
Citation: Shi, L.; Zhang, Q.; Wang, S.;

Zhang, Z.; Zhou, B.; Wu, M.; Li, S.

Efcient Tree Policy with

Attention-Based State Representation

for Interactive Recommendation.

Appl. Sci. 2023, 13, 7726. https://

doi.org/10.3390/app13137726

Academic Editors: João M. F.

Rodrigues and Keun Ho Ryu

Received: 20 April 2023

Revised: 9 June 2023

Accepted: 28 June 2023

Published: 29 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Efcient Tree Policy with Attention-Based State Representation
for Interactive Recommendation
Longxiang Shi 1 , Qi Zhang 2 , Shoujin Wang 3 , Zilin Zhang 4, Binbin Zhou 1 , Minghui Wu 1,*
and Shijian Li 4

1 College of Computer and Computing Science, Hangzhou City University, Hangzhou 310015, China;
shilx@zucc.edu.cn (L.S.); bbzhou@zucc.edu.cn (B.Z.)

2 DeepBlue Academy of Sciences, Shanghai 200336, China; zhangqi_cs@bit.edu.cn
3 Data Science Institute, University of Technology Sydney, Sydney, NSW 2007, Australia;

shoujin.wang@uts.edu.au
4 College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China;

zilinzhang@zju.edu.cn (Z.Z.); shijianli@zju.edu.cn (S.L.)
* Correspondence: mhwu@zucc.edu.cn

Abstract: Nowadays, interactive recommendation systems (IRS) play a signicant role in our daily
life. Recently, reinforcement learning has shown great potential in solving challenging tasks in IRS,
since it can focus on long-term prot and can capture the dynamic preference of users. However,
existing RL methods for IRS have two typical deciencies. First, most state representation models use
left-to-right recurrent neural networks to capture the user dynamics, which usually fail to handle the
long and noisy sequential data in real life. Second, an IRS always needs to handle millions of items,
leading to a large discrete action space in RL settings, which has not been fully addressed by the
inefcient existing works. To bridge these deciencies, in this paper, we propose attention-based tree
recommendation (ATRec), an efcient tree-structured policy with attention-based state representation
for IRS. ATRec uses an attention-based state representation model to effectively capture the user’s
dynamic preference hidden in the long and noisy sequence of behaviors. Moreover, to improve the
learning efciency, we propose an efcient tree-structured policy representation method, in which a
complete tree is devised to represent the policy, and a novel parameter-sharing strategy is introduced.
Extensive experiments are conducted on three real-world datasets and the results show the proposed
ATRec obtains 42.3% improvement over some of the state of the arts methods in the hit rate and 21.4%
improvement in the mean reciprocal rank of the top 30 ranked items. Additionally, the learning and
decision efciency can also be improved at an average of 35.5%.

Keywords: reinforcement learning; deep learning; interactive recommendation system

1. Introduction

With the prosperous development of information technology, nowadays, interactive
recommender systems (IRS) play an important role in personalized services to help us
discover information and satisfy our needs. TikTok’s personalized video recommenda-
tions (http:www.tiktok.com, accessed on 10 April 2023), Spotify’s music recommendation
(http:www.spotify.com, accessed on 10 April 2023), and Amazon’s product recommenda-
tion (http:www.amazon.com, accessed on 10 April 2023) are a few examples of how they
have become an indispensable part in our daily lives [1–3]. Different from conventional
recommendation systems, an IRS suggests items based on user behavior and consecutively
renes the recommendations based on users’ feedback [4,5]. Due to the interactive nature
of such recommendation settings, IRS should be able to capture the dynamic preference
of users’ behavior and perform planning to optimize long-term performance. Conven-
tional recommendation methods such as matrix factorization, content-based ltering, and
learning-to-rank regard the recommendation process as a static one and fail to capture the

Appl. Sci. 2023, 13, 7726. https://doi.org/10.3390/app13137726 https://www.mdpi.com/journal/applsci

Appl. Sci. 2023, 13, 7726 2 of 18

dynamic preferences of users. Furthermore, most of the conventional methods recommend
items that can achieve immediate satisfaction of users, while ignoring those items that may
lead to more protable rewards in the future [6–8].

Recently, reinforcement learning (RL) [9] has shown great potential in modeling
dynamic interaction behaviors and pursuing long-term rewards [10,11]. Naturally, as a
promising method, RL has been introduced into IRS to solve the aforementioned particular
challenges [12–15]. Typically, an RL-based IRS provides recommendations to users in
an interactive way: each time, the IRS recommends a series of items to the user and the
user browses these items and provides feedback; then, IRS renes the recommendation
strategy and suggests new items depending on the feedback. The state modeling, which is
frequently based on the users’ historical behaviors, is an important part of the RL agent.
Existing state representation works for IRS generally adopted unidirectional recurrent
neural networks (RNN) to model the states, and encoded the states with the hidden
representation of the RNN model. Such works can be found in [5,6,13,16,17]. However,
real-world data are usually noisy and do not rigidly follow left-to-right orders [18,19]. The
long sequence of user historical records always contains items that are irrelevant to users’
future choices, which refers to noisy patterns [20,21]. For example, consider the user’s
action sequence in Figure 1. Based on their historical choices, we can infer that they are
probably a science ction fan. Besides, they may also watch some movies that are newly
released or suggested by friends, as depicted in timesteps 4 and 5. In the IRS setting, the
RL agent obtains the user ratings 4 and 5 at timesteps 4 and 5 with the two irrelevant items,
respectively. The unidirectional RNN state representation model may be confused by the
two ratings and may ignore the fact that they are a science ction fan. This situation may be
aggravated with the increase of the sequence length, as the noisy patterns vary. Some works
adopted attention-based methods [4,22] to address this issue. For example, DRR-att [4]
adopts an attentive network to deal with noisy dependencies. However, DRR-att directly
inputs the item vector to the attentive networks and ignores the feedback from users, which
makes it difcult for dealing with long sequence data. Therefore, it is essential to design a
state encoder that can handle the long and noisy sequence in real-world IRS.

Figure 1. A motivation example.

Furthermore, adopting RL methods for a recommendation scenario with vast discrete
action space is challenging, because the IRS often contains millions of items. Factoring
the large discrete action space into a considerably smaller one is an obvious solution.
For example, DDPG-KNN [23] mapped the discrete action space to a low-dimensional
continuous action space and selected actions based on their similarities. Such works are
inefcient as the computation of action similarities is time-consuming. An alternative
strategy is to design a specic neural network to facilitate learning the tasks in large action
spaces. For instance, DRN [24] andDEERS [6] adopt a renedDeepQ-Networks (DQN) [25]
to learn policies with large action spaces. However, learning the DQN-based methods
always involves maximum operation over the actions, which is inefcient when the number
of actions is large. Recently, TPGR (tree-structured policy gradient for recommendation) [5]
was proposed, which organized the policy into a tree structure and is efcient in both

Appl. Sci. 2023, 13, 7726 3 of 18

learning and decision making. However, TPGR becomes inefcient during evaluation,
especially when calculating the top-K ranked items, which is serious in recommender
systems since the computation of each action choice needs to traverse the tree.

