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Sand supplementation favors tropical 
seagrass Thalassia hemprichii in eutrophic 
bay: implications for seagrass restoration 
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Abstract 

Background:  Sediment is crucial for the unique marine angiosperm seagrass growth and successful restoration. 
Sediment modification induced by eutrophication also exacerbates seagrass decline and reduces plantation and 
transplantation survival rates. However, we lack information regarding the influence of sediment on seagrass pho-
tosynthesis and the metabolics, especially regarding the key secondary metabolic flavone. Meanwhile, sulfation of 
flavonoids in seagrass may mitigate sulfide intrusion, but limited evidence is available.

Results:  We cultured the seagrass Thalassia hemprichii under controlled laboratory conditions in three sediment 
types by combining different ratios of in-situ eutrophic sediment and coarse beach sand. We examined the effects 
of beach sand mixed with natural eutrophic sediments on seagrass using photobiology, metabolomics and isotope 
labelling approaches. Seagrasses grown in eutrophic sediments mixed with beach sand exhibited significantly higher 
photosynthetic activity, with a larger relative maximum electron transport rate and minimum saturating irradiance. 
Simultaneously, considerably greater belowground amino acid and flavonoid concentrations were observed to coun-
teract anoxic stress in eutrophic sediments without mixed beach sand. This led to more positive belowground stable 
sulfur isotope ratios in eutrophic sediments with a lower Eh.

Conclusions:  These results indicated that coarse beach sand indirectly enhanced photosynthesis in T. hemprichii by 
reducing sulfide intrusion with lower amino acid and flavonoid concentrations. This could explain why T. hemprichii 
often grows better on coarse sand substrates. Therefore, it is imperative to consider adding beach sand to sediments 
to improve the environmental conditions for seagrass and restore seagrass in eutrophic ecosystems.
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Introduction
Seagrasses are marine ecosystem engineers that provide 
important ecological services including nutrient uptake, 
carbon sequestration, food and habitat for marine ani-
mals, and shoreline and sediment stabilization [1–3]. 
However, global climate change and sustained pressures 
from coastal development, including dredging and 
eutrophication (nutrient enrichment), have weakened 
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the capacity of seagrass meadows to support coastal 
productivity [4, 5]. Eutrophication affects the structure 
of primary producers in seagrass beds [6–8], modifying 
sediment origin, grain size and nutrient availability [7, 
9]. An increase in sediment clay and silt fractions and 
high organic matter content might lead to anoxic con-
ditions [7]. Sediment anoxia inhibits respiration and 
other metabolic functions in seagrass roots, resulting in 
reduced photosynthesis, leaf number, and the shoot-to-
root ratio [10–12]. Meanwhile, sediment nutrient toxicity 
might induce an imbalanced carbon-nitrogen ratio due to 
increased carbon demand [13]. Elevated nutrient levels, 
respiration, and anoxic conditions also enhance sediment 
sulphide concentrations [14]. This causes sulphide intru-
sion in seagrasses, as assessed by stable sulphur isotope 
signals, leading to adverse effects [14]. Sulphide intruding 
into seagrass interferes with cytochromes in the electron 
transport chain, leading to a negative energy balance, 
which eventually results in seagrass mortality [10, 15]. 
To date, physiological indicators have largely failed to 
monitor seagrass health and prevent its decline [16]. The 
alarming decline highlights the urgent need to imple-
ment effective seagrass management strategies to prevent 
habitat decline [17].

Recently, omics-based systems biology (transcriptom-
ics, proteomics and metabolomics) has emerged as a 
new frontier in seagrass research and has deepened our 
understanding of their stress tolerance mechanisms and 
accurately identified biomarkers of their phenotypic plas-
ticity to environmental stress [18, 19]. Metabolomics has 
been instrumental in connecting the genotype and phe-
notype of vascular plants under adverse environmental 
conditions, and has been applied in seagrass research 
[19–21] providing new insights into diverse cellular path-
ways to identify stress tolerance biomarkers. Much is 
known about the effect of environmental stress on the 
primary metabolites of seagrass [22, 23] and the total 
content of key secondary metabolites [24]. However, little 
is known about the response of key secondary metabo-
lite compositions by applying targeted metabolomics 
techniques.

