
C02029: Doctor of Philosophy

33874: PhD Thesis: Software Engineering

Sep 2022

Multi-triage: A Multi-Task Learning Approach to Bug
Triaging

Thazin Win Win Aung

School of Computer Science

Faculty of Eng. & IT

University of Technology Sydney

NSW - 2022, Australia

Multi-triage : A Multi-Task Learning approach to
Bug Triaging

A thesis submitted in fulfillment of the requirements

for the degree of

Doctor of Philosophy
in

Software Engineering

by

Thazin Win Win Aung

to

School of Computer Science
Faculty of Engineering and Information Technology

University of Technology Sydney
NSW, Australia

Sep 2022

© 2022 by Thazin Win Win Aung
All Rights Reserved

CERTIFICATE OF ORIGINAL AUTHORSHIP

I , Thazin Win Win Aung, declare that this thesis is submitted in fulfilment
of the requirements for the award of the award of Doctor of Philosophy,
in the Faculty of Engineering and IT at the University of Technology

Sydney, Australia.

This thesis is wholly my own work unless otherwise referenced or acknowl-
edged. In addition, I certify that all information sources and literature used
are indicated in the thesis.

This document has not been submitted for qualifications at any other aca-
demic institution.

This research is supported by the Australian Government Research Training
Program.

SIGNATURE:

[Thazin Win Win Aung]

DATE: 30th Sep, 2022

PLACE: Sydney, Australia

i

DEDICATION

To my family who brings out the best in me.

To my supervisors for their inspiration and endless support.

To my late partner, my best friend, and my little buddy Albert, for their unconditional

love and encouragement.

iii

ABSTRACT

Bug triage plays a significant role in software maintenance activities, including optimiza-
tion, error correction, and feature enhancement. Triage is the procedure of assigning the
severity, issue type, and developer to resolve the issue in the most effective order. Per-
forming triage is time-consuming and challenging, depending on the system’s complexity.
Thus, it is time-consuming and hinders the effectiveness of linkages between two triage
tasks. An automated approach to assisting the issue allocation process to relevant cate-
gory and developer benefits bug triages. A large body of previous work aims to address
the allocation problem by conjecturing the extensive list of approaches ranging from
the heuristics-based approach, text retrieval approach, and machine learning approach.
However, these studies treated the issue of categorization and assignment tasks as a
single task learning model and developed a multiple recommendation system.

This dissertation aims at leveraging the bug triage process by adopting the multi-
task learning approach. We developed a multi-triage model, a system for predicting
developers and issue kinds for a brand-new issue report. In our approach, we split issue
reports, the text description, and code snippets into two separate tokens to conjecture
the contributions of each context in the learning model. Furthermore, we addressed the
class-unbalanced challenge of data sets by generating synthetic issue reports using the
contextual data-augmentation approach.

We conducted four studies in this thesis. The first was an empirical study of the
automatic traceability link recovery approach to analyze how previous studies addressed
the linkages between software artifacts (e.g., requirements, issue reports, test cases, and
source code). The second was the experimental studies about visualizing the linkages of
software artifacts using the hierarchical trace map. The first two studies were mainly
focused on understanding the broad concepts of how software artifacts can be linked
together and presented to stakeholders effectively. Based on this accumulated knowledge,
we designed the multi-triage model to identify the linkages between developers, issue
types, and issue reports to leverage the bug triage process. Lastly, we conducted a case
study of the issue tracking system used by the software consulting company to conjure the
process of introducing the automatic developer assignment and labeling recommendation
model in the bug triage process.

Our study led to several key findings. We found that the multi-triage model training
time and performance are better than single-task learning models. We also uncovered
that including the contextual data augmentation-based synthetic bug reports in training
data sets can improve the learning model’s performance noticeably. Lastly, we presented

v

the ability to learn issue descriptions and code snippets in two separate tokens and their
effect on the learning model.

vi

ACKNOWLEDGMENTS

F irst and foremost, thank you to my principal supervisor, Professor Yulei Sui, for
his mentorship, guidance, and support throughout this long Ph.D. journey and his
positive attitude toward life and study encouragement when it was most needed.

Thank you to my kind advisor, Dr. Huan (Angela) Huo and Dr. Yao Wan, for their
invaluable lessons, guidance, and encouragement during my studies. Also, I am sincerely
grateful to Dr. Christy Jie Liang, who directed me to the brighter side of the research
world while I lost my way.

I am extremely grateful to them for their unconditional support, advice, and patience
over the years. They opened my eyes to what research in software engineering is all
about and taught me how exciting and challenging academia truly is. This achievement
would not have been possible without their incredible feedback and mentorship.

I must thank the Australian Postgraduate Research Intern (APR. Intern) industrial
internship grant for providing me with funding for the research work. I am also thankful
to Dialog IT company for allowing me to conduct a field study in real-world software
projects for my thesis writing. I would also like to thank all the software consultants
involved in the field study for this research project. The field study could not have been
successfully conducted without their participation and input.

Special thanks are due to my beloved late partner Kyi Thar Hain for his continuous
support and understanding until his last moment. My thanks are extended to my family
members and my friends for their constant source of inspiration. Last but not least, I
would like to thank my little energizer Albert (chocolate labrador).

vii

PUBLICATIONS

RELATED TO THE THESIS :

1. T. W. W. AUNG, H. HUO, AND Y. SUI, Interactive traceability links visualization

using hierarchical trace map, in 2019 IEEE International Conference on Software

Maintenance and Evolution (ICSME), 2019, pp. 367-369.

2. T. W. W. AUNG, H. HUO, AND Y. SUI, A Literature Review of Automatic Traceabil-

ity Link Recovery for Software Change Impact Analysis, Association for Computing

Machinery, New York, NY,USA, 2020, p. 14-24.

3. T. W. W. AUNG, Y. WAN, H. HUO, AND Y. SUI, Multi-triage: A multi-task learning

framework for bug triage, Journal of Systems and Software, 184 (2022),p. 111133.

ix

TABLE OF CONTENTS

List of Publications ix

List of Figures xv

List of Tables xvii

1 Introduction 1
1.1 Challenges . 2

1.2 Our Approaches . 5

1.3 Thesis Organization . 6

2 A Literature Review of Automatic Traceability Link Recovery 9
2.1 Overview . 9

2.2 Background . 12

2.3 Research Method . 15

2.3.1 Objectives and Research Questions 15

2.3.2 Protocol Development . 16

2.3.3 Search Strategy and Data Sources . 16

2.3.4 Study Selection . 16

2.3.5 Quality Assessment . 17

2.3.6 Data Extraction and Analysis . 18

2.4 Results . 18

2.4.1 Traceability Links Recovery Approaches Between Software Artifacts 18

2.4.2 Traceability Direction and Evaluation 26

2.4.3 Support Change Impact Set . 27

2.4.4 Traceability Links Recovery Ways . 30

2.5 Discussion . 31

2.5.1 Findings of RQs . 31

2.5.2 Limitations and Future Work . 32

xi

TABLE OF CONTENTS

2.6 Threats To Validity . 33

2.7 Chapter Summary . 34

3 Interactive Traceability Links Visualization using A Hierarchical Trace
Map 35
3.1 Overview . 35

3.2 Background . 39

3.3 Visual Support for Traceability Links Visualization 41

3.4 Related Work . 43

3.4.1 Visualization . 43

3.4.2 Traceability model . 45

3.5 Chapter Summary . 46

4 Multi-triage : bug triage based on deep multi-task learning 47
4.1 Overview . 47

4.2 Background . 48

4.2.1 Developers and Issue Types Recommendation Tasks in Bug Triage 49

4.2.2 Multi-task learning . 51

4.3 A motivating example . 52

4.4 Multi-triage . 54

4.4.1 General . 54

4.4.2 Data Extraction . 55

4.4.3 Contextual Data Augmenter . 56

4.4.4 Multi-Triage Model . 58

4.4.5 Code Representation . 59

4.4.6 Task-Specific Classifiers . 61

4.5 Evaluation . 62

4.6 Results . 65

4.6.1 RQ1: How does the multi-triage model compare to other approaches? 65

4.6.2 RQ2: Which component contributes more to the multi-triage model? 68

4.6.3 RQ3: Does increasing the size of training datasets (based on the

contextual data augmentation approach) improve our model’s accu-

racy? . 74

4.7 Threats to Validity . 77

4.8 Discussion . 78

4.8.1 Accessing the Significance of Our Approach 78

xii

TABLE OF CONTENTS

4.8.2 Evaluation using Time-Series Based Cross Validation 79

4.8.3 Alternative Considerations on Model Building 79

4.8.4 Applicability of Contextual Data Augmentation Approach 80

4.8.5 Lessons Learned . 80

4.9 Related Work . 81

4.9.1 Semi-Automatic Bug Triage . 81

4.9.2 Multi-Task Learning . 83

4.9.3 Other Tasks in the Bug Resolution Process 84

4.10 Chapter Summary . 84

5 Case Study of Automatic Bug Triage Process Model at Software Industry 85
5.1 Overview . 85

5.1.1 Contributions . 86

5.2 Background . 86

5.2.1 Dialog IT Issue Tracking Systems Background 87

5.3 Proposed Solution . 88

5.4 Research Method . 89

5.5 Design Solution . 90

5.6 Results . 91

5.6.1 Data analysis of historical issue reports 92

5.6.2 AI recommendation model performance 92

5.6.3 Bug triage application . 94

5.6.4 Bug triage hosting components and application services 94

5.7 Chapter Summary . 96

6 Conclusions and Future Work 97
6.1 Conclusions . 97

6.2 Threats to Validity . 98

6.3 Future Work . 99

Bibliography 101

xiii

LIST OF FIGURES

FIGURE Page

1.1 Bug Triage Recommendation Model . 3

1.2 Thesis Flow Chart . 7

2.1 High-level overview of IR-based Traceability Recovery Process 9

2.2 Identify Software Change Impacts [27] . 12

2.3 Overview of Traceability Literature Reviews Timeline 14

2.4 Search and selection process . 17

2.5 Traceability Links Recovery Publications Trend (A rectangular box is colored

according to traceability approaches. A circle symbol inside the top-right

corner of the rectangle box represents the trace artifacts applied in the studies.

Texts inside the rectangular box present the traceability approaches or tool

names and techniques.) . 19

2.6 Distribution of Publications by Traceability Direction 26

2.7 Distribution of Publications by Research Methods (on the left) and Datasets

(on the right) . 27

2.8 Traceability Links Recovery Ways . 30

3.1 Documenting traceability relationship using textual references [126] 39

3.2 Documentation of traceability relationships using hyperlinks [126] 40

3.3 Hierarchical trace map model . 41

3.4 Unfiltered view of Hierarchical Trace Map . 42

3.5 Filtered view of a source artifact and two target artifacts relation 43

3.6 Filtered view of a target artifact and source artifacts relation 43

4.1 An example of an issue report and the corresponding pull request 49

4.2 Developers and issue type correlation example 50

4.3 A code snippet and corresponding AST example 52

4.4 The multi-triage framework . 55

xv

LIST OF FIGURES

4.5 An example of data extraction steps for an issue report 55

4.6 A synthetic issue report example . 56

4.7 The multi-triage model . 58

4.8 Time-series-based 5-fold cross-validation . 64

4.9 Qualitative analysis venn diagram . 67

4.10 Training time . 68

4.11 Multi-triage: ablation analysis . 72

4.12 Multi-triage parameter analysis . 73

4.13 Multi-triage: AUC v.s. Accuracy . 75

4.14 Multi-triage with Data Augmentation: AUC v.s. Accuracy 76

5.1 Issue Tracking Systems used in Sydney and Darwin Offices 87

5.2 Automatic Bug Triage Process Model . 89

5.3 High-Level AI-based Bug Triage Model . 91

5.4 Total no of Issue Reports Summary . 92

5.5 Total no of Developers and Issue Types Summary 93

5.6 Bug Triage App Main Page . 94

5.7 On-Demand Train AI Model Example . 95

5.8 Retrieve Prediction Result for a New Issue Report 95

5.9 Prediction Model Results Example . 96

xvi

LIST OF TABLES

TABLE Page

2.1 Traceability Tools . 25

2.2 Distribution of Publications by Change Impact Sets 28

4.1 AST nodes terms and abbreviation . 53

4.2 Raw datasets information . 54

4.3 Multi-triage v.s. baselines (Base1 - SVM + BOW [12], Base2 - DeepTriage [102])

Accuracy (%) . 66

4.4 Qualitative analysis (bug and enhancement) . 67

4.5 Single task prediction model v.s. our approach for developer predictions (pre-

cision(P), recall(R), and accuracy(Acc)) . 69

4.6 Single task prediction model v.s. our approach for issue type predictions

(precision(P), recall(R), and accuracy(Acc)) . 70

4.7 Unique word count for Text and AST . 74

4.8 No data augmentation v.s. data augmentation (accuracy(%)) 75

5.1 Research Method . 90

5.2 Evaluation Results . 93

xvii

C
H

A
P

T
E

R

1
INTRODUCTION

During the software development and maintenance stages, managing the soft-

ware bug is the primary factor affecting the cost and time of software delivery.

Software projects ranging from open-source and commercial projects to in-house

organizational projects need an issue tracking system to elicit feature requests or defects

that need to be tracked. Despite the variety among the issue tracking systems, the

core of the portal is to facilitate the primary need of the end user and project team by

documenting the bug details, grouping the bug to the appropriate system area, assigning

it to the appropriate developer, and subsequently keeping track of the progress until the

bug has been triaged. This process is known as bug triage.

Depending on the project settings, either a group or an individual can execute the

triaging. Bug triggers are geographically dispersed in open source projects since it is

anticipated that developers will independently go through the list of reported bugs and

assign them to the appropriate ones. In open-source project communities, it is uncommon

to find that contributor triggers are often performing as the front-line bug triages and

go through thousands of newly opened and re-opened bug reports to categorize and

assign them to the relevant developer. Bug triage days are periodically planned in the

Mozilla [115] and open-stack [41] projects to allow contributors to add further comments

to an issue report that are specific enough for developers to correct the bug. However, in

a commercial area, the projects are usually maintained by a dedicated project team as

triaging is commonly performed in a regular group meeting. Bug reports are handled

following the team members' agreements, which include discussions on who should work

1

CHAPTER 1. INTRODUCTION

on them and which category they should be assigned to.

1.1 Challenges

The initial assessment of a bug report using individual knowledge rather than group

knowledge has a high chance of assessing the root cause of the bug inaccurately and

assigning it to the wrong developer. As a consequence, the work needs to reassign

to another developer. The process of software application triaging can be a complex

activity that requires knowledge of the development process as well as the rules and

norms of the project structure. However, with the distributed culture of the open source

community and the dynamic nature of software development, it is impossible to expect

front-liners triggers to be familiar with all these rules and norms of the project structure.

A structural project like Open Stack provides the following bug triage guidelines for

contributor triages [41]:

“Check if a bug was filed for a correct component (project). If not, either

change the project or mark it as invalid. For example, if the bug impacts the

project-specific dev-ref, then mark it as invalid. If a bug is reported against

the nova installation guide, ensure Open Stack-manuals are removed, and

the nova project is added. Check if a similar bug was filed before. You may

also check already verified bugs to see if the bug has been reported. If so,

mark it as a duplicate of the previous bug.”

This guideline provides heuristics to apply when triaging a bug. Tagging a bug as

invalid, grouping it to the correct project component, and verifying duplicates are key

pieces of instructions that a triage follows to work through the list of bug reports.

Similarly, the Mozilla project steps of triaging guild recommend the following [115]:

“We suggest checking that you are confirming a bug on a relevant platform -

at the beginning of the bug report there is a Platform field that should list

the Operating System the bug was initially found on (Please click here to

see an example). If there is no specified platform, no worries! just go on with

the next steps. Read the description and comments in the bug to understand

the problem. If you clearly understand the bug, move it out of the Untriaged

component into something more appropriate. If you don’t understand the bug

2

1.1. CHALLENGES

or can’t reproduce it, add a comment to the report asking follow-up questions.

If you can reproduce the bug, mark it as NEW.”

This triage guideline is another example of how various factors are considered when

processing bug reports. OpenStack and Mozilla triage guidelines focused on categorizing

bug reports to appropriate project components as the first step by providing project

component information to contributors for reference. Although the references are helpful

for contributors, it is overwhelming to go through over a dozen project components.

In general, the content of the bug report includes two types of information; 1) text

description and 2) code snippets. The text description, expressed in natural language,

includes unexpected behaviours of the system observed by the user. In some cases,

the user provides the steps to reproduce the error in a code snippet expressed in a

programming language. A bug triage reviews this baseline information to perform issue

types classification and developer assignment activities. Thus, it is tedious and resources

intensive, especially in large-scale software development projects. Recently, studies in

automated traceability link recovery approaches have received broad attention in the

bug triage community to overcome the challenges of the manual bug triage process.

Figure 1.1: Bug Triage Recommendation Model

To improve bug triage performance, a large body of work sought to create issue types

and developers' recommendation models to assist issue trackers in the classification

and assignment process. Figure 1.1 presents the fundamental process of building the

bug triage recommendation model. The first step is the data collection phase, where

3

CHAPTER 1. INTRODUCTION

historical bug reports are collected from the issue tracking system (e.g., GitHub, Bugzilla).

Next, bug report descriptions are normalized using text processing techniques (e.g., stop

word removal, stemming, and lemmatization). In previous studies, researchers filtered

outstack traces, code snippets, hyperlinks, and special symbols from the description to

reduce the noise in learning the representation process. Most studies set the minimum

threshold to eliminate bug reports with minority categorical values (e.g., developers who

fix a few bug reports). After the filtering process, the labelling process is performed on

each bug report. For example, a bug report is marked as a bug or feature and labelled

with the developer’s name. The quality of datasets affects the overall performance of

the recommendation model. After pre-processing, researchers applied various natural

language processing ranging from the heuristics (rule-based) approach, information

retrieval (e.g., text similarity, semantic similarity) approach, to the machine learning

(text classification) approach to training the model. The learning algorithm selection,

training, and evaluating phases are turned incrementally until the model is ready for

deployment. Although these approaches reduce the frequency of assigning the bug to

an incorrect category and developer, the performance of the bug triage recommendation

model mainly relied on the quality and availability of historical bug reports. Additionally,

low-quality bug descriptions cause noise in training the recommendation model. The

performance of the model is impacted by a shortage and an imbalance in past bug reports.

Last but not least, the existing methods fall short in handling numerous jobs, like issue

categories and assimilating developers for a new bug report.

All in all, this thesis intends to address four main challenges. Firstly, there are

no prior studies of a Multitask learning (MTL) approach in the context of the bug

triage process. However, it has been used in solving complex problems in various areas,

including computer vision, natural language processing, and natural language processing

understanding, for several years. Interestingly, there are no recent review studies on

insights into the automation approaches conjured in various software maintenance

activities, including software traceability, bug triage, concept location, impact analysis,

program comprehension, and verifying test coverage. Thus, it is important to perform a

review study to build up field knowledge to leverage the bug triage automation process.

Second, previous studies are trained to solve one task, such as developers and issue

types, although both recommendation models relied on the historical bug reports [69, 153].

The MTL approach can optimize a single model of multiple related tasks by exploiting

useful information between learning tasks to optimize decision boundaries on the original

task. Therefore, it hinders the parallel distributed learning process. Furthermore, prior

4

1.2. OUR APPROACHES

studies only use the contextual information from bug reports to train the model; it cannot

utilize the information provided in structured language (e.g., code snippet). Therefore, it

is essential to leverage the bug recommendation model to maximize its capability to its

full potential.

Third, prior approaches present the top selection lists in textual labels (e.g., potential

developers, relevant issue types) as it needs to be more informative for the project team to

select the most relevant developers or issue types in a timely manner [78, 153]. To select

the most relevant one from the list, the project teams require additional information,

such as the list of similar bug reports fixed by these developers. As the system evolved

over time, it was challenging to read a large volume of historical bug reports to validate

the results. In recent years, software traceability studies have tackled the high volume

data challenges by embedding visualization techniques in presenting the relationships

between various software artifacts (e.g., requirements, design, and code) to facilitate

software maintenance and evolution [14, 80]. A similar approach can leverage the bug

triage resource assignment automation process.

Lastly, the majority of studies explore the effect of bug triage recommendation model

in open-source applications as it may not cover the industrial software standards and

requirements. Performing case studies on industrial projects is important for bug triage

researchers to understand the complexity and diversity of bug triage system.

1.2 Our Approaches

In this thesis, we proposed a multitask recommendation model called multi-triage, which

can predict relevant developers and issue types (e.g., bug or enhancement) for a new

bug report. We leverage the recommendation model to perform multiple tasks that will

assist triages in working with an extensive list of bugs. Compared to the traditional

single-task learning model, our model training time is faster while maintaining the same

level of precision. In our approach, we treat a bug report in two forms: 1) contextual and

2) structural to extract the representation of the bug report precisely by including the

code snippets information. In addition, we introduced a synthetic bug report generator

to overcome the imbalanced dataset challenge. We applied the contextual data augmen-

tation approach to existing bug reports to generate synthetic ones with similar contexts

for novel words. Initially, we implemented the model by turning it into a collection of

bug reports from open-source projects. We implemented an automated triage model for

industrial projects and learned the feasibility of working with bug reports and the impact

5

CHAPTER 1. INTRODUCTION

on triaging work.

In summary, we conducted a four-part study in this work. The first two studies were

an initial exploratory to broaden our understanding of designing our multi-triage model.

First, we have conducted a systematic literature review (SLR) related to automatic trace-

ability links recovery approaches to identify the remaining challenges in state-of-the-art

systems. Thus, it contributes a body of knowledge to traceability research and bug triage

communities. Second, we conjured a hierarchical trace map visualization technique to

interactively present relationships among software artifacts. Our hierarchical trace map

visualization technique provides functionalities to explore interrelationships between

various artifacts at once naturally and intuitively. Our presenting methodology can assist

the project teams to understand systems and issue triage to perform immediate system

verification. In our third study, we investigated the impacts of a synthetic issue report

and a multitask learning model based on the collected knowledge. Our multi-triage model

resolves both tasks simultaneously via MTL approach. A critical aspect of our approach

is that it transforms the code snippet into an abstract syntax tree (AST) token and uses it

as part of the input tokens. Therefore, our approach provides a precise bug report feature

representation. Furthermore, we applied a contextual data augmentation approach to

generate synthetic bug reports for over-sampled imbalanced datasets, thereby increasing

model accuracy. Lastly, we performed a bug triage process model case study on real-world

industrial projects and implemented the artificial intelligence (AI) bug triage process

model based on the requirements of industrial projects.

1.3 Thesis Organization

Figure 1.2 presents the flow chart of the thesis chapters.The rest of this dissertation is

organized as follows:

Chapter 2 describes our work of literature review in automatic traceability link

recovery published in [15]. This chapter takes a broad look at the various types of

automatic traceability recovery approaches proposed by previous studies published

during 2014–2018. We provide insights into traceability approaches, traces artifacts,

changes in impact analysis coverage, trace links granularity, and recovery of traceability

links between two software artifacts.

Chapter 3 describes our work of hierarchical trace map visualization technique

published in [14]. The chapter gives the preliminaries of a hierarchical trace map and

a motivating example, then demonstrates interrelationships between various software

6

1.3. THESIS ORGANIZATION

Figure 1.2: Thesis Flow Chart

artifacts using a trace map.

Chapter 4 describes our work of a multi-triage model that simultaneously predicts

developers and issue types for a new bug report via the multitask learning (MTL)

approach published in [16]. This chapter explains the overall design, then presents the

motivating example, the algorithm to generate synthetic bug reports and over-sampled

the minority group, and finally analyses the experimental results.

Chapter 5 describes the automatic bug triage model evaluated in real-world industrial

projects. This chapter presents an in-depth study of the legacy bug triage model of one

of the leading Australian IT consulting companies. We designed a centralized AI-based

automatic bug triage process model during the study and evaluated the new model

with the company's historical bug reports. Our model's outcomes open up a new way of

thinking about bug triage design and materials for the company.

Chapter 6 presents our concluding remarks, summarizes the contributions of this

dissertation, and finally sheds some light on the direction of future work.

7

C
H

A
P

T
E

R

2
A LITERATURE REVIEW OF AUTOMATIC TRACEABILITY

LINK RECOVERY

2.1 Overview

Figure 2.1: High-level overview of IR-based Traceability Recovery Process

In large-scale software development projects, Change Impact Analysis (CIA) plays

an important role in controlling the software design evolution. CIA is the process of

identifying the impact areas of a change in a software system to estimate the time or

efforts to make a change [27]. During the software development cycle, it is common

practice to use traceability relationships across different software artifacts to identify

9

CHAPTER 2. A LITERATURE REVIEW OF AUTOMATIC TRACEABILITY LINK
RECOVERY

and access the impacts of software changes. Recently, research in automated traceability

link recovery has received broad attention in the software maintenance community,

aiming to reduce the cost of manual maintenance of trace links by developers. Bug

triage is one of the crucial software maintenance activities. The aim of this thesis is to

leverage the automation of the bug triage process, as it is important to understand the

broader concepts of automation within the software maintenance field. The bug triage

recommendation model is based on the idea of recovering the links between historical

bug reports and a new bug report to predict the potential developers and relevant issue

types.

In this chapter, we have presented a Systematic Literature Review (SLR) related to

automatic Traceability Link Recovery (TLR) approaches with a focus on the CIA. We

identified 32 relevant studies and investigated deep insights into the following aspects

of CIA: traceability approaches, trace artifacts, CIA coverage, trace links granularity,

and ways of recovering traceability links between two artifacts. The results of our SLR

indicate that there are rooms for further research to leverage the traceability process to

support end-to-end CIA in continuous software development.

Over the past years, several empirical and experiential traceability studies high-

lighted how trace links are used to accelerate project management processes and improve

overall software quality. Requirements traceability is defined as “the ability to describe

and follow the life of a requirement, in both a forward and backward direction (i.e., from

its origins, through its development and specification, to its subsequent development

and use, and all periods of ongoing refinement and iteration in any of these phrases” [62,

p. 94]. To ensure that stakeholder requirements are met properly, traceability connects

requirements with subsequent development artifacts. For quality control and product

certification in critical safety systems, building traceability relationships between soft-

ware artifacts is essential [38]. However, manually setting up and maintaining trace

links is time-consuming and prone to errors.

Among some earlier attempts at automating the traceability recovery process, the

IR-based trace recovery technique is commonly used in this context. The IR-based

approach retrieves the trace links based on the textual similarity between the two

artifacts. The fundamental concept of this approach is the recognition of the semantic

similarity between artifacts, assuming two artifacts having high textual similarity share

similar concepts [7, 8, 58]. During software development, artifacts produced throughout

the projects are mostly written in natural languages, such as requirements, user stories,

test cases, bug reports, and source code comments.

10

2.1. OVERVIEW

Figure 2.1 presents the high-level structure of the IR-based traceability recovery

process. Generally, IR-based tracing consists of three steps 1) pre-processing, candidate

link generation, and traceability analysis [70]. For example, consider the recovery trace

link between requirements and source code. In pre-processing parsing phase, the re-

quired artifacts are first parsed to extract search keywords using standard pre-processing

operations (e.g. Stop words removal, stemming, part of speech tagging, and identifier

splitting, lowercase, tokenization) [19, 58, 90, 100]. Second, IR-based term-matching tech-

niques such as Vector Space Model(VSM), Latent Semantic Indexing, Jensen-Shannon

Divergence (JD), Latent Dirichlet Allocation (LDA), and BM2 are used to generate lists

of possible candidate links. In the traceability analysis phase, analysts verify these

trace results manually and make the judgment. Thus, the final trace analysis phase of

IR-based techniques requires human efforts, as it is error-prone and resource-intensive.

