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ABSTRACT

Automatic generation of long and coherent medical reports regarding the given
medical images (e.g. Chest X-ray and Fundus Fluorescein Angiography (FFA)) has
great potential to support clinical practice. Researchers have explored advanced

methods, especially deep learning, from computer vision and natural language process-
ing for the generation of readable medical reports. However, when writing a report,
experts make inferences with prior clinical knowledge. Not surprisingly, existing meth-
ods with insufficient medical knowledge find it hard to achieve comparable promising
performances in generic image caption fields since even researchers without a medical
background cannot understand those images thoroughly, either. Thus, this thesis mainly
investigates how to explore clinical knowledge to enhance deep learning models for auto-
matic report generation. The thesis first explores knowledge by mimicking radiologists’
working patterns and utilizes such knowledge to guide an encoder-decoder framework to
generate accurate reports. Since medical decisions may lead to life-or-death consequences,
a reliable rationale for interpretation is also excepted, along with accurate prediction.
However, existing medical report generation (MRG) benchmarks lack both explainable
annotations and reliable evaluation tools, also hindering the current research advances.
This thesis then proposes an explainable and reliable MRG benchmark based on FFA
Images and Reports (FFA-IR). Based on the FFA-IR, the thesis extracts structural infor-
mation from clinical recorded reports and explores such clinical knowledge to enhance
a cross-modal Transformer for ophthalmic report generation along with corresponding
disease diagnosis. In the last, to stimulate the potential of backbone networks, the thesis
explores clinical knowledge to enhance the pretraining progress to improve the quality
of predicted reports. To validate proposed approaches and components, extensive experi-
ments are also conducted in various downstream tasks, such as disease classification,
medical VQA and medical image-text retrieval.
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1
INTRODUCTION

R
adiology medical images (e.g. Chest X-Ray, Lung CT-Scan, or Fundus Fluorescein
Angiography (FFA)) are essential examinations in clinical practice. Such images

assist radiologists with observing inside symptoms and then making medical

decisions. However, reading those images are laborious and costly, especially during

pandemic period, like the rapidly increasing amounts of Chest X-Ray examinations since

the novel COVID-19 outbreak [35]. Thus, the enormous demands from radiologists in

clinical practice attract researchers from both automatic medicine and machine learning

fields for driving medical imaging analysis’s evolution and developments [91].

Within the medical imaging analysis (MIA) field, medical report generation (MRG) is

a fundamental but challenging research topic. MRG tasks ask the computer to a free-text

description, or report, summarising observations and findings of lesions or abnormalities
regarding a given medical image. In clinical practice, this is done primarily to provide

an interpretation of the images that supports making medical decisions. This writing

process is error-prone and time-consuming, especially for those junior radiologists. Thus,

given the complexity of image interpretation and to lighten the workload for radiologists

considerably, automatic report generation techniques have great potential in clinical

practice. One of the most similar tasks is generic image captioning [29], describing

generic image instead. Thus, several successful concepts from generic image captioning

have also been employed in MRG systems. However, the modality of source image is not

the only difference between generic image caption and MRG tasks.

Most MRG datasets exists sever textual and visual deviation. Figure 1.1 presents two
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CHAPTER 1. INTRODUCTION

samples including images and their related descriptions from the COCO [61] and MIMIC-

CXR [40], respectively. On the one hand, it is observed that medical reports, usually the

lengthier one, is comprised of two sections, namely FINDINGS and IMPRESSION, while

generic image caption only requires one and concise sentence. The FINDINGS usually

section describes the imaging characteristics of a body structure of function that have a

clinical impact. Meanwhile, the IMPRESSION section, which is usually the shorter one,

summarizes the most important findings and interprets their clinical value, giving the

referring physician a direction for the management of the disease or a final diagnosis [78].

Most existing MRG works only use the FINDINGS section as the target for prediction.

Obviously, MRG systems call for more powerful and effective long sequence processing

capabilities. Although medical reports are longer, the paradigms of these sentences are

highly similar [62], especially for those that describe normal parts. Such repeated textual

data is prone to degenerate MRG models, in other words, underfitting MRG models

will keep repeating those sentences ignoring the image encoding. Moreover, compared

with generic sentences, medical reports are hard to read and understand for researchers

without medical background, due to the existences of medical terminologies and lack of

medical domain knowledge; On the other hand, medical images are even harder. Due to

the human tissues themselves and imaging methods, global features of the same kind of

medical images are highly similar. To tell the abnormalities from normal images, shape

and texture features play a critical role. Unfortunately, such features are likely to be

drown by other patch or object features when the training data is insufficient.

Figure 1.1: The left one is a image caption sample from COCO dataset [61], the right one
is a medical report generation sample from MIMIC-CXR dataset [40]

For the past decade, the Artificial Intelligence (AI), especially deep learning (DL)

techniques, has achieved incredible achievements and evolved rapidly. By recognizing

visual or textual characteristics like human beings, DL techniques have achieved state-

2



of-the-art (SOTA) performances in vision-and-language tasks [74], including image

caption. Therefore, researchers have employed various deep neural networks (DNNs) for

automatic report generation [14, 49, 56]. Most often, the encoder-decoder frameworks

with supervised learning or reinforcement learning are employed in MRG systems.

Systems traditionally adopt a convolutional neural network (CNN) [25, 88] as the encoder

first to encode medical images as dense vectors. They then employ a recurrent neural

network (RNN) [27, 96] as the decoder to generate diagnostic texts from the image

encoding. A cross-modal module or mechanism is utilized to attend the visual vectors

to the textual representations. Since current DNNs are data greedy and sensitive,

eliminating the data deviation that was previously discussed [49, 58, 65, 66] motivates

the evolution and development of MRG research. Existing works have well investigated

the architecture of MRG systems, and thus this thesis focuses on enhancing deep learning

models with clinical knowledge to improve MRG systems. To endow MRG systems with

clinical knowledge, this thesis explores various kinds of clinical medical knowledge; what

is more, we also investigate when and how to inject such knowledge to MRG systems.

In Chapter 3, inspired by the radiologists’ working patterns, we explore auxiliary

signals’ power to facilitate generating medical reports. Generally, when a radiologist

describes a medical image, he/she will carefully inspect the suspicious regions after

quickly browsing the global image. Then, he/she will write a report that draws on the

knowledge he/she learned from the external medical domain and his/her working expe-

rience. Accordingly, to mimic the behavior of medical experts, we propose an Auxiliary

Signal-Guided Knowledge (ASGK) approach including two kinds of auxiliary signals

to improve a Transformer to generate medical reports. Firstly, we automatically find a

suspicious region where the pre-trained neural visual extractor paid the most attention.

After resizing and cutting, the auxiliary patches are concatenated to the original patch

features before being fed to the encoder. These patches ensure that the Transformer will

learn better visual hidden representations. Then, we collect a medical corpus to pre-train

the decoder, in which all the sentences that record related medical knowledge are easily

accessed online. It was the first time we find that pre-training steps can improve the

model robustness to alleviate the training corpus deviation and decrease the sensitivity

to similar linguistic patterns.

In Chapter 4, we propose a Cross-modal clinical Graph Transformer (CGT) for oph-
thalmic report generation (ORG). In particular, we first invoke an information extraction

scheme based on a natural language processing pipeline, including named entity recog-

nition and entity linking, to obtain a clinical knowledge graph. More details will be
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CHAPTER 1. INTRODUCTION
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Figure 1.2: Our proposed MONITOR, which is a multi-task benchmark for enabling the
comprehensive evaluation of unified medical vision-language models.

introduced in Chapter 3. As discussed in [36], the structured clinical information behind

the free-text reports can enhance the diagnostic methods. In addition, the entities and

relations in our clinical graph are in the homogeneous embedding space with the training

corpus. Given a set of ophthalmic images, the extracted visual features are transformed

to a compressed visual token and a sub-graph with relevant restored triples. Since the

sub-graph is not guaranteed to be a completely accurate representation of the given

images and natural noise exists in the clinical graph, we adopt a cross-modal encoder

to encode the universal feature token and sub-graph information. To avoid influence

from unrelated entities, a visible matrix is introduced during the cross-modal encoding

process. Finally, reports are generated via a Transformer[96] decoder.

In Chapter 5, inspired by the recent progress in vision language pretraining (VLP),

we propose a multi-task benchmark dubbed Medical cross-mOdal uNderstandIng and

generaTion with knOwledge-enhanced pRetraining (MONITOR). As shown in Fig. 1.2,
in addition to MRG tasks, MONITOR also covers a set of fundamental medical cross-

modal tasks, including diagnosis classification, image-report retrieval, and medical visual
question answering. Through MONITOR, the comprehensive evaluation of unified med-

ical cross-modal models can be fulfilled. To establish a baseline model on MONITOR

for encouraging the future research, we develop Med-KEP, which is a unified model pre-

trained on large-scale medical data and finetuned on both understanding and generation

downstream medical tasks. The expert knowledge has been demonstrated to be crucial in

enhancing the performance of medical vision-language models as well as improving their

explainability [65, 70, 110, 116]. To study the impact of the expert medical knowledge on

the unified pretrained model in different downstream tasks, we further introduce three

kinds of medical knowledge construction and injection strategies during the pretraining

process of Med-KEP: 1) Triplet Concatenation (TC) concatenates multiple knowledge
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triplets (each is formed as <head entity, relation, tail entity>) into one single sentence to
obtain the knowledge encoding, 2) Triplet Insertion (TI) replaces the entities in the text

by the knowledge triplets, and 3) Symbolic Knowledge Graph (SKG) represents different

relations as edge weights and encodes the knowledge graph through the self-attention

mechanism.

In addition to the above frameworks, this thesis also contributes to medical report

generation dataset and benchmark to benefit this community. In Chapter 3, we introduce

a new COVID-19 CT Report (COV-CTR) dataset for use in validating the robustness and
generalization ability of ASGK. Along with the accurate predicted reports and diagnosis,

the reliable rationale for interpretation is strongly encouraged by specialists and patients

to trust those predictions. To improve MRG systems’ explainability, researchers have

explored text-image attention mappings [14, 39] to explain the automatic generation

procedure. However, the accuracy of these explanations is unclear. Since existing MRG

datasets including COV-CTR fail to provide explainable annotations, development of

interpretable MRG methods to improve trustworthiness is a great challenge. Therefore,

in Chapter 4, we further present a new benchmark, FFA-IR, towards an explainable
and reliable MRG benchmark based on FFA Images and Reports. Specifically, FFA-IR

is large, with 10,790 reports along with 1,048,584 FFA images from clinical practice; it

includes explainable annotations, based on a schema of 46 categories of lesions; and it
is bilingual, providing both English and Chinese reports for each case. Besides using

the widely used natural language generation (NLG) metrics, we also propose a set of

nine human evaluation criteria to evaluate the generated reports. Due to the different

modality, auxiliary signals explored in the Chapter 3 are hard to transfer for facilitating

ophthalmic report generation.

This thesis is organised as follows. After this Chapter, we review the related literature

on medical report generation methods, medical report generation benchmarks, medical

knowledge enhanced models, and knowledge enhanced pretraining in Chapter 2. In

Chapter 3, an auxiliary signal-guided knowledge encoder-decoder framework is proposed

for automatic report generation. We publish a COVID-19 CT Report and Image dataset,

and evaluate our proposed model with it for MRG. In Chapter 4, we first propose an

explainable and reliable MRG benchmark based on FFA Images and Reports. And then it

is for use in validating the proposed cross-modal clinical graph Transformer. In Chapter

5, we propose benchmarking the medical cross-modal understanding and generation

with knowledge-enhanced pretraining (MONITOR), providing a multi-task benchmark

for enabling the comprehensive evaluation of unified medical vision-language models.

5



CHAPTER 1. INTRODUCTION

In Chapter 6, we summarize this thesis and imagine our future directions for MRG

research.

In this thesis, we make the following contributions:

1. We are the first to release a COVID report generation dataset regarding Lung

CT-Scan examinations.

2. We are the first to present an explainable and reliable MRG benchmark, before us,

there are rare explainable annotations and reliable evaluation tools.

3. We explore medical knowledge by mimicking radiologists’ working patterns and

utilize those knowledge to guide a proposed encoder-decoder MRG system.

4. We construct a clinical graph from medical reports automatically and propose a

cross-modal clinical graph Transformer for ophthalmic report generation. Based

on our knowledge extraction scheme, we are the first work that can provide sliver

sub-graph to supervise the knowledge restoration process.

5. We propose a medical enhanced pretraining benchmark that introduces three kinds

of medical knowledge construction and injection strategies.
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LITERATURE REVIEW

2.1 Medical Report Generation Methods

2.1.1 Early Approaches

At the beginning, medical reports were not predicted by an End-to-end manner. Varges

et al. [95] first encoded given medical images into triplets that represented cardiological

findings. And then such triplets were extended to a readable free-text reports by an

ontology-based natural language generation approach. In contrast, Schlegl et al.[86]

utilized the gold reports as input instead of treating them as targets and combined reports

with images for 3D pixels classification. Then they employed a structured Support Vector

Machines[94] to generate semantic tags for each lesion, with the concepts of a radiology

lexicon.

2.1.2 Medical Report Generation Frameworks

Traditionally, MRG works [39, 68] employ an encoder-decoder (ED) architecture as

the backbone, visual encoding is attended to textual representations with or without

attention mechanism with the supervised [66], unsupervised [67] and reinforcement

learning [49]. Most often, such ED MRG systems typically use CNN-based image en-

coders [25, 88] to first encode the medical images as dense vectors. They then typically

use a RNN-based natural language decoders [27, 96] to generate diagnostic reports

from those vectors. During the decoding procedure, a cross-modal attention mechanism

7
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Table 2.1: Comparing existing deep learning based medical report generation approaches.

Methods Modality Backbone Network Adopted Knowledge Learning Type
CoAtt[39] CXR CNN+LSTM Medical Tags Supervised Learning
HRGR[58] CXR CNN+LSTM Template Database Reinforcement Learning
KERP[49] CXR CNN+Graph Transformer Template Database+Terminology Graph Supervised Learning
R2Gen[14] CXR CNN+Transformer Memory Driven Supervised Learning
PPKED[65] CXR CNN+Transformer Posterior and Prior Knowledge Supervised Learning
CA[66] CXR CNN+LSTM None Contrastive Learning
CMCL[64] CXR CNN+LSTM Working Patterns Curriculum Learning
MKG[116] CXR CNN+GCN+LSTM Terminology Graph Supervised Learning
MGSK[110] CXR CNN+GCN+Transformer General and Specific Knowledge Supervised Learning
ASKG CXR+LCT CNN+Transformer Working Patterns+Terminology Finetuning
CGT FFA I3D+Transformer Clinical Graph Supervised Learning
MONITOR CXR ViT+Transformer General and Specific Knowledge Supervised Learning

may be employed to let the decoder focus on particular visual vectors when predicting

each word. Such mechanisms can also be used to highlight the specific regions where

the findings described in the report, are widely applied in recent MRG systems. In the

beginning, Jing et al. [39] presented an encoder-decoder framework and employed a

co-attention mechanism over both visual and textual features to predict medical tags and

generate a single sentence simultaneously. To generate multi-sentences, Xue et al. [109]
adopted a hierarchical RNN, consisting of a topic-level LSTM and a word-level LSTM

as the decoder. The sentence-level LSTM produces a sequence of sentence embeddings,

each intuitively specifying the information to be expressed by a sentence of the image

descriptions. This concepts have been adapted by the following works[49, 116]. Zhang

et al.[117] proposed the MDNet model, which was the first to utilize visual attention

mechanism in MRG tasks. With the success of Transformer [96] in NLP tasks, Chen

et al.[14] proposed a memory-driven Transformer to enhance the decoding procedure’s
memory. Before encoding the visual vectors, researchers usually first adopted a CNN like

VGG, or ResNet to extract equally sized visual patch features. Then those patch features

are treated as visual tokens for encoding. Despite progress in developing models, the

lack of accurate explanation and reliable evaluation undermines the trustworthiness of

these methods.

2.1.3 Types of Learning

Besides the supervised learning, reinforcement learning is another learning type which

dominates the MRG research. The key concept of reinforcement learning (RL) in MRG

is to treat the MRG systems like an agent. In this type, researchers can propose vary

rewards to encourage the system in understanding clinical correctness. Most importantly,

non-differentiable evaluation measures can be used directly during training in RL, so
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that systems are not required to be optimized by loss functions like cross-entropy during

training, while being assessed with metrics such as BLEU [76], CIDER [97], or clinical

F1[116] at testing procedure. Rennie et al. [85] are the first to employ the RL algorithm

with a reward based on CIDER value. Li et al. [58] utilized RL to decide if a sentence

will be generated from scratch, or if it will be retrieved from a database with frequently

occurring sentences. Their experimental results on CX-CHR and Open-IU [17] datasets

were close to baseline performances with supervised learning. For other perspectives,

Liu et al. [68] used RL to optimise reports’ readability. Liu et al. also introduced a reward
based on comparing labels that extracted by CheXpert[34] from the system-generated

text and the human-authored report, in order to optimize clinical accuracy.

