Quantum Photonics with Hexagonal Boron Nitride Quantum Emitters

by

Simon J. U. White

Under the supervision of

Assoc. Prof. Alexander Solntsev

A dissertation submitted in fulfillment of the requirements for the degree of

Doctor of Philosophy

University of Technology Sydney
School of Mathematical and Physical Sciences
New South Wales
Australia

August, 2022

CERTIFICATE OF ORIGINAL AUTHORSHIP

I, Simon J. U. White, declare that this thesis is submitted in fulfilment of the requirements for the award of Doctor of Philosophy, in the School of Mathematical and Physical Sciences at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise referenced or acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

This document has not been submitted for qualifications at any other academic institution.

This research is supported by the Australian Government Research Training Program.

Production Note:
Signature removed prior to publication.

February 21, 2023

Abstract

Controlling and manipulating individual quantum systems underpins the development of scalable quantum technologies. These new technologies enable more precise and sensitive metrology and have the potential to revolutionise computing, enabling functionality inconceivable using classical technologies. Hexagonal boron nitride (hBN) is emerging as an exceptional platform for applications in quantum photonics. Defects within hBN's two-dimensional crystalline lattice can form an atom-like two-level system, which when excited can only release one photon at a time. The quantum emission from defects in this material is promising as single photons are ideal candidates for information carriers, flying qubits, integral to the future of advanced quantum technologies. Furthermore, due to the interaction between these defects and their local environments, they can be excellent quantum sensors on an atomic scale.

The focus of this thesis is to control, manipulate, and study hBN quantum emitters to understand their applicability today and their potential in future quantum technologies. Beginning with a proof of principle demonstration of quantum random number generation, it is shown that the room temperature quantum emission from a single hBN defect can be coupled to an integrated photonic circuit. By measuring the collapse of a single photon at the output of the photonic circuit, we demonstrate a scalable architecture for quantum random number generation.

The next sections of the thesis uncover how these defects are applicable more broadly in future quantum technologies. Aware of the requirements for the ideal single photon emitter (SPE), we detail the cryogenic properties of hBN quantum emitters, specifically under resonant excitation. Using this technique, we study the control and manipulation of these emitters under optical and electrical fields, as well as quantify how the emitters couple to their environments. Here, it is shown that the emission from these defects can be significantly enhanced under a co-excitation regime, and the mechanism behind the increased pho-

toluminescence is explained by studying the temporal photophysics of the defect. To further detail the interaction between hBN single photon emitters and their local environment we uncover the dominant broadening mechanisms using resonant photoluminescence excitation (PLE). It is found that hBN emitters suffer from spectral diffusion and, interestingly, suffer homogeneous broadening even at 5 K. Finally, we take advantage of the two-dimensional nature of hBN crystals and fabricate a >100 nm thick van der Waals heterostructure device. Using this device, we show that the photoluminescence from hBN emitters can be electrically modulated; the emission can be gated on and off, the brightness can be controlled, and the wavelength can be tuned. These findings demonstrate that hBN is an exceptional platform for developing photonic quantum technologies and further show that hBN quantum emitters have applications from advanced sensing to quantum communication and information processing.

Publications

THESIS WORKS

- 1. White, S.J.U., Yang, T., Dontschuk, N., Li, C., Xu, Z.Q., Kianinia, M., Stacey, A., Toth, M. and Aharonovich, I., 2022. Electrical control of quantum emitters in a Van der Waals heterostructure. Light: Science & Applications, 11(1), pp.1-9.
- 2. White, S.J.U., Stewart, C., Solntsev, A.S., Li, C., Toth, M., Kianinia, M. and Aharonovich, I., 2021.

 Phonon dephasing and spectral diffusion of quantum emitters in hexagonal boron nitride. Optica, 8(9), pp.1153-1158.²
- 3. White, S.J.U., Duong, N.M.H., Solntsev, A.S., Kim, J.H., Kianinia, M. and Aharonovich, I., 2020. Optical repumping of resonantly excited quantum emitters in hexagonal boron nitride. Physical Review Applied, 14(4), p.044017.³
- 4. White, S.J.U., Klauck, F., Tran, T.T., Schmitt, N., Kianinia, M., Steinfurth, A., Heinrich, M., Toth, M., Szameit, A., Aharonovich, I. and Solntsev, A.S., 2020. Quantum random number generation using a hexagonal boron nitride single photon emitter. Journal of Optics, 23(1), p.01LT01.4

Non-thesis and Contributed Works

5. White, S.J.U., Wang, K., Solntsev, A. S., Szameit, A., and Sukhorukov, A. A., 2022. Demonstration of Lossy Linear Transformations and Two-Photon Interference on a Photonic Chip (In preparation).