In [8], the study exploits what factors influence the creation of traceability links in

source code artifacts. The experiments involve monitoring developer's eye movements to

analyze which source code entities most developers pay attention to in verifying trace

links. Their findings highlight that class names, method names, variable names, and com-

ments are the key entities developers use in creating trace links manually. Following their

experimental inspiration, similar kinds of hypothesis research are performed to identify

the effects of using co-changes files information in the trace recovery process. Co-changed

files are “two or more files frequently co-changed together (in source code repository)

for a longer period” [7, p. 361]. Theoretically, these co-changed files have a conceptual

linkage between them and could be related to the same requirements'specifications. The

positive outcomes of this research validated the practicality of this assumption. Similarly,

in [100], the study conjured the effects of refactoring the code systematically on trace

recovery process performance. In their experiments, source code is refactored in three

techniques namely; restore information, move information, and remove the information

and observed the effects of each technique. Out of three techniques, restoring information

provides benefits to the trace recovery process, enhancing the source code quality by

updating outdated terms and taxonomies. However, removing information has a negative

impact on the trace generation process as well as moving information does not provide

noticeable benefits. Likewise, in [118], the study presented the requirements and source

code changes monitoring mechanism to remind developers to refactor the code to main-

tain trace links effectively. Apart from constructing the links between different artifacts,

the study in [59] presented the sorting algorithm to generate trace links between source

code and source code comments.

11

CHAPTER 2. A LITERATURE REVIEW OF AUTOMATIC TRACEABILITY LINK
RECOVERY

Our key interest is how previous studies assist the CIA process in identifying the

relationships between software artifacts. We are keen on exploiting the underlying

challenges in constructing the trace links between artifacts and how studies addressed

problems in past years. Thus, this empirical study can be a starting point to identify

the remaining works left for future research to leverage the traceability links recovery

process.

Our interests led us to conduct a systematic review of peer-reviewed studies related to

automatic Traceability Link Recovery(TLR) approaches focusing on the CIA. We followed

the systematic literature review guidelines provided by Kitchenham and Charters [84].

We reviewed the primary studies published during 2012–2019, focusing on how these

primary studies assist the CIA process by measuring the level of support based on trace

artifacts, approaches, the granularity of trace links, and common ways to recover trace

links between artifacts. Furthermore, we presented our findings to cover standard soft-

ware artifacts produced throughout the software development. This body of knowledge

led to the design of our hierarchical trace map visualization technique and multi-triage

approach presented in chapters 3 and 4.

2.2 Background

Figure 2.2: Identify Software Change Impacts [27]

Figure 2.2 presents Bohner's CIA process model. The process model represents the

key activities in identifying software impacts. The process starts with examining require-
ments traceability activity. This activity is based on the assumption that traceability

12

2.2. BACKGROUND

information is previously defined and maintained during development. The output of

this activity is a set of current impacts. The traceability activity is broken down into five

sub-activities as follows.

• Classify change and explore similar changes - This activity assesses the

change history data to compare the current change request with similar software

changes from the system's change history database.

• Determine requirements impacts - This activity determines the requirements

impacts by associating new requirements with current system requirements history

information passed from classifying change and exploring similar changes activity.

• Identify software design impacts - This activity examines the current system

architecture and program design information passed from classifying change and
exploring similar changes and identifies design impacts based on the informa-

tion guided by examining requirements traceability and determining requirements
impacts activities.

• Analyze software program impacts - This activity uses various program analy-

sis techniques such as program slicing, data flow analysis, control flow analysis,

and dependency analysis to determine program impact sets.

• Determine regression test candidates - To determine test implications, this

activity uses information from the classified change and explores similar changes

activity and how the program impacts activity and requirements traceability

activity.

In summary, there are a total of four change impact sets needing examination to generate

the complete scope of changes. Therefore, recovering traceability links between software

artifacts is essential for a CIA process to determine the scope of changes efficiently.

As mentioned in the previous section, recovering and maintaining traceability in-

formation throughout software development is important for the CIA process. It is

necessary to build traceability relationships between heterogeneous artifacts according

to Bohner's impact analysis model (e.g., requirements, design, source code, and test case)

[27]. However, one of the main challenges of recovering traceability links between soft-

ware artifacts of different types is a knowledge gap problem. Knowledge in this context

refers to the syntax and semantics of the artifacts [45]. The knowledge gap between soft-

ware documentation and source code is very large. The formal one is usually expressed in

13

CHAPTER 2. A LITERATURE REVIEW OF AUTOMATIC TRACEABILITY LINK
RECOVERY

a natural language, whereas the latter follows program syntax and language. Recovering

knowledge-based traceability links between these heterogeneous artifacts required data

normalization as well as human expert verification [20, 57, 89].

In the last decades, information retrieval (IR) has been widely adopted as a core tech-

nology to address the problem of recovering knowledge-based traceability links between

artifacts of different types [19, 20, 57, 89, 122]. This approach established traceability

relationships based on the assumption that if two artifacts have high textual similarity

between them, there is a high chance they are related to one another. However, an

IR-based approach requires human experts to verify the candidate trace links manually,

as it is error-prone and time-consuming.

Recently, several studies have proposed approaches to training machine learning

(ML) classification models to verify the validity of trace links, which are generated with

IR approaches [1, 54, 55, 107, 134]. Furthermore, several authors reported the benefits

of choosing deep learning (DL) approach over an IR-based recovery approach. Deep

learning approaches, in general, can learn unstructured data of any format, as it can

be trained to understand the domain knowledge of the system [66, 107], particularly,

understanding the correlations between requirements and design documents [65, 149].

To be able to utilize the right traceability link recovery approach, software engineers

need to understand which traceability recovery approach is suitable for which change

impact sets. Furthermore, it is important to understand how these trace links can be

recovered and the availability of support tools.

Figure 2.3: Overview of Traceability Literature Reviews Timeline

Figure 2.3 presents an overview of the timeline, the domain of automatic traceability

link recovery approach, and the total number of primary studies in existing literature

reviews in comparison to the one presented in this paper. In [29], the authors presented a

systematic mapping study of IR-based traceability links recovery approach and enhance-

ment strategies, covering the articles published during 1999–2011. They highlighted that

there is no empirical evidence of any IR—based model consistently outperforming another.

In contrast, in [74], the authors reviewed the studies on traceability published between

14

2.3. RESEARCH METHOD

1999 and 2013, capturing the correlations between software architecture and source code.

This study highlighted that semi-automatic traceability approaches appeared to be the

most appropriate way to create trace links between software architecture and source code.

Recently, in [113], the researchers reviewed the studies published between 2000 and

2016 on traceability models. However, none of these studies discussed these traceability

link recovery approaches under the scenario of the CIA. In addition, there are no recent

empirical studies on the current state of automatic traceability links recovery. Therefore,

we carried out a review study of automatic traceability link recovery approaches under

software CIA context to report empirical evidence and identify research gaps.

2.3 Research Method

We followed the guidelines of a systematic review by [84] and developed a protocol to plan,

execute and report our results. The following sections outline the processes included in

our planning phases.

2.3.1 Objectives and Research Questions

Our goal was to gather the state of the literature related to automatic traceability links

recovery under the context of the CIA. Therefore, we answered the three complementary

research questions (RQs), which are specified by the following criteria:

RQ1. What approaches have been used in recovering traceability links be-
tween artifacts to support the CIA process? We analyzed the approaches used to

recover traceability links between software artifacts and the types of software artifacts

that have been most frequently linked in trace recovery studies. We also investigated

trace direction and degree of evaluation. Further, we studied whether the studies intro-

duced any supporting tools.

RQ 2. Which change impact sets are covered? Based on Bohner's [27] impact

analysis model, we analyzed four change impact sets, (i.e., requirements impact, design

impact, program impact, and test impact) and reported which traceability studies widely

cover impact sets.

RQ 3. What are the ways of recovering traceability links between artifacts
to support the CIA process? We investigated what are the possible ways to recover

traceability links between artifacts (e.g., transitive tracing).

The main difference between RQ 1 and 3 is the former focuses on identifying which

automation approaches are used to generate the trace links between artifacts. In contrast,

15

CHAPTER 2. A LITERATURE REVIEW OF AUTOMATIC TRACEABILITY LINK
RECOVERY

the latter investigates the case scenarios where transitive tracing is more beneficial to

apply than direct tracing.

2.3.2 Protocol Development

In our SLR planning phase, we conducted an initial search for other SLRs concerning

a similar scope of the traceability field. During our preliminary search, we found a few

relevant studies, which fit our research objectives. The relevant ones are presented in

Section 4.2. Accompanied by the already identified studies, we have used these SLRs

as the basis to create our RQs and to develop our review protocol, which was conducted

iteratively. The protocol document includes SLR research questions, search strategy,

study selection criteria, quality assessment, data extraction strategy, data synthesis, and

analysis guidelines, which are mentioned briefly in the following sections.

2.3.3 Search Strategy and Data Sources

Following the research objectives and the RQs, we selected four important terms for

searching our literature: (1) Traceability, (2) Recovery, (3) Software Artifacts, and (4) CIA.

Following that, we chose a variety of online databases, performed some straightforward

searches in the publication’s title, keywords, and abstracts, and then evaluated the

coverage. While running the simple search, we created the search strings. The search

strings were modified for various online databases.

ON ABSTRACT: (Abstract: trace*) AND (Abstract: recover* OR Abstract: maintain

OR Abstract: link OR Abstract: establish) AND (Abstract: requirement OR Abstract:

specification OR Abstract: architecture OR Abstract: design OR Abstract: code OR

Abstract: implementation OR Abstract: test OR Abstract: bug) AND (Abstract: change

OR Abstract: impact OR Abstract: analysis OR Abstract: system comprehension)

2.3.4 Study Selection

We are interested in collecting peer-reviewed articles, published between 2012-2019,

focused on the automatic traceability links recovery used by the CIA. In the first step,

we defined the selection criteria below.

• The publications are written in English

• Research explicitly mentioned that they are targeting trace recovery relating to

software maintenance and CIA

16

2.3. RESEARCH METHOD

• Studies containing empirical results (e.g., case studies, experiments, and surveys)

Figure 2.4 shows a summary of the search and selection process.

Figure 2.4: Search and selection process

• Step 1: We applied our search strings in the following five databases: (1) ACM

Digital Library, (2) IEEE Xplore, (3) Science Direct, (4) SpringerLink, and (5)

Scopus. Next, we discarded the duplicate papers. We scanned the title and excluded

the irrelevant papers. The search results showed a high number of documents

(2220 findings).

• Step 2: To extract the results, one author manually scanned the abstracts based

on selection criteria. Then, the other authors checked a sample of papers randomly.

The differences were resolved in the discussion between the authors. We included

320 studies in this step.

• Step 3: At the beginning, one author scanned the content of the papers based on

the selection criteria and marked the records as relevant/irrelevant studies. The

other authors reviewed the findings and selected the relevant studies together. We

found 28 studies in this step.

• Step 4: Finally, one author performed a forward snowballing on our included

studies that have high citations. Other authors reviewed the new findings. We

found four additional papers in this step. In total, we identified 32 relevant studies.

2.3.5 Quality Assessment

We performed a quality assessment in two stages as follows:

• Assessment of research design: To assess the quality of studies, we reviewed

the research design mentioned in the papers. This includes assessing the details

17

CHAPTER 2. A LITERATURE REVIEW OF AUTOMATIC TRACEABILITY LINK
RECOVERY

of research objectives, design, and evaluation. Therefore, we filtered out studies

that have poor research methods and evaluations, as well as research objectives

not related to automatic traceability link recovery. We used the quality assessment

checklist from [84] (See the quality assessment checklist here1).

• Assessment of publication source and impact: We checked the professional

computer science CORE2 journal/conference ranking site to evaluate the quality of

the publications'sources.

2.3.6 Data Extraction and Analysis

To answer the research questions, we extracted the following demographic data for

review: title, authors, type of outlet (journal or conference), name of outlets, publication

year, type of trace artifacts, trace direction, trace recovery technique, quality of evaluation

(e.g., research design), CORE2 ranking and CIA coverage.

2.4 Results

We have included 32 relevant studies in this review. Concerning the publication channel,

the studies were published in conference proceedings, workshops, and scientific journals.

In comparison, 18 papers (56%) of the included studies were published in conference pro-

ceedings, 11 papers (34%) appeared in journals and 3 papers (9%) belonged to workshops.

We identified that 29 papers of the included studies were published in high-ranking

conferences and journals. Only three papers cannot verify ranking, but these papers

were published in traceability-specific journals and workshops. Please see the primary

classification here3.

2.4.1 Traceability Links Recovery Approaches Between
Software Artifacts

Several approaches have been proposed to recover knowledge-based traceability links

between software artifacts of different types to assist in the impact analysis process.

Please see our primary classification here3. Figure 2.5 illustrates the publications trend,

grouped by traceability approaches and artifacts. We found a total of four different
1https://figshare.com/articles/Quality_Assessment_List/11775006
2http://www.core.edu.au
3https://figshare.com/articles/Primary_Studies_List/11775009

18

https://figshare.com/articles/Quality_Assessment_List/11775006
http://www.core.edu.au
https://figshare.com/articles/Primary_Studies_List/11775009

2.4. RESULTS

Figure 2.5: Traceability Links Recovery Publications Trend (A rectangular box is colored
according to traceability approaches. A circle symbol inside the top-right corner of the
rectangle box represents the trace artifacts applied in the studies. Texts inside the
rectangular box present the traceability approaches or tool names and techniques.)

approaches used in the studies (i.e., information retrieval, heuristic-based, deep learning,

and machine learning). The reasons for adopting these distinct approaches in the context

of traceability are discussed in the sections that follow.

2.4.1.1 Information Retrieval-Based Approaches

In the early years, several studies applied information retrieval (IR) approaches to

tackle the challenges of recovering knowledge-based traceability links between various

software artifacts (i.e., requirements, test cases, source codes, bug reports, and features).

In total, 21 out of 32 studies used IR approaches to identify various change impact

sets. The majority of software artifacts are written in natural language, which makes

the IR-based trace recovery approach a logical choice because it allows for the recovery

of links between artifacts of various sorts by calculating their textual similarity. The

high textual similarity between two artifacts is assumed to be related to each other in

these approaches. We identified that vector space model (VSM) [19, 20, 57, 122], latent

semantic indexing (LSI) [57, 101, 145], Jensen and Shannon model (JSM) [6, 89] and

latent Dirichlet allocation (LDA) [122] is the most commonly applied techniques in the

19

CHAPTER 2. A LITERATURE REVIEW OF AUTOMATIC TRACEABILITY LINK
RECOVERY

studies, due to their easy implementation and set up.

In [20], the study presented the IR-based approach to identify outdated requirements

by monitoring the source code changes. All too often, software engineers directly modified

on the source code without updating the corresponding requirements. As a consequence,

traceability links between these two artifacts are obsolete and cannot be used in impact

analysis effectively. To mitigate the problem, the authors proposed to extract the trace

query terms from the recent source code changes (e.g., the addition of a new method or

a new class or a new package, deletion of an existing method or class or packages) to

establish the links with the corresponding requirements. Similarly, in [57], the study

illustrated the use of LSI to recover traceability links between bug reports and source

code to estimate the impact set. In contrast, their approach extracted the source code

query terms based on the commit change-sets co-occurrence concept (e.g., method A

and method B are committed to three commit transactions together, these methods are

considered as co-occurrence methods). Based on this concept, the authors established

the most relevant trace links between bug reports and source code. In [6], the authors

enhanced the way to identify outdated requirements by monitoring source code changes

in bug fix history to identify the impact on original requirements. Similarly, in [145], the

authors experimented with the use of VSM and LSI techniques to recover traceability

links between source code and test case to identify the test case impact set.

Differently, in [122], the study proposed the source code class-based topic clustering

approach (i.e., LDA) to establish traceability links between source code and requirements.

The rationale behind this approach is that a class is an abstraction of a domain/solution

object, and a use case is homogeneous and related to one specific topic. Later that year,

in [28, 133], the researchers presented the idea of recovering traceability links between

a new issue report and the previous issue reports in an issue repository to identify

a set of potentially impacted artifacts [28, 133]. The study is predicted on the notion

that older issue reports have closer textual ties to the most recent implementation

artifacts than more recent issue reports. In [143], the authors proposed an approach

to combine two similarity relevance scores from two sets of traceability links (i.e., one

between requirements and source code, another one between requirements and commit

messages) to improve the accuracy when establishing links between requirements and

source code. Similar to [28], the study in [117] presented an approach called connecting

link method (CLM) to recover transitive traceability links between two artifacts using

the third artifact to overcome the problem of source and target artifact with no textual

similarity between them. The approach is based on the assumption that if requirement 1

20

2.4. RESULTS

is implemented in test case 1 and test case 1 is related to source code 1, then source code

1 will include the implementation of requirement 1.

Similarly [108], the study presented the impact of trace retrieval direction on the

accuracy in recovering trace links between requirements and code classes. They used

standard VSM and established the trace links between these artifacts in a bidirectional

way. Interestingly, their results indicated that there is a high correlation between the

accuracy of the IR-based traceability recovery approach and trace direction. Recently,

in [130], the authors presented an approach called trace link evolver (TLE) to detect

the obsoleted trace links between the requirements and the source code by identifying

changes between the two consecutive source code versions. In their approach, they used

a source code refactoring tool to detect a wide range of source code change scenarios (e.g.,

add, remove, move, rename and merge) at both the method and class levels. Once the

code changes were identified, they used the standard VSM to recover update-to-date

links between the requirements and the source code. According to their research, the

trace connections produced using TLE have a higher degree of precision than those

produced using the standalone VSM technique.

In [101], the researchers presented a taxonomy-based traceability links recovery

approach to establish trace links between the non-functional requirements and the

source code. In their approach, non-functional requirements query terms are manually

defined and maintained in a custom taxonomy database. Their IR engines, which are

built on top of VSM and LSI models, used these taxonomy terms to establish trace

links between non-functional requirements and the source code. Likewise, in [66], the

study proposed a taxonomy-based traceability links recovery approach to establish

the traceability links between Health Insurance Privacy and Portability Act (HIPAA)

regulations and system requirements documents. A similar taxonomy-based approach is

proposed in [148] where the authors create a requirement-based taxonomy approach to

recover trace links between the requirements and the source code.

Different from [6, 57], the authors proposed an approach to extracting observed

behaviors terms from the bug reports to leverage the IR-based approach. Observed

behaviors are texts that describe the misbehavior of the system (e.g., “the menu doesn't

open when I click the button”). In their approach, they manually extracted observed

behaviors terms from the bug reports and used the standard VSM model to recover

traceability links between bug reports and source code. Similarly, in [5], the authors

conjectured a Parts-Of-Speech (POS) tagging method with a constraint-based pruning

approach to increase accuracy. In their approach, all POS categories, i.e., nouns, verbs,

21

CHAPTER 2. A LITERATURE REVIEW OF AUTOMATIC TRACEABILITY LINK
RECOVERY

adjectives, adverbs, and pronouns are first extracted from the required documents and

the textual similarity between source code identifiers (e.g., class and method) is computed

using VSM and JSM.

Recently, [89] proposed an approach called CLoseness-and-USer-feedback-based

TracEability Recovery (CLUSTER), which established the trace links between require-

ments and source code based on code dependencies among classes to increase the accuracy

between the links. In their approach, the code dependencies are calculated based on the

degree of direct interaction (e.g., method calls, inheritance, and class usage) and indi-

rect interaction (e.g., reading or writing the same data). Recently, in [138], the authors

proposed a feature tagging approach to recover traceability links between requirements

and source code. A feature is a short textual description of functionality that presents

business value, whereas a feature tag summarizes the feature shortly and concisely.

Their approach recommends labelling requirements and source code with corresponding

tags during development and using these tags.

2.4.1.2 Heuristic-Based Approaches

In earlier IR-based methods, a human expert was required to manually and frequently

check the candidate link list because it was time-consuming and fallible. To reduce the

time and effort of the verification process [23], researchers presented the concept of

multi–search criteria–based traceability recovery approach to establishing trace links be-

tween the requirements and the source code. They experimented with the Non-dominated

Sorting Algorithm (NSGA–II) using similarity scores, change frequency, and change

recency as three weighing criteria. They used cosine similarity to calculate the similarity

scores between the requirements and the source code. The metadata for the remaining

two criteria —source code's frequency of change and recency of change —are extracted

from the source code version history. This method optimized the accuracy of candidate

link lists by creating trace linkages based on both the history of modifications and the

semantic similarity of software objects. All of their experimental results harmonically

achieved high precision results. A unique technique called Re-modularization, which

converts source code syntax into sentences in natural language, was used by the authors

of [23] to improve the IR-based approach. The trace linkages between the source code

and use cases are then created using these words. Converting source code syntax to

natural language format reduced the knowledge gap between artifacts when calculating

the similarity between them.

22

2.4. RESULTS

2.4.1.3 Machine Learning-Based Approaches

In this review, we identified that most primary studies applied machine learning ap-

proaches to automatically verify the candidate link list generated from IR approaches [54,

55, 107]. In [1], the author's employed ML classifiers to suggest relevant attributes to

source code comments.

The study described an approach called Estimation of the Number of Remaining

Linkages (ENRL) in [54] to find the number of positive trace links that are still present

in the ranked list generated by IR approaches. They trained the seven machine learning

classifiers (i.e., ADTree, Bagging, Fuzzy Lattice Reasoning, IBk, Naive Bayes, LogitBoost,

and ZeroR) with a set of classified gold standard trace links to identify positive and

negative links from the ranked lists. The results of their findings indicated that the

ZeroR classifier produced the lowest accuracy results, with a Mean Relative Error (MRE)

of 1. Similarly, Mills et al. [107] presented a framework called TRAceability Links

Classifiers (TRAIL) to automatically verify the validity of the ranked trace links, which

are generated with the IR model. They used three features, namely: cosine similarity,

query quality metrics, and document statistics to validate the trace links. With six

machine learning classifiers, including Random Forest, k-Nearest Neighbor (kNN),

Multinomial Logistic Regression Model, Naive Bayes, Support Vector Model (SVM), and

Voted, they conducted TRAIL experiments. Their findings indicated that the Random

Forest classifier outperformed the other five classifiers. Also in [148], the authors trained

Random Forest, Naive Bayes, Logistic, J48, and Bagging Models to verify the validity

of trace links between requirements and source code. However, the authors did not

report clearly which ML classifiers perform best. Likewise, in [134], the authors proposed

an approach by training ML classification models to predict the potential trace links

between issue reports and source code. They used Naive Bayes, J48, Decision Tree (DT),

and Random Forest classification models to validate the possible trace links. The results

of their findings highlighted that Random Forest outperformed the other two classifiers.

Differently, in [1], the authors proposed a feature-annotation recommendation ap-

proach to suggesting a developer add an annotation feature in the newly added code

before check-in into a version-control system. They used three machine learning clas-

sification models, i.e., SVM, kNN, and DT to predict the source code location where

the feature annotations are missing. The method created a list of potential associated

features for the new modifications using the history data from earlier change-sets. After

training with 60 commits change-set histories, their findings showed that the kNN

23

CHAPTER 2. A LITERATURE REVIEW OF AUTOMATIC TRACEABILITY LINK
RECOVERY

classifier achieved the maximum accuracy.

2.4.1.4 Deep Learning-Based Approaches

Recently, deep learning techniques have become popular in the traceability context to

address the knowledge gap problem. We found four studies that used recurrent neural

networks [65], feed-forward neural networks [149] and word embedding [43] to recover

traceability links between software artifacts of different types (i.e., requirements, source

code, test case, and features). In [43], the authors demonstrated that a word embedding

approach outperformed an LSI model when establishing trace links between the test

case and source code.

In [65], the study combined word embedding and the recurrent neural network (RNN)

approaches to eliminate the knowledge gap in recovering traceability links between

requirements and design documents. The approach can be divided into two layers,

namely: the word embedding mapping layer and the semantic relation evaluation layer.

In the word embedding mapping layer, they first converted the collection of requirements

documents to the word embedding vectors format and identified the semantic relations

between terms using RNN. Conversely, the same process ran for the design documents.

Next, the outcomes of the embedding layer are passed to the evaluation layer to recover

the links between them. In the evaluation layer, it first calculated the vector distance and

vector direction for two semantic vectors, then passed the resulting vectors to the sigmoid

and softmax (e.g., 1- valid, 0- invalid) functions to calculate the relations between the

two vectors.

Similarly, in [149], the study used the word embedding and the feedforward neural

network (FNN) approaches to address the polysemy issue in recovering trace links

between requirements. Polysemy in this context refers to “the coexistence of multiple

meanings for a term appearing in different requirements” [149]. In their approach,

the authors extended the standard IR recovery approach with the term-pair ranking

model and cluster ranking model. When collecting requirements, the term-pair ranking

model used word embedding and FNN to identify the list of polysemy terms. The cluster

ranking model used these polysemy terms and updated the term-to-requirements matrix

accordingly. They evaluated their approach with two baselines IR models (i.e., VSM and

LSI). Their results indicated that the accuracy of the results increased by eliminating

the polysemy issue. Recently in [43], the researchers trained the word embedding model

with raw source code, the abstract syntax tree structure of source code, and the test case

24

2.4. RESULTS

to predict the relevance test cases. The authors compared their word embedding model

with the standard LSI model and reported that word embedding outperformed LSI when

recommending the top 1 most similar class.

Table 2.1: Traceability Tools

Tool/Approach Information Retrieval Deep Learning
TraceME ✓ -
RETRO ✓ -
OpenTrace ✓ -
SPLTrace ✓ ✓

In terms of tool support, we identified four traceability tools (i.e., TraceME, RETRO,

OpenTrace, and SPLTrace). Table 2.1 presents the traceability tools proposed in primary

studies. In [19], the study proposed the traceability links recovery tool called TraceMe

eclipse-plugin to recover the traceability links between source code and requirements

during software development. The tool supports the graph view to visualize the trace

links between source code and requirements. Similarly, in [20], the study presented the

standalone traceability recovery tool called RETRO to establish trace links between

artifacts of different types. In [106], the authors used an open-source traceability work-

bench framework called OpenTrace to experiment with the effects of three IR techniques.

OpenTrace provides a reusable IR component to perform the analysis task easily. Lastly

in [146], the study presented the automatic feature-code traceability tool called SPLTrace.

The tool is built upon four IR models (i.e., Class Vector, Extended Boolean, Latent Seman-

tic index, and BM25) and one deep learning model (i.e., Feed Forward Neutral Network).

In SLRTrace, trace links between the features and the source code can be generated

using one of the models.

In summary, TraceMe and SPLTrace can be categorized as special purpose tools

especially focused on identifying the impact set between requirements and source code.

By contrast, RETRO can be considered as a general purpose tool suited for analyz-

ing the impact between software artifacts of different types. Finally, OpenTrace is a

traceability workbench framework with various IR components (e.g., data preparation,

experiment execution, and evaluation) as applicable for experimental analysis of various

IR approaches.

25

CHAPTER 2. A LITERATURE REVIEW OF AUTOMATIC TRACEABILITY LINK
RECOVERY

2.4.2 Traceability Direction and Evaluation

In [108], the authors highlighted the impact of trace direction on the links recovery

process. Thus, we grouped the studies based on two traceability directions (i.e., unidi-

rectional and bidirectional). Figure 2.6 shows the classification of the studies by trace

direction.

