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ON k-GEODETIC GRAPHS AND GROUPS

MURRAY ELDER, ADAM PIGGOTT, AND KANE TOWNSEND

Abstract. We call a graph k-geodetic, for some k ≥ 1, if it is connected
and between any two vertices there are at most k geodesics. It is shown
that any hyperbolic group with a k-geodetic Cayley graph is virtually-free.
Furthermore, in such a group the centraliser of any infinite order element is
an infinite cyclic group. These results were known previously only in the case
that k = 1. A key tool used to develop the theorem is a new graph theoretic
result concerning “ladder-like structures” in a k-geodetic graph.

1. Introduction

For any positive integer k, we will call a (possibly infinite) graph k-geodetic
if the graph is connected and between any pair of vertices there are at most k
geodesics. For example, a tree is 1-geodetic and the complete bipartite graph Kk,l

is (max{k, l})-geodetic. While 1-geodetic graphs (known simply as geodetic graphs)
[7, 4] and 2-geodetic graphs [10] have been studied, it seems that little work has
been done on k-geodetic graphs. Our first result is a necessary condition for a graph
to be k-geodetic. We introduce a technical notion of a ladder-like structure with
parameters for height and width (see Definition 3.2).

Theorem A. Let m and k be positive integers. In any k-geodetic graph there is
a universal bound on the height of ladder-like structures of width m.

A group G is called k-geodetic if it admits a finite inverse-closed generating set S
such that the corresponding undirected Cayley graph Cay(G,S) is k-geodetic. It is
clear that any finite groupG is geodetic (with S = G\{1G}). The hyperbolic groups
are a natural next class of groups to investigate. If G is hyperbolic, then geodesics
fellow travel and we may use this property to construct ladder-like structures. We
parlay this idea into our second result which demonstrates that the hyperbolic
k-geodetic groups form a proper subclass of the virtually-free groups.

Theorem B. Let k be a positive integer. If G is a hyperbolic k-geodetic group,
then G is virtually-free and in G the centraliser of any infinite order element is an
infinite cyclic group.

We note that Z × Z2 fails the centraliser condition of Theorem B and so is an
example of a virtually-free group that is not k-geodetic for any positive integer k.

In 1997, Shapiro [9] asked if the geodetic groups are exactly the plain groups.
A group is plain if it is isomorphic to a free product of finitely many finite groups
and finitely many copies of Z. There is a natural choice of generating set of a
plain group so that the Cayley graph is geodetic. Although Shapiro’s question
remains unanswered in general, some progress has been made in the special case of
hyperbolic groups. Papasoglu [8, 1.4] showed that hyperbolic geodetic groups are in
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Figure 1. Known containments.

fact virtually-free. Observing that hyperbolic geodetic groups admit presentation
by finite Church-Rosser Thue systems, one may apply a result by Madlener and
Otto[6] to conclude that in hyperbolic geodetic groups the centraliser of any infinite
order element is infinite cyclic. Theorem B shows that hyperbolic k-geodetic groups
satisfy the key constraints known to hold for hyperbolic geodetic groups.

Shapiro [9, p.6] proved that if G is virtually infinite cyclic and k-geodetic with
respect to generating set S, then G is isomorphic to either Z or Z2 ∗Z2 and S is the
standard generating set. Taken with the existing theory, Theorem B leaves us with
the containments in Fig. 1 and is evidence in favour of the following conjecture.

Conjecture C. A hyperbolic group G is k-geodetic for some positive integer k if
and only if G is geodetic. Furthermore, if G is infinite and Cay(G,S) is k-geodetic
for some finite generating set S and some k ≥ 1, then Cay(G,S) is geodetic.

We note the difference between finite and infinite groups in the above conjecture.
For any finite group G, it is clear that Cay(G,G\{1G}) is geodetic. For any positive
integer k, the only infinite k-geodetic Cayley graphs we know are in fact geodetic.