- 6. White, S.J.U., Aharonovich, I, and Solntsev, A. S., 2022. Anderson Localisation with Photons from a Single-Photon Emitter (In preparation).
- 7. Zhigulin, I., Horder, J., Ivady, V., White, S.J.U., Gale, A., Li, C., Lobo, C.J., Toth, M., Aharonovich, I. and Kianinia, M., 2022. Stark effect of quantum blue emitters in hBN. arXiv preprint arXiv:2208.00600.
- 8. Horder, J., White, S.J.U., Gale, A., Li, C., Watanabe, K., Taniguchi, T., Kianinia, M., Aharonovich, I. and Toth, M., 2022. Coherence properties of electron beam activated emitters in hexagonal boron nitride under resonant excitation. Physical Review Applied, 18(6), 064021.
- 9. Chen, Y. White, S.J.U., Ekimov, E. A., Bracdac, C., Toth, M, Aharonovich, I, and Tran, T. T., 2022. Ultralow-power cryogenic thermometry based on optical-transition broadening of a two-level system in diamond. ACS Photonics. (Just accepted 2023).
- 10. Tran, T.N., Kim, S., White, S.J.U., Nguyen, M.A.P., Xiao, L., Strauf, S., Yang, T., Aharonovich, I. and Xu, Z.Q., 2021. Enhanced Emission from Interlayer Excitons Coupled to Plasmonic Gap Cavities. Small, 17(45), p.2103994.7
- 11. Chen, Y., Westerhausen, M.T., Li, C., White, S.J.U., Bradac, C., Bendavid, A., Toth, M., Aharonovich, I. and Tran, T.T., 2021. Solvent-Exfoliated Hexagonal Boron Nitride Nanoflakes for Quantum Emitters. ACS Applied Nano Materials, 4(10), pp.10449-10457.
- 12. Chen, Y., Li, C., White, S.J.U., Nonahal, M., Xu, Z.Q., Watanabe, K., Taniguchi, T., Toth, M., Tran, T.T. and Aharonovich, I., 2021. Generation of High-Density Quantum Emitters in High-Quality, Exfoliated Hexagonal Boron Nitride. ACS Applied Materials & Interfaces, 13(39), pp.47283-47292.9
- 13. Nonahal, M., White, S.J.U., Regan, B., Li, C., Trycz, A., Kim, S., Aharonovich, I. and Kianinia, M., 2021. Bottom-Up Synthesis of Single Crystal Diamond Pyramids Containing Germanium Vacancy Centers. Advanced Quantum Technologies, 4(7), p.2100037. 10
- 14. Damaso, N.J., White, S.J.U., and Kim, S., 2021. Analysis of anapole resonators in low index materials. Journal of Optics, 23(3), p.034003.¹¹

- 15. Bernhardt, N., Kim, S., Fröch, J.E., White, S.J.U., Duong, N.M.H., He, Z., Chen, B., Liu, J., Aharonovich, I. and Solntsev, A.S., 2021. Large few-layer hexagonal boron nitride flakes for non-linear optics. Optics Letters, 46(3), pp.564-567. 12
- 16. Kianinia, M., White, S.J.U., Fröch, J.E., Bradac, C. and Aharonovich, I., 2020. Generation of spin defects in hexagonal boron nitride. ACS photonics, 7(8), pp.2147-2152. 13
- 17. Bernhardt, N., Koshelev, K., White, S.J.U., Meng, K.W.C., Froch, J.E., Kim, S., Tran, T.T., Choi, D.Y., Kivshar, Y. and Solntsev, A.S., 2020. Quasi-BIC resonant enhancement of second-harmonic generation in WS2 monolayers. Nano Letters, 20(7), pp.5309-5314. 14