Figure 2.6: Distribution of Publications by Traceability Direction

In the unidirectional traceability group, we included the studies that evaluated

their approach to recovering trace links from one artifact to another either in one

direction (e.g., requirements to design, requirements to source code). We identified that

30 (93.5%) out of 32 studies evaluated their approaches in a unidirectional way. Only

two studies [108, 117] evaluated their approaches in a bidirectional way. To the best

of our knowledge, the approaches focused on tracing between two natural language

artifacts (e.g., requirements, test case, design) are possible to trace in a bidirectional

way [65, 149]. However, the approaches such as feature-based tracing [1, 66, 138] and

code to requirements tracing [20, 43] required a specific data tokenization process for

source code, as these approaches may not be applicable to trace in a bidirectional way.

Due to the lack of evaluation in the studies, we cannot conclude which approaches are

applicable for bidirectional tracing.

In terms of the degree of evaluation, we reported the research methods and the type

of datasets used in the studies. We used the quality assessment checklist from [84] (See

the quality assessment checklist here1) to assess the research methods.

Figure 2.7 presents the research methods and datasets used in the primary studies.

We identified that 29 (90.6%) out of 32 studies applied experimental research to study the

effectiveness of their approaches. Only (9.4%) of studies [28, 143, 145] used case study

methods. In [28], the researchers studied the impact of automatic traceability-based

CIA approaches in two industrial domains (i.e., automation, and telecommunication).

26

2.4. RESULTS

Figure 2.7: Distribution of Publications by Research Methods (on the left) and Datasets
(on the right)

Their findings indicated that their approach can identify 40% of the potential program

change set effectively in real-world datasets. Similarly, in [143], the study applied a

standard VSM model in a Japanese software company to establish the trace links between

requirements and source code. Due to data confidentiality, the study anonymized the

system details. In [145], the authors experimented with the two IR models (i.e., VSM

and LSI) in an embedded system, which produces both hard and software products. The

study evaluated IR models by establishing links between the source code and the test

case. Based on their findings, an IR-based approach can only identify 38% of the potential

test cases in an industry setting. We identified that 27 (84.4%) out of 32 studies used

open source projects to evaluate their approach. Presumably, open source projects are

close to industrial projects. Only two studies used university projects to evaluate their

traceability tools (RETRO and TraceMe) [19, 20].

2.4.3 Support Change Impact Set

In this section, we classified the primary studies based on Bohner's four impact sets (i.e.,

requirements impact set, design impact set, program impact set, and test impact set)

and presented the results in Table 2.2 [27]. The last row of Table 2.2 describes the lists

of the acronym used in the table.

2.4.3.1 Requirements Impact Set

In this section, we included the studies that used requirements artifacts as target

artifacts in their trace recovery approach to identify the impact on the requirement

level. We identified four source artifacts (i.e., regulatory requirements [66, 148], low

27

CHAPTER 2. A LITERATURE REVIEW OF AUTOMATIC TRACEABILITY LINK
RECOVERY

Table 2.2: Distribution of Publications by Change Impact Sets

Impact Set Artifacts Links Studies

RIS SC-R, RR-R,
R-R, F-R

[20],[19], [6], [117], [66], [108],
[54], [65], [107], [148], [149], [138]

DIS R-D [117], [54]
TIS SC-TC, R-TC, D-TC [117], [145], [54],[107]

PIS R-SC, Bug-SC,
TC-SC, F-SC

[57],[122], [28], [143], [117], [101],
[106], [23], [59], [34], [108], [54],
[133], [60], [55], [148], [134],[130],
[1], [5], [146], [138], [43]

Acronym : RIS - Requirements Impact Set, DIS - Design Impact Set,
TIS - Test Impact Set, PIS - Program Impact Set,
R- Requirements, RR - Regulatory Requirements,
F - Features, D - Design, SC - Source Code, TC - Test Case

level requirements [65, 149], source code [6, 19, 20, 54, 107, 108, 117] and features [138])

used in the studies to assess the requirements impact scope. In [66, 148], the authors

recovered links between regulatory requirements and requirements using a taxonomy-

based approach to identify the impact on the requirements level. Similarly, [65, 149] used

a deep learning-based traceability links recovery approach to recover trace links between

high-level requirements and low-level requirements. Similarly in [6, 19, 20, 108, 117],

the authors mined the class-level and method-level changes in source code from commit

histories and established the links with existing requirements to identify the outdated

requirements. The authors of [54, 107] used machine learning models to anticipate

the trace linkages between requirements and source code. Recently, a feature tagging

approach has been introduced in [138] to maintain the links between requirements and

other software artifacts. Interestingly, we cannot find studies that used design and test

cases as source artifacts. All too often, software engineers might update these artifacts

directly and forget to update the original requirements. As a consequence, traceability

links between these artifacts become obsolete and cannot perform the CIA effectively.

2.4.3.2 Design Impact Set

In this section, we included studies that used source code artifacts as target artifacts

in the studies. Interestingly, only two studies [54, 117] focused on recovering links

between requirements and design artifacts, possibly due to the scarcity of datasets. Both

studies [54, 117] evaluated their approaches with the same test datasets, due to the

28

2.4. RESULTS

availability of golden standard answer sets. In [117], the authors used the standard

VSM model to recover the links between requirements and design artifacts. The work

in [54] employed a machine learning-based methodology to validate potential connections

between requirements and design artifacts that are produced by an IR engine.

2.4.3.3 Test Impact Set

In this section, we included studies that used test artifacts as target artifacts in the

studies. We identified two source artifacts (i.e., design [54, 117] and source code [107,

145]). In [54, 117], the authors evaluated the same datasets to recover links between

design and test case artifacts to identify the test impact set. In [145], the authors used

two IR models (i.e., VSM and LSI) to identify the impact test case set by linking with the

source code artifacts. Similarly, in [107], the study used a machine learning approach to

automatically verify the candidate links between source code and test artifacts, which

are generated with the IR approach.

2.4.3.4 Program Impact set

In this section, we included studies that used source code artifacts as target artifacts in

the studies. We identified four source artifacts (i.e., requirements [5, 23, 54, 55, 57, 59,

89, 101, 108, 122, 130, 143, 148], bug report [28, 34, 60, 106, 133, 134], test case [43, 117]

and features [1, 138, 146]) used in the studies to identify the program impact set. In

[5, 57, 89, 101, 108, 122, 130, 143, 148], the authors applied an IR-based approach to

establish trace links between requirement and source code artifacts to identify the

program impact set. To increase the accuracy, the study conjectured a heuristic-based

approach in [23, 59]. In [54, 55], the authors trained the machine learning models

to validate the trace links between requirements and source code artifacts. Similarly,

the authors conjectured the IR-based approach [28, 34, 60, 106, 133] and the machine

learning approach [134] while recovering trace links between a bug report and source

code. Likewise, the study applied the standard VSM model to recover trace links between

the test case and source code in [117]. In [43], the study used the word embedding model

to establish trace links between the test case and source code to identify the program

impact sets efficiently. Recently, the study introduced a feature tagging approach to

maintaining trace links between source code and other software artifacts ubiquitously

during software evolution [1, 138, 146].

29

CHAPTER 2. A LITERATURE REVIEW OF AUTOMATIC TRACEABILITY LINK
RECOVERY

2.4.4 Traceability Links Recovery Ways

Figure 2.8: Traceability Links Recovery Ways

Figure 2.8 illustrates the two types of traceability links recovery ways used in the

primary studies. The majority of studies used direct tracing methods to create explicit

trace links between the source artifact and the target artifact. We identified five stud-

ies [23, 28, 60, 117, 133] that used the transitive tracing approach, where traceability

links between two artifacts are recovered by joining with a third artifact.

In [28], the study presented the transitive tracing approach to identifying a set

of potentially impacted artifacts for a new issue report. In this approach, the author

used the existing issue reports as the transitive artifact, in recovering traceability links

between a newly issued report and its related source code. The assumption is that the

previous issue reports have more textual similarity relations with the current state of

source code artifacts than a new issue report. Similarly, in [117], the study proposed an

approach called Connecting Link Method (CLM), in which the trace links between two

artifacts are established by mapping transitively sourced artifacts to the target artifacts

via the third artifact. The authors attempted to overcome the textual similarity gap

between source and target artifacts using the CLM approach. In the CLM approach, the

search terms were extracted from the third artifact to recover trace links between the

source and the target artifacts.

Likewise in [23], the study used the existing issue report as a transitive artifact,

recovering traceability links between source code and use cases. In their approach, they

first extracted the lists of corresponding issue reports related to source code using source

code version history. Next, the textual similarity between issue reports and use cases

is calculated to identify the impacted source code. Gharibi' [60] presented a similar

approach. Their approach established the traceability links between a new feature

request and the existing feature requests to identify the impact on source code. Similarly,

in [55], the authors established the trace links between a new requirement and the

existing requirements to recover the lists of impacted source code classes. In [133], the

30

2.5. DISCUSSION

researchers used the existing requirements and similar bug reports as transitive artifacts

in localizing related source code areas to fix the new bug report.

2.5 Discussion

The discussion elaborated on the findings by grouping identified traceability links recov-

ery approaches according to our RQs. This study examined the literature concerning the

use of traceability links recovery approaches in the CIA context, noting the underlying

challenges and limitations of the current studies.

2.5.1 Findings of RQs

We identified that four different approaches (i.e., IR-based, heuristic-based, machine

learning, and deep learning) could be used in recovering traceability links between

software artifacts of different types. The majority of the primary studies focused on

enhancing IR-based approaches to identify outdated trace links and generate an impact

analysis report. VSM, LSI, JSM, and LDA are the most popular IR models reported

in the studies. There are no studies reported in which IR models outperform others.

Approaches like machine learning and heuristic-based approaches are used to predict

the validity of candidate trace links generated with the IR engine. Among multiple ML

classifiers, the Random Forest provides promising accuracy in most studies. Recently,

some studies conjectured to substitute the IR-based approach with a deep learning

approach in recovering trace links. So far, one study [43] reported that word embedding

outperforms LSI in establishing trace links between test cases and source code. In terms

of trace artifacts, we identified six artifacts (i.e., requirements, design, source code, test

case, bug report, and feature). Among them, requirements, source code, and bug reports

are the most frequently linked artifacts in the studies. Very few studies focused on design

and test case artifacts linking, presumably due to scarcity of datasets. Recently, three

studies [1, 138, 146] a featured artifact as a transitive artifact to recover trace links

between requirements and source code. In terms of trace direction, 30 out of 32 studies

evaluated their approaches in a unidirectional way, as it is hard to conclude whether

their approaches could feasibly be applied in a bidirectional way. In terms of tool support,

all four tools are built upon an IR-based approach, where only one tool supports a deep

learning approach. In terms of evaluation, 29 out of 32 studies used experiential research

and assessed their methodology using either university projects or open source projects.

31

CHAPTER 2. A LITERATURE REVIEW OF AUTOMATIC TRACEABILITY LINK
RECOVERY

Only three studies applied a case study and evaluated with industrial data. Due to data

confidentiality, the context of datasets is not provided in detail.

Our review highlighted that the majority of studies focused on identifying program

impact sets due to source code, making it the most frequent change area in software

development. The studies used requirements, bug reports, test cases, and feature artifacts

as source artifacts to identify the program impact area. Interestingly, design artifact is

left out of this impact set study. The second most frequent study area is the requirements

impact set. The studies evaluated their approaches with either forward tracing (e.g.,

regulatory requirements to requirements) or backward tracing (e.g., source code to

requirements) direction. Test impact set studies followed the third position and were

evaluated with source code, requirements, and design artifacts. Only two studies [54, 117]

focused on assessing the design impact area, where both studies used requirements

as a source artifact. The analysis of the existing studies highlighted that recovering

trace links between artifacts of different types can be established either directly or

transitively. The direct tracing approach is applicable for explicit tracing scenarios where

the source and target artifacts have a high textual similarity between them. Hence, the

direct tracing approach can be used in recovering trace links between existing artifacts

of the system, whereas the transitive tracing approach is useful in establishing trace

links between a new artifact (e.g., a new feature request, a bug report) and the existing

artifacts (e.g., source code). However, the challenging part of these approaches is finding

the right transitive artifact for various CIA tasks. To the best of our knowledge, there is

no traceability tool available to support a transitive artifact approach, as it is challenging

to extend the research in this area.

2.5.2 Limitations and Future Work

Based on our findings, we reported the gaps and challenges of the current studies,

which need improvement to leverage the automatic traceability links recovery approach

to support impact analysis effectively. To further advance the automatic traceability

research, we recommend the key improvements below:

• Focus on tool enhancements to support trending approaches (e.g., machine learning

and deep learning)

• Focus on building a feature recommendation system to remind software engi-

neers to annotate a new artifact (i.e., use case, design, test case, and source code)

consistently during software evolution

32

2.6. THREATS TO VALIDITY

• Emphasize design and test impact sets area, as identifying design and test impacts

are equally important as the other two impact sets in the CIA process

• Focus on building a traceability system beyond the text-based recovery approach

(e.g., recovering traceability links between design images and requirements)

• Evaluate industrial datasets and survey the practitioners to gain valuable feedback

for further improvements

2.6 Threats To Validity

We assessed the threats to the validity of our review based on construct, reliability,

and internal validity measures. We reported our review deviations from the study

guidelines [84].

The first threat to validity is the construct validity concerned with the selection of the

studies and the relevance of review in the field. To mitigate this threat, we constructed

our search strings by referring to previous review studies. We included all possible

keywords to cover abbreviations, synonyms, and morphological root forms (e.g., source

code, architecture, trace*). We ran our search on five different databases to cover a

broader scope of concerns. To deal with the threats to the relevance of study selection,

one author applied the selection criteria and another author validated 10% of the selected

studies. The second threat is reliability, concerned with how the authors carried out the

data extraction, and interpretation and justified the findings. To eliminate this threat,

one author extracted data from all the selected publications and the other authors

individually repeated the same process for 20% of the selected studies. Then, the authors

discussed the differences and came up with the same conclusions.

The third threat is the external validity concerned with the scope of the review.

Our review focused on automating traceability studies to assist the CIA process as the

scope is tight. We do not claim that our review applies to other areas of impact analysis

(e.g., dependency impact analysis [27]). Thus, the external validity threat is minor.

Furthermore, as the review protocol development is presented in detail in Section 2.3

as other researchers can verify the validity of the findings with the search strategy,

selection criteria, and applied data extraction. Lastly, internal validity is concerned with

the treatment and the outcome. This concern is negligible because we report our findings

using a combination of empirical investigations and descriptive statistics.

33

CHAPTER 2. A LITERATURE REVIEW OF AUTOMATIC TRACEABILITY LINK
RECOVERY

2.7 Chapter Summary

Recovering traceability links between various software artifacts during the software

development process is a challenging task for software practitioners, especially in the

safety-critical system. In this chapter, we systematically review the automatic tractability

link recovery approaches conjured in previous studies published between 2012-2019.

We summarized the findings in terms of approaches, focus trace artifacts, workbench

tools, and trace links direction to identify gaps and the challenges of current studies. Our

findings demonstrate that one of the fundamental difficulties in creating traceability

relationships between various artifacts is a knowledge gap issue, where knowledge

is defined as the syntax and semantics of the artifacts. The majority of the previous

studies address the problem by taking advantage of advancements in natural language

process techniques, as most software artifacts are written in natural language. To further

reveal the comprehensive traceability recovery knowledge, we group the investigations

based on a CIA. This chapter provides new insight into traceability recovery approaches,

limitations, and future work.

34

C
H

A
P

T
E

R

3
INTERACTIVE TRACEABILITY LINKS VISUALIZATION

USING A HIERARCHICAL TRACE MAP

3.1 Overview

Traceability has been mentioned in a good deal of software development methodologies

as part of software engineering practice. Maintaining the trace links between software

artifacts is crucial to performing various software engineering activities including change

impact analysis [119], requirements coverage analysis [19], requirements verification

and validation [99], test case selection [131], compliance verification [66], issue assign-

ment [117] and bug localization [160]. Over the last few decades, researchers have

attempted to recover trace links automatically using Information Retrieval (IR) tech-

niques. The idea behind such techniques is based on the assumption that most software

artifacts, such as requirements, use cases, interaction diagrams, source code, and test

cases contain textual descriptions and meaningful source code identifiers [11]. IR tech-

niques recover traceability links based on the similarity between the text contained

in two related artifacts of different types [98, 109]. Although traceability fields are

advancing the results presentations by embedding visualization techniques, bug triage

fields still engage with textual representation. Similar textual similarity approaches are

applied in bug triage studies [10, 12] to recover the links between historical issue reports

and a new issue report to recommend potential developers and issue types. With this

motivation in mind, we use the hierarchical trace map visualization technique to identify

35

CHAPTER 3. INTERACTIVE TRACEABILITY LINKS VISUALIZATION USING A
HIERARCHICAL TRACE MAP

the links between three primary software artifacts (e.g., requirements, source code, and

test case) as the first exploratory study. The main intention of the hierarchical trace map

visualization approach is to embed in the bug triage process model. For example, once

the bug recommendation model predicts the top-ranking developers, the system intends

to automatically map the list of source code change areas recently developed or modified

by these developers by constructing the transitive links between bug reports and source

code via requirement or test cases to assist in selecting the most relevant developer from

the list.

Traditionally, trace links are presented either in two or multidimensional matrix

formats, which are commonly known as a Requirements Traceability Matrix (RTM) [167].

Likewise, tabular grid style formatting has been used in automatic trace recovery

tools [47, 72] to present result sets for analyst verification. Even though the tabular

format is applicable for small dataset verification; it is hard to explore interrelationships

between artifacts conveniently. Recent graphical-based approaches like hierarchical leaf

node [39], tree view [35, 123], Sunburst [105], and Netmap [105] can only present a

coarse-grain view of traceability between two artifacts at a time. The main drawback

of these approaches is that they fail to explore relationships between multiple artifacts

interactively to comprehend the overall structure of a system. Therefore, it is time-

consuming and resource-intensive to explore and interpret the system. Traceability tools

like Traceclipse[85] and TraceViz [103] are platform dependent and specific for JAVA

development environment. The manual trace link maintenance approach and the cypher

query language are used by researchers in [53] to extract the trace links between different

requirement artifacts. However, tracing implementation artifacts such as source code is

not included in their experiments. In this chapter, we present a hierarchical trace map

visualization approach to support system comprehension and change impact analysis

interactively.

To analyze the change impact area in various software artifacts, trace links need to be

drawn between high and low level artifacts; every object created at a high-level artifact

(a source) must flow to a low-level artifact (a target) during any software development

process. The analysis involves tracking the flow of values from requirements artifacts to

sink through a sequence of downstream software artifacts represented by both coarse-

grained and fine-grained views in the trace link visualization approach. To be intuitive

and interactive, its underlying trace links visualization technique must also be narrative

and animating.

Current change impact analysis techniques include the requirements traceability

36

3.1. OVERVIEW

matrix (RTM) [37, 167], textual reference [127], hyperlinks [126] and graph & chart [50,

167]. There are two ways to perform impact analysis namely requirements analysis and

program analysis. The former traces the flow of requirements iteratively at each design

specification through stakeholders'objectives, while the latter tracks the flow of system

design in the program through static program analysis. Language barriers make it harder

to track down the latter because programs are written in machine-translatable language

while design requirements are written in natural language. Among all published trace

links visualization techniques, TraceME [19, 35], Traceclipse[85], and TraceViz [103]

studies used graphs and chart-based approaches to present trace links between design

and program artifacts. This is an eclipse-plugin tool designed to recover the trace links

between source code and requirements. The tool applies a dependency graph, treemap,

hierarchical tree, and coloured and labelled squares to display traceability links for a

specific source or target artifact. It allows users to analyze links of a selected source

artifact or a chosen target artifact clearly and concisely. However, it is unable to present

links for multiple artifacts at the same time. Also, these approaches are not narrative

enough to provide the big picture of the overall impact area interactively. The user needs

to select the source artifact attentively to identify impact areas in the target artifact.

Also, these approaches are only accessible on the development platform as it hinders the

impact analysis of other project team members.

This research drew its inspiration from the graph-based visualization techniques

works of [19, 85, 103]. Our goal is to build a standalone hierarchical trace map (HTM)

visualization approach by using an IR-based traceability link recovery approach. Like

previous studies, HTM uses textual information from artifacts to construct trace links

between artifacts. HTM is expected to be not only as intuitive as previous works but also

much more interactive than traditional approaches by using transition and animation.

Although TraceME [19, 35], Traceclipse [85], and TraceViz [103] are feasible to

perform impact analysis between requirements and source code, it requires interaction

with other software artifacts to present a narrative view of the overall impact area. Thus,

the trace link visualization approach needs to be implemented in an environment where

all software artifacts can interact with each other. In addition, the approach must be

able to present multiple software artifacts in both coarse-grained and fine-grained views

without causing visual cluttering.

To break the cycle of development platform development-dependent challenges, HTM

is implemented using a standalone web-based application, which can interact with

multiple software artifacts. HTM proceeds in five phrases, as shown in figure 3.3. Their

37

CHAPTER 3. INTERACTIVE TRACEABILITY LINKS VISUALIZATION USING A
HIERARCHICAL TRACE MAP

functions are outlined below, and Section 3.3 provides details on the results.

Phase 1: Defined Artifacts In this step, we identified source and target artifacts to

construct the links between them. To this end, we provide the example with three

standard software artifacts (use cases (source artifact), test case (target artifact),

and source code (target artifact)).

Phase 2: Pre-processing This is built for text pre-processing functionalities. To in-

crease model accuracy, we applied common natural language pre-processing tech-

niques to each artifact, such as stopping and stemming. Artifacts written in nat-

ural languages such as use case and test case include the stop words that occur

commonly across these artifacts and are trivial for similarity calculation. Also,

stemming the phrase to its root form by removing a part of a word helps compare

the similarities between the two artifacts. The accuracy of recovery trace linkages

between the use case and source code was also leveraged in this experiment using

manually constructed source code class descriptions.

Phase 3: Trace Links Recovery We applied the standard vector space model (VSM)

document classification model from Tracelab [80] component library to recover the

trace links between artifacts. Tracelab is an open-source traceability framework

component that provides a collection of reusable and configurable natural language

processing functionalities. We compute the similarity between the two artifacts

using cosine similarity. When the cosine value is equal to 0 means no similarities.

Whereas a cosine value closer to 1 imply that there is a similarity between the two

artifacts.

Phase 4: Verification This phase involved comparing the trace link results to ground

truth values, removing them from the ranking list, and verifying the results.

Phase 5: Visualization Finally, we feed the ranked lists with corresponding parent

artifacts to the HTM visualization module. HTM creates nodes for each artifact

on the top layer and its target artifacts on the lower layer to demonstrate a

hierarchical layer view of the system. As presented in the figure 3.4, we designed

HTM in a hierarchical structure where the coarse-grained view of trace artifacts is

illustrated in a triangular shape. To visually represents the entire impact area, the

source artifact is shown at the top level of the triangle while its decedents’ artifacts

are shown at the bottom level.

38

3.2. BACKGROUND

Hierarchical in this context means recovering traceability links between multiple

artifacts, which have parent-child relationships between them. HTM uses the

colour nodes to present different artifacts (e.g., Orange –Use Case, Red –Source

Code, Green –Test Case), and edges convey information about the linkages between

artifacts. Each node has the interactive functionality to transition to a fined-

grained view, which is presented in a one-layer circular ring format. As illustrated

in the figure3.5, HTM supports two types of tracing; direct tracing and indirect

tracing between multiple artifacts. The former means recovering traceability links

between two artifacts of different kinds. For example, recovering traceability links

between the use case and source code. The latter means recovering traceability

links between source and target artifacts using an existing artifact of the system.

For example, recovering traceability links between the test case and source code

using the use case as a transitive artifact.

3.2 Background

There are various techniques to visualize traceability links between artifacts. In this

section, we present the four common visualization mechanisms namely; requirements

traceability matrix (RTM), textual references, hyperlinks, and graphs & charts.

Requirements traceability matrix (RTM) is the most common presentation technique

used in the traceability context [37, 167]. RTM supports a multi-dimensional view to

present two or more artifacts in table matrix format. In RTM, source and target artifacts

are displayed in rows and columns whereas trace links are marked in the cells. In

the multi-dimensional view, all trace artifacts are displayed in columns and ordered

according to the software development process (e.g., functional requirements, design

documents, and test cases).

To convey the traceability results, the relationship between the source and target

artifacts is described in textual annotation form for textual reference. Figure 3.1 in the

text below illustrates. Requirements 2-17 and 1-17 are interconnected in the picture.

To present the tractability results, the relationship between the source and target

Figure 3.1: Documenting traceability relationship using textual references [126]

39

CHAPTER 3. INTERACTIVE TRACEABILITY LINKS VISUALIZATION USING A
HIERARCHICAL TRACE MAP

Figure 3.2: Documentation of traceability relationships using hyperlinks [126]

artifacts is documented in the Hyperlinks format. A reference example for hyperlinks is

shown in Figure 3.2.

In recent years, various visualization techniques have been used to present trace-

ability data. Given that the graph supports hierarchical layout views, hierarchical tree

views and tree map techniques are frequently used to link requirements and source

code artifacts. Bar graphs, line charts, and objects are used in various research stud-

ies [50, 167] to show the trace linkages between two or more items (e.g. people). Sunburst

and Netmap are also used to display trace information in radical layers formats [105].

In the next section, we present how our raw hierarchical trace map visualization

approach is used to present the artifact relationships interactively. We designed our

conceptual model based on the standard components of the IR-based traceability recovery

process [46]. Figure 3.3 illustrates the high-level structure of the hierarchical trace

map model. Due to the availability of numerous software artifacts, such as use cases,

interaction diagrams, test cases, and source code class descriptions, we created the

WebTrace 1 application and assessed it using the EasyClinic dataset to experiment with

our conceptual model.

1http://www.webtrace.tech/Home/VisualizeTraceLinks.

40

http://www.webtrace.tech/Home/VisualizeTraceLinks

3.3. VISUAL SUPPORT FOR TRACEABILITY LINKS VISUALIZATION

Figure 3.3: Hierarchical trace map model

3.3 Visual Support for Traceability Links
Visualization

The main goal of our Hierarchical Trace Map is to provide visual support in exploring

the overall structure of the system in one area to reduce the tasks of cross-referencing

and connecting multiple trace link results. It intends to provide an explicit dependency

between artifacts of the system. Figure 3.4 presents the unfiltered view of the use case,

test case, and source code artifact relations from the EasyClinic dataset. Each artifact

is formatted in different colors for easy differentiation between artifacts (e.g., Orange

–Use Case, Red –Source Code, Green –Test Case). Each node represents an artifact and

supports a browseable filtered view of an artifact by either clicking on each node or

41

CHAPTER 3. INTERACTIVE TRACEABILITY LINKS VISUALIZATION USING A
HIERARCHICAL TRACE MAP

Figure 3.4: Unfiltered view of Hierarchical Trace Map

using free-text search features. The line represents the relationship between artifacts. A

high-level trace map view can assist an analyst in various software engineering tasks,

including system comprehension and change impact analysis. The similarity scores in

the headmap diagram are scaled from dark to light colours, with the darker the hue the

more closely the two issue titles resemble one another.

We positioned the source artifact on the top layer and its target artifacts on the

lower layer to demonstrate a hierarchical layer view of the system. In this view, the

line represents one-to-many relations between the source and target artifact. Therefore,

if there is no line between the source and target artifact, it means missing links. In

Figure 3.4, some of the last section and middle section of use case artifacts are missing

lines in test cases. By using this diagram, we can visually comprehend that some use

cases do not have corresponding test cases. To facilitate the interactive visual exploration

of the system, we incorporated a node clicking feature and a free-text search feature that

allows users to move from an unfiltered view to a filtered view. Free-text search tools

allow you to conduct a file name or content search.

