 

There were several other limitations of the UTS Pilot Study which were improved on in the later 

studies conducted as part of this PhD. As an exploratory study, the small sample size was a 

major weakness of the research, and the lack of a clinical sample, such as a diabetes sample, 

limited the clinical relevance of the findings. As the overall aim of this PhD candidature was to 

justify future research into the clinical applications of HRV measures in predicting BGL, it was 

important that future studies improved on the sample size and included clinical samples. Future 

studies should base their power calculations on the expected correlation coefficient (r-value) 

between the two variables of interest, which in this area of study would be BGL (e.g. fasting) and 

each HRV measure (e.g. total power). Improving on the sample size, as well as the overall data 

set, would allow for predictive models to be developed, which may better demonstrate the 

capabilities of HRV measures in estimating BGL. 
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Chapter 3. UTS T2D Study 

 

3.1 Methods 

Due to technological issues with data collection in the UTS Pilot Study, the UTS T2D Study 

attempted to expand on the aims and hypotheses developed in the Pilot Study through a more 

comprehensive study. In short, the Pilot Study investigated changes in HRV measures and BGL 

in n=14 participants over a two-hour period. The T2D Study aimed to explore the applications 

of HRV measures as non-invasive markers of BGL in people with T2D, who may benefit greatly 

from a non-invasive alternative to current SMBG methods. This was a core component of the 

thesis. Primarily, the aim was to achieve this by correlation analysis and by multiple regression 

analysis. It was hypothesised that the physiological association between HRV measures and BGL 

was strong enough to justify the clinical applications of HRV measures as a non-invasive 

estimate of glycaemia. It was also important to investigate whether HRV may have applications 

for people with optimal levels of blood glucose. Thus, the UTS T2D Study recruited a sample of 

people with T2D and a sample of people without any chronic illness. Associations between HRV 

measures and BGL were determined in different metabolic states, including fasting and 

postprandial, as the importance of these has been discussed. 

Though the literature agrees that CGM is superior to intermittent glucose monitoring for 

glycaemic management in T2D, CGM systems are not indicated for T2D. There is insufficient 

evidence to suggest that the introduction of a reliable non-invasive method of CGM would 

replace intermittent glucose monitoring in T2D, as efficiency of current SMBG is already low. 

There is, however, strong evidence to support that introducing a non-invasive method of 

intermittent glucose monitoring would improve efficacy of SMBG, (Chapter 1). As such, the UTS 

T2D Study investigated whether HRV measures could be used to predict BGL measured by 

intermittent forms of SMBG, such as the ‘finger spot’ check most-commonly used in T2D. HRV 

measures may offer a non-invasive alternative to current SMBG techniques, which are 

universally invasive, and thus improve SMBG effectiveness. 

 

3.1.1 Subjects 

As with the Pilot Study, subjects were uninhibited by any chronic illness or regular medications, 

as verified by a questionnaire. Participants were deemed to be appropriate for the T2D group if 

they were currently living with T2D at the time of commencing the study and had been 
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diagnosed with the condition at least six months prior by a qualified medical practitioner. 

Subjects were recruited by word-of-mouth and social media, and eligible participants were 

invited to the researcher’s laboratory at UTS to complete the protocol as approved by UTS HREC 

(approval number: 2014000110, then updated to ETH19-3676). In addition to standard 

recruitment procedures, this study was endorsed by Diabetes Australia, and an advertisement 

was featured on the “Take Part: Current research opportunities” section of their website. 

 

3.1.2 Pre-study Requirements 

For a detailed description of the pre-study requirements for subjects, please refer to Section 

2.1.2, as they are the same as the UTS Pilot Study. In this study, requirements for participants in 

the T2D group were adjusted for the sake of practicality; for example, given the high 

comorbidity of T2D with other lifestyle-related diseases, particularly cardiovascular diseases 

such as hypertension, it was not practical to exclude participants in the T2D group if they had 

any other chronic illnesses or if they were taking any medications. However, participants were 

excluded if they had any history of cardiac autonomic neuropathy or if they were taking 

medications which affected cardiac function, such as β-blockers or tricyclic drugs.452, 453 As with 

the subjects without T2D, people in the T2D sample group were required to be aged between 

18-69 years and were ineligible to participate if they were currently pregnant, smoked more 

than 10 cigarettes per day, consumed more than 10 standard alcoholic beverages per day, or if 

their blood pressure (BP) was too high during the pre or post-study BP recordings (Section 

2.1.3). This information was collected in the Lifestyle Appraisal Questionnaire (LAQ),454 which 

provided a score of a person’s lifestyle risk factors as well as a score of their perceived stress 

over the previous eight weeks. Subjects in the T2D group were asked to fast for at least eight 

hours, as with the group without T2D, but they were to continue their medications as best they 

could and prioritise any medical advice given to them by their doctor or diabetes educator. 

 

3.1.3 Expansion of Previous Methodology 

As with the Pilot Study, participants attended the UTS laboratory after an overnight fast or a 

caloric restriction of at least eight hours. They were required to sign consent forms and undergo 

pre-study blood pressure measurements, as described in Section 2.1.3. Provided they were not 

excluded by this point, they were then subject to a blood glucose assessment as described in 

Section 2.1.4. In the Pilot Study, issues with data collection stemmed from faulty ECG 



3.1.4 Recording R-R Interval Data by Heart Rate Monitor

(A)
BodyGuard 2 device without electrodes attached. The large ‘head’ of the device 

(B)
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sites had been cleaned using isopropyl alcohol wipes. The device recorded continuously, even 

when outside of the laboratory, and this allowed for subject’s HRV to be calculated at any point. 

After the device was returned from each participant at the conclusion of the study, the R-R 

interval data was downloaded onto a computer and processed using Kubios HRV Premium. 

Extrapolation of HRV measures from this point onward followed the exact same methodology as 

described in Section 2.1.5.2. The main difference between the Pilot Study and the T2D Study in 

regard to HRV determination was the method by which R-R interval data was obtained.  

 

3.1.4.1 Selection of HRV Intervals to be Analysed 

The BodyGuard 2 recorded R-R interval data continuously, and thus there were many options 

when it came to selecting which periods to analyse. It was also possible to analyse R-R data in 

periods longer than 10 minutes. However, it was important that all periods to be compared 

were of the same duration. This is because longer recordings, by their nature, show increased 

HRV, and thus statistical comparison between a 10-minute and a 20-minute epoch would be 

meaningless.358 Consequently, the focus of the UTS T2D Study was to capture 10-minute 

intervals of HRV data that corresponded with noteworthy states during the study. The first of 

these states was ‘fasting HRV’ which was calculated from the 10 minutes of R-R data that 

immediately preceded the fasting BGL assessment. This state may also represent ‘resting HRV’, 

as participants were allowed to rest for 10 minutes prior to recording this 10-minute state. 

Fasting HRV was recorded to set a baseline, as it was an estimation of autonomic activity 

without the effects of caloric intake. 

The second of these noteworthy states was ‘prandial HRV’, which corresponded with autonomic 

activity whilst participants were eating their meal. It was calculated by selecting 10 minutes of 

R-R interval data that overlapped with the eating period of each participant, then processing 

that into HRV measures. As with the Pilot Study, subjects in the UTS T2D Study were asked to 

consume a regular meal after their initial fasting assessment (see Section 2.1.6.1). However, 

instead of returning at a set time, such as 10:00am, participants were required to return 30 

minutes after finishing their meal. They were also asked to report on the contents of their meal 

(see Section 2.1.6.2 for more details), as well as the times in which they started and finished 

their meal. In the Pilot Study, it was recognized that circadian rhythms were responsible for 

natural but significant variation in HRV and BGL (Section 2.1.4). This is true not just for people 

without diabetes, but also people with diabetes.407 Therefore, all participants in this study were 

restricted to being assessed only in the morning, between the hours of 7:00am and 12:00pm. 
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3.1.5 Postprandial Assessment 

There are two key stages of metabolism during which snapshot data of BGL is considered most 

useful. The first of these is fasting, when BGL is lowest, and the second is postprandial, when 

BGL peaks after a meal. One of the most desirable outcomes of new and upcoming measures of 

BGL is the ability to accurately estimate BGL during either of these two states (Section 1.11). A 

device capable of non-invasively estimating glycaemia in an individual in a fasting state as well 

as a postprandial state would represent an appealing alternative to current SMBG. Other 

authors have reinforced the importance of assessing both fasting and postprandial BGL when 

investigating the relationship of BGL with HRV measures.457 As with the Pilot Study, fasting BGL 

in the UTS T2D Study was captured using a blood glucose assessment after participants 

undertook an overnight fast. When attempting to capture postprandial BGL, there were several 

factors that needed to be considered. True postprandial BGL is difficult to measure, as the blood 

glucose assessment is an intermittent measure of BGL and thus cannot track glycaemia 

continuously. Even readings from CGM systems lag behind true postprandial BGL as it changes 

rapidly after a meal. Another factor to consider in this study was that different participants 

chose meals of different compositions, as expected, however this affected the time required for 

BGL to reach its peak. 

Based on evidence provided in the Discussion of the Pilot Study (Section 2.3), as well as 

evidence from the literature, it was expected that peak BGL would be achieved 45 minutes on 

average after participants ate a regular meal.442 There are various factors which affect the 

overall shape of the glucose curve for different individuals, however, the main confounder in the 

UTS T2D Study was the nutritional content of the meal. Meals high in carbohydrates require less 

time to produce a peak glycaemic response. To accommodate for the fact that some participants 

in this study consumed meals higher or lower in carbohydrates than average, which would 

cause their BGL to peak earlier or later, respectively, all participants underwent a BGL 

assessment twice. The first was 40 minutes after eating, and the second was 50 minutes after 

eating, for a total of two blood glucose assessments 10 minutes apart (Figure 3.2). Both BGL 

values were recorded, but only the higher value was used in the analysis as it was a close 

approximation of peak postprandial BGL. 



BGL HRV Min

3.1.6 HbA1c Assessment

3.1.7 Statistical Analysis
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to identify any significant (p<0.05) differences between the T2D group and the group without 

T2D in various categories. These included demographic features such as age, as well as 

physiological features such as blood pressure, BGL, and HRV measures. Independent t-tests 

were also used to compare these same sets of factors between men and women in each group. 

Primarily, this was to determine whether there was an appreciable effect of sex on the variables 

of interest, as this would require that sex be controlled for in the statistical analysis. For 

comparison of ‘within-subjects’ changes, such as comparing the change in BGL from fasting to 

postprandial levels in just people without diabetes, paired-sample t-tests were used. 

Furthermore, the aim of the analysis was to explore the potential for HRV measures to predict 

glycaemia in both groups. The predictor variables were largely measures of HRV, including LF 

power, HF power, total power, and LF:HF. For a detailed description of how these measures 

were obtained, see Section 2.1.5.2. Additional predictor measures were age, BMI, and kilojoule 

intake. The dependent variables that the present study sought to predict were fasting BGL, 

postprandial BGL, and, in the group with diabetes, also HbA1c. Correlation analysis was 

conducted on BGL data and HRV measures to explore potential relationships between the 

variables. Partial Pearson’s correlations were used in all instances, controlling for age and BMI. 

Additionally, kilojoule intake was applied as a covariate for postprandial BGL, which may have 

been confounded by the variable meals of participants, but not for fasting BGL correlations, as 

participants had not eaten yet for this assessment. In instances where multiple HRV measures 

were correlated with a single dependent variable, such as fasting BGL or postprandial BGL, a 

multiple linear regression was carried out to identify the strongest predictor variables and to 

establish a regression model demonstrating the proportion of the outcome variable (BGL) 

which can be explained by the predictor variables (HRV measures). Regression models, a basic 

form of machine learning, perform reasonably well compared to advanced machine learning 

models in terms of predicting glycaemic events in diabetes.336 However, it is important that the 

model is implemented in real-time, as this provides clinical significance. 

To ensure that the assumptions of the ANOVA were not violated, the data set was checked for 

outliers, normal distribution, linear relationships, homoscedasticity, and multicollinearity. 

Normal Q-Q plots of the studentized residuals were used to check that the data points were 

linearly organised, which confirmed normal distribution. Linear relationships between the 

dependent variable (BGL) and independent variables (HRV measures) were confirmed by 

scatter plots and are shown in the Results. Homoscedasticity was assumed by checking that 

scatterplots of the residuals were equally distributed and did not follow any pattern or skewed 

distribution. To ensure the independent variables were not highly correlated with each other, 

which may affect the interpretation of the multiple regression model, the variables were 
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checked for multicollinearity in SPSS. Variance inflation factor values were checked to ensure 

they were between 1-10, indicating no multicollinearity.  

To determine a sample size (n) which would provide sufficient power for the study, J. Cohen’s “A 

Power Primer” was consulted. For a correlation analysis between two independent groups, 

which included a T2D group and a group of subjects without T2D, with a significance (α) set to 

0.05 and a large effect size (r) of 0.5, a sample size of n=30 in each group would provide a power 

level of 0.8, or an 80% probability of rejecting a false null hypothesis at the 5% significance 

level. As such, the recruitment goal was at least 30 people with and 30 people without T2D. 

 

3.2 Results 

The UTS T2D Study investigated the relationship between frequency-domain HRV measures and 

glycaemia in a sample of people with T2D as well as a sample of people without any chronic 

illness. Recruitment was facilitated through social media advertising as well as with assistance 

from Diabetes Australia. For this study, recruitment of n=30 participants in each group was not 

possible due to COVID-19 restrictions implemented by the Australian Federal Government and 

NSW State Government after 21st March 2020, with repeated restrictions imposed between 

2020 and 2021. As such, the UTS T2D study was concluded early after n= 27 people with T2D 

and n=29 subjects without T2D were recruited. 

 

3.2.1 Demographic Differences: Non-Diabetes vs. Diabetes 

Notable demographic data, including mean age and BMI of each sample, is presented in Table 

3.1. Additionally, mean scores are provided for the LAQ Part 1 (scales higher with lifestyle risk 

factors, such as poor diet) and LAQ Part 2 (assesses the effect of stress on a person’s life). 

Independent t-tests established whether there were any significant differences (p<0.05) in 

these variables between the two samples. Additional information was collected from the T2D 

sample, for example the mean HbA1c level was 6.9 ± 1.4% and the median level was 6.6%. The 

mean duration of diabetes was 10 ± 8 years. 52% of the T2D sample reported that they knew of 

at least one first-degree relative with T2D, 44% knew of at least one second-degree relative 

with T2D, and 26% knew of at least one first-degree and one second-degree relative with T2D. 
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Table 3.1 Means and standard deviations for demographic differences between the group 
without diabetes (n=29) and the group with diabetes (n=27). Data is presented as mean ± 
standard deviation. BMI was calculated as weight (in kilograms) divided by height (in metres) 
squared. The LAQ Part 1 was scored separately from Part 2, and mean scores are provided in 
this table. *** = p<0.001, BMI = Body mass index, kg/m2 = Kilogram per square metre, LAQ = 
Lifestyle Appraisal Questionnaire. 

Variable Non-diabetes group Type 2 diabetes p-value 

n 29 27 - 

Age (years) 33 ± 13 51 ± 10 <0.001*** 

BMI (kg/m2) 24 ± 3 33 ± 6 <0.001*** 

LAQ Part 1 10 ± 8 20 ± 6 <0.001*** 

LAQ Part 2 18 ± 13 22 ± 10 0.24 

 

From Table 3.1, it can be inferred that individuals in the T2D sample were approximately 18 

years older on average (p<0.001) and had higher BMI (p<0.001) compared to individuals in the 

group without diabetes. As such, correlation analyses may need to control for these 

demographic differences. People with T2D also scored higher in the LAQ Part 1 (p<0.001), and 

though mean LAQ Part 2 scores were also higher in the T2D sample, the difference compared to 

the group without diabetes was not significant. 