Example 1.1. For any integer k > 1, we give an example of a group G and
generating set S such that Cay(G,S) is k-geodetic but not (k − 1)-geodetic as
follows. We observe that the complete bipartite graph Kk,k is k-geodetic and not
(k − 1)-geodetic. We now choose a group and generating set with Cayley graph
Kk,k. Let G be the cyclic group of order 2k, let a be an order 2k element in G and
define S := {a2i+1 | 0 ≤ i ≤ k − 1}. Then Cay(G,S) has k distinct geodesics of
length 2 for each a2i ∈ G with 1 ≤ i ≤ k and a unique geodesic of length 1 for each
a2i+1 ∈ G with 0 ≤ i ≤ k − 1.

2. Preliminaries

Let X = (V,E) be a locally-finite simple connected graph. For a, b ∈ N with
a ≤ b, define [a, b] to be {a, a+ 1, . . . , b}. A path in X is a map γ : [0, n] → V with
{vi, vi+1} ∈ E for each 0 ≤ i ≤ n − 1. The path γ has an initial point, end point

and length given by γ(0), γ(n) and n respectively.
There is a metric dX : V × V → N such that dX(u, v) is the length of a minimal

length path between u and v. We call such a path a geodesic. We say that X is
k-geodetic if for any pair of vertices the number of distinct geodesics between them
is less than or equal to k. In the special case that k = 1, we say that X is geodetic.
For our arguments that follow, we will require precise notions relating to fellow
travelling.

Definition 2.1. Let γi : [0, ni] → V for i ∈ {1, 2} be paths in V and n =
max{n1, n2}. Then the paths are said to m-fellow travel if

dX(γ1(t), γ2(t)) ∈ [0,m],

for all t ∈ [0, n]. Note that if ni < n, we define γi(t) = γi(ni) for all t ∈ [ni + 1, n].
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Definition 2.2. Let γ1, γ2 : [0, n] → V be paths of length n. For a given m > 0,
we say γ1 and γ2 are:

(i) m-apart at i ∈ [0, n] if dX(γ1(i), γ2(i)) = m;
(ii) m-close at i ∈ [0, n] if dX(γ1(i), γ2(i)) ∈ [1,m];
(iii) asynchronously disjoint if for all distinct i, j ∈ [0, n] we have γ1(i) 6= γ2(j);
(iv) co-travelling if γ1(i) = γ2(j) and γ1(i+1) = γ2(j+1) for some i, j ∈ [0, n−1],

and synchronously co-travelling if i = j.

Furthermore, we define am(γ1, γ2) := |{i ∈ [0, n] | dX(γ1(i), γ2(i)) = m}| and
cm(γ1, γ2) := |{i ∈ [0, n] | dX(γ1(i), γ2(i)) ∈ [1,m]}|; so am(γ1, γ2) records the
number of times that γ1 and γ2 are m-apart, while cm(γ1, γ1) records the number
of times they are m-close.

Definition 2.3. A geodesic triangle in X is the union of three geodesic paths
α : [0, nα] → V , β : [0, nβ] → V and γ : [0, nγ ] → V , such that α(nα) = β(0), β(nβ) =
γ(0) and γ(nγ) = α(0). The geodesic triangle is non-degenerate if α(a), β(b), γ(c)
are pairwise distinct for all a ∈ [1, nα], b ∈ [1, nβ] and c ∈ [1, nγ ]; otherwise it is
degenerate.

Definition 2.4. A geodesic bigon inX is the union of two geodesic paths α : [0, n] →
V and β : [0, n] → V such that α(0) = β(0) and β(n) = γ(n). The geodesic bigon
is non-degenerate if α(i) 6= β(i) for all i ∈ [1, n− 1]; otherwise it is degenerate.

Let G be a group and S ⊆ G \ {1G} a finite inverse-closed generating set. The
undirected Cayley graph of G with respect to S, denoted Cay(G,S) is the graph
with vertex set G and edge set {{g, h} ∈ G×G | g−1h ∈ S}. Since S generates G,
Cay(G,S) is connected. Since S is finite, Cay(G,S) is locally-finite. Since 1G 6∈ S
and S ⊂ G, Cay(G,S) is simple. We call S an alphabet and denote the set of
finite words over the alphabet S by S∗. We write |u| for the length of the word
u ∈ S∗; the unique word of length 0 is called the empty word and denoted λ. Let
S+ := S∗ \ {λ}. For any w = w1w2 . . . wn ∈ S∗, a word of the form wiwi+1 . . . wj