Figure 3.5 presents the associations between a source and two target artifacts. We

draw the size of the nodes based on either the textual volume of the artifact or the

number of source code functions. However, we are still finalizing on size measurement

definition at this point. For change impact analysis, a developer can use this diagram

to visually inspect the impact areas of source codes and test cases intuitively without

cross-referencing multiple trace links results.

Figure 3.6 presents the filtered view between a target and source artifacts. For source

code artifacts, we displayed the list of corresponding functions to assist in identifying

change impact areas effectively.

42

3.4. RELATED WORK

Figure 3.5: Filtered view of a source artifact and two target artifacts relation

Figure 3.6: Filtered view of a target artifact and source artifacts relation

3.4 Related Work

This section introduces previous studies related to visualizing traceability associations

between software artifacts. In addition, we discussed how previous studies address

the challenge of integrating the traceability model into various software development

projects.

3.4.1 Visualization

In recent years, several studies have addressed the challenges of visualizing trace links

between various software artifacts using graphs & charts-based approaches. In [39],

a hierarchical leaf node graphical structure is used to present a coarse-grain view of

traceability links between software artifacts. A leaf node represents a requirement in

43

CHAPTER 3. INTERACTIVE TRACEABILITY LINKS VISUALIZATION USING A
HIERARCHICAL TRACE MAP

a graph, while an internal node represents its associated title and other hierarchical

information. The benefit of this graph is that the analyst can scan through the scope of

the impact area in a bird-eye view. However, this technique might lead to a visual clutter

issue when a large volume of data needs analysis.

The trace linkages between source code and documentation are similarly visualized

in [35] using a combination of Treemap and hierarchical tree view graphs. The space-

filling method, in which the child nodes are positioned along the parent boundaries

and each sibling group is encircled by a margin, was adopted by the TreeMap graph to

illustrate the trace linkages. In this combined approach, Treemap is used to convey the

high-level structure, whereas a hierarchical tree view is used to present the fine-grain

view of the links between source code and sections of the feature or bug report. Therefore,

it is helpful to pinpoint the impact area of the source code in detail. Although their

approach addresses the challenges of visualizing high and low-level trace information in

one workspace, it can only visualize two-dimensional trace link information. In [105],

the authors proposed Sunburst and Netmap visualization mechanisms to traceability

links in the requirements engineering knowledge domain. In Sunburst, the relationships

between artifacts are depicted in the form of the radical layout where nodes are pre-

sented in the adjacent rings. In Netmap, nodes are arranged in a circular structure with

one layer ring where the trace links are drawn in the inner circle and categorized with

different colouring. Both methods can be used to display a coarse-grained view of trace-

ability relationships, but when big data sets are presented, the layouts become congested.

In terms of evaluation, the majoring of the previous studies conjured graph-based

visualization techniques in standalone workbench system [71, 121] where the user needs

to import trace data to visualize the linkage between artifacts. In [120], the authors

proposed the trace links visualization process model to integrate with the requirement

management system to identify the links between high and low-level requirements.

Likewise, in [35], the researchers presented the benefits of visualizing trace links in an

integrated development environment, where the linkages between documentation and

source code can visualize dynamically. Although the current graph-based visualization

techniques are useful in identifying the relationships between artifacts, little textual

information is available. Therefore, it cannot provide narrative accounts of linkages

between multiple artifacts (e.g.., trace links between requirements, test cases, and

source code) in one workplace. Therefore, it is time-consuming to identify the overall

impact areas to estimate the development efforts. To address the challenge of interacting

44

3.4. RELATED WORK

with multiple software artifacts, we proposed the hierarchical trace map visualization

approach to explore the system's overall structure in the same workbench where it can

cross-reference and connect multiple trace link results interactively.

3.4.2 Traceability model

Recent progress in the study of requirements traceability models in a broad range of

software development projects is presented in this section. The model can generally be

grouped into two categories: generic and domain-specific models.

In the work of [67, 68], the authors presented the generic traceability model to trans-

form the system modeling language (SysML) requirements diagram into text-based

formats by using a trace generation algorithm to enable traceability between stakehold-

ers'requirements and various subsystem components. The model is evaluated with a

vehicle anti-lock braking system. Similarly, in [50], the authors proposed the model to re-

cover the links between subsystems and components from interdisciplinary fields such as

mechanics, electronics, and Information Technology (IT). The model recovered the links

between five main artifacts of the system, namely, products, functions, product structures

(modules and components), requirements, and organizational structure. Likewise, [93]

presented a trace deviation algorithm based on the traceability reference model of [132].

In their approach, three types of trace links, namely evolution link, dependency link, and

satisfaction link, are formulated to trace links between high-level and low-level artifacts.

Evolution and satisfaction links are used for forward and backward tracing, whereas

dependency links are used to trace between the same level artifacts.

Also, the study of [51] presented a traceability framework called TORUS (Traceability

of Requirements using splices). TORUS is a domain-specific model where the framework

is intended for recovering trace links in cyber-physical systems (e.g., aerospace, auto-

motive, healthcare, and transportation). The framework involves tracing distributed

software components and processes to manage key project activities such as change

impact analysis and requirements coverage. In [151], the study conducted the traceabil-

ity experiment in the car sharing system project where it requires managing various

artifacts including requirements artifacts, specification artifacts, management artifacts,

solution artifacts, development artifacts, and stakeholders'artifacts.

In general, the traceability process involves creating and recovering the links and

accessing the quality of the links. Quality assessment and validation activities are often

missing in the traceability reference model as the automatically generated trace links

are vulnerable to bias. Thus, the authors proposed the quality assessment model to

45

CHAPTER 3. INTERACTIVE TRACEABILITY LINKS VISUALIZATION USING A
HIERARCHICAL TRACE MAP

systematically verify the quality of requirement traceability data [135]. In [135], the

authors define traceability quality as “the degree to which existing artifacts of a software

development project are traceable as mandated by the project’s traceability stakeholders”.

The two assessment quality criteria are used in their approach to identifying unfulfilled

and incomplete trace links. First, trace information created by the trace planner does not

conform to trace information mandated by stakeholders marked as an unfulfilled link.

Second, trace data created by the trace creator does not conform to trace information

provided by the trace planner flagged as an incomplete link.

Similarly, in [3], the authors proposed the two generic traceability templates called

SRS trace item (SRSTI) and SDD trace item (SDDTI) to recover the links between

software requirements specification (SRS) artifact and software design document (SDD)

artifacts. By constructing the links using the reference templates, the approach identifies

four types of traceability problems; 1) missed in SD, 2) logical discrepancy, 3) missed in

SRS, and 4) extra in SDD. Thus, their template-based model addresses logical discrepancy

errors between two artifacts, which is non-trivial in system verification.

3.5 Chapter Summary

We developed an interactive hierarchical trace map visualization method to examine

the impact area across many software artifacts in a workspace. It can scale to a large

volume of data, making it generic to reusable across different projects. We conjure

our approach in a standalone web-based application, developed with modern C-sharp

programming language. We have validated it in the application and evaluated it with

the EasyClinic public dataset due to the availability of the most commonly used software

artifacts (e.g., use case, test case, and source code). By visualizing the coarse-grained

view and fine-grained view of linkages between diverse artifacts using a hierarchical

trace map interactively, we analyze the effectiveness and practicality of our approach in

this chapter.

46

C
H

A
P

T
E

R

4
MULTI-TRIAGE : BUG TRIAGE BASED ON DEEP

MULTI-TASK LEARNING

4.1 Overview

The bug triage procedure involves two crucial steps: assigning to developers and clas-

sifying issue types. Existing approaches tackle these two tasks separately, which is

time-consuming due to the repetition of effort and negating the values of correlated

information between tasks. In this chapter, we presented our multi-triage model that

predicts both tasks simultaneously via multi-task learning (MTL). Multi-triage model is

faster in training than two single-task learning models and more precise than (SVM +

BOW) [12] and DeepTriage [102] models. A multi-triage model is constructed iteratively

by removing unnecessary model parameters through ablation analysis. To balance a

class label and alleviate the class-imbalanced problem, we developed the contextual data

augmentation approach.

In past years, previous studies have addressed issue assignment and labeling prob-

lems using traditional statistical machine learning approaches, such as support vector

machine (SVM) [12, 116, 158], and Naive Bayes [111]. Recently, deep-learning techniques

have been successfully applied in various issue-related link recovery problems, including

missing links between issue reports and commits [136], automated pull request clas-

sification [161], and detecting duplicate issue reports [157]. In [69, 92], convolutional

47

CHAPTER 4. MULTI-TRIAGE : BUG TRIAGE BASED ON DEEP MULTI-TASK
LEARNING

neural networks (CNN) and word embedding feature engineering approaches are used

in predicting potential developers and bug severity.

In these studies, bug triage tasks such as developer assignment and issue labeling

are regarded as classification problems, and conclusions are drawn based on the con-

text of issue reports. Therefore, these task classification model performances can be

improved by jointly learning the representations of the issue report information in the

multi-task learning model. In recent years, the multi-task learning approach has been

primarily used in the computer vision field, which requires solving multiple tasks simul-

taneously [97, 139]. However, no prior work has experimented on learning numerous

bug-triage tasks in a single model and conjured the effects.

Our key observation is whether bug report developers and bug types prediction

models are likely to be trained together with jointed learning representation layers

or not. As previously mentioned, prior works of [97, 139] presented the possibility of

training multiple tasks in a single model in the computer vision field. To learn the

issue report representation in a joint layer, our multi-triage model integrates the two

prediction models into a single multitasking learning model. In previous studies, the code

snippet is filtered out from the issue report to reduce the noise in learning representation.

To eliminate the basis of noise caused by code snippets, we designed our representa-

tion learning layer using two deep learning models and separately learning textual and

AST representation. In contrast, we included the code snippet information in our model

by transforming the abstract syntax tree (AST) token and conjuring the attribute’s effects

in the model training. Lastly, we applied the contextual data augmentation approach to

generate syntactic bug reports addressing the class-imbalanced issue in the dataset. To

sum up, the novelty of the multi-triage approach lies in exploiting the multi-task learn-

ing approach in the bug triage automation field and conjuring the effects of synthetic

bug reports using the data augmentation approach. Finally, we evaluated our model

on eleven open-source projects to demonstrate the effectiveness of this model compared

with state-of-the-art methods.

4.2 Background

This section discusses background information about the correlation between developers

and issue types recommendation tasks as well as their usages in the issue report and

pull-based development projects. Then, we present our motivating example.

48

4.2. BACKGROUND

((a)) Issue report

((b)) Pull request

Figure 4.1: An example of an issue report and the corresponding pull request

4.2.1 Developers and Issue Types Recommendation Tasks in Bug
Triage

Assigning developers and allocating issue types are two essential tasks in the bug triage

process. In the issue tracking system, an issue tracker normally performs these two

tasks as the first step in the bug triage process. Our multi-triage recommendation model

predicts relevant developers and issue types for a new issue report to leverage the bug

triage process. In this context, issue reports include both bug and enhancement-related

issues. Our recommendation model performs two tasks, as below.

Developer recommendation task This task involves predicting a list of potential

developers to fix a new issue report. Sometimes, the issue report is fixed by more than

one developer, due to its complexity.

49

CHAPTER 4. MULTI-TRIAGE : BUG TRIAGE BASED ON DEEP MULTI-TASK
LEARNING

Figure 4.2: Developers and issue type correlation example

Issue type recommendation task This task involves predicting a list of issue types

to categorise a new issue report. For example, GitHub's issue tracking system provides

seven generic labels (i.e. bug, duplicate, enhancement, help wanted, invalid, question,

and won't fix), but can add a new custom label as needed [30]. Interestingly, most projects

create custom labels to track issue priority (e.g. high, low), product version (e.g. 2.1),

workflow (e.g. backlog, review), and product components (e.g. area-identity, area-mvc,

area-blazer).

Issue report and corresponding pull request Fig. 4.1 presents an example of the

GitHub issue report 4.1(a) and its corresponding pull request 4.1(b). Recent years have

seen a growing interest in pull-based development in open-source software projects [63,

76, 162]. In a pull-based model, a developer uses a pull request form to submit code

for request code review. The reviewers are usually project owners or contributors who

make the final decisions on the requested changes (i.e. reject, merge, or reopen). For the

GitHub project, the fields contained in the pull request form are similar to those in the

issue request form but also include additional sections, such as reviewers, a commits

tab, a checks tab, and files changed tab. In the description field, most projects reference

the fixed issue IDs for traceability. The reviewer's field contains the list of reviewers

who review the changes, while the commits tab contains the commits hierarchy, and

the checks tab presents the detailed build outputs. Last but not least, the files changed

tab shows a list of the files that have been modified across all commits. During initial

observations, it was learned that the developer allocated to the issue report may be

different from the developer who created the pull request to fix the issue. Therefore, this

50

4.2. BACKGROUND

study considered that the developer information from the pull request is non-trivial in

the label construction process.

Developer and issue type correlation In existing projects, both developers and issue

types recommendation tasks use historical issue reports training the prediction model.

Therefore, there is a common learning representation layer between these two tasks,

which can be learned together. Also, as a software project involves various components

(e.g. user interface, database, application programming interface), an issue report can

relate to any part of the system. Consequently, certain issue types are usually assigned

to a group of developers with expertise in certain system areas. The recent work of [33]

highlighted that not all bugs are the same, and the structure of project teams is based

on the components of a system. Fig. 4.2 presents a simple example in which developers

focus on fixing particular system areas. This example was extracted from aspnetcore1.

4.2.2 Multi-task learning

MTL has been successfully used in numerous fields recently, including computer vi-

sion [26, 52, 86, 166], and natural language processing [96]. Computer vision involves

a host of tasks, such as image classification, object detection, semantic segmentation,

instance segmentation, and salience estimation. Successful joint learning of these differ-

ent visual task studies shows that the MTL approach can optimize the training strategy

and improve performance without compromising accuracy. Similarly, recent studies in

natural language processing demonstrate significant gains from using the MLT approach

in training query classification and ranking tasks. Motivated by the success of multi-task

learning in various fields, the MTL model is used in this paper to enhance the efficiency

of the bug triage procedure. MTL tackles developer and issue type recommendation tasks

simultaneously by sharing learning parameters to enable these tasks to interact with

each other. Joint learning of these two tasks significantly improves the performance of

each task, compared to learning independently. The multi-task learning model can share

parameters between multiple tasks with either hard or soft parameter sharing of hidden

layers. The hard parameter sharing model explicitly shares the common learning layers

1https://github.com/dotnet/aspnetcore the GitHub project. The x-axis represents the developers,
whereas the y-axis represents the system areas. The size of the bubble indicates the total issues fixed by
developers in the corresponding areas. Referring to the example, a handful of potential developers can fix
area-blaze and areas-mvc issues. However, there is one developer (Haok) who is capable of resolving area-
identity issues. Based on this observation, we are motivated to seek the effect of the learning developer
and issue types jointly in the multi-task learning model

51

https://github.com/dotnet/aspnetcore

CHAPTER 4. MULTI-TRIAGE : BUG TRIAGE BASED ON DEEP MULTI-TASK
LEARNING

between all tasks while branching the task-specific output layer [32]. The soft parameter

sharing model, meanwhile, implicitly shares the parameters by regularizing the distance

between the parameters of each task. Although both approaches can be viewed as the

underlying architecture of the multi-task learning model, hard-parameter sharing is

commonly applied in the context of the neural network.

This multitask learning model uses a hard-parameter sharing approach to learn the

issue report representation in the common layer and then branches the two task-specific

output layers to predict developers and issue types. In the common layer, the individual

issue report is further subdivided into two categories, namely 1) natural language and 2)

structural language, to learn the representation effectively. An issue title and description,

excluding code snippets, are grouped under natural language, whereas code snippets

are placed under structural language. Then, two encoders are used, namely 1) context

encoder and 2) AST encoder, to extract the essential features of these two contexts.

Next, these two features are combined and fed into the task-specific output layers to

perform co-responding classification tasks. The detailed implementation of this approach

is explained in Section 4.4.

4.3 A motivating example

((a)) Code snippet ((b)) AST

Figure 4.3: A code snippet and corresponding AST example

As mentioned earlier, the previous bug triage approach has considered developers

and issue types prediction tasks as independent tasks and trained separately for each.

Therefore, it is time-consuming to train the model. In addition, in existing approaches,

code snippets are either excluded [102, 152] to reduce noise, or treated as natural lan-

guage sequence tokens [92, 155]. Thus, these approaches cannot learn the code snippets

52

4.3. A MOTIVATING EXAMPLE

Table 4.1: AST nodes terms and abbreviation

Terms Abbreviation
Method Declaration Md
Parameter Para
Block statement Bst
For statement Fst
Expression statement Est
Method call expression Mce

or representations precisely. In initial observations, the issue report characteristics of

eleven open-source projects from various domains were investigated, including a web

application, unit testing, entity development, programming interface, compiler, mobile

app, augmented reality, gaming, and search engine configuration. Further information is

presented in Table 4.2.

These GitHub projects were chosen based on their level of activity and popularity (i.e.

ranking and recent commits). Projects with a high number of contributors and issue types

labels were also considered to identify the gap in the existing approaches to leverage the

bug triage process. Eclipse issue reports, which are used in baseline studies to compare

this study's approach and the state-of-the-art approach, were also included. Eclipse issue

reports were extracted from the Bugzilla issue management system. However, Bugzilla2

does not keep developers‚Äô tossing sequences as this study did not present the average

tossing sequence, value for the eclipse project in Table 4.2.

Code snippet The percentage of issue reports including method-level code snippets

was analyzed to reproduce the problem. Interestingly, as presented in Table 4.2, 12

to 20 percent of issue reports contain code snippets. Recent studies [9, 82] have found

that learning representations of AST tokens are more effective than simple code-based

tokens in various code prediction tasks (i.e. code translation, code captioning, code

documentation). These code snippets are converted into AST routes following this method,

which was inspired by earlier investigations, and a separate token is produced. Fig. 4.3

shows an example of a java code snippet 4.3(a) and its corresponding AST 4.3(b), where

a node (i.e. Para, Bst, Fst, Est, and Mce) is non-terminal node, and the rest are terminal

nodes. In this approach, the code snippets are complied using Eclipse IDE3 for java code

snippets and Microsoft visual studio IDE4 for C# code snippets. Table 4.1 presents the

abbreviation for each of the AST node terms. Then, the code snippets are parsed into AST

2https://bugs.eclipse.org/bugs/
3https://projects.eclipse.org/projects/eclipse.platform/
4https://visualstudio.microsoft.com/

53

https://bugs.eclipse.org/bugs/
https://projects.eclipse.org/projects/eclipse.platform/
https://visualstudio.microsoft.com/

CHAPTER 4. MULTI-TRIAGE : BUG TRIAGE BASED ON DEEP MULTI-TASK
LEARNING

Table 4.2: Raw datasets information

Name Period #No #Code #Dev #Types #Tossing #Days

aspnetcore 10/2014
- 10/2020 7151 2520 60 131 62 45

azure-powershell 01/2015
09/2020 2540 312 386 204 128 82

eclipse 10/2001
05/2021 50806 6320 21 621 - 60

efcore 01/2015
- 09/2020 6612 1650 24 57 2293 76

elasticsearch 01/2015
- 10/2020 5190 1504 104 238 178 92

mixedreality
toolkit-unity

03/2016
- 09/2020 2294 70 55 124 53 71

monogame 01/2015
- 09/2020 1008 110 4 28 22 21

nunit 10/2013
- 09/2020 656 70 27 24 130 63

realm-java 05/2012
-10/2020 1160 340 15 23 400 69

roslyn 02/2015
- -09/2020 5093 1300 79 123 300 100

rxjava 01/2013
- -09/2020 2076 610 5 32 121 44

Avg (368) Avg (67)

using Java and C# extractor from the code to sequence the representation approach [9].

Implementation details are presented in Section 4.5.

Issue reassignment In the GitHub project, it is noted that a single pull request can

include fixes for multiple issue reports, and a developer who fixes the issue may be

different from the assigned developers recorded in these issue reports. In the context of

bug triage, this process is normally referred to as tossing [152]. The label construction

procedure includes the information about these pull request developers to incorporate

the issue report tossing sequence.

4.4 Multi-triage

This section first explains the high-level structure of the multi-triage framework. Next,

it presents the integral components of the multi-triage model.

4.4.1 General

Fig. 4.4 presents the overall structure of the multi-triage framework. This framework

includes three main components: (1) data extraction, (2) a contextual data augmenter,

54

4.4. MULTI-TRIAGE

Figure 4.4: The multi-triage framework

and (3) the multi-triage model. In the data extraction component, ground truth links are

constructed between issue reports and multi-labels (i.e. developers and issue types).

4.4.2 Data Extraction

Figure 4.5: An example of data extraction steps for an issue report

55

CHAPTER 4. MULTI-TRIAGE : BUG TRIAGE BASED ON DEEP MULTI-TASK
LEARNING

The data extraction component includes two sub-components: the text extractor and

the AST extractor. The text extractor component concatenates each issue report’s title

and description into one text token, excluding the code snippet information. The AST
extractor parses each code snippet and constructs the AST paths. An AST or syntax

tree has two types of nodes: terminal and non-terminal. The terminal node represents

user-defined values (e.g. identifiers), whereas the non-terminal node represents syntactic

structures (e.g. variable declarations, a for loop) [9]. The AST path is the sequence of the

terminal and non-terminal nodes.

In this paper, Eclipse, and Microsoft visual studio IDE was used to compile the code

snippet before passing it to the AST extractor. The AST generator tool from [9] is used

to construct AST paths, using the default parameters settings (max child node = 10,

max path length = 1000, and max code length = 1000). In any issue report, a single code

snippet can contain multiple methods as the generator is modified [9] by adding ‘〈BM〉’
and ‘〈EM〉’ separator tags between each method for model learning purposes.

Fig. 4.5 presents the data extraction steps for a single issue report seen in Fig. 4.1(a).

First, the issue report's title and description are concatenated. Next, the code snippet is

compiled and parsed into AST paths. The AST paths are generated by pairing all the

dependent nodes and using the ‘;’ separator between a pair to indicate a path. Next,

multiple developer labels are created by using the ‘|’ separator. In the developer labelling

process, a pull request creator account is included if the developers allocated in the

issue report do not include a pull request creator account. Finally, the issue type label

is constructed by using bug or enhancement and system components format using the

same ‘|’ separator.

4.4.3 Contextual Data Augmenter

Figure 4.6: A synthetic issue report example

Synthetic issue reports are generated for each project using the method described

56

4.4. MULTI-TRIAGE

Algorithm 1: An algorithm with which to generate a synthetic issue report with
the contextual data augmentation approach

input : list of training issue reports TB, augmentation threshold Threshold
output : list of synthetic issue reports TS

1 Ma jC ← a majority class samples count;
2 MinC ← total no of minority classes;
3 MinClist ← list of minority classes;
4 EstimateDataAugAmount ← MinC ∗ Ma jC;
5 if EstimateDataAugAmount < Threshold then
6 Ma jC ←(Threshold / EstimateDataAugAmount) ∗ Ma jC
7 end
8 for minclass ∈ MinClist do
9 BC ←retrieve total no of issue reports fixed by minclass from TB;

10 while BC < Ma jC do
11 RC ←retrieve one random record of minclass from TB;
12 NC ←generate a new synthetic record based on RC with contextual data augmentation approach;
13 Append NC to TS;
14 BC ←BC + 1;
15 end
16 end
1818 return TS

in algorithm 1 for contextual data augmentation. The algorithm's input is the list of

training issue reports and the Threshold to generate synthetic records. In this approach,

a new record is created based on the training datasets, and the generation of synthetic

records is limited by using the Threshold parameter. In this experiment, a Threshold
value of 30,000 is used to control the total number of data augmentation records. The

Threshold is calculated based on the approximate total number of issue reports from

target projects. However, it is a hyperparameter value and can change as needed. First,

it initializes the values with the majority and minority class details (lines 1 to 3). It

creates clusters by grouping developer and issue type labels. After initialisation, MinC ∗
MajC is multiplied to calculate the estimated number of synthetic records to compare

with the Threshold amount (line 4). If the estimated value is larger than the Threshold,

then it calculates the new majority class count value for an adjustment (lines 5 to 7).

Next, it iterates through each minority class to generate a synthetic record (lines 8 to

16).

In each iteration, it randomly retrieves an issue report description (excluding code

snippets) of the current minority class. Then, it substitutes 15% of the words in the

description with the new words using the contextual data augmentation approach

proposed by [77] and creates a new issue report. In this experiment, the BERT-base-

uncased pre-trained model 5 was used, which was trained with a large corpus of English

data to predict the substitute words. However, this approach can be generalized to other

5https://huggingface.co/bert-base-uncased/

57

https://huggingface.co/bert-base-uncased/

CHAPTER 4. MULTI-TRIAGE : BUG TRIAGE BASED ON DEEP MULTI-TASK
LEARNING

pre-trained models as well. Lastly, the output of the algorithm is the training datasets,

including syntactic records.

Fig. 4.6 presents an example of synthetic issue reports generated with the contextual

data augmenter via comparison with the original issue report. As shown in Fig. 4.6, all

the syntactic context generated by the data augmenter is underlined. In general, the

data augmenter generates synthetic reports by substituting the main keywords from

original issue reports while maintaining the original context. In the next section, the

final component of the framework, the multi-triage model, is explained in detail.

4.4.4 Multi-Triage Model

Figure 4.7: The multi-triage model

As shown in Fig. 4.7, the multi-triage model has three main components: the context

encoder, the AST encoder, and classifiers. The two encoders are used to generate the nat-

ural language and structural (code) representation based on the input issue reports. The

shared layer between the encoders concatenates the outputs of the encoders to construct

the overall feature representations of issue reports. Finally, the classifiers analyze these

feature representations and recommend the potential developers and issue types as out-

puts. The main hyper-parameters of the model are batch = 32, max_seq_length = 300,

embedding_dim = 100, and num_ f ilters = 100. The batch size can be set between

58

4.4. MULTI-TRIAGE

1 and a few hundred; however, a standard batch size (32) was selected to train this

model [21].

4.4.5 Code Representation

Context encoder extracting representation features from issue reports is non-trivial

in the bug-triage process. In this model, a context encoder is used to extract the natural

language representations of the issue report. Convolutional neural networks (CNN)

are used to generate these representations. In recent years, CNN has been successfully

applied in various modelling tasks, including textural classification [18, 83, 92] and image

classification [91, 112]). The input of this encoder is the concatenated values of the issue

title and description. The raw input is normalized by removing stop words, stemming,

lower-casing, and padding equally to the right with the max_seq_length range. First,

each issue report is transformed into a vector by turning each issue report into a sequence

of integers (each integer value being the index of a token in a dictionary). Second, these

inputs are fed into a word embedding layer with input dimension (vocab_size + 1). A

dynamic vocab_size value equal to the size of the vocabulary of each project is used. The

next layer filters are the core of CNN’s architecture. 1D convolution is applied via f ilters.

The standard kernel size of 4×4 is used to extract the important features [40]. Then, the

max-over-time pooling operation is applied to extract the most relevant information from

each feature map. The output from the pooling process is then sent to the joining layer

for concatenation.

For example, given an issue report with n words [b1,b2, . . . ,bn], the word vectors

corresponding to each word are presented as [x1, x2, . . . , xn] (i.e. xi is the word vector

representation of word bi). Let xiϵR be k-dimensional (k=1). The inputs of a convolution

layer are the concatenation of each word vector, represented as:

(4.1) x1:n = x1 ⊕ x2 ⊕·· ·⊕ xn,

where ⊕ denotes the concatenation operator. In a convolution layer, a filter w ϵ R, slides

across inputs by applying a window of h=4 (words) to capture the relevant features. In

general, a feature ci is processed by sliding a window of words xi:i+h−1 by

(4.2) ci = f (w · xi:i+h−1 +b),

where b denotes bias and f is a non-linear function (i.e. the hyperbolic tangent function)

(4.3) c = [c1, c2, . . . , cn−h+1].

