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Abstract 

Clustering is a classical technique in the field of data mining. It has played a key 

role in domains such as biology, medicine, business, and climatology, and is employed 

in nearly all scientific and social sciences. Despite the significance and pervasiveness 

of clustering and the plethora of existing algorithms, the current clustering methods 

suffer from a variety of drawbacks. For example, standard hierarchical clustering has 

an excessive computational overhead and requires some manually determined 

conditions. Partition clustering, such as K-means, demands that the number of clusters 

must either be known or estimated in advance and cannot detect non-convex clusters of 

varying size or density. Density clustering typically requires a suite of thresholds to be 

set in advance, such as cut-off distance. Model-based clustering generally relies on prior 

knowledge of many parameter settings, which is often very difficult to acquire in 

practice. Classic grid clustering also depends on many user-provided parameters, such 

as interval values to divide space and density thresholds. 

On the other hand, in recent years, multi-view clustering has become a new 

research hotspot. Essentially, multi-view clustering arises from the combination of 

clustering problems and multi-view learning. Different from the various conventional 

single-view clustering methods mentioned above, as an extension of single-view 

clustering, multi-view clustering is used to handle multi-view data gathered from 

numerous feature collectors or collected from various sources in various domains. 

However, most current multi-view clustering approaches suffer from the following 

three problems: a) parameter tuning, b) significant computational cost, and c) difficulty 

in finding globally optimal view weights. 

To solve the above problems, this thesis first proposes a brand-new efficient 

parameter-free autonomous clustering algorithm called Torque Clustering (TC). The 

proposed TC overcomes almost all the shortcomings in previous clustering methods. 

Furthermore, considering the good performance of the proposed TC, this thesis extends 

TC to two multi-view clustering algorithms, containing multi-view adjacency-

constrained hierarchical clustering (MCHC) and particle swarm optimization (PSO)-

based multi-view nearest neighbor clustering (PMNNC). MCHC tries to solve two 

problems in current multi-view clustering methods: a) parameter tuning and b) 
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significant computational cost. PMNNC focuses on solving the third problem: c) 

difficulty in finding globally optimal view weights. Finally, we further apply the pseudo 

labels generated by TC to propose a new metric learning framework, named almost 

ultrametric learning using pseudo labels of torque clustering (AUMLTC), which can 

help other algorithms improve performance in a parameter-free and unsupervised 

manner. 

This Ph.D. thesis contains seven chapters. Chapter 1 introduces the background, 

objectives, scope, organization, and contributions of the thesis. Chapter 2 presents the 

literature review of the research. Chapter 3 proposes a new parameter-free autonomous 

clustering, i.e., TC. Chapter 4 exploits the partial mechanism of TC in Chapter 3 as a 

backbone to propose a new parameter-free multi-view clustering with low 

computational overhead, i.e., MCHC. Chapter 5 also exploits the partial mechanism of 

TC in Chapter 3 as a backbone to propose a novel multi-view clustering based on an 

evolutionary algorithm, i.e., PMNNC. Chapter 6 leverages the pseudo labels of TC in 

Chapter 3 to propose a new metric learning framework, i.e., AUMLTC. Chapter 7 

includes an overview of the thesis's contents and some suggestions for future works. 
 

Keywords:  Clustering, Parameter-free, Multi-view Clustering, Autonomous, Metric 

Learning 
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Chapter 1. Introduction 

 

1.1 Background 

Clustering is a classical and well-known algorithm in the field of unsupervised data 

mining. It has been instrumental in domains such as biology, medicine, business, and 

climatology, and is employed in nearly all scientific and social sciences [1]. For example, in 

the commercial field, Horng-Jinh Chang et al. introduced a clustering analysis-based model 

that predicts the buying behavior of prospective customers [2]. In the biology field, clustering 

is of central importance for the analysis of genetic data, as it is used to identify putative cell 

types [3]. In addition, clustering can also be applied to image segmentation, object or 

character recognition [4], [5], data reduction [6], [7], and representation learning [8]. 

From the perspective of clustering principles, the clustering algorithm mainly includes 

hierarchical algorithms, partition-based algorithms, density-based algorithms, model-based 

algorithms, and grid-based algorithms [9]. However, existing clustering algorithms suffer 

from various inherent shortcomings. 

With a typical time cost of 𝑂 𝑛 , standard hierarchical clustering is computationally 

expensive; hence, large-scale data sets are not suited for these techniques. Furthermore, 

stopping the clustering process requires manually determined conditions, such as “Stop at K 

number of clusters”. Some of the newer algorithms circumvent these shortcomings by either 

using a fast approximate nearest neighbor method to accelerate the clustering process [10]–

[13] or by pruning the cluster trees to determine the correct cluster number [14], [15]. 

Partition clustering algorithms like K-means [16] require either prior knowledge or 

estimation of the number of clusters. Additionally, these algorithms cannot detect clusters 

that are not convex in shape and have varying sizes or densities, and most of them are highly 

sensitive to noise, outliers, and getting the initialization phase “right”. Improvements over 

these algorithms include the X-means clustering [17], which is able to predict the 

approximate number of clusters automatically, and kernel K-means and its variant, spectral 

clustering, which solve the non-convex problem [18], [19]. Further methods address the 
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initialization problem [20], [21]. 

In the past, density clustering typically required a suite of thresholds to be set in 

advance – for example, the cut-off radius distance used to calculate the density of data points, 

the defined cluster needs to contain at least how many points, and so on. Today’s density-

based algorithms employ a variety of tricks and techniques to depend less on these thresholds 

[22]–[30]. For example, Liang et al. [24] proposed the 3DC strategy based clustering that can 

automatically identify the optimal number of clusters. Du et al. [30] introduced k nearest 

neighbors (KNN) and principal component analysis (PCA) into density peak clustering to 

predict the number of clusters with greater precision and achieve better results on high-

dimensional data sets. 

Model-based clustering generally relies on prior knowledge of many parameter settings, 

such as the distribution of each cluster, even though this information is often very difficult to 

acquire in practice. Hence, solutions to alleviate this disadvantage have also emerged [31]–

[33]. For example, Scrucca, L. et al. [31] proposed an enhanced model-based clustering based 

on data transformations, which can lead to improved model fitting and more accurate 

clustering results. O’Hagan, A. et al. [32] proposed the Bayesian initialization averaging 

method to generate high-quality initial parameter settings for the expectation–maximization 

algorithm. 

Last, classic grid clustering also depends on many user-provided parameters, such as 

interval values to divide space and density thresholds, and most algorithms are not suitable 

for high-dimensional data sets. Many variant algorithms have been proposed to solve these 

problems [34]–[36]. For example, Chen, J. et al. [34] proposed a new grid-based clustering 

algorithm for mixed data streams that can automatically determine the number of clusters, 

their centers, and radii. 

On the other hand, in the past few years, multi-view clustering has become a new 

research filed. Essentially, multi-view clustering arises from the combination of clustering 

problems and multi-view learning [37]. Different from the various conventional single-view 

clustering methods mentioned above, as an extension of single-view clustering, multi-view 
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clustering can process multi-view data that are gathered from diverse sources in different 

domains or acquired through various feature extraction methods [38]. For instance, multiple 

heterogeneous features can be used to characterize an image, such as scale-invariant feature 

transform (SIFT) descriptors [39], GIST descriptors [40], local binary patterns (LBP) [41], 

etc. Multiple compatible and complementary features are combined in multi-view clustering 

algorithms to enhance clustering performance. 

Almost all multi-view clustering methods exploit single-view clustering methods as the 

backbones to learn the complementary representation of multiple views to enhance clustering 

accuracy. Multi-view clustering, for example, consists mostly of multi-view subspace 

clustering and multi-view spectral clustering [42], which leverage single-view subspace 

clustering and single-view spectral clustering as backbones, respectively. Despite the 

importance of multi-view clustering and the abundance of existing algorithms in previous 

decades, most contemporary approaches in multi-view clustering generally have the 

following three issues: a) parameter tuning, b) high computational cost, and c) difficulty in 

finding globally optimal view weights. For most multi-view clustering algorithms, e.g., 

multi-view spectral clustering algorithms [43]–[46] and multi-view subspace clustering 

algorithms [47]–[50], the ultimate performance of the models is significantly influenced by 

adjusting parameters. For example, Zong et al. proposed a multi-view spectral clustering 

algorithm based on distinct view weights, which has two parameters that need to be set to 

assign an optimal weight to each view [46]. Zheng et al. proposed a constrained bilinear 

factorization multi-view subspace clustering algorithm, which also has two prior 

information-related parameters to tune to obtain competitive performance [49]. For current 

multi-view clustering, prior knowledge, such as noise level and label information, is required 

to guide the specific parameter choice steps, which is troublesome. Furthermore, the 

computational overhead of most prior multi-view clustering algorithms is also high; multi-

view clustering based on subspace learning and spectral representation learning, for example, 

both have time complexities of 𝑂 𝑛  . Finally, many multi-view clustering algorithms 

employ gradient-based optimization methods to find optimal view weights. However, one of 
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the limitations of gradient-based methods is the existence of numerous local optima, which 

can result in solutions where achieving global optimality is challenging [51]. For example, 

Erlin Pan et al. proposed a multi-view contrastive graph clustering algorithm, which exploits 

the gradient-based method to learn a consensus graph shared by all views [52]. Salima 

Ouadfel et al. suggested a weighted multi-view clustering algorithm that utilizes a multi-

objective gradient optimizer approach, which identifies an appropriate consensus clustering 

that takes into account both the disparity between views and the significance of 

characteristics in each view [53]. Most multi-view clustering algorithms have one or more of 

the above three shortcomings. These three shortcomings also greatly hinder the application 

of multi-view clustering in practical scenarios. 

 

1.2 Insights and our solutions 

As stated in the background section, from the perspective of clustering principles, a good 

clustering solution would therefore be able to recognize various types of clusters with 

different shapes, sizes, or densities; be parameter-free; not depend on a priori knowledge; 

have a relatively low computational overhead and a reasonable time complexity; be robust to 

noise and outliers; not require initialization; be able to determine the number of clusters 

automatically; and preclude the need for a manually specified stopping condition. Therefore, 

this thesis first proposes a parameter-free autonomous clustering algorithm with all the above 

advantages: Torque Clustering (TC). Note that, like most previous clustering algorithms, TC 

is a single-view clustering algorithm. 

As an extension of single-view clustering, we have discussed the three main limitations 

of the majority of current multi-view clustering techniques in the background section: a) 

parameter choice, b) high computational cost, and c) difficulty in finding globally optimal 

view weights. Considering that the abovementioned proposed TC has good clustering 

performance, does not need to be adjusted with parameters, and has a low computational cost, 

it is therefore natural that we further extend TC to two multi-view clustering algorithms, 

including multi-view adjacency-constrained hierarchical clustering (MCHC) and particle 
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swarm optimization (PSO)-based multi-view nearest neighbor clustering (PMNNC). The 

MCHC attempts to solve two problems in current multi-view clustering methods: a) 

parameter tuning and b) significant computational expense. PMNNC focuses on solving the 

third problem: c) difficulty in finding globally optimal view weights. 

Thus far, this thesis has proposed three clustering algorithms, including TC, MCHC, 

and PMNNC. The clustering algorithms proposed in this thesis can be used in various 

scenarios. For example, these three clustering algorithms are exploited to process data sets in 

various fields during our experimental study, including image recognition, biology, medicine, 

physics, astronomy, etc. In addition, due to the superior performance of the proposed TC, at 

the end of this thesis, we further apply the pseudo labels generated by TC to learn a new 

distance metric to help other algorithms improve performance in a parameter-free and 

unsupervised manner. 

 

1.3 Research objectives 

The following are the thesis's key research objectives. 
 

i. To propose a brand-new parameter-free autonomous clustering algorithm 

Despite the importance and ubiquity of clustering and the plethora of existing algorithms, the 

current clustering methods suffer from a variety of drawbacks. For example, almost all 

clustering algorithms need predetermined selection of the desired number of clusters. The 

majority of partition-based clustering approaches cannot identify clusters that are non-convex 

and have varying sizes or densities. Conventional hierarchical clustering has high 

computational overhead. To achieve this objective, we propose a novel autonomous 

clustering algorithm called Torque Clustering (TC). The proposed TC overcomes almost all 

the shortcomings in previous clustering methods. 

 
ii. To propose a new parameter-free multi-view clustering with low computational 

overhead 

Most currently available multi-view clustering algorithms have issues with computational 

complexity and parameter tuning. Multi-view clustering that is based on subspace and 
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spectral representation, for example, both have time complexities of 𝑂 𝑛 . In this objective, 

exploiting partial mechanism of TC in objective 1 as a backbone, we propose a new 

parameter-free multi-view clustering with little computing expense, named multi-view 

adjacency-constrained hierarchical clustering (MCHC). 

 
iii. To propose a novel multi-view clustering combined an evolutionary algorithm 

Many existing multi-view clustering algorithms employ gradient-based optimization 

methods to find optimal view weights. However, these methods may become trapped in a 

local minimum, resulting in poor performance. In contrast, evolutionary optimization 

algorithms, such as particle swarm optimization (PSO) [236], are more likely to reach the 

global optimum [54], [55]. In this objective, exploiting partial mechanism of TC in objective 

1 as a backbone, a new multi-view clustering has been presented, named PSO-based multi-

view nearest neighbor clustering (PMNNC). 

 
iv. To apply pseudo labels of clustering to metric learning 

The application range of clustering is very broad. In previous studies, clustering can also be 

applied to representation learning [8] or metric learning [56]. In this objective, exploiting TC 

in objective 1 as a backbone, we propose a new metric learning framework, named almost 

ultrametric learning using pseudo labels of torque clustering (AUMLTC). 

 

1.4 Research scope 

Clustering is a very classic machine learning or data mining paradigm. The main goal 

of this thesis is to propose a relatively general clustering algorithm (i.e., TC) to meet the 

needs of users or researchers in most cases. In addition, as a more in-depth study, we also 

leverage TC or its clustering mechanism as the backbone and extend it into two new multi-

view clustering algorithms to solve related problems in the field of multi-view clustering. In 

addition, we also combine TC's pseudo labels and the concept of ultrametric, build a bridge 

between TC and metric learning, and propose a new metric learning framework. Therefore, 
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this thesis includes the related research and discussion on clustering, multi-view clustering, 

metric learning based on pseudo labels of clustering, and other topics. In fact, it is not difficult 

to further extend or improve TC. For example, following extending TC to the field of multi-

view clustering, researchers can also consider extending TC to deep clustering, distributed 

clustering, semi-supervised clustering, and other related fields. Due to space limitations, this 

thesis doesn't include other extension content. 

 

1.5 Thesis overview 

The thesis is organized as follows: 

 Chapter 1: This chapter presents the background, objectives, scope, organization, and 

contributions of the thesis. 

 Chapter 2: The research literature review is presented in this chapter. 

 Chapter 3: This chapter proposes a new parameter-free autonomous clustering, i.e., TC. 

 Chapter 4: This chapter exploits the partial mechanism of TC in Chapter 3 as a backbone 

to propose a new parameter-free multi-view clustering with low computational overhead, 

i.e., MCHC. 

 Chapter 5: This chapter also exploits the partial mechanism of TC in Chapter 3 as a 

backbone to propose a new multi-view clustering based on an evolutionary algorithm, 

i.e., PMNNC. 

 Chapter 6: This chapter leverages the pseudo labels of TC in Chapter 3 to propose a new 

metric learning framework, i.e., AUMLTC. 

 Chapter 7: The final chapter contains an overview of the thesis's contents and 

contributions. There are also suggestions for future works. 

Fig. 1.1 shows the relationship between chapters. We can see that Chapters 4-6 can be 

regarded as extensions or applications of Chapter 3. Both Chapter 4 and Chapter 5 inherit the 

partial clustering mechanism of TC introduced in Chapter 3; Chapter 6 adopts the pseudo 

labels of TC in Chapter 3 to perform metric learning.  

Since this thesis is organized by the compilation of papers (Chapters) and each paper 
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(Chapter) has a different focus, to ensure that each chapter is self-contained, there may be 

some repetitions between them, such as introduction, methodology, data sets, etc. In addition, 

the expression of TC or its mechanism in each paper (Chapter) will be different. For example, 

in Chapter 4 and Chapter 5, the partial clustering mechanism of TC is reformulated as 

adjacency-constrained nearest neighbor clustering (CNNC).  

