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ABSTRACT
Gas explosions and outbursts were the leading types of gas acci-
dents in mining in China with gas concentration exceeding the
threshold limit value (TLV) as the leading cause. Current research is
focused mainly on using machine learning approaches for avoiding
exceeding the TLV of the gas concentration. no published reports
were found in the literature of attempts to uncover the correlation
between gas data and other data to predict gas concentration. This
research aimed to fill this gap and develop an innovative gas warn-
ing system for increasing coal mining safety. A mixed qualitative
and quantitative research methodology was adopted, including a
case study and correlational research. This research found that
strong correlations exist between gas, temperature, and wind. It
suggests that integrating correlation analysis of data on temperature
and wind into gas would improve warning systems’ sensitivity and
reduce the incidence of explosions and other adverse events. A
Unified Modeling Language (UML) model was developed by inte-
grating the Correlation Analysis Theoretical Framework to the exist-
ing gas monitoring system for demonstrating an innovative gas
warning system. Feasibility verification studies were conducted to
verify the proposed method. This informed the development of an
Innovative Integrated Gas Warning System which was deployed for
user acceptance testing in 2020.
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1. Introduction

China is the world’s largest coal producer and has the fourth largest coal reserves. Its
coal output remained at similar levels in 2020 as in 2019 to 3,690MT which
accounted for about 46% of global coal production (Hutzler 2020; IEA 2020). Coal
mine methane is produced or emitted in association with coal mining activities either
from the coal seam itself or from other gassy formations underground, and has
always been considered as a danger for underground coal mining as it can create a
serious threat to mining safety and productivity due to explosion risk (Karacan et al.
2011, 121). The methane gas is referred to as gas in this paper. Gas explosions and
outbursts were the leading types of gas accidents in China with a significant severity
compared to other types of coal mine accidents (Wang et al. 2014, 113). Among all
the gas disasters, gas concentration exceeding the limit is the leading cause (Zhang
et al. 2020, 1). Gas monitoring systems are deployed widely in China’s coal mine
industry. They are believed to have contributed to a decrease in gas accidents from
414, with the death toll reached 2171 in 2005 to 7, with the death toll reached 30 in
2020 (China Coal Safety 2021). Hazardous accidents are still a problem in under-
ground gassy mines and there is a need for more robust monitoring and early-warn-
ing systems for improving coal mining safety (Jo et al. 2019, 183).

Most of the current published research is focused on exploring the methods and
framework for avoiding reaching or exceeding the threshold limit value (TLV) of the
gas concentration from viewpoints of impacts on geological conditions and coal min-
ing working-face elements. In practice, the existing gas monitoring systems detected
mainly real-time data obtained from gas sensors. If the gas data outputs reach or
exceed TLV, the gas monitoring system will alert the mine’s safety-responsive team.
No published papers were found that reported on systems that utilized the collected
coal mine data fully; it appears no attempt has been made to uncover the correlation
between gas concentration and other data and apply them to predict gas concentra-
tion (Zhang et al. 2020, 1, 2).

This research aimed to fill this gap and develop an innovative gas warning system
for increasing production safety in the underground coal mining industry. This
research proposes that integrating data on different variables into gas would improve
warning systems’ sensitivity and reduce the incidence of explosions and other adverse
events. The mixed qualitative and quantitative research methodology was adopted,
including a case study, the boxplot technique, and correlational research. The follow-
ing sections include the literature review, a case study, data analysis, correlational
research and research outcomes, conclusions, limitations, and further research.

2. Literature review

The literature review indicated that most of the current published research focused
mainly on analyzing gas data to explore the methods and framework for avoiding
exceeding the TLV of the gas concentration from viewpoints of impacts on geo-
graphic and coal mining environments. Traditional research focused on analyzing gas
data to explore the impacts on geographic and coal mining environments. The cur-
rent study focused machine learning (ML) models or algorithms (including deep
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learning) to explore warning models for predicting gas emissions and gas
concentrations.

2.1. Related works

Traditional research used the traditional methods and framework from viewpoints of
impacts on geographic and coal mining environments. They monitored the risk signals
by gas monitoring systems to avoid reaching or exceeding the TLV of the gas concentra-
tion. 1 Oct 2019 State Administration of China Coal Safety prevention regulations for
Coal and Gas Outburst addressing a limited range of measures, including initial seam
gas pressure (P/MPa � 0.74), a consistent coefficient (f� 0.5), and initial rate of methane
diffusion (�p� 10) (China Coal Safety 2019, 3–4). A number of techniques and methods
have been used to reduce coal mine risks by monitoring acoustic emission signals, elec-
tric radiation, gas emission, and micro-seismic on the physical properties of sound, elec-
tricity, magnetism, thermal, and gas (Zhao et al. 2020, 1981).

This research conducted three rounds of literature reviews to explore the state of
research into gas warning systems in underground coal mining. This first-round lit-
erature review focused on literature published in Scopus and initially searched 69
papers between 2016 and 2021. The second-round literature reviewed Chinese
research publications indexed in China National Knowledge Infrastructure (CNKI
2019). Two hundred and ninety-two articles were initially found. The third-round
search was then conducted via China’s literature search agency of science and tech-
nology (LSAST), which China’s Department of Education accredited (LSAST 2020).
Two hundred papers and report documents were initially filtered. The searched out-
comes clearly showed that China’s scholars conducted most research in the field of
coal mining. After reviewing the abstract, all publications written in Chinese were
eliminated. Twenty-three related articles were reviewed, including Ma and Zhu
(2016), Fan et al. (2017), Ma and Dai (2017), Zhang et al. (2017), �SleRzak et al.
(2018), Viswasmayee et al. (2018), Xia et al. (2018), Gu et al. (2019), Jo et al.
(2019), Song et al. (2019), Xie et al. (2019), Sun and Li (2020), Tutak and Brodny
(2019), Wang et al. (2019), Wang et al. (2020), Wu et al. (2020), Liu et al. (2020),
Zhang et al. (2020), Zhang et al. (2020a), Zhao et al. (2020), Lu et al. (2021), You
et al. (2021), and Zhang et al. (2021). Among them, fourteen studies focused on
temperature, wind, dust, C2H2, CO2, CO, O2, humidity, and other parameters to
predict gas concentrations, including Ma and Zhu (2016), Fan et al. (2017), Zhang
et al. (2017), Xia et al. (2018), Jo et al. (2019), Song et al. (2019), Tutak and
Brodny (2019), Wang et al. (2019), Sun and Li (2020), Wang et al. (2020), Zhang
et al. (2020), Zhang et al. (2020a), Zhao et al. (2020), and Zhang et al. (2021).
They will be discussed in the following section 6.2 Discussion.

2.2. Related works machine learning

The literature showed that, ML approaches were used widely to analyze and harness
the power of the enormous amount of information (Chan et al. 2020, 375). They
were extensively used for complex problems in a variety of fields where existing
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solutions require a lot of hand-tuning, and for problems which there is no solution at
all using a traditional approach (Morocho-Cayamcela et al. 2019, 137185; Arango
et al. 2021, 993). ML has also been widely used to explore a vast number and types
of predictor variables in terms of prediction ability (F�eret et al. 2019, 2, 11; Arango
et al. 2021, 993). In the coal mining industry, research mainly focused on the ML
algorithms and methods of predicting gas emissions and gas concentrations (Ma and
Zhu 2016, 1). However, ML is challenging to develop a more efficient and accurate
gas concentration prediction system (Zhang et al. 2020, 10).