59

CHAPTER 4. MULTI-TRIAGE : BUG TRIAGE BASED ON DEEP MULTI-TASK
LEARNING

Next, a max-over-time pooling operation [4] is applied to extract the maximum value

ĉ = max{c} to capture the most important feature for each feature map. In general, one

feature is extracted from one filter. In this model, 100 filters are used to obtain multiple

features from the issue report. Next, the output is flattened to one dimension and fed

into the joining layer.

AST encoder In this approach, each code snippet in an issue report is parsed to

construct an AST path using the AST extractor and which is used as input to the AST

encoder. In the pre-processing phase, all inputs are first prepared to the same size by

padding equally to the right with the max_seq_length range. Second, an AST path is

transformed into a vector by turning each word into a sequence of integers. Next, these

inputs are fed into the word-embedding layer with input dimension (vocab_size + 1).

To learn AST representations, bidirectional recurrent neural networks with long

short-term memory (BiLSTM) neurons [31, 64] are used. In general, BiLSTM models

combine two separate LSTM layers which operate in opposite directions (i.e. forward and

backward) to utilize information from both preceding and succeeding states. In LSTM

networks, each memory cell c contains three gates: input gate i, forget gate f , and output

gate o. Formally, an input AST sequence vector [a1,a2, . . . ,an] is given, where n denotes

the length of the sequence. The input gate i controls how much of the input at is saved

to the current cell state ct. Next, the forget gate f controls how much of the previous

cell state ct−1 is retrained in the current cell state ct. Lastly, the output gate controls

how much of the current cell state ct is submitted to the current output ht. The formal

representation of the LSTM network is as follows:

i t =σ(Wiaat +Wihht−1 +bi),

f t =σ(Wf aat +Wf hht−1 +b f),

ot =σ(Woaat +Wohht−1 +bo),

ct = f t ∗ ct−1 + i t ∗ tanh.(Wcaat +Wchht−1 +bc),

ht = ot ∗ tanh(ct).

(4.4)

In Eq. 4.4, at indicates the input word vector of the AST path, ht indicates the hidden

state, W indicates the weight matrix, b indicates the bias vector, and σ indicates the

logistic sigmoid function. A BiLSTM network calculates the input AST sequence vector a
in a forward direction sequence

−→
ht = [

−→
h1,

−→
h2, . . . ,

−→
hn] and a backward direction sequence←−

ht = [
←−
h1,

←−
h2, . . . ,

←−
hn], then concatenates the outputs yt = [

−→
ht,

←−
ht]. The formal representation

60

4.4. MULTI-TRIAGE

of the BiLSTM network is as follows:

−→
h t =σ(W−→

h aat +W−→
h
−→
h t−1 +b−→

h),
←−
ht =σ(W←−

h aat +W←−
h

⃗ht+1 +b←−
h),

yt =Wy
−→
h
−→
h t +Wy

←−
h
←−
h t +by

(4.5)

In Eq. 4.5, yt is the output sequence of the hidden layer ht at a time step t. Next, a max-

over-time pooling operation [4] is applied over BiLSTM outputs to extract the important

information. Finally, the output is flattened and fed into the joining layer. In the joining

layer, the two encoders are concatenated, output, and fed into the classification layer.

4.4.6 Task-Specific Classifiers

The sigmoid function was used to classify the relevant developers and issue types for

a new issue report. As illustrated in Fig. 4.7, both developer and issue type classifiers

share the same structure but differ in their input labels (i.e. developer and issue type).

Therefore, only illustrate one classification layer is illustrated in this section. The classi-

fication layer is composed of two layers: a fully-connected FFN with ReLUs as well as a

sigmoid layer.

Label classifier In the FFN layer, the ReLU is an activation function that outputs the

input directly if the input is positive; otherwise, it will output zero [114]. In Eq. 4.6, x
denotes the concatenated embedding vector with 150 dimensions, W denotes weights,

and b denotes bias. Next, the output vectors are fed into the sigmoid layer to predict the

appropriate developers or issue types for the input issue report.

(4.6) FFN(x)=max(0, xWi +bi).

The sigmoid exponential activation function is then used to calculate the probability dis-

tribution of the output vectors from the FFN layer for each possible class (i.e. developers

or issue types):

(4.7) P(c j|xi)= 1
1+exp(−z j)

.

Eq. 4.7 presents the formal representation of the sigmoid activation function at the final

neural network layer to calculate the probability of a class c j, where xi is an input issue

report and z j is the output of the FFN layer.

61

CHAPTER 4. MULTI-TRIAGE : BUG TRIAGE BASED ON DEEP MULTI-TASK
LEARNING

4.5 Evaluation

In this section, the research questions and detailed information on the experimental

implementation are presented. The code, data, and trained models are available at [17].

Datasets The issue reports of ten GitHub projects were collected as described in

Table 4.2. In addition, eclipse issue reports were also collected effectively to compare the

present approach against baseline studies. Following previous studies, only retrieve the

issue reports with ‘closed’ status [12, 92, 102, 152] are retrieved. The issue reports with

unassigned developers or issue types are also removed, as the model cannot be trained

and validated with unlabeled records. Furthermore, issue reports assigned to ‘software

bots’, which are frequently used in automatic issue assignment processes [61], are

excluded. As no actual developer is used, these reports are not applicable to users in the

developer prediction process. Statistics of datasets such as labels (i.e. developers, issue

types) and code snippets are presented in Table 4.2. In terms of issue report metadata, an

issue report title, description, creation date, assignee, and labels are presented, as well

as the corresponding pull request’s assignee information, to create a tossing sequence.

Single task learning model The two single-task learning models shown, below are

constructed to evaluate the effectiveness of this multi-task learning model.

• BiLSTM-based triage model - Two single-task BiLSTM networks are con-

structed: one for the developers’ prediction task and the other one for the issue

types prediction task. In these models, architecture similar to the multi-triage

model is replicated and used to create the two-word embedding layers to contract

textual information and AST paths embedding tokens. Next, these two embedding

tokens are concatenated and fed into the BiLSTM network to learn the issue re-

port’s representation. Finally, these learned vectors are passed onto the classifier

to predict labels (i.e. developers or issue types).

• CNN-based triage model - Similar to the BiLSTM model, the two single-task

networks are constructed using CNN networks to learn the representations of

issue reports.

As noted in Section 4.4, the multi-triage model combines BiLSTM and CNN networks

to learn the representations of issue reports. Therefore, single networks are built using

these two networks to effectively compare the time and accuracy trade-offs of the model.

62

4.5. EVALUATION

Baselines The below two baseline approaches were used to evaluate the effective of

the present approach.

• SVM+BOW [12]: This uses a Tf-IDF weighting matrix to transform textual features

of issue reports into vector representations, and applies a support vector machine

(SVM) machine learning classifier to automate the bug triage process.

• DeepTriage [102] - This uses a recurrent neural network (RNN) to learn the

representations of issue reports and a softmax layer to recommend the potential

developers and issue types as outputs.

Both of these approaches focus on predicting labels for a new issue report by learning

the representation of existing issue reports. The first approach uses a support vector ma-

chine, whereas the second utilizes a recurrent neural network to automate the bug triage

process. As the present approach uses BiLSTM and CNN to learn the representations

of issue reports, these approaches have been selected for evaluation. For SVM+BOW,

scikit-learn libraries are used to set up SVM+BOW because the source code is not acces-

sible. In addition, scikit-learn is widely used in various studies [50, 2] to set up machine

learning algorithms, including SVM.

Ablation analysis Parameter analysis plays a crucial role in the supervised learning

model since tuning a single parameter can affect the model’s performance. Ablation

analysis is a procedure investigating configuration paths to ascertain which model’s

parameters contribute most to optimizing model performance [25, 56]. An ablation

analysis procedure is adopted to determine which components of the multi-triage model

contribute most to leveraging model performance. In the ablation analysis approach,

developers identify a set of candidate parameters, evaluate the training data by running

with these parameters, and take the candidate parameter which outperforms at least one

other configuration. In this study's ablation analysis experiments, encoder decoupling and

parameter tuning are performed to determine which encoder and parameters contribute

most to improving model performance.

Evaluation settings The time-series-based 5-fold cross-validation procedure is fol-

lowed to split the training (train), development (dev), and test sets [22, 24, 75, 142, 155].

This is a commonly used validation approach to measure the generalisability of a learn-

ing model. Fig. 4.8 presents the validation approach used in the data evaluation process.

In this approach, the dev set makes up 10 per cent of the train set, and the test set

63

CHAPTER 4. MULTI-TRIAGE : BUG TRIAGE BASED ON DEEP MULTI-TASK
LEARNING

Figure 4.8: Time-series-based 5-fold cross-validation

assigns 20 per cent of the subset of the allocated data sample. The data set is folded on a

rolling basis, based on the issue report creation date in ascending order.

All experiments are run in the google-colab6 cloud-based platform on tesla v100-sxm2

GPU with 32 GB RAM. Python source code provided by the authors is used to set up

the baseline models (i.e. SVM+BOW [12] and DeepTriage [102]). Also, the deep learning

model is implemented using the TensorFlow Keras7 deep learning library. In the multi-

triage approach, both text input and AST path input are truncated to the length of 300.

Each word is embedded into 100 dimensions. The output sizes of the text encoder and

the AST encoder are 100 and 50, respectively. After joining the two encoder outputs,

batch normalization is performed on the concatenated output and the drop (rate 0.5) is

employed to reduce overfitting [2]. For the classifier, binary-cross-entropy and the Adam

optimizer from the Keras library are used with a learning rate of 0.001. The model is

tuned with different dimension sizes and learning rates, and the results are presented in

Section 4.6. Finally, the vocabulary size is set based on individual project vocab size, and

the default batch size (32) is used to train the model.

Evaluation metrics In these experiments, F-scores are used to measure the model’s

accuracy. In the following equations, TP denotes true positives, TN denotes true nega-

tives, FP denotes false positives, and FN denotes false negatives.

• Precision - This is the ratio of the predicted correct labels to the total number of

actual labels averaged over all instances. Eq. 4.8 presents the precision formula:

(4.8) Precision= TP
TP +FP

6https://github.com/dotnet/aspnetcore/
7https://www.tensorflow.org/

64

https://github.com/dotnet/aspnetcore/
https://www.tensorflow.org/

4.6. RESULTS

• Recall - This is the ratio of the predicted correct labels to the total number of

predicted labels averaged over all instances. Eq. 4.9 presents the recalled formula:

(4.9) Recall= TP
TP +FN

• F-scores - This is a commonly used metric for the bug triage process. It is calculated

from the precision and recall scores. The F1 score is calculated by assigning equal

weights to precision and recall, while the F2 score adds more weight to recall. Even

though both precision and recall are important, the F2 score is usually preferred in

bug triage studies, where measuring the recall is more non-trivial than precision.

Eq. 4.10 presents the F2 score formula:

(4.10) Fβ = (1+β2)× precision× recall
β2 × precision× recall

• Accuracy —Calculated by the average across all instances, where the accuracy

of each instance is the ratio of the predicted correct labels to the total number

of (predicted and actual) labels for that instance. Eq. 4.11 presents the accuracy

formula:

(4.11) Accuracy= TN +TP
TN +TP +FN +FP

4.6 Results

In this section, evaluation results are presented for the three research questions.

4.6.1 RQ1: How does the multi-triage model compare to other
approaches?

The performance of the multi-triage model is compared to that of (SVM + BOW) [12]

and DeepTriage [102] in the eleven open-source projects. The comparison results are

presented in Table 4.3. The time-series-based 5-fold validation is performed on all ap-

proaches, and the average accuracy is presented for both developers and issue types

prediction results. Since the Deeptriage [102] source code is publicly available, its en-

vironment can be replicated. However, the source code of (SVM + BOW) [12] is not

accessible, and thus it was manually implemented using sklearn8 libraries. Both ap-

proaches filter out code snippets and stack trace as these features are excluded in these
8https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html

65

https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html

CHAPTER 4. MULTI-TRIAGE : BUG TRIAGE BASED ON DEEP MULTI-TASK
LEARNING

Table 4.3: Multi-triage v.s. baselines (Base1 - SVM + BOW [12], Base2 - DeepTriage [102])
Accuracy (%)

Project Developer Issue type
Base1 Base 2 Multi-triage Base1 Base 2 Multi-triage

aspnetcore 58% 51% 63% 25% 27% 47%
azure-powershell 35% 39% 48% 24% 29% 44%
ecplise 31% 35% 54% 23% 24% 26%
efcore 52% 55% 59% 30% 34% 40%
elasticsearch 46% 53% 58% 13% 21% 31%
mixedreality
toolkitunity 41% 50% 62% 30% 33% 47%

monogame 62% 65% 69% 53% 55% 57%
nunit 36% 38% 41% 19% 23% 27%
realmjava 59% 60% 62% 24% 25% 50%
roslyn 33% 35% 39% 22% 25% 27%
rxjava 64% 66% 68% 31% 40% 49%

AVG 47% 50% 57% 27% 31% 42%
MAX 64% 66% 69% 53% 55% 57%

models. Conversely, this approach generates a separate token for each code snippet by

parsing it to AST paths and including it in the model‚Äôs training.

As shown in Table 4.3, this approach outperforms (SVM + BOW) [12] and Deep-

Triage [102] by an average increase of 10 and 7 percentage points for developers, and

15 and 11 percentage points for issue types, respectively. At its highest, this approach

achieves 69% and 57% for developers and issue types, respectively. It was observed

that, in both prediction tasks, an accuracy lower than 40% on the projects (i.e. eclipse,

elasticsearch, nunit, and Roslyn) has either the higher number of potential issue types or

developers’ labels, or low sample data compared to the rest of the projects. In summary,

this approach achieves the best performance, with DeepTriage [102] second by compar-

ison. In the following section, the qualitative analysis test is performed to determine

how many bug and enhancement records were correctly predicted with this approach

compared to the state-of-the-art approaches.

As in qualitative analytical evaluation, the sample data is sorted into two issue

groups, namely 1) the bugs and 2) the enhancements, and the performance is examined

in light of the forecasted outcomes. Table 4.4 presents the statistics of the prediction

results in terms of numbers, whereas the Venn diagram in Fig. 4.9 illustrates the total

numbers of bugs and enhancements found by base1, base2, and the present approach.

Notably, the present approach can predict all issue types which are predicted correctly

in base1 and base2. In addition, this approach predicts 546 bugs and 46 enhancement

records missed by baseline approaches. After inspecting these records, it became clear

that these reports provide trivial descriptive text with code snippets to reproduce the

issue. Previous studies neglected the code snippets in their approach, as the feature

66

4.6. RESULTS

Figure 4.9: Qualitative analysis venn diagram

Table 4.4: Qualitative analysis (bug and enhancement)

Project Bug Enhancement Total
Bug/

EnhancementBase1 Base2 Our
Approach Base 1 Base 2 Our

Approach
aspnetcore 1124 1148 1382 21 25 29 1391/39
azure-
powershell 434 448 455 3 4 5 499/8

ecplise 9670 9950 9980 78 91 96 10035/126
efcore 1038 1069 1216 51 65 68 1245/77
elasticsearch 811 820 857 45 66 69 939/99
mixedreality
toolkitunity 386 413 435 9 13 14 435/23

monogame 122 144 151 10 14 16 180/21
nunit 65 79 97 8 13 16 109/22
realmjava 148 171 190 4 6 7 220/12
roslyn 291 299 303 360 370 390 458/560
rxjava 311 332 353 22 31 34 373/42

AVG 1309 1352 1406 56 63 68
MAX 9670 9950 9980 360 370 390
Total 14402 14873 15419 611 698 744 15884/744

representation of these records cannot provide valuable features for the model to perform

the prediction. It was also observed that most of the descriptive information provided

in the bug and enhancement reports used similar terms. For example, terms such as

‘add’, ‘improve’, ‘enhance’, ‘upgrade’ and ‘include’ are frequently used in both bug and

enhancement reports. Thus, the baseline approach that relied on the issue reports’

textual features might be wrongly mislabelled as enhancement in some scenarios. The

present approach uses textual and AST representation of the issue reports to eliminate

the mislabelling case by using the additional context from code snippet metadata.

In addition, it was further observed that the reports failed to predict from all three

67

CHAPTER 4. MULTI-TRIAGE : BUG TRIAGE BASED ON DEEP MULTI-TASK
LEARNING

approaches. Interestingly, these records do not include either non-trivial descriptive text

or code snippets. These issue reports include screenshot images, stack trace information,

and hyperlinks, which are ignored in all three approaches. Stack trace information was

neglected by this approach to reduce noise in the model training. Screenshots were

not covered due to limitations of the model, which supports either natural language or

structural context.

4.6.2 RQ2: Which component contributes more to the
multi-triage model?

Ablation analysis is performed on the multi-triage model to ascertain which component

contributes more to model performance. To answer this question, the ablation analysis is

divided into two sections: 1) system component level ablation analysis, and (2) embedding

parameter level ablation analysis.

4.6.2.1 System Component Level Ablation Analysis

Figure 4.10: Training time

This section compares the multi-task learning model with the conventional single-

task learning model to analyze which model performs better. The two single-task learning

models, one with CNN and the other with BiLSTM networks, are implemented by

referring to the present approach’s encoder architecture. In a single model, the text and

the AST path's are concatenated into one token and fed into the CNN, or BiLSTMs layer,

68

4.6. RESULTS

Table 4.5: Single task prediction model v.s. our approach for developer predictions
(precision(P), recall(R), and accuracy(Acc))

Project Single CNN Single BiLSTM Multi-triage
P R P R P R

aspnetcore 57% 52% 57% 51% 66% 61%
azure-powershell 52% 40% 52% 40% 55% 42%
ecplise 43% 24% 50% 30% 52% 38%
efcore 53% 47% 53% 47% 62% 56%
elasticsearch 54% 44% 54% 44% 62% 53%
mixedrealitytoolkitunity 56% 51% 55% 51% 64% 60%
monogame 59% 59% 59% 59% 69% 69%
nunit 49% 42% 51% 45% 59% 52%
realmjava 55% 52% 55% 52% 64% 61%
roslyn 49% 33% 49% 33% 52% 35%
rxjava 58% 58% 58% 58% 68% 68%

AVG 53% 46% 54% 46% 61% 54%
MAX 59% 59% 59% 59% 69% 69%

((a)) Developers precision and recall results

Project Single CNN Single BiLSTM Multi-triage
Acc F2 Acc F2 Acc F2

aspnetcore 54% 52% 53% 51% 63% 61%
azure-powershell 44% 41% 44% 41% 48% 42%
ecplise 32% 24% 46% 33% 54% 38%
efcore 50% 48% 50% 47% 59% 56%
elasticsearch 47% 44% 48% 45% 58% 53%
mixedrealitytoolkitunity 53% 51% 53% 52% 62% 60%
monogame 59% 59% 59% 59% 69% 69%
nunit 34% 43% 37% 46% 41% 52%
realmjava 53% 52% 53% 53% 62% 61%
roslyn 35% 37% 34% 37% 39% 38%
rxjava 58% 58% 58% 58% 68% 68%

AVG 47% 46% 49% 47% 57% 55%
MAX 59% 59% 59% 59% 69% 69%

((b)) Developers accuracy and F2 results

respectively. The same classifier components are used in a single model. The output

of the single-task learning model is either developers or issue labels. The comparison

results are presented in Table 4.5 for developers and Table 4.6 for issue types predictions.

Tables 4.5(a) and 4.6(a) present the precision and recall, whereas Tables 4.5(b) and 4.6(b)

describe the accuracy and F2 scores. Out of the three models, the present model achieves

the best performance in precision, recall, accuracy, and F2 score.

In terms of developer precision and recall, the present model outperforms the others

by an average increase of 8 percentage points compared to single CNN, and 7 percentage

points compared to single BiLSTM. It increases recollection by an average of 8 percentage

points over both a single CNN and a single BiLTSM. In accuracy, on average, it exceeds

the others by 10 percentage points compared to single CNN, and by 8 percentage points

compared to single BiLSTM. In F2 scores, this model performs better than the single

CNN by 9 percentage points, and the single BiLSTM by 8 percentage points. Therefore,

69

CHAPTER 4. MULTI-TRIAGE : BUG TRIAGE BASED ON DEEP MULTI-TASK
LEARNING

Table 4.6: Single task prediction model v.s. our approach for issue type predictions
(precision(P), recall(R), and accuracy(Acc))

Project Single CNN Single BiLSTM Multi-triage
P R P R P R

aspnetcore 52% 38% 52% 37% 58% 39%
azure-powershell 49% 38% 51% 42% 59% 47%
ecplise 28% 22% 48% 34% 52% 33%
efcore 48% 36% 48% 34% 52% 33%
elasticsearch 44% 21% 43% 20% 48% 25%
mixedrealitytoolkitunity 49% 34% 50% 40% 55% 41%
monogame 53% 46% 55% 49% 60% 53%
nunit 48% 38% 51% 44% 58% 49%
realmjava 46% 35% 50% 43% 56% 45%
roslyn 46% 30% 47% 33% 54% 38%
rxjava 49% 41% 50% 43% 53% 44%

AVG 47% 34% 48% 38% 53% 40%
MAX 53% 46% 55% 49% 60% 53%

((a)) Issue types precision and recall results

Project Single CNN Single BiLSTM Multi-triage
Acc F2 Acc F2 Acc F2

aspnetcore 43% 43% 43% 43% 47% 43%
azure-powershell 39% 40% 39% 40% 44% 49%
ecplise 21% 20% 38% 37% 26% 39%
efcore 38% 38% 38% 37% 40% 38%
elasticsearch 29% 27% 29% 26% 31% 27%
mixedrealitytoolkitunity 40% 38% 45% 43% 47% 38%
monogame 49% 49% 51% 51% 57% 49%
nunit 28% 38% 24% 43% 27% 38%
realmjava 40% 37% 46% 45% 50% 37%
roslyn 22% 32% 25% 34% 27% 32%
rxjava 43% 43% 45% 45% 49% 43%

AVG 36% 37% 37% 39% 42% 39%
MAX 49% 49% 51% 51% 57% 49%

((b)) Issue types accuracy and F2 results

it can be concluded that developers and issue types prediction tasks are compatible with

learning in one large network.

Interestingly, similar improvements were found for issue type prediction results.

In issue types precision, the present model outperforms the others on average by 6

percentage points compared to single CNN, and by 5 percentage points compared to

single BiLSTM. In recall, it improves on a single CNN by 6 percentage points and on a

single BiLTSM by 2 percentage points, on average. When compared to a single CNN and

a single BiLSTM, it outperforms the others in accuracy on average by 8 percentage points

and 5 percentage points, respectively. In F2 scores, the model performs slightly better

than single CNN by 1 percentage point, and the same for a single BiLSTM. Therefore, it

is possible to conclude that developers and issue types prediction tasks are compatible

with learning in one large network.

Training times for each model are also presented in Fig. 4.10. On average, the

70

4.6. RESULTS

multi-triage model accelerates the training process with a drop of 476 sec and 1175

sec compared to the single CNN and single BiLSTM models, respectively. Although the

accelerated training times are not obvious in the present scenario, imagine a project

with N issue reports; the training time complexity of the single model is (N2∗ t), where

t is the time consumed by the model to learn feature representations of each issue

report. However, the multi-triage model only needs (N ∗ t) times to learn the feature

representation; therefore, the present model is more capable of scaling to train to projects

with large amounts of training data. In summary, the multi-triage model outperforms

the single-task learning model in terms of accuracy and training time.

4.6.2.2 Embedding Parameter Level Ablation Analysis

Two types of ablation analysis are performed to evaluate the embedding parameters:

encoder decoupling and parameter tuning.

In the encoder decoupling experiment, the two encoders, text, and AST are decoupled,

and the model‚Äôs performance is evaluated with three experimental settings: (1) no text

encoder, (2) no AST encoder, and (3) both. In the no text encoder experiment, the negation

effect of the textual input is studied. Similarly, AST path input is excluded in the no
AST encoder experiment. The comparison results for prediction accuracy of developers

and issue types in Fig. 4.11(a) and Fig. 4.11(b), respectively. In both predictions, the

combination of textual and AST path inputs achieves the highest results in all eleven

projects, with an average increase of 35 and 3 percentage points for developers and 23

and 6 percentage points for issue types in comparison with no text encoder and no AST

encoder, respectively. Therefore, it can be concluded that both the textual encoder and

AST encoder are important components of the multi-triage model.

In the parameters tuning experiment, the effects of embedding dimension and learn-

ing rate on the accuracy of our model were analyzed. The model was tuned with embed-

ding dimensions (100 and 200) and learning rates (0.1, 0.01, and 0.001), which are the

most commonly used hyperparameters in deep learning models. As previously mentioned,

a time-series-based cross-validation approach was adopted, and the model was trained

with various learning rates and embedding dimension size incrementally. Fig. 4.12

presents the accuracy results for the six experiments with developer prediction accuracy

in Fig. 4.12(a) and issue types prediction accuracy in Fig. 4.12(b). In both prediction tasks,

embedding dimension 100 with a learning rate of 0.01 provides the highest average,

with an accuracy of 55 percentage points for developers and 41 percentage points for

issue types. With an average accuracy of 53 percentage points for developers and 40

71

CHAPTER 4. MULTI-TRIAGE : BUG TRIAGE BASED ON DEEP MULTI-TASK
LEARNING

((a)) Developer

((b)) Issue Type

Figure 4.11: Multi-triage: ablation analysis

72

4.6. RESULTS

((a)) Developer

((b)) Issue type

Figure 4.12: Multi-triage parameter analysis

73

CHAPTER 4. MULTI-TRIAGE : BUG TRIAGE BASED ON DEEP MULTI-TASK
LEARNING

Table 4.7: Unique word count for Text and AST

Project Text AST
aspnetcore 32959 29559
azure-powershell 20005 5200
ecplise 342103 1234
efcore 24627 51115
elasticsearch 28116 223942
mixedrealitytoolkitunity 11749 3570
monogame 8839 6351
nunit 5231 3197
realmjava 10950 40145
roslyn 21265 25372
rxjava 11225 93517

AVG 47006 43927
MAX 342103 223942

percentage points for issue categories, the embedding dimension 200 with a learning rate

of 0.01 comes next. The internal validity of the embedding parameter results is further

analyzed by validating the total number of unique word counts for both text encoder

and AST encoder input for each project. Table 4.7 presents the word count results for

all projects. Stop words and special characters were filtered out before the number of

unique words was counted. As shown in Table 4.7, the average word counts for text

encoder input is 47006, whereas the AST encoder input is 43927. The highest word count

is 342103 for the text encoder and 223942 for the AST encoder, respectively. By following

previous studies, a word corpus of around 2 million is trained with embedding size 300

or higher [81, 125, 129]. The maximum corpus size of the projects is lower than 35k, as

it is reasonable that both 100 and 200 embeddings provide comparable results in these

experiments. However, 100 embedding size was selected as the optimal hyper-parameter

to eliminate complex processing. In summary, a learning rate of 0.01 with an embedding

dimension of 100 hyperparameters was used as optimal parameters to train the model.

4.6.3 RQ3: Does increasing the size of training datasets (based
on the contextual data augmentation approach) improve
our model’s accuracy?

