

Load identification and structural damage detection of bridges

by Bing Zhang

Thesis submitted in fulfilment of the requirements for

the degree of

Doctor of Philosophy

under the supervision of A/Prof Xinqun Zhu

University of Technology Sydney

Faculty of Engineering and Information Technology

October 2022

Certificate of Original Authorship

I, Bing Zhang declare that this thesis, is submitted in fulfilment of the requirements for the award of Doctor of Philosophy, in the School of Civil and Environmental Engineering, Faculty of Engineering and Information Technology at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise referenced or acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

This document has not been submitted for qualifications at any other academic institution. This research is supported by the Australian Government Research Training Program.

Signature

Date: October 5, 2022

Acknowledgement

First and foremost, I would like to give my deepest gratitude to my principal supervisor, Prof. Xinqun Zhu for your invaluable advice, continuous support, and patience during my PhD study. This doctoral thesis would not have been possible without your guidance and help. I learned a lot from the discussion with you in your office, where you always patiently explained the ideas and mechanisms to me. I learned a lot from your broad knowledge, inspiring ideas and enthusiasm in scientific research. Also, I would like to thank you for your encouragement and patience which were supportive for my first two years when I was lost. Those experiences trained me to be a person with independent thought and an open mind which is helpful for my future study and work.

I also would like to express my great appreciation to my other supervisors, Prof. Jianchun Li, Dr. Wengui Li and Dr. Yang Yu for their advice and guidance during my PhD study. Especially, Prof. Jianchun Li's guidance helped me a lot in my research. Interesting and lively discussions we had in each group meeting always bring me inspiration for scientific research.

My sincere thanks also go to the University of Technology Sydney for providing excellent research and social environment, scholarships, financial supports, facilities, and funding resources that made this thesis possible.

Friends are always the sources of my happiness and colourful life. I particularly appreciate my dear friends who have mad the leisure time of journey pleasant and enriched my daily life. Family is always the strongest shield while I am stuck in the frustration of study. I appreciate my parents and my sister who are always unconditionally supporting me. Without my family support, I would not have achieved my goals and no words can describe the appreciation for their encouragement. Special thanks are given to my wife, Dr. Xuan Zhang, who is always by my side, encouraging me and trusting me.

List of publications

- Zhang B. and Zhu X.Q. (2021) "Study of shear connector damage influence on interface slippage in steel-concrete composite beams with a novel slippage measurement method", *Proceedings of the 10th Australasian Congress on Applied Mechanics*, Engineers Australia, pp.491-503.
- Ren J.Y., Zhang B., Zhu X.Q. and Li S.H. (2022) "Damaged cable identification in cable-stayed bridge from bridge deck strain measurements using support vector machine." *Advanves in Structural Engineering*, 25(4), 754-771.
- Li J.T., Zhu X.Q., Zhang B. and Samali B. (2022) "Chapter 3: Drive-by bridge structural health monitoring: a case study on modal identification using a mobile sensory system." *Recent Advances in Structural Health Monitoring Research in Australia*, NOVA Science Publishers, pp. 113-136.
- 4. **Zhang B.**, Zhu X.Q. and Li J.C (2022) "Impact force identification based on truncated transfer matrix", *Mechanical Systems and Signal Processing*. (Under preparation)
- Zhang B., Zhu X.Q. and Li J.C (2022) "Low-rank transfer submatrix-based group sparse regularisation for impact force localization and reconstruction", *Journal of Sound and Vibration*. (Under preparation)

Table of Contents

Certificate of	of Original Authorshipi
Acknowled	gementii
List of publ	ications iii
Table of Co	ntentsiv
List of Figu	resviii
List of Tabl	es xiii
Abstract	XV
Chapter 1	Introduction1
	1.1 Background1
	1.2 Research objectives
	1.3 Significance4
	1.4 Structure of the thesis4
Chapter 2	Literature Review7
	2.1 Overview
	2.2 Load identification
	2.2.1 Load identification methods7
	2.2.2 Impact load identification
	2.2.3 Moving load identification15
	2.3 VBI based structural damage detection
	2.3.1 Damage detection based on bridge responses16
	2.3.2 Damage detection based on vehicle responses
	2.3.3 Damage detection based on both vehicle and bridge responses22
	2.4 Bridge local damage detection23
	2.4.1 Composite beam shear connector damage detection23
	2.4.2 Bridge cable damage detection25
	2.5 Simultaneous identification of structural load and damage