Three disadvantages were raised at least for using ML methods for predicting gas
missions and gas concentrations. The first disadvantage is that the poorly dataset
inputs will result in inadequate outputs. ML involves providing data to a computer
that can be ‘trained’ with known or predefined features or objects that allow detec-
tion, classification, or pattern recognition in a semi-automated or automated man-
ner (Sagan et al. 2020, 3). ML-based prediction models are highly influenced and
related to the training dataset (F�eret et al. 2019, 11; Boukerche and Wang 2020,
18). The dataset input quality determines the output quality (Chan et al. 2020,
378). The research highlights the strong influence of the training dataset on
machine-learning methods’ performances (F�eret et al. 2019, 11). Therefore, building
ML on low-quality data sources and inadequate training samples will lead to draw-
ing wrong, misleading inferences, and inferior outputs (Sagan et al. 2020, 3;
Moghadasi et al. 2021, 881).

Another drawback is that ML-based prediction results could not accurately be
interpreted. ML approaches differ from the traditional statistical tools that researchers
are trained to apply and interpret based on established reporting standards (e.g., P-
value for statistical significance) (Bonanni 2019, 165). ML models can be compared
to a black box that takes in inputs to produce outputs with no explanation necessarily
of how it produced the outputs and cannot be able to provide better definitions of
the problem (Jarrett et al. 2019, 7; Chan et al. 2020, 378). Unexplainable ML models
for modeling physical phenomena can lead to inaccurate outputs (Sagan et al.
2020, 3).

One more challenge is the high cost of the computing hardware for improving the
efficiency and effectiveness of the ML model. Existing coal mine systems rely too
much on a computer center (Zhang et al. 2020, 1). The ML models are consistently
implemented on a graphic processing unit (GPU) within the computing hardware,
which costs a lot to ensure the models can be trained and run at a relatively high
speed (Boukerche and Wang 2020, 18–19).

Due to the above three disadvantages, therefore, this research does not recommend
using ML methods to explore the early warning system for a single coal mine. They
could not interpret the prediction results. The literature search did not also find exist-
ing alarms or warning systems incorporating correlation analysis of gas data and data
acquisition from other sensors.

Overall, the up-to-date literature search did not find existing studies on warning
systems incorporating correlation analysis of gas data and data acquisition from other
sensors. No attempt was made to uncover the correlation between gas concentration
and other data and apply them to predict gas concentration (Zhang et al. 2020, 1, 2).
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The current gas monitoring systems do not analyze whether other sensors’ outputs
affect gas data and lack correlational research integrating temperature, wind, and dust
into gas variables.

3. Case study

3.1. Current gas monitoring system in the case study mine

This research Case Study mine was Shanxi Fenxi Mining ZhongXing Coal Industry
Co. Ltd (ZhongXing) – a large coal mining company in China. ZhongXing was
owned wholly by Shanxi Coking Coal Group Co. Ltd, with a designed mining cap-
acity of three million tons per year. Shanxi Coking Coal Group Co. Ltd. was ranked
485th in the 2020 Fortune Global 500 and was the largest coking coal mining com-
pany and the largest coking coal supplier in China (SXCC 2020). Other coal mines in
China mainly adopted similar systems to the gas monitoring systems deployed in
ZhongXing. The research on the Case Study mine may better understand China’s cur-
rent gas monitoring systems. Figure 1 shows the geographical location of the Case
Study mine in China.

The existing gas monitoring system in the Case Study mine monitors seven data
types obtained from gas sensors, temperature sensors, wind sensors, dust sensors, O2
sensors, CO sensors, and CO2 sensors. Figure 2 shows the current gas monitoring
system in The Case Study mine. The current gas monitoring systems focus on detect-
ing real-time data obtained from gas sensors and do not analyze whether other
sensors’ outputs affect gas data. If gas data are meeting the standard, the data outputs
are forwarded to the monitoring system. If the gas data outputs reach and exceeding
the TLV, the system will alert the safety-responsive team. Data outputs of tempera-
ture, wind, dust, O2, CO, and CO2 are communicated to the monitoring system.
These are not included in any risk analysis between the different types of
data outputs.

Figure 1. The geographical location of the case study mine in China.
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Among the seven types of sensors, the data outputs of O2, CO, and CO2 have
almost measured no variations and maintained at a constant level from the current
gas monitoring system in the Case Study mine. There is no value to be investigated.
This research focused on gas, temperature, wind, and dust. Figure 3 shows the loca-
tion of the sensors installed in the Case Study mine. There are 21 gas sensors (from
T1 to T21), 16 temperature sensors (from WD 1 to WD16), 10 wind sensors (from
FS1 to FS10), and 2 dust sensors (from FC1 to FC2). The sensors’ gas, temperature,
wind, and dust codes can be seen in Tables 1–4, respectively.

3.2. Research methodology

The mixed qualitative and quantitative research methodology was adopted in this research,
including a case study, boxplot technique, and correlational research. It is critical to elim-
inate extreme values and outliers before conducting data analysis to real-time data streams.
Extreme values and outliers may substantially influence most parametric tests on the statis-
tical analysis, leading to distortion and possibly inaccurate conclusions (Schwertman et al.
2004, 165–166, 173). The boxplot technique is used to eliminate extreme values and out-
liers. The boxplot technique of exploratory data analysis is better adopted for responding
to variation in generalized extreme value distribution shape parameters (Babura et al.
2018, 2). It is well known that outliers, observations that are presumed to come from a
different distribution than that for most of the data set (Schwertman et al. 2004, 165). The
extensive literature on the subject of outliers attests to its relevance as a significant concern
in the statistical analysis of data, which can profoundly influence the statistical analysis
and often lead to erroneous conclusions (Schwertman et al. 2004, 165, 166). Boxplot tech-
nique is also a simple way commonly employed to identify outliers and has employed a
resistant rule for identifying possible outliers in a single batch of the univariate dataset
(Schwertman et al. 2004, 166; Babura et al. 2018, 1).

Several statistical significance levels have been accepted for hypothesis testing,
including 0.05, 0.01, and 0.001 in social science studies (Wu et al. 2012, 8). P-values
of 0.05 are mostly considered acceptable for ‘significance’ to determine whether or
not to reject the null hypothesis (Nahm 2017, 242). However, it is often argued that
the p-value only provides information on how incompatible the data are concerning
the null hypothesis; Still, it does not give any information on how likely the data
would occur under the alternative hypothesis (Shi and Yin 2020, 1). The smaller the
significance value, the lower the risk of rejecting the null hypothesis when it is true;
this needs to be balanced by the risk of accepting the null hypothesis when it is not

Figure 2. Current gas monitoring system in the case study mine.
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true (Malhotra et al. 2006, 581). A p-value of 0.01 was often considered highly signifi-
cant (Benjamin and Berger 2019, 189). This research adopted the value of 0.01 as the
cut-off for the significance level to lower the risk of rejecting the null hypothesis.

Correlational research is a research method in which the researcher measures two
variables and assesses the statistical relationship (i.e., the correlation) between them
with little or no effort to control extraneous variables (Price et al. 2017, 107). This
method can be used in any study that does not wish to manipulate the investigated
independent variables (Curtis et al. 2016, 21). As a quantitative research method, cor-
relational research results can inform causal inferences and evidence-based practice
and then subject them to an experimental study (Thompson et al. 2005, 182, 190).
When the correlational research method is adopted, correlation analysis will be
undertaken to confirm a strong relationship between the data. It can find comprehen-
sive results to find a linear relationship between linear-dependent variables if it exists;
It can give a solid indicator to interpret a strong nonlinear relationship between non-
linear-dependent variables (Al-Rousan et al. 2021, 461) and indicate that two variables
are influenced by a common underlying mechanism (Messerli 2012, 1563).