In this section, the data-imbalanced problem is addressed with the contextual data

augmentation approach presented in algorithm 1. First, an Area under the ROC Curve

74

4.6. RESULTS

((a))

((b))

Figure 4.13: Multi-triage: AUC v.s. Accuracy

Table 4.8: No data augmentation v.s. data augmentation (accuracy(%))

Multi-triage Multi-triage A+
Project Dev Issue Type Dev Issue Type

aspnetcore 63% 47% 64% 48%
azure-powershell 48% 44% 50% 48%
ecplise 38% 26% 40% 30%
efcore 59% 40% 61% 42%
elasticsearch 58% 31% 60% 33%
mixedrealitytoolkitunity 62% 47% 63% 49%
monogame 69% 57% 70% 58%
nunit 41% 27% 46% 29%
realmjava 62% 50% 63% 51%
roslyn 39% 27% 40% 28%
rxjava 68% 49% 69% 53%

AVG 55% 41% 57% 43%
MAX 69% 57% 70% 58%

75

CHAPTER 4. MULTI-TRIAGE : BUG TRIAGE BASED ON DEEP MULTI-TASK
LEARNING

((a))

((b))

Figure 4.14: Multi-triage with Data Augmentation: AUC v.s. Accuracy

(AUC) analysis is performed to measure classifier performance. Fig. 4.13 presents the

average AUC and accuracy results for the multi-triage model. The line graph in 4.13(a)

illustrates the developers’ AUC and accuracy results, whereas the line graph in 4.13(b)

shows the issue types AUC and accuracy results. In both tasks, AUC fluctuates around

62% and 69%, which indicates that the classifiers perform fairly well.

Therefore, further analysis was performed on the impact of the size of the training

data on model accuracy. The training data size was increased by using algorithm 1.

Table 4.8 presents the comparison results. For ease of reference, the model that uses

augmented data was named as multi-triage (A). As mentioned earlier, the training

data augmentation size was incrementally increased in each cross-fold validation as the

average accuracy from the 5-fold validation result was reported. As shown in Table 4.8,

the model accuracy slightly improved in the multi-triage (A) model, with an average

76

4.7. THREATS TO VALIDITY

increase of 2 percentage points on both developers and issue types. The performance of

the prediction model was further analysed using the AUC test. Fig. 4.14 presents the

AUC represented for the multi-triage (A) model. The line graphs in 4.14(a) and 4.14(b)

illustrate the developers and issue types of AUC and accuracy results. Notably, AUC

performance increased an average of 4 percentage points for developers and 3 percentage

points for issue types in comparison to the multi-triage model AUC performance, as

shown in Fig. 4.13. The data augmentation approach leveraged the base multi-triage

model in both accuracy and AUC performance measures. Therefore, it is concluded

that the contextual data augmentation approach effectively increases the issue reports

training data.

4.7 Threats to Validity

Threats to external validity This is associated with the calibre of the datasets we

utilized to assess our model. To generalize our work, we used problem reports from eleven

open-source Java and C# applications. All the datasets'programs were collected from

GitHub repositories; each dataset contains over 600 training issue reports. However,

further studies are needed to validate and generalize our findings to other structural

languages. Furthermore, more case studies are needed to confirm and improve the

usefulness of our multi-triage recommendation model.

Threats to internal validity This includes the influence of hyperparameters settings.

Our model’s performance would be affected by different learning rates and embedding

dimensions, which were set manually in our experiments. Another threat to internal

validity relates to the errors in the implementation of the benchmark methods. For Deep-

Triage [102], we directly used their published GitHub repository. For SVM+BOW [12],

we implemented it ourselves using scikit-learn libraries, because the source code is not

accessible. Nonetheless, scikit-learn is widely used in various studies [94, 159] to set up

machine learning algorithms, including SVM. As a result, the implementation of the

baseline faces few risks. In terms of the contextual data augmentation approach, we

calculated the threshold amount (30,000) using the approximate total number of issue

reports from targeted projects, based on the assumption that synthetic records should

not be larger than the total. Thus, the threshold value can change based on the targeted

project.

77

CHAPTER 4. MULTI-TRIAGE : BUG TRIAGE BASED ON DEEP MULTI-TASK
LEARNING

Threats to construct validity This relates to the applicability of our evaluation

measurement. We use accuracy and the F2 score as the evaluation metrics that evaluate

the performance of the model. They represent standard evaluation metrics for bug triage

models used in previous studies [12, 102].

4.8 Discussion

This section discusses the implications of the accuracy, precision, and recall rates we

achieved on our eleven experimental projects. We also report various alternatives we

have considered in implementing our model and in choosing a time-series-based cross-

validation approach. Then, we further discuss the decision to use a contextual data

augmentation approach in generating synthetic issue reports. Lastly, we also review

the lessons we have learned in applying a deep learning approach to an issue report

contextual and structural information.

4.8.1 Accessing the Significance of Our Approach

Our approach achieves an average accuracy of 57% and 47% for developers and issue

types, respectively. Also, our approach compromises precision and recall for both de-

velopers and issue types prediction results, with an average of 61—54% and 53—40%

respectively. The only way to ensure these prediction rates are good enough for the bug

triage process is by either performing a direct observation with human triages or by

statistical analysis of the qualitative data. Our study performs qualitative analysis by

categorizing the results into two generic issue report types (i.e. bug and enhancements)

and observing the prediction results in terms of numbers. However, we envision our

approach will be evaluated with human triages in the future. Notably, all the issue re-

ports predicted correctly in baseline approaches are covered by our approach. In addition,

our approach can correctly predict issue reports, which are missed by state-of-the-art

approaches, due to our model capability to comprehend the structural context of code

snippets. Therefore, we believe that the prediction rates we report in this paper for

the eleven open-source projects are sufficient to assist human triages in assigning a

developer and an issue type for a new issue report. As previously mentioned, there is

an average of 67 days to fix a new issue report in these projects, due to the delay in

triage becoming acquainted with the problem and finding the relevant developers. Our

approach can reduce the time spent on issue report allocation tasks and regain the time

to resolve the issues.

78

4.8. DISCUSSION

Furthermore, our multi-triage learning model takes advantage of the multitask learn-

ing approach to train the developers and issue types of classification tasks in one model.

It reduces the training time substantially, compared to a single-task learning model.

However, the multi-task learning model is pruned to encounter a negative transfer learn-

ing problem if prediction tasks are not compatible for learning together. We eliminate the

problem by comparing our approach with two single-task learning models. To evaluate

the two single models effectively, we designed these models in the same manner as

the two neural networks used in our encoder layers (i.e. BiLSTM and CNN). Notably,

our model surpasses single models in terms of precision, recall, and accuracy for both

issue type and developer prediction. Because it is possible to learn in a single prediction

network, we, therefore, evaluated a relationship between developers and issuer types of

prediction tasks.

4.8.2 Evaluation using Time-Series Based Cross Validation

The standard method for evaluating the machine learning model is the K-fold validation

approach. The original sample is divided into k equal-sized subsamples at random, and

the model is trained repeatedly k times in the K-fold validation procedure. However, the

standard K-fold validation approach is inappropriate in a time-ordered dataset, where

future issue reports will be used to predict past bug reports. Therefore, we followed a

time-series 5-fold validation approach and trained all our models, including the baselines

approach. When we used the time-series approach, we noticed that the first one-or two-

fold accuracy results are relatively lower than the later folds, due to smaller data size.

The neural networks-based approach generally produces better results when there is

more data available to learn. However, our time-series approach statically generalized

the results based on how the issue report information flows and alters an issue tracking

system.

4.8.3 Alternative Considerations on Model Building

We choose to use CNN in-text encoder and BiLSTM for AST encoder by referring to

previous studies in similar areas [9, 95, 102]. Both of the networks are commonly used in

natural language and structural language processing. Alternatively, we could incorporate

the BiLSTM model for the text encoder or CNN for the AST encoder. However, in our

preliminary test, the CNN model performs better than the BiLSTM in the text encoder

79

CHAPTER 4. MULTI-TRIAGE : BUG TRIAGE BASED ON DEEP MULTI-TASK
LEARNING

layer, whereas the BiLSTM model performs better than the CNN in the AST encoder.

Therefore, we choose the combination, which produces the best results.

4.8.4 Applicability of Contextual Data Augmentation Approach

We adopted a supervised machine-learning approach, as our triage model required

a ground truth label for each report to training the model. Therefore, we faced an

imbalanced class problem in our model training. When we evaluated our model with the

AUC test, we observed that our model performance is slightly low, with an average of 65%

for developers and 64% for issue types. Thus, we adopted the contextual augmentation

approach to generate synthetic issue reports to balance developers and issue type label

distribution on training samples. In general, there are two ways to develop synthetic

reports with the contextual augmentation approach: 1) random word substitution, and

2) random word removal [77]. We have selected the substitution approach as we do not

want to lose the important information of the issue report. We incrementally generated

the synthetic reports using a time-series cross-validation approach and trained model.

Since we are interested in the performance of our model, we statistically evaluated the

improvement of the data augmentation approach using the AUC test. Notably, our model

performance rose on average 69% for developers and 67% for issue types. Therefore, we

considered that the contextual augmentation approach is reasonable for smoothing label

distributions in the supervised learning approach.

4.8.5 Lessons Learned

The information we use comes from issue reports as text and code snippets. It's possible

that including more data will increase the accuracy of our technique.

A screenshot image is a valuable asset for issue reports, providing additional infor-

mation about user requirements. The execution stack trace from issue reports can be

used as the pointer to identify a code area in recommending issue types. As mentioned in

Section 4.2, the GitHub projects issue types label includes project areas or components

information. Identifying the project areas or components can assist in finding potential

developers by looking into the list of developers who are actively working on these areas,

either using the code ownership information or previous issue assignment history. How-

ever, as explained in Section 4.4, stack trace introduces noise into the model training,

as we neglected this information. Also, correlating code ownership information to issue

reports is challenging, especially for large projects evolving throughout time.

80

4.9. RELATED WORK

4.9 Related Work

This section introduces previous studies related to the semi-automatic bug triage process

and multi-task learning model. Moreover, other studies related to bug resolution (e.g.

bug localization) are discussed.

4.9.1 Semi-Automatic Bug Triage

In an early work of [111], the authors proposed an automatic bug triage approach that

used a native Bayes (NB) classifier to recommend candidate developers to fix a new bug.

Later, [12] extended this by comparing the work of [111] with three machine learning

classifiers: NB, SVM, and C4.5. Their preliminary results found that SVM outperforms

the other classifiers. In [104], the authors proposed an approach to modeling developers’

profiles using the vocabularies from their changed source code files, compared with terms

from issue reports to rank the relevant developers.

A comparison of different machine learning algorithms (i.e. NB, SVM, EM, conjunc-

tion rules, and nearest neighbors) to recommend potential developers can be found in [13].

In general, the authors used project-specific heuristics to construct a label for each issue

report rather than using the assigned-to field, to eliminate default assignee assignment

and duplicate reports with unchanged assigned-to field problems. In our approach, we

alternatively address these problems by filtering out issues assigned to software bots and

including the corresponding pull request’s developer information as the tossing sequence

in our labeling process.

Similarly, [164] proposed a concept profile and social network-based bug triage model

to rank expert developers to fix a bug. In their work, concept profiling first defines the

topic terms to cluster the issue reports. Then, the social network feature captures a

set of developers’ collaborative relationships, extracted from the concept profiles, to

rank the candidate developers based on the level of expertise (i.e. a fixer of a bug, a

contributor of a bug). In [124], the authors proposed CosTriage to assist triage in finding

candidate developers who can fix the bug in the shortest time frame. CosTriage adopts

content-boosted collaborative filtering (CBCF), which combines issue report similarity

scores with each developer’s bug fixing time to recommend relevant developers for a new

issue report.

Aside from developer recommendation studies, other studies have focused on au-

tomating issue type prediction in the bug triage process. In [156], the authors proposed

TagCombine, an automatic tag recommendation method, which is based on a composite

81

CHAPTER 4. MULTI-TRIAGE : BUG TRIAGE BASED ON DEEP MULTI-TASK
LEARNING

ranking approach to analyzing information on software forum sites (i.e. Stack Over-

flow, free-code). TagCombine consists of three ranking components: multi-label ranking,

similarity-based ranking, and tag-terms-based ranking. In their approach, multi-nominal

NB classifier, Euclidean distance algorithm, and latent semantic indexing (LSI) are used

to calculate three component scores separately. The linear combination score of these

three components is then used to recommend a list of relevant tags for a new issue

report. In [154]], the authors proposed MLL-GA, a composite method to classify crash

reports and failures. MLL-GA adopts various multi-label learning algorithms and genetic

algorithms to identify faults from crash reports automatically.

In the work of [163], the author adopted a BM25-based textual similarity algorithm

and KNN to predict severity levels and developers for a new issue report. In [10], the

authors adopted machine learning classifiers, such as NB and SVM, to predict an issue

label (e.g. bug, enhancement) for a new issue report. Their approach uses the bag-of-

words model to represent issue reports in text classification. In this representation,

every word in the training corpus is considered a feature; therefore, each issue report

presents a sparse representation with a high number of features. These features are used

by machine learning classifiers to predict issue labels for new issue reports. Recently,

in [102], the author used the BiLSTM model to recommend potential developers.

Our work is closely related to that of [102]. However, our multi-triage model adopts a

multi-task learning approach and recommends both developers and issue types from one

learning model. As such, it reduces a considerable amount of training time in comparison

to the single-task learning model. In addition, our model uses both textual and structural

information (i.e. code snippets) to learn the representation of issue reports, as doing so

provides a more accurate representation. In comparison, previous studies have neglected

the code snippet information in order to reduce noise in the model training. Our system

eliminates the possibility of adding noise to the model by converting the code snippet to

AST routes and learning the representation in a separate encoder.

There are several techniques to parse AST from partial programs. Some of the

well-known approaches are fuzzy parsers [87], island grammars [110], partial program

analysis (PPA) [44] and pairwise paths [9]. Fuzzy parsers scan the code keywords and

extract the coarse-grained structure out of code snippets [87]. Similarly, island grammars

extract part of the code snippets that describes some details of the function (island) and

ignores the rest of the trivial lexical information (water). In contrast, PPA parsers trace

the defined type of a class or method and extract a typed AST [44]. PPA recovers the

declared type of expression by resolving declaration ambiguities in partial java programs.

82

4.9. RELATED WORK

Undeclared fields or unqualified external references are referred to as having ambiguous

declarations. These approaches are more suitable for situations where a sound analysis

is required, such as code cloning, code representation, and code summarization.

Lastly, in the pairwise paths parser [9], the AST paths are extracted using modern

integrated development environments (IDE) (e.g, Eclipse), which generate the pairwise

paths between terminal nodes (e.g. variable declaration) by neglecting the non-terminal

nodes (e.g. do-while loop). In the pairwise path approach, two programs that have similar

terminal nodes are likely to parse in a similar format. As we intend to compare similar

code snippets between issue reports, we have adopted these pairwise paths approach in

our study. Next, we discuss the related work of the multitask learning model.

4.9.2 Multi-Task Learning

The multi-task learning model has been successfully applied in computer vision appli-

cations as well as in many natural language problems which require solving multiple

tasks simultaneously [97, 139]. In the recent work of [86], the author's used hard pa-

rameter sharing to address seven computer vision tasks. Similar works are presented

in [26, 52, 166]. In the work of [140], the authors proposed a framework by which to

evaluate which tasks are compatible with learning jointly in the multi-task learning net-

work. Their preliminary results revealed that multi-task learning networks’ prediction

quality depends on the relationship between the jointly trained tasks. Their framework

incrementally increases the number of tasks assigned to the model by starting with three

or fewer networks. They used predefined inference time, and the lowest total lost value

to identify the compatible pairing tasks.

In [48], the authors used a multi-task learning approach to tackle two types of

question-answering tasks: answer selection and knowledge-based question answering. In

their approach, the CNN network is used to model the shared learning layer to learn the

contextual information of historical questions and answer data to predict answers to a

new question automatically. Similar research was conducted by the authors of [165], who

identified face landmarks and characteristics by using the CNN network (i.e. emotions).

To learn query classification tasks and ranking of online search tasks simultaneously,

the authors of [48] employed a multitask learning network. Our work is similar to that

of [48], but we tackle a problem in a different domain. We adopted multi-task learning

with a hard-parameter sharing approach to recommend potential developers and issue

types for a new issue report.

83

CHAPTER 4. MULTI-TRIAGE : BUG TRIAGE BASED ON DEEP MULTI-TASK
LEARNING

4.9.3 Other Tasks in the Bug Resolution Process

In [30], the authors reported the usage of GitHub’s label in over 3 million GitHub

projects. Their preliminary results revealed that most projects use four generic types of

labeling strategies: priority labels, versioning labels, workflow labels, and architecture

labels to categorize the issue reports. In [128], the authors proposed a CNN-based bug

localization model to assist developers in identifying code smell areas. In the work

of [49], the researchers leverage deep neural networks to detect duplicate issue reports

automatically.

Likewise, [144] relied on recurrent neural networks (RNN) and graph embedding

to detect similarities in source code components. The work proposed in [150] used deep

learning neural networks to identify similar code components in generating bug-fixing

patches for program repair. In [147], an LSTM encoder-decoder was used to generate

a code summary that provided a high-level description of code functionality changes.

Despite different strategies, these approaches use AST tokens as embedding input to

learn the representation of source code components. Instead, the work in [36, 141] used

the control flow graph (CFG) representation of a program to embed the code to support a

variety of program analysis tasks (e.g. code summarization and semantic labeling).

4.10 Chapter Summary

Developer assignment and allocating relevant categories to a new issue report are

common tasks in the bug triage process needed in any software project. In this chapter,

we have introduced Multi-triage, developers, and issue types recommendation models

for integrating into the bug triage process workflow. Multi-triage used deep learning

techniques to predict potential developers and issue types for a new issue report. Our

goal in this work has been twofold. First, we have combined CNN and BiLSTM neural

networks to learn a representation of the issue report text description and code snippets

to construct the precise representation of the issue report. Second, we have presented

the benefits of using the contextual data augmentation approach to address the data-

imbalanced problem. The multi-triage mode is effective in finding a relevant developer

and issue type in eleven open-source projects from diverse domains. In training-time,

Multi-triage is significantly faster than a single task learning model by a total drop

of 476 sec and 1175 sec compared to the single CNN and single BiLSTM models. In

accuracy, on average, it outperforms the others by 10 percentage points compared to a

single CNN, and by 8 percentage points compared to a single BiLSTM.

84

C
H

A
P

T
E

R

5
CASE STUDY OF AUTOMATIC BUG TRIAGE PROCESS

MODEL AT SOFTWARE INDUSTRY

5.1 Overview

In this chapter, we briefly discuss the automatic bug triage process model project per-

formed at Dialog Information Technology (IT). One of the most prestigious privately-

owned IT companies is Dialog IT, which was founded in 1979. The company delivers

innovative IT solutions ranging from full life-cycle application development and man-

aged application services to long-term operational support to clients across all industries,

including all levels of government. This industrial case study fulfills parts of the require-

ment for pursuing a Ph.D. (Software Engineering) research degree at the University of

Technology, Sydney.

Prior studies assess the recommendation model's validity using open-source projects

as it cannot enable a holistic review to ensure the approach applies to different aspects

of software projects. Therefore, we perform the case study in this research to size up

real-life business problems in designing the recommendation model while considering

the broader organizational requirements. The findings of this case study contribute to

the body of knowledge in the bug triage community, where there is a need to obtain an

in-depth understanding of putting theories into practice.

As part of the ongoing maintenance and application support processes, the company

uses diverse issue tracking systems to manage issue reports. Thus, leveraging the bug

triage process is an integral component in efficiently managing the application. The

85

CHAPTER 5. CASE STUDY OF AUTOMATIC BUG TRIAGE PROCESS MODEL AT
SOFTWARE INDUSTRY

scope of the project involves analyzing the company's in-house issue tracking systems,

interacting with technical consultants from different departments, collecting historical

issue reports, and developing artificial intelligence (AI) based centralized issue tracking

system.

The chapter starts with a brief overview of issue-tracking applications that are cur-

rently used in the company and the business sector of Dialog IT. Subsequently, I proposed

a new AI-based centralized issue tracking system and developed the proof of concept

(POC) prototype application to provide an in-depth presentation of the design mode.

Thereafter, I evaluated the prototype application with the company’s historical issue re-

ports and discussed the findings. In the end, I provided suggestions and recommendations

for the company’s future.

5.1.1 Contributions

The significant contributions of this research are summarized as follows:

• To leverage the company’s existing bug triage process model, I proposed a central-

ized automatic bug triage process model to recommend potential developer issue

types automatically, as well as similar issue, reports relevant to a new issue report.

• To effectively observe the impact of the process model, I developed a web-based

prototype tool using a common development platform used in the company

• To evaluate the feasibility of the recommendation model in industrial settings, I

extensively evaluated the model with the existing issue reports of three company

projects and presented the results.

5.2 Background

Software issue reports generally contain technical problems, steps to reproduce the er-

rors, and requests for enhancement. These reports are typically stored in issue-tracking

systems. The process of managing an issue tracking system involves reviewing new issue

reports to ensure they are valid (for example, duplicate reports), finding appropriate de-

velopers for assignment, and classifying them into the relevant issue types (for example,

bug, feature, and product components). However, manually performing these processes

is time-consuming and error-prone. Currently, the Dialog IT company uses a manual bug

triage process in assigning developers and classifying issue types. Consequently, it delays

86

5.2. BACKGROUND

the process of triaging issues. In this case study research, we proposed the AI-based bug

triage to leverage the developer and issue type classification process to facilitate the

company's issue resolution process.

5.2.1 Dialog IT Issue Tracking Systems Background

Figure 5.1: Issue Tracking Systems used in Sydney and Darwin Offices

During the feasibility study, we discovered that the company utilized a multitude

of cloud-based platforms for tracking issues, which are managed and kept up to date

by several departments spread across Brisbane, Sydney, Melbourne, Canberra, Perth,

Darwin, and Adelaide. The main branch office is located in Brisbane and is traded

nationally. With the agreement and arrangement of the intern supervisor of the company,

we analyzed the issue tracking systems that are currently used in the Sydney and

Darwin branches and collected the historical issue reports of three active projects for the

purpose of this research. Figure5.1 presents the issue tracking platforms used in these

offices.

• NSW Fair Trading Project: It is a rental bond online management application

used by tenants, agents, and self-managing landlords to securely and easily lodge

87

CHAPTER 5. CASE STUDY OF AUTOMATIC BUG TRIAGE PROCESS MODEL AT
SOFTWARE INDUSTRY

and refund bond money. The company has been providing end-to-end application

management services since 2013. Currently, the company uses the HP Quality

Center management system to log the issue raised by the clients.

• Energy & Water Ombudsman NSW (EWON) Project: EWON is the government-

approved dispute resolution scheme for NSW electricity and gas customers and

some water customers. The company provides ongoing support and maintenance

services to manage the case and membership management system. EWON issue

requests are managed through the Dialog in-house response center application.

• Dialog NT Project: In this project, the company provided the Department of

Health divisions with related projects to conduct a feasibility study. Currently, the

company in Darwin provides ongoing end-to-end application support to various

Department of Health NT projects. The Department of Health is related to the

Ministerial responsibilities of Health, Families, and Children and Child protection.

The agency is responsible for several services in the Health Sector of the North-

ern Territory. These sectors include Aged & Disability Services, Cancer Services,

Community Health, Dental Services, Hospitals, Palliative Care, Remote Health

Centers, Renal Services, and Aboriginal Health. All issue reports are registered

and maintained in JIRA and Bugtracker.NET issue tracking systems.

5.3 Proposed Solution

As presented in Figure 5.1, the company used multiple issue tracking applications to

manage various projects which are developed and maintained by technical consultants

from different geographical locations. The NSW Fair Trading and Dialog NT projects

allow the company to use third-party issue tracking systems due to the client's needs.

Thus, similar issues that could arise throughout the multiple project development lifecy-

cle cannot be easily searchable, as the company cannot easily share the bug resolution

knowledge between different departments. In addition, bug triage tasks, such as finding

appropriate developers and categorizing the issue types, are performed manually as they

are time-consuming and error-prone. Therefore, I propose the AI-based issue tracking

system, which can recommend potential developers and issue types for a new issue

report.

Figure 5.3 presents the proposed AI-based automatic bug triage process model to

leverage the existing issue tracking process in the company. To reduce the time and

88

5.4. RESEARCH METHOD

Figure 5.2: Automatic Bug Triage Process Model

effort required to manage multiple issue tracking platforms, I introduced a centralized

AI-based bug triage process model to predict potential developers and issue types for new

issue reports. The main purpose of a centralized issue tracking system is that technical

consultants from different geographical locations can communicate and share their

expertise in the bug-fixing process. In addition, training the developers and issue types

recommendation models using data from the centralized data management system can

empower the model performance and provide a better result. In the following section, I

have described the proposed process model implementation in detail. I utilize a prototype

application in this project to visualize and assess the process model.

5.4 Research Method

In this study, we applied the design science research method to experiment with the bug

triage process model. Design science is “a problem-solving paradigm” [73], that is widely

adopted in most Information System (IS) research. Design science research is suitable for

creating new artifacts for a specified problem domain to resolve “the unsolved problem

or solving a known problem in a more effective or efficient manner” [73]. In this case

study, we intend to implement an AI-based bug triage artifact to resolve the challenges of

finding potential developers and issue types and building a centralized bug triage model.

89

CHAPTER 5. CASE STUDY OF AUTOMATIC BUG TRIAGE PROCESS MODEL AT
SOFTWARE INDUSTRY

Therefore, we followed the design science method and performed the steps outlined in

the following Table 5.1.

Table 5.1: Research Method

Design Science Guidelines Project Process Mapping

G1 - Design as an artifact Design a centralized AI-based bug triage artifact that supports
the developer and issue type recommendation model.

G2 - Problem relevance
Develop an AI-based bug triage prototype application for the
company to evaluate the effectiveness of the artifact. Figure 3
presents the high-level design diagram of the artifact.

G3 - Design evaluation

To effectively evaluate the prototype model, I collected the
historical issue reports from various ongoing projects. The
primary researcher frequently communicated with technical
consultants involved in these projects to gain insightful
knowledge about the projects.

G4 - Research contributions
The significant contributions of the research are an AI-based
bug triage tool, which includes a developer and issue type
recommendation model.

G5 - Research Rigor

We used the iterative design development approach to design
the bug triage model and evaluate existing issue reports from
various projects with the company. Furthermore, we applied a
statistical data analysis approach to evaluate the AI
recommendation model performance.

G6 - Design as a search process
We iteratively designed the application based on the structure
of individual issue reports, which are used in various projects,
and the feasibility of AI recommendation model implementation.

G7 - Communication of Research
The primary researcher shared the project progress with an
intern supervisor and principal superior on a monthly basis
throughout the duration of the project development.

5.5 Design Solution

Figure 5.3 presents the high-level AI-based bug triage process model proposed in this

project. In general, the process model consists of three main components, namely 1) bug

triage app, 2) bug triage hosting components, and 3) bug triage application service.

1. Bug triage application The dialogue consultants (technical) can manage the

issues for many projects in one place using this front-end application. We used a

model-driven Microsoft Power Application platform to design the application so

that the users can access the application either through the mobile application or

a web browser.

2. Bug triage hosting components The purpose of the hosting layer is to integrate

the bug triage application with application services layers. We used the Microsoft

Azure platform and published the bug triage application and application services.

90

5.6. RESULTS

Figure 5.3: High-Level AI-based Bug Triage Model

3. Bug triage application services The purpose of building the application services

is two-fold. First, we used the application service to retrieve the list of issue reports

from the bug triage front-end application and train the developer and issue type

recommendation models periodically or based on user demand. Thereafter, we

created an application service to recommend potential developers and issue types

for a new issue report. We used ML.Net and swagger application programming

interface (API) services generator to design the API services.