with 1 ≤ i ≤ j ≤ n is called a factor of w. A word w ∈ S+ is called primitive

if there is no word u ∈ S∗ such that w = um for some m > 1. If a word w is
not primitive, then we call the minimal length word u such that w = um for some
m > 1 the primitive root for w. For any g ∈ G, we write |g|G,S for the length of
a shortest word w ∈ S∗ such that w spells g. For every u ∈ G, there is a bijective
correspondence between paths in Cay(G,S) with initial vertex u and words in S∗;
minimal length words spelling a group element g correspond to geodesic paths in
Cay(G,S) from u to ug. We write u = v if u, v ∈ S∗ are identical as words. We use
use the symbol ≡ to denote that the left hand side and right hand side evaluate
to the same element in G. For any g ∈ G and r > 0, we write Br(g) for the set
{h ∈ G | dX(g, h) < r}. The centraliser of an element g ∈ G is defined to be
CG(g) := {h ∈ G | gh ≡ hg}.

We refer the reader to [1] for basic definitions and results regarding hyperbolic
geodesic metric spaces. A locally-finite simple connected graph X is a geodesic
metric space. Let T be a geodesic triangle in X with vertices T1, T2 and T3 and
sides γ1, γ2 and γ3. Take the points pi on each γi to be those that have

dX(T1, p2) = dX(T1, p3), dX(T2, p1) = dX(T2, p3), dX(T3, p1) = dX(T3, p2).

For a real number δ > 0, we say T is δ-thin if for each i ∈ {1, 2, 3} and distinct
j, k ∈ {1, 2, 3} \ {i} the sub-paths of γj and γk from Ti to pj and pk respectively
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Figure 2. Hyperbolic space has δ-thin geodesic triangles

δ-fellow travel. We say X is hyperbolic if there exists δ > 0 such that all geodesic
triangles are δ-thin. We say a group G is a hyperbolic group if Cay(G,S) is a
hyperbolic for some (and hence any) finite generating set S. We have the well-
known fellow traveller property in hyperbolic groups [3, Lemma 2.3.2 and Thm.
3.4.5]:

Proposition 2.5. Let G be a hyperbolic group and X = Cay(G,S) for some finite

generating set S. Then for any c ≥ 0 there exists an mc > 0 such that any two

geodesics γi : [0, ni] → X with i ∈ {1, 2}, γ1(0) = γ2(0) and dX(γ1(n1), γ2(n2)) ≤ c
will mc-fellow travel.

3. Ladder-like structures are bounded

We will show that in a k-geodetic graph, there is a bound on the number of times
a pair of asynchronously disjoint geodesics may be m-apart and m-close.

Lemma 3.1. Let X be a k-geodetic graph and let u, v be vertices in X. If there

exist distinct paths α0, . . . , αk : [0, n] → X with initial point u and terminal point

v, then there exists a path β from u to v of length n− 1 or n− 2.

Proof. Since there are k + 1 paths of length n, none of them can be geodesics.
Consider the sequence of paths α0|[0,i]

for i ∈ [0, n]. Let

i0 := min{i ∈ [0, n] | α0|[0,i]
is not a geodesic}.

Define β0 to be a geodesic from u to α0(i0). Then β0 has length j for some j ∈
[i0 − 2, i0 − 1], since a shorter path contradicts the minimality of i0. Define a path
β by

β(i) :=

{

β0(i) for i ∈ [0, j],

α0(i + i0 − j) for i ∈ [j + 1, n− i0 + j].

Then β is a path from u to v with length n− 1 or n− 2. �

Definition 3.2. Let m and r be positive integers. A ladder-like structure of
width m and height r is a pair of asynchronously disjoint geodesics γx and γy
with am(γx, γy) = r.

Proposition 3.3. Let m and k be positive integers. There exists a constant A(m, k)
such that no ladder-like structure of width m has a height exceeding A(m, k) in any

k-geodetic graph.