Figure 3. The sensors installed in the case study mine.

Table 1. Code of gas sensors (from T1 to T21).
No. Gas sensor name Code No. Gas sensor name Code

T1 Three mining total wind-back
alley T

T010101 T12 Four mining trackway 500m
refuge chambers T

T010301

T2 Three mining auxiliary wind-
back alley T

T010102 T13 Four mining trackway air
vent T

T010302

T3 Three mining east wing wind-
back alley T

T010103 T14 Four mining trackway fan
front T

T010303

T4 Three mining emergency
shelter Back transition
room T

T010104 T15 Four mining trackway
working face T

T010304

T5 Three mining emergency
shelter front transition
room T

T010105 T16 Four mining trackway
wind-back alley T

T010305

T6 Three mining emergency
refuge survival room T

T010106 T17 Four mining trackway
mixing T

T010306

T7 Four mining water bin
working face T

T010201 T18 Four mining trackway
middle T

T010307

T8 Four mining water bin wind-
back alley T

T010202 T19 Four mining trackway
downwind side of the
rig T

T010308

T9 Four mining water bin air
vent T

T010203 T20 Four mining north wing
wind-back alley T

T010401

T10 Four mining water bin fan
front T

T010204 T21 Four mining belt lanes coal
bin T

T010501

T11 Four mining water bin
mixing T

T010205
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Figure 4 shows the research flowchart processes in this research. They started by
designing a proposed research framework based on the current gas monitoring sys-
tem, including alarming sub-system and monitoring sub-system, collecting data, con-
ducting data analysis and correlation analysis, probing research outcomes, and
exploring an innovative integrated gas warning system.

3.3. Research framework

This research aimed to uncover hidden patterns and correlations between gas, tem-
perature, wind, and dust. This research proposed integrating data on temperature,
wind, and dust into gas would improve warning systems’ sensitivity and reduce the
incidence of explosions and other adverse events. Figure 5 shows the proposed
research framework comprising the correlation analyses between the gas (from T1 to
T21) and gas, gas and temperature (from WD1 to WD16), gas and wind (FS1 to
FS10), and gas and dust (FC1 and FC2).

When focusing on the correlation analyses of gas and gas, the dependent variable
is gas. The independent variables are other gases. For example, when T1 was the
dependent variable, other 20 gases (from T2 to T21) would be independent variables.

Table 2. Code of temperature sensors (from WD1 to WD16).
No. Temperature sensor name Code No. Temperature sensor name Code

WD1 Three mining Total wind-back
alley WD

WD010101 WD9 Three mining Infinity
rope WD

WD010109

WD2 Three mining auxiliary wind-
back alley WD

WD010102 WD10 Three mining substation WD WD010110

WD3 Three mining East Wing
wind-back alley WD

WD010103 WD11 Three mining belt lanes WD WD010111

WD4 Three mining Emergency
Shelter Back Transition
Room WD

WD010104 WD12 Four mining water bin
wind-back alley WD

WD010201

WD5 Three mining Emergency
Shelter Front Transition
Room WD

WD010105 WD13 Four mining trackway 500m
Refuge Chambers WD

WD010301

WD6 Three mining Emergency
Refuge Survival Room WD

WD010106 WD14 Four mining trackway
wind-back alley WD

WD010302

WD7 Three mining trackway winch
house WD

WD010107 WD15 Four mining North Wing
wind-back alley WD

WD010401

WD8 Three mining waiting
room WD

WD010108 WD16 Four mining Infinity rope
Refuge Chambers WD

WD010501

Table 3. Code of wind sensors (from FS1 to FS10).
No. Wind sensor name Code No. Wind sensor name Code

FS1 Three mining Total wind-back
alley FS

FS010101 FS6 Four mining water bin air
vent FS

FS010201

FS2 Three mining auxiliary wind-
back alley FS

FS010102 FS7 Four mining water bin
wind-back alley FS

FS010202

FS3 Three mining East Wing
wind-back alley FS

FS010103 FS8 Four mining trackway air
vent FS

FS010301

FS4 Three mining trackway
middle FS

FS010104 FS9 Four mining trackway
wind-back alley FS

FS010302

FS5 Three mining West Wing
Orbital Lane Belt Lane
Duplex Lane FS

FS010105 FS10 Four mining North Wing
wind-back alley FS

FS010401
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A correlation analysis would examine whether T1 was affected by the changes from
T2 to T21. When focusing on the correlation analyses of gas and temperature, gas
and wind, or gas and dust, the dependent variable is gas. The independent variables
are temperature, wind, or dust. The correlation analysis would examine whether gas
data was affected by the changes from sixteen temperature sensors, two wind sensors,
or two dust sensors.

3.4. Data collection

The research data was collected from the gas monitoring system installed in Mine
No.4 North in the Case Study mine. Data collection occurred at an interval of
15 seconds. 65,535 data points were initially obtained from each sensor between
00:00:00 am on 25 September 2020, and 20:48:00 am on 16 October 2020. 3,211,215
data points in total were obtained from 49 sensors, including gas sensors (21), tem-
perature sensors (16), wind sensors (10), and dust sensors (2).

4. Data analysis

Data pre-processing was conducted first. Reliability and exploratory factor analyses
were then undertaken separately between gas and gas, gas and temperature, gas and
wind, and gas and dust. The correlation analysis was performed between the results
of the above data analysis. IBMVR SPSSVR Statistics version 26 was used for
data analysis.

4.1. Data pre-processing

The raw data gathered in most industrial processes usually comes with many other
quality issues such as out-of-range values, outliers, noises, errors in measurement,
missing values, etc. (Moghadasi et al. 2021, 881). Data pre-processing is a necessary
procedure before conducting data analysis to real-time data streams. It consists of
transforming the data values of a specific dataset, aiming to optimize the information
acquisition and process; at the same time, there is a massive contrast between the
maximum and minimum values of the dataset, so normalizing the data minimizes the
complexity of the algorithm for its corresponding processing (Larriva-Novo et al.
2021, 6). Data pre-processing will focus on the raw data and cover three data cleaning
procedures, including eliminating extreme values, eliminating outliers, and standard-
izing data.

Extreme data values (also called extreme values in this paper) were considered the
out-of-range values in this research. The extreme values can lead to substantially
biased inference and cannot be omitted (Barlow et al. 2020, 765). Other data quality
issues such as noises, errors in measurement, missing values, etc., will be solved by

Table 4. Code of dust sensors.
No. Dust sensor name Code

FC1 Four mining water bin working face FC FC010201
FC2 Four mining trackway wind-back alley FC FC010301
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updating better hardware devices such as sensors in the gas monitoring system and
adopting more effective data collection algorithms. They will not be mainly discussed
in this research. Anomaly data were mainly observed as the outliers presumed to
come from a different distribution than those for most of the dataset (Schwertman
et al. 2004, 165). Outliers come from the other distribution than that for most of the
datasets, may have substantial influence in most parametric tests, which can pro-
foundly influence the statistical analysis and often lead to distortion and possibly
inaccurate and erroneous conclusions (Schwertman et al. 2004, 165–166, 173).
Anomaly data will be considered as outliers in this research. The most common
methods for standardizing data include z-score normalization, min-max standardiza-
tion, and distance to target normalization, and raking ranking normalization)
(Larriva-Novo et al. 2021, 2; Luana et al. 2021, 3). Z-score normalization method will
be used in this research. The reason is that a data standardization based on the scal-
ing of variables using the z-score algorithm may increase the outcomes’ precision

Figure 4. Research flowchart.
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comparing other techniques (Larriva-Novo et al. 2021, 12). Therefore, before con-
ducting data analysis for the real-time datasets, the boxplot technique of exploratory
data analysis was used to eliminate extreme values and outliers. Data standardization
was then followed as data were collected from the different sensors with a variety of
measurements.