Figure 1.1. The relationship between Chapters. 

 

1.6 Key contributions 

In Chapter 3, we propose a brand-new clustering algorithm (Torque Clustering, TC) 

derived from the natural idea that a cluster and its nearest cluster with higher mass ought to 

be merged into one cluster unless they both have relatively large masses and the distance 

between them is also relatively large. The finding of mass and distance peaks reveals the 

mergers that do not conform to the rule and should be removed. The TC algorithm is 

parameter-free and harnesses this idea to recognize any cluster and find the proper number 

of clusters and noise autonomously. The performance of the proposed TC algorithm was 

evaluated on 76 synthetic and real-world data sets, demonstrating its remarkable versatility 

and superiority over the top competing algorithm. Additionally, we also compare it with the 

latest state-of-the-art deep clustering algorithms on several challenging image data sets. The 

proposed TC algorithm without any deep representation achieves better or close performance 

compared to deep clustering algorithms on image clustering. 
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In Chapter 4, we propose a simple but efficient framework: Multi-view adjacency-

Constrained Hierarchical Clustering (MCHC). Specifically, MCHC mainly consists of three 

parts: the Fusion Distance matrices with Extreme Weights (FDEW); adjacency-Constrained 

Nearest Neighbor Clustering (CNNC); and the internal evaluation Index based on Rawls' 

Max-Min criterion (MMI). FDEW aims to learn a fusion distance matrix set, which uses both 

consensus information among multiple views and the information from each individual view. 

CNNC is utilized to generate multiple partitions based on FDEW, and MMI is designed for 

choosing the best one from the multiple partitions. In addition, we propose a parameter-free 

version of MCHC (MCHC-PF). Without any parameter selection, MCHC-PF can give 

partitions at different granularity levels with a low time complexity. Comprehensive 

evaluations on eight real-world data sets indicate that the proposed MCHC (-PF) approach 

outperforms the 10 most advanced existing methods. 

In Chapter 5, we propose a particle swarm optimization (PSO)-based Multi-view 

Nearest Neighbor Clustering (PMNNC) algorithm. Different from previous spectral (or 

subspace)-based multi-view clustering, we leverage adjacency-constrained nearest neighbor 

clustering (CNNC) to enhance the clustering performance on fusion data from multiple views. 

Furthermore, we propose a new fitness function based on the internal validity index to help 

learn parameters more accurately. Ultimately, we integrate PSO and CNNC to acquire a 

fusion distance matrix from multiple views, which enhances the clustering outcomes. 

Comprehensive evaluations using seven real-world data sets illustrate the advantages of the 

proposed PMNNC over the top 10 most advanced existing techniques. 

In Chapter 6, we first introduce the difference between metric space and ultrametric 

space. Then, we propose a novel metric called Almost UltraMetric (AUM) and prove that 

under weak conditions, it will be a true ultrametric. Since the learning of the proposed AUM 

requires the guidance of ground truth labels, we further propose using pseudo labels of TC to 

approximate ground truth labels, thus making the learning process completely unsupervised. 

We call this whole metric learning framework Almost UltraMetric Learning using Torque 

Clustering's pseudo labels (AUMLTC). It is worth mentioning that, unlike most previous 
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methods, the proposed AUMLTC is unsupervised and parameter-free. The proposed 

framework's superiority is demonstrated by comparison and ablation experiments conducted 

on multiple data sets. 
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Chapter 2. Literature review 
 

2.1 Clustering 

Clustering refers to the procedure of dividing a population or a data set into numerous 

groups based on their similarities, such that the data points within the same group exhibit 

greater similarities than those in other groups. In other words, the goal is to sort groups with 

similar characteristics into clusters. The clustering algorithms primarily comprise 

hierarchical algorithms, partition-based algorithms, density-based algorithms, model-based 

algorithms, and grid-based algorithms [9]. 

 

2.1.1 Hierarchical clustering 

Clusters can be created using hierarchical clustering algorithms by iteratively 

partitioning patterns using one of two strategies: top-down or bottom-up. There are two types 

of hierarchical clustering: agglomerative and divisive [9]. The bottom-up technique is used 

in agglomerative clustering to create clusters by combining small individual clusters to form 

larger and more complex clusters until particular termination conditions are met. The top-

down technique is used in divisive hierarchical clustering to obtain clusters by breaking up 

clusters containing atomic objects into smaller clusters until particular termination 

requirements are met. Dendrograms are commonly formed using hierarchical approaches, as 

seen in Fig. 2.1. 

 
Figure 2.1. Dendrogram of hierarchical clustering [9]. 
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The steps of agglomerative clustering can be condensed as follows [9]. 

1. Make a separate cluster for each point 

2. Continue the step 3 until the clustering meets the desired level of satisfaction 

3. Fuse the pair of clusters that have the smallest distance between them 

4. End 

The steps of divisive clustering can be condensed as follows [9]. 

1. Make a single big cluster with all of the points 

2. Continue the step 3 until the clustering meets the desired level of satisfaction 

3. Sever the cluster that results in the formation of two sub-clusters with the highest inter-

cluster distance 

4. End 

 

2.1.1.1 Linkage-based hierarchical clustering algorithms 

Hierarchical clustering algorithms can be divided into different types based on various 

measures of inter-cluster distance [9]. 

1) Single-linkage 

The single-linkage method defines the distance between two clusters as the minimum 

distance between any sample in one cluster and any sample in the other cluster [9] [57]. The 

following is the distance between clusters A and B: 
𝑑 𝐴,𝐵 min

∈ , ∈
𝑑 𝑎, 𝑏                           (2.1) 

2) Complete-linkage 

In the complete-linkage method, the distance between two clusters is defined as the 

maximum distance between any point in one cluster and any point in the other cluster [9] 

[58]. The following is the distance between clusters A and B: 
                  𝑑 𝐴,𝐵 max

∈ , ∈
𝑑 𝑎, 𝑏                           (2.2) 

3) Average-linkage 

The average-linkage method defines the distance between two clusters as the average 

distance between any sample in one cluster and any sample in the other cluster [9] [59]. The 
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following is the distance between clusters A and B: 

𝑑 𝐴,𝐵
| || |

∑ ∑ 𝑑 𝑎, 𝑏∈∈                    (2.3) 

4) Other linkages 

In previous studies, various other methods have been proposed to define the distance 

between clusters in hierarchical clustering. For example, Joe H. Ward, Jr. proposed the ward-

linkage algorithm [60]. Ward proposed a general agglomerative hierarchical clustering 

process in which the optimal value of an objective function is used to determine which pair 

of clusters to merge at each phase. "Any function that reflects the investigator's purpose" 

could be this objective function [60]. Michael B. Eisen et al. [61] proposed the centroid-

linkage method to analyze genome-wide expression data from DNA microarrays. The 

distance between two clusters in the centroid method is the distance between the clusters' two 

mean vectors, and the process combines the two clusters with the least centroid distance at 

each stage. Wei Zhang et al. proposed the graph degree linkage method for high-dimensional 

data sets, which investigates the functions of indegree and outdegree, two important concepts 

in graph theory, in the context of clustering [62]. 

 

2.1.1.2 Other hierarchical clustering algorithms 

Conventional linkage-based hierarchical clustering has some drawbacks. For example, 

standard hierarchical clustering requires significant computational resources and has a typical 

time complexity of 𝑂 𝑛 ; hence, large-scale data sets are not suited for these techniques. 

Furthermore, stopping the clustering process requires some manually determined condition, 

such as “Stop at K number of clusters”. Finally, noise and outliers are problematic for most 

traditional hierarchical clustering techniques [63]. Some of the newer algorithms circumvent 

these shortcomings by either using a fast approximate nearest neighbor method to accelerate 

the clustering process [10]–[13] or by pruning the cluster trees to estimate the proper number 

of clusters [14], [15]. For example, Manoranjan Dash et al. utilized the "90-10 rule" to 

decrease the computational consumption of traditional hierarchical clustering significantly 

[11]. Hisashi Koga et al. utilized the locality-sensitive hashing algorithm, which is a fast 
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search algorithm for the nearest neighbor of each point, to reduce the computational cost of 

the single-linkage method by quickly identifying nearby clusters to be connected [12]. M. 

Saquib Sarfraz et al. leveraged the first neighbor relations to make the time complexity of 

conventional hierarchical clustering 𝑂 𝑛𝑙𝑜𝑔𝑛  [13]. Kamalika Chaudhuri et al. proposed a 

robust single-linkage method and a density-based method to predict the correct number of 

clusters by pruning the cluster trees [15]. In addition, some studies have focused on proposing 

robust hierarchical clustering algorithms [63], [64]. For example, Maria-Florina Balcan et al. 

introduced and evaluated a novel and robust algorithm for bottom-up agglomerative 

clustering procedures, which outperformed traditional agglomerative algorithms [8]. 

 

2.1.2 Partition-based clustering 

Partition-based clustering generally assigns all samples from data to K clusters by 

optimizing a specific criterion function [65]. An often-used optimization criterion is the total 

distance between each data sample and its corresponding cluster centroid. K-means [16], 

PAM [66], CLARA [66], CLARANS [67], fuzzy c-means [68], and other algorithms [69] 

have been researched in this category. 

 

2.1.2.1 K-means clustering algorithm 

The K-means algorithm [16] is a well-tested, and simple partition-based clustering 

algorithm that is commonly used to tackle clustering problems. A user-defined number of 

clusters, K, needs to be set in advance to partition the given data set in this technique. The 

next key step is to set a centroid for each cluster respectively, with a total of K centroids. The 

optimization function J of K-means is: 

𝑴𝒊𝒏 𝐽 ∑ ∑ 𝑥 𝑐                        (2.4) 

where 𝑥 𝑐  denotes the distance between the cluster centroid 𝑐  and a data point 

𝑥 . The flow diagram of the K-means algorithm is shown in Figure 2.2. 
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Figure 2.2. Flow diagram of the K-means algorithm [9]. 

 

2.1.2.2 Other partition-based clustering algorithms 

Similar to the K-means algorithm, in general, most partition clustering algorithms 

demand that the number of clusters must either be known or estimated in advance. 

Furthermore, these algorithms are incapable of identifying clusters that have irregular shapes 

and differ in size or density, and most of them are highly sensitive to noise, outliers, and 

getting the initialization phase “right”. Therefore, previous studies have proposed many 

improved partition-based clustering algorithms. For example, Dan Pelleg et al. proposed the 

X-means clustering algorithm, which leverages the Bayesian information criterion (BIC) and 

the Akaike information criterion (AIC) to estimate the optimal number of clusters [17]. 

Argyris Kalogeratos et al. proposed the dip-means algorithm, which exploits the dip-dist 

criterion to estimate the correct number of clusters [70]. Grigorios Tzortzis et al. proposed 

the global kernel K-means clustering algorithm to solve the non-convex problem in the 

conventional K-means algorithm [71]. Andrew Y. Ng et al. combined the K-means algorithm 

and graph partitioning to propose the spectral clustering algorithm, which solves the non-

convex problem and noise robustness problem [72]. David Arthur et al. presented the K-

means++ clustering algorithm to solve the initialization issue in the original K-means 

algorithm, which is ensured to produce a solution that is competitive with the optimal K-

means solution within 𝑂 log 𝑘  bounds [20]. Jie Yang et al. proposed the hybrid distance 
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model combining Euclidean distance and density to solve the initialization problem, which 

makes the K-means algorithm achieve better performance [21]. 

 

2.1.3 Density-based clustering 

The main idea of density-based clustering is to find the density of a region [73]. Density-

based clustering algorithms can discover clusters at various levels of granularity using proper 

noise reduction. The density concept within these algorithms allows compact sections in the 

data space to be separated from noise. Clusters are detected in density-based clustering as 

places with a higher density than the rest of the data space. Density-based clustering aids in 

the detection of arbitrary form clusters. Many density-based clustering approaches have been 

presented throughout the previous two decades. These methods are designed to find clusters 

of densities that are reasonably uniform across the data space. The most representative 

density-based clustering algorithms include density-based spatial clustering of applications 

with noise (DBSCAN) [74], density peak clustering (DPC) [75], and their variants. 

 

2.1.3.1 Density peak clustering (DPC) algorithm 

In 2014, the DPC algorithm is presented by Rodriguez et al. in Science [75]. DPC is a 

relatively new density-based technique for clustering. This method is based on the idea that 

cluster centers are surrounded by neighbors with lower local densities and are separated from 

any points with higher densities by a greater distance. Each data point i is described by two 

important metrics: its local density 𝜌  and its distance from the nearest greater density point 

𝛿  [76]. 

There are two local density estimators introduced in the DPC algorithm, including the 

cut-off distance method and the kernel distance method [76]. The local density 𝜌  of a data 

point i is calculated using the cut-off distance approach in Eq. (2.5) and the kernel distance 

method in Eq. (2.6). 

𝜌 ∑ 𝜒 𝑑 𝑑 ,  𝜒 𝑥
1, 𝑥 0
0, 𝑥 0                    (2.5) 
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𝜌 ∑ 𝑒𝑥𝑝                                  (2.6) 

where 𝑑  denotes the distance between two data points, i and j. The cut-off distance 𝑑 , is 

the user-defined neighborhood radius of each data point, where 𝑑 >0. As a result, the number 

of points with a distance from i of less than 𝑑  is positively associated with the local density 

𝜌 . The most evident distinction between the two techniques is that 𝜌  in Eq. (2.5) is a 

discrete value, and 𝜌  in Eq. (2.6) is a continuous value [76]. 

Following that, DPC defines another property 𝛿  for each point as in Eq. (2.7). 

𝛿 min
:

𝑑                                        (2.7) 

As demonstrated in Eq. (2.7), 𝛿  is the shortest distance between point i and another 

point j with a 𝜌  greater than 𝜌 . Furthermore, the 𝛿  of point i with the largest 𝜌  is often 

defined as Eq. (2.8). 

𝛿 max 𝛿                                         (2.8) 

The points with global or local maxima in terms of 𝜌   have the maximum 𝛿 , as 

demonstrated in Eqs. (2.7) and (2.8). 

In brief, finding the cluster centers (i.e., density peaks) from all the points, and allocating 

the other points to their associated clusters are the two main steps in the DPC clustering 

process. For the first step, the tuple 𝜌 ,𝛿  for each point i is generated in DPC algorithm. 

The decision graph is then created using these tuples, with the X-axis being 𝜌  and the Y-

axis being 𝛿 . Then, as cluster centers, the points with relatively large 𝜌  and 𝛿  values are 

picked. For the second step, following the selection of cluster centers, the remaining points 

will be given to the clusters that contain their nearest neighbors with a higher density [76].  

Like other clustering methods based on density, DPC also splits data points into three 

kinds: boundary points, core points, and noise points [76]. The collection of points that 

belong to a cluster but are separated from points in other clusters by less than the cut-off 

distance 𝑑  form the border region for each cluster. The highest 𝜌  within a cluster's border 

region is designated as 𝜌 . The point i with 𝜌 𝜌  in the cluster is regarded as the core 

point, and all other points are the cluster halo, which is suitable to be noise. 
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2.1.3.2 Other density-based clustering algorithms 

Density clustering typically requires a suite of thresholds to be set in advance, for 

example, the cut-off distance used to calculate the density of points in DPC and how many 

points does a defined cluster contain at least in DBSCAN [74]. Today’s density-based 

algorithms employ a variety of tricks and techniques to depend less on these thresholds [22]–

[30]. For example, Liang et al. [24] proposed the 3DC strategy based clustering, which can 

automatically predict the proper number of clusters. Du et al. [30] introduced k nearest 

neighbors (KNN) and principal component analysis (PCA) into density peak clustering to 

estimate the number of clusters more accurately and achieve better results on high-

dimensional data sets. Mariad’Errico et al. applied a non-parametric density estimator PAk 

to the DPC algorithm to make it fully automatic [77]. Leland McInnes et al. extended 

DBSCAN by converting it into a hierarchical clustering algorithm called HDBSCAN, which 

reduces two hyper-parameters in DBSCAN to only one [78]. Zohreh Akbari et al. proposed 

a parameter-free DBSCAN algorithm based on the statistical technique for outlier detection 

[79]. Jianghong Zhao et al. proposed the AQ-DBSCAN algorithm, which is a segmentation 

method for density clustering that involves the use of Gaussian projection [80]. The 

DBSCAN algorithm can be improved by tackling the challenge of automatically estimating 

the parameter for neighborhood radius. This approach specifically targets this problem, 

resulting in a refined and enhanced version of the algorithm. 