The seagrass Thalassia hemprichii is a dominant tropi-
cal species, growing mainly in sandy sediment or coral 
substrate [25, 26]. Over the past decade, nutrient inputs 
into seagrass beds in Xincun Bay, Hainan Island, South 
China Sea, have increased immensely, leading to high 
eutrophication [4]. Cage farming and shrimp pond cul-
tures produce large quantities of food debris, which 
modifies the sediment particle sizes [4]. The sediment 
particle size decreased from coarse to fine. Hypoxic con-
ditions in sediments occur frequently, and the emergence 
of red tides has been observed in these areas [27]. Over-
all, these adverse environmental conditions have induced 

a decline in seagrass beds, resulting in an approximately 
50 ha loss [28]. Interestingly, according to our continuous 
observations, T. hemprichii occurrence in Xincun Bay 
has declined dramatically, especially in the high intertidal 
zones. Moreover, we observed a relatively low success 
rate in transplanting and restoring T. hemprichii in this 
bay (personal observation). This failure might be attrib-
uted to the desiccation exposure during low tide and 
sediment composition (mud vs. sand) [29]. Nevertheless, 
limited studies have considered the effect of sediment 
type on seagrass physiology [22], especially flavonoids, 
which are the key secondary metabolites. Flavonoids 
have been implicated in plant resistance to many stress 
factors [30]. The ecological plant strategy theory indi-
cates that stressed plants containing high levels of pro-
tective flavonoids tend to show low levels of constitutive 
productivity [30, 31]. Sulfation of flavonoids in seagrass 
might also mitigate the sulphide intrusion [32], but lim-
ited evidence is available.

Therefore, it is imperative to investigate the effect of 
sediment type on the physiological responses of the dom-
inant tropical seagrass, T. hemprichii. We performed a 
laboratory manipulative experiment by growing T. hem-
prichii under three sediment types (by combining differ-
ent ratios of in-situ eutrophic sediment and coarse beach 
sand) and assessed its growth performance by evaluating 
photosynthetic performance, flavonoid and amino acid 
profiling, and stable sulfur isotope and elemental com-
position analysis. Measurements of seagrass photosyn-
thesis, nitrogen and amino acids contents were used to 
evaluate the plant growth, whereas measurements of δ34S 
and flavonoids were used to assess the extent of sulphide 
intrusion in seagrass and the role of flavonoids in miti-
gating sulphide intrusion, respectively. We examined leaf 
fluorescence parameters to assess the continuous pho-
tosynthetic characteristics of seagrasses in the same leaf 
in a non-destructive manner [33, 34], without disturbing 
sediments. The results obtained in this study provide new 
insights that will aid in understanding the mechanisms 
controlling seagrass physiological responses to sedi-
ment types. This information is critical for strengthen-
ing knowledge on improving the success rate of seagrass 
planting and transplantation in eutrophic coastal areas 
or in the process of eutrophication and to implementing 
effective seagrass management strategies to prevent their 
decline.

Results
Sediment physiochemical parameters
The Eh in the sediment type of 1:0, 1:1 and 
1:2 were − 177.0 ± 29.4 mV, − 148.7 ± 24.2 mV 
and − 53.3 ± 17.1 mV, respectively, and the correspond-
ing sediment sulphur contents were (0.020 ± 0.001)%, 
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(0.011 ± 0.001)%, and (0.006 ± 0.002)%, respectively 
(Table  1). Meanwhile, sediment organic matter also 
exhibited a decreasing trend with increasing sediment 
particle size.

Photosynthesis
The effects of sediment type on photosynthetic param-
eters at the two stages were depicted in Fig. 1. No signifi-
cant difference was observed in Y (II) (effective quantum 
yield) on days 6 and 21 (at the end of the experiment) 
(Additional  file  1). Indeed, the differences among treat-
ments on day 6 were not significant, considering the 
relative maximum electron transport rate (rETRmax), 
minimum saturating irradiance (EkETR) and initial slope 
of the light-limited relationship (αETR). rETRmax and 
EkETR were slightly higher in sediments with larger par-
ticle size. However, markedly difference was found at day 
21 for both rETRmax and EkETR, with much higher values 
in the sediment with larger particle sizes (Fig. 1).

Seagrass nitrogen and compositions of amino acids 
and flavonoids
Among the amino acids, proline, sarcosine and lysine 
were the three main components in the aboveground 
tissue of T. hemprichii, whereas sarcosine, proline and 
asparagic acid were the three main components in the 
belowground tissue. The amino acid content in the 
aboveground tissue was lower than that in the below-
ground tissue in the sediment 1:0 type, whereas similar 
concentrations were observed between aboveground 
and belowground tissue for T. hemprichii in both 
1:1 and 1:2 sediment types. Significant effects were 
observed for 11 of the 20 amino acids in the above-
ground tissue, whereas effects were observed in 18 
amino acids in belowground tissue. Amino acid con-
tents in both above- and belowground tissues in the 1:0 
treatment were significantly higher than those in the 
1:1 and 1:2 treatments. Sarcosine, proline and alanine 
in both above- and belowground tissues also showed 
the same trend. The nitrogen content in the above-
ground tissue was significantly higher in the larger 

sediment particle sizes, whereas the ratio of amino 
acids to nitrogen in the same tissue showed a contrast-
ing trend (Fig. 2, Table 2, and Table 4).