Conference Proceedings

- 1. White, S.J.U., Wang, K., Szameit, A., Sukhorukov, A.A. and Solntsev, A.S., 2021, June. Demonstration of Lossy Linear Transformations and Two-Photon Interference via Singular Value Decomposition. In European Quantum Electronics Conference (p. ea_7_3). Optical Society of America.
- Kianinia, M., White, S.J.U., Fröch, J.E., Bradac, C. and Aharonovich, I., 2021, May. Engineering
 of Room Temperature Spin Defects in Hexagonal Boron Nitride. In 2021 Conference on Lasers
 and Electro-Optics (CLEO) (pp. 1-2). IEEE.
- White, S.J.U., Duong, N.M.H., Solntsev, A.S., Kim, J.H., Kianinia, M. and Aharonovich, I., 2021,
 May. Coherent Excitation of Hexagonal Boron Nitride Single Photon Emitters via Optical Repumping. In CLEO: QELS_Fundamental Science (pp. FW4I-7). Optical Society of America.
- 4. Bernhardt, N., Koshelev, K., White, S.J.U., Meng, K.W.C., Fröch, J.E., Kim, S., Tran, T.T., Choi, D.Y., Kivshar, Y. and Solntsev, A.S., 2020, August. Observation of Extraordinary SHG from WS2 Monolayers Boosted by Optical Bound States in the Continuum. In Conference on Lasers and Electro-Optics/Pacific Rim (p. C7B_1). Optical Society of America.
- White, S.J.U., Klauck, F., Schmitt, N., Tran, T.T., Kianinia, M., Steinfurth, A., Aharonovich, I.,
 Szameit, A. and Solntsev, A.S., 2019, December. Quantum random number generation using
 a solid state single photon source. In AOS Australian Conference on Optical Fibre Technology

- (ACOFT) and Australian Conference on Optics, Lasers, and Spectroscopy (ACOLS) 2019 (Vol. 11200, pp. 67-68). SPIE.
- 6. White, S.J.U., Wang, K., Tran, T.T., Kianinia, M., Titchener, J., Gräfe, M., Fischbach, S., Rodt, S., Song, J.D., Reitzenstein, S. and Aharonovich, I., 2019, June. Tomography of quantum dots in a non-hermitian photonic chip. In European Quantum Electronics Conference (p. eb_p_6). Optical Society of America.

Contents

Abstract		3		
Pτ	JBLICA	ATIONS		4
A	CKNO	WLEDGM	MENTS	14
0	Inti	RODUCT	TION	17
	0.1	Pream	ble	17
	0.2	Struct	ure	19
	0.3	Quant	rum Technologies	21
		0.3.1	Quantum Communication	22
		0.3.2	Quantum Metrology and Sensing	22
		0.3.3	Quantum Information Processing (Quantum Computing)	23
	0.4	Single-	-Photon Sources	23
		0.4.1	The Electromagnetic field: Maxwell's Equations	24
			Electromagnetic waves	25
			Interference	26
			Coherence	27
		0.4.2	Definition and types of light sources	31
			Classical Hanbury Brown and Twiss - Second-order correlation	32
			Quantum Hanbury Brown and Twiss - Second-order correlation	33
		0.4.3	Lifetime and emission rate	34
	0.5	Hexag	onal Boron Nitride	35
		0.5.1	Quantum Emission from hBN	36
		0.5.2	Broadening Mechanisms	38
			Energy Uncertainty	38
			Homogeneous Broadening	39
			Inhomogeneous Broadening	39
	0.6	Confo	ocal Microscopy	40
		0.6.1	Coherent Excitation	41
		0.6.2	Photoluminescence Excitation	42

Ι	Quantum Random Number Generation 4			
	1.1	Introduction	46	
	1.2	Experimental Works	47	
		I.2.I Methods	47	
		1.2.2 Results	50	
		1.2.3 Conclusion	54	
	1.3	Summary	54	
2	Орт	ICAL REPUMPING OF RESONANTLY EXCITED QUANTUM EMITTERS IN HEXAGONAL		
	Bor	on Nitride	57	
	2.I	Introduction	58	
	2.2	Experimental Work	59	
		2.2.1 Methods	59	
		2.2.2 Results	60	
		2.2.3 Conclusion	65	
	2.3	Summary	66	
3	Рно	non Broadening	67	
	3.I	Introduction	68	
	3.2	Experimental Work	69	
		3.2.1 Methods	69	
		Sample preparation	69	
		Optical measurements	69	
		3.2.2 Results	69	
		3.2.3 Conclusion	75	
	3.3	Summary	76	
4	Elec	CTRICAL CONTROL OF QUANTUM EMITTERS IN A VAN DER WAALS HETEROSTRUCTURE	77	
•			78	
	4.2	Experimental Work	, 79	
	•	4.2.1 Methods	79	
		Preparation of hBN flakes	79	
		Photoluminescence spectroscopy	80	
		Theoretical calculations	80	
		4.2.2 Results	80	
		4.2.3 Discussion	88	
	4.3	Conclusion and Summary	92	
5	Conclusion and Outlook			
-	5.I	Conclusion	95 95	
	5.2	Outlook	97	