Recently, unsupervised MRG systems also attract increasing attention in the commu-

nity. Those works argue that collecting large amounts of paired gold reports and medical

images are prohibitively expensive, and most deep learning based MRG systems are

severely data greedy, especially for Transformer-based systems. Thus, exploring the effec-

tiveness of MRG systems with limited data should become a fundamental research topic

in this field. Liu et al. [67] made the first attempt to train a medical report generation
model without using any coupled image-report training pairs. To relax the dependency on

paired data, they proposed an unsupervised model (KAGE) which accepts independent

sets of images and reports in training. The KGAE consists of a pre-constructed knowledge

graph, a knowledge-driven encoder and a knowledge-driven decoder. They converted the

image features to the prior knowledge representations in the latent space to bridge the

visual and textual domains. The knowledge-driven encoder projects medical images and

reports to the corresponding coordinates in this latent space and the knowledge-driven

decoder generates a medical report given a coordinate in this space. Since the knowledge-

driven encoder and decoder can be trained with independent sets of images and reports,

KGAE is unsupervised. But the experimental results on Open-IU and MIMIC-CXR [40]

demonstrated that the gap was quite large between the unsupervised and supervised

models.

2.1.4 Explainability

In clinical practices, both patients and doctors expect the accurate predictions among

with a reliable rationale to explain their decisions. Therefore, in this section, we discuss

how the existing MRG works present their explainability.

On the one hand, the multi-modal attention mechanism is a great manner to represent

the expalinability and make the diagnosis more easily interpretable. For example, Jing
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Table 2.2: Comparison of existing widely used MRG datasets, where ∗ means the average
number. Report length and number of lesions are marked as – for data sets that do not
provide this figure.

Dataset
Image Report

Lesions
Number Modality View∗ Length∗ Language Cases

Open-IU[17] 7,470 X-Ray 2 32.5 En 2,955 –
MIMIC-CXR[40] 377,110 X-Ray 1 53.2 EN 276,778 –
PadChest[10] 160,868 X-Ray 2 – Es 22,710 –
CX-CHR[58] 45,598 X-Ray 2 66.9 Zh 40,410

p
COV-CTR[56] 728 CT-Scans 1 77.3 En/Zh 728

p
DEN[31] 15,709 CFP+FFA 1 7 En – –
STARE[28] 397 CFP+FFA 5 – En 397 –
DIARETDB1[42] 89 CFP 1 – En 89 –
MESSIDOR[16] 1,200 CFP 2 – Fr 587 –
FFA-IR [55] 1,048,584 FFA 87 91.2 En/Zh 10,790

p

et al. [39] and Chen et al. [14] visualized the text-image attention maps to highlight

the specific regions where the predicted word is based on. Thanks to this, doctors can

easily find the lesion or abnormal regions when reading the disease keywords. On the

other hand, the medical knowledge graph can be an internal output to assist researchers

or doctors understanding the relations between different entities. Zhang et al. [116]
proposed a unified knowledge graph consisting organs and diseases. In each case, a

subgraph is restored from the unified graph and used as the feature to attend image

features. This graph is also used in [65]. To represent more information, Li et al. [49]
used the same medical terminology and disease graphs with us to bridge the visual and

textual modalities. To evaluate the explainability quantitatively, our FFA-IR provides

the location information for most lesions and release the first explainability comparison

benchmark by calculating the Inter-over-union between the gold lesion location and the

text-image attention maps.

2.2 Medical Report Generation Benchmarks

2.2.1 Medical Report Generation Datasets

In Table.2.2, we compare eight widely used and publicly available MRG benchmarks with

our proposed COV-CTR and FFA-IR, in terms of their statistic, including image modality,

report language, report length and others. Firstly, among all the MRG benchmarks,

Open-IU [17] and MIMIC-CXR [40] are the two most widely-used medical report bench-
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marks. Both of them provide chest X-Ray images along with related English written

reports. Their reports usually contain ’FINDINGS’, ’COMPARISON’, ’INDICATION’ and

’IMPRESSION’ sections, among which ’FINDINGS’ and ’IMPRESSION’ are of primary

interest. The ’FINDINGS’ section summarizes the symptoms or clinical impacts from

all the observed imaging characteristics of a body structure of function. The ’IMPRES-

SION’ usually summarizes the most important findings and interprets their clinical

value, giving the referring physician a direction for the management of the disease or

a final diagnosis. However, sometimes the ’IMPRESSION’ (or ’FINDINGS’) includes a

conclusion that does not follow from the previous sections and the images of the current

exam. Some previous work used only the ’IMPRESSION’ section as the target text to be

generated[87], but most previous work either uses the ’FINDINGS’ as the target[58, 68]

or aims to generate the concatenation of the two sections[39].

PadChest [10] is another large-scale chest X-ray report dataset, which comprises

160,868 images and multi-label annotated reports. However, these diagnosis texts are not

complete and are written in Spanish. Furthermore, MIMIC-CXR provides extra related

disease impressions, which can be used for disease classification. Due to the characteristic

of Chinese words, CX-CHR [58] and our COV-CTR have a more considerable average

report length than English medical report datasets. Compared with our FFA-IR, DEN

mainly contains CFP images (13,898 CFP and 1,811 FFA). Table.2.2 presents that our

FFA-IR has the most significant number of medical images and the average length of

reports among all these datasets. Unlike all existing medical report datasets, FFA-IR

provides explainable annotation by label 46 kinds of lesions in a total of 12,166 regions

along with FFA images and reports which play an essential role in identifying disease

and writing reports. There are also three more retinal datasets comprising retinal images

and text. STARE [28] was conceived and initiated in 1975 and released in 2004 with 397

images including CFP and FFA. Their diagnosis texts are almost the retinal diseases

that are unsuitable for training a medical report generation model. DIARETDB1 [42] is

well annotated with lesion location and size yet has a limited number of CFP images.

MESSIDOR [16] comprises 1,200 CFP images and 600 fine-gained French reports.

These are also several datasets which are not publicly available or lack of related

annotations. Such datasets are BCIDR[117], consisting of 1,000 pathological bladder

cancer images, each with five reports; Frontal Pelvic X-Rays[22], which comprises 50,363

images, each accompanied by a radiology report simplified to follow a standard template;

and Chest X-Ray 14[102], which is publicly available, but does not include any medical

reports in its public version.
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Notably, all the MRG benchmarks share the same issue, the inevitable data biases.

Those biases comes from two aspects. On the one hand, among each benchmark, med-

ical images are highly similar due to the nature of human tissues, angle of imaging

examinations and imaging methods. On the other hand, normal tissues are described in

the same manner which brings out large amounts of repeated sentences. As a results,

investigating how to estimate those two biases is one of the key motivations in MRG

research.

2.2.2 Medical Report Generation Metrics

2.2.2.1 Natural Language Generation Metrics

One essential way to evaluate the performances of proposed MRG methods is to judge

the quality of predicted reports. To this end, researchers employ the proposed auto-

matic evaluation metrics from natural language generation (NLG) tasks (e.g. machine
translation and text summarizing) to assess the predicted reports. The key concept of

such NLG metrics (e.g. BLEU[76], ROUGE[60], and METEOR[6]) is to calculate the

similarity between the generated texts and ground truth texts. In MRG tasks, ground

truth texts are annotated by radiologists in daily practices. In more details, the similarity

can be quantified by the shared occurrences of n-grams, phrases of n consecutive words.

Such metrics have been verified to perform well in ranking systems, and the rank lists

correlate well with human judgments of information content in machine translation and

text summarizing tasks. However, recent studies argue that those metrics do not capture

promising clinical correctness. Due the reason that, once the models keep repeating

sentences which describe normal findings, they still achieve considerable measurements.

Therefore, the occurrences of abnormal terminologies and positive disease keywords

should acquire more attention than any other single words. In generic image caption

tasks, CIDER measure[97] becomes the main metric. Due to the reason that, CIDER

assigns different importance to different n-grams and performances more like human

annotators. The more recent SPICE [2] extracts knowledge or keywords from the refer-

ence and generated texts to measure both the gram-level and semantic-level similarities.

Subsistent MRG works utilize either BLEU-4 (4-gram) or CIDER as the main metric to

compare their methods with others.
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2.2.2.2 Clinical Correctness Measures

As we discussed, the above NLG metrics do not always capture clinical correctness.

To evaluate the MRG systems in a reliable way, researchers employ other measures

to assess the predicted reports. The first one is human study. During a human study,

researchers randomly selected plenty of examinations, including the images, gold stan-

dard reports and reports produced by baseline MRG models and the proposed elaborate

system. Then available annotators are invited to choose the best system-generated report

with consulting the gold reports and examination. At the beginning, Li et al. [49] em-
ployed crowd-sourcing annotators. However, consulting the gold reports and examination

requires medical background annotators. Hiring such annotators are expensive and

sometimes it may have been inadequate. Thus, Zhang et al. [116] invited experienced
radiologists to judge the information content. However, it may be too subjective to select

the best reports. In this thesis, we propose nine criteria to judge the reports, including

the clinical correctness of the reported abnormalities, fluency, and content coverage

compared to the ground truth report. Since human study may be prohibitively expensive,

recent work measure the clinical correctness through medical terms.

To this end, the concept of Tags in MRG tasks have been involved to facilitate the

evaluation. Xue et al.[109] were the first to use an evaluation measure that considers
medical tags extracted from system-generated and human-authored reports. The authors

called the measure Keyword Accuracy, but it should not be confused with the conventional

classification Accuracy, since it only measures Recall. Huang et al. [32] followed the same
approach, but they used only the MTI tags as their ground truth. In both of these works,

however, where gold tags were compared with predicted tags, it is unclear how the

predicted tags were extracted from the system-generated reports. Liu et al. [68] used
the CheXpert medical abnormality mention detection system, which generates one out

of 4 labels (presence, absence, negative, not sure) for each one of 14 thoracic diseases.

Recently, Zhang et al. [116] proposed a new metric based on the Recall, however the code

of this evaluation is still not available.

2.3 Knowledge Enhanced Models

2.3.1 Medical Knowledge Enhanced Models

In this section, we will introduce medical knowledge enhanced models for medical

report generation and other medical domain tasks, medical QA, or memorization. The
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incorporated medical knowledge can be divided into three groups.

The first kind is from radiologists’ working patterns [65]. In clinical practice, radiolo-

gists read images and write reports in a specific pattern to remind them of not missing

any part of the images. After browsing the whole image, radiologists will focus on the

suspicious regions. To make the model achieve this capability, we introduce two kinds of

auxiliary signals to guide the MRG model. Similarly, Liu et al. adopted both posterior and
prior knowledge to imitate the pattern with retrieved reports and a universal knowledge

graph. Secondly, researchers explored the clinical knowledge behind the free-text reports

to drive MRG models. Li et al. [49] extracted normal and abnormal terminologies from
corpus as nodes and automatically predict weights between these findings as edges

to construct a knowledge graph. This graph worked as prior knowledge to drive the

decoding procedure and restore a unique sub-graph for each case. In contrast, Zhang et
al. [116] and Liu et al. [65] adopted an universal graph covering 20 findings to enhance
the MRG models. In the last, the existing biomedical knowledge base is adopted to

incorporate medical knowledge. The unified medical language system (UMLS) [9] is the

largest biomedical knowledge base and is adopted in [70] and [24] to enhance pretrained

medical models for medical QA tasks. However, utilizing the existing knowledge base

will bring in inconsistencies due to the heterogeneous embedding space arising from

vocabulary and context mismatch. Since the entities and relations in UMLS are derived

independently of the training corpus, when embedding node information, the embedded

token vectors are inconsistent. Additionally, utilizing the full UMLS in MRG tasks will

place a burden on the computation resources since it has 13,555,037 triples, and most of

them are irrelevant to our task.

2.3.2 Knowledge Enhanced Pretraining

Vision-language pretraining (VLP) aims to improve performance of the downstream uni-

modal or cross-modal tasks via pretraining the model on a large amount of image-text

pairs. Typically, the inputs of VLPmodels are from different features, such as object-based

region features [54, 71], CNN-based grid features [33], ViT-based patch features [46, 100]

and word-level embeddings, which are fed into one single transformer encoder [54, 89]

or two transformer encoders [93, 112] interacted with the cross-attention mechanism

for multi-modal fusion. Motivated by the success of BERT [20] in the natural language

processing (NLP) field, researchers pre-train VLP models by using different unsupervised

learning objectives, including masked language modeling (MLM) [20], masked vision

modeling (MVM) [81], image-text matching (ITM) [53], image-text contrastive learning
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(ITC) [52], etc.
Most existing VLP methods focus on understanding tasks and do not possess the

ability to generate. To tackle this problem, some works attempt to develop unified VLP

models for addressing both understanding and generation tasks [52, 69, 119]. In this

paper, we utilize BLIP [52], a multi-modal mixture of encoder-decoder model, as the

backbone architecture to handle both discriminative and generative downstream tasks

on our proposed MONITOR.

Although VLP models have the capability to store certain knowledge or facts from

training data, their knowledge awareness is still far from satisfactory. For understanding

capabilities, VLP models are easily fooled by negated or misprimed probes [41] and fail

in reasoning tasks [92]. For generation capabilities, the predicted sentences could be

grammatically correct but not logical [59]. Thus, recent works have explored knowledge

graphs from linguistic [20], encyclopedia [99] or domain specific [9] knowledge bases

to enhance VLP models. For example, Sun et al. [90] proposed a knowledge masking
strategy for MLM to enhance language representations by encyclopedia knowledge.

Zhang et al. [116] utilized both linguistic knowledge and relations between entities in
knowledge graphs to train an enhanced language-pretrained model. To further align

vision and language, Yu et al. [112] used a semantic scene graph parsed from the text

as the bridge. In this work, we introduce three kinds of knowledge construction and

injection strategies in the pretraining phase to sufficiently study how the expert medical

knowledge impacts the unified pretrained model in different downstream medical tasks.
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3
AUXILIARY SIGNAL-GUIDED KNOWLEDGE

ENCODER-DECODER

3.1 Introduction

When you take a medical image in any hospital, you will receive a medical report.

This medical report describes both normal and abnormal terminologies, and can assist

radiologists and specialists in diagnosing and reviewing. However, writing medical

reports is error-prone and time-consuming, especially during a pandemic like COVID-19,

because radiologists may have to diagnose hundreds of images per day. Therefore, the

topic of automatically generating medical reports has attracted research attention from

both artificial intelligence and clinical medicine fields.

As discussed, the most similar task to medical report generation in the computer

vision field is image captioning. Beyond the common difficulties in natural image cap-

tioning, there are three more bottlenecks for medical report generation. Firstly, the

amount of image-report pairs in existing datasets are considered small compared to the

captioning datasets, which are insufficient to learn visual representations; Secondly, it is

hard to acquire the object features which are widely used in the natural image captioning

tasks [3] from medical images. Only a few medical images can provide the well-annotated

segmentation or location information of lesions; Thirdly, there are severe data deviation

exists in these datasets. Some diseases are rare in nature, and their positive samples

are hard to collect. Moreover, there are many similar sentences used in each report to
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describe the routine observation, which leads to the overfitting problem and limits the

generalization of neural approaches [58].

Recently, many approaches have been designed to address these problems and

achieved promising performance on automatically generating medical reports [14, 49, 58].

Inspired by the radiologists’ working patterns, in this section, we explore auxiliary

signals’ power to facilitate generating medical reports. Generally, when a radiologist de-

scribes a medical image, he/she will carefully inspect the suspicious regions after quickly

browsing the global image. Then, he/she will write a report that draws on the knowledge

he/she learned from the external medical domain and his/her working experience. As

shown in Fig 3.1, the suspicious region takes up only a tiny portion of the global image

but has been treated equally to other regions in previous works. Therefore, other regions

could be considered irrelevant noise that distracts the model. Although these regions may

get more attention based on the self-attention mechanism in Transformer, Dosovitskiy et
al.[21] pointed out that Transformer can learn a better visual representation when fed
with original image patches instead of the encoded visual features. Using large extra

corpora to pre-train the Transformer is an effective way to alleviate the corpus deviation

in the training datasets [19, 83]. However, there is a considerable textual semantic gap

between the medical and common domains.

Accordingly, to mimic the behavior of medical experts and address the above men-

tioned learning difficulties, we propose an Auxiliary Signal-Guided Knowledge (ASGK)

approach including two kinds of auxiliary signals to improve a Transformer to generate

medical reports. Firstly, we automatically find a suspicious region where the pre-trained

neural visual extractor paid the most attention. After resizing and cutting, the aux-

iliary patches are concatenated to the original patch features before being fed to the

encoder. These patches ensure that the Transformer will learn better visual hidden

representations. Then, we collect a medical corpus to pre-train the decoder, in which

all the sentences that record related medical knowledge are easily accessed online. The

pre-training steps can improve the model robustness to alleviate the training corpus

deviation and decrease the sensitivity to similar linguistic patterns.

We further introduce a new COVID-19 CT Report (COV-CTR) dataset for use in

validating the robustness and generalization ability of ASGK. Since December 2019,

the novel COVID-19 virus has caused a global pandemic and infected millions of people

across 200 countries. A key step in controlling the infection is that of identifying infected

people. In addition to the Reverse Transcription Polymerase Chain Reaction (RT-PCR)

tests, lung CT scan analysis has emerged as another essential testing method. Therefore,
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Figure 3.1: Two samples from CX-CHR and our COV-CTR datasets. Red bounding boxes
annotated by a radiologist indicate the regions that he pays more attention to describing
this image. The red text describes the abnormalities. Underlined text indicates alignment
between ground truth reports and generated reports.

an accurately written report could assist patients and doctors to understand their

health condition. We invited three radiologists with more than five years of working

experience to apply their diagnostic skills to the public COVID-CT dataset[118] and

use this information to construct the COV-CTR dataset. The main contributions of this

section are three-fold as follows:

• We identify and produce two kinds of auxiliary signals, namely the internal fusion

visual features and the external medical linguistic information to facilitate graph

encoding and medical knowledge learning respectively.