Proof. Let k andm be positive integers. Define r := k
∏2m+1

i=2 (ik+1) andA(m, k) :=
mr. Let X be a k-geodetic graph. For contradiction, suppose there exist two asyn-
chronously disjoint geodesics γx and γy in X that form a ladder-like structure of
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width m and height A(m, k) + 1. For each i ∈ [0, r], define the points xi on γx
and yi on γy to be (im+1)-th occurrence of γx and γy being m-apart, ignoring all
other occurrences that γx and γy are m-apart. Hence, there exists a diagram for
γx and γy where each di ≥ m as depicted in Fig. 3. The top row from x0 to xr is
a depiction of γx, the bottom row from y0 to yr is a depiction of γy and di ≥ m
for each i ∈ [1, r]. For each j ∈ [0, r], the path from xj to yj is a geodesic γj of
length m. The vertices in {x0, . . . , xr} ∪ {y0, . . . , yr} are pairwise disjoint: because
γx is a geodesic, xi = xj if and only if i = j; because γy is a geodesic, yi = yj if
and only of i = j; because γx and γy are asynchronously disjoint, xi 6= yj for any
i, j such that i 6= j; because the ladder has width m, d(xi, yi) = m > 0 for any i.
Furthermore, since di ≥ m for each i ∈ [1, r] we have that xi+1 does not lie on γi
for any i. For clarity in the arguments to follow, we schematically depict this part
of the graph as shown in Fig. 4.

x0 x1 x2 x3 x4 xr−1 xr

y0 y1 y2 y3 y4 yr−1 yr

d1

d2 d3

d4 dr

d1
d2

d3

d4
dr

m m m m m m m

Figure 3. An example ladder-like structure of width m and height h.

x0 x1 x2 x3 x4 xr−1 xr

y0 y1 y2 y3 y4 yr−1 yr

d1 d2 d3 d4 dr

d1 d2 d3 d4 dr

m m m m m m m

Figure 4. A schematic ladder-like structure of width m and height h

In this paragraph we demonstrate the existence of a ‘short’ path from x0 to
yk. For each j ∈ [0, k] we define a path αj from x0 to yk as follows: αj travels
along γx from x0 to xj , then travels along γj to yj , and finally travels along γy to
yk. Although the paths α0, . . . , αj are not necessarily internally disjoint, they are
distinguished by which of the points {x0, . . . , xr} ∪ {y0, . . . , yr} they visit. Hence,

we have exhibited k + 1 distinct paths from x0 to yk of length m +
∑k

i=1 di. By
Lemma 3.1, there is a path β from x0 to yk such that

|β| = m− 1 +

k
∑

i=1

di or |β| = m− 2 +

k
∑

i=1

di.

Since γx and γk are geodesics, any path from x0 to yk that passes through xk has

length at least m+
∑k

i=1 di; hence β does not pass through xk.
For each j ∈ [1, 2k], we repeat the above argument for paths from xjk to y(j+1)k.

We deduce that for each j ∈ [0, 2k], there is a path from xjk to y(j+1)k that does
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not pass through x(j+1)k and has length

m− 1 +

(j+1)k
∑

i=jk+1

di or m− 2 +

(j+1)k
∑

i=jk+1

di.

For each j ∈ [0, 2k], extend these paths so that their initial vertex is x0, travelling
along γx to xj , and their terminal vertex is yk(2k+1), travelling along γy from y(j+1)k.
By the pigeonhole principle, at least k + 1 of the extended paths have the same
length. Since X is k-geodetic, by Lemma 3.1 there is a path from x0 to yk(2k+1) of
length

m− p+

k(2k+1)
∑

i=1

di

with p ∈ [2, 4]. Continuing these arguments we see that there is a path of length

m− p+

f(c)
∑

i=1

di

from x0 to yf(c) for some p ∈ [c, 2c], where f(c) = k
∏c

i=2(ik+1). By our assumption
we can take c = 2m+ 1, which gives p > 2m. This implies the existence of a path
from x0 to xr going via yr that is shorter than travelling along the geodesic γx. We
have a contradiction showing the ladder-like structure with width m cannot have
height exceeding A(m, k). �

This completes the proof of Theorem A.

Corollary 3.4. Let m and k be positive integers. There exists a constant C(m, k)
such that asynchronously disjoint geodesics cannot be m-close more than C(m, k)
times in any k-geodetic graph.