To improve the ability and efciency for dealing with long and noisy dependencies
that occur in real-world applications, in this paper, an attention-based tree-policy recom-
mendation (ATRec) method is proposed, which can effectively and efciently capture
user dynamics under long and noisy patterns. In addition, an efcient tree-structured
policy network is devised, which can further improve the efciency of TPGR with a rened
tree policy model. Specically, a complete tree to represent the policy and incorporate a
parameter-sharing strategy is used to improve both the learning and evaluation efciency.
The proposed method is evaluated on three well-known benchmark datasets to illustrate
the effectiveness and efciency of the proposed methods. To summarize, the contributions
of this paper are as follows:

• An attention-based state representation model for IRS is proposed that can effectively
capture the user dynamics even when the sequential data are long and noisy.

• An efcient tree-structured policy is devised that can improve the learning and deci-
sion efciency of TPGR through reinforcement learning.

• The proposed model is evaluated with state-of-the-art methods and the results demon-
strate that the proposed method is effective and efcient on three benchmark datasets.

2. Literature Review
2.1. State Representation Modeling for a Deep-Reinforcement-Learning-Based
Interactive Recommendation

State representation modeling for deep RL-based IRS is crucial to model the user
behavior during the recommendation process. Therefore, many previous studies have
investigated this topic in the past decades. Among the state-of-the-art methods, sequential
models are the most popular adopted. Models such as recurrent neural networks (RNN),
and convolutional neural networks (CNN) are widely used in modeling the sequential
dependencies over the user–item interactions in sequential recommender systems and
IRS [26]. For instance, long short-term memory (LSTM) [13,27,28] and gated recurrent
unit (GRU) [6,16] have been applied in IRS to capture the long-term dependencies over
user interactions in IRS. In [5], simple recurrent unit (SRU) [29] was used to improve the
learning efciency in IRS. In [30], CNN was also introduced to IRS to model user behaviors.
Despite the effectiveness of the above methods, most of these methods used left-to-right
sequential models to model the sequential dependencies. They encoded each user’s current
state based on the hidden representation learned by the sequential models. However, the
real-world interaction data do not often follow the left-to-right rigid order, as indicated in a
sequence [26,31]. Therefore, the aforementioned methods may have limitations in dealing
with real-world data containing long and noisy dependencies [32].

The adoption of attention-based models for IRS also can be found in various studies,
including [4,22]. In [22], they used attentive recurrent neural networks to capture the order
over the historical items. Moreover, in [33], a multi-head attention network with GRU
models the state representations. Recently, some advanced models have been proposed
for modeling the states of RL-based interactive recommendation. Embracing the knowl-
edge graph (KG) with sequential models evolves knowledge-based state representation
models [34]. Such works can be found in [14,35–38]. Unfortunately, knowledge-based state
representation needs extra knowledge to interpret the states, which is not always available
in some interactive recommendation scenarios.

2.2. Dealing with Large Discrete Action Space in Reinforcement Learning

Most RL methods become less effective when facing tasks with large discrete action
spaces, as the search space of nding the optimal policies grows exponentially with the
increase of actions. To address this problem, one common strategy is to reduce the large
action spaces into a considerable one. For example, Sallans et al. [39] proposed a method

Appl. Sci. 2023, 13, 7726 4 of 18

that can rst factorize the action space as negative free energies and then adopt an ensemble
method to learn the policy. Similarly, Pazis et al. [40] proposed a method that represented
each action in binary format and optimized a value function associated with each bit.
Bellemare et al. [41] showed that the performance of RL method can be improved when
the action spaces are pre-categorized. Another popular method is to rst map the large
discrete action space to a smaller continuous action space and then select the discrete
actions based on the similarity between continuous action spaces, such as DDPG-KNN [23]
and Calca [16]. However, those methods are inefcient when mapping the actions, as the
nearest neighbor search may be time costly. More recently, Chandak et al. [42] proposed a
method that can learn the action representations during RL process, which can factorize the
action space into a solvable level. Although this method is effective and scalable for solving
tasks with large discrete action spaces, training such a model is inefcient, as it involves
integral calculating over the probability distribution of actions. Fu et al. [43] proposed
DHCRS, a hierarchical RL method that adopted two DQN agents for addressing the large
action space problem. DHCRS divided the items into categories and the high-level DQN
agent selects a category and the low-level DQN agent recommends a certain item within
this category. However, in practice, the amount of items in each category is not always
equal, and adopting the same DQN agent for different categories may affect the overall
efciency in learning.

Alternatively, designing specic neural networks to facilitate learning the tasks in large
action space is another popular strategy. For instance, DRN [24] and DEERS [6] adopt a
rened DQN [25] network to learn the policies with large action spaces. However, learning
for DQN-based solutions involves a maximum operation among the actions, whose time
complexity grows linearly with the number of actions. Moreover, Zhao et al. [16] adopted
a deconvolution layer that maps the action space into a matrix. Chen et al. [5] proposed
TPGR, which uses a balanced tree-structured policy to simplify the policies with large action
space, and thus, improves the efciency in both learning and decision making. However,
TPGR is less efcient when learning online. The parameters in TPGR policy networks grow
exponentially with the depth of the tree. Backpropagating such a number of parameters is
computationally costly when the depth of the tree-structured policy is large [44].

In addition, when making decisions, TPGR needs to calculate the product of the
probability of making each choice via each layer. This mechanism makes it inefcient when
getting the top-K ranking actions, which is very common in IRS.

3. Method

In this section, we rst introduce the problem statement of RL-based interactive
recommendation, and then demonstrate our proposed ATRec method in detail.

3.1. Problem Statement

In this work, we consider the recommendation task in which a recommender agent
interacts with an environment (i.e., users). During the interaction process, the environment
sequentially selects the items recommended by the recommender so as to maximize the
cumulative reward of the recommender agent. Usually, the reward of the environment is
set to the score that related to users’ feedbacks, such as the rating for the corresponding
item. Consequently, we model the recommendation process as an Markov decision pro-
cess (MDP), whose key components are < S, A, P,R,γ >. The details of each component
are dened as follows:

• State S: A state s S is dened as the historical interactions between the user and the
recommender agent.

• Action A: An action a A is the suggested items provided by the recommender agent.
• Transition probability function P: P(s′s, a) is the transition function that determines

the new state s′ after the recommender agent suggests item a under observation s,
which models the dynamics of user preference.

Appl. Sci. 2023, 13, 7726 5 of 18

• Reward function R: R(s, a) is a function that calculates the immediate reward re-
ceived by the recommender agent after the user provides feedback when given the
recommendation items a under state s.

• Discount factor γ: γ [0, 1] denes the measurement of present value of long-term
rewards.

In the recommendation process, the recommender agent interacts with a user by
providing recommended items based on the user’s state and then receives an immediate
reward that indicates the user’s feedback. Our goal is to nd a recommendation policy
π : S → A that can maximize the cumulative reward for the recommender agent.

3.2. Attention-Based State Representation Model

In this section, we describe the proposed attention-based state representation model
in detail.