Chapter 3 Impact force identification based on truncated transfer matrix. 3.1 Overview. 3.2 Theory. 3.2.1 Impact force identification. 3.2.2 Impact force localization 3.3.1 l_2-norm Regularisation. 3.3.1 l_2-norm Regularisation. 3.3.2 l_1-norm Regularisation. 3.3.3 Truncated transfer matrix-based method for impact force identification. 3.4.1 Identification of impact forces on a simple supported beam. 3.4.2 Single impact force identification. 3.4.3 Multiple impact force identification. 3.4.4 Identification of impact forces on a simple supported beam. 3.4.3 Multiple impact force identification. 3.4.3 Multiple impact force identification. 3.5.1 Experimental validation 3.5.2 Finite element model validation 3.5.3 Impact force identification. 3.6 Summary. Chapter 4 Low-rank transfer submatrix based group sparse regularisation for impact for 4.1 Overview. 4.2 Theory. 4.2.1 Force identification <tr< th=""><th>30</th></tr<>	30
3.1 Overview 3.2 Theory 3.2.1 Impact force identification 3.2.2 Impact force localization 3.3.3 Regularisation model for impact force identification 3.3.1 l ₂ -norm Regularisation 3.3.2 l ₁ -norm Regularisation 3.3.3 Truncated transfer matrix-based method for impact force identificat	32
3.2 Theory 3.2.1 Impact force identification 3.2.2 Impact force localization 3.3 Regularisation model for impact force identification 3.3.1 /2-norm Regularisation 3.3.2 /1-norm Regularisation 3.3.3 Truncated transfer matrix-based method for impact force identificat 3.4 Numerical study 3.4.1 Identification of impact forces on a simple supported beam 3.4.2 Single impact force identification 3.4.3 Multiple impact force identification 3.5 Experimental validation 3.5.2 Finite element model validation 3.5.3 Impact force identification 3.6 Summary Auwards force identification 4.1 Overview 4.2 Theory 4.2 Impact force identification using one single sensor 4.3 Impact force identification using one single sensor	32
 3.2.1 Impact force identification	32
 3.2.2 Impact force localization	32
 3.3 Regularisation model for impact force identification	35
 3.3.1 l₂-norm Regularisation	37
3.3.2 l ₁ -norm Regularisation	38
3.3.3 Truncated transfer matrix-based method for impact force identificat 3.4 Numerical study	38
3.4 Numerical study 3.4.1 Identification of impact forces on a simple supported beam 3.4.2 Single impact force identification 3.4.3 Multiple impact force identification 3.4.3 Multiple impact force identification 3.5 Experimental validation 3.5.1 Experimental setup 3.5.2 Finite element model validation 3.5.3 Impact force identification 3.6 Summary Chapter 4 Low-rank transfer submatrix based group sparse regularisation for impact for localization and reconstruction 4.1 Overview 4.2 Theory 4.2.1 Force identification using one single sensor 4.3 Impact force identification using group sparse regularisation	ion
3.4 Numerical study	39
 3.4.1 Identification of impact forces on a simple supported beam	40
 3.4.2 Single impact force identification	40
 3.4.3 Multiple impact force identification	42
 3.5 Experimental validation 3.5.1 Experimental setup 3.5.2 Finite element model validation 3.5.3 Impact force identification 3.6 Summary Chapter 4 Low-rank transfer submatrix based group sparse regularisation for impact for localization and reconstruction 4.1 Overview 4.2 Theory 4.2.1 Force identification 4.2.1 Force identification using one single sensor 4.3 Impact force identification using group sparse regularisation 	47
 3.5.1 Experimental setup	48
 3.5.2 Finite element model validation	48
 3.5.3 Impact force identification	50
 3.6 Summary Chapter 4 Low-rank transfer submatrix based group sparse regularisation for impact for localization and reconstruction	52
 Chapter 4 Low-rank transfer submatrix based group sparse regularisation for impact for localization and reconstruction 4.1 Overview 4.2 Theory 4.2.1 Force identification 4.2.2 Impact force identification using one single sensor 4.3 Impact force identification using group sparse regularisation 	57
localization and reconstruction 4.1 Overview 4.2 Theory 4.2.1 Force identification 4.2.2 Impact force identification using one single sensor 4.3 Impact force identification using group sparse regularisation	rce
 4.1 Overview	58
 4.2 Theory 4.2.1 Force identification	58
 4.2.1 Force identification	59
4.2.2 Impact force identification using one single sensor	59
4.3 Impact force identification using group sparse regularisation	61
ne impact force factorie asing group sparse regularisation	62
4.4 Numerical study	63
4.4.1 Simple supported beam	63
4.4.2 Determination of the low-rank matrix for impact force identificat	on
4.4.3 Effect of measurement noise	65 69

