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Abstract 

The household organic waste stream is problematic, with high rates of waste generation and 

large quantities of waste disposed to landfill each year. Through better management of the 

household organic waste stream, waste may be diverted from landfill to resource recovery 

processes, leading to emissions reductions and the realisation of circular resource flows. These 

resource recovery processes however carry an emissions burden, and limited data on emissions 

associated with waste management systems as in Australia, make assessing resource recovery 

pathways from a low carbon perspective difficult. The aim of this study was to better 

characterise the emissions associated with household organic waste management in New South 

Wales, in order to examine the emissions reduction and resource recovery potential of the 

waste stream. It is hoped that the work contained in this thesis will help inform future 

household organic waste management strategies, aligned with greenhouse gas reduction and 

landfill diversion objectives in the state and other Australian jurisdictions.  

This study developed a hybrid modelling approach, consisting of several different 

methodologies addressing limitations in the data. Firstly, the spatial distribution of waste 

generation was analysed, to estimate household waste generation at a fine spatial scale where 

ground truth data does not exist. A probabilistic spatial disaggregation model was developed, 

used to estimate waste generation at the property lot level with accuracy, for households in the 

Greater Sydney and surrounding areas. 

Secondly, property lot waste estimates were combined with road network and waste 

infrastructure data in a route optimisation model, to estimate emissions from waste collection 

and transport. For the household organic waste stream, these emissions were estimated as 

approximately 43,700 tonnes CO2-e—representing 2% of total NSW road transportation 

emissions in the study time frame. The between bin travel and bin lifting components were 

the most emissions intensive part of overall transport emissions from the components 

analysed. Findings indicated that increasing the intensity of bin lifts per stop; and 

improvements to collection vehicle efficiency and electrification, would have the greatest 

impact on reducing transport emissions. 

Next, transport emissions estimates were combined with council organic waste recovery data 

to characterise emissions over the entire household organic waste management chain. Material 
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flow modelling was utilised to estimate emissions from compost recovery as well as from 

alternate waste treatment of household organics in the mixed waste stream. Lifetime emissions 

from organic waste disposed to landfill, as well as emissions avoided through landfill diversion, 

were also estimated, following approaches used in the Australian National Greenhouse Gas 

Accounts. Analysis found that emissions associated with household organic waste 

management were approximately 245,000 tonnes CO2-e in the study timeframe. Lifetime 

landfill emissions from household organics disposed, accounted for approximately 56% of 

these emissions. Management of the mixed waste stream, accounting for the majority of waste 

disposed to landfill, had the largest impact on overall emissions; and thus, presents the most 

important opportunity for achieving low carbon resource recovery. 

Finally, potential household organic waste management pathways were evaluated from a low 

carbon resource recovery perspective, where greenhouse gas emissions are minimised while 

maximising resource recovery. This evaluation was performed through scenario simulations, 

and multi-criteria analysis. Increased diversion of food waste from the mixed stream to 

dedicated organic waste collection was identified as a key characteristic of optimal organic 

waste management pathways. Significant potential emissions reductions were also found, via 

fossil fuel avoidance through the deployment of anaerobic digestion. Potential electricity 

generation from biogas utilisation from household organic waste was between 84,000 MWh 

and 171,000 MWh for standalone digestion facilities and digesters located at alternate waste 

facilities. Findings from this analysis highlights the potential for a food waste only kerbside 

collection system, which could encourage further diversion of food waste out of the mixed 

stream and landfill, while also providing a cleaner and more appropriate feedstock stream for 

municipal scale digestion. 

The work in this thesis fills an important gap in the assessment of household organic waste 

management from a low carbon resource recovery perspective. Modelling approaches 

developed in this work can also be used to assess the emissions potential for a wider variety of 

waste management systems and pathways in NSW and elsewhere. The findings from this study 

suggest that the collection of combined food and garden organic waste favoured by councils 

in NSW, may not be the best approach when considering emissions and higher value resource 

recovery outcomes. Considering also emissions intensive electricity supply reliant on fossil 

fuels, organic recovery can be geared towards offsetting fossil fuels with biogas from digestion. 

This would support a broader system evolution powered by renewable energy, and net zero 

emission objectives in the state. 
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Chapter 1.  
Introduction 

1.1. Background 

The impacts of anthropogenic greenhouse gas (GHG) emissions must be curtailed across all 

sectors of the economy to limit the impacts of climate change (IPCC, 2021). Although small 

compared to the fossil fuel electricity sector, waste management is an important contributor 

to overall emissions with landfilling alone contributing approximately 3% to global emissions 

annually (IPCC, 2021). Due to a reliance on fossil fuels, significant emissions also occur from 

the consumption of fuel and electricity over the entire waste management chain from 

collection to recovery. Waste management systems can also deliver emission reductions, 

including through offsetting emissions intensive primary material consumption via recycled 

material utilisation; generating energy from waste materials to replace fossil-fuel derived energy 

sources; and diverting waste from landfill thus avoiding future landfill emissions. 

Historically in Australia, jurisdictions have been guided by the ‘waste hierarchy’ in establishing 

priorities for waste management planning and measuring waste system performance. The 

waste hierarchy is a decision-making framework, evolved from the concept of ‘Lansink’s 

Ladder’, which establishes an order of preference for waste management (Figure 1-1). Under 
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this hierarchy, prevention of waste is top priority, with the recovery of material resources 

prioritised above energy recovery, other forms of waste treatment, and landfill disposal. Under 

guidance from the waste hierarchy, there is no direct prioritisation of environmental 

performance including emissions reduction. Equally, local jurisdictions have typically set 

weight based waste recovery rate targets as a key measure of the performance of waste systems, 

which also overlooks environmental performance. Indeed, recovery rates are simple for 

jurisdictions to quantify, and demonstrate progress up (or down) the hierarchy (Pires & 

Martinho, 2019). However, there are limitations with measuring performance of waste systems 

using recovery rate metrics alone. These include a lack of consistency on where in the system 

(e.g., before or after collection for recycling) recovery is calculated (van Eygen et al., 2018); 

lack of distinction between high quality and low-quality recovery (Dieterle et al., 2018; Haupt 

et al., 2017); and other indicators being needed to assess management performance of the 

system holistically (Pires & Martinho, 2019), especially where environmental impacts including 

GHG emissions are concerned. Moreover, materials recycling may not be the most resource 

or environmentally efficient approach for waste recovery when the energy intensity of recovery 

for some waste streams, such as mixed household wastes, is high (Arena, 2015). As such, 

recovery rate metrics alone are not sufficient in measuring the overall quality, resource 

efficiency, and sustainability of waste systems (Iacovidou et al., 2017a). 

 

Figure 1-1: Evolution of the waste hierarchy, adapted from (Zhang et al., 2022) 

Given the urgent need to reduce economy wide GHG emissions, there is an opportunity to 

better align GHG reduction priorities with waste system performance priorities in how waste 

is managed. This PhD examines the potential role that recovering resources from the 

household organic waste stream may have towards meeting sustainable waste management, 

and GHG emission reduction objectives in New South Wales, Australia. 
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1.1.1. Waste as a resource 

When materials are no longer considered useful at the end of their functional, economic, 

and/or physical lives, they become wastes to be managed. The generation of waste is inevitable 

in the linear ‘make-use-dispose’ model of production and consumption, for which the waste 

hierarchy was developed to address. While modern waste management systems evolved to 

process this waste from society in an effort to protect human health, the definitions and 

objectives of waste management have also changed over time (Brunner & Rechberger, 2016). 

Now, the concept of the ‘circular economy’ is guiding sustainable best-practice in waste 

management worldwide, including in Australia. Recent adoption of a circular economy 

framework (NSW EPA, 2019b); and the development of strategies for plastic waste (DPIE, 

2020) and long-term waste management (NSW EPA, 2020a) aim to move future decision 

making in NSW more towards a circular economic framework. A circular economy is in 

contrast to the linear make-use-dispose model (Figure 1-2) and encourages the prevention of 

wastes and harmful emissions wherever possible, through rethinking product design and 

consumption models, and the reuse of products and resources (Rood & Hanemaaijer, 2017). 

The circular flow of materials has implications for waste management, with a greater emphasis 

placed on extracting the maximum value of resources whilst in use, and at their end of life via 

resource recovery (e.g., materials, energy, and nutrients). This has led to a reframing of waste 

as a resource in contemporary sustainable waste management.  

Figure 1-2: Comparison of linear and circular product use systems, adapted from Rood and Hanemaaijer (2017) 
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1.1.2. Resource recovery from waste streams 

Recognising the importance of circular resource flows is not only a priority from an 

environmental perspective, but also can be an economic opportunity. Resource recovery 

enables these circular resource flows, and includes materials recovery processes, and also those 

processes that recover energy, nutrients and/or chemicals from waste streams—ready to be 

used as alternatives to primary resource consumption (Figure 1-3). Non-material recovery, 

namely energy and chemical recovery processes, have typically been held at lower levels of 

prioritisation following the waste hierarchy. Besides composting, non-material resource 

recovery processes are not deployed at large scales in Australia for municipal waste, despite 

the positive contribution such processes can make towards waste recovery targets and GHG 

reductions.  

 

Figure 1-3: Overview of resource recovery from waste sources, adapted from insights in Babu et al. (2021); Meys et al. (2021); 
Pressley et al. (2015); Stunzenas and Kliopova (2018); Vanotti et al. (2019)  

Resource recovery processes do have trade-offs. For example, materials cannot be infinitely 

recovered from waste streams nor at sufficient quality to be used in the same products, and 

some materials also require excessive amounts of energy to recover from waste streams (Arena, 

2015). With energy recovery, processes such as direct incineration can have significant impacts 

on increasing recovery rates for municipal waste streams, as has been the case in The 

Netherlands (van Leeuwen et al., 2017). The positive benefits in landfill diversion and in 
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offsetting the need for fossil-fuel resources however are balanced by significant direct 

emissions including GHGs and harmful toxins that may also occur depending on the waste 

stream and technology utilised (Demetrious & Crossin, 2019). The case of energy recovery as 

a resource recovery pathway for waste streams illustrates that looking at recovery rates alone 

is limiting when assessing waste system performance. Selecting optimal recovery pathways 

aligned with waste and environmental performance objectives is complex. 

1.1.3. Household organic waste as a case study 

Food waste is a global issue. More than 930 million tonnes of food sold worldwide was 

disposed to landfills in 2019 (UNEP, 2021), representing somewhere between 30% and 50% 

of all food produced (Khalil et al., 2022). Food waste is generated across multiple sectors, 

including in retail and food service industries. Households however are responsible for 

approximately 61% of the 930 million tonnes of food waste disposed (UNEP, 2021). 

Compared to other countries, Australia is a poor performer when it comes to household food 

waste generation, with approximately 102 kg generated per person, per year (Figure 1-4).  

Figure 1-4: Estimates for household food waste generation for selected countries, from UNEP (2021) 

In NSW, food waste makes up approximately 19% of all household waste collected (NSW 

EPA, 2021; Rawtec, 2020b), and is primarily collected via mixed waste collections and destined 

for landfill. The organic fraction of municipal waste (OFMSW) also consists of garden organics 
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(GO) including grass clippings and branches; however, this material stream is typically 

collected separately, with approximately 4,000 tonnes (or 1% of total generated) disposed to 

landfill in 2019-20 (NSW EPA, 2021). The separate collection of food waste alongside garden 

waste is a growing collection pathway in NSW, expanding from 22 councils in 2014-15 to 38 

councils in 2019-20. While quantities of separate food and garden (FOGO) collections are low 

(Figure 1-5), the recent NSW Waste and Sustainable Material Strategy 2041 anticipates mandatory 

FOGO collection for households in NSW, along with expansion in necessary infrastructure to 

manage this stream (DPIE, 2021).  

 

Figure 1-5: Breakdown of NSW household organic waste collection in 2019-20, from NSW EPA (2021) and Rawtec 
(2020b) 

With baseline levels of emissions from waste management in NSW unclear outside of 

estimated landfill emissions (DISER, 2021c), the impact of emissions associated with 

expansion to kerbside collection systems is uncertain. Moreover, the lack of data characterising 

emissions from kerbside collection, as well as emissions and abatement potential from 

OFMSW, makes measuring progress aligned with sustainable waste strategies in NSW, and 

prioritising appropriate management pathways and technologies, difficult. 

1.1.4. Emissions from the management of organic waste 

Organic wastes disposed to landfill undergoes anaerobic decomposition, eventually generating 

methane gas emissions which have a significant global warming potential—approximately 28 

times greater than CO2 (DISER, 2021b). Up to 30% of these methane emissions occur within 
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2 years of landfill disposal (Liu et al., 2017), and approximately 48% of the organic waste stream 

will decompose to CO2 and methane in landfills (Babu et al., 2021). As such, avoiding landfill 

emissions from organic wastes is a priority for low carbon waste management in many 

jurisdictions around the world, including in Australia and NSW. 

Recovered resources from organic streams, including nutrients in the form of fertilisers and 

composts; and energy in the form of biogas, can lead to whole-of-system emissions reductions 

by avoiding landfill disposal, and mitigating consumption of fossil-derived products. Such 

emission reductions are also balanced by the direct and indirect emissions via the management 

system, for example, from the consumption of fuel and fossil-fuel derived electricity during 

the recovery processes themselves (Figure 1-6). Therefore, to align waste management with 

GHG emissions reduction planning and policy objectives for household waste, it is important 

then to consider the net emissions of waste management pathways over the whole waste 

management chain.  

 

Figure 1-6: Illustrative example of sources of emissions over the household organic waste management chain 

1.1.5. Measuring waste management emissions in Australia 

The National Greenhouse Accounts (NGA) trace Australia’s greenhouse gas emission 

estimates to fulfil GHG inventory reporting commitments under the National Greenhouse and 

Energy Reporting Act 2007, as well as provide a basis for tracking progress towards GHG 

reductions (DISER, 2022b). Emissions are estimated across all Australian states for a number 
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of economic sectors following Intergovernmental Panel on Climate Change (IPCC) guidelines 

(DISER, 2021d). Waste-related emissions are included in the NGA, however only complete 

estimates for solid waste disposal and wastewater treatment and discharge are available 

(DISER, 2022a). From the NGA for 2019, NSW generated approximately 4,790,000 tonnes 

of CO2-equivalent, primarily from landfill disposal. 

The contribution of other components of waste management towards GHG emissions is less 

clear. For example, emissions from waste collection and transportation are not known and 

assumed to be small (NSW EPA, 2022), however could in fact be significant given the large 

distances between urban centres in NSW, and the dispersed nature of Australian housing. 

These emissions would likely be accounted for in road transport emissions (approximately 

24,300,000 tonnes CO2-e in NSW for 2019), however there is no resolution on waste vehicle 

types. The emissions from the recovery processes in Australia, are also unclear.  

Waste recovery rates are typically traced to measure progress against targets, for example the 

NSW Waste avoidance and resource recovery (WARR) target of 70% recovery of municipal waste by 

2021-22 (NSW EPA, 2014b). Targets focusing on improving waste related emissions or 

abatement however do not exist in NSW. Better accounting of waste related emissions and 

potential abatement is the primary aim of this thesis. Greater resolution of emissions associated 

with waste management could help decision makers in identifying optimal organic waste 

recovery pathways that maximise waste recovery, while minimising net emissions. 

1.2. Research aims and approach 

Household organic waste can be managed in such a way that limits the overall emissions impact 

of waste management, while maximising the recovery of resources from the waste stream. Data 

on waste related emissions and emissions factors specific to the local municipal organic waste 

context are at best uncertain, and at worse not available. This hampers the evaluation of waste 

recovery from a technical and environmental perspective, which has implications on the 

selection of optimal pathways maximising waste recovery and environmental performance.  

Overcoming data gaps to determine more precisely the environmental performance of the 

management of household organic waste is a primary aim of this PhD. Without understanding 
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more accurately the emissions associated with organic waste management, identifying the most 

optimal pathways that meet waste recovery and emissions objectives will be difficult. The key 

motivating question guiding this work is therefore: 

Key motivating question: What are the most optimal pathways for low carbon resource 

recovery of the household organics waste stream? 

This is a complex question, which requires many different assumptions, data sets, approaches, 

and types of analysis: i) There are some key data limitations including the high-resolution 

spatial distribution of the municipal waste supply, and a lack of data on waste transportation 

and infrastructure flows. Without this data, understanding more clearly transport emissions, 

and the impact on overall emissions intensity will be difficult. Spatial modelling can help to 

address this data gap, through for example spatial network analysis to model the waste 

collection and transport system. Moreover, local governments are varied, with councils having 

different waste collection systems in place, and different drivers impacting on how much waste 

is generated. A spatially nuanced approach in evaluating low carbon resource recovery 

performance may be beneficial, in identifying what areas may be best suited to a particular 

management pathway, or whereabouts should be targeted. ii) Emissions are generated, directly 

and indirectly, across the entire waste management chain. Understanding the quantities of 

waste that are managed by processes within a waste management system is required to properly 

account for these emissions. This can be achieved with mass balance modelling, LCA, and 

environmental accounting techniques. iii) Scenario analysis is also helpful in evaluating 

outcomes from planned and potential resource recovery pathways, to help determine recovery 

pathways best suited to low carbon waste management. Multi-criteria analysis could also 

inform the assessment of pathways with respect to waste recovery performance and GHG 

reductions to identify optimal pathways from a low carbon resource recovery perspective.  

Given these considerations, the key motivating question is quite broad. It can be broken down 

into five, more detailed research questions, which are described below. Each question 

addresses important data gaps, or brings to light interesting analysis or observations that can 

help address the overall motivating question. Further background including literature review 

related to these research questions is provided in the relevant thesis chapters. 

Research question 1: What is the spatial distribution of waste generation in NSW, and is 

regional variability significant? 
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Rates of waste generation can vary significantly over space, which can be a result of varying 

socioeconomics, demographics, and other factors that drive waste generation behaviours 

(Kontokosta et al., 2018). Assessing how significant regional variation in waste generation 

might be, is an important consideration when analysing waste systems over such a broad area 

as is the geographical scope of this thesis (geographical scope is explained in detail in Section 

1.2.1). Moreover, data on the spatial distribution of waste is important for decision making, 

including for facility planning, and provisioning collection services to communities. This 

research question is addressed in Chapters 3 and 4.  

Research question 2: How can waste generation data be modelled at high resolutions, where 

data is limited? 

Detailed data of the NSW municipal waste supply (for example, at the scale of the property lot 

or household) is unavailable, however is useful in identifying optimal waste treatment or 

recovery facility locations (Kontokosta et al., 2018; Lin et al., 2020; Yadav et al., 2017); 

analysing waste collection routing efficiency (Hannan et al., 2018; Sarmah et al., 2019; Vu et 

al., 2019); and in planning for targeted dwelling specific systems, such as insinkerators and 

district/building scale anaerobic digestion and composting (Edwards et al., 2016; Jouhara et 

al., 2017; Lou et al., 2013). Methods for estimating high resolution waste generation data are 

addressed through research question 2, and described in detail in Chapter 4. 

Research question 3: What are the emissions associated with kerbside organic waste 

collection and transportation? 

Considering factors such as suburban sprawl, and large transport distances between NSW 

towns, cities and regional centres, it is hypothesised in this thesis that waste collection and 

transport emissions are a significant component of the overall emissions associated with 

organic waste management. Data on waste related emissions is non-existent for NSW, 

therefore addressing research question 3 will fill an important gap in knowledge. This research 

question is addressed in detail in Chapter 5.  

Research question 4: What are the emissions associated with the recovery of household 

organic waste in NSW? 
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Along with emissions related to waste collection and transportation, there is a critical gap in 

knowledge on the emissions associated with current waste management practices for 

household organic waste. This makes decision making around identifying waste recovery 

pathways that have reduced impacts on emissions difficult. Addressing research question 4 will 

help fill this critical gap in knowledge, and is described in detail in Chapter 6. 

Research question 5: What are the optimal low carbon resource recovery pathways for 

household organic waste in NSW, and how may they be identified? 

This final research question draws together analysis performed to address research questions 

1 to 4, which enables detailed analysis and estimation of emissions related to household organic 

waste management. Once performance can be quantified, potential organic management 

pathways can be evaluated from a low carbon resource recovery perspective—that is, 

maximum waste recovery with minimal GHG emissions. This will contribute to the evidence 

base for informing the future deployment of optimal resource recovery processes in NSW and 

Australia, including in what segments of the waste management chain prioritisation should 

occur, and what actors should be targeted, for example, households, local governments, and 

industry. This final research question is addressed in Chapter 7: 

The work presented in this thesis is a compilation of published and to-be-published work that 

addresses these research questions as part of an analytical framework. Figure 1-7 gives an 

overview of this analytical framework, and elements of the framework that each research 

question addresses.  

  

Figure 1-7: Analytical framework guiding this work, and relation to thesis research questions 
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1.2.1. Scope of work 

OFMSW is the waste material scope for this PhD, chosen due to the significant quantities of 

organic waste generated and disposed to landfill in NSW each year. Methods explored and 

insights gained through this PhD however have implications for other waste streams not in 

scope, including organics from commercial and industrial waste streams, packaging waste, and 

other recyclable waste streams generated from households. These implications are discussed 

with respect to future research directions in Chapter 8 of this thesis.  

The geographical scope is NSW, which is the Australian state responsible for the greatest 

quantities of waste generated annually across all sources. Some aspects of this research are 

appropriate to evaluate at smaller scales, such as the Sydney metropolitan and surrounding 

areas, which accounts for 77% of the state population (ABS, 2021), and 60% of waste 

generated (NSW EPA, 2021) in an area approximately 3% of the state’s total area. Implications 

of research findings from this PhD for other geographical scales and jurisdictions is also 

further discussed in Chapter 8.  

The timeframe of analysis varies; however, timeframes are relevant to the WARR target for 

2021-22 (NSW EPA, 2014b); and 2030 in the NSW Waste and Sustainable Material Strategy 

(DPIE, 2021). Work presented here however can be applied for projecting organic waste 

recovery performance to timescales beyond what is presented in this thesis. 

Technological pathways for resource recovery evaluated are bound by what is currently 

employed in NSW, what is planned for deployment, and what might be feasible for deployment 

in the future. For organic waste processing at the municipal scale, this includes industrial 

composting, and recovery via alternate waste treatment (AWT)—a form of mechanical 

biological treatment (MBT) employed in NSW. Other process types explored are limited to 

energy and nutrient recovery via AD, which is identified as a key technology for achieving 

objectives in the NSW Waste and Sustainable Materials Strategy (DPIE, 2021). Resource recovery 

technologies and processes for organic waste are explored in more detail in the literature review 

in Chapter 6. 

Evaluating resource recovery systems and performance is complex—made more complicated 

by consideration of multiple, and sometimes competing, value domains. Many frameworks 

that exist for evaluating resource recovery, and waste streams more generally, do so in a single 
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domain, for example environmental accounting, and material flow analysis. Iacovidou et al. 

(2017a) presents a holistic framework for complex value optimisation for resource recovery 

across four value domains—environmental, social, economic, and technical (see Figure 1-8). 

Holistic evaluation of resource recovery should consider multiple value domains. Trade-offs 

exist between one value domain and another, for example, establishing energy recovery 

facilities may increase economic and technical value, but impact on environmental and social 

value. Evaluating resource recovery then where there are competing domains is complex. For 

this thesis and its focus on low carbon resource recovery, the domains of environmental and 

technical values are considered in scope. While organic resource recovery will have impacts on 

other domains, there are not considered in scope of this thesis, but may be considered in future 

research (see Chapter 8). 

 

 

Figure 1-8: Frameworks, methods and tools used for appraisal of resource recovery value, adapted from Iacovidou et al. (2017a). 
The value domains considered in scope of this thesis are highlighted with bold outline 

1.2.2. Overview of published and to-be-published materials in this thesis 

This thesis includes published and yet-to-be published papers following the thesis by compilation 

style. Each paper already published has been reproduced within the thesis, and full 

bibliographical information is provided in each relevant chapter. Table 1-1 gives an overview 

of the papers published, and yet to be submitted, included in the thesis. 
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Table 1-1: Overview of publications included in this thesis 

Paper Title Status 
1 

(Chapter 3) 
Madden, B., Florin, N., Mohr, S., Giurco, D. (2019). 
Using the waste Kuznet’s curve to explore regional 
variation in the decoupling of waste generation and 
socioeconomic indicators 
 

Published 
Resources, Conservation and 
Recycling 149, pp. 674-686 

2 
(Chapter 4) 

Madden, B., Florin, N., Mohr, S., Giurco, D. (2021). 
Spatial modelling of municipal waste generation: 
deriving property lot estimates with limited data 
 

Published 
Resources, Conservation and 
Recycling 168, article 105442 

3 
(Chapter 5) 

Madden, B., Florin, N., Mohr, S., Giurco, D. (2022). 
Estimating emissions from household organic waste 
collection and transportation: the case of Sydney 
and surrounding areas, Australia 
 

Published 
Cleaner Waste Systems 2, article 
100013 

4  
(Chapter 6) 

Emissions from the management of household 
organic waste: estimates over the entire waste 
management chain 
 

Submitted January 2023 to 
Cleaner Waste Systems 

4/5 
(Chapter 7) 

Optimal low carbon resource recovery pathways for 
household organic waste management: scenario 
analysis 

Not yet submitted 

1.3. Thesis structure 

Chapter 2 of the thesis contains a high level review of literature related to the evaluation of 

waste systems from a resource recovery and emissions reduction perspective, where key 

concepts are defined, and common approaches described. 

In Chapter 3, the first published paper from this research is presented, where regional variation 

in waste generation in NSW is explored, with a case study in the context of decoupling of 

waste generation from socioeconomic metrics. This chapter tests a method for evaluating 

variation in waste generation spatially, and justifies the use of a spatial modelling approach 

when evaluating waste in NSW.  

Chapter 4 builds on some of the findings from Chapter 3, and presents a novel approach to 

derive high-resolution, spatially resolved data for waste generation, enabling detailed evaluation 

of waste management systems. This chapter presents the second published paper from this 

research, where a spatial model is developed, and applied to estimate waste generation at the 

property lot for 1.2 million households in the Sydney Metropolitan Area. 
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Chapter 5 is concerned with filling a crucial knowledge gap in the evaluation of low carbon 

resource recovery, which is the emissions associated with waste collection and transportation. 

The chapter presents the third paper from this research, which hypothesises that emissions 

from waste collection and transportation are significant, and tests this using a network route 

optimisation model using high-resolution data derived from the model presented in Chapter 

4. 

Chapter 6 presents an analysis of the net emissions associated with the recovery of OFMSW 

in the Greater Sydney and surrounding areas. The model presented in this chapter utilises 

waste transport emission estimates from Chapter 5, along with a material flow analysis and 

emissions accounting, to estimate the direct and indirect emissions, as well as potential 

emissions reductions, for OFMSW recovery.  

Chapter 7 is a synthesis chapter, which draws together findings and data from the preceding 

chapters to evaluate optimal organic waste management pathways for low carbon resource 

recovery. The chapter presents a scenario analysis, developed based on the NSW Waste and 

Sustainable Materials Strategy, and also presents a multi-criteria evaluation to assess potential 

organic waste pathways.  

Chapter 8 will conclude the thesis, providing recommendations, as well as potential future 

research directions based on the work presented in this thesis. 

  



 16 

  



 17 

 

Chapter 2.  
Optimal pathways for low carbon resource 

recovery from waste 

This chapter summarises some key concepts and related research on low carbon resource 

recovery from waste streams. This review of the literature helps locate the thesis within the 

broad field of waste management; provides background and establishes some key definitions 

and broad trends related to waste related emissions; and identifies some knowledge gaps 

justifying the broad thesis aims and research questions introduced in Chapter 1.  

The following sections cover some key literature related to the above, and seeks to clarify and 

define the following aspects related to the research problem of the thesis: 

Low carbon waste management: including key definitions of concepts and current trends 

in the literature, and considerations for evaluating emissions from waste management (Section 

2.1) 

Low carbon resource recovery: including definitions and trends related to resource recovery 

from waste in a circular economy context; how the concepts of low carbon waste management 

and resource recovery converge; and potential complexities between low carbon and resource 

recovery objectives (Section 2.2) 
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Optimal pathways for low carbon resource recovery: including approaches for evaluating 

pathways for maximised resource recovery and low carbon performance; and how optimal 

recovery pathways may be identified (Section 2.3) 

The chapter concludes with a summary of considerations relating to the thesis research 

problem, as well as critical gaps in the literature identified. 

Further review of more specific literature, for example related to specific modelling and 

evaluation approaches, are covered later in this thesis, in the context of work published and 

to-be-published (Chapters 3 to 7), and have not been included here to avoid repetition. 

2.1. Low carbon waste management 

Emissions need to be reduced from all sectors of the economy to address the threats of 

anthropogenic climate change. With the global energy sector responsible for approximately 

75% of emissions worldwide (IEA, 2022), transitioning to low carbon energy systems is a 

priority agenda for governments around the world (Drożdż et al., 2022). Utilising less 

emissions intensive energy sources, and improving the efficiency of energy systems, all 

effectively work towards achieving a transition to low carbon energy (Chapman et al., 2021). 

Although less significant than the energy sector, the waste sector is also considered one of 4 

significant societal sources of global emissions (Eurostat, 2020). Therefore, addressing 

emissions from the waste sector is also important, and many recent waste management policies 

and initiatives, especially in Europe, have been connected with strategies addressing the threats 

of climate change (Gavrilescu, 2022). 

Consistent with the low carbon energy concept, ‘low carbon waste management’ implies the 

reduction of emissions intensity of waste systems, and reducing this intensity can be achieved 

via a number of means. As noted in Figure 1-6, emissions occur at several points along the 

waste management chain from a number of sources, including direct emissions from fuel 

consumption and decomposition of material via composting or in landfill; and indirect 

emissions via the consumption of electricity for waste treatment processes. Opportunities also 

exist across the waste management chain for reductions of emissions intensity, including 

moving to less emissions intensive energy sources for waste management processes, and 
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recirculating recovered materials to offset more emissions intensive primary resource 

consumption.  

Several studies have evaluated the management of wastes from a low carbon waste 

management perspective. While these do not often refer specifically to ‘low carbon waste 

management’, they nonetheless conform with the concept of lowering emissions intensity 

either via reduced direct/indirect emissions, or through emissions avoidance.  

Most related studies to focus on emissions reductions via energy recovery, to be used as an 

alternative energy source to fossil fuel-derived energy. At municipal waste scales, energy 

recovery via direct combustion or incineration is mature in many countries, and is often part 

of sustainable waste management, for example in the Netherlands (van Leeuwen et al., 2017), 

and Italy (Lombardi et al., 2015). From an economics perspective, Papargyropoulou et al. 

(2015) reviewed 16 low carbon waste management measures for a large city in Indonesia, 

ranging from waste prevention and recycling, to municipal scale energy recovery from waste 

and landfill gas capture. The authors found that recovery of energy from waste via combined 

heat and power systems, led to by far the largest ‘savings’ in emissions compared to the base 

case of landfilling, mitigating up to 3,000,000 tonnes of CO2-equivalent each year.  

Other authors have noted the benefits of energy recovery as part of sustainable waste systems 

(Chen & Liu, 2021; Drożdż et al., 2022; Gohlke, 2009; Yaman, 2020), with some arguing a 

contested view, that energy recovery has a critical role in the circular economy as a resource 

recovery pathway for waste (Arena, 2015; Lombardi et al., 2015). Apart from offsetting fossil 

fuel-derived energy, municipal scale energy recovery can also lead to significant reductions in 

quantities of waste disposed to landfill. For waste streams with a large proportion of 

biodegradable material, such as household waste streams, this can be a significant source of 

emissions savings (Assamoi & Lawryshyn, 2012; Kumar et al., 2020; Kumar & Samadder, 2020; 

Papargyropoulou et al., 2015). This also points to the potential that zero-waste to landfill 

pledges targeting organic waste may have in transitioning to low carbon waste management, 

such as NSW’s commitment to reducing food waste to landfill (DPIE, 2021).  

Recent studies have also examined the potential of other recovery pathways and their impact 

on emissions intensity, including materials and nutrient recovery, and energy recovery via other 

processes such as anaerobic digestion. As noted by Iacovidou et al. (2017a) in their review of 

circular economy performance metrics, and in Gavrilescu (2022) in their review of footprint 
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analysis in waste management, ‘carbon footprint’ metrics are commonly used for evaluating 

the emissions intensity of waste processes and systems. The carbon footprint of a system or 

process characterises its emissions intensity, usually in terms of carbon-equivalent emissions 

per quantity of waste treated, managed or generated.  

Some recent studies evaluating the carbon footprint of OFMSW and related waste streams 

include: Obersteiner et al. (2021) for example, who reviewed strategies for reducing the carbon 

footprint of waste management associated with tourism via a life cycle assessment (LCA) 

approach. They found that various measures including on-site composting and food 

donations, can lead to significant reductions in the carbon footprint of tourist locations 

between approximately 5 and 190 kg CO2-e per 1000 tourists. In a similar study,  

In other city-level studies, Thanh et al. (2015) evaluated the potential for decarbonisation of 

OFMSW management through the introduction of composting as a recovery pathway in 

Hanoi City, Vietnam. The authors used a bottom-up approach to estimate the carbon 

footprints of a range of different interventions for improving organic waste recovery, finding 

that the implementation of composting for OFMSW in the city could lead to emissions 

reductions of up to 98% compared to baseline levels, where incineration is widely practice. 

Finally, Yoshida et al. (2012) is another example, where the authors evaluated the existing 

carbon footprint of OFMSW management in Wisconsin, USA; and in comparison with 

management alternatives. The authors found the existing carbon footprint of OFMSW was 

224 kg CO2-e per tonne of waste. Implementing measures including advanced windrow 

composting, anaerobic digestion, and anaerobic co-digestion (with sewage sludge) found 

reductions in the carbon footprint of OFMSW management between 60% and 180%. The 

carbon footprint of waste systems and process can vary considerably as indicated in the 

literature—dependent on waste stream composition, and waste collection and recovery 

pathways. 

In other national-level studies, Marrucci et al. (2020) examined the carbon footprints of a 

number of waste treatment pathways for supermarket wastes in Italy. They found that 

implementation of improved packaging recycling, and technology targeting the organic waste 

fraction of supermarket waste (i.e., anaerobic digestion) led to both improved organic waste 

recovery and decarbonisation through a reduction in carbon footprint of approximately 9 kg 

CO2-e per kg of supermarket waste generated. In Paes et al. (2020), the authors examined the 

transition towards eco-efficient management of municipal waste across regions in Brazil, by 
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estimating the emissions and potential for emissions reductions, for several organic and dry 

recyclable waste management pathways via an LCA approach. The authors found a mix of 

70% composting and 30% landfill with methane capture was the most eco-efficient pathway 

for municipal organics, leading to significant reduction in carbon footprint compared to 

baseline conditions, by up to 850 tonnes CO2-e per tonne of OFMSW managed. In Lou et al. 

(2017), the authors used available emissions inventories to estimate the carbon footprint of the 

waste sector in China between 1949 and 2013. The authors found that landfilling was 

responsible for the majority of the carbon footprint of the waste sector (responsible for up to 

82% of all waste-related emissions), and identified sanitary landfill improvements and methane 

gas flaring as priority pathways for decarbonisation.  

Approaches in the literature for evaluating carbon footprints also vary widely, and include 

methods such as lifecycle analysis, material flow analysis, input output analysis, and 

environmental impact assessment (Iacovidou et al., 2017a). LCA is perhaps the most common 

approach for estimating emissions, however is limited insofar that most studies rely on average 

intensity factors where region-specific data is limited (Gavrilescu, 2022). This is something 

raised also in Edwards et al. (2016), who developed an approach to overcome unreliable LCA 

factors for waste collection and transport in their study of fuel requirements for waste 

collection in Melbourne. The Edwards et al. (2016) study is discussed in further detail in 

Chapter 5.  

Regardless of the approach taken when assessing emissions intensity, a detailed understanding 

of the waste management system under investigation is required. From the review of literature, 

this understanding should include at a minimum: the quantities of waste managed and its 

composition; what management pathways exist, including technologies and collection systems 

employed; and quantities and composition of waste disposed landfill. Some further 

considerations are also necessary. As noted previously, emissions intensity of a waste system 

or process can be affected at multiple points along the waste management chain. Therefore, 

careful consideration of the boundaries of the waste management system investigated is critical 

when evaluating emissions intensity. Some studies for example do account for emissions from 

waste collection and transport to some degree (Demichelis et al., 2022; Friedrich & Trois, 

2013), however others exploring waste management system treatment processes do not 

consider transport (Dastjerdi et al., 2019; Liu et al., 2017; Lou et al., 2013; Thanh et al., 2015). 

Transport emissions in particular can be significant for municipal waste collection, especially 

when the density of households is low, for example in suburban or rural areas (Friedrich & 
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Trois, 2013). This is an important point particularly for Australian jurisdictions, where 

suburban sprawl is prevalent, and as indicated in Section 1.2, transport emissions are rarely 

considered in studies focused on Australian cities and regions. 

Downstream impacts on emissions are also an important consideration. As noted in Iacovidou 

et al. (2017a), emissions intensity is commonly estimated in the literature for waste recovery 

processes, however landfill emissions are sometimes not considered. Studies including Boldrin 

et al. (2009) and Friedrich and Trois (2013) for example, which investigate the emission savings 

from OFMSW recovery, do not include the lifetime emissions saved from diversion of waste 

to landfill. Not including the potential for landfill gas mitigation could significantly 

underestimate the potential contribution of a waste system or process towards transitioning to 

low carbon waste management. While selection of boundaries of an investigation is reliant on 

its aims, impacts of upstream and downstream waste management, such as collection and 

transport, on overall emissions intensity should not be ignored when comparing different 

waste management pathways. 

The exclusion of landfill diversion in Boldrin et al. (2009) and Friedrich and Trois (2013) noted 

above highlights another important consideration for emissions intensity accounting, especially 

with respect to evaluating organic waste management. That is, the handling of biogenic 

emissions: those resulting from the production, harvest, combustion, digestion, fermentation, 

decomposition and processing of biologically based materials by humans (US EPA, 2022). 

Biogenic carbon emissions, for example, from carbon dioxide generated from aerobic 

composting or from landfill, is typically not accounted for directly when assessing the carbon 

footprint of a waste system or process. The reason for these emissions to be excluded, is that 

they occur as part of the natural degradation of biodegradable material. Other emissions from 

landfill however are accounted for, namely N2O (nitrous oxide) and CH4 (methane), and are 

included in official emissions accounting methodologies employed for assessment of waste 

systems internationally (DISER, 2022a; US EPA, 2010). Both methane and nitrous oxide 

emissions from landfill are typically converted to CO2-equivalent for carbon footprint analysis 

using global warming potential (GWP) factors that relate to the severity of these gases as 

contributors to the greenhouse effect. Notably for methane and nitrous dioxide, both gases 

are considerably more impactful as greenhouse gases compared to carbon dioxide. In fact, 

methane and nitrous dioxide are 28 times and 265 times more potent as greenhouse gases than 

carbon dioxide respectively (DISER, 2022a). Australian greenhouse gas accounting and even 

the Entreprises pour l’Environnement (EpE) protocol (EpE, 2013), developed specifically for waste 
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managers in accounting for emissions from the waste sector, give guidance for accounting for 

these non-biogenic emissions from landfill. In the case of methane, while the carbon contained 

in methane is of biogenic origin, its generation under anaerobic conditions in compost piles 

and landfills is not considered in scope of carbon accounting. Therefore methane generation 

from landfills is an important consideration in evaluating carbon footprints, given that methane 

typically makes up between 40-60% of landfill gas emitted (DISER, 2022a; Scheutz et al., 2009; 

Zhang et al., 2019). Emissions from landfills emissions as well as emissions from composting 

and other organic waste management sources are discussed in further detail in Chapter 6.  

In summary, the concept of low carbon waste management is concerned with minimising the 

GHG emissions intensity, or carbon footprint, of waste systems and processes. This intensity 

is typically measured by quantity of GHG emissions per tonne of waste managed, or even per 

tonne of waste recovered when evaluating recovery systems specifically, and should consider 

emissions over the entire waste management chain, including transportation and landfill 

disposal. Progress towards low carbon waste management can be made at several points along 

the waste management chain, and therefore can involve collaboration among many 

stakeholders and decision makers. These might include local and state governments for 

strategic level decision making, waste minimisation initiatives and infrastructure investment, as 

well as waste management system actors, such as government agencies, facility operators and 

waste logistics services.  

2.2. Low carbon resource recovery from waste 

The circular economy framework is becoming more widespread as a decision making 

framework for waste management, promoting a more nuanced view of waste management in 

many developed countries. This is true in Australia and more specifically NSW, with the recent 

NSW Government’s Circular Economy Policy Statement (NSW EPA, 2019b) and Waste and 

Sustainable Material Strategy (DPIE, 2021). Given much decision making in waste 

management in the near future will be guided by circular economy principles, the aim of this 

section of the literature review is to consider if there is convergence between the circular 

economy, and low carbon waste management. 



 24 

While the circular economy has relevance across entire material, product and logistic chains, 

recycling and recovery of wastes is currently where most global circular economy development 

is concentrated (Ghisellini et al., 2016; Sharma et al., 2021). Zhang et al. (2022) in their review 

of circular economy implementation in the waste sector, differentiate pre-use, use, and post-

use phases for materials and products, with most circular economy progress being aimed at 

the post-use phase. This is expected given that waste management deals with materials and 

products no longer in use. Reviews of worldwide circular economy implementations, for 

example in Allwood (2011), Ghisellini et al. (2016), Kirchherr et al. (2017), Iacovidou et al. 

(2017a), and Kalmykova et al. (2018), note that much circular economy progress in 

contemporary waste management is focused on promoting resource recovery. Indeed, with 

one aim of the circular economy being to preserve value of materials, components and 

products for as long as possible (Ellen MacArthur Foundation, 2013), resource recovery plays 

a critical role in converting waste in the post-use phase into secondary resources for inputs 

into new products.  

In the review by Iacovidou et al. (2017a) on performance metrics for a circular economy, the 

authors argued that initiatives promoting circular economy do so from the perspective of 

resource efficiency. From the recent reviews of circular economy concepts and 

implementations, there is not one singular definition of the circular economy, however 

common across all practical definitions is the concept of efficiency—both from a resource 

perspective (i.e., resource efficiency); and from an environmental perspective (i.e., eco-

efficiency). The concepts of resource efficiency and eco-efficiency are closely related—they 

both imply the creation of more goods and services with fewer resources, which has the effect 

of creating less waste, pollution, and environmental impacts (Čuček et al., 2015; Glavič et al., 

2012). Some definitions of the circular economy from the literature convey this: for example, 

the Ellen Macarthur Foundation defined the circular economy as an industrial economy that: 

is restorative by intention; that aims to rely on renewable energy; tracks and eliminates the use 

of toxic chemicals; and eradicates waste through careful design (Ellen MacArthur Foundation, 

2013). The European Commission define the circular economy as a system where the value of 

products, materials and resources is maintained in the economy for as long as possible, and 

the generation of waste is minimised (European Commission, 2015). Yu et al. (2022) define 

the circular economy in their study as a model to stimulate the promotion of sustainable 

practices to achieve resource efficiency and environmental protection.  
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Compared to resource efficiency, eco-efficiency places a greater emphasis on minimising 

environmental impacts when reducing the resource intensity of goods and services. With 

respect to environmental impacts, Iacovidou et al. (2017a) in their assessment, found that 

GHG emissions were the most considered environmental impact when assessing resource 

recovery processes. This corresponds to the point raised previously by Gavrilescu (2022) noted 

in Section 2.1, in that many recent waste management policies and initiatives have been 

connected with strategies addressing the threats of climate change.  

Compared to low carbon waste management which prioritises low emissions, resource 

recovery from a circular economy perspective prioritises waste recovery with as little 

environmental impact as possible. While resource recovery can lead to avoided emissions, low 

carbon waste management does not necessarily imply circular economy or recovery of 

resources from waste. Electrification of waste collection vehicles for example, would have an 

impact on reducing the emissions intensity of waste treatment (if transport emissions are 

significant), but would have negligible impact on waste recovery. The literature is unclear here 

on what should be prioritised when comparing different initiatives from a low carbon and 

resource recovery perspective.  

Recovery rates are generally used when comparing waste initiatives from a resource recovery 

perspective (Iacovidou et al., 2017a), expressed as a proportion of waste generated or treated 

that is effectively recovered for resources. Recovery rates do give an indication of the efficiency 

of a system or process in converting waste to new resources (Di Foggia & Beccarello, 2021), 

but do not give any indication of the environmental impacts, whether positive or negative, of 

resource recovery activities. Similarly, the carbon footprint of a waste management system also 

does not give an indication of the performance of the system in recovering materials. This is 

true even if the carbon footprint is calculated on an emissions per tonne recovered (or diverted) 

basis, which is a common footprint metric for evaluating the impacts of recovery (Gavrilescu, 

2022; Iacovidou et al., 2017a). This complexity around prioritisation of waste management 

alternatives is illustrated in Table 2-1, which gives some performance metrics for three example 

waste system interventions. While based loosely on real world examples, the data in Table 2-1 

is illustrative only, and does not reflect any real world waste management system. Example 

Option A sees the highest waste recovery rates, however also the greatest emissions due to the 

utilisation of emissions intensive advanced mechanical recycling. Option B sees only a small 

amount of waste recovered, however at much lower emissions intensity due to electrification 

of waste collection vehicles. Option C sees high recovery rates, and improved emissions 
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intensity compared to Option A via increasing rates of composting. It is difficult to see how 

these options might be prioritised under low carbon and resource recovery agendas. Under a 

resource recovery priority, Option A would clearly be favoured, however Option A would be 

the less preferred option under an emissions prioritisation. Option B is similar, with most-

preferred and least-preferred status under emissions and recovery prioritisation respectively. 

Option C appears to be the best alternative given amounts of waste recovered and relative net 

emissions compared to the other example pathways, however this is not clear based on the 

metrics chosen. This shows that further analysis beyond simple metrics is necessary to identify 

optimal pathways that meet both low carbon and resource recovery prioritisation. 

Table 2-1: Performance metrics and ranking by resource recovery and emissions minimisation priorities for 3 illustrative 
waste management pathways 

 Option A: 
Advanced 
mechanical recycling 

Option B:  
Electrification of waste 
collection vehicles 

Option C: 
Increased rates of 
composting 

Waste generated [tonnes] 1,000 1,000 1,000 
Waste recovered [tonnes] 900 100 750 
Net emissions [tCO2-e] 1,000 50 500 
Recovery rate [-] 90% 10% 75% 
Emissions intensity 1,111 500 666 
[kg CO2-e/t-recovered]    
    
Rank (recovery priority) 1 3 2 
Rank (emissions priority) 3 1 2 

Simple performance metrics, like recovery rates and carbon footprints, are valuable. They are 

transparent and easy to understand, making them useful for evaluating and comparing waste 

management options at a high-level, and certainly play a role in decision making and 

policymaking in waste management (Iacovidou et al., 2017a; Singh et al., 2012). As pointed out 

above, more complicated analysis is necessary to better identify optimal low carbon resource 

recovery pathways. Multi-criteria analysis is a broad suite of tools and approaches often used 

for such problems as illustrated, and aids in evaluating decision alternatives on the basis of 

sometimes conflicting criteria (Malczewski, 2018; Nautiyal & Goel, 2021). Some of these 

approaches are discussed in the following section.  

In summary, low carbon resource recovery can be regarded as an extension to low carbon 

waste management, whereby recovery of resources and minimisation of GHG emissions are 

both prioritised. This has convergence with the principles of the circular economy where 

environmental impacts from waste systems should be minimised. However, under a circular 

economy framework, the prioritisation of lowering waste related emissions is unclear. 



 27 

Evaluating pathways for low carbon resource recovery does however require more 

complicated analysis that what is typically performed when assessing resource recovery from 

a circular economy perspective.  

2.3. Evaluating optimal low carbon resource recovery pathways 

Evaluating and identifying optimal low carbon resource recovery pathways is complex, due to 

the multiple, and sometimes competing, priorities of both maximising waste recovery and 

minimising GHG emissions. Iacovidou et al. (2017a) discusses the complexities of optimal 

waste management in regards to 4 key value domains related to the management of wastes, 

namely environmental, technical, social and economic value domains—introduced previously 

in Section 1.2, and shown in Figure 1-8. Achieving high performance in one value domain 

does not necessarily imply high performance in another, and different domains of value may 

be placed at higher prioritisation than others. Energy recovery from waste again serves as a 

good example of this, whereby technical (large quantities diverted from landfill) and economic 

(reduced landfill disposal costs; increased revenue from sale of electricity) value is largely 

prioritised above social and environmental value.  

The problem of finding some optimal set of preferences or pathways, given competing value 

dimensions, is well-defined. Multi-criteria analysis (MCA), also commonly referred to as multi-

criteria decision making (MCDM), is a sub-discipline of operations research, and refers to a 

framework for evaluating criteria in a decision making context. It is especially useful for 

supporting decision makers where no single ideal solution simultaneously satisfies the decision 

maker across all decision criteria (Nautiyal & Goel, 2021). There is a large range of quantitative 

MCDM approaches used in the waste management literature, although qualitative approaches 

also do exist. Historically, MCDM in a waste context has typically focused on minimising 

system costs (Inghels et al., 2019), however more recently, complementary system modelling 

approaches including LCA, material flow analysis and environmental accounting have been 

incorporated with MCDM frameworks to optimise systems for reduced environmental 

impacts (Deshpande et al., 2020).  

MCDM approaches have been classified into two categories by a range of authors, including 

in Coban et al. (2018) and Zavadskas et al. (2019), namely: multi-attribute decision making 
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(MADM), and multi-objective decision making (MODM). MADM approaches relate to 

problems that involve discrete decision spaces with a predetermined and limited number of 

alternatives (Chang & Pires, 2015; Zavadskas et al., 2019). In this approach, alternatives are 

ranked and selected based on the attributes of a given set of alternatives, and are applied often 

to more strategic level decision making problems, such as selection of optimal locations of 

waste treatment facilities (Coban et al., 2018). On the other hand, MODM approaches relate 

to problems without a predetermined set of alternatives, and where several often competing 

objectives are required to be optimised simultaneously (Zavadskas et al., 2019). MODM are 

applied more so at an operational level, for example in identifying optimal feedstock 

composition for an energy recovery system, or for identifying optimal waste collection routes 

(Coban et al., 2018; Tirkolaee et al., 2020).  

Most studies in MCDM fall into the first category, while studies in the second category are 

often simply referred to as optimisation (e.g., Münster et al. (2015); Movahed et al. (2020); 

Abdallah et al. (2021)). This is corroborated in Vlachokostas et al. (2021), who performs a 

comprehensive review of MCDM in waste management across 153 studies in the context of 

energy recovery from waste. Whilst the focus of that paper is energy recovery, it is relevant for 

assessing other technological recovery pathways for waste streams. The authors do not classify 

MCDM approaches as MADM or MODM, however all but one of the identified approaches 

reviewed fit within the MADM classification in Coban et al. (2018) and Zavadskas et al. (2019), 

with the remaining approach, multi-objective programming, aligning with MODM.  

From the 153 studies reviewed in Vlachokostas et al. (2021), the authors found that the 

analytical hierarchy process (AHP) was the most widely utilised approach for solving waste-

related MCDM problems. Put simply, AHP is an approach that ranks a set of alternatives by 

performing pairwise comparison between them against criteria to meet some overarching 

objective (Ramanathan, 2004). Criteria are weighted by importance, which is typically informed 

via stakeholder or expert guidance. Developed originally in the 1960s (Saaty, 1970), AHP has 

been used across multiple fields to aid in decision making. In waste management, the approach 

has been used in evaluating energy recovery as summarised in Zavadskas et al. (2019), but also 

in facility allocation problems (Islam et al., 2020; Wichapa & Khokhajaikiat, 2017), and in 

assessing strategic-level waste management options for plastic packaging waste (Balwada et al., 

2021); rural waste (Yadav et al., 2022); e-waste (Lin et al., 2010), and system-wide initiatives 

(Antonopoulos et al., 2014; Contreras et al., 2008). Shahnazari et al. (2020) gives a 
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comprehensive overview of the principles and mechanics of AHP as applied in the selection 

of optimal waste to energy technologies.  

The second most common approach identified in Vlachokostas et al. (2021) is the simple 

additive model (SAM) approach. The term SAM itself is an umbrella term in Vlachokostas et 

al. (2021) and is treated as such hereafter, and can refer to a number of approaches that appear 

in the literature, including simple additive weighting, weighted aggregated sum, and weighted 

linear combination. While not as commonly utilised as AHP as indicated in Vlachokostas et al. 

(2021), SAM approaches are nonetheless common in the MCDM literature, with SAMs first 

defined in Churchman and Ackoff (1954). In fact, SAMs are the approach suggested by 

Infrastructure Australia for performing multi-criteria analysis for local infrastructure projects 

(Infrastructure Australia, 2021). Common across SAM approaches are criteria used to compare 

alternatives against some overall objective, an aggregation of criteria into some overall scoring 

value, and the use of weights that indicate the importance of each criteria in meeting the 

objective (Infrastructure Australia, 2021). Criteria can represent quantitative values for some 

attribute, for example, distance to nearest waste treatment facility or avoided emissions. More 

qualitative criteria can also be represented quantitatively, by scoring criteria on a numerical 

range. For example, criteria such as ease of implementation or social acceptance (Almanaseer 

et al., 2020) can be represented in this way, with higher scores indicating greater level of 

agreement with the criteria. Normalisation of criteria values is therefore a critical consideration 

when using SAM approaches. Vafaei et al. (2022) provides a comprehensive review of 

normalisation approaches for SAMs.  