• We design a medical tag graph encoder to transfer input features into higher-level

information and adopt Generative Pre-Training (GPT) [83] as our natural language

decoder to generate accurate and robust medical reports.

• We invite three radiologists with more than five years of experience to apply

their diagnostic skills to the COVID-19 CT images [118] and use this information

to construct a new medical report dataset, COVID-19 CT Report which will be

available.

3.2 Approach

3.2.1 Problem Setup

Similar to the previous studies [39, 49, 58, 116], the task of medical report generation

involves asking a model to generate a topic related paragraph consisting of a series

of sentences to describe a medical image of a patient case. We represent the image as
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I and the report as S = {w1,w2, ...,wl |wi ∈V}, where wi presents the index of word in

V the vocabulary of all words contained in the datasets. To generate fine-grained and

semantically coherent sentences, we propose a graph encoder-decoder framework that

first encodes inputs feature vectors to a medical tag graph and then decodes them to

a medical report. We represent the medical tag as G = (V ,E), where V = {vi}i=1:Nt and

E = {
e i, j

}
i, j=1:Nt

is a set of edges. In our task, we represent each node feature vi by its

detected tag classification probability, then encode the correlation between each of the two

tags as edge weights. Nt represents the total number of medical tags composes abnormal

terminologies, such as "pneumothorax" and "colon shadow", and normal terminologies

such as "normal spine", "normal intercostal space" and so on.

Generally, when a radiologist describes a image, he will inspect the abnormal region

carefully after quickly browsing the global image, then write a report that reflects both

his inspection and the knowledge obtained from external medical domain information

and his working experience. To mimic this pattern, we firstly pretrain the framework

with the external medical signals collected from an appropriate website in order to

correctly phrase and learn medical knowledge. Subsequently, the internal visual fusion

signals facilitate graph encoding and bridge the gap between linguistic and visual domain.

More details regarding these internal visual fusion signals are described in Section 3.2.3.

3.2.2 The structure of ASGK

An overview of our approach is shown in Figure 3.2. The main structure of ASGK

comprises a medical graph encoder and natural language decoder.

3.2.2.1 Medical Graph Encoder.

This component is built to encode the input features into higher level information, i.e. a
medical tag graph. In the medical graph, each node denotes one detected medical tag, the

features of which are the classification probabilities and can be written as Equation 3.1.

(3.1) V =Sigmoid(Wv f input)

where Wv is a projection matrix of size N ×d; here, d represent the dimension of the

input features, and N is the number of total tags. Given that the truth edge information

is not available in our case, we conduct an attention operation to learn edge weights

automatically, which can be written as follows:

e i, j =Norm(Attention(Wvvi,Wvv j))(3.2)
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Figure 3.2: An overview of our ASGK approach. The ASGK model consists of a medical
graph encoder and a natural language decoder. The medical graph encoder encodes input
features into the corresponding medical tag graph, while the natural language decoder
transfers high-level information to sentences or reports. The external signals guide the
pretraining procedure, while the internal signals guide the model to bridge linguistic and
visual information. T and MCS represent threshold and max connection select operation
respectively.

where Norm is the normalization operation, while Attention is executed as a scaled

dot-product operation. Then the medical tag graph is incorporated with the prior medical

knowledge which is represented as a set of nodes of size N with initialized features and

edges via attention mechanism following by [49], which can be written as follows:

(3.3)

(3.4)

G = att(Gprior,V ,E)

To enhance the correlation between each of the nodes, we employ a multi-head self

attention operation on G to get the final graph. We further treat medical tag detection as

a multi-label classification task and adopt BCE loss to maximize the prediction scores

Ltagcls =−
N−1∑

i=0
yi logvi + (1− yi) log(1−vi)

where Wv is a projection matrix of size N ×d; here, d represent the dimension of the

input features, yi is the ground truth label, and vi is the final graph tag features.

3.2.2.2 Natural Language Decoder.

Inspired by GPT [83], we design a natural language decoder consisting of N = 3 blocks,

similar to the Transformer decoder, to interpret the medical tag graph and enable
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semantic alignment in the visual and linguistic domain. The structure of the block is

presented in Figure 3.2. This block applies a masked, multi-head self-attention operation

to the medical report or sentences tokens T = {t1, t2, ..., tl} embedded from Glove vectors

pretrained on our datasets. We use [83] to maximize the likelihood in the following

formulation:

L t(T)=−∑
i
logP(ti|t1, ..., ti−1;Θ)(3.5)

where P is the conditional probability of the next token prediction, modeled using a

neural network with parametersΘ and history sentences. Then, followed by position-wise

feed forward layers, the natural language decoder aims to produce an output distribution

over all token vocabulary.

h0 =IWWe + IPWp,(3.6)

Hl =block(hl−1,V ,E)∀l ∈ [1,N],(3.7)

Pi =Softmax(hNWT
e )(3.8)

where IW is the index of input tokens in the vocabulary, IP is the index of the token’s posi-

tion, We is the pretrained wording embedding matrix, and Wp is the position embedding

matrix.

3.2.3 Auxiliary Signal-Guide Learning

3.2.3.1 Pretraining with External Auxiliary Signals.

The direct application of general pretrained language models to medical domain tasks

leads to unsatisfactory results, since the word distributions differ from those of those

of general and medical corpora. To resolve this problem, we collect medical textual

information from an appropriate website to construct a large-scale medical textbook.

This textbook provides sufficient information about medical knowledge, including the

symptoms, manifestations and other information about COVID-19 and thoracic diseases.

Before feeding it into the medical graph encoder, we divide the medical textbook into

sentences and embed the word tokens with embedding vectors, which are trained in our

datasets using Glove [79]. After embedding, sentences are encoded using a single-layer

GRU with 1024 hidden units to produce the external medical auxiliary signals.
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3.2.3.2 Training with Internal Auxiliary Signals.

Evidently, the quality of the encoded medical graph will significantly affect the accuracy

of the generated reports. Therefore, we produce internal fusion visual signals to facilitate

medical graph encoding and bridge the gap between linguistic and visual information. As

shown in Figure 3.2, we first classify the global image using DenseNet-121 and obtain the

feature maps fc ∈ R7∗7∗1024 before the final pooling layers and output from last pooling

layers fg ∈ R1∗1024. To produce the mask, we perform a threshold operation on a heat

map acquired by Equation 3.9 and select the max connected area:

(3.9) H =max
k
(| f k

c |),k ∈ 1 : 0124

We adopt another DenseNet to extract the attended region features f l ∈ R1∗1024 from the

final pooling layers, then perform the element-wise operation on fg and f l to produce the

fusion signals f f . To balance the deviation in medical tags, we optimize the parameters

of three branch via focal loss, as follows:

p∗
i =

{
pi, i f yi = 1

1− pi, otherwise
(3.10)

L f ocal =−
N−1∑
i=0

α(1− p∗
i )

γ log p∗
i(3.11)

where yi represents the label, pi represents the prediction probability, α is a hyper-

parameter set according to diverse datasets, and (1− p∗
i )

γ is treated as a modulating

factor with a tunable focusing parameter γ≥ 0. We set α to 0.25 and γ to 2 in our task.

3.3 Experiments and Results

3.3.1 Datasets

We invited three Chinese radiologists with more than five years of working experience to

apply their diagnostic skills to the public COVID-CT [118] and use these image-report

pairs to construct the COV-CTR. All the images are lung CT-scans and collected from the

published papers. The references to these papers are listed in [118]. Notably, the quality

of these images are degraded in following aspects: the Hounsfield unit (HU) values are
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lost; the number of bits per pixel is reduced; the resolution of images is reduced. However,

as explained in [118], experienced radiologists are able to make an accurate diagnosis

from low quality CT images. For example, given a photo taken by smart phone of the

original CT image, experienced radiologists can make an accurate diagnosis by just

looking at the photo, though the CT image in the photo has much lower quality than the

original CT image. Likewise, the quality gap between CT images in papers and original

CT images will not largely hurt the accuracy of diagnosis.

For each image in COV-CTR, we present the related reports and the impression which

indicates the patient is COVID or not. There are 349 and 379 images for COVID and

Non-COVID, respectively. More details and comparisons with other datasets are reported

in Table. 3.1 Medical report generation tasks aim to describe all the visual grounding

in the image with medical terminologies. Therefore, one CT scan is enough for neural

models to diagnose.

Table 3.1: Statistics of COV-CTR, CX-CHR and Open-IU.

Statistics COV-CTR CX-CHR IU X-Ray
Patients - 35,609 3867
Images 728 45,598 7470
Normalities - 18 -
Abnormalities - 155 -
Vocabulary Size 235 27683 2791
Max. Sen. Num. 14 24 18
Max. Sen. Len. 37 38 42
Max. Rep. Len. 127 216 173
Avg. Sen. Len. 8.197 7.111 6.997
Avg. Rep. Len. 77.274 64.858 32.450

We conduct experiments on both Chinese annotated CX-CHR, COV-CTR dataset and

English described Open-IU dataset in order to validate the robustness and generalization

ability of ASGK. CX-CHR is a large-scale chest X-ray dataset, constructed by a profes-

sional medical institution, that consists of 35,609 patients and 45,598 images paired with

their corresponding Chinese diagnostic reports. We collect 173 medical tags comprising

155 abnormal terminologies and 28 normal terminologies from the ’findings’ section and

annotate paired images with these tags. Moreover, the COV-CTR datasets consist of 728

images (349 for COVID-19 and 379 for Non-COVID) collected from published papers and

their corresponding paired Chinese reports. We perform the same operation described

above and collect 68 tags (50 abnormalities and 18 normalities). We adopt the same
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Chinese textbook when conducting experiments on two Chinese datasets. We tokenize

all reports and the medical textbook and filter tokens with a minimum frequency of

three, which results in 27683 unique Chinese tokens covering over 98.7% of words in the

corpus including four special tokens pad, eos, sep and unk. On both Chinese datasets, we
randomly split the data into training, validation, and testing sets using a ratio of 7 : 1 : 2;

there is no overlap between these branches.

We perform the same operations on the Open-IU dataset to clarify the performance of

our ASGK to generate English medical reports, we collected medical papers‚Äô abstracts

from Pubmed to construct the English Medical Textbook and provide the external signals

with 2791 unique English tokens. Then we included 20 finding keywords as disease

categories the same as [116] to extract the internal signals.

3.3.2 Evaluation Metrics

Figure 3.3: We evaluate our model each epoch and report BLEU-4 and CIDER values on
validation and testing sets.

Following [49], we adopt three kinds of metrics to evaluate our approach. Firstly, we

use area under the curve (AUC) to evaluate the performance of all medical tag classi-

fications. We compare our approach with existing approaches, including conventional

natural image captioning models and typical medical report generation pipelines on the

metrics including CIDER-D [97], ROUGE-L [60], BLEU [76] and clinical efficacy. Most

existing medical report generation approaches adopt the BLEU-4 as the primary metric.

However, as shown in Fig. 3.3, the model achieves a high BLEU value in the first epoch,

where all outputs of models are the same. Obviously, BLEU has limits on evaluating

medical reports. Compared with BLEU, CIDER pays more attention to the different

words between each sentence, and most of the words describe abnormal terminologies in

25



CHAPTER 3. AUXILIARY SIGNAL-GUIDED KNOWLEDGE ENCODER-DECODER

this task. Therefore, we adopt the CIDER as our primary metric. We also conduct human

evaluation, inviting senior radiologists to judge the quality of generated reports. Specifi-

cally, we randomly select 200 samples from the testing set and generate corresponding

medical reports using CoAtt [39] and our approach. Then we invite senior radiologist to

find which predicted reports are described the given images more accurately.

3.3.3 Training Details

The whole network is implemented using a PyTorch framework based on Python 3.6 and

trained on two GeForce RTX 2080Ti GPUs. We adopt DenseNet-121 with no pretraining

as the backbone to extract visual features. There are three steps in our training process:

external auxiliary signal-guide pretraining, DenseNet pretraining, and internal auxiliary

guide training. In the first step, the maximum length of the sentence is 300 (padded

with 0s), and the word embedding dimension is 300. We train ASGK for 30 epochs until

convergence. The natural language decoder consists of three blocks. We adopt ADAM

for optimizing and the training rate is 5e-4. For the second step, we resize the image

to 224×224 for both global and region images. The batch size is 32. We jointly train

two DenseNets for 50 epochs until convergence. The learning rate starts from 1e-2 and

delays by 0.1 every 10 epochs until 1e-5. We threshold the heat map by 0.7 to acquire

region images. We adopt the model that achieves the best performance on test datasets

as a visual extractor in the third step. In the final step, we resize the images to 224×224
and train the entire network for 30 epochs until convergence. The learning rates for the

visual extractor and ASGK are 1e-5 and 5e-4, respectively. We also adopt the ADAM

optimizer to minimize the loss function. Among the multi-tasks, we set all loss weights

to 1.

3.4 Results and Analysis

3.4.1 Automatic Evaluation

Table 3.2 summarizes the performances on the automatic evaluation metrics of different

models. The results on both datasets indicate that ASGK outperforms all existing state-

of-the-art models through its exploitation of auxiliary signals to guide the framework in

knowledge pretraining and knowledge transfer procedures. The results demonstrate the

robustness and superior generalization ability of ASGK. We also combine our medical

graph encoder with V-Bert [19] and V-GPT[83] in order to validate the capability of the
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Table 3.2: Evaluation metrics on CH-CHR and COV-CTR datasets comparing ASGK with
other methods. C and R are short for CIDER-D and ROUGE-L. B-n denotes that the
BLEU score uses up to n-grams. Hit represents the human evaluation results.

Dataset Model C R B@1 B@2 B@3 B@4 Hit(%)

CX-CHR

CoAtt 273.5 64.5 64.7 57.5 52.5 48.7 8.0
HRGR 289.5 61.2 67.3 58.7 53.0 48.6 -
KERP 285.0 61.8 67.3 58.8 53.2 47.3 -
V-BERT 302.4 63.7 68.6 60.1 54.1 50.3 19.0
V-GPT 301.8 63.0 67.9 59.6 54.0 48.7 -
SAT 311.2 63.3 62.3 55.2 53.9 48.1 -
R2Gen 310.2 63.3 68.1 60.2 54.3 50.1 -
Ours 324.5 64.1 68.6 60.8 55.8 52.3 20.0

COV-CTR

CoAtt 67.2 74.8 70.9 64.5 60.3 55.2 25.0
SAT 65.9 72.3 69.7 62.1 56.8 51.5 -

AdaAtt 68.2 72.6 67.6 63.3 59.6 51.4 -
V-BERT 68.4 74.7 71.0 65.3 60.6 55.8 26.0
V-GPT 68.0 74.6 70.8 64.5 60.0 54.9 -
R2Gen 67.2 73.2 69.3 61.1 55.9 51.8 -
TopDown 63.1 72.1 70.5 65.3 60.9 56.1 -
Ours 68.4 74.6 71.2 65.9 61.1 57.0 27.0

language-to-vision transfer. We adopt CIDER-D as the main metric to validate our model.

On the large-scale CX-CHR dataset, ASGK significantly boosts performance compared

with other baselines, it increases the CIDER score by 51.0, 35.0, 39.5, 22.1 and 22.7

respectively. It is observed that ASGK achieves a slightly low ROUGE-L score than the

CoAtt[39] method. We speculate the reason is that ROUGE-L is proposed to calculate

the longest common subsequence among the ground truth and predicted reports. In the

meantime, it fails to evaluate sentences’ frequency. Our ASGk can generate fine-gained

sentences covering more abnormal terminologies. But, there are some subtle differences

between the way they are expressed and the ground truth report. ASGK also outperforms

other baselines in COV-CTR dataset.

Compared with the results present in Table 3.3, ASGK performed better than

TieNet [103], CARG [68], SentSAT [113] and SentSAT+KG [116]. The most Cider score

indicates that our generated reports have the least redundancy as there are many simi-

lar sentences used in each medical report to describe the normal terminology in which

patients care less.
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Table 3.3: Comparison of report generation models on three metrics on the Open-IU
dataset. As some of their works are outsourced, we directly use the results reported in
their papers.

Model Bleu-4 Cider-D Rouge-L
CARG [68] 11.3 - 35.4
KERP [49] 16.2 28.0 33.9
TieNet [103] 8.1 - 31.1
SentSAT [113] 14.3 26.8 35.9

SentSAT+KG [116] 14.7 30.4 36.7
Ours 12.5 30.6 27.9

3.4.2 Medical Tags Classification

The AUCs of medical tag classification, which contains both normal and abnormal

terminologies on both datasets, are presented in Table 3.4. Our framework, which is

guided by two auxiliary signals, outperforms the baseline on both datasets. Baseline

outputs are predicted by a DenseNet-121 without pretraining. We attempt to boost the

performance through the use of internal auxiliary signals and the adaptation of focal loss

to balance the deviation. This demonstrates that internal auxiliary signals effectively

promote the medical graph encoder and facilitate the medical tag classification.