	4.4.4 Multiple impact force identification with one single sensor	72
	4.5 Experimental validation	77
	4.5.1 Experimental setup	77
	4.5.2 Results and discussion	77
	4.6 Summary	
Chapter 5	Moving force identification via equivalent nodal force based on group	weighted
regularisati	on	81
	5.1 Overview	
	5.2 Governing equation of moving force identification via equivale	ent nodal
	force	
	5.3 Group weighted regularisation model for equivalent force identific	ation.83
	5.4 Numerical study	
	5.4.1 Simulation parameters	85
	5.4.2 The effect of the number of measurements	
	5.4.3 The effect of the number of equivalent nodal force	91
	5.5 Summary	94
Chapter 6	Interface monitoring in steel-concrete composite beams with a novel sl	ip sensor
		95
	6.1 Overview	95
	6.2 Experimental study	95
	6.2.1 Interface monitoring system	95
	6.2.2 Experiment setup	98
	6.2.3 Experimental procedure	99
	6.2.4 Test results and discussion	100
	6.3 Finite element model	101
	6.3.1 General	101
	6.3.2 FE model Validation	
	6.4 Numerical study	103
	6.4.1 Influence of damage severities	104
	6.4.2 Influence of multiple damage severities and multiple damage	locations
	•	
		100

	6.5 Summary	
Chapter 7	Cable damage detection of a bridge under traffic loading from b	ridge deck strain
measureme	nts using SVM based classification and regression	111
	7.1 Overview	111
	7.2 Damage identification approach	
	7.2.1 The cable-stayed bridge	
	7.2.2 The relationship between the cable force and the bend	ing strains of the
	bridge deck	
	7.2.3 Damage identification approach	
	7.3 The cable-stayed bridge SHM system and FEM	
	7.3.1 Description of the cable-stayed bridge SHM system	
	7.3.2 FEM of the cable-stayed bridge	
	7.3.3 Calibration of the FEM	
	7.4 Single cable damage identification	
	7.4.1The damage identification indexes	
	7.4.2 Training datasets and testing datasets	
	7.4.3 Damage cable identification	
	7.4.4 Damage degree identification	
	7.5 Double damage cables identification	
	7.5.1 The double damage cables identification datasets	
	7.5.2 The double damage cables identification	141
	7.6 Summary	
Chapter 8	Conclusions and recommendations	144
	8.1 Conclusions	144
	8.2 Recommendations	
References		

List of Figures

Figure 1.1 Bridge damage cause catastrophic accidents2
Figure 3.1 Discrete form of the impact force identification
Figure 3.2 (a) Time history of impact force and relevant dynamic response; (b) Truncated
transfer matrix
Figure 3.3 Numerical model of simply supported beam41
Figure 3.4 Modal parameters for the single force identification
Figure 3.5 Identified impact force with measurements of nine sensors considering 10% noise
level44
Figure 3.6 Effect of measurement noise on impact force identification
Figure 3.7 Force identification results with different number of modes
Figure 3.8 The force identification results with different number of sensors
Figure 3.9 Modal parameters for two impact force identification
Figure 3.10 Identification of two impact forces
Figure 3.11 Experimental setup
Figure 3.12 Arrangement of the accelerometers
Figure 3.13 Finite element model
Figure 3.14 First 6 modal shape comparison between experimental model and FE model52
Figure 3.15 Predefined possible load position in the experiment model
Figure 3.16. Time history of the impact force at S4 and the acceleration response at A253
Figure 3.17 Impact force at S4 location identification results in 4 modes, 6 modes, 8 modes and
10 modes
Figure 3.18 Impact force identification with different number of sensors and modes
Figure 3.19 Impact forces at S4, S6 and the acceleration response at A2
Figure 3.20 Identification of the impact force at S4 with different number of modes