 

3.2.2 Physiological Differences: Non-Diabetes vs. Diabetes 

Mean values for physiological data, including blood pressure, BGL, and HRV measures, are 

presented in Table 3.2. Blood pressure was averaged from pre-study and post-study values. 

Kilojoule intake was determined using a food diary which participants completed after eating a 

regular meal. Independent t-tests were conducted to determine whether there were any 

significant differences in these physiological measures between the two sample groups. 
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Table 3.2 Means and standard deviations for physiological differences between the group 
without diabetes (n=29) and group with diabetes (n=27). Data is presented as mean ± standard 
deviation. Fasting BGL was recorded after a fast of at least eight hours and postprandial BGL 
was recorded 40-50 minutes after a meal. Fasting HRV was determined using the first 10-
minutes of the recording. LF power, HF power, and total power are natural log transformed. * = 
p<0.05, ** = p<0.01, *** = p<0.001, BGL = Blood glucose level, BP = Blood pressure, HF = High 
frequency, HRV = Heart rate variability, kJ = Kilojoule, LF = Low frequency, LF:HF = low to high 
frequency ratio, mmHg = Millimetres of mercury, mmol/L = Millimoles per litre, ms2 = 
Milliseconds squared. 

Variable Non-diabetes group Type 2 diabetes p-value 

BP (mmHg)    

Systolic 115 ± 10 124 ± 12 <0.01** 

Diastolic 74 ± 7 83 ± 8 <0.001*** 

BGL (mmol/L)    

Fasting 4.9 ± 0.5 8.1 ± 2.2 <0.001*** 

Postprandial 6.4 ± 1.1 11.2 ± 3.7 <0.001*** 

Change in BGL 1.4 ± 1.0 3.1 ± 2.4 <0.01** 

Kilojoule intake (kJ) 2280 ± 1537 1600 ± 878 0.05* 

Fasting HRV (ms2)    

LF power 6.9 ± 0.7 5.7 ± 1.2 <0.001*** 

HF power 5.8 ± 0.8 4.3 ± 1.4 <0.001*** 

Total power 7.6 ± 0.6 6.3 ± 1.1 <0.001*** 

LF:HF 3.9 ± 2.6 5.9 ± 4.1 0.04* 

 

Included in Table 3.2 were a considerable number of significant differences between the two 

different groups. Systolic (p<0.01) and diastolic (p<0.001) blood pressure were both 9 mmHg 

higher on average in the T2D sample compared to the sample without diabetes. This difference 

is highlighted in Figure 3.3 

 

 

 

 

 



** *** BP
mmHg T2D



* ** *** BGL kJ
mmol/L T2D



* *** HF LF
ms2 T2D

3.2.2.1 Males vs. Females



 

Luke Jarman | 100  
 

Table 3.3 Demographic differences between males (n=15) and females (n=14) without diabetes, 
as well as males (n=13) and females with diabetes (n=14). Data is presented as mean ± standard 
deviation. BMI was calculated as weight (in kilograms) divided by height (in metres) squared. 
Kilojoule intake was determined using a food diary which participants completed after eating a 
regular meal. * = p<0.05, BMI = Body mass index, kg/m2 = Kilogram per square metre, kJ = 
Kilojoule, T2D = Type 2 diabetes. 

 Non-diabetes  T2D  

Variable Males Females p-value Males Females p-value 

n 15 14 - 13 14 - 

Age (years) 32 ± 14 33 ± 11 0.95 49 ± 12 51 ± 10 0.70 

BMI (kg/m2) 25 ± 4 24 ± 3 0.43 31 ± 6 34 ± 7 0.27 

kJ intake 2900 ± 1900 1700 ± 800 0.04* 1800 ± 1100 1500 ± 600 0.37 

 

Physiological data from each sample was also separated into males vs. females, including 

systolic and diastolic blood pressure, fasting and postprandial BGL, and HRV measures (Table 

3.4). The four main HRV measures that were investigated in this study were LF power, HF 

power, total power, and LF:HF. Only HRV measures from the fasting state are presented in Table 

3.4. There were no significant differences in systolic or diastolic blood pressure between males 

and females for either sample. To demonstrate that differences in physiological variables 

between diabetes and non-diabetes groups were consistent for both males and females, 

additional independent t-tests were used to compare physiological data in males between the 

two samples as well as females between the two samples. The results from these analyses are 

presented in Figure 3.6. It was determined that males in the T2D sample had higher diastolic 

blood pressure than their non-diabetes counterparts (p<0.05). Compared to females in the non-

diabetes sample, T2D females had both higher systolic (p<0.05) and diastolic (p<0.01) blood 

pressure. Statistical analysis shown in Table 3.4 only compares men and women from the same 

group, either T2D or non-diabetes. Statistical comparison of men without diabetes compared 

with men with diabetes, for example, was conducted but is only presented in figures. 
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Table 3.4 Physiological differences between males (n=15) and females (n=14) without diabetes, 
as well as males (n=13) and females with diabetes (n=14). Data is presented as mean ± standard 
deviation. Systolic and diastolic blood pressure values were averaged from pre-study and post-
study values. Change in BGL = ‘postprandial’ subtracted by ‘fasting’ BGL. Fasting HRV was 
determined using the first 10 minutes of the recording. BGL = Blood glucose level, BP = Blood 
pressure, HF = High frequency, HRV = Heart rate variability, LF = Low frequency, LF:HF = low to 
high frequency ratio, mmHg = Millimetres of mercury, mmol/L = Millimoles per litre, ms2 = 
Milliseconds squared. 

 Non-diabetes  T2D  

Variable Males Females p-value Males Females p-value 

n 15 14 - 13 14 - 

BP* (mmHg)       

Systolic 116 ±11 113 ± 11 0.50 125 ± 13 124 ± 12 0.74 

Diastolic 74 ± 8 74 ± 7 0.91 81 ± 8 85 ± 8 0.32 

BGL (mmol/L)       

Fasting 5.1 ± 0.5 4.7 ± 0.4 0.05 8.0 ± 2.0 8.2 ± 2.4 0.83 

Postprandial 6.5 ± 1.1 6.2 ± 1.1 0.60 10.7 ± 3.0 11.6 ± 4.4 0.58 

Change 1.4 ± 1.1 1.5 ± 1.0 0.74 2.7 ± 2.4 3.4 ± 2.5 0.51 

Fasting HRV (ms2)       

LF power 6.7 ± 0.7 7.1 ± 0.7 0.16 5.9 ± 1.2 5.6 ± 1.2 0.53 

HF power 5.7 ± 0.7 5.8 ± 0.9 0.78 4.3 ± 1.6 4.2 ± 1.3 0.84 

Total power 7.5 ± 0.5 7.8 ± 0.6 0.11 6.2 ± 1.2 6.3 ± 1.1 0.96 

LF:HF 3.6 ± 2.6 4.3 ± 2.2 0.48 5.9 ± 4.3 5.8 ± 4.1 0.92 
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3.2.3 Correlation Analysis 

The primary aim of the correlation analysis was to investigate associations between HRV 

measures and BGL in each sample as a basis for developing regression models, which are a basic 

form of machine learning. Before this analysis could be performed, it was important to 

determine if any confounding variables existed in the data set, as partial Pearson’s correlation 

allows for multiple variables to be included as covariates to account for their confounding effect. 

Based on the literature and the scope of this PhD candidature, the main confounders of concern 

for this data set were sex, kilojoule intake, age, and BMI. In Section 3.2.2.1, it was demonstrated 

that there were no significant differences between men and women for either sample, with the 

exception that kilojoule intake was lower in women compared to men. As such, sex was not 

controlled for in the partial correlation analysis. Kilojoule intake was identified as a confounder 

and was included as a covariate for any correlation analysis involving postprandial BGL, for 

otherwise there would be no manner of controlling for the different meal composition of 

participants. As subjects had not yet eaten for the fasting assessment, kilojoule intake was not 

included as a covariate for any analysis involving fasting BGL. 

Several methods were used to determine the confounding effect of age and BMI on the data. 

These two were correlated against the variables of interest, which were fasting BGL, 

postprandial BGL, and each of the four HRV measures from the fasting state as well as the 

prandial state. For the group without diabetes, participant age was correlated with fasting BGL 

(r = 0.46; p = 0.02) but not postprandial BGL. Age was also associated with prandial LF power (r 

= -0.47; p = 0.02), prandial HF power (r = -0.46; p = 0.02), and prandial total power (r = -0.43; p 

= 0.03), but not prandial LF:HF. Age was also not related to any of the four HRV measures from 

the fasting state. Participant BMI was significantly correlated with fasting BGL (r = 0.47; p = 

0.01) and postprandial BGL (r = 0.41; p = 0.03). As with age, BMI was significantly correlated 

with prandial LF power (r = -0.55; p < 0.01), prandial HF power (r = -0.40; p = 0.04), and 

prandial total power (r = -0.49; p = 0.01), but not prandial LF:HF or any of the four HRV 

measures from the fasting state. As for the T2D group, age and BMI weren’t associated with any 

of the variables of interest, which included fasting and postprandial BGL, and each of the four 

HRV measures from the fasting state as well as the prandial state. Though these findings 

indicated that age and BMI were confounders in only the sample without diabetes, age and BMI 

were included as covariates in the analysis of both the sample without diabetes and the T2D 

sample for consistency. A review of the literature also indicated that controlling for age and BMI 

in the analysis was appropriate, as most studies agree they are strongly related and can 

confound the statistical analysis.459, 460 It is important that the analysis of the present study 
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investigates whether HRV measures predict BGL even when accounting for age and BMI, as well 

as kilojoule intake. 

 

3.2.3.1 Partial Correlations 

Partial Pearson’s correlations were used to investigate associations between HRV and BGL in 

the two groups separately, as correlations may be stronger or weaker in T2D compared to 

people without diabetes. HRV measures from the fasting state, including LF power, HF power, 

total power, and LF:HF, were correlated against both fasting and postprandial BGL for the group 

without diabetes. This analysis was repeated using data from the T2D group (Table 3.5). Then, 

the same four HRV measures were extrapolated from the prandial state – when participants 

were eating – and correlated against postprandial BGL, but not fasting BGL. This was because 

the prandial state comes after fasting, and there is little value in predicting BGL from a previous 

metabolic state using HRV. As with the fasting HRV measures, this analysis was conducted for 

both the group with and the group without T2D separately (Table 3.5). Also, kilojoule intake 

was not included as a covariate for HbA1c, as recent food intake has no effect on HbA1c levels. 

HbA1c was not significantly associated with any HRV measure when controlling for age and BMI, 

though HbA1c was significantly associated with fasting BGL (r = 0.63; p < 0.01) and postprandial 

BGL (r = 0.60; p < 0.01) in the diabetes group. As HbA1c was not recorded in participants 

without diabetes, there was no correlation analysis to perform in this group. 
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Table 3.5 Partial Pearson’s correlations between heart rate variability measures and blood 
glucose level, accounting for age, body mass index, and kilojoule intake as covariates in the 
group without diabetes (n=29) and the diabetes group (n=27). Data is presented as mean ± 
standard deviation. The missing r and p values for fasting blood glucose level are because these 
analyses do not fit the scope of this PhD. It was only relevant to investigate whether heart rate 
variability measures could predict current of future blood glucose. * = p<0.05, ** = p<0.01, BGL 
= Blood glucose level, BMI = Body mass index, HF = High frequency, HRV = Heart rate 
variability, LF = Low frequency, LF:HF = low to high frequency ratio, p = p-value, r = correlation 
coefficient. 

Variable 
Non-diabetes Type 2 diabetes 

Fasting BGL Postprandial BGL Fasting BGL Postprandial BGL 

Fasting HRV     

LF power     

r 0.10 -0.13 -0.63 -0.46 

p 0.64 0.55 <0.01** <0.05* 

HF power     

r 0.04 -0.31 -0.57 -0.33 

p 0.84 0.15 <0.01** 0.17 

Total power     

r -0.09 -0.43 -0.66 -0.51 

p 0.69 0.04* <0.01** 0.03* 

LF:HF     

r -0.03 0.16 0.35 0.08 

p 0.89 0.47 0.14 0.75 

Prandial HRV     

LF power     

r - -0.33 - -0.45 

p - 0.13 - 0.05 

HF power     

r - -0.39 - -0.43 

p - 0.07 - 0.07 

Total power     

r - -0.61 - -0.48 

p - <0.01** - 0.04* 

LF:HF     

r - 0.47 - 0.24 

p - 0.02* - 0.31 

 

From Table 3.5 it can be inferred that fasting BGL was not significantly associated with any of 

the fasting HRV measures in the group without diabetes. However, postprandial BGL was 

correlated with fasting total power (r = -0.43; p = 0.04), prandial total power (r = -0.61; p < 
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3.2.4 Multiple Linear Regression 

Given that there were three HRV measures that were significantly correlated with postprandial 

BGL in the sample without diabetes, a multiple linear regression was performed (Table 3.6). 

Fasting total power, prandial total power, and prandial LF:HF were entered into the model. All 

predictors were retained by the model, but none were statistically significant. 

Table 3.6 Regression analysis for postprandial blood glucose and the significantly correlated 
heart rate variability measures in the group without diabetes (n=29). ‘B’ and ‘Standard Error’ 
are unstandardized coefficients as the variables remain on their respective scales, for example 
total power scale is represented in units of milliseconds squared and blood glucose level is 
represented in units of millimoles per liter. ‘Beta’ are standardized coefficients as the variables 
have been adjusted to fit on the same scale. BGL = Blood glucose level, LF:HF = low to high 
frequency ratio. 

Regression summary for dependent variable: postprandial BGL 

R = 0.66; R2 = 0.44; Adjusted R2 = 0.36; F(3,22) = 5.67 

p = 0.005, Standard Error of the Estimate = 0.90 

Variable B 
Standard 

Error 
Beta t 

p 

(Constant) 14.36 3.11  4.61 0.00 

Fasting total power -0.39 0.36 -0.22 -1.10 0.28 

Prandial total power -0.70 0.46 -0.38 -1.53 0.14 

Prandial LF:HF 0.07 0.08 0.19 0.90 0.38 

 

A second regression was conducted in the diabetes sample for fasting BGL and the three 

significantly correlated HRV measures. Fasting LF, fasting HF, and fasting total power were 

entered into the model. All predictors were retained by the model, but none were statistically 

significant (Table 3.7). 
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Table 3.7 Regression analysis for fasting blood glucose and the significantly correlated heart 
rate variability measures in the diabetes group (n=27). ‘B’ and ‘Standard Error’ are 
unstandardized coefficients as the variables remain on their respective scales, for example total 
power scale is represented in units of milliseconds squared and blood glucose level is 
represented in units of millimoles per liter. ‘Beta’ are standardized coefficients as the variables 
have been adjusted to fit on the same scale. BGL = Blood glucose level, HF = High Frequency, LF 
= Low frequency. 

Regression summary for dependent variable: fasting BGL 

R = 0.74; R2 = 0.55; Adjusted R2 = 0.49; F(3,22) = 9.09 

p < 0.001, Standard Error of the Estimate = 1.61 

Variable B 
Standard 

Error 
Beta t 

p 

(Constant) 17.41 1.92  9.09 0.00 

Fasting LF -0.82 0.71 -0.42 -1.16 0.26 

Fasting HF 0.21 0.38 0.13 0.54 0.59 

Fasting total power -0.88 0.69 -0.44 -1.27 0.22 

 

For postprandial BGL in the diabetes sample, there were significant associations with three of 

the eight HRV measures that were investigated. Therefore, a linear regression was performed 

using fasting LF power, fasting total power, and prandial total power as the predictor inputs, 

and postprandial BGL was entered as the predicted outcome Table 3.8. The three predictor 

variables were retained by the model, but none were statistically significant within the model. 