After data pre-processing, 9,430 data points for each sensor and 462,070 in total
were finally forwarded into the reliability and exploratory factor analysis procedures.
The time series of the dataset outputs of all sensors can be seen in Appendices 1–4
(Supplementary material).

4.2. Data analysis between gas and gas

The reliability and exploratory factor analyses were conducted between 21 items (T1
to T21). As a result, three correlational groups were found and satisfactorily met the
standards of the reliability and exploratory factor analyses (Table 5). All values of
Cronbach’s Alpha (0.869, 0.919, and 0.955) were considered to have very good reli-
ability (above 0.8). In the exploratory factor analysis test, all values of Kaiser-Meyer-
Olkin (KMO) (0.839, 0.889, and 0.932) were considered a perfect measure (greater
than 0.8). Bartlett’s test of sphericity was 0.000 (p< 0.001). All average communality
measures were adequate (greater than 0.6); all anti-image Correlations values were
more significant than 0.5.

4.3. Data analysis between gas and temperature

The reliability exploratory factor analyses were conducted between gas and tempera-
ture, including 21 gas items (T1 to T21) and 16 temperature items (WD1 to WD16).
As a result, sixteen correlational groups were identified and satisfactorily met the
standards of the reliability and exploratory factor analyses (Table 6). All values of
Cronbach’s Alpha were considered to have very good reliability (above 0.8). All KMO
values were considered a perfect measure (greater than 0.7) except T12 and WD13.

Figure 5. Proposed research framework.
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Bartlett’s test of sphericity was 0.000 (p< 0.001). All average communality values
were good (greater than 0.6), and Anti-image Correlations were more significant
than 0.5.

The correlation group between T12 and WD13 also met the standards of data ana-
lysis. Cronbach’s Alpha was considered to have outstanding reliability (0.973).
Bartlett’s test of sphericity was 0.000 (p< 0.001). The average communality was great
(0.974). Anti-image Correlation was more significant than 0.5.

4.4. Data analysis between gas and wind

The reliability and exploratory factor analyses were conducted between gas and wind,
including 21 gas items (T1 to T21) and 10 temperature items (FS1 to FS10). As a
result, eight correlational groups were justified and satisfactorily met the standards of
the reliability and exploratory factor analyses (see Table 7). All values of Cronbach’s
Alpha were considered to have fair or reasonable reliability (above 0.65). All KMO
values were supposed to be acceptable measures (greater than 0.624). Bartlett’s test of
sphericity was 0.000 (p< 0.001). All average communality values were good (greater
than 0.6), and Anti-image Correlations were more significant than 0.5.

4.5. Data analysis between gas and dust

During the data analysis for 23 items, including gas sensors (21), and dust sensors
(2), all items were rejected due to dissatisfaction with the reliability analysis. No fur-
ther investigation was conducted between gas and dust.

5. Correlation analysis and research outcomes

5.1. Correlation coefficient

Correlation analyses were then undertaken to confirm a strong relationship between
gas and gas, gas and temperature, and gas and wind. The correlation’s strength may
be quantified and determined by the value of the correlation coefficient (Baranyai
et al. 2021, 5) and analyzed using Pearson’s correlation coefficient (r) (called correl-
ation coefficient in this research) as a measure used to describe the linear association
between two random variables (Chung et al. 2020, 7; Saccenti et al. 2020, 1;
Sukawutthiya et al. 2021, 2). The correlation coefficient was the most commonly used
correlation function to find the degree of the relationship between linear variables of

Table 5. The reliability and exploratory factor analyses between gas and gas.

No. Gas sensors Gas sensors
Cronbach’s

Alpha KMO
Average

communality
Anti-image
correlations

1 T1,T2,T3,T4,T5,T6,T7,T8,T9,T10,T11,
T14,T16,T17,T18,T20,T21

T1,T2,T3,T4,T5,T6,T7,
T8,T9,T10,T11,T14,
T16,T17,T18,T20,T21

0.869 0.839 0.65 >0.5

2 T1,T2,T3,T4,T5,T6,T8,T9,T11,T12,T14,
T15,T16,T17,T18,T19,T20,T21

T12,T15,T19 0.919 0.889 0.741 >0.5

3 T1,T2,T7,T8,T9,T11,T12,T13,T16,T17,
T19,T20

T13 0.955 0.932 0.677 >0.5
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interest is given in terms of the correlation coefficient, and a value approaching unity
indicates a robust linear relationship and vice versa (Al-Rousan et al. 2021, 285, 460;
Asri et al. 2018, 288; Souza et al. 2021, 611).

Thus, the correlation coefficient was used to evaluate and measure the correlation
between two pairs of input and output variables. The correlation coefficient’s magni-
tude indicates that the strength of the relationship depends on how the coefficient is
close to �1 or 1, which is the range of the correlation coefficient (Al-Rousan et al.
2021, 460). But there is no standard classification to the correlation coefficient scales.
Figure 6 briefly listed the correlation coefficient scales classified in Q1 publications in
January 2021. This research defined six scales to classify the degree and magnitude of
correlation as great (between ± 0.9 and ± 1), very good (between ± 0.75 and ± 0.89),
good (between ± 0.5 and ± 0.74), fair (between ± 0.3 and ± 0.49), poor (between ±
0.0 and <± 0.29), and no correlation (zero) (see Figure 6). Correlations value with
±0.3 or above indicates the existence of a correlation between two variables.

5.2. Correlation analysis studies

The relations of 420 variables were tested to any existing correlations between gas
data and other gas data. The result indicates there are existing 163 significant correla-
tions. They include 2 correlations as great (between 0.9 and 1), 6 as very good
(between 0.75 and 0.89), 57 as good (between 0.5 and 0.74), and 98 as fair (between
0.3 and 0.49) (see Table 8). 168 correlations were as poor (between 0 and 0.29). 89
items did not have any correlation. Table 9 presented a correlation value with ±0.3 or
above, indicating a correlation between two variables. The results of significant

Table 6. The reliability and exploratory factor analyses between gas and temperature.