Appendix A Appendix			
А.1	Second order correlation analysis		99
A.2	Spectrometer Resolution		100
REFEREN	NCES		120

Listing of figures

Ι	The Michelson interferometer	27
2	Interference with a Gaussian Pulse	29
3	Interference with a Lorentzian Pulse	30
4	Photon Statistics	31
5	Second-Order Correlation	33
6	Hexagonal Boron Nitride	36
7	Two Level System	37
8	Scanning laser confocal microscope	40
1.1	Random number generator emitter characteristics	47
1.2	Integrated hBN and RNG chip	49
1.3	Single-photon correlation and random number statistics of the multiplexed state	51
1.4	Single-photon multiplexed state count-rates	52
1.5	Non-overlapping template test results	53
1.6	Non-overlapping template test results	55
2.1	Repumping and Interferometry Cryogenic Photoluminescence Setup	59
2.2	hBN SPE Repumping and Interferometry Characterisation	60
2.3	Photophysics of a h-BN defect under co-excitation	62
2.4	Resonant excitation with repumping	63
3.I	Characterisation of hBN single-photon emitters	70
3.2	Phonon-limited linewidth of hBN SPE	72
3.3	Lorentzian vs. Gaussian fitting of PLE spectrum	73
3.4	Spectral diffusion and power broadening	74
4.I	The hBN/MLG heterostructure device	81
4.2	The hBN/MLG heterostructure device Electrical Response	82
4.3	PL emission lines response to bias	83
4.4	Activated emitter PL and $g^{(2)}(au)$	84
4.5	Electrical control of hBN emitters in the heterostructure device	86
4.6	Activation of hBN emitters in the heterostructure device	88

4.7	Heterostructure device band diagram under bias'	91
4.8	Coherent excitation of quantum emitters in hBN heterostructure	92
А.1	Spectrometer Resolution	[0]

Acknowledgments

THE WORK OF THIS THESIS IS THE CULMINATION of many stimulating discussions, broad scientific collaboration, great support, and an uncomfortable amount of hours spent in a cold dark room.

I want to thank my supervisor A/Prof. Alexander Solntsev for his unwavering support, enthusiasm, and freedom to explore. Our discussions had me appreciating your ardour and kindness, and always rejuvenated my passion for research. I would also like to thank Prof. Igor Aharonovich and Prof. Milos Toth for the opportunity to be a part of such an inclusive group working in such an exciting field.

I want to thank my co-supervisors who have guided me throughout my post-graduate studies, in particular, Mehran Kianina for always having time to discuss projects, advising me experimentally, and reluctantly enduring my endless barrage of questions. Toan Trong Tran, thanks for always helping me to consider the deeper phenomena and helping me navigate research more broadly.

I want to thank all my collaborators, including but not limited to Rike, Nora, Andrea, Dr Heinrich, Prof. Szameit and the rest of the team at the University of Rostock; Dr Nikolai Dontschuk and Dr Alastair Stacey at Melbourne University and RMIT University; Dr Kai Wang and Prof. Andrey Sukhorukov at Stanford and the Australian National University; and A/Prof Je-Hyung Kim at UNIST.

A huge thanks must be made to all my fellow students at UTS. In particular thanks to Caleb Estherby and Minh Nguyen for the moral support and productive lunches. Huge thanks to Jake for reviewing this text; I wish you all the best in taking over my lab! And a special thanks to Chi, Teishan, Yongliang, Vanya, Lesley, Ritika, Milad, Thinh, Helen, Hanh, Connor, Blake, Mika, Noah, Johannes, John, Seejeong, Zaiquan and Carlo; the experience of working together has been a pleasure, and I hope such a supportive group continues to prosper.

I want to thank my parents and family for always looking out for me. Fiona and David, you have always encouraged my sibling and I; this achievement is a reflection of your own character and success.

And finally, I wholeheartedly want to thank my partner in life, Elise. A good friend once advised that "I shan't let go of that kite". I couldn't agree more and realise I am very lucky to have met you. I hope we always continue to find joy and happiness together. Cheers to our next adventure!