Table 3.8 Regression analysis for postprandial blood glucose and the significantly correlated 
heart rate variability measures in the diabetes group (n=27).‘B’ and ‘Standard Error’ are 
unstandardized coefficients as the variables remain on their respective scales, for example total 
power scale is represented in units of milliseconds squared and blood glucose level is 
represented in units of millimoles per liter. ‘Beta’ are standardized coefficients as the variables 
have been adjusted to fit on the same scale. BGL = Blood glucose level, LF = Low frequency. 

Regression summary for dependent variable: postprandial BGL 

R = 0.52; R2 = 0.27; Adjusted R2 = 0.16; F(3,21) = 2.550 

p = 0.083, Standard Error of the Estimate = 3.22 

Variable B 
Standard 

Error 
Beta t 

p 

(Constant) 21.61 3.91  5.53 0.00 

Fasting LF -0.62 1.40 -0.19 -0.44 0.66 

Fasting total power -0.54 1.65 -0.17 -0.39 0.75 

Prandial total power -0.62 0.89 -0.20 -0.69 0.50 
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3.2.5 Summary of Results 

In this study, n= 27 people with T2D and n=29 people without diabetes were recruited and 

assessed. Individuals in the T2D sample were approximately 18 years older on average 

(p<0.001) and had higher BMI (p<0.001) compared to individuals in the sample without 

diabetes. People with T2D also tended to score higher on the LAQ Part 1 (p<0.001), which is 

associated with lifestyle risk factors such as poor diet and low physical activity. There were 

many significant differences between the two groups in terms of blood pressure, BGL, and 

measures of HRV. Comparisons were also made between the sexes in each sample, and the 

statistical analysis revealed there were no meaningful differences between men and women in 

terms of demographics or physiology, though women without diabetes did consume an average 

of 1200 kilojoules less than their male counterparts in this study. 

Multiple correlation analyses were performed, using age and BMI as covariates as well as 

kilojoule intake where appropriate. Scatter plots and correlation coefficients determined that 

there was a general inverse correlation between BGL and HRV measures, for both samples. 

Where two or more measures of HRV were significantly correlated with BGL, a multiple linear 

regression was performed. From the multiple linear regression analysis in Table 3.6, it was 

determined that HRV measures, including fasting total power, prandial total power, and 

prandial LF:HF, accounted for 44% of the variance in postprandial BGL observed in the sample 

without diabetes (R2=0.44). In Table 3.7, the regression analysis revealed that HRV measures 

obtained from a fasting state alone, including LF power, HF power, and total power, accounted 

for 55% of the variation in the dependent variable: fasting BGL in T2D (R2=0.55). The third 

multiple linear regression analysis revealed that fasting LF and total power and prandial total 

power accounted for 27% of the variance in postprandial BGL in the diabetes group (Table 3.8). 

This concludes the statistical analysis and presentation of results. The following chapter will 

interpret these results and discuss them in the context of the literature. 
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3.3 Discussion 

The UTS T2D Study aimed to add to the growing body of literature which has suggested HRV 

measures may be valuable in glucose prediction. The results of this research may invite further 

interest in the applications of HRV in diabetes management and may justify further research 

into this topic. In this section, the results of the present study will be discussed in the context of 

the current literature, and the core strengths and weaknesses of the study will be described, 

with suggestions for future research. In summary, there was an inverse correlation between 

BGL and HRV measures in general, for both the non-diabetes sample and the T2D sample. The 

multiple linear regressions indicated that HRV measures, including fasting total power, prandial 

total power, and prandial LF:HF, accounted for 44% of the variance in postprandial BGL 

observed in the sample without diabetes. Further, HRV measures obtained from a fasting state 

alone, including LF power, HF power, and total power, accounted for 55% of the variation in the 

dependent variable: fasting BGL in T2D. Finally, fasting LF and total power and prandial total 

power accounted for 27% of the variance in postprandial BGL in the diabetes group. 

 

3.3.1 Sample Comparison 

A roughly equal number of people without diabetes (n=29) and people with T2D (n=27) were 

recruited for this study. Due to the fact the people with T2D tend to be older and have a higher 

BMI compared to people who live without any chronic illness, it was expected that there would 

be meaningful differences between the samples in terms of demographics and physiology. 

Individuals with T2D were 18 years older on average and had higher BMI compared to their 

non-diabetes counterparts. A higher BMI in the T2D group was anticipated, as obesity is a major 

risk factor of T2D and is highly comorbid.43 This was reinforced by the scores of the lifestyle 

questionnaire. The T2D group scored higher on the LAQ Part 1, indicating their lifestyles were 

associated with more risk factors, including modifiable risk factors such as poor diet and low 

physical activity, as well as non-modifiable risk factors such as family history of chronic illness. 

The higher age in the T2D group was also anticipated. However, there was a discrepancy 

between the mean age of the T2D group in this study compared to samples published in the 

literature. Though the median age of T2D onset is decreasing, with childhood obesity becoming 

more prevalent worldwide, T2D at present predominately affects older individuals, and the risk 

of developing T2D increases with age. A large-scale epidemiological study of Australians with 

T2D (n=743,709) conducted by Huo and colleagues (2018) indicated that the mean age was 65 

years old.461 Nanayakkara and colleagues (2018) reported a similar mean of 63 years of age in 

their sample of n=3,419 Australians with T2D,462 as did Knowles and colleagues (2020) who 
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recruited n=59 Australian participants with T2D with an average age of 61 years old.463 In this 

study, the mean age of T2D participants was 51 ± 10 years of age, which is 14 years younger 

than the large cohort of Huo and colleagues (2018). Evidently, the characteristics of the 

participants recruited in the UTS T2D Study do not accurately represent those of the wider 

Australian T2D population, as they were much younger on average. However, a lower HbA1c and 

younger age of the T2D group is a desirable trait when investigating diagnostic capabilities of 

HRV, as the influence of autonomic neuropathy on BGL and HRV measures is lower in these 

groups. 

In terms of physiology, there were major differences between the T2D group and the group 

without diabetes that were related to HRV measures, blood pressure, and BGL. LF power, HF 

power, and total power were all significantly lower on average in the T2D sample, and LF:HF – 

which is calculated differently to the other three measures, as it is a ratio of LF to HF power – 

was significantly higher in the T2D sample. This result was expected, as there is substantial 

literature showing that autonomic activity, as measured by HRV, declines with age and with 

diabetes duration (see Section 1.10.1). BGL was also significantly higher in the T2D group, 

though this was also expected as this is the defining characteristic of this clinical sample, and 

the higher blood pressure was also anticipated as blood pressure increases with age and 

hypertension is highly comorbid with T2D.66 These physiological differences between the 

samples are consistent with findings of previous literature, and analysis of these differences was 

conducted only to provide evidence that the diabetes participants and participants without 

diabetes recruited in this study were representative of their respective populations. In addition 

to this, the values for HRV measures, blood pressure, and BGL were found to be within the 

expected ranges for the participants without diabetes,432, 464 and this was also true for the T2D 

participants.375, 465 However, HbA1c was assessed in T2D participants as an added measure of 

their glycaemic status. The mean HbA1c for the sample was 6.9 ± 1.4%, and 16 out of the total 27 

participants (59%) presented with an HbA1c level below 7.0%. Based on large-scale 

epidemiological data, only 50% of Australians with T2D maintain their HbA1c levels below the 

recommended level of 7.0%.104 Therefore, there is a discrepancy of about 9% between this 

sample and the wider Australian diabetes population in terms of glycaemic management. This 

may be related to this sample being relatively young compared to the wider Australian T2D 

population, and glycaemic management tends to be better in younger people.466 
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3.3.1.1 Sex Comparison 

Statistical analysis showed no significant difference between men and women for any 

demographic variable or for any of the physiological variables of interest, including HRV 

measures and BGL. A meta-analysis of 172 studies (n=63,612, 50% male) has  demonstrated 

that LF power, total power, and LF:HF are lower, and HF power is greater in women compared 

to men.467 This suggests that autonomic control of the female heart is characterized by higher 

vagal, or parasympathetic activity, and the male heart is characterized by relatively higher 

sympathetic dominance. These sex differences are also generally greater with increasing age.467 

This may explain why sex differences were unclear in the present study, as the sample did not 

include a wide range of age groups, and was mostly people 25-40 years old. The small sample 

size may also have been unable to detect the effect of sex on HRV measures in  the statistical 

analysis, due to effect size. 

In terms of sex differences in glycaemia, Kautzky-Willer and colleagues (2012) contend that 

fasting and postprandial BGL tend to be lower in women (n=611) with optimal glycaemia 

compared to men (n=361).468 In their study, the female sample was younger, and this may have 

contributed to their statistical findings. However, a broader view of the literature suggests there 

is a consensus that women without diabetes have lower fasting BGL, even though evidence for 

sex differences in postprandial BGL may be less conclusive. For example, research conducted by 

Faerch and colleagues (2010) in a sample of n=6,006 people without chronic illness showed 

that women have lower fasting BGL, but higher postprandial BGL two-hours after a meal.469 

According to the authors, these sex differences in postprandial BGL were explained by height 

and fasting BGL, but differences in fasting BGL were not explained by height. In the UTS T2D 

Study, glucose levels were comparable between men and women. Mean fasting BGL in women 

was 4.7 ± 0.4 compared to 5.1 ± 0.5 in men. Though this was difference was not significant, it 

was close to significance (p=0.05) and increasing the sample size may have provided a 

significant p-value, aligning the results with that of previous literature. 

There were also no physiological differences when comparing men and women in each sample, 

for example no significant differences between T2D males and T2D females. The only exception 

was women without diabetes consumed an average of 1200 kilojoules less than their male 

counterparts, and research from various countries suggests this is normal.470-472 Where relevant, 

kilojoule intake was included as a covariate in the correlation analysis, and this accounted for 

the differences in meal composition between individuals, including the difference in average 

kilojoule intake between men and women. 
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3.3.2 Correlation Analysis and Confounders 

Age and BMI were significantly correlated with measures of HRV and BGL. This was only true 

for the sample without diabetes – age and BMI were not related to any variables of interest in 

the T2D group. Additionally, kilojoule intake was not correlated with any variable of interest. 

However, it was decided that kilojoule intake would be included as a covariate for statistical 

analyses of both groups, to control for differences in meal composition between participants. 

Partial Pearson’s correlation analyses were performed, using age,  BMI, and kilojoule intake as 

covariates. In instances where at least two different HRV measures were significantly correlated 

with a single BGL measure, a multiple linear regression was conducted. This included 

postprandial BGL in the sample without diabetes, fasting BGL in the diabetes group, and 

postprandial BGL in the diabetes group. 

 

3.3.3 Heart Rate Variability Associations with Fasting Blood Glucose Level 

In the UTS Pilot Study, the aim was to investigate acute fluctuations in HRV measures and BGL, 

which involved statistical comparison of these variables between three time points. In the UTS 

T2D Study, the aim was to investigate associations between HRV measures and BGL to 

demonstrate the predictive applications of HRV measures. As such, differences between fasting 

and postprandial HRV measures were not investigated, as this was investigated in the Pilot 

Study. The main statistical analysis of the present study involved correlation analyses of the 

four HRV measures and fasting and postprandial BGL. In cases where at least two HRV 

measures were significantly correlated with a single BGL variable, whether it was fasting or 

postprandial, a multiple regression analysis was conducted to further explore the predictive 

value of the HRV measures. As discussed in Section 1.9.1.1, assessments of autonomic activity 

may provide meaningful predictions of BGL fluctuations, or even indicate if current BGL is high 

or low. The intention of this section is to discuss how the findings of this study add to these 

emerging applications of HRV and to compare these results with previous literature. Firstly, this 

section will explore the observed associations between HRV measures and fasting BGL in people 

without diabetes. 

 

3.3.3.1 Non-Diabetes Sample 

The results of the UTS T2D Study indicate no significant correlation between HRV and fasting 

BGL in people without diabetes, and this is consistent with similar small-scale studies. However, 

this does not align with the findings of larger studies in this area. A previous study conducted by 
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Rothberg and colleagues (2016) observed no significant associations between frequency-

domain HRV measures and fasting BGL in people without diabetes.383 The follow-up to this 

study, conducted by Jarman and colleagues (2021) in an Honours year, also found no significant 

relationship between HRV and fasting BGL in people without diabetes.389 These studies were 

similar in design, and recruited relatively small numbers of participants. In larger studies, such 

as one conducted by Singh and colleagues (2000) on n=1,179 adults (mean age 47.4 years), 

fasting BGL was inversely correlated with LF power, HF power, and LF:HF.392 However, in this 

study, the data from the n=1,179 participants was pooled with n=56 adults with impaired 

fasting glucose and n=84 people with diabetes for the statistical analysis. Including participants 

with suboptimal ranges of BGL may have strengthened the correlation analysis. Two other 

large-scale studies report similar findings but were also different in their approach to the 

analysis. For example, Jarczok and colleagues (2013) concluded that both LF power and HF 

power were inversely related to fasting BGL,395 however their sample of n=2,441 adults was 

predominately male (75%), and there are significant differences in autonomic activity between 

men and women, as discussed. The dominance of male subjects may have skewed the results. 

Additionally, Stein and colleagues (2007) found that fasting BGL was negatively related to LF 

power and HF power in adults (n=1089),394 however their sample was mostly elderly men 

(mean age 72 years). Though there were limitations to the designs of these studies, as well as 

differences in how they approached methodology and analysis, it is likely that HRV measures 

are significantly associated with fasting BGL in people without chronic illness. As stated, the 

results of the UTS T2D Study did not align with the findings of larger studies in this area. This 

may be due to the relatively younger sample that was recruited in the UTS T2D Study as well as 

the decision to not pool the participants without diabetes with the diabetes participants in the 

statistical analysis. 

 

3.3.3.2 Diabetes Sample 

In the UTS T2D Study, fasting BGL was negatively associated with fasting LF power (r = -0.63,  p 

< 0.01), HF power (r = -0.57,  p < 0.01), and total power (r = -0.66,  p < 0.01). Though Rothberg 

and colleagues did not report any significant correlations between HRV and fasting BGL in 

people without chronic illness, they identified numerous correlations in people with diabetes.383 

In their pooled analysis of T1D and T2D participants (n=32), fasting BGL was correlated with HF 

power (r = -0.46,  p = 0.01), LF:HF (r = 0.50,  p < 0.01), and total power (r = -0.40,  p = 0.02). 

Fasting BGL was not significantly associated with LF power (r = -0.29,  p = 0.12). In an analysis 

of just their n=11 participants with T2D, fasting BGL was only significantly correlated with HF 

power (r = -0.64,  p = 0.04) and LF:HF (r = 0.78,  p = 0.01).383 Early research on vagal tone in 
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diabetes, conducted by Liao and colleagues (1995), demonstrated that HF power was 

significantly lower in people with higher fasting BGL, compared to those with lower fasting 

BGL.473 There is substantial research in the area of fasting BGL in people with T2D, as it is 

consistently implemented as a baseline for comparing BGL. This inverse relationship between 

fasting BGL and HRV measures has been confirmed by numerous studies,326, 394 and a meta-

analysis published by Benichou and colleagues (2018) indicates this correlation is consistent 

across many clinical studies.474 There are two notable discrepancies between the results of 

Rothberg and colleagues and the UTS T2D Study. Firstly, Rothberg and colleagues (2016) did 

not observe any significant association between LF power and fasting BGL in their diabetes 

sample; and secondly, the UTS T2D Study did not observe any relationship of significance 

between LF:HF and fasting BGL. These are both likely due to low sample power, as the small 

sample size of the UTS T2D Study and the study conducted by Rothberg and colleagues (2016) 

may have restricted certain statistical analyses from indicating significance. It is clear from the 

literature that LF power and LF:HF should be significantly related to fasting BGL. 