No. Gas sensors
Temperature

sensor
Cronbach’s

Alpha KMO
Average

communality
Anti-image
correlations

1 T1,T2,T4,T5,T6,T7,T8,T14,T15,T16,T17,T18,T19,T20 WD1 0.94 0.909 0.725 >0.5
2 T1,T2,T4,T5,T6,T7,T8,T14,T15,T16,T17,T18,T19,T20 WD2 0.947 0.913 0.74 >0.5
3 T1,T2,T6,T14,T15,T16,T17,T18,T19,T20,T21 WD3 0.917 0.864 0.701 >0.5
4 T1,T2,T4,T5,T6,T7,T8,T9,T10,T11,T14,T16,T17,T18,

T20,T21
WD4 0.875 0.84 0.699 >0.5

5 T1,T2,T3,T4,T5,T6,T7,T9,T12,T16,T18,T21 WD5 0.899 0.829 0.669 >0.5
6 T1,T2,T4,T5,T6,T7,T8,T9,T10,T11,T14,T16,T17,T18,

T20,T21
WD6 0.874 0.838 0.697 >0.5

7 T1,T2,T4,T6,T12,T14,T15,T16,T17,T18,T19,T20,T21 WD7 0.89 0.822 0.649 >0.5
8 T1,T2,T4,T5,T6,T7,T8,T9,T10,T11,T14,T16,T17,T18,

T20,T21
WD8 0.872 0.844 0.634 >0.5

9 T1,T2,T3,T6,T14,T15,T16,T17,T18,T19,T20,T21 WD9 0.914 0.852 0.697 >0.5
10 T1,T2,T4,T5,T6,T7,T8,T9,T10,T11,T14,T16,T17,T18,

T20,T21
WD10 0.877 0.847 0.692 >0.5

11 T1,T2,T3,T4,T5,T6,T7,T8,T9,T10,T11,T14,T16,T17,
T18,T20,T21

WD11 0.873 0.84 0.609 >0.5

12 T1,T2,T3,T4,T5,T6,T7,T8,T9,T10,T11,T14,T16,T17,
T18,T20,T21

WD12 0.872 0.834 0.662 >0.5

13 T12 WD13 0.973 0.5 0.974 >0.5
14 T7,T8,T9,T11,T12,T16,T17,T19,T20,T21 WD14 0.795 0.745 0.606 >0.5
15 T1,T2,T3,T4,T5,T6,T7,T8,T9,T10,T11,T14,T16,T17,

T18,T20,T21
WD15 0.875 0.842 0.613 >0.5

16 T1,T2,T3,T4,T5,T6,T9,T11,T12,T14,T15,T16,T17,
T18,T19,T20,T21

WD16 0.907 0.852 0.746 >0.5
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correlations between gas and gas were then demonstrated in Figure 7. The lines’ size
expressed the correlations of great, very good, good, fair, and poor between variables.

The second correlation analysis was followed to test any existing correlations between
gas data and temperature data. The relations of 336 variables were tested. The result indi-
cates there are existing 130 significant correlations. They include one correlation as great,
5 as very good, 49 as good, and 75 as fair (see Table 10). Ninety correlations were as
poor. 116 items did not have any correlation. Table 11 presented a correlation value with
±0.3 or above, indicating a correlation between two variables. The results of significant
correlations between gas and temperature were then demonstrated in Figure 8.

The third correlation analysis was finally conducted to test any existing correlations
between gas data and wind data. The relations of 210 variables were tested. 35 significant
correlations existed, including 16 as good and 19 as fair (see Table 12). Forty correlations
were as poor. 135 items did not have any correlation. Table 13 presented a correlation
value with ±0.3 or above, indicating a correlation between two variables. The results of
significant correlations between gas and wind were then demonstrated in Figure 9.

5.3. Research outcomes

As the research outcome of the Proposed Research Framework (see Figure 5), the
Correlation Analysis Theoretical Framework (see Figure 10) was then explored based on

Table 7. The reliability and exploratory factor analyses between gas and wind.

No. Gas sensors
Wind
sensor

Cronbach’s
Alpha KMO

Average
communality

Anti-image
correlations

1 T1,T16,T17,T19 FS3 0.712 0.685 0.673 >0.5
2 T1,T2,T12 FS4 0.895 0.824 0.761 >0.5
3 T2,T9,T13 FS5 0.868 0.751 0.717 >0.5
4 T1,T2,T3,T4,T5,T6,T7,T9,T11,T12,

T16,T18,T21
FS6 0.893 0.862 0.71 >0.5

5 T1,T2,T3,T5,T7,T8,T9,T11,T12,T14,
T15,T17,T19,T20,T21

FS7 0.889 0.865 0.685 >0.5

6 T1,T2,T3,T4,T5,T6,T7,T8,T9,T10,T11,
T14,T15,T19,T20

FS8 0.929 0.901 0.74 >0.5

7 T1,T2,T4,T5,T6,T7,T8,T9,T11,T12,T15,
T16,T17,T18,T20,T21

FS9 0.89 0.846 0.68 >0.5

8 T3,T10,T12,T13,T14,T17,T20 FS10 0.65 0.624 0.62 >0.5

Figure 6. The classifications of the correlation coefficient scales in Q1 publications in Jan 2021.
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the results of correlation analysis studies (see Figures 7–9). The Correlation Analysis
Theoretical Framework alleges 328 significant correlations (also called correlation ana-
lysis rules), including analyses between gas and gas (163), gas and temperature (130), and
gas and wind (35). No correlations exist between gas and dust (FC1 and FC2), as dis-
cussed in section 4.4. Data repository was provided (see Data Repository 2021).

Thus, a warning sub-system was embedded and deployed into the current gas
monitoring system. A Unified Modeling Language (UML) model was finally devel-
oped by integrating a Correlation Analysis Theoretical Framework (see Figure 10)
into the existing gas monitoring system (see Figure 2). Figure 11 demonstrates the
Innovative Integrated Gas Warning System’s UML model to understand better the
system’s architectural design comprising three layers: the view layer, domain layer,
and data access layer.

As a result of this research, an Innovative Integrated Gas Warning System was
deployed in the Case Study mine for user acceptance testing to increase coal mining
safety in Dec 2020 (see Figure 12). The system includes three sub-systems (alarming,
warning, and monitoring) that were developed incorporating the 328 correlation ana-
lysis rules and three activated decision rules, including analyses between gas and gas
(163), gas and temperature (130), and gas and wind (35). The three decision proc-
esses (Data acquisition, Correlation analysis, and Activated decision) will systematic-
ally and constrainedly follow as:

� Data acquisition: This logic flow was run between the Data Access Layer to the
Domain Layer. The data were obtained from gas, temperature, and
wind databases.

Table 9. Correlation value between gas and gas.

Gas sensors
Gas

sensor Correlation value

T2,T3,T16,T17,T18,T20 T1 0.971, 0.425, 0.526, 0.370, 0.498, 0.365
T1,T3,T16,T17,T18 T2 0.971, 0.376, 0.534, 0.341, 0.496
T1,T2,T16 T3 0.425, 0.376, 0.334
T5,T6,T7,T8,T14,T20,T21 T4 0.708, 0.816, 0.552, 0.410, 0.425, 0.429, 0.589
T4,T6,T7,T8,T11,T14,T20,T21 T5 0.708, 0.662, 0.563, 0.499, 0.318, 0.432, 0.377, 0.528
T4,T5,T7,T8,T14,T20,T21 T6 0.816, 0.662, 0.507, 0.357, 0.413, 0.402, 0.632
T4,T5,T6,T8,T9,T11,T14,T20,T21 T7 0.552, 0.563, 0.507, 0.761, 0.461, 0.553, 0.388, 0.397, 0.328
T4,T5,T6,T7,T9,T10,T11,T14,T20 T8 0.410, 0.499, 0.357, 0.761, 0.455, 0.306, 0.602, 0.321, 0.410
T7,T8,T11,T20 T9 0.461, 0.455, 0.717, 0.422
T8,T11,T14, T10 0.306, 0.327, 0.313
T5,T7,T8,T9,T10,T14,T20 T11 0.318, 0.553, 0.602, 0.717, 0.327, 0.308, 0.381
T4,T5,T8,T9,T11,T14,T15,T16,T17,T18,T19,T21 T12 0.337, 0.504, 0.353, 0.421, 0.314, 0.432, 0.589, 0.569, 0.421,

0.777, 0.715, 0.345,
T1,T2,T7,T8,T9,T11,T12,T16,T17,T19,T20 T13 0.509, 0.526, 0.588, 0.362, 0.657, 0.477, 0.669, 0.670, 0.670,