Proof. The result follows directly from Proposition 3.3 and the pigeonhole princi-
ple; giving a constant C(m, k) < mA(m, k) + 1 bounding how many times asyn-
chronously disjoint geodesics can be m-close. �

4. Hyperbolic k-geodetic groups are virtually-free

We will now focus on hyperbolic groups with k-geodetic Cayley graphs, with the
key result being that they are virtually-free.

We will use a characterisation of virtually-free groups as seen in [5]. Let e > 0,
then a language L over an alphabet S is e-locally excluding over S if there exists a
finite set F of words of length at most e such that any word not in L has a factor
in F . Then G is virtually-free if and only if there exists a finite inverse-closed
generating set S such that the language of geodesics is e-locally excluding over S
for some e > 0.

Proposition 4.1. Let k be a positive integer. Any hyperbolic k-geodetic group G
is virtually-free.

Proof. Let G be a hyperbolic group which admits a finite inverse-closed generating
set S such that X = Cay(G,S) is k-geodetic. By Proposition 2.5, there exists
m > 0 such that any two geodesics γi : [0, ni] → X with i ∈ {1, 2}, γ1(0) = γ2(0)
and dX(γ1(n1), γ2(n2)) ≤ 1, will m-fellow travel. We claim that the language of
all geodesic words for G with respect to S is an (C(⌈m⌉, k) + 1)-locally excluding
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language, where C(⌈m⌉, k) is the bound given in Corollary 3.4. Define the finite
set

F := {w ∈ S∗ | |w| ≤ C(⌈m⌉, k) + 1 and w not a geodesic}.

Suppose w ∈ S∗ is not a geodesic. Then there exists u, v ∈ S∗ and x ∈ S such
that w = uxv and u is a geodesic but ux is not. If the last letter of u is x−1, then
the factor x−1x ∈ F . Now assume that the last letter of u is not x−1, so that the
terminal vertex of ux does not lie on the path u. Let w′ be a geodesic representative
of ux. Clearly, |w′| is either |u| or |u| − 1. For compatibility with Definition 2.2,
we let w′′ equal w′ if |w′| = |u| and w′x−1 if |w′| = |u| − 1. Then w′′ and u are
asynchronously disjoint and m-fellow travel. Furthermore, since the terminal vertex
of w′ does not lie on the path of u, there exists words u1 and u2 such that u = u1u2,
|u2| > 0 and the words u and w′′ do not co-travel after |u1| steps. Since u and w′′

are m-fellow travelling, they must be ⌈m⌉-close after |u1| steps. By Corollary 3.4, u
and w′′ are ⌈m⌉-close at most C(⌈m⌉, k) times, so |u2| ≤ C(⌈m⌉, k). Therefore, the
factor of w given by u2x is not a geodesic and it appears in F . Thus the language
of geodesics of G is (C(⌈m⌉, k) + 1)-locally excluding over S. �

We also have the following fact regarding non-degenerate triangles and bigons
that are useful in later arguments:

Lemma 4.2. Let k be a positive integer and G a hyperbolic group with inverse-

closed generating set S such that Cay(G,S) is k-geodetic. Then the non-degenerate

geodesic triangles and bigons in Cay(G,S) have bounded side-length.

Proof. Let k be a positive integer and suppose that G is k-geodetic. Since G is a
hyperbolic group, there exists a δ > 0 such that geodesic triangles in Cay(G,S) are
δ-thin. Suppose we have a non-degenerate geodesic triangle in Cay(G,S) with at
least one side of length greater than 2C(δ, k), where C(δ, k) is found in the proof
of Corollary 3.4. Then we have asynchronously disjoint geodesics that are δ-close
and more than C(δ, k) times. This contradicts Corollary 3.4. This also shows that
non-degenerate geodesic bigons have bounded side-length since any non-degenerate
geodesic bigon forms a non-degenerate geodesic triangle. �

5. Centralisers of infinite order elements

In this section we investigate centralisers of infinite order elements in groups with
k-geodetic Cayley graph. This will lead to a proof of the second part of Theorem
B, restricting which virtually-free groups can be k-geodetic. Our result and proof
is motivated by Madlener-Otto’s [6] analogous result for groups presented by finite
Church-Rosser Thue systems.