The proposed state representation model consists of an input layer, a feature embed-
ding layer, an attention layer, and an output layer, as shown in Figure 2. The input layer
receives the feature vectors from items and the users’ feedback, and then preprocessed them
by a fully connected layer. The attention layer calculates the weights of each corresponding
item. Finally, the output layer concatenates the user feature and the output context embed-
ding vector of the attention layer. In the input layer, the historical N interactions, consisting
of the recommended items and their corresponding rewards along with the user ID are
collected. Assuming that the recommender agent is performing t-th recommendation,
then N previous item–reward pairs (from t− N − 1 to t− 1) are used to encode the state.
The item ID and user ID are mapped to a latent feature vector via matrix factorization.
The feature vectors are denoted as the item feature and user feature, respectively, which
are xed during learning. The user feedback on the corresponding recommended items,
such as ratings, is also added to the item feature. In the feature embedding layer, the
input user features and item features are encoded by a fully connected layer to obtain the
feature embeddings.

Figure 2. Attention-based state representation model.

Appl. Sci. 2023, 13, 7726 6 of 18

In order to capture the dynamics for different items in long and noisy sequential data,
we adopt an attention layer to discriminatively capture the contributions of each item
together with the user features. The attention layer aims at learning the integration weights
for both item and user features. Denoting hi as the ith preprocessed item feature and huser
as the preprocessed user feature, the attentive context embedding is calculated as follows:

e =
N

∑
i=1

(αtihi) + αuserhuser,

s.t.
N

∑
i=1

(αti) + αuser = 1

(1)

where αti is the integration weight of the ith item embedding vector with respect to the tth
target item and αuser is the integration weight for a specic user.

The attention weights are calculated through a Softmax layer as below:

αti =
exp(f (hi))

∑N
i=1 exp(f (h

F
i)) + exp(f (huser))

αuser =
exp(f (huser))

∑N
i=1 exp(f (h

F
i)) + exp(f (huser))

f (hi) = ReLU(WαhTj + bα) ∀hj hi, huser

(2)

whereWα and bα are the weight and bias parameters for the attention layer, respectively.
Finally, in the output layer, we concatenate the input user feature and the attentive

context embedding as the state embedding vector. The concatenate symbol is represented
as ⊕ in Figure 2.

Although the state representation model DRR-att in [4] looks similar to our proposed
model, compared to DRR-att, our proposed state representation model involves users’
feedback as the input of items. In addition, we also preprocess the input features by
a fully connected layer and simplify the integration of user feature and item features.
Our experimental results show that our proposed method outperforms DRR-att in our
benchmark datasets.

3.3. Efcient Tree-Structured Policy

Most of the value-based RL methods are not efcient, since they involve maximization
over the action spaces, which are often very large. In contrast, policy gradient methods
are more efcient in solving IRS tasks. The reason is that, in policy gradient methods,
policies are represented with the state as the input and the action probabilities as the output.
Unfortunately, learning such a policy network with a large number of output dimensions is
always time costly since the softmax output layer requires explicit normalization over the
actions [5]. Representing the output layer of the policy network with the tree-structured
network can substantially reduce the computation cost in learning and evaluation, such as
hierarchical softmax [44] and TPGR [5].

For TPGR, the policy network is represented by a tree-structured neural network, with
each leaf node representing the output probability of the corresponding item and each
none-leaf node outputs a probability for selecting the node in the below layer. The output
probability of each item is calculated by multiplying the probabilities on the traversing
path. One major drawback is that the computation of the probability to recommend each
candidate item requires specifying the path from the root node to the corresponding leaf
in the tree. Traversing the tree always needs a loop to determine the nodes in each layer,
which is quite inefcient in practice. Specically, let us rst take a look at the tree structure
of policy in TPGR. Denoting M as the total item number and c as the child number for each
node, then based on the balanced clustering algorithm, TPGR obtains a tree-structured
policy with items arranged into f loor(M/c) clusters. Here, f loor(x) returns the largest

Appl. Sci. 2023, 13, 7726 7 of 18

integer which is no less than x. Among those clusters, we have (M mod c) clusters that
contains c+ 1 items, and (f loor(M/c)− M mod c) clusters that contains c items. Since
the item number for each cluster denotes the output dimension for each node in the nal
layer of the tree policy, such distribution of items in the leaf node requires layer-to-layer
traversing of the tree. As a consequence, indexing each item needs O(logM) decision time.
For IRS, calculating the top-K ranked items for both evaluation and recommendation is
very common in practice. In this scenario, TPGR needsO(M logM) decision time to obtain
all the action probabilities and, nally, obtain the top-K ranked items. Such a computation
method for calculating recommendation probability for candidate items lacks efciency
and is hard to parallelize. Therefore, deploying TPGR to real-world IRS is challenging.

To address this challenging issue, we propose a novel complete tree to better represent
the structure of the policy, as illustrated in Figure 3. In this framework, each non-leaf node
of the policy tree receives the item feature list as input and contains two parts: the state
representation model and a node policy network. The output of the leaf node denotes the
recommendation probabilities of the corresponding items and is computed by traversing
the tree from the root to this leaf. For each leaf node, clustering over items can also be
used to assign similar items to one node, and thus, simplify learning. We will describe
the clustering algorithm for the complete tree policy in the Appendix A.The property
of a complete tree makes it easy to index each root node of the decision path. If we
store each node of the tree policy in an array, given an item index I, the indices of the
tree node from bottom to top can be obtained as < I/c, I/c2, I/c3, . . . , 1 >. Therefore,
we can then compute all the item recommendation probabilities based on a few simple
matrix computations. Algorithm 1 illustrates the computation of item recommendation
probability based on the complete tree policy. Based on this algorithm, we can then obtain
all the item recommendation probabilities in O(logM) decision time. In addition, we
can also construct the computational graphs for the complete tree policy with popular
deep learning toolkits such as Tensorow (http:www.tensorow.org, accessed on 10 April
2023) and Pytorch (http://pytorch.org, accessed on 10 April 2023), which makes it easy for
parallel computing.

Figure 3. Illustration of the complete tree policy.

Appl. Sci. 2023, 13, 7726 8 of 18

Moreover, during the computation of recommendation probability, we obtain a cumu-
lative product of the tree node, which contains a series of state representation models. The
backpropagation operation in such a network is time consuming, as it involves too many
parameters. Hence, we design a parameter-sharing strategy to reduce the scale of the num-
ber of parameters and further improve the learning efciency of the tree policy. For each
node, the parameters of the state representation model can be shared through two levels:

• All-shared: The parameters of the state representation model are shared across all the
tree nodes.

• Layer-shared: The parameters of the state representation model are shared across
different layers; that is, for one layer of the tree, the nodes hold the same state repre-
sentation model.

Note that the parameter-sharing strategy is not applied to each policy network, in
order to keep the representation probabilities of each node. In the next section, we will
illustrate the learning of the complete tree policy.

Algorithm 1 Decision making based on the complete tree policy

Input: Input item feature list < u1, u2, . . . , uN >, node of the tree policy π0, π1, . . . ,πn, tree
depth d, child number c.