3.4.3 Human Evaluation

Given 200 random images from these two datasets equally, we invited three radiologists

to evaluate the corresponding outputs of our methods, CoAtt[39] and Vison-Bert[19].

They are encouraged to select a more accurate result from each pair. The human eval-

uation results are presented in Table 3.2. It shows that in the CX-CHR and COV-CTR

datasets, radiologists thought 20%, and 27% portions of our reports are more accurate

than others’ respectively, and while they thought 53%, and 22% portions of results are

same. The human evaluation demonstrates that our method is capable of generating

accurate and semantic-coherent reports.

3.4.4 Visualization

An illustration of heat maps, suspicious regions, is presented in Figure 3.4. It is clear

from the results that suspicious regions suggest the region on which the model should

focus. For example, in the first row, the auxiliary region focuses on the inferior lobe of

the left lung which presents a shadow. In the fourth row, moreover, the auxiliary region
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.

focuses the inferior pleural of the left lung, which covers ground-glass opacity, one of the

symptoms of COVID-19.

Figure 3.5 shows the illustration of medical tag graphs, and paragraphs of medical

reports. The medical tag graph demonstrates that ASGK is capable of encoding input

features into a high-level knowledge graph; as we lack the ground truth of the corre-

sponding graph, we train in an end-to-end way to encode the graph. The generated

reports demonstrate the high quality and provide significant alignment with the ground

truth.

3.4.5 Ablation Studies

We conduct ablation experiments to compare the performance of the two auxiliary signals.

Table 3.4 presents the results of automatic evaluation metrics and tag classification. The

baseline represents the direct training of the ASGK model without any auxiliary signals.

In addition to extra notes, we adopt focal loss as our training strategy.

29
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Figure 3.5: Sample output of our approach on both CX-CHR and COV-CTR datasets.
In the medical tag graphs, we show the nodes whose value (which is equal to the
classification probability) exceeds 0.5 and edges whose weights are more than 0.3. To
read the image clearly, we show the values of some edges in the appropriate places.
The underlined text indicates alignment between ground truth reports and generated
reports.

3.4.5.1 Do internal auxiliary signals help?

From Table 3.4, we can determine that auxiliary signals significantly boost the tag

classification performance and improve the quality of generated reports. The internal

auxiliary signal-guided learning outperforms the automatic metrics 15.6%, 1.4% and 0.6%

respectively, and also performs 4.5% better than the baseline in terms of classification

accuracy on the CX-CHR dataset. The quality of the medical tag graphs significantly
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Table 3.4: Ablation studies for different auxiliary signals. IA, EA and CE are short for
“internal auxiliary signals”, “external auxiliary signals’ and “cross entropy”. Four metrics
are adopted to evaluate our model on two datasets.

Dataset Model CIDER-D ROUGE-L BLEU-4 AUC

CX-CHR

baseline 289.7 61.3 48.3 78.7
baseline+IA+CE 304.6 62.5 48.9 82.1
baseline+IA 305.3 62.7 49.1 83.2
baseline+EA 317.2 63.8 52.0 79.3

baseline+IA+EA 324.5 64.1 52.3 85.9

COV-CRT

baseline 59.1 68.3 52.5 72.7
baseline+IA+CE 61.3 70.2 54.1 79.0
baseline+IA 62.8 70.5 54.2 79.7
baseline+EA 66.9 72.0 55.6 74.5

baseline+IA+EA 68.4 74.6 57.0 80.4

impacts the natural language decoder. We produce internal auxiliary signals to mimic

radiologists’ working patterns, since abnormal regions provide richer visual features.

These experiments demonstrate that focusing on abnormal regions benefits the detection

of medical tags and the generation of medical reports.

3.4.5.2 What is the use of focal loss?

Radiologists are asked to describe all of their observations on one medical image, which

leads to serious data deviation on medical tag labels and reports. Typically, each image

contains three to five normal tags and a few abnormal terminologies. To alleviate the

deviation in multi-label classification tasks, we adopt focal loss in order to optimize the

parameters in DenseNet and the medical tag decoder. When the second and third rows

are compared, the performance shows its capability to balance deviation and improve

AUC metrics. Without focal loss, the performances on AUC metrics decrease by 0.9% and

0.7% respectively on the two datasets.

3.4.5.3 Are external auxiliary signals useful?

The external auxiliary signals guide the pretraining procedure to assist the model in

memorizing and phrasing medical knowledge. As expected, ASGK benefits a lot from the

pretraining procedure. The performance on automatic metrics are boosted substantially

from 289.7% to 317.2% and 59.1% to 66.9% on the two datasets respectively, which

indicates that external auxiliary signal-guided training is capable of generating accurate

and semantically coherent sentence. However, it improves the classification accuracy

31



CHAPTER 3. AUXILIARY SIGNAL-GUIDED KNOWLEDGE ENCODER-DECODER

slightly, by 0.6%, and 1.8% respectively on the two datasets, which demonstrates that

exploiting medical domain knowledge primarily promotes the natural language decoder.

Furthermore, our findings show that without external auxiliary signals, the model fails

to alleviate the data bias and is therefore prone to repeating several specific words and

sentences in one report.

Overall, the internal signals mainly facilitate the medical tag encoder’s effectiveness

in generating fine-grained sentences and describing more medical tags. The external

signals enable the natural language decoder to generate more semantically coherent

sentences.

3.5 Broader Impacts

This work practically analyzes a meaningful task combined with the computer vision and

natural language processing task, medical report generation. Especially when pandemic

happens like COVID-19, robust and accurate medical report generation technology

is of great clinical value, which can reduce the burden on doctors and enable people

to more accurately grasp their health status. We propose an anthropomorphic model,

mimicking radiologists’ working patterns, to promote the medical report generation

task via acquiring easily-accessed auxiliary signals. This approach may inspire those

researchers who have limited access to medical image resources to dig deeper into

adopting unsupervised learning methods to acquire more auxiliary signals to supervised

this task and achieve state-of-the-art performances. However, it still needs more effort to

provide theoretical interpretation for these auxiliary signals. And our algorithm should

be utilized carefully in clinical practice since medical decisions may lead to live-or-death

consequences.

3.6 Conclusions

In this section, we proposed an Auxiliary Signal-Guided Knowledge Encoder-Decoder

approach that mimics radiologists’ working patterns to generate fine-grained and seman-

tically coherent medical reports. We investigated how to best crop the auxiliary region

from the global medical image, how to exploit medical domain knowledge from medical

textbook, and how these auxiliary signals work. Experiments demonstrate that ASGK

outperforms existing methods and boosts the performance of medical report generation

tasks on report generation and tag classification on two medical datasets. Moreover, we
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have constructed and released a new medical report dataset, COV-CTR, to contribute to

the community.

However, our COV-CTR is a relatively small image and report dataset, which poses

a more challenging task to the current data-greedy deep learning based networks.

We solved this problem by adopting external signals from online medical textbooks

to pretrain the knowledge encoder and natural language decoder. However, it will be

complicate and time-consuming to collect different modality textbooks.
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4
CROSS-MODAL CLINICAL GRAPH TRANSFORMER

TOWARDS EXPLAINABLE AND RELIABLE OPHTHALMIC

REPORT GENERATION

4.1 Introduction

4.1.1 Fundus Fluorescein Angiography Examination

The World Health Organization (WHO) estimates that 2.2 billion people have visual

impairments, and 500 million of them are caused by specific retinal diseases such as

age-related macular degeneration (AMD) and diabetic retinopathy (DR)[80]. FFA is

one of the most common and essential examination methods in the differentiation,

diagnosis, treatment, and prognosis of fundus ophthalmic diseases. FFA is a kind of

dynamic imaging procedure, and as shown in Fig. 4.1, with sodium fluorescein flowing

through the blood into the fundus vessels, the whole procedure can be divided into

five parts: Preaterial, Arterial, Arteriovenous, Venous, and Late period. At different

periods, ophthalmologists determine different diseases based on the morphology of

different lesions. For example, the nature of new blood vessels in different areas from the

fluorescein leakage pattern, the scope and size of the non-perfusion area of the retina.

After browsing all the FFA images, ophthalmologists will select several typical FFA

images according to their observations and write a report summarizing their findings.

This process of reading and interpreting dozens of FFA images is laborious.
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Figure 4.1: Patient can receive one CFP image or series of FA images from one diagnosis.
Compared with CFP, FA images can present more details about each part of retinal and
blood vessel.

Compared with Color Fundus Photography (CFP) imaging, FFA is a high-cost, inva-

sive and complex imaging method but has a high confirmation rate. As some patients

may be allergic to fluorescein, FFA is also not suitable for large-scale screening. There-

fore, it is challenging and costly to collect large-scale data set FFA images and reports,

making the FFA-IR collection highly valuable. A practical, interpretable, and reliable

MRG model derived using FFA-IR can assist ophthalmologists in understanding these

images and improve the conventional retinal disease diagnosis procedure.

4.1.2 Problem Statement

In this section, we aim at proposing an explainable and reliable ophthalmic report

generation (ORG) model to assist ophthalmologists in improving diagnosis efficiency and

accuracy. To achieve this goal, we should first construct a reliable and large-scale ORG

benchmark, FFA-IR, and then design a data-driven neural network to automatically

predict reports.

4.1.2.1 Medical Report Generation Benchmarks

Although DNNs-based methods have made some promising progress in the field of MRG,

the black-box characteristics of DNNs discourage specialists and patients from trusting

the predicted reports in clinical practice since medical decisions may have life-or-death
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consequences. To address this limitation, researchers have explored text-image attention

mappings [14, 39] to explain the automatic generation procedure. However, the accuracy

of these explanations is unclear. Since existing MRG datasets fail to provide explainable

annotations, development of interpretable MRG methods to improve trustworthiness is

a great challenge.

Besides explainable annotations, the lack of reliable evaluation tools hinders research

advances. Natural-language generation (NLG) metrics, including BLEU [76], CIDER [97],

Meteor [6] and Rouge [60], have been widely used to evaluate the quality of the predicted

reports. These methods focus on the linguistic similarity of target and source sentences

and are based on counting the occurrences of overlapping N-grams, in which they treat

each word in the sentences equally. They ignore the fact that certain words carry more

weight in specific contexts. For image reports, identified lesions and their corresponding

attribute descriptors are most important in diagnosis. Thus, these terms should carry

larger weights in report quality evaluation than other words [116]. In addition, serious

data bias commonly exists in medical reports. For example, a majority of the sentences

in reports are descriptions of normal findings. In this context, overall performance

in terms of standard NLG metrics will appear to be promising, although models are

underfitting, particularly sentences describing abnormal findings and prone to repeat

common sentences.

4.1.2.2 Clinical Knowledge Driven Medical Report Generation Approaches

Despite significant progress in generic image captioning models[3, 12], when transferring

them into medical knowledge-driven tasks, they fail to achieve promising and competitive

performance due to a lack of prior medical knowledge. When describing ophthalmic

images, ordinary people can only recognize the common visual information, such as

the shape and color, while ophthalmologists make inferences with their prior clinical

knowledge. For models to achieve this capability, recent work explores the incorporation

of medical knowledge to enhance diagnostic models [50, 65, 116].

On the one hand, researchers[50] have explored graph structure weights as posterior

knowledge to alleviate the textual bias. In each graph, the nodes are observed abnormali-

ties selected from prior knowledge, such as external medical corpus, and the nodes are the

predicted weights correlating each pair abnormalities. However, the weight graph limits

the effectiveness of the knowledge graph from two aspects. Firstly, some entities are

extracted from the external medical corpus or knowledge graph database separated from

the training corpus. These entities will bring in a heterogeneous embedding space[70]
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which makes the embedding vectors inconsistent. Secondly, there are no ground truth

weights to supervise the message passing procedure, and the model is still prone to be

distracted by the visual bias in medical images[65]. On the other hand, a universal graph

is proposed with prior knowledge on 20 chest findings[116] to enhance models. Since

these findings are not always depicted in one report, incorporating all this knowledge

may divert the visual features from their original meaning.

4.1.3 Summary of Achievements

4.1.3.1 FFA-IR Benchmark

On the one hand, we first present a new benchmark, FFA-IR, towards an explainable

and reliable MRG benchmark based on FFA Images and Reports. There are two main
motivations for building and releasing FFA-IR. In terms of clinical application, FFA is

one of the most commonly used imaging methods for the diagnosis of retinal diseases [5].

Compared with other imaging methods, FFA can significantly improve the positive

diagnosis rate. Thus, there is an urgent need to collect large-scale FFA datasets with

images and reports. In terms of scientific research, FFA-IR also provides a new challenge

to MRG researchers. Compared against existing MRG datasets [17, 40], which provide

only one or two views for each case, FFA-IR provides dozens of medical images for each

case. Among these given medical images, only a few may capture lesions. In addition,

the lesions are usually localized in a small area of the global image. Thus, we cannot

simply concatenate the visual features from different views, as in traditional MRG

methods [14, 49, 116] do, because other features will inundate lesion features in the

same channel after concatenation.

The unique features of FFA-IR include:

• A large-scale medical dataset. Our FFA-IR contains 10,790 reports describing

1,048,584 FFA images in total, representing the most significant number of medical

images among the existing medical report datasets. All these data are collected

from real-world clinical practice and accurately represent the practical writing

patterns of ophthalmologists.

• Explainable annotations. Compared with other datasets, our FFA-IR includes

annotations of 46 categories of lesions with a total of 12,166 regions along with

FFA images and reports to make the diagnosis process more explainable.
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• Bilingual reports. The original reports obtained in the dataset are in Chinese. To

make the dataset more broadly accessible, we also provide translations of these

reports in English. The translations were derived from automatic translation

followed by expert humans correction.

4.1.3.2 Cross-modal Clinical Graph Transformer

On the other hand, we propose a Cross-model clinical Graph Transformer (CGT) for
ophthalmic report generation (ORG). In particular, we first invoke an information extrac-

tion scheme based on a natural language processing pipeline, including named entity

recognition and entity linking, to obtain a clinical knowledge graph. As discussed in

[36], the structured clinical information behind the free-text reports can enhance the

diagnostic methods. In addition, the entities and relations in our clinical graph are in

the homogeneous embedding space with the training corpus. Given a set of ophthalmic

images, the extracted visual features are transformed to a compressed visual token and

a subgraph with relevant restored triples. Since the sub-graph is not guaranteed to be a

completely accurate representation of the given images and natural noise exists in the

clinical graph, we adopt a cross-modal encoder to encode the universal feature token and

sub-graph information. To avoid influence from unrelated entities, a visible matrix is

introduced during the cross-modal encoding process. Finally, reports are generated via a

Transformer[96] decoder.

We also conduct extensive experiments on our FFA-IR benchmark[55]. Experiments

show that our CGT achieves the state-of-the-art performance of predicted reports under

four automatic evaluation metrics and high AUC scores for the restored triples, providing

a solid rationale for the explanation.

4.2 FFA-IR Benchmark

In this section, we introduce the process to build FFA-IR, a dataset focusing on diagnosing

FFA images. In general, for each case, we provide: 1) the clinically annotated Chinese

reports and the translated English reports; 2) annotated lesion information, including

lesion category and regions on FFA images, to explain the diagnostic procedure. We

summarize our process for creating FFA-IR in Figure 4.2.
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Figure 4.2: Process for creating FFA-IR. Firstly, we collect FFA images and reports from
the clinical practice. To translate the reports, we invited bilingual ophthalmologists
to proofread the automatically translated documents. They also labeled the described
lesions along with FFA images and reports to provide explainable annotations.

4.2.1 Data collection and Annotation

The data were collected from patients at the Zhongshan Ophthalmic Center of Sun Yat-

Sen University in Guangzhou, China, during the period between 11/2016 and 12/2019.

Institutional review board (No.2021KYPJ039) and ethics committee approval were

obtained in Zhongshan Ophthalmic Center, Sun Yat-Sen University. This study followed

the tenets of the Declaration of Helsinki [4]. All angiography images and reports were

anonymized and de-identified before the analysis.

During the data collection period, our system captured 15,232 reports, containing

findings, impressions, and clinical information, along with 1,716,825 DICOMs in which

clinical information and pixel values of FFA images are stored. However, we removed

some reports and FFA images due to data quality issues. First, there were some reports
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that could not be matched to FFA images with the same case ID number; Second, the

pixel values were missing for some images when we converted the DICOMs to JPG

pictures; Third, some reports were incomplete, with key information like findings or

impressions missing. After processing the raw data, we finally obtained 10,790 reports

with 1,048,584 FFA images for our FFA-IR data set.

4.2.1.1 Annotator Information

The original medical reports were generated by about 12 ophthalmologists of the fundus

department. Around five ophthalmologists with 1-3 years of experience in fundus diseases

generated reports under the supervision of residents or attending physicians in fundus

specialty. About 3-4 residents or attending physicians in total, each with over five years

of experience in the clinical retina, all of whom created reports independently. Finally,

3-4 senior retinal specialists with the title of professor or associate professor had been in

the field of the retina for more than 15 years. They either wrote reports independently or

helped make final decisions on complicated cases.