We recall a classical combinatorial result for words over any alphabet. The result
is due to Lyndon and Schützenberger and can be found in [2, Thm. 6.5].

Lemma 5.1. Let x, y, z ∈ S∗ be words over an alphabet S.

(a) If x 6= λ and zx = yz, then there are s, t ∈ S∗ and q ∈ N such that

x = st, y = ts and z = (ts)qt.
(b) If xy = yx, then both x and y are powers of the same word.

Lemma 5.2. Let k be a positive integer, let G be a group with a finite inverse-closed

generating set S such that Cay(G,S) is k-geodetic. If u ∈ S+ is a primitive word

such that ur is a geodesic for all r ≥ 1 and u evaluates to g ∈ G, then CG(g) = 〈g〉.
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Proof. For the sake of contradiction, suppose that CG(g) 6= 〈g〉. Then there exists
h ∈ CG(g) such that h /∈ 〈g〉. Let v ∈ S∗ be a geodesic word evaluating to h ∈ G.
Let α be the ray in Cay(G,S) from the vertex 1G with label u∞ and let β be the
ray from the vertex h with label u∞. Then α is the top path, and β the bottom
path, in a structure shown schematically in Fig. 5.

1G u u u u u ur

h u u u u u urh

v v v v v v v

Figure 5. A schematic of h commuting with powers of u

In this paragraph we show that α, β must co-travel but not synchronously, that
is, must join after some prefixes α′ 6= β′ of u∞ as depicted in Fig. 6. Since α
and β are labelled by the same word but start at distinct vertices in a Cayley
graph, they cannot synchronously co-travel. Furthermore, by Proposition 3.3 they
cannot be asynchronously disjoint for arbitrarily large r, so we know they must join
asynchronously. We then have the diagram depicted in Fig. 6, where α′ and β′ are
prefixes of some powers of u.

1G

h

α′

β′

v

Figure 6. A depiction of the asynchronous joining

Let u = u1 . . . u|u|, so α′ = um1u1 . . . ui and β′ = um2u1 . . . uj for some i, j ∈

[0, |u|]. If i = j, then v = um2−m1 which is not possible because h 6∈ 〈g〉; so we
may assume that i 6= j. Now continue moving along α and β in Fig. 6 starting
with ui+1 . . . u|u| and uj+1 . . . u|u| then powers of u. If α and β bifurcate, then
by applying Proposition 3.3 starting from the bifurcation point, α and β will only
remain disjoint for a bounded number of steps. Furthermore, α and β cannot
bifurcate and meet again more than log2 k times. Hence, α and β co-travel forever
after some point. First assume i > j. Now consider Figure 7:

ui+1 . . . u|u|

u

u1 . . . ui−j ui−j+1 . . . u|u|

u

u1 . . . ui−j ui−j+1 . . . u|u|

uj+1 . . . u|u|−i+j u|u|−i+j+1 . . . u|u|

x

u1 . . . u|u|−i+j u|u|−i+j+1 . . . u|u|

u

u1 . . . u|u|−i+j

y

Figure 7. Equating α and β as they co-travel forever

By equating words, we deduce that u2 = xuy where x = u1 . . . u|i−j| and y =
u1 . . . u|u|−i+j. Hence u = xu′ = u′′y for some words u′ and u′′. Since |x|+ |y| = |u|,
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we must have |u′| = |y|, |u′′| = |x| so u = xy. Hence xyxy = u2 = xuy = xxyy, so
xy = yx. If i < j, a similar argument shows that gives x′y′x′y′ = u2 = x′x′y′y′ for
some x′ and y′. By part (b) of Lemma 5.1, we find that u is not primitive. �

We will now consider the language of geodesic words for all powers of an infinite
order element in a hyperbolic group with k-geodetic Cayley graph.

Proposition 5.3. Let k be a positive integer, let G be a group with a finite inverse-

closed generating set S such that Cay(G,S) is k-geodetic, and let g ∈ G be an

element of infinite order. For all n ≥ 0, let Ln be the set of geodesic words for gn

with respect to S. If G is hyperbolic then
⋃

n≥0 Ln is a regular language.