Figure 3.21 Identification of the impact force at S6 with different number of modes	56
Figure 3.22 Two impact force identification with 10 modes & 3 sensors	56
Figure 4.1 Simply supported beam subjected to impact forces	59
Figure 4.2 The discrete format of Eq. (4.8)	61
Figure 4.3 The discrete form using the submatrix with one single sensor	62
Figure 4.4 Impact excitation interval determination from acceleration responses	65
Figure 4.5 The identification index results under different range of partial matrix	66
Figure 4.6 Identified force vector divided into predefined groups	69
Figure 4.7 The results of impact force identification with the submatrix of m=5: the localized	zation
index results	69
Figure 4.8 The results of impact force identification under different noise effect	71
Figure 4.9 Acceleration time history response for estimation of two intervals related to in	mpact
forces	72
Figure 4.10 Identified force vector for double impact divided into predefined groups	73
Figure 4.11 The results of double impact force identification	74
Figure 4.12 Acceleration time history for triple excitations interval determination	74
Figure 4.13 Identified force vector for triple impacts divided into predefined groups	75
Figure 4.14 The results of triple impact force identification	75
Figure 4.16 Predefined possible load position in the experiment model	77
Figure 4.17 Experimental results of single impact force identification at location S4	78
Figure 4.18 Experimental results of double impact force identification	79
Figure 5.1 Simply supported beam subjected to equivalent nodal force transferred from	n one
moving force	82
Figure 5.2 Equivalent nodal force features	84
Figure 5.3 Identified equivalent loads	88

Figure 5.4 Identified moving force	90
Figure 5.5 Identified moving force under different number of equivalent loads	92
Figure 5.6 Identified moving force via different number of equivalent loads	93
Figure 6.1 UIPM slip displacement sensor	96
Figure 6.2 Schematic of slip sensor	96
Figure 6.3 Calibration apparatus	98
Figure 6.4 Sensor no. 1 calibration between relative displacement (slip) and voltage	98
Figure 6.5 Experimental bridge model	99
Figure 6.6 Bridge subjected to loads	100
Figure 6.7: The interlayer slip of composite beam without damage under loading	101
Figure 6.8. Finite element model	102
Figure 6.9 Interlayer slippage from finite element and experimental results	103
Figure 6.10 Results comparison in Case0, Case1, Case2 and Case3	104
Figure 6.11 Slippage comparison in Case0, Case1, Case2 and Case3	105
Figure 6.12 Slippage divergence comparison in Case1, Case2 and Case3	106
Figure 6.13 Results comparison in Case0, Case4, Case5 and Case6	106
Figure 6.14 Slippage comparison in Case0, Case4, Case5 and Case6	108
Figure 6.15 Slippage divergence comparison in Case4, Case5 and Case6	108
Figure 6.16 Results comparison in Case0, Case7, Case1, Case8 and Case9	109
Figure 7.1 The real cable-stayed bridge	112
Figure 7.2 Schematic view of the cable-stayed bridge	112
Figure 7.3 The cable-stayed bridge calculation diagram	114
Figure 7.4 The flow chart of cable damage identification of cable-stayed bridge	120
Figure 7.5 Illustration of the accelerometer sensor locations (A1:A24) on the cross girders ((CGs)
	122

Figure 7.6 Illustration of the strain gauges array
Figure 7.7 Illustration of 600 seconds response123
Figure 7.8 The FEM of the cable-stayed bridge124
Figure 7.9 The cross girder CG8 details
Figure 7.10 The 1st mode shape: (a) identified from test; (b) obtained from FEM126
Figure 7.11 The first five mode shapes of the cable-stayed FEM127
Figure 7.12 The test vehicle
Figure 7.13 The vehicle load on the FEM of the cable-stayed bridge127
Figure 7.14 The measured strain response (black line) and the FEM strain response (red line)
Figure 7.15 Bending strain response under the cables 1-4 and cables 9-12, when the bridge is
intact and the cable 4 damaged 30%129
Figure 7.16 Bending strain response under the cables 1-4 and cables 9-12, when the bridge is
intact and the cable 8 damaged 30%129
Figure 7.17 The damage identification indexes poly line diagrams when the cables 1-8 cross
sections are reduced 30%
Figure 7.18 The corresponding damage identification indexes poly line diagrams which are
calculated by symmetry
Figure 7.19 The damage identification indexes poly line diagrams when the cable 4 cross
section is reduced 10%, 20% and 30%
Figure 7.20 The identified damage cables and the actual damage cable
Figure 7.21 The comparison between the actual damage cable and the identified damage cable
with different noise levels
Figure 7.22 The comparison between the actual damage degrees and the identified damage
degrees of DDI137