Among the flavonoids, galuteolin, luteolin and isoquer-
citrin were the three most abundant components in the 
aboveground tissues of T. hemprichii in the three sedi-
ment types. For belowground tissue, catechin, isoquerci-
trin, and epicatechin were the three major components 
in the sediment 1:0 type, whereas catechin, isoquerci-
trin and luteolin were the leading three components in 
the sediment 1:1 and 1:2 types. Flavonoid concentra-
tions in the aboveground tissue were lower than those 
in the belowground tissue in sediment 1:0 and 1:1 types, 
whereas similar concentrations were observed between 
above- and belowground tissue for T. hemprichii in the 
1:2 sediment type. Flavonoids in both above- and below-
ground tissues were higher in sediment type of 1:0 than 
in 1:1 and 1:2 sediment types (Table 3 and Table 4).

The relationships between amino acids and flavonoids 
in the above- and belowground tissues were significantly 
positive (Fig. 3). Meanwhile, linear regression tests were 
performed between the concentrations of total flavonoid 
and amino acid and sediment sand composition. The 
results showed that the amino acids in both above- and 
belowground tissues and total flavonoids in the below-
ground tissue were significantly negatively correlated 
with the sediment sand composition (Table 5).

δ34S content
The effects of sediment type on the δ34S content in the 
belowground tissue of T. hemprichii were depicted in 
Fig.  4. A significant difference was observed in the δ34S 
content, with higher values in the belowground tissue in 
the sediment with smaller particle sizes.

Discussion
Decreased sediment particle size induced by increased 
inputs of fish food debris undoubtedly leads to anoxic 
conditions. Seagrass growth and survival may be con-
strained by anoxic sediment conditions. Anoxia is 
regarded as one of the most harmful factors for plants 
because of the accumulation of toxic end products [23]. 
Furthermore, sulphide toxicity is considered one of the 
main contributing factors to the global decline of sea-
grass beds [32]. Under such circumstances, seagrass 
photosynthesis would be directly affected and could 
regulate responses through changes in primary and sec-
ondary metabolites. To the best of our knowledge, this 
was the first report on the response of seagrass second-
ary metabolic to environmental stress using targeted 
metabolomics.

Table 1  Sediment physiochemical parameters at the end of the 
experiment

The different lower case letters indicated significant differences among 
treatments

Sediment type Eh (mV) S (%) Organic matter (%)

1:0 −177.0 ± 29.4a 0.020 ± 0.001c 1.14 ± 0.09b

1:1 −148.7 ± 24.2a 0.011 ± 0.001b 0.75 ± 0.22a

1:2 −53.3 ± 17.1b 0.006 ± 0.002a 0.58 ± 0.04a
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Fig. 1  Photosynthetic parameters of Thalassia hemprichii including rETRmax (the relative maximum electron transport rate, a), EkETR (the minimum 
saturating irradiance, b) and αETR (the initial slope of the light limited relationship, c) derived from rapid light curve cultured in different sediment 
types. The lowercase and uppercase letters indicate significant difference at day 6 and day 21, respectively (P < 0.05). 1:0, the in-situ sediment 
without combining with coarse beach sand was added in the tank; 1:1, the combination of half in-situ sediment and half coarse beach sand was 
added in the tank; 1:2, the combination of 1/3 in-situ sediment and 2/3 coarse beach sand was added in the tank
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Seagrass photosynthesis was indirectly enhanced 
by adding coarse beach sand
Seagrass-sediment interactions are dynamic [7]. The pre-
sent results showed that Y (II) was not significantly dif-
ferent at either stage among the treatments, implying that 
this parameter was not a good indicator of stress. Mean-
while, there was almost little change in the parameters 
of the rapid light curve on day 6 among the treatments, 
indicating that this effect was not obvious at the initial 
stage. However, a noticeable enhancement in rETRmax 
and EkETR was observed on day 21 (at the end of the 
experiment) under the coarse beach sand addition treat-
ment, suggesting the ability to transfer more electrons 
and larger energy investment for CO2 fixation, scaveng-
ing reactive oxygen species [35], photosystem photopro-
tection [36], nitrogen assimilation and redox signalling 
pathways [37] in T. hemprichii. Similarly, a higher sand 

composition induced a higher Eh, indicating that coarse 
beach sand addition increased sediment porosity, there-
fore benefiting oxygen permeation. This favourable 
condition might benefit seagrass growth by enhancing 
photosynthesis. Conversely, higher photosynthesis also 
induced a positive effect on the sediment redox potential 
[38]. High photosynthesis resulted in greater pools of O2 
in belowground tissue, enhancing the radial O2 loss and 
the oxic shield [39, 40]. Furthermore, O2 consumption by 
seagrass roots increased with increasing shoot-to-root 
mass ratio, which was dominated by root mass and dis-
rupted by sulphide [41]. The effect of the sediment might 
show a specific difference. Some seagrass species such as 
Zostera marina and Cymodocea nodosa showed greater 
tolerance to reducing conditions in sediments than T. 
hemprichii [23]. Muddy sediments might be more favour-
able for Z. marina than sandy sediments, although they 