Proof. For a fixed r > 0, there exists a p ∈ N such that gn ∈ {x ∈ G | |x|G,S ≥ r}
for all n ≥ p. This is because there is a maximal number of times that powers of
g can visit Br(1G). Diagrammatically we represent the words in Ln as a shaded
region from 1G to gn, as seen in Fig. 8.

1G gn

Figure 8. Diagrammatic representation of Ln

Claim 1. For a fixed M1 > 0, there exists an n0 such that

Ln = {a(i)bc(j) | i ∈ [1, k1], j ∈ [1, k2], k1k2 ≤ k, |b| ≥ M1},

for all n ≥ n0, where each a(i) is a geodesic representative for some ga ∈ G and
each c(j) is a geodesic representatives of some gc ∈ G.

Proof of Claim 1. By Lemma 4.2, there is a bound B1 on the length of non-
degenerate geodesic bigons. Furthermore, B2 = log2(k) is the maximal number of
times that geodesics for the same group element can furcate then rejoin forming
non-degenerate geodesic bigons. Then for any n ≥ 0, B = B1B2 is the maximum
number of total steps that the geodesic words of gn are not synchronously co-
travelling. There is an n0 ≥ 0 such that |gn|G,S > B + (M1 − 1)(B2 +1)+ 1 for all
n ≥ n0. Hence, the geodesics of gn all co-travel for at least (M1 − 1)(B2 + 1) + 1
steps, and there are at most B2+1 disjoint segments that are separated by a shaded
region of non-unique geodesic segments. By the pigeonhole principle at least one of
these disjoint segments has length M1. Let the word for such a segment be denoted
by b. The set of geodesic words from 1G to where the segment b begins are denoted
a(i), where i ∈ [1, k1] for some k1 ≤ k, and the geodesic words from where b ends
are denoted c(j), where j ∈ [1, k2] for some k2 ≤ k. Note that k1k2 ≤ k, since
otherwise we would have |Ln| > k, contradicting Cay(G,S) being k-geodetic. �

1G gn0ba(i) c(j)

Figure 9. A unique factor b in all elements of Ln with n ≥ n0
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Claim 2. For a fixed M2 > 0, there exists an n∗ so that |gn∗+1|G,S > |gn∗ |G,S and

Ln∗
= {α(i)βγ(j) | i ∈ [1, k1], j ∈ [1, k2], |α(i)|, |γ(j)| ≥ M2, k1k2 ≤ k},

where each α(i) is a geodesic representative for some gα ∈ G and each γ(j) is a
geodesic representative for some gγ ∈ G.

Proof of Claim 2. Take M1 = 2M2 from Claim 1. Then shift the prefix of b of
length M2 into the left shaded region and shift the suffix of b of length M2 into the
right shaded region. Then for each n ≥ n0, we have

Ln = {α(i)βγ(j) | i ∈ [1, k1], j ∈ [1, k2], |α(i)|, |γ(j)| ≥ M2, k1k2 ≤ k},

where each α(i) is a geodesic representative for some gα ∈ G and each γ(j) is a
geodesic representative for some gγ ∈ G. By the opening statement in the proof of
this proposition we can choose n∗ ≥ n0 to be such that |gn∗+1|G,S > |gn∗ |G,S . �

1G gn∗
βα(i) γ(j)

Figure 10. Schematic of Ln∗

We wish to ensure that the length of geodesics in both shaded regions in Figure
10 is at least the maximal side-length of a non-degenerate geodesic triangle (Lemma
4.2), which we denote by ∆. Hence, in Claim 2 choose n∗ to correspond to some
M2 ≥ ∆. Now consider the geodesics from 1G to gn∗+1 depicted in Fig. 11.

1G gn∗

gn∗+1

βα(i)

ν(j)

Figure 11. Geodesics from 1G to gn∗+1

Since |γ(i)| ≥ ∆, the geodesics in Ln∗+1 share a prefix up to the end of the word
β to an element of Ln∗

. Hence, Ln∗+1 = {α(i)βν(j) | i ∈ [1, k1], j ∈ [1, k3]} for some
positive integer k3 with k1k3 ≤ k. Instead, let us now consider the geodesics from
g−1 to gn∗ depicted in Fig. 12:

1G gn∗

g−1

β γ(j)

µ(j)