0.522, 0.629
T4,T5,T6,T7,T8,T10,T11,T20,T21 T14 0.425, 0.432, 0.413, 0.388, 0.321, 0.313, 0.308, 0.424, 0.310
T1,T2,T4,T5,T6,T8,T9,T11,T14, T16,T17,

T18,T19,T20,T21
T15 0.440, 0.421, 0.533, 0.639, 0.404, 0.340, 0.414, 0.589, 0.510,

0.727, 0.591, 0.711, 0.666, 0.434, 0.549
T1,T2,T3,T17,T18,T20 T16 0.526, 0.534, 0.334, 0.606, 0.508, 0.372
T1,T2,T16,T18,T20 T17 0.370, 0.341, 0.660, 0.304, 0.457
T1,T2,T16,T17,T20 T18 0.498, 0.496, 0.508, 0.304, 0.304
T4,T5,T6,T9,T12,T14,T15,T16,T17,T18,T20,T21 T19 0.400, 0.530, 0.322, 0.407, 0.715, 0.345, 0.666, 0.798, 0.521,

0.740, 0.319, 0.445
T1,T4,T5,T6,T7,T8,T9,T11,T14,T16,T17,T18,T21 T20 0.365, 0.429, 0.377, 0.402, 0.397, 0.410, 0.422, 0.381, 0.424,

0.372, 0.457, 0.304, 0.356
T4,T5,T6,T7,T14,T20 T21 0.589, 0.528, 0.632, 0.328, 0.310, 0.356
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� Correlation analysis: Within the Domain Layer, triple-correlation analyses were
conducted separately between data upstream of gas and gas, gas and temperature,
and gas and wind. The 328 correlation analysis rules will constrain the correl-
ation analysis.

� Activated decision: This step was established between the Domain Layer and the
View Layer. Three activated decision rules were be followed:

� If the outputs of data reach or exceeding TLV, the alarm system will immediately
alert the safety-responsive team.

� If the real-time correlation analysis value (CAV) exceeds the correlation analysis
limit value (CALV) between gas and gas, gas and temperature, or gas and wind.
In that case, the warning system will be alerted.

� If the CAV does not reach CALV, the original data would be forwarded to the
monitoring system.

The Entropy algorithm calculated the real-time CAV using the real-time data
obtained from the correlated sensors of gas and gas, gas and temperature, and gas
and wind. The Entropy algorithm calculated the CALV using the upper-limit and
lower-limit values obtained from the correlated sensors between gas and different gas,
gas and temperature, and gas and wind. The Entropy algorithm followed the step-by-
step weight estimation by Mukhametzyanov (2021, 79–80) as:

The intensity (pij) of the j-th attribute of the i-th alternative is calculated for each
criterion (Sum-method):

pij ¼
rijPm
i¼1rij

, 8i ¼ 1, :::,m, j ¼ 1, :::, n;
Xm

i¼1

pij ¼ 1 (1)

To calculate the entropy (ej) and the key indicator (qj) of each criterion:

ej ¼ � 1
lnm

�
Xm

i¼1

pij � ln pij, j ¼ 1, :::, n;ðif pij ¼ 0 ) pij � ln pij ¼ 0Þ (2)

qj ¼ 1�ej, j ¼ 1, :::, n (3)

Figure 7. The result of significant correlations between gas and gas.
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To calculate the weight of each criterion:

wj ¼
qjPn
k¼1qk

, j ¼ 1, :::, n (4)

The programming code for running the above Entropy algorithm was provided
(see Supplementary material, Appendix 5).

6. Discussions

6.1. Feasibility verification

For verifying the research method adopted in this research, two rounds of feasibility
verification studies were conducted. The first round of studies aimed to examine
whether the method proposed in this research might be used at other periods at the
Case Study mine. The second round of studies aimed to investigate whether this pro-
posed method might be used simultaneously at the same periods in different mines.

The first round of studies used data collected in a Case Study mine on 14
September 2020. The outcomes were to compare with data collected between 25
September and 16 October 2020. This round aimed to confirm whether this proposed
method might be used at different periods in the same Case Study mine for verifica-
tion. The reason was that the Case Study mine kept the continuing mining produc-
tion. Sensors might be changed to the different physical addresses on average one
month at the same working face, including adding, moving, and removing. 53,760
data points for each sensor on 14 September 2020 with 11 days ahead compared to
the case study. After data pre-processing (eliminating extreme values, eliminating out-
liers, and standardizing data) to the raw data, 5,753 data points were obtained from

Table 11. Correlation value between gas and temperature.

Gas sensors
Temperature

sensor Correlation value

T4,T5,T6,T7,T8,T14,T16,T17,T18,T19,T20 WD1 0.828, 0.650, 0.687, 0.566, 0.501, 0.471, 0.555, 0.440,
0.592, 0.524, 0.380

T1,T2,T4,T5,T6,T7,T8,T14, T15,T16,T17,
T18,T19,T20

WD2 0.459, 0.383, 0.830, 0.794, 0.701, 0.632, 0.586, 0.606,
0.423, 0.506, 0.448, 0.610, 0.615, 0.485

T1,T2,T14,T15,T16,T17,T18,T19,T20,T21 WD3 0.383, 0.337, 0.691, 0.482, 0.310, 0.506, 0.436, 0.386,
0.459, 0.383, 0.332

T4,T5,T6,T7,T8,T14,T20,T21 WD4 0.640, 0.556, 0.615, 0.690, 0.410, 0.542, 0.354, 0.367
T1,T2,T3,T7,T9,T12,T16,T18 WD5 0.684, 0.704, 0.363, 0.312, 0.441, 0.747, 0.340, 0.441
T4,T5,T6,T7,T8,T14,T20,T21 WD6 0.623, 0.538, 0.596, 0.638, 0.353, 0.553, 0.337, 0.355
T1,T2,T4,T6,T12,T16,T19 WD7 0.346, 0.335, 0.311, 0.345, 0.695, 0.407, 0.434
T4,T5,T6,T7,T8,T11,T14,T20,T21 WD8 0.551, 0.480, 0.543, 0.682, 0.442, 0.304, 0.404, 0.310, 0.322
T1,T3,T14,T15,T16,T17,T18,T19,T20 WD9 0.341, 0.777, 0.480, 0.311, 0.543, 0.448, 0.314, 0.570, 0.349
T4,T5,T6,T7,T8,T10,T11,T14,T20,T21 WD10 0.580, 0.586, 0.549, 0.556, 0.473, 0.371, 0.302, 0.559,

0.436, 0.317
T1,T2,T16,T17,T18,T20 WD11 0.517, 0.511, 0.586, 0.388, 0.394, 0.343
T7,T8,T9,T11,T20 WD12 0.315, 0.349, 0.523, 0.403, 0.369
T12 WD13 0.948
T9,T11,T12,T16,T21 WD14 0.478, 0.373, 0.775, 0.323, 0.382
T4,T5,T6,T7,T8,T14,T20,T21 WD15 0.618, 0.509, 0.592, 0.582, 0.353, 0.400, 0.420, 0.425
T1,T2,T4,T12,T14,T15,T17,T18,T19,T21 WD16 0.320, 0.345, 0.405, 0.468, 0.473, 0.414, 0.381, 0.606,

0.303, 0.462
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each sensor between 00:00:00 am on 14 September and 23:59:59 on 14 September
2020. The outcomes of correlation analysis identified that this study step built the
same UML model and confirmed the relations between gas and gas, gas and tempera-
ture, and gas and wind.