As more than one predictor variables were significantly associated with fasting BGL in the 

diabetes group, a multiple regression analysis was performed. Fasting LF power, HF power, and 

total power accounted for 55% of the variation in fasting BGL in the T2D group (R2 = 0.55). 

Rothberg and colleagues (2016) demonstrated that fasting HRV measures, including LF:HF and 

total power, predicted 31% of the variance in fasting BGL in diabetes subjects (R2 = 0.31).383 

Discrepancies in this R-squared value may be related to sample differences, as the Rothberg 

study pooled participants with T1D (n=21) and T2D (n=11) into a single diabetes group for the 

regression analysis, and there are meaningful neurophysiological differences between T1D and 

T2D. 

 

3.3.4 Heart Rate Variability Associations with Postprandial Blood Glucose Level 

Currently, there is less interest in the applications of HRV measures in predicting postprandial 

BGL compared to fasting BGL. This may be related to methodology constraints, as assessing 

participants in a postprandial state requires more resources and time organisation compared to 

assessing them in a fasting state. However, there is evidence that postprandial BGL may be 

equal in importance to fasting BGL in monitoring complications of diabetes, as well as general 

monitoring of diabetes progression and health. As discussed in Section 1.11, the ability to 

predict fasting or postprandial BGL using non-invasive means represents an important goal in 

diabetes research. Therefore, the UTS T2D Study also investigated associations between HRV 

measures and postprandial BGL, despite the constraints this added to the methodology. 
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Additionally, the UTS T2D Study was the first study to date to investigate associations between 

prandial HRV measures and postprandial BGL. Regarding prandial HRV and its predictive 

qualities, the findings presented in this thesis are novel, as most studies in this area have 

investigated associations between fasting HRV and BGL. The notion of predicting postprandial 

BGL using autonomic markers recorded whilst are eating is novel. This is important to consider 

for the following sections where these findings are discussed. 

 

 

3.3.4.1 Non-Diabetes Sample 

In the UTS T2D Study, there were fewer predictor variables that were significantly correlated 

with postprandial BGL, and so these three HRV measures accounted for less variance in 

postprandial BGL. As discussed, the notion that postprandial BGL may be predicted by HRV 

measures assessed whilst eating, which reflect preprandial autonomic activity, is novel. This 

study is the first the date to acknowledge these findings and builds on previous literature which 

indicated the value of HRV measures. Based on previous work conducted in this research unit 

and published by Jarman and colleagues (2021), postprandial BGL is negatively associated with 

LF power (r = -0.62,  p < 0.01) and total power (r = 0.57,  p < 0.01) in subjects without diabetes 

(n=25).389 In this paper, HRV measures explained 52% of the variance in postprandial BGL. 

However, these five predictor HRV measures were recorded in different metabolic states, not 

just fasting. For example, LF power and total power from the fasting assessment, combined with 

LF power, HF power, and total from the postprandial assessment, accounted for 52% of the 

variance in postprandial BGL. This may explain why the UTS T2D Study (n=29), which assessed 

a similar number of participants, demonstrated that fasting total power, prandial total power, 

and prandial LF:HF accounted for 44% of the variance in postprandial BGL in the sample 

without diabetes, compared to 52% in the previous study. 

 

3.3.4.2 Diabetes Sample 

In the UTS T2D Study, fasting HRV measures were significantly and negatively associated with 

postprandial BGL, including LF power (r = -0.46, p < 0.05) and total power (r = -0.51, p = 0.03). 

Additionally, total power from the prandial assessment was also negatively correlated with 

postprandial BGL (r = -0.48, p = 0.04). Combined, these three HRV measures accounted for 27% 

of the variance in postprandial BGL in the diabetes group. Contrary to the findings of Rothberg 

and colleagues (2016), there was no significant correlation with LF:HF. This may be because 
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LF:HF was only correlated with BGL in the pooled diabetes group in the Rothberg study, and by 

comparison, there were no T1D participants in the diabetes group for the UTS T2D Study. 

Additionally, Rothberg and colleagues recorded HRV measures in a fasting state, but not a 

prandial state. 

There is little research on the associations of postprandial BGL and HRV measures, as most 

studies focus on fasting BGL or focus on the changes in HRV measures after a meal. Myakina, 

Klimontov & Safarov (2015) monitored HRV and glucose levels in T2D subjects (n=70) for 24 

hours by continuous CGM and ECG. Postprandial LF:HF was inversely related with daytime 

mean BGL (r = -0.29, p < 0.05) and peak BGL (r = -0.33, p < 0.05),475 though these glucose 

measures are not the same as the measures used in the UTS T2D Study. In their 2016 paper, 

Rothberg and colleagues demonstrated that postprandial BGL was significantly associated with 

LF:HF (r = 0.44,  p =0.01) in their pooled diabetes sample (n=32), and in their sample of just 

n=11 T2D participants, postprandial BGL was associated with HF power (r = -0.64,  p =0.04).383 

The authors concluded that the physiological differences between T1D and T2D were cause for 

the differences in these correlation analyses. To reiterate, where prandial HRV measures were 

demonstrated to be associated with postprandial BGL, these findings are novel. 

 

3.3.5 General Relationship of Blood Glucose Level and Autonomic Activity 

The literature has provided substantial evidence that there is an association between HRV and 

BGL. There are consistent findings in the literature that when these two variables are recorded 

in a large group of people at a single time-point, they are significantly and inversely correlated. 

This is true even when HRV and BGL are assessed in different states of metabolism, and there 

are several factors which contribute to this correlation. Physical inactivity and a sedentary 

lifestyle are key risk factors for T2D and impaired fasting BGL,476, 477 and lack of exercise is 

associated with lower HRV measures and poorer autonomic tone.478 Therefore, in cross-

sectional studies, people with lower HRV measures tend to have higher BGL, and physical 

fitness is a key confounder as it predicts both high BGL and low HRV.479 Another key factor 

involved is that chronically high BGL, a landmark of diabetes, leads to neurodegeneration of the 

nerves of the autonomic nervous system and gradual loss of autonomic tone. As discussed in 

Section 1.5.2.3, autonomic neuropathy is a long-term complication of diabetes. Consequently, in 

groups of people with chronically high BGL, there is a tendency for autonomic neuropathy to be 

more prevalent compared to groups with lower or optimal ranges of BGL, and thus HRV 

measures are lower in people with higher BGL. However, these factors only explain why HRV 

and BGL are related when comparing groups of people with significantly different lifestyles and 
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with significantly different levels of blood glucose. This does not explain what was observed in 

the UTS T2D Study. HRV measures and BGL were still correlated in groups of people without 

diabetes, where differences in physical fitness are smaller and the effects of autonomic 

neuropathy are likely non-existent. These major confounders were accounted for in the UTS 

T2D Study. As such, the next section will explore the physiological and neural foundations of the 

relationship between HRV measures and BGL, as a basis for understanding why HRV and BGL 

are related even in specific groups of people. 

 

3.3.5.1 Autonomic Response to Food Intake 

The role of the autonomic nervous system in the  regulation of  glucose  and  fat  metabolism is  

not well understood,129 however it is recognised that autonomic functions are important for the 

metabolism of food and drink into glucose, and that some autonomic functions may precede 

changes in BGL. The physiological principle behind this involves insulin. Following the 

consumption of a meal, the absorption of nutrients into the blood via the gastrointestinal tract is 

associated with a small increase in plasma insulin, even before there is a rise in blood glucose.390 

This is part of the pre-absorptive, or cephalic phase. Activation of the ANS during both the pre-

absorptive and absorptive phases of insulin is important in determining postprandial insulin 

activity.480 As such, changes in HRV may precede the release of insulin.480 This is relevant 

because insulin enacts a stimulatory effect on the sympathetic nervous system,481, 482 which can 

be measured by LF power. This may explain why various studies, including the UTS T2D Study, 

show that LF power is inversely proportional to BGL in subjects without diabetes with optimal 

autonomic function.392, 394, 395 

 

3.3.6 Strengths and Limitations 

The results of this study indicate that HRV measures may estimate BGL in people without 

diabetes or people with diabetes. However, this conclusion does not have broad applications. 

For example, due to the study design, it cannot be concluded based on this research whether an 

individual could predict their BGL at any point in the day based on their HRV data. It may only 

be possible to estimate postprandial BGL, and even then, this may require HRV data to be 

recorded at a specific time point. Many researchers hope to demonstrate that autonomic 

activity, as measured by HRV, may predict BGL throughout the day, allowing for a continuous 

and non-invasive measure of BGL in real-time. However, this has yet to be demonstrated as a 

superior alternative to current glucose monitoring, and HRV measures continue to lack clinical 

relevance in this specific area. Regardless, this thesis presents novel findings. These findings 
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alone do not justify the use of HRV in clinical settings, such as estimating BGL in people with 

diabetes. However, these findings add to the growing evidence that HRV may have clinical 

applications in diabetes, as well as present novel findings that had yet to be provided in the 

literature. The scope of this PhD thesis was only to demonstrate that BGL may be estimated in 

certain important metabolic states, such as fasting or postprandial, using simple non-invasive 

technology and gold standard HRV processing techniques. The aims and hypotheses were 

sufficiently addressed through the methodology of this study, and it is important that the scope 

of this findings and the limitations of the study be considered. 

In Section 1.9, the potential for machine learning to improve current glucose monitoring devices 

was discussed. In this study, regression analysis was used, which is a basic form of machine 

learning. The use of linear regression in this PhD research represents a lack of risk prediction. In 

clinical studies, linear regression often shows no significant results, and future research in this 

area should consider more rigorous statistical methods instead. However, these is some 

contention on this in the literature. Some authors contend that, in terms of predicting BGL, 

classic autoregression techniques perform worse than machine learning models, including 

machine-learning-based regression models and deep learning models.331, 483 However, in their 

review article, Xie and Wang (2020) observed no significant advantage between the two types 

of method in predicting BGL.484 There may be a bias in how authors promote the value of their 

predictive models. Rodríguez-Rodríguez and colleagues (2019) suggest that accurate glucose 

prediction can only be achieved by monitoring glucose levels over a short period of time and 

using a low sampling frequency.485 However, they believe that this makes wearable sensors 

ideal for glucose prediction as they have limited requirements for hardware. The UTS T2D Study 

was also more interested in how machine learning can be integrated with SMBG, a topic which 

has comparatively little attention in the literature, potentially because the nature of SMBG 

makes it difficult to collect the large number of data points required to train a predictive 

model.486 

A limitation of the UTS T2D Study was that certain confounders were not controlled for due to 

the scope of the study. As with the first experiment, the exclusion criteria for daily alcoholic 

beverage consumption of no more than 10 standard drinks per day was substantially higher 

than the regular daily intake of 2 standard drinks per day. This is a limitation since excessive 

alcohol consumption has been associated with autonomic neuropathy. Future studies should 

consider excluding subjects with a duration of diabetes (time since date of diagnosis) over 5 

years, since longer duration is correlated with autonomic neuropathy and a more delayed 

prandial response. Since participants were not assessed specifically for autonomic neuropathy, 

an exclusion criteria could have been added for the T2D group excluding subjects with any 
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known peripheral neuropathy or previous foot ulcer as signs of existing neuropathy. Autonomic 

neuropathy causes significant changes in HRV, even when it is not related to diabetes 

progression. In this study, participants did not undergo a physical examination or screening 

prior to the study, which may have been useful in identifying autonomic neuropathy that 

participants were unaware of. Instead, participants were asked to provide details about any 

current comorbid conditions and any current medications, including dosage. Certain 

medications were prohibited and were grounds for exclusion from the study if participants 

were currently taking them (see Section 3.1.2), however most medications were allowed in the 

study to allow for real-world data to be recorded. Some studies suggests that subjects with T2D 

should abstain from medications that affect BGL or cardiovascular function prior to study 

participation, including antihypertensives, as they are confounders.146, 419 Since time to peak 

prandial glucose is delayed in people with suboptimal glycaemia, this study design could have 

also benefited from excluding T2D subjects with HbA1c over 7.5%. According to a review paper, 

there are several studies which indicate BP is related to HRV measures, and on a minute-to-

minute basis this relationship is due to the autonomic nervous system exercising homeostatic 

control over the cardiorespiratory cycle.487 For example, increased metabolic demand due to 

walking up a staircase may be associated with both a change in BP and HRV measures. Future 

studies should attempt to control for BP, such as in the statistical analysis or by restricting the 

movement of subjects during the study assessments, so that any correlations identified between 

HRV measures and BGL may be less confounded by BP, which may influence the changes in 

HRV. 

It was not within the scope of this study to control for every major confounder variable, as it 

was not the aim to demonstrate that changes in BGL are strictly related to autonomic activity. 

The aim was to investigate whether the relationship between HRV measures and BGL was 

sufficient for the development of a regression model, which may in future be used to predict 

BGL through non-invasive means. An algorithm or model that predicts BGL using HRV measures 

may need to consider the effect of medications on physiological data rather than ignore it or 

attempt to remove that effect from a sample entirely. As with most clinical samples, there were 

various comorbid conditions and medications involved which would have affected levels of HRV 

and BGL observed in the present study. However, this is reflective of a real-world scenario. 

People living with diagnosed diabetes are likely to be medicated and have multiple comorbid 

conditions. As such, only basic variables such as age, BMI, kilojoule intake, and sex were 

controlled for in this study as these can be easily entered into a device for BGL prediction, and a 

real-world application of HRV would ideally incorporate these variables for added accuracy. 
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Participants were free to eat whatever they wanted to, as it was the intention of the study 

design to allow participants to resume their routine as close as possible, however there is only 

so much that statistics can do to control for these differences in the analysis. In this study, 

kilojoule intake was included as a covariate in the statistical analysis, and participants were 

advised to avoid certain foods such as tea and cinnamon which have known anti-glycaemic 

properties. However, this is an imperfect measure of controlling for significant differences in 

participant’s meals, and a robust study design should ultimately attempt to standardize these 

meals, if meals are part of the study design. Though it was the intention of this study to observe 

subjects whilst they consumed meals of their choice, which would be considered ‘regular’ by 

their own standards, the differences in meal portions between subjects was not controlled for. 

Only the kilojoule intake of the meals was accounted for, and differences in the distention of 

subject’s stomachs, due to consuming meals that may have been relatively larger compared to 

the group average, may have confounded autonomic responses since greater stomach distention 

would lead to greater sympathetic nerve activity.488 Future studies should aim to standardise 

meal portions. Participants were also free to leave the UTS laboratory between recordings, 

which would reflect a regular routine as even office workers would expect some levels of 

movement. However, even low levels of activity, such as walking for a few minutes, increase 

metabolic demand and may lead to reduced glycaemia as well as changes in HRV. Future 

research should consider restricting the activity of participants whilst they are being monitored. 