 

2.1.4 Model-based clustering 

Traditional clustering algorithms such as K-means [16] and hierarchical clustering are 

heuristic-based algorithms that draw clusters directly from the data rather than including a 

measure of probability or uncertainty in the cluster allocations. Model-based clustering aims 

to address this issue by providing a soft assignment in which observations have a chance of 

belonging to one of the clusters. In general, model-based clustering methods use 

mathematical models to optimize and determine the appropriateness of given data. Model-

based clustering methods, like traditional clustering techniques, uncover informative features 
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for each cluster. In this case, each cluster is indicative of a distinct concept or class [9]. 

Model-based clustering assumes that the data come from a variety of latent probability 

distributions. The Gaussian mixture model (GMM) [81] is the most often used method, in 

which each observation is assumed to be distributed as one of K multivariate-normal 

distributions, with K denoting the number of clusters (commonly referred to as components 

in model-based clustering). 

However, model-based clustering generally relies on prior knowledge of many 

parameter settings, such as the distribution of each cluster, even though this information is 

often very difficult to acquire in practice. Hence, solutions to alleviate this disadvantage have 

also emerged [31]–[33]. For example, Scrucca, L. et al. [31] proposed an improved model-

based clustering using data transformations, which can lead to improved model fitting and 

more accurate clustering results. O’Hagan, A. et al. [32] proposed the Bayesian initialization 

averaging method to generate high-quality initial parameter settings for the expectation-

maximization algorithm. 

 

2.1.5 Grid-based clustering 

Grid-based clustering methods partition the feature space into a grid system, on which 

all clustering steps are conducted [9]. The approach's key benefit is its quick processing time, 

the lack of distance computations, and the ease with which clusters are defined as neighbors 

[9]. Outlined below are the fundamental stages of a grid-based algorithm [9]. 

1. Create a grid cell set 

2. Calculate the density of each grid cell by allocating data samples to the appropriate 

grid cell 

3. Eliminate cells that have a density below a certain threshold. 

4. Group dense cells together to form clusters 

Wang et al. [82] developed the STING (statistical information grid method) in 1997, 

which is an algorithm with high scalability, capable of breaking down a data set into multiple 
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levels of complexity. It takes in geographical data and segments it into rectangular cells with 

varying levels of resolution [9]. 

However, classic grid clustering also depends on many user-provided parameters, such 

as interval values to divide space and density thresholds, and most algorithms do not scale to  

high-dimensional data sets. Many variant algorithms have been proposed to overcome these 

problems [34]–[36]. For example, Chen, J. et al. [34] proposed a new grid-based clustering 

algorithm for the mixed data stream, which can automatically discover the properties of 

clusters. 

Table 2.1 summarizes the ideas and disadvantages of the above five types of clustering 

algorithms. In addition to the above five categories of clustering algorithms, there are also 

some algorithms based on other ideas or theories. For instance, D.W. van der Merwe et al. 

proposed a particle swarm optimization (PSO)-based data clustering algorithm [83]. Ehsan 

Elhamifar et al. combined subspace learning theory and clustering to propose subspace 

clustering [84]. Moreover, over the past few years, there has been a surge of interest in 

utilizing deep neural networks to acquire a low-dimensional representation that is conducive 

to clustering. As a result, there has been a substantial improvement in the performance of 

clustering algorithms [85]. This type of clustering algorithm is called deep clustering. 

 

Table 2.1. The ideas and disadvantages of the five types of clustering algorithms. 

 

Types Ideas Disadvantages 
Hierarchical 

clustering 
Combine the two closest sub-clusters; 

Separate cluster into the two farthest sub-
clusters. 

High computational cost, require 
manually determined conditions, 

sensitive to noise, etc. 
Partition-based 

clustering 
Assign all data samples to K clusters by 
optimizing a specific criterion function. 

Require setting number of 
clusters, cannot detect non-

convex clusters, etc. 
Density-based 

clustering 
Find the density of regions, and regard those 

with high density as clusters. 
Requires a suite of thresholds to 

be set in advance, etc. 
Model-based 

clustering 
Employ mathematical models to evaluate the 
suitability of provided data and perform a soft 

assignment for every sample. 

Rely on prior knowledge of 
many parameter settings, etc. 

Grid-based 
clustering 

Divide the feature space into a grid 
configuration and assign samples to specific 

cells within the structure. 

Depend on many user-provided 
parameters, etc. 
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2.2 Multi-view clustering 

To improve clustering performance, multi-view clustering is used to learn compatible 

and complementary information from multi-view data [43]–[47], [86]–[96]. Multi-view data 

pertains to data that is acquired from disparate sources in distinct domains or obtained from 

different feature collectors [38]. Essentially, multi-view clustering arises from the 

combination of clustering problems and multi-view learning [37]. From the perspective of 

basic clustering principles, there are three kinds of methods that almost constitute a complete 

family of multi-view clustering: the first type includes the algorithms based on multi-view 

spectral representation learning, namely multi-view spectral clustering methods; the second 

type includes the algorithms based on multi-view subspace learning, i.e., multi-view 

subspace clustering methods; the third type combines various other theories and is often 

referred to other multi-view clustering methods [42].  

 

2.2.1 Multi-view spectral clustering 

By combining information from multiple graphs, multi-view spectral clustering can 

learn latent cluster structures [97]. Multi-view spectral clustering is based on learning a 

consensus and complementary graph that contains information from multi-view data and then 

using the spectral clustering approach on the learned graph to generate clustering results [42]. 

For example, an illustration of the spectrum perturbation theory of spectral clustering was 

utilized by Zong and colleagues to develop a weighted multi-view spectral clustering 

algorithm [46]. The proposed algorithm employs spectral perturbation to imitate the weights 

of various views. To distinguish the clustering capacity differences of different views, Nie et 

al. developed an adaptively weighted Procrustes technique, where an indicator matrix can be 

generated [91]. The proposed method in [92] enhances clustering accuracy by utilizing 

multiple graphs with distinct weights to integrate complementary data perspectives. The 

iterative training of a unified graph using mutual reinforcement leads to promising 

improvements in clustering performance when compared to existing methods [42]. Chang 

Tang et al. proposed a one-step multi-view spectral clustering method that combines spectral 
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embedding and K-means into a single framework to provide discrete clustering labels in a 

single step [98]. Shaojun Shi et al. applied the nuclear norm to multi-view spectral clustering 

to further improve the clustering results, where the nuclear norm makes the view-specific 

information better explored [99]. 

 

2.2.2 Multi-view subspace clustering 

Multi-view subspace clustering enhances clustering performance by leveraging multiple 

data perspectives and learning a uniform subspace representation that captures both shared 

and unique information across views, making it suitable for complex and high-dimensional 

data and providing a more complete understanding of the data structure compared to single-

view clustering methods [42] [100]. Zheng et al., for example, introduced a multi-view 

constrained bilinear factorization subspace clustering method that improves clustering results 

by performing constrained bilinear factorization on the low-rank representation of multiple 

views [49]. By concatenating multi-view features into a joint representation, Zheng et al. 

introduced feature concatenation based multi-view subspace clustering to explore the 

consensus information of multi-view data [50]. The proposed method in [101] for multi-view 

subspace clustering improves clustering performance by jointly learning a latent 

representation from multiple views while considering the consensus and complementary 

information, resulting in effective handling of high-dimensional data and improved accuracy. 

Guang-Yu Zhang et al. proposed kernelized multi-view subspace clustering based on auto-

weighted graph learning, which uses kernel-induced functions to transform multi-view data 

from linear to nonlinear space [102]. 

 

2.2.3 Other multi-view clustering 

Furthermore, various other multi-view clustering algorithms have recently been 

presented [48], [87], [94], [103]. For example, by introducing a collaborative deep matrix 

decomposition framework, the method proposed in [87] attempts to learn the hidden 

representations from multi-view data. Xu et al. proposed a deep autoencoder-based method 
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to learn embedded representations, which takes both complementary and consensus 

information of multiple views into account [94]. The multi-view clustering method proposed  

in [104] obtains clustering results automatically by considering geometric consistency and 

cluster assignment consistency. 

Multi-view clustering is a relatively new subfield compared to traditional single-view 

clustering. However, despite the importance of multi-view clustering and the abundance of 

existing algorithms in previous decades, the most recent approaches in multi-view clustering 

suffer from the following three problems: 1) parameter choice, 2) high computational cost, 

and 3) difficulty in finding globally optimal view weights. Most multi-view clustering 

techniques suffer one or more of the three flaws listed above. These three flaws also make it 

difficult to use multi-view clustering in real-world applications. Table 2.2 summarizes the 

ideas and disadvantages of the above three types of multi-view clustering algorithms. 

Table 2.2. The ideas and disadvantages of the three types of multi-view clustering algorithms. 

 

 

2.3 Distance metric learning 

Distance metric learning has gained significant attention in recent years for improving 

the performance of distance-based methods like KNN [105] and K-means [16], after being 

first introduced in 2003. The primary objective of metric learning is to reduce intra-class 

distance while increasing inter-class distance, resulting in each point being closer to other 

points with the same label and farther away from those with different labels [106]. Distance 

metric learning can be mainly divided into three categories: supervised metric learning, semi-

supervised metric learning, and unsupervised metric learning [106]. The difference between 

Types Ideas Disadvantages 
Multi-view 

spectral clustering 
Learn a consensus and complementary graph 

that contains information from multi-view data. 
Need to tune hyperparameters, 
require high computational cost 
(e.g., O 𝑛 ), have difficulty in 
finding globally optimal view 

weights, etc. 

Multi-view 
subspace clustering 

Learn a uniform subspace representation from 
multiple views. 

Other multi-view 
clustering 

Learn embedded representations based on the 
autoencoder framework; 

Learn the hidden representations based on the 
collaborative deep matrix decomposition 

framework; etc. 
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the three lies in the use of ground truth labels. 

 

2.3.1 Supervised metric learning 

Supervised metric learning learns distance metrics based on the information from data 

points and all their labels. For example, one of the most often used supervised linear 

embedding algorithms is linear discriminant analysis (LDA) [107]. It looks for projection 

paths that allow data from different classes to be segregated well. Relevant component 

analysis (RCA) is another well-known supervised distance metric learning approach that 

makes use of paired data restrictions [108]. RCA is used to find a transformation that 

amplifies key variability while decreasing irrelevant variability. Average neighborhood 

margin maximization (ANMM) is a local supervised method that attempts to discover 

projection paths that maximize local class discriminability [109]. The Mahalanobis metric 

for clustering (MMC) learns an useful and friendly distance metric for clustering under 

similarity-relative constraints using semidefinite programming [110]. Furthermore, in recent 

years, some studies have combined deep learning and metric learning to propose (supervised) 

deep metric learning models, which learn the higher level of nonlinear characteristics of data 

directly in the classification structure [111]. For instance, Elad Hoffer et al. proposed the 

triplet network model for deep metric learning, which aims to learn useful representations by 

distance comparisons [112]. 

 

2.3.2 Semi-supervised metric learning 

Semi-supervised methods in machine learning aim to learn distance measures from data 

sets where labeled data is limited, and most of the data is unlabeled. These algorithms use 

both labeled and unlabeled data during the learning process. One example is MPCK-Means, 

proposed in Ref. [113], which combines K-Means clustering and distance metric learning 

with known pairwise constraints [106]. MPCK-Means partitions the data set into 

homogeneous clusters using K-means while simultaneously learning a generalized 

Mahalanobis distance metric with a distinct precision matrix for each cluster [106]. Semi-



UTS THESIS 

25 
 

supervised metric learning using pairwise constraints (SMLPC) is a kernel-based metric 

learning approach that delivers a nonlinear transformation by considering the topological 

structure of data as well as both positive and negative constraints [114]. Similarly, based on 

the strong representation learning ability of deep neural networks, semi-supervised metric 

learning has also been further extended to semi-supervised deep metric learning [115]. 

 

2.3.3 Unsupervised metric learning 

 Any supervised information is generally not needed for unsupervised distance metric 

learning methods; instead, they attempt to learn an optimum distance metric or low-

dimensional embedding solely from the data matrix or original data, achieving some 

geometric or discriminative optimality. For example, a popular technique for extracting 

projection directions from data to achieve the highest variance is known as Principal 

Component Analysis (PCA) [116]. PCA is commonly employed in high-dimensional data 

clustering pre-processing. The t-distributed stochastic neighbor embedding (t-SNE) 

technique is another popular nonlinear dimensionality reduction technique for embedding 

high-dimensional data in a two- or three-dimensional space for visualization [117]. t-SNE 

also represents each high-dimensional object as a point in either two or three dimensions, in 

a way that ensures that similar objects are modelled by nearby points with a high probability, 

while dissimilar objects are modelled by more distant points. Uniform manifold 

approximation and projection (UMAP) is another modern method for reducing the 

dimensionality of data that can be utilized for both visualization purposes and general 

nonlinear dimension reduction [118]. Recently, some deep metric learning methods have tried 

to replace ground truth labels with pseudo labels from clustering, making the whole metric 

learning process unsupervised, which is called unsupervised deep metric learning [119], 

[120]. For instance, Ujjal Kr Dutta et al. proposed an unsupervised deep metric learning 

model via orthogonality-based probabilistic loss [120]. 

Most previous metric learning methods also have some flaws. For example, many 

methods, such as UMAP, require hyperparameter tuning. In particular, for unsupervised deep 
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metric learning, uninterpretability and the inaccessibility of high-quality pseudo labels are 

two major obstacles. Table 2.3 summarizes the ideas and disadvantages of the above three 

types of metric learning algorithms. 

Table 2.3. The ideas and disadvantages of the three types of metric learning algorithms. 

  
2.4 Summary 

This chapter first introduces five types of clustering algorithms and several 

representative algorithms and analyzes their respective shortcomings. Second, this chapter 

also introduces three common types of multi-view clustering algorithms and summarizes the 

shortcomings of most current methods. Finally, this chapter also briefly introduces the 

concept, common classifications of metric learning, and some shortcomings of current 

methods.  

Types Ideas Disadvantages 
Supervised metric 

learning 
Learn distance metrics based on the 

information from data points and all their 
labels. 

Require hyperparameter tuning, 
inaccessibility of high-quality 

pseudo labels, uninterpretability, 
etc. Semi-supervised 

metric learning 
Learn distance measures from data where 

supervised information is limited. 
Unsupervised 

metric learning 
Learn an optimum distance metric or low-

dimensional embedding solely from the data 
matrix or original data, achieving some 
geometric or discriminative optimality. 
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Chapter 3. Torque Clustering: Autonomous clustering by fast 

find of mass and distance peaks 
 

3.1 Introduction 

Grouping similar objects to derive insights from classes of things is a fundamental tool 

in the search for knowledge. It is used in virtually all the natural and social sciences and plays 

a central role in biology, astronomy, psychology, medicine, and chemistry [1]. Like many 

disciplines, grouping objects in data science is called clustering, and, as one of the three 

broadest categories of machine learning algorithms, clustering in one form or another is the 

important method of learning from unlabeled data.  

Yet, despite the importance and ubiquity of clustering, and the plethora of existing 

algorithms, the current clustering methods suffer from a variety of drawbacks [1]. Much work 

has been done to overcome, circumvent, or minimize these problems. Many strategies are 

targeted, many are ingenious, and several tackles more than one problem. Yet none dispense 

with enough issues to be considered a universal clustering choice, because optimal clustering 

is typically an NP-hard problem. Often this means, researchers and analysts must test and 

tune several alternatives to determine which best suits their needs.  

From the literature review in Chapter 2, a good solution would therefore: be able to 

recognize various types of clusters with different shapes, sizes or densities; be parameter-free; 

not depend on a priori knowledge; have a relatively low computational overhead and a 

reasonable time complexity; be robust to noise and outliers; not require initialization; be able 

to automatically determine the number of clusters; and preclude the need for a manually-

specified stopping condition. 

To achieve these goals, we propose a novel clustering algorithm, called Torque 

Clustering (TC), derived from the natural idea that a cluster and its nearest cluster with higher 

mass ought to be merged into one cluster unless they both have relatively large masses and 

the distance between them is also relatively large. 