Fig. 2  Effect of sediment type on leaf nitrogen (a) and the ratio of amino acids to nitrogen (b) in seagrass Thalassia hemprichii. Different letters on 
column indicate significant difference (P < 0.05). 1:0, the in-situ sediment without combining with coarse beach sand was added in the tank; 1:1, the 
combination of half in-situ sediment and half coarse beach sand was added in the tank; 1:2, the combination of 1/3 in-situ sediment and 2/3 coarse 
beach sand was added in the tank
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Table 4  Statistical analysis for the effects of sediment type on the parameters of Thalassia hemprichii. There were two stages for 
photosynthetic parameters. P < 0.05 (significant); P < 0.01 (highly significant)

Variable df F P Variable df F P

Day 6 Day 21

Y (II) 2 1.412 0.314 Y (II) 2 1.727 0.256

rETRmax 2 3.346 0.106 rETRmax 2 5.312 < 0.05

EkETR 2 1.020 0.415 EkETR 2 3.965 0.080

αETR 2 0.466 0.649 αETR 2 1.740 0.254

leaf nitrogen 2 62.547 < 0.01 δ34S 2 629.078 < 0.01

ratio of amino acid to leaf 
nitrogen

2 6.708 < 0.05 Organic matter 2 13.158 < 0.01

Eh 2 21.653 < 0.01 S 2 59.828 < 0.01

aboveground tissue belowground tissue

glycine 2 12.702 < 0.01 glycine 2 92.525 < 0.01

sarcosine 2 9.832 < 0.05 sarcosine 2 23.737 < 0.01

alanine 2 8.964 < 0.05 alanine 2 41.459 < 0.01

valine 2 10.335 < 0.05 valine 2 204.800 < 0.01

proline 2 2.841 0.136 proline 2 41.100 < 0.01

threonine 2 2.181 0.194 threonine 2 134.373 < 0.01

isoleucine 2 10.712 < 0.05 isoleucine 2 73.448 < 0.01

leucine 2 12.082 < 0.01 leucine 2 66.719 < 0.01

ornithine 2 0.435 0.666 ornithine 2 42.395 < 0.01

methionie 2 21.875 < 0.01 methionie 2 306.695 < 0.01

histidine 2 3.281 0.109 histidine 2 122.650 < 0.01

phenylalanine 2 6.683 < 0.05 phenylalanine 2 19.644 < 0.01

arginine 2 5.777 < 0.05 arginine 2 14.548 < 0.01

tyrosine 2 8.073 < 0.05 tyrosine 2 94.401 < 0.01

asparagic acid 2 0.737 0.517 asparagic acid 2 39.413 < 0.01

tryptophan 2 0.484 0.639 tryptophan 2 3.826 0.085

4-aminobutyric acid 2 5.708 < 0.05 4-aminobutyric acid 2 57.394 < 0.01

serine 2 4.827 0.056 serine 2 117.694 < 0.01

lysine 2 0.247 0.789 lysine 2 2.830 0.136

glutamate 2 1.419 0.313 glutamate 2 3.955 < 0.080

total amino acids 2 4.433 0.066 total amino acids 2 76.191 < 0.01

catechin 2 6.456 < 0.05 catechin 2 19.131 < 0.01

epicatechin 2 – – epicatechin 2 143.001 < 0.01

taxifolin 2 – – taxifolin 2 0.590 0.584

galuteolin 2 0.209 0.817 galuteolin 2 2.146 0.198

rutin 2 0.942 0.441 rutin 2 3.498 0.098

isoquercitrin 2 2.143 0.198 isoquercitrin 2 12.003 < 0.01

astragalin 2 – – astragalin 2 4.119 0.075

diosmin 2 2.616 0.152 diosmin 2 – –

quercetin 2 9.660 < 0.05 quercetin 2 35.336 < 0.01

naringenin 2 3.003 0.125 naringenin 2 5.609 < 0.05

luteolin 2 3.882 0.083 luteolin 2 4.859 0.056

apigenin 2 1.279 0.345 apigenin 2 23.055 < 0.01

chrysin 2 8.173 < 0.05 chrysin 2 – –

kaempferide 2 3.753 0.088 kaempferide 2 – –

total flavonoids 2 0.883 0.461 total flavonoids 2 26.375 < 0.01
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can be grown in either sediment [29]. Sediments with 
high silt and clay contents could promote the successful 
transplantation of Z. marina [42].