Practically, SAM approaches are similar to the AHP approach, however have less 

computational demands therefore suitable when pairwise comparison is impractical (Al-Garni 

& Awasthi, 2017); and they do not necessitate the sometimes intensive input from 

stakeholders, giving flexibility to how criteria weights are implemented. SAMs have been 

utilised for MCDM in a waste management context, for example in the assessment of energy 

recovery (Almanaseer et al., 2020; Joseph & Prasad, 2020; Khan & Kabir, 2020). SAMs are in 

particular well suited for spatial-based problems, where spatially represented attributes, for 

example distances to infrastructure or land attributes including slope, or precipitation, may be 

useful as criteria (Comber et al., 2015; Lozano-García et al., 2020; Ma et al., 2005).  

Some approaches fall outside of the typical MCDM approaches covered in reviews such as in 

Vlachokostas et al. (2021) and Coban et al. (2018), which might be more broadly considered 
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evaluation approaches. Pareto optimality (or efficiency) for example, is a concept that has 

received much attention in the literature as a decision support tool, especially in the fields of 

engineering, manufacturing, and economics. The concept implies that when selecting 

preferences based on competing value dimensions, there exists a set of optimal preferences 

whereby performance in one value dimension cannot improve without worsening 

performance in another (Inghels et al., 2019). In some optimisation studies, for example in 

multi-objective optimisation where it is not possible to identify the single most optimal 

alternative, the goal is instead to identify the Pareto optimal alternatives (Mavrotas et al., 2015). 

Figure 2-1 shows an illustrative example of Pareto optimality in the context of pathways for 

emissions reduction and resource recovery. The horizontal axis in the figure represents 

increasing waste recovery performance, for example measured as a waste recovery rate. The 

vertical axis represents GHG reduction performance, for example measured as total avoided 

emissions. The Pareto front in the figure represents the set of most optimal recovery pathways, 

where GHG reduction and/or waste recovery is maximised, and illustrates how the Pareto 

optimality concept might indicate pathways that are most optimal in terms of a low carbon 

resource recovery priority. The Pareto curve in Figure 2-1 is also closely related to the 

production possibility frontier—a concept used in production efficiency analysis and data 

envelopment analysis. From a production perspective, the curve characterises production 

whereby an increase in production of one good cannot occur without sacrificing production 

of another.  

 

Figure 2-1: Illustrative example of a Pareto frontier. The green line and dots represent the Pareto optimal alternatives, which 
have been characterised according to prioritisation (low carbon waste management, resource recovery, and low carbon resource 
recovery priorities)  
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The concept of Pareto optimality has been used in the context of waste management. Inghels 

et al. (2019) for example evaluated the trade-offs between materials and energy recovery from 

an environmental impact perspective. This was achieved by identifying Pareto optimal waste 

system configurations by solving a multi-objective optimisation problem, with environmental 

impacts estimated based on LCA. The authors noted the importance of their study as a 

decision support tool that combines optimisation and environmental accounting approaches. 

Das et al. (2012) explored using Pareto frontier analysis as a decision support tool for 

optimising hazardous waste transport. In that study, the authors incorporated stakeholder 

preferences with route optimisation in a multi-objective optimisation, to determine Pareto 

optimal transportation linkages that are low-cost, and have minimum risk to human health. 

The authors noted the usefulness of Pareto frontier analysis as a tool for decision makers, and 

incorporated additional cost elasticity analysis, and analysis of the Pareto frontier curve, to 

further identify most optimal alternatives from the identified set of Pareto optimal alternatives. 

In Mavrotas et al. (2015), the authors solved a multi-objective optimisation to identify Pareto 

optimal solutions for waste to energy options for municipal waste management in Athens, 

Greece. The authors considered costs associated with capital equipment as well as 

environmental and social externality costs, and the potential for GHG reductions. They found 

that the incorporation of externalities results in a steeper trade off curve—that is, the slope of 

the Pareto frontier. For that study, the implications were that when externalities are considered, 

more environmentally favourable energy recovery technologies including anaerobic digestion 

become more optimal. The Mavrotas et al. (2015) study highlights the usefulness of Pareto 

frontier analysis as a decision support tool, and the aforementioned studies show how the 

Pareto optimality concept can be used to help solve MCDM problems and identify optimal 

solution sets. 

In summary, where there are multiple competing criteria and value domains, identifying 

optimal system pathways and interventions is difficult and complex. This is certainly true with 

respect to low carbon resource recovery, where both GHG emission avoidance and waste 

recovery need to be prioritised. Fortunately, the field of operations research has considerable 

tools for evaluating systems through MCDM and optimisation approaches, which can be 

drawn on to help identify waste management pathways most aligned with low carbon resource 

recovery for OFMSW. The MCDM approaches reviewed in this section are in no way 

exhaustive, and MCDM is a very broad and open field. However, the approaches presented 
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have precedent in waste management, and their application as evaluation tools are explored 

further in Chapter 7. 

2.4. Literature review conclusions 

Low carbon resource recovery is defined as an extension to low carbon waste management, 

where recovery of waste and the minimisation of GHG emissions are both prioritised. The 

concept is closely aligned with the circular economy, however greater emphasis on GHG 

emissions reductions is given in a low carbon resource recovery context.  

The complexities between waste recovery and emissions reduction priorities make MCDM and 

other multi-criteria optimisation approaches appropriate for evaluating optimal potential 

pathways. From a low carbon resource recovery perspective, such approaches do require 

detailed knowledge of the systems under investigation, including quantities of waste generated 

and recovered, and emissions along the waste management chain. Information in this regard 

however is limited with respect to NSW household organic waste management, and certainly 

in regards to emissions from waste transportation and OFMSW recovery activities, although 

effort is being made to better characterise these emissions (NSW EPA, 2022). This need for 

comprehensive data on waste system emissions and material flows presents an important gap 

in knowledge which necessitates further analysis, which is presented in the following chapters 

of this thesis. 

Some important considerations in the evaluation of optimal low carbon resource recovery 

pathways identified from the review of the literature are summarised here: 

System boundaries: waste-related emissions occur at all points of the waste management 

chain, and careful considerations of the system boundaries; where important emissions are 

accounted for; and spatial scale, is required when evaluating waste systems from a low carbon 

perspective.  

Biogenic emissions, and accounting of emissions from landfill: official emissions 

accounting frameworks and many studies assessing emissions do not consider biogenic carbon 

emissions from landfill. This is appropriate considering these emissions are part of the natural 
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degradation of organic material. Other emissions from landfill however are not strictly 

considered biogenic in some accounting frameworks, for example the EpE framework (EpE, 

2013), and the Australian National Greenhouse Accounts (DISER, 2021b). These emissions, 

namely methane and nitrous oxide, should be considered in any evaluation of landfill emissions 

including emissions avoidance.  

Spatial considerations, and waste collection and transport: studies in the literature 

evaluating waste system emissions tend to rely on international LCA data or average 

transportation distances to estimate waste collection and transport emissions (e.g., Friedrich 

and Trois (2013)). Some studies ignore collection and transport all together, or consider only 

simplified collection and transportation assumptions (e.g., Boldrin et al. (2009), Edwards et al. 

(2016)). Given the sparse spatial distribution of Australian households consistent with 

suburban sprawl, and the large distances between Australian regions and cities, emissions from 

waste collection and transport may be a significant contributor to waste related emissions, and 

should be considered in any accounting of waste sector emissions. Analysis of waste collection 

and transport may necessitate the consideration of the spatial distribution of waste generation, 

and locations of important waste infrastructure. 

Performance metrics for low carbon resource recovery: no performance metric exists that 

perfectly captures low carbon resource recovery performance. The waste recovery rate is 

ubiquitous, and gives a simplified indication of the efficiency of a waste system in converting 

waste into secondary resources. However, it does not indicate environmental performance, 

namely carbon emission performance. Similarly, carbon footprints give an indication of the 

emissions intensity of a waste system in terms of managed waste or recovered waste, however 

is not sufficient when evaluating optimal recovery pathways that maximise resource recovery 

while minimising emissions. Further analysis is required to evaluate low carbon resource 

recovery. 

Evaluation approaches: key to low carbon resource recovery is a complexity between waste 

recovery and emissions minimisation priorities. The field of operations research has a large 

number of tools that can be utilised for evaluating waste recovery pathways from a low carbon 

resource recovery perspective, without which, it is difficult to properly evaluate pathways. 
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Chapter 3.  
Exploring the spatial distribution of waste 

generation 

New South Wales is a large state, and can be characterised by large distances between key 

regional centres, sprawling suburbs, and a varied population. Each of these characteristics and 

more can have implications on low carbon resource recovery performance. For instance, large 

distances and sprawl might mean that waste collection vehicles need to travel longer distances, 

consuming more fuel and generating more emissions. Differences in waste collection systems, 

not to mention in population sizes and socioeconomics also, mean that some council areas 

generate waste that differs in quantity and composition, compared to neighbouring councils. 

Considering the above, this chapter explores the use of spatial modelling to investigate waste 

management systems. The requirement for spatial modelling approaches for addressing the 

key motivating question in this thesis was described in Sections 1.2 and 2.4. It is true that 

spatial techniques can help address some data gaps required to more accurately characterise 

emissions intensity, as is the case with transport emissions. This chapter however will instead 

focus on an exploration of the variation in waste management across NSW. This will help to 

further justify that spatial approaches are sensible, and sometimes necessary, for evaluating 

waste systems, and can yield unique insights to assist waste decision makers. This chapter helps 

to address the following: 
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Research question 1: What is the spatial distribution of waste generation in NSW, and is 

regional variability significant? 

Specifically, this chapter is focused on the second part of this question, presenting work that 

explores the regional variability and spatial modelling of waste systems in general. The chapter 

presents an analysis performed examining the existence of the ‘waste Kuznet’s curve’—a curve 

representing a decoupling relationship between waste generation, and economic performance.  

This analysis was performed for several reasons, and provides some important contributions 

for addressing the key motivating question, and to the literature as well. Firstly, it was an 

opportunity to explore what spatially varying factors contribute to waste generation in NSW—

important for any in depth analysis of how household waste is managed. The analysis showed 

that council areas across NSW do have significant regional variability, in terms of factors 

impacting quantities of waste generated and recovered. Secondly, the analysis allowed for the 

testing and refining of approaches to modelling waste generation spatially, and identifying how 

further research questions that require a spatial modelling might be addressed. The analysis 

included an in-depth review of the modelling of waste generation—what approaches are 

utilised in the literature, and what factors best determine how much waste a jurisdiction or area 

might generate. A geographically weighted regression modelling approach was tested through 

this analysis, which has potential for analysing waste systems with consideration to drivers for 

waste generation and recycling that vary over space (e.g., between different local government 

areas). Insights from the spatial modelling conducted for this analysis ultimately helped inform 

further analysis performed for Chapters 4 to 7. Thirdly, the analysis has some broader 

significance in the literature, providing some insights into the study of the Kuznet’s curve—a 

relationship under study by academics since first being hypothesised in 1959 (Kuznets, 1955). 

The work presented in this chapter was published as a standalone paper in 2019, as follows: 

Madden, B., Florin, N., Mohr, S., Giurco, D. (2019). Using the waste Kuznet’s curve to 

explore regional variation in the decoupling of waste generation and socioeconomic indicators, 

Resources, Conservation and Recycling, 149, 674-686, DOI: 10.1016/j.resconrec.2019.06.025.  

This chapter includes the above published paper in full, and includes some minor additions 

compared to the published version of the paper. The paper’s primary aim was to investigate 

the waste Kuznet’s curve relationship in NSW, and to contribute to the evidence base 
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confirming or rejecting the Kuznet’s curve hypothesis. Conclusions in this chapter are specific 

to these aims which appear in the standalone paper. Specific conclusions and insights drawn 

from this analysis in relation to the thesis research questions, are discussed in Chapter 8. 

3.1. Introduction 

Historically when populations and economies grow, the amount of waste generated as a result 

of consumption and economic activity generally also increases. This presents a significant 

future challenge for the sustainable management of wastes. The circular economy concept is 

one response to unsustainable levels of consumption, waste generation, and their associated 

environmental impacts that has received much attention in recent years (Kirchherr et al., 2017). 

In the context of sustainable waste management, the circular economy maintains the value of 

end-of-life materials and products in the economy for as long as possible by avoiding disposal. 

This is done through better product design and manufacturing, reuse, remanufacturing, and 

recycling, thereby minimising waste generation along the entire supply chain (Ellen MacArthur 

Foundation, 2015). This has important implications for waste management systems, which 

must provide the waste infrastructure and collection systems to enable the transition to the 

circular economy.  

A recognised key step in the transition towards the circular economy is the decoupling of 

resource consumption from economic growth (Ellen MacArthur Foundation, 2015; Suárez-

Eiroa et al., 2019). Decoupling can generally be defined as either ‘relative' or ‘absolute' 

decoupling, and can occur at different levels of the economy. Relative decoupling sees 

economic growth occur at a faster pace than resource consumption, implying a gain in 

efficiency rather than a total delinking of economic performance and environmental impact 

(Ward et al., 2016). On the other hand, absolute decoupling sees a decrease in resource use 

despite increasing economic performance. Absolute decoupling can be an indication that 

environmental pressure is stable or falling, and is therefore an essential concept for sustainable 

economic growth (Jackson, 2009; Montevecchi, 2016).  

Global economy wide data on domestic material consumption has implied that a relative, and 

in some cases absolute, decoupling has been achieved in a number of countries (OECD, 2018). 

However, findings in Wiedmann et al. (2016) indicate that when non-domestic sources of 
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resource consumption such as imported consumer goods are taken into account, no level of 

decoupling, relative or absolute, has been achieved globally. Whilst the viability of 

simultaneously pursuing economic growth and reduced environmental impacts remains 

contested (Fletcher & Rammelt, 2017; Ward et al., 2016), achieving an absolute decoupling of 

waste generation from economic growth is also an important objective to strive for, in light of 

increasing volumes and environmental impacts of waste generated annually that must be dealt 

with sustainably (Mazzanti et al., 2008). 

Where a decoupling between waste and economic performance exists, waste generation might 

follow an inverted-U shape relationship against economic indicators (Ichinose et al., 2011; 

Montevecchi, 2016). Typically, economic indicators include gross domestic product (GDP), 

the more spatially resolved gross regional product (GRP), or population mean income. The 

economist Simon Kuznets first hypothesised this relationship between income levels and 

economic inequality which increases with income until reaching a `tipping point' from where 

it begins to decrease (Kuznets, 1955). This `Kuznets curve' relationship has since been applied 

in the form of the environmental Kuznets curve (EKC) to model decoupling behaviour 

between environmental impact and economic growth, and is shown in Figure 3-1. In this 

context, Mazzanti et al. (2008) and Ichinose et al. (2011) define absolute decoupling as the 

descending part of the inverted-U shape, and relative decoupling as the ascending part of the 

inverted-U shape. Ichinose et al. (2011) furthers these definitions by defining absolute 

decoupling to occur only when the tipping point from the estimated Kuznets curve is within 

the range of the economic indicator for the area under investigation, and relative decoupling 

where the estimated tipping point occurs outside this range. Such decoupling like behaviour 

may indicate an economy shifting away from manufacturing towards a more de-materialised, 

service based economy where environmental degradation might decrease (Ercolano et al., 

2018), owing to reduced pressure on the environment.  
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Figure 3-1: Illustrative example of the environmental Kuznet’s curve (EKC) relationship 

Recently, the EKC has been applied to examine solid waste generation (Ercolano et al., 2018; 

Jaligot & Chenal, 2018; Kim et al., 2018; Mazzanti et al., 2008). Despite the causal links between 

economic growth and waste generation, there is a lack of consensus on the existence of the 

`waste Kuznets curve' (WKC). This demonstrates a need for further research on the 

application of the WKC for identifying decoupling like behaviour. Ercolano et al. (2018) 

identifies that studies that do support the WKC hypothesis are primarily at sub-national scales, 

which compared to cross-country analyses, allow for consideration of within country/region 

heterogeneity in waste generation and other driving factors. Analyses performed at a spatially 

disaggregated level require spatially explicit data, such as waste generation data for local 

government areas. Such data however often shows robust patterns of spatial dependency 

where for example nearby locations share similar attributes and influence each other, requiring 

spatiality to be a feature of analysis (Goodchild, 1992; Montello & Sutton, 2012). 

This paper explores regional variation in decoupling of municipal waste and mean income 

following the WKC hypothesis. A geographically and temporally weighted regression model 

(GTWR) is developed to explore this variation across municipalities in the Australian state of 

New South Wales (NSW), where a circular economy agenda has recently been put in place 

(NSW EPA, 2019b). This paper uses annual municipal per-capita waste generation data for 

LGAs in NSW for the years 2011 to 2015, in addition to relevant socioeconomic, demographic, 

and urban morphology variables derived from census data. The primary goal of this study is 

to identify local government areas (LGAs) within NSW that conform to the WKC hypothesis, 

and to examine locally varying determinants of per-capita waste generation in NSW. This study 

gives insights into the application of the WKC for assessing the status of decoupling between 
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per-capita waste generation and mean income. We apply this approach to NSW for the first 

time, and the findings from this study may have important implications supporting regionally 

appropriate and targeted policy development towards more circular economy practices. 

3.2. Background 

3.2.1. The WKC hypothesis 

There is a lack of consensus on the existence of the WKC in the literature. Mazzanti et al. 

(2008) reviews studies undertaken from 1995 to 2007 to examine the existence of the WKC. 

Of the 13 studies reviewed in Mazzanti et al. (2008), 5 studies found evidence supporting the 

existence of the WKC. Berrens et al. (1998) and Wang et al. (1998) found evidence of the 

WKC in studies undertaken across the United States, examining hazardous waste data across 

3,141 counties. Concu (2000) found evidence of the WKC in their study in Sardinia, Italy for 

municipal waste generation. Fischer-Kowalski and Amann (2001) found evidence of the WKC 

across OECD countries, but for landfilled waste only, and not waste generation. Ercolano et 

al. (2018) identifies that the studies that do support the WKC hypothesis are primarily at the 

sub-national level, which better allows for the consideration of within country/region 

heterogeneity in waste generation and other factors due to the disaggregated nature of sub-

national data (e.g., municipalities, counties, etc.). Sub-national level studies are much rarer in 

the literature compared to cross country analyses, where cross-country studies show little 

evidence supporting the WKC hypothesis (Ercolano et al., 2018). Recent research into the 

existence of the EKC and WKC has also examined regional effects at the sub-national level. 

Kim et al. (2018) employs a geographically weighted regression (GWR) approach to examine 

regional specific industrial pollutants (SO2 emissions, wastewater discharge, and solid waste 

generation) across 29 provinces in China. The authors find significant spatial variation in the 

existence of the EKC, with spatial patterns identified through the GWR attributed to regional 

policy making. Jaligot and Chenal (2018) use a panel regression model on waste generation 

data across 10 districts in the Swiss canton of Vaud, using tax point value (income) as an 

economic development proxy. Findings from Jaligot and Chenal (2018) indicate the existence 

of the WKC, and the trend emerges more strongly when additional socioeconomic factors are 

incorporated into the authors' model. Mazzanti et al. (2008) perform a regression analysis on 

municipal waste generation data from municipalities in northern and southern Italy, using 
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provincial value added per capita as an economic performance proxy, finding evidence of a 

WKC that varies across the regions investigated.  

This study builds on the existing literature by applying GTWR in the context of decoupling 

waste generation from economic performance to a region where the WKC hypothesis has yet 

to be examined. Owing to the lack of consensus in previous studies to the existence of the 

WKC at the sub-national level, there is value in examining the relationship in a new region, 

and such analysis might provide further evidence for or against its existence. Moreover, the 

recent Chinese National Sword policy limiting waste imports into China (World Trade 

Organization, 2017) has led to focused attention for regions in transitioning towards circular 

economic practices. The NSW Circular Economy Statement (NSW EPA, 2019b) specifically 

references decoupling economic growth from resource consumption as a core principle in the 

state's circular economy transition for both municipal and commercial/industrial waste 

streams. In this context, this research provides new information to support policy development 

in the context of the municipal waste stream, by identifying areas of the state where material 

decoupling may be taking place, which may lead to more appropriately targeted policies in the 

transition to the circular economy, and could also be important for measuring progress in 

transitioning towards a circular economy. 

3.2.2. Study area 

The study area is the Australian state of New South Wales, consisting of 128 local government 

areas (see Figure 3-2). The local government areas of NSW all operate independent waste 

management systems, with kerbside collection being the main form of municipal waste 

collection across the state. For this study, the ‘Unincorporated Far West Region’ was excluded, 

as this area is not part of a local government area and is administered federally. 
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Figure 3-2: Map showing the New South Wales study area highlighted, and the local government area boundaries 

The study area has a total population as of the 2016 census of 7,608,010. The vast majority of 

the population is located on the east coast around population centres such as the Sydney 

Metropolitan area, where approximately 60% of the total state's population resides in an area 

less than 1% of the total state's land area. Figure 3-3 shows the distribution of resident 

population over the study area for 2016. 

 

Figure 3-3: Estimated resident population for 2016, derived from population estimates in NSW EPA (2017) 

3.2.3. Data 

The dataset used includes data on 128 local government areas over the timeframe 2011 to 

2015. Waste data were gathered from the NSW Environment Protection Authority annual 
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Waste Avoidance and Resource Recovery reports, describing each local government area's 

municipal waste generation for a given reporting year. At the time of this analysis (October 

2018-February 2019), the most recent published waste data for NSW is the 2014/15 financial 

year (NSW EPA, 2017), however data is now available (as of February 2023) up to the 2021/22 

financial year. Future studies further analysing the WKC for NSW should utilise this full 

dataset, and it should be noted that data quality and consistency (including for example, LGA 

boundaries) have changed over time. 

Figure 3-4 shows the distribution of municipal waste generation across the dataset. While the 

scope of the analysis is the municipal/household waste stream, some LGAs may collect 

commercial waste via municipal collections, especially in regional areas where commercial 

collection services are limited. Resolution on this complexity is not available in the data, and is 

a limitation in the modelling. Average rates of per-capita municipal generation are relatively 

consistent across the study timeframe. The proportion of recycling collected (that is, waste 

material destined for downstream recycling) to total waste collected per LGA was calculated 

from data in NSW EPA (2017), and used as a proxy for the performance of an area's waste 

management system under the assumption that high rates of recycling collection infers a good-

performing waste management system.  

 

Figure 3-4: Distribution of MSW generated per capita, 2011-2015 

Figure 3-5 shows the spatial distribution of average waste generated per capita across the study 

area and study timeframe, showing that there is some spatial heterogeneity in the average rates 

of MSW generated per capita. An example of this heterogeneity can be seen in the two adjacent 

LGAs along the Riverina and Murray region border (Carrathool LGA and Hay LGA), which 
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exhibit significantly contrasting rates of per capita waste generation. Socioeconomic and 

demographic drivers of waste generation in the study area are discussed later on in this study. 

  

Figure 3-5: Spatial distribution of average per capita MSW generation for 2011-2015 over the study area 

Spatial data was gathered from the Australian Bureau of Statistics, which provides local 

government area boundaries. It is important to note that from 2015 some NSW local 

government areas were merged to form new, larger local government areas. Socioeconomic 

and demographic data collected for the 2016 Australian census is aligned to these new 

government boundaries. In order to align the datasets, waste data were aggregated from pre-

merged council areas to the new local government boundaries using GIS and published 

weighting factors (ABS, 2016a).  

Demographic and socioeconomic data were collected from yearly data published by local 

government area across NSW (ABS, 2018). This data spans from the 2011 Australian census 

to 2017. Only the 2011 to 2015 demographic and socioeconomic data were used to align with 

available waste data. Initial variables selected for this study were subject to availability and 

model selection, as data is not available for all socioeconomic and demographic factors that 

appear in each census conducted in 5-yearly intervals. Variables for analysis in this study are 

those that are published by the Australian Bureau of Statistics based on yearly intervals only 

(ABS, 2018), and include population, number of households, household occupancy, income, 

and population density. Tourism, which is noted as being a driver for waste generation (Oribe-
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Garcia et al., 2015), was not available over the timeframe or at a municipal level (as it is 

generally considered commercial waste) therefore was excluded from our analysis.  

The WKC hypothesis relates to economic growth and development, and an appropriate proxy 

for economic development must be selected. The granular gross regional product (GRP) 

indicator is well suited for sub-national studies, however to the best of the authors' knowledge, 

there are no published data on GRP at the LGA level in the study timeframe, therefore other 

proxies for economic growth and development must be considered. Many studies in the 

literature have indicated the positive correlation between income and/or wealth with waste 

generation (Dyson & Chang, 2005; Kannangara et al., 2018; Keser et al., 2012; Khan et al., 

2016; Oribe-Garcia et al., 2015; Sun & Chungpaibulpatana, 2017; Trang et al., 2017). Ercolano 

et al. (2018), Jaligot and Chenal (2018), and Mazzanti et al. (2008) use the average tax return 

per person, tax point value (income), and value added per person respectively for economic 

development proxies. Kim et al. (2018), testing both the EKC and WKC hypotheses, uses 

GRP per capita as a proxy. For this study, we use the mean annual household income measure. 

Final variables to be used in the GTWR model were selected based on minimising 

multicollinearity between candidate independent variables, as GWR and GTWR models can 

be sensitive to multicollinearity. For this, the variance inflation factor (VIF) was calculated 

iteratively for each independent variable 𝑘 ∈ 𝐾 (Belsley et al., 1980) (Equation 3.1): 

VIF𝑘 = 1
1 − 𝑅𝑘

2  3.1 

The VIF is calculated by forming a regression model with the independent variable 𝑘 acting as 

the dependent variable, regressed against the other potential independent variables. Variable 

screening is done by iteratively calculating the VIF for each independent variable, and 

removing potential variables from 𝐾 whose VIF exceeds a cut-off threshold. For this study, 

the cut-off threshold was chosen as 1/(1 − 𝑅2), where 𝑅2 is the coefficient of determination of 

the full regression model with 𝐾 independent variables. Descriptive statistics of the final 

selected variables are tabulated in Table 3-1. 
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Table 3-1: Descriptive statistics of the variables used in this study 

Variable Mean Minimum Maximum 
Standard 
deviation 

Per-capita waste generation [PCG] (kg/pers) 510.7 60.4 1,862.1 206.2 
Mean income [INC] ($) 50,111.22 32,312 134,180 14,479.31 
Pop. Density [POP.DENS] (pers/km2) 731.5 0.04 8,055.3 1,582.8 
Households [HHLDS] (num) 22,960.1 749 143,549 27,764 
Household size [HHLD.SIZE] (pers/hhld) 2.3 1.4 3.7 0.4 
Proportion recycling [PROP.REC] (dmnl) 0.38 0 0.73 0.2 
Distance to urban [DIST.URBAN] (km) 44.77 0 396.59 66.71 

3.3. Method 

3.3.1. Overview of method 

We examine the existence of the WKC in NSW by first establishing a functional relationship 

between waste generation and selected socioeconomic and urban morphological variables. A 

number of different functional relationships have been utilised in the literature for testing the 

Kuznets curve relationship, most often using a regression based approach (Ercolano et al., 

2018; Jaligot & Chenal, 2018; Kim et al., 2018; Maddison, 2006; Mazzanti et al., 2008). The 

general functional relationship for testing this hypothesis is in Equation 3.2: 

𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋1
2 + 𝛽𝑘𝑋𝑘 + 𝜖 3.2 

Where 𝑌 is the waste generation variable, 𝜖 is the error term, 𝛽𝑖 are regression coefficients to 

be estimated, 𝑋1 is the economic development proxy variable, and 𝑋𝑘 are other variables used 

to establish the relationship between waste generation and other socioeconomic drivers. 

Equation 3.2 is quadratic, which implies the dependent variable in Equation 3.2 tends to ±∞ 

as the independent variable(s) increases. Some studies such as Jaligot and Chenal (2018) use 

higher order polynomial functions in addition to the quadratic form to model more complex 

relationships (i.e., an N-shaped curve, where rebound occurs after decoupling) between the 

environmental variable and economic performance. For this study, we focus on the quadratic 

form of the WKC relationship as expressed in Equation 3.2 due to the short timeframe of this 

study, where more complex behaviour may have yet to emerge. The WKC hypothesis can thus 

be tested by comparing the 𝛽1 and 𝛽2 coefficients as per the relationships presented in Table 

3-2. 



 47 

Table 3-2: WKC hypothesis framework 

b coefficient values Relationship between environmental and economic indicator 
𝛽1 = 𝛽2 = 0 No relationship 
𝛽1 > 0  &  𝛽2 = 0 Linear increasing relationship between 
𝛽1 < 0  &  𝛽2 = 0 Linear decreasing relationship between 
𝛽1 < 0  &  𝛽2 > 0 Positive parabolic (U shaped) relationship 
𝛽1 > 0  &  𝛽2 < 0 Negative parabolic (inverted U shape—the WKC) relationship 

The relationships in Table 3-2 can be confirmed in Equation 3.2 if the 𝛽1 and 𝛽2 coefficients 

are found to be statistically significant. Moreover, 𝛽1 must be positive to ensure a positive 

tipping point can be estimated from the model.  

We use municipal waste generation per-capita and mean income as the waste and economic 

indicators respectively for our study. Other variables used and their selection are discussed 

previously. The functional relationship is examined firstly by using pooled OLS regression 

across NSW by pooling all LGAs, with the WKC hypothesis being validated as per the 

framework presented in Table 3-2. This ‘global’ model (global in the sense that a single model 

relates to the entire study space) gives a baseline of state-wide WKC conformity, and estimates 

a tipping point in annual mean income terms for all of NSW, used to compare with results 

from further regional analysis using GTWR. The global model is also used to assess spatial 

autocorrelation of the pooled OLS residuals, to ascertain the level of spatial association in the 

data. Assessing spatial autocorrelation, and evaluating the fit of the pooled OLS model 

provides further justification for the use of a spatial model (i.e., the GTWR model) to 

determine regional WKC conformity across NSW. The results of the GTWR model are 

analysed to identify the LGAs that conform with the WKC hypothesis for each year of the 

study, and to estimate individual tipping points for WKC conforming LGAs. 

3.3.2. Geographically weighted regression 

To analyse regional variation in the existence of the WKC, GTWR is used. GTWR is an 

extension of geographically weighted regression, with the addition of temporal non-stationarity 

being taken into account. GWR/GTWR are examples of spatially varying coefficient models, 

which extend OLS regression such that regression parameters can vary over space and are 

estimated locally (Du et al., 2018; Huang et al., 2010; Keser et al., 2012; Ma et al., 2005). Before 

describing GTWR, GWR is first introduced. A GWR model can be expressed as follows in 

Equation 3.3: 
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𝑌𝑖 = 𝛽0(𝑢𝑖, 𝑣𝑖) +  ∑𝛽𝑘(𝑢𝑖, 𝑣𝑖)𝑋𝑖𝑘 + 𝜖𝑖 𝑖 = 1, … ,𝑁
𝑘

3.3 

Where 𝑁 is the number of locations, (𝑢𝑖, 𝑣𝑖) are the coordinates of a regression point 𝑖 (for this 

study, the geometric centroid of an LGA, based on Huang et al. (2010) and Wu et al. (2014)) 

in space, 𝛽0(𝑢𝑖, 𝑣𝑖) is the intercept at location 𝑖, and 𝛽𝑘(𝑢𝑖, 𝑣𝑖) is the estimated coefficient of the 

𝑘𝑡ℎ variable 𝑋𝑘 at location 𝑖. The geometric centroid was chosen, as it is an unbiased estimate 

of the centre point of an LGA. While this choice of centroid may fall on areas with no urban 

development (e.g., crop land, national parks, water bodies, etc.), development within LGA can 

be dispersed with multiple urban areas located within non-developed land, making selection 

of 𝑖 that accurately represents the centre of urban areas difficult. Considering the scale of the 

analysis at the LGA level, the choice of centroid selected was not judged as a significant 

limitation. 

A further limitation of GWR is that temporal (i.e., related to time) non-stationarity is not 

considered. GTWR extends the GWR framework by considering temporal, in addition to 

spatial, non-stationarity by constructing an appropriate spatiotemporal weighting matrix to 

measure the distance between regression locations in both space and time. The GTWR model 

is presented in Equation 3.4: 

𝑌𝑖 = 𝛽0(𝑢𝑖, 𝑣𝑖, 𝑡𝑖) +  ∑𝛽𝑘(𝑢𝑖, 𝑣𝑖, 𝑡𝑖)𝑋𝑖𝑘 + 𝜖𝑖 𝑖 = 1, … ,𝑁
𝑘

3.4 

For parameter estimation, it is assumed that observed data near the 𝑖𝑡ℎ point would have a 

greater influence in the estimation of the 𝛽𝑘(𝑢𝑖, 𝑣𝑖, 𝑡𝑖) parameters than data located further away 

in space and time from location 𝑖 (Huang et al., 2010). Parameter estimation for 𝛽𝑘(𝑢𝑖, 𝑣𝑖, 𝑡𝑖) is 

given by Equation 3.5: 

𝛽(𝑢𝑖, 𝑣𝑖, 𝑡𝑖) = [X𝑇W(𝑢𝑖, 𝑣𝑖, 𝑡𝑖)X]−1X𝑇W(𝑢𝑖, 𝑣𝑖, 𝑡𝑖)Y 3.5 

Where W(𝑢𝑖, 𝑣𝑖, 𝑡𝑖) is an 𝑛 × 𝑛 matrix of spatiotemporal weights relative to the position of 

(𝑢𝑖, 𝑣𝑖, 𝑡𝑖), X is the vector of independent variables, and Y is the vector of dependent variable 

values. The weight matrix W(𝑢𝑖, 𝑣𝑖, 𝑡𝑖) has zeros in its off-diagonal elements, and the 

spatiotemporal weighting of observation data for observation 𝑖 in its diagonal elements (Huang 

et al., 2010): 
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W(𝑢𝑖, 𝑣𝑖, 𝑡𝑖) =  diag{𝑊𝑖1,𝑊𝑖2, … ,𝑊𝑖𝑛} 3.6 

The weighting matrix refers to the relative importance of each individual observation across 

the data set based on Tobler's law, where nearer observations to 𝑖 have greater influence on 

parameter estimation than observations further from 𝑖 (Lewandowska-Gwarda, 2018). GTWR 

extends this by also considering that observations closer in time to 𝑖 are also more influential 

than observations occurring further in the past. 

Deriving the weighting matrix is through either a fixed or adaptive kernel based weight 

function. For the adaptive kernel, distance is constant but the number of nearest neighbours 

to location 𝑖 varies (Huang et al., 2010). For fixed, this case is reversed where the number of 

nearest neighbours is fixed, but distance varies.  

Typically, two potential kernels are used as weighting functions--Gaussian based functions, 

and the bi-square weighting function, although a wide range of other distance decay functions 

can be utilised (for example, the exponential function). For this study, the fixed bi-square 

kernel is used as it offered the greatest model fit, and is described as follows in Equation 3.7: 

𝑊𝑖𝑗 = {  [1 − (
𝑑𝑖𝑗
𝑆𝑇

ℎ )
2

] if 𝑑𝑖𝑗
𝑆𝑇 < ℎ

0 otherwise

3.7 

Where ℎ is the bandwidth or distance threshold, and 𝑑𝑖𝑗𝑆𝑇 is the spacetime distance between 

observations 𝑖 and 𝑗.  

Estimating ℎ regardless of the weighting regime chosen is done through optimisation against 

a goodness of fit statistic, such as cross-validation or the corrected Aikaike Information 

Criterion (AICc). Minimising the AICc provides greater accuracy for small sample sizes 

according to Kim et al. (2018), and is defined as follows in Equation 3.8: 

AIC𝑐 = 2𝑛 ln(�̂�2) + 𝑛 ln(2𝜋) + 𝑛 ( 𝑛 + tr(𝑆)
𝑛 − 2 − tr(𝑆)) 3.8 

Where �̂�2 is the estimated standard deviation of the error term, and tr(𝑆) is the trace of the hat 

matrix which maps the vector of dependent variable values to the vector of fitted values.  
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Estimating spatiotemporal distance 𝑑𝑆𝑇 is difficult due to distance and time being measured in 

different units (here, meters and years) and therefore have different scale effects (Huang et al., 

2010). Given a spatial distance 𝑑𝑆 and a temporal distance 𝑑𝑇, spatiotemporal distance 𝑑𝑆𝑇 can 

be calculated such that (Equation 3.9): 

𝑑𝑆𝑇 = 𝑑𝑆 ⨂ 𝑑𝑇 3.9 

Where ⨂ represents some operator. Du et al. (2018), Ma et al. (2005) and Huang et al. (2010) 

define ⨂ as a simple linear combination of spatial and temporal distance, with scale parameters 

𝜆 and 𝜇 to balance the different scale effects, for example, if 𝑑𝑆 is much larger than 𝑑𝑇, then 

spatial distance will dominate 𝑑𝑆𝑇, and vice-versa (Wu et al., 2014): 

𝑑𝑆𝑇 = 𝜆𝑑𝑆 + 𝜇𝑑𝑇 3.10 

For this study, we use the GWmodel (Gollini et al., 2015) implementation of GTWR in the R 

Statistical Computing language to estimate the GTWR model, which implements an improved 

GTWR model based on Wu et al. (2014). Here, a more complex ⨂ operator is utilised to 

control the interaction of space and time effects, and to ensure that only previous ‘time 

neighbours’ (i.e., observations occurring in the past) are taken into consideration (Equation 

3.11): 

{
𝑑𝑖𝑗
𝑆𝑇 = 𝑑𝑖𝑗

𝑆 ⊗ 𝑑𝑖𝑗
𝑇 = 𝜆𝑑𝑖𝑗

𝑆 + 𝜇𝑑𝑖𝑗
𝑇 + 2√𝜆𝜇𝑑𝑖𝑗

𝑆𝑑𝑖𝑗𝑇 cos 𝜉 𝑡𝑗 < 𝑡𝑖
𝑑𝑖𝑗
𝑆𝑇 = ∞ 𝑡𝑗 > 𝑡𝑖

3.11 

Where 𝜆 and 𝜇 are adjustment parameters between 0 and 1 to scale the different scale effects 

(with 𝜇 = 1 − 𝜆 as implemented by GWmodel). 𝜉 is a parameter introduced by Wu et al. (2014) 

to control the interaction of space and time effects, and is between 0 and 𝜋. Selection of the 𝜆 

and 𝜉 parameters is done through optimisation of a goodness-of-fit statistic. 

3.4. Results & discussion 

The final functional relationship for this study is expressed as (Equation 3.12): 
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𝑃𝐶�̂�𝑖𝑡 = 𝛽0 + 𝛽1 log 𝐼𝑁𝐶𝑖𝑡 + 𝛽2 log 𝐼𝑁𝐶𝑖𝑡
2 + 𝛽3𝑃𝐶𝐺𝑖,𝑡−1

+𝛽4 log𝑃𝑂𝑃.𝐷𝐸𝑁𝑆𝑖𝑡 + 𝛽5𝐻𝐻𝐿𝐷𝑆𝑖𝑡
+𝛽6𝑃𝑅𝑂𝑃.𝑅𝐸𝐶𝑖𝑡 + 𝛽7 log𝐷𝐼𝑆𝑇.𝑈𝑅𝐵𝐴𝑁𝑖 + 𝛽8𝐻𝐻𝐿𝐷.𝑆𝐼𝑍𝐸𝑖𝑡 + 𝜖 3.12

 

Where 𝑃𝐶𝐺 is per-capita municipal waste generation. A lagged per-capita waste generation 

term (𝑃𝐶𝐺𝑡−1) is included under the expectation that historical waste generation would 

influence waste management decision making, and thus be a determinant of future waste 

generation. 𝐼𝑁𝐶 is mean household income, 𝑃𝑂𝑃.𝐷𝐸𝑁𝑆 is population density, 𝐻𝐻𝐿𝐷𝑆 is the 

number of households, 𝐻𝐻𝐿𝐷.𝑆𝐼𝑍𝐸 is the size (occupancy) of households, 𝑃𝑅𝑂𝑃.𝑅𝐸𝐶 is the 

proportion of municipal waste collected as recycling, and 𝐷𝐼𝑆𝑇.𝑈𝑅𝐵𝐴𝑁 is the minimum 

distance from the geometric centroid of an LGA to the nearest significant urban area (ABS, 

2017). 𝐼𝑁𝐶, 𝑃𝑂𝑃.𝐷𝐸𝑁𝑆 and 𝐷𝐼𝑆𝑇.𝑈𝑅𝐵𝐴𝑁 variables have been log transformed to account 

for skew in the data. 

3.4.1. Global model results 

The global model serves as a baseline to compare the results of the estimated GTWR model 

to be discussed in the following section, and expresses the relationship between the 

independent and dependent variables for the entire state of NSW without consideration for 

spatial effects. Table 3-3 presents the results of the global model across the pooled LGA data. 

Table 3-3: Global regression model results 

Variable b Estimate SE t value p value 
Intercept -43,440 13,040 -3.332 <0.001 
log INC 8,024 2,379 3.373 <0.001 
log INC2 -365.3 108.3 -3.374 <0.001 
PCGt-1 0.6538 0.0509 12.852 <0.001 
log POP.DENS -6.78 6.656 -1.019 0.309 
HHLDS -0.0001 0.0004 -0.238 0.812 
PROP.REC 171.7 53.75 3.194 0.001 
log DIST.URBAN 1.239 3.893 0.318 0.750 
HHLD.SIZE -0.602 31.10 -1.936 0.053 
R2    0.2861 
AIC    6789.946 
p value    <0.001 

Both mean income and its square are significant, with signs of each income term agreeing with 

the Kuznets curve hypothesis indicating that without consideration of LGA variation in the 

independent variables, there is a decoupling of waste generation and income over the state. In 

addition, 𝑃𝐶𝐺𝑡−1 and 𝑃𝑅𝑂𝑃.𝑅𝐸𝐶 are also statistically significant. From these results, we can 
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calculate the tipping point from the values of the 𝛽 coefficients for the two income terms 𝛽1 

and 𝛽2 (Equation 3.13): 

exp (−
𝛽1

[2𝛽2]
) 3.13 

From Equation 3.13, the global tipping point was estimated as a mean income of AUD$58,839 

(AUD = Australian Dollar, where AUD$1 = USD$0.69, as of June 2019). It was found that 

22 LGAs had mean incomes above the estimated tipping point over the study time period, 

with 17 of these LGAs located within the Sydney Metropolitan Area (SMA). This result is 

expected, considering that economic activity is much greater within the SMA and therefore 

higher mean incomes compared to regional LGAs is likely. Figure 3-6 the distribution of mean 

incomes and per-capita generation rates for LGAs, relative to the estimated tipping point. 

 

Figure 3-6: Average LGA mean incomes vs. average LGA per-capita waste generation, compared to global model tipping 
point estimate 

Overall model fit of the global pooled OLS model is poor, demonstrated by an adjusted-R2 

value of 0.286, however such a fit is consistent with similar models in the waste management 

literature. Lebersorger and Beigl (2011) for example note that in their review that coefficients 

of determination (R2) rarely exceed 0.5 for regression models estimating waste generation, 

however Oribe-Garcia et al. (2015) for example obtained R2 values of between 0.279 and 0.980 

for their regression models estimating waste generation in Biscay. Oribe-Garcia et al. (2015) 

cite several other similar studies (i.e., regression based models for estimating waste generation) 

in their paper, with R2 values ranging from 0.51 to 0.88. 



 53 

We test for spatial autocorrelation of model residuals from the global model by calculating 

Moran's I, which is a measure of spatial autocorrelation taking values [-1,1]. A Moran's I 

between 0 and 1 indicates a clustering of values, whereas a Moran's I between -1 and 0 indicates 

regular distribution of values. A Moran's I of approximately 0 indicates random distribution 

(i.e., no spatial association) of values being tested. Moran's I can be calculated from the 

following (Bivand et al., 2013): 

𝐼 =  
𝑛∑ ∑ 𝑤𝑖𝑗(𝑌𝑖 − �̅�)(𝑌𝑗 − �̅�)𝑗≠𝑖𝑖

(∑ ∑ 𝑤𝑖𝑗𝑗≠𝑖𝑖 )∑ (𝑌𝑖 − �̅�)
2

𝑖

3.14 

Where 𝑌𝑛 is the model residual for observation 𝑛 from the global model, �̅� is the mean model 

residual, and 𝑤𝑖𝑗 is the 𝑖, 𝑗𝑡ℎ element of the 𝑛 × 𝑛 spatial proximity matrix W, which provides a 

distance weighting for each pair of observation points 𝑖 and 𝑗. Proximity is determined by the 

number of nearest neighbours to observation points 𝑖, which describes the maximum number 

of adjacent neighbours to 𝑖 from which distance is measured. Statistical significance of the 

Moran's I estimate is obtained by comparing the standard deviate of the Moran's I statistic with 

the normal distribution (Bivand et al., 2013).  

The results from the Moran's I analysis are presented in Table 3-4, indicating that spatial 

autocorrelation of residuals exists for all levels of nearest neighbours tested (2 to 10 nearest 

neighbours), and that model residuals for the global OLS model are more clustered than 

random. The value of the Moran's I shows a decreasing trend as the number of nearest 

neighbours increase. This is expected as the distance between observation points increase as 

additional neighbours are considered (Goovaerts, 1997). This is consistent with findings from 

Keser et al. (2012) who identified a similar pattern of spatial autocorrelation of residuals in 

their GWR study modelling waste generation in Turkey. The importance of this finding is that 

there is a spatial association between the dependent and independent variables, indicating that 

explicitly controlling for spatiality (for example, through GWR/GTWR) is appropriate for this 

study. 
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Table 3-4: Results of Moran's I test for spatial autocorrelation of residuals from global OLS model 

Num. nearest neighbours Moran’s I p value 
2 0.5339 <0.001 
3 0.5880 <0.001 
4 0.6627 <0.001 
5 0.6627 <0.001 
6 0.4887 <0.001 
7 0.3754 <0.001 
8 0.2875 <0.001 
9 0.2198 <0.001 
10 0.2198 <0.001 

3.4.2. GTWR local model results 

The GTWR model uses the same functional relationship as the pooled OLS global model 

expressed in Equation 3.12, with estimated regression coefficients varying across LGAs, as per 

Equation 3.4. 𝜆 and 𝜉 parameters used to control the interaction of space and time effects 

(Equation 3.11) were selected using a Monte-Carlo simulation approach, with 𝜆 and 𝜉 values 

sampled from a uniform distribution of candidate values (𝜆 ∈ [0,1];  𝜉 ∈ [0,𝜋]). The GTWR 

model with the highest adjusted coefficient of determination was selected as the final model 

from 10,000 iterations. Figure 3-7 shows the results of these simulations. From these results, 

model fit is highly sensitive to variations in 𝜆 above a certain threshold. Adjusted R2 values 

increase monotonically with 𝜆 until 𝜆 ≈ 0.6, from which point adjusted R2 values are erratic. 

For 𝜆 < 0.6, values of 𝜉 appear to not have a significant impact on the model fit, indicating that 

there is little interaction between spatial and temporal effects for 𝜆 < 0.6, and that coefficient 

estimates are more heavily weighted towards spatial effects than temporal for models with high 

R2 values. Table 3-5 shows the selected parameter values for the final GTWR model. Appendix 

A.1 shows 𝛽 coefficient estimates and t-values for the two mean income variables in the final 

GTWR model for different levels of 𝜆. 
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Figure 3-7: Results of Monte-Carlo simulation for selection of 𝜉 and 𝜆 GTWR parameters 

Table 3-5: Selected GTWR parameter values 

Parameter Value 
𝜆 0.61 
𝜉 0.02 

Table 3-6 summarises coefficient estimates for all LGAs and years from the GTWR model, 

exhibiting variation over the study space. Comparing with results from the global model in 

Table 3-3, GTWR estimates fluctuate around those given from the global model, however 

variation is large indicating that the global model lacks the complexity given by considering 

spatiality. 

Table 3-6: Results of the GTWR local model 

Variable Mean Minimum First Quartile Third Quartile Maximum 
Intercept -45,620.04 -1.31e06 -32,232.80 14.78 1.73e06 
log INC 8,142.39 -328,968.73 16.76 5,758.00 242,580.40 
log INC2 -361.06 -11,196.32 -260.32 3.19 15,518.12 
PCGt-1 0.60 -1.23 0.52 0.69 1.55 
log POP.DENS 44.50 -7,656.40 -38.77 36.68 8,122.30 
HHLDS -0.01 -1.06 -0.01 0.01 1.83 
PROP.REC -18.67 -1,922.00 -125.81 135.71 1,509.06 
log DIST.URBAN 52.81 -9,907.82 -5.52 8.48 10,347.85 
HHLD.SIZE -60.04 -2,828.03 -158.46 33.24 3,314.31 

Confirming the spatial and temporal non-stationarity of GTWR coefficient estimates further 

justifies the use of GTWR over the global OLS model. Ma et al. (2005) confirm the 
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spatiotemporal non-stationarity of GTWR coefficient estimates following Fotheringham et al. 

(2002) and Fotheringham et al. (2015) by comparing the interquartile range from the GTWR 

estimates for each variable with twice the standard error of the pooled OLS model estimates 

for each variable. For this paper, we also examine the spatiotemporal heterogeneity of the 

GTWR estimates by comparing with the global pooled OLS estimates under the null 

hypothesis that coefficient estimates from the GTWR model are not significantly different 

from the pooled OLS estimates (i.e., spatiotemporal non-stationarity does not exist), using the 

nonparametric Wilcoxon signed-rank test. Results for both of these analyses are presented in 

Table 3-7. These results show that the coefficient estimates from the GTWR exhibit 

spatiotemporal non-stationarity, indicating that locally weighted GTWR coefficients 

significantly differ from those produced from the global pooled OLS model. 

Table 3-7: Summary of spatial non-stationarity of GTWR coefficient estimates 

Variable 
Interquartile 

(GTWR) 2 x SE (OLS) 
Wilcoxon test 

statistics p- value 
Intercept 32,247.58 26,073.11 0.49 <0.001 
log INC 5,742.17 4,757.62 0.50 <0.001 
log INC2 263.51 216.54 0.51 <0.001 
PCGt-1 0.18 0.10 0.81 <0.001 
log POP.DENS 77.45 13.31 0.21 <0.001 
HHLDS 0.00 0.00 0.22 <0.001 
PROP.REC 261.52 107.50 0.87 <0.001 
log DIST.URBAN 14.00 7.79 0.16 <0.001 
HHLD.SIZE 191.70 62.19 0.63 <0.001 

A benefit of GWR/GTWR as an exploratory tool is the possibility of mapping model 

coefficient estimates over space and time. Statistically significant GTWR model coefficients 

(with p-values <0.05) are presented as thematic maps in Figure 3-8. For Figure 3-8, the average 

coefficient values (b in the figure) over time are used for visualisation following Ma et al. 

(2005), who suggests that mapping the eigenvalues of the coefficients (e.g., the average values) 

is useful for visualising spatial variation (Ma et al., 2005). Of note from these results is that 

significant income coefficients occur for a set of clustered LGAs, west of the Sydney 

metropolitan area. Further discussion is provided below.  
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Figure 3-8: Average coefficient estimates from GTWR model 

Other variables exhibit significant coefficients across a greater proportion of the state, most 

notably the lagged per-capita waste generation, number of households, household size, and 

population density variables. The analysis found that household size is a greater determinant 

of per-capita waste generation compared with the number of households, whose coefficient 

estimates across the study area are approximately 0. A significant negative relationship is 

identified between per-capita waste generation and household size. This effect is most strongly 

associated with LGAs within the Murray and Southern Inland regions along the Victoria-NSW 

state border. Kolekar et al. (2016) cites in a review of predictive models that household size is 

often a significant determinant of waste generation. Kumar and Samadder (2017) and Trang 

et al. (2017) find significant positive relationships between household size and waste 

generation. A negative relationship between these variables may indicate that as the number of 

household occupants increase, households become more efficient in using materials through 

for example sharing and re-use, resulting in a lower per-capita rate of waste generation. 
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Coefficient estimates for the proportion of waste collected as recycling was found to be quite 

clustered, with LGAs near more developed regions showing a positive relationship with per-

capita waste generation. This relationship may be expected where improvements in waste 

management practices (e.g., increased separately collected recycling) are a response to 

increasing rates of waste generation, not as a measure to reduce waste generation through 

better waste disposal behaviour. Coefficient estimates for the lagged per-capita waste 

generation variable shows that across NSW, a mild increasing trend in per-capita waste 

generation is identified, indicated by coefficients <1.  

Significant population density coefficients show a generally negative relationship with per-

capita waste generation, which is mostly strongly associated with the Greater Sydney 

Metropolitan Area and its surrounds. A similar relationship between waste generation and 

population density was found in Oribe-Garcia et al. (2015). Such a relationship could indicate 

areas with a higher proportion of high-density residential development, where rates of per-

capita generation are typically lower due to reduced green waste generated for example. 

Conversely, areas showing a positive relationship between population density and per-capita 

generation, may indicate LGAs with a lower level of urban development and waste 

infrastructure. 

Model fit of the GTWR model is superior to that of the global OLS model, indicated by 

goodness-of-fit statistics reported in Table 3-8. The improvement of model fit by utilising 

GTWR is consistent with the literature, as Lewandowska-Gwarda (2018) report. 

GWR/GTWR will usually produce better fitting models over global OLS models given that 

the spatial model better controls for spatial (and temporal, in the case of GTWR) heterogeneity 

(Lewandowska-Gwarda, 2018). 

Table 3-8: Goodness-of-fit statistics for local GTWR and global OLS models 

Statistics 
Local GTWR 

model 
Global OLS 

model 
R2 0.699 0.297 
Adjusted R2 0.611 0.286 
AIC 6,435.682 6,789.946 
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3.4.3. Empirical findings for the WKC hypothesis 

The existence of the WKC can be identified following the framework presented in Section 

3.2.1. Figure 3-9 shows the LGAs where the WKC hypothesis is met across the time period 

analysed, based on interpretation of regression coefficient estimates following Table 3-2. 