The merger process of this algorithm is inspired by the gravitational interactions when 
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galaxies merge. In previous studies, the evolution of galaxies was described as a hierarchical 

process by astronomers using galaxy merger trees [121]–[124]. Galaxy mergers can occur 

when two or more galaxies come close enough to each together, and can be classified into 

two types due to their comparative size of the merging galaxies, including minor mergers and 

major mergers. According to the predictions of merger rates of dark matter haloes, minor 

mergers are expected to be much more common than major mergers [125]. TC simulates the 

process of galaxy minor mergers, so that clusters with larger masses continuously merge 

adjacent clusters with smaller masses. Similarly, the TC algorithm generates a hierarchical 

tree that reflects the natural structure of the data set.  

After generating the hierarchical tree, TC estimates the correct number of clusters by 

pruning the cluster tree. However, unlike the existing methods based on probability density 

[14], [15], TC reveals the reasonable partition by the find of mass and distance peaks. This 

idea is inspired by the nature of intergalactic distances in the universe [126]. The galaxies 

usually have very large masses and the intergalactic distances between them are also very 

large. Regard 𝑚   and 𝑚   (i.e., galaxy masses) as the number of samples in two data 

clusters, and 𝑟  as the distance between them. TC exploits the two properties, 𝑚 𝑚  and 

𝑟 , to describe the merger of each pair of clusters. As a result, reasonable cluster (or galaxy) 

partitions can be obtained by removing the mergers with relatively larger 𝑚 𝑚  and 𝑟 . 

We evaluated TC on 20 data sets across five different domains: image recognition, 

biology, medicine, physics, and astronomy, and 19 state-of-the-art algorithms were included 

in the experiment for performance comparison. Regarding accuracy, TC obtained the top 

position in 15 out of the 19 data sets (excluding one that lacked ground-truth labels), 

surpassing the best algorithm compared by an average factor of 4 in ranking. Furthermore, 

when compared to the best previous automatic clustering algorithm, TC accurately identified 

the exact number of ground-truth clusters in 15 out of the 20 data sets, whereas the previous 

algorithm achieved perfect accuracy in only 10 of the data sets. Moreover, we conducted an 

additional comprehensive evaluation on 56 data sets with noise, outliers, overlaps, imbalance, 

and high dimensionality. TC still retained a great performance advantage on these data sets. 
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Finally, we also compared TC with latest state-of-the-art deep clustering algorithms on 

several challenging image data sets. Interestingly, TC without any deep representation can 

achieve better or close performance than deep clustering algorithms on image clustering. 

 

3.2 Proposed method 

Loosely based on conventional hierarchical clustering structures [127], the TC 

algorithm generates a hierarchical tree that reflects the natural structure of the data set. 

However, unlike most existing hierarchy-based algorithms, TC reaches higher accuracy with 

a significantly smaller number of merger steps and is robust to noise and outliers. In addition, 

no manual stopping condition is required; the final number of clusters does not need to be 

defined in advance; the density of each data sample does not need to be estimated, nor does 

the distribution of each cluster; and the feature space does not need to be divided into 

distributions. The comparison in mass and distance governs the merger process of TC, while 

the find of mass and distance peaks reveals the mergers that should be removed to leave a 

reasonable cluster partition. The TC algorithm is described in sections 3.2.1-3.2.7 below. 

 
 
3.2.1 Define clusters and form connections between them 

Consider a data set denoted as 𝑋 𝑥 , 𝑥 , … , 𝑥 , where 𝑥 ∈ 𝑅 . The first step is to 

determine the initial “mass” of the data set, which is simply the number of samples. Thus, 

initially, each data sample 𝑥  is considered to be its own cluster , which yields an initial 

cluster set of Γ , , … , . This forms the first layer of the hierarchical tree. A count 

of the set gives us the initial mass, denoted as Θ 𝜃 ,𝜃 , … ,𝜃 . At this initial step, each 

𝜃 1. The following rule is then applied to form connections between clusters: 

                    → ,    𝑖𝑓 𝜃 𝜃                             (3.1) 

where  denotes the 1-nearest cluster to , and 𝜃  denotes the number of samples 

 contains. The symbol " → " denotes the connection (i.e., merger) 𝐶  between  and 

. Regarding each cluster as a vertex, then a connected graph G can be obtained.  
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A new set of clusters Γ  can be formed by 

Γ Φ 𝐺                                   (3.2) 

where Φ   identifies the samples contained in each connected component as a new cluster.  

Then, applying Eq. (3.1) to Γ   generates new connections 𝐶  , which alters the 

connected graph G. Eq. (3.2) on G generates the next cluster set Γ , and the cycle continues 

until there is only one all-encompassing cluster at the top of a hierarchical tree. Different 

from the classic agglomerative hierarchical clustering, this constrained method of merging 

avoids yielding undesirable elongated clusters and can be performed in parallel as long as 

two neighboring clusters satisfy the requirement of Eq. (3.1). Additionally, this exercise of 

treating each data sample as a cluster and taking the set through a series of mergers until all 

have fully merged does three things: 1) It builds a hierarchical map of partitioning clusters at 

different granularities; 2) it provides a map for the algorithm to choose the most appropriate 

clustering scheme; and 3) it gives analysts the choice to manually override the automatic 

selections and choose a different granularity if desired. This leaves the question of what 

criteria the algorithm uses to determine the “most appropriate” scheme. Based on the above 

idea, if a connection has both a relatively large mass and stretches over a long distance, it is 

“abnormal”; removing it should reveal a more reasonable partition structure. The following 

steps set out the mechanisms for detecting and removing abnormal connections. 

 

3.2.2 Define two properties of each connection to construct the decision graph 

Abnormal connections can be identified by observing two intuitive properties of the 

connection 𝐶 . One of the properties is the product of the mass value of the two clusters it 

connects 

                               𝑀 𝜃 𝜃                              (3.3)  

the other is the square of the distance between the two clusters it connects 

                           𝐷 𝑑 ,                           (3.4) 

Plotting all the connections on a two-dimensional graph of the two properties, called a 

decision graph, will reveal that the mass and distance of the abnormal connections are 
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abnormally larger than, and further away from, those of the normal connections. Fig. 3.1 

provides an example to illustrate the core idea of the proposed TC algorithm.  

There are many studies on defining the distance between two clusters [128]. Here, we 

simply leverage the minimum distance from any sample in one cluster to any sample in the 

other cluster as the distance between the two clusters, i.e., 𝑑 , 𝑚𝑖𝑛 𝑑 𝑥 , 𝑥 , 𝑥 ∈

, 𝑥 ∈ . With large-scale data, a fast approximate nearest neighbor method like k-d tree 

or locality-sensitive hashing may be a more appropriate choice to search nearest cluster since 

the distance computation approach used in these methods negates the need to actually know 

the distances between any two clusters [12], [13]. Further, the computation costs would be 

low and the complexity could be kept to O(nlog(n)) as compared to the complexity of 

standard hierarchical clustering algorithms, which is 𝑂 𝑛 . In this way, the proposed TC 

algorithm is highly scalable. A detailed analysis of the time and space complexity of TC is 

presented in section 3.2.6.  

The detail of how TC works is best explained through an example, which is set out step-

by-step in Fig. 3.2 and Table 3.1.  
 

 

Figure 3.1. The core idea of the proposed algorithm. The red dotted lines delineate the clusters A-H in this two-
dimensional data distribution, derived from Eq. (3.1) and Eq. (3.2). The black lines 𝐶 -𝐶  indicate the connections from 
each cluster to its nearest cluster with a length of 𝐿 , where 𝐿  is the longest. Each cluster is at one end of a connection 
𝐶 , and contains several samples. For example, the clusters A and E each have four samples, the clusters B, C, D, and F 
each have three samples, and the clusters G and H each have 10 samples. Our goal is to find abnormal connections, 
which are defined as those with both a relatively large distance (i.e., 𝐷  in Eq. (3.4)) and a relatively large number of 
samples (i.e., 𝑀  in Eq. (3.3)). Obviously, connection 𝐶 , with 10 samples in each of the clusters it connects, is carrying 
the greatest mass and it is the longest 𝐿 . But what is key is the relativity. 𝐶  is unique in that it is markedly longer 
than the other sets of connections. Removing 𝐶  and calculating the connected components according to Eq. (3.2) 
results in a final, more reasonable, set of clusters. This approach is consistent with human intuition as well as the natural 
laws of gravitational interactions. 

 
 

Figure 3.2. A step-by-step example of how TC works. 
Consider a data set where, initially, each sample has a mass 
of 1 and is treated as its own cluster. Applying Eq. (3.1) to 
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each cluster establishes connections between clusters, 
resulting in a connected graph. Applying Eq. (3.2) to the 
graph, new clusters begin to emerge (indicated in different-
colored circles) with a mass equal to the number of samples 
within them (the value in the circles). 
A  
Applying Eq. (3.2) to the 
connected graph of the 
initial clusters reveals 
seven new larger clusters.  

B  
Connections 𝐶  - 𝐶   can 
then be added according to 
the adjacency relationship 
given by Eq. (3.1). Now, 
the two properties 𝑀  and 
𝐷   of 𝐶  - 𝐶   can be 
calculated according to 
Eqs. (3.3)- (3.4), as shown 
in Table 3.1A.  
C 
Again, applying Eq. (3.2) 
to the connected graph of 
Fig. 3.2B reveals three new 
larger clusters. The mass of 
each new cluster is equal to 
the sum of the masses of the 
sub-clusters it contains.  

D 
Connections 𝐶  - 𝐶   can 
then be added according to 
the adjacency relationship 
given by Eq. (3.1). Now, 
the two properties 𝑀  and 
𝐷   of 𝐶  - 𝐶   can be 
calculated Eqs. (3.3)- (3.4), 
as shown in Table 3.1B.  
E  
Again, applying Eq. (3.2) 
to the connected graph of 
Fig. 3.2D, we now have one 
big cluster, and the merging 
process is complete. Steps 
A-E show that this process 
has established a hierarchical tree of clustering partitions at 
different granularities, as illustrated in Fig. 3.2H.  
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F 
Returning to Fig. 3.2D for a 
moment, it is easy to see 
from the decision graph in 
Fig. 3.2G that the relative 
maxima of the two 
properties that need to be 
removed are at 𝐶 ,𝐶  . 
These connections are 
identified as abnormal, as 
indicated by the red dotted lines.  

 
G 
Plotting all six 
connections on a two-
dimensional graph of the 
properties, i.e., the 
decision graph, indeed 
shows that 𝐶 ,𝐶   are 
abnormally further away 
and larger than 𝐶 -𝐶 . 
H  
Hence, connections 𝐶 ,𝐶  
are removed to arrive at the 
final partitioning scheme. 
This entire clustering 
process can be represented 
as a hierarchical tree, as the 
dendrogram to the right shows.  
 
Table 3.1A. Properties of the clusters and connections in 
Figs. 3.2A and 3.2B. 

Table 3.1B. Properties of the clusters and connections in 
Figs. 3.2C and 3.2D. 
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3.2.3 Define the torque of each connection and sort the connections in descending 
order 

The decision graph produced by TC provides an efficient visualization tool to determine 

and remove abnormal connections. However, because a manual inspection of the 2D plot 

would be both prone to error and time-consuming, we propose an automatic method to 

determine abnormal connections based on a metric to indicate the gaps between connections. 

We call this metric the Torque Gap (TGap) because of its similarity in mathematical 

expression. The TGap is calculated by first calculating the torque 𝜏   of all connections, 

where  

𝜏 𝑀 𝐷                                  (3.5) 

Obviously, if the two clusters connected by a connection have relatively large masses 

and the distance between them is relatively large, the 𝜏  of the connection must also be large. 

Then we sort all connections in descending order according to their corresponding 

torque values, and call it the torque sorted connections list (TSCL). The connection in TSCL 

and its torque are denoted as  𝐶  and 𝜏̀ , respectively. 

According to our core idea above, abnormal connections must be the top several 

connections in the TSCL, because they have the largest torque values among all the 

 

Figure 3.2I. After calculating the torque of each connection generated from Figs. 3.2A-E, all connections are 
sorted in the order of decreasing torque to obtain the torque sorted connection list (TSCL, i.e.,
𝐶 ,𝐶 ,𝐶 ,𝐶 ,𝐶 ,𝐶 ). Furthermore, Eqs. (3.6)-(3.9) are applied to find the largest torque gap between two adjacent
connections in the TSCL (i.e., the torque gap between 𝐶  and 𝐶 ). As a result, 𝐶  and  𝐶  are regarded as the 
abnormal connections to be removed. 
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connections. But how to specify the "several" ones? This requires us to calculate TGap on 

TSCL. 

 

3.2.4 Define torque gap and find the largest gap to determine abnormal connections  

The 𝑇𝐺𝑎𝑝  between each connection along with its following connection in the TSCL 

is calculated next. The formula for computing 𝑇𝐺𝑎𝑝  is 

𝑇𝐺𝑎𝑝 𝜔
̀

̀
, 𝜏̀ 0                                (3.6) 

where 𝜔  is a weighted value that indicates the proportion of connections among the top i 

connections of TSCL that have relatively large 𝑀 , 𝐷 , and 𝜏  values.  

The process for defining 𝜔  is as follows: Eq. (3.1) will reveal many connections 𝐶  

throughout the entire clustering process and, as we know, each 𝐶  has two properties, 𝑀  

and 𝐷 . Therefore, the set of connections that have relatively large 𝑀 , 𝐷 , and 𝜏  values 

among all the connections (denoted as 𝐿𝑎𝑟𝑔𝑒_𝐶) can be defined as: 

𝐿𝑎𝑟𝑔𝑒_𝐶 𝐶 | 𝜏 𝑚𝑒𝑎𝑛_𝜏 ∩ 𝑀 𝑚𝑒𝑎𝑛_𝑀 ∩ 𝐷  𝑚𝑒𝑎𝑛_𝐷         (3.7)         

where  𝑚𝑒𝑎𝑛_𝜏 is the mean value of all 𝜏 , 𝑚𝑒𝑎𝑛_𝑀  is the mean value of all 𝑀  , and 

𝑚𝑒𝑎𝑛_𝐷 is the mean value of all 𝐷 . 

𝑇𝑜𝑝_𝐶  is the set of the top i connections of TSCL, and can be defined as  

𝑇𝑜𝑝_𝐶 𝐶 ,𝐶 , … ,𝐶                               (3.8) 

Based on 𝐿𝑎𝑟𝑔𝑒_𝐶 and 𝑇𝑜𝑝_𝐶 , 𝜔  is defined as: 

𝜔
| _  ∩ _ |

| _ |
                                (3.9) 

The largest 𝑇𝐺𝑎𝑝  is denoted as 𝑇𝐺𝑎𝑝 , and the L connections at the top of the TSCL 

(i.e., 𝐶 ,𝐶 , … ,𝐶  ) are regarded as abnormal connections to be removed. Fig. 3.2I 

simulates the above process. 

The TGap in Eq. (3.6) considers two important factors in determining the abnormal 

connections at the same time: 
̀

̀
 is the natural torque gap between adjacent connections in 

TSCL, and 𝜔  represents the natural clustering resolution. The larger the torque gap, the 

more suitable it is as a cutting point. The purpose of calculating 
̀

̀
 is to find a fracture 

between the connections with larger torque values and the connections with smaller torque 
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values among the sorted connections. 𝜔  exists to defend against the uneven distribution or 

imbalance of clusters in data set. For example, there is a data set containing three relatively 

balanced ground-truth clusters, {A}, {B}, and {C}. After performing TC on this data set, we 

get the connection between A and B, and the connection between B and C, denoted as 𝐶  

and 𝐶 , respectively. Suppose the distance between A and B is much larger than the distance 

between B and C, and the distance between B and C is much larger than the distances between 

sub-clusters in A, B, and C. If we only rely on 
̀

̀
 to determine the abnormal connections, 

it is likely to just remove 𝐶  to get the partition: {A}, {B, C}. However, we can consider 

both 
̀

̀
  and 𝜔   at the same time. Since the 𝑀  , 𝐷  , and 𝜏   of  𝐶  , are also large 

relative to other connections except 𝐶   (i.e., 𝜏 𝑚𝑒𝑎𝑛_𝜏,𝑀 𝑚𝑒𝑎𝑛_𝑀,𝐷

𝑚𝑒𝑎𝑛_𝐷), then TC is more likely to remove both 𝐶  and 𝐶  to get the correct partition, 

{A}, {B}, and {C}. 