For image labeling and annotation, three ophthalmologists with about 2-5 years of

experience in ophthalmology labeled lesion regions on FFA images. 2 residents with

more than seven years in ophthalmology verified all lesion labels. One professor and one

associate professor in ophthalmology checked the accuracy of the random sample of the

labels and helped make final decisions on complicated cases. Images with problematical

labels were discussed until all specialists agreed on the grading.

4.2.1.2 Explainable Annotations

Our FFA-IR annotation schema includes 46 categories of retinal lesions, such as Cystoid

Macular Edema (CME) and Diabetic Macular Edema (DME). The schema was developed

by the ophthalmologists based on their expert knowledge, and covers most typical retinal

lesions. The schema can be viewed as defining the set of ”explanations” that are relevant

to the interpretation of the FFA images.

The ophthalmologists annotated each lesion with its minimum enclosing rectangle

and providing the lesion category. All the lesions in one FFA are recorded in a dict format,

and the key name is the combination of the case ID and the image name while the value

is a list data, and each element contains the category and positional information.

The medical reports aim to describe the size, location, and period of detected lesions

on the corresponding images. Therefore, any lesions annotated on the images should

also be described in the report. The terms corresponding to each of the 46 categories
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of retinal lesions can be identified in the reports, and used to evaluate the accuracy of

explanations generated by the models. Effectively, the schema serves as prior medical

knowledge that enables connecting the visual features on the images and the linguistic

information describing those features.

4.2.1.3 Bilingual Reports

To make the dataset more broadly accessible, we translate these reports to English and

provide bilingual reports for each case. As it is laborious to translate tens of thousands

of reports, we firstly uses DeepL Translator[105] to automatically translate all the

reports and invited the bilingual ophthalmologists to proofread these reports. Due to

the particularity of the Chinese language, we also provided a vocabulary containing

medical nomenclature to help researchers tokenize the Chinese reports. Along with the

bilingual reports, FFA-IR is the first benchmark to evaluate qualitative and quantitative

influences of different languages on MRG methods. Thanks to these bilingual reports,

FFA-IR can also facilitate the development of multi-modal machine translation models.

4.2.2 Dataset Statistics

We report the statistics of our FFA-IR in Table 4.1. In total, our FFA-IR dataset contains

10,790 cases describing 1,048,584 FFA images. For each case, FFA-IR provides FFA

images, free-text reports, and explainable annotations.

Five percent of the cases in FFA-IR are entirely healthy and are negative training

samples.1 Consistent with most large-scale datasets for deep learning research, we cre-

ated standard splits, separating the whole dataset into 75%,10%,15%, i.e., 8,016 (train),
1,069 (val), and 1,604 (test) cases, respectively. The vocabulary sizes of English and

Chinese reports are 918 and 6,181, respectively. The training corpus covers most of the

words, with words appearing less than 3 times in the corpus replaced by <unk> during

the training process. Training Chinese models requires a larger wording embedding

space which may influence the efficiency. Furthermore, there is no obvious data bias in

the Gender and Age distributions. There are slightly more reports describing the left eye

than the right in FFA-IR. The resolutions of FFA images in FFA-IR range from 384×384
to 3216×2696.

1We note that this data set may therefore differ from data sets derived from diagnostic screening
applications (such as breast cancer screening), where the positive samples would be expected to be in the
minority.
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Table 4.1: The FFA-IR dataset statistics, where ∗ represents the average number.

Attribute
Train Val Test

En Zh En Zh En Zh
Report Length∗ 63.4 91.3 63.6 91.1 63.5 91.0

Vocabulary(%) 89.1 95.4 39.0 68.1 46.1 73.6
Case Number 8,016 1,069 1,604

Healthy(%) 5.6 6.1 5.5
Unhealthy(%) 94.4 93.9 94.5

FFA Image∗ 87.2 87.3 86.0
Gender Male(%) 55.6 54.4 57.8

Female(%) 44.4 45.6 42.2
Eyes Right(%) 29.0 30.1 29.7

Left(%) 39.6 38.2 40.1
Both(%) 31.4 31.7 30.2

Age Average 47.7 47.6 47.8
Range 3∼92 3∼87 4∼91

Lesion Number 9,336 1,220 1,610
Category 46 46 46

4.2.3 Data and Code Availability

Our dataset with all images and documentation, including bilingual reports, findings, ex-

plainable annotations, and lesion code dictionary, is hosted and maintained on PhysioNet

under the following license: PhysioNet Credentialed Health Data License 1.5.0. It can be

accessed at the following link: https://physionet.org/content/ffa-ir-medical-report/1.0.0/.

Our start up codes can be accessed at https://github.com/mlii0117/FFA-IR, under the

MIT licences.

4.2.4 More Data Usage Discussion

Our FFA-IR data set can be used in various medical image analysis domains along

with explainable annotations and bilingual reports. We highly recommend three cases.

The first one is to develop an explainable and reliable MRG model to describe lesions

relating to retinal diseases identified in FFA images, in Chinese or English language

reports. Secondly, due to the dynamic imaging procedure, exploring the use of temporal

information or interactions between related images to improve lesion detection or disease

classification should be encouraged. The last case is to develop a multi-modal machine

translation model. It would be interesting to investigate whether medical images can

facilitate aligning the source and target sentences in the latent space. There are limited
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resources available for machine translation in biomedicine, with existing resources

focusing primarily on scientific literature [7, 37].

Prior errors may exist due to the unbalanced distributions across attributes, such

as gender and age. As recommended by Saahil et al.[36], researchers should audit

performance disparities across these attributes when developing clinical models.

4.3 Cross-modal Clinical Graph Transformer

In this section, we introduce the clinical graph extraction scheme, and the process

is shown in Figure 4.3. Then we detail the implementation of CGT, and the overall

framework for ophthalmic report generation (ORG) is presented in Figure 4.4.

4.3.1 Notation

In ORG task, given a set of FFA images which represented by I = {x1,x2, . . . ,xNi}, where

x j and Ni refer to the j-th FFA image and the number of total images, model is asked

to generate a descriptive report encoded as R = {y1, y2, . . . , yNr}. While we denote the

ground truth report by R̂ = { ŷ1, ŷ2, . . . , ŷNr̂}. We extract entities and relations from all

the training R̂ to construct a clinical graph (CG), denoted as G , which is a collection

of triples ϵ = (es, r, eo), where es and eo denote the names of subjective and objective

entities, and r is the relation between them. All the triples are in CG, i.e., ϵ ∈G . In this

work, English tokens are taken at the word-level and each token yi, e i and r i are in the

same vocabulary V whose size is dV to make all the embedding vectors consistent.

4.3.2 Clinical Graph Extraction Scheme

Recently, extracting clinical information from medical reports has received increasing

attention[36, 107]. The structured clinical information within the free-text reports is

valuable for clinical reasoning and a variety of critical healthcare applications. We

believe that ORG is one such application. However, due to the huge domain discrepancy

between different medical models, transferring information from existing biomedical

knowledge databases is unlikely to be effective. In this subsection, we will introduce

our information extraction scheme to detail how we construct a clinical graph G from

ophthalmic reports. This scheme is implemented by a SpaCy[73] natural language parser

in an AI accelerating human-in-the-loop manner[108]. Notably, the ophthalmic reports

used in this scheme are all derived from the training set to avoid target leakage.
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Figure 4.3: Process for extracting entities and relations from ophthalmic reports.

Table 4.2: Statistics of our clinical graph.

# Entities # Relations # Triples
1,811 29 4,823

To save the writing space, we take one sentence, “Spotted obscured fluorescence
(hemorrhage?) was seen at the inferior edge of the macular arch ring during left eye
imaging.” from an ophthalmic report as an example, and the whole process is shown in

Figure 4.3. Our scheme contains seven steps by following: Tokenization, taking the
sentence into word-level and segmenting tokens into words, punctuation marks etc; Part-
of-speech tagging, before automatically recognizing the relations between each pair
tokens, we assign work types to each token, such as verb or nun; Dependency parsing,
assigning syntactic dependency labels to describe the relations between individual tokens,

such as ‘spotted’ is the attributive of subjective ‘fluorescence’; Lemmatization, digging
the base form of tokens. For example, the lemma of ‘was’ is ‘is’; Sentence boundary
detection, finding individual sentences to prevent the calculation across sentences;

Named entity recognition, we create a user-dictionary to assist the machine in

recognizing rare ophthalmic terminologies, such as ‘macular’; Entity linking, linking
entities with their relation to creating triples. Triples extracted from the sample are

“fluorescence, seen, macular” and “hemorrhage, seen, macular”, respectively. Then we

collect all the unique triples to construct the whole clinical graph G . In total, our clinical
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Figure 4.4: Illustration of our proposed cross-modal clinical graph transformer. Visual
features extracted by an I3D are utilized to restore sub-graph information and com-
pressed to one visual token. Then the cross-modal information encoded with visible
matrix masked multi-head attention is used for report generation.

graph contains 4,823 triples, and more details are presented in Table 4.2.

4.3.3 CGT Framework

The traditional report generation models are based on an encoder-decoder architecture.

Among all the encoder-decoder frameworks, Transformer[96] has achieved great success

in various tasks. Therefore, we adopt a Transformer, the backbone of our proposed CGT,

to describe ophthalmic images from the FFA-IR benchmark. As shown in Figure 4.4,

our CGT is composed of a visual extractor, a graph construction module, a cross-modal

encoder, and a language decoder.

4.3.3.1 Visual Extractor

Different from describing radiology images, the average number of input images for each

case is 97 in the FFA-IR. Despite the benchmark proposed by [55] is adopting lesion

features via a Faster-RCNN[84], we utilize an I3D2 model pretrained on Kinetics[11] to

extract visual features from given images. Due to the reason that the entities in our CG

contain both abnormalities and normal tissues, while the lesion information provided

2https://github.com/piergiaj/pytorch-i3d
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by the FFA-IR is all about the lesions or abnormalities. This data bias may mislead the

message passing inter the CG.

Since the image numbers are different among each case, we first transform the given

images and set a fixed length of 96 for all the input images. For those whose length

is more than 96, we randomly down-sample some images. In contrast, we repeat the

whole sequence until its length is 96, when its length is below the threshold. The I3D

model extracts one feature from every eight images, and the final visual features can be

denoted as fV = { f1, f2, . . . , f12}, where f i ∈R12×1024.

4.3.3.2 Graph Restoration Module

The graph construction module is proposed to restore a sub-graph according to the visual

features generated by the visual extractor. The sub-graph encoded as Gs = ϵ1,ϵ2, . . . ,ϵN gs

is a combination of triples. The whole process can be written as follows:

Gs = max(0;BN(conv3×3( fv)))Wf +b f(4.1)

where max(0;∗) and BN represent the ReLU activation function and batch normalization

operation, respectively; Wf ∈R1024×dV denotes learnable matrix for linear transformation,

while b f refers to the bias terms. Firstly, we adopt a convolution layer with a 3×3 kernel
followed by an operation sequence of batch normalization and ReLU activation to fuse

the temporal information inside the fv. Then the output has been projected by a linear

transformation layer to the dimension of d = dV . As mentioned, all the tokens in CG are

in the same vocabulary with the training corpus; then, each vector is used to restore the

index of entity or relation in V .

4.3.3.3 Cross-modal Encoder

In this module, the visual features, and the graph information are encoded by self-

attention mechanism[96]. The input of the cross-modal encoder comes from the visual

extractor and the graph restoration module. As mentioned in [65, 104], serve visual bias

exists in most medical datasets for two reasons: the abnormal regions only take a small

portion of the whole image, and the human tissues are highly similar. To alleviate the

impact of visual bias, we compress the fv into one compressed visual token, encoded

as Tv ∈Rd, and concatenate it with a sub-graph before fed to the embedding layer. The

compressed visual token has two more advantages. Firstly, it promises that the sub-graph

information is dominant to the input features. More importantly, it can be used to resist
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the inevitable noise inside the clinical graph adaptively since the knowledge graph can

not be completely accurate.

We utilize an ‘argmax’ function on Gs and transform it into the one-hot format to

represent the sub-graph, represented as Tg = {t1, t2, . . . , tNt|ti ∈Rdv}. After concatenation,

we feed the cross-modal tokens, encoded as T = {Tv,Tg}, to the embedding layer. The

function of the embedding layer is to convert the cross-modal tokens into embedding rep-

resentations. Similar to the BERT[19], the embedding representation of CGT is the sum

of three parts. Firstly, each token in Tg is converted to an embedding vector of dimension

d = 512 via a trainable lookup table. Different from BERT, the classification tag [CLS] is
replaced by Tv. Secondly, position embedding is added to the token embedding, and the

formulation is written as follows:

PEpos,2i = sin(pos/10002i/d)(4.2)

PEpos,2i+1 = cos(pos/10002i/d)(4.3)

where pos is the position of each token, i is the index of embedding dimension, and d is

the dimension of the hidden states. Lastly, segment embedding is employed to identify

each sentence. Notably, we find that most sentences in the training corpus contain two

triples. Therefore, we consider every six tokens as a sentence. The T is marked with

a sequence of segment tags, {A,B, . . . ,B,C, . . . ,C}, where A represents the compressed

visual token.

Then the embedded tokens are encoded by a cross-modal encoder, the whole process

of an encoder layer can be written as:

fe(t)= BN(FFN(eattn)+ eattn)(4.4)

eattn = BN(MMHA(t)+ t)(4.5)

Where FFN represents the feed forward layer, and MMHA represents the mask multi-

head attention. The feed forward layer contains two linear layers with ReLU activation.

It makes sure the dimensions of transformer input and output are the same. Another

difference between our CGT and Transformer is that we adopt MMHA instead of MHA
during the encoding process and introduce a visible matrix, Mv, to limit the impact

of unrelated triples. The computation between unrelated triples is useless and untrue,

which may also lead the changes to the original meanings. The visible matrix is presented

in Figure 4.4, and it can limit the message passing inter the sentence or between the

universal token. The MMHA can be written as:

ht
i = softmax(

Qi(Kt)
′
Mvp

d
)Vt(4.6)
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where {Q,K∗,V∗} are the packed d-dimensional Query, Key, Value vectors.

4.3.3.4 Language Decoder

We adopt the vanilla Transformer decoder as our language decoder. The whole process of

a decoder layer can be written as:

fd(y)= BN(FFN(eca ttn)+ eca ttn)(4.7)

eca ttn = BN(MHA(eattn, fe(t))+ eattn)(4.8)

eattn = BN(MMHA(y)+y))(4.9)

where MMHA represents the original masked multi-head self-attention, y is the input of

decoder and yt is the t−th input token in time step t. Cross-attention sublayer receives the
output of encoder fe(t) and previous sublayer eattn. In where, for each head, {Q,K∗,V∗}
comes from Q=Wq ∗ eattn, K=Wk ∗ fe(x), and V=Wv ∗ fe(x), where W∗ is the weight of
a Linear layer. The fd(y) will be sent to a Linear & Log-Softmax layer to get the output

of target sentences. Notably, only token embedding is adopted during the decoding

procedure. The entire recursive generation process can be written as follows:

p(R̂|I)= ∏
t=1

p( ŷt| ŷ1, . . . , ŷt−1, I)(4.10)

4.3.3.5 Objectives

Similar to the image captioning tasks, existing medical report generation approaches

adopt cross-entropy loss to evaluate the differences between the predicted and the ground

truth reports at the word level. Although many works attempt to explore auxiliary signals

to drive the report generation, these signals can not supervise the learning process. For

example, Li et al.[56] introduced an internal visual signal to locate the abnormal regions.
However, there is no ground truth for the abnormal region bounding. Similarly, the

accurate weights correlated paired findings in [49, 116] are also unavailable. Therefore,

the effect of auxiliary signals has been limited.

In this work, we additionally introduce a triple restoration loss [24] to supervise the

sub-graph restoration process since our clinical graph extraction scheme provides the

ground truth structured information. It guarantees that the accurate graph information

will be encoded with the visual features for report generation and is also what makes

this method so effective. The cross-entropy loss that is widely used in classification tasks

can also achieve the similar goals. However, the considerable amounts of target triples

lead to extremely large computation time when operating the Softmax function.

49



CHAPTER 4. CROSS-MODAL CLINICAL GRAPH TRANSFORMER TOWARDS
EXPLAINABLE AND RELIABLE OPHTHALMIC REPORT GENERATION

In sum, the total loss function used in our CGT can be written as follows:

LRG =λCELCE +λTRLTR(4.11)

where λCE and λTR are hyper-parameters balancing two terms. The first loss term LCE

is the cross-entropy loss. The second loss term is the triples restoration loss function to

measure the energy of a knowledge triple. The specific process can be written as follows:

LTR = ∑
ϵ∈G

max(d(ϵ)−d( f (ϵ))+γ,0)(4.12)

where ϵ= (es, r, eo), d(ϵ)= |es+r− eo|, γ> 0 is a margin hyper-parameter, f (ϵ) is an entity
replacement operation that the subjective or objective entity in a triple is replaced and

the replaced triple is an invalid triple in G . Here, es,e and eo are the indexes of the

subjective, relation and objective tokens in V .