One of the strengths of the methodology was the implementation of two BGL assessments for 

the determination of postprandial BGL. CGM could not be used in this study due to resourcing 

issues, as CGM is not standard of care for most people with T2D, and the research unit lacked 

the proper ethics approval and qualified staff to administer a CGM system to either healthy 

subjects or subjects with T2D. Without CGM, it is difficult to capture the peak level of blood 

glucose after a meal, and even with CGM, observed recordings may lag behind true glucose 

levels. In this study, BGL was assessed by invasive blood glucose assessment in participants 

without diabetes 40 minutes and 50 minutes after eating, and the higher of these two values 

was used to provide an accurate assessment of postprandial BGL.  The timing of the BGL 

assessments was the same with T2D participants, as peak BGL was expected to be achieved at 

roughly the same time in both groups. This was important for consistency, as it can be 

concluded that HRV measures may estimate BGL at roughly the same time in individuals 

regardless of whether they have diabetes or not. However, according to the literature, the 

glycaemic response to food may be complicated by the presence of metabolic diseases. In the 

case of T2D, this effect is difficult to quantify. Kanaley and colleagues (n=42) contend that BGL 

peaks later in people with T2D compared to people without diabetes, usually at least 60 minutes 
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after food ingestion.419 However, research conducted by Esposito and colleagues (n=644) 

showed that BGL peaks 40 minutes after consuming a mixed meal in cases of T2D, which is the 

same time observed in groups without diabetes.446 Given that Esposito and colleagues sampled 

a much larger group and from a wider demographic, and that the effect of T2D on the 

postprandial response is difficult to quantify, it may be accepted that BGL peaks after a meal at 

roughly the same time in people with and people with T2D. Even in cases where the presence of 

diabetes may have affected metabolic function, it is possible that the difference in time required 

for BGL to peak was accounted for by the use of two postprandial BGL assessments, one after 

the other. Future studies may consider the use of CGM to capture true postprandial BGL, as the 

time to peak postprandial BGL may be delayed in people with T2D and other comorbid 

conditions. From this study, it can be concluded that HRV measures may predict postprandial 

BGL in T2D or people without T2D 40-50 minutes after eating. 
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Chapter 4. RNSH T1D Study 

 

4.1 Methods 

T1D and T2D are more different than they are similar (Section 1.4), and glucose monitoring 

technology should be tailored to the needs of each group separately. As such, the RNSH T1D 

Study investigated how HRV measures may be used in T1D as a non-invasive alternative to 

current glucose monitoring. Because people with T1D are dependent on exogenous insulin to 

survive, daily glucose levels fluctuate greatly, and this increases the incidence of glucose 

excursions – events where BGL deviates greatly from baseline levels. Glucose excursions in the 

high range may cause mild symptoms such as thirst and fatigue in the short-term, and 

complications arise in the long-term if these excursions go unmanaged. Glucose excursions in 

the low range are usually referred to as hypoglycaemia, and these may quickly become life-

threatening. In particular, the detection and early intervention of hypoglycaemia is a higher 

priority in cases of T1D because it is more common compared to T2D. As such, the specific aim 

of this study was to observe changes in HRV during and preceding glycaemic excursions, to 

justify the use of HRV measures as markers of suboptimal BGL. 

 

4.1.1 Subjects 

According to the Global HAT Study (n=27,585), hypoglycaemic events occur more often in 

people with T1D (83.0%) compared to T2D (46.5%). Rates of any hypoglycaemic event and any 

severe event in T1D were 73.3 and 4.9 events per patient-year, respectively. For people with 

T2D, occurrence of hypoglycaemia was 19.3 per year for any event and 2.5 per year for severe 

events.86 There was a concern that this rate of hypoglycaemia in T1D would be difficult to 

capture without long periods of recording or observation. To improve the number of observed 

glycaemic excursions in this study, recruitment prioritised those who were at higher risk of 

experiencing glycaemic excursions. Many of these individuals had undergone recent changes in 

their medication or were experiencing problems with their CGM systems, resulting in more 

frequent glucose fluctuations. It was important that individuals experienced glycaemic 

excursions whilst they were being monitoring so that the relevant data could be collected. 

Recruitment of people with T1D started at RNSH in collaboration with the Department of 

Endocrinology, through endocrinologists and study coordinators working at the hospital. 

Approval was gained from both UTS HREC (2014000110) as well as the Northern Sydney Local 
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Health District HREC (LNR/14/HAWKE/174) (Site Specific Assessment reference: 

LNRSSA/16/HAWKE/8). The researcher attended the hospital Department of Endocrinology to 

recruit people with T1D. As with the UTS T2D Study, it was difficult to exclude diabetes 

participants if they were also living with any other lifestyle-related diseases or taking any 

medications (Section 3.1.2). In particular, people with T1D were not excluded for cardiac 

autonomic neuropathy, as they were in the previous study, as it does not confound changes in 

HRV during glycaemic excursions, and these were the main states of interests in this study.489 

However, some selection criteria were applied based on recommendations from previous 

literature. For one, subjects were free of clinically-apparent coronary heart disease or 

congestive heart failure.490 They were also required to be aged between 18 and 69 years old, 

and were excluded if they were currently pregnant, smoked more than 10 cigarettes per day, 

consumed more than 10 standard alcoholic beverages per day, or if their BP was too high during 

the pre or post-study BP recordings (Section 2.1.3). Because glycaemic excursions occur very 

rarely in people without chronic illness, it was anticipated that little to no meaningful data 

would be captured by including them in the study. Thus, there was no control group recruited 

for the RNSH T1D Study. Instead, there was a focus on comparing changes in HRV during 

glycaemic excursions with individual’s baseline HRV measures. An investigation of the 

relationship between HRV and BGL in individuals without chronic illness was provided in the 

UTS T2D Study, as appropriate. 

 

4.1.2 Pre-study Requirements 

Provided they suited the eligibility criteria, participants were invited to RNSH to discuss the 

study with the researcher and their endocrinologist. Subjects were not expected to fast or 

abstain from any medications prior to the study due to concerns this would interfere with their 

glycaemic health, and this was a greater concern in this study compared to the UTS T2D Study. 

Participants were asked to continue taking their regular medications and prioritise any medical 

advice given to them by their doctor or diabetes educator. Participants were advised they could 

withdraw from the study at any point without reason and were asked to sign two copies of a 

consent form, one of which they retained. Following this, BP was recorded, and the BP 

requirements were checked based on UTS HREC guidelines (Section 2.1.3).  
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4.1.3 Continuous Glucose Monitoring 

All subjects who participated in this study were required to use some form of CGM, as this is the 

gold-standard for collecting data on glycaemic excursions. The devices used in this study were 

the Medtronic Guardian Connect, which is a CGM system which connects with the insulin pumps 

such as the MiniMed 640G and 670G (Medtronic Australasia Pty Ltd, Macquarie Park, Australia), 

and the Dexcom G4 and G5 (Dexcom, Inc., San Diego, Unites States of America). Subjects using 

the FreeStyle Libre Flash Glucose Monitoring System (Abbott Medical Australia Pty Ltd, 

Macquarie Park, Australia) were also included in this study, as this device is capable of 

continuously recording glucose levels, though the data is provided retrospectively and not in 

real-time, as with the Dexcom and Medtronic systems. All devices were owned by the 

participants themselves and were operating before the start of the study. Participants were 

advised to continue operating their devices for the duration of the study, including calibrating 

the CGM systems with blood glucose assessments where necessary. All subjects knew to 

calibrate their own systems using their personal lancet devices and glucose test strips and were 

instructed to continue as per their standard of care. The CGM systems used by participants were 

made available to the researcher when the participants returned to the hospital so that the 

glucose data could be downloaded. HbA1c levels were estimated by the CGM systems based on 

weekly fluctuations in glycaemia. 

 

4.1.4 Recording of R-R Interval Data by Heart Rate Monitor 

Due to the unpredictable nature of glycaemic excursions and their infrequent timing, short-term 

observations of T1D participants were unlikely to capture sufficient samples, even in high-risk 

cases. Therefore, participants were required to undergo CGM and heart rate recording for a 

minimum of 24 hours to ensure a reasonable chance of recording HRV during glycaemic 

excursions. The device used for R-R recording was the FirstBeat BodyGuard 2, and a detailed 

description of how this was attached to participants can be found in Section 3.1.4. Wearable 

single-lead devices are now commonly-used for continuous HRV monitoring in outpatient 

settings.491 The BodyGuard 2 was attached at the hospital and participants then returned to 

their regular schedules and work routines whilst being mindful that the device was to remain 

attached. Instructions were provided on how to remove and reattach the monitor using fresh 

electrodes provided, so that participants could shower and maintain proper hygiene as usual. 

Participants were advised that they were to wear the device for as long as comfortable up to a 

maximum of 72 hours, as additional fresh electrodes would not be provided after this point. 

Participants only needed to return to the hospital within one week to return the data and device 
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to the researcher. The data was then downloaded and used with Kubios HRV Premium. For 

details on how HRV measures were extrapolated from the raw R-R interval data, see Section 

2.1.5.1 and 2.1.5.2 (UTS T2D Study: Methods). 

 

4.1.5 Meals, Medications, and Physical Activity Diary 

Autonomic activity and glycaemia are affected by a range of day-to-day activities and events. To 

gather important information about participant’s regular routines, which they were encouraged 

to continue,491 each subject was required to provide details regarding any meals they ate, 

medications they took, or any physical activity they undertook. Participants were instructed on 

how to complete the diary and were provided with some examples, such as “1:30pm chicken 

sandwich with cheese and mayonnaise” and “8:00-8:15am walked to the train station”. 

Mealtimes were useful for identify periods when participant’s glucose levels were likely to 

spike, and physical activity times were useful for identifying periods of HRV data to be excluded 

for analysis because of the confounding effect of exercise on HRV. 

 

4.1.6 Selection of Glycaemic Excursions and R-R Interval Data 

Between 24-72 hours of continuous R-R interval data and glucose data were collected from each 

participant in this study. Glucose levels are typically measured every five minutes by CGM 

systems per standardized reporting.492 However, it should be noted that the data downloaded 

by the glucose monitors for this study only provided a glucose reading every 15 minutes, and 

each glucose data point was timestamped. This provided a reference point for determining the 

exact time at which glucose excursions occurred. For example, if a participant’s BGL dropped 

below a certain value, it was possible to determine the exact time during the day at which that 

occurred. Additionally, each R-wave recorded by the heart rate monitors was timestamped. This 

allowed for HRV epochs to be calculated in the 10 minutes before, during, and after the start 

every glycaemic excursion, and thus it was possible to observe changes in HRV during a 

hypoglycaemia or hyperglycaemia event. Noteworthy changes in certain HRV measures may 

serve as an early indicator of glycaemic excursions. 

However, care had to be taken when determining an appropriate threshold for defining these 

excursions. Although BGL < 4.0 mmol/L and BGL > 7.7 are the most widely used definitions of 

hypoglycaemia and hyperglycaemia, respectively, these do not represent thresholds for 

clinically significant glycaemic excursions. In practice, symptoms do not necessarily arise when 

BGL exceeds either of these thresholds,493, 494 even though this does not occur under regular 
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physiological conditions.495 For example, when hypoglycaemia episodes are defined as BGL < 

4.0 mmol/L, less than 40% of those episodes are symptomatic. When hypoglycaemia is defined 

by a more clinically relevant threshold, such as < 3.0 mmol/L, roughly 70% of subjects 

experience autonomic symptoms, and only 30% do not.494 This is relevant to this study because 

in Section 1.11: Basis for Research, it was established that HRV measures may be predictive of 

hypoglycaemic or hyperglycaemia due to the distinct autonomic response which occurs during 

glycaemic excursions. If this response is absent from most of the glycaemic events that are 

recorded, then any observed changes in HRV are unlikely to be related to the glycaemic 

excursion. Therefore, it was important to utilise a more stringent and clinically relevant 

definition of hypoglycaemia when selecting excursions to analyse. 

Based on recommendations from multiple clinical trials, hypoglycaemia was defined as BGL < 

3.0 mmol/L and hyperglycaemia was defined as BGL ≥ 12.0 mmol/L.496-498 In addition to this, for 

a hypoglycaemic event to be included for analysis in this study, it could not be followed by BGL 

returning to 4.5 mmol/L or more within 10 minutes.499 Glycaemic excursions were only selected 

for analysis if the entire event was captured by both the glucose monitor and the heart rate 

monitor. For example, for some participants there was over two weeks of glucose data to be 

downloaded from the glucose monitors, but only 48 hours of R-R interval data from the heart 

rate monitors. Thus, only glucose data that overlapped with the 48 hours of R-R interval data 

was relevant to be analysed. 

 

4.1.7 Measures of Heart Rate Variability 

The measures of HRV used in this study included low frequency (LF) power, high frequency 

(HF) power, the low to high frequency ratio (LF:HF), total power, and normalised low frequency 

(LFnu). LFnu is more strongly correlated with sympathetic nervous system activity compared to 

LF power,500 though ultimately both sympathetic and parasympathetic activity are reflected in 

LF power and LFnu. LFnu is calculated from the formula: 

𝐿𝐹𝑛𝑢 = 100 ×  (
𝐿𝐹

𝐿𝐹 + 𝐻𝐹
) 

Where the derived value is a percentage, or proportion of LF power to HF power. This is 

calculated differently to LF:HF, which is simply LF power divided by HF power. The high 

frequency counterpart to LFnu, known as normalised high frequency power (HFnu), is 

calculated as follows: 

𝐻𝐹𝑛𝑢 = 100 ×  (
𝐻𝐹

𝐿𝐹 + 𝐻𝐹
) 
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As such, the sum of LFnu and HFnu will always be 100%, as they are algebraic inverses. Because 

of this, statistical analysis involving LFnu and HFnu produces identical, but inverse values.501 

For example, correlating BGL against LFnu and then against HFnu will produce the same p-value 

and correlation coefficients, however the sign of the ‘r’ coefficient will be reversed, as these 

variables are inverses. To avoid redundancies, only LFnu and not HFnu will be referred to in the 

statistical analysis. 

Additionally, time-domain measures of HRV were used in this study as long-term recordings 

were available due to continuous, at-home heart rate recording. These included the root mean 

square of successive RR interval differences (RMSSD), and the standard deviation of NN 

intervals (SDNN). RMSSD is closely associated with HF power and reflects parasympathetic 

control of HRV. SDNN measures sympathetic and parasympathetic activity on HRV, and is 

closely related to LF power.502 

 

4.1.8 Statistical Analysis 

For a preliminary analysis, correlations between BGL and various measures of HRV measures 

were investigated in only the first participant of this study. These correlation analyses, 

combined with scatter plots, was performed in SPSS version 22.0 (IBM SPSS Statistics, USA) to 

investigate a possible trend in HRV measures when BGL was in the low range or in the high 

range. Given the large number of data points collected over the 24 hours for each participant, 

there were no concerns about sample power when using Pearson’s correlations to identify 

significant (p<0.05) correlations between glucose level and HRV in a single participant. This 

statistical analysis aimed to continue previous research and the results are provided only for a 

comprehensive analysis of the relationship between HRV and BGL. This preliminary analysis 

was not important for the main aim of this research. 

The main analysis in this study aimed to identify changes in HRV measures during a 

hypoglycaemic event, as stated in the aims and hypotheses. Non-overlapping HRV epochs were 

calculated from 10-minute samples, and these were sorted into three independent groups. 

These were ‘Pre-hypo, ‘Hypo, and ‘Post-hypo, which refer to 10-minute epochs recorded 10 

minutes prior to the start of the hypoglycaemic event, 10 minutes during, and 10 minutes after, 

respectively. These three groups represent a longitudinal approach, as the same set of HRV 

measures were calculated from the same sample at three different time points. Longitudinal 

studies typically have higher statistical power compared to cross-sectional studies.503 As such, a 

one-way analysis of variance (ANOVA) with repeated measures was used to determine any 

significant (p<0.05) differences between the related means: Pre-hypo, Hypo, and Post-hypo HRV 
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measures. A significant difference (p<0.05) would indicate a change in HRV over the course of 

the hypoglycaemia excursion. To ensure that the assumptions of the repeated measures ANOVA 

were not violated, the data set was checked for outliers, normal distribution, and sphericity. 

Shapiro-Wilk Test, appropriate for small sample sizes (n<50), was used to confirm that 

variables were normally distributed. Normal Q-Q plots showed that the data points were 

linearly organised, which also confirmed normal distribution. Mauchly's test of sphericity was 

used to indicate any violations of the assumption of sphericity in the data and a Greenhouse-

Geisser correction was applied in cases where the assumption of sphericity was violated.504 

These steps were repeated for the hyperglycaemic events that were observed, and the HRV 

means were labelled as ‘Pre-hyper’, ‘Hyper’, and ‘Post-hyper’. 