Figure 7.23 The comparison between the actual damage degrees and the ide	entified damage
degrees with different noise levels	
Figure 7.24 The flow chart of calculate training datasets for double damage	
Figure 7.25 The flow chart of calculate training datasets for double damage ca	bles140

List of Tables

Table 3.1 Predefined possible force locations 41
Table 3.2 Identified errors using different regularisation methods
Table 3.3 Identification accuracy index RE and PRE results 47
Table 3.4 Comparison of modal frequencies from the experiment testing and the updated FE
model
Table 4.1 Predefined possible force locations 64
Table 4.2 The LOC values with different sizes of submatrices 67
Table 4.3 The RE and PRE values with different sizes of submatrices
Table 4.4 Localization index LOC results under different noise levels 70
Table 4.5 Identification accuracy index RE and PRE results under different noise levels70
Table 4.6 Localization index LOC results for different number of impact force 76
Table 4.7 Identification accuracy index RE and PRE results for different number of impact
force
Table 5.1 Cases for moving force identification
Table 5.2 Identification accuracy index RE (%) for each equivalent load
Table 5.3 Identification accuracy index GRE and MRE results under different number of
sensors
Table 5.4 Identification accuracy index GRE and MRE results under different number of
equivalent loads92
Table 7.1 Frequencies from the finite element model and filed measurements 126
Table 7.2 The hypothetical damage scenarios 134
Table 7.3 The identified damage degrees of DDI 136
Table 7.4 The damage identified degrees error with different noise levels (unit: %)137
Table 7.5 The hypothetical damage scenarios of double damage cables 140

Table 7.6 The double damage cables identification results 141	Ĺ
Table 7.7 The double damage cables damage degree identification results of damage scenarios	5
	2

Abstract

Load identification and structural damage detection are two important research areas in bridge structural health monitoring (SHM). In practice, the incomplete measurement information, variable service environments and other uncertainties make the structural load and damage identification difficult. Currently, many identification methods for load identification and bridge structural damage detection cannot effectively serve under operating conditions. Hence how to use the SHM data to accurately estimate the loads and evaluate the structural damage of the bridge has been a hot topic for researchers and engineers in the world. This study will focus on these two areas including the following contents.

Regarding the load identification, a truncated transfer matrix-based regularisation method is proposed for impact force identification. This method includes two steps. The first step is the force location identification. Once the location is determined, the transfer matrix for the force value identification could be constructed, then the force value identification could be conducted in the second step. To improve the impact force localization and value identification method, a low rank transfer submatrix-based group sparse regularisation method is proposed to localise and reconstruct the impact force simultaneously. The low rank transfer submatrix-based group sparse regularisation method is to construct a structured regularisation on the unknown forces, by binding the unknown amplitudes associated with different potential locations into separate groups and promoting the group-level sparsity among the potential locations. Similarly, the group sparse feature also exists in the equivalent nodal force which is transferred from the moving force. Based on this feature, a group weighted Tikhonov regularisation method is proposed for the moving force identification via the equivalent nodal force. These proposed methods for load identification are validated numerically and experimentally. In terms of structural damage detection, a new interface slip monitoring system based on Ultraflat Industrial Potentiometer Membrane (UIPM) sensor has been developed to directly measure the relative displacement between the concrete slab and steel girder and the integrity of the shear connectors has been assessed by the slip measurements. The finite element model has been developed to study the interface damage detection of the steel-concrete composite structure under the pseudo moving vehicular load. The results show that the slippage divergence ratio is very sensitive to the shear connector damage, which is a potential indicator for the damage of the shear connection system.

In practice, the cable force of the cable-stayed bridge is difficult to be monitored for its damage detection. Based on the relationship between the cable force and the strain of the bridge deck, a new method is proposed for the localization and servility identification of cable damage using the strain measurements on the bridge deck. Here the damage cable identification problem is treated as a multi-classification problem and the damage degree identification problem as a nonlinear regression problem using support vector machine. The results show that the proposed method has a strong anti-noise performance and can be easily adapted to the health monitoring system in the field.