4.3.4 Evaluation Metrics

4.3.4.1 Report Evaluation

We employ the automatic metrics and nine kinds of human evaluation results to evalu-

ate the quality of the generated reports. The automatic metrics including BLEU [76],

Cider [97], Meteor[6] and Rouge [60] aim to calculate the similarity between source

and target sentence based on the occurrences of N-gram or word matching. However,

these metrics cannot give reliable evaluations for medical fields as the detection of

positive disease keywords should largely determine the quality of whole reports. There-

fore, we propose a human evaluation of the reports, making use of four experienced

ophthalmologists to answer a series of questions about the generated reports:

H1: Are the left and right eyes identified accurately?

H2: Is the imaging period accurately described?

H3: Does this report describe any lesion?

H4: Is the category of the described lesion accurate?

H5: Is the location of the described lesion accurate?

H6: Is the imaging period of the described lesion accurate?

H7: Fluency of the text, on a scale of [1-5] with 5 most fluent.
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H8: Intelligibility of the text, on a scale of [1-5] with 5 most intelligible.

H9: The time savings (in seconds) achieved with the help of this report.

For binary questions H1-H6, we set “yes” for 1 and “no” for 0.

For H9, ophthalmologists first record the average time to diagnose one case with the

first half samples. Then they will record the average time they used to diagnose one case

with the help of generated reports with the remaining samples.

4.3.4.2 Intersection-Over-Union

The existing methods visualize text-image attention mappings to explain the generation

process. However, few of them justify the accuracy of their explanations due to a lack

of ground truth regions. In FFA-IR, we quantify the accuracy of models’ explanation by

calculating the Intersection-Over-Union (IOU) (or Jaccard similarity) between the lesion-

image attention mapping regions and ground truth regions. Then we draw the minimum

rectangles to cover each maximum connection region. The IOU between generated

rectangles and annotated regions is calculated. However, to capture the semantics of the

annotation, each word in the relevant lesion label must correspond to a word that the

model attends to in order to be counted.

4.3.4.3 Mean Average Precision

Medical reports aim to describe lesions from the given medical images and can be

considered as the interpretable foundations for disease diagnosis. Therefore, we conduct

disease classification experiments and report the mean average precision (mAP) to

compare the accuracy of each model.

4.3.4.4 Area Under Curve

Besides the lesion categories, we have to evaluate the accuracy of restored sub-graph.

Therefore, we calculate the area under micro-average of receiver operating characteristic

curve to verify if our CGT could restore an accurate sub-graph.
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4.4 Achievements And Analysis

4.4.1 Experiments Details

Our CGT and other models are all implemented by Pytorch [77] based on Python 3.7

and trained on four GeForce RTX 2080Ti GPUs. The images are resized to 224 before

being fed into the I3D. The maximum length of T is 90, padded with tag [P AD]. The
embedding space for both visual and graph tokens is 512, and the dimension of the

hidden states in the Transformer is also 512. Both encoder and decoder consist of six

blocks and 8 heads. The ADAM [47] is utilized for optimizing all the parameters in our

CGT, and the learning rate is 1e−4. The whole network is trained for 50 epochs. We

adopt greedy decoding when testing. We use greedy decoding for inference models.

4.4.2 FFA-IR Benchmark

In FFA-IR, we pose a new medical report generation task focusing on describing retinal

diseases on FFA images. We present benchmark results over FFA-IR using baseline and

existing MRG methods.

4.4.2.1 Baseline model

MRG models usually contain two modules, visual extractor, and natural language de-

coder. In this section, we develop three simple, transformer-based [96] baseline ap-

proaches, namely CNN [25]+Transformer [106], I3D [11]+Transformer and Faster-

RCNN [84]+Transformer. Firstly, we use ResNet [25], I3D, and Faster-RCNN as the

visual extractor to extract spatial, temporal, and object features, respectively. For CNN+T,

we employ ResNet [25] to extract the spatial features of each FFA image and then fuse

them and feed 49 visual tokens to a transformer. For I3D+T, we first employ I3D pre-

trained on Kinetics [11] to extract temporal features and pad these features to 49 tokens

and then feed to a transformer. For F-R+T, we first use Faster-RCNN pretrained with our

lesion regions to extract object features. The object features have also been fused before

being sent to a transformer. The batch size of training I3D+T is 32, while others are 2.

4.4.2.2 Existing Approaches

CoAtt[39], Show-Tell[98] and AdaAtt[72] propose similar CNN-LSTM neural network

with different attention methods. Top-Down[3] and Gounded[120] extract object fea-
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Table 4.3: The results of automatic and human evaluations, where B*N represents the
N-gram of Bleu value, H*N represents the index of human evaluation, and T is the short
for Transformer[96].

B1 B2 B3 B4 Meteor Rouge Cider H1 H2 H3 H4 H5 H6 H7 H8 H9
CoAtt[39] 0.313 0.200 0.144 0.111 0.197 0.247 0.254 0.615 0.515 0.430 0.04 0.269 0.315 4.96 4.93 20.9
Show-Tell[98] 0.306 0.197 0.142 0.109 0.191 0.247 0.232 0.646 0.523 0.415 0.02 0.276 0.353 4.96 4.93 19.7
Top-Down[3] 0.320 0.217 0.162 0.127 0.207 0.289 0.363 0.684 0.584 0.430 0.01 0.292 0.376 4.83 4.70 20.9
Gounded[120] 0.396 0.319 0.261 0.218 0.229 0.353 0.576 0.538 0.361 0.423 0.03 0.307 0.292 4.82 4.84 20.9
AdaAtt[72] 0.292 0.181 0.127 0.095 0.205 0.236 0.234 0.553 0.338 0.515 0.06 0.384 0.284 4.96 4.78 18.6
R2Gen[14] 0.330 0.225 0.167 0.132 0.210 0.296 0.367 0.423 0.230 0.507 0.1 0.361 0.176 4.85 4.82 19.8
CNN[25]+T 0.321 0.211 0.154 0.122 0.198 0.268 0.283 0.423 0.238 0.523 0.079 0.369 0.176 4.77 4.76 18.9
I3D[11]+T 0.428 0.341 0.276 0.229 0.213 0.334 0.561 0.530 0.3 0.461 0.092 0.330 0.223 4.86 4.83 20.7
F-R[84]+T 0.443 0.355 0.288 0.240 0.205 0.341 0.590 0.590 0.3 0.576 0.084 0.392 0.215 4.83 4.93 18.4

Table 4.4: The results of IOU between lesion-image mapping regions and ground truth.

B4 C IoU
CoAtt[39] 0.111 0.254 0.163
R2Gen[14] 0.132 0.367 0.203
CNN[25]+T 0.122 0.283 0.185
F-R[84]+T 0.240 0.590 0.312

Table 4.5: Classification results with using visual features and generated reports, where
GT refers to the results using ground truth reports.

Vision Report GT
CoAtt[39] 0.733 0.513

0.728
Top-Down[3] 0.811 0.531
R2Gen[14] 0.734 0.494
I3d[11]+T 0.762 0.494
F-R[84]+T 0.821 0.527

tures as visual grounding for captions. R2Gen[14] integrate relational memory into

Transformer to describe medical images with spatial features.

4.4.2.3 Benchmark Results and Analysis

FFA-IR benchmark model In Table 4.3, we report values of the automatic metrics and
human evaluation to compare various models. Firstly, our FFA-IR benchmark model is F-

R+T which achieves almost all the highest numbers of automatic metrics. It outperforms

Gounded by 0.022, 0.014 in Bleu-4 and Cider, respectively.

Although Gounded achieves stronger performance on the Meteor and Rouge metrics,

we should note that both F-R+T and Gounded generate medical reports based on object

features. Secondly, we find that in FFA-IR, the performance of models exploring object
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Table 4.6: Comparison of different language reports from the same models, where Zh, Zh-
T and En represent generating reports by Chinese words, Chinese tokens, and English.

Bleu-4 Cider
Hit

Zh Zh-T En Zh Zh-T En
CoAtt[39] 0.223 0.111 0.113 0.577 0.254 0.250 En
R2Gen[14] 0.231 0.132 0.131 0.623 0.367 0.367 En
Gounded[120] 0.303 0.218 0.220 0.854 0.576 0.569 Zh-T
I3D[11]+T 0.297 0.229 0.231 0.849 0.561 0.559 En
F-R[84]+T 0.365 0.240 0.231 0.882 0.590 0.590 Zh-T

Figure 4.5: The Pearson correlations between each pair of metrics, where the blue and
red refer to positive and negative correlation, respectively.
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features is significantly higher than other models. These results demonstrate that

lesion features are essential in MRG models, but they can be easily inundated by

global features without supervised signals. Thirdly, in FFA-IR, Transformer is more

efficient in generating long sequences than LSTM[27]. Fourthly, although CNN+LSTM

models[39, 72, 98] perform poorly under the automatic metrics, ophthalmologists find

that these models generate the most fluent and intelligible reports.

As mentioned, serious data bias exists in medical reports. CNN+LSTM models are

prone to underfitting, generating repetitive and non-essential sentences. From the other

human evaluation questions, we find that CNN+LSTM models have difficulty with

accurate and detailed lesion information. Fifthly, based on H4 results, MRG models

struggle to describe the correct category of lesions. Finally, to our knowledge, we are the

first to verify the value of medical report generation for clinical diagnosis. Based on H9

results, the automatically generated reports can significantly save ophthalmologists time

in the image interpretation and diagnosis procedure. Notably, the average time required

for our ophthalmologists to diagnose cases in FFA-IR is 38.2 seconds.

Correlations between automatic metrics and human evaluation Based on Fig-

ure 4.5, NLG metrics are correlated with each human evaluation criteria at various

degrees. For instance, the Bleu values and H1-6 criteria are highly correlated with

themselves and Meteor. Rouge is also negatively correlated with Bleu to a large degree.

In addition, all B measures are correlated with H2-H8 with an absolute correlation of

between 0.2−0.5. Meteor, Rouge, and Cider are also correlated with human evaluation

criteria to a certain degree, especially with H6-H8, where the absolute correlation value

range from 0.12 to 0.55. Another critical measure is the H7, as it is correlated with

all other variables with an absolute correlation measure of bigger than 0.3. In sum,

the existing NLG metrics are not the most reliable and appropriate evaluation tools in

medical fields.

Explanation accuracy In Table 4.4, we calculate the IOU between the lesion-image

attention mapping regions and annotated lesion regions to evaluate the accuracy of the

explanation. We can find that F-R+T significantly outnumbers CNN+T, R2Gen, and CoAtt

by 0.127, 0.109, and 0.149, respectively, proving that the FFA-IR benchmark model also

has excellent explanation accuracy. We also visualize the explanation accuracy evaluation

process in Figure 4.6. First, F-R+T can generate more fine-grained, coherent-semantic,

and accurate reports than CNN+T. On the other hand, we can find that lesion-image

attention mapping rectangles are closer to the ground truth regions.

Disease classification results Since the medical reports are used for facilitating
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Figure 4.6: The visualization of lesion-image attention mapping regions and ground truth
among samples from CNN-T and F-R+T, respectively, where the green boxes are the
annotated region for each lesion word, and the red boxes are the lesion-image attention
mapping regions.

the disease diagnosis procedure by ophthalmologists, we also conduct experiments to

investigate whether the generated reports can be used for disease classification. Based on

the results presented in Table 4.5, for each model, the results from using visual features

alone are significantly higher than using the generated reports. Using ground truth

reports, in contrast, can achieve comparable classification results. The results suggest

that the generated reports are not yet strong enough to support disease classification.

Does language affect the model? In Table 4.6, we compare the quality of different
language reports predicted from the same model. We find that different languages do not

affect the model performance. However, the tokenization strategy does. Chinese sentences

can be tokenized by words or tokens, as Chinese sometimes requires several words to

describe a concept. The vocabulary sizes of Chinese words, Chinese tokens, and English

words in FFAIR are 918, 2581, and 3241, respectively. Therefore, two reasons lead to

that generating reports by Chinese words achieves higher automatic metric values. One

reason is that generating reports by Chinese words has more matching words once the

model recognizes a terminology; Another reason is that the word embedding space of

Chines words is smaller than the other two’s, decreasing the task difficulty. However, the

human evaluation shows that these reports are dispreferred.
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Table 4.7: The results of NLG metrics of our proposed CGT and other state-of-the-art
methods on the FFA-IR dataset. Bold numbers denote the best performance in their
columns.

Methods Year BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr
CoAtt[39] 2018 0.313 0.200 0.144 0.111 0.197 0.247 0.254
Show-Tell[98] 2015 0.306 0.197 0.142 0.109 0.191 0.247 0.232
Top-Down[3] 2018 0.320 0.217 0.162 0.127 0.207 0.289 0.363
Gounded[120] 2020 0.396 0.319 0.261 0.218 0.229 0.353 0.576
AdaAtt[72] 2017 0.292 0.181 0.127 0.095 0.205 0.236 0.234
R2Gen[14] 2020 0.330 0.225 0.167 0.132 0.210 0.296 0.367
I3D+T[55] 2021 0.428 0.341 0.276 0.229 0.213 0.334 0.561
Faster+T[55] 2021 0.443 0.355 0.288 0.240 0.205 0.341 0.590
CGT Ours 0.456 0.363 0.295 0.243 0.227 0.345 0.599

Figure 4.7: Micro-average of receiver operating characteristic curve for sub-graph restora-
tion.

4.4.3 CGT Analysis

4.4.3.1 Main Results

Report generation In Table 4.7, we compare our CGT with a wide range of existing

models. I3D+T [55] and Faster+T [55] are the two benchmark models achieving the

state-of-the-art performance on FFA-IR dataset. R2Gen [14] and CoAtt [39] are the

state-of-the-art radiology report generation models. The remaining presented works

are from image captioning approaches. As shown in Table 4.7, our CGT outperforms

the state-of-the-art method across all NLG metrics. The improved performance of CGT

demonstrates the validity of our practice in incorporating prior medical into ophthalmic

report generation.
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Table 4.8: Quantitative analysis and human study of proposed method, where CVT, VM
and TRL are the short for compressed visual token, visible matrix and triple restoration
loss, respectively.

Settings I3D Triples CVT VM TRL CIDEr BLEU-4 ROUGE METEOR Hit(%)
Baseline ✓ 0.561 0.229 0.334 0.213 21.6

(a) ✓ 0.223 0.087 0.218 0.200 -
(b) Random 0.223 0.085 0.220 0.204 -
(c) ✓ ✓ 0.561 0.226 0.287 0.209 -
(d) ✓ ✓ ✓ 0.569 0.231 0.309 0.228 -
(e) ✓ ✓ ✓ 0.586 0.240 0.332 0.225 -
(f) ✓ ✓ ✓ 0.573 0.242 0.324 0.226 -
CGT ✓ ✓ ✓ ✓ 0.599 0.243 0.345 0.227 44.7

Sub-graph restoration In Figure 4.7, we show the micro-average of ROC for sub-graph

restoration and present the AUC scores when the proposed model is trained with triple

loss restoration loss or not. With the triple restoration loss, the AUC score increased

from 0.55 to 0.78 significantly. This improvement demonstrates the effectiveness of

triple restoration loss and the accuracy of our restored sub-graph. Without the triple

restoration loss, the restored sub-graph is similar to a sequence of random triples. It also

verifies the importance of our clinical graph extraction scheme.

4.4.3.2 Quantitative Analysis

In Table 4.8, we present the results of quantitative analysis to investigate the contri-

bution of each component in our CGT. The baseline model is a combination of I3D and

Transformer proposed by [55].

Effect of clinical graph In this section, we evaluate the effectiveness of the proposed

clinical graph, including triples and triples restoration loss.

Comparing the results in baseline and (a) in Table 4.8, we can find that without the

triple restoration loss, the automatically restored sub-graph fails to drive the model to

generate an accurate report. In (b), we randomly restore a sub-graph instead of based on

the input visual features. Along with the AUC scores in Figure 4.7, these demonstrate

that only the relevant and accurate prior knowledge can improve the effectiveness of

diagnostic models. Encouragingly, Table 4.8 Baseline and (c) illustrates that the results

of utilizing the clinical graph only are competitive to the baseline. These results verify

that the triples restoration loss can supervise the sub-graph restoration process and

guarantee the accuracy of the incorporated prior knowledge.

Effect of visible matrix Visible matrix is another essential component in our CGT.
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This concept is widely used in knowledge-enhanced pretraining works [24, 70] with

various formulations. In this section, the visible matrix is adopted during the cross-

modal encoding process for two purposes. On the one hand, we hope it can limit the

impact of unrelated triples; On the other hand, we want the message can pass between

the visual features and each triple.

The results between (c) and (d), (e) and CGT in Table 4.8 demonstrate the effectiveness

of the visible matrix. We can see that the performances increase substantially when

integrating visible matrix with (c) and (e), e.g., 0.561 → 0.569 and 0.586 → 0.599 in

CIDEr score. Firstly, by comparing the results of (c) and (d), the visible matrix limits the

impact from unrelated triples and greatly enhances the information interaction between

related triples. Therefore, we speculate that the entity and relation representations can

be well trained and improve the quality of predicted reports. When working in CGT, the

visible matrix additionally facilitates the message passing between the visual features

and each triple. There is inevitable noise among the knowledge graph since the relation

is not a ‘hard’ label. Although triple representations can be well learned, the triple may

not be relevant to the input case. Therefore, the visual features play a role in de-noise

adaptively. Furthermore, the visible matrix makes sure that the cross-modal signals can

interact with each other.