Belowground amino acids and flavonoids were stimulated 
to counteract anoxic stress in sediment with smaller 
particle sizes
Amino acids are important for protein biosynthesis, 
other metabolic pathways, and signal transduction [43]. 
Proline and sarcosine were the main amino acids in 
both the above- and belowground tissues of T. hemp-
richii. Asparagic acid and proline were the main amino 
acids in both the above- and belowground tissues of 
Posidonia oceanica and C. nodosa, respectively [44]. 
Amino acids may change substantially in response to 
environmental factors. The present study indicated that 
the total amino acid content in the above- and below-
ground tissues were both higher in smaller sediment 
particle sizes. In particular, the belowground amino 

Fig. 3  Relationship of amino acids and flavonoids in the aboveground (a) and belowground (b) tissues of Thalassia hemprichii under different 
sediment types

Table 5  Correlation coefficients (r) and significance values (p) 
between the total flavonoids and amino acids concentration and 
sediment sand composition (grain size)

Parameters r P

Amino acids in aboveground tissue −0.682 < 0.05

Amino acids in belowground tissue −0.928 < 0.01

Flavonoids in aboveground tissue −0.475 0.197

Flavonoids in belowground tissue −0.933 < 0.01
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acid concentration in the smaller sediment particle 
sizes was more than twice that in the larger sediment 
particle sizes. This phenomenon could be attributed 
to two reasons. First, increased ammonium assimila-
tion was induced by the higher nitrogen content in 
sediments with smaller particle sizes [22]. Second, the 
adverse effects of lower oxygen conditions. Higher 
alanine (an end product of anaerobic fermentation in 
higher plants) and proline contents in both above- and 
belowground tissues of T. hemprichii were observed 
in the smaller sediment particle size with lower Eh. 
Similarly, the alanine concentration was enhanced in 
Z. marina [12, 45] and P. oceanica [23] under anoxic 
condition. Alanine enhancement is a known phenom-
enon due to pyruvate accumulation in plants subjected 
to anoxia, which would mitigate cell acidification [21, 
43] and provides support for carbon metabolism and 
energy homeostasis by linking glycolysis with the tri-
carboxylic acid cycle [46]. The increase in alanine 
occurs at the expense of glutamate and aspartate, and 
concomitantly with the GABA accumulation [47]. Fur-
thermore, leucine and valine, the two branched-chain 
amino acids, were also enhanced, which could be syn-
thesized de novo from pyruvate [43]. Proline in most 
higher plants often responds to an increase in con-
centration under environmental constraints, includ-
ing salinity, drought, and anaerobiosis [43]. Increased 
proline content is also a factor in free radical detoxi-
fication in flooded corn plants [46]. Moreover, excess 
sulphate is also reduced to sulphide and incorporated 
into methionine, a sulphur-containing amino acid [48]. 
Significantly higher methionine in the belowground 

tissue was observed in smaller sediment particle sizes, 
indicating that methionine biosynthesis might function 
as a detoxification agent for excess sulphate or sulphide. 
Similarly, Z. marina also detoxified gaseous sediment-
derived sulphide through incorporation, and most of 
the detoxification occurred in the belowground tissues, 
where sulphide intrusion was the greatest [49].

Among phenolic compounds, flavonoids are poten-
tially reliable biomarkers of environmental quality [50]. 
The present study indicated that galuteolin and luteolin 
were the prime flavones in the aboveground tissue of T. 
hemprichii, whereas catechin and isoquercitrin were the 
main components in belowground tissue. In P. oceanica, 
myricetin and isorhamnetin were the main constituents 
of leaf flavonols [50]. The flavonoid of Halophila stipula-
cea was dominated by apigenin-7-O-β-glucopyranoside 
[51]. Seagrasses with larger leaves and/or more pairs of 
cross-veins in the leaves contained sulfated flavonoids, 
whereas those with smaller leaves and/or fewer cross-
veins lacked these compounds [52]. This difference might 
be associated with the measurement method or specific 
differences. Low oxygen stress changed the expression 
of metabolic genes, such as flavonoid biosynthesis, and 
induced flavonoid biosynthesis that involves methylation 
as a modification of compounds to accomplish activa-
tion or intracellular translocation [53]. The present study 
showed that lower flavonoid concentrations in below-
ground tissue were observed in sediments with larger 
particle sizes. Similarly, a decrease in the total phenolic 
concentration in Z. marina was also observed when 
grown in high pCO2 waters [24]. This might be attrib-
uted to the reallocation of carbon to other pathways [54]. 