With reference to Cohen’s “A Power Primer”, the minimum sample size (n) required to achieve 

0.8 power for this study was determined. For an ANOVA comparing the means of three related 

groups (Pre-hypo, Hypo, and Post-hypo), with a significance (α) of 0.05 and a large effect size 

(r=0.5), it was necessary to observe at least n=21 hypoglycaemia and n=21 hyperglycaemia 

events to provide sufficient power.505 It was estimated that it would be necessary to recruit 15 

participants with T1D to satisfy these requirements. 

 

4.2 Results 

The RNSH T1D Study aimed to investigate the activity of HRV measures during glycaemic 

excursions, including hypoglycaemia and hyperglycaemia. Both time and frequency-domain 

measures of HRV were investigated, as data was collected over a 24-hour period. For this study, 

15 participants with T1D were recruited, with a sex breakdown of 4 males and 11 females. 

Participants were aged between 20-61 years. The average duration of the heart rate recordings 

was 30 hours, with most participants opting to begin recording between 10:00am and 12:30pm.  

Additional sample information is reported in Table 4.1. HbA1c was measured by the CGM 

systems using weekly estimations of BGL, and the mean was 6.9%. Duration of diabetes for each 

subject was not recorded by the researchers in error and due to logistical problems created by 

the COVID-19 infection control measures implemented in March 2020.  
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Table 4.1 Means and standard deviations for demographic and physiological features of the 
sample (n=15). Data is presented as mean ± standard deviation. Body mass index was calculated 
from weight (in kilograms) divided by height (in metres) squared. Blood pressure was 
determined using the average of three left-arm recordings. HbA1c was estimated by the CGM 
systems. BMI = Body mass index, BP = Blood pressure, kg/m2 = Kilogram per square metre, 
mmHg = Millimetres of mercury, mmol/L = Millimoles per litre. 

Variable Mean ± standard deviation 

Age (years) 36 ± 16 

BMI (kg/m2) 25 ± 3 

Systolic BP (mmHg) 127 ± 14 

Diastolic BP (mmHg) 77 ± 7 

Estimated HbA1c (%) 6.9 ± 0.9 

 

4.2.1 Preliminary Correlation Analysis 

A preliminary correlation analysis was conducted on the first participant recruited in this study 

to investigate a potential relationship between HRV measures and BGL as the two variables 

fluctuated over a 24-hour period. A Pearson’s correlation determined there was no significant 

association between BGL and any HRV measure, including LF power, HF power, total power, 

LF:HF, LFnu, HFnu, RMSSD, SDNN, or even mean heart rate. Scatter plots of these variables of 

interest as they fluctuated over the course of the 24-hour monitoring period were equally 

distributed (Figure 4.1). This preliminary analysis was not important to the aim of this study. 

However, the results of this analysis are shown here to provide some noteworthy information. 

 

 

 

 

 

 



BGL bpm
HF HFnu LF LF:HF
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For the statistical analysis, the means of seven HRV measures were calculated for three HRV 

epochs – Pre-hypo, Hypo, and Post-hypo – from the n=22 instances of hypoglycaemia. These 

HRV measures were LF power, HF power, total power, LF:HF, normalised LF power, SDNN, and 

RMSSD. A one-way ANOVA with repeated measures determined if there were any significant 

differences between mean Pre-hypo, mean Hypo, and mean Post-hypo for each of the seven HRV 

measures (Table 4.2). Shapiro-Wilk test confirmed that all variables analysed were normally 

distributed (p>0.05) at all levels, and normal Q-Q plots were inspected manually to ensure data 

points were linearly organised, which also confirmed normal distribution. As with the previous 

studies, and as is common in HRV studies, LF power, HF power, and total power were natural 

log transformed to ensure normal distribution, as they are typically skewed without log 

transformation.146, 423, 424 

Table 4.2 Mean heart rate variability measures (n=22) at 10 minutes prior, during, and 10 
minutes after hypoglycaemia.All the measures presented in this table are frequency-domain, 
except for SDNN and RMSSD, which are time-domain. The analysis of variance determined there 
was no significance difference between any of the repeated measures for all variables. ANOVA = 
Analysis of variance, HF = High frequency, Hypo = Hypoglycaemia, LF = Low frequency, LF:HF = 
low to high frequency ratio, LFnu = Normalised low frequency power, ms = Milliseconds, ms2 = 
Milliseconds squared, NS = Non-significant. 

Variable Pre-hypo Hypo Post-hypo ANOVA 

n 22 22 22 - 

LF power (ms2) 6.2 ± 1.4 6.2 ± 1.2 6.1 ± 1.2 NS 

HF power (ms2) 4.9 ± 1.5 4.9 ± 1.5 4.9 ± 1.6 NS 

Total power (ms2) 6.6 ± 1.4 6.6 ± 1.2 6.6 ± 1.2 NS 

LF:HF 4.4 ± 2.9 4.7 ± 3.4 4.5 ± 3.3 NS 

LFnu (%) 76 ± 11 77 ± 12 75 ± 14 NS 

SDNN (ms) 35 ± 20 33 ± 16 34 ± 19 NS 

RMSSD (ms) 27 ± 23 23 ± 16 25 ± 19 NS 

 

A graphical comparison of the first three frequency-domain HRV measures, including mean LF 

power, HF power, and total power, is presented in Figure 4.3. Mauchly's test of sphericity 

showed no violation of the assumption of sphericity for the LF power data set, χ2(2) = 0.649, p = 

0.72, or the HF power data set, χ2(2) = 1.733, p = 0.42. or the total power data set, χ2(2) = 0.635, 

p = 0.73. As such, Greenhouse-Geisser correction was not applied for any of the following one-

way ANOVA with repeated measures. The ANOVA revealed that there was no significant 
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4.2.3 Hyperglycaemia

In this study, hyperglycaemia was defined as BGL ≥ 12.0 mmol/L.
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Table 4.3 Mean heart rate variability measures (n=33) at 10 minutes prior, during, and 10 
minutes after hyperglycaemia. All the measures presented in this table are frequency-domain, 
except for SDNN and RMSSD, which are time-domain. The analysis of variance determined there 
was no significance difference between any of the repeated measures for all variables. ANOVA = 
Analysis of variance, HF = High frequency, Hyper = Hyperglycaemia, LF = Low frequency, LF:HF 
= low to high frequency ratio, LFnu = Normalised low frequency power, ms = Milliseconds, ms2 
= Milliseconds squared, NS = Non-significant. 

Variable Pre-hyper Hyper Post-hyper ANOVA 

n 33 33 33 - 

LF power (ms2) 6.1 ± 1.2 6.2 ± 0.9 6.0 ± 1.2 NS 

HF power (ms2) 4.9 ± 1.6 5.2 ± 1.3 5.0 ± 1.4 NS 

Total power (ms2) 6.6 ± 1.2 6.7 ± 0.9 6.5 ± 1.2 NS 

LF:HF 4.2 ± 2.9 3.8 ± 2.7 3.6 ± 2.7 NS 

LFnu (%) 74 ± 15 71 ± 17 71 ± 17 NS 

SDNN (ms) 34 ± 19 33 ± 15 31 ± 17 NS 

RMSSD (ms) 26 ± 21 27 ± 18 25 ± 21 NS 

 

Figure 4.7 visualises the differences in LF power, HF power, and total power. According to 

Mauchly’s test of sphericity, the HF power data set violated the assumption of sphericity, χ2(2) = 

8.066, p = 0.02. As such, a Greenhouse-Geisser correction was used in conjunction with the 

repeated measures ANOVA. This determined no significant difference in mean HF power 

between the three time points (F(1.627, 52.071) = 1.285, p = 0.28). The assumption of 

sphericity was not violated by either the LF power data set, χ2(2) = 2.134, p = 0.34, or the total 

power data set, χ2(2) = 2.781, p = 0.25. As such, the repeated measures ANOVA was conducted 

without Greenhouse-Geisser correction. There was no significant difference in LF power (F(2, 

64) = 1.335, p = 0.27) or total power (F(2, 64) = 1.322, p = 0.27) between the three time points. 
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4.3 Discussion 

Glycaemic excursions are prevalent in people living with T1D and represent a significant threat 

to their continued health and wellbeing. Current standards in glucose monitoring are 

inadequate given the severity of T1D and its complications, and recent interest in improving 

these standards is justified. A non-invasive and convenient measure of glycaemic excursions 

may significantly improve effectiveness of stringent glucose monitoring, which will lead to 

better glycaemic outcomes and quality of life for those with T1D. In the RNSH T1D Study, people 

with T1D participated in a 24-hour study continuously monitoring their HRV and glucose levels. 

The aim was to determine whether glycaemic excursions, including hypoglycaemia and 

hyperglycaemia, were marked by significant changes in measures of HRV. Preliminary analysis 

of these results focused on whether HRV measures were associated with glucose fluctuations 

across the day, as well as whether individual glycaemic excursions were associated with 

identifiable changes in HRV. These early analyses showed no meaningful findings, and machine 

learning techniques may be required to identify trends in HRV during glycaemic excursions, 

which would require a larger sample size. Additionally, the follow-up statistical analysis by 

ANOVA indicated there were no significant changes in any HRV measure during hypoglycaemia 

or hyperglycaemia. This section will explore these findings in the context of the wider literature 

and discuss the limitations of this research. 

 

4.3.1 Preliminary Analysis of the Sample 

Due to the small number of subjects, it is difficult to judge whether the sample was reflective of 

the wider Australian T1D population. The sample was of similar age and BMI compared with 

samples observed in other studies in this specific area of research.491, 506 In terms of physiology, 

the values for systolic and diastolic blood pressure were generally within optimal ranges.507 

Glucose levels were significantly above the optimal range,406 though this was expected as this is 

a clinical characteristic of T1D. The mean HbA1c for the sample was 6.9 ± 0.9%, and as with the 

UTS T2D Study, roughly half of the sample presented with an HbA1c level below 7.0%, which is 

the target glycaemia level. This is similar to the proportion of Australians with diabetes who 

achieve target glycaemia, based on large-scale epidemiological data.104 The preliminary 

correlation analysis revealed no significant relationship between HRV measures and BGL values 

measured at the same time points. A significant finding here would have indicated that 

fluctuations in HRV are closely related to fluctuations in BGL, and that HRV may be used to 

estimate glucose levels at any time. This would have been a novel finding, as this has not been 

demonstrated anywhere in the literature to date. Furthermore, analysis of individual glycaemic 
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events revealed no consistent relationship between autonomic activity and the onset of 

hypoglycaemia and hyperglycaemia. This was more likely to have yielded a significant result, as 

other studies have shown significant changes in HRV measures at the onset of hypoglycaemia. 

These will be discussed in the next section. 

 

4.3.2 Changes in Autonomic Activity during Hypoglycaemia 

In a study conducted by Klimontov, Myakina & Tyan (2016) in 11 older women with T1D, LF 

power was lower during hypoglycaemia (n=12), as defined by CGM glucose reading ≤ 3.9 

mmol/L, compared to fasting LF power.396 HF power was similar during hypoglycaemia 

compared to fasting HF power, and LF:HF was lower during hypoglycaemia only in subjects 

with cardiac autonomic neuropathy. Additionally, LF power, HF power, and LF:HF during 

hypoglycaemia were all similar to fasting levels when the hypoglycaemia event occurred at 

night.396 As such, the key finding was that daytime LF power was significantly diminished during 

hypoglycaemia, a finding which was not shared in the RNSH T1D Study. This is likely related to 

differences in the sample, as the present study recruited an equal number of men and women 

and with a much younger mean age compared to the study by Klimontov, Myakina & Tyan. In 

another study, Myakina, Klimontov & Safarov (2015) recruited n=73 subjects with T2D (aged 

48-78 years old) who underwent simultaneous CGM and ECG monitoring. They demonstrated 

that LF power, HF power, and LF:HF all increased significantly (p<0.01) during hypoglycaemia 

(BGL < 3.9 mmol/L), for both daytime and nocturnal events.475 In subjects with cardiac 

autonomic neuropathy, LF power decreased during hypoglycaemia. Further, Deshmukh and 

colleagues (2021) observed a significant change in RMSSD by Holter monitoring of T1D subjects 

with hypoglycaemia unawareness. This study also demonstrated that this change in RMSSD 

persists following islet cell transplantation and the restoration of euglycaemia in T1D 

subjects.380 

These are just two examples of studies which demonstrated there are marked changes in 

certain HRV measures during hypoglycaemic events. Due to publication bias, it is difficult to 

identify studies in the literature which found no significant changes in HRV measures during 

hypoglycaemia, as was the case with the RNSH T1D Study. This may be the first study to 

demonstrate that autonomic activity remains relatively stable during hypoglycaemia in T1D, as 

determined by 10-minute HRV epochs in 15 subjects. It is possible changes in HRV in this 

sample were significant based on five-minute HRV epochs, however shorter epochs are less 

accurate and thus were not investigated in the statistical analysis. One recent study published 

by Lundqvist and colleagues (2021) reported no significant changes in HRV during 
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hypoglycaemia in a sample of T2D participants,508 though to date these findings have not been 

reported in T1D. 

Recently, Bekkink and colleagues (2019) published an original research article with findings 

that are particularly relevant to this PhD thesis. They investigated changes in LF:HF, SDNN, and 

RMSSD during hypoglycaemia (n=66 events) in 23 participants (mean age 42 ± 11 years). In 

their study, mean LF:HF increased significantly (p<0.05) by 0.2 ± 0.4, mean RMSSD decreased 

significantly by 4.4 ± 18.1, and there was no change in SDNN.491 These findings are promising as 

they indicate a potential pattern in HRV at the initiation of hypoglycaemia. The presence of 

specific increases in LF:HF corresponding with specific decreases in RMSSD may be detected 

non-invasively by a heart rate monitor, as demonstrated in this study, and used to detect the 

onset of hypoglycaemia. Such research is similar to that of the present study and aims to 

develop HRV as a non-invasive predictor of hypoglycaemia. However, as Bekkink and colleagues 

did not investigate LF power, HF power, or total power, it is difficult to compare the results with 

those of the RNSH T1D Study. Of the three HRV measures which were investigated in both 

studies, LF:HF and RMSSD changed significantly during hypoglycaemia according Bekkink and 

colleagues (2019) but did not change significantly according to the results of the RNSH T1D 

Study. This discrepancy will be explored further. 

In their paper, Bekkink and colleagues (2019) reported the mean glucose level of the n=66 

hypoglycaemic events to be 3.1 mmol/L, and ranging between 1.6 - 3.9 mmol/L.491 In their 

methodology, the authors defined their hypoglycaemic events as any glucose level equal to or 

below 3.9 mmol/L. Considering this information, it is clear a more generous glucose cut-off was 

implemented in this study for defining hypoglycaemia, as in the RNSH T1D Study the glucose 

cut-off value for hypoglycaemia was < 3.0 mmol/L. The criterion for the RNSH T1D Study was 

more stringent as it incorporated findings from previous literature and based this cut-off value 

on the findings of numerous clinical studies. However, this more stringent cut-off value meant 

that the glycaemic events recorded in the present study were more severe than those of the 

study conducted by Bekkink and colleagues (2019). Despite the added clinical significance, 

changes in mean HRV measures were not statistically significant in the present study but were 

significant in the study from Bekkink and colleagues who assessed a larger, but less severe 

sample of hypoglycaemic events. Differences in the approach of the statistical analysis may have 

affected these different findings, for example in the present study a one-way ANOVA with 

repeated measures was used, but Bekkink and colleagues (2019) implemented paired sample t-

tests to analyse mean changes of HRV measures before and during hypoglycaemia. 