Effect of compressed visual token The effectiveness of the compressed visual token is

verified when comparing the results of (c), (e), and (f) in Table 4.8. As discussed, there are

always noises existing in a knowledge graph. Therefore, one of the purposes for proposing

a compressed visual token is to keep the accurate signals from original meanings when

the sub-graph is inaccurate. When integrating the compressed visual token, the quality

of predicted reports improves significantly comparing (c) and (e) and outperforming the

baseline method. It demonstrates the importance of visual signals in the T. We also

conducted an experiment to compare the performances of injecting prior knowledge into

the compressed visual token and temporal features ((e) and (f)). We can find that the

performances decrease slightly when using all the temporal features, e.g., 0.586 → 0.573

in the CIDEr score. We speculate the reason is that too many visual tokens will impair

the effectiveness of prior knowledge. Therefore, using the compressed visual token can

make the prior knowledge dominant. Notably, the visible matrix is modified when using

all temporal features.

Human study In this section, we invited three senior ophthalmologists to evaluate the

quality of predicted reports by the baseline model and our CGT. As shown in Table 4.8,

ophthalmologists regarded that 44.7% of predicted reports by CGT can describe the given
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Figure 4.8: Illustrations of reports from the ground truth and CGT, and the restored
sub-graph. The blue, red, and greed triples represent the true positive, false positive,
and false negative.

FFA images more accurately. The human study results demonstrate that our CGT out-

performs the baseline model in both NLG metrics and clinical practice. Ophthalmologists

also mentioned that there were 33.7% of predicted reports by both methods that failed to

describe any key finding.

4.4.3.3 Qualitative Analysis

In this section, we conduct qualitative analysis for better understanding our approach

via an intuitive example. Given a set of input FFA images, our CGT first restores a

sub-graph which is further incorporated with visual features to generate a report.

As shown in Figure 4.8, one restored sub-graph consists of four triples, and each

triple describes a relation between the subjective and objective entity, e.g., [fluores-
cence,seen,macular] represents that based on the prior clinical knowledge, ’fluorescence’
can be seen in the ’macular. The number of triples is depended on the length of the

input FFA images. Among the restored triples, [fluorescence,seen,macular] is the false
positive triple which leads to the incorrect sentence during the imaging of the left eye,
small patches of fluorescence were seen in the macular. This phenomenon shows that our
CGT is capable of extending triples to a relevant sentence. Notably, due to the serve

textual bias among the training corpus, the sub-graph restoration also suffers since the

clinical graph is constructed from the training corpus. [fluorescence,seen,macular] is one
of the bias triples and exists in 92% training samples. Accurately restored the triple

[laser,spot,staining] verifies the effectiveness of our CGT to detect abnormalities among

the input images and translate them into sentences. It also demonstrates that our CGT

is highly capable in sub-graph restoration owing to the triple restoration loss. The last

predicted sentence is not relevant to any triple in the restored sub-graph. However, this
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information can be provided by the compressed visual token.

4.4.4 Limitations and Discussion

4.4.4.1 FFA-IR Benchmark

Our FFA-IR still has the following limitations: First, all these data are only collected

from a single medical center. Second, as the original reports are collected from clinical

practice, various writing patterns belonging to different report authors can be observed

in FFA-IR, affecting the automatic metrics. Third, there are still several rare lesions

that are not captured in FFA-IR. Fourth, FFA-IR suffers data bias due to the naturally

unbalanced distribution of pathological statistics. Prior errors may also exist due to

the unbalanced distributions across attributes, such as gender and age. Fifth, training

models in FFA-IR require considerable GPU memories. The models have to read 87

images for each case on average.

4.4.4.2 Cross-modal Clinical Graph Transformer Limitation

Our clinical graph is constructed in an automatic manner from a training corpus; there-

fore, we cannot guarantee the complete accuracy of our graph. We are inviting more

experienced ophthalmologists to verify this graph. In addition, our method is not suffi-

ciently general to support other report generation tasks. For each task, we will need to

update the information extraction methods and construct a new clinical graph.

4.4.4.3 Negative Societal Impact

As with other automatic diagnostic methods, our algorithm should be utilized carefully in

clinical practice since medical decisions may lead to significant consequences, including

death. Therefore, while our AI diagnostic method can provide a strong rationale for

judgment along with satisfactory performances, it should only be used as an auxiliary

resource.

4.5 Conclusion

In this report, we introduce and discuss our progress since confirmation in details. Our

major achievements can be summarized as follows:
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On the one hand, we contribute a Fundus fluorescein Angiography Images and

Reports (FFA-IR) dataset towards an explainable and reliable benchmark. The FFA-

IR dataset has the following characteristics: 1) FFA-IR is a large-scale MRG dataset

containing 10,790 reports along with 1,048,584 FFA images collected from clinical

practice. 2) In FFA-IR, we label 12,166 lesion regions and collected reports and images to

make the diagnosis procedure more explainable. 3) For each case, FFA-IR provides both

English and Chinese reports that can facilitate medical multi-modal models. To the best

of our knowledge, our work with FFA-IR is the first attempt to quantify the explanation

of challenging medical report generation models, propose targeted human evaluation to

judge the quality of predicted reports, and investigate the reliability of natural language

generation metrics in the medical field. By releasing FFA-IR, we hope this task can be

extensively explored in the future to advance research from both vision-and-language

and medicine fields significantly and further improve the conventional retinal disease

diagnosis procedures.

On the other hand, we present an effective cross-modal clinical graph transformer

for ophthalmic report generation. To obtain prior medical knowledge, we propose an

information extraction scheme to construct a clinical graph from ophthalmic reports. The

prior knowledge inside this graph is further restored to a sub-graph which is injected

into the visual features for report generation. The experiments and analyses on our

FFA-IR dataset support our arguments and verify the effectiveness of our approach.

Along with achieving state-of-the-art performances, the restored sub-graph also improves

the explainability of our approach.
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5
MEDICAL KNOWLEDGE ENHANCED CROSS-MODAL

PRETRAINING

5.1 Introduction

In addition to medical report generation, there are also several medical vision-language

tasks, such as medical visual question answering [26, 43, 63, 75, 114] and medical image

text retrieval [18] have received increasing research interests in recent years. Existing

works typically design task-specific models for different medical cross-modal tasks, which,

however, is inefficient in real-world applications. Furthermore, the reasoning skills and

the expert medical knowledge required by different medical cross-modal tasks overlap

significantly. Consider the example in Fig. 1.2. Both generating the report and conduct-

ing the diagnosis classification regarding the given image require the model capable

of distinguishing whether a lung is healthy or abnormal from its visual appearance.

Therefore, developing a unified model for handling different medical cross-modal tasks is

promising and significant, but it is rarely explored.

In the past few years, vision-language pretraining (VLP) has achieved remarkable

success on many vision-language tasks with natural images [13, 51, 57, 71]. Through

making only minor additions to the base model architecture and conducting simple

finetuning, VLP models show great superiority over conventional task-specific models

in various downstream tasks. Most existing VLP models cannot simultaneously ad-

dress both vision-language understanding (e.g., image-text retrieval) and generation
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(e.g., image captioning) tasks. To address this issue, some works propose unified VLP

frameworks which can handle both understanding-based tasks and generation-based

tasks [52, 69, 119] in non-medical domains.

In this section, inspired by the recent progress in VLP, we propose a multi-task

benchmark dubbed medical cross-modal understanding and generation with knowledge-

enhanced pretraining (MONITOR). As shown in Fig. 1.2, MONITOR covers a set of

fundamental medical cross-modal tasks, including medical report generation, diagnosis
classification, image-report retrieval, and medical visual question answering. Through

MONITOR, the comprehensive evaluation of unified medical cross-modal models can be

fulfilled. To establish a baseline model on MONITOR for encouraging the future research,

we develop Med-KEP, which is a unifiedmodel pretrained on large-scale medical data and

finetuned on both understanding and generation downstream medical tasks. The expert

knowledge has been demonstrated to be crucial in enhancing the performance of medical

vision-language models as well as improving their explainability [65, 70, 110, 116]. To

study the impact of the expert medical knowledge on the unified pretrained model in

different downstream tasks, we further introduce three kinds of medical knowledge

construction and injection strategies during the pretraining process of Med-KEP: 1)

Triplet Concatenation (TC) concatenates multiple knowledge triplets (each is formed

as <head entity, relation, tail entity>) into one single sentence to obtain the knowledge

encoding, 2) Triplet Insertion (TI) replaces the entities in the text by the knowledge

triplets, and 3) Symbolic Knowledge Graph (SKG) represents different relations as edge

weights and encodes the knowledge graph through the self-attention mechanism.

We conduct extensive experiments on our MONITOR to evaluate the proposed Med-

KEP and knowledge enhancing strategies. Experimental results show the great potential

in developing unified medical vision-language models for addressing different down-

stream tasks. Moreover, the proposed knowledge enhancing approaches consistently

improve the performance of Med-KEP and provide better explainablity on different

downstream tasks, showing the importance of injecting the expert medical knowledge

for assisting the medical cross-modal pretraining.

5.2 MONITOR

MONITOR is a multi-task medical vision-language benchmark aiming to enable the

comprehensive evaluation of unified medical cross-modal models. In this section, we

first describe the tasks and the datasets contained in the MONITOR benchmark in
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Section 5.2.1. Then we introduce the architecture and the pretraining objectives of

the proposed Med-KEP in Section 5.2.2. Finally, we present the knowledge-enhanced

pretraining strategies in Section 5.2.3.

5.2.1 Tasks & Datasets.

Medical Report Generation. Medical report generation is our main task in this

thesis, as mentioned, writing diagnostic reports manually for radiology images is a

time-consuming and error-prone process for radiologists. Therefore, MRG becomes an im-

portant medical cross-modal generation task, which requires the system to automatically

generate a free-text report given a radiology image. In MONITOR, we use the popular

chest x-ray dataset IU-Xray [18] for the medical report generation task. The widely-used

BLEU [76], METEOR [6], ROUGE-L [60], and CIDEr [97] for MRG are adopted as the

evaluation metrics.

Image-Report Retrieval. Similar to most existing works of VLP [52, 53, 115],

we develop an image-report retrieval (IRR) task in MONITOR, which is a simple and

effective way to evaluate the cross-modal understanding ability of VLP models. Two

subtasks are included in IRR: report retrieval (RR), where images and reports are queries

and targets, respectively; and image retrieval (IR), where reports are queries and images

are targets. The R@K (recall with top k predictions) metric is used for the performance

evaluation for both subtasks. We use the IU-Xray [18] and MIMIC-CXR [40] datasets

for evaluating the image-report retrieval performance. IU-Xray contains 7,470 chest

Xray images with 3,955 radiology reports. Following [14, 38, 50], the training-validation-

testing split is 7:1:2. MIMIC-CXR is a larger dataset includes 377,110 chest X-ray images

and 227,835 reports.

Medical Visual Question Answering. Medical visual question answering (Med-

VQA) models take a medical image and a clinical question about the image as input and

output an answer in natural language. Two publicly available Med-VQA datasets, VQA-

RAD [48] and SLAKE [63], are adopted in MONITOR. VQA-RAD contains 315 radiology

images and 3515 question-answer pairs generated by clinicians. SLAKE includes 642

images and 14,028 questions. According to the answer form, the questions in both

VQA-RAD and SLAKE can be categorized into two types. The answers of “closed-ended”

questions are “yes/no” or other limited choices, and the answers of “open-ended” questions

are free-form texts. Compared with the MRG datasets that only contain the chest X-

ray images, the Med-VQA datasets contain images of different organs (e.g., head and
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abdomen) or modalities (e.g., CT and MRI). Following [63, 114], we use accuracy as the

evaluation metric.

Diagnosis Classification. We also include diagnosis classification into MONITOR,

which is an important medical task. Following [113], it is formulated as a multi-label

image classification task including 14 common radiographic observations: enlarged
cardiom, cardiomegaly, lung opacity, lung lesion, edema, consolidation, pneumonia,

atelectasis, pneumothorax, pleural effusion, pleural other, fracture, support devices, and

no finding. We adopt two datasets for diagnosis classification, MIMIC-CXR [40] and

ChestX-ray14 [101]. The evaluation metrics are F1, macro-F1, micro-F1, and AUROC.

5.2.2 Med-KEP

We develop a unified medical vision-language model to establish a baseline on our

proposed MONITOR. Our constructed baseline, namedMed-KEP, follows the architecture

and the pretext tasks of the recently proposed BLIP [52], which is a large-scale cross-

modal pretrained model capable of addressing with both multi-modal understanding and

generation tasks. As shown in Fig. 5.1, Med-KEP contains two unimodal encoders, a cross-

modal encoder, and a cross-modal decoder. It is pretrained with three popular pretext

tasks, i.e., Image-Text Contrastive (ITC), Image-Text Matching (ITM), and Language

Modeling (LM). In the following, we introduce the architecture and the pretext tasks of

Med-KEP in detail.

Unimodal Encoder. Med-KEP contains two unimodal encoders, i.e., an image

encoder for encoding the image, and a text encoder for encoding the text. The image

encoder is a ViT [21] model and the text encoder is the same as BERT [20].

Cross-modal Encoder. The cross-modal encoder contains multiple transformer
blocks which are composed of the self-attention layer, the cross-attention layer, and the

feed forward network. For the text fed to the cross-modal encoder, a [Encode] token

is appended in the beginning. And the output embedding of [Encode] is viewed as the

multimodal representation of the image-text pair.

Cross-modal Decoder.Different from the cross modal encoder that use bi-directional

masks in the self attention layers, the cross modal decoder adopts causal masks in its

self-attention layers. A [Decode] token and an end-of-sequence token are inserted in the

beginning and the end of the text sequence to serve as the indicators, respectively.

Pretext Tasks. Following [52], we use three pretext tasks in the pretraining phases
of Med-KEP. The Image-Text Contrastive (ITC) task is adopted for improving unimodal

encoders by enforcing the alignment of positive image-text pairs in the feature space. The
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Figure 5.1: The model architecture of Med-KEP. Med-KEP contains two unimodal en-
coders, a cross-modal encoder, and a cross-modal decoder. Three pretext tasks, i.e.,
Image-Text Contrastive (ITC), Image-Text Matching (ITM), and Language Modeling
(LM) are adopted for pretraining Med-KEP.

Image-Text Matching (ITM) task is designed for the cross-modal encoder by requiring

the model to predict whether an image-text pair is positive or negative given the related

multi-modal features. The Language Modeling (LM) task is conducted for activating the

cross-modal decoder by asking the model to generate textual descriptions given an image

through optimizing a cross-entropy loss.

5.2.3 Knowledge-enhanced Pretraining

The expert medical knowledge has been shown to have great potential in improving the

performance and enhancing the explainability in many medical cross-modal tasks [24, 49,

56, 70, 110]. Moreover, some recent works have shown that injecting the knowledge in the

pretraining phase of VLP models can effectively enable them to learn better cross-modal

alignments and therefore benefiting the downstream tasks [15, 112]. To sufficiently

analyze how the medical knowledge impact the medical cross-modal pretrained model,

we introduce three kinds of knowledge construction and injection strategies during the

pretraining of Med-KEP, which are described below.

Triplet Concatenation (TC). Inspired by [110], for each input image I, we first
retrieve top k similar texts {Ti}ki=1 from the text queue Q through calculating the cosine

similarity between the image feature fI and text features {fi
T}

nQ
i=0. nQ is the size of Q. fI

and {fi
T}

nQ
i=1 are obtained through the image encoder and the text encoder, respectively.
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(a) Triplet Concatenation (b) Triplet Insertion (c) Symbolic Knowledge Graph
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Figure 5.2: The illustration of Triplet Concatenation (TC), Triplet Insertion (TC), and
Symbolic Knowledge Graph (SKG).

Then we extract the named entities E i = {e1i , ..., e
ni
i } using a named entity recognizer

provided by [82] from each retrieved text Ti. ni is the number of the named entities. We

query specific knowledge using the extracted entities {E i}ki=1 from the public available

knowledge graph, e.g., RadGraph [36]. Each queried knowledge is a triplet containing

the source entity, target entity, and the relation.

Denote the queried knowledge set regarding to the image I as K I = {k1I , ...,k
nK
I }. nK is

the size of K I . We concatenate the knowledge in K I into one single sentence and feed the

sentence to a BERT-like language encoder EK (·) to obtain the knowledge feature fI
K :

(5.1) fI
K = EK ([k1I ; ...;k

nK
I ]).

Then we use fI
K to update the image feature fI through a cross-attention module Ec(·):

(5.2) f̃I = Ec(fI ,fI
K ,f

I
K ),

where fI is the query and fI
K is the key/value. We concatenate f̃I and fI to obtain the final

image feature f̃′I and feed f̃′I instead of fI into the following modules in Med-KEP.

Triplet Insertion (TI). Inspired by [70], for each image-text pair (I,T), we first
extract the named entities E = {en}nE

n=1 using [82] for the text T. nE is the entity number.

Then we query specific knowledge K = {{kn
i }

in
i=1}

nE
n=1 using the extracted entities E similar

to that in the TC strategy from the public available knowledge graph. For each entity en

in E, we randomly choose one knowledge triplet kn
i from {kn

i }
in
i=1 and use it to replace en

in the original text T. The obtained text T ′ is used instead of T as the input of Med-KEP

in the pretraining phase.