Figure 3-10 shows the ratio of tipping points to mean income for WKC conforming LGAs. 

 

Figure 3-9: Local government areas conforming to the WKC hypothesis 
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Figure 3-10: Ratio between estimated tipping points and mean incomes for WKC conforming local government areas 

LGAs within NSW that exhibit the WKC are located across the Orana, Hunter, Central West, 

Murray, and Riverina regions directly west of the Sydney metropolitan area. The total number 

of LGAs conforming to the WKC hypothesis vary over the time frame, showing an increasing 

trend. Table 3-9 shows the number of LGAs conforming to the WKC for each year, including 

the proportion of WKC conforming LGAs to total state LGAs, proportion of the NSW 

population residing in WKC conforming LGAs, and average estimated tipping points for these 

LGAs. 

Table 3-9: Summary of WKC conforming LGAs 

 Num. WKC LGAs % of NSW LGAs % NSW population Avg. tipping point 
2012 18 14.1% 3.0% $58,875 
2013 19 14.8% 3.3% $59,345 
2014 19 14.8% 3.0% $57,700 
2015 20 15.6% 4.3% $56,260 

Tipping point mean incomes have been estimated between approximately $48,000 per annum 

to $76,000 per annum. Average mean income across these LGAs in 2015 is approximately 

$47,400 per annum, compared to $54,400 for all other LGAs. The ratio of tipping point to 
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mean income ranges from 0.8 to 2 times local mean income for these LGAs (Figure 3-10). 

These ratios are quite high for some LGAs, considering a lower level of economic 

development in regional NSW where the WKC conforming LGAs are located. High tipping 

point estimates also emerged in Mazzanti and Zoboli (2009), where value added per-capita was 

used as the economic indicator. Following from Ichinose et al. (2011) and Mazzanti and Zoboli 

(2009), such high tipping points occur outside the range of observable mean incomes for most 

WKC conforming LGAs, indicating a relative decoupling of waste generation and income in 

NSW generally rather than an absolute decoupling. This is also partly confirmed from the 

global model results, which indicate a global tipping point above the state-wide mean income.  

Figure 3-11 shows the distribution of per-capita waste generation rates, proportion of waste 

collected as recycling, population density, and mean incomes for WKC and non-WKC 

conforming LGAs. LGAs conforming to the WKC hypothesis generally exhibit higher per-

capita generation rates, and significantly lower proportion of waste collected as recycling. This 

might suggest that WKC conforming LGAs may in fact have poorer performing waste 

management systems than non-WKC conforming LGAs. It may be the case that the WKC 

conforming LGAs have taken steps to improve waste management practices in recent years, 

which has caused a WKC-type relationship to emerge. However the short time-series dataset 

used for this study makes confirming this difficult. 

 

Figure 3-11: Comparison of WKC conforming and non-conforming LGAs 

The distribution of mean incomes is expected, with non-WKC conforming LGAs including 

LGAs within the Sydney metropolitan area having a greater level of economic development, 
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and thus higher mean income levels. Considering that mean income is higher, and per-capita 

generation rates are generally lower in non-WKC LGAs, it may be true that some currently 

non-WKC conforming LGAs have in fact already experienced a decoupling of waste 

generation from income. However a longer time-series dataset would be required to confirm 

this.  

Differences in urbanisation, indicated by population density, are found between LGAs 

conforming to the WKC hypothesis, and those that do not. Mean population density for WKC 

conforming LGAs is approximately 10 persons/km2, compared to 865 persons/km2 for the 

non-conforming LGAs. This large difference in urbanisation is expected, given that LGAs 

within the Sydney metropolitan area, the most heavily populated area in Australia, do not 

exhibit the WKC relationship. The effect of population density on WKC-like behaviour 

however can only be speculated. Previous studies suggest that population density has a positive 

effect on per-capita generation rates (Mazzanti et al., 2008). Findings from our study show that 

population density has a mostly negative impact on per-capita generation, which is especially 

true for WKC conforming LGAs. Reasons for this may be that denser locales have better 

access to improved waste management and avoidance infrastructure. This finding is consistent 

with those presented in Jaligot and Chenal (2018), who found higher levels of population 

density led to decreased waste generation when testing a similar WKC.  

The strength of the divergence between income and per-capita generation for WKC 

conforming LGAs is measured in Table 3-10. We compare the percentage difference in per-

capita generation rates, and the income elasticity on per-capita generation over the study period 

for the two sets of LGAs. A Student's t-test found no significant difference between 

distributions for WKC conforming and non-conforming LGAs. This finding might suggest 

that per-capita rates of waste generation across the non-WKC conforming LGAs are relatively 

stable and in decline, whereas the WKC-conforming LGAs are in various stages of decoupling, 

therefore may only recently be experiencing the initial stages of relative decoupling.  

Table 3-10: Income elasticity of per-capita generation for WKC conforming and non-conforming LGAs 

LGA type Mean %∆ PCG Mean %∆ INC Mean elasticity 
Non-WKC conforming -3.66% 3.35% 2.19 
WKC conforming -1.88% 3.49% -1.56 

Table 3-10 also compares the mean income elasticity of per-capita generation for each set of 

LGAs. Mean elasticity for WKC conforming LGAs shows a negative elasticity, providing 
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further evidence of the relative decoupling status for these LGAs. Non-WKC conforming 

LGAs experience a greater, positive elasticity. Considering the findings from both the global 

and local models, this is consistent as a general trend in decreasing waste generation and 

increasing mean income exists across the entire state. In fact, LGAs identified not to be 

following a WKC trajectory within our study's time frame, may have already experienced a 

decoupling, and are in the final stages of decline with stabilisation. Further investigation on a 

more complete dataset (i.e., over a longer time period) would be needed to identify the stage 

of decoupling an LGA in the study might be at, as well to measure the strength of decoupling 

if it is taking place. 

The results of our study show that there is progress towards the decoupling of per-capita waste 

generation from mean income across NSW following the WKC hypothesis. While NSW has 

an agenda for transitioning to the circular economy, with decoupling as a key focus area (NSW 

EPA, 2019b), there has been little action towards establishing benchmarks to measure progress 

towards circular economy objectives. The results of this study give a baseline of decoupling 

progress at the municipal level following the WKC, and may inform policy through the 

targeting of specific initiatives towards LGAs not exhibiting decoupling-like behaviour, or for 

establishing regionally specific decoupling related targets. 

3.5. Conclusion 

This study has estimated the existence of the WKC across the Australian state of NSW using 

a GTWR approach, accounting for spatial and temporal heterogeneity in socioeconomic, 

demographic and structural factors over the 2011 to 2015 period. The GTWR model allowed 

us to identify specific LGAs within the study area that conform to the WKC hypothesis over 

time. Our analysis showed that the region to the west of the Sydney metropolitan exhibit the 

WKC relationship when accounting for spatially varied socioeconomic and structural factors. 

The ratios of tipping point to mean income for WKC conforming LGAs are between 0.8 and 

2, indicating that generally LGAs conforming to the WKC are in stages of relative decoupling 

rather than absolute.  

Findings from the GTWR model show that LGAs conforming to the WKC hypothesis have 

higher rates of per-capita generation, and lower proportions of waste collected as recycling 
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than non-WKC conforming LGAs in NSW. This suggests that WKC conforming LGAs may 

have poorer waste management systems, and poorer waste disposal practices than non-WKC 

conforming LGAs, however this was not able to be confirmed within the scope of this analysis. 

While it may follow that targeted investment in waste management infrastructure or waste 

avoidance programs in these regions may drive decoupling, it is unclear from these findings 

the impact of such strategies in supporting decoupling. The study does not analyse the degree 

to which LGAs may be decoupling waste generation from household income, however the 

lower rates of per-capita waste generation suggests that some non-WKC conforming LGAs 

(namely, those located within the Sydney metropolitan area) may have in-fact already 

experienced a decoupling before the study time period. Additionally, findings show that WKC-

conforming LGAs also have lower mean household incomes compared to non-WKC 

conforming LGAs, however this finding is expected considering mean incomes in the Sydney 

metropolitan area and other major regional and urban centres tend to have higher mean 

incomes and greater levels of economic development than regional LGAs.  

This analysis demonstrates a new methodology applied in NSW for exploring waste and 

income decoupling relationships—significant in transitioning to sustainable waste 

management and the circular economy more broadly. The methodology could also be applied 

to other Australian jurisdictions where studies on the WKC at the sub-national level are 

lacking. Findings from our study may be used in a strategic policy making context, for example 

benchmarking and measuring performance against state-wide circular economy objectives 

using the WKC framework might enable appraisal of the effectiveness of circular economy 

and sustainable waste management policy implementation in driving decoupling. Findings may 

also inform future policy and/or waste management programs such as waste prevention and 

initiatives that are tailored to not only current stages of decoupling, but also to locally specific 

drivers of waste generation. 
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Chapter 4.  
High-resolution estimation of household waste 

generation 

Chapter 3 explored spatial variability in waste generation across NSW, finding evidence to 

support the waste Kuznet’s curve hypothesis. While not explicitly addressing the key 

motivating research question, Chapter 3 nevertheless helps inform the modelling of waste 

management systems, by offering evidence that supports the use of spatial modelling for NSW. 

In particular, findings from that study indicated that drivers for waste generation do vary over 

space in NSW, and should be a consideration for any future modelling of NSW waste streams.  

This chapter is concerned with addressing research question 1 in full, as well as research 

question 2 as follows: 

Research question 1: What is the spatial distribution of waste generation in NSW, and is 

regional variability significant? 

Research question 2: How can waste generation data be modelled at high resolutions, where 

data is limited? 
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Where Chapter 3 addressed the second part of research question 1 (i.e., regional variability), 

this chapter focuses on modelling and estimating the spatial distribution of waste generation 

at a high resolution. Data on the distribution of waste generation is limited for NSW, with 

council area waste generation data the highest resolution data available. Therefore addressing 

this research question is significant in a number of instances, where higher resolution on the 

spatial distribution of waste might be beneficial. For example, understanding the spatial 

distribution of waste generation is important from a management and planning perspective. 

Knowing what kinds of waste are generated and where, can help inform where waste 

management resources, for example treatment facilities, might be needed.  

In the case of this thesis however, high resolution waste generation data can help address some 

critical gaps in the data, namely, the estimation and impact of waste collection and 

transportation emissions. Data on this source of emissions is also limited, and overcoming this 

data gap is essential to addressing the overarching aims of this thesis. With no data available 

on the distances travelled by waste collection vehicles or their emissions, this data must also 

be modelled and estimated. For this, data characterising the quantities of waste generated at 

the property lot level can be utilised to model the movements of waste collection vehicles, 

thereby enabling the bottom-up estimation of waste collection emissions intensity. The focus 

of this chapter in addressing research question 1, is therefore developing a methodology for 

estimating the spatial distribution of waste generation at a high resolution—specifically, at the 

property lot level. The method developed is applied in the estimation of annual quantities of 

kerbside waste generation for more than 1.2 million property lots in the Sydney metropolitan 

area. 

The work presented in this chapter was published as a standalone paper in 2021, as follows: 

Madden, B., Florin, N., Mohr, S., Giurco, D. (2021). Spatial modelling of municipal waste 

generation: deriving property lot estimates with limited data, Resources, Conservation and Recycling, 

168, 105442, DOI: 10.1016/j.resconrec.2021.105442.  

This chapter includes the above published paper in full, and differs from the paper published 

in the above in formatting only. The paper’s primary aim was to model and estimate property 

lot waste generation with limited data. Conclusions in this chapter are specific to these aims 

which appear in the standalone paper. Specific conclusions and insights drawn from this 

analysis in relation to the thesis research questions, are discussed in Chapter 8. 
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4.1. Introduction 

The management of municipal solid waste presents multiple environmental, human health, 

logistical and economic challenges for cities and regions (Essin & Cosgun, 2007; Ferrão & 

Fernández, 2013). In Australia, waste management is in focus with industry and communities 

committed to reducing waste, avoiding landfilling, and eliminating the risk of material losses 

to the environment throughout the resource recovery system. Exporting waste for overseas 

processing is no longer an option for many waste types, especially plastic material not sorted 

into high quality single polymer streams (COAG, 2020), and new landfill diversion pathways 

for Australian waste must be prioritised to avoid increases in landfilling in the future. Recently, 

the government of the Australian state of New South Wales adopted a circular economy 

framework to guide future waste decision making in the state towards a `waste-as-a-resource' 

framework (NSW EPA, 2019b). Under this updated policy direction, there is a significant 

opportunity now for the promotion of waste management initiatives focused on improving 

resource recovery with greater circularity in resource flows. 

High resolution data on quantities of waste generated, for example at the property lot or 

household level, can be very useful for informing decision making around targeted waste 

management initiatives. For example, such data is useful for: identifying optimal waste 

treatment or recovery facility locations (Lin et al., 2020; Yadav et al., 2017; Yadav et al., 2018); 

optimising waste collection routing (Hannan et al., 2018; Sarmah et al., 2019; Vu et al., 2019); 

and in planning for targeted dwelling specific systems, such as insinkerators and basement 

anaerobic digestion and composting (Edwards et al., 2016; Lou et al., 2013). Waste generation 

data is often limited at high resolution scales despite its usefulness (Kontokosta et al., 2018), 

typically due to individual household privacy concerns and the high cost associated with large-

scale household bin audits and surveys. There is a need then for an approach to disaggregate 

available, low spatial-resolution waste generation data down to a finer spatial scale, when such 

data might be beneficial for informing waste management decisions. 

There is a gap in the literature concerning the estimation of waste generation data at high 

spatial resolutions, where real data is not available. This data gap is the key motivation for this 

work. In a recent study, Kontokosta et al. (2018) presents a novel analytical approach for 

predicting daily and weekly waste generation at the building level in New York City, USA. In 

Kontokosta et al. (2018), the authors address the issue that understanding patterns of waste 
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generation at building level is limited as data at this scale is generally lacking. For their 

approach, the authors develop a predictive model utilising detailed census, weather, and waste 

data to estimate household waste generation at the building level. The resulting model has high 

accuracy when compared to validation data, and has several important contributions and 

applications, including in designing more efficient waste collection routing, and for detecting 

areas of New York City that have higher (or lower) likelihood to recycle for more targeted 

waste behaviour initiatives.  

Kontokosta et al. (2018) use statistical and computational approaches for disaggregating low 

spatial resolution (e.g., city, region etc.) data to the building level. While studies applying 

similar, small-area estimation methods are not common in a waste context, spatial 

disaggregation models are more widespread across other fields including public health 

(Albright et al., 2019; Eberth et al., 2018; Truong & Stein, 2019), socioeconomic research (Buil-

Gil et al., 2019; Fabrizi & Trivisano, 2016), resource assessment (Goerndt et al., 2019), and the 

management of waste and debris due to natural disasters (Hayes et al., 2021; Tabata et al., 

2019). These small-area estimation methods are widely used for producing estimates of 

attributes at spatially disaggregated scales where data is limited, by ‘borrowing’ from data at 

other scales (Buil-Gil et al., 2019; Chandra et al., 2012). However, small-area estimation models 

generally require microdata (data available at very fine scale) for calibration and validation. In 

the absence of such data, microsimulation and other spatial approaches are often used to 

generate required data for small areas, using appropriate deterministic, probabilistic and/or 

computational modelling approaches (NATSEM, 2008; Rich, 2018).  

The aim of this research was to develop a spatial model for estimating quantities of household 

waste generated annually at the property lot level. The model described in this paper is 

motivated by limited availability of data at the property lot level, namely information on 

household characteristics and quantities and composition of waste generated itself. In this 

paper, we describe an approach that was used to estimate annual quantities of waste generated 

for more than 1.2-million property lots in the Sydney metropolitan area (SMA), Australia. The 

model described first estimates the distribution of dwelling types at the property lot level using 

council and neighbourhood level census data (ABS, 2016b, 2017). Average rates of annual 

waste generation by dwelling type were derived from council reported waste statistics (NSW 

EPA, 2017) and local kerbside audit data (APC, 2019), and combined with the estimated 

dwelling type distribution to estimate annual waste generated per property lot in our study area. 

The model presented in this paper has wide ranging local applications for informing waste 
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management policy, including analyses requiring high spatial resolution waste generation data 

such as new infrastructure planning. More broadly, the approach developed has modest data 

requirements and could be readily applied to other jurisdictions. 

4.2. Methodology 

For our approach, we first developed a probabilistic model from area-level data to estimate 

the number of occupied dwellings by type for each property lot within the 31 local government 

areas (LGA) of the SMA. The estimated number of dwellings by type was then multiplied by 

estimated dwelling-type waste generation intensities (i.e., tonnes/hh/yr), derived from 

literature data (APC, 2019; NSW EPA 2017) to estimate annual quantities of household waste 

generated at property lots for each LGA in the SMA.  

Our approach implicitly accounts for variation in waste generation behaviours between 

different dwelling type occupants amongst the LGAs investigated. We considered two high-

level dwelling types in our study: detached dwellings (i.e., a single dwelling located on a 

property lot); and multi-unit dwellings, including apartments, townhouses, and other 

residential structures where multiple households are located on a single lot. Focus on these 

two dwelling types has been made for two key reasons; Firstly, kerbside audits of the municipal 

waste stream in Southern Sydney were conducted in 2008 and 2019 for detached and multi-

unit dwellings only (APC, 2008, 2019), and found that dwelling type is a significant determinant 

of waste generation, with detached dwellings generating on average between 1.7 and 2.8 times 

more total household waste than multi-unit dwellings. This finding is somewhat expected, 

given that the number of occupants in detached dwellings is typically greater than multi-unit 

dwellings (ABS, 2016b), however the composition of waste generated between dwelling types 

also differs significantly. Secondly, waste generated by multi-unit dwellings presents unique 

challenges, with increased rates of bin contamination, and often complex bin collection 

systems making management of waste on site difficult (APC, 2019; Waste Management 

Review, 2020). As such, high resolution data on the spatial distribution of waste generated 

from multi-unit dwellings can help inform waste management planning that specifically targets 

these dwelling types. 
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Figure 4-1 provides a high-level overview of the methodological approach. Each component 

of our approach is described in further detail in the following subsections. 

 

Figure 4-1: Overview of the methodological approach for this study 

4.2.1. Study area and data 

Figure 4-2 shows the study area located within the Australian state of New South Wales, and 

for context, quantities of total municipal household waste generated reported by local 

government areas (LGAs) in 2016 (NSW EPA, 2017). As we are interested in dwelling types, 

Figure 4-3 shows the distribution of dwelling types over the study area at the Statistical Area 1 

resolution. This spatial scale is explained in detail further in this section. 

Data inputs (Section 2.1)

Dwelling distribution model

Step 1. Estimate 
high-resolution 
dwelling density 
(Sec. 2.2.1)

Step 2. Stochastic 
process (number
of dwellings/type 
per property lot) 
(Sec. 2.2.2)

Spatially resolved dwelling statistics, including:
- Total dwellings within mesh block (ABS, 2016)
- Number of dwellings by type within SA1 (ABS, 
2016)

Dwelling type waste generation rate 
estimate

Step 1. Estimate waste generation rates 
specific to dwelling type and council area 
via optimisation (Sec. 2.3.1)

Results validation (Section 2.4)

Step 1. Validation of dwelling distribution 
model estimates

Step 2. Validation of property lot waste 
generation estimates

Estimate quantities of waste generated at property lots

Step 1. Multiply property lot dwelling 
type/count estimate with estimated waste 
generation rates (Sec. 2.3.2)

Spatially resolved waste statistics:
- Household waste generated annually by council 
area (NSW EPA, 2017)

- Kerbside waste composition by dwelling type 
(APC, 2019)
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Figure 4-2: New South Wales and council boundaries. The Sydney Metropolitan Area study area is highlighted, and total 
municipal households waste generated in 2016 from NSW EPA (2017) is shown. LGA names are also included for 
context 
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Figure 4-3: Distribution of dwelling types over the study area, at the Statistical Area 1 resolution (ABS, 2017) 

For our study, we are interested in the annual quantity of municipal waste generated at the 

household level for three key waste streams that are collected by LGAs in the SMA, namely 

the residual (or non-recyclable) fraction, dry recyclables, and garden organics. The composition 

of these waste streams are summarised in Table 4-1. Annual quantities of household waste 

generated was the variable of interest for this study. Quantities of household waste collected 

is often used as a proxy for waste generated, given that littering, at home composting, hoarding 

etc. are not typically measured. Annual waste generation was also chosen, as statistics are 

typically reported at this interval locally (e.g., NSW EPA (2017), DoEE (2018)). As a result of 

this, seasonal variations affecting waste generation behaviours are not directly considered. 

Other methods of waste collection, namely bulk collection at the kerbside and household drop-

offs of waste directly at landfill and transfer stations were not considered for this analysis. This 

was due to a lack of data on the composition of these collections, and dwelling type profiles 

for these collection streams. 
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Table 4-1: Composition of the residual, dry recyclable, and garden waste fractions of the municipal waste stream in the 
Sydney Metropolitan Area (NSW EPA, 2014a) 

Material group Residual waste Dry recyclables Garden waste Total waste 
Paper and paper products 20% 55% <1% 21% 
Organics 54% 2% 99% 58% 
Glass 4% 30% <1% 9% 
Plastics 11% 8% <1% 6% 
Ferrous metal 2% 2% <1% 1% 
Non-ferrous metal 1% 1% <1% <1% 
Other 10% 2% <1% 5% 

Table 4-2 lists the data used for this study. Waste data on the aforementioned waste streams 

were derived from LGA reported waste generation data for 2016, which includes total 

municipal household waste collected (NSW EPA, 2017). This data is available over the 2005 

to 2018 period, and the 2016 year was chosen to align with census data. Census data at a 

number of spatial scales were utilised, which are illustrated in Figure 4-4. The mesh block scale 

is the finest spatial resolution for census data available in Australia. At this scale, data describing 

the total number of occupied dwellings and total residential population is available, however 

no further information on household characteristics including type is available. Land use 

characteristics are described at the mesh block level, however only by majority land use within 

the mesh block. Mesh blocks categories as commercial for example then, still are likely to have 

occupied residential dwellings in the form of mixed-use zoning. We therefore only consider 

mesh blocks that contain occupied residential dwellings, as of the 2016 census night. SA1s are 

built from whole mesh blocks boundaries in the national census data, with target populations 

of between 200 and 800 persons in urban locals (ABS, 2017). At the SA1 scale, the total 

number of dwellings by type is available, and is the highest level of spatial resolution available 

for this level of detail on dwelling types. Property lot boundaries are taken from the NSW 

Digital Cadastral Database (DFSI, 2012). This spatial data does not include characteristics of 

the property lot, including land use, number of dwellings etc, primarily due to privacy reasons. 

This spatial scale is the target spatial scale in our study for disaggregation of the area-level (i.e., 

SA1) dwelling type distribution data. 
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Figure 4-4: Different geographical scales of analysis, example Burwood local government area in New South Wales 

Table 4-2: Summary of data sources utilised in this work 

Data Spatial scale Remarks 
2016 census data (ABS, 2016b) SA1 (frame (a) in Figure 4-4) Total number of dwellings by type in the 

SA1, used in model calibration 
 Mesh blocks (frame (b) in 

Figure 4-4) 
Total number of dwellings, used in 
model calibration 

Cadastral data (DFSI, 2012) Property lot (frame (c) in 
Figure 4-4) 

Property lot boundaries, used for 
calibration of model and visualisation 

Australian statistical geography 
standard boundaries (ABS, 
2017) 

LGA, SA1, mesh block Spatial boundaries for LGA, SA1 and 
mesh block scales. Used for calibration 
and visualisation 

Local council waste and 
resource recovery data (NSW 
EPA, 2017) 

LGA Annual waste generated by households, 
by waste fraction for the year 2016. Used 
for model calibration 

Kerbside waste audit data 
(APC, 2019) 

N/A (avg. per-household 
rates) 

Weekly per-household waste generation 
rates, by dwelling type, from sample of 
kerbside audit data. Used for model 
calibration 

A more detailed description of the approach outlined in Figure 4-1, including model validation, 

is provided in the following sections. 

4.2.2. Dwelling distribution model 

We developed a probabilistic model to estimate the number of occupied detached and multi-

unit dwellings for property lots in our study area. We perform this model for property lots 

within each SA1, as this is the finest resolution of census data describing the breakdown of 

dwelling types. We model the number and distribution of dwelling types for a set of property 
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lots within an SA1 as a discrete stochastic process--a family of discrete random variables, 

indexed over a countable set (Parzen, 2015). In our application, the index set is the set of 

property lots located within an SA1. Stochastic models can be advantageous, especially for our 

application where precise approximations of real data are required, despite limited data 

availability (Fortin et al., 2003; Fuqua & Doty, 2012). With no spatial covariates describing the 

determinants of dwelling type location at our resolution, we base our model on the observation 

that SA1s in the study area with higher dwelling densities (number of dwellings per km2) have 

a greater number of multi-unit dwellings (Figure 4-5). This is expected given that multi-unit 

buildings feature a greater number of dwellings per floor area than detached dwellings, and is 

also consistent with local and state government urban planning strategies, preferencing high-

density dwelling types in urban areas and around transportation corridors (Bunker, 2014; 

Roberts et al., 2019). 

 

Figure 4-5: Relationship between dwelling density (number of dwellings/km2) and number of multi-unit dwellings in an 
SA1, n = 9,868. The red regression line represents a Pearson’s r correlation of 0.37 

In our approach, numbers of detached and multi-unit dwellings in an SA1 are modelled 

separately as the stochastic process 𝑋𝑇 = {𝑋𝑇(𝑙) :  𝑙 = 1,⋯ , 𝑛}; where 𝑇 is the dwelling type, 𝑛 

is the number of property lots in an SA1, and 𝑋𝑇(𝑙) is a random variable describing the number 

of dwellings in the property lot 𝑙. The random variable 𝑋𝑇(𝑙) is drawn from a probability 

distribution, which is calibrated on the underlying estimated dwelling density of property lots 

in the SA1. The following subsections describe the elements of the dwelling distribution model 

in further detail. 
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4.2.2.1. Dwelling density surface 

While data on dwelling density is available at the mesh block level, we require estimation of 

this data at the higher resolution property lot level to calibrate the stochastic process 𝑋𝑇. 

Considering the spatial hierarchy in Figure 4-4, data at the mesh block level can give a coarse 

indication of the within-SA1 variation in dwelling density. However, the within-mesh block 

variation in dwelling density is unknown. Without the within-mesh block variation 

characterised, in our approach property lots within a mesh block would have uniform 

probability of a particular number and type of dwelling. To estimate dwelling density at the 

property lot, we generated an interpolated surface of dwelling density values from the mesh 

block data over the SA1 of interest. This interpolated surface gives a smooth, non-uniform 

dwelling density estimate over the SA1, with mean dwelling density at areas along the boundary 

of mesh blocks influenced by dwelling density from adjacent mesh blocks. From this surface, 

mean dwelling density estimation for each property lot can be achieved through aggregation.  

We generated a continuous 2-dimensional dwelling density surface confined to the boundary 

of the SA1 polygon to calibrate our dwelling density model. This was performed for each SA1 

across the study area. We performed a spatial interpolation of calculated mesh block dwelling 

density using inverse distance weighted (IDW) interpolation. IDW is a deterministic and 

computationally efficient technique for generating an interpolated surface, which is especially 

advantageous in our study given the number of SA1s located within the study area (9,868 SA1s 

over an approximately 3,600km2 area). Selection of interpolation approach can be subjective, 

with no one method necessarily superior than others for a given application (Wu & Hung, 

2016). Other interpolation techniques including kriging and spline interpolation were 

considered for this work. IDW was ultimately chosen as the interpolation approach, as a lack 

of spatial covariate data at the mesh block scale and below excluded the use of kriging, and 

spline interpolation has been found to have greater computational demands with little if any 

improvement in performance over IDW (Kravchenko, 2003; Lu & Wong, 2008; Mueller et al., 

2001).  

The IDW interpolation approach estimates values at unknown points 𝑥 on the Cartesian 

surface 𝑆, in our application, a grid of points at 1m2 resolution, based on known values at 𝑁 

sample interpolation points (Shepard, 1968) (Equations 4.1 and 4.2). The 1m2 resolution was 

chosen as property lots within each SA1 are of varying shape, including complex shapes such 
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as ‘battle-axe’ blocks and others, and are generally at angles other than 90° from the centreline 

axes of the SA1. High resolution (i.e. 1m2) ensures that the estimated dwelling density surface 

can be aggregated to these complex property lot shapes and arrangements. Moreover, modern 

computing power ensures that IDW with high resolution can be performed efficiently. 

Preliminary testing with lower resolutions (e.g., 10m2 and 100m2), using an Intel machine with 

10-core 3.6 GHz processor and 32 GB of RAM, showed little difference in computation time 

and outputs compared to 1m2. Further evaluation of choice of resolution was not performed 

for this study, but could be an avenue of further research. 

For our model, sample observation points are the centroids (geometric centre) of the mesh 

blocks located within the SA1. Some mesh blocks within the study area are irregularly shaped, 

which can cause estimated centroid locations to fall outside mesh block bounds. In these cases, 

mesh block centroids are approximated using the PointOnSurface method from the rgeos library 

(Bivand & Rundel, 2020) in the R statistical computing language. 

𝒟(𝑥) = {
∑ 𝑤𝑛(𝑥)𝒟(𝑚𝑛

∗)𝑁
𝑛=1

∑ 𝑤𝑛(𝑥)𝑁
𝑛=1

if 𝑑(𝑥,𝑚𝑛
∗) ≠ 0

𝒟(𝑚𝑛
∗) if 𝑑(𝑥,𝑚𝑛

∗) = 0

4.1 

𝑤𝑛(𝑥) =  1
𝑑(𝑥,𝑚𝑛∗)𝛾 4.2 

Where 𝒟(𝑥) is the estimated dwelling density at point 𝑥 ∈ 𝑆, 𝑑(𝑥,𝑚𝑛
∗) is the Euclidean distance 

between points 𝑥 and mesh block centroids 𝑚𝑛∗ , and 𝛾 is the power parameter where higher 

values of 𝛾 give greater influence to points closer to sample observation points. 𝒟(𝑚∗) is the 

estimated dwelling density at mesh block centroid 𝑚∗ (Equation 4.3): 

𝒟(𝑚∗) =
𝑁𝐷(𝑚)
𝐴(𝑚) 4.3 

Where 𝑁𝐷(𝑚) is the known number of dwellings in mesh block 𝑚 from (ABS, 2016b, 2017), 

and 𝐴(𝑚) is the area of mesh block 𝑚 in m2. 

For the surface 𝑆, we seek a smooth surface of interpolated dwelling density values across the 

SA1. In Equation 3.2, we set 𝛾 = 2, which results in a smooth interpolated surface. As values 
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of 𝛾 increase, the resulting IDW interpolation becomes tessellated, with interpolated values 

approaching that of nearest neighbour interpolation (Bivand et al., 2013). This type of 

interpolation would result in uniform values where the surface 𝑆 overlaps with the mesh block, 

resulting in uniform property lot dwelling densities within, which would be insufficient for our 

application as previously described.  

We finally estimate the mean dwelling density per property lot from 𝑆. Let 𝑆∗ be the set of 

points in 𝑆 that lie within the intersection of property lot 𝑙 and the surface 𝑆 (i.e., 𝑆∗ = {𝑥 :  𝑥 ∈

𝑙 ∩ 𝑆}). We calculate mean dwelling density as follows (Equation 4.4): 

𝒟(𝑙) =
∑ 𝒟(𝑥)𝑥∈𝑆∗

|𝑆∗| 4.4 

Figure 4-6 illustrates the described methodology for estimating the dwelling density surface, 

and aggregated mean dwelling density per property lot for an example SA1 located in the 

Burwood LGA. The estimated dwelling surface is compared with an aerial image of the SA1, 

with multi-unit and detached dwellings confirmed visually from Google Streetview imagery 

(Google, n.d.) and highlighted. 

 

Figure 4-6: Estimated dwelling density surface for an example SA1, located in the Burwood LGA in the SMA 

4.2.2.2. Estimating dwelling counts for detached dwelling type 

We estimated the number of detached dwellings for a property lot 𝑙 in an SA1 as a random 

variable drawn from a Bernoulli distribution: 𝑋𝑑𝑒𝑡(𝑙) ∼ Ber(𝑝), where 𝑝 is the mean probability 

that 𝑋𝑑𝑒𝑡(𝑙) = 1. The Bernoulli distribution is a discrete probability distribution of a random 

variable taking a value of 0 or 1, with a value of 1 indicating in our application that a property 
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lot contains a detached dwelling. This distribution was chosen, as our application meets the 

Bernoulli distribution’s criteria, in that there are only two possible outcomes; each draw from 

the distribution is independent of other draws, and that outcomes have a fixed probability 𝑝 

of occurring. Values for 𝑝 can be determined such that the sum of expected values for 𝑋𝑑𝑒𝑡(𝑙) 

over all property lots in an SA1 equals the known number of detached dwellings in the SA1.  

We determine the value of 𝑝 indirectly for each property lot from 𝒟(𝑙) in Equation 4.4. Based 

on the distribution of estimated mean dwelling density for property lots, we determine a 

threshold range 𝜏 = [𝜏𝑚𝑖𝑛, 𝜏𝑚𝑎𝑥] that characterises the likely range of dwelling densities where 

detached dwellings are most likely. Let 𝐿𝑎 be the set of property lots in 𝐿 that have mean 

density values within 𝜏 (e.g., 𝐿𝑎 = {𝑙 :  𝒟(𝑙) ∈ 𝜏}). For this paper, we determine 𝜏 as the 

interquartile range of 𝒟(𝑙) values in 𝐿𝑎, assuming that property lots more on the tails of the 

distribution of average dwelling density values would either contain no residential properties, 

or multi-unit dwellings. We then determine 𝑝 as follows (Equation 4.5): 

𝑝 =
𝑁𝑑𝑒𝑡(𝒮)

|𝐿𝑎| 4.5 

Where 𝑁𝑑𝑒𝑡(𝒮) is the known number of detached dwellings in the SA1 𝒮. 

We assumed that property lots with average dwelling density outside of 𝜏 to have either no 

residential properties, or have multi-unit dwellings. Therefore, the number of detached 

dwellings in a property lot 𝑙 $l$ in an SA1 is then (Equation 4.6): 

𝑋𝑑𝑒𝑡(𝑙) = {∼ Ber(𝑝) if 𝑙 ∈ 𝐿𝑎

0 if 𝑙 ∉ 𝐿𝑎
4.6 

To implement the above, we use the R statistical computing language, using the base ‘stat’ 

package and spatial methods within the ‘sp’ (Bivand et al., 2013) and ‘raster’ (Hijmans, 2020) 

packages. We estimate 𝑋𝑑𝑒𝑡(𝑙) using the rbinom function in R which simulates a Binomial point 

process of the form X ∼ Binom(𝑛, 𝑘, 𝑝) (when 𝑘 = 1, the Binomial distribution is equivalent to 

the Bernoulli), where each 𝑋 ∈ X are Bernoulli random variables. We set 𝑛 as the number of 

property lots in 𝐿𝑎, with values for 𝑘 and 𝑝 described in the preceding paragraphs. As described 

in Equation 4.6, lots not within 𝐿𝑎 are given values of 0. 
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As a final step, we take the sum of estimated detached dwellings across an SA1 as �̂�𝑑𝑒𝑡(𝒮) =

∑ 𝑋𝑑𝑒𝑡(𝑙)𝑙 , and repeat the described process iteratively until �̂�𝑑𝑒𝑡(𝒮) equals the known number 

in the SA1 (𝑁𝑑𝑒𝑡(𝒮)), or until an exit condition is reached, in which case the realisation with 

�̂�𝑑𝑒𝑡(𝒮) closest to 𝑁𝑑𝑒𝑡(𝒮) is chosen. The pseudo-code in Algorithm 1 found in Appendix B.1 

describes this fitting process. 

4.2.2.3. Estimating dwelling counts for multi-unit dwelling type 

We estimated the number of multi-unit dwellings per property lot for an SA1 as a random 

variable from the Poisson distribution 𝑋𝑚𝑢𝑙(𝑙) ∼ Pois(𝜆(𝑙)), where 𝜆(𝑙) is a non-uniform 

intensity function (hence a non-homogenous process), giving the average number of dwellings 

per lot 𝑙. The Poisson distribution is a discrete probability distribution, that models the number 

of occurrences as a discrete random variable taking values {0,1,2, … } over some fixed interval 

(Haight, 1967). In our application, occurrences are the number of multi-unit dwellings located 

at a property lot. This distribution was chosen given that for multi-unit dwellings, there are >1 

dwellings located at the property lot. In our application, the distribution is truncated at values 

less than 2. The truncated Poisson distribution is useful in situations where the Poisson 

distribution is a good model for the data, but the range of possible values is restricted due to 

some external factor (in our application, this is that multi-unit dwellings have at least 2 

dwellings located at the property lot). 

We focus on the set of property lots 𝐿𝑏 that have mean dwelling density greater than 𝜏𝑚𝑎𝑧, as 

these property lots are more likely to contain multi-unit dwellings. Note that 𝐿𝑎 and 𝐿𝑏 are 

disjoint sets, and 𝐿𝑎 ∩ 𝐿𝑏 = ∅. 

We estimate 𝜆(𝑙) such that the expected (or mean) number of occurrences of multi-unit 

dwellings in 𝐿𝑏 (i.e., 𝔼[𝑁𝑚𝑢𝑙(𝐿
𝑏)]) equals the known number of multi-unit dwellings in an SA1 

(Equation 4.7): 

𝜆(𝑙) = 𝒟(𝑙) ×
𝑁𝑚𝑢𝑙(𝒮)
∑ 𝒟(𝐿)𝑙∈𝐿𝑏

4.7 

Where 𝑁𝑚𝑢𝑙(𝒮) is the number of multi-unit dwellings in an SA1 𝒮. 
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Similarly with detached dwellings, we let the number of dwellings in property lots not in 𝐿𝑏 

equal 0. The number of multi-unit dwellings for property lots in an SA1 is then given by 

(Equation 4.8): 

𝑋𝑚𝑢𝑙(𝑙) = {∼ Pois(𝜆(𝑙)) if 𝑙 ∈ 𝐿𝑏

0 if ∉ 𝐿𝑏
4.8 

𝑋𝑚𝑢𝑙(𝑙) is estimated using the rpois function in R which can simulate a Poisson point process 

of length 𝑛, equal to the number of property lots within 𝐿𝑏. Estimates for 𝑋𝑚𝑢𝑙(𝑙) go through 

a similar fitting procedure as detached dwelling estimates. This procedure is described in 

pseudo-code in Algorithm 2 found in B.2. 

4.2.3. Estimating quantities of waste generated at the property lot 

We estimated the annual quantities of household waste generated at property lots, by 

multiplying the dwelling count estimate 𝑋𝑇(𝑙) by an average rate of waste generation specific 

to dwelling type. Data on per-dwelling generation rates for each LGA in our study area can be 

calculated from the council-reported waste data described in Table 4-2. While this rate captures 

the between-LGA differences in rates of waste generation, it does not account for the 

differences in waste generation rates between detached and multi-unit dwellings, as reported 

in APC (2019), and presented in Table 4-3. Data in APC (2019) includes observed per-dwelling 

rates of waste generation for each waste fraction and dwelling type of interest for a sample of 

13 non-identified LGAs in Southern Sydney. While this data includes direct measurements of 

waste generation rates, audits were conducted over a small window of time (approximately 3 

months) therefore reported rates of waste generation may be influenced by unknown time-of-

year effects, and the sample of households surveyed was small.  

Table 4-3: Summary of surveyed per-dwelling generation rates by waste fraction and dwelling type from APC (2019) 

Dwelling type Residual fraction Dry recyclables Garden organics 
Detached dwellings [kg/hh/wk] 10.6±4 4.6±1 4.1±3 
Multi-unit dwellings [kg/hh/wk] 6.3±3 2.5±2 0.7±0.6 
Detached:multi-unit ratio (R) 1.6 1.8 6.8 
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4.2.3.1. Estimating dwelling-type specific annual rates of waste generation 

We used the ratio between the reported average detached and multi-unit dwelling generation 

rates from APC (2019), to calibrate adjusted per-dwelling generation rates by dwelling type 

from the overall council-reported annual waste generation data (NSW EPA, 2017). We did this 

for each council, such that variations in waste generation behaviours between councils as a 

result of varied socioeconomic, and other waste drivers, are implicitly accounted for. Impacts 

of within-LGA variation in socioeconomics on waste generation was not accounted for in our 

model. This was due to lack of waste generation data at scales finer than the LGA level. 

Improving the results of our model to account for variation in waste generation behaviours 

within LGAs could be achieved via sophisticated small-area estimation methods, however is 

beyond the scope of research. 

We first define for each LGA an overall per-dwelling generation rate estimate for waste 

fraction 𝑓. This simple estimate is calculated over all dwellings, and does not take into account 

dwelling types (Equation 4.9): 

𝑃𝑓 =
𝑄𝑓
𝑁 4.9 

Where 𝑃𝑓 is the simple per-dwelling waste generation rate, 𝑄 is the known quantity of waste 

generated from the LGA for waste fraction 𝑓 in 2016 from the data (NSW EPA, 2017), and 

𝑁 is the total number of dwellings in the LGA, from 2016 census data (ABS, 2016b). Given 

the differences in detached and multi-unit generation in APC (2019), total waste generation in 

an LGA can be calculated by summing detached dwelling waste, and multi-unit dwelling waste 

generated annually (Equation 4.10): 

�̂�𝑓 = ∑(𝑃𝑓,𝑇 × 𝑁𝑇)
𝑇

4.10 

Where �̂�𝑓 is the estimated waste generated, and 𝑁𝑇 are the number of dwellings of type 𝑇 in 

the LGA. As 𝑃𝑓,𝑇 is not known and must be estimated, we introduce a parameter 𝛽𝑇 to 

Equation 4.10 such that 𝑃𝑓,𝑇 can be found based on the overall dwelling generation rate 

estimate 𝑃𝑓 estimate (Equation 4.11): 
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�̂�𝑓 = ∑(𝛽𝑇𝑃𝑓 × 𝑁𝑇) = (𝛽𝑑𝑒𝑡𝑃𝑓 × 𝑁𝑑𝑒𝑡) + (𝛽𝑚𝑢𝑙𝑃𝑓 × 𝑁𝑚𝑢𝑙)
𝑇

4.11 

Values for 𝛽𝑇 in Equation 4.11 can be found via optimisation. We applied a non-linear 

constrained least squares approach (Schittkowski, 1988), by fitting 𝛽𝑇 parameters that minimise 

the squared error between the simple per-dwelling rate 𝑃𝑓 (Eq.: 4.9), and the recalculated simple 

per-dwelling rate �̂�𝑓. �̂�𝑓 is calculated based on the estimated value �̂�𝑓 in Equation 4.10 with 

estimated 𝛽𝑇 parameters: �̂�𝑓 = �̂�𝑓/𝑁, where 𝑁 is total number of dwellings in the LGA. We 

set the constraints, such that the ratio 𝑅 of the estimated dwelling type generation rates are 

equal to that in APC (2019), and that 𝛽𝑇 take only positive values greater than or equal to 0. 

We solved the optimisation problem (Equation 4.12) using the generalised reduced gradient 

method--a popular method to solve general nonlinear optimisation problems (Lasdon et al., 

1978; Maia et al., 2017), implemented using the Solver tool in the Microsoft Excel software: 

min
𝛽𝑇
(𝑃𝑓 − 𝑓(𝛽𝑇))

2
 

where 𝑓(𝛽𝑇) = �̂�𝑓 = ∑
𝛽𝑇(𝑃𝑓 × 𝑁𝑇)

𝑁𝑇
 

subject to 
𝛽𝑑𝑒𝑡 
𝛽𝑚𝑢𝑙

= 𝑅;  𝛽𝑇 ≥ 0 4.12 

Equation 4.12 was solved heuristically, with initial values for 𝛽𝑑𝑒𝑡 and 𝛽𝑚𝑢𝑙 chosen as √𝑅 and 

1/√𝑅 respectively, such that the ratio of the estimated dwelling type generation rates equals 𝑅 

in the initial solution. Estimated per-dwelling generation rates estimated for each council from 

our method can be found in B.3. 

4.2.3.2. Estimating quantities of waste generated at the property lot 

With values for �̂�𝑓,𝑇 determined from 𝛽𝑇𝑃𝑓, we estimate the total annual household waste 

generated at a property lot for waste fraction 𝑓 in LGA 𝑐 (Equation 4.13): 

�̂�𝑓,𝑐(𝑙) = ∑[�̂�𝑐,𝑓,𝑇 × 𝑋𝑇(𝑙)]
𝑇

4.13 
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We performed sensitivity analysis on selection of initial values, by varying values of 𝑅. From 

data in APC (2019), we could determine the likely range of the ratio 𝑅, based on the sample of 

13 LGAs. We estimated a minimum and a maximum value for 𝑅 from the 95% confidence 

range in APC (2019). We then calculated a range of values for �̂�𝑓,𝑐(𝑙) in Equation 4.13, based 

on [𝑅𝑚𝑖𝑛,𝑅𝑚𝑎𝑥]. Model validation is further described in the following section. 

4.2.4. Model validation 

The method for this study was developed owing to a paucity of high spatial resolution data, 

and model validation is an inherent challenge. Kontokosta et al. (2018) approach this challenge 

by comparing their building level estimates of waste generation with available data aggregated 

to lower spatial resolutions where data is more available (in that instance, New York City 

sanitation sub-sections). Goerndt et al. (2019) take a similar approach in their study estimating 

biomass availability, and so to do Cockx and Canters (2015) in their paper on improved 

dasymetric population mapping. The approach of comparing aggregated estimates against 

source data, or data available at other aggregation levels, is typical for quantitatively comparing 

spatial disaggregation procedures (European Commission, 2019; Li et al., 2007; Monteiro et 

al., 2019). 

Considering the absence of reliable validation data at the property lot level, we verified our 

model by comparing results aggregated to lower spatial resolutions where actual data is 

available. This is done under the assumption that accurate estimations of waste generation at 

aggregated spatial units would be associated with reliable estimations at the property lot level. 

To verify the dwelling distribution estimates, we first conducted a Monte-Carlo simulation by 

performing 1,000 iterations of the model as described in the previous sections. Considering 

estimated dwellings per lot is a random variable, the Monte-Carlo simulation generates a 

probability distribution of estimated dwelling counts per lot, characterising the sensitivity of 

dwelling counts to randomness in our model. We aggregate these results to the SA1 level, to 

compare actual versus estimated dwelling counts by type. We also estimate the mean absolute 

percentage error (MAPE) of SA1 aggregated dwelling estimates, to give an indication of the 

variation in accuracy across SA1s in the study area. We also present dwelling count estimates 

as a range at the 95% confidence level, to compare the actual data with the range of possible 

estimates from our model. 
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To validate the estimates of waste generated for each property lot, we also aggregate our 

property lot estimates to the LGA scale, and compare with the LGA reported waste data (NSW 

EPA, 2017). We first test for sensitivity on the estimation of the dwelling-type waste generation 

rates, by estimating minimum and maximum (at the 95% confidence interval) estimates for 

�̂�𝑓,𝑐,𝑇. Further, we combine the minimum and maximum estimates of �̂�𝑓,𝑐,𝑇 with the distribution 

of 𝑋𝑇(l) estimates generated from the Monte-Carlo simulation, to derived a 95% confidence 

range of �̂�𝑓,𝑐(𝑙) estimates, which are aggregated to the LGA level and compared to actual data. 

Similar to the dwelling estimates, we calculate MAPE values to characterise the model accuracy 

when estimates are aggregated to the LGA level. 

4.3. Results and discussion 

4.3.1. Estimation of dwelling counts at the property lot 

Figure 4-7 shows the distribution of errors when comparing mean dwelling counts with actual 

data at the SA1 level. This data is also summarised in Table 4-4. Errors in the dwelling counts 

at the SA1 level occur where the fitting procedures described (Appendices B.1 and B.2) fail to 

converge on the optimal solution (that is, estimated SA1 dwelling count is equal to actual data). 

Causes for this are generally due to inconsistencies in the data, for example where the number 

of property lots within an SA1 is less than the number of occupied dwellings. Approximately 

98% of all SA1s had prediction errors of 10% or less compared to actual detached dwelling 

count data. For multi-unit dwelling estimates, 92% of SA1s had prediction errors of 10% or 

less, indicating that model accuracy is good, and acceptable for the aims of this study. 
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Figure 4-7: Spatial distribution of estimated dwelling count errors by dwelling type at the SA1 scale, from the dwelling 
distribution model 

Table 4-4: Summary dwelling distribution estimation errors at the SA1 scale 

 No error <10% 10-20% 20-30% 30%+ 
Detached dwellings 97.70% 0.46% 0.30% 0.23% 1.31% 
Multi-unit dwellings 84.51% 7.10% 1.25% 1.04% 6.10% 

It was expected that the error for multi-unit dwellings would be greater than detached 

dwellings, due to the wider range of potential values for the random variable 𝑋𝑚𝑢𝑙(𝑙). The 

Moran's I test for spatial autocorrelation (Bivand et al., 2013) was performed on the absolute 

percentage error values for each dwelling type, revealing that errors are randomly distributed, 

indicating there is no significant systematic spatial bias in model errors (Table 4-5). 

Table 4-5: Summary of Moran's I analysis of clustering of SA1 absolute percentage values. Values of I approaching 1 
indicate clustering of observations, and values approaching -1 indicate perfect dispersion. Values around 0 indicate random 
dispersion 

 I-statistic p-value Interpretation 
Detached dwellings 0.0045 0.002 Random dispersion 
Multi-unit dwellings 0.1148 0.002 Random dispersion 

Table 4-6 shows the total number of estimated dwellings in the study area using our model, 

compared with actual dwelling counts by type from the 2016 census (ABS, 2016b). The 

estimated mean dwelling counts and range in Table 4-6 are derived from the Monte Carlo 

analysis as described in Section 4.2.4. Errors are calculated by comparing mean dwelling count 
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estimates with the actual data. The accuracy of the dwelling distribution model is good, with 

detached dwellings having a mean absolute percentage error (MAPE) value of 1.3%, and multi-

unit dwellings a value of 5.2% when aggregated to the SA1 level. The error on multi-unit 

dwellings being greater compared to detached dwellings is expected, given the additional 

modelling complexity for estimating multi-unit dwellings. However, there is a consistent 

under-estimation of dwellings for both dwelling type estimations. This can be attributed to 

cases where the fitting procedure described in Section 4.2.2 did not converge on an estimated 

dwelling count equal to actual data at the SA1 level. Reasons for non-convergence included 

cases where the underlying data is inconsistent, for example where estimated dwelling density 

calculated from mesh block data is not consistent with the expected number of multi-unit 

dwellings from the SA1 level data. 

Table 4-6: Summary dwelling distribution estimation results 

 Detached dwellings Multi-unit dwellings 
Actual (ABS, 2017) 768,709 650,863 
Estimated (mean value) 760,906 614,970 
Estimated range 760,884 – 760,928 607,640 – 622,299 
MAPE 1.32% 5.24% 

To examine dwelling distribution model results at a greater level of spatial detail, Figure 4-8 

shows dwelling count estimates for the sample local government area of Burwood. We selected 

this local government area due to its centralised location within the study area, and the fact 

that there is a mix of low-, medium- and high-density residential, and commercial land-use 

types. LGA-wide results presented on the left-hand side of Figure 4-8 are direct estimations of 

�̂�𝐷(𝑙) from the first iteration of the model performed. Three test SA1s were selected at random 

within the council area boundaries to compare estimates with aerial imagery from Google 

Maps (Google, n.d.). Areas with multi-unit developments were confirmed from Google 

Streetview and highlighted for comparison with model estimates.  

The task of manually validating estimates for SA1s is labour intensive, so a small number of 

test SA1s were selected for illustration purposes, however summary results in Figure 4-7 and 

Table 4-4indicate that results are generally consistent across the study area. Estimates of 

dwelling count standard deviation on the right side of Figure 4-8 are presented as heat maps 

derived from the 1,000 iterations of the model performed, with lighter colours indicating 

greater deviation from the mean. High standard deviation values indicate which property lots 

within each SA1 are more likely to contain multi-unit dwellings from our model. Property lots 
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with high standard deviation align well with identified multi-unit dwellings from the aerial 

imagery. Notable exceptions can be seen in test SA1 3. Differences between the aerial imagery 

and our estimates for this test SA1 can be explained by differences in the time when the aerial 

imagery which was captured (2019) compared to census data collection (2016). This was 

confirmed for test case 3 where it was observed that the actual number of multi-unit dwellings 

within the SA1 does not align with the number of multi-unit dwellings counted from Google 

Maps and Streetview, likely owing to additional dwellings being constructed between 2016 and 

2019.  

 

Figure 4-8: Illustration of property lot-scale results for the example local government area of Burwood. Aerial images correspond 
to the three sample SA1s in Burwood, with actual multi-unit dwellings highlighted. Estimates of standard deviation on property 
lot dwelling estimates are shown on the right, with light colours indicating higher standard deviation values 

4.3.2. Estimation of waste generation at the property lot 

Property lot waste generation is calculated by multiplying the estimated number of dwellings 

by type, by the estimated annual waste generation per-dwelling rates as per Equation 4.13. 