Figure 8. The result of significant correlations between gas and temperature.

Table 12. Correlation analysis between gas and wind.
FS1 FS2 FS3 FS4 FS5 FS6 FS7 FS8 FS9 FS10

T1 .227� .601�� .486�� .729�� .480�� .393��
T2 .699�� .584�� .465�� .733�� .515�� .388��
T3 .533�� .359�� .267�� 0.087
T4 .119�� .189�� .164��
T5 0.039 .130�� .397�� .208��
T6 .107�� .170�� .159��
T7 .164�� .115�� .269�� .340��
T8 .088� .365�� .222��
T9 .707�� .349�� .139�� .316�� .370��
T10 .547�� 0.149
T11 .169�� .165�� .408�� .317��
T12 .598�� .557�� .550�� .253�� 0.126
T13 .569�� .198�
T14 .256�� .280�� .270��
T15 .518�� .621�� .225��
T16 0.208 .395�� .394��
T17 0.179 .247�� .200�� .199�
T18 .218�� .243��
T19 .449�� .258�� .543��
T20 .321�� .294�� .349��
T21 .128�� .128�� .085��
��Correlation is significant at the 0.01 level 2-tailed.�Correlation is significant at the 0.05 level 2-tailed.

Table 13. Correlation value between gas and wind.
Gas sensors Wind sensor Correlation value

T19 FS3 0.449
T1,T2,T12 FS4 0.601, 0.699, 0.598
T2,T9,T13 FS5 0.584, 0.707, 0.569
T1,T2,T3,T9,T12,T16 FS6 0.486, 0.465, 0.533, 0.349, 0.557, 0.395
T1,T2,T3,T12,T15,T20 FS7 0.729, 0.733, 0.359, 0.550, 0.518, 0.321
T1,T2,T5,T8,T9,T10,T11,T15,T19 FS8 0.480, 0.515, 0.397, 0.365, 0.316, 0.547, 0.408, 0.621, 0.543
T1,T2,T7,T9,T11,T16,T20 FS9 0.393, 0.388, 0.340, 0.370, 0.317, 0.394, 0.349

3194 R. M. X. WU ET AL.



The second-round study used data collected in Feasibility Verification Study Mine
at ZhongXing mine, which used the data obtained with the same periods from the
different mine – No.1209 at ZhongXing mine. This step investigated whether this
proposed method might be used in other mines for verification at the same time. Ten
gas sensors were installed in Feasibility Verification Study Mine (Figure 12). Table 14

Figure 9. The result of significant correlations between gas and wind.

Figure 10. The correlation analysis theoretical framework.

Figure 11. A UML model of the innovative integrated gas warning system.
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shows the codes of the sensors used. This step initially obtained 17,280 data outputs
from each gas sensor. After data pre-processing to the raw data, the final data was
7,265 for each gas sensor. Thus, 72,650 datasets in total were collected for ten sensors
(see Supplementary material, Appendix 6). The outcomes of the correlation analysis
identified that this study step built the same UML model and confirmed the relation-
ships between gas and gas, gas and temperature, and gas and wind.

Thus, both rounds of feasibility verification studies confirmed existing correlations
between gas and gas, gas and temperature, and gas and wind. The two-round studies
also verified that the proposed method in this research might feasibly be adopted at
ZhongXing mine. Further research should be conducted to examine whether the
Innovative Integrated Gas Warning System might be effectively adopted in other coal
mining companies and further clarify the adaptive application conditions.

6.2. Discussion

This study conducted correlational research on integrating gas, temperature, wind,
and dust into gas separately. Table 15 summarizes the significant differences between
this research and other fourteen recent works discussed in section 2.1 Related Works,
fourteen studies focused on temperature, wind, dust, C2H2, CO2, CO, O2, humidity,
gas pressure, and other parameters to predict gas concentrations.

Among them, some studies used temperature, wind, and/or dust to predict gas
concentrations. For example, Ma and Zhu (2016, 7) alleged that wind speed and tem-
perature were the critical factors that affect gas concentration distribution. Fan et al.
(2017, 50) asserted that the adsorbed gas in the coal seam took more than 80% of the
total, while adsorbed gas content mainly depended on the porosity of coal, gas pres-
sure, and temperature. Zhang et al. (2017, 1) attested that the variance of seepage vel-
ocity with time and temperature could provide an early warning for coal containing
gas failing and gas disasters in a coal mine. Jo et al. (2019, 190) observed a strong
correlation between temperature and humidity sensors. Song et al. (2019, 11, 13) dis-
cussed physical parameters of coal spontaneous combustion and gas migration,
including wind speed and fresh air temperature. Wang et al. (2019, 1722) highlighted
that historical monitoring data of coal seam depth, coal seam thickness, temperature,
and gas concentration significantly impacted gas prediction. Sun and Li (2020, 7)
developed a new gas safety evaluation model based on the sensor data of gas concen-
tration, wind speed, dust, and temperature obtained from the coal mine safety moni-
toring system. Wang et al. (2020, 9) indicated that the coal seam’s temperature was

Figure 12. Ten gas sensors installed in feasibility verification mine.
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considered one of the parameters of coal and gas. Zhang et al. (2020, 2) proposed an
SRWNN model to make a gas concentration prediction mode based on gas CO, air
volume, temperature, pressure, the number of continuous mining days, mining vol-
ume and mining depth. Zhang et al. (2020a) researched temperature variation during
coal and gas outbursts as the implication for outburst prediction.

Some studies focused on C2H2, CO2, CO, O2, gas pressure, and other parameters
to predict gas concentrations, including parameters of dynamic geological environ-
ments, simulation parameters, coal spontaneous combustion, gasometric and ventila-
tion, gas emission, mining, etc. For example, Xia et al. (2018, 3) focused on
monitoring the concentration of CO and believed that it was one of the main reasons
for explosion and fire accident in the coal mine. They also examined other concentra-
tions from the environmental monitoring system as an example, such as O2, C2H2,
and Simulation parameters. Jo et al. (2019, 190, 192) clarified that the variations of
concentration of mine gases (CO2 and CO) are of extreme importance to the real-
time monitoring system. A strong correlation was also observed for temperature and
humidity sensors. Song et al. (2019, 11, 13) discussed the CO concentration, O2 con-
centration, and O2/N2 and confirmed that the CH4/O2 ratio changes could character-
ize the variation of gas indicators. Tutak and Brodny (2019, 6, 9, 18) used data from
the mine’s gasometric system for forecasting gas concentration levels. Sun and Li
(2020, 7) developed a new gas safety evaluation model for the Qing Gang Ping coal
mine. The data analysis was based on the sensor data of gas concentration, wind
speed, dust, and temperature obtained from the coal mine safety monitoring system.
Zhao et al. (2020, 1982) built a model for predicting gas outbursts to the working
surface, including gas geology, mining influence, daily forecast, gas emission, mine
pressure, and anti-burst measures. Zhang et al. (2021) combined geological structure
and gas pressure as key indicators for developing a warning system. Data collected
from CO2, CO, and O2 sensors had almost measured no variations in this research.
They were maintained at a constant level from the current gas monitoring system so
that there is no value to be investigated (see section 3.1). This research did not
include other parameters as this project focused mainly on the current gas monitor-
ing system rather than other coal mining information systems.