Symbolic Knowledge Graph (SKG). Following [65, 116], we choose 20 keywords
(categories) which cover the most common abnormalities or findings in chest X-rays to

construct the symbolic knowledge graph. Concretely, we use the category word embedding
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{wi}20i=1 to initialize the node feature. Then we resort to a Transformer-like knowledge
encoder, which is composed of the self-attention block ESA(q,k,v) and the cross-attention
block ECA(q,k,v) to obtain the knowledge feature. q, k, v represent query, key, and

value, respectively. For each image I, we obtain the image-specific knowledge feature fI
K

through:

(5.3)
fK = ESA({wi}, {wi}, {wi}),

fI
K = ECA(fK ,fI ,fI),

where fI is the image feature. Then we concatenate fI and fI
K to obtained the updated

image feature f′I . Like that in the TC strategy, we use f′I as the image input of Med-KEP

during pretraining.

5.3 Experiments

5.3.1 Pretraining Details

We use MIMIC-CXR [40] dataset for pretraining Med-KEP, which is a large-scale dataset

including 377,110 chest X-ray images and 227,835 reports. The dataset contains both

the frontal and the lateral view images, and we use the same image encoder for different

views following [14]. Considering the large gap between medical texts and general texts,

we use SciBERT [8] instead of BERT to serve as the text encoder. And we present the

comparison of different text encoders in Table 5.1. We pretrain Med-KEP on 8 NVIDIA

V100 GPUs with the batch size 32 and 30 epochs. The learning rate is set as 1e-4 and

the optimizer is AdamW. In TC, we retrieve top 3 similar texts from the text queue Q.
And the size of Q is set as 65536. The max length of the knowledge sequence in TC is set

as 90. We use the tokenizer of SciBERT [8] for tokenizing the knowledge texts in both

TC and SKG.

5.3.2 Finetuning Details

Like that during pretraining, we also use SciBERT to serve as the text encoder. Since the

additional model architecture, i.e., the knowledge encoder is introduced into Med-KEP

during pretraining in TC and SKG, we also inject the knowledge during downstream

finetuning when using TC and SKG for enhancing MED-KEP. The finetuning details on

MONITOR are described below.
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Medical Report Generation. The language modeling loss in the pretraining phase
is used for finetuning on the medical report generation task. Following [14], we train the

model for 50 epochs with the AdamW optimizer. The batch size is 32 and the learning

rate is 1e-5. Considering that the MIMIC-CXR dataset [40] is used for pretraining using

the same objective with the medical report generation task, we do not compare Med-KEP

with existing methods on MIMIC-CXR for fairness.

Image-Report Retrieval. We use the image-text contrastive loss used in the pre-

training phase for finetuning the model on the image-report retrieval task. The model is

trained with the batch size 32 and 30 epochs. The learning rate is set as 5e-5 and the

optimizer is AdamW.

Medical Visual Question Answering. Following [114], we use the pretrained task
type classifier for distinguishing the answers of different types, i.e., open-ended or closed-

ended at first. Then we use two cross-modal encoders whose architectures are the same

for separately addressing the questions whose answers are open-ended and closed-ended.

We train the model with 200 epochs and 300 epochs on VQA-RAD [48] and SLAKE [63],

respectively. The learning rate is set as 5e-3 and the optimizer is AdamW. To mitigate

the gap among the knowledge regarding to different organs or diseases, we also resort to

the knowledge graph released by SLAKE [63] dataset besides the RadGraph [36] when

using TC and SKG during finetuning.

Diagnosis Classification. We add 14 linear classifier heads on top of the [CLS]

feature of the image feature encoded by the image encoder for diagnosis classification.

The model is optimized through the binary cross-entropy loss. The learning rate, the

batch size, and the training epochs on both MIMIC-CXR [40] and ChestX-ray14 [101]

are set as 1e-5, 32, and 50, respectively.

5.3.3 Downstream Task Results

Medical Report Generation. As shown in Table 5.1, Med-KEP outperforms the previ-

ous approaches significantly in the CIDEr metric, which is an important metric used for

evaluating the image captioning systems. By comparing Med-KEP w/o knowledge and

the proposed TC, TI, and SKG, we can find that the introduction of medical knowledge

improve the generation performance in all metrics, showing the effectiveness of the three

kinds knowledge enhancing methods.

Image-Report Retrieval. Since there are no available reported results of existing
methods on the image-report retrieval task on the proposed MONITOR, we present

the results of Med-KEP without/with knowledge on IU-Xray dataset in Table 5.2 to

70



5.3. EXPERIMENTS

Table 5.1: Medical report generation performance of different methods on IU-Xray
dataset. * represents the main metric.

Methods CIDEr* ROUGE_L METEOR BLEU_4
CoAtt [39] 0.277 0.369 - 0.154
R2Gen [14] 0.398 0.322 0.165 0.124
Con-Trans [1] 0.257 0.289 0.164 0.111
SentSAT+KG [116] 0.304 0.367 - 0.147
PPKED [65] 0.351 0.376 0.190 0.168
Med-KEP w/o knowledge (BERT) 0.355 0.275 0.152 0.100
Med-KEP w/o knowledge 0.386 0.278 0.164 0.113
Med-KEP w TC 0.516 0.314 0.179 0.139
Med-KEP w TI 0.480 0.297 0.176 0.136
Med-KEP w SKG 0.507 0.304 0.178 0.140

Table 5.2: Image-Report Retrieval performance of different methods on IU-Xray dataset.

Method
TR IR

Recall@1 Recall@5 Recall@10 Recall@1 Recall@5 Recall@10
Med-KEP w/o knowledge 1.17 5.85 6.69 0.71 2.59 4.31
Med-KEP w TC 4.24 12.54 17.63 4.07 10.68 16.44
Med-KEP w TI 1.18 4.92 7.97 0.83 2.63 4.39
Med-KEP w SKG 4.91 10.34 13.56 3.39 11.53 16.27

study the impact of the proposed knowledge enhancing strategies. From Table 5.2,

we can find that TC, and SKG significantly improve the Med-KEP, showing that the

proposed two kinds knowledge-enhancing methods can effectively encourage the model

to learn better cross-modal alignment. In contrast, TI can only consistently outperform

the baseline. Due to the reason that, TI knowledge is linguistic information and can

only work on enhancing textual modality representations and contribute nothing to

the visual vectors. Moreover, we can also observe that there is a large gap between the

image-report retrieval performance and the image-text retrieval performance in the

general domain [52], showing that learning the cross-modal alignment for medical data

is more challenging.

Diagnosis Classification. The results on ChestX-ray14 [101] and MIMIC-CXR [40]

are given in Table 5.4 and Table 5.3, respectively. From Table 5.4, we can find that

Med-KEP w TC and Med-KEP w SKG are comparable to the state-of-the-art method [44],

showing the effectiveness of the knowledge-enhanced pretraining. Moreover, we can

find in Table 5.4 that our three kinds of knowledge enhancing methods cover the best

classification result regarding most categories. The comparison results among Med-KEP
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Table 5.3: Diagnosis classification performance of different methods on MIMIC-CXR
dataset. * represents the re-implementation.

Methods Macro-F1 (%) Micro-F1 (%) F1 (%) AUROC (%)
ResNet101 [25]* 23.1 40.8 37.1 75.2
DenseNet121 [30]* 25.0 40.5 36.8 76.4
Med-KEP w/o knowledge 25.6 42.5 39.4 76.6
Med-KEP w TC 27.7 45.7 42.5 77.4
Med-KEP w TI 26.2 44.3 40.9 77.4
Med-KEP w SKG 26.5 45.4 42.2 77.0

Table 5.4: Diagnosis classification performance of different methods on ChestX-ray14
dataset. ♦ and ♥ represents using ResNet50 [25] and DenseNet-121 [30] as the backbone,
respectively.

Methods Atel Card Effu Infi Mass Nodu Pne1 Pne2 Cons Edem Emph Fibr P.T. Hern Mean

Wang et al.♦ [101] 0.700 0.810 0.759 0.661 0.693 0.669 0.658 0.799 0.703 0.805 0.833 0.786 0.684 0.872 0.745
Guan et al.♦ [23] 0.779 0.879 0.824 0.694 0.831 0.766 0.726 0.858 0.758 0.850 0.909 0.832 0.778 0.906 0.814

Guan et al.♥ [23] 0.781 0.883 0.831 0.697 0.830 0.764 0.725 0.866 0.758 0.853 0.911 0.826 0.780 0.918 0.816
Kim et al.♥ [44] 0.780 0.887 0.835 0.710 0.831 0.804 0.734 0.871 0.747 0.840 0.941 0.815 0.799 0.909 0.822
Med-KEP w/o knowledge 0.722 0.859 0.761 0.659 0.749 0.681 0.631 0.821 0.660 0.775 0.862 0.782 0.741 0.911 0.756
Med-KEP w TC 0.787 0.941 0.875 0.720 0.833 0.754 0.745 0.828 0.726 0.882 0.893 0.801 0.763 0.939 0.821
Med-KEP w TI 0.755 0.901 0.808 0.701 0.796 0.737 0.683 0.869 0.708 0.835 0.895 0.834 0.761 0.950 0.802
Med-KEP w SKG 0.780 0.943 0.861 0.720 0.838 0.752 0.732 0.842 0.726 0.865 0.890 0.806 0.760 0.923 0.817

w/o knowledge, Med-KEP w TC, Med-KEP w TI, and Med-KEP w SKG in both Table 5.4

and Table 5.3 show the obvious advantage of the proposed knowledge enhancing methods.

Medical Visual Question Answering. From the results in Table 5.5, we can

find that although the gap between the pretraining dataset (MIMIC-CXR) and two

downstream VQA datasets is large, Med-KEP w TC is still comparable or even superior

than previous methods (71.43 vs. 71.60 on VQA-RAD, 80.96 vs. 78.60 on SLAKE). This
demonstrates the good generalization ability of the proposed Med-KEP with the help

of the knowledge enhancement. We can also find that the overall accuracy of TC, TI,

and SKG is consistently superior than Med-KEP w/o knowledge on both VQA-RAD and

SLAKE. Moreover, Med-KEP w TC effectively improves the open-ended accuracy. These

results show that injecting knowledge is also helpful in the Med-VQA task.

5.3.4 Visualization

Medical Report Generation In Figure 5.3, we present two Chest X-ray examina-

tions along with reports from gold annotation, Med-KEP (our baseline model) and TC

knowledge enhanced Med-KEP. First, we can observe that enhanced by the medical

pretraining, the both Bleu-4 and CIDEr measures increase significantly. In the upper

72



5.3. EXPERIMENTS

Table 5.5: Medical visual question answering accuracy (%) of different methods on
VQA-RAD and SLAKE datasets.

Method
VQA-RAD SLAKE

Open-ended Closed-ended Overall Open-ended Closed-ended Overall
SAN [111] 31.30 69.50 54.30 74.00 79.10 76.00
BAN [45] 37.40 72.10 58.30 74.60 79.10 76.30
MEVF-SAN [75] 49.20 73.90 64.10 75.30 78.40 76.50
MEVF-BAN [75] 49.20 77.20 66.10 77.80 79.80 78.60
QCR+TCR [114] 60.00 79.30 71.60 - - -
Med-KEP w/o knowledge 62.57 73.90 69.41 78.14 83.65 80.30
Med-KEP w TC 64.02 76.10 71.43 79.07 83.89 80.96
Med-KEP w TI 60.89 77.21 70.73 77.98 84.62 80.58
Med-KEP w SKG 62.57 76.94 70.98 77.52 85.10 80.49

Figure 5.3: Illustrations of reports from ground-truth, baseline without knowledge and
baseline with TC knowledge for two X-ray chest examinations. To better distinguish the
content in the reports, different colors highlight normal and abnormal medical terms,
respectively.

case, the improvements are from abnormal terms description in red texts. The enhanced

model is capable to detect it degenerative changes are present in the spine. In the bottom

case, report from knowledge enhanced Med-KEP is almost completely similar to the

ground truth. The large amounts of normal term descriptions in training corpus may

lead to this.

Selected TC Knowledge To validate the effectiveness of our selected knowledge

triplets, we present two Chest X-ray examinations with ground truth reports and our

selected knowledge triplets from the retrieved TC knowledge in Figure 5.4. To better

observe the knowledge triplets’ effectiveness, we employ different colors to highlight the

same medical entities. We can find that almost all the observed entities are selected in

our knowledge triplets, and then their relations between other entities are also presented.

Notably, those triplets are selected from the retrieved reports regarding the given images,

demonstrating the effectiveness of TC enhanced method.
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Figure 5.4: Illustrations of our selected knowledge in TC. To better distinguish the
content in the reports, different colors highlight medical entities.

Selected TC Knowledge To validate the effectiveness of our selected knowledge

triplets, we present two Chest X-ray examinations with ground truth reports and our

selected knowledge triplets from the retrieved TC knowledge in Figure 5.4. To better

observe the knowledge triplets’ effectiveness, we employ different colors to highlight the

same medical entities. We can find that almost all the observed entities are selected in

our knowledge triplets, and then their relations between other entities are also presented.

Notably, those triplets are selected from the retrieved reports regarding the given images,

demonstrating the effectiveness of TC enhanced method.

Knowledge-Image Attention Mapping To demonstrate the explainability, we first

visualize all the attention weights in the knowledge-image attention layer. We can find

that the organ-level weights are different from their corresponding diseases, since all

the organs can affect each other and directly are attended with the global node. Heart,
spine and pleural acquire more importance than the other organs, like bone or lung.
It may be the reason that those are the primary inspected organs during the Chest

X-ray examinations. In Figure 5.6, we visualize the SKG graph and a specific Chest

X-ray attention mappings to highlight the suspicious regions. Notably, the weights from

six attention heads are visualized, individually. It is observed that the heart and right-

bottom lung regions acquire more importance, which is also described in its diagnostic

reports.
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Figure 5.5: Heatmap visualizations among chest X-ray examinations and our proposed
SKG graph. In the right, we present the global attention weights among proposed
SKG when attended with the global visual information. In the left, we visualize all the
attention weights when enhancing medical knowledge.

5.4 Conclusion

This chapter proposes a multi-task benchmark, named MONITOR, for facilitating the

comprehensive evaluation of the unified medical vision-language model. Four popular

medical downstream tasks are included in MONITOR. A unified pretraining model, Med-

KEP, is developed to establish a strong baseline on MONITOR. Three kinds of knowledge

enhancing strategies are also introduced into Med-KEP to investigate the impact of the

medical knowledge on the unified pretraining model. Experimental results show that

the proposed knowledge enhancing approaches consistently improve the performance on

different downstream tasks as well as provide better interpretability. We hope that this
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Figure 5.6: Visualization of knowledge and image mappings between a specific chest
X-ray examination and our proposed SKG graph.

work motivates the unified medical vision-language research in the future.

Right now, our MONITOR are basically built upon radiology datasets consisting of

radiology images, reports and knowledge. There is still a huge gap to integrate other

modality data, such as Lung CT and FFA, into our model. The knowledge we utilized

in this chapter is all pre-constructed. Therefore, we plan to propose a unified way to

construct appropriate knowledge from online data. Then the whole system can be trained

in an end-to-end manner.
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CONCLUSION

In this thesis, we investigated clinical knowledge enhanced deep learning models for

medical report generation. We first explore two kinds of clinical knowledge by mimicking

radiologists’ working patterns to drive an encoder-decoder framework for automatic

report generation. Then we construct a clinical knowledge graph by extracting structural

clinical information from diagnostic reports, and then propose a cross-modal clinical

graph Transformer for ophthalmic report generation. We further introduce an explainable

and reliable medical report generation benchmark, and envision them as a testbed for

explainable and reliable medical report generation. We also hope that it can broadly

accelerate medical imaging research and facilitate interaction between the fields of

medical imaging, computer vision, and natural language processing. In the end, we

explore three kinds of medical knowledge construction and injection strategies during

the pretraining process of an unified medical knowledge enhanced cross-modal model.

We demonstrated the importance of enhancing medical report generation systems with

clinical knowledge to improve the explainability and generalization ability. In addition

to medical report generation task, we also proved the effectiveness of clinical knowledge

in other medical imaging analysis, such as medical VQA, medical image-text retrieval

and disease diagnosis.

In the future, we attempt to explore an unified medical knowledge and propose an

unified knowledge driven medical report generation framework to handle all kinds of

radiology examinations. Due to the modality gap, the current medical report generation

systems have poor generalization ability. It is encouraging to investigate how to transfer
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CHAPTER 6. CONCLUSION

the inherent knowledge among different systems. Inspired by the recent progress of big

data and multi-modal pretraining in vision-and-language, we plan to collect vary kinds of

data from the existing medical datasets and collaborated institutes to propose a medical

multi-modal pretraining dataset. Based on this dataset, the unified or general knowledge

will be introduced either. In theory, the concept of models’ explainability should be well

formulated and also be promising for other medical imaging analysis tasks. Visualize

the attention mechanism is the only way to explore model’s explainability. However, it

is still hard to propose an interpretable medical report generation systems. One of the

reasons is lacking of corresponding theory. We plan to formulate the explainability, such

as the concept of entropy for informative representation. Then researchers may find the

right way to improve models’ interpretability and trustworthiness.
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