Table 4-7 shows a summary of estimated dwelling-specific annual waste generation rate for 

each fraction across all 31 LGAs, following the optimisation procedure described in Section 

4.2.3. Full estimated per-dwelling generation rates for each LGA in the study area are located 

in Appendix B.3. 
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Table 4-7: Estimated annual per-dwelling waste generation rates by dwelling type for each waste fraction 

Dwelling type Residual fraction Dry recyclables Garden waste 
Detached dwellings [t/hh/yr] 0.929±0.2 0.371±0.1 0.394±0.02 
Multi-unit dwellings [t/hh/yr] 0.551±0.1 0.202±0.04 0.05±0.1 
Detached:multi-unit dwelling ratio (R) 1.6 1.8 6.8 

Table 4-8 shows the total quantity of waste generated by fraction in the SMA compared to 

actual data (NSW EPA, 2017). SMA aggregated estimates closely align with actual data, with 

the actual reported waste generated totals falling within the range of estimates from our model 

(at the 95% confidence interval). Mean absolute percentage error is small, and is consistent 

across the three waste fractions. There is a consistent under-estimation of total waste generated 

across all LGAs in the SMA from our model. This error can be traced back to errors in dwelling 

count estimates as shown in Table 4-6, where a consistent under-estimation was also identified. 

Improvements to the dwelling distribution model, namely calibration data, and more up-to-

date spatial property lot boundary data may improve the estimates in Table 4-8. 

Table 4-8: Summary of estimated waste generated compared to actual waste generation data 

Dwelling type Residual fraction Dry recyclables Garden waste 
Actual [t/year] 1,108,845 388,040 324,738 
Estimated (mean) [t/year] 1,077,900 377,679 319,721 
Estimated range [t/year] 522,803 – 1,549,926 181,746 – 537,735 154,987 – 403,810 
MAPE 2.98% 2.76% 2.00% 

Property lot waste generation estimates for the SMA are shown in Figure 4-9. The majority of 

property lots in the SMA generated up to an estimated 2 tonnes of waste from all collected 

fractions in 2016. Areas with intense waste generation in Figure 4-9 are associated with 

property lots with high dwelling count numbers, such as those lots with high-density multi-

unit dwelling types (i.e., apartments). These results can inform future waste management 

development and planning, for example: high resolution estimates as shown in Figure 4-9 can 

inform more efficient waste collection routing; quantities of waste at properties can also be 

combined with other property-level data such as wastewater to estimate and map total 

household organic flows (e.g., in Turner et al. (2017)); useful in the planning of precinct or 

district wide organic waste management pathways. 
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Figure 4-9: Estimated annual total waste generated at the property lot level for the Sydney Metropolitan Area 

Data in Figure 4-9 is useful for identifying hot spots of waste generation. For identifying 

suitable areas for targeted waste interventions, or economically viable locations of recovery 

facilities, understanding the distribution and availability of supply over an area is important to 

determine the viability of a new facility (Comber et al., 2015; Lozano-García et al., 2020; Shi et 

al., 2008; Sliz-Szkliniarz & Vogt, 2012). This application of our results is illustrated in Figure 

4-10, which shows the total garden waste available within an arbitrary 5km collection radius 

across the study area, without consideration for land use or existing waste management 

infrastructure (left panel). The transport distance was chosen to represent a small-scale, 

district-sized recovery process, such as a composting facility. A clear ‘hot-spot’ of resource 

availability can be identified in Figure 4-10, which is highlighted in green. This garden organics 

supply area is located within the northern Sydney Ku-ring-gai council area. Figure 4-10 also 

shows this supply area in greater detail (right panel). 
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Figure 4-10: Availability of municipal garden waste within a 5km radius. An identified hot spot of garden waste is 
identified in the northern suburbs of Sydney (identified by green box), and detail of this identified hot spot is shown 

Data in this figure can be used to identify areas with the greatest resource supply to inform 

decision making around optimal locations for facilities and realistic transportation distances. 

Locations in the northern areas of the SMA have the greatest available quantities of garden 

waste in general and are ideal locations for suitable organics recovery. This is expected, as 

suburbs in this area of the SMA are well vegetated, have large property lot sizes, and have a 

high proportion of detached dwellings. The identified garden organics supply area is located 

within the northern Sydney Ku-ring-gai council area. From this analysis, there is an 

approximate annual supply of garden waste of 16,800 tonnes of garden waste per year, within 

a supply area of approximately 13km2. This feedstock availability would suit medium scale 

(approx. 20,000t/year throughput), municipal garden organics processing facility, potentially 

processing waste from adjacent council areas. 

The data shown in Figure 4-10 is illustrative of potential further applications of the model 

presented in this paper, and a more robust study on the fine scale availability of the waste 

supply, and optimal locations for economically viable recovery processes is outside the scope 

of this work. The data in Figure 4-10 does serve as an example of the capabilities of high spatial 

resolution waste estimates for informing strategic waste policy and planning. 
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4.4. Conclusion 

The aim of this research was to develop an approach to estimate high resolution waste 

generation data at the property lot level, that might be used to inform future waste management 

planning and infrastructure development. We developed a spatial model to disaggregate 

council level waste generation down to the property lot scale with a high degree of accuracy. 

The modelling approach requires modest data inputs, and enables a detailed appraisal of the 

distribution of household waste generation despite significant gaps in available data. The 

modelling framework developed in this work, and the resulting outputs, are useful for further 

studies that require high resolution waste generation data, including for example in waste 

collection planning, and optimal facility location identification. The data generated from the 

modelling presented is granular, and can be readily combined with other property-level data 

sets, for example household wastewater flows.  

This study adds to the literature on spatial estimation methods for urban waste generation, and 

on data driven waste management policy. For the first time, the approach was applied to an 

important population centre in Australia and the approach could be applied to other 

jurisdictions. Data generated from our model is accurate, and model performance can be 

improved if more up-to-date validation data becomes available. Moreover, the approach 

presented may also have value in estimating commercial and industrial waste at a fine spatial 

scale, and is worthy of further research. 
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Chapter 5.  
Waste collection and transportation emissions 

With Chapter 3 confirming spatial variability in waste generation is significant, and Chapter 4 

providing a methodology for estimating the spatial distribution of waste generation, attention 

can now be turned to estimating the emissions associated with waste management.  

As first introduced in Chapter 1, waste related emissions are poorly characterised for NSW 

and Australia in general. Studies in the waste management literature tend to rely heavily on life 

cycle analysis and generic assumptions for estimating waste related emissions. This is especially 

true for waste collection and transport emissions, where assumptions, often derived from 

unrelated locales, are relied on due to a lack of data. Considering that large transport distances 

and sprawling suburbs characterise much of the populated areas of NSW, waste collection and 

transport may make a significant contribution to the overall emissions intensity of waste 

management locally. Moreover, an understanding of collection and transport emissions is 

required to accurately account for emissions intensity over the entire waste management chain. 

This chapter is therefore concerned with addressing the following thesis research question: 

Research question 3: What are the emissions associated with kerbside organic waste 

collection and transportation? 
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The focus of this chapter is in developing a method for modelling waste collection and 

transport, from points of collection at the kerbside, to facilities along the waste management 

chain. The method developed is then applied to address research question 3, by estimating the 

collection and transportation-related emissions associated with household organic waste in the 

Greater Sydney area of NSW.  

The work presented in this chapter was published as a standalone paper in 2022, as follows: 

Madden, B., Florin, N., Mohr, S., Giurco, D. (2022). Estimating emissions from household 

organic waste collection and transportation: the case of Sydney and surrounding areas, 

Australia, Cleaner Waste Systems, 2, 100013, DOI: 10.1016/j.clwas.2022.100013. 

This chapter includes the above published paper in full, and differs from the paper published 

in the above in formatting only. The paper’s primary aim was to estimate waste collection and 

transportation emissions, and conclusions in this chapter are specific to these aims. Further 

insights drawn from this analysis in relation to the thesis research questions, are discussed in 

Chapter 8. 

5.1. Introduction 

Recent policy advancements in Australia have created an opportunity to align waste 

management and greenhouse gas (GHG) emission reduction objectives. Such policies include 

waste recovery targets (NSW EPA, 2014b, 2020a); a national target to halve food waste 

(DAWE, 2021); a circular economy decision making framework (NSW EPA, 2019b); and 

commitment to net-zero by 2050 (NSW Government, 2020). However, the contribution of 

waste management to overall emissions is poorly characterised in Australian greenhouse gas 

inventories, with only landfill emissions directly attributed (DISER, 2021b). Still, direct and 

indirect emissions occur at all points along the waste management chain, resulting from the 

consumption of energy and fuel during collection, transportation, and waste recovery. Without 

detailed understanding of these waste related emissions, it is difficult to evaluate the potential 

of waste management pathways for achieving resource recovery and emission reduction 

objectives. 
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Given the large transport distances between cities and regional centres in Australia, and also 

given the sprawling nature of Australian cities, emissions from road transport can be 

significant, contributing approximately 19% to overall national GHG emissions in 2020 

(DISER, 2021b). The proportion of this owing to the collection and transportation of kerbside 

waste is however unknown.  

Studies in the literature tend to utilise life cycle assessment (LCA) for examining waste 

transport emissions. For example, the Organic Waste Research model—ORWARE 

(Sonesson, 2000) is a life cycle-based model for estimating the fuel requirements associated 

with organic waste collection, intended to be applicable to different jurisdictions and waste 

management systems. ORWARE considers the energy consumption of collection vehicles 

during haulage and travel between bins, however it utilises default parameters relevant to 

Swedish municipalities for which the model was originally developed, limiting its applicability 

to other jurisdictions, despite it being a commonly used model (Edwards et al., 2016). Other 

more recent studies have developed region-specific emissions intensity factors for kerbside 

waste collection based on LCA, including for Taipei City, Taiwan (Chen & Lin, 2008); Aarhus, 

Denmark (Larsen et al., 2009); Ontario, Canada (Nguyen & Wilson, 2010); and South Africa 

(Friedrich & Trois, 2013). Such factors however have high variability owing to these models 

being dependent on widely varying local conditions, with emissions factors between 3 and 40 

kg CO2-e per tonne of waste reported in the literature (Friedrich & Trois, 2013). Moreover, 

variability in emissions intensity can also occur within a region, with emissions from waste 

collection typically being greater in areas with low household density (Friedrich & Trois, 2013). 

This point is particularly relevant for Australian locales, given high levels of suburban sprawl 

and variation in household densities across cities. This makes applying emission intensity 

factors to estimate emissions from waste collection for a generic region, such as Australia, 

difficult. 

A recent study by Edwards et al. (2016) sought to overcome the aforementioned limitations 

to estimate fuel requirements for separate organic waste collection for 19 local government 

areas across Australia. Waste collection vehicle activities in Edwards et al. (2016) were based 

on ORWARE to include travel to and from waste truck depots, and kerbside collection. They 

extended the modelling approach by also including energy consumption during the hydraulic 

lifting of bins during collection. Their model incorporated local spatial data in a geographical 

information system (GIS) to estimate location-specific parameters, for example, distance 

between stops. Despite these improvements, the model in Edwards et al. (2016) is still limited 
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in that it did not consider transport along existing road networks, instead relying on straight-

line Euclidean distances, and it applied simple local averages for distances between bins.  

The aim of this study is to estimate emissions associated with the collection and transportation 

of household organic waste in the Greater Sydney and surrounding areas in New South Wales, 

Australia, for the 2018-19 financial year. A spatial model was developed utilising high spatial 

resolution waste generation and road network data to estimate the emissions associated with 

kerbside collection in addition to transportation to-and-from waste transfer stations, and to 

points of waste recovery and disposal. The focus of this study is kerbside organic waste derived 

from households, which made up approximately 46% of all kerbside waste collected in New 

South Wales in 2018-19 (NSW EPA, 2020b). Organic waste is collected via three different 

pathways across the study area: separate garden organic waste collection (GO) and separate 

food and garden organic waste collection (FOGO), both destined for organics recovery via 

composting; and mixed waste, typically destined for landfill, or for recovery at alternate waste 

treatment (AWT) facilities (i.e., mechanical biological treatment). There is a current preference 

for local government areas in NSW to move towards FOGO collection to manage household 

organic waste. Therefore, this study also aimed to compare the transport emissions intensity 

associated with each collection pathway, to identify the lowest-carbon collection system for 

household organic waste diversion. 

The main contribution of this paper is in generating accurate and up-to-date emissions data 

and intensity factors for kerbside organic waste collection in New South Wales for the first 

time, which has potential application in LCA comparative analyses of different waste collection 

systems. Findings can further inform decision making towards sustainable and low-carbon 

waste management, such as in comparing the emissions intensity of different recovery 

pathways with consideration to transportation, as well as in identifying facility locations 

minimising transportation (e.g., Karadimas et al. (2007); Comber et al. (2015)); and informing 

technology selection such as fossil fuel alternatives for collection vehicles (e.g., Pastorello et al. 

(2011)). The model developed has simple data requirements, making it readily applicable to 

other jurisdictions where spatial data on road networks and property lot boundaries are 

available. 
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5.2. Study area and scope of analysis 

Figure 5-1 shows the study area for this analysis. The study area included 43 local government 

areas (LGAs) across the Sydney Metropolitan Area, Greater Western Sydney, Central Coast & 

Hunter, and the Illawarra & Shoalhaven regions, which represent the major population centres 

of NSW. These regions have a combined population of approximately 6.3 million, and 

approximately 2.3 million households (ABS, 2021). As such, the combined region is a 

significant source of household waste, generating approximately 2.2 million tonnes of waste 

across the dry recyclable, organics, and non-recyclable municipal waste fractions in 2018-19 

(NSW EPA, 2020b). 

 

Figure 5-1: Local government areas within the Greater Sydney Area in the Australian state of New South Wales 

Table 5-1 summarises LGA organic waste collection pathways employed across LGAs in the 

study area and included within scope of this analysis. GO and FOGO collections are mutually 

exclusive, however all LGAs in the study area collect mixed waste. Three LGAs did not have 

any separate organic collection services during the study time period, with the mixed waste 

fraction being the only form of organic waste collection for these LGAs. While there is a cost 
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associated with the operation of waste collection vehicles, including for example labour, 

maintenance, and fuel, cost was not considered within the scope of the analysis. Cost was 

excluded from the scope, as we are concerned with estimating a baseline performance for 

GHG emissions from waste collection and transportation only. Future work may incorporate 

operational costs in studies for improving the efficiency of waste collection routes and 

transport services.  

Table 5-1: Summary of organic waste collection pathways in the study area. Total waste collected quantities includes non-
organic waste collected (e.g., plastic, paper etc in mixed waste, and contamination in GO/FOGO) 

Organic collection 
pathway 

Number of LGAs with 
service 

Typical frequency of 
collection 

Total waste 
collected (incl. 
non-organics) 
[tonnes, 2018-19] 

Separate GO collection 35 Fortnightly 363,436 
Separate FOGO collection 5 Weekly 88,116 
Mixed waste 43 Weekly (fortnightly for 

LGAs with FOGO) 
1,298,301 

The average composition of each organic collection pathway is summarised in Table 5-2. 

Contamination rates (i.e., non-organic materials) in GO and FOGO collection bins are low, at 

2.8% and 2.2% respectively. This contamination is primarily made up of plastics, metals and 

in the case of FOGO, also non-compliant organic material such as meat (APC, 2019; Rawtec, 

2020a, 2020b). Contamination in the municipal organic stream however has been raised as a 

concern for local organics recyclers (NSW EPA, 2019a). This could indicate some 

underreporting of contamination in the available kerbside bin audit data, or that small levels 

of contamination have a significant impact on the quality of recovered organics. The average 

composition of the mixed waste stream varies depending on the level of separation via GO 

and FOGO collection, with the proportion of organic waste in mixed waste bins being highest 

in LGAs without separate collection of organics (61.3%). LGAs with FOGO collection have 

an average diversion rate for food waste of approximately 44% (Rawtec, 2020a), that is, 56% 

of all food waste generated in FOGO LGAs remains in the mixed waste bin. Analysis of the 

collection of the mixed waste stream has been included along with separate organic collection, 

as considering the high proportion of organic content in this stream, it is still a significant 

pathway for organic waste management. 
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Table 5-2: Average composition of organic waste collection pathways. Proportions shown are for the combined organic (i.e., 
food and garden waste) components only (APC, 2019; Rawtec, 2020a, 2020b) 

Collection service 
Organic waste composition of kerbside bin [%] 
Mixed waste bin Separately collected organics bin 

FOGO collection 36.3% 97.8% 
GO collection 51.0% 97.2% 
No separate organic collection 61.3% NA 

From Table 5-2, the mixed waste bin is shown to be a significant source of organic waste, 

which is primarily destined for landfills within and outside of the study area. 22 LGAs in the 

study area diverted quantities of mixed waste to AWT facilities for recovery of organic waste 

and other high-valued recyclable material (e.g., metals and rigid plastics) via mechanical 

biological treatment. Recently however, the NSW waste authority (NSW EPA) has restricted 

the use of recovered organic materials from AWT and mixed waste streams as a soil 

amendment product, owing to contaminants present in mixed waste organic outputs (NSW 

EPA, 2019a). This limits the applicability of AWT as an organic waste management pathway 

in the future. Despite this, approximately 32% of mixed waste in the study area was diverted 

to AWTs in 2018-19, at a recovery rate of 41% (NSW EPA, 2020b). Figure 5-2 shows waste 

collection service by LGA, including AWT diversion.  

 

Figure 5-2: Distribution of LGA organic waste management pathways in the study area 
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Waste is first destined for waste transfer stations and collection, where collection vehicles drop 

off waste collected on a collection route for aggregation before then being directed to recovery 

or landfill. AWT facilities, along with organic reprocessing (e.g., industrial-scale windrow 

composting) and landfills were the destinations of waste collected considered in scope for this 

analysis. Despite anaerobic digestion (AD) being a preferred recovery pathway for food waste 

given both bioenergy outputs and stabilised organic matter for soil improvement (Banks et al., 

2018), anaerobic digestion is not currently deployed at municipal scale in the study area for 

household waste, with only small amounts of commercial food waste processed via AD in the 

study area. Recovery facilities generate residual wastes from their processes due to recovery 

inefficiencies and contamination, which is also then directed to landfills from these facilities. 

Figure 5-3 shows the waste system boundary and scope of material flows along the waste 

management chain considered for this analysis. The figure also shows the sources of emissions 

considered in scope for the analysis, computed as carbon dioxide equivalent (tonnes CO2-e). 

 

Figure 5-3: Waste management system and sources of emissions in scope 

Locations for waste infrastructure were based on data in the national Waste Infrastructure 

Database – 2017 (Geoscience Australia, 2020), and in NSW LGA Waste avoidance and resource 

recovery data reports (NSW EPA, 2020b). Figure 5-4 shows a map of infrastructure locations in 

scope for this analysis. 
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Figure 5-4: Waste management infrastructure in the study area 

5.3. Methodology 

Analyses of waste management systems using spatial data and geographical information 

systems (GIS) are common in the literature (Singh, 2019), and have been applied for: 

identifying optimal locations for landfills and other facilities (Aguilar et al., 2018; Eghtesadifard 

et al., 2020; Lin et al., 2020; Yadav et al., 2018); service area planning (Hatamleh et al., 2020; 

Tanguy et al., 2017); and small-area estimation of waste generation (Kontokosta et al., 2018; 

Liu et al., 2022; Madden et al., 2021; Yazdani et al., 2021). Models utilising spatial data also 

have a diverse range of applications in the evaluation of waste transport flows. For example, 

Son (2014) applied a novel optimisation approach within a GIS-based environment to 

determine optimal collection routes for tricycle waste collection in Danang city, Viet Nam. 

Lella et al. (2017) utilised GIS to identify optimal collection routes for solid waste collection 

and disposal in a proposed smart city in India. Utilising road network data, the authors applied 

network analysis to identify the shortest routes between proposed transfer stations and 

collection points.  
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In Vu et al. (2019), the authors applied predictive forecasting of weekly waste generation rates 

with GIS to analyse the impact of waste characteristics on collection route optimisation in the 

city of Austin, Texas, USA. The authors used network analysis applied using GIS to solve a 

vehicle routing problem (VRP)—a generalisation of the classic travelling salesman problem 

(TSP), whereby solutions were the shortest routes travelled by waste collection vehicles, with 

constraints such as maximum travel distance and maximum collection time applied. The basic 

concept of VRPs are to find least cost travel routes from a starting location to service a set of 

demand points, and then return to the starting location (Du & He, 2012; Hannan et al., 2018). 

Where vehicle capacity is considered, the problem becomes the capacitated vehicle routing 

problem, or CVRP, which has particular relevance for evaluating waste collection. Hannan et 

al. (2018) applied CVRP in the optimisation of waste collection routes to minimise drive time, 

drive cost, and environmental impacts, solved via particle swarm optimisation (PSO). Akhtar 

et al. (2017) solved a CVRP using a backtracking search algorithm in the optimisation of fuel 

usage and GHG emissions from waste collection. Otoo et al. (2014) solved a CVRP using a 

cluster-first-route-second algorithm in a GIS for finding the lowest cost waste collection 

routes. Karadimas et al. (2007) also used GIS to solve a CVRP via genetic algorithm to identify 

cost savings through optimising waste collection routes.  

Indeed, the application of CVRP for evaluating waste collection is wide, and the choice of 

solution methodology is numerous. Mojtahedi et al. (2021) gives a comprehensive review of 

VRPs more generally including solution methodologies in the context of waste management. 

Despite the wide application of the VRP and its variants in waste management, it is noteworthy 

that case studies from the literature are generally at the city scale or smaller.  

The approach developed for this study estimated emissions associated with the collection of 

kerbside GO, FOGO and mixed waste by solving a CVRP for the Greater Sydney and 

surrounding area—a combined area of approximately 20,000km2. The modelling approach 

developed utilised high spatial resolution household waste data derived in Madden et al. (2021), 

waste infrastructure data from Geoscience Australia (2020), and road network data from the 

NSW Digital Cadastral Database (DFSI, 2012), integrated with GIS. Our approach extends 

the work in Edwards et al. (2016) and Sonesson (2000) by utilising higher resolution data to 

estimate transport flows with greater resolution (for example, between bin distances); and by 

broadening the scope to also include emissions from transport to waste recovery facilities and 

landfills. 
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Figure 5-5 gives an overview of the methodological approach. There were two key components 

of the model. The waste collection and transport model was used to estimate organic waste collection 

distances, achieved by solving a CVRP using a nearest neighbour search algorithm for waste 

collection services in each LGA in the study area. Furthermore, waste infrastructure data 

representing waste recovery facilities and landfills were also integrated with road network data 

to estimate the flows of waste between facility types as a simpler shortest-path problem, solved 

using Dijkstra’s algorithm (Dijkstra, 1959)—a classic algorithm for finding shortest paths on a 

graph/network. Outputs from the waste collection and transport model were coupled with vehicle 

data from the literature in a transport energy analysis to estimate fuel consumption and emissions 

from waste collection and transportation for each kerbside service across all 43 LGAs. The 

following sections describe our approach in further detail. 

 

Figure 5-5: Overview of the methodological approach for this study. The approach is applied for each local government area in 
the study area Figure 5-1 

5.3.1. Waste collection and transport model 

Figure 5-6 gives an overview of the waste collection and transport model, showing the transport 

flows estimated for each LGA in the study area. Two high-level modes of transport were 

considered for each waste collection service: kerbside collection, which included the traversal 

of roads along a collection route (i.e., the collection zone) and the servicing of individual 

property lots within (i.e., the between bin travel); and recovery and disposal transfer, which 

included transport of aggregated waste from transfer stations to recovery facilities and landfills, 

and the transport of residual wastes from recovery facilities to landfills. Estimated travel 
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 Figure 5-7 gives an overview of the collection zone traversal component, which is performed 

on an LGA-basis for each waste stream and transfer station servicing the LGA. Figure 5-8 

gives an overview of between bin travel, applied to all neighbourhood blocks within an LGA. 

Both components when summed give the overall kerbside collection distance. The estimation 

approach is explained in further detail in the following paragraphs. 

 

 

Figure 5-7: Overview of the approach used for estimating collection zone traversal in the kerbside collection component of the 
waste collection and transport model 
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Figure 5-8: Overview of the approach used for estimating the between-bin collection travel in the kerbside collection component 
of the waste collection and transport model 

Kerbside collection distances were estimated for each LGA separately. We first generated the 

set of neighbourhood ‘blocks’ for each LGA by merging contiguous property lots within an 

LGA together, bounded by adjacent roads on the road network. Each neighbourhood block 

consisted of at least one property lot occupied by a residential dwelling, with an expected 

amount of waste generated 𝑤 > 0 per waste service collection interval. The number of bins to 

be collected within a block was equal to the number of dwellings, assuming that each dwelling 

within a property lot had exactly one bin per waste collection service. In the case of multi-unit 

dwellings located within a property lot, the number of bins was assumed to equal the number 

of dwellings. While some multi-unit buildings may have larger bin systems servicing multiple 

individual dwellings, data on this was unavailable during the time of this study. Collection 

vehicles were assumed to make a single trip to a multi-unit building on a collection route 

(except where the total waste generated in a building exceeds the assumed capacity of the 

vehicle, then the number of trips equal ⌈𝑤/ 𝐶⌉ where 𝐶 is the truck capacity). Therefore regardless 

of the bin system employed, the transport requirements (i.e., collection zone traversal and between-bin 

distance) are the same. The difference however does lie in the hydraulic lifting of bins to the waste 

vehicle receptacle. Energy efficiency of the hydraulic operation is likely greater for large bin systems 

compared to smaller sized bins for an equal quantity of waste, however data on this is limited. Section 

5.3.2 describes the energy requirements of bin collection in greater detail.  

Neighbourhood blocks within an LGA were assumed to be serviced by the nearest transfer 

station, which were also the assumed waste collection vehicle depot locations. This is a 

simplification, and allocation of a transfer station to a collection zone can also be dependent 

on the waste type, and contracts between local councils and waste managers. As transfer 
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stations are distributed across the study area, some LGAs were assumed to be serviced by 

multiple transfer stations. The CVRP for an LGA was then solved iteratively for each transfer 

station and corresponding set of neighbourhood blocks serviced. 

First, 𝐵𝑚 = {𝑏𝑚,𝑖} is defined as the set of neighbourhood blocks in an LGA nearest to transfer 

station 𝑚, with 0 < 𝑤 ≤ 𝐶, where 𝐶 = 5 tonnes was the assumed capacity of a collection vehicle, 

from Edwards et al. (2016). The estimation of kerbside collection for neighbourhood blocks 

with weekly waste generation greater than truck capacity (for example, where there are a large 

number of multi-unit dwellings) was simplified by assuming that collection vehicles travel 

directly to the neighbourhood block from the transfer station and back again via the shortest 

path. In these instances, distance travelled for collection was the length of this shortest path, 

multiplied by the number of collection vehicles required to service the neighbourhood block. 

This same approach was also applied where individual property lots had expected waste 

generated greater than 𝐶, for example, where large apartment complexes were located. Once 

transport distances were estimated for these property lots and neighbourhood blocks where 

𝑤 > 𝐶, they were removed from the following analysis to ensure collection from these locations 

were not counted twice.  

For all other neighbourhood blocks with 0 < 𝑤 ≤ 𝐶, we estimated collection distance by solving 

a CVRP. The objective of the CVRP in our application was to find the optimal collection 

routes that minimise total travel distance between collection points and transfer station subject 

to constraints. The CVRP was defined on the undirected graph 𝐺 = (𝑉,𝐸), where 𝑉 = {𝑣𝑖} is 

the vertex set representing locations visited by collection vehicles, and 𝐸 = {(𝑣𝑖, 𝑣𝑗) ∶ 𝑣𝑖, 𝑣𝑗  ∈ 𝑉} 

is the set of edges between vertices, representing the traversal of roads between locations. The 

initial vertex 𝑖 = 0 represents transfer station 𝑚, where 𝐾 waste collection vehicles begin and 

end their journeys. Vertices 𝑖 = 1, … , 𝑛 correspond to the neighbourhood blocks 𝑏𝑚,𝑖, … , 𝑏𝑚,𝑛 

where collection of bins takes place. A collection route is then a sequence of vertices 

(𝑣𝑖, 𝑣𝑖+1, … , 𝑣𝑛), where 𝑣𝑖 is adjacent to 𝑣𝑖+1, and travel distance over the whole route is minimised. 

The symmetrical matrix 𝐷 = [𝑑𝑖,𝑗] corresponds to the non-negative travel distance along each 

edge (𝑣𝑖, 𝑣𝑗), computed as the shortest road travel distance between locations. This is computed 

as the shortest travel distance along roads between locations, found using Dijkstra’s shortest 

path algorithm (Dijkstra, 1959) evaluated using the cadastral road network data. Cartesian 

coordinates of the transfer station and neighbourhood block centroids were mapped to 

positions on the road network by finding the nearest point on the road network perpendicular 
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to 𝑣𝑖, using the method in Lu et al. (2018), implemented using the points2network function from 

the shp2graph library in the R statistical computing language. (see Appendix C.1 for a summary 

of this method). The decision variables of the CVRP model are as follows (Equations. 5.1 and 

5.2): 

𝑋𝑖,𝑗,𝑘 = {1, if vehicle 𝑘 travels from location 𝑖 to 𝑗
0, otherwise

(5.1) 

𝑌𝑖,𝑘 = {1, if location 𝑖 is visited by vehicle 𝑘
0, otherwise

(5.2) 

The objective function of the CVRP is then to minimise the total travel distance of all waste 

collection vehicle routes visiting collection points to and from transfer stations as follows 

(Equation 5.3): 

minimise 𝑍 = ∑∑∑𝑑𝑖,𝑗𝑋𝑖,𝑗,𝑘
𝐾

𝑘=1

𝑛

𝑗=0

𝑛

𝑖=0
(5.3) 

 Subject to the following constraints: 

- All waste collection vehicles begin their routes from transfer stations with no load 

- Each location (neighbourhood block) with waste generation 0 < 𝑤 ≤ 𝐶 is serviced by a 

single waste collection vehicle 

- Collection vehicles must collect all waste generated at a location 

- Collection vehicles visiting a location must also depart from that location 

- Waste collected on a route must not exceed the truck capacity (5 tonnes) 

- Collection vehicles must return to the transfer station after visiting the final collection 

point on a route 

- Travel distance between two vertices are the same in either direction (i.e., edge distance 

between two given vertices are symmetrical)  
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The above constraints are expressed mathematically in Appendix C.2. An additional 

assumption is also made, in that there are no time restrictions imposed. To solve the CVRP, 

we used the nearest neighbour algorithm—a greedy search algorithm that attempts to find the 

optimal solution by first selecting a random starting location 𝑖 ≠ 0, and building a route by 

adding locations nearest the randomised starting location, given the constraints in Equations 

(5.4) to (5.11). The algorithm is performed over a large number of iterations (10,000) using the 

R Statistical Computing language (R Core Team, 2020), with overall route distance evaluated for 

each iteration. The optimal collection route is updated for instances resulting in a shorter 

overall route distance. The nearest neighbour algorithm has been used to solve VRPs 

previously in the literature for its simplicity and ease of implementation, especially for large-

scale problems (Du & He, 2012; Faccio et al., 2011; Kulkarni et al., 2014).  

Outputs from this process were the most optimal collection routes to and from a transfer 

station 𝑚, given as a sequence of vertices (𝑣𝑖, 𝑣𝑖+1, … , 𝑣𝑛), with distance travelled given by the 

edge weight between vertices, i.e., 𝑑(𝑣𝑖, 𝑣𝑖+1). This sequence was decomposed into unladen 

haulage (travel from the transfer station vertex to the first vertex of a collection route); laden 

haulage (travel from the last vertex of a collection route back to the transfer station); and 

collection zone traversal as the remaining vertices of the sequence. We then summed the 

distances for each component for all waste collection services and transfer stations that service 

the LGA to determine the total collection zone traversal and haulage distances for an LGA 

(Eq. 5.4): 

𝑍𝑙
ℎ =  ∑∑𝑍𝑚,𝑠

ℎ

𝑥𝑚
(5.4) 

Where 𝑙 ∈ 𝐿 is an LGA in the study area, and 𝑠 ∈ 𝑆 are the collection services active in the LGA, 

and ℎ are the estimated transport components, i.e. ℎ ∈ {𝑢𝑛𝑙𝑎𝑑𝑒𝑛, 𝑡𝑟𝑎𝑣𝑒𝑟𝑠𝑎𝑙, 𝑙𝑎𝑑𝑒𝑛}.  

For the between bin travel distance, we found the point perpendicular to the nearest road 

segment for each property lot in a neighbourhood block, and then calculated the distance 

travelled along the adjacent road between these points, as visualised in Figure 5-7. The method 

in Lu et al. (2018) implemented using the R library shp2graph (Lu et al., 2018) was employed, 

which maps points of interest (i.e., property lots) to the graph representing road vertices and 

road edges. We then summed these distances calculated for each neighbourhood block in an 

LGA to derive the total LGA between bin travel distance for a given waste service.  
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Final kerbside collection distance for an LGA on which carbon emissions were estimated was 

the combination of collection zone traversal and between bin travel distances (Equation 5.5): 

𝑍𝑙
𝑘𝑒𝑟𝑏𝑠𝑖𝑑𝑒 = 𝑍𝑙

𝑙𝑎𝑑𝑒𝑛 + 𝑍𝑙
𝑡𝑟𝑎𝑣𝑒𝑟𝑠𝑎𝑙 + 𝑍𝑙

𝑏𝑒𝑡𝑤𝑒𝑒𝑛−𝑏𝑖𝑛 + 𝑍𝑙
𝑙𝑎𝑑𝑒𝑛 (5.5) 

5.3.1.2. Estimating recovery and disposal transfer distances 

Distances travelled for recovery and disposal transfer were estimated by solving the simpler 

shortest-path problem on the road network data, and locations of waste infrastructure in 

Geoscience Australia (2020) using Dijkstra’s algorithm. Dijkstra’s algorithm performs by 

calculating the distance between a starting vertex on a graph, and all other vertices. The shortest 

path from the starting vertex to a destination vertex is then determined by finding the path 

that minimises the total length between the starting and destination vertices. While the shortest 

route may not necessarily be the fastest route, which is more likely to be the optimal routing 

from a transport planning perspective, data was not available to calibrate the model to account 

for road speed limits. This is a limitation with this work, however minimising transport distance 

is commonly applied in the literature for identifying optimal (e.g., Hannan et al. 2018; Vu et 

al., 2019). Further analysis to incorporate speed limits to evaluate fastest vs. shortest routes is 

an avenue for future work. 

We calculated transport distances for five separate facility pairings: transfer station to 

composter; transfer station to AWT; transfer station to landfill; composter to landfill, and; 

AWT to landfill. Destination facilities were assigned to source facilities for each pairing based 

on proximity (e.g., the nearest composter to a transfer station). The exception to this was 

transfer station to AWT, where destination AWT facilities were assigned to transfer stations 

that service LGAs sending mixed waste to AWTs from the data (NSW EPA, 2020b). Road 

travel distance was calculated for each pairing from source location to destination location, 

mapped to the graph representing road vertices and road edges via the method in Lu et al. 

(2018), with the shortest path between facilities found using Dijkstra’s algorithm (Equation 

5.6): 

𝑍𝜏 = (∑𝑑𝑖𝑠𝑡(𝑖, 𝑗) 𝑥𝑖,𝑗
𝑖,𝑗∈𝜏

) × 𝐾𝑖,𝑗 (5.6) 

Where 𝜏 is the given facility pairing, 𝑑𝑖𝑠𝑡(𝑖, 𝑗) is the length of edge (𝑖, 𝑗) between facilities, and 

𝑥𝑖,𝑗 is the decision variable, taking a value of 1 if the edge (𝑖, 𝑗) is on the shortest path. 𝐾𝑖,𝑗 is 
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the number of trucks required to transport aggregated waste between locations 𝑖 and 𝑗, and is 

calculated from 𝑞𝑖,𝑗′ /𝐶2, where 𝑞𝑖,𝑗′  is the total amount of waste to be transported from facility 𝑖 

to facility 𝑗 during a collection service interval, and 𝐶2 = 15 tonnes is the transport truck 

capacity. Compaction of aggregated waste material, and a larger truck size compared to waste 

collection, equivalent to a 3-axle, 22.5 tonne gross vehicle mass rigid truck (NSW RMS, 2019) 

was assumed for 𝐶2. We attributed distance between facility pairings to individual LGAs by 

calculating the proportion of waste transported between facilities that was derived from each 

LGA. 

It was assumed that LGAs sending mixed waste to the Woodlawn AWT facility (located 

approximately 190km outside the Sydney CBD) did so via rail, with waste first being 

transferred to the Clyde Transfer Station, located in the Parramatta LGA (Veolia, 2022). 

Distances between nearest transfer station to the Clyde Transfer Station were calculated as 

described as above. Distance travelled by rail was calculated between the Clyde Transfer 

Station and Woodlawn AWTs, assuming weekly transfer of AWT destined mixed waste.  

5.3.2. Transport energy analysis 

The transport energy analysis estimated the emissions from waste collection and transport, 

following the approach and parameters applied in Edwards et al. (2016), which was based on 

truck activity. These activities were: i) unladen haulage from transfer station to the first 

collection point on a collection route; ii) ‘stop-go’ travel between bins; iii) bin-lifting (i.e., 

emptying of bins into truck receptacle via hydraulic lifting arm); iv) laden haulage back to the 

transfer station, and; v) laden haulage between facilities. Hydraulic lifting systems are standard 

practice for waste collection vehicles in the study area, which ensure worker safety and 

efficiency in loading waste into the vehicle receptacle. It was assumed that all collection 

vehicles employed utilised the same technology. 

Table 5-3 lists the parameters used in the model. Estimated distances (km) for a given activity 

were divided by the corresponding truck speed (km/h) for that activity (based on LGA 

classification as metropolitan/metropolitan-fringe, or regional in NSW OLG (2020), and 

multiplied by the energy intensity (MJ/s) to calculate energy requirements in megajoules. From 

this, diesel fuel consumption (L) and associated emissions (t CO2-e) were estimated, based on 

average CO2-e emissions for diesel combustion by rigid trucks in National Transport 
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Commission (2019). Fuel type was consistent with data in ABS (2020) showing 99.8% of the 

Australian truck fleet consuming diesel fuel in the study period. Proportion of highway travel 

for haulage and transport between facilities was determined from the cadastral road data 

(DFSI, 2012). For energy requirements and fuel consumption for bin-lifts, it was assumed that 

the number of bins per property lot at a collection point was equal to the number of dwellings 

in that property lot.  

Estimated fuel consumption for facility-to-facility haulage of aggregated waste was calculated 

for each LGA, based on the proportion of waste derived from an LGA. To illustrate, if 10% 

of waste at a transfer station was derived from LGA1, then 10% of the fuel consumption 

associated with facility-to-facility haulage was associated with that LGA. For rail transfer of 

AWT destined waste, a standard diesel-electric locomotive operating at 5,000 horsepower was 

assumed, based on the Australian Transport Assessment and Planning Guidelines (Transport 

and Infrastructure Council, 2020). 

Table 5-3: Parameters used for modelling fuel consumption of waste collection and transport vehicles. All parameters values 
taken from values derived from Edwards et al. (2016) unless where stated 

Parameter Value [unit] Description 
Average time per bin-lift 8.27 [seconds] Average time for collection vehicle to lift a bin using hydraulic 

lifting arm 
Average speed - bin 
collection (urban) 

7 [km/hr] Average speed during bin collection (between bin travel) for 
urban LGAs 

Average speed – bin 
collection (peri-urban) 

9 [km/hr] Average speed during bin collection for peri-urban LGAs 

Average speed – haulage 
(urban) 

35 [km/hr] Average speed for laden/unladen haulage (collection zone 
traversal, and facility-to-facility transfer) for urban LGAs 

Average speed – haulage 
(peri-urban) 

40 [km/hr] Average speed for laden/unladen haulage for peri-urban LGAs 

Average speed – haulage 
(highway) 

82 [km/hr] Average speed for laden/unladen haulage along highways 

CO2-equivalent emissions 
from diesel 

0.0027 
[tonnes/L] 

Average CO2 equivalent emissions per litre of diesel fuel 
combusted (National Transport Commission, 2019) 

Energy from diesel 39 [MJ/L] Energy content of diesel fuel 
Energy during bin lift 0.1 [MJ/s] Amount of energy consumed by the hydraulic lift per bin lift 
Energy during laden haul 
(urban/peri-urban) 

0.176 [MJ/s] Energy consumed whilst driving laden along roads urban/peri-
urban LGAs 

Energy during unladen haul 
(urban/peri-urban) 

0.035 [MJ/s] Energy consumed whilst driving unladen along roads 
urban/peri-urban LGAs 

Energy during laden haul 
(highway) 

0.450 [MJ/s] Energy consumed whilst driving laden along highways 

Energy during unladen haul 
(highway) 

0.183 [MJ/s] Energy consumed whilst driving unladen along highways 

Energy during kerbside bin 
collection 

0.176 [MJ/s] Energy consumed whilst moving between bin collection 
locations (between bin travel) 

Diesel consumption per 
kilometer (freight rail) 

7.5 [L/km] Diesel consumption per locomotive kilometre for diesel-
electric freight locomotives. From (Transport and 
Infrastructure Council, 2020) 
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5.3.3. Model validation 

A sensitivity analysis was performed to test the robustness of emissions estimates given 

variation in key model variables. Variables chosen for evaluation were the selection of kerbside 

collection routes, given the stochastic nature of the nearest neighbour solution algorithm;  

waste transport truck capacity, where the actual size of transport trucks was unknown; and 

waste generation rates. 

To test the sensitivity of emissions on kerbside collection routes, we performed 10,000 

iterations of the CVRP solution algorithm for 3 LGAs selected from each LGA category from 

NSW Office of Local Government (2020) (i.e., metropolitan, metropolitan-fringe, and 

regional). The average coefficients of variation (CV) for each LGA category were computed, 

and used to estimate CVs on kerbside emissions for each LGA in the study area. This was 

done due to the large computation times necessary to perform iterations of the CVRP solution 

algorithm for a single LGA.  

To test sensitivity of emissions on transport truck sizes, we estimated overall emissions based 

on candidate truck sizes in NSW RMS (2019) and Strandgard et al. (2021), assuming either 2-

axle rigid, 3-axle rigid (the nominal transport truck size), and semi-trailer, at assumed load 

weights of 10, 15, 26 tonnes respectively. 

To test sensitivity of emissions on variations in waste generation, we performed the model 

with waste generation rates perturbed by ±20%, and compared against baseline estimates. 

Sensitivity of overall emissions given percentage-variation in kerbside collection routes, 

transport truck sizes and waste generation, were then evaluated by comparing the percentage 

change in emissions, after Acevedo (2013). 

A further unknown in our model was the assignment of landfill locations to transfer stations 

and recovery distances based on proximity. It is possible that some jurisdictions and 

transfer/recovery facilities may have agreements with particular landfill sites, and that capacity 

limits at landfills may lead to non-proximal landfill sites being the destination of disposed 

waste. To explore this uncertainty on the model results, the disposal transfer distance 

component waste computed, based on randomly assigned landfill facilities in a simulation with 

1,000 iterations. Landfills locations were selected randomly from a weighed sample, with 

landfills in closer proximity to transfer stations and recovery facilities more likely to be selected.  
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Considering a lack of actual data on waste transport logistics and emissions, validating the 

accuracy of modelling results is difficult, and is a limitation of this work. To evaluate the 

accuracy of the model, outputs were compared against available data from the literature. This 

validation included for example, comparison against waste transport distances per litre of fuel 

consumption in Agar et al. (2007) and Larsen et al. (2009); litres of fuel consumed per tonne 

of waste transported in Nguyen and Wilson (2010), Quintili and Castellani (2020), and Jaunich 

et al. (2016); and emissions intensity per tonne of waste collected from LCA studies 

summarised in Friedrich and Trois (2013). An avenue of future research related to this work 

could include the collection of actual waste collection and transport data. Such data collection 

would most likely involve collaboration with both local governments as well as waste collection 

service providers. 

5.4. Results and discussion 

5.4.1. Kerbside collection and facility-to-facility distances travelled, and 
fuel consumer 

Table 5-4 summarises overall distances travelled by waste collection and transport vehicles in 

the study area for each waste stream (used to estimate transport emissions reported in Section 

3.2). Figure 5-9 shows the breakdown of collection and transport distances by component, and 

by waste stream. Overall, approximately 18 million kilometres were travelled for the 

management of organic wastes in the study area in 2018-19 by road and rail, equivalent to 

approximately 694 times around the Earth. Distance travelled by rail were small, at 

approximately 25,000 km, or 0.1% of total distances travelled in 2018-19. Considering that 

waste transported by rail makes up approximately 7% of total residual waste managed, rail 

transport is unsurprisingly the most efficient form of waste transportation.  

The average distance travelled per LGA ranged between 208,000 km/year to 1.3 million 

km/year, with a mean distance of approximately 370,000 km/year travelled. Appendix C.3 

gives a breakdown of average distances travelled by LGAs. The overall intensity of transport 

per tonne of waste generated across the streams considered was 10.17 km/tonne. The mixed 

waste stream had the highest transport requirements, accounting for 72% of total mileage. 

FOGO waste had the lowest transport requirements at 6.2% of total mileage, expected given 
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that FOGO waste collection accounts for only 4.9% of total waste collections. Intensity of 

transport was highest for the FOGO waste stream, at 12.7 km/tonne, reflecting the large 

distances travelled for collection, and the relatively small quantities of FOGO waste collected. 

The mixed waste stream had the lowest intensity at 9.8 km/tonne, which illustrates the efficient 

location-allocation of mixed waste management facilities, with landfills, AWT facilities and 

transfer stations located within close proximity with eachother. The exception to this is the 

Woodlawn AWT facility, however transfer of mixed waste via rail is much more efficient 

compared to road freight on a tonnes-kilometer basis (5.2 tonnes-kilometer for road compared 

to 0.26 tonnes-kilometer for rail). 

Table 5-4: Summary of estimated annual distances travelled by waste collection and transportation vehicles for the 
management of organic waste in the study area for 2018-19 

 Total distance 
travelled 
[km/year] 

Distance 
travelled – GO 
waste 
[km/year] 

Distance 
travelled – 
FOGO waste 
[km/year] 

Distance 
travelled – 
Mixed waste 
[km/year] 

Total kerbside collection 14,028,217 3,428,644 892,603 9,706,971 
Collection zone haulage (unladen)  4,070,921 909,816 206,055 2,955,050 
Collection zone traversal 1,736,337 471,109 143,288 1,121,940 
Bin pickup 4,286,622 1,172,764 347,231 2,766,628 
Collection zone haulage (laden) 3,934,338 874,956 196,029 2,863,353 
Total recovery transfer (incl. return) 2,393,477 521,116 201,815 1,670,546 
Transfer station to composters 722,930 521,116 201,815 0 
Transfer station to AWTs (road) 1,645,504 0 0 1,645,504 
Transfer station to AWTs (rail) 25,042 0 0 25,042 
Total disposal transfer (incl. return) 1,405,319 10,000 3,440 1,391,878 
Transfer station to landfills 976,060 0 0 976,060 
Composters to landfills 13,441 10,000 3,440 0 
AWTs to landfills 415,817 0 0 415,817 
Total  17,827,013        3,959,760       1,097,858    12,769,395  
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Figure 5-9: Breakdown of waste collection and transport distance by waste stream, and waste component 

Kerbside collection contributed the most to overall distances travelled by waste management 

vehicles, accounting for approximately 79% of total mileage. There was a large variance on 

LGA kerbside collection mileages, ranging from approximately 68,000km/year to 

570,000km/year. Such variance is expected, given LGA sizes range from approximately 6km2 

to 2,800km2, and number of households per LGA ranging between 16,000 to 97,000. Larger 

LGAs typically saw greater kerbside collection distances than smaller LGAs, however this 

effect was most evident in metropolitan LGAs, where LGA size is smaller compared to 

regional LGAs. Larger, more regional LGAs with less urban development (for example 

Wingecarribee, Blue Mountains), are characterised by large proportions of national parks and 

primary produce land, with most residential dwellings located in smaller, less distributed parts 

of these LGAs. Indeed, the total number of dwellings was a stronger indicator of total kerbside 

collection distance, with total distances travelled by collection vehicles increasing by 

approximately 5km for every occupied household in an LGA. Average kerbside collection 

distance per dwelling ranged from between approximately 3km/dwelling to 10km/dwelling. 

Dwelling density and dwelling type, and their impact on transport emissions are discussed 

further in the following section.  

A total number of 409,970 waste collection vehicle trips were required to service all households 

in the study area for 2018-19. Mixed waste collection required the greatest number of truck 

trips at 288,938, which is expected given that all LGAs in the study area have mixed waste 

collection services. FOGO waste collection had the fewest number of vehicle trips in 2018-
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19, at 19,864, with only 5 LGAs having FOGO collection services. GO collection required 

101,168 trips. 

Of the kerbside collection travel components summarised in Table 5-4, bin pickup was 

responsible for the greatest mileage. Table 5-5 shows the average between-bin distances for 

LGAs by regional classification from NSW OLG (2020). The average between-bin distance 

for all LGAs was approximately 44 metres, with the metropolitan LGA average being 

approximately 30 metres. Metropolitan-fringe and regional LGAs had similar between-bin 

distances of approximately 62 metres and 64 metres respectively. Between bin distances are 

not reported in Edwards et al. (2016), despite the authors noting that this variable is crucial for 

modelling fuel consumption for waste collection. Edwards et al. (2016) does however refer to 

between bin distances of 20-110 meters used in other studies for urban locales. 

Table 5-5: Estimated average distance between collection points (i.e., bins) by LGA classification from NSW OLG (2020) 

 Average distance between 
collection points [m] (St.dev.) 

All LGAs 43.88 (32.23) 
Metropolitan LGAs 30.17 (6.85) 
Metropolitan-fringe LGAs 61.58 (35.59) 
Regional LGAs 64.25 (12.73) 

Total recovery transfer distances were approximately 2.4 million km/year, including 25,000 

km via rail. LGA variance was also high for this component, with average mileage ranging 

from 5,000 km/year to 136,000 km/year. This can mostly be attributed to AWT transfer. 

Notably, AWT transfer intensity on a km/t basis was significantly greater than compost 

transfer, at an average of 5.2 km/tonne compared to 1.6 km/tonne. 

Landfill disposal transfer made the smallest contribution to overall waste transport distances, 

at approximately 1.4 million km/year. LGA variance on disposal transfer was relatively small, 

between 6,400 km/year and 72,000 km/year. Landfills were generally located in proximity to 

transfer stations and recovery stations, whereas recovery facilities were more dispersed across 

the study area. This is indicated by the average transport intensity for disposal of 1.3 

km/tonnes, with a range of between 0.4—2.3 km/tonne.  

Table 5-6 shows estimated fuel consumption for waste collection and transport. Supporting 

Information D gives a breakdown on LGA average fuel consumption. Overall, approximately 

16,300,000 litres of diesel fuel was consumed in 2018-19 for organic waste collection and 
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transportation, with approximately 25,000 litres consumed via rail transport. This is compared 

to a combined 661 million litres of diesel fuel consumption for rigid, articulated, and non-

freight carrying trucks in NSW for the 2018-19 period (ABS, 2020).  

Kerbside collection was responsible for approximately 88.6% of all fuel consumed and 

therefore is a significant contributor to emissions, and also had the highest fuel intensities, at 

8.23 L/tonne waste managed, and 1.03 L/km travelled. Recovery transfer to AWT facilities 

(via road) also had high fuel intensity on a fuel consumed per tonne of waste managed basis 

compared to recovery transfer to compost facilities. Bin pickup was the most fuel intensive 

component of kerbside collection, which included both stop-and-go travel at low speeds 

between collection points, and the lifting of bins into the vehicle receptacle using a hydraulic 

lifting arm. Stop-and-go travel accounted for approximately 85% of bin pick up emissions 

(approximately 9,980,000 L), with hydraulic lifting accounting for the remaining 15% 

(1,760,000 L). Average kerbside collection fuel intensity was highest for FOGO waste 

collection, at approximately 13 L/tonne collected, compared to 10.4 L/tonne for GO waste 

collection, and 7.3 L/t for mixed waste collection. While average fuel intensity is highest for 

FOGO collection, there are only 5 LGAs that have this service, including 3 LGAs classified 

as regional. As such, fuel intensity for FOGO collection is impacted by other factors, including 

LGA size as regional LGAs are larger, and have greater between bin distances (see Table 5-6). 

Overall fuel intensity for organic waste managed in the study area was 8.86 litres per tonne, 

and 0.87 litres per kilometre travelled. These metrics are compared with validation data from 

the literature in Section 5.5. 