One other key observation was made in the paper published by Bekkink and colleagues. They 

reported that 39% of their sample had impaired awareness of hypoglycaemia, reflecting a 
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reduced autonomic response to hypoglycaemia. Despite this, the authors were able to identify 

significant changes in LF:HF and RMSSD during hypoglycaemia. They reported that changes in 

HRV were not different between subjects with impaired awareness of hypoglycaemia compared 

with those with intact awareness, though initially they expected there would be because 

hypoglycaemia unawareness reflects decreased sympathetic nervous system activity during 

hypoglycaemia. The authors did not explain this finding, though limitations in the scope and 

design of their study may have limited their ability to comment on why impaired awareness of 

hypoglycaemia had little clinical significance in their sample. Hypoglycaemia unawareness is of 

particular importance to this area of research as it may limit the potential for heart rate 

monitors to detect autonomic responses to hypoglycaemia in theory, though findings from some 

studies, such as the one from Bekkink and colleagues, indicate this may not be the case in real-

world settings. 

 

4.3.2.1 Clinically Significant Hypoglycaemia 

To further explore the limitations of the present research, as well as other research in this area, 

it is relevant to discuss the impact of clinically significant hypoglycaemia and impaired 

awareness of hypoglycaemia. The term clinically significant hypoglycaemia strictly refers to 

hypoglycaemic events which are associated with symptoms and impaired functioning. For 

individuals without diabetes, clinically significant hypoglycaemia generally occurs when BGL ≤ 

3.9 mmol/L, as BGL does not fall below this level under optimal physiological conditions, 

according to American Diabetes Association consensus.495 At this level, symptoms may arise 

such as sweating, confusion, and blurred vision. For people who experience hypoglycaemia 

more often, such as people with T1D who take insulin to counter their chronic hyperglycaemia, 

the onset of symptoms due to low BGL may not occur around the threshold of 3.9 mmol/L. Due 

to impaired awareness of hypoglycaemia, characterized by a reduced autonomic response to 

low BGL in as many as 30% of all T1D subjects, people with T1D may not experience symptoms 

until their BGL falls as low as 2.3 mmol/L, and some may not experience symptoms at all. 

Problematically, because of the pathophysiology of this unawareness and how it develops, it is 

likely that most people with T1D are affected by it to a certain degree. This unawareness may be 

graded, and as such some people are affected more strongly whilst others are affected only 

minimally by it. It is clear clinically significant hypoglycaemia may not occur in many people 

with T1D at the threshold of ≤ 3.9 mmol/L, and there are different views in the literature on 

how hypoglycaemia should be defined. 
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A 12-week study on n=3,912 subjects demonstrated that less than 40% of the hypoglycaemia 

episodes experienced by people with diabetes are symptomatic when hypoglycaemia is defined 

as BGL ≤ 3.9 mmol/L (Figure 4.10). However, as discussed, this threshold does not equate with 

symptoms of hypoglycaemia in people with T1D. Amiel and colleagues (2008) argue that 

defining hypoglycaemia as simply any glucose value equal to or below 3.9 mmol/L leads to 

overestimation of clinically significant hypoglycaemia.509 The members of the International 

Hypoglycaemia Study Group agree that BGL < 3.0 mmol/L is sufficient to indicate clinically 

relevant or important hypoglycaemia.510 According to Swinnen and colleagues (2009), when 

hypoglycaemia is defined by a more clinically relevant threshold, such as < 3.0 mmol/L, roughly 

70% of subjects experience autonomic symptoms, and only 30% do not.494 This is also 

demonstrated in Figure 4.10. This 30% is similar to the rate of hypoglycaemia unawareness 

observed in large samples of people with T1D and is the proportion of people with T1D who 

experience no autonomic symptoms at almost any level of low BGL. In the present study, it was 

therefore accepted that lowering the threshold further when defining hypoglycaemia would not 

significantly affect the observed proportion of subjects who experience symptoms, and thus < 

3.0 mmol/L was an appropriate threshold for defining clinically significant hypoglycaemia. It 

was accepted that there will always be a proportion of people with diabetes who do not 

experience symptoms of hypoglycaemia due to hypoglycaemia unawareness.494 This is the main 

reason subjects were not screened for impaired awareness of hypoglycaemia when 

participating. In a real-world scenario, this unawareness is likely to be present in about 30% of 

subjects, and changes in HRV that precede hypoglycaemia may be identified even in the absence 

of symptoms, i.e., HRV may predict hypoglycaemia even when it is not clinically significant. The 

research of Bekkink and colleagues (2019) suggests as much, as they implemented a glucose 

cut-off of ≤ 3.9 mmol/L when defining hypoglycaemia in their study. However, the results of the 

present study do not indicate that HRV measures may predict hypoglycaemia. 
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Figure 4.10 Proportion of asymptomatic hypoglycaemia at different definitions. 

 

Figure 4.10 presents the different thresholds for hypoglycaemia used in the literature and the 
percentage of subjects who reported no symptoms at each of the thresholds. BGL ≤ 3.9 mmol/L 
(in red) is distinguishable as the pathological state of hypoglycaemia, as BGL does not exist 
below this level in non-pathological states. As indicated by the red column, over 60% of subjects 
have no symptoms of hypoglycaemia when it is defined as BGL ≤ 3.9 mmol/L. Defining 
hypoglycaemia by a symptomatic standard is more relevant in clinical practice, for example BGL 
≤ 2.9 mmol/L (in blue). This is the cut-off used in the present study, though for consistency it 
was described as ‘< 3.0 mmol/L’ in this thesis. Adapted from Swinnen and colleagues (2009).494 

 

4.3.2.2 Neurophysiology of Hypoglycaemia 

The autonomic nervous system is responsible for maintaining glucose homeostasis, which 

includes responding to hypoglycaemia. The detection of low BGL leads to efferent activation of 

the branches of the splanchnic nerve which connect to the pancreas, liver, and adrenal medulla. 

This results in secretion of glucagon from the pancreas, glucose from the liver, and 

catecholamines from the adrenal medulla.511 As described previously, the neurophysiological 

response to hypoglycaemia involves autonomic symptoms, including sweating, heart 

palpitations, and trembling. If BGL continues to decline, such as when insulin medication 

continues to drive the uptake of glucose into cells from the blood, then neuroglycopenic 
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symptoms may predominate, including confusion, dizziness, and difficulty concentrating.89 A 

clinical study on n=10 young adults demonstrated that awareness of hypoglycaemia was 

significantly higher in subjects during clamped hypoglycaemia with adrenergic blockade 

(phentolamine and propranolol) compared to subjects with pan-autonomic blockade 

(phentolamine, propranolol and atropine).512 The authors, Towler and colleagues (1993), 

concluded that awareness of hypoglycaemia was largely the result of autonomic symptoms 

(shakiness, heart pounding, nervous) rather than neuroglycopenic symptoms (confusion, 

drowsiness), reinforcing the idea that the autonomic response to hypoglycaemia acts as an early 

warning system. In individuals with reduced awareness of hypoglycaemia, this is driven by 

reduced autonomic response to low BGL. The absence of autonomic symptoms lowers the 

threshold for clinically significant hypoglycaemia, and individuals may not realise they are 

experiencing a hypoglycaemic event until BGL becomes low enough that it causes problems 

with concentration and decision making. This raises an important concern for the RNSH T1D 

Study and similar research. HRV measures may be unable to reliable predict the onset of 

hypoglycaemia because the physiological variable they are assessing – autonomic activity – may 

remain unchanged in a large proportion of those who experience hypoglycaemia, as 

documented in this sample. Based on the literature, it is likely that autonomic changes were 

present in this sample, so the lack of significant findings may be due to the small sample size or 

the definition of hypoglycaemia. Hypoglycaemia was defined by a short duration of 10 minutes 

instead of 15 minutes, and subjects were not required to validate hypoglycaemia by 

confirmation finger stick BGL. As such, some of the events defined as hypoglycaemia in these 

analyses may have not met the standardized criteria for hypoglycaemia. 

 

4.3.3 Changes in Autonomic Activity during Hyperglycaemia 

Hyperglycaemia is an independent risk factor for cardiovascular disease as well as numerous 

microvascular complications of diabetes. The ability to non-invasively predict the onset of 

hyperglycaemia may facilitate early intervention and prevention of hyperglycaemia, and thus 

reduce long term complications of diabetes. There is substantially less research in the area of 

non-invasive HRV measures predicting the onset of hyperglycaemia compared to 

hypoglycaemia. The RNSH T1D Study investigated changes in frequency-domain HRV measures 

during clinically relevant hyperglycaemia, as defined by BGL ≥ 12.0 mmol/L, and presented 

novel non-significant findings. There were no significant changes in autonomic activity, as 

assessed by HRV, at the onset of hyperglycaemia, as assessed by CGM. This section aims to 

provide greater context and meaning to these findings. 



 

Luke Jarman | 153  
 

In a clinical study of n=30 young females without chronic illness, Majeed and Yar (2020) 

demonstrated that LFnu and LF:HF were significantly higher during hyperglycaemia compared 

to the fasting state.513 However, in the present study, HRV measures were compared before, 

during, and after hyperglycaemia onset, rather than compared with fasting levels. Additionally, 

there are marked differences in the neurophysiological response to suboptimal BGL in people 

without diabetes compared to people with T1D, and impaired awareness of hypoglycaemia is 

just one factor involved in these differences. Lundqvist and colleagues (2021) investigated 

autonomic and hormonal changes during hypoglycaemia and hyperglycaemia in n=15 

overweight subjects with T2D and n=15 lean weight subjects with T2D.508 Though there are 

marked physiological and pathological differences between T1D and T2D, it may be relevant to 

compare the results of the present study with the results of the lean weight group with T2D. In 

this group, the authors observed no change in HRV frequency-domain HRV measures during 

hyperglycaemia (BGL ≥ 13.0 mmol/L), including LF power, HF power, and total power, and 

LF:HF. This is consistent with the findings of the RNSH T1D Study. 

For clinical studies on people with T1D, there are few significant findings. According to a 96-

hour study on n=37 individuals with T1D, hyperglycaemia (BGL ≥ 15.0 mmol/L) is not 

associated with clinically relevant cardiac arrhythmias,514 and the authors suggest that cardiac 

autonomic control may not be impaired during hyperglycaemia. Based on the work of Berkelaar 

and colleagues (2013), hyperglycaemia (BGL ≥ 10.0 mmol/L) is not correlated with HRV 

measures, including RMSSD and HF power, or cardiac vagal tone,515 and the authors did not 

assess any other HRV measure relevant to the present study. As discussed, there are few clinical 

studies in this area, and more research is required to develop a better understanding of 

autonomic changes during hyperglycaemia. Future studies should consider clinical relevance 

when defining hyperglycaemia, as inconsistencies in how hyperglycaemia is defined by different 

researchers may explain differences in the statistical results. Specifically for frequency-domain 

HRV measures, more studies with larger sample sizes are required to form a consensus. 

 

4.3.3.1 Neurophysiology of Hyperglycaemia 

The response of the autonomic nervous system to increasing BGL has been discussed in a 

previous chapter. To summarise, the autonomic nervous system effectively decreases BGL by 

increasing insulin release from the pancreas, as well as by directly innervating the liver. The 

elevation of BGL above the optimal limit is most commonly caused by a lack of insulin response 

to food or caloric intake. In T1D, the near or total deficiency of circulating insulin leads to large 

glycaemic excursions in the postprandial state, as somatic cells in the body are unable to take up 
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glucose from the blood without insulin signalling. This results in chronically high levels of blood 

glucose, even hours after the ingestion of a meal. In a clinical study on n=20 newly diagnosed 

people with T2D, Marfella and colleagues (2000) observed acute increases in systolic blood 

pressure, diastolic blood pressure, heart rate, and plasma catecholamines during 

hyperglycaemia.516 They concluded that, in the absence of diabetes complications including 

autonomic neuropathy, hyperglycaemia causes an autonomic-mediated hemodynamic response. 

This research is part of a growing body of evidence showing that hyperglycaemia is a risk factor 

for cardiovascular events, and this applies to people without diabetes as well.517 

Early literature from Legler and colleagues (1982) established that cortisol levels increase after 

a meal,518 and this has been ratified by randomized clinical research from Reynolds and 

colleagues (2001).519 However, hyperglycaemia in people with T1D is not always the result of a 

postprandial response, as it may result when the effects of glucose-lowering medications wear 

off. Lundqvist and colleagues (2020) contend that the hormonal response to hyperglycaemia, 

including cortisol release, varies between individuals, but in general the autonomic response to 

rising BGL is characterised by a stress response.508 In people with autonomic neuropathy or 

diminished autonomic tone, this stress response, as measured partly by LF power, is smaller.508 

This is similar to hypoglycaemia, in which decreasing BGL leads to a ‘fight or flight’ stress 

response mediated by the sympathetic branch of the autonomic nervous system. It may be 

inferred that the sympathetic nervous system responds to both high or low BGL to maintain 

glucose homeostasis, and inability to maintain BGL in the target range may predispose an 

individual to further glycaemic excursions, such as repeated hypoglycaemia risk in people with 

impaired awareness of hypoglycaemia. An important conclusion to be made from this is that 

even if HRV measures cannot accurately predict BGL in an individual with diabetes, as 

suggested by the results of the RNSH T1D Study, they may still be useful in identifying 

individuals with diminished autonomic response to glycaemic excursions. This information may 

empower individuals to more stringently monitor their BGL using CGM or more stringently 

manage their condition with lifestyle interventions. 

 

4.3.4 Strengths and Limitations 

The potential to non-invasively predict glycaemic events represents a significant landmark in 

improving the quality of life and health outcomes for people with diabetes. A major strength of 

the RNSH T1D Study is that it provided further insight into a novel area of research. In terms of 

study design, the 24-hour monitoring period was an effective means of capturing multiple 

glycaemic events for each participant. Shorter monitoring periods would have reduced the 
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amount of data points captured and reduced the statistical power of the analysis. There were 

two key elements of the methodology which were important in strengthening the scope of this 

research. During the monitoring period, participants continued their routine work and life 

schedules, including medications and meals, with as little interruption as possible. Additionally, 

the criteria used to define glycaemic events were based on values that were clinically relevant. 

Due to the two key design elements, the findings presented in this research are applicable to 

real-world clinical settings. Based on these results, it can be concluded that HRV measures do 

not change significantly immediately before, during, or after the onset of glycaemic events in 

people with T1D during their regular work and life routines. Though clinical studies have 

observed significant differences in hypoglycaemia induced by clamp techniques, the RNSH T1D 

Study may be the first study to demonstrate no statistical significance in a real-world setting. 

Some limitations of the RNSH T1D Study have been provided already and will be consolidated in 

this section. In this study, participants were recruited based on their likelihood of experiencing 

a glycaemic event within 24-hours of attending the clinic at RNSH. This was to increase the 

number of glycaemic events captured during the monitoring period which would improve 

statistical power, as the average person with T1D does not experience many glycaemic events in 

a 24-hour period. This in turn likely led to the recruitment of more subjects with impaired 

awareness of hypoglycaemia, as this condition is more prevalent in people with T1D who 

experience recurring episodes of hypoglycaemia (see Section 1.5.1.3). Due to the 

pathophysiology of impaired awareness of hypoglycaemia, subjects with this condition were 

likely to have a reduced autonomic response to hypoglycaemia, which could explain why mean 

HRV measures did not change significantly in this cohort during hypoglycaemic events. As 

subjects were not screened for impaired awareness of hypoglycaemia, it is unknown how many 

in this study had reduced autonomic response during hypoglycaemia, and this limits the 

conclusions which can be made here. Future studies should consider screening for this 

condition, as well as restrict the proportion of recruited subjects with this condition to a level 

reflective of the general T1D population, roughly 30%. In people with T2D who depend on 

insulin, this proportion is roughly 10%. Future studies which attempt to outright exclude 

participants based on the presence of impaired awareness of hypoglycaemia may not be able to 

apply their findings to the broader population of people with diabetes. Duration of diabetes for 

each subject was not recorded by the researchers in error. This would have been useful since a 

longer mean duration of diabetes in subjects may have indicated an increased risk or presence 

of autonomic neuropathy. 