We incrementally designed the three main components above. Second, we collected

the issue reports from three projects mentioned in Section 5.2.1 and imported these

reports into the bug triage application. Lastly, we built the developer and issue types

recommended model in bug triage application services and used these existing issue

reports to train the model. Finally, we created the front-end components in the bug triage

application to display the prediction results. We detailed our findings in the next section.

5.6 Results

As mentioned in Section 5.5, the proposed process model has three main components,

namely 1) bug triage application, 2) bug triage hosting components, and 3) bug triage

application service. In this section, we reported the data analysis results of historical

issue reports from the three company projects, the AI recommendation performance, and

the outcomes of each component design.

91

CHAPTER 5. CASE STUDY OF AUTOMATIC BUG TRIAGE PROCESS MODEL AT
SOFTWARE INDUSTRY

5.6.1 Data analysis of historical issue reports

This section outlines the data statistics for each project to visualize the data-set clearly.

In this study, we explored the three ongoing projects mentioned in Section 5.2 and

presented the data analysis results in figures 5.4 and 5.4.

A total of 11,253 problem reports were utilized to train the AI recommendation model,

as illustrated in figure 5.4, to anticipate the pertinent developers and issue types for a

new issue report. Figure 5.5 describes the total no of developers and issue types currently

used in these projects. Among the three projects, the Dialog NT project has the highest

developers and lowest issue types. In the Dialog IT project, the defect-related issues are

categorized as a bug, and the rest of the issue reports are logged as an improvement.

Exploring the class label distributions among datasets makes it easier to identify the

individual model requirements and specify the needs accordingly. For example, the binary

classification model is suited for dialog NT issue type prediction model, whereas the

multi-label classification model is applicable for others.

Figure 5.4: Total no of Issue Reports Summary

5.6.2 AI recommendation model performance

To evaluate the performance of the AI recommendation, we used the three standard

machine learning evaluation techniques described in equations 5.1, 5.2, and 5.3. Precision

is a fraction of relevant instances among the retrieved instances, while recall is a fraction

of relevant instances that were retrieved. The accuracy is the fraction of the number of

correct predictions to the total number of input samples.

92

5.6. RESULTS

Figure 5.5: Total no of Developers and Issue Types Summary

(5.1) Precision= TP
TP +FP

(5.2) Recall= TP
TP +FN

(5.3) Accuracy= TN +TP
TN +TP +FN +FP

Table 5.2 presents the performance of the two models in three projects. In the devel-

oper recommendation model, the NSW Fair Trading project outperforms the accuracy of

the others by 75%. The developer class distributions in the NSW Fair Trading dataset

are more balanced than other projects. In the issue-type recommendation model, the

Dialog NT project outperforms the accuracy of the others by 100% because Dialog NT

has lesser issue-type classes than the other projects.

Table 5.2: Evaluation Results

Project Developer Issue Type
Precision Recall Acc Precision Recall Acc

NSW Fair
Trading 22 25 75 94 95 98

EWON 22 18 60 95 96 98
Dialog IT 28 21 60 100 100 100

AVG 24 21 65 96 97 99

93

CHAPTER 5. CASE STUDY OF AUTOMATIC BUG TRIAGE PROCESS MODEL AT
SOFTWARE INDUSTRY

5.6.3 Bug triage application

Figure 5.6 presents the bug triage front-end application, which is - built with the

Microsoft Power Apps Platform. The prototype application can manage issue reports

for three different projects such as NSW Fair Trading, EWON, and Dialog NT project.

We imported the existing issue reports, which are dispersed across other issue tracking

applications, to one centralized location to train the developer and issue recommendation

models. In the bug triage application, we added the Train AI Model functionality to train

the recommendation model using the front-end application to improve the performance of

the recommendation model though the system evolved. Figure 5.7 presents the results of

the training model for EWON project. Currently, the recommendation model can conduct

training based on the project. Once the model is trained, the users can retrieve the

prediction results by triggering the “Recommend” button presented in Figure 5.8. The

recommendation results are shown in figure 5.9. Currently, the prototype application

provides three recommendations 1) relevant issue type, 2) relevant developer, and 3)

similar existing issue reports assisting the bug triages in resolving the issue.

Figure 5.6: Bug Triage App Main Page

5.6.4 Bug triage hosting components and application services

In terms of hosting the components, we used the Azure cloud-based platform to integrate

application components on a central platform. In this study, we implemented six API

services for each project to retrieve existing issue reports, train recommendation models,

and return prediction results for a new issue report. The summary of each service is

provided below.

94

5.6. RESULTS

Figure 5.7: On-Demand Train AI Model Example

Figure 5.8: Retrieve Prediction Result for a New Issue Report

1. GetTickets This function is used to retrieve a list of defect tickets from the bug

triage application to train the developer and issue type prediction model.

2. TrainBugTriageModelToPredictDevelopers This function is used to train the

developers prediction model with existing defect tickets.

3. TrainBugTriageModelToPredictIssueTypes This function is used to train the

issue types prediction model with existing defect tickets.

4. PredictDevelopers This function predicts potential developers for new defect

tickets.

95

CHAPTER 5. CASE STUDY OF AUTOMATIC BUG TRIAGE PROCESS MODEL AT
SOFTWARE INDUSTRY

Figure 5.9: Prediction Model Results Example

5. PredictIssueTypes This function predicts potential issue types for new defect

tickets.

5.7 Chapter Summary

In this study, we performed the case study research in Dialog IT company to leverage

the performance of the legacy bug triage system. One of Australia’s top technology

service providers, Dialog IT Company, operates out of locations in Brisbane, Sydney,

Canberra, Melbourne, Adelaide, Perth, and Darwin. The company provides a wide

range of innovative IT solutions and long-term operational support to clients across all

industries, including all levels of government. Thus, the bug triage process plays an

integral role in managing client requests timely. However, the company is currently

using a manual bug triage process as it is time-consuming and error-prone. In addition,

the company uses diverse issue tracking platforms to manage the issue request for

various projects as it hinders the communication between technical consultants from

different projects to share bug resolution knowledge. This study conjured the artificial

intelligence (AI) based centralized bug triage process model to leverage the bug triage

process. The main objectives of this research are to design and develop the automatic bug

triage prototype tool to evaluate the impact of the new process model design effectively.

Based on the findings of this research, the application of the AI-based bug triage model

performance is promising for company projects. In addition, the prototype tool has room

to expand to meet more business requirements in the future.

96

C
H

A
P

T
E

R

6
CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

In this thesis, we have presented a set of empirical studies to leverage the automation of

software maintenance activities such as change impact analysis (CIA) and bug triage

process. First and foremost, to extract and analyze methodologies offered in earlier

studies and identify the research gap, we conducted a systematic review study on the

automatic trace link recovery strategy in the field of software change effect analysis.

Second, we proposed an interactive hierarchical trace map (HTM) visualization technique

to perform change impact analysis for multiple software artifacts at the same time. Lastly,

we presented a multi-triage bug triage model to leverage developer assignment and issue

type allocation to a new issue report. We evaluated our approaches with a wide range of

open source projects from various domains to replicate real-world applications.

In a systematic review study, we reviewed the peer-review articles which are pub-

lished between 2012 and 2019 and found 33 relevant studies in this review. We reviewed

the investigations based on CIA-related characteristics, outlining traceability strategies,

CIA coverage levels, trace directions, and techniques for creating trace links between

various types of artifacts. There has been less research work on recovering the links

between design and test case artifacts, presumably due to the scarcity of data sets.

Furthermore, most works focused on leveraging the automating process of constructing

the links between artifacts, but few studies are interested in improving the presentation

97

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

parts, which hinders the usage of traceability links. Visualizing the trace links intu-

itively and narratively plays an important role in increasing the performance of the

change impact analysis process. Thus, in the next phase of the thesis, we proposed the

traceability visualization technique to leverage the change impact process.

In the HTM study, we conjured the hierarchical trace map visualization technique,

which applies the vector space model (VSM) approach, to construct interrelationships

between multiple software artifacts. The HTM visualization approach aims to assist

software comprehension and change impact analysis activities by providing a visual trace

links exploration space. In our approach, we presented a standalone application, which

includes the functionality to automatically consume data from external data sources to

recover the trace links between high and low-level artifacts. We evaluated our approach

with the common trace links experimental project and presented the results.

Finally, in the multi-triage study, we presented the novel multitask learning-based

bug triage model to classify relevant developers and issue types for a new issue report by

analyzing the contextual and structural information of historical issue reports. Multi-

triage is the first triage model to explore the effects of synthetic bug reports generated

with a contextual data augmentation approach. We designed and trained our model incre-

mentally by performing analysis and a time-series-based cross-fold validation approach.

By using the two encoders, the contextual and abstract syntax tree (AST) structure

of an issue report'is learned separately and concatenated at the end of the learning

representation phase as the model can detect the full representation of the issue report

precisely. Also, the multi-triage model can train faster than two single-task learning as

well as the accuracy is noticeably higher than the state-of-the-art approaches.

6.2 Threats to Validity

We briefly discuss the main threats to the validity of our study with respect to internal

validity and external validity.

Internal validity refers to the possibility of error in creating the data set used for

the evaluation within the context of a particular study. In both our experimental and

case studies, the class labels were extracted from the historical bug reports to generate

the ground truth dataset of developer and issue type labels. However, there is a risk

that these labels can either be incorrectly labeled by bug triagers or outdated as the

project evolves. For example, developers A and B have fixed product X-related issues, but

developer B resolved most of the recent issues. Therefore, assigning the new product-X-

98

6.3. FUTURE WORK

related case to developer B is more applicable based on the order of bug resolution history.

Although we took the risk of incorrect labels, we minimized the chance of assigning

outdated labels using a time-series-based 5-fold cross-validation approach. Performing

the model training based on time can increase the likelihood of predicting the most

relevant class labels based on the data sequence.

External validity refers to how our study's results can be generalizable to the vari-

ability of the bug-tracking system used in industrial and open-source projects. In our

experimental study, we solely focused on open-source projects from various domains,

which provided all the necessary information to conduct this study. However, the ex-

ploratory analysis of our approach to various open-source projects has led to several

rich observations; the risk of external validity arises when we generalize our findings

to other situations, including industrial software projects. Therefore, we perform a case

study in one commercial software company to justify our assumption. Although the field

study was conducted in a company with real-world data, replicating our approach to

more commercial projects is required to raise empirical evidence.

6.3 Future Work

Automating the bug triage process using deep learning techniques has become emerging

research due to the growing demand for managing rapidly evolving software require-

ments in fast-paced industries. In general, existing bug triage approaches mainly fall

into two categories: the algebraic model-based approach [137, 155] and the statistical

language model-based approach [12, 102, 157]. Both approaches train both developers

and issue-type prediction tasks with a single-task learning model. Studies have used

the terms frequency (TF) and inverse document frequency (IDF) as the term’s weighting

factor in algebraic models. Various distance calculation algorithms (e.g., Euclidean dis-

tance) are used to calculate the distance between two issue reports and construct links

between a new issue report and relevant developers or issue types by matching existing

issue reports.

Compared to a vast number of single-task learning model-based bug triage automa-

tion works, only a handful of research exploited the multi-task learning model, and

continuous distributed vector representations of code [9, 16]. Also, there are a few em-

pirical studies that focus on exploring the effects of visual bug information in a bug

triage context. The majority of users who report software bugs are non-technical users,

as it is tedious and error-prone to describe the bug description in detail to reproduce the

99

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

errors. Even for developers, it is time-consuming and unclear to reproduce the errors by

following a reproduction step. Therefore, more and more users are beginning to provide a

screenshot or animated images to supplement the information in a bug report to visualize

and replicate the issue.

In reality, a human triage used all the available information to comprehend the bug

report as the learning representation of the bug report taking into account all the infor-

mation, including supplement information, to precisely comprehend the requirements.

More importantly, our multitask learning model-based bug triage approach opens up the

concepts of training multiple tasks in a single model [16]. We have enabled our model’s

joint representation process layer to take advantage of the training time since both devel-

opers and issue-type recommendation models have relied on issue report representation.

Furthermore, there is emerging research in the area of extracting textual information

from images, and the outcomes of this research are promising as well [42, 79, 88]. It is

hoped that the ideas proposed in this thesis (e.g., multi-triage model, visualizing trace

links) could provide some inspiration to leverage software maintenance activities such

as bug triage and change impact analysis.

100

BIBLIOGRAPHY

[1] H. ABUKWAIK, A. BURGER, B. K. ANDAM, AND T. BERGER, Semi-automated
feature traceability with embedded annotations, in 2018 IEEE International

Conference on Software Maintenance and Evolution (ICSME), IEEE, 2018,

pp. 529–533.

[2] A. ACHILLE AND S. SOATTO, Information dropout: Learning optimal representa-
tions through noisy computation, IEEE transactions on pattern analysis and

machine intelligence, 40 (2018), pp. 2897–2905.

[3] R. AGARWAL, R. R. CHETWANI, M. RAVINDRA, AND K. M. BHARADWAJ, Novel
methodology for requirements to design traceability of onboard software, in

2014 International Conference on Advances in Electronics Computers and

Communications, 2014, pp. 1–6.

[4] H. ALAEDDINE AND M. JIHENE, Deep network in network, Neural Computing and

Applications, 33 (2021), pp. 1453–1465.

[5] N. ALI, H. CAI, A. HAMOU-LHADJ, AND J. HASSINE, Exploiting parts-of-speech
for effective automated requirements traceability, Information and Software

Technology, 106 (2019), pp. 126–141.

[6] N. ALI, Y. GUEHENEUC, AND G. ANTONIOL, Trustrace: Mining software reposito-
ries to improve the accuracy of requirement traceability links, IEEE Transac-

tions on Software Engineering, 39 (2013), pp. 725–741.

[7] N. ALI, F. JAAFAR, AND A. E. HASSAN, Leveraging historical co-change informa-
tion for requirements traceability, in 2013 20th Working Conference on Reverse

Engineering (WCRE), 2013, pp. 361–370.

[8] N. ALI, Z. SHARAFL, Y.-G. GUEHENEUC, AND G. ANTONIOL, An empirical study
on requirements traceability using eye-tracking, in 2012 28th IEEE Interna-

tional Conference on Software Maintenance (ICSM), 2012, pp. 191–200.

101

BIBLIOGRAPHY

[9] U. ALON, M. ZILBERSTEIN, O. LEVY, AND E. YAHAV, Code2vec: Learning dis-
tributed representations of code, Proc. ACM Program. Lang., 3 (2019).

[10] J. M. ALONSO-ABAD, C. LÓPEZ-NOZAL, J. M. MAUDES-RAEDO, AND

R. MARTICORENA-SÁNCHEZ, Label prediction on issue tracking systems using
text mining, Progress in Artificial Intelligence, 8 (2019), pp. 325–342.

[11] G. ANTONIOL, G. CANFORA, G. CASAZZA, A. DE LUCIA, AND E. MERLO, Recover-
ing traceability links between code and documentation, IEEE transactions on

software engineering, 28 (2002), pp. 970–983.

[12] J. ANVIK, L. HIEW, AND G. C. MURPHY, Who should fix this bug?, in Proceedings

of the 28th international conference on Software engineering, 2006, pp. 361–

370.

[13] J. ANVIK AND G. C. MURPHY, Reducing the effort of bug report triage: Recom-
menders for development-oriented decisions, ACM Transactions on Software

Engineering and Methodology (TOSEM), 20 (2011), pp. 1–35.

[14] T. W. W. AUNG, H. HUO, AND Y. SUI, Interactive traceability links visualiza-
tion using hierarchical trace map, in 2019 IEEE International Conference on

Software Maintenance and Evolution (ICSME), 2019, pp. 367–369.

[15] , A Literature Review of Automatic Traceability Links Recovery for Software
Change Impact Analysis, Association for Computing Machinery, New York, NY,

USA, 2020, p. 14‚Äì24.

[16] T. W. W. AUNG, Y. WAN, H. HUO, AND Y. SUI, Multi-triage: A multi-task learn-
ing framework for bug triage, Journal of Systems and Software, 184 (2022),

p. 111133.

[17] T. W. W. A. AUNG, Multitriage, 2021.

[18] I. BANERJEE, Y. LING, M. C. CHEN, S. A. HASAN, C. P. LANGLOTZ,

N. MORADZADEH, B. CHAPMAN, T. AMRHEIN, D. MONG, D. L. RUBIN,

O. FARRI, AND M. P. LUNGREN, Comparative effectiveness of convolutional
neural network (cnn) and recurrent neural network (rnn) architectures for ra-
diology text report classification, Artificial Intelligence in Medicine, 97 (2019),

pp. 79 – 88.

102

BIBLIOGRAPHY

[19] G. BAVOTA, L. COLANGELO, A. DE LUCIA, S. FUSCO, R. OLIVETO, AND

A. PANICHELLA, Traceme: Traceability management in eclipse, in 2012 28th

IEEE International Conference on Software Maintenance (ICSM), Sep. 2012,

pp. 642–645.

[20] E. BEN CHARRADA, A. KOZIOLEK, AND M. GLINZ, Identifying outdated require-
ments based on source code changes, in 2012 20th IEEE International Require-

ments Engineering Conference (RE), Sep. 2012, pp. 61–70.

[21] Y. BENGIO, Practical recommendations for gradient-based training of deep archi-
tectures, Arxiv, (2012).

[22] C. BERGMEIR AND J. M. BENITEZ, On the use of cross-validation for time series
predictor evaluation, Information Sciences, 191 (2012), pp. 192–213.

Data Mining for Software Trustworthiness.

[23] P. BERTA, M. BYSTRICKỲ, M. KREMPASKỲ, AND V. VRANIĆ, Employing issues
and commits for in-code sentence based use case identification and remodular-
ization, in Proceedings of the Fifth European Conference on the Engineering of

Computer-Based Systems, ACM, 2017, p. 1.

[24] P. BHATTACHARYA AND I. NEAMTIU, Fine-grained incremental learning and multi-
feature tossing graphs to improve bug triaging, in 2010 IEEE International

Conference on Software Maintenance, IEEE, 2010, pp. 1–10.

[25] A. BIEDENKAPP, M. LINDAUER, K. EGGENSPERGER, F. HUTTER, C. FAWCETT,

AND H. HOOS, Efficient parameter importance analysis via ablation with
surrogates, in Proceedings of the AAAI Conference on Artificial Intelligence,

vol. 31, 2017.

[26] H. BILEN AND A. VEDALDI, Integrated perception with recurrent multi-task neural
networks, in Advances in neural information processing systems, 2016, pp. 235–

243.

[27] BOHNER, Impact analysis in the software change process: a year 2000 perspective,

in 1996 Proceedings of International Conference on Software Maintenance,

Nov 1996, pp. 42–51.

[28] M. BORG, Embrace your issues: compassing the software engineering landscape us-
ing bug reports, in Proceedings of the 29th ACM/IEEE international conference

on Automated software engineering, ACM, 2014, pp. 891–894.

103

BIBLIOGRAPHY

[29] M. BORG, P. RUNESON, AND A. ARDÖ, Recovering from a decade: a systematic
mapping of information retrieval approaches to software traceability, Empirical

Software Engineering, 19 (2014), pp. 1565–1616.

[30] J. CABOT, J. L. C. IZQUIERDO, V. COSENTINO, AND B. ROLANDI, Exploring
the use of labels to categorize issues in open-source software projects, in 2015

IEEE 22nd International Conference on Software Analysis, Evolution, and

Reengineering (SANER), IEEE, 2015, pp. 550–554.

[31] L. CAI, S. ZHOU, X. YAN, AND R. YUAN, A stacked bilstm neural network based
on coattention mechanism for question answering, Computational intelligence

and neuroscience, 2019 (2019).

[32] R. CARUANA, Multitask learning: A knowledge-based source of inductive bias,

in Proceedings of the Tenth International Conference on Machine Learning,

Morgan Kaufmann, 1993, pp. 41–48.

[33] G. CATOLINO, F. PALOMBA, A. ZAIDMAN, AND F. FERRUCCI, Not all bugs are
the same: Understanding, characterizing, and classifying bug types, Journal of

Systems and Software, 152 (2019), pp. 165–181.

[34] O. CHAPARRO, J. M. FLOREZ, AND A. MARCUS, Using observed behavior to
reformulate queries during text retrieval-based bug localization, in 2017 IEEE

International Conference on Software Maintenance and Evolution (ICSME),

IEEE, 2017, pp. 376–387.

[35] X. CHEN, J. HOSKING, AND J. GRUNDY, Visualizing traceability links between
source code and documentation, in 2012 IEEE Symposium on Visual Languages

and Human-Centric Computing (VL/HCC), Sep. 2012, pp. 119–126.

[36] X. CHENG, H. WANG, J. HUA, G. XU, AND Y. SUI, Deepwukong: Statically detect-
ing software vulnerabilities using deep graph neural network, 30 (2021).

[37] J. CLELAND-HUANG, O. GOTEL, A. ZISMAN, ET AL., Software and systems trace-
ability, vol. 2, Springer, 2012.

[38] J. CLELAND-HUANG AND J. GUO, Towards more intelligent trace retrieval algo-
rithms, in Proceedings of the 3rd International Workshop on Realizing Artificial

Intelligence Synergies in Software Engineering, RAISE 2014, New York, NY,

USA, 2014, Association for Computing Machinery, p. 1‚Äì6.

104

BIBLIOGRAPHY

[39] J. CLELAND-HUANG AND R. HABRAT, Visual support in automated tracing, in

Second International Workshop on Requirements Engineering Visualization

(REV 2007), Oct 2007, pp. 4–4.

[40] R. COLLOBERT, J. WESTON, L. BOTTOU, M. KARLEN, K. KAVUKCUOGLU, AND

P. KUKSA, Natural language processing (almost) from scratch, Journal of

machine learning research, 12 (2011), pp. 2493–2537.

[41] O. CONTRIBUTORS, Documentation and bug triage day, 2014.

[42] N. COOPER, C. BERNAL-CÁRDENAS, O. CHAPARRO, K. MORAN, AND D. POSHY-

VANYK, It takes two to tango: Combining visual and textual information for
detecting duplicate video-based bug reports, in 2021 IEEE/ACM 43rd Interna-

tional Conference on Software Engineering (ICSE), IEEE, 2021, pp. 957–969.

[43] V. CSUVIK, A. KICSI, AND L. VIDACS, Source code level word embeddings in
aiding semantic test-to-code traceability, in 2019 IEEE/ACM 10th International

Symposium on Software and Systems Traceability (SST), May 2019, pp. 29–36.

[44] B. DAGENAIS AND L. HENDREN, Enabling static analysis for partial java pro-
grams, SIGPLAN Not., 43 (2008), p. 313‚Äì328.

[45] A. DE LUCIA, F. FASANO, AND R. OLIVETO, Traceability management for impact
analysis, in 2008 Frontiers of Software Maintenance, Sep. 2008, pp. 21–30.

[46] A. DE LUCIA, A. MARCUS, R. OLIVETO, AND D. POSHYVANYK, Information
retrieval methods for automated traceability recovery, in Software and systems

traceability, Springer, 2012, pp. 71–98.

[47] A. DE LUCIA, R. OLIVETO, AND G. TORTORA, Adams re-trace: Traceability link
recovery via latent semantic indexing, in Proceedings of the 30th International

Conference on Software Engineering, ICSE ’08, New York, NY, USA, 2008,

ACM, pp. 839–842.

[48] Y. DENG, Y. XIE, Y. LI, M. YANG, N. DU, W. FAN, K. LEI, AND Y. SHEN, Multi-
task learning with multi-view attention for answer selection and knowledge
base question answering, in Proceedings of the AAAI Conference on Artificial

Intelligence, vol. 33, 2019, pp. 6318–6325.

105

BIBLIOGRAPHY

[49] J. DESHMUKH, S. PODDER, S. SENGUPTA, N. DUBASH, ET AL., Towards accurate
duplicate bug retrieval using deep learning techniques, in 2017 IEEE Inter-

national conference on software maintenance and evolution (ICSME), IEEE,

2017, pp. 115–124.

[50] W. DOMINIK AND L. UDO, Manage interdisciplinarity based on requirements
traceability: A graph-based tool support for requirements traceability, in 2017

Portland International Conference on Management of Engineering and Tech-

nology (PICMET), IEEE, 2017, pp. 1–8.

[51] B. DOWDESWELL, R. SINHA, AND E. HAEMMERLE, Torus: Tracing complex re-
quirements for large cyber-physical systems, in 2016 21st International Confer-

ence on Engineering of Complex Computer Systems (ICECCS), 2016, pp. 23–32.

[52] N. DVORNIK, K. SHMELKOV, J. MAIRAL, AND C. SCHMID, Blitznet: A real-time
deep network for scene understanding, in Proceedings of the IEEE international

conference on computer vision, 2017, pp. 4154–4162.

[53] R. ELAMIN AND R. OSMAN, Implementing traceability repositories as graph
databases for software quality improvement, in 2018 IEEE International Confer-

ence on Software Quality, Reliability and Security (QRS), IEEE, 2018, pp. 269–

276.

[54] D. FALESSI, M. DI PENTA, G. CANFORA, AND G. CANTONE, Estimating the num-
ber of remaining links in traceability recovery, Empirical Software Engineering,

22 (2017), pp. 996–1027.

[55] D. FALESSI, J. ROLL, J. L. GUO, AND J. CLELAND-HUANG, Leveraging historical
associations between requirements and source code to identify impacted classes,

IEEE Transactions on Software Engineering, (2018).

[56] C. FAWCETT AND H. H. HOOS, Analysing differences between algorithm configu-
rations through ablation, Journal of Heuristics, 22 (2016), pp. 431–458.

[57] M. GETHERS, B. DIT, H. KAGDI, AND D. POSHYVANYK, Integrated impact analy-
sis for managing software changes, in 2012 34th International Conference on

Software Engineering (ICSE), June 2012, pp. 430–440.

[58] M. GETHERS, R. OLIVETO, D. POSHYVANYK, AND A. D. LUCIA, On integrating
orthogonal information retrieval methods to improve traceability recovery, in

106

BIBLIOGRAPHY

2011 27th IEEE International Conference on Software Maintenance (ICSM),

2011, pp. 133–142.

[59] A. GHANNEM, M. S. HAMDI, M. KESSENTINI, AND H. H. AMMAR, Search-based
requirements traceability recovery: A multi-objective approach, in 2017 IEEE

Congress on Evolutionary Computation (CEC), IEEE, 2017, pp. 1183–1190.

[60] R. GHARIBI, A. H. RASEKH, M. H. SADREDDINI, AND S. M. FAKHRAHMAD,

Leveraging textual properties of bug reports to localize relevant source files,

Information Processing & Management, 54 (2018), pp. 1058–1076.

[61] M. GOLZADEH, D. LEGAY, A. DECAN, AND T. MENS, Bot or not? detecting bots
in github pull request activity based on comment similarity, in Proceedings

of the IEEE/ACM 42nd International Conference on Software Engineering

Workshops, 2020, pp. 31–35.

[62] O. C. GOTEL AND C. FINKELSTEIN, An analysis of the requirements traceability
problem, in Proceedings of IEEE International Conference on Requirements

Engineering, IEEE, 1994, pp. 94–101.

[63] G. GOUSIOS, M. PINZGER, AND A. V. DEURSEN, An exploratory study of the pull-
based software development model, in Proceedings of the 36th International

Conference on Software Engineering, 2014, pp. 345–355.

[64] A. GRAVES AND J. SCHMIDHUBER, Framewise phoneme classification with bidi-
rectional lstm and other neural network architectures, Neural Networks, 18

(2005), pp. 602 – 610.

IJCNN 2005.

[65] J. GUO, J. CHENG, AND J. CLELAND-HUANG, Semantically enhanced software
traceability using deep learning techniques, in 2017 IEEE/ACM 39th Interna-

tional Conference on Software Engineering (ICSE), IEEE, 2017, pp. 3–14.