Table 5-6: Estimated annual diesel fuel consumption by waste collection and transport vehicles for the management of organic 
waste in the study area for 2018-19 

 Total annual diesel 
fuel consumption 
[L/yr] 

Average fuel per 
tonne managed 
[L/t] 

Average fuel per 
distance travelled 
[L/km] 

Total kerbside collection 14,429,470 8.23 1.03 
Collection zone haulage (unladen)  361,777 0.21 0.09 
Collection zone traversal 705,220 0.40 0.41 
Bin pickup 11,739,066 6.69 2.74 
Collection zone haulage (laden) 1,623,408 0.93 0.41 
Total recovery transfer (incl. return) 1,178,288 0.77 0.32 
Transfer station to composters 352,012 0.39 0.24 
Transfer station to AWTs (road) 801,234 1.26 0.24 
Transfer station to AWTs (rail) 25,042 1.96 7.50 
Total disposal transfer (incl. return) 684,282 0.31 0.24 
Transfer station to landfills 475,266 0.28 0.24 
Composters to landfills 6,545 0.46 0.24 
AWTs to landfills 202,471 0.41 0.24 
Total 16,292,040 8.86 0.87 
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5.4.2. Organic waste collection and transport emissions, and emissions 
intensities by activity 

Table 5-7 shows overall waste collection and transport emissions, and average emissions 

intensity per tonne for each waste stream. Emissions intensity is calculated on a per-tonne 

waste generated basis, and on a per-tonne waste managed basis, that is, the amount of waste 

collected or transported for each component. Overall, approximately 43,700 tonnes of CO2-

equivalent emissions were emitted across the study area for 2018-19 through kerbside 

collection and organic waste transportation. Overall emissions intensity in 2018-19 was 24.9 

kgCO2-e per tonne of waste generated, and 11.8 kgCO2-e per tonne weighted by quantities 

managed for each component. The overall impact of waste collection and transport emissions 

on state-wide emissions from all sources was small. In 2018-19, approximately 136,570,000 

tonnes of CO2-e emissions were reported for NSW across all economic sectors (DISER, 

2021a). The overall contribution of waste related transport emissions from the study area was 

therefore less than 0.01%. Road transport emissions for medium-duty trucks was reported as 

approximately 2,356,000 tonnes CO2-e, with waste related transport in the study area 

contributing approximately 2% to these emissions.  
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Table 5-7: Annual estimated emissions and emissions intensity for organic waste kerbside collection, and recovery and 
disposal transfer in the study area by waste stream for 2018-19 

Total annual emissions Overall GHG 
emissions  
[tCO2-e] 

GO waste 
GHG 
emissions 
[tCO2-e] 

FOGO waste 
GHG 
emissions 
[tCO2-e] 

Mixed 
waste 
GHG 
emissions 
[tCO2-e] 

Total kerbside collection 38,671 10,271 2,997 25,403 
Collection zone haulage (unladen)  970 214 47 708 
Collection zone traversal 1,890 513 156 1,221 
Bin pickup 31,461 8,578 2,579 20,303 
Collection zone haulage (laden) 4,351 965 215 3,170 
Total recovery transfer (incl. return) 3,158 680 263 2,214 
Transfer station to composters 943 680 263 0 
Transfer station to AWTs (road) 2,147 0 0 2,147 
Transfer station to AWTs (rail) 67 0 0 67 
Total disposal transfer (incl. return) 1,834 13 4 1,816 
Transfer station to landfills 1,274 0 0 1,274 
Composters to landfills 18 13 4 0 
AWTs to landfills 543 0 0 543 
Total  43,663 10,964 3,265 29,434 
Average emissions per tonne of 
waste 

Overall GHG 
emissions  
[kgCO2-e/t] 

GO waste 
GHG 
emissions 
[kgCO2-e/t] 

FOGO waste 
GHG 
emissions 
[kgCO2-e/t] 

Mixed 
waste GHG 
emissions 
[kgCO2-e/t] 

Total kerbside collection 22.05 27.82 34.71 19.57 
Collection zone haulage (unladen)  0.55 0.58 0.55 0.55 
Collection zone traversal 1.08 1.39 1.81 0.94 
Bin pickup 17.94 23.24 29.87 15.64 
Collection zone haulage (laden) 2.48 2.62 2.49 2.44 
Total recovery transfer (incl. return) 3.65 1.87 2.99 5.37 
Transfer station to composters 2.09 1.87 2.99 0.00 
Transfer station to AWTs (road) 6.78 0.00 0.00 6.78 
Transfer station to AWTs (rail) 0.70 0.00 0.00 0.70 
Total disposal transfer (incl. return) 1.68 2.70 2.03 1.67 
Transfer station to landfills 1.16 0.00 0.00 1.51 
Composters to landfills 0.02 2.70 2.03 0.00 
AWTs to landfills 0.50 0.00 0.00 2.21 
Total (tonnes generated basis) 24.90 29.70 37.81 22.67 
Total (tonnes managed basis) 11.76 14.87 18.48 10.52 

Management of the mixed waste stream was responsible for approximately 67% of all 

emissions—expected given the large quantities of mixed waste generated compared to the 

other streams (approximately 1.3-million tonnes compared to combined 451,000 tonnes for 

GO and FOGO). Kerbside collection across all waste streams was the activity with the greatest 

impact on emissions, responsible for approximately 89% of all emissions. This proportion was 

highest for GO and FOGO waste streams, where kerbside collection was responsible for 94% 

and 92% of emissions respectively. 

The mixed waste stream had the highest proportion of recovery and disposal transfer 

contributing to overall emissions, at 8% and 6% respectively. Compared to GO and FOGO 
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recovery, mixed waste recovery transfer was more emissions intensive on a per tonnes 

transported, given the smaller waste quantities and greater distances travelled from transfer 

stations to AWT facilities, compared to composters. The proportion attributed to disposal 

transfer is also higher for mixed waste, given that a fraction of mixed waste is diverted to 

landfill from transfer stations after collection. FOGO was the waste stream with the highest 

average emissions intensity, expected given the high fuel intensity of kerbside collection of 

FOGO waste (Section 5.4.1). Recovery transfer emissions intensity is also higher for FOGO 

compared to GO. This indicates for those LGAs where FOGO is collected, FOGO waste is 

transported over greater distances to recovery compared to GO. Although this difference in 

intensity in small, it is likely a regional effect, where 3 out of 5 LGAs with FOGO services are 

located outside the metropolitan area, where there are fewer recovery facilities located in 

proximity to transfer stations. Recovery transfer intensity was significantly higher for mixed 

waste, due quantities of mixed waste for recovery transported to a fewer number of AWT 

locations distributed through the study area. 

Considering that kerbside collection emissions are responsible for the majority of waste 

management related transport emissions, emissions intensity of kerbside collection is further 

examined in Figure 5-10. The figure also compares LGA size, and the proportion of dwellings 

that are multi-units (MUDs) with kerbside collection emissions intensity. A positive correlation 

was observed between kerbside collection emissions intensity and LGA size, with large LGAs 

generally located regionally or on the metropolitan-fringe, therefore having greater distances 

to travel to service properties. A negative correlation was found between the proportion of 

MUDs and kerbside fuel intensity, which is expected given that average between-bin distances 

and stop-and-go travel are reduced when servicing MUDs on account of there being several 

bins located on a single property lot. Dispersal of collection points is therefore an important 

factor when considering total mileage and fuel intensity, and thus GHG emissions, for kerbside 

collection services.  
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Figure 5-10: Spatial distribution of kerbside collection GHG emissions intensity, and correlations between LGA size and 
proportion of multi-unit dwellings in LGAs 

While population and dwelling density are the important drivers of dispersal of collection 

points, and driven by urban planning policies and regulations, improving GHG intensity for 

GO and FOGO collection services could also theoretically be achieved through the 

deployment of community collection hubs, or other similar systems whereby household 

organic waste is collected at more centralised locations. Examples of this in the study area 

include a trial of centralised ‘compost huts’ servicing between 40-60 households, conducted 

by Inner West Council in 2017, where participating households could drop-off food scraps at 

council-managed public drop-off locations for on-site composting (Inner West Council, 2018). 

Another example was the 9-week trial of ‘compost hubs’ in Blue Mountains City Council also 

in 2017, which connected households that do not compost with households that do, in an 

effort to reduce food waste in the mixed waste bin (Blue Mountains City Council, 2022). Both 

trials saw reductions in food waste in the mixed waste bin for participating households over 

the trial period, however reduction in fuel requirements for collection were not objectives of 

either trial. Nevertheless, centralised collection systems have been shown to reduce fuel 

requirements of collection due to shorter distances being travelled by collection vehicles for 

the collection of plastic waste for recycling (Kerdlap et al., 2020).  
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In the context of organic waste, centralised collection locations could limit collection truck 

requirements, however would be likely be practical in locations with high density, where 

collection hubs could be placed in efficient locations limiting the need for vehicle transport. 

Such systems would also likely only be practical for small amounts of garden waste and food 

waste due to space limitations, making urban locations ideal candidates. Such a collection 

system however would place more of the burden of waste management onto waste generators 

and the general public, which could lead to perverse outcomes including poorer diversion of 

organic wastes to recycling. 

5.4.3. Comparison of emissions intensities between organic waste 
management pathways 

Figure 5-11 compares average kerbside collection and transport emissions across LGAs 

classified by organic waste management pathways employed. Data presented in this figure is 

different to data in Table 5-7, which presents emissions by management of each waste stream 

individually. Kerbside collection intensity was lowest for the single LGA that collected mixed 

waste as the only pathway for organic collection, which was disposed directly to landfill. This 

is anticipated, given that only a single bin per-household is collected. For this LGA (Fairfield, 

located in Sydney’s south-west), food waste is collected entirely in the mixed waste stream, 

with garden waste collected through council drop-offs at waste depots. Only 10 tonnes of 

garden was reported collected for this LGA in the time period via drop offs. Note that drop-

offs are not considered in scope of our analysis. 

For the remaining LGAs, those employing AWT, both on its own as the only pathway for 

organic waste management, and in combination with separate organic waste collection, had 

the lowest kerbside collection intensities. For the AWT only LGAs, low kerbside emissions 

are expected given, as noted above, that no separate organic bins are collected on a weekly or 

fortnightly basis. For GO+AWT and FOGO+AWT LGAs, these LGAs are located in denser 

areas, with average population densities of 3,639 and 2,687 persons/km2 respectively, 

compared to the LGA average of 2,347 persons/km2. Population (and dwelling) densities have 

been shown earlier to negatively correlate with fuel intensity and thus emissions intensity of 

kerbside collection.  
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efficient collection stream for diverting food waste from landfill, there still remains a significant 

proportion of food waste in the mixed waste stream that can be managed via AWT. While the 

increase in collection and transport emissions intensity is significant for LGAs adopting AWT 

along with FOGO, this does not take into account emissions from the AWT recovery process 

itself, which due to the mechanical nature of AWT separation, would likely be higher than 

direct emissions from composting of FOGO. 

LGAs with GO as the only organic recovery pathway had the lowest average recovery rate at 

49% (excluding LGAs with no separate collection of organics or AWT diversion only), and 

highest average emissions intensity at 124.64 kgCO2-e per tonne diverted. Figure 5-12 shows 

the spatial distribution of LGA emissions intensity by tonnes diverted across the study area. 

Many GO only LGAs were located regionally or on the metropolitan fringe, where kerbside 

collection distances and fuel consumption were significant. GO only LGAs with emissions 

intensity below the average for this pathway were located within the Sydney metropolitan area, 

where kerbside collection fuel intensity was lower, on account of higher dwelling density, and 

closer proximity of organic recovery facilities. With the addition of AWT diversion 

(GO+AWT), average recovery rate increases to 63%, and average emissions intensity improves 

to 80.25 kgCO2-e per tonne diverted. While an improvement over GO only, the addition of 

AWT diversion does not improve efficiency to the levels seen with FOGO collection. This 

indicates that FOGO is the most efficient pathway for food and garden waste diversion in the 

study area. Based on this analysis, councils would likely be better off transitioning from GO 

to FOGO as a first step towards improved organic waste management under lower carbon 

emission policies, assuming composting is the recovery pathway for organic waste.  

Table 5-8: Comparison of total organic waste generation and recovery, with average collection and transport emissions 
intensity per tonne of organic waste diverted for LGAs classified by organic waste management pathway for 2018-19 

 Total organics 
generated, 
2018-19 
[tonnes] 

Total 
organics 
recovered, 
2018-19 
[tonnes] 

Average 
recovery 
rate  
[-] 

Average emissions 
intensity per tonne 
diverted [kgCO2-
e/t](St.dev) 

Mixed waste only LGAs (n = 1) 30,640 10 <1% NA 
GO only LGAs (n = 17) 458,867 226,344 49% 124.64 (98.91) 
FOGO only LGAs (n = 3) 69,473 47,147 68% 73.83 (24.31) 
AWT only LGAs (n = 2) 58,813 34,494 59% 83.73 (33.57) 
GO + AWT LGAs (n = 18) 357,676 227,091 63% 80.25 (66.57) 
FOGO + AWT LGAs (n = 2) 60,319 46,353 77% 45.35 (2.55) 
All LGAs (n = 43) 1,035,788 581,428 56% 96.26 (78.6) 
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Figure 5-12: Spatial distribution of emissions intensity per tonne of organic waste diverted in the study area for 2018-19 

Comparison of the different management pathways employed across the study area however 

is problematic, given the small sample sizes for each pathway as indicated in Table 5-8. For a 

fairer comparison, a simple scenario analysis was performed. For this, 3 LGA areas were 

selected, representing metropolitan, metropolitan-fringe, and regional LGAs: Burwood, 

Hornsby, and Lake Macquarie respectively. For the scenario analysis, 6 scenarios were 

analysed, assuming all 3 LGAs employed no separate organic pathway; GO only; FOGO only; 

AWT only; GO+AWT; and FOGO+AWT. Quantities of FOGO for Burwood and Hornsby 

were estimated assuming diversion from the mixed waste stream with a constant proportion 

of food waste in the FOGO bin of approximately 11% (Rawtec, 2020b). With FOGO 

employed, mixed waste was assumed to be collected at fortnightly instead of weekly intervals. 

Quantities of mixed waste diverted to AWT was estimated based on the average proportion 

of mixed waste sent to AWT across the study area. Estimated emissions for this scenario 

analysis by organic pathway and emissions component, as well as emissions per tonne managed 

and diverted are summarised in Table 5-9. 
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Table 5-9: Results of scenario analysis exploring emissions for different LGA organic waste management pathways 

LGA 
scenario 

Kerbside 
collection 
emissions 
[tCO2e]  

Recovery 
transfer 
emissions 
[tCO2e] 

Disposal 
transfer 
emissions 
[tCO2e] 

Overall 
emissions 
[tCO2e] 

Emissions 
per tonne 
waste 
managed 
[kgCO2e/t] 

Emissions 
per tonne 
waste 
diverted 
[kgCO2e/t] 

No organics 2,299 0 421 2,720 21.43 NA 
GO only 3,350 132 261 3,743 29.50 75.22 
FOGO only 3,255 150 240 3,644 28.72 64.90 
AWT only 2,299 469 145 2,913 22.95 94.42 
GO+AWT 3,350 403 93 3,846 30.31 56.23 
FOGO+AWT 3,255 395 86 3,736 29.44 51.04 

Findings from this scenario analysis were typically consistent with overall findings presented 

in Table 5-8. Lower emission intensities and higher recovery rates were observed as more of 

the organic waste stream was diverted from landfill to recovery. On an emission intensity per 

tonne of waste managed basis, GO pathways had higher emissions intensity than FOGO, by 

approximately 3%. This result indicates that both reduced volume and less frequent collection 

of mixed waste has an impact on gross collection and transport emissions, albeit the impact is 

small. Similar to Table 5-8, the addition of AWT to GO and FOGO management resulted in 

reductions in emissions intensity. 

Results here indicate that improvements to organics recovery and emissions intensity could be 

achieved through increasing diversion of household food waste into the FOGO stream, 

through improved household communication and better disposal practices. This may have the 

effect of reducing the proportion of food waste in the mixed stream, and thereby making 

diversion to AWT redundant as a pathway for organic waste recovery. This is particularly 

relevant given recent decisions limiting the application of AWT derived organic products for 

soil improvement (NSW EPA, 2019a). 

5.5. Model validation and limitations 

Figure 5-13 compares sensitivity of overall transport emission to variation in kerbside 

collection distances, transport vehicle load capacities, and waste generation. Variation in 

kerbside collection distances as a result of stochastic uncertainty in outputs from the CVRP 

solution algorithm was relatively small, ranging from between approximately ±1%. This 

suggests that the solution algorithm converges on an optimal solution for each LGA that is 
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roughly equivalent to a minimum distance that must be traversed in the LGA to service all 

properties. While the nearest neighbour search algorithm can be trapped in local optima, the 

large number of iterations performed for the CVRP solution gives some confidence that this 

is unlikely. Performing the CVRP on an even larger number of iterations as performed for this 

study, or utilising alternative solution approaches that appear in the literature including genetic 

algorithms, or swarm optimisation, may result in an improved solution. However these 

approaches were considered impractical for this study owing to the significant additional 

computational resources required for such a large study area analysed.  

 

Figure 5-13: Sensitivity plots for change in kerbside collection distance, and change in transport vehicle load capacity 

Bin pickup was the most significant component of kerbside collection as indicated in Table 

5-7, however emissions from this component were not impacted by the CVRP solution. The 

mean sensitivity ratio of kerbside collection distance was approximately 0.88%/%, implying 

for a 1% change in kerbside collection distance, total emissions change by 0.88%. This 

sensitivity analysis performed for kerbside collection distances was simplified by estimating 

average variation in route selection by LGA classification—necessary due to the long 

computation times required for the CVRP solution algorithm. Despite this limitation, Figure 

5-13 shows a linear relationship between %-change in kerbside collection route distance and 

variation in overall emissions, implying that even with a larger variation in these distance for 

example ±10%, the impact on overall emissions would be in the range of ±8.8%. 
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Variation in total waste generation (±20%) had a relatively small impact on overall transport 

emissions, with an approximate variation of between -0.6% and 2.5% in emissions. Results of 

the sensitivity to transport emissions to variation in waste generation are summarised in Table 

5-10. Variation in recovery transfer and disposal transfer emissions were approximately equal 

to the variation in waste generation, however these components were only responsible for 

approximately 11% of overall emissions (see Table 5-7). The kerbside collection component 

exhibited different sensitivities, with both variation in waste generation above and below 

baseline levels leading to increases in emissions. Lower quantities of waste generated led an 

increase in kerbside collection emissions of 1.2%. With reduced LGA waste generation, fewer 

collection routes were required, however the average distance of these routes were longer than 

baseline in order to meet the constraints of the CVRP approach (i.e., collection trucks aim for 

approximately 5 tonnes of waste collected per route). The sensitivity analysis showed that a 

20% reduction in waste generation across the LGAs resulted in a 1.5% increase in collection 

zone traversal distance, and a 22% increase in the average route length compared to baseline. 

For variation in waste generation above baseline, emissions compared to baseline were also 

higher, but only by approximately 1%. Total collection zone traversal distance increased by 

approximately 0.2%, and the average length per collection route decreased by approximately 

1.4%. This implies that the CVRP estimation approach performs as expected with variation in 

waste generation across the LGAs, and gives confidence in the approach utilised. 

Table 5-10: Summary of sensitivity of emissions to variation in LGA waste generation. Values in the table are compared to 
baseline 

Variation in 
waste generation 
(% change) 

Variation in 
kerbside 
collection 
emissions (% 
change) 

Variation in 
recovery transfer 
emissions (% 
change) 

Variation in 
disposal transfer 
emissions (% 
change) 

Variation in 
overall transport 
emissions (% 
change) 

+20% +1.0% +19.8% +20.1% +2.5% 
-20% +1.2% -20.1% -20.2% -0.6% 

Variation in transport truck sizes was found to be the more sensitive variable compared to 

variation in kerbside collection distances and waste generation. Small truck sizes (moving from 

the nominal value of 15 tonnes to 10 tonnes) lead to an average increase in emissions of 

approximately 8%. Larger truck sizes (moving from 15 tonnes to 26 tonnes) lead to an average 

decrease in emissions of 4%. The relationship between change in transport vehicle size and 

change in overall emissions is not linear as indicated in the figure. This suggests that transport 

truck sizes greater than 26 tonnes would have a reduced impact on overall emissions. Truck 
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sizes smaller than 10 tonnes would have a greater impact on overall emissions, however this 

would imply little difference between waste collection vehicles and trucks used for transporting 

waste.  

A further unknown in our model was the assignment of landfill locations to transfer stations 

and recovery distances based on proximity. To evaluate sensitivity on emissions, 3 candidate 

LGAs were selected (Burwood, Hornsby, Lake Macquarie) representing metropolitan, metro-

fringe and regional LGA classifications. A simulation was performed whereby landfills were 

allocated to transfer stations and recovery facilities randomly over 1,000 iterations. Landfill 

locations were randomly selected from a weighted sample, whereby random selection of 

landfills at large distances from transfer stations and recovery facilities was less likely. Results 

of this showed that disposal transfer distances could vary by up to 85% higher than baseline 

distances. The impact of this variation on overall transport emissions however was small, at 

approximately 4%.  

The sensitivity analysis performed highlights some limitations in our model. Transport vehicles 

are a significant unknown in our model, with little data on the fleet of vehicles used for 

transporting aggregated waste quantities available. A comprehensive account of waste vehicles 

in operation in the study area would be required to further calibrate our model to give more 

certainty around overall transport emissions. While sensitivity of kerbside collection route 

selection is relatively small, calibration data including actual waste collection route data, or 

information on LGA waste collection zones would improve our model and give more 

confidence that our CVRP solutions are sensible and reflect actual waste collection routes in 

the study area. Sensitivity on landfill selection was small, and how likely non-proximal landfills 

are likely to be selected for disposal from transfer stations and recovery facilities is unknown. 

Data on specific landfills to which waste is destined by jurisdiction and recovery facility would 

improve accuracy of the results. 

A further limitation of our model is in the treatment of apartment complexes in the estimation 

of kerbside collection distances. While data is available on the estimated distribution of 

dwelling types at the property lot level, data is limited on the bin systems for multi-unit dwelling 

types. The model presented here assumes that most apartment style buildings have bin 

collection systems similar to detached dwelling types, and have their bins collected on the same 

route as detached dwellings. This is not strictly true, especially for larger apartment complexes, 

which are more likely to have separate waste collection agreements with the local waste 
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management authorities, and different bin collection systems. These buildings therefore may 

not be managed via the same kerbside system that detached dwellings and smaller apartment 

buildings are serviced by. However data on the management of large apartment complexes on 

an LGA level for the study area is limited, and is problematic to obtain given privacy issues, 

and contractual agreements between apartment buildings, local council, and waste 

management service providers. It seems plausible however that regardless of the waste 

collection arrangement, waste collection vehicle travel between apartment complexes and 

transfer station, and hydraulic bin lifting requirements would be on the same scale as what is 

estimated here. Further analysis on apartment complex bin systems, and how individual LGAs 

manage apartment dwelling wastes would help to improve the certainty of model estimates, 

however was outside the scope of this work. 

Despite these limitations, an analysis of calculated performance metrics from data generated 

from our model compared with literature data, gives confidence that our estimates are 

reasonable. Table 5-11 summarises this analysis. Literature cited in the table refer to studies 

performed across jurisdictions in a number of different countries, including South Africa, 

Taiwan, Denmark, Canada and the USA. Performance metrics compared to literature values 

were calculated from overall study area level estimates for emissions intensity of waste 

collected; and fuel economy of waste collection in terms of litres per kilometre travelled, and 

litres per tonne of waste collected. In general, performance metrics calculated from our model 

fall within, or close to, the ranges found in the literature, giving confidence that estimates from 

our model are realistic compared to other studies. This analysis also illustrates that emissions 

intensity and fuel intensity for waste collection in the study area are similar to values reported 

in the literature globally. 
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Table 5-11: Comparison of mean value performance metrics from this study, compared with data from literature sources 

Performance metric Mean value 
±uncertainty 
from this 
study  

Value 
range in 
the 
literature 

Literature reference 

Emissions per tonne collected [kgCO2-e/t] 22.1±1.0 3.7 – 40.3 Friedrich & Trois (2013) 
  48.8 Chen & Lin, 2008 
  19.5-32.3  Larsen et al. (2009) 
  27.8±2.0 Nguyen & Wilson (2010) 
    
Fuel economy of vehicles during collection 
[km/L] 

1.12±0.05 0.6 – 1.4 Jaunich et al., (2016) 

  0.46 – 1.34 Agar et al. (2007) 
    
Litres of fuel per tonne waste collected [L/t] 8.2±0.4 1.4 – 10.1 Larsen et al. (2009) 
  10.1±0.7 Nguyen & Wilson (2010) 
  7.1 – 10.6 Quintili & Castellani 

(2020) 
Litres of fuel per tonne diverted (FOGO) 
[L/t] 

13.2±0.7 ~17±5 Edwards et al. (2016) 

5.6. Conclusion 

This study developed a spatial model for the estimation of emissions associated with kerbside 

collection and transportation of household organic wastes in the Greater Sydney and 

surrounding areas for 2018-19. The estimation of waste collection emissions supports 

improved emissions accounting in the study area, which is essential for benchmarking and 

comparing against future waste collection systems and their impact on GHG emissions. The 

model developed was used to estimate waste related transport emissions of approximately 

43,700 tonnes of CO2-e for the management of kerbside organic waste. The modelling was 

novel, with the application of the capacitated vehicle routing problem applied to estimate 

GHG emissions being an innovative contribution of this work.  

Kerbside collection, specifically the between-bin travel and lifting of bins to waste vehicle 

receptacles, was found to be the most emissions intensive activity completed during organic 

waste collection and transportation. Findings from the study indicate that kerbside collection 

emissions are lower for more population dense areas—suggesting that collection emissions 

might be reduced by moving towards more centralised waste collection models, where greater 

quantities of waste are collected per collection point. The practicalities of such collection 

systems however were not assessed in this work. The separation of food waste from mixed 

waste via the co-collection of garden and food waste, with additional diversion of mixed waste 
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to AWT facilities, was found to be the most efficient collection model in the study area, in 

terms of tonnes of organic waste diverted, and lowest emissions intensity. Collection of food 

and garden organic waste should be prioritised for LGAs in the future in support of emission 

reduction strategies, given recent restrictions on the application of AWT recovered products 

applied to land. Findings from this study also indicate that organic waste collection and 

transport emissions do not contribute significantly to state-wide transport emissions.  

The model presented here has value in assessing the environmental impacts of waste collection 

and management for waste streams in the study area. Moreover, the modelling and analysis 

supports progress towards United Nations Sustainable Development Goal (SDG) 11 – 

sustainable cities and communities. Specifically, SDG 11.2: Safe, affordable, accessible, and sustainable 

transport systems; and SDG 11.6: Reducing the adverse per capita environmental impact of cities, including 

by paying special attention to air quality and municipal and other waste management are addressed in this 

study.  

Further work could incorporate this study’s findings into a more comprehensive analysis of 

emissions over the entire waste management chain, including net emissions from the recovery 

of organic wastes, and emissions from landfill disposal. Moreover, results presented could be 

parameterised in order to estimate transport emissions from key variables, including 

population density, road network complexity, waste generation rates, and waste collection 

systems employed. The model presented could also be utilised to explore aspects of the waste 

management logistics chain, including more efficient routing to reduce labour costs, and also 

fuel costs—important when considering future scenarios exploring the electrification of the 

waste vehicle fleet. Future studies could also utilise the methodology developed for estimating 

emissions for collection and transport of non-organic materials including dry-recyclables to 

obtain a more complete estimation of waste-related emissions for the municipal waste stream 

in the study area. 
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Chapter 6.  
Emissions from household organic waste 

management 

While Chapter 5 presents estimates for the emissions intensity of household organic waste 

collection and transportation, the emissions associated with OFMSW over the entire waste 

management chain are still unclear. This can impact decision making on which areas along the 

waste management chain to prioritise when seeking the most impactful emissions reductions. 

This chapter presents yet-to-be-published research and analysis that helps fill this important 

gap in the knowledge, by addressing the following thesis research question: 

Research question 4: What are the emissions associated with the recovery of household 

organic waste in NSW? 

This thesis focuses on well-established recovery pathways internationally, that are either also 

established in Australia or under consideration for municipal scale deployment, namely: 

industrial composting, mechanical biological treatment, and anaerobic digestion, and are 

reviewed in the context of resource recovery and emissions potential in the following Section. 

While other recovery pathways such as combustion, pyrolysis, and to a lesser degree 

fermentation are utilised internationally, these are not considered in this PhD. 
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The research in this chapter extends the analysis in Chapter 5 on waste transportation 

emissions, to include emissions associated with organic waste recovery via the above 

mentioned pathways; lifetime landfill emissions; and avoided emissions from landfill diversion. 

Data generated from this study can help inform decision making towards lower-carbon waste 

management for the organic and other waste streams, including in technology and feedstock 

selection, optimal locations for infrastructure deployment, and in prioritising low-emissions 

pathways for optimal waste recovery.  

The rest of this chapter is structured as follows: a comprehensive review of emissions 

associated with different organic waste management pathways is presented, to provide 

background on available organic recovery and management pathways in NSW, and their 

potential impact on emissions. A review of household organic waste management in NSW is 

also provided, to give background information on existing household organic waste 

management and baseline performance. The research approach undertaken for this analysis is 

then described in detail. Baseline results for the 2019-20 financial year are then presented, and 

implications of the research are discussed, and conclusions are made. 

6.1. Organic waste recovery and impacts on GHG emissions 

The management of organic waste carries an emissions burden from fuel and energy 

consumed, and from landfill gas emitted from disposal. This burden can be balanced by 

potential avoided emissions brought on by organic waste recovery. Selection of organics 

recovery technology is then important when considering net emissions in the context of the 

sustainable management of OFMSW (Yoshida et al., 2012). As mentioned in the introduction 

to this chapter, industrial composting, mechanical biological treatment, and anaerobic 

digestion are applied at varying scales in Australia for organic waste recovery. Other recovery 

pathways including combustion, pyrolysis, and to a lesser degree fermentation are utilised 

internationally, however are not deployed at scales necessary to address municipal organic 

waste. In the case of combustion or incineration, perverse outcomes including air emissions, 

and lack of demand for distract scale heating locally, has meant an overall lack of social 

acceptance for energy recovery, limiting its deployment at scale. In the case of more advanced 

recovery technologies including pyrolysis, gasification, and others, the lack of maturity at large 
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scales necessary for treating OFMSW, and high capital costs, limits the commercial potential 

of these technologies in Australia in the short term for OFMSW scale waste. 

6.1.1. Composting as a resource recovery pathway 

Composting is a biochemical process, where under aerobic conditions and mediated by 

microbes, organic waste is degraded to form a stabilised material rich in nutrients, to be applied 

to land (Vergara & Silver, 2019). Industrial scale composting is the most widespread recovery 

pathway for OFMSW internationally (Asquer et al., 2017; Babu et al., 2021). Products obtained 

from composting are high in key nutrients required for plant growth, including nitrogen, 

phosphorus and potassium (NPK), and is also a pathway for capturing carbon in soils (Boldrin 

et al., 2009). As such, composted organic material can be used as fertiliser or as a soil additive, 

improving soil characteristics including pH buffering capacities, porosity and structure, 

nutrient retention, and bacterial diversity (Babu et al., 2021; Fernández-Delgado et al., 2020; 

Ferreira et al., 2010). Production of high-quality compost for organic fertiliser and soil 

improvers does not depend on the availability of mineral and fossil-derived resources or 

energy-intensive processes, and is therefore a significant advancement towards the circular 

economy where waste organics are reincorporated into the production cycle (Fernández-

Delgado et al., 2020; Friedrich & Trois, 2013; Paungfoo-Lonhienne et al., 2019). Table 6-1 

gives an overview of typical composting process types used in the recovery of OFMSW, 

adapted from Maturi et al. (2022), US EPA (2022) and DAWE (2012). 

Table 6-1: Overview of composting technologies, adapted from DAWE (2012); Maturi et al. (2022); US EPA (2022) 

Composting 
technology 

Aeration Investment cost Land area 
required 

Accepted 
materials 

Windrow Mechanical 
turning, passive 

Low Very large Food waste; garden 
waste; fats, oils and 
greases; animal by-
products 

Vermi-composting Passive Low to medium Large to medium Food waste; garden 
waste; paper 

Aerated static pile Forced aeration Medium Medium Food waste; garden 
waste; paper 

In-vessel 
composting 

Agitation, 
mechanical 
turning, forced 
aeration 

Large Medium to small Food waste; urban 
sludge 

Fully enclosed 
composting 

Agitation, 
mechanical 
turning, forced 
aeration 

Very large Medium to small Food waste; garden 
waste 
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Windrow composting, where compostable material is arranged in long rows in open-air, is the 

most common type of municipal scale organics composting, due to its low investment cost, 

and capacity to process large volumes of organic waste (Zhu-Barker et al., 2017). Composting 

windrows are typically laid out in lengths of 15 to 120 metres, and are 2 to 5 meters wide 

(Andersen et al., 2010), making the land requirements large. Diesel powered windrow turners 

are used to aerate compost to maintain optimal temperatures and introduce oxygen to the 

compost pile, performed up to every 3 days however turning frequency can vary dramatically 

from facility to facility (Zhu-Barker et al., 2017). Typical composting time can vary depending 

on the material being composted (woody biomass taking longer), size of windrows, and turning 

frequency. Compost time can be short, from weeks to around 3 months for immature 

compost; to 14 months for mature compost including higher proportions of woody biomass 

(ten Hoeve et al., 2019).  

The net emissions from the composting of OFMSW is highly variable in the literature, likely a 

result of diverse municipal waste transport systems and characteristics of the waste stream, 

which can have a large impact on the overall emissions balance for the process. A flow diagram 

of windrow composting, including main processing steps and sources of emissions is shown 

in Figure 6-1, adapted from ROU (2006). 

 

Figure 6-1: Flow chart of the windrow composting process, adapted from ROU (2006) 

The direct CO2 emissions from OFMSW composting and maturing (that is, from the aerobic 

decomposition of organic material) is biogenic in origin, and does not contribute to GHG 

emissions in most accounting frameworks (e.g., (DISER, 2021b)). Direct emissions of biogenic 

CO2 however do account for over 90% of all direct emissions from windrow composting 

(Sayara & Sánchez, 2021). Several studies have evaluated the emissions associated with 
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OFMSW composting, finding that the process is overall a net emitter of GHGs (Friedrich & 

Trois, 2013; Komilis et al., 2004; Sayara & Sánchez, 2021; Scheutz et al., 2009; ten Hoeve et 

al., 2019). Friedrich and Trois (2013) for example found that composting 1 tonne of OFMSW 

in South Africa resulted in between 172 and 186 kg CO2-e of emissions for in-vessel and 

windrow composting respectively. Overall net emissions accounted for in the literature 

typically come from direct methane and nitrous oxide emissions (between 220-370 kg CO2-e 

in Komilis et al. (2004)), consumption of diesel fuel during feedstock preparation and compost 

pile turning, and the consumption of electricity on-site (Friedrich & Trois, 2013; Scheutz et al., 

2009; ten Hoeve et al., 2019). Transportation of waste, including collection and transfer to 

recovery facilities can also be a significant part of overall emissions related to compost 

recovery, shown in studies including Friedrich and Trois (2013) and Yoshida et al. (2012). 

Emissions from OFMSW collection depend heavily on the spatial distribution of collection 

sites, which contribute to greater transportation distances, and thus fuel consumption and 

associated emissions.  

Emissions savings from the mitigation of primary resource consumption and from avoided 

landfill emissions varies in the literature, dependent on the types of landfills utilised, and the 

composition of waste. In Friedrich and Trois (2013), emissions reductions were approximately 

60-65 kgCO2-e per tonne of OFMSW treated, however only the mitigation of fossil-fuel 

derived fertiliser and the capture of carbon in the soil is considered. This level of emissions 

savings is heavily dependent on the reliance of petrochemical-based fertilisers and the 

substitution rate of recovered organics. For example, in Boldrin et al. (2009) and Friedrich and 

Trois (2013), the substitution rate varies between 20-60%. Figure 6-2 shows a schematic 

representation of emissions savings from composting, assuming substitution of mineral based 

fertiliser and peat soil production, as per Boldrin et al. (2009). Note that recovered organics 

from OFMSW are not utilised for peat substitution in NSW as according to ROU (2006). Peat 

substitution is also not considered in Friedrich and Trois (2013).  
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Figure 6-2: Schematic of system of analysis in Boldrin et al. (2009), showing compost substituting peat and mineral based 
fertiliser use and production, leading to emissions savings. 

Besides the potential for emissions savings, there are numerous additional benefits of 

composting of organic waste beyond fertiliser substitution and landfill diversion that is outside 

the scope of this work. ROU (2006) in their LCA study of NSW composting, found several 

positive post-application benefits from compost derived from OFMSW when applied to 

cotton and grape cropland. These benefits included: reduced irrigation water use of up to 

0.95ML per hectare, due to the improved soil retention properties of compost; reduction in 

herbicide (glyphosate) use of up to 6L per hectare; improvements in soil sodicity, reducing the 

need for gypsum by up to 5 tonnes per hectare; reduction of soil erosion by up to 4 tonnes per 

hectare annually; and increase in harvest yields for cotton and grapes by up to 22% and 27% 

respectively.  

Considering the above, composting of OFMSW is beneficial from an emissions perspective 

when compared to the alternative of landfilling, and also offers numerous additional benefits 

to soil management. Even when accounting for the large land requirements, it is generally low-

capital cost and resource (e.g., labour) intensive. The limitations of composting OFMSW for 

recovery are primarily concerned with applications of the end compost product. High recovery 

rates can typically be achieved with industrial scale windrow composting of up to 99% (NSW 

EPA, 2021), depending on the composition of the OFMSW, namely the presence of non-

compostable materials and contaminants. In studies evaluating the composition of OFMSW 

streams, contaminants are typically up to 5% of the total waste stream (Hla & Roberts, 2015; 

NSW EPA, 2014a; Rawtec, 2020a), however contaminants measured at the input at 

composting facilities may be higher, as indicated in Wilkinson et al. (2021). Other feedstock 

characteristics affecting end-product quality include moisture content outside the ideal range 

of 50-60% for aerobic digestion (Wang et al., 2018); C:N ratio outside the ideal range of 25:1 

to 30:1 (Babu et al., 2021); and sub-optimal pH, particle size, and control parameters including 



 141 

temperature during the composting process (Asquer et al., 2017). Compost quality however is 

most impacted by feedstock composition, including the presence of non-organics especially 

for MSW derived organics, illustrating the importance of source separation, and collection of 

clean organic feedstock. A recent review of recycled organics standards in Australia (Wilkinson 

et al., 2021) noted that challenges related to contamination in household garden waste have 

been addressed to varying levels of success by local governments, which is illustrated by the 

high recovery rates for separately collected organic waste in NSW (NSW EPA, 2021). The 

contamination challenges however are far greater with the co-collection of food and garden 

organics (FOGO). Indeed, as Wilkinson et al. (2021) found, the key challenges for existing and 

future organic recycling schemes especially in regards to FOGO collection, are not of a 

technological nature, but rather an effect of household waste disposal behaviours. This is an 

important challenge to address, as poor quality compost has fewer applications, with many 

jurisdictions limiting the application of poor-quality compost for food production (NSW EPA, 

2019a). Instead, poor ‘industrial’ quality compost is typically applied as soil stabilisers, 

backfilling in construction and landscaping projects, and as an overlay or soil cap for sanitary 

landfills (Stunzenas & Kliopova, 2018). While still a benefit in comparison to landfill, these 

poorer quality recovery pathways have less of an impact in a circular economy perspective than 

via nutrient recycling. 

6.1.2. Mechanical biological treatment as a resource recovery pathway 

Locally referred to as ‘dirty’ material recovery facilities (MRFs), or alternate waste treatment 

(AWT) in Australia, mechanical biological treatment (MBT) is a process that combines the 

sorting and recovery of dry recyclable materials (e.g., metals, plastics, paper, glass), with 

composting or digestion of organic materials for mixed waste streams (Bourtsalas & Themelis, 

2022; Połomka & Jędrczak, 2019). MBT is typically employed both as a recovery pathway, and 

for volume reduction and stabilisation of the waste before landfilling, which provides better 

sanitary and emissions outcomes than landfilling untreated mixed waste to landfill (Rigamonti 

et al., 2019). This makes the MBT pathway especially relevant for jurisdictions where there is 

poor source separation of MSW, or where organic waste is typically collected in mixed streams; 

and where there is a lack of mixed waste treatment infrastructure (Tyagi et al., 2021). Where 

municipal energy from waste is employed, MBT can also be utilised as a pre-treatment 

process—reducing moisture and low energy content material to improve energy recovery 
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yields for processes including pyrolysis, or co-combustion with other high-calorific valued 

materials (Rigamonti et al., 2019; Tyagi et al., 2021). 

MBTs are typically classified as single-stream or separate stream MBTs, with configuration 

typically determined by input stream characteristics and desired end-products, for example 

refuse derived fuels (RDF), or recovered organics products (Bourtsalas & Themelis, 2022). 

Material streams that cannot be easily recovered have value as a source of RDF, for example, 

for the cement industry, where emission reductions can be achieved through the replacement 

of fossil derived fuels for heat generation (Bourtsalas & Themelis, 2022). Figure 6-3 shows a 

schematic diagram of a typical single-stream MBT treating incoming mixed waste, derived 

from Ng et al. (2021). Recovery rates for dry recyclables through MBT can reach around 30-

50% locally (NSW EPA, 2021; Pressley et al., 2015), however these rates are considerably lower 

than ‘cleaner’ dedicated dry recyclable MRFs (Pressley et al., 2015). The dry fraction is typically 

mechanically sorted/refined (Pressley et al., 2015; Rigamonti et al., 2019), while the organic 

fraction is treated via composting or AD (Ng et al., 2021). Outputs from treated organics via 

MBT are stabilised, but are typically of a poor quality, limiting application for industrial 

purposes only, due to presence of undesirable materials including plastics, metals and other 

contaminants (NSW EPA, 2019a; Stunzenas & Kliopova, 2018).  

 

Figure 6-3: Schematic diagram of a typical MBT/AWT treatment facility, adapted from Ng et al. (2021) 

Bourtsalas and Themelis (2022) found net emission reductions of between 0.2 to 0.6 tonnes 

CO2-e per tonne of feedstock, dependent on the level of diversion from landfill, and if fuel (as 

biogas) was generated if AD is employed for organic treatment. In the case of Australia, where 

anaerobic digestion is not utilised at scale for OFMSW, composting is the pathway of organic 
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waste recovery in AWT facilities. As such, emissions associated with organic recovery from 

the mixed stream, including avoided emissions, would be similar to that of composting. 

However, the additional mechanical sorting performed at MBT facilities would potentially lead 

to a greater emissions intensity per tonne of feedstock treated, given that the organic fraction 

must first be separated from the mixed waste to be further treated. 

6.1.3. Anaerobic digestion as a resource recovery pathway 

Anaerobic digestion is a complex biochemical process, where organic matter is degraded 

through a series of reactions into a methane rich (approx. 50-75%) biogas and concentrated 

solids, mediated by several micro-organics in oxygen-free conditions (Babu et al., 2021; Franca 

& Bassin, 2020; Jain et al., 2015). Figure 6-4 shows a generic schematic of the AD process for 

OFMSW, adapted from Gadaleta et al. (2021). 

 

Figure 6-4: Overview of the anaerobic digestion process for OFMSW, adapted from Gadaleta et al. (2021) 

Products from the digestion of OFMSW have valuable applications as a renewable clean 

energy source, and as fertiliser and soil conditioner rich in NPK (Babu et al., 2021; Campuzano 

& González-Martínez, 2016; Demichelis et al., 2022; Zamri et al., 2021). As such, the emissions 

reduction potential of digestion for the OFMSW stream is significant, especially when quality 

biogas is generated. Biogas from AD is high in methane content, and as such is a suitable 

alternative for fossil fuels in the generation of heat and electricity. Cudjoe et al. (2020) for 

example describe the environmental impacts of AD yields, reporting that AD could reduce 

global warming potential of OFMSW across China by up to 92.7%, through diversion of 
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organic waste from landfill, and mitigation of fossil-fuel derived fertiliser and energy. Yields 

from the AD of OFMSW are however variable, dependent on a range of factors including 

feedstock characteristics, and digestion technology employed. Nevertheless, rising global 

nutrient prices, as well as landfill diversion directives and challenges associated with 

transitioning to fossil fuel alternatives, make AD a competitive option for organic waste 

treatment, compared to alternatives such as composting (Franca & Bassin, 2020).  

AD technology is typically characterised by the operating temperatures, i.e., mesophilic at 35˚C 

operating temperature, and thermophilic at 55˚C (Kumar & Samadder, 2020); processing 

feeding mode, i.e., continuous, and batch; moisture characteristics of the substrate, i.e., wet or 

dry; and number of digestion stages (Franca & Bassin, 2020). Table 6-2 summarises digestor 

technology characteristics, derived from Kumaran et al. (2016). Dry mesophilic AD is most 

associated with OFMSW, and is classified where the feedstock has solids content in the range 

of 20-40% (Rocamora et al., 2020). Dry AD has been shown to be more robust and flexible in 

terms of feedstock input characteristics and in feedstock handling compared to wet AD, which 

is typically utilised for wastewater treatment, in addition to having greater biogas yields up to 

10 times that of wet AD (Chiu & Lo, 2016; Rocamora et al., 2020; Zamri et al., 2021). Dry AD 

systems have large scale commercialisation in Europe, proving to be more efficient and often 

exhibit smaller costs than wet systems, given reduced requirement for dewatering after AD 

treatment (Franca & Bassin, 2020). 

Table 6-2: Types of anaerobic digestion systems used in the treatment of OFMSW, adapted from (Kumaran et al., 2016) 

Digester type Description 
Wet Feedstock is diluted to make a substrate 10-15% solid content. Substrate must be 

continuous stirred for optimum gas production 
Dry Feedstock with solid content 20-40%. Dry anaerobic digestion is cheaper as the organic 

loading rate is higher, and thus more gas production per unit of the feedstock 
Batch Reactors are loaded with organic raw feedstock and inoculums from other digesters. Once 

all the organic material has been degraded, the reactor is emptied, cleaned and a new batch 
for digestion is added 

Continuous Most digesters for waste products are operated as continuous flow as restarting the system 
when economical is unfavourable. This system gives higher amounts of biogas per unit of 
feedstock, and the operating cost is also lower due to the reduction in start-up time 

Single stage Easy to operate, cheaper to construct compared to a multi-stage system. Limitations do 
exist since optimum conditions for all participating micro-organisms cannot be achieved 
in a single system, but methanogenic population in the system can be managed efficiently 
by controlling the feeding rate and ensuring through mixing, buffering, and additions of 
nutrients 

Multi-stage The digestion occurs in separate stages, allowing provision of optimum environmental 
conditions for each microbial group. Usually two digesters are employed, and separation 
of acetogenesis stage from methanogenesis stage often results in increased process 
efficiency 
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Feedstock availability and quality is an important consideration for substrate selection, and 

therefore technology selection. In Europe, most AD plants are mainly operating using 

livestock and other agricultural residues and energy crops (Grando et al., 2017; Zamri et al., 

2021). In Australia and also the United States, on the other hand, AD is mostly utilised in the 

treatment of wastewater sludge (Lou et al., 2013; Zamri et al., 2021), although some capacity, 

albeit small, exists for AD of municipal- and commercial-sourced dry organics in Australia 

(e.g., at Camelia in Sydney’s West (EarthPower, 2022)). Pre-treatment, including grinding and 

screening of feedstock, is especially relevant for the AD of OFMSW, due to the presence of 

sub-optimal characteristics, including non-organic wastes and other materials that inhibit 

microbial activity (Zamri et al., 2021). When pre-treatment is employed, the energy 

requirements for AD correspondingly increase, however typically so do biogas and digestate 

yields.  

From an emissions perspective, AD can have significant potential impacts on emissions 

avoidance from landfill diversion, and by offsetting emissions intensive fossil fuel 

consumption. In Lou et al. (2013), the authors estimated a potential 1,915 GWe, or 20,272 TJ 

of potential energy generation from food waste across Australia via AD. This potential energy 

generation could theoretically offset approximately 1.8 million tonnes of CO2-e, or 

approximately 1% of total electricity sector emissions in Australia in 2013-14 (the year of that 

study). In Liu et al. (2017), the authors found that AD of OFMSW in China could lead to 

reduction in overall carbon intensity of waste management between approximately –27.7 

kgCO2-e/t to –54.8 kgCO2e/t; finding that AD was the optimal technical route for MSW for 

source separated organic fractions. Findings in Cudjoe et al. (2020) showed that deploying AD 

for OFMSW across 31 provinces in China could reduce the carbon intensity of OFMSW 

management by up to 92%, resulting from landfill diversion and fossil fuel mitigation.  

Despite the benefits, AD of OFMSW also faces some limitations. As noted previously, AD is 

sensitive to feedstock characteristics, including non-organic materials, which can inhibit 

microbial activity responsible for anaerobic degradation (Abad et al., 2019). Co-digestion of 

two or more substrates, including sewage sludge, can overcome this, however uncertainty in 

quality feedstock supply makes investment in AD a risk (Zamri et al., 2021). Indeed, biogas 

and digestate yield and quality, and process efficiency, is highly dependent on feedstock 

characteristics. Ensuring ample supply of quality organic substrate is then critical for 

commercial deployment of AD at scales necessary for OFMSW treatment, and for the 

realisation of the GHG reduction potential of AD. 
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6.1.4. Emissions from landfill disposal 

While not an OFMSW recovery pathway, landfill is currently the primary management pathway 

for the OFMSW fraction in NSW. Emissions from landfill disposal in the form of landfill gas 

(LFG) are a significant contributor to emissions globally accounting for up to 5% of all global 

GHG emissions (Zhang et al., 2019), and an estimated 2% of all GHG emissions in NSW 

(DPIE, 2021). Therefore, LFG emissions are an important consideration when assessing the 

emissions intensity of waste management. Considering that OFMSW recovery ensures a 

proportion of organic waste generated is not disposed to landfill (or at least, a proportion of 

disposed material is bio-stabilised), diversion of waste to landfill is a significant part of overall 

emissions avoidance from OFMSW recovery.  

Landfill technology has advanced over many decades, with contemporary sanitary landfills 

being designed to store waste, and to some degree, to also treat wastes in order to minimise 

the impact of disposal on the environment, including for example impacts of leachate on 

groundwater supplies (Vaverková, 2019). Figure 6-5 shows a diagram of a typical sanitary 

landfill, adapted from Scheutz and Kjeldsen (2019), and Figure 6-6 shows an example sanitary 

landfill located in Wollert, Victoria, taken from the National Waste Report 2020 (Blue 

Environment, 2020). Modern sanitary landfills are engineered structures, consisting of bottom 

liners typically of non-permeable clay, plastic, or concrete (Pathak et al., 2016); leachate and 

LFG collection and removal systems; and a final organic soil layer cover. Leachate is formed 

from precipitation interacting the deposit wastes, and although the unmitigated impact of 

leachate on groundwater can be severe, leachate emissions are not in scope of this work. 
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Figure 6-5: Process affecting the fate of methane generated in a sanitary landfill, adapted from Scheutz and Kjeldsen (2019) 

 

Figure 6-6: Sanitary landfill in Wollert, Victoria, from Blue Environment (2020) 

LFG produced in MSW landfills is high in methane (between 45-60%) on account of the high 

proportions of organic waste in MSW streams, and is produced via a number of biological 

process over several years as the disposed waste degrades. Figure 6-7 shows the production 

and composition of landfill gas generation over time, taken from the Centres for Disease 

Control and Prevention primer on landfill gas (CDC, 2008). The 4 phases in the diagram refer 

to the primary process that produces landfill gas, with Phase I being dominated by aerobic 

microbial activity; Phases II and III dominated by anaerobic microbial activity; and Phase IV 

corresponding to a stabilisation of gas production. 
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Figure 6-7: Changes in typical landfill gas composition over time, after waste placement, from CDC (2008) 

While CO2 is also produced from the aerobic degradation of waste as well as from oxidation 

of methane through the upper layers of the landfill, the CO2 portion of LFG is considered 

biogenic and part of the natural carbon cycle. As such, these emissions are not typically 

considered in landfill emissions accounting, as is the case in Australia (DISER, 2021b). LFG 

that is captured on site and combusted to form CO2 and water vapor, and the oxidation of 

methane to CO2 through filtration of the LFG through the soil cap are also considered 

biogenic. Therefore what is considered in GHG accounting of landfill emissions is the non-

captured methane and nitrous oxide portion of the LFG, which have global warming factors 

factor of approximately 28 and 265 respectively (DISER, 2021b). That is to say, 

methane/nitrous oxide are approximately 28/265 times more potent as a GHG to 

anthropogenic climate change than CO2. With up to 30% of methane emissions from OFMSW 

occurring within 2 years of landfill disposal (Liu et al., 2017), avoiding landfill emissions of 

organic wastes is a priority for waste management for many jurisdictions around the world, 

including in Australia (DPIE, 2021).  

Combustion of LFG, both as a form of energy conversion, and flaring of LFG to the less 

impactful CO2, are crucial components of low-carbon waste management with respect to 

landfills. As indicated in Ayisi et al. (2022), LFG capture and energy conversion systems are 

mature globally. Indeed, some environmental regulations require that LFG be captured and 
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flared or converted to energy, such is the case in the European Union, where the Landfill 

Directive, which regulates the management of landfills in the EU, states:  

“[LFG] shall be collected from all landfills receiving biodegradable waste and the 

[LFG] must be treated and used. If the gas collected cannot be used to produce 

energy, it must be flared” (Directive 1999/31/EC, 2018, p. 21).  

Similar regulations exist in Australia, including the NSW Protection of the Environment Act 

(1997), which stipulates that landfills must minimise the emissions of untreated LFG to the 

atmosphere and minimise offensive odours. LFG capture has also been incentivised under the 

Clean Energy Regulator’s Emissions Reduction Fund, which provides credits for the flaring 

and generation of energy from LFG capture (Clean Energy Regulator, 2021). Given these 

mandatory conditions and incentives, approximately 85% of Australian landfills capture LFG 

(LMS Energy, 2021) with around 40-50% of captured gas recovered for energy (Blue 

Environment, 2020). 

Some recent studies have evaluated the impact of LFG management on low carbon and 

circular economy transitions for the waste management sector. Kurniawan et al. (2022) for 

example showed LFG can be utilised to generate approximately 0.04 kWh/tonne of landfilled 

waste at a sanitary MSW landfill in Jakarta, Indonesia—equivalent to 26,000,000 Mt of CO2-e 

avoidance over a 100 year timeframe. Winslow et al. (2019) performed an economic and 

environmental assessment on LFG to vehicle fuel conversion in the USA, with their findings 

indicating that emissions reductions can be achieved due to mitigating fossil fuel consumption 

and methane emissions from LFG, however the financial viability was found to rely on 

government financial incentives. LCA studies performed (e.g., Damgaard et al. (2011); Lee et 

al. (2017)) have shown that proper LFG management including flaring and conversion to 

energy can have a significant reduction on the environmental impact potential of landfills, with 

overall emissions for LFG capture and conversion up to 44% lower than MSW without such 

technology (Lee et al., 2017). The estimation of landfill gas emissions is discussed in further 

detail in Section 6.3. 
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6.1.5. Emissions from other sources 

Waste related emissions accounts in Australia consider only the emissions from landfilling and 

from the breakdown of organic material via composting (DISER, 2021b). Emissions from 

recovery processes together with waste transportation emissions (i.e., from the combustion of 

vehicle fuel) are not attributed directly to waste management in Australian emissions accounts. 