 

3.2.5 Define halo connections to determine the noise 

In cluster analysis, noise detection is also an important step. In our algorithm, we define 

another type of connection to determine the noise, which is called “halo connections” 

(denoted as Halo_C). Halo connections are characterized by a relatively large 𝐷   and a 

relatively small 𝑀 . The formula for computing halo connections is 

𝐻𝑎𝑙𝑜_𝐶 𝐶 | 𝑀 𝑚𝑒𝑎𝑛_𝑀 ∩ 𝐷 𝑚𝑒𝑎𝑛_𝐷 ∩ 𝑚𝑒𝑎𝑛_          (3.10)         

where the 𝑚𝑒𝑎𝑛_  is the mean value of all .  

In section 3.2.4, after removing the L abnormal connections, L+1 clusters can be 

obtained. In this step, the halo connections are further removed, and then some small sub-

clusters in the L+1 clusters can be found, which are considered as part of the cluster halo 

(suitable to be considered as noise). Fig. 3.3 provides an example to illustrate the power of 

abnormal connections and halo connections. The pseudocode of TC is provided in Algorithm 

3.1. 
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A. Original data distribution      B. Removed abnormal connections    C. Removed halo connections 
 

Figure 3.3. TC on the synthetic data set with 30% uniform noise. (A) is the original data distribution, 
including convex and non-convex clusters with 30% uniform noise; (B) illustrates the results of TC after 
removing the abnormal connections; (C) illustrates the results of TC after removing the halo connections, 
which is also the final partition. 

 

3.2.6 Complexity analysis 

 Time complexity 

According to the pseudocode of TC in Algorithm 3.1, if the input is a distance matrix, the 

time complexity of Step 1 is 𝑂 𝑛 . Steps 3 and 4 each require 𝑂 𝑛 . Steps 6, 8 and 9 are 

in the loop. Suppose the loop needs to be executed m times, where 𝑚 ≪ 𝑛, the total time 

cost of steps 6, 8 and 9 is 𝑂 3𝑚𝑛 , because each of them requires 𝑂 𝑛 . Step 7 also needs 

to be executed m times, and its time cost in each loop is 𝑂 𝑙  due to computing distances 

Algorithm 3.1: Algorithm of the proposed TC 

1: Input: Distance matrix 𝑆 ∈ 𝑅  or data set 𝑋 ∈ 𝑅 . 
2: Output: Cluster partition 𝜙 , , … ,  and cluster halo. 
3: Initializing connected graph G. 
4: Constructing cluster set 𝛤  (Initially, regard each sample as a cluster, i.e., 𝑙 𝑛). 
5: while cluster set 𝛤 have more than two clusters do 
6 : Computing the mass 𝜃  of each cluster in 𝛤, where 
Θ 𝜃  . 
7: Searching the nearest cluster of  according to S or by using a fast approximate nearest neighbor method, e.g. kd-
tree. 
8: Generating the connections 𝐶  and Updating G by Eq. (3.1). 
9: Computing the two properties 𝑀   and 𝐷   of 𝐶   by Eqs. (3.3)-(3.4), and save these to 𝑀   and 𝐷  , 
respectively. 
10: Computing the connected components of G to update the cluster set 𝛤 by Eq. (3.2). 
11: end 
12: Computing the torque 𝜏  of each connection based on 𝑀  and 𝐷  by Eq. (3.5). 
13: Sorting all connections in descending order according to their corresponding torque values to get TSCL. 
14: Computing 𝑇𝐺𝑎𝑝  between each consecutive connection in the TSCL by Eqs. (3.6)-(3.9). 
15: Finding the largest 𝑇𝐺𝑎𝑝  denoted as 𝑇𝐺𝑎𝑝  and treat the L connections at the top of the TSCL as abnormal. 
16: Updating G by removing the L abnormal connections, and then compute the connected components of G to obtain 
the final cluster partition 𝜙 , , … , . 
17: Finding the halo connections by Eq. (3.10). 
18: Updating G by removing the halo connections, and then compute the connected components of G to obtain the 
cluster halo. 
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between neighboring clusters. However, initially, we regard each sample as its own cluster, 

so the distances between neighboring data samples can be regarded as the distances between 

neighboring clusters in the first loop without extra computing. Therefore, the total cost of 

step 7 is 𝑂 𝑚 1 𝑙 . For step 10, since m loops generate a total of n-1 connections, its 

time cost is 𝑂 𝑚𝑛 𝑛 1 𝑂 𝑚 1 𝑛 1  . Steps 12, 14, 15 and 17 each require 

𝑂 𝑛  , and step 13 requires 𝑂 𝑛𝑙𝑜𝑔𝑛  . The time cost of step 16 is 𝑂 𝑛 𝑛 1 𝐿  , 

approximately equal to 𝑂 2𝑛  . Similarly, step 18 also requires 𝑂 2𝑛  . Hence, with a 

distance matrix as the input, TC’s total time cost approximately equal to 𝑂 𝑛

𝑂 𝑛𝑙𝑜𝑔𝑛 𝑂 4𝑚 11 𝑛 𝑂 𝑚 1 𝑙  , its time complexity is approximately 

𝑂 𝑛 . However, when using a fast approximate nearest neighbor method, we don't need to 

compute the distance matrix S, so the time cost of step 1 becomes 0 and 𝑂 𝑚𝑙 ∗ 𝑙𝑜𝑔𝑙  for 

step 7, giving a total time cost of 𝑂 𝑛𝑙𝑜𝑔𝑛 𝑂 4𝑚 11 𝑛 𝑂 𝑚𝑙 ∗ 𝑙𝑜𝑔𝑙 . Therefore, 

the time complexity here is approximately 𝑂 𝑛𝑙𝑜𝑔𝑛 . 

 Space complexity 

Over the entire algorithm, the following items need to be stored: the cluster set 𝛤 with a 

mass of 𝛩, the sparse adjacency matrix for G, two properties of each connection 𝑀  and 

𝐷 , the torque 𝜏  of each connection, and the torque gap 𝑇𝐺𝑎𝑝  between each connection 

in TSCL. Therefore, base space requirement is about 𝑂 7𝑛  , the space complexity is 

 
 
 
 
 
 

                                                          
         Step 1          Step 2         Step 3           Step 4          Step 5 
                                                                  
                                                                 
 
 
 
 
 
 
         AC-S          AC-W         FINCH           DPC           TC 
             
Figure 3.4. Visualization of the step-by-step results of TC (top) and the final results of related methods (bottom) 
on a synthetic data set. 
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approximately 𝑂 𝑛  . This requirement does not change when using a fast approximate 

nearest neighbor method. However, if the input is a distance matrix, which needs to be stored 

additionally, the space cost increases to 𝑂 𝑛 𝑂 7𝑛 , and the space complexity here is 

approximately 𝑂 𝑛 . 

 

3.2.7 Algorithm analysis 

For better clarity, we visualize the step-by-step results of TC and the final results of 

several related methods on a synthetic data set, as shown in Fig. 3.4. TC follows the rule of 

Eq. (3.1) to gradually complete the merging of clusters, and finally automatically determines 

the exact number of clusters. In addition, we can see that in step 1, the red cluster and the 

blue cluster have been formed, which matches the ground truth. In steps 2-5, due to the 

constraint in Eq. (3.1), the red and blue clusters do not further merge their 1-nearest clusters 

but are "waiting" for other sub-clusters to complete the merging, where this process prevents 

wrong merging in conventional agglomerative methods.  

On the other hand, according to Fig. 3.4, agglomerative clustering single-linkage (AC-

S) is sensitive to outliers, leading to wrong results. Agglomerative clustering ward-linkage 

(AC-W) cannot detect clusters with complex shapes. FINCH [13] is an agglomerative method 

based on nearest neighbor statistics completely without any constraints. Obviously, the result 

of FINCH contains some wrong mergers. Density peak clustering (DPC) [75] is not robust 

to the varied density data sets, also leading to wrong results. Besides, all other methods need 

to manually set the number of clusters (or granularity levels) except for TC. 

3.3 Experiments and results 

To evaluate the performance of TC, we measured its performance on numerous synthetic 

and real-world data sets and compared its performance to other 19 well-known or latest 

algorithms. These algorithms include: K-means++ (K-M++) [20], GMM, Fuzzy clustering 

(Fuzzy) [68], Spectral clustering (SC) [72], [129], Hierarchical agglomerative clustering 

single-linkage (AC-S), complete-linkage (AC-C), average-linkage (AC-A), ward-linkage 
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(AC-W), centroid-linkage (AC-CR) [127]; Density peak clustering (DPC) [75] and its three 

latest variants, Dynamic graph-based label propagation for density peak clustering (DPCLP) 

[27], Shared-nearest-neighbor-based density peak clustering (SNNDPC) [76], and Automatic 

density peak clustering (DPA) [77]; Efficient parameter-free clustering using first neighbor 

relations (FINCH) [13], DBSCAN (DB) [74], Mean-shift (MS) [130], Affinity Propagation 

(AP) [131], Border-Peeling clustering (BP) [132], and Robust continuous clustering (RCC) 

[1]. Among them, DPA, FINCH, DB, MS, AP, BP, and RCC can automatically determine the 

number of clusters. 

In each experiment, the optimal values for the free parameters of all the compared 

methods were selected based on their best performance across a wide range of possible 

settings or runs. This approach provided a significant advantage to the compared methods. 

Implementation details on each of these baselines are provided in the section 3.6. Contrarily, 

the reported performance of TC is from just a single run.  

All experiments were evaluated in terms of the two commonly-used external indices: 

normalized mutual information (NMI) [133] and accuracy (ACC). Additionally, we also 

compared TC with other automatic clustering algorithms for their ability to determine the 

optimal number of clusters. We counted the number of data sets each automatic clustering 

algorithm returns the exact ground-truth number of clusters, denoted as NGC. 

 

3.3.1 Evaluation on nine synthetic data sets 

Fig. 3.5 presents the results of tests with nine different synthetic data sets reflecting 

seven challenges commonly faced in clustering. These data sets have been widely used as 

benchmark comparisons for many clustering algorithms [134]. Table 3.2 provides the 

descriptive statistics of these data sets.  

As the tests in Figs. 3.5A-3.5I show, the TC algorithm conquered every trial. In addition, 

TC automatically found the exact number of clusters for all nine data sets, matching the 

ground-truth numbers perfectly. As a means of visual comparison, we also conducted these 

same tests with K-means [16]. As shown in Fig. S3.1 in the section 3.6, K-means failed on 
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eight of the nine data sets, the exception being the first. Additionally, see Table 3.3 for the 

full quantitative comparison with the 19 state-of-the-art clustering algorithms on these 

synthetic data sets. 
Figure 3.5. Results with seven different clustering 
challenges. As the results show, the proposed TC algorithm 
recognized all the clusters regardless of their shape, size, or 
density. 
A.[135] Highly overlapping: TC 
was easily able to recognize the 
15 clusters in this data set with 
substantial overlaps.  

B.[136] FLAME: TC was able 
to find the two clusters in this 
case designed to test fuzzy 
clustering by local 
approximation of membership 
(FLAME). 

C.[137] Spectral-path: This 
data set was used to illustrate the 
performance of a path-based 
spectral clustering algorithm. TC 
was perfectly able to identify the 
three clusters without the need to 
generate a path-based 
connectivity graph. 
D.[138] Unbalanced: Severe 
imbalances in the data did not 
present a problem to TC as the 
hugely disproportionate clusters 
to the right show. 

E.[75] Noisy: This data was 
originally used to showcase how 
a density peak clustering handles 
noise. TC was able to detect the 
five clusters with lots of noise. 

F.[139] Heterogeneous 
geometric: TC intuitively found 
the three clusters without the 
need to calculate point symmetry 
distances, as was required in. 

Multi-objective: Figs. 3.5G-3.5I show examples of multi-
objective clustering. With these types of tasks, more than one 
type of clustering algorithm is needed to reveal all the 
different types of cluster structures in the data [140]. The 
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current standard is to use ensemble learning to optimize 
multiple objective functions. TC was able to identify the 
different structures naturally. 
          G.[141]                   H. [142]        

I. [143] 

3.3.2 Evaluation on 11 real-world data sets 

In this section, we evaluated TC on a further 11 real-world clustering tasks (data sets) 

across five different domains: image recognition, biology, medicine, physics, and astronomy. 

Full descriptive statistics for the 11 data sets used are provided in Table 3.2. Here, we report 

the details of the tasks and TC’s individual performance with each of them. Furthermore, 

Table 3.3 gives the full quantitative comparison with the 19 state-of-the-art clustering 

algorithms on these real-world data sets. 

The image recognition experiments comprised handwritten digit recognition, face 

recognition, object recognition, and Pose, Illumination, Expression (PIE) recognition as four 

independent tasks. We used the popular benchmark data set MNIST [144] for the digit 

recognition task, where it was preprocessed using the method in [13]. Each digit from 0 to 9 

should be clustered together to form a total of 10 clusters. TC correctly classified the digits 

with an accuracy of 99.22%. 

The face recognition task was performed on the Olivetti Face Database (OFD) [145]. 

The results are shown in Fig. S3.2 color-coded by cluster. For ease of reporting, we have only 

included the first 100 images, denoted as OFD-F100. Using the similarity measure outlined 

in Ref. [146], TC completed the task with 92% accuracy.  

The object recognition was conducted on the extremely high-dimensional data set  
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COIL-100 (the Columbia University Image Library) [147] comprising 72 viewpoints on 100 

objects, making a total of 7,200 samples and 49,152 pixels. TC completed the task with an 

NMI of 97.2%.  

The PIE recognition was conducted on the CMU Pose, Illumination, and Expression 

(CMU-PIE) data set [148], which contains 13 different poses, under 43 different illumination 

conditions, and with 4 different expressions. TC completed the task with a perfect accuracy 

of 100%.  

Figure 3.6. Projection of the five clusters (tumors) of the 
RNA-seq data set found by TC in a three-dimensional 
subspace. 

Figure 3.7. The result for the Atom data set. TC 
correctly identified the two clusters: the atom’s kernel and 
hull. 

Table 3.2. Statistics of the 20 data sets. The Noisy data set has no ground truth labels. 

                        

                     
                  

Data sets Instances Dimensions  Clusters Imbalance
Highly overlapping 5000 2 15 ~1

FLAME 240 2 2 ~2
Spectral-path 312 2 3 ~1
Unbalanced 2000 2 3 8

Noisy 4000 2 5 -
Heterogeneous geometric 400 2 3 ~2

Multi-objective 1 1000 2 4 1
Multi-objective 2 1000 2 4 1
Multi-objective 3 1500 2 6 ~4

OFD-F100 100 10304 10 1
MNIST 10000 4096 10 ~1

COIL-100 7200 49152 100 1
Shuttle 58000 9 7 4558

RNA-seq 801 20531 5 ~4
Haberman 306 3 2 ~3

Zoo 101 16 7 ~10
Atom 800 3 2 1

Soybean 47 35 4 ~2
Cell-track 40 40 2 1
CMU-PIE 2856 1024 68 1
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The biology experiments comprised tasks in gene expression analysis, cell tracking 

analysis, and animal recognition. The gene expression task [3] was conducted with the RNA-

seq data set [149], which is a random extraction of gene expressions in patients with five 

different types of tumors. TC correctly recognized all five with 99.88% accuracy. A more 

intuitive representation appears in Fig. 3.6 with a plot of the 20,531-dimensional feature 

space distilled to 3D space using PCA [116]. 

For the cell tracking task, we used the cancer cell tracking (Cell-track) data set from 

GitHub [150]. The goal is to use cell movements to determine whether they are in the RGDS 

or FSL layer. TC correctly tracked the cells to each of the two layers with 87.5% accuracy.  

The last task, animal recognition, with the Zoo data set from the UCI Machine Learning 

Repository [151] was completed by TC with an accuracy of 92.08%. 

The two tasks in the medicine domain were soybean disease diagnosis, and diagnosis of 

survival time in breast cancer patients. 

The Soybean data set [152] contains observations of four diseases present in soybean 

plants. TC identified the diseases with a perfect accuracy of 100%.  

 Last in this domain was the survival time for breast cancer patients task using 

Haberman’s Survival (Haberman) data set [153]. Survival times in this data are categorized 

into two groups – less or more than 5 years – based on three surgical features: the age of the 

patient at the time of their operation, the year of the operation, and the number of positive 

axillary nodes detected. TC identified three clusters with comparatively high accuracy, which 

is very close to the ground-truth of two clusters. Closer inspection of the additional cluster 

revealed samples with a reasonable survival time prediction in between the two bipartite 

clusters. 