Figure 12. Geodesics from g−1 to gn∗

Since |α(i)| ≥ ∆, the geodesics in Ln∗+1 share a suffix to an element of Ln∗
up

to the start of the word β. Hence, Ln∗+1 = {µ(i)βγ(j) | i ∈ [1, k4], j ∈ [1, k2]}
for some positive integer k4 with k4k2 ≤ k. Therefore, for each i ∈ [1, k1] and
j ∈ [1, k3] there is an l ∈ [1, k2] and m ∈ [1, k4] such that α(i)βν(j) = µ(m)βγ(l).
Since |gn∗+1|G,S > |gn∗

|G,S , we know that α(i) is a prefix of µ(m) and γ(i) is a suffix
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of ν(m). Then we have βx = yβ where ν(l) = α(i)y and µ(m) = xγ(j). Invoking part
(a) of Lemma 5.1 we have t, s ∈ S∗ such that x = st, y = ts and β = (ts)qt for some
q ∈ N. So

Ln∗
= {α(i)(ts)

qtγ(j) | i ∈ [1, k1], j ∈ [1, k2]}

and

Ln∗+1 = {α(i)(ts)
q+1tγ(j) | i ∈ [1, k1], j ∈ [1, k2]}.

Since the prefixes α(i) and suffixes γ(j) are preserved we can inductively deduce
that

Ln∗+c = {α(i)(ts)
q+ctγ(j) | i ∈ [1, k1], j ∈ [1, k2]}.

Hence, we conclude

⋃

n≥0

Ln = (

n∗−1
⋃

n≥0

Ln) ∪ {α(i)(ts)
q+ctγ(j) | i ∈ [1, k1], j ∈ [1, k2], c ≥ 0},

which is regular. �

We are now ready to prove the second part of Theorem B. The proof follows
from the proofs of [6, Thm. 2.3 & Corollary 2.4], but we include it with our own
notation for completeness.

Proposition 5.4. Let k be a positive integer. The centraliser of any infinite order

element is infinite cyclic in a hyperbolic k-geodetic group.

Proof. Let G be a hyperbolic k-geodetic group, and let S be a finite generating set
such that Cay(G,S) is k-geodetic. Let g ∈ G be an infinite order element.

By Proposition 5.3, if Ln is the set of geodesic words for gn, then
⋃

n≥0 Ln is

regular. By the pumping lemma for regular languages there is a subset of
⋃

n≥0 Ln

given by {xwiz | i ≥ 0} such that |w| 6= 0. Let y be the primitive root of w, so
w = ym for some m ≥ 0. Since wi is a geodesic for all i ≥ 0, all powers of y are
geodesics. For any i ≥ 0 there exists an index ji such that xymiz is a geodesic
representative of gji . Since there are at most k representatives for a given gji , we
can choose an n ≥ 0 such that jn < jn+1.

Since xwn+1z ≡ gjn+1 and xwnz ≡ gjn we find that gjn+1−jn ≡ z−1wz. Let
h ∈ CG(g), so

ym(zhz−1) ≡ zz−1wzhz−1 ≡ zgjn+1−jnhz−1 ≡ zhgjn+1−jnz−1 ≡ (zhz−1)ym,

and by Lemma 5.2 zhz−1 ∈ 〈y〉. We have shown that any h ∈ CG(g) is contained in
〈z−1yz〉 ∼= Z, so CG(g) ≤ Z. The result follows since the only non-trivial subgroups
of an infinite cyclic group are infinite cyclic. �

Propositions 4.1 and 5.4 together yield Theorem B. Furthermore, Proposition
5.4 immediately yields the following result.

Corollary 5.5. Let k be a positive integer and let G be a group with a finite inverse-

closed generating set S such that Cay(G,S) is k-geodetic. If G is hyperbolic, and

g, h ∈ G are commuting non-trivial elements, then:

(a) If g has finite order, then gh and h have finite order.

(b) If g has infinite order, then h has infinite order and either g and h are

inverses or gh has infinite order.
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Remark 5.6. In general, the centraliser of an infinite order element of a virtually-
free group is virtually-cyclic (see [1, III. Γ. Cor. 3.10 ]), so Proposition 5.4 excludes
many virtually-free groups from being k-geodetic groups.
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