Fig. 4  Effect of sediment type on the sulfur stable isotope (δ34S) in the belowground tissue of seagrass Thalassia hemprichii. Different letters on 
column indicate significant difference (P < 0.05). 1:0, the in-situ sediment without combining with coarse beach sand was added in the tank; 1:1, the 
combination of half in-situ sediment and half coarse beach sand was added in the tank; 1:2, the combination of 1/3 in-situ sediment and 2/3 coarse 
beach sand was added in the tank
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Phenolic compounds are regarded as storage compounds 
for carbohydrates, which are only produced when plants 
cannot convert carbohydrates into growth [50, 55]. Eco-
logical plant strategy theory implies that plants invest-
ing in biochemical means of stress protection are likely 
to invest less carbon in constitutive productivity [31]. A 
trade-off mechanism between growth and secondary 
production for protection might occur in the present 
study, which required further research. Interestingly, the 
δ34S in the belowground tissue of T. hemprichii was more 
positive in the sediment with smaller particle size, which 
was similar to the change in belowground flavonoids. 
Flavonoids sulfation might facilitate the consumption of 
intruded sulphide, which functions as a detoxification 
agent [32]. Z. marine and T. testudinum, which are rich 
in flavonoid sulfates, could tolerate higher sulphide intru-
sion than P. oceanica, with an almost total absence of 
flavonoids [32, 56–59]. Fifty precent of the radiolabelled 
sulfate fed to Z. marina was recovered from the phenolic 
flavonoid fraction [60]. Flavonoid sulfates might play a 
key role in the allelochemical relationships of seagrasses 
[59, 61]. In particular, catechin was extremely higher in 
the belowground tissue of T. hemprichii in the sediment 
with smaller particle sizes. Catechin might play a crucial 
role in the response to anoxic conditions. Exogenous cat-
echin can markedly reduce waterlogging injury in roots 
by sufficiently enhancing the free radical scavenging sys-
tem to lower hydrogen peroxide and superoxide concen-
trations [62].

In the present study, a strong positive correlation 
between flavonoids and amino acids indicated that amino 
acids were a good indicator of flavonoid accumulation. 
The available aromatic amino acids are intended for the 
flavonoid pathway and provided by the primary metabo-
lism [63], which was confirmed by the fact that aromatic 
amino acids including phenylalanine, tryptophan, and 
tyrosine, were higher in the in-situ sediment without 
combining with coarse beach sand. Leucine and valine 
are precursors of plant secondary metabolites. Further 
research is needed to perform a cross phytochemical/
phylogenetic analysis of seagrasses to correlate the phe-
nolic fingerprint and amino acid sequences of the genes 
encoding the flavonoid pathway [61].

Ecological significance
Sediment type is a key factor influencing seagrass growth 
and success rate of transplantation [7, 64]. Recently, 
modifications of sediment structure and composition 
by removing polluted sediment and adding exogenous 
matrices have often been applied to better protect sub-
merged plants and ecological restoration projects 
of rivers and lakes [65–67]. However, sediment type 

modification has been less considered and applied in 
the ecological restoration of coastal zones, especially in 
seagrass beds suffering from eutrophication. Seagrass 
T. hemprichii in the sediment with smaller particle sizes 
exhibited lower rETRmax and EkETR, indicating a decrease 
in light tolerance (Fig.  5). Organic matter input from 
shrimp pond cultures along the Xincun bay coastline 
resulted in smaller sediment particle sizes. This induced 
that T. hemprichii in the high intertidal area suffered 
more from high light stress during air exposure, caus-
ing a faster decline in the high than lower intertidal area. 
The present study proved that adding coarse beach sand 
would reduce sediment total nitrogen, organic matter, 
and sulphur content and enhance oxygen permeability in 
the hypoxic/anoxic sediment, leading to less synthesis of 
amino acids and flavonoids. This would benefit seagrass 
photosynthesis and allocate more carbon to growth. The 
sediment particle sizes in the eutrophic area could also be 
modified into the same sediment of T. hemprichii grow-
ing in offshore and low-impact areas, with correspond-
ing sand, silt, and clay compositions as (97.60 ± 1.70)%, 
(2.40 ± 1.70)%, and (0.00 ± 0.00)%, respectively [68]. 
Furthermore, stimulated photosynthesis also led to less 
toxic substance accumulation by increasing oxygenated 
conditions in the rhizosphere [38], and seagrasses do not 
have to transfer photosynthetic products, such as car-
bohydrates and secondary metabolites, to overcome the 
toxic effects of sulfide. This would benefit and accelerate 
seagrass growth. The enhancement of rETRmax and EkETR 
may partially offset the negative effects of reduced light 
irradiance on C balance and improve high light toler-
ance. In particular, seagrass beds worldwide have faced 
increased eutrophication caused by a large input of nutri-
ents from anthropogenic activity [4, 22, 69]. Consider-
ing the large variation of seagrass leaf light absorption 
[70, 71], the leaf light absorption needs to be measured. 
Field observations concerning seagrass response to 
sediment type by applying chlorophyll fluorescence and 
oxygen evolution [72–74], are needed at an ecosystem 
level to determine the operable habitat requirements 
of seagrasses [64]. It is also very important to change 
the sediment type to improve the growth conditions of 
seagrass and enhance the success rate of planting and 
transplanting seagrass shoots in eutrophic ecosystems. 
Cage farming and shrimp pond cultures in T. hemprichii 
beds should also be reduced or prohibited to decrease 
the input of food debris. Furthermore, T. hemprichii is 
gradually being replaced by Enhalus acoroides owing to a 
decrease in sediment particle size. Meanwhile, sediment 
type also affected interspecific competition between salt 
marsh plants [75]. Thus, further studies on the effect of 
changing sediment on interspecific competition and 
community succession in seagrasses are needed.
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Conclusion
Together, our results indicated that coarse beach sand 
addition could indirectly enhance the photosynthesis of 
T. hemprichii by improving sediment conditions with 
lower total nitrogen, organic matter and sulphide intru-
sion. Meanwhile, considerably greater belowground 
amino acids and flavonoids counteracted anoxic stress 
in sediments with smaller particle sizes, leading to more 
positive belowground δ34S. Consequently, the sediment 
could be modified in the eutrophic bay to improve the 
growth conditions for dominant tropical seagrass T. 
hemprichii. However, more detailed analyses and field 
experiments on the response of seagrass to different 
sediment types are required. Further studies are needed 
to examine the metabolic pathways of key primary and 
secondary metabolites of seagrass and trade-off mecha-
nisms between growth and defence, under sediment 
modification.

