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Abstract

Load identification and structural damage detection are two important research areas in bridge
structural health monitoring (SHM). In practice, the incomplete measurement information,
variable service environments and other uncertainties make the structural load and damage
identification difficult. Currently, many identification methods for load identification and
bridge structural damage detection cannot effectively serve under operating conditions. Hence
how to use the SHM data to accurately estimate the loads and evaluate the structural damage
of the bridge has been a hot topic for researchers and engineers in the world. This study will
focus on these two areas including the following contents.

Regarding the load identification, a truncated transfer matrix-based regularisation method is
proposed for impact force identification. This method includes two steps. The first step is the
force location identification. Once the location is determined, the transfer matrix for the force
value identification could be constructed, then the force value identification could be conducted
in the second step. To improve the impact force localization and value identification method,
a low rank transfer submatrix-based group sparse regularisation method is proposed to localise
and reconstruct the impact force simultaneously. The low rank transfer submatrix-based group
sparse regularisation method is to construct a structured regularisation on the unknown forces,
by binding the unknown amplitudes associated with different potential locations into separate
groups and promoting the group-level sparsity among the potential locations. Similarly, the
group sparse feature also exists in the equivalent nodal force which is transferred from the
moving force. Based on this feature, a group weighted Tikhonov regularisation method is
proposed for the moving force identification via the equivalent nodal force. These proposed

methods for load identification are validated numerically and experimentally.

XV



In terms of structural damage detection, a new interface slip monitoring system based on Ultra-
flat Industrial Potentiometer Membrane (UIPM) sensor has been developed to directly measure
the relative displacement between the concrete slab and steel girder and the integrity of the
shear connectors has been assessed by the slip measurements. The finite element model has
been developed to study the interface damage detection of the steel-concrete composite
structure under the pseudo moving vehicular load. The results show that the slippage
divergence ratio is very sensitive to the shear connector damage, which is a potential indicator
for the damage of the shear connection system.

In practice, the cable force of the cable-stayed bridge is difficult to be monitored for its damage
detection. Based on the relationship between the cable force and the strain of the bridge deck,
anew method is proposed for the localization and servility identification of cable damage using
the strain measurements on the bridge deck. Here the damage cable identification problem is
treated as a multi-classification problem and the damage degree identification problem as a
nonlinear regression problem using support vector machine. The results show that the proposed
method has a strong anti-noise performance and can be easily adapted to the health monitoring

system in the field.
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