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Abstract

Clustering is a classical technique in the field of data mining. It has played a key
role in domains such as biology, medicine, business, and climatology, and is employed
in nearly all scientific and social sciences. Despite the significance and pervasiveness
of clustering and the plethora of existing algorithms, the current clustering methods
suffer from a variety of drawbacks. For example, standard hierarchical clustering has
an excessive computational overhead and requires some manually determined
conditions. Partition clustering, such as K-means, demands that the number of clusters
must either be known or estimated in advance and cannot detect non-convex clusters of
varying size or density. Density clustering typically requires a suite of thresholds to be
set in advance, such as cut-off distance. Model-based clustering generally relies on prior
knowledge of many parameter settings, which is often very difficult to acquire in
practice. Classic grid clustering also depends on many user-provided parameters, such
as interval values to divide space and density thresholds.

On the other hand, in recent years, multi-view clustering has become a new
research hotspot. Essentially, multi-view clustering arises from the combination of
clustering problems and multi-view learning. Different from the various conventional
single-view clustering methods mentioned above, as an extension of single-view
clustering, multi-view clustering is used to handle multi-view data gathered from
numerous feature collectors or collected from various sources in various domains.
However, most current multi-view clustering approaches suffer from the following
three problems: a) parameter tuning, b) significant computational cost, and ¢) difficulty
in finding globally optimal view weights.

To solve the above problems, this thesis first proposes a brand-new efficient
parameter-free autonomous clustering algorithm called Torque Clustering (TC). The
proposed TC overcomes almost all the shortcomings in previous clustering methods.
Furthermore, considering the good performance of the proposed TC, this thesis extends
TC to two multi-view clustering algorithms, containing multi-view adjacency-
constrained hierarchical clustering (MCHC) and particle swarm optimization (PSO)-
based multi-view nearest neighbor clustering (PMNNC). MCHC tries to solve two
problems in current multi-view clustering methods: a) parameter tuning and b)
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significant computational cost. PMNNC focuses on solving the third problem: c)
difficulty in finding globally optimal view weights. Finally, we further apply the pseudo
labels generated by TC to propose a new metric learning framework, named almost
ultrametric learning using pseudo labels of torque clustering (AUMLTC), which can
help other algorithms improve performance in a parameter-free and unsupervised
manner.

This Ph.D. thesis contains seven chapters. Chapter 1 introduces the background,
objectives, scope, organization, and contributions of the thesis. Chapter 2 presents the
literature review of the research. Chapter 3 proposes a new parameter-free autonomous
clustering, i.e., TC. Chapter 4 exploits the partial mechanism of TC in Chapter 3 as a
backbone to propose a new parameter-free multi-view clustering with low
computational overhead, i.e., MCHC. Chapter 5 also exploits the partial mechanism of
TC in Chapter 3 as a backbone to propose a novel multi-view clustering based on an
evolutionary algorithm, i.e., PMNNC. Chapter 6 leverages the pseudo labels of TC in
Chapter 3 to propose a new metric learning framework, i.e., AUMLTC. Chapter 7

includes an overview of the thesis's contents and some suggestions for future works.

Keywords: Clustering, Parameter-free, Multi-view Clustering, Autonomous, Metric

Learning
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