Output: The probabilities of the top-M corresponding items.
1: root_output = π0(u1, u2, . . . , uN)
2: k = 1
3: for i = 1 to d do
4: output_list = ∅
5: for j = 1 to ci do
6: node_output = root_output ◦ πk(u1, u2, . . . , uN) {Compute the element-wise prod-

uct between the two nodes’ outputs}
7: Add node_output to output_list
8: k = k+ 1
9: end for
10: root_output = concat(output_list) {Concatenate all the outputs for each layer}
11: end for
12: return The rst M elements of root_output

3.4. Learning Process

The learning process of the proposed method is illustrated in Figure 4. Firstly, we use
the historical user–item matrix to extract the features for each item and users. Specically,
we use Funk SVD [45] to decompose the original user-rating matrix into an item matrix
and a user matrix. The item matrix and user matrix are used as item features and user
features, respectively. Then clustering is performed to separate the items into subclasses, in
order to simplify the learning of the tree policy. As we use the complete tree to represent
the recommender policy, the clustering tree can be constructed by applying a hierarchical
clustering algorithm that can associate the leaf node with one item. We adopt a K-means-
based clustering algorithm to build the clustering tree, which is depicted in Algorithm 2.
Based on the clustering result, the complete tree policy is constructed, with each leaf node
corresponding to a certain item id. Recommendations are provided to the user by mapping
the output action of the policy to the items. During the interaction with the user, the
tree-structured policy is trained through a policy gradient method.

Appl. Sci. 2023, 13, 7726 9 of 18

Figure 4. Learning process of the tree policy.

Algorithm 2 K-means clustering algorithm for building the complete tree policy

Input: a group of vectors v1, v2, . . . , vm and the child number of the complete tree c.
Output: The clusters for each leaf node of the tree.
1: Initialize: mark all the input vectors as unassigned.
2: Use K-means algorithm to nd c centroids: p1, p2, . . . , pc.
3: for i = 1 to c− 1 do
4: Find c nearest vectors t1, t2, . . . , tc to pi among unassigned vectors based on Euclid

distance.
5: Assign t1, t2, . . . , tc to the ith cluster.
6: Mark t1, t2, . . . , tc as assigned.
7: end for
8: Assign the unmarked vector to the cth cluster.
9: Return: All c clusters.

The learning of the tree policy can utilize any policy gradient method; here, we use
the REINFORCE [46] algorithm to illustrate the learning process. Denoting the overall
tree policy as πθ , since the learning objective is to maximize the expected discounted total
rewards, the loss function can be written as:

J(θ) = Eπθ
[
T

∑
t=0

γtrt] (3)

Based on policy gradient theorem, the gradient with respect to parameter θ can be
written as:

θ J(θ) ∝ Eπθ
[Qπθ (s, a)θ logπθ(as)] (4)

where π(as)is the probability of taking action a at state s and Qπθ is the expected discount
rewards after taking action a under state s. During learning, Qπθ can be obtained by
sampling the trajectories under policy πθ from either historical user data or online data.
The whole learning algorithm is depicted in Algorithm 3.

Appl. Sci. 2023, 13, 7726 10 of 18

Algorithm 3 Learning the complete tree policy

Input: Complete tree policy πθ , learning rate α > 0, discount factor γ.
Output: The learned policy πθ .
1: Initialize: Policy parameter θ.
2: repeat
3: Sample an episode (s1, a1, r1, s2), . . . , (sn, an, tn, rn+1) from historical user data or

online data.
4: for t = 1 to n do
5: Qπθ (st, st) = ∑n

i=t γ
i−tri

6: Calculate πθ(atst) based on Algorithm 1.
7: θ → θ + αγtQπθ (st, st)θ logπθ(as)
8: end for
9: until Converge
10: Return: πθ

4. Results and Discussion

In this section, the empirical study of the proposed method is given. Specically, we
rst describe the setup of the experiments by preparing the experimental datasets and
introducing the baseline methods and then evaluating the performance and efciency of
the proposed method. We intend to answer the following four research questions (RQ)
through experiments:

• RQ1: How does the proposed method perform compared with the state-of-the-art
interactive recommendation methods?

• RQ2: Does our method improve learning efciency?
• RQ3: Does the proposed state representation method improve the performance over

the state-of-the-art methods?
• RQ4: How do the different parameter-sharing strategies affect the performance of

our model?

4.1. Experimental Setting
4.1.1. Datasets

We conduct experiments on three representative real-world benchmark datasets:
Instant Video, Baby, and Musical Instruments, which are commonly used for testing
the performance of IRSs. These datasets contain product reviews from Amazon (https:
//jmcauley.ucsd.edu/data/amazon/, accessed on 10 April 2023) [47,48]. The ratings for
each dataset are ranging from 0 to 5. Specically, we use a quarter of each dataset for
evaluation. Table 1 lists the statistics of the three datasets. For each dataset, we use 80% of
the data for training and the other 20% of data for testing.

Table 1. Summary of the statistics of the datasets.

Dataset Instant Video Baby Musical Instruments

Number of Users 122,609 175,826 98,959
Number of Items 8229 8256 17,380
Number of Ratings 145,983 228,861 125,044
Number of Users in training set 98,084 140,660 79,167
Number of Users in testing set 24,522 35,166 19,792

Due to the interactive nature of IRS, an ideal way to conduct experiments is to directly
interact with real users. However, online experiments may be too expensive and vulnerable
to commercial risks for the IRS itself [5,14]. Following some of the existing works [1,4], we
use an ofine environment simulator based on ofine datasets to conduct the experiments.
At each timestep, the environment simulator provides the historical items and ratings of
a user and provides feedback after the recommender system suggests items. The reward

Appl. Sci. 2023, 13, 7726 11 of 18

function of the environment is set to normalize the ratings of the user, which linearly
normalizes the rating to [−1, 1]:

R(s, a) = −1+ 2 ∗ rij
5

(5)

where rij is the rating for user i for item j.

4.1.2. Evaluation Metrics

We report three commonly used evaluation metrics [49,50] in the experiments:

• Average Reward: Since IRS aims to maximize the total reward of the episode, the
average reward is a straightforward performance measurement. We adopt the reward
over the top-K suggested items. If the top-K suggested items contain the item that the
user selects, then the reward is set to the ratings commented on by the user. Otherwise,
the reward over top-K suggested items is set to 0.

• Hit Ratio HR@K: HR measures the fraction of items that the user favors in the recom-
mendation list and is calculated as below:

HR@K =
1

Users ∗ K ∑
Users

K

∑
i=1

θhit (6)

where we dene θhit = 1 if the item user selects and favors (rij > 3.5) is in the top-K
suggested items.

• Mean Reciprocal Rank MRR@K: MRR@K measures the average reciprocal rank of the
rst relevant item. Denoting ki as the rank of the rst relevant recommendation item,
MRR@K is calculated as below:

MRR@K =
1

Users ∗ K ∑
Users

K

∑
i=1

1
ki

(7)

4.1.3. Compared Methods

We compare our method with state-of-the-art IRS methods of different types, as
listed below:

• Popularity: Ranks the top k frequent items according to their popularity measured by
a number of ratings, a simple but widely adopted baseline method.

• SVD: Suggests recommendations based on singular value decomposition (SVD). For
the IRS setting, the model is trained after each user interaction and gives recommen-
dations with the predicted highest rating.