This research found the existing relations between gas and temperature in gas
monitoring systems. Only one recent study by Lu et al. (2021, 9, 10) reported that
gas concentrations increased with the increased temperature from 30 �C to 60 �C. It
exponentially surged with the temperature after 60 �C. However, their research

Table 14. Code of sensors in feasibility verification study mine.
No. Sensor name Code

1 Coal Bin T T030601
2 Transport Lane T T030602
3 Working Face T T030603
4 Upper Corner T T030604
5 Material Lane T T030701
6 1000m Refuge Chambers T T030801
7 middle of Wind-back Lane T T030802
8 500m Refuge Chambers T T030803
9 Wind-back Lane T T030804
10 Wind-back Lane Mixing T T030805

GEOMATICS, NATURAL HAZARDS AND RISK 3197



Ta
bl
e
15
.
Co

m
pa
ris
on

s
be
tw
ee
n
th
is
re
se
ar
ch

an
d
ot
he
r
lit
er
at
ur
es
.

Co
m
pa
ris
on

s
Co
rr
(G
as
,

G
as
)
)

G
as

Co
rr
(G
as
,

Te
m
p)

)
G
as

Co
rr
(G
as
,

W
in
d)

)
G
as

Co
rr
(G
as
,

D
us
t)
)

G
as

Te
m
pe
ra
tu
re

W
in
d

D
us
t

O
2

CH
4/
O
2

O
2/
N
2

C2
H
2

CO
CO

2
H
um

id
ity

G
as

pr
es
su
re

O
th
er

pa
ra
m
et
er
s

M
a
an
d
Zh

u
(2
01
6)

�
�

Fa
n
et

al
.(
20
17
)

�
�

�
Zh

an
g
et

al
.(
20
17
)

�
�

�
Xi
a
et

al
.(
20
18
)

�
�

�
�

Jo
et

al
.(
20
19
)

�
�

�
�

So
ng

et
al
.(
20
19
)

�
�

�
�

�
�

�
Tu
ta
k
an
d
Br
od

ny
(2
01
9)

�
W
an
g
et

al
.(
20
19
)

�
�

Su
n
an
d
Li
(2
02
0)

�
�

�
�

W
an
g
et

al
.(
20
20
)

�
�

Zh
an
g
et

al
.(
20
20
)

�
�

�
�

Zh
an
g
et

al
.(
20
20
a)

�
�

�
Zh

ao
et

al
.(
20
20
)

�
�

Zh
an
g
et

al
.(
20
21
)

�
�

Th
is
re
se
ar
ch

�
�

�
�

(N
ot
es
:

�C
or
r(
X,

Y)
st
an
ds

fo
r
th
e
co
rr
el
at
io
n
of

ra
nd

om
va
ria
bl
es

X
an
d
Y.

�A
)

B
st
an
ds

fo
r
if
A
is
tr
ue
,t
he
n
B
is
al
so

tr
ue
;i
f
A
is
fa
ls
e,
th
en

no
th
in
g
is
sa
id

ab
ou

t
B.

�
O
th
er

pa
ra
m
et
er
s
in
cl
ud

e
pa
ra
m
et
er
s
of

dy
na
m
ic

ge
ol
og

ic
al

en
vi
ro
nm

en
ts
,
si
m
ul
at
io
n
pa
ra
m
et
er
s,
co
al

sp
on

ta
ne
ou

s
co
m
bu

st
io
n,

ga
so
m
et
ric

an
d
ve
nt
ila
tio

n,
ga
s
em

is
si
on

,
m
in
in
g,

an
d
so

on
)

3198 R. M. X. WU ET AL.



studied gas transport characteristics of positive pressure beam tube systems to spon-
taneous coal combustion warning rather than gas monitoring systems. This research
also found the existing relations between gas and gas, and gas and wind. Similar find-
ings were not reported or uncovered by up-to-date literature and the above studies
(Table 15). The research outcomes will be valuable for field experts in coal mining
safety with different scenery to further probe the relevant mechanisms. The proposed
method used in this research mainly focused on correlational research. However, the
correlational study does not provide the best evidence regarding causal mechanisms
between two variables (Messerli 2012, 1563; Luft 2018, 159). Therefore, there is also a
need for field experts to further conduct causal studies for investigating the cause-
and-effect grounded theory to the findings of relations between gas and wind and
probe the relevant mechanisms.

7. Conclusions, limitations, and further research

This research aims to develop an innovative gas warning system for increasing min-
ing safety in the underground coal mine industry. The existing gas monitoring sys-
tems focus on detecting real-time data obtained from gas sensors and do not analyze
whether other sensors’ outputs affect gas data. The literature search did not find
existing alarms or warning systems incorporating correlation analysis of gas data and

Figure 13. The screenshot of home page of the innovative integrated gas warning system
deployed to the case study mine.
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data acquisition from temperature sensors and wind sensors in practice; this research
aimed to fill this gap.

A mixed qualitative and quantitative research methodology was adopted in this
research, including a case study, observation approach, boxplot technique, and correl-
ational research. 3,211,215 data outputs were obtained from 49 sensors, including gas
sensors (21), temperature sensors (16), wind sensors (10), and dust sensors (2). The
study found 328 strong correlations between gas and gas (163), gas and temperature
(130), and gas and wind (35). No correlations exist between gas and dust. This
research suggested that integrating data on temperature and wind into gas would
improve warning systems’ sensitivity and reduce the incidence of explosions and
other adverse events.

On the basis of the research outcomes, a warning sub-system was explored and
embedded in the current gas monitoring system. Thus, three sub-systems (alarming,
warning, and monitoring) are deployed in the Case Study mine. A UML model was
finally developed by integrating the Correlation Analysis Theoretical Framework to
the existing gas monitoring system in the Case Study to demonstrate an innovative
gas warning system. An Innovative Integrated Gas Warning System was developed
incorporating the 328 correlation analysis rules and three activated decision rules as a
research outcome. The proposed method used in this research mainly focused on cor-
relational research. For enhancing feasibility verification, this research conducted two
rounds of verification studies to verify the feasibility of the proposed method. The
first-round research proved that the proposed method might successfully be used at
other periods at the Case Study mine. The second-round study verified that the pro-
posed method might also fruitfully be used simultaneously at the same periods in dif-
ferent mines. As a result, an Innovative Integrated Gas Warning System was deployed
in the Case Study mine for user acceptance testing to increase coal mining safety in
Dec 2020. A screenshot of the homepage of this deployed system was provided for
verification of this research project (see Figure 13).

The main contributions of this study can be stated as:

� This research attempts to use a correlational research method rather than ML
methods to develop the gas warning system due to the current ML limitations. As
a case study, this research utilized correlation analysis for developing an
Innovative Integrated Gas Warning System.

� This research also attempts to find the existing relations between gas and gas, gas
and temperature, and gas and wind in gas monitoring systems. The research out-
comes will be valuable for field experts in coal mining safety with different scenery
to further probe the relevant mechanisms.

The main limitation is that the result outcomes are mainly focused on the Case
Study mine. Further research should be performed to examine whether the
Innovative Integrated Gas Warning System might be effectively adopted in other coal
mining companies and further clarify the adaptive application conditions. Another
limitation is that this research uses correlational analysis to indicate significant rela-
tionships between gas and gas, gas and temperature, and gas and wind. However, the
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correlational research does not provide the best evidence regarding causal mecha-
nisms between two variables (Messerli 2012, 1563; Luft 2018, 159). Therefore, there is
a need for field experts in coal mining safety to further conduct causal studies for
investigating the cause-and-effect grounded theory to the findings and explore the
relevant mechanisms.

Nomenclature

aij elements of decision matrix (DM)
rij normalized elements of decision matrix
wj weight or importance of criteria (j¼ 1,… , n)
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