Indeed, the emissions attributed to waste collection and transport are significant, and should 

be considered as part of any carbon footprint analysis or emissions accounting for resource 

recovery activities.  

While some studies exploring the carbon footprints of waste treatment pathways have also 

considered the impact of waste collection and transportation on overall emissions intensity, 

these studies are limited. Yoshida et al. (2012) for example, found waste collection and 

transportation accounted for approximately 69% of the overall net emissions intensity of 

organic waste composting in Madison County, Wisconsin USA, using an assumed average 

50km collection and transport distance. The transport component (that is, transportation of 

collected waste to composting facility), accounted for approximately 6% of the overall net 

emissions intensity. This is a similar finding to Friedrich and Trois (2013), which found waste 

transport accounted for approximately 4% of the overall emissions intensity of OFMSW 

composting. Importantly, Friedrich and Trois (2013) did not account for waste collection in 

their study, and used an average 30km transportation distance. LCA studies often employ 

average collection and transport distances or impact factors (e.g., Sonesson (2000)) however 

these are typically based on default values and not necessarily relevant to the region being 

investigated—a criticism raised in Edwards et al. (2016). Indeed, Boldrin et al. (2009), an 

influential study exploring emissions associated with OFMSW management, did not consider 

waste collection or transportation at all in their study, citing lack of data required to estimate 

associated emissions. While other studies do explore waste collection and transport from fuel 

consumption (e.g., Edwards et al. (2016)); optimal collection routing (Hannan et al., 2018); and 

cost (Karadimas et al., 2007) perspectives, studies evaluating waste collection and 

transportation emissions, and comparing these to overall waste-related emissions are limited. 

Ultimately, without accounting for waste collection and transport emissions, the carbon 

footprint of waste systems or processes investigated may be significantly under-estimated. This 

is especially true in locales such as NSW and around Australia, which are characterised by large 

transport distances between regional centres, and high levels of suburban sprawl on the 
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periphery of cities. Moreover, the potential emissions reductions can also be inaccurate by not 

accounting for collection and transport—especially if a recovery process considered has 

considerably greater collection or transport requirements (e.g., FOGO collection, or 

transportation to a facility not in proximity to locations of waste generation). 

6.2. Household organic waste management in NSW 

This section provides a short review of the management of household organic waste in NSW 

during the study time frame (2019-20). Household organic waste is typically managed via 

kerbside waste collection services in NSW, with some organics managed through household 

‘drop-offs’ at specified organic collection points, including transfer stations, and landfills. 

Separately collected (that is, not comingled) organic waste is collected at the kerbside via 

separate garden organics (GO) fortnightly bin collection, or for some council areas, food 

organics and garden organics (FOGO) weekly bin collection (mutually exclusive with GO), 

where food and garden waste are comingled. The number of council areas employing FOGO 

collection has increased in recent years, however this expansion in services has mostly been in 

regional areas of NSW, with a slow uptake in Sydney and other metropolitan areas (Surdo & 

Gupta, 2021). Despite this, expanded FOGO collection to cover all households in NSW has 

been identified as a key part of future organic waste management in the NSW Waste and 

Sustainable Materials Strategy (DPIE, 2021). Table 6-3 gives a summary of the number of 

households with each kerbside collection service in NSW, and overall volumes collected across 

all NSW for 2019-20. 

Table 6-3: Summary of number of households and quantities of waste collected for waste streams containing organic wastes, 
from NSW EPA (2021) 

Waste collection service Households serviced in  
2019-20 (state-wide) [hhlds] 

Quantities of waste collected at 
kerbside in 2019-20 [tonnes] 

Separate GO collection 1,514,948 405,717 
Separate FOGO collection 550,435 215,899 
Mixed waste 2,952,576 1,718,474 

Generally for FOGO bins in NSW, food makes up approximately 12% of what is collected 

(Rawtec, 2020a). Each council area across NSW also has a mixed waste weekly bin collection 

service which is typically disposed to landfill, or for a few councils in NSW (23 in 2019-20), is 

sent to AWT/MBT facilities for recovery (NSW EPA, 2021). Note that councils with FOGO 
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services typically collect mixed waste bins at fortnightly instead of weekly intervals. Figure 6-8 

shows the breakdown of total household organic waste collected in NSW by waste collection 

service. The proportion of organic waste in the mixed waste bin is high, and typically consists 

of food waste (e.g., kitchen scraps), and is thus the main source of household organic waste 

that is disposed to landfill. The proportion of food waste in the mixed waste stream is on 

average between 23% and 38% (Rawtec, 2020b); and councils with FOGO services typically 

seeing smaller proportions of food waste in the mixed waste bin. As such, council areas with 

FOGO services have average food waste diversion rates of up to 44% (Rawtec, 2020a). 

 

Figure 6-8: Breakdown of organic waste collected by waste collection stream in 2019-20, derived from data in NSW EPA 
(2021), Rawtec (2020b), and Rawtec (2020a) 

Separately collected household organic waste (i.e., GO and FOGO wastes) are typically 

managed through compost facilities for organic waste recovery. As is the case internationally, 

windrow composting is utilised for large scale compost processing for the majority of collected 

household organics, with in-vessel composting and aerated static pile composting also 

employed at smaller scales (DEC, 2007). AD is currently not utilised at large scale for 

household organics in NSW, however is identified as an important future recovery pathway in 

the NSW Waste and Sustainable Materials Strategy (DPIE, 2021). Table 6-4 gives a summary of 

recovered quantities of organic waste and recovery rates by waste stream for all of NSW in 

2019-20. Compost recovery of GO and FOGO have high rates of recovery, at approximately 

99% and 96% respectively. Differences in recovery rates for these streams can mostly be 

attributed to higher levels of non-organic or non-compliant organic material (e.g., meat) in the 

FOGO stream compared to the GO stream (Rawtec, 2020a). Organic waste recovered from 

706,293 t
54%

397,197 t
30% 211,265 t

16%

Mixed
waste

GO FOGO

Organic waste generated [tonnes], and proportion of total organic waste generated
Sources of organic waste generation by collection stream in 2019-20
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the mixed waste stream is done so via AWT. Overall organics recovery from the mixed waste 

stream is low, at approximately 7% in 2019-20. In total, approximately 122,900 tonnes of 

mixed waste (organic and non-organic waste) was recovered at AWT facilities, with an average 

AWT recovery rate of approximately 27% of incoming waste, or approximately 49% of 

incoming organic waste (NSW EPA, 2021). An important consideration with AWT is the 

quality of the recovered material stream. The NSW Environment Protection Authority recently 

restricted the application of AWT derived secondary organics to land, due to problems with 

contamination levels of the recovered stream (NSW EPA, 2019a; Wilkinson et al., 2021). 

Despite this, AWT is still seen to be an important part of the municipal waste management 

system moving towards 2030 and beyond, at least for contributing towards landfill diversion 

and mitigating the need for future landfill expansions, and subsequent emissions reductions 

(DPIE, 2021). As a pathway for organics waste recovery however, system intervention is 

needed beyond AWT recovery for the mixed waste stream, where the majority of household 

organics waste is found. 

Table 6-4: Organic waste management performance in NSW for 2019-20 (NSW EPA, 2021) 

Waste collection service Total waste recovered in 
2019-20 [tonnes] 

Recovery rate [%] 

Separate GO collection 400,334 98.67% 
Separate FOGO collection 208,201 96.39% 
Mixed waste 122,855 7.15% 

6.3. Approach for estimating emissions from household organic 
waste management 

The aim of the research presented in this chapter was to examine the waste recovery and GHG 

emissions potential of the household organic waste stream in the Greater Sydney and 

surrounding areas in NSW, Australia (note that the geographical scope of this work is the same 

as in Chapter 5). GHG emissions as CO2-equivalent associated with the management of 

household organic waste, including collection, recovery and disposal were estimated, along 

with the emissions reduction potential in terms of avoided landfill gas emissions, and fossil 

fuel mitigation.  

Other studies appearing in the literature examine emissions for recovery pathways for 

OFMSW. For example, Paes et al. (2020) examined the transition towards eco-efficient 
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management of municipal waste across regions in Brazil, by estimating the emissions 

generation and prevention for several organic (and dry recyclable) waste management 

pathways. The authors found that a mix of 70% composting and 30% landfilling with methane 

capture was the most eco-efficient pathway for municipal organics when factoring in emissions 

reductions and recovery, and investment and operational costs. The authors also found that 

this outcome was sensitivity to socioeconomic factors, reflected in the composition of the 

municipal waste stream, which can have a significant positive impact on recovery efficiency, 

and recovered products (e.g., biogas) yields. Stunzenas and Kliopova (2018) assessed a number 

of organic municipal waste management options for regions in Lithuania in terms of organics 

(nutrient) recovery and biogas output. The authors found that improved source separation of 

organics at the household, coupled with treatment via anaerobic digestion at mechanical 

biological treatment facilities, could result in improved compost yields and quality, compared 

to existing composting management for OFMSW. Moreover, improved source separation was 

shown to lead to greater potential yields of biogas (4.7 times compared to non-source separated 

OFMSW), leading to significant potential net-emission reductions through mitigation of fossil 

fuel-derived fuels. Thanh et al. (2015) evaluated the potential environmental benefits from the 

introduction of composting of OFMSW on indicators including organic fertiliser production, 

landfill life extension, and GHG emission reduction. The authors found that composting of 

OFMSW in Hanoi can lead to landfill life extension from 0.5 to 8.7 years; and estimated GHG 

emission reduction between 15% to 98% compared to current practices prioritising landfill 

disposal.  

Studies analysing the recovery and emissions reduction potential from OFMSW management 

pathways in detail for Australia and NSW are however limited, where energy recovery and 

advanced OFMSW recovery beyond composting are not applied at municipal scales. Lou et al. 

(2013) for example examined the theoretical maximum benefit of the digestion of municipal 

food waste in Australia in terms of energy recovery, and landfill diversion. That study found 

that multiple decentralised AD facilities across Australia could generate approximately 20.3 PJ 

of heating potential, or 1,915 GWe in electricity generation annually from OFMSW—

equivalent to ~3.5% of Australian energy supply in 2013. Considering Australia’s reliance on 

fossil fuel for electricity as well as prevalence of landfilling of organic wastes, OFMSW could 

contribute to important GHG emissions reductions in Australia as a source of renewable 

energy and as a pathway for landfill diversion. The study in Lou et al. (2013) however is limited 

for evaluating AD and OFMSW management pathways aligned with recent NSW circular 
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economy strategy, as that study was Australian-wide, focussing on theoretical potential of AD 

of food waste from all sources. Dastjerdi et al. (2019) in their study of residual waste energy 

recovery potential, found that AD of municipal food waste in the mixed waste stream could 

have an emissions reduction potential of up to 634,000 tonnes of CO2-e in NSW, from landfill 

diversion and mitigation of fossil fuels. That study however was focused only on the mixed 

waste (or residual) waste collection fraction, and did not consider separately collected organic 

waste, or the emissions associated with waste collection and transportation. 

For this study, a modelling framework was developed in order to estimate these emissions 

associated with organic waste management and recovery, and is shown in flowchart form in 

Figure 6-9. The waste collection and transport model is based on the models developed in Chapters 

4 and 5, with updated waste generation data for the 2019-20 financial year (NSW EPA, 2021). 

Data on organic waste throughputs at recovery facilities and landfills were integrated with 

energy requirements and emissions factors from the literature in an organic waste recovery model  

to estimate the net emissions associated with recovery of household organic waste at dedicated 

recovery facilities. For this component, a mass-balance model was developed based on Ng et 

al. (2021) and Pressley et al. (2015), whose work involved material flow analysis of various 

organic and non-organic waste sorting and recovery processes. The mass balance model was 

used to estimate the energy requirements of mixed waste sorting at AWT facilities, and 

associated emissions (scope 2 and 3). Literature data was utilised to estimate direct and indirect 

emissions for the organic waste recovery process at AWTs, and for recovery at dedicated 

composting facilities for the GO and FOGO streams. Avoided emissions were estimated 

based on quantities of waste diverted from landfill. A final modelling step, the landfill emissions 

model was used to estimate the lifetime emissions from organic waste disposed to landfill. For 

this, the accounting method employed in the Australian National Greenhouse Accounts 

(DISER, 2021b) was employed. Finally, estimates of waste collection, transport, recovery, and 

disposal emissions from the described modelling steps were combined, to give the overall net 

waste-related emissions for organic waste management in the study area. The following sub-

sections describe these modelling steps and scenario analysis performed in further detail. 
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Figure 6-9: Methodological overview for this study 

6.3.1. Study area and scope of analysis 

Figure 6-10 shows the study area for this analysis, representing the Greater Sydney and 

surrounding areas, consistent with the geographical scope in Chapter 5. The study area includes 

43 local government areas (LGAs) across the Sydney Metropolitan Area, Greater Western 

Sydney, Central Coast & Hunter, and the Illawarra & Shoalhaven regions, and is home to a 

combined population of approximately 6.3 million residents (ABS, 2021). With approximately 

2.3 million households, the study area is a significant source of household organic waste, with 

approximately 1.8 million tonnes of waste collected in 2019-20 across the mixed waste, GO 

and FOGO streams (NSW EPA, 2021).  
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Figure 6-10: Study area for this analysis 

Table 6-5 summarises the LGA organic waste collection pathways in the study area for study 

timeframe (2019-20). For this study, the OFMSW included GO, FOGO and mixed waste 

services. As household organics are commingled and treated along with non-organic waste as 

well as non-compliant organics, collection and treatment of the entire mixed waste stream was 

considered in scope.  

Table 6-5: Summary of organic waste collection pathways in the study area, from NSW EPA (2021) 

Organic collection 
pathway 

Number of LGAs 
with service 

Typical frequency of 
collection 

Total waste collected 
(incl. non-organics in 
mixed) [tonnes, 2019-

20] 
Separate GO collection 35 Fortnightly 377,465 
Separate FOGO collection 5 Weekly 90,047 
Mixed waste 43 Weekly  1,374,095 

The average composition of waste bins collected are summarised in Table 6-6. Data on the 

composition of GO and FOGO bins were derived from NSW EPA (2014a) and Rawtec 

(2020a) audit reports respectively. In both streams, an average contamination rate of 2.1% was 

observed, consisting primarily of non-compliant organics, building materials and plastic 
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wastes. The composition of the mixed waste stream varies depending on the level of organic 

waste separation. LGAs that separately collect FOGO have the smallest proportion of organics 

in the mixed waste stream, followed by LGAs collecting GO separately. Other variations in 

mixed waste composition are attributed to LGA level variation, observed in Rawtec (2020b). 

Table 6-6: Material composition of the NSW municipal waste stream by collection pathway, derived from NSW EPA 
(2014a); Rawtec (2020a, 2020b) 

Waste material GO stream 
composition 

FOGO 
stream 

composition 

Mixed waste 
stream 

composition 
(LGAs 
w/GO) 

Mixed waste 
stream 

composition 
(LGAs 

w/FOGO) 

Mixed waste 
stream 

composition 
(LGAs w/ no 

organic 
collection) 

Garden waste 97.9% 86.3% 3.5% 2.1% 26.7% 
Food waste - 11.5% 37.6% 22.7% 26.9% 
Textiles - - 3.1% 3.5% 2.4% 
Wood - - 2.2% 2.5% 1.7% 
Rubber/leather - - 4.7% 5.4% 3.6% 
Cardboard - - 10.4% 11.7% 7.9% 
Paperboard - - 6.1% 6.8% 4.6% 
Other paper - - 2.4% 2.7% 1.8% 
Plastic film - - 5.3% 7.1% 3.8% 
HDPE - - 3.6% 4.9% 2.6% 
PET - - 1.7% 2.3% 1.2% 
Other plastic - - 2.1% 2.9% 1.5% 
Ferrous metals - - 2.1% 2.9% 1.9% 
Non-ferrous metals - - 0.8% 0.7% 0.7% 
Glass - - 3.3% 3.3% 3.1% 
Other materials/ 
contamination 

2.1% 2.1% 11.1% 18.4% 9.6% 

Waste treatment pathways in scope of this analysis were broadly described in Section 6.1, and 

include windrow composting of GO and FOGO collected organics; AWT for mixed waste 

collections; and landfill disposal for non-AWT directed mixed waste and residual wastes from 

the compost and AWT processes. 

In terms of GHG emissions accounted for, Figure 6-11 includes an overview of the primary 

emissions and material flows in scope from the management and recovery of organic wastes 

in the study area. Table 6-7 gives further detail of the indirect and direct emissions in scope 

from upstream, processing, and downstream sources. Biogenic CO2 emissions through the 

decomposition of organic emissions at landfills and through the aerobic composting process 

were not considered in scope of this analysis, following guidance from DISER (2021b). 

However, emissions of methane and nitrous oxide (both converted to CO2-equivalent using 

factors in the NGA) were considered. Furthermore, emissions avoided from material being 

diverted from landfill due to recovery is considered in this analysis. Emissions avoided from 
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the application of recovered compost to land as substitution for mineral-based fertilisers were 

not considered in scope. This was due to a number of reasons: i) large uncertainty around the 

substitution rate of mineral-based fertiliser, ranging from as low as 30% in ROU (2006), to up 

to 80% in Friedrich and Trois (2013). Most studies in the literature assume emissions savings 

from both the reduction in mineral-based fertiliser production, and from their application to 

land. It was assumed to be unlikely that compost derived from the study area would offset 

mineral-based fertiliser production nationally, nor offset importing of mineral-based fertilisers 

from overseas; ii) limitations in the application of OFMSW derived compost to land, due to 

contamination fears, which applies to both mixed waste-derived and FOGO-derived 

recovered organics NSW EPA (2019a); and iii) the assumption that landfill gas diversion is the 

most significant source of emissions reductions. 

 

Figure 6-11: Overview of emissions and major material flows in scope for this analysis 

Table 6-7: Sources of emissions and emissions savings in scope of this analysis 

Sources of emissions in scope Sources of emissions savings in scope 
Upstream  
Emissions from organic waste collection and 
transportation (fuel combustion) 
 

NA 

Processing  
Electricity consumed during recovery processes (e.g., 
mechanical sorting equipment, office lighting, etc.) 

NA 

Fuel consumed during recovery processes (e.g., 
shredding of material, windrow turning, etc.) 
 

 

Downstream  
Landfill emissions (methane and N2O) Landfill emissions avoided (methane and N2O) 
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6.3.2. Waste collection and transport model 

The waste collection and transport model is a route-optimisation model integrated with GIS, used to 

estimate the collection of household waste from the kerbside for the 1.8 million property lots 

in the study area. Described in detail in Chapter 5 of this thesis, the model estimates the 

transportation (in kilometres per year) for kerbside waste collection, and the transport of 

collected waste between waste management infrastructure. The components of transport 

considered in the waste collection and transport model are: (1) kerbside collection, from households 

to transfer stations; (2) recovery transfer from transfer stations to waste recovery facilities, and 

(3) disposal transfer. For component (3), residues from recovery processes are transported 

from recovery facilities to landfill sites. Mixed waste not directed to AWT facilities is transfer 

from transfer stations to landfill. See Chapter 5 for a full description of this approach.  

6.3.3. Organic waste recovery model 

Emissions from industrial composting of organic waste, and sorting and recovery of organics 

in the mixed waste stream at AWTs were considered in the organic waste recovery model, and 

apportioned to LGAs from where the waste was originally derived. Direct and indirect 

emissions were estimated for the consumption of fuel and grid-supplied electricity at recovery 

facilities, and methane and nitrous oxide emitted during the composting process, as per Figure 

6-11 and Table 6-7. Direct emissions of CO2 from the composting process were not 

considered, due to these emissions being biogenic, and not considered in the National 

Greenhouse Accounts. 

For industrial composting, windrow composting with a 12-month composting time was 

assumed, based on ROU (2006). Electricity consumption for operational activities (e.g., 

offices, lighting, etc.), and diesel consumption for feedstock loading, shredding and windrow 

turning were considered, based on factors in ten Hoeve et al. (2019) and ROU (2006). 

Emissions intensity factors (scope 2 and 3) were used to estimate the emissions associated with 

electricity consumption, based on intensity factors published in the National Greenhouse 

Accounts (DISER, 2021b), specific to the NSW energy supply mix in the study time period. It 

was assumed that all organic waste composting facilities had sufficient capacity to treat all 

incoming organic waste during the study timeframe. Recovery rates for garden waste and food 

waste recovery were based on GO and FOGO waste recovery rates in NSW EPA (2021). 



 161 

Mature compost and residual waste were the assumed outputs of the composting process, with 

residual waste transferred to landfills for disposal (transport for which was considered in the 

waste collection and transport model). For landfill diversion, the landfill emissions model described in 

the following section was utilised, to estimate the landfill gas (methane and nitrous oxide) 

emissions avoided from waste recovery. Table 6-8 includes parameters from the literature 

utilised in the organic waste recovery model for composting. 

Table 6-8: Parameters used for the estimation of emissions from composting of household organic wastes in the study area for 
2019-20 

Parameter Value Reference 
Fuel (diesel) for feedstock receival and compost dispatch 0.51 L/t ROU (2006) 
Fuel for shredding, windrow formation and screening 5.02 L/t ROU (2006) 
Electricity for operations (lighting etc.) 0.04 kWh/t ten Hoeve et al. (2019) 
Emissions per litre of diesel fuel consumed 0.00258 tCO2e/L NTC (2019) 
Emissions (scope 2 and 3) from electricity supply 0.85 kgCO2e/kWh DISER (2021b) 
Emissions of methane from the composting process 4 kgCH4/t (wet) US EPA (2010) 
Emissions of nitrous oxide from the composting process 0.3 kgN2O/t (wet) US EPA (2010) 

For AWT facilities, electricity consumption for mechanical sorting of the incoming mixed 

waste stream was estimated. This was achieved using a mass-balance model, based on the work 

in Ng et al. (2021) and Pressley et al. (2015). This approach estimated the energy consumption 

of the equipment in use at AWTs during sorting and recovery operations individually (e.g., 

conveyers, trommel screens, etc.). Figure 6-12 shows the assumed system diagram of AWT 

sorting. While the focus of this study is on organic waste recovery, the electricity requirements 

for both organic and non-organic waste at AWTs were estimated. This was done as accounting 

for only the organic processing electricity consumption would underestimate the total 

electricity requirements for treating the incoming mixed waste stream, considering that 

organics and non-organics are comingled. Separation efficiencies for each sorting equipment 

(i.e., the proportion of material moving from one equipment to the next in the figure) were 

estimated based on efficiencies in Ng et al. (2021), adjusted via optimisation for each LGA 

such that overall AWT separation is consistent with AWT recovery rates in NSW EPA (2021). 
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Figure 6-12: Assumed system scope of AWT sorting 

Average equipment sorting rates used are summarised in Table 6-9. Note that sorting rates in 

the table are for material entering a process step, and are averaged over LGAs sending waste 

to AWT facilities. Also in the table are sorting efficiency values in Ng et al. (2021) for 

comparison. Average sorting equipment efficiencies from the described approach are 

considerably lower than efficiencies reported in Ng et al. (2021). Overall AWT recovery rates 

in the study area and timeframe are low, ranging from no recovery (i.e., 0% recovery rate), to 

approximately 60%. 

Table 6-9: Estimated AWT sorting equipment sorting efficiencies. Numbers in brackets are baseline efficiencies found in Ng 
et al. (2021) 

 AWT sorting equipment 
Waste material Trommel 

(organics 
separation) 

[%] 

Trommel 
(non-

organics 
separation) 

[%] 

Manual 
sorting [%] 

Ballistic 
separator 

[%] 

Metals 
separation 

[%] 

Glass 
separation 

[%] 

Plastic 
sorting [%] 

Garden waste 49.2% (85%)       
Food waste 49.2% (85%)       
Textiles  0.9% (5%)      
Wood  0.9% (5%)      
Rubber/leather  0.9% (5%)      
OCC    2.1% (60%)    
Non-OCC    2.1% (60%)    
Other fibre    2.1% (60%)    
Plastic film  0.9% (5%) 55.7% (81%)     
HDPE       10.6% (83%) 
PET       10.6% (83%) 
Other plastic  0.9% (5%) 55.7% (81%)    10.6% (83%) 
FE     14.4% (88%)   
Al     14.2% (87%)   
Glass  1.7% (10%)    59.2% (87%)  
Other  1.7% (10%)      

Energy intensity factors from Ng et al. (2021) and Pressley et al. (2015) were applied to estimate 

the energy consumed by each piece of sorting equipment. Overall energy consumption for 

each facility was then estimated as the sum of electricity consumption estimated for all sorting 
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equipment. Sorted organic waste was assumed to be composted on site via in-vessel 

composting following Połomka and Jędrczak (2019), Ng et al. (2021), and described in Jacobs 

(2019). Emissions of methane and nitrous oxide (again assuming all CO2 emissions are 

biogenic) from the in-vessel composting process were based on windrow composting 

emissions factors in US EPA (2010), adjusted for the reduced emissions via in-vessel 

composting found in Friedrich and Trois (2013) and Sharma and Chandel (2017). The same 

assumptions around shredding and feedstock loading fuel requirements for windrow 

composting were used, based on intensities in ROU (2006) and ten Hoeve et al. (2019). As the 

application of organic products from AWT to land have been restricted by the NSW waste 

authority NSW EPA (2019a), it was assumed that the final destination of recovered organics 

from AWT was as bio-stabilised material sent to landfill. As such, emissions savings from 

landfill diversion are assumed to still apply. Parameters used to estimate AWT emissions are 

summarised in Table 6-10. 

Table 6-10: Parameters used for the estimation of emissions from AWT processing of household organic wastes in the study 
area for 2019-20 

Parameter Value Reference 
Trommel energy usage 0.81 kWh/t Ng et al. (2021) 
Vacuum (manual separator) energy usage 0.294 kWh/t Ng et al. (2021) 
Ballistic separator energy usage 0.431 kWh/t Ng et al. (2021) 
Magnet separator energy usage 1.176 kWh/t Ng et al. (2021) 
Eddy current separator energy usage 0.441 kWh/t Ng et al. (2021) 
Air classifier energy usage 2.68 kWh/t Ng et al. (2021) 
Optical/NIR sorter – PET energy usage 0.765 kWh/t Ng et al. (2021) 
Optical/NIR sorted – HDPE/mixed rigid energy usage 2.353 kWh/t Ng et al. (2021) 
Conveyer energy usage 0.11 kWh/t Ng et al. (2021) 
Emissions of methane from the composting process 3.84 kgCH4/t (wet) US EPA (2010) 
Emissions of nitrous oxide from the composting process 0.29 kgN2O/t (wet) US EPA (2010) 
Fuel for shredding, vessel turning, and screening 5.02 L/t ROU (2006) 

6.3.4. Landfill emissions model 

Emissions from waste degrading in landfills are estimated in the landfill emissions model. For this, 

the method and parameters from the Australian National Greenhouse Accounts (DISER, 

2021b) were utilised. With this method, expected lifetime emissions from the decay of 

materials disposed to landfill were estimated as tonnes CO2-equivalent for GO and FOGO 

waste disposed (i.e., residual waste from composting); and from mixed waste disposed (i.e., 

direct to landfill disposal; and organic and non-organic residues from AWT recovery). Material 

disposed to landfill decays over decades, therefore the emissions estimated for waste disposed 

in the study timeframe are the assumed lifetime emissions, given by Equation 6.1: 
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Lifetime GHG (𝑡𝐶𝑂2𝑒) =  {[(𝑄 ∙𝐷𝑂𝐶 ∙𝐷𝑂𝐶𝑓 ∙ 𝐹1 ∙ 𝐶𝐶𝐻4) − 𝑅] × (1 − 𝑂𝑋)} × 𝐺𝑊𝑃 6.1 

Where 𝑄 is the quantity of municipal solid waste disposed to landfill in a given timeframe; 

𝐷𝑂𝐶 is the proportion of degradable organic carbon; 𝐷𝑂𝐶𝑓 is the fraction of degradable 

organic carbon dissimilated; 𝐹1 is the methane fraction of landfill gas; 𝐶𝐶𝐻4  is the conversion 

rate of carbon to methane; 𝑅 is the amount of landfill gas recovered or flared in the given year; 

𝑂𝑋 is the oxidation factor; and 𝐺𝑊𝑃 is the global warming potential used to estimate CO2-e 

from methane. Parameter values from DISER (2021b) are summarised in Table 6-11. 

Estimates for landfill gas capture rates were based on LMS Energy (2021), where 85% of 

landfill gas is estimated to be captured across landfills in Australia. Note that for methane gas 

captured and flared at landfills, the CO2 emissions are not counted as emissions, but considered 

as part of the natural carbon cycle (DISER, 2021b).   

Table 6-11: Landfill emissions model parameters, from DISER (2021b) 

Parameter Value 
Degradable organic content (DOC):  

- Food waste 0.15 
- Paper and cardboard waste 0.4 
- Garden waste 0.20 
- Wood waste 0.43 
- Textile waste 0.24 
- Rubber and leather waste 0.39 
- Inert waste 0 
- AWT residues 0.08 

Fraction of DOC dissimilated (DOCf)  
- Food waste 0.84 
- Paper and cardboard waste 0.49 
- Garden waste 0.47 
- Wood waste 0.10 
- Textile waste 0.50 
- Rubber and leather waste 0.50 
- Inert waste 0 
- AWT residues 0.50 

Methane fraction of landfill gas (F1) 0.50 
Oxidation factor (OX) 0.10 
Methane global warming potential (GWP) 28 

6.3.5. Sensitivity analysis 

A sensitivity analysis was performed to test the robustness of emissions estimates given 

variation in key model variables. Key uncertain variables were the methane gas capture rate (R 

in Equation 6.1), where data on this is limited for the study area; AWT sorting equipment 

energy requirements (Table 6-10), where some variation between technology selection between 
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Ng et al. (2021) and technology in Australia may exist; and composting parameters (Table 6-8). 

For composting parameters, fuel requirements for feedstock preparation and pile turning, and 

operations energy requirements varied considerably in the literature. Methane and nitrous 

oxide emissions from the composting process were also considered uncertain, based on 

remarks in US EPA (2010) indicating that these parameters are uncertain owing to 

measurement uncertainty, and large variation in compost pile composition. Sensitivity of 

parameters for the estimation of kerbside collection and transport emissions were examined 

in Chapter 5, Section 5.2.5.  

For this analysis, the sensitivity of overall net emissions to recovery emissions and landfill 

emissions parameter uncertainty were evaluated following a combined Latin hypercube 

sampling-Monte Carlo simulation approach. Latin hypercube sampling (LHS) makes 

sensitivity analysis with a large number of parameters practical, providing a convenient 

approach for dimension reduction by generating random samples of multiple parameters from 

known probability distributions, spaced evenly over a sample space (McKay et al., 1979). In 

this approach, parameter values are drawn randomly from the LHS, and net emissions are 

computed. This was performed 10,000 times for this analysis, to generate a distribution of 

estimated net emissions from which sensitivity could be evaluated. A similar method was 

employed for analysing uncertainty in aluminium material flows in China (Li et al., 2021). Value 

ranges for uncertain parameters were assumed to be uniformly distributed in a range ±10% of 

the baseline parameter value.  

Outputs from the sensitivity analysis is a distribution of estimated net emissions for the study 

area. Sensitivity of emissions estimates to variation in uncertain parameters was evaluated by 

comparing the percentage change in emissions given percentage change in parameter value 

using regression analysis, after Acevedo (2013).  

6.4. Results and discussion 

6.4.1. Overall organic waste recovery and emissions for 2019-20 

Table 6-12 shows the total amount of waste generated, recovered and landfilled by waste 

collection stream. This data forms the basis of the emissions footprint performance indicators 
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reported later in this section. Over 1.8 million tonnes of OFMSW was generated by households 

in the study area in 2019-20, at an overall per-household generation rate of 956 kg per 

household. Approximately 582,000 tonnes of waste was recovered from the GO, FOGO and 

mixed waste streams, at an overall recovery rate of 31.6% of waste generated. This recovery 

rate does include the estimated recovery of a small proportion of non-organic waste in the 

mixed waste stream. Excluding this proportion of non-organic waste, approximately 580,000 

tonnes of OFMSW was recovered, at a recovery rate of 55.3%. Together, waste collected via 

GO and FOGO streams accounted for approximately 25% of all waste generated in the study 

area in 2019-20. 

Table 6-12: Summary of waste generation and recovery by waste collection stream for 2019-20 

Waste stream 

Waste 
generated, 
2019-20 
[tonnes] 

Waste 
recovered, 
2019-20 
[tonnes] 

Waste 
landfilled, 
2019-20 
[tonnes] 

Waste 
recovery 

rate 
GO stream 377,465 373,873 3,592 99.0% 
FOGO stream 90,047 88,273 1,773 98.0% 
Mixed waste stream 1,374,096 119,377 1,254,718 8.7% 

Organics in mixed waste 578,668 116,995 461,673 20.2% 
Non-organics in mixed waste 795,427 2,382 793,045 0.3% 

Overall 1,841,607 581,523 1,260,084 31.6% 

Overall emissions and their sources are summarised for each waste stream in Figure 6-13. 

Overall gross emissions across all waste streams in 2019-20 were estimated at approximately 

391,000 tCO2-e. This was balanced by an approximate 146,000 tCO2-e of emissions avoidance, 

resulting in overall net emissions of 245,000 tCO2-e. The mixed waste stream was the largest 

contributor to overall emissions. Landfilling of mixed waste alone was responsible for 

approximately 55% of total gross emissions—expected given the poor waste recovery rates 

for this stream, as indicated in Table 6-12. The GO stream was responsible for approximately 

64% of all recovery emissions, and approximately 60% of all emissions avoidance. This is also 

expected, given the large quantities of waste recovered via this collection stream, thereby 

avoiding lifetime landfill emissions. The contribution of the FOGO stream to overall 

emissions is low, with the stream responsible for only 5% of waste collected in the study area. 



 167 

 
Figure 6-13: Estimated emissions by waste stream in the study area for 2019-20 

Figure 6-14 shows the breakdown of estimated gross emissions by source and waste stream. 

Lifetime landfill emissions were the largest contributor to overall gross emissions, accounting 

for approximately 56% of all OFMSW management emissions in 2019-20. For the mixed 

stream, lifetime landfill emissions accounted for 79% of emissions for that stream. Such large 

emissions from landfill disposal again are expected for this stream, considering the large 

quantities of mixed waste disposed to landfill. Conversely, landfill emissions contributed only 

1% and 2% to GO and FOGO stream emissions respectively, consistent with the small 

quantities of these streams disposed to landfill. Transport emissions were relatively consistent 

across the streams, ranging between 12% to 17% of emissions. Overall, transport emissions 

contributed 13% to gross emissions, which addresses an identified gap in knowledge from the 

analysis in Chapter 5, in that this contribution was unknown for OFMSW management in the 

study area. Although small, the contribution of transport emissions should not be ignored in 

holistic evaluations of the emissions intensities of OFMSW management. This is especially 

true for the mixed waste stream, where transport emissions were approximately a third higher 

than emissions associated with the AWT recovery process. This is expected, given the large 

quantities of mixed waste collected compared to the small quantities of mixed waste sent to 

AWT for recovery. 
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Figure 6-14: Breakdown of emissions by source and stream for 2019-20 

Table 6-13 summarises emissions intensity for each waste stream and overall. The net 

emissions per tonne of waste diverted is the chosen emissions intensity performance indicator. 

This is an important metric used for accounting and evaluating emissions of different resource 

recovery systems (Gavrilescu, 2022; Iacovidou et al., 2017a). Compared to a gross emissions 

intensity metric, net emissions better characterise the emissions balance by considering avoided 

emissions. Compared to net emissions on a per tonne managed basis, the chosen metric also 

factors in resource recovery efficiency. This means that emissions intensity performance is 

impacted both by the quantity of waste recovered, and the balancing of emissions and avoided 

emissions, thereby better reflecting the principles of low carbon resource recovery than net 

emissions on a per tonne managed basis. Overall, net emissions were approximately 423 

kgCO2-e per tonne of waste diverted in the study area. Emissions intensity was lowest for the 

GO stream, at approximately 8.5 kgCO2-e per tonne of waste diverted from landfill. As 

indicated in Figure 6-13, avoided emissions were significant, which mostly offset gross 

emissions. FOGO stream intensity was higher than GO stream intensity, due to greater 

transport emissions intensity for FOGO collections (confirmed in Chapter 5), and lower 

stream recovery compared to the GO stream. Mixed waste stream emissions intensity was very 

high, at approximately 2 tCO2-e per tonne of waste diverted. This can be attributed to poor 

stream recovery rates leading to significant quantities of waste disposed to landfill. Improving 

mixed waste recovery and reducing the quantities of waste collected via mixed waste (e.g., via 

FOGO collections) would likely have significant impacts on reducing overall emissions 

intensity, based on these findings. 
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Table 6-13: Summary of net emissions intensity for each waste stream for 2019-20 

Waste stream 
Net emissions intensity per 
tonne diverted [kgCO2-e/t] 

GO stream 8.5 
FOGO stream 17.7 
Mixed waste stream 2,055.6 
Overall 423.4 

6.4.2. Spatial distribution of waste related emissions 

Table 6-14 summarises LGA level waste and emissions intensity statistics across the study area. 

LGAs generated on average approximately 43,000 tonnes of GO/FOGO and mixed waste 

per year, with an average recovery rate of 31.3%. LGA variation on these estimates were high, 

with recovery rates ranging between 19% to 50%. Net emissions were on average 

approximately 5,700 tCO2-e, with average emissions intensity of 500 tCO2-e per tonne 

diverted. Variation in LGA emissions intensity was high, ranging from 100 to 959 tCO2-e. This 

variation is explored further in the following paragraphs. 

Table 6-14: Summary of LGA-level waste and emissions intensity statistics for the study area in 2019-20 

 LGA average 95th percentile range 
Waste generated 2019-20 [tonnes] 42,828.1 8,091 – 109,499 
Waste recovered 2019-20 [tonnes] 13,468.4 1,559 – 34,473 
Recovery rate [%] 31.3% 19% - 50% 
Net emissions [tCO2-e] 5,702.9 760 – 16,052 
Net emissions intensity (diverted) [kgCO2-e/t] 504.4 101 - 959 

Figure 6-15 shows the spatial distribution of net emissions intensities over the study area. The 

figure also shows the locations of organic waste recovery facilities, including AWTs. There is 

some visual correlation between emissions intensities and proximity to recovery facilities, with 

LGAs further away from recovery facilities having higher emissions intensities. However, LGA 

recovery rates were found to be more strongly correlated with net emissions intensities (see 

Figure 6-16), which is consistent with findings in Section 6.4.1 suggesting that waste diversion 

has the greatest contribution to net emissions.  
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Figure 6-15: Spatial distribution of net emissions intensities 

 

Figure 6-16: Relationship between LGA recovery rates and net emissions intensity on a per tonne diverted basis 

A weak correlation can be seen in Figure 6-15 between LGA size and emissions intensities. 

This is explored in more detail in Figure 6-17. Generally, there is a weak correlation across all 

LGAs between LGA size and net emissions intensities. However when broken down by LGA 

region classification, derived from NSW Office of Local Government (NSW OLG, 2020), a 

stronger correlation emerges.  
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LGA size is a determinant for net emissions intensities, whereby larger LGAs have higher net 

emissions intensities, although this relationship is stronger for metro-fringe LGAs compared 

to regional LGAs. For metropolitan LGAs, no such correlation emerges. Table 6-15 further 

summarises emissions and waste statistics by LGA type that may help explain these 

correlations, indicating that metro-fringe and regional LGAs have on average almost double 

the transport emissions intensity of metropolitan LGAs. This is expected given the greater 

dispersal of households and the greater distances to waste infrastructure in these LGAs, 

contributing to greater waste collection and waste transport requirements. This is consistent 

with findings in Chapter 5. The metro-fringe classification is characterised more by suburban 

sprawl, and as Chapter 5 identified, LGAs with lower spatial density of households (i.e., 

households per km2) result in greater waste collection requirements compared to LGAs with 

higher household spatial densities. Further evaluation of data in Table 6-15 shows that regional 

LGAs had the highest rates of waste recovery as well as the lowest emissions intensities—

consistent with findings in Figure 6-16. Despite metro-fringe LGAs having higher recovery 

rates, net emissions were also higher than metropolitan LGAs. This indicates that for metro-

fringe LGAs, transportation emissions are a significant contributor to overall emissions—

more so than for metropolitan LGAs.  

These findings on the spatial distribution of net emissions are important, with implications for 

waste management policy. For example, infrastructure needs may be different depending on 

the level of urbanisation. Findings here indicate that metropolitan LGAs may require 

intervention in improving waste diversion rates. Indeed, as indicated in Figure 5-2 in Chapter 

5, FOGO collection services are less prevalent in metropolitan LGAs. Furthermore, findings 

also indicate the importance of addressing transportation when prioritising net emissions 

reductions in more suburban and regional locations. Practical ways for addressing 

transportation emissions in these locations may include alternate fuels for waste collection 

vehicles, more optimal waste collection routing, or the electrification (with renewable energy) 

of waste collection vehicles. 
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Figure 6-17: Relationship between size and net emissions intensity on a per tonne diverted basis, by LGA type 

Table 6-15: Summary of waste recovery and emissions statistics by LGA classification, from NSW OLG (2020) 

LGA type 

Average 
organic 
waste 

generation 
[t/year] 

Average 
organic 
waste 

recovery 
rate 

Contribution 
to gross 

emissions 

Contribution 
to emissions 
reductions 

Average 
transport 
emissions 
[tCO2-e] 

Average net 
emissions 

intensity per 
tonne 

diverted 
[kgCO2-e/t] 

Metro 44,180.7 29.4% 55.7% 56.8% 820.0 501.9 
Metro-fringe 48,550.4 32.8% 26.5% 24.5% 1,857.1 578.0 
Regional 33,348.4 38.2% 17.8% 18.6% 1,456.5 437.6 

6.4.3. Emissions from composting 

Table 6-16 summarises estimated composting emissions for GO and FOGO waste streams. 

Total gross emissions for composting were approximately 96,500 tCO2-e, and avoided 

emissions from landfill diversion were estimated at 109,800 tCO2-e, making composting a 

negative net emissions process at -13,300 tCO2-e. When considering emissions associated with 

collection and transportation, overall net emissions becoming positive, at 3,500 tCO2-e. Of the 

emissions occurring from the compost process itself, approximately 93% were attributed to 

direct emissions of methane and nitrous oxide. Compost turning, using diesel fuel, contributed 

approximately 7% to composting emissions, and facility operations (e.g., lighting and office 

equipment), less than 1%. GO stream composting contributed 81% to overall composting 

emissions—expected given the larger quantities of GO stream waste collected for composting. 
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Table 6-16: Estimated composting emissions 

Waste stream 

Compost 
turning 

emissions  
[tCO2-e] 

Compost 
operations 
emissions  
[tCO2-e] 

Direct 
emissions 

(CH4 & N2O) 
[tCO2-e] 

Total 
compost 
emissions  
[tCO2-e] 

Emissions 
reductions via 

diversion 
[tCO2-e] 

GO 5,594 12.83 72,285 77,892 88,563 
FOGO  1,335 9.95 17,244 18,588 21,235 
Overall composting 6,929 22.78 89,529 96,480 109,798 

Table 6-17 summarises estimated emissions intensities for composting, including emissions 

associated with transport. Approximately 242 kgCO2-e per tonne of waste managed was 

emitted via composting of GO and FOGO. On a net emissions basis, emissions intensity was 

approximately 8 kgCO2-e per tonne of waste diverted from landfill. Differences in intensities 

between the organic streams were minor, with differences owing to the greater transport 

requirements for the FOGO stream identified in Chapter 5. Focusing on the compost process 

itself by excluding transport emissions, gross intensity per tonne managed was 206 kgCO2-e/t, 

and net emissions per tonne diverted of -29 kgCO2-e/t.  

Table 6-17: Estimated composting emissions intensities 

Waste stream 

Gross composting emissions 
per tonne managed 

[kgCO2-e/t] 

Net composting emissions per 
tonne diverted 
[kgCO2-e/t] 

GO 240.78 6.21 
FOGO  248.39 12.83 
Overall composting 242.24 7.47 

These estimates of composting emissions do not include downstream emissions associated 

with the final utilisation of mature compost. As noted in the literature (e.g., Boldrin et al. 

(2009); Fernández-Delgado et al. (2020); Friedrich and Trois (2013)), mature compost can 

offset the use of mineral based fertilisers, which can have considerable life-cycle emission 

considerations. Boldrin et al. (2009) and Friedrich and Trois (2013) for example assume the 

3.76 kg of nitrogen in OFMSW derived compost would offset 1.88 kg of nitrogen from mineral 

sources (assuming a substitution of mineral fertiliser at a rate of 50%), resulting in 

approximately 24 kgCO2-e savings per tonne of compost produced. Moreover, as noted in 

ROU (2006) and Friedrich and Trois (2013), the application of mature compost to land also 

carries and emissions burden, mainly from the consumption of fuel required by transporting 

of compost and from farm equipment applying it to land, as well as emissions savings from 

carbon bound to soil (Friedrich & Trois, 2013).  
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These emissions were not considered in this analysis for several reasons. Firstly, as indicated 

in NSW EPA (2019a), the application of municipally derived compost is restricted in its 

application to land for food crops, due to contamination concerns. The rate of substitution of 

mineral based fertilisers for OFMSW compost is also an unknown, and is wide ranging in the 

literature, making estimation difficult. Boldrin et al. (2009) for example assumes a substitution 

rate of 20-60%. The level of potential substitution however would likely be dependent on the 

application to land, with food and other high value crops likely having lower substitution rates, 

as fertiliser inputs must be consistent to guarantee crop yields. This point however does require 

further analysis to verify. Future applications of this modelling could incorporate an expanded 

system scope, to include the emissions savings from mineral-based fertiliser substitution. Data 

on the existing rates of fertiliser consumption would be needed, as well as current utilisation 

levels of secondary organics, to accurately assess the potential of emissions avoidance.  

6.4.4. Emissions from AWT recovery 

Table 6-18 summarises total AWT throughout and recovered quantities and recovery rates for 

the study area for 2019-20. Quantities of AWT throughput and waste recovered are derived 

from NSW EPA (2021). A total of approximately 464,000 tonnes of mixed waste was diverted 

to AWTs for recovery in 2019-20, originating from 19 LGAs in the study area. The recovery 

rate of LGA mixed waste ranged from 0% to 50%, with a total recovery rate of approximately 

26%. Some LGAs sent mixed waste to AWTs, however recovery rates of 0% were reported in 

NSW EPA (2021), namely Georges River, Hunters Hill, Lane Cover, Penrith and Woollahra . 

Reasons for this 0% recovery are unclear. Notably, 2 of the listed LGAs had FOGO collection, 

therefore organic waste in the mixed stream may have been insufficient for AWT recovery 

processes prioritising organic waste recovery. In total, AWT diversion represented 

approximately 34% of total mixed waste generated across the study area, and AWT recovery 

represented approximately 9% of total mixed waste. 

Table 6-18: AWT throughputs, and recovered quantities 

Mixed waste fraction 
AWT throughput, 
2019-20 [tonnes] 

Waste recovered via 
AWT, 2019-20 [tonnes] 

AWT recovery rate 
[%] 

Organic waste 197,606 116,995 59.2% 
Non-organic waste 266,484 2,382 0.9% 
Total 464,090 119,377 25.7% 
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Table 6-19 summarises some key statistics from the organic waste recovery model. Approximately 

43% of the AWT throughput stream was organic waste, primarily consisting of food waste. 

Organic waste accounted for 98% of total waste recovered from the mixed stream at AWTs. 

Total gross emissions from AWT recovery including transportation was approximately 36,200 

tCO2-e. Approximately 67% of these emissions were attributed to the in-vessel composting 

process.  

Table 6-19: Summary of key AWT statistics 

 Value 
Waste sent to AWTs 2019-20 [tonnes] 464,090 
Fraction of input that is organic 42.6% 
Mixed waste recovered at AWTs in 2019-20 [tonnes] 119,377 
Fraction of recovered that is organic 98.0% 
Mechanical sorting energy [MWh] 711.4 
Mechanical sorting energy intensity [kWh/t] 1.53 
Mechanical sorting emissions [tCO2-e] 604.7 
Organic recovery emissions*[tCO2-e] 36,240 
Emissions reductions via diversion [tCO2-e] 35,774 
Net emissions [tCO2-e] 466 
Net emissions intensity (diverted) [kgCO2-e/t] 3.9 
*Includes compost turning, operations and direct emissions 

The mechanical sorting component accounted for only 2% of overall AWT emissions. The 

energy intensity of mechanical sorting operations were estimated at 1.53 kWh per tonne of 

material throughput. This is compared to a value of 1.32 kWh/t in Ng et al. (2021), from which 

the AWT sorting component of the organic waste recovery model waste based. Considering only 

the organic waste recovered at AWT facilities, AWT outperformed composting in terms of net 

emissions intensity on a per tonne diverted basis. This can be attributed to the much higher 

proportion of food waste in the mixed waste stream diverted to AWT, than food waste in the 

FOGO stream. Food waste accounted for approximately 38% of mixed waste diverted to 

AWT, compared to approximately 12% in the FOGO stream. This indicates that better 

management of the food waste stream might lead to significant impacts on emissions 

reductions. Expansion of FOGO services to more households and LGAs is planned for NSW, 

which would lead to greater quantities of food waste diverted from landfill. However 

considering restrictions on AWT derived compost (NSW EPA, 2019a), diverting more of the 

food waste in the mixed stream to the FOGO stream (i.e., increasing the proportion of food 

in FOGO) would be more beneficial from a compost utilisation perspective, and the potential 

downstream emissions reductions. 
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6.4.5. Sensitivity analysis and comparison with emissions intensities from 
the literature 

Figure 6-18 shows the distribution of overall net emissions estimates, derived from a Monte-

Carlo simulation (10,000 iterations) with random values for selected variables as described in 

Section 6.3.5. Variation in overall net emissions was estimated at approximately ±18% at the 

95% confidence level. Table 6-20 summarises results from a regression analysis on the 

generated outputs of the Monte-Carlo simulation, used to evaluate sensitivity on variation in 

selected variable values, based on Acevedo (2013). Equation 6.2 shows the functional 

relationship analysed: 

𝑦 =  𝛽0 +  𝛽𝑛𝑥𝑛 + 𝜖 6.2 

Where 𝑦 is the estimated percentage variation in net emissions compared to baseline with 

nominal variable values; 𝛽0 is the estimated model intercept; 𝛽𝑛 is the coefficient value for the 

𝑛𝑡ℎ variable; 𝑥𝑛 is the variation of the 𝑛𝑡ℎ variable compared to the nominal value; and 𝜖 is the 

error term. 

Of the variables assessed in the sensitivity analysis, variation in waste generation quantities; 

landfill gas capture rate; compost turning fuel requirements; and direct methane and nitrous 

oxide emissions from the composting process were found to have a significant impact on 

variation in net emissions. Of these variables, the overall net emissions in the study area were 

most sensitive to variation in the landfill gas capture rate, with a doubling of landfill gas capture 

resulting in an approximately 170% reduction in net emissions. This is expected, given that 

lifetime landfill emissions have been shown through this analysis to be the most significant 

contributor to waste-related emissions. This identifies that better landfill data will help improve 

model accuracy. Future research, including identifying methane emissions from landfill via 

satellite data, and implications for better estimating landfill emissions, are elaborated in Chapter 

8. 

Variability in waste generation had a statistically significant impact on net emissions, with a 

doubling of waste generation across the study area resulting in an approximately 80% increase 

in net emissions. The impact of waste generation variation on transport emissions were 

explored in Chapter 5, where it was found a 20% change in waste generation resulted in 2.5% 
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increase in transportation emissions. Considering that transport emissions make up 

approximately 13% of overall gross emissions, the impact of waste generation variability is 

more significant on recovery and landfill emissions. 

The impact of variability in compost emissions variables on net emissions was relatively low, 

however still significant. Results indicate a doubling of the parameter values for methane and 

nitrous oxide emissions from windrow composting, would result in an approximate 27% and 

20% increase in net emissions respectively. The impact of variability in electricity requirements 

for composting was statistically significant, however very small, with a doubling of parameter 

value resulting in an approximately 3% change in net emissions. 

The impact of variability on AWT processes emissions was found to not impact the overall 

net emissions estimates. This is somewhat expected, given that emissions from AWT sorting 

account for a relatively small proportion of overall emissions from the management of the 

mixed waste stream.  

 

Figure 6-18: Distribution of overall net emissions estimate given variable uncertainty, based on a Monte-Carlo simulation 
with 10,000 iterations. 
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Table 6-20: Summary of regression analysis used to evaluate variable sensitivity on overall net emissions 

Variable b-coefficient p-value 
Intercept -0.0000683 0.240 
Waste generation 0.7946286 <0.005 
Landfill gas capture rate -1.7024166 <0.005 
Compost fuel requirements 0.0353115 <0.005 
Compost energy 0.0008206 0.415 
Compost CH4 emissions 0.2675333 <0.005 
Compost N2O emissions 0.1913701 <0.005 
Trommel energy 0.0013947 0.166 
Vacuum sorting energy 0.0001036 0.918 
Ballistic sorting energy 0.0010762 0.286 
Metal separation energy -0.0008182 0.417 
Air knife separation energy 0.0001406 0.889 
Optical sorting energy 0.0006554 0.515 
Conveyer belt energy 0.0001219 0.904 
   
R2 value 0.9972  
Adjusted R2 value 0.9972  
Model p-value <0.005  

The sensitivity analysis performed does reveal some limitations with the modelling in this 

analysis, which can be addressed through targeted data collection, for example, more specific 

landfill gas capture rates for NSW. Estimating direct methane and nitrous oxide from 

composting has been noted as being difficult, due to complexities in the composting process, 

and wide variation in compost technology and feedstock composition (US EPA, 2010). 