Material and methods
Approximately 250 intact shoots of healthy T. hemprichii 
(the identification was undertaken by Dr. Tan, and related 
voucher specimen was shown in Additional  file  2) were 
collected in the same patch to avoid patch differences. It 
is a sand-clay site with a water depth of ~ 2 m in Xincun 
Bay (18°24′34″N -18°24′42″N, 109°57′42″E-109°57′58″E), 
located southeast of Hainan Island, Southern China 

(Additional file 3). The seagrass density was between 208 
and 340 shoots/m2, and the biomass ratio of aboveground 
to belowground tissue was between 0.15 and 0.20. Plants 
were collected carefully to keep belowground structures 
intact and immediately transported to the laboratory in 
covered buckets containing seawater. Two boxes of in-
situ sediment below T. hemprichii and one box of coarse 
beach sand without sieving from the coastline were also 
collected. Plants were gently washed with in-situ sea-
water, separated into single shoots, and then cultured in 
an aquarium with in-situ seawater and sediment for 7 d 
prior to the start of the experiments. The light intensity at 
the surface of the seagrass leaves was 150 μmol photons 
m−2 s−1, and the temperature was maintained at 25 °C 
using air conditioning. The light was applied with 400 W 
metal-halide lamps and was set on a 12 h cycle.

Experimental design
T. hemprichii was cultured in three sediment types 
with in-situ sediment combinations with different 
ratios of coarse beach sand. Each sediment type treat-
ment had three replicates. There were nine glass tanks 
(270 × 220 × 250 mm) with 20 shoots in each tank (Fig. 6). 
The sediment thickness was 8 cm and the overlying sea-
water was 8.91 L. The seawater pH, salinity and dis-
solved inorganic nitrogen were 8.08 ± 0.04, 30.45 ± 0.92, 
7.45 ± 0.74 μmol L− 1, respectively. Seawater was aerated 
without replicating tides, as the seagrasses collected were 

Fig. 5  Schematic pictures of the effect of sediment on the photosynthesis, stable isotope sulfur (δ34S), FAA (free amino acid) and flavone of 
seagrasses. a indicated that seagrass growing in sediment in eutrophic bay with lower particle size, showed smaller rETR (relative electron transport 
rate) and EkETR (the minimum saturating irradiance), while higher FAA and Flavone accumulated in the belowground tissue to counteract anoxic 
stress. b indicated that beach sand addition indirectly enhanced rETR and EkETR by improving the growth condition for seagrass with lower flavone 
and FAA. N: sediment nitrogen. S: sediment sulfur. Eh: sediment redox potential, measuring the oxidation/reduction state. The bigger the circle, the 
higher the content or value
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in the lower intertidal zone with little air exposure. 1:0 
represented the in-situ sediment without combining with 
coarse beach sand added to the tank; 1:1 represented the 
combination of half (volume) in-situ sediment and a half 
(volume) coarse beach sand added to the tank; 1:2 repre-
sented the combination of 1/3 in-situ sediment and 2/3 
coarse beach sand added to in the tank. The physiochem-
ical parameters of the sediments were showed in Table 6. 
The concentrations of sediment organic carbon, total 
nitrogen, organic matter, and sulfur under the 1:0 treat-
ment were higher than those of the other two treatments, 
whereas the δ34S value exhibited a contrasting trend. For 
the particle sizes, an increasing trend was observed for 
sand composition from 1:0, 1:1, and 1:2, whereas the clay 
composition showed an inverse trend (Table  6). For the 
sand composition, a decreasing trend was found for the 
coarse sand composition from 1:0, 1:1, and 1:2, whereas 
fine sand showed a contrasting trend. The plants were 
maintained under these conditions for 21 d.