[66] J. GUO, M. GIBIEC, AND J. CLELAND-HUANG, Tackling the term-mismatch prob-
lem in automated trace retrieval, Empirical Software Engineering, 22 (2017),

pp. 1103–1142.

[67] S. HAIDRAR, A. ANWAR, AND O. ROUDIES, Towards a generic framework for
requirements traceability management for sysml language, in 2016 4th IEEE

107

BIBLIOGRAPHY

International Colloquium on Information Science and Technology (CiSt), 2016,

pp. 210–215.

[68] , A sysml-based approach to manage stakeholder requirements traceability,

in 2017 IEEE/ACS 14th International Conference on Computer Systems and

Applications (AICCSA), 2017, pp. 202–207.

[69] Z. HAN, X. LI, Z. XING, H. LIU, AND Z. FENG, Learning to predict severity
of software vulnerability using only vulnerability description, in 2017 IEEE

International Conference on Software Maintenance and Evolution (ICSME),

IEEE, 2017, pp. 125–136.

[70] J. HAYES, A. DEKHTYAR, S. SUNDARAM, AND S. HOWARD, Helping analysts
trace requirements: an objective look, in Proceedings. 12th IEEE International

Requirements Engineering Conference, 2004., 2004, pp. 249–259.

[71] J. H. HAYES, A. DEKHTYAR, AND S. K. SUNDARAM, Advancing candidate link
generation for requirements tracing: The study of methods, IEEE Transactions

on Software Engineering, 32 (2006), pp. 4–19.

[72] J. H. HAYES, A. DEKHTYAR, S. K. SUNDARAM, E. A. HOLBROOK, S. VADLAMUDI,

AND A. APRIL, Requirements tracing on target (retro): improving software main-
tenance through traceability recovery, Innovations in Systems and Software

Engineering, 3 (2007), pp. 193–202.

[73] A. R. HEVNER, S. T. MARCH, J. PARK, AND S. RAM, Design science in information
systems research, MIS quarterly, (2004), pp. 75–105.

[74] M. A. JAVED AND U. ZDUN, A systematic literature review of traceability ap-
proaches between software architecture and source code, in Proceedings of the

18th International Conference on Evaluation and Assessment in Software

Engineering, ACM, 2014, p. 16.

[75] G. JIANG AND W. WANG, Error estimation based on variance analysis of k-fold
cross-validation, Pattern Recognition, 69 (2017), pp. 94–106.

[76] J. JIANG, Q. WU, J. CAO, X. XIA, AND L. ZHANG, Recommending tags for pull
requests in github, Information and Software Technology, (2020), p. 106394.

108

BIBLIOGRAPHY

[77] K. KAFLE, M. YOUSEFHUSSIEN, AND C. KANAN, Data augmentation for visual
question answering, in Proceedings of the 10th International Conference on

Natural Language Generation, 2017, pp. 198–202.

[78] M. R. KARIM, G. RUHE, M. M. RAHMAN, V. GAROUSI, AND T. ZIMMERMANN,

An empirical investigation of single‚Äêobjective and multiobjective evolutionary
algorithms for developer’s assignment to bugs, Journal of Software: Evolution

and Process, 28 (2016), pp. 1025 – 1060.

[79] C. KAUNDILYA, D. CHAWLA, AND Y. CHOPRA, Automated text extraction from
images using ocr system, in 2019 6th International Conference on Computing

for Sustainable Global Development (INDIACom), 2019, pp. 145–150.

[80] E. KEENAN, A. CZAUDERNA, G. LEACH, J. CLELAND-HUANG, Y. SHIN,

E. MORITZ, M. GETHERS, D. POSHYVANYK, J. MALETIC, J. H. HAYES,

A. DEKHTYAR, D. MANUKIAN, S. HOSSEIN, AND D. HEARN, Tracelab: An
experimental workbench for equipping researchers to innovate, synthesize, and
comparatively evaluate traceability solutions, in 2012 34th International Con-

ference on Software Engineering (ICSE), 2012, pp. 1375–1378.

[81] J. D. M.-W. C. KENTON AND L. K. TOUTANOVA, Bert: Pre-training of deep bidirec-
tional transformers for language understanding, in Proceedings of NAACL-HLT,

2019, pp. 4171–4186.

[82] S. KIM, J. ZHAO, Y. TIAN, AND S. CHANDRA, Code prediction by feeding trees to
transformers, in 2021 IEEE/ACM 43rd International Conference on Software

Engineering (ICSE), 2021, pp. 150–162.

[83] Y. KIM, Convolutional neural networks for sentence classification, in Proceedings

of the 2014 Conference on Empirical Methods in Natural Language Processing

(EMNLP), Doha, Qatar, Oct. 2014, Association for Computational Linguistics,

pp. 1746–1751.

[84] B. KITCHENHAM AND S. CHARTERS, Guidelines for performing systematic litera-
ture reviews in software engineering, 2007.

[85] S. KLOCK, M. GETHERS, B. DIT, AND D. POSHYVANYK, Traceclipse: an eclipse
plug-in for traceability link recovery and management, in Proceedings of the

6th international workshop on traceability in emerging forms of software

engineering, ACM, 2011, pp. 24–30.

109

BIBLIOGRAPHY

[86] I. KOKKINOS, Ubernet: Training a universal convolutional neural network for low-,
mid-, and high-level vision using diverse datasets and limited memory, in Pro-

ceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

2017, pp. 6129–6138.

[87] R. KOPPLER, A systematic approach to fuzzy parsing, Software: Practice and

Experience, 27 (1997), pp. 637–649.

[88] D. KOTTACHCHI AND T. GINIGE, Slide hatch: Smart slide generator, in 2021 2nd

Global Conference for Advancement in Technology (GCAT), 2021, pp. 1–5.

[89] H. KUANG, H. GAO, H. HU, X. MA, J. LÜ, P. MÄDER, AND A. EGYED, Using frugal
user feedback with closeness analysis on code to improve ir-based traceability
recovery, in Proceedings of the 27th International Conference on Program

Comprehension, ICPC ‚Äô19, IEEE Press, 2019, p. 369‚Äì379.

[90] T.-D. B. LE, M. LINARES-VASQUEZ, D. LO, AND D. POSHYVANYK, Rclinker:
Automated linking of issue reports and commits leveraging rich contextual
information, in 2015 IEEE 23rd International Conference on Program Compre-

hension, 2015, pp. 36–47.

[91] H. LEE AND H. KWON, Going deeper with contextual cnn for hyperspectral image
classification, IEEE Transactions on Image Processing, 26 (2017), pp. 4843–

4855.

[92] S.-R. LEE, M.-J. HEO, C.-G. LEE, M. KIM, AND G. JEONG, Applying deep learning
based automatic bug triager to industrial projects, in Proceedings of the 2017

11th Joint Meeting on Foundations of Software Engineering, 2017, pp. 926–931.

[93] W.-T. LEE, Dependency link derivation process and theorems of requirements
traceability matrix, in 2016 International Computer Symposium (ICS), 2016,

pp. 561–566.

[94] X. LIANG, A. JIANG, T. LI, Y. XUE, AND G. WANG, Lr-smote–an improved un-
balanced data set oversampling based on k-means and svm, Knowledge-Based

Systems, (2020), p. 105845.

[95] G. LIU AND J. GUO, Bidirectional lstm with attention mechanism and convolu-
tional layer for text classification, Neurocomputing, 337 (2019), pp. 325–338.

110

BIBLIOGRAPHY

[96] X. LIU, J. GAO, X. HE, L. DENG, K. DUH, AND Y.-Y. WANG, Representation
learning using multi-task deep neural networks for semantic classification and
information retrieval, (2015).

[97] Y. LU, A. KUMAR, S. ZHAI, Y. CHENG, T. JAVIDI, AND R. FERIS, Fully-adaptive
feature sharing in multi-task networks with applications in person attribute
classification, in Proceedings of the IEEE conference on computer vision and

pattern recognition, 2017, pp. 5334–5343.

[98] A. D. LUCIA, F. FASANO, R. OLIVETO, AND G. TORTORA, Recovering traceability
links in software artifact management systems using information retrieval meth-
ods, ACM Transactions on Software Engineering and Methodology (TOSEM),

16 (2007), p. 13.

[99] K. MAHMOOD, H. TAKAHASHI, AND M. ALOBAIDI, A semantic approach for
traceability link recovery in aerospace requirements management system, in

2015 IEEE Twelfth International Symposium on Autonomous Decentralized

Systems, March 2015, pp. 217–222.

[100] A. MAHMOUD AND N. NIU, Supporting requirements traceability through refactor-
ing, in 2013 21st IEEE International Requirements Engineering Conference

(RE), 2013, pp. 32–41.

[101] A. MAHMOUD AND G. WILLIAMS, Detecting, classifying, and tracing non-
functional software requirements, Requirements Engineering, 21 (2016),

pp. 357–381.

[102] S. MANI, A. SANKARAN, AND R. ARALIKATTE, Deeptriage: Exploring the effective-
ness of deep learning for bug triaging, in Proceedings of the ACM India Joint

International Conference on Data Science and Management of Data, 2019,

pp. 171–179.

[103] A. MARCUS, X. XIE, AND D. POSHYVANYK, When and how to visualize traceability
links?, in Proceedings of the 3rd international workshop on Traceability in

emerging forms of software engineering, 2005, pp. 56–61.

[104] D. MATTER, A. KUHN, AND O. NIERSTRASZ, Assigning bug reports using a
vocabulary-based expertise model of developers, in 2009 6th IEEE international

working conference on mining software repositories, IEEE, 2009, pp. 131–140.

111

BIBLIOGRAPHY

[105] T. MERTEN, D. JUPPNER, AND A. DELATER, Improved representation of traceabil-
ity links in requirements engineering knowledge using sunburst and netmap
visualizations, in 2011 4th International Workshop on Managing Requirements

Knowledge, Aug 2011, pp. 17–21.

[106] T. MERTEN, D. KRÄMER, B. MAGER, P. SCHELL, S. BÜRSNER, AND B. PAECH,

Do information retrieval algorithms for automated traceability perform effec-
tively on issue tracking system data?, in International Working Conference on

Requirements Engineering: Foundation for Software Quality, Springer, 2016,

pp. 45–62.

[107] C. MILLS, J. ESCOBAR-AVILA, AND S. HAIDUC, Automatic traceability mainte-
nance via machine learning classification, in 2018 IEEE International Confer-

ence on Software Maintenance and Evolution (ICSME), Sep. 2018, pp. 369–380.

[108] C. MILLS AND S. HAIDUC, The impact of retrieval direction on ir-based traceability
link recovery, in 2017 IEEE/ACM 39th International Conference on Software

Engineering: New Ideas and Emerging Technologies Results Track (ICSE-

NIER), IEEE, 2017, pp. 51–54.

[109] , A machine learning approach for determining the validity of traceability links,

in 2017 IEEE/ACM 39th International Conference on Software Engineering

Companion (ICSE-C), 2017, pp. 121–123.

[110] L. MOONEN, Generating robust parsers using island grammars, in Proceedings

Eighth Working Conference on Reverse Engineering, IEEE, 2001, pp. 13–22.

[111] G. MURPHY AND D. CUBRANIC, Automatic bug triage using text categorization, in

Proceedings of the Sixteenth International Conference on Software Engineering

& Knowledge Engineering, Citeseer, 2004, pp. 1–6.

[112] H. T. MUSTAFA, J. YANG, AND M. ZAREAPOOR, Multi-scale convolutional neural
network for multi-focus image fusion, Image and Vision Computing, 85 (2019),

pp. 26 – 35.

[113] N. MUSTAFA AND Y. LABICHE, The need for traceability in heterogeneous systems:
A systematic literature review, in 2017 IEEE 41st Annual Computer Software

and Applications Conference (COMPSAC), vol. 1, IEEE, 2017, pp. 305–310.

112

BIBLIOGRAPHY

[114] V. NAIR AND G. E. HINTON, Rectified linear units improve restricted boltzmann
machines, in Proceedings of the 27th International Conference on International

Conference on Machine Learning, ICML’10, USA, 2010, Omnipress, pp. 807–

814.

[115] M. D. NETWORK AND INDIVIDUAL CONTRIBUTORS, Bugdays/bug-triage, 2018.

[116] A. NIGAM, B. NIGAM, C. BHAISARE, AND N. ARYA, Classifying the bugs using
multi-class semi supervised support vector machine, in International Confer-

ence on Pattern Recognition, Informatics and Medical Engineering (PRIME-

2012), March 2012, pp. 393–397.

[117] K. NISHIKAWA, H. WASHIZAKI, Y. FUKAZAWA, K. OSHIMA, AND R. MIBE, Re-
covering transitive traceability links among software artifacts, in 2015 IEEE

International Conference on Software Maintenance and Evolution (ICSME),

IEEE, 2015, pp. 576–580.

[118] N. NIU, T. BHOWMIK, H. LIU, AND Z. NIU, Traceability-enabled refactoring
for managing just-in-time requirements, in 2014 IEEE 22nd International

Requirements Engineering Conference (RE), 2014, pp. 133–142.

[119] N. NIU AND A. MAHMOUD, Enhancing candidate link generation for requirements
tracing: The cluster hypothesis revisited, in 2012 20th IEEE International

Requirements Engineering Conference (RE), Sep. 2012, pp. 81–90.

[120] A. NOYER, P. IYENGHAR, E. PULVERMUELLER, F. PRAMME, AND G. BIKKER,

Traceability and interfacing between requirements engineering and uml do-
mains using the standardized reqif format, in 2015 3rd International Con-

ference on Model-Driven Engineering and Software Development (MODEL-

SWARD), IEEE, 2015, pp. 1–6.

[121] I. OZKAYA AND O. AKIN, Tool support for computer-aided requirement traceability
in architectural design: The case of designtrack, Automation in construction,

16 (2007), pp. 674–684.

[122] A. PANICHELLA, B. DIT, R. OLIVETO, M. DI PENTA, D. POSHYVANYK, AND

A. DE LUCIA, How to effectively use topic models for software engineering
tasks? an approach based on genetic algorithms, in Proceedings of the 2013

International Conference on Software Engineering, ICSE ‚Äô13, IEEE Press,

2013, p. 522‚Äì531.

113

BIBLIOGRAPHY

[123] A. PANICHELLA, C. MCMILLAN, E. MORITZ, D. PALMIERI, R. OLIVETO,

D. POSHYVANYK, AND A. DE LUCIA, When and how using structural in-
formation to improve ir-based traceability recovery, in 2013 17th European

Conference on Software Maintenance and Reengineering, March 2013, pp. 199–

208.

[124] J.-W. PARK, M.-W. LEE, J. KIM, S.-W. HWANG, AND S. KIM, Cost-aware triage
ranking algorithms for bug reporting systems, Knowledge and Information

Systems, 48 (2016), pp. 679–705.

[125] J. PENNINGTON, R. SOCHER, AND C. D. MANNING, Glove: Global vectors for word
representation, in Proceedings of the 2014 conference on empirical methods in

natural language processing (EMNLP), 2014, pp. 1532–1543.

[126] K. POHL, Requirements engineering : fundamentals, principles, and techniques,

Springer, Heidelberg ;, 2010.

[127] K. POHL AND C. RUPP, Requirements Engineering Fundamentals: A Study Guide
for the Certified Professional for Requirements Engineering Exam - Foundation
Level - IREB Compliant, Rocky Nook, 1st ed., 2011.

[128] S. POLISETTY, A. MIRANSKYY, AND A. BAŞAR, On usefulness of the deep-learning-
based bug localization models to practitioners, in Proceedings of the Fifteenth

International Conference on Predictive Models and Data Analytics in Software

Engineering, ACM, 2019, pp. 16–25.

[129] A. RADFORD, J. WU, R. CHILD, D. LUAN, D. AMODEI, AND I. SUTSKEVER,

Language models are unsupervised multitask learners, OpenAI blog, 1 (2019),

p. 9.

[130] M. RAHIMI AND J. CLELAND-HUANG, Evolving software trace links between
requirements and source code, Empirical Software Engineering, 23 (2018),

pp. 2198–2231.

[131] M. RAHIMI, W. GOSS, AND J. CLELAND-HUANG, Evolving requirements-to-code
trace links across versions of a software system, in 2016 IEEE International

Conference on Software Maintenance and Evolution (ICSME), Oct 2016, pp. 99–

109.

114

BIBLIOGRAPHY

[132] B. RAMESH AND M. JARKE, Toward reference models for requirements traceability,

IEEE Transactions on Software Engineering, 27 (2001), pp. 58–93.

[133] M. RATH, D. LO, AND P. MÄDER, Analyzing requirements and traceability in-
formation to improve bug localization, in 2018 IEEE/ACM 15th International

Conference on Mining Software Repositories (MSR), IEEE, 2018, pp. 442–453.

[134] M. RATH, J. RENDALL, J. L. GUO, J. CLELAND-HUANG, AND P. MÄDER, Trace-
ability in the wild: automatically augmenting incomplete trace links, in 2018

IEEE/ACM 40th International Conference on Software Engineering (ICSE),

IEEE, 2018, pp. 834–845.

[135] P. REMPEL AND P. MADER, A quality model for the systematic assessment of
requirements traceability, in 2015 IEEE 23rd International Requirements

Engineering Conference (RE), 2015, pp. 176–185.

[136] H. RUAN, B. CHEN, X. PENG, AND W. ZHAO, Deeplink: Recovering issue-commit
links based on deep learning, Journal of Systems and Software, 158 (2019),

p. 110406.

[137] P. RUNESON, M. ALEXANDERSSON, AND O. NYHOLM, Detection of duplicate defect
reports using natural language processing, in 29th International Conference

on Software Engineering (ICSE’07), IEEE, 2007, pp. 499–510.

[138] M. SEILER, P. HUBNER, AND B. PAECH, Comparing traceability through infor-
mation retrieval, commits, interaction logs, and tags, in 2019 IEEE/ACM 10th

International Symposium on Software and Systems Traceability (SST), May

2019, pp. 21–28.

[139] Y. SHINOHARA, Adversarial multi-task learning of deep neural networks for robust
speech recognition., in Interspeech, San Francisco, CA, USA, 2016, pp. 2369–

2372.

[140] T. STANDLEY, A. R. ZAMIR, D. CHEN, L. GUIBAS, J. MALIK, AND S. SAVARESE,

Which tasks should be learned together in multi-task learning?, 2020.

[141] Y. SUI, X. CHENG, G. ZHANG, AND H. WANG, Flow2vec: Value-flow-based precise
code embedding, Proc. ACM Program. Lang., 4 (2020).

115

BIBLIOGRAPHY

[142] A. TAMRAWI, T. T. NGUYEN, J. M. AL-KOFAHI, AND T. N. NGUYEN, Fuzzy set
and cache-based approach for bug triaging, in Proceedings of the 19th ACM

SIGSOFT Symposium and the 13th European Conference on Foundations of

Software Engineering, ESEC/FSE ’11, New York, NY, USA, 2011, Association

for Computing Machinery, p. 365‚Äì375.

[143] R. TSUCHIYA, H. WASHIZAKI, Y. FUKAZAWA, K. OSHIMA, AND R. MIBE, In-
teractive recovery of requirements traceability links using user feedback and
configuration management logs, in International Conference on Advanced

Information Systems Engineering, Springer, 2015, pp. 247–262.

[144] M. TUFANO, C. WATSON, G. BAVOTA, M. DI PENTA, M. WHITE, AND D. POSHY-

VANYK, Deep learning similarities from different representations of source code,

in Proceedings of the 15th International Conference on Mining Software Repos-

itories, MSR ’18, New York, NY, USA, 2018, ACM, pp. 542–553.

[145] M. UNTERKALMSTEINER, T. GORSCHEK, R. FELDT, AND N. LAVESSON, Large-
scale information retrieval in software engineering-an experience report from
industrial application, Empirical Software Engineering, 21 (2016), pp. 2324–

2365.

[146] T. VALE AND E. S. DE ALMEIDA, Experimenting with information retrieval methods
in the recovery of feature-code spl traces, Empirical Software Engineering, 24

(2019), pp. 1328–1368.

[147] Y. WAN, Z. ZHAO, M. YANG, G. XU, H. YING, J. WU, AND P. S. YU, Improv-
ing automatic source code summarization via deep reinforcement learning, in

Proceedings of the 33rd ACM/IEEE International Conference on Automated

Software Engineering, ACM, 2018, pp. 397–407.

[148] W. WANG, A. GUPTA, N. NIU, L. DA XU, J.-R. C. CHENG, AND Z. NIU, Automat-
ically tracing dependability requirements via term-based relevance feedback,

IEEE Transactions on Industrial Informatics, 14 (2016), pp. 342–349.

[149] W. WANG, N. NIU, H. LIU, AND Z. NIU, Enhancing automated requirements trace-
ability by resolving polysemy, in 2018 IEEE 26th International Requirements

Engineering Conference (RE), IEEE, 2018, pp. 40–51.

[150] M. WHITE, M. TUFANO, M. MARTINEZ, M. MONPERRUS, AND D. POSHYVANYK,

Sorting and transforming program repair ingredients via deep learning code

116

BIBLIOGRAPHY

similarities, in 2019 IEEE 26th International Conference on Software Analysis,

Evolution and Reengineering (SANER), IEEE, 2019, pp. 479–490.

[151] T. WOLFENSTETTER, K. FULLER, M. BOHM, H. KRCMAR, AND S. BRUNDL,

Towards a requirements traceability reference model for product service systems,

in 2015 International Conference on Industrial Engineering and Systems

Management (IESM), 2015, pp. 1213–1220.

[152] S. XI, Y. YAO, X. XIAO, F. XU, AND J. LU, An effective approach for routing the bug
reports to the right fixers, in Proceedings of the Tenth Asia-Pacific Symposium

on Internetware, 2018, pp. 1–10.

[153] S.-Q. XI, Y. YAO, X.-S. XIAO, F. XU, AND J. LV, Bug triaging based on tossing
sequence modeling, Journal of Computer Science and Technology, 34 (2019),

pp. 942–956.

[154] X. XIA, Y. FENG, D. LO, Z. CHEN, AND X. WANG, Towards more accurate multi-
label software behavior learning, in 2014 Software Evolution Week-IEEE Con-

ference on Software Maintenance, Reengineering, and Reverse Engineering

(CSMR-WCRE), IEEE, 2014, pp. 134–143.

[155] X. XIA, D. LO, Y. DING, J. M. AL-KOFAHI, T. N. NGUYEN, AND X. WANG, Improv-
ing automated bug triaging with specialized topic model, IEEE Transactions

on Software Engineering, 43 (2017), pp. 272–297.

[156] X. XIA, D. LO, X. WANG, AND B. ZHOU, Tag recommendation in software informa-
tion sites, in 2013 10th Working Conference on Mining Software Repositories

(MSR), IEEE, 2013, pp. 287–296.

[157] Q. XIE, Z. WEN, J. ZHU, C. GAO, AND Z. ZHENG, Detecting duplicate bug re-
ports with convolutional neural networks, in 2018 25th Asia-Pacific Software

Engineering Conference (APSEC), 2018, pp. 416–425.

[158] J. XUAN, H. JIANG, Z. REN, AND W. ZOU, Developer prioritization in bug reposito-
ries, in 2012 34th International Conference on Software Engineering (ICSE),

2012, pp. 25–35.

[159] A. YADAV, S. K. SINGH, AND J. S. SURI, Ranking of software developers based
on expertise score for bug triaging, Information and Software Technology, 112

(2019), pp. 1–17.

117

BIBLIOGRAPHY

[160] K. C. YOUM, J. AHN, J. KIM, AND E. LEE, Bug localization based on code change
histories and bug reports, in 2015 Asia-Pacific Software Engineering Conference

(APSEC), Dec 2015, pp. 190–197.

[161] S. YU, L. XU, Y. ZHANG, J. WU, Z. LIAO, AND Y. LI, Nbsl: A supervised classifica-
tion model of pull request in github, in 2018 IEEE International Conference on

Communications (ICC), May 2018, pp. 1–6.

[162] Y. YU, H. WANG, G. YIN, AND T. WANG, Reviewer recommendation for pull-
requests in github: What can we learn from code review and bug assignment?,

Information and Software Technology, 74 (2016), pp. 204 – 218.

[163] T. ZHANG, J. CHEN, G. YANG, B. LEE, AND X. LUO, Towards more accurate
severity prediction and fixer recommendation of software bugs, Journal of

Systems and Software, 117 (2016), pp. 166–184.

[164] T. ZHANG AND B. LEE, An automated bug triage approach: A concept profile and
social network based developer recommendation, in International Conference

on Intelligent Computing, Springer, 2012, pp. 505–512.

[165] Z. ZHANG, P. LUO, C. C. LOY, AND X. TANG, Facial landmark detection by deep
multi-task learning, in European conference on computer vision, Springer,

2014, pp. 94–108.

[166] D. ZHOU, J. WANG, B. JIANG, H. GUO, AND Y. LI, Multi-task multi-view learn-
ing based on cooperative multi-objective optimization, IEEE Access, 6 (2017),

pp. 19465–19477.

[167] C. ZIFTCI AND I. KRÜGER, Getting more from requirements traceability: Require-
ments testing progress, in 2013 7th International Workshop on Traceability in

Emerging Forms of Software Engineering (TEFSE), IEEE, 2013, pp. 12–18.

118

	Title Page
	Certificate of Original Authorship
	Dedication
	Abstract
	Acknowledgments
	List of Publications
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Challenges
	Our Approaches
	Thesis Organization

	A Literature Review of Automatic Traceability Link Recovery
	Overview
	Background
	Research Method
	Objectives and Research Questions
	Protocol Development
	Search Strategy and Data Sources
	Study Selection
	Quality Assessment
	Data Extraction and Analysis

	Results
	Traceability Links Recovery Approaches Between Software Artifacts
	Traceability Direction and Evaluation
	Support Change Impact Set
	Traceability Links Recovery Ways

	Discussion
	Findings of RQs
	Limitations and Future Work

	Threats To Validity
	Chapter Summary

	Interactive Traceability Links Visualization using A Hierarchical Trace Map
	Overview
	Background
	Visual Support for Traceability Links Visualization
	Related Work
	Visualization
	Traceability model

	Chapter Summary

	Multi-triage : bug triage based on deep multi-task learning
	Overview
	Background
	Developers and Issue Types Recommendation Tasks in Bug Triage
	Multi-task learning

	A motivating example
	Multi-triage
	General
	Data Extraction
	Contextual Data Augmenter
	Multi-Triage Model
	Code Representation
	Task-Specific Classifiers

	Evaluation
	Results
	RQ1: How does the multi-triage model compare to other approaches?
	RQ2: Which component contributes more to the multi-triage model?
	RQ3: Does increasing the size of training datasets (based on the contextual data augmentation approach) improve our model's accuracy?

	Threats to Validity
	Discussion
	Accessing the Significance of Our Approach
	Evaluation using Time-Series Based Cross Validation
	Alternative Considerations on Model Building
	Applicability of Contextual Data Augmentation Approach
	Lessons Learned

	Related Work
	Semi-Automatic Bug Triage
	Multi-Task Learning
	Other Tasks in the Bug Resolution Process

	Chapter Summary

	Case Study of Automatic Bug Triage Process Model at Software Industry
	Overview
	Contributions

	Background
	Dialog IT Issue Tracking Systems Background

	Proposed Solution
	Research Method
	Design Solution
	Results
	Data analysis of historical issue reports
	AI recommendation model performance
	Bug triage application
	Bug triage hosting components and application services

	Chapter Summary

	Conclusions and Future Work
	Conclusions
	Threats to Validity
	Future Work

	Bibliography