• DDPG-KNN: A DDPG-based method that maps the discrete action space to a continu-
ous one, then selects K nearest items in the continuous space with the max Q-value
obtained by the critic network [23]. In our experiment, the K value is set to 1, 0.1N.

• DQN-R: A DQN-based method that adopts a rened DQN to evaluate the Q-values of
the items and chooses the item with the max Q-value [24].

• TPGR: Adopts a tree-structured policy and uses the policy gradient to optimize the
tree-structured policy [5]. This is the state-of-the-art IRS approach and is similar to
our proposed method.

For the deep RL methods DDPG-KNN, DQN-R, and TPGR, we use Tensorow version
1.4 for implementation. We will open-source our code after acceptance. The experimental
details can also be found in Appendix A.

4.2. Performance Evaluation (RQ1)

We investigate the recommendation performance of ATRec against the state-of-the-art
baselines with respect to average reward@K, HR@K, and MRR@K. In this part, we xed the
length of each episode to 32. The experimental results are summarized in Table 2, where
the best result in each row is highlighted in bold. The proposed method performs clearly
better than the comparison baselines on the three Amazon datasets, especially in the instant

Appl. Sci. 2023, 13, 7726 12 of 18

video dataset. The average improvement of HR@30 is 42.3% and the average improvement
ofMRR@30 is 21.4%.

Table 2. Overall performance comparison.

Dataset Metric Popularity SVD
DDPG-
KNN
(k = 1)

DDPG-
KNN

(k = 0.1N)
DQN-R TPGR ATRec Improv.

Instant Video

Reward@10 0.00004 0.00041 0.00264 0.01619 0.05082 0.11041 0.15478 40.2%
HR@10 0.00004 0.00119 0.00336 0.01807 0.05376 0.11782 0.17416 57.7%
MRR@10 0.00001 0.00041 0.00165 0.00679 0.02117 0.04569 0.08836 93.4%

Reward@30 0.00012 0.003 0.00567 0.04598 0.11228 0.16860 0.24399 44.4%
HR@30 0.00016 0.00507 0.00713 0.05137 0.12150 0.18169 0.28041 54.3%
MRR@30 0.00002 0.00075 0.00190 0.00884 0.02497 0.05023 0.09431 87.8%

Musical Instruments

Reward@10 0.00008 0.00056 0 0.00004 0.03542 0.05270 0.05575 4.8%
HR@10 0.00010 0.00054 0 0.00005 0.03965 0.05998 0.06669 11.1%
MRR@10 0.00003 0.00011 0 0.00002 0.00506 0.03754 0.02262 −39.7%

Reward@30 0.00013 0.00332 0.00048 0.00004 0.06618 0.07350 0.09943 35.3%
HR@30 0.00015 0.00471 0.00060 0.00005 0.07196 0.08056 0.12180 51.1%
MRR@30 0.00004 0.00034 0.00004 0.00002 0.00747 0.03859 0.02590 −32.9%

Baby

Reward@10 0 0.00373 0.00019 0.00208 0.04811 0.06859 0.06842 −0.00%
HR@10 0 0.00054 0.00019 0.00216 0.05405 0.07514 0.08587 14.3%
MRR@10 0 0.00086 0.00003 0.00057 0.01791 0.03523 0.03628 3.0%

Reward@30 0.00001 0.00965 0.00019 0.00370 0.09720 0.12384 0.12885 4.0%
HR@30 0.00003 0.01871 0.00019 0.00381 0.11064 0.13759 0.16719 21.5%
MRR@30 0 0.00220 0.00003 0.00066 0.02142 0.03973 0.04311 9.3%

The conventional methods such as popularity and matrix factorization obtain bad
performance under the three datasets. DDPG-KNN method performs worse in K = 1, and
improves at K = 0.1N in both Instant Video and Baby datasets, where N denotes the total
number of items. However, in the Musical Instruments dataset, which contains more items
than the other two datasets, DDPG-KNN performs even worse at K = 0.1N. The DQN-R
performs much better than the DDPG-KNNmethod. TPGR is better than the other baseline
methods in the three datasets.

Compared with TPGR, the proposed ATRec method outperforms TPGR in all three
datasets, which can be explained for two reasons. First, the state representation model in
ATRec can capture more context information in sequence than TPGR, which only uses the
nal states of RNNs. The attentive state representation model is more robust in dealing
with the long and noisy dependencies lying in the data. Second, the state representation
model in ATRec is fully learned with an online reinforcement learning method, while the
state representation model in TPGR is trained using ofine supervised learning. The online
learning method of the state representation model can update the model with the growth
of the data it encountered, making it able to adjust the dynamic change of user preference
and also lead to better performance in both reward and hit rate.

4.3. Efciency Evaluation (RQ2)

In this subsection, we evaluate the learning and decision efciency of the proposed
methods with the baseline methods. The length of each episode is also set to 32. We
run each method on an AMD Ryzen 3600 6-core CPU with NVIDIA GeForce RTX2060
GPU. For the learning efciency, we compare the average learning time per step for ATRec
with three RL-based recommendation methods, i.e., DDPG-KNN, DQN-R, and ATRec, as
shown in Table 3. Among the baseline methods, TPGR performs best as it can improve the
learning efciency at O(logM). With the help of parameter-sharing strategies, ATRec can
greatly reduce the parameters in learning and thus improving learning efciencies at an
average improvement of 35.5% on the three benchmark datasets. Specically, the full-online

Appl. Sci. 2023, 13, 7726 13 of 18

algorithm ATRec needs less time in learning than TPGR, of which the state representation
model is off-line trained.

Table 3. Learning efciency comparison (seconds).

Method Instant Video Musical Instruments Baby

DDPG-KNN (k = 1) 0.56430 0.23432 1.42474
DDPG-KNN (k = 0.1N) 0.88891 1.15585 1.72415

DQN-R 0.64808 5.64286 1.75619
TPGR 0.07419 0.07971 0.06205
ATRec 0.05439 0.06201 0.04382

Improv. 36.4% 28.5% 41.6%

For decision efciency, we specically compare the two tree-basedmethods, i.e., ATRec
and TPGR, and evaluate the average decision time per item and average decision time for
top-K items. The results are shown in Table 4. For TPGR, the decision time for each item is
faster than ATRec, as it just needs a transverse from root to leaf and only needs to calculate
the nodes over the path, while ATRec needs to calculate all the output of the tree nodes.
However, the decision time for calculating top-K items needs more time in TPGR, as ATRec
can obtain all the recommendation probabilities for each item in a single computation,
while TPGR needs to calculate the probabilities for each item iteratively. Therefore, in
practice, ATRec is more efcient and applicable in real-world recommendation systems
than TPGR.

Table 4. Efciency evaluation for decision making (seconds).

Method
Average Decision Time per Item Average Decision Time for Top-K Items

Instant Video Musical Instruments Baby Instant Video Musical Instruments Baby

TPGR 0.00073 0.00072 0.00071 6.03045 12.66505 5.91112
ATRec 0.00939 0.01135 0.000814 0.00939 0.01135 0.000814

4.4. Inuence of the Attention-Based State Representation (RQ3)

We also conduct experiments to show the inuence of the attention-based state repre-
sentation in ATRec comparing with four state representation models:

• Caser [51]: A popular CNN-based model for sequential recommendation by embed-
ding the sequence with multiple convolutional lters to capture the user dynamics.