Despite these limitations, comparison with metrics from data generated through this analysis 

with data from the literature, gives confidence to the baseline estimates described in this 

section. Table 6-21 summarises this comparison, showing key indicators calculated from data 

generated from this analysis, compared to data from the literature. Data was selected from the 

literature that could be aligned with data generated from this analysis, and not be biased 

towards technology or management systems inconsistent with the management system for this 

study. Metrics from this analysis are generally consistent with values in the literature, illustrating 

that the emissions intensity of OFMSW management estimated are similar to values reported 

in the literature elsewhere. Values in the literature however, especially with respect to emissions 

intensity per tonne managed, vary widely. This can be attributed to variation in the composition 

of OFMSW internationally, as well as the different composting and recovery technologies 

employed. Coupled with the results of the sensitive analysis described above, this gives 

confidence to the results. 
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Table 6-21: Comparison of mean value performance metrics from this analysis, compared with some data points from 
literature sources 

Metric 
Value (this 
analysis) 

Value 
from 

literature Reference 
Net emissions intensity per tonne managed 179 kg/t 172 kg/t Friedrich and Trois (2013) 
Gross compost emissions intensity 245 kg/t 218 kg/t Dastjerdi et al. (2019) 
per tonne managed  402.3kg/t  Friedrich and Trois (2013) 
  170kg/t Martínez-Blanco et al. (2009) 
  98.4kg/t Martínez-Blanco et al. (2009) 
  172.2kg/t Zhu-Barker et al. (2017) 
  75-150kg/t Vergara and Silver (2019) 
Landfill emissions per tonne disposed 238 kg/t 259.5kg/t Liu et al. (2017) 
(organics)  569.8kg/t Thanh et al. (2015) 
AWT/MBT mechanical sorting energy 1.53 kWh/t 1.32kwh/t Ng et al. (2021) 

6.4.6. Summary of 2019-20 emissions intensities 

A final summary of estimated emissions intensities by LGA organic management pathway is 

presented in Table 6-22, along with average recovery rates. Here, ‘GO only’ and ‘FOGO only’ 

refer to LGAs that have GO and FOGO composting as the only organic waste recovery 

pathways, and estimated intensities also includes emissions associated with mixed waste 

management. ‘AWT only’ refer to LGAs that do not separately collect organics, but send a 

proportion of mixed waste to AWTs for recovery. ‘GO+AWT’ and ‘FOGO+AWT’ refer to 

LGAs that separately collect GO and FOGO waste for composting as well mixed waste to 

AWTs (including also emissions associated with the management of non-AWT mixed waste). 

A single LGA did not separately collect GO or FOGO, or send mixed waste to AWTs for 

recovery.  

Of these different organic management pathways, ‘FOGO only’ and ‘FOGO+AWT’ LGAs 

had the lowest net emissions intensities, at approximately 197 kgCO2-e/t and 167 kgCO2-e/t 

respectively. Interestingly, LGAs that divert mixed waste to AWT as the only recovery 

pathway, had lower net emissions intensities than ‘GO only’ LGAs. In addition, ‘GO+AWT’ 

LGAs had lower emissions than ‘AWT only’, but higher than LGAs with FOGO collection. 

Given that the only pathways for food recovery are via FOGO collections or AWT recovery, 

these findings support that increasing the diversion of food waste from landfill leads to 

improved overall emissions performance. Although this finding is useful from a waste 

management planning perspective, results should be treated with a degree of caution, given 

that sample sizes for the different LGA pathways are low. Further analysis on state-wide waste 

related emissions and organic waste recovery, would give greater certainty to these finding and 
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allow further exploration of trends in emissions intensities between the organic management 

pathways. This is discussed further in Chapter 8 in the context of future work related to this 

research. 

Table 6-22: Emissions intensity factors for different LGA organic waste pathways. Percentage uncertainty is derived from the 
standard deviation of LGA level estimates, and should be treated with caution due to small sample sizes 

LGA organic waste 
pathway 

Average waste 
recovery rates [%] 

Net emissions 
intensity factor, per 

tonne managed 
[kgCO2-e/t] 

Net emission intensity 
factor, per tonne 

diverted [kgCO2-e/t] 
GO only (N=20) 29.7% 165.9 ±19.4% 557.8 ±41.1% 
FOGO only (N=3) 50.2% 98.8 ±9.4% 196.6 ±9.5% 
No organics + AWT (N=2) 23.3% 109.5 ±16.7% 470.2 ±40.5% 
GO + AWT (N=15) 34.7% 96.9 ±52.3% 279.7 ±54.7% 
FOGO + AWT (N=2) 45.0% 75 ±21.1% 166.8 ±65.9% 
No organics (N=1) 0.0% 216.8 ±17.3% NA 

6.5. Conclusions 

This chapter presented a modelling framework and results on the emissions associated with 

OFMSW management in the Greater Sydney and surrounding areas for 2019-20. The aim of 

the analysis was to address thesis research question 4, on the accounting of emissions 

associated with the recovery of household organic waste in NSW. In this regard, a review of 

the literature supported that any holistic accounting of emissions associated with waste 

recovery should also include upstream (i.e., transportation) and downstream (i.e., landfill 

disposal) emissions and potential emissions avoidance. The analysis found that total emissions 

associated with OFMSW recovery in the study area including upstream and downstream 

management, was approximately 245,000 tCO2-e, with emissions from landfill disposal 

accounting for approximately 56% of all emissions generated. Management of the mixed waste 

stream, which also accounts for the majority of organic waste generated by households in the 

study area, had the largest impact on overall emissions, and the highest emissions intensity on 

a per tonne diverted basis. The analysis also addressed an important knowledge gap identified 

in Chapter 5, on the accounting of OFMSW management emissions beyond transportation; 

finding that emissions from transportation account for approximately 13% of overall OFMSW 

management emissions. 

The analysis highlights that landfill diversion of organics, especially food waste in the mixed 

stream, is crucial in the context of achieving good low carbon resource recovery performance. 
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Increasing the diversion of food waste from the mixed stream to separate FOGO collections, 

and increasing quantities of mixed waste treated via AWTs were shown to have a positive 

impact on landfill diversion. These strategies are also aligned with the NSW Waste and Materials 

Strategy 2041, and would likely have significant impacts on transitioning to low carbon resource 

recovery. 

The modelling approach can be further adapted, to investigate other OFMSW management 

strategies and their impacts on low carbon resource recovery, including for example, the 

impacts of anaerobic digestion as a recovery pathway. This is further explored in the context 

of a scenario analysis in Chapter 7. The modelling approach utilised also performed well from 

an uncertainty and parameter sensitivity perspective, and analysis identified where 

improvements could be made to give further confidence in the accuracy of results. Namely, 

better data on landfill capture rates, and direct emissions of methane and nitrous oxide from 

the composting process could improve the accuracy and certainty of results. Future analysis 

may also explore expanding the system boundaries, to include the emissions potential of the 

utilisation of secondary organics to land, including from carbon capture in soil, and from 

offsetting mineral based fertiliser consumption. Future utilisation of this modelling approach 

is elaborated further in Chapter 8. 
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Chapter 7.  
Evaluation of low carbon resource recovery 

pathways 

This chapter utilises the modelling approach described in the previous chapter for exploring 

and evaluating the impacts of a number of potential OFMSW management pathways from a 

low carbon resource recovery perspective, in order to address the following research question: 

Research question 5: What are the optimal low carbon resource recovery pathways for 

household organic waste in NSW, and how may they be identified? 

Addressing the above research question is done so via two parts in this chapter. First, a scenario 

analysis is performed, which utilises the modelling approach from Chapter 6, and explores 

some potential organic management pathways derived from the NSW Waste and Sustainable 

Materials Strategy 2041 (DPIE, 2021). Secondly, data generated from this scenario analysis is 

analysed through a multi-criteria analysis, the objectives which are twofold: i) to test and 

evaluate a simple multi-criteria method for assessment of low carbon pathways for decision 

makers; and ii) to identify from the data generated, what OFMSW management pathways are 

most optimal from a low carbon resource recovery perspective. 
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The concept of optimality from a low carbon resource recovery perspective was introduced 

earlier in Chapter 2, and is reintroduced here briefly. Evaluating and identifying pathways that 

are most optimal from a low carbon resource recovery perspective is complex. While one 

management pathway may lead to emissions reductions, for example through improving 

transportation efficiency, it may not have a significant impact on recovery rates. In contrast, a 

pathway may be directed at improving waste separation and collection rates, leading to 

improved recovery rates but at a higher emissions intensity. From a low carbon resource 

recovery perspective, it is not always clear what pathways are most optimal, or how they should 

be prioritised by decision makers.  

The analysis in this chapter is motivated by potential organic waste management pathways that 

appear in the NSW Waste and Sustainable Materials Strategy (DPIE, 2021). While the strategy does 

prioritise some pathways for organic waste management to 2030, for example anaerobic 

digestion and mandatory FOGO collection, identifying what pathway or combination of 

pathways is most optimal from a low carbon resource recovery perspective, is unclear. 

Literature analysing waste management pathways and systems from the perspective of multi-

criteria optimisation is widespread, and is useful for addressing this problem. A brief review of 

some of these studies is provided in Chapter 2. Many studies attempt to find optimal pathways 

or system configurations based on a set of criteria informed by stakeholders or waste 

management experts. While criteria including costs (e.g., revenue and operational/capital 

costs), social licencing, and other socio-economic factors can be significant in determining 

what pathways to prioritise for a given waste system, this analysis is focused only on the 

techno-environmental domain as described in Iacovidou et al. (2017a). This is because 

prioritisation of environmental impact reduction (i.e., emissions) and waste recovery fall under 

the techno-environmental value domains (Iacovidou et al., 2017a). The analysis in this chapter 

therefore attempts to identify optimal low carbon resource recovery pathways in an effort to 

help inform future organic waste management decision making, aligned with waste recovery 

strategies and carbon reduction priorities.  

The remainder of this chapter is organised as follows: firstly, a description of the scenario 

development and evaluation approach is given, including an introduction to the NSW Waste 

and Sustainable Materials Strategy, and details of scenario assumptions. Results of the scenario 

analysis are given, including net emissions intensities of the different management pathways 

and comparison across the scenarios, and against intensities derived from Chapter 6. Results 

of the multi-criteria analysis are then given, followed by an evaluation of the approach tested.  
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7.1. Scenario development and evaluation approach 

A scenario analysis was performed to evaluate the waste recovery and potential emissions 

intensities of a number of alternate organic waste management and recovery pathways, utilising 

the modelling approach described in Chapter 6. Scenarios are evaluated to optimise low carbon 

resource recovery performance, and are compared against baseline (i.e., Chapter 6 results) in a 

multi-criteria analysis. 

For this analysis, scenarios are derived from the NSW Waste and Sustainable Materials Strategy 

(DPIE, 2021). This strategy is an outline of planned actions and reforms to be undertaken by 

the NSW Government in transitioning to a more circular economy in the state around waste 

and materials management. With respect to OFMSW management, the strategy also targets 

the halving of organic waste sent to landfill by 2030, as well as achieving net zero emissions 

from organics to landfill, also by 2030. These targets are largely driven by the environmental 

benefits and economic opportunities brought about by better management of NSW waste 

streams, but also the need to address growing requirements for landfill expansion in the near 

future. Several planned actions are identified in the strategy, including mandating FOGO 

collection for all NSW households, and incentivising biogas generation from waste materials 

via anaerobic digestion. However the strategy also indicates that significant investment in new 

OFMSW management infrastructure is required—not just to manage a growing FOGO waste 

stream or to harness potential bioenergy from the stream, but also to keep pace with growing 

populations in NSW specifically in urban areas. Findings from this scenario analysis can 

therefore help inform the trajectory of OFMSW recovery and related emissions towards the 

objectives of the NSW Waste and Sustainable Materials Strategy, and can also assist decision 

making around selection of optimal pathways and infrastructure. Although not within scope 

of this analysis, the modelling utilised (i.e., from Chapter 6) can be utilised to identify optimal 

locations for infrastructure, as well as catchment areas for feedstock. This is discussed further 

in the context of future work in Chapter 8. 

Table 7-1 summarises the scenarios modelled for this analysis. Waste generation rates in each 

scenario were based on 2019-20 (baseline year) levels, as described in Chapter 6. This allows 

for the simple comparison between current waste management practices, and the impact of 

the various scenario interventions tested in this analysis. Estimating future waste generation 

(e.g., for 2030 or beyond) is outside the scope of analysis, given the large uncertainties related 
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to changing household waste disposal and generation behaviours, and future household 

distributions. For each scenario, organic waste recovery rates and net emissions per tonne of 

waste diverted are compared with baseline 2019-20 performance. Modelled scenarios and 

assumptions are described in detail in the following section. 

Table 7-1: Overview of scenarios modelled 

Scenario Description 
Mandatory 
FOGO 
collection 
scenarios 

Scenario 1.1 - Mandatory weekly FOGO collection for all councils 
- Mixed waste collected fortnightly 
- FOGO collected treated at existing composting facilities 
 

Scenario 1.2 - Mandatory weekly FOGO collection for all councils 
- Mixed waste collected fortnightly  
- Food waste diverted from mixed waste to FOGO increased 
- FOGO collected treated at existing composting facilities 
 

Standalone 
anaerobic 
digestion 
scenarios 

Scenario 2.1 - Mandatory weekly FOGO collection for all councils 
- Mixed waste collected fortnightly  
- Standalone AD facility deployed in Western Sydney 
- FOGO not treated via AD is treated at composting facilities 
 

Scenario 2.2 - Mandatory weekly FOGO collection for all councils 
- Mixed waste collected fortnightly  
- 3 standalone AD facilities deployed in Western Sydney, Hunter, & South 
Coast 
- FOGO not treated via AD is treated at composting facilities 
 

Scenario 2.3 - Mandatory weekly FOGO collection for all councils 
- Mixed waste collected fortnightly  
- 3 standalone AD facilities deployed in Western Sydney, Hunter, & South 
Coast  
- Food waste diverted from mixed waste to FOGO increased 
- FOGO not treated via AD is treated at composting facilities 
 

Anaerobic 
digestion 
deployed at 
AWTs 
scenarios 

Scenario 3.1 - Mandatory weekly FOGO collection for all councils 
- Mixed waste collected fortnightly  
- Organic waste sent to AWT facilities is digested on site 
- FOGO not treated via AD is treated at composting facilities 
 

Scenario 3.2 - Mandatory weekly FOGO collection for all councils 
- Mixed waste collected fortnightly  
- Organic waste sent to AWT facilities is digested on site  
- Food waste diverted from mixed waste to FOGO increased 
- FOGO not treated via AD is treated at composting facilities 
 

Scenario 3.3 - Mandatory weekly FOGO collection for all councils 
- Mixed waste collected fortnightly 
- Organic waste sent to AWT facilities is digested on site 
- 3 standalone AD facilities deployed in Western Sydney, Hunter, & South 
Coast 
- Food waste diverted from mixed waste to FOGO increased 
- FOGO not treated via AD is treated at composting facilities 
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7.1.1. Description of scenarios 

Scenario 1.1 – mandatory FOGO collection 

Scenario 1.1 examines the impact on emissions from the mandatory collection of household 

FOGO across NSW. The NSW Waste and Sustainable Materials Strategy (DPIE, 2021) identifies 

mandatory FOGO across NSW households as being a key implementation for improved 

organic waste diversion by 2030. For this scenario, all LGAs in the study area are assumed to 

collect FOGO at the kerbside at weekly intervals, with mixed waste being collected fortnightly 

instead of weekly. As such, FOGO collection must be modelled for LGAs without FOGO 

services in the baseline year. For LGAs in the baseline case with GO collection services (note 

that GO and FOGO are mutually exclusive), the garden waste proportion of FOGO is 

assumed to be equal to quantities of GO collection in the baseline. The food waste proportion 

of FOGO is then estimated, based on the proportion of food waste in the FOGO stream 

reported in Rawtec (2020a), equal to approximately 12% by mass. Estimated quantities of food 

waste collected via FOGO for these LGAs are then removed from the total quantity of waste 

collected via the mixed waste stream, to ensure food waste collections via FOGO were not 

double counted. For LGAs without separate organics collection in the baseline case, quantities 

of FOGO collection were estimated based on the baseline average proportion of FOGO 

collection to total (FOGO + mixed) waste collection for LGAs with FOGO in the baseline 

year, equal to approximately 47% of total waste generated. Garden and food waste apportioned 

to FOGO collection was then removed from quantities of mixed waste collection for these 

LGAs, to ensure FOGO collections were not double counted.  

Scenario 1.2 – mandatory FOGO collection with increased food diversion 

Scenario 1.2 also examines mandatory FOGO collection for NSW households, however 

assumes a higher diversion of food waste from the mixed waste to FOGO stream for all LGAs. 

The diversion rate of food waste from the mixed waste stream to FOGO (that is, the 

proportion of total food waste that is collected via FOGO) is doubled compared to the 

baseline and Scenario 1.1, and is assumed to occur based on improved household disposal 

practices and increased awareness of eligible organic materials accepted in FOGO waste bins. 

Additional quantities of food waste diverted to FOGO are removed from the mixed waste 

stream, and added to the FOGO stream, resulting in an increased proportion of food waste in 
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FOGO. Detailed assumptions on the composition of the FOGO and mixed waste streams are 

summarised in Table 7-2. 

Table 7-2: Average proportion of food waste in FOGO and mixed waste stream for baseline 2019-20, and Scenarios 1.1 
and 1.2 

Scenario Food waste in FOGO stream Food waste in Mixed waste stream 
Baseline 11.5% 22.7% 
Scenario 1.1 11.5% 22.7% 
Scenario 1.2 20.6% 17.4% 

Scenario 2.1 – standalone OFMSW digestion (low-demand) 

Scenario 2.1 explores the potential impact of the deployment of anaerobic digestion on waste 

related emissions in the study area. The NSW Waste and Sustainable Material Strategy notes the 

potential for anaerobic digestion in the Greater Sydney area, identifying 3 general locations 

where digestion technology may be deployed in the future. Scenario 2.1 is a low-demand 

scenario, where a single dry OFMSW digester is deployed in Western Sydney for treatment of 

FOGO waste collections. Collection assumptions from Scenario 1.1 are used for this scenario, 

assuming mandatory FOGO collection would be necessary to ensure sufficient feedstock for 

commercialisation. The Eastern Creek location was chosen as the location of the digestion 

facility, given it is currently the site of other waste recovery infrastructure, including AWT. A 

dry digester system of 50,000 tonnes per year throughput capacity, with organic loading of 

80% food waste and 20% garden waste was chosen as the technology for examination, based 

on assumptions for OFMSW digestion in Perin et al. (2020) and Peces et al. (2014). Separation 

of FOGO for digestion is modelled to occur at transfer stations, with FOGO not directed to 

digestion instead transported to existing composting facilities. 

In order not to bias the scenario towards a particular council supplying feedstock to the 

digestion facility, it was instead assumed that feedstock for the digester would be sourced from 

nearby transfer stations rather than directly from councils (although acknowledging that 

quantities of waste at transfer stations are derived from local council areas). For this, a feasible 

transport distance was determined between the digester and nearby transfer stations such that 

sufficient FOGO waste was available for digestion. When examining the distance between the 

digester and all transfer stations in the area, a median distance of approximately 50 km was 

observed. A feasible distance of approximately 30 km was chosen, which was calibrated such 

that sufficient organic waste was available (assuming 80% of the feedstock is food waste). All 

transfer stations within this transport radius of the digester were identified, and it was assumed 
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feedstock for the digester would be drawn evenly from these transfer stations (i.e., if 5 transfer 

stations were in proximity, 10,000 tonnes of total waste would be sourced from each transfer 

station). To avoid double counting, quantities directed to digestion for applicable LGAs were 

removed from FOGO collections destined for composting. Figure 7-1 shows the assumed 

location of the digestion facility, transfer stations within the assumed collection zone, and 

LGAs where waste sent to the AD facility is derived. Assumptions on AD processing and 

biogas generation common across all scenarios are described in detail further in Section 7.1.2. 

 

Figure 7-1: Location of the Western Sydney digester and  LGAs sending waste to digestion for Scenario 2.1 

Scenario 2.2 – standalone OFMSW digestion (high-demand) 

Scenario 2.2 examines OFMSW digestion deployment in Western Sydney, and in the Hunter 

and Shoalhaven regions, based on potential locations noted in the NSW Waste and Sustainable 

Materials Strategy. The Eastern Creek location from Scenario 2.1 is used for the Western Sydney 

digester. For the Hunter region, Raymond Terrace was selected as a location for a digester, 

given it is the site of an existing AWT facility. For the Shoalhaven digester, South Nowra was 

selected as a candidate location, as it is the site of a significant resource recovery park. Digesters 

in the Hunter and Shoalhaven however were assumed to operate at reduced throughput, given 

the reduced quantities of available feedstock for operation of 50,000 tonnes per year scale 

digesters at these locations compared to the Eastern Creek location. Pre-analysis found that 

given the assumed organic loading rates of 80% food and 20% garden waste, there is only 
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sufficient feedstock from the FOGO stream alone for approximately 90,000 t/year capacity 

of digestion across the entire study area. Given the 50,000 t/year sized digester in Western 

Sydney, the remaining 40,000 t/year of theoretical capacity was apportioned to facilities in the 

Hunter and Shoalhaven. As such, the Hunter-based digester was assumed to have a throughput 

of 25,000 t/year, and the Shoalhaven facility 15,000 t/year, reflecting that waste generated 

across LGAs in the Hunter is approximately 1.5-times that of LGAs in the Shoalhaven and 

surrounding regions. The same approach used to calculate the origin of FOGO feedstock as 

applied to the Western Sydney digester in Scenario 2.1, was applied for Scenario 2.2. For the 

Western Sydney digester, the transport radius of 30km was used, consistent with Scenario 2.1. 

For the Hunter, a transport radius of approximately 130km was required to supply sufficient 

feedstock for the digester. For the Shoalhaven facility, a radius of 105km was required. 

Although it is likely that feedstock could be incorporated from other areas outside the study 

area, and indeed from other waste sources such as agriculture, this was outside the scope, and 

is discussed in the context of future research in Chapter 8. Figure 7-2 shows the assumed 

location of the digestion facilities, transfer stations within the assumed collection zones, and 

LGAs where waste sent to each AD facility is derived. Note that there are some overlaps where 

LGAs effectively send waste to more than one AD facility. 

 

Figure 7-2: Location of the Western Sydney, Hunter and Shoalhaven digesters, and  LGAs sending waste to digestion for 
Scenario 2.2. Note that there is overlap in catchment areas for the different digesters 
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Scenario 2.3 – standalone OFMSW digestion (high-demand) with increased 

food diversion 

Scenario 2.3 examines the deployment of the same facilities as assumed in Scenario 2.2, but 

with assumptions for increased diversion of food waste to FOGO collection as used for 

Scenario 1.2. In this scenario, reduced transport radii to ensure sufficient feedstock were 

possible, with a radius of 16km used for the Western Sydney facility; 70km used for the Hunter 

facility; and 95km for the Shoalhaven facility. Table 7-3 summarises transport distances 

assumptions for Scenarios 2.1, 2.2 and 2.3; and Figure 7-3 shows collection zones for each 

digester under Scenario 2.3 conditions. Note digester throughput capacities are the same as 

Scenario 2.2. 

Table 7-3: Summary of transport distance assumptions for Scenarios 2.1, 2.2 and 2.3 

Scenario Digester catchment transport distance assumptions 
Scenario 2.1 Western Sydney digester – 30km 

 
Scenario 2.2 Western Sydney digester – 30km 

Hunter region digester – 130km 
South Coast region digester – 105km 
 

Scenario 2.3 Western Sydney digester – 15km 
 Hunter region digester – 70km 

South Coast region digester – 95km 
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Figure 7-3: Location of the Western Sydney, Hunter and Shoalhaven digesters, and  LGAs sending waste to digestion for 
Scenario 2.3 

Scenario 3.1 – anaerobic digestion at AWT facilities 

Scenario 3.1 explores the adapting of existing AWT facilities to incorporate anaerobic digestion 

in place of in-vessel composting. Anaerobic digestion is commonly deployed at AWT/MBT 

facilities abroad, and is assessed as viable OFMSW treatment options in Ng et al. (2021); 

Stunzenas and Kliopova (2018); and Rigamonti et al. (2019). Scenarios 2.1, 2.2 and 2.3 assume 

some upheaval of the existing FOGO composting pathway by diverting feedstock away from 

existing composting facilities. Scenario 3.1 assumes that feedstock from AD comes only from 

the mixed waste streams at AWT facilities, consisting of food waste only, therefore does not 

impact existing compost recovery. An additional benefit from this scenario is the potential for 

greater AD capacity, with approximately 150,000 tonnes of food waste sent to AWT via the 

mixed stream in the baseline year, and 105,000 tonnes under mandatory FOGO conditions. 

Mandatory FOGO collection assumptions for this scenario are consistent with Scenario 1.1 

assumptions. AWT mechanical sorting energy intensity assumptions are the same as in the 

baseline case. Assumptions and parameters used to estimate AD energy requirements and 

biogas generation are the same used for Scenarios 2.1, 2.2 and 2.3, which are described in detail 

later in this section. 
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Scenario 3.2 – anaerobic digestion at AWT facilities, with increased food waste 

diversion 

Scenario 3.2 explores adapting of existing AWT facilities with AD capabilities, however also 

includes assumptions around increased diversion of food waste from mixed waste to FOGO 

streams. Although increased diversion means less food waste in the mixed stream available for 

AD at AWT facilities, this scenario tests the combined impact on emissions intensity of these 

two interventions. Food waste diversion assumptions are consistent with Scenarios 1.2 and 

2.3, and assumptions around AD recovery at AWTs are the same as Scenario 3.1. The 

difference between these scenarios, is a reduced quantity of food waste available at AWTs, 

given the increased redirection of food waste from the mixed stream to FOGO.  

Scenario 3.3 – standalone OFMSW digestion with AD deployed at AWTs, and 

increased food waste diversion 

Scenario 3.3 examines the potential of the system to prioritise energy recovery from organic 

streams, and is the final scenario evaluated. Scenario 3.3 assumes the deployment of the 3 

digesters located in Western Sydney, the Hunter and Shoalhaven areas, with the added 

assumption of increased food waste diversion (Scenario 2.3). All AWTs are also assumed to 

deploy AD for treatment of the organic fraction entering AWTs. The overall AD capacity for 

this scenario is therefore approximately 184,000 tonnes per year (90,000 tonnes standalone 

AD; 94,000 tonnes AD at AWT facilities). 

7.1.2. Estimating anaerobic digestion emissions and avoidance 

Figure 7-4 illustrates the anaerobic digestion process assumed for all scenarios utilising AD as 

recovery pathway, adapted from Wang et al. (2021). Mesophilic digestion is the assumed 

digester type, which operates at temperatures between 20°C and 40°C, and represents more 

than 90% of OFMSW digesters in use worldwide (Li et al., 2018; Wang et al., 2021). Feedstock 

collected for digestion is delivered to the digestion facility, where it is first pre-treated on site. 

Pre-treatment is performed to improve the quality of the feedstock entering the digester, and 

pre-treatment processes can vary. Fan et al. (2018) performed a review of different pre-

treatment processes utilised for AD for different feedstocks. Mechanical grinding was 

common for the digestion of OFMSW, and therefore is the assumed pre-treatment process. 
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Grinding of the feedstock reduces the feedstock to a consistent particle size, where smaller 

particle sizes of the digestion substrate leads to improved microbial activity and methane 

generation (Pilli et al., 2020).  

 

Figure 7-4: Illustration of the assumed OFMSW anaerobic digestion process, adapted from Wang et al. (2021) 

Contamination is also removed at this step. For the purpose of this model, feedstock that is 

pre-treated and ready for digestion is considered recovered—consistent with how compost is 

treated in accounting for organic waste recovery in organic waste recovery model described in 

Chapter 6. Contamination within the feedstock stream (i.e., at the input of the recovery 

process) is treated as residual, and is transported to landfill for disposal. After digesting (for 21 

days as per Wang et al. (2021), although this does not have bearing on the model estimates), 

the digestate is then treated to remove water (‘dewatering’), before being utilised as a soil 

amendment. For this model, the application of digestate to land and the treatment of the liquid 

component are not considered in scope, consistent with compost recovery assumptions. 

Biogas generated from the digestion process is assumed to be combusted to generate electricity 

as per Lou et al. (2013). Before combustion, the biogas is assumed to be treated to improve its 

quality and utilisation potential via chemical scrubbing (Andriani et al., 2014; Fan et al., 2018; 

Niesner et al., 2013). Table 7-4 includes parameters used to estimate energy requirements of 

the digestion process. Emissions from AD treatment are calculated by multiplying estimated 

electricity consumption by emissions factors (scope 2 and 3) from DISER (2021b), specific to 

the NSW energy supply for 2019-20. 



 195 

Table 7-4: Anaerobic digestion parameters 

Parameter Value Reference 
Pre-treatment (grinding) 10.7334 kWh/t-input Average of values given in Zhang 

and Banks (2013); Izumi et al. (2010); 
Fan et al. (2018) and Wang et al. 
(2021)  

Dewatering 0.67 kWh/t-output Average of values given in Wang et 
al. (2021) 

Post-treatment (chemical scrubbing) 0.43 kWh/m3 Average of values given in Fan et al. 
(2018) 

It was assumed that digesters produce methane-rich biogas, based on the model in Lou et al. 

(2013), which is combusted for the generation of electricity in a generic gas combustion engine, 

with an assumed electricity conversion efficiency of 34%. It is assumed that digestate produced 

is biostabilised and sent to landfill, given municipal waste derived recovered organics are 

currently restricted from land application (NSW EPA, 2019a). Electricity generated from 

biogas was assumed to offset fossil fuel derived electricity, resulting in emissions reductions 

(assuming CO2 generated from combustion is biogenic). While AD deployed in Europe often 

utilise combined heat and power (CHP) systems, given the lack of demand for district heating 

in NSW due to milder temperatures than in Europe, it was assumed that only electricity is 

generated from combustion. Future analysis could explore the application of AD-derived 

biogas for trigeneration systems which produce cooling derived from the thermal energy of 

the system. For the purpose of this analysis, it was assumed that biogas was combusted at the 

AD facilities, which are assumed to also be connected to the local electricity network, given 

proximity to existing industrial sites around the selected digester locations. A more detailed 

analysis in identifying optimal facility locations based on proximity to existing electricity 

transmission networks, and scenarios exploring transportation of biogas for electricity 

generation at other locations, is beyond the scope of this analysis, but is discussed in the 

context of future work in Chapter 8. The authors in Lou et al. (2013) estimated the theoretical 

biogas generation potential from municipal food waste in Australia, using the model in 

Equation 7.1, which was also utilised for this analysis: 

𝐺𝐴𝐷 = 𝑞 ∙ 𝑓𝑣𝑠 ∙ 𝑏 ∙ 𝑔 ∙ 𝑐𝐶𝐻4 7.1 

Where 𝐺𝐴𝐷 is biogas generated from AD (in m3); 𝑞 is the quantity of feedstock treated (in 

tonnes); 𝑓𝑣𝑠 is the ratio of volatile solids to total solids; 𝑏 is the volatile solids biodegradability 

for OFMSW; 𝑔 is the biogas yield (m3 per tonne of volatile solids destroyed); and 𝑐𝐶𝐻4  is the 

volume concentration of methane in biogas (m3m-3). A proportion of biogas generated from 
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AD is lost to the environment through leakages in the system (i.e., containment leakage). This 

leakage is based on data in Fei et al. (2022), who reported 1.5% of the methane generated was 

lost to the atmosphere over the digestion process, in addition to approximately 0.015 kg of 

nitrous oxide per tonne of feedstock. These factors were used to estimate leakages of methane 

and nitrous oxide, and were multiplied by their respective global warming potentials from 

DISER (2021b) to estimate emissions in CO2-equivalent. These values are summarised in 

Table 7-5. 

Table 7-5: Summary of parameters used for direct GHG emissions from anaerobic digestion of OFMSW 

Parameter Value Reference 
Methane leakage 1.5% of total methane generated Fei et al. (2022) 
Nitrous oxide leakage 0.015 kg/t feedstock Fei et al. (2022) 
Methane global warming potential 28 DISER (2021b) 
N2O global warming potential 265 DISER (2021b) 

The electricity generated from combusting biogas derived from AD is also estimated, based 

on the model in Lou et al. (2013). The energy generation potential from the biogas generated 

is estimated from Equation 7.2: 

𝐸𝐴𝐷 = 𝐺𝐴𝐷 ∙𝑄𝐶𝐻4 ∙ 𝜂𝑒 7.2 

Where 𝐸𝐴𝐷 is the energy generation potential (MJ); 𝑄𝐶𝐻4  is the volumetric heating value of 

methane (MJ m-3); and 𝜂𝑒 is the efficiency of the combustion engine generator. Parameter values 

used in the analysis are shown in Table 7-6. 

Table 7-6: Parameter values used in the estimation of biogas and electricity generation from digestion, from Lou et al. 
(2013), and Demichelis et al. (2022) (for fvs) 

Parameter Value 
𝑓𝑣𝑠 0.84 
𝑏 0.83 
𝑔 0.55 
𝑐𝐶𝐻4  0.71 
𝑄𝐶𝐻4  36.3 [MJ m-3] 
𝜂𝑒 34% 

Electricity generated from the combustion of biogas generated is assumed to substitute fossil 

fuel derived electricity in NSW. Emissions reductions are therefore calculated based on 

offsetting emissions associated with fossil-fuel derived electricity utilised in NSW, using the 

emissions intensity of fuel combustion. For this, the emissions offset is calculated by applying 
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emissions factors for fuel combustion to the quantity of electricity generated in MJ from AD 

derived biogas (i.e., from Equation 7.2). Fuel combustion emissions factors from DISER 

(2021b) were then multiplied by 𝐸𝑜𝑓𝑓 to estimate the emissions offset. Data on the distribution 

of fossil fuel energy sources for NSW in 2019-20 (DECCEEW, 2022) were used to estimate 

the emissions offset, weighted to the NSW energy mix. Approximately 96% of fossil fuel 

energy is derived from black coal in NSW, with the remainder from natural gas sources. 

Emissions offsets were balanced by the direct emissions from the combustion of AD derived 

biogas, also estimated from the emissions factors from DISER (2021b), which are subtracted 

from the estimated emissions offsets to calculate the net emissions offset (Equation 7.3): 

𝐺𝐻𝐺𝑛𝑒𝑡 𝑜𝑓𝑓𝑠𝑒𝑡 = (∑∑𝐸𝐴𝐷 ∙ 𝜑𝑗,𝑘
𝑘𝑗

) − (∑𝐸𝐴𝐷 ∙ 𝜑𝑗,𝑏𝑖𝑜𝑔𝑎𝑠
𝑗

) 7.3 

Where 𝐺𝐻𝐺𝑛𝑒𝑡 𝑜𝑓𝑓 is the estimated GHG emissions offset from AD in CO2-e; 𝜑𝑗,𝑘 is the 

emissions factor for fuel source 𝑘 = {𝑐𝑜𝑎𝑙, 𝑔𝑎𝑠} and greenhouse gas 𝑗 = {𝐶𝑂2,𝐶𝐻4,𝑁2𝑂}. Table 

7-7 summarises emissions factors for fuel combustion used in this analysis. Total emissions 

for AD treatment at AD facilities (i.e., not including transportation) are then calculated as per 

Equation 7.4. Note that transport emissions are calculated following the approach described 

in Chapter 5 and applied in Chapter 6. 

𝐺𝐻𝐺𝑡𝑜𝑡𝑎𝑙 𝑛𝑒𝑡𝐴𝐷 = (𝐺𝐻𝐺𝑝𝑟𝑒 + 𝐺𝐻𝐺𝑜𝑝 + 𝐺𝐻𝐺𝑑𝑒𝑤𝑎𝑡𝑒𝑟 + 𝐺𝐻𝐺𝑝𝑜𝑠𝑡) − 𝐺𝐻𝐺𝑛𝑒𝑡 𝑜𝑓𝑓𝑠𝑒𝑡 7.4 

Where 𝐺𝐻𝐺𝑝𝑟𝑒 is the emissions associated with AD pre-treatment; 𝐺𝐻𝐺𝑜𝑝 is the emissions associated 

with AD plant operations; 𝐺𝐻𝐺𝑑𝑒𝑤𝑎𝑡𝑒𝑟 are emissions associated with dewatering of the digestate, and 

𝐺𝐻𝐺𝑝𝑜𝑠𝑡 are emissions associated with post-treatment. Energy consumption for pre- and post-

treatment, operations, and dewatering are converted to CO2-e emissions by applying scope 2 and 3 

emissions factors from DISER (2021b), specific to the NSW energy supply in the study timeframe. 

Table 7-7: Emissions factors from fuel combustion, from DISER (2021b) 

 Emissions factor (kgCO2-e/GJ) 
Energy source CO2 CH4 N2O 
Black coal 90 0.04 0.2 
Natural gas 51.4 0.1 0.03 
Biogas 0 6.4 0.03 
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Findings from the scenario analysis may help inform the strategic planning of organic waste 

management in the study area, including in optimal household collection systems (e.g., FOGO 

vs GO) and the impact of identified key future technologies (i.e., anaerobic digestion).  

7.1.3. Evaluation approach 

Evaluating organic management pathways from a low carbon resource recovery perspective is 

complex. Pathways considered optimal might depend on a range of factors, including technical 

and environmental criteria (e.g., waste recovery rates and net emissions), as well as factors 

representing ease of implementation, cost of implementation, and social licencing among 

others. Various tools and approaches exist for identifying or evaluating pathways from the 

perspective of optimality (i.e., which pathways are most optimal for a given set of criteria), as 

is summarised in Section 2.3. For this study, the simple additive model (SAM) approach was 

utilised to evaluate the modelled scenarios from a low-carbon resource recovery perspective. 

This approach is the recommended multi-criteria analysis (MCA) approach for evaluating 

infrastructure projects in the Guide to Multi-Criteria Analysis (Infrastructure Australia, 2021), due 

to its ease of implementation, flexibility, and few data requirements. It is also a method that is 

widespread in the literature, as indicated in Vlachokostas et al. (2021), and has been used in 

the evaluation of MSW energy recovery technologies (Almanaseer et al., 2020; Joseph & 

Prasad, 2020; Khan & Kabir, 2020); and organic waste management pathways (Makarichi et 

al., 2018) in a variety of developed and developing-world countries. 

The SAM approach can be summarised as a method that takes a measure against a set given 

criteria, which are then weighted based on the relative importance of the criteria for the 

decision maker, and combined to compute a weighted score for each scenario. This weighted 

score is then ranked and evaluated. This simple approach requires only data on measures 

related to the chosen criteria, and the weightings characterising the relative importance of each 

criteria (each weighting must be between 0 and 1, and all weightings must sum to 1). For this 

analysis, the criteria of organic waste recovery rate (that is, the proportion of organic waste 

generated that was recovered), and net emissions intensity on a tonnes diverted basis were 

utilised. Following Vafaei et al. (2022), who notes that measures used in SAM must be 

normalised to overcome scale differences, each measure was normalised using max-min 

normalisation. Equations 7.5 and 7.6 show the measures used for this analysis: 
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𝑀1,𝑖 =
𝑎𝑖 −min(𝒂)

max(𝒂) −min(𝒂) ;  𝑎𝑖 = 𝑄𝑟𝑒𝑐,𝑖/𝑄𝑔𝑒𝑛,𝑖 7.5 

𝑀2,𝑖 = 1 −
𝑏𝑖 −min(𝒃)

max(𝒃) −min(𝒃) ;  𝑏𝑖 = 𝐺𝐻𝐺𝑛𝑒𝑡,𝑖/𝑄𝑑𝑖𝑣,𝑖 7.6 

Where a and b are vectors of criteria values for each scenario; 𝑄𝑟𝑒𝑐,𝑖 and 𝑄𝑔𝑒𝑛,𝑖 are the total 

quantity of organic waste recovered and generated for scenario 𝑖 across the entire study area 

(i.e., all LGA organic waste recovered and generated summed); 𝑄𝑑𝑖𝑣,𝑖 is total quantity of waste 

(including some non-organic waste from AWT recovery) diverted for landfill for scenario 𝑖; 

and 𝐺𝐻𝐺𝑛𝑒𝑡,𝑖 is the total net GHG emissions (tCO2-e) for scenario 𝑖 across the entire study 

area. Values for measure 2 are normalised and then subtracted from 1, to give higher scoring 

to scenarios with lower net emissions (and conversely, lower scoring for scenarios with higher 

emissions). Once 𝑀1 and 𝑀2 are calculated, the final weighted score can be computed 

(Equation 7.7): 

𝑆𝑖 = ∑𝑀𝑛,𝑖 ∙ 𝛾𝑛
𝑛

 7.7 

Where 𝛾𝑛 is the relative importance of criteria 𝑛. For this application, it was assumed that both 

recovery performance and net emissions performance were of equal importance, therefore 𝛾𝑛 =

0.5. 

Results from this approach is a weighted score 𝑆𝑖 computed for each scenario, with higher 

scores indicating more optimal scenarios/pathways from a low-carbon resource recovery 

perspective—that is, where waste recovery is maximised, and net emissions minimised. 

The approach utilised here is overly simplified, accounting only for the techno-environmental 

factors of waste recovery rates and net emissions. Further criteria including for example 

economic considerations, as well as more complex evaluation approaches that account for 

stakeholder preferences in selecting values for 𝛾𝑛, are discussed in the context of future work 

in Chapter 8. 
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7.2. Scenario analysis results and discussion 

This section presents results of the scenario analysis. Results on direct emissions and avoided 

emissions are first presented for each scenario, before an analysis comparing net emissions 

intensity for overall OFMSW management for each scenario against baseline estimates. Note 

that scenario estimates are based on 2019-20 waste generation quantities, to allow for a more 

direct comparison of the evaluated intervention against the baseline.  

7.2.1. Mandatory FOGO collection (Scenarios 1.1 and 1.2) 

Figure 7-5 shows the comparison of emissions by source for Scenarios 1.1 and 1.2 compared 

to baseline. For reference, both scenarios assume all LGAs in the study area have FOGO 

collection across all households, with Scenario 1.2 having a greater level of diversion of food 

waste from the mixed waste stream to FOGO. A reduction in total net emissions of 

approximately 23% compared to baseline was observed for both Scenario 1.1 and 1.2, which 

can be attributed to higher quantities of organic waste diverted to landfill. Both scenarios 1.1 

and 1.2 show higher emissions associated with waste transport compared to baseline. Despite 

mixed waste being collected at less frequent fortnightly intervals, the increase in transport 

emissions can be attributed to greater quantities of separately collected organics via FOGO at 

weekly interval collection. Chapter 5 showed that the emissions intensity of transport is higher 

for FOGO and GO streams compared to mixed waste, due to these streams being transported 

to recovery facilities at a higher rate than the mixed waste stream. For the baseline case, 

approximately 468,000 tonnes of separately collection organics via GO and FOGO were 

collected, compared to 628,000 tonnes of FOGO in Scenario 1.1, and 700,000 tonnes of 

FOGO in Scenario 1.2. Recovery emissions are also higher for Scenarios 1.1 and 1.2 compared 

to baseline, which is expected due to the greater quantity of organic waste treated at 

composting facilities.  

Between Scenarios 1.1 and 1.2, transport and recovery emissions were higher in Scenario 1.2, 

however these emissions were balanced by lower landfill emissions and greater emissions 

avoidance. Differences in overall net emissions for Scenarios 1.1 and 1.2 were marginal, with 

net emissions in Scenario 1.2 less than 1% lower than Scenario 1.1, at approximately 188,300 

tCO2-e (note that the figure show the same quantities of total net emissions due to rounding). 
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Net emissions intensity on a per tonne basis is examined further for these scenarios in Section 

7.2.4. 

 

Figure 7-5: Summary of overall emissions by source for mandatory FOGO collection scenarios compared to baseline 

7.2.2. Standalone anerobic digestion (Scenarios 2.1, 2.2 and 2.3) 

Scenarios 2.1, 2.2 and 2.3 evaluate the implementation of standalone AD as a OFMSW 

recovery pathway, along with FOGO collection across the entire study area. Table 7-8 

summarises quantities of organic waste recovery by pathway for each of the above scenarios 

and compared to baseline. The addition of standalone AD as a treatment pathway does create 

competition for feedstock between AD and existing composting pathways. However even with 

a proportion of OFMSW being diverted to digestion, mandatory FOGO results in a greater 

quantity of feedstock availability for composting in Scenarios 2.1, 2.2 and 2.3 compared to 

baseline. This indicates that it would be unlikely for the potential deployment of AD in the 

study area to have a significant impact on existing composting. Given the preference for food 

waste for AD, and that the addition of food waste can introduce suboptimal parameters in the 

composting of garden waste (Babu et al., 2021), future deployment of AD may consider further 

separation of food and garden waste at the household. Kerbside collections of dedicated food 

waste (that is, not comingled with garden organics) may ensure that composters would have 

ample access to optimal garden organics as a compost feedstock, with dedicated food waste 
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collections treated via AD. A system such as this may see benefits in terms of higher quality 

compost outputs, and more efficient pre-treatment at compost and AD facilities, leading to 

reduced emissions intensities.  

Table 7-8: Summary of composting and digestion throughputs for each scenario compared to baseline  

Scenario 
Organic waste treated via 

composting [tonnes] 
Organic waste treated via 

AD [tonnes] 
Total organic waste 

treated (input) [tonnes] 
Baseline* 467,512 0 467,512 
Scenario 2.1 577,651 50,000 627,651 
Scenario 2.2 537,651 90,000 627,651 
Scenario 2.3 609,996 90,000 699,996 
*Includes FOGO and GO streams 

Table 7-9 summarises estimated AD digestion outputs from Scenarios 2.1, 2.2 and 2.3. 

Potential biogas generation from AD is significant, with 13,600 dam3 and 24,500 dam3 

generated in Scenario 2.1 and 2.2/2.3 respectively (note that Scenarios 2.2 and 2.3 assume the 

same quantity of AD throughput, therefore the same potential biogas generation). From the 

combustion of biogas generated, the electricity generation potential from AD was estimated 

as 46,700 MWh and 84,000 MWh respectively for Scenarios 2.1 and 2.2/2.3. Considering plant 

electricity requirements, the net electricity generation potential was estimated as 40,200 MWh 

and 72,400 MWh respectively. As a proportion of NSW renewable energy supply in 2019-20, 

this potential represents less than 1% of total electricity generation from renewable sources. 

However as a proportion of NSW electricity supply from biogas in 2019-20, the potential 

generation from OFMSW AD represents between 10-20% of total generation (DISER, 2021a). 

This shows that AD of OFMSW in the study area can augment existing biogas supply, and 

also identifies the significant potential that OFMSW AD may have as a renewable energy 

source, especially if AD is deployed across other parts of NSW as well.  

The quantity of dewatered digestate produced was also estimated in this analysis, at 35,400 

tonnes to 63,700 tonnes for Scenarios 2.1 and 2.2/2.3 respectively. While small compared to 

windrow composting yields, this digestate has potential applications as a soil conditioner, 

augmenting existing compost and soil improver supply in the region. Digestate can also be 

further improved and upgraded, including producing NPK rich liquid fertiliser (Fernández-

Delgado et al., 2020; Stunzenas & Kliopova, 2018). This highlights one of the advantages of 

AD from the literature as a flexible organic resource recovery pathway, with multiple high-

valued potential process outputs.  
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Table 7-9: Summary of digestion throughput and estimated outputs 

Scenario 
Digestion 

input [tonnes] 

Potential 
biogas 

generation 
[dam3] 

Potential 
electricity 
generation 

(gross) 
[MWh] 

Potential 
electricity 
generation 

(net) [MWh] 

Dewatered 
digestate 
produced* 
[tonnes] 

Scenario 2.1 50,000 13,612.8 46,669.3 40,244.0 35,390 
Scenario 2.2 & 2.3 90,000 24,503.1 84,004.8 72,439.2 63,703 
*Assumed 40% moisture content (MC) of final product from Wang et al. (2021); initial MC of input derived from Hla and Roberts 
(2015) 

Figure 7-6 shows the comparison of emissions by source for Scenarios 2.1, 2.2 and 2.3 against 

baseline emissions. Net emissions were approximately 173,400 tCO2-e for Scenario 2.1; 

167,300 tCO2-e for Scenario 2.2; and 153,500 tCO2-e for Scenario 2.3. Overall, the 

implementation of standalone AD would see a significant reduction in net emissions compared 

to baseline between 29-37% across the scenarios evaluated. Emissions reductions are higher 

in Scenario 2.2 compared to Scenario 2.1, as a result of the greater quantity of organic waste 

recovered via AD leading to greater offsetting of emissions from fossil fuel supplied electricity. 

However, the difference in emissions reductions between Scenarios 2.1 and 2.2 are marginal, 

representing reductions compared to baseline of 33% and 36% respectively. While Scenario 

2.3 assumes the same amount of recovery via AD as Scenario 2.2, the increase in diversion of 

food waste from mixed waste to FOGO results in higher landfill emissions avoidance 

compared to the other scenarios.  
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Figure 7-6: Summary of overall emissions by source for standalone anaerobic digestion scenarios compared to baseline 

Recovery emissions across all scenarios are higher than baseline, given the greater quantities 

of organic waste collected for recovery due to the implementation of mandatory FOGO. 

Recovery emissions in these AD scenarios are lower than in Scenario 1.1 and 1.2, showing that 

the gross emissions from digestion are lower than windrow composting. This can be attributed 

to the direct emissions of methane and nitrous oxide through windrow composting, which are 

greater contributors to CO2-e emissions than from operational electricity usage and leaked 

biogas emissions at AD facilities. Transport emissions are higher for these AD scenarios 

compared to baseline also, due to added transportation links between transfer stations and AD 

locations. Interestingly, Scenario 2.3 transport emissions are lower than Scenario 1.2, with both 

scenarios assuming increased diversion of food waste from mixed waste to the FOGO stream. 

This indicates that more centralised recovery locations as explored in Scenario 2.3 may 

potentially lead to more efficient transportation, compared to more distributed recovery 

facilities (e.g., composters) assumed in Scenario 1.2. 

7.2.3. Digestion deployed at AWT facilities (Scenarios 3.1, 3.2 and 3.3) 

Table 7-10 summarises quantities of organic recovery throughputs for Scenarios 3.1, 3.2, 3.3 

and compared to baseline quantities. In Scenario 3.1, approximately 99,300 tonnes of organic 

waste from the mixed stream (food waste) is treated at AWTs via digestion. Scenarios 3.2 and 

3.3 see a reduced quantity of organic waste treated at AWTs, due to increased diversion of 

food waste from the mixed waste stream to the FOGO stream. Quantities of organic waste 

treated at AWTs is approximately 94,200 tonnes in Scenarios 3.2 and 3.3, however Scenario 

3.3 also assumes that standalone digestion is deployed, consistent with Scenario 2.3. Despite 

Scenario 3.3 diverting some feedstock away from composting to standalone AD treatment, 

compost recovery for this scenario is still significantly higher than baseline, on account of 

mandatory FOGO and increased mixed to FOGO diversion assumptions. 
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Table 7-10: Summary of organic recovery throughputs for scenarios evaluating digestion deployed at AWT facilities 

Scenario 

Organic waste 
treated via 
composting 
[tonnes] 

Organic waste 
treated via 

AWT 
(compost) 
[tonnes] 

Organic waste 
treated via 

AWT (biogas) 
[tonnes] 

Organic waste 
treated via 

standalone AD 
[tonnes] 

Total organic 
waste treated 

[tonnes] 
Baseline 467,512 197,606 0 0 665,118 
Scenario 3.1 627,651 0 99,319 0 726,971 
Scenario 3.2 699,996 0 94,208 0 794,203 
Scenario 3.3 609,996 0 94,208 90,000 794,203 

Table 7-11 summarises quantities of digestion throughput and estimated outputs for Scenarios 

3.1, 3.2 and 3.3. Total digestion throughput is higher across all 3 scenarios in comparison with 

Scenarios 2.1, 2.2 and 2.3. This is due to there being greater quantities of food waste in the 

mixed waste stream being available for digestion at AWT facilities compared to FOGO—even 

with mandatory FOGO collection and increased diversion of food waste from mixed to 

FOGO. As a result, potential biogas and electricity generation is significantly higher in 

Scenarios 3.1 to 3.3 compared to 2.1 to 2.3. Scenario 3.3 had the greatest quantities of potential 

biogas generation at approximately 50,000 dam3, corresponding to a potential electricity 

generation of 171,300 MWh. Scenario 3.3 assumes deployment of AD at existing AWTs, in 

addition to the 3 standalone AD facilities in Scenario 2.3 (in addition to increased rates of food 

waste diversion). Scenario 3.1 had the next highest potential biogas generation, at 

approximately 26,100 dam3. Scenario 3.2 had lower quantities of potential biogas generation 

than Scenario 3.1. This can be attributed to smaller quantities of food waste entering AWTs 

for this scenario, on account of assumed increases in food waste diversion from mixed waste 

to the FOGO stream. Potential (net) electricity generation across these scenarios represent an 

estimated 20-38% of total electricity generation from biogas sources in NSW in 2019-20 

(DISER, 2021a). 