In the physics domain, we performed one task with the Atom data set [154], which 

contains 3D data similar to an atom kernel and hull. The data set contains two clusters in 𝑅  

with a completely overlapping convex hull and has 800 samples in total [155]. This task is to 

discriminate between the kernel and hull of the atom. As shown in Fig. 3.7, this was another 

task TC performed with perfect accuracy. 
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 To evaluate the performance of our TC in the astronomy domain, we tested the NASA 

Shuttle data set, which comprises 58,000 instances generated by seven unique conditions in 

the radiator subsystem [1]. TC completed this task with an accuracy of 90.63%. 

 

3.3.3 Results and analysis 

3.3.3.1 Performance advantage 

According to the full quantitative comparison (see Table 3.3), TC indisputably 

outperformed all other state-of-the-art algorithms, given its best-in-show performance on 15 

of the data sets.  

In terms of the rank in Table 3.3, the next-best algorithm, SNNDPC, was about four 

times higher than TC in its ranking scores both on NMI and ACC, even then, needs to set the 

ground truth number of clusters in advance. 

Moreover, beyond simple ranking metrics, there are some important quality-of-life 

issues to note: 

Table 3.3A. Performance comparison of all algorithms on all data sets, measured by NMI. The Noisy data 
set does not contain ground-truth labels, we removed it in the comparison. “NA” means not applicable. 
 
 

                                                          
              
                                                                  
                                                                 
 
 
 
 
 
 
Table 3.3B. Performance comparison of all algorithms on all data sets, measured by ACC. 

Data sets/Methods K-M++ GMM Fuzzy SC AC-A AC-W AC-S AC-C AC-CR DPC DPCLP SNNDPC DPA FINCH DB MS AP BP RCC TC
Highly overlapping .9652 .9713 .9537 .0128 .9596 .9354 .0346 .8867 .9455 .9747 .8497 .9572 .9705 .8665 .2830 .9474 .7542 .8460 .7887 .9568

FLAME .4843 .4477 .4422 .0479 .4832 .3297 .0479 .0770 .0479 .4132 .7937 .8288 .5805 .4896 .8374 .8673 .4408 .9083 .6492 1.0000
Spectral-path .0012 .0678 .0003 1.0000 .0031 .0068 1.0000 .0106 .0119 1.0000 .3037 1.0000 .3903 .5359 1.0000 .3999 .5546 .2056 .5940 1.0000
Unbalanced .4453 1.0000 .4429 1.0000 .6108 .6109 1.0000 .4406 .6351 1.0000 .6228 1.0000 .6526 .3720 1.0000 .6962 .3841 .5134 .3310 1.0000

Heterogeneous geometric .8089 1.0000 .8016 1.0000 1.0000 1.0000 1.0000 .4611 1.0000 .7445 1.0000 1.0000 1.0000 .5583 1.0000 .8143 .5855 .8017 .5648 1.0000
Multi-objective 1 .8357 .9696 .6008 1.0000 .6895 .5981 .8633 .7008 .6636 .8044 .9673 1.0000 .8766 .6995 .9977 .7071 .6180 .8750 1.0000 1.0000
Multi-objective 2 .6807 .9448 .6072 1.0000 .6894 .6130 1.0000 .6920 .6775 .6663 1.0000 1.0000 .8660 .6846 1.0000 .7968 .6517 .7999 .8781 1.0000
Multi-objective 3 .7065 .8272 .5319 .7881 .7020 .7229 .8341 .7052 .7204 .9950 .6868 .7304 .7030 .7947 .9709 .8253 .5988 .9092 .5956 .9925

OFD-F100 .9057 .8225 .4923 .8218 .7278 .7927 .5846 .6063 .6744 .8666 .5195 .9136 .8538 .8746 .5195 .8166 .8379 .0000 .0000 .9362
MNIST .9741 .8396 .3338 .9761 .9751 .9714 .0143 .9741 .9754 .9751 .0000 .9765 .8555 .9755 .9686 .8543 .7364 .7888 .7774 .9767

COIL-100 .8281 NA .2866 .8564 .7256 .8353 .6990 .7428 .6577 .8657 .0760 .6919 .8504 .7897 .7223 .0270 .8388 .5510 .9628 .9720
Shuttle .3247 .3888 .2415 .5860 .0277 .2671 .0385 .0516 .0285 .5769 NA NA .3700 .0368 .5113 .6060 NA .3273 .4858 .6389

RNA-seq .9808 .8400 .5711 .9948 .0464 .9860 .0318 .7252 .0320 .8348 .0000 .9895 .9745 .8785 .5712 .5716 .6633 .8960 .9287 .9948
Haberman .0785 .0706 .0000 .0057 .0006 .0204 .0387 .0006 .0083 .0114 .0118 .0000 .0344 .0295 .0448 .0736 .0653 .0249 .0438 .0847

Zoo NA .8587 NA .8438 .8728 .8640 .5025 .9023 .8916 .4937 .3530 .8082 .5257 .8725 .8605 NA .7928 .5643 .8518 .8988
Atom .3060 .9681 .3082 .0158 .2257 .2257 1.0000 .2107 .0620 .2735 1.0000 1.0000 .8236 .5560 1.0000 .6249 .4345 .6382 .4492 1.0000

Soybean NA .9441 NA 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .8025 .0000 .7928 1.0000 .7539 .8489 NA .7914 .6179 1.0000 1.0000
Cell-track .4835 .5617 .3793 .3351 .0620 .5466 .0620 .0620 .0620 .3464 .0631 .3988 .3744 .3986 .3793 .3474 .3817 .1281 .3857 .4592
CMU-PIE .5550 .4284 .1297 .8123 .5060 .5982 .9897 .4920 .3859 .9532 .3857 .3930 .9152 .7977 .7589 .0205 .8365 .2099 .3411 1.0000
Rank 10.5 7.9 16.2 7.3 11.7 10.3 9.5 12.9 12.4 8.7 12.7 6.7 7.7 10.5 7.1 11.1 12.9 12.1 10.4 1.6

Data sets/Methods K-M++ GMM Fuzzy SC AC-A AC-W AC-S AC-C AC-CR DPC DPCLP SNNDPC DPA FINCH DB MS AP BP RCC TC
Highly overlapping .9808 .9842 .9561 .0773 .9754 .9570 .0738 .8514 .9138 .9858 .8548 .9740 .9842 .7468 .1334 .9682 .3124 .7318 .4734 .9714

FLAME .8583 .8417 .8500 .6458 .8333 .7208 .6458 .5167 .6458 .7875 .9625 .9708 .5375 .2292 .9375 .9792 .1375 .9833 .6167 1.0000
Spectral-path .3526 .4295 .3401 1.0000 .3590 .3750 1.0000 .3878 .4038 1.0000 .5769 1.0000 .4744 .1571 1.0000 .3462 .1571 .5032 .2692 1.0000
Unbalanced .6150 1.0000 .4732 1.0000 .5435 .5440 1.0000 .5320 .6795 1.0000 .7215 1.0000 .5160 .1015 1.0000 .7445 .0670 .3510 .1150 1.0000

Heterogeneous geometric .9325 1.0000 .9325 1.0000 1.0000 1.0000 1.0000 .6075 1.0000 .8500 1.0000 1.0000 1.0000 .1350 1.0000 .8225 .1675 .7700 .1700 1.0000
Multi-objective 1 .8530 .9900 .6055 1.0000 .5890 .6580 .7490 .6180 .5760 .6560 .9890 1.0000 .7450 .4280 .9990 .5880 .1320 .8620 1.0000 1.0000
Multi-objective 2 .7910 .9820 .6860 1.0000 .8070 .7140 1.0000 .8090 .7830 .7320 1.0000 1.0000 .7500 .5490 1.0000 .7750 .2280 .7100 .8660 1.0000
Multi-objective 3 .7280 .7607 .5179 .5072 .7153 .7840 .7520 .7093 .7833 .9987 .6547 .7213 .5860 .6133 .9833 .6907 .1160 .9193 .1460 .9980

OFD-F100 .9100 .8200 .2990 .7593 .5900 .7600 .3300 .5200 .4400 .7800 .4100 .8200 .7700 .7700 .3700 .5900 .7000 .1000 .1000 .9200
MNIST .9915 .7842 .2086 .9921 .9917 .9903 .1141 .9912 .9919 .9916 .1135 .9922 .6925 .9918 .9838 .8918 .2662 .6625 .5497 .9922

COIL-100 .5992 NA .0233 .6368 .2794 .6053 .3504 .3521 .2175 .5482 .0187 .3089 .5385 .3922 .4313 .0107 .3529 .2532 .8307 .8633
Shuttle .5456 .5116 .3000 .7581 .7834 .7663 .7862 .6386 .7837 .8893 NA NA .2912 .5788 .8232 .8855 NA .0669 .6619 .9063

RNA-seq .9950 .8939 .5546 .9988 .3645 .9963 .3758 .7403 .3758 .7990 .3745 .9975 .9850 .8240 .6067 .6242 .2784 .9288 .9001 .9988
Haberman .7582 .6667 .5098 .5229 .7320 .7288 .7386 .7320 .7353 .5425 .7353 .6863 .6209 .4771 .7386 .7418 .1242 .7386 .3301 .7549

Zoo NA .8812 NA .7228 .8614 .8812 .5248 .9109 .8911 .4752 .4752 .8515 .4950 .8713 .8317 NA .6733 .5941 .8020 .9208
Atom .7212 .9962 .7362 .5025 .6575 .6575 1.0000 .6450 .5250 .6963 1.0000 1.0000 .8163 .5675 1.0000 .6300 .0975 .6250 .2863 1.0000

Soybean NA .9787 NA 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .8085 .3617 .7021 1.0000 .5106 .7872 NA .5106 .5745 1.0000 1.0000
Cell-track .8750 .9000 .8250 .8000 .5250 .9000 .5250 .5250 .5250 .8250 .6250 .8500 .7750 .7750 .8250 .5250 .6750 .5750 .6000 .8750
CMU-PIE .2479 .2255 .0516 .6524 .1961 .2272 .9496 .1719 .1457 .7892 .1089 .1499 .7539 .3592 .6933 .0259 .3631 .0525 .0882 1.0000
Rank 8.9 7.7 14.8 7.4 10.2 8.0 8.5 11.5 10.4 7.8 11.3 6.1 9.7 13.6 6.6 12.6 16.6 12.6 13.1 1.5
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 Most algorithms that outperformed TC on several data sets are sensitive to 

initialization/parameters, so the reported accuracies are the highest of many runs with 

different initializations or with different parameters. TC, however, is parameter-free and 

does not need any initialization, so the accuracy levels reported are from just a single 

run.  

 Most algorithms require the analyst to specify the ground truth number of clusters before 

running the clustering procedure, whereas TC can automatically determine the number 

of clusters. 

 

3.3.3.2 Automatic determination of number of clusters 

For a completely unsupervised clustering algorithm, it is important to be able to 

automatically determine the number of clusters. The TC algorithm, applied to the 20 data sets 

above, returned the exact or close to the exact number of clusters across the board without 

human intervention (15 exact, 5 close to). Table 3.4 highlights TC’s performance against the 

seven comparators that can also automatically determine the number of clusters. TC was 50% 

more accurate than the next-best algorithm, DB, which only identified the correct number of 

clusters on 10 data sets even parameters tuning to get these results required many runs. The 

others ranged from 0 to 6 sets.  

Table 3.4. The performance comparison of eight automatic methods on predicting the ground-truth number of 
clusters. #C means the ground-truth number of clusters. NGC indicates the number of data sets each automatic 
clustering algorithm returns the exact ground-truth number of clusters. 

Data sets/Methods #C DPA FINCH DB MS AP BP RCC TC
Highly overlapping 15 15 56 2 15 116 29 10 15

FLAME 2 6 19 2 2 21 2 5 2
Spectral-path 3 5 56 3 6 35 3 33 3
Unbalanced 3 4 128 3 3 80 12 744 3

Noisy 5 4 29 5 5 144 54 176 5
Heterogeneous geometric 3 3 36 3 3 24 7 33 3

Multi-objective 1 4 6 26 4 2 40 6 4 4
Multi-objective 2 4 2 63 4 4 37 8 14 4
Multi-objective 3 6 10 7 7 5 75 6 104 6

OFD-F100 10 11 8 3 13 17 1 1 12
MNIST 10 42 10 10 15 80 20 149 10

COIL-100 100 129 44 64 11 568 32 90 129
Shuttle 7 336 16 8 56 - 204 144 4

RNA-seq 5 6 4 3 63 36 5 4 5
Haberman 2 5 3 2 5 19 1 6 3

Zoo 7 12 8 3 - 11 3 14 6
Atom 2 2 29 2 13 55 9 80 2

Soybean 4 4 12 3 - 9 2 4 4
Cell-track 2 3 4 1 10 9 1 11 2
CMU-PIE 68 61 271 67 4 231 3 6 68

          NGC - 4 1 10 6 0 4 2 15
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It is worth pointing out, however, that in many fields, choosing the right number of 

clusters can be subjective, depending more on the user’s requirements than a ground-truth. 

This is why many clustering algorithms, including the well-known clustering method [75], 

DPC, all adopt similar kinds of decision graphs to visualize the cluster structure of the data 

set. Visualization helps users to estimate the ideal number of clusters, and offering a choice 

helps users better meet their own needs. However, because there is no objective and agreed 

definition of a cluster, people use different, subjective determinations of where the borders 

between clusters are [156]. The research by Balcan et al. on the problem of discovering 

ground-truth clustering revealed that using a list of partitions or a hierarchy instead of a single 

flat partition is preferable [157]. Decision graphs do not identify a specific number of clusters, 

but they do provide a customized way for users to choose for themselves, which complies 

with the above views.  

The decision graphs of the first 100 images of the Olivetti Face Database (see Fig. S3.4A) 

and the nine data sets in Figs. 3.5A-I (see Fig. S3.3) clearly show the cluster structure of each 

data set as compared to the decision graph for the DPC algorithm (see Fig. S3.4B). Further, 

the ease of estimating the ideal number of clusters with TC is clear. But these decision graphs 

provide another benefit. On the Olivetti Face Database data set, the TC algorithm identified 

11 abnormal connections and removed them to leave 12. Yet, when looking at the decision 

graph, the actual number of abnormal connections is obviously nine. Removing these leaves 

10 clusters, which is exactly the ground-truth number. The final recognition accuracy 

therefore moves from 92% with TC up to 95%. Thus, the decision graph is also helpful for 

manually correcting the TC algorithm in situations of excessive sensitivity. 

Further, in the cases where the ground-truth number of clusters K is known, then K-1 

connections with the largest 𝜏  in Eq. (3.5) can simply be regarded as abnormal connections. 

Table 3.5. Runtime comparison of TC with the state-of-art clustering algorithms on COIL-100 data 
set. The results are reported in HH:MM:SS. 

K-M++ Fuzzy GMM SC AC-A AC-W AC-S AC-C AC-CR DPC
0:00:28    00:12:16 NA    00:03:41    00:02:02    00:02:27    00:01:53    00:01:57    00:02:07    00:02:11
DPCLP SNNDPC DPA FINCH DB MS AP BP RCC TC

   00:07:25    00:15:08    00:02:28    00:00:48    00:04:03    00:07:09    00:07:59    11:47:26    06:16:51    00:00:31
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For example, with the COIL-100 data set, removing the 99 connections with the largest 𝜏  

generates 100 clusters and 89.51% accuracy – higher than TC’s at 86.33%. What this 

demonstrates is that if the ground-truth number of clusters is known in advance, TC’s 

performance further improves. 

 

3.3.4 Runtime 

To reflect the effectiveness of TC more intuitively, we compared the running time of TC 

with that of all 19 algorithms. In general, three attributes of the data set, i.e., the number of 

samples, dimensions, and clusters, all affect the execution time. Therefore, we chose COIL-

100 as the test data set because all three attributes are reflected in relatively large numbers. 

All algorithms were implemented in Matlab or Python. All of the tests were run on a 

workstation with two 14-core Intel Xeon 6132 CPUs running at 2.6 GHz and 3.7 GHz, as 

well as 96GB of RAM. The average execution time is reported for the clustering algorithms 

that need to be executed multiple times. The code provided by the author for GMM fails to 

function correctly when applied to this data set. The results in Table 3.5 show the running 

time of TC is less than that of all other algorithms except K-means++. 