Though there have been significant improvements with recent models, there are still known lag-

times in the detection of glycaemic excursions by CGM systems. Participants in this study 
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utilised several different CGM system models to record their glucose levels continuously. The 

difference between when participants were undergoing a glycaemic excursion compared to 

when the excursion was detected by the glucose monitor may have been as much as seven 

minutes on average, though based on current data this varies between CGM system models. For 

a rough example, a participants BGL may have decreased to 2.9 mmol/L at 10:00am during the 

study. As CGM systems estimate BGL based on glucose levels in the interstitial fluid, instead of 

directly measuring glucose levels in the blood, it is unlikely the CGM system would record this 

value of 2.9 mmol/L until approximately 10:07am (see Section 1.7.2). When analysing the data, 

the hypoglycaemic event would be registered as 10:07am, and changes in autonomic activity 

would be calculated from heart rate epochs 10-minutes before, during, and after this exact time. 

However, there was no corresponding lag-time with the heart rate monitors when recording 

autonomic activity. As such, there was likely a mismatch between the time when the glycaemic 

events were recorded compared to when they actually occurred in participants. This is a 

difficult problem to address, as a predictive model using HRV measures to predict glycaemic 

events will require large amounts of data, which currently can only be provided by a CGM 

system. This may change with technological advances, however. 

Improvements should be made on this study design in future studies. Using a cut-off for 

hyperglycaemia as BGL ≥ 10.0 mmol/L may provide more data points to analyse, though clinical 

relevance of these events should be considered. A participant questionnaire could be provided 

to collect subjective experiences of glycaemic events, indicating clinical relevance if there are 

signs or symptoms concurrent with each event. Hypoglycaemic events should be validated by a 

finger stick confirmation assessment. Improvements could have been made to the autonomic 

monitoring aspects of this study. Firstly, future research may calculate HRV measures from the 

full 24 hours of monitoring and compare against other groups. Secondly, the FirstBeat heart rate 

monitor may have lacked sensitivity required to detect changes in autonomic activity during 

glycaemic events, so a Holter monitor may be considered as an alternative as it is the hold 

standard for HRV measurement. Overall, this study did not provide evidence for a change in 

HRV measures during glycaemic events and did not indicate that HRV measures may act as an 

‘early warning’ system for hypoglycaemic or hyperglycaemia in T1D. The evidence does not 

support the hypothesis stated in Chapter 1. CGM remains the gold standard for identifying these 

events in the absence of symptoms. 
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Chapter 5. Conclusion 

The scope of diabetes is significant. The cost to individuals and to global healthcare systems is 

substantial, and due to its nature as a ‘Disease of Civilization’, the threat of T2D, the main type of 

diabetes, is not likely to ease without meaningful social and cultural changes. The initial chapter 

of this thesis introduced numerous concerns about the current standards in treating and 

managing diabetes from the perspective of the medical science community. According to 

scientific consensus, currently available glucose monitoring tools are inadequate given the 

scope of diabetes. The improvement of these tools, or replacement with superior ones, has been 

a major priority for decades, as has improvement of pharmacological treatments. Currently 

available tools have improved markedly in recent years, but core problems, such as their 

invasive nature, have yet to be addressed. There is growing interest in non-invasive approaches 

to glucose monitoring, such as tools that estimate BGL based on saliva or sweat samples, as 

there is evidence that non-invasive alternatives to current invasive measures are more efficient. 

To summarize, better efficiency is associated with higher quality glucose monitoring and 

management of diabetes, and this in turn is associated with better quality of life for the many 

people living with diabetes. However, to date there is no non-invasive measure of blood glucose 

that is commercially successful. All clinically relevant glucose monitoring tools are invasive, and 

this has been identified as a core problem in the scientific literature. 

HRV is an emerging technology in this area with novel applications. There is strong evidence 

that HRV measures can predict diabetes complications, and the literature advocates for the use 

of routine HRV assessments in clinical settings for monitoring of complications such as 

autonomic neuropathy. HRV is also an excellent marker of autonomic control of the heart. The 

autonomic nervous system is responsible for regulating various functions throughout the body, 

including the regulation of blood glucose. It achieves this through innervation of various organs, 

such as the liver and pancreas, to release specific hormones in response to fluctuating glucose 

levels. Though the action of the autonomic nervous system on these endocrine organs cannot be 

measured easily, its action on the heart can be, and it can be measured non-invasively. The level 

of autonomic innervation that an individual exerts on their heart is inversely related to their 

glycaemia. This is due to various reasons, such as the fact that total autonomic activity is lower 

in people with poor physical fitness, and these people tend to have high levels of blood glucose. 

However, it is also related to the acute response of the autonomic nervous system to food 

intake. The autonomic nervous system prepares the body for food intake through innervation of 

various organs and nerve pathways. Though the mechanism is not well understood, changes in 

autonomic modulation of the heart are associated with changes in blood glucose. It was this 

physiological principle which first led to the development of the novel hypothesis that 
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autonomic innervation of the heart, as measured by HRV, may estimate glycaemia. Therefore, 

HRV measures may be a non-invasive alternative to current glucose monitoring. 

This novel hypothesis was tested by Rothberg and colleagues (2016) in people with and people 

without diabetes. The authors set out to determine whether HRV measures were related to BGL 

in a way that could lead to the development of them as non-invasive markers of BGL. Their work 

was continued by Jarman and colleagues (2021) in subjects without chronic illness, and in the 

UTS Pilot Study over a shorter time period. These studies aimed to accumulate sufficient clinical 

data to justify further exploration of HRV measures as non-invasive markers of BGL. The UTS 

T2D Study was the main study conducted as part of this PhD candidature and aimed to 

consolidate years of exploratory research into a study on people without diabetes and people 

with T2D, the most common type of diabetes. While several HRV measures accounted for the 

variability in BGL, no one measure was significant in a multivariate model, and therefore HRV is 

limited in its capacity to diagnose diabetes or to predict BGL from HRV measures alone. 

The ability to predict glycaemia using HRV measures represents a landmark in diabetes 

management, as it would improve the quality of life and health outcomes for those living with 

diabetes and reduce the overall burden of the condition on individuals and society. The ability 

to predict overall glycaemia is also important in the screening and diagnosis of diabetes, and 

undiagnosed diabetes is cause for significant disability and morbidity worldwide. Early 

detection of diabetes would be facilitated with the introduction of a convenient and reliable 

non-invasive measure of blood glucose, and early detection and intervention is associated with 

reduced risk of diabetes complications and increased quality of life. HRV may not just be 

relevant in the prediction of fasting and postprandial glycaemia. Another study conducted as 

part of this PhD candidature, the RNSH T1D Study, aimed to justify the use of HRV measures in 

the prediction of glycaemic events, which are prevalent in T1D. Though T1D affects only a minor 

percentage of people with diabetes compared to T2D, people living with T1D are dependent on 

insulin to survive, and this reliance on exogenous insulin predisposes individuals to 

hypoglycaemia. Due to the limitations of CGM systems, the ability to reliably predict glycaemic 

events using HRV measures would significantly improve glucose monitoring for those living 

with T1D, and this would in turn improve their quality of life as well as potentially reduce the 

costs associated with managing their condition. The results of the RNSH T1D Study are relevant 

in a real-world clinical setting, however they do not indicate that HRV measures can predict 

glycaemic events, such as hypoglycaemia. The effect of impaired awareness of hypoglycaemia 

on recruited subjects may cause problems for researchers attempting to develop a real-world 

application of this technology. Nevertheless, some future directions for this novel area of 

research have been provided in this thesis. The next section will address some of the broader 
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future directions for researchers in this area, as well as discuss the research which has been 

growing in recognition in recent years. 

 

5.1 Future Directions 

Limitations in the design of these studies conducted as part of this PhD candidature may have 

contributed to the lack of significant findings and the contradictions compared with current 

literature. If repeated, several improvements should be made to these studies. For the UTS T2D 

Study which investigated correlations between HRV measures and BGL in people with T2D and 

people without, subjects should be seated during the full assessment period and meal size 

should be standardized. Participants with T2D should be excluded if they have HbA1c above 

7.5% or autonomic neuropathy, and this should be assessed during the screening process and 

prior to study participation. Alcohol consumption should also be limited in the exclusion 

criteria. For the RNSH T1D Study, hypoglycaemia should be defined in accordance with the 

standardized reporting guidelines, which means a minimum of 15 minutes in duration and 

validated by a finger stick BGL. Subjects should be carefully screened or assessed for autonomic 

neuropathy, and a questionnaire should be provided to subjects to collect information on 

clinical significance, or the presence of symptoms, during glycaemic events. Using a lower 

threshold for hypglycaemic cut-off, such as 10.0 mmol/L, may help to capture more events, and 

calculating HRV measures from the full 24-hours of recording may provide additional insights. 

Studies should be designed around these improvements. 

This thesis investigated the potential of HRV as a non-invasive alternative to invasive glucose 

monitoring, and thus priority was given to lightweight, portable devices when selecting a device 

capable of determining HRV. There are several heart rate monitors available in the form of 

wearable smartwatches. Whilst these are convenient and lightweight to use, concerns have been 

raised regarding their ability to accurately estimate HRV. Smartwatches do not directly measure 

the electrical activity of the heart, but rather detect an individual’s radial pulse under the skin, 

usually using a technique known as photoplethysmography. Regardless of the method used to 

detect a person’s pulse, the use of pulse rate variability as an estimate of HRV remains a 

contentious topic. Pulse rate variability is only sufficiently accurate as an estimate of HRV in 

participants that are young, at rest, and without chronic illness.520 Physical or mental activity 

have been shown to exaggerate differences in pulse rate variability and HRV, and short-term 

variability is somewhat overestimated in pulse rate variability. A promising exception to these 

is the Polar S810, which has demonstrated excellent agreement with an ECG in providing time-

domain HRV parameters for three-minute521 and five-minute recordings.522 Given that there is 
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no evidence to support the viability of a smartwatch to estimate frequency-domain HRV 

parameters and for long-term recordings, smartwatches were not considered for use within this 

study. In future, however, the accuracy of these wearable devices may be improved to a point 

where they can provide reliable estimates of glycaemia. This would be a significant 

improvement to current management of BGL and diabetes. Modern smartwatches are already 

capable of tracking stress, sleep hygiene, hear rate, and more, and one day may also be capable 

of tracking blood glucose. 

There is growing interest in the applications of machine learning in predicting glycaemia. In 

their 2018 paper, Zhu and colleagues presented the results of their neural network which had 

been trained on 115,200 glucose data points from CGM systems attached to n=6 subjects across 

40 days.523 Their model outperformed many existing algorithms, despite the fact machine 

learning models usually require training data with a much larger size to be effective. However, 

they noted that glucose levels predicted by their model lagged behind the true glucose levels 

observed in their subjects , and the error in prediction was high when subjects consumed a meal 

or took their insulin medication. A neural network developed by Zecchin and colleagues (2011) 

provided competitive predictive value for its time by learning carbohydrate (meal) intake 

alongside learning glucose information.483 An algorithm developed by Li (2019) achieved 

minimal time lag in a real subject dataset by also training their model using carbohydrate data, 

suggesting that it is an industry standard to manage or account for the effect of meals on 

glycaemia.524 Meals are an inevitable source of glucose spikes, and thus glycaemic variability, in 

people living with diabetes. Goldner and colleagues (2018), who trained their machine learning 

model on nearly two million BGL measurements from 14,706 people with T2D, have indicated 

their model could be improved by incorporating meal behaviours into their training set, such as 

carbohydrate amount.525 Pustozerov and colleagues (2020) advocate the importance of 

predicting postprandial BGL in diabetes, as machine learning algorithms may predict the 

magnitude of a glucose spike after consuming a meal.526 

In terms of predicting low BGL, Wang and colleagues (2020) created a machine learning model 

by Bayesian inference capable of predicting hypoglycaemia in T1D with 96% accuracy and 92% 

precision, which has potential clinical utility.527 As mentioned, there are few studies on the 

applications of machine learning in SMBG. However, a probabilistic model developed by 

Sudharsan, Peeples, and Shomali (2014) had a sensitivity of 92% and a specificity of 70% in 

predicting a hypoglycaemic event within the next 24 hours.486 They achieved this using only 10 

SMBG values per week, which is a reasonable number of blood glucose assessments for 

someone living with diabetes, based on current standards. A novel algorithm presented by 

Cichosz and colleagues has shown promising results by combining information from a Holter 
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monitor with concurrent values from a continuous glucose monitoring system. The algorithm 

detected 16/16 hypoglycaemic events in subjects with T1D with a sensitivity of 79% and a 

specificity of 99%.452 This study represents an appealing line of research, as it aims to overcome 

some of the current problems people with diabetes face. Current SMBG is costly,305 though a 

portable ECG, such as a Holter monitor, may present a reduced financial burden and, at the very 

least, would provide a non-invasive option. The R-waves from an ECG, used in the 

determination of HRV parameters, have distinct profiles that make them suitable for detection 

by computer algorithms.520 A real-world application of this technology would incorporate the 

predictive model within the monitoring device, allowing for real-time analysis of autonomic 

activity. Consequently, an inexpensive portable heart rate monitor capable of estimating blood 

glucose may be commercialised. 

It is clear from emerging research that a non-invasive, accurate measure of BGL will almost 

certainly involve advanced machine learning.528 The findings of the multiple studies conducted 

as part of this thesis add to the growing body of evidence that HRV measures may be an ideal 

marker of glycaemia. However, further research is needed. Continuous glucose monitoring 

(CGM) remains the gold-standard for measurement of BGL in diabetes, however HRV represents 

a promising area which can add to detection of diabetes and glycaemic events in tandem with 

CGM. Though the scope of this PhD limits the applications of these findings, it can be concluded 

that the future of HRV is promising in this area of research. The UTS Pilot Study provided a 

framework and preliminary data which was used to design a larger study. Following this, the 

UTS T2D Study demonstrated that HRV measures obtained whilst individuals are eating may be 

used to predict their postprandial BGL, a novel finding. The RNSH T1D Study investigated 

changes in HRV measures during glycaemic events, and though no statistically significant 

findings were observed, HRV measures may still be relevant in the management of T1D. There 

are certain confounders which future researchers should consider the impact of when 

investigating the clinical applications of HRV measures in predicting glycaemic events. 

Overall, these findings presented in this thesis indicate that HRV possesses clinical relevance 

and real-world utility in the management of diabetes, and further investigation is warranted. 

Future studies should focus on gathering data in real-world situations, such as allowing subjects 

to continue their regular routines, including medications and meals. Studies may also improve 

sample power, which is a common limitation in this area of study, by pooling subjects from their 

individual groups and assessing correlations between HRV measures and BGL across a wider, 

unified sample. A useful follow-up study to this PhD research might investigate correlations 

between the change in HRV and change in BGL in postprandial states. Further, large amounts of 

data points may be used to train more sophisticated machine learning tools, such as deep 
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learning artificial intelligence, and clinically relevant thresholds of glycaemic events should be 

considered when developing therapeutic technologies. It is important that researchers in the 

scientific community empathise with those living with the condition they are attempting to 

improve, and to consider their specific needs when developing potential solutions. This has 

been a core focus of this thesis, as empathy will invariably facilitate the real-world applications 

of clinical research. 
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