Photosynthetic performance and biochemical analysis
A PAM fluorometer (Mini-PAM, WALZ GmbH) was 
used to generate effective quantum yield (Y (II)) and rapid 
light curves (RLCs). Y (II) measured in light-adapted 
leaves indicates the amount of energy used in photo-
chemistry [76]. Photosynthetic performance was meas-
ured in the same shoots in each tank on days 6 and day 
21. Each sediment type treatment had three replicates of 
RLC. Y (II) was measured after the application of a satu-
rating pulse of light (measuring intensity of < 0.15 μmol 
photons m− 2 s− 1, saturating intensity of > 4000 μmol pho-
tons m− 2 s− 1, saturation width of 0.8 s). In the absence 
of dark acclimation, an effective quantum yield meas-
urement was taken at the beginning of each rapid light 
curve, before the actinic light from the Mini-PAM, and 

at the end of each 10 s irradiance step, resulting in nine 
effective quantum yield measurements for each RLC [76]. 
The illumination time for RLCs might be short. This type 
of determination cannot be used to estimate the equiva-
lent descriptors derived from the classic photosynthetic 
response curve to irradiance. However, the present study 
took standardized measurements on the RLCs, which 
might provide useful information for the description of 
relative changes in photosynthetic activity [73, 74, 77]. 
The process of measuring RLCs and the determination of 
the relative maximum electron transport rate (rETRmax), 
minimum saturating irradiance (EkETR) and αETR (the 
initial slope of the light-limited relationship) by curve-
fitting were according to Ralph and Gademann [76] and 
Jiang et al. [78].

At the end of the experiment, the plants were carefully 
retrieved and separated into above- and belowground tis-
sues. Subsamples were oven-dried (60 °C) and individu-
ally powdered with a grinder to pass through an 80-mesh 
sieve (with a mesh diameter of 0.18 mm) for measuring 
nutrients and stable sulfur isotopes, whereas the other 
subsamples were sent for measuring compositions of free 
amino acids and flavonoids with dry ice. The concen-
tration of tissue nitrogen was determined using a CHN 
analyzer (Elementar, Vario EL-III, Germany). The stable 
isotope sulfur and sulfur contents were measured with a 
DELTA V Advantage isotope mass spectrometer and an 
EA-HT elemental analyzer. Amino acids were measured 
using Waters Quattro Premier XE, whereas flavonoids 
were measured using Waters ACQUITY UPLC and Tri-
ple quadrupole mass spectrometer (AB 4000).

Sediment analysis
The particle sizes of the sediment samples, divided into 
three groups (< 4 μm (clay), 4–63 μm (silt), and > 63 μm 

Fig. 6  Experimental set-up of the laboratory treatment. 1:0, the in-situ sediment without combining with coarse beach sand was added in the tank; 
1:1, the combination of half in-situ sediment and half coarse beach sand was added in the tank; 1:2, the combination of 1/3 in-situ sediment and 
2/3 coarse beach sand was added in the tank
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(sand)), were analyzed using a laser diffractometer 
(Malvem Mastersizer 2000) [79]. Sediment samples 
were processed according to Jiang et  al. [26] before 
measuring sediment organic carbon and total nitrogen 
concentrations using a CHN analyzer (Elementar, Vario 
EL-III, Germany). Sediment organic matter content 
was analyzed by sediment calcination in a muffle fur-
nace (550 °C for 4 h) [80]. Sediment pH was measured 
in distilled water with a 1:2.5 sediment/solution ratio 
using a portable pH acidometer (PHB-4).

At the end of the experiment, sediment redox poten-
tial (Eh, measuring the oxidation/reduction state) was 
measured using an oxidation-reduction potentiometer 
(Mettler Toledo, Seven 2 Go).

Statistical analysis
The means and standard errors of all variables were 
calculated, and all data were first tested to determine 
whether the assumptions of homogeneity of variance 
and normality were met. Where these assumptions 
were not met, the raw data were transformed, and fur-
ther statistical analysis was conducted using the dataset 
that fulfilled the assumptions. The effect of sediment 
type was analyzed by one-way analysis of variance 
using SPSS for Windows version 18. Treatment means 
were compared and separated using the least signifi-
cant difference at P < 0.05. A multiple comparison test 
that did not assume equal variances was Dunnett’s T3 
(Additional files 4, 5, 6).
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