Table 7-11: Summary of digestion throughput and estimated outputs for Scenarios 3.1, 3.2 and 3.3 

Scenario 

Total 
digestion 

throughput 
[tonnes] 

Potential 
biogas 

generation 
[dam3] 

Potential 
electricity 
generation 

(gross) 
[MWh] 

Potential 
electricity 
generation 

(net)^ [MWh] 

Dewatered 
digestate 
produced* 
[tonnes] 

Scenario 3.1 99,319 26,110.0 89,513.7 77,188.9 68,608 
Scenario 3.2 94,208 24,860.0 85,228.5 73,493.8 65,324 
Scenario 3.3 184,208 49,980.0 171,348.0 147,756.5 130,647 
^For digestion at AWT, includes only the energy requirements for the digestion process 
* Assumed 40% moisture content (MC) of final product from Wang et al. (2021); initial MC of input derived from Hla and Roberts 
(2015) 
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Figure 7-7 summarises overall emissions by source for Scenarios 3.1 to 3.3, compared with 

baseline. Overall net emissions across the 3 scenarios were significantly less than the baseline. 

Scenario 3.3 had the lowest net emissions, at an estimated 124,400 tCO2-e—an approximately 

49% reduction on baseline net emissions. Scenarios evaluated are compared in greater detail 

in the following section. 

 

Figure 7-7: Summary of overall emissions by source for AWT deployment of anaerobic digestion scenarios compared to 
baseline 

7.2.4. Comparison of scenarios 

Table 7-12 shows a summary of estimated recovery rates for the baseline case, compared with 

mandatory FOGO and increased diversion of food to FOGO scenarios. Note that recovery 

rates for digestion are assumed to be consistent with compost recovery for the purpose of this 

analysis. As such, only variation in the quantities of FOGO collected, and food waste diverted 

from the mixed stream, have an impact on organic recovery rates. Mandatory FOGO was 

estimated to increase the organic recovery rate from 55% in the baseline to 69%. With the 

addition of increased diversion of food waste to the FOGO stream, organic waste recovery 

was estimated at approximately 75%. These increases in recovery compared to baseline are 

expected, given that a large proportion of organic waste (food) is in the mixed stream and 

destined for landfill in the baseline. Interventions that focus on diverting food waste from the 

mixed waste stream will have a significant impact on increasing the overall organic recovery 
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rate for the waste system. Other interventions not analysed here, such as home composting 

programs and food waste only collections, may also significantly contribute to diverting food 

waste from the mixed stream. In the case of food waste only collections, deployment of 

municipal scale AD could be a driver for this type of collection system, as AD operators would 

have preference a ‘cleaner’ food waste stream as a digestion feedstock. 

Table 7-12: Summary of estimated recovery rates for baseline and scenarios 

Scenario 

Recovery rate  
[% of total waste 

generated] 

Organic recovery rate  
[% of organic waste 

generated] 
Baseline 31.6% 55.4% 
Mandatory FOGO collection 39.0% 68.5% 
Increased diversion of food to FOGO 42.7% 74.9% 

Figure 7-8 shows a breakdown of organic waste recovery by pathway across all scenarios, 

compared to baseline. Quantities of recovered organics as compost varied across the scenarios. 

Scenarios 1.1 and 1.2 had the greatest quantity of organic waste recovered as compost, at 

approximately 719,000 and 786,000 tonnes respectively. While quantities of recovered organics 

derived from AWT facilities are restricted in their application to land in NSW (NSW EPA, 

2019a), the FOGO stream is also subject to high amounts of contamination which can limit 

its application as a soil amendment especially for food production (Wilkinson et al., 2021). This 

is an important consideration across all scenarios which assume mandatory FOGO collection 

as per the NSW Waste and Sustainable Materials Strategy (DPIE, 2021). Nevertheless, non-food 

applications including for example energy crops; and industrial applications for example in 

construction and as bio-stabilised landfill cap, are beneficial end-uses for contaminated 

compost (Stunzenas & Kliopova, 2018) that are far better outcomes from a circular economy 

and resource recovery perspective, than simply depositing organic waste to landfill untreated. 

Despite AD deployment creating competition for composting feedstock in Scenarios 2.1 to 

2.3, quantities of organic waste recovered for composting are still higher than in the baseline 

case. However, compost recovery in the baseline is primarily sourced from the GO stream, 

which has lower rates of contamination compared to FOGO, and therefore having a greater 

likelihood of application as a soil amendment compared to recovered compost derived from 

other municipal sources.  

Recovery for biogas was highest in Scenarios 3.1 to 3.3. Higher quantities of food waste are 

present in the mixed waste stream than FOGO, therefore potential feedstock quantities for 

AD are higher at AWT facilities compared to standalone AD facilities sourcing feedstock from 
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the FOGO stream. Furthermore, considering the small proportion of food waste in the 

FOGO stream (~12%), and the assumed AD organic loading rate of 80% food 20% garden 

waste, AD feedstock derived from FOGO must go through a separation process in order to 

extract the food waste component. This then highlights that further separation of food waste 

is required for households, and that FOGO collection may not be the most efficient approach 

for recovering food waste as a feedstock for AD. Based on these findings, FOGO collections 

may not be necessary, considering the amount of biogas potentially generated at AWT facilities 

with AD. Rather, FOGO could present a burden to waste managers, if additional sorting is 

required in order to extract food waste feedstock for AD. Alternatively, FOGO collection does 

increase the total volume of organic waste collected and made available for composting which 

is an important resource recovery pathway. Although EPA restrictions on the application of 

OFMSW derived compost does diminish this opportunity. Having a separate food waste only 

bin collected weekly at the kerbside could ensure a greater proportion of food waste would be 

available as feedstock for AD, while retaining significant volumes of garden organics for 

composting applications. However contamination issues, especially those related to food 

packaging and non-compliant organics, may still be present, and transport costs (including 

emissions) would be greater.  

 

Figure 7-8: Breakdown of organic waste recovery by pathway and scenario 
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Figure 7-9 shows a comparison of net emission intensities on a per tonne diverted basis for 

each scenario evaluated, compared to baseline. Emissions intensities for all scenarios were 

significantly lower than baseline. Mandatory FOGO and increased diversion of food waste to 

the FOGO stream in Scenarios 1.1 and 1.2, led to reductions in net emissions intensity of 38% 

and 43% respectively. This reduction in intensity can be attributed to the avoidance of landfill 

emissions, as greater quantities of food waste are collected for recovery. 

Standalone anaerobic digestion saw net emissions intensities of 242 kg CO2-e/t for a single 

50,000 t digester in Western Sydney—a reduction of approximately 43% compared to baseline. 

Additional digestion facilities in the Hunter and Shoalhaven regions with 90,000 tonnes total 

throughput, brought estimated intensity down to 228 kg CO2-e/t—a reduction of 46%. The 

addition of increased diversion of food waste to the mixed stream made more food waste 

available across the study area for digestion in Scenario 2.3, with estimated intensity of 196 

kgCO2-e—a reduction of 54% against baseline. For these digestion scenarios, the rate of 

organic waste recovery was kept constant with FOGO composting, that is, recovery is 

estimated as the proportion of organic material not including contamination that is treated via 

composting/digestion. Therefore, the greater reductions in intensities for Scenarios 2.2 and 

2.3 compared to Scenarios 1.1 and 1.2, can be attributed to the offsetting of fossil fuel-derived 

electricity supply.  

The implementation of anaerobic digestion at AWTs had the lowest net emissions intensities 

of the scenarios evaluated. As indicated in Table 7-11, total food waste throughput across all 

AWT facilities was significantly higher than what was determined to be available for standalone 

AD facilities. Total digestion throughput was approximately 99,000 tonnes in Scenario 3.1 and 

3.2, at an average throughput of approximately 14,000 tonnes per AWT facility, with Scenario 

3.3 also assuming digestion at the 3 standalone facilities at 90,000 tonnes assumed throughput. 

Scenario 3.3 had the lowest net emissions intensity across all scenarios evaluated, at 158 

kgCO2-e/t diverted—a reduction of approximately 63% compared to baseline. 
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Figure 7-9: Comparison of net emissions intensities across the scenarios evaluated 

Findings from the scenario comparison in Figure 7-9 identify a trend in net emissions intensity, 

whereby as the proportion of organic waste recovered via digestion increases, net emissions 

intensity reduces. This relationship is elaborated in Figure 7-10, and implies that large scale 

anaerobic digestion is the highest performing pathway when compared to composting from a 

low carbon resource recovery perspective, which is consistent with findings in the literature 

(e.g., Cudjoe et al. (2020)). As noted previously in this section, increased rates of FOGO 

collection will better enable AD at large scale, however the co-collection of food and garden 

together does present a problem for dry digestion, where the maximum proportion of garden 

as feedstock from the literature is around 20%. This does make digestion at AWT facilities a 

potentially attractive option: organic waste is still collected via the mixed stream at high rates, 

even with FOGO services available; there is little garden waste in the mixed waste stream; and 

it is too contaminated for recovery as a high valued (e.g., food crop) compost. Alternatively, 

the introduction of food waste only collection as noted previously would provide an ample 

and clean stream for AD, however higher diversion rates would need to be achieved to realise 

this potential. With respect to the NSW Waste and Sustainable Materials Strategy, the findings here 

imply that initiatives aimed at mandating FOGO collection and deploying municipal scale 

digestion will have positive impacts on resource recovery and emissions reductions. 

Addressing identified infrastructure requirements in the strategy, namely FOGO specific 

treatment facilities and organics specific transfer stations, may further enable system 
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performance improvements towards achieving landfill diversion and net emissions targets. 

However, no plans have been identified that directly addresses increasing the diversion rates 

of food waste to dedicated food waste collection streams, which as these results show, may 

have a significant impact on feedstock availability for future AD deployment, and for landfill 

minimisation.  

Figure 7-10: Relationship between net emissions intensity and proportion of organics recovery via digestion 

7.3. Evaluation results and discussion 

Table 7-13 shows the results of the MCA using the SAM method for each modelled scenario 
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Table 7-13: Summary of MCA results, following the SAM method. Scenarios are ordered by rank, based on the weighted 
score.  

Scenario 

Normalised 
organic recovery 

rate 

Normalised net 
emissions 
intensity Weighted score Rank 

Scenario 3.3 1.00 1.00 1.00 1 
Scenario 2.3 1.00 0.86 0.93 2 
Scenario 3.2 1.00 0.83 0.91 3 
Scenario 1.2 1.00 0.69 0.85 4 
Scenario 3.1 0.67 0.76 0.72 5 
Scenario 2.2 0.67 0.72 0.69 6 
Scenario 2.1 0.67 0.68 0.68 7 
Scenario 1.1 0.67 0.61 0.64 8 
Baseline 0.00 0.00 0.00 9 

The SAM method is simple, and ensures that the scenarios with the highest normalised 

recovery rate and lowest emissions intensity will have the highest weighted score. As expected, 

the baseline scenario had the lowest score and therefore was the lowest ranked scenario. 

Scenario 3.3, where mandatory FOGO collection, improved diversion of food waste to the 

FOGO stream, and with AD deployed at both standalone facilities and at AWT facilities, was 

the highest performing scenario. This result is also expected given that increased diversion of 

food waste to the FOGO stream led to the highest organic recovery rates observed (see Table 

7-12); and that the deployment of AD at both standalone facilities (3 locations for Scenario 

3.3) and at AWT, led to the greatest potential for GHG offsets via the generation of electricity 

from recovered biogas. The method applied here was simple, however complexity can be 

added by incorporating additional normalised measures into the analysis. For example, 

expected net costs of deployment for pathways, and factors characterising the ease of 

implementation could be incorporated into future analysis, which may alter the findings 

reported in this thesis. For example, such analysis may balance the high performance of the 

AD at AWT facilities pathway, if deploying AD at existing facilities is costly or otherwise 

difficult to implement (e.g., from a facility integration perspective). Chapter 8 further 

elaborates on expanding the MCA to include additional criteria. 

Figure 7-11 further explores the results of the MCA shown in Table 7-13. Here, actual (i.e., 

not normalised) performance for organic recovery rate and net emissions intensity (per tonne 

diverted) are compared for each of the modelled scenarios and the baseline case, with rankings 

shown. The scenarios that achieved the highest weighted score (ranks 1-4) are the 4 scenarios 

that have an assumed increase in diversion of food waste from the mixed stream to FOGO. 

Notably, this also includes Scenario 1.2, which assumed only mandatory FOGO collections 

and increased diversion to the FOGO stream, without the deployment of AD for source 



 213 

separated food waste recovery. The increase in diversion is assumed to come from improved 

household disposal practices for organic waste, which could be enabled via initiatives including 

better information on correct disposal practices for households, a food waste only collection 

service, and better food packaging materials (e.g., compostable) and labelling. This finding is 

important, highlighting the significance of improved source separation, and is consistent with 

findings in Chapters 5 and 6 identifying increasing levels of source separation have a significant 

impact on relative net emission reductions at an LGA level. Targeting households to improve 

source separation and diversion of food waste from the mixed stream to the correct organic 

waste bin, should be a priority for achieving low carbon resource recovery aligned with the 

targets in the NSW Waste and Sustainable Materials strategy. 

 

Figure 7-11: Comparison of net emissions intensities and organic waste recovery rates for the modelled pathways, with rankings 
from the MCA shown 

7.4. Conclusions 

The analysis in this chapter modelled a number of potential OFMSW management pathways, 

based on the NSW Waste and Sustainable Materials strategy, and evaluated them from the 

perspective of low carbon resource recovery. The scenario analysis showed a trend, where 

increasing the diversion of organic waste from mixed waste to separately collected organic 

streams, and increasing the scale of deployment of AD, results in improved low carbon 

resource recovery performance compared to the current system. The analysis therefore 
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addressed thesis research question 5, identifying that large scale deployment of anaerobic 

digestion (at standalone and AWT facilities), with mandatory FOGO collection and increased 

mixed waste diversion rates, is the most optimal pathway for OFMSW management from a 

low carbon resource recovery perspective. These finding is also consistent with similar analyses 

from the literature, including Lou et al. (2013), Liu et al. (2017), and Cudjoe et al. (2020); who 

have identified the effectiveness of municipal scale AD for net emission reductions; and 

Bourtsalas and Themelis (2022) and Stunzenas and Kliopova (2018), who identified 

MBT/AWT is effective for waste streams with poor separation from a resource recovery 

perspective. 

From the analysis, the mandating of FOGO collections for all households in NSW as identified 

in the NSW Waste and Sustainable Materials strategy will lead to improvements in performance 

compared to the current system. However, more can be done to improve the emissions 

intensity of OFMSW management; namely via increasing diversion of food waste from the 

mixed waste to source separated streams including FOGO. The analysis also showed that AD 

deployment as identified in the strategy, has the potential for significant emissions mitigation 

via biogas utilisation, and in promoting the circular utilisation of resources via digestate 

utilisation. The scenario analysis showed that ample food waste feedstock would exist for AD 

to be deployed at existing AWT facilities throughout the study area. This may be an attractive 

option for future OFMSW management, given the large proportion of food waste that is 

present in the mixed waste stream, even with mandatory FOGO collections and increased 

diversion rates from the mixed to FOGO stream. However, AWT upgrade costs and other 

factors that might impact on deployment at AWT facilities, were not considered in the analysis, 

and could be a considerable obstacle for the deployment of this pathway. This finding also 

indicates that increased levels of FOGO collection may not be necessary for the deployment 

of AD, and in fact, may be a practical obstacle for AD, given that food waste would need to 

be sorted out of the FOGO stream to be utilised as feedstock. This then raises the potential 

of a food-only kerbside collection system, which could encourage diversion of food waste out 

of the mixed waste stream and landfill, and could provide a more appropriate feedstock source 

for AD than FOGO. Such a collection system would lead to higher transport-related 

emissions, however the analysis in this chapter and in Chapter 6 indicates that potential 

avoidance of landfill emissions would offset any increase in transportation emissions. 

Moreover, mixed waste and GO collection frequency could potentially be further reduced to 

offset increased transport requirements. Contamination would also likely be a significant issue 
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for food-only collections, however this could be potentially minimised by local government 

decision makers through household education, and pre-treatment.  

The analysis presented here also tested a simple method for evaluating OFMSW management 

pathways from a low carbon resource recovery perspective, as part of addressing thesis 

research question 5. Following Iacovidou et al. (2017a), the metrics of organic waste recovery 

rate and net emissions intensity per tonne diverted were used to evaluate pathways. The 

analysis showed that the method tested is simple and gives expected outputs. Additional 

complexity, namely costs and ease of implementation for the selected pathways under 

investigation, would improve the method.  



 216 

 



 217 

Chapter 8.  
Conclusions 

Greenhouse gas emissions must be curtailed across all sectors of society to limit the impacts 

of anthropogenic climate change. Food waste is also a global issue, and Australia in particular 

is a poor performer when it comes to the management of household organic waste. Managing 

household organics through sustainable waste management practices informed by circular 

economy principles, can address both of these issues. Indeed, recent policy and strategic 

planning in NSW is beginning to align emissions reductions and sustainable waste management 

from a decision making perspective. However data on the emissions intensity of NSW waste 

streams is limited, making decision making around the most optimal pathway for waste that 

addresses landfill diversion and emissions reduction objectives difficult. 

This thesis explored optimal pathways for household organic waste in NSW from a low carbon 

resource recovery perspective. This is defined in the thesis as a maximisation of the recovery 

of waste into secondary resources, with minimal impact on GHG emissions. The research 

questions addressed in this thesis were: 

i) What is the spatial distribution of waste generation in NSW, and is regional 

variability significant? 

ii) How can waste generation data be modelled at high resolitions, where data is 

limited? 
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iii) What are the emissions associated with kerbside organic waste collection and 

transportation? 

iv) What are the emissions associated with the recovery of household organic waste 

in NSW? 

v) What are the optimal low carbon resource recovery pathways for household 

organic waste in NSW, and how may they be identified? 

Conclusions derived from addressing each of the above are summarised in the following 

section. 

8.1. General thesis conclusions 

8.1.1. ‘What is the spatial distribution of waste generation in NSW, and is 
regional variability significant?’ 

NSW is a large state, with varied populations and socioeconomic characteristics, such as 

economic opportunities, education levels and employment—all of which can have a significant 

contribution to the quantities and composition of wastes generated. 

To address the research question, a spatial model was developed to explore regional variation 

in waste generation drivers across NSW. To explore this problem more deeply, the model, a 

form of geographically weighted regression, was used to examine an open problem in the waste 

management literature: whether or not the Kuznet’s curve relationship exists for waste. The 

Kuznet’s curve relationship characterises a decoupling of waste generation and income, and 

although examining its existence is not specifically related to the overarching thesis problem 

of low carbon resource recovery, it is an opportunity to explore statistically regional variation 

in waste generation drivers, and justify the methodological approach.  
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Conclusions drawn from this analysis are: 

i) Variation in waste generation drivers do exist across LGAs in NSW. This indicates 

that exploring the thesis problems from a spatial modelling perspective at a high 

resolution that can account for LGA-by-LGA variation is appropriate. 

ii) The modelling approach utilised (geographically weighted regression) is useful for 

exploring spatially varying drivers for waste generation, but was not applied further 

in the context of this thesis. The approach however does have further applications 

for estimating regional level or LGA level waste generation where data is not 

available, including in the context of estimating future waste generation. 

iii) Related to the Kuznet’s curve hypothesis, evidence supporting the existence of the 

waste Kuznet’s curve was found over the 2011 to 2015 period. The analysis showed 

that the region to the west of the Sydney metropolitan area exhibited the waste 

Kuznet’s curve relationship when accounting for spatially varied socioeconomic 

and structural factors. Findings indicated that LGAs conforming to the Kuznet’s 

curve relationship had higher rates of per-capita waste generation, and lower 

proportions of waste collected as recycling compared to other LGAs. This suggests 

that the conforming LGAs had poorer performing waste systems and disposal 

practices on average compared to other LGAs. Findings related to the Kuznet’s 

curve hypothesis show that regional LGAs have different waste generation 

behaviours, and should not necessarily be treated the same as metropolitan LGAs 

in waste management decision making and strategic planning.  

8.1.2. ‘How can waste generation data be modelled at high resolutions, 
where data is limited?’ 

Some specific knowledge gaps limiting the accurate accounting of waste related emissions, 

namely emissions from waste collection and transport, require higher spatial resolution waste 

data to overcome. For example, data on the quantities of waste generated at collection points 

(i.e., at the kerbside) is needed to accurately model collection routs of waste collection vehicles. 

To address the above, a novel, probabilistic spatial model was developed for estimating the 

spatial distribution of waste generation at a high resolution. Data on the distribution of waste 
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generation is limited for NSW, with council area waste generation data the highest resolution 

data available. Estimating the emissions from waste collection however requires data on 

quantities of waste generated at the kerbside. Therefore, the spatial model was applied to 

estimate quantities of organic and non-organic waste generated at over 1.2 million property 

lots across the Sydney metropolitan area.  

The model had modest data inputs, relying only on LGA level waste generation statistics, and 

high resolution census dwelling data. Validation of the high resolution estimates was 

performed by aggregating estimated dwelling numbers in property lots to lower resolution 

(SA1 scale), and comparing with census dwelling count data. This showed that the model was 

accurate, especially with respect to detached dwellings. Accuracy was poorer for property lots 

with multi-unit dwellings, however variation between model estimation and the validation data 

was only approximately 5%.  

The significance of the model developed in addressing this research question is ultimately 

illustrated through the application of the data generated in estimating emissions from waste 

collection and transport. An important innovation of this work was the modest data 

requirements, utilising cadastral data, census data and council-level waste statistics, enabling 

the approach to be applied to varied locations and spatial scales.  

High spatial resolution data on waste generation has multiple additional uses from a waste 

management and planning perspective, including in identifying optimal areas for waste 

management facilities, or whereabouts a particular waste management strategy could be 

implemented.  

8.1.3. ‘What are the emissions associated with kerbside organic waste 
collection and transportation?’ 

To address this research question, a route optimisation model was developed, using the high 

resolution data generated from the model in Chapter 4/Madden et al. (2021). Waste collection 

routes and transport to and from transfer stations, recovery facility and landfill sites were 

modelled, and emissions estimated from quantities of diesel fuel consumed by collection and 

transportation vehicles. This model was applied to estimate transport emissions for collection 

and management of household organic waste in the Greater Sydney and surrounding area. 
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The study had several important conclusions: 

i) Collection and transport emissions for household organic waste in 2018-19 was 

estimated at approximately 43,700 tonnes of CO2-e. Emissions made a small 

contribution to overall NSW emissions from rigid trucks (<2%), however the 

relative importance of transport emissions to overall waste related emissions was 

still unclear based on this analysis.  

ii) Kerbside collection, specifically travel between kerbside bins and the lifting of bins 

to waste vehicle receptables, was the most emissions intensive activity completed 

during organic waste collection and transportation. Related to this, LGAs with a 

higher proportion of multi-unit dwellings had lower transport emissions intensity, 

as more bins are collected per stop at multi-unit dwellings compared to detached 

dwellings. Although multi-unit dwelling types are becoming more widespread in 

the study area, affecting housing and urban planning policy is outside the bounds 

of waste managers. Therefore improving vehicle efficiency, and using less 

emissions intensive vehicle fuels, would be necessary to reduce overall transport 

emissions intensity. 

iii) Related to the above, kerbside collection emissions are lower in more population 

dense areas, which suggests that collection emissions might also be reduced by 

moving towards more centralised waste collection models, where greater quantities 

of waste could be collected per collection point. The practicalities of this however 

were not examined in this work, but could include such pathways as community 

organic collection sites, for example, ‘compost hubs’ such as those employed in 

Inner West and Blue Mountains council areas. 

iv) Diversion of food waste from mixed waste to dedicated organic collection (i.e., 

FOGO), and diversion of mixed waste to AWT facilities, was found to be the most 

efficient management model with respect to transport emissions intensity on a 

tonnes diverted basis. This can be attributed to higher recovery rates for LGAs 

that have FOGO collections and AWT as a pathway compared to other LGAs. 

Collection of food and garden organic waste is prioritised for LGAs in the future 

in support of emission reduction strategies, for example in the NSW Waste and 

Sustainable Materials Strategy 
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8.1.4. ‘What are the emissions associated with the recovery of household 
organic waste in NSW?’ 

The above research question was addressed via a modelling framework developed, 

incorporating waste collection and transport estimates from Chapter 5, with mass balance 

modelling and emissions factors derived from available data. The modelling developed 

accounted for emissions over the whole waste management chain in addition to transport 

emissions, including emissions from recovery processes, namely windrow composting and 

AWT, and lifetime landfill emissions. 

Key findings from this study are summarised as follows: 

i) Overall net emissions for household organic waste management in the study area 

(Greater Sydney and surrounding areas) was approximately 245,000 tCO2-e. 

Overall net emissions intensity was approximately 133 kgCO2-e per tonne of waste 

managed, and approximately 423 kgCO2-e per tonne of waste diverted to landfill. 

ii) Net emissions intensity on both a per tonne managed and per tonne diverted basis 

was highest for the mixed waste stream, due to lower levels of waste recovery and 

therefore, high landfill emissions. Net emissions intensity for the mixed waste 

stream was approximately 175 kgCO2-e per tonne managed, and 2,056 kgCO2-e 

per tonne diverted. The garden waste stream had the lowest emissions intensity, at 

approximately 8 kgCO2-e per tonne on both a per tonne managed and diverted 

basis. FOGO intensity was also significantly lower than the mixed waste stream, at 

approximately 17 kgCO2-e per tonne. 

iii) Landfill emissions were the greatest contributor to overall emissions, accounting 

for approximately 56% of all emissions generated. Efforts that divert organic waste 

from landfill will have the biggest impact on low carbon resource recovery 

performance, assuming that material diverted from landfill, is in fact recovered for 

resources, energy, and/or nutrients.  

iv) Transport emissions accounted for only approximately 13% of overall gross 

OFMSW management emissions. There was a relationship between LGA 

classification (metropolitan, metropolitan-fringe, and regional) and transport 
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emissions. Metropolitan LGAs had the lowest proportion of transport emissions 

to total gross emissions, at 11%. This proportion was higher for metropolitan-

fringe (18%) and regional (22%). Lower emissions intensive fuels and/or vehicle 

electrification may be necessary to reduce transport related emissions for large 

LGAs with lower population densities that have large waste collection and 

transportation requirements. 

v) Overall findings highlight that landfill diversion of organics, especially food waste 

in the mixed stream is crucial in the context of achieving good low carbon resource 

recovery performance. Increasing diversion of food waste from the mixed stream 

to separate FOGO collections, and increasing quantities of mixed waste treated via 

AWT were shown to have a positive impact on landfill diversion and thus 

emissions intensities.  

8.1.5. ‘What are the optimal low carbon resource recovery pathways for 
household organic waste in NSW, and how may they be identified?’ 

The above research question was addressed using modelling developed in Chapters 5 and 6. 

Several potential household organic management pathways were evaluated based on the NSW 

Waste and Sustainable Material Strategy. A simplified multi-criteria analysis was performed in order 

to identify the most optimal pathways from those analysed in terms of organic waste recovery 

rates and net emissions intensity.  

Key findings from addressing the above research question were as follows: 

i) Large scale deployment of anaerobic digestion (both standalone, and at AWT 

facilities), with mandatory FOGO collection and increased mixed waste diversion 

rates, was the most optimal pathway for OFMSW management. 

ii) Pathways with mandatory FOGO and increased rates of diversion of organic waste 

in the mixed waste stream to dedicated organic collection streams, were the 

pathways with highest performance. Even with  increased rates of diversion, there 

is still a substantial quantity of food waste in the mixed waste stream. Increasing 

rates of diversion further may have significant impacts on low carbon resource 
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recovery performance, however the current NSW Waste and Sustainable Material 

Strategy does not specifically target this. 

iii) Anaerobic digestion deployment has the potential for significant emissions 

mitigation via biogas utilisation, and for promoting the circular utilisation of 

resources via digestate utilisation. Potential electricity generation from biogas from 

digestion ranged from approximately 40,000 MWh, to 171,000 MWh—

representing between 10% and 38% of NSW biogas generation in 2019-20.  

iv) Potential biogas generation was greater for digestion deployed at AWT compared 

to standalone digestion facilities treating FOGO. This is because quantities of food 

waste treated at AWT facilities is greater than available food waste through FOGO 

collections. Digestion at AWT facilities may be an attractive option for future 

OFMSW management, which could also including expanding the number of LGAs 

that direct mixed waste to AWT. However AWT upgrade costs and whether some 

facilities are upgradable, was not within scope of the analysis, and may be 

significant barriers to deployment. There was an estimated 90,000 tonnes per year 

available capacity for standalone digestion, treating FOGO waste (20% garden 

waste, 80% food waste); compared to over 94,000 tonnes of food waste embedded 

in the mixed stream available at AWT facilities. 

v) Findings indicate that food waste only kerbside collection may encourage further 

diversion of food waste out of the mixed waste stream and landfill, and may 

provide a more appropriate feedstock source for digestion compared to FOGO. 

This is due to food waste making up only approximately 12% of the FOGO 

stream. Such a collection system would likely lead to higher transport related 

emissions, however landfill emissions avoidance and mitigating emissions from 

fossil fuel derived electricity could potential offset any increase in transportation 

emissions. 
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8.2. General discussion 

Although waste related emissions are not major contributors to overall emissions in NSW, it 

is still important to consider emissions intensity when evaluating potential waste management 

pathways. The circular economy framework, which is motivating waste management decision 

making in NSW, encourages waste managers towards pathways that lead to increased waste 

recovery and minimal environmental impact outcomes. Assessing waste management 

pathways from the perspective of low emissions and maximised resource recovery fits within 

the scope of the circular economy framework, and is aligned with emission reduction strategies, 

namely the Net Zero by 2030 plan. 

The work in this thesis has explored the concept of optimal low carbon resource recovery 

pathways for household organic waste management. From the findings highlighted in this 

concluding chapter, the most optimal pathways can be characterised by the following: 

i) Increased diversion of organic waste from landfill: with mixed waste being the 

primary contributor to landfill disposal and thus emissions, increasing diversion 

from landfill could be achieved through improved separation of food waste from 

the mixed waste stream to dedicated organic waste collection systems, and also 

through efficient recovery processes. The co-collection of food and garden 

organics via FOGO collections was shown in this study to lead to landfill diversion 

and improvements in emissions intensity over garden organics-only and mixed 

waste collections. However depending on the recovery pathway, for example 

digestion, FOGO collections could in fact be a hindrance, potentially requiring 

additional pre-treatment in order to separate the food and garden waste 

components. Additionally, increasing the quantities of mixed waste diverted to 

AWT facilities could lead to increases in landfill diversion, however AWT facility 

capacities and capabilities in processing significantly larger quantities of mixed 

waste is unclear. 

ii) Offsetting of emissions intensive primary resources: the research illustrated 

this point with biogas derived from digestion, however any secondary resource 

utilisation that significantly offsets primary resources is important from a low 

carbon resource recovery perspective. Combined with the above point, this is 
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where the greatest potential emissions reductions compared to the current system 

occur. Considering also the current reliance on fossil fuels for the NSW electricity 

supply, biogas derived from organic solid waste can help support the greater uptake 

of renewable energy in NSW, supporting the Net Zero by 2030 plan. 

While the research for this thesis has addressed a number of important knowledge gaps in 

regards to low carbon resource recovery in NSW, there are some limitations, which are 

described in each relevant chapter in the thesis. The most significant limitations are: 

i) There is limited data to validate modelled estimates. Although data from the 

literature has been used to confirm that estimates for emissions intensities are 

comparable, location specific data is limited. This is especially relevant to transport 

emissions, and the emissions associated with AWT recovery. 

ii) Data limitations on downstream compost applications. While data does exist on 

emissions reductions from the application of compost to land, much of this data 

assumes some substitution of mineral-based fertilisers. It is unclear how compost 

derived from municipal organics would offset the production and application of 

mineral-based fertilisers, and has therefore not been considered in this analysis. As 

a result, other downstream positive impacts of secondary compost utilisation have 

been ignored, including the binding of carbon to soil. The potential emissions 

reduction from compost applications are therefore underestimated in this work. 

8.3. Recommendations for future work 

There are many avenues for future work, motivated by the thesis findings as well as through 

the methodological development. Some of these avenues could address specific data 

limitations, for example, using satellite imagery to better calibrate the landfill gas estimation, 

or developing a robust model for estimating the downstream impact of compost utilisation of 

mineral-based fertiliser consumption in NSW. Additional insights can be gained by applying 

the modelling approach presented in a number of new areas as a priority, which are described 

in the following subsections. 



 227 

8.3.1. Expanding the geographical scope of analysis 

The geographical scope varies across the work presented in this thesis. This is primarily due to 

constraints in the modelling especially in regards to transportation emissions, where 

computation of solutions to the route optimisation model for all of NSW would take an 

excessive amount of time, adversely impacting completion of this thesis. While the insights 

gained from this work can be applied across NSW, there is benefit for replicating the modelling 

for areas outside of the Greater Sydney and surrounding areas. Although this region accounts 

for the majority of the state’s population and therefore household waste generated, estimating 

waste related emissions for the entire state following the approaches developed would allow 

for a complete evaluation of state wide emissions. Practically, this can achieved with the 

existing modelling approaches and data sources used throughout the thesis, however as noted 

above, is time intensive. Re-evaluating the solution algorithm for the route optimisation model 

may yield a more efficient algorithm, however the algorithm selected for solving the CVRP as 

described in Chapter 5, was chosen due to its usefulness when evaluating large scale networks. 

The estimation of waste related emissions could also potentially be expanded nation-wide. 

Several of the data sets relied on are from the national census (e.g., population and dwelling 

counts, and dwelling type distributions), as well as from the national database for waste 

infrastructure data (Geoscience Australia, 2020). However, state specific data including 

cadastral data, road network data, and LGA level waste generation would be required. 

8.3.2. Expanding scope to include additional waste streams 

The modelling developed could be expanded to include additional waste streams. Estimating 

emissions associated with the collection of dry recyclables was not performed for this thesis, 

however could be incorporated into the modelling, given that dry recyclable generation was 

estimated at the property lot level for Chapter 4. Estimating these emissions would give a 

clearer picture of the overall emissions associated with the management of municipal waste in 

NSW. Moreover, specific management pathways for dry recyclables and non-organic wastes, 

including for example packaging waste and soft plastics collection pathways and advanced 

recycling, could be examined from a low carbon resource recovery perspective. 

The modelling could also incorporate other organic waste streams. These could include 

commercial and industrial derived organic wastes (e.g., restaurant food waste; fats, oils and 
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greases; tradewaste); agricultural waste (e.g., slurry; crop residues); and wastewater. Considering 

that anaerobic digestion has been identified both in the NSW Waste and Sustainable Materials 

Strategy and findings from this thesis as an important organic recovery pathway, examining the 

impact of digestion utilising a range of feedstock could be beneficial from an state energy 

planning perspective.  

8.3.3. Exploring additional low carbon resource recovery pathways 

The modelling approach presented in this thesis can be applied to explore a broader range of 

scenarios and management pathways from a low carbon resource recovery perspective using 

the method developed through the thesis. These might include:  

- Additional recovery technology, including different energy recovery pathways (e.g., 

pyrolysis, waste-to-fuel), and different composting technologies such as large scale in-

vessel composting (especially relevant considering the significance of direct methane 

emissions from windrow composting) 

- Different waste collection systems, including food waste only collections; detached 

dwelling and multi-unit dwelling specific collection systems; different bin sizes and 

collection frequencies, and regional specific collection systems 

- Household activities and their impacts on low carbon resource recovery, including 

further improved household separation of wastes, and at-home composting 

- Efficiency improvements for waste collection and transport vehicles, including more 

efficient bin-lift mechanisms, lower emissions intensity fuels, and vehicle electrification 

8.3.4. Expanded complexity in multi-criteria evaluation 

Chapter 7 presented a simplified approach for evaluating recovery pathways from a low carbon 

resource recovery perspective, factoring in only technical (i.e., waste recovery) and 

environmental (i.e., net emissions intensity) factors. Incorporating additional complexity, for 

example cost and revenue factors, ease of implementation, additional technical criteria (e.g., 

fuel, electricity and labour requirements), and social licence, may give a more robust 

prioritisation of resource recovery pathways that may yield different results to those presented. 



 229 

The literature on multi-criteria evaluation for waste management pathways is widespread, and 

many studies do incorporate these additional complexities. Vlachokostas et al. (2021) for 

example reviewed over 100 studies in the field of waste management utilising multi-criteria 

evaluation. Many studies incorporate the priorities of various stakeholders in the evaluation as 

well, through approaches such as the analytical hierarchy process (AHP), which is very 

common in the literature.  

8.3.5. Further applications of the modelling 

The modelling developed has potential applications in exploring problems outside of those 

examined in this thesis. Some of these applications include: 

- Identifying optimal facility locations and feedstock allocations: many studies 

have used high resolution spatial data to evaluate optimal locations for waste 

management infrastructure, including for example landfills (Demesouka et al., 2019), 

anaerobic digestion facilities (Comber et al., 2015), and energy recovery facilities more 

generally (Shi et al., 2008). The methods employed in the literature generally can be 

considered spatial multi-criteria evaluation. Not too dissimilar to the multi-criteria 

evaluation discussed at several times in this thesis, these models evaluate candidate 

locations or potential areas for deployment, based on a range of selected criteria, that 

might include appropriate land attributes (e.g., slope, precipitation), distance to 

infrastructure, and proximity to areas of exclusion (e.g., residential or protected areas). 

Also often considered, especially with respect to recovery facilities, is the spatial 

distribution of available feedstock. The modelling in this thesis can be used to estimate 

available feedstock derived from household waste (and is illustrated in Chapter 5). 

Spatial multi-criteria analysis can be performed, by combining this data with selected 

criteria that is spatially resolved. Applications could including refining the selected 

locations of digestion facilities used in Chapter 7, by identifying where the most 

optimal locations are in the Greater Sydney area for digestion deployment. 

- Deeper analysis of waste transportation and infrastructure: the analysis in the 

thesis models waste transport between facilities in an effort to estimate transportation 

emissions, however does not further evaluate the transport system. The data generated 

from the route optimisation however can be further analysed, and provide insights into 
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more efficient waste collection routing, and in waste infrastructure planning. For 

example, in the context of waste infrastructure planning, transport distances and 

quantities of waste transported along a route can be inputs in a spatial interaction 

analysis, to explore what facilities and points of infrastructure may need augmenting 

or may have spare capacity. This type of analysis is based on the Boltzmann-Lotka-

Volterra predator-prey model, and is well studied in the context of exploring evolution 

in spatial structure based on flows along a network, and has use in evaluating the 

growth and decline of retail centres and urban development (Dearden et al., 2019; 

Wilson, 2007). Although this type of analysis has not been published in a waste 

management context, some examples from the literature are analogous to waste 

management, and may provide some key insights that combined with other findings 

from this thesis, may further inform optimal facility locations, transport routes, and as 

a way to estimate facility capacity where data is limited. 

8.4. Final remarks 

The work presented here makes a number of key contributions in advancing low carbon 

resource recovery for household organic waste. These contributions can be summarised as 

follows: 

Contribution 1: Model for estimating high resolution household waste generation with 

limited data 

The model presented in Chapter 4 of the thesis is a novel approach for estimating waste 

generation at fine spatial scales, where data is non-existent. The approach developed is general, 

requiring limited data that is typically available in other jurisdictions. Outputs from the model 

can inform waste management planning around optimal waste collection pathways, and can 

enable further analysis of the high-resolution waste resource supply—important for facility 

planning and feasibility of waste recovery pathways, as well as estimating waste collection and 

transportation emissions accurately.  

Contribution 2: Model for estimating waste collection and transport fuel requirements 

and emissions 
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The model presented in Chapter 5 of the thesis provides an estimate of the fuel requirements 

and the emissions associated with kerbside waste collection and transport in the Greater 

Sydney and surrounding areas, for the first time. Data from this model can be utilised as 

emissions factors in further studies analysing the emissions associated with transport, including 

in life cycle assessment studies, with better consideration to the urban and suburban structure 

in NSW. The model presented in Chapter 5 can be further utilised for waste collection route 

optimisation, and in studying the impacts of alternative fuels and electrification of the waste 

collection vehicle fleet on overall waste transport emissions.  

Contribution 3: Data on the emissions intensity of organic waste recovery in NSW 

The analysis in Chapter 6 of the thesis provides data on the direct, indirect and avoided 

emissions associated with OFMSW management in Greater Sydney and surrounding areas for 

the first time. Data generated from this analysis can be used in characterising emissions factors 

for OFMSW management pathways in use in NSW, and is also important for evaluating 

potential OFMSW pathways and policies from a low carbon resource recovery perspective.  

Contribution 4: Framework for evaluating optimal resource recovery for waste and 

environmental performance objectives 

Chapter 7 presents a framework for evaluating OFMSW recovery pathways in NSW from a 

low carbon resource recovery perspective, that utilises only technical (waste recovery) and 

environmental (net emissions intensity) measurements. Analysis in Chapter 7 can inform waste 

management decision making in NSW in the selection of recovery pathways to address waste 

recovery and GHG emission reduction priorities. 

This work has ultimately focused on generating data that can be used to evaluate and identify 

optimal management pathways for household organics, that maximise landfill diversion, and 

minimise emissions intensity. In order to influence change to improve the low carbon resource 

recovery performance, decision makers including the NSW state waste authority, state 

environmental departments, and local governments can utilise data and modelling presented 

here to inform their decision making processes.  
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Appendices 

A. Appendices for Madden et al., 2019 (Chapter 3) 

A.1. Variation in β coefficient and t-value estimates for values of λ	 

 
Figure A-0-1: Variation in b coefficient and t-value estimates for values of l. (a) and (b) are the b estimates for the 
log(mean income) and log(mean income)2 variables and (c) and (d) are t-value estimates 
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B. Appendices for Madden et al., 2021 (Chapter 4) 

B.1. Algorithm 1 - Estimation of detached dwellings at the property lot 

Here, 𝑋𝑑𝑒𝑡,𝒮 is the set of all values of 𝑋𝑑𝑒𝑡(𝑙) for an SA1 𝒮. 
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B.2. Algorithm 2 - Estimation of multi-unit dwellings at the property lot 

Here 𝑋𝑚𝑢𝑙,𝒮 is the set of all values of 𝑋𝑑𝑒𝑡(𝑙) for an SA1𝒮. 
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B.3. Estimated per-dwelling waste generation rates 
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C. Appendices for Madden et al., 2022 (Chapter 5) 

C.1. Method applied for integrating points of interest with road network 

data for the evaluation of road travel distance 

Estimating road travel distance between two locations of interest on a road network requires 

that the locations of interest be represented as nodes/vertices on the network/graph. This 

however rarely occurs in practice. For example, a spatial point representing a property lot may 

be located at the property lot boundary, or as the property lot centroid—neither of which are 

necessarily vertices on the graph representing the road network. Integration of spatial points 

of interest and the road network therefore may be required when analysing road travel distance 

between points of interest. 

For our study, we seek to find the shortest path between two pairwise points along the road 

network, represented as a graph with vertices being road junctions/intersections, and edges 

representing road segments. Points of interest are transfer stations and neighbourhood blocks 

for the solution of the capacitated vehicle routing problem for waste collection estimation; and 

waste infrastructure pairings (e.g., transfer station to landfill; composter to landfill, etc). The 

shp2graph library (Lu et al., 2018) for the R computing language was utilised to integrate the 

points of interest with the road network data. In this library, four approaches for integrating 

points with network data are implemented in the points2network function from shp2graph, which 

are summarised as follows and visualised in Figure C-1: (1) points of interest are represented 

on the network as the nearest vertex on the network (i.e., road junctions/intersections) to the 

point of interest; (2) the point of interest is represented as a new vertex on the road network, 

which is the its nearest geometric point to the point of interest on the network (3) a pseudo 

edge is added to the network connecting the point of interest with the nearest vertex on the 

network; and (4) a pseudo edge is added to the network connecting the point of interest with 

its nearest geometric point on the network, with a new vertex added as the junction of the road 

segment, and the pseudo edge.  
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Figure C-1: Overview of point integration approaches for spatial networks in shp2graph, adapted from Lu et al., 2018 

In our application, we integrated points of interest with road network data via the second 

approach in Lu et al. (2018), whereby points of interest are represented as new vertices on the 

road network equivalent to the nearest geometric point to the point of interest on the network. 

This is expressed as follows (Equation. C.1), adapted from Lu et al. (2018): 

𝑃𝑡𝑖(𝑥𝑖, 𝑦𝑖)  ← 𝑉𝑝𝑜𝑠𝑚𝑖𝑛∈𝐿𝑆𝑚𝑖𝑛 ←  arg min
𝐿𝑆∈𝐸(𝐺)

{𝑑𝑖𝑠𝑡(𝑃𝑡𝑖, 𝐿𝑆) =

{

∣(𝑦𝐿𝑆2−𝑦𝐿𝑆1)𝑥𝑖−(𝑥𝐿𝑆2−𝑥𝐿𝑆1)𝑦𝑖+(𝑦𝐿𝑆1𝑥𝐿𝑆2−𝑦𝐿𝑆2𝑥𝐿𝑆1)∣

√((𝑦𝐿𝑆2−𝑦𝐿𝑆1)
2
+(𝑥𝐿𝑆2−𝑥𝐿𝑆1)

2
if 𝑥⊥, 𝑦⊥ ∈ 𝑟𝑎𝑛𝑔𝑒(𝑥1, 𝑥2)

min {𝑑𝑗 | 𝑑𝑗 = √(𝑦𝑗 − 𝑦𝑖)
2 + (𝑥𝑗 − 𝑥𝑖)

2, 𝑖 = 1,2} otherwise
}      (C.1) 

Where 𝑃𝑡𝑖 is the point of interest with Cartesian coordinates (𝑥𝑖, 𝑦𝑖); (𝑥𝐿𝑆1 , 𝑦𝐿𝑆1) and (𝑥𝐿𝑆2 , 𝑦𝐿𝑆2) 

are the coordinates of the endpoints of any line segment 𝐿𝑆 in the network; 𝑝𝑜𝑠𝑚𝑖𝑛 is the nearest 

position on the closest line segment 𝐿𝑆𝑚𝑖𝑛, and is taken as the vertex to be added to the network 

representing 𝑃𝑡𝑖. (𝑥⊥, 𝑦⊥) are the coordinates of the foot point from 𝑃𝑡𝑖 to the nearest segment, 

and are found from the following (Equation C.2): 
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{
𝑥⊥ =  

(𝑥2, 𝑥1)2𝑥𝑖 + (𝑦2 − 𝑦1)(𝑥2 − 𝑥1)𝑦𝑖 − (𝑦2 − 𝑦1)(𝑦1𝑥2 − 𝑦2𝑥1)
(𝑦2 − 𝑦1)2 + (𝑥2 − 𝑥1)2

𝑦⊥ =  
(𝑦2 − 𝑦1)(𝑥2 − 𝑥1)𝑥𝑖 + (𝑦2 − 𝑦1)2𝑦𝑖 + (𝑥2 − 𝑥1)(𝑦1𝑥2 − 𝑦2𝑥1)

(𝑦2 − 𝑦1)2 + (𝑥2 − 𝑥1)2

(𝐶. 2) 

C.2. Elaboration of the CVRP formulation 

Note: The section reproduces text from the main paper that is elaborated to include constraints 

expressed mathematically. 

Kerbside collection distances were estimated for each LGA separately. We first generated the 

set of neighbourhood ‘blocks’ for each LGA by merging contiguous property lots within an 

LGA together, bounded by adjacent roads on the road network. Each neighbourhood block 

consisted of at least one property lot occupied by a residential dwelling, with an expected 

amount of waste generated 𝑤 > 0 per waste service collection interval. The number of bins to 

be collected within a block was equal to the number of dwellings, assuming that each dwelling 

within a property lot had exactly one bin per waste collection service. Neighbourhood blocks 

within an LGA were assumed to be serviced by the nearest transfer station, which were also 

the assumed waste collection vehicle depot locations. As transfer stations are distributed across 

the study area, some LGAs were assumed to be serviced by multiple transfer stations. The 

CVRP for an LGA was then solved iteratively for each transfer station and corresponding set 

of neighbourhood blocks serviced. 

First, 𝐵𝑚 = {𝑏𝑚,𝑖} is defined as the set of neighbourhood blocks in an LGA nearest to transfer 

station 𝑚, with 0 < 𝑤 ≤ 𝐶, where 𝐶 = 5 tonnes was the assumed capacity of a collection vehicle, 

from Edwards et al., (2016). The estimation of kerbside collection for neighbourhood blocks 

with weekly waste generation greater than truck capacity (for example, where there are a very 

large number of multi-unit dwellings) was simplified by assuming that collection vehicles travel 

directly to the neighbourhood block from the transfer station and back again via the shortest 

path. In these instances, distance travelled for collection was the length of this shortest path, 

multiplied by the required number of collection vehicles. 

For all other neighbourhood blocks with 0 < 𝑤 ≤ 𝐶, we estimated collection distance by solving 

a CVRP. The objective of the CVRP in our application was to find the optimal collection 

routes that minimise total travel distance between collection points and transfer station subject 
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to constraints. The CVRP was defined on the undirected graph 𝐺 = (𝑉,𝐸), where 𝑉 = {𝑣𝑖} is 

the vertex set representing locations visited by collection vehicles, and 𝐸 = {(𝑣𝑖, 𝑣𝑗) ∶ 𝑣𝑖, 𝑣𝑗  ∈ 𝑉} 

is the set of edges between vertices, representing the traversal of roads between locations. The 

initial vertex 𝑖 = 0 represents transfer station 𝑚, where 𝐾 waste collection vehicles begin and 

end their journeys. Vertices 𝑖 = 1, … , 𝑛 correspond to the neighbourhood blocks 𝑏𝑚,𝑖, … , 𝑏𝑚,𝑛 

where collection of bins takes place. A collection route is then a sequence of vertices 

(𝑣𝑖, 𝑣𝑖+1, … , 𝑣𝑛), where 𝑣𝑖 is adjacent to 𝑣𝑖+1, and travel distance over the whole route is minimised. 

The symmetrical matrix 𝐷 = [𝑑𝑖,𝑗] corresponds to the non-negative travel distance along each 

edge (𝑣𝑖, 𝑣𝑗), computed as the shortest road travel distance between locations. This is computed 

as the shortest travel distance along roads between locations, found using Dijkstra’s shortest 

path algorithm (Dijkstra, 1959) evaluated using the cadastral road network data. Cartesian 

coordinates of the transfer station and neighbourhood block centroids were mapped to 

positions on the road network by finding the nearest point on the road network perpendicular 

to 𝑣! , using the method in Lu et al. (2018). The decision variables of the CVRP model are as 

follows (Equations. C.3 and C.4): 

𝑋𝑖,𝑗,𝑘 = {1, if vehicle 𝑘 travels from location 𝑖 to 𝑗
0, otherwise

(𝐶. 3) 

𝑌𝑖,𝑘 = {1, if location 𝑖 is visited by vehicle 𝑘
0, otherwise

(𝐶. 4) 

The objective function of the CVRP is then to minimise the total travel distance of all waste 

collection vehicle routes visiting collection points to and from transfer stations as follows 

(Equation C.5): 

minimise 𝑍 = ∑∑∑𝑑𝑖,𝑗𝑋𝑖,𝑗,𝑘
𝐾

𝑘=1

𝑛

𝑗=0

𝑛

𝑖=0
(𝐶. 5) 

Subject to the following constraints: 

∑𝑋0,𝑗,𝑘 = 1, ∀𝑘 ∈ {1, … ,𝐾}
𝑛

𝑗=1
(𝐶. 6) 

∑𝑞0,𝑗,𝑘 = 0, ∀𝑘 ∈ {1, … ,𝐾}
𝑛

𝑗=1
(𝐶. 7) 

∑∑𝑋𝑖,𝑗,𝑘 = 1, ∀𝑗 = 1, … , 𝑛
𝐾

𝑘=1

𝑛

𝑖=0
(𝐶. 8) 
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∑𝑋𝑖,𝑗,𝑘 = ∑𝑋𝑗,𝑖,𝑘 = 𝑌𝑖𝑘, ∀𝑖 = 0, … , 𝑛;  𝑘 ∈ {1, … ,𝐾}
𝑛

𝑗=1

𝑛

𝑗=1
(𝐶. 9) 

𝑞𝑗,𝑖,𝑘 − 𝑞𝑖,𝑗,𝑘 = 𝑤𝑗, ∀𝑗 = 1, … , 𝑛 (𝐶. 10) 

∑𝑤𝑖𝑋𝑖,𝑗,𝑘
𝑛

𝑖=1
≤ 𝐶, ∀𝑗 = 0,1, … , 𝑛;  𝑘 ∈ {1, … ,𝐾} (𝐶. 11) 

∑𝑋𝑖,0,𝑘 = 1, ∀𝑘 ∈ {1, … ,𝐾}
𝑛

𝑗=1
(𝐶. 12) 

𝑑𝑖,𝑗 = 𝑑𝑗,𝑖, ∀𝑖, 𝑗 (𝐶. 13) 

Equations C.6 and C.7 ensure that a waste collection vehicle will begin its route from the 

transfer station with no load, where 𝑞𝑖,𝑗,𝑗 is the load of truck 𝑘 between 𝑣𝑖 and 𝑣𝑗. Equation C.8 

ensures that each location is serviced by only one vehicle, and equation C.9 determines the 

ingoing and outgoing edge for each location. Equation C.10 specifies that a truck must collect 

all waste generated at a location, and Equation C.11 specifies that waste collected on a route 

must not exceed the truck capacity. Finally, Equations C.12 and C.13 ensure that a truck 

returns to the transfer station after visiting the final collection point, and that the travel distance 

between location 𝑖 and 𝑗 is the same in both directions of travel. 
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C.3 Summary of average LGA waste collection and transport distances by 

waste stream, and transport component 

 