• ATEM [26]: An attention-based model for sequential recommendation. Compared to the
proposed state representation model, ATEM ignores the user feature and feedback.

• TPGR’s state representation model [5]: An RNN-based state representation model that
encodes the state with the nal output of RNN.

• DRR-att [4]: An attention-based state representation model that uses an attention
mechanism and average pool to obtain the user’s feature. Compared to DRR-att, our
method introduces the user’s feedback and preprocessed the user and item feature
with a fully connected layer.

To make a fair comparison, for each state representation model, we use the same tree
policy network as ATRec. The only difference between the baseline methods and ATRec is
the state representation model. The method is completely trained online. We report the hit
rate@30 of the ve state representation models under ve different episode lengths: 8, 16,
32, 64, and 128. The experimental result is shown in Figure 5.

Appl. Sci. 2023, 13, 7726 14 of 18

(a) (b) (c)

Figure 5. Hit rate@30 of different state modeling methods over different episode lengths. (a) Instant
Video; (b) Musical Instruments; (c) Baby.

For the two sequential recommendation models Caser and ATEM, poor performances
were obtained with the IRS settings. The proposed ATRec clearly outperforms all the
baseline methods in the three benchmark datasets. Compared to DRR-att, the preprocessing
of the input user and item features improves the effectiveness of the state representation
model. In addition, with the increase in episode length, our method can obtain better
performances in Instant Video and Musical Instruments datasets. The performance of
DRR-att falls as the length of the episode grows, especially in the Instant Video dataset.

We also notice that the ATRec method with TPGR’s state representation outperforms
the original TPGR, which implies that the complete tree policy with a parameter-shared
online learning framework is more effective than the ofine one.

4.5. Effect of Different Parameter Sharing Strategies (RQ4)

In this subsection, we evaluate the effect of different parameter-sharing strategies:
layer-shared and all-shared. We report the performance and efciency of the two strategies,
as depicted in Table 5. To make a fair comparison, ATRec methods with two sharing
strategies only differ in sharing strategy. We notice that in most cases, all-shared strategy is
better than layer-shared strategy, both in performance and efciency, except in the baby
dataset. Therefore, we can conclude that in most cases, the layer-shared strategy with
ATRec is enough for IRS policy representation. The unshared tree structure in TPGR is not
efcient in learning, as it contains redundant parameters.

Table 5. Performance comparison of different feature extraction methods.

Dataset Metric All-Shared Layer-Shared

Instant Video

Reward@10 0.15478 0.11970
HR@10 0.15151 0.17416
MRR@10 0.08836 0.05442

Reward@30 0.24399 0.22471
HR@30 0.28041 0.25890
MRR@30 0.09431 0.06133

Average learning time per-step 0.05439 0.07010
Average decision time per-step 0.00939 0.01216

Musical Instruments

Reward@10 0.05500 0.05191
HR@10 0.06776 0.06305
MRR@10 0.02333 0.02208

Reward@30 0.09998 0.10186
HR@30 0.12205 0.12486
MRR@30 0.02647 0.02556

Average learning time per-step 0.06201 0.08463
Average decision time per-step 0.01135 0.01593

Appl. Sci. 2023, 13, 7726 15 of 18

Table 5. Cont.

Dataset Metric All-Shared Layer-Shared

Baby

Reward@10 0.07272 0.06842
HR@10 0.08944 0.08587
MRR@10 0.03883 0.03628

Reward@30 0.12885 0.13162
HR@30 0.16719 0.17207
MRR@30 0.04311 0.04106

Average learning time per-step 0.04382 0.05972
Average decision time per-step 0.00814 0.01149

5. Conclusions

In this paper, we propose ATRec, an attention-based tree policy for large-scale in-
teractive recommendation. ATRec rst adopts an attentive state representation model to
capture the user dynamics under the long and noisy user–item interaction sequences and
then uses a complete tree to present the policy to improve the decision efciency. The
parameter-sharing strategy is also introduced to ATRec to improve learning efciency.
Extensive experiments on three real-world benchmark datasets demonstrate that ATRec
provides better recommendation performance and signicant learning and decision ef-
ciency over the state-of-the-art methods. One limitation for ATRec is that it needs to know
all the available items in the recommendation scenario, which is not always applicable
to real-world settings, as the number of items may increase. In such a setting, the policy
network is difcult to construct with the unknown action numbers. In the future, we will
study this problem to improve the applicability of ATRec in real-world applications.

Author Contributions: L.S. developed the method, conducted the experiment and wrote the
manuscript. Q.Z. and Z.Z. validated the method. S.W., B.Z., M.W. and S.L. supervised the research
work and the writing of the manuscript. All authors have read and agreed to the published version
of the manuscript.

Funding: This work is supported by the Natural Science Foundation of Zhejiang Province (Grant
No. LQ22F020014) and the Zhejiang Provincial Key Research and Development Program of China
(Grant No. 2021C01164).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The research work in this paper uses a publicity available dataset,
which can be accessed here: https://jmcauley.ucsd.edu/data/amazon/, accessed on 10 April 2023.

Conicts of Interest: The authors declare no conict of interest.

Appendix A. Experiment Details

For the three datasets, the length of each episode is set to 32 and the discount factor γ in
RL is searched over 0.6, 0.9, 0.99, 1, and we found that γ = 1 obtains the best performance
for most methods.

For ATRec, we use a single layer neural network with 64 neurons as the node of
the tree policy network. In the attention-based state representation model, the hidden
size for the fully connected layer is also set to 64. The learning rate is searched over
10−2, 10−3, 10−4, 10−5. For the matrix factorization method, we decompose the user–item
matrix to obtain 128-dimensional user and item feature vectors. Additionally, The user
rating (with range [a, b]) is mapped to a one-hot vector with a mapping function as below:

onehot_mapping(rating) = onehot(l − f loor(
l × (b− rating)

b− a
), l)

Appl. Sci. 2023, 13, 7726 16 of 18

where f loor(x) returns the largest integer no greater than x and one_hot(i, l) returns an
l-dimensional vector with the ith elements is set to 1 while others are set to 0.

For DDPG-KNN, we use a three-layer neural network to represent the actor network
and critic network. The hidden size of the neural network is set to 64 for each layer. The
learning rates for both actor and critic is searched over 10−2, 10−3, 10−4, 10−5 to obtain
the best performance. The size of experience replay is set to 1,000,000 and the batch size
of each learning step is set to 64. The soft-update parameter τ for DDPG is set to 0.05. To
improve the search efciency of KNN, we use FLANN [52] for implementation.

For DQN-R, we also use a three-layer neural network to represent the Q-network. The
hidden size of the neural network is set to 64 for each layer. The learning rate for Q-network
is searched over 10−2, 10−3, 10−4, 10−5 to obtain the best performance. The soft-update
period is set to 500 steps. In addition, the size of experience replay is set to 1,000,000 and
the batch size of each learning step is set to 64.

The implementation of TPGR is similar to [5], except some hyperparameters are well
tuned. The learning rate for TPGR is searched over 10−2, 10−3, 10−4, 10−5. The state
representation model for TPGR is learned ofine by supervised learning.