Additionally, Fig. 3.8 illustrates the time taken by TC to run on subsets of the Shuttle 

data set that were randomly selected. The proposed TC can produce clustering results in 

 
 
 
 
 
 

                                                          
              
                                                                  
                                                                 
 
 
 
 
Figure 3.8. Runtime of TC. We assess the runtime of TC by considering the data set size as a variable, 
which is accomplished by randomly selecting subsets of varying sizes from the Shuttle data set for 
analysis. 
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roughly 12 seconds for all subsets. 

3.3.5 Further evaluation on 56 data sets with peculiar characteristics 

In this section, we conducted an additional comprehensive evaluation on 56 data sets in 

total that includes 27 data sets with noise, outliers, overlaps, or other peculiar distributions, 

nine synthetic data sets with unbalanced clusters, five synthetic data sets with uniform noise 

and 15 poorly-separated, high-dimensional gene expression data sets. The results are reported 

in Tables S3.4-S3.7 and Figs S3.5-S3.7. Overall, TC still retained a great performance 

advantage on these data sets. 

 

3.3.6 Comparison to deep clustering algorithms on challenging image data sets 

Image data sets usually have very high dimensions, and traditional clustering algorithms 

often cannot achieve good results on them. Numerous recent investigations have centered on 

utilizing deep neural networks to train a low-dimensional representation that is conducive to 

clustering. This kind of approach, often called deep clustering, has led to a substantial 

enhancement in clustering performance, particularly for image data sets [85]. Hence, in this 

section, we also compared TC with the latest state-of-the-art deep clustering algorithms on 

several challenging image data sets, including UMIST [158], FRGC-v2.0 [159], COIL-20 

[160], COIL-40 [147], Pendigits [161], and the two mentioned above, COIL-100 [147] and 

CMU-PIE [148]. We run TC directly on the raw features (or pixels) of these image data sets 

without any other representation. Further, we combined the leaderboards of the "papers with 

code", a website that ranks the performance of open-source algorithms, and the latest papers 

on deep clustering algorithms, to list the results of the top six deep clustering algorithms that 

perform best on these seven image data sets (measured by NMI), as shown in Table 3.6. On 

CMU-PIE, COIL-40, and UMIST data sets, TC outperforms all state-of-the-art deep 

clustering algorithms. Besides, the results of TC are also competitive on other data sets.  

In summary, TC without any deep representation can achieve better or close 

performance on challenging image data sets, compared with state-of-the-art deep clustering  
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Table 3.6. Comparison to Deep Clustering algorithms, measured by NMI. 

 

algorithms. Deep clustering algorithms also face some challenges. For example, they have 

several hyper-parameters that are non-trivial to set, lack interpretability, and have high 

computational complexity. 
 

3.4 Discussion 

3.4.1 Differences between TC and other hierarchical clustering algorithms  

Although TC appears to be a hierarchy-based clustering algorithm, it is different from 

the existing algorithms in several major ways.  

First, most of the previous hierarchical clustering algorithms are completely based on 

the nearest neighbors' statistics without constraints. However, we introduce a simple but very 

effective constraint (i.e., the requirement in Eq. (3.1)) in TC, which prevents wrong merging 

usefully (see Fig. 3.4). This idea is inspired by the gravitational interactions of galaxy minor 

mergers. Second, in each step of TC, if any two neighboring clusters satisfy the requirement 

of Eq. (3.1), a connection can be formed, and thus mergers can be performed in parallel. That 

means a large cluster can form within very few steps (see Table S3.2), greatly improving 

clustering efficiency and reducing the algorithm’s execution time (Table 3.5 and Fig. 3.8). 

However, standard hierarchical clustering algorithms need to perform merging at least n-K 

times to get K clusters. Third, TC algorithm automatically determines the number of clusters 

Data sets CMU-PIE COIL-100 COIL-40 COIL-20 FRGC-v2.0 UMIST Pendigits 
Rank 1 1 

JULE [162] 
2016 

.985 
JULE [162] 

2016 

.967 
A-DSSC [163] 

2020 

1 
JULE [162] 

2016 

.651 
DNB [164] 

2021 

.917 
DSC-FEDL [165] 

2020 

.868 
EAEDC [166] 

2021 
Rank 2 1 

DDSNnet [167] 
2021 

.946 
A-DSSC [163] 

2020 

.963 
J-DSSC [163] 

2020 

.981 
DSC-FEDL [165] 

2020 

.610 
DEPICT [168] 

2017 

.893 
𝑆 DSCAG [169] 

2020 

.863 
N2D [170] 

2019 
Rank 3 .970 

DAutoED [171] 
2021 

.943 
J-DSSC [163] 

2020 

.951 
DSC-FEDL [165] 

2020 

.979 
SADSC [172] 

2021 

.580 
MI-ADM [173] 

2021 

.890 
DSC-DAG [169] 

2020 

.820 
DnC-SC[174] 

2021 
Rank 4 .965 

MI-ADM [173] 
2021 

.910 
DGMM [175] 

2021 

.928 
RGRL [176] 

2020 

.974 
𝑆 DSCAG [169] 

2020 

.574 
JULE [162] 

2016 

.881 
RGRL [176] 

2020 

.817 
DipDECK [177] 

2021 

Rank 5 .964 
DEPICT [168] 

2017 

.905 
DBC [178] 

2018 

.920 
DASC [179] 

2018 

.958 
DSC-DAG [169] 

2020 

.544 
DPSC [180] 

2021 

.877 
JULE [162] 

2016 

.814 
GCML [181] 

2022 
Rank 6 .925 

DPSC [180] 
2021 

.886 
DDSNnet[167] 

2021 

.916 
DSC-DAG [169] 

2020 

.910 
DGMM [175] 

2021 

.522 
DDSNnet [167] 

2021 

.851 
DNB [164] 

2021 

.801 
AESC[182] 

2020 
TC 1 .972 .989 .960 .586 .931 .849 
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by removing abnormal connections based on a new TGap metric. Instead, most of the existing 

hierarchical algorithms still need to manually set the number of clusters (or granularity levels), 

even if dendrograms are provided. Finally, TC is robust to noise and outliers and can identify 

noise clusters. However, many of the classic agglomerative clustering algorithms are not 

robust to noise [63]. As the case study in Fig. 3.4 and the empirical results in Table 3.3, TC 

outperforms other hierarchy-based clustering algorithms. 

 

3.4.2 Differences between TC and density peak clustering algorithms 

Even though the decision graph of TC is similar to that of DPC techniques, it is also 

different from the existing algorithms in several major ways. 

First, decision objects are different. TC determines which connections between 

neighboring clusters are abnormal connections, and then prunes the clustering tree by 

removing them to get the results. The DPC is to decide which data samples are cluster centers, 

and then complete the label assignments of the remaining samples according to them. 

Excluding the distance between clusters (or between samples), as the basis for determining 

abnormal connections, TC only needs to count the number of samples (i.e., mass) contained 

in each cluster to obtain 𝑀  in Eq. (3.3), without any hyper-parameters. While DPC uses 

some density estimators to estimate the local density of each sample to determine the cluster 

centers, where these density estimators usually contain hyper-parameters such as cutoff 

distance. Second, label assignment strategies are different. TC leverages the constrained 

method of merging in Eq. (3.1) to assign labels to samples in clusters, which can effectively 

improve accuracy. DPC, on the other hand, assigns labels to samples based on selected cluster 

centers (i.e., density peaks). However, once the cluster centers are wrongly chosen, then there 

may be many more samples subsequently misassigned. For example, in the varied density 

data set of Fig. 3.4, DPC erroneously selects two cluster centers (i.e., the blue and red ones) 

in a ground truth cluster, which eventually leads to wrong label assignment. Finally, 

robustness is different. DPC is not robust to the varied density data sets, since it assumes that 

density peaks must be cluster centers. While TC has parallelism in the merging process, that 
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is, if any two neighboring clusters satisfy the requirement of Eq. (3.1), a connection can be 

formed, which can effectively reduce the sensitivity to varied density in conventional 

hierarchical clustering (see Fig. 3.4). 

 

3.4.3 Differences between TC and subspace clustering algorithms 

Clustering algorithms attempt to classify elements into categories, or clusters, on the 

basis of their similarity metric [75]. Currently, there are some well-known methods that 

combine clustering and subspace learning (or metric learning), such as subspace clustering 

(SSC) [84], which achieve good results on high-dimensional data sets. However, like most 

classical clustering algorithms, such as K-means, linkage methods, the proposed TC tries to 

find possible clusters based on the commonly used similarity metric (e.g., Euclidean, cosine), 

without learning a new subspace or new similarity metric. 

 

3.4.4 Potential limitations of TC 

On the one hand, the merging process of TC relies on nearest-neighbor statistics and 

leverages a method like single-linkage to measure the distance between clusters. Therefore, 

the performance of TC on some high-dimensional and sparse data sets is not particularly 

satisfactory (see Table S3.7), even if still outperforming related methods. On the other hand, 

since TC relies on the global mean variable values (i.e., mean_M, mean_D, and mean_ ) to 

detect cluster halo, it is more suitable to be used to identify uniform noise, and may not be 

able to accurately identify all non-uniform noise. We will address these issues in future work. 

3.5  Conclusion 

Whether compared to the classic or very recent methods, TC demonstrates itself to be a 

highly accurate algorithm, superior in performance to all its counterparts and with an 

unprecedented level of versatility. Overall, we have presented a clustering algorithm that is: 

parameter-free, can recognize various types of clusters with different shapes, sizes or densities; 

does not depend on a priori knowledge; is robust to noise and outliers; does not need any 



UTS THESIS 

53 
 

initialization; automatically determines the number of clusters, and does not demand a manually-

specified stopping condition. Moreover, the ability to use any desired method of 1-nearest-cluster 

computation means TC is scalable to large data sets with a relatively low computational overhead 

and a reasonable time complexity, especially when choosing an approximate nearest neighbor 

search method, such as k-d tree or locality-sensitive hashing [12], [13]. In this chapter, we 

presented many test cases to showcase TC’s versatility. Even more experimental details and 

comparisons of clustering quality versus state-of-the-art methods are provided in Tables S3.1-

S3.7 and Figs. S3.5-S3.9 in the section 3.6.  
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3.6 Experimental details and more results 
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Fig. S3.1. K-means comparisons to the nine experiments in Fig. 3.5. The results reported are the best solution 
from 100 runs according to the ground-truth labels or, in the case of data set E, the objective function, as this data 
set does not contain ground-truth labels. The initialization method was K-means++. The value of K was set to the 
ground-truth number of clusters. 
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Fig. S3.2. Cluster analysis of the first 100 images of the Olivetti Face Database. Faces with the same color 
wash belong to the same cluster, as identified by TC. TC recognized 12 faces with a ground truth of 10, giving a 
92% accuracy rate. The two extra clusters returned were as a result of the method we used for calculating similarity 
(i.e., Ref. [146]). This method is biased toward rotations, which, in this case, made the intra-cluster distance of 
Class 1 much larger than the other classes. In other words, it made the samples in Class 1 too sparse, which caused 
the TC algorithm to identify two extra abnormal connections (see Table. S3.3).  
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Fig. S3.3. TC decision graphs for the data point distributions in Fig. 3.5. 𝐷  is on the horizontal axis, and 𝑀  
is on the vertical axis. The abnormal connections determined by TC algorithm in each data set appear in bold. 
Removing these connections leaves the final cluster partitions for each data set.  
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    A                        B 

 
 

Fig. S3.4. TC and DPC decision graphs for the Olivetti Face Database tests. TC’s decision graph is 
helpful for correcting excessive sensitivity to abnormal connections. Here, (A) shows TC with 𝐷  on 
the horizontal axis and 𝑀  on the vertical axis. TC automatically determined the number of abnormal 
connections to be 11, inconsistent with the ground-truth of 9. However, it is easy to see the nine 
abnormal connections in the decision, which appear in bold. Removing them leaves the 10 ground-truth 
clusters. By comparison, (B) shows the decision graph for DPC with data density on the horizontal axis 
and density-relative distance on the vertical axis. Identifying the correct 10 clusters here by eye would 
be extremely difficult, if not impossible. 
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3.6.1 Experimental details 

In this study, we benchmarked TC against 19 representative clustering algorithms on 20 

data sets (nine synthetic + 11 real-world). Following common practice, Euclidean metric was 

used as the similarity measure for most data sets. However, considering the advantage of 

cosine metric in processing functional data sets [183] and capturing semantic relations [184], 

[185], cosine metric was used as the similarity measure for these data sets: MNIST, COIL-

100, Shuttle, RNA-seq, Haberman, and CMU-PIE. Additionally, Jaccard metric was used for 

the categorical data sets with non-numeric features, Zoo and Soybean, following Ref. [186], 

and the image similarity measure outlined in Ref. [146] was used for the Olivetti face 

database (OFD-F100) in consideration of comparison fairness. Figure S3.8 gives an example 

to illustrate the robustness of TC with respect to changes in the metric. 

Details of the 19 baselines chosen for comparison follow. The parameter settings for 

those algorithms that require them are given in Table S3.1.  

K-M++: K-means++ [20] 

We used the implementation provided in Matlab and, as recommended, report the best index 

values at termination from 100 runs. 

GMM: Gaussian mixture model clustering 

We used the implementation provided by Ref. [187] and, again, report the best index values 

at termination from 100 runs as recommended. 

Fuzzy: Fuzzy clustering [68] 

We used the Matlab implementation and present the results averaged over 100 random 

initializations. 

SC: Spectral clustering [72], [129] 

As with Fuzzy, we used the Matlab implementation and present the results averaged over 100 

random initializations. 

AC-S: Hierarchical agglomerative clustering single-linkage  

The implementation was provided by Matlab. 

AC-C: Hierarchical agglomerative clustering complete-linkage 
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As above, the implementation was provided by Matlab. 

AC-A: Hierarchical agglomerative clustering average-linkage 

As above, Matlab. 

AC-W: Hierarchical agglomerative clustering ward-linkage 

As above, Matlab. 

AC-CR: Hierarchical agglomerative clustering centroid-linkage [127] 

As above, Matlab. 

DBSCAN (DB) [74] 

Another implementation from Matlab. DB has two parameters: Minpts and Eps. The paper 

[188] gives a rule of thumb, Minpts = 2*no. of dimensions, which we also followed on the 

low-dimensional data sets, i.e., Highly overlapping, FLAME, Spectral-path, Unbalanced, 

Noisy, Heterogeneous geometric, Multi-objective 1, Multi-objective 2, Multi-objective 3, 

Shuttle, Haberman, and Atom. However, if we had followed this rule for the high-

dimensional data sets (OFD-F100, MNIST, COIL-100, RNA-seq, Zoo, Soybean, Cell-track 

and CMU-PIE), Minpts would be close to or greater than the total number of samples, which 

means most or all samples would be considered noise. Therefore, for the high-dimensional 

data sets, we tested 𝑀𝑖𝑛𝑝𝑡𝑠 10, 20, 30, 40, 50, then chose the best setting for each data 

set.  

The Eps settings for all data sets were determined by the method in Ref. [189], i.e., �̅�

∑ 𝑑 𝑥 , �̅�  , where �̅� ∑  , 𝑑 ,   denotes the distance, and 𝑥   or 𝑥   means the 

samples. We tested 𝐸𝑝𝑠  �̅�, �̅�/2, �̅�/3, … , �̅�/10, and chose the best setting for each data 

set.  

MS: Mean Shift [130] 

We used the implementation provided by Ref. [190]. MS has a bandwidth parameter ℎ. We 

borrowed the idea from paper [191] to set ℎ ∑ 𝑑 𝑥 , 𝑥 ,  , where 𝑥 ,   is the 𝑘 th 

distant neighbor from 𝑥 . In addition, we tested k = [5% n], [10% n], [15% n], …, [30% n], 

then chose the best setting for each data set, where  means rounding. 
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AP: Affinity Propagation [131] 

We used the codes provided by the authors [192] with their recommended parameter settings. 

DPC: Clustering by fast search and find of density peaks [75] 

We followed the implementation recommended in the original paper [193]. DPC has a 

parameter, dc, which is used to calculate the density of samples. To maximize the clustering 

quality, we followed the guidelines in the paper and tested 𝑑𝑐 1.0% through  2.0% in 

steps of .1%, then we chose the best setting for each data set. Further, in some data sets, it 

was very difficult to determine the optimal number of clusters from the decision graphs alone 

(see Fig. S3.4B). Hence, to maximize DPC’s clustering quality with these data sets, we used 

the ground-truth number of clusters instead of referring to the decision graphs. 