References
1. Zou, L.; Xia, L.; Gu, Y.; Zhao, X.; Liu, W.; Huang, J.X.; Yin, D. Neural Interactive Collaborative Filtering. In Proceedings of the

43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, Virtual, 25–30 June 2020;
pp. 749–758.

2. Zhao, X.; Zhang, W.; Wang, J. Interactive collaborative ltering. In Proceedings of the 22nd ACM international conference on
Information and Knowledge Management, San Francisco, CA, USA, 27 October–1 November 2013; pp. 1411–1420.

3. Zhang, Q.; Cao, L.; Shi, C.; Niu, Z. Neural Time-Aware Sequential Recommendation by Jointly Modeling Preference Dynamics and
Explicit Feature Couplings. IEEE Trans. Neural Netw. Learn. Syst. 2021, 33 , 5125–5137. [CrossRef] [PubMed]

4. Liu, F.; Tang, R.; Li, X.; Zhang, W.; Ye, Y.; Chen, H.; Guo, H.; Zhang, Y.; He, X. State representation modeling for deep reinforcement
learning based recommendation. Knowl. Based Syst. 2020, 205, 106170. [CrossRef]

5. Chen, H.; Dai, X.; Cai, H.; Zhang, W.; Wang, X.; Tang, R.; Zhang, Y.; Yu, Y. Large-scale Interactive Recommendation with
Tree-structured Policy Gradient. In Proceedings of the AAAI Conference on Articial Intelligence, Honolulu, HI, USA,
27 January–1 February 2019; Volume 33, pp. 3312–3320.

6. Zhao, X.; Zhang, L.; Ding, Z.; Xia, L.; Tang, J.; Yin, D. Recommendations with negative feedback via pairwise deep reinforcement
learning. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London,
UK, 19–23 August 2018; pp. 1040–1048.

7. Wang, S.; Hu, L.; Wang, Y.; Sheng, Q.Z.; Orgun, M.; Cao, L. Modeling multi-purpose sessions for next-item recommendations via
mixture-channel purpose routing networks. In Proceedings of the 28th International Joint Conference on Articial Intelligence,
Macao, China, 10–16 August 2019; AAAI Press: Palo Alto, CA, USA , 2019; pp. 3771–3777.

8. Wang, S.; Pasi, G.; Hu, L.; Cao, L. The era of intelligent recommendation: Editorial on intelligent recommendation with advanced
AI and learning. IEEE Intell. Syst. 2020, 35, 3–6. [CrossRef]

9. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2018.
10. Yang, L.; Zheng, Q.; Pan, G. Sample complexity of policy gradient nding second-order stationary points. In Proceedings of the

AAAI Conference on Articial Intelligence, Virtual, 2–9 February 2021; Volume 35, pp. 10630–10638.
11. Yang, L.; Zheng, G.; Zhang, Y.; Zheng, Q.; Li, P.; Pan, G. On convergence of gradient expected sarsa (λ). In Proceedings of the

AAAI Conference on Articial Intelligence, Virtual, 2–9 February 2021; Volume 35, pp. 10621–10629.
12. Shi, J.C.; Yu, Y.; Da, Q.; Chen, S.Y.; Zeng, A.X. Virtual-taobao: Virtualizing real-world online retail environment for reinforcement

learning. In Proceedings of the AAAI Conference on Articial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019;
Volume 33, pp. 4902–4909.

13. Zou, L.; Xia, L.; Ding, Z.; Song, J.; Liu, W.; Yin, D. Reinforcement learning to optimize long-term user engagement in recommender
systems. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage,
AK, USA, 4–8 August 2019; pp. 2810–2818.

14. Zhou, S.; Dai, X.; Chen, H.; Zhang, W.; Ren, K.; Tang, R.; He, X.; Yu, Y. Interactive recommender system via knowledge
graph-enhanced reinforcement learning. In Proceedings of the 43rd International ACM SIGIR Conference on Research and
Development in Information Retrieval, Virtual, 25–30 July 2020; pp. 179–188.

15. Cai, X.; Han, J.; Li, W.; Zhang, R.; Pan, S.; Yang, L. A Three-Layered Mutually Reinforced Model for Personalized Citation
Recommendation. IEEE Trans. Neural Netw. Learn. Syst. 2018, 29, 6026–6037. [CrossRef] [PubMed]

16. Zhao, X.; Xia, L.; Zhang, L.; Ding, Z.; Yin, D.; Tang, J. Deep reinforcement learning for page-wise recommendations. In
Proceedings of the 12th ACM Conference on Recommender Systems, Vancouver, BC, USA, 2 October 2018; pp. 95–103.

Appl. Sci. 2023, 13, 7726 17 of 18

17. Afsar, M.M.; Crump, T.; Far, B. Reinforcement learning based recommender systems: A survey. ACM Comput. Surv. 2022, 55, 1–38.
[CrossRef]

18. Wang, S.; Hu, L.; Cao, L.; Huang, X.; Lian, D.; Liu, W. Attention-based transactional context embedding for next-item
recommendation. In Proceedings of the 32nd AAAI Conference on Articial Intelligence, AAAI 2018. Association for the
Advancement of Articial Intelligence, New Orleans, LA, USA, 2–7 February 2018; pp. 2532–2539.

19. Wang, S.; Cao, L.; Hu, L.; Berkovsky, S.; Huang, X.; Xiao, L.; Lu, W. Hierarchical attentive transaction embedding with intra-and
inter-transaction dependencies for next-item recommendation. IEEE Intell. Syst. 2021, 36, 56–64. [CrossRef]

20. Wang, N.; Wang, S.; Wang, Y.; Sheng, Q.Z.; Orgun, M. Modelling local and global dependencies for next-item recommendations.
In Proceedings of the International Conference on Web Information Systems Engineering, Amsterdam, The Netherlands, 20–24
October 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 285–300.

21. Song, W.; Wang, S.; Wang, Y.; Wang, S. Next-item recommendations in short sessions. In Proceedings of the 15th ACM Conference
on Recommender Systems, Amsterdam, The Netherlands, 27 September–1 October 2021; pp. 282–291.

22. Zhang, J.; Hao, B.; Chen, B.; Li, C.; Chen, H.; Sun, J. Hierarchical reinforcement learning for course recommendation in MOOCs.
In Proceedings of the AAAI Conference on Articial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; Volume 33,
pp. 435–442.

23. Dulac-Arnold, G.; Evans, R.; van Hasselt, H.; Sunehag, P.; Lillicrap, T.; Hunt, J.; Mann, T.; Weber, T.; Degris, T.; Coppin, B. Deep
reinforcement learning in large discrete action spaces. arXiv 2015, arXiv:1512.07679.

24. Zheng, G.; Zhang, F.; Zheng, Z.; Xiang, Y.; Yuan, N.J.; Xie, X.; Li, Z. DRN: A deep reinforcement learning framework for news
recommendation. In Proceedings of the 2018 World Wide Web Conference, Lyon, France, 23–27 April 2018; pp. 167–176.

25. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.;
Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. [CrossRef] [PubMed]

26. Wang, S.; Hu, L.; Wang, Y.; Cao, L.; Sheng, Q.Z.; Orgun, M. Sequential recommender systems: Challenges, progress and prospects.
In Proceedings of the 28th International Joint Conference on Articial Intelligence, IJCAI 2019, Macao, China, 10–16 August 2019;
pp. 6332–6338.

27. Chen, X.; Li, S.; Li, H.; Jiang, S.; Qi, Y.; Song, L. Generative adversarial user model for reinforcement learning based recommenda-
tion system. In Proceedings of the International Conference on Machine Learning, PMLR, Long Beach, CA, USA, 9–15 June 2019;
pp. 1052–1061.

28. Zou, L.; Xia, L.; Du, P.; Zhang, Z.; Bai, T.; Liu, W.; Nie, J.Y.; Yin, D. Pseudo Dyna-Q: A reinforcement learning framework for
interactive recommendation. In Proceedings of the 13th International Conference on Web Search and Data Mining, Houston, TX,
USA, 3–7 February 2020; pp. 816–824.

29. Lei, T.; Zhang, Y.; Artzi, Y. Training rnns as fast as cnns. In Proceedings of the ICLR 2018, Vancouver, BC, Canada, 30 August–3
May 2018.

30. Gao, R.; Xia, H.; Li, J.; Liu, D.; Chen, S.; Chun, G. DRCGR: Deep reinforcement learning framework incorporating CNN and
GAN-based for interactive recommendation. In Proceedings of the 2019 IEEE International Conference on Data Mining (ICDM),
Beijing, China, 8–11 November 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1048–1053.

31. Sun, F.; Liu, J.; Wu, J.; Pei, C.; Lin, X.; Ou, W.; Jiang, P. BERT4Rec: Sequential Recommendation with Bidirectional Encoder
Representations from Transformer. In Proceedings of the CIKM ’19: 28th ACM International Conference on Information and
Knowledge Management, New York, NY, USA, 3–7 November 2019; pp. 1441–1450. [CrossRef]

32. Wang, S.; Cao, L.; Wang, Y.; Sheng, Q.Z.; Orgun, M.A.; Lian, D. A survey on session-based recommender systems. Acm Comput.
Surv. (CSUR) 2021, 54, 1–38. [CrossRef]

33. Liu, H.; Cai, K.; Li, P.; Qian, C.; Zhao, P.; Wu, X. REDRL: A review-enhanced deep reinforcement learning model for interactive
recommendation. Expert Syst. Appl. 2022, 213, 118926. [CrossRef]

34. Wang, S.; Hu, L.; Wang, Y.; He, X.; Sheng, Q.Z.; Orgun, M.A.; Cao, L.; Ricci, F.; Yu, P.S. Graph learning based recommender
systems: A review. In Proceedings of the 30th International Joint Conference on Articial Intelligence, Virtual, 19–26 August 2021;
AAAI Press: Palto, CA, USA 2021; pp. 4644–4652.

35. Wang, X.; Xu, Y.; He, X.; Cao, Y.; Wang, M.; Chua, T.S. Reinforced negative sampling over knowledge graph for recommendation.
In Proceedings of the Web Conference 2020, Taipei, Taiwan, 20–24 April 2020; pp. 99–109.

36. Wang, P.; Fan, Y.; Xia, L.; Zhao, W.X.; Niu, S.; Huang, J. KERL: A knowledge-guided reinforcement learning model for sequential
recommendation. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information
Retrieval, Virtual, 25–30 July 2020; pp. 209–218.

37. Chen, X.; Huang, C.; Yao, L.; Wang, X.; Zhang, W. Knowledge-guided deep reinforcement learning for interactive recommendation.
In Proceedings of the 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, 19–24 July 2020; IEEE:
Piscataway, NJ, USA, 2020; pp. 1–8.

38. Xian, Y.; Fu, Z.; Muthukrishnan, S.; De Melo, G.; Zhang, Y. Reinforcement knowledge graph reasoning for explainable
recommendation. In Proceedings of the 42nd international ACM SIGIR Conference on Research and Development in Information
Retrieval, Paris, France, 21–25 July 2019; pp. 285–294.

39. Sallans, B.; Hinton, G.E. Reinforcement learning with factored states and actions. J. Mach. Learn. Res. 2004, 5, 1063–1088.
40. Pazis, J.; Parr, R. Generalized value functions for large action sets. In Proceedings of the ICML, Washington, DC, USA, 28 June–2

July 2011.

Appl. Sci. 2023, 13, 7726 18 of 18

41. Bellemare, M.G.; Naddaf, Y.; Veness, J.; Bowling, M. The arcade learning environment: An evaluation platform for general agents.
J. Artif. Intell. Res. 2013, 47, 253–279. [CrossRef]

42. Chandak, Y.; Theocharous, G.; Kostas, J.; Jordan, S.; Thomas, P. Learning action representations for reinforcement learning. In
Proceedings of the International Conference on Machine Learning, PMLR, Long Beach, CA, USA, 9–15 June 2019; pp. 941–950.

43. Fu, M.; Agrawal, A.; Irissappane, A.A.; Zhang, J.; Huang, L.; Qu, H. Deep reinforcement learning framework for category-based
item recommendation. IEEE Trans. Cybern. 2021, 52, 12028–12041. [CrossRef] [PubMed]

44. Mnih, A.; Hinton, G.E. A scalable hierarchical distributed language model. Adv. Neural Inf. Process. Syst. 2008, 21, 1081–1088.
45. Funk, S. Netix Update: Try This at Home. Available online: http://sifter.org/simon/journal/20061211.html (accessed on 9 June

2023).
46. Williams, R.J. Simple statistical gradient-following algorithms for connectionist reinforcement learning. Mach. Learn. 1992,

8, 229–256. [CrossRef]
47. He, R.; McAuley, J. Ups and downs: Modeling the visual evolution of fashion trends with one-class collaborative ltering. In

Proceedings of the 25th International Conference on World Wide Web, Montreal, QC, Canada, 11–15 April 2016; pp. 507–517.
48. McAuley, J.; Targett, C.; Shi, Q.; Van Den Hengel, A. Image-based recommendations on styles and substitutes. In Proceedings of

the 38th international ACM SIGIR Conference on Research and Development in Information Retrieval, Santiego, Chila, 9–13
August 2015; pp. 43–52.

49. Wang, S.; Xu, X.; Zhang, X.; Wang, Y.; Song, W. Veracity-aware and event-driven personalized news recommendation for fake
news mitigation. In Proceedings of the ACMWeb Conference 2022, Lyon, France, 25–29 April 2022; pp. 3673–3684.

50. Wang, S.; Zhang, X.; Wang, Y.; Liu, H.; Ricci, F. Trustworthy recommender systems. arXiv 2022, arXiv:2208.06265.
51. Tang, J.; Wang, K. Personalized top-n sequential recommendation via convolutional sequence embedding. In Proceedings of

the Eleventh ACM International Conference on Web Search and Data Mining, Marina Del Rey, CA, USA, 5–9 February 2018;
pp. 565–573.

52. Muja, M.; Lowe, D. Fast Library for Approximate Nearest Neighbors (FLANN). Available online: git://github.com/mariusmuja/
ann.git or http://www.cs.ubc.ca/research/ann (accessed on 9 June 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