FINCH: Efficient parameter-free clustering using first neighbor relations [13]  

With this algorithm, we also followed the implementation recommended in the original paper 

[194]. FINCH is a parameter-free algorithm that provides several options cluster partitions 

and asks the user to make a subjective decision as to which is the “ideal” scheme. As an 

example, with the MNIST image set, FINCH generated five partitioning schemes ranging 

from 1,699 clusters right down to 10 clusters. Therefore, to maximize clustering quality, we 

chose the scheme closest to the ground-truth number of clusters, which accords with the 

authors’ approach [13]. 

RCC: Robust continuous clustering [1] 

We used the Python implementation provided by Ref. [195] with the default recommended 

parameter settings.  

BP: Border-Peeling Clustering [132] 

We used the codes provided by the authors [196] with their recommended parameter settings. 

DPCLP: Dynamic graph-based label propagation for density peaks clustering [27] 

We followed the implementation from the authors [197]. This implementation has two 

parameters that need to be input: p (fraction of instances) and C (number of clusters). 

According to the original paper, we set p to [0.0002, 0.001, 0.01, 0.16] and chose the best 

setting for each data set. We set C to the ground-truth number of clusters. 
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DPA: Automatic topography of high-dimensional data sets by non-parametric Density 

Peak clustering [77] 

We used the Python implementation provided by Ref. [198] with the default recommended 

parameter settings. 

SNNDPC: Shared Nearest Neighbor-based Clustering by Fast Search and Find of 

Density Peaks [76] 

We used the Matlab implementation provided by the authors [199], and set the algorithm to 

assign the hyper-parameter K automatically. Besides, we set the target number of clusters to 

the ground-truth number of clusters. 
 
Table S3.1. Parameter settings for baselines  

Algorithm Parameter settings 
K-means++ EmptyAction= 'singleton', MaxIter= 100, Replicates= 1, K= ground-truth number of clusters  
GMM tol = 10 , maxiter = 500, required number of clusters = ground-truth number of clusters  
Fuzzy exponent for the matrix U= 2.0, MaxIter= 100, threshold= 10 , required number of clusters = ground-truth 

number of clusters 
SC LaplacianNormalization= 'randomwalk', SimilarityGraph= 'knn', NumNeighbors= 10, KNNGraphType= 

'complete', ClusterMethod= 'kmeans' 
AC-S ‘cutoff’= ground-truth number of clusters  
AC-C ‘cutoff’= ground-truth number of clusters  
AC-A ‘cutoff’= ground-truth number of clusters  
AC-W ‘cutoff’= ground-truth number of clusters  
AC-CR ‘cutoff’= ground-truth number of clusters  
DB – Minpts = 2*the no. of dimensions for the low-dimensional data sets (Highly overlapping, FLAME, Spectral-

path, Unbalanced, Noisy, Heterogeneous geometric, Multi-objective 1, Multi-objective 2, Multi-objective 3, 
Shuttle, Haberman, and Atom).  

– 𝑀𝑖𝑛𝑝𝑡𝑠 ∈ 10, 20, 30, 40, 50  for the high-dimensional data sets (OFD-F100, MNIST, COIL-100, RNA-seq, 
Zoo, Soybean, Cell-track and CMU-PIE) 

– 𝐸𝑝𝑠 ∈ �̅�, �̅�/2, �̅�/3, … , �̅�/10 , where �̅� ∑ 𝑑 𝑥 , �̅� , �̅� ∑  for all data sets 

MS ℎ ∑ 𝑑 𝑥 , 𝑥 , , where 𝑘 ∈ 5% 𝑛 , 10% 𝑛 , 15% 𝑛 , … , 30% 𝑛  

AP 'maxits'=1000, 'convits'=100, 'dampfact'=0.9, Preference = median of similarities 
DPC 𝑑𝑐 ∈ 1.0%, 1.1%, 1.2%, 1.3%, 1.4%, 1.5%, 1.6%, 1.7%, 1.8%, 1.9%, 2% , ideal number of clusters= ground-

truth number of clusters  
DPCLP 𝑝 ∈ 0.0002, 0.001, 0.01, 0.16 , C= ground-truth number of clusters  
DPA Z=1, k_max=1000 or k_max=n/2 when the number of samples is less than 1000 
SNNDPC 'AutoPick'= ground-truth number of clusters, K=0 
RCC k=10, verbose=’True’, preprocessing=’none’, clustering_threshold=1.0 
BP pca=’none’, spectral=’none’ 

 

All experiments were performed in Matlab2019b or Python 3.6 (2.7 for BP algorithm as 

the authors recommended), and performance was evaluated against the two well-known 

external metrics, NMI [200] and ACC [201]. The results for all baselines on all data sets are 

reported in Tables 3.3A and 3.3B, with the maximum values highlighted in bold. We also 

ranked each algorithm according to its average performance across all data sets. If an 

algorithm could not be scaled to a data set, we set its ranking to last for that data set. We also 
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evaluated the ability of the automatic clustering algorithms to estimate the ground-truth 

number of clusters. The number of clusters determined by each automatic algorithm is 

provided in Table 3.4. Exact estimates are marked in bold. When an algorithm needed to be 

run many times under different parameters to determine the optimal settings, i.e., DB and 

MS, we took the number of clusters corresponding to their maximum metric values. The 

Noisy data set does not contain ground-truth labels, so we could not calculate values for the 

external metrics. However, the ground-truth number of clusters is known, so, for DB and MS, 

we took the number of clusters closest to the ground-truth from many runs. 

 
Table S3.2. Hierarchical tree of TC for each data set. 
Table S3.2 shows the number of clusters in each layer of the hierarchical tree for each data set produced by 
the TC algorithm. In Step 0, the number of clusters equals the number of samples but, by the end of the 
process, each data set will have been merged into one giant cluster. Notably, TC’s hierarchies averaged 7.5 
mergers (layers) across the 20 data sets used in this study. A standard hierarchical clustering algorithm would 
require an average of 4784.1 mergers because it needs to merge each sample n-1 times, where n is the number 
of samples in the data set. 
 
Step Step0 Step1 Step2 Step3 Step4 Step5 Step6 Step7 Step8 Step9 Step10 Step11 Step12 

Highly overlapping 5000 1530 618 267 99 38 19 9 5 4 1 - - 
FLAME 240 63 22 9 4 2 1 - - - - - - 
Spectral-path 312 113 43 21 10 6 4 2 1 - - - - 
Unbalanced 2000 626 259 118 54 25 10 4 1 - - - - 
Noisy 4000 1217 490 209 98 47 22 8 4 2 1 - - 
Heterogeneous geometric 400 126 51 28 14 9 5 3 1 - - - - 
Multi-objective 1 1000 342 146 65 32 14 6 4 2 1 - - - 
Multi-objective 2 1000 332 153 69 33 16 12 9 6 4 1 - - 
Multi-objective 3 1500 164 70 31 13 5 3 2 1 - - - - 

OFD-100 100 31 11 4 1 - - - - - - - - 
MNIST 10000 1699 528 155 54 19 9 4 3 1 - - - 
COIL-100 7200 2211 975 473 241 119 53 18 8 2 1 - - 
Shuttle 58000 15884 5963 2362 928 375 163 78 36 12 5 2 1 

RNA-seq 801 80 18 7 3 2 1 - - - - - - 

Haberman 306 96 40 19 9 5 2 1 - - - - - 

Zoo 101 23 7 3 1 - - - - - - - - 

Atom 800 240 104 38 16 6 2 1 - - - - - 

Soybean 47 12 5 2 1 - - - - - - - - 

Cell-track 40 4 2 1 - - - - - - - - - 

CMU-PIE 2856 799 213 108 54 11 2 1 - - - - - 

 
Table S3.3. The intra-cluster distance of each class on OFD-F100 data set. 
We took the average of the distances between any two samples in each class as the intra-cluster distance and 
found that the samples of Class 1 are too sparse because of the bias toward rotations of the similarity calculation 
of Ref. [146]. As a result, the TC algorithm automatically identified two more abnormal connections in Class 1, 
making 11 abnormal connections in total. 

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 Class 10 
.3846 .1566 .2621 .2266 .2376 .1898 .0684 .1404 .2000 .2304 
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3.6.2 Further evaluation on additional 56 data sets with peculiar characteristics 

In this set of tests, we examined how the eight clustering algorithms performed on the 

data sets from four different sources. These included: (1) data sets with noise, outliers, 

overlaps, or other peculiar distributions from a benchmark database; (2) synthetic data sets 

with different degrees of unbalance; (3) synthetic data sets with different degrees of uniform 

noise; and (4) poorly-separated, high-dimensional data sets.  

The seven comparators included the two well-known algorithms of the 19 mentioned 

above, DB and SC. Moreover, since TC is hierarchy-based, five standard hierarchical 

clustering algorithms, AC-S, AC-C, AC-A, AC-W, AC-CR, were also included. For a fair 

comparison, considering the bias toward data unbalance of accuracy [202], the following 

results were measured only by NMI, which is the most widely used metric for evaluation in 

the clustering community [203]. 

 

A. Test on 27 data sets with noise, outliers, overlaps, or other peculiar distributions 

from the benchmark database 

Table S3.4 provides the details of the data sets [134], [135], save to say each contains various 

numbers of clusters, degrees of noise, overlaps and outliers or other distribution peculiarities. 

Fig. S3.5 plots the results for the 27 data sets. TC achieved the highest NMI on 18 of them 

and was highest overall in mean rankings, outperforming the next-best algorithm, SC, by 

more than two times (1.59 vs. 3.59). TC returned the exact number of ground-truth clusters 

on 25 of the 27 data sets compared to the next best automatic algorithm, DB, with perfect 

accuracy on only 10.  

 

B. Test on nine synthetic data sets with unbalanced clusters 

In this experiment, to evaluate the robustness of TC to data set unbalance, we used the Highly 

overlapping data set in Fig. 3.5 and the parameter s was adjusted between 0.1 and 0.9 to 

manage the level of unbalance. Class 14 received a probability of 1, class 0 received a 
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probability of s, and all other classes were linearly varied between s+0.1 and 1. We evaluated 

the performance of TC and the seven algorithms for each value of s in terms of NMI. The 

results appear in Fig. S3.6 and Table S3.5. TC still retained the performance advantage on 

the data sets with unbalanced clusters and identified the correct numbers of clusters on all the 

nine data sets. 

 

C. Test on five synthetic data sets with different degrees of uniform noise 

In this experiment, to evaluate the robustness of TC to noise, we used the original synthetic 

data set in Fig. 3.3 and controlled the degree of noise by adding 5%-30% uniform noise 

respectively. We compared TC and two density-based algorithms, DB and DPC, which have 

the noise detection capability. TC achieved the highest NMI and identified the correct 

numbers of clusters on all the five data sets. Compared with the other two algorithms, TC is 

more robust to noise. Table S3.6 and Fig. S3.7 give the quantitative and visualized results, 

respectively. 

 

D. Test on 15 poorly-separated, high-dimensional gene expression data sets 

These poorly-separated, high-dimensional real-world data sets of cancer gene expressions 

[204] come from various tissues of the human body. They also contain outliers. The results 

are shown in Table S3.7. TC achieved the highest NMI on 11 of the 15 data sets, and SC was 

highest on only three but was given knowledge of the ground-truth number of clusters in 

advance. TC achieved the highest mean NMI across the data sets, and interestingly, it 

outperformed the next-best algorithm, SC, by about 9%. Additionally, TC returned the exact 

number of ground-truth clusters on seven of the 15 data sets compared to the next best 

automatic algorithm, DB, with perfect accuracy on only three. 
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Table S3.4. Performance comparison on 27 data sets with noise, outliers, overlaps, or other peculiar 
distribution, measured by NMI. 
#C means the ground-truth cluster number, and NC stands for the cluster number identified by the algorithms. 
NGC indicates the number of data sets each automatic clustering algorithm returns the exact ground-truth 
number of clusters. "NA" means not applicable; here, SC broke within 100 runs on the Insect data set. 
 

  NC set manually  NC determined automatically 

Algorithm  AC-S AC-C AC-A AC-W AC-CR SC  DB TC 

Data Set #C  NMI  NC NMI   NC NMI 

Zelnik2 2  .0776 .5164 .1063 .5165 .1275 .5178  2 1 2 .9084 

Zelnik4 4  .0845 .7255 .6176 .7224 .6185 .7220  4 .9897 4 .9609 

Cluto-t5-8k 6  .0173 .6817 .8183 .8229 .8198 .0210  1 0 6 .8838 

S1 15  .8090 .9770 .9835 .9848 .9830 .0127  8 .8409 15 .9880 

S2 15  .0334 .8786 .9308 .9268 .9259 .0121  2 .2795 15 .9341 

S3 15  .0376 .7071 .7516 .7705 .7437 .0123  11 .0508 15 .7800 

S4 15  .0373 .6200 .6690 .6942 .6585 .0119  6 .0463 15 .7164 

2d-20c-no0 20  .9164 .9230 .9600 .9908 .9481 .9919  20 .9786 20 .9943 

2d-4c-no4 4  .7029 .6880 .8698 .9930 .8698 .7029  10 .8668 4 .9930 

DS-850 5  .7206 .8052 .9470 .9750 .9316 .9862  5 .9715 5 .9918 

D31 31  .6784 .9519 .9517 .9508 .9518 .9600  5 .5803 31 .9573 

R15 15  .8822 .9844 .9922 .9864 .9913 .9942  12 .9203 15 .9893 

2d-10c 9  .9538 .9257 .9963 1 1 .9516  8 .9545 9 1 

Insect 3  .1859 .5399 .5031 .5654 .5031 NA  2 .4614 2 .5887 

Longsquare 6  .6860 .8525 .9088 .8719 .9001 .9897  10 .9128 6 .9834 

Square4 4  .0230 .6012 .6915 .6859 .7139 .7253  9 .5525 4 .6940 

Tetra 4  .0386 .9823 .9899 .9640 1 1  2 .6369 4 1 

Triangle2 4  .4955 .7985 .9014 .9550 .9060 .9829  6 .9038 4 .9763 

Chainlink 2  1 .3899 .3615 .3673 .4519 1  2 1 2 1 

Compound 6  .8109 .8100 .8371 .7338 .8394 .8335  5 .9300 3 .8217 

Diamond9 9  .8022 .9990 .9967 .9961 .9967 .9971  1 0 9 1 

Ds4c2sc8 8  .1917 .7213 .8458 .8783 .7907 .8866  9 .7163 8 .8586 

Lsun 3  1 .5317 .4988 .5150 .4988 1  3 1 3 1 

Wingnut 2  1 1 1 .4935 1 .9795  2 1 2 1 

Zelnik3 3  1 .5156 .5595 .5723 .5595 1  3 1 3 1 

Zelnik5 4  1 .5797 .6481 .6695 .5501 1  4 1 4 1 

Banana 2  1 .5067 .3763 .3934 .6020 1  2 1 2 1 

Rank  5.93 5.48 4.52 4.22 4.19 3.59  4.33 1.59 

NGC  -  10 25 
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Fig. S3.5. TC’s results on 27 data sets with noise, outliers, overlaps, or other peculiar distribution. 

 
 
 
 
 
 
 

Table S3.5. Performance comparison on nine synthetic data sets with unbalanced clusters, measured by 
NMI. 
We used the Highly overlapping data set (see Fig. 3.5) and the parameter s was adjusted between 0.1 and 0.9 to 
manage the level of unbalance. Class 14 received a probability of 1, class 0 received a probability of s, and all 
other classes were linearly varied between s+0.1 and 1. #C means the ground-truth cluster number, and NC 
means the cluster number identified by the algorithms. NGC indicates the number of data sets each automatic 
clustering algorithm returns the exact ground-truth number of clusters. TC still retained the performance 
advantage on the data sets with unbalanced clusters. 

  NC set manually  NC determined automatically 

Algorithm  AC-S AC-C AC-A AC-W AC-CR SC  DB TC 

Data Set #C  NMI  NC NMI   NC NMI 

s=0.1 15  .6090 .9241 .9507 .9446 .9417 .0412  17 .8805 15 .9512 

s=0.2 15  .6127 .9365 .9556 .9459 .9308 .0300  14 .8788 15 .9560 

s=0.3 15  .5243 .9146 .9518 .9354 .9409 .0260  8 .5964 15 .9526 

s=0.4 15  .2542 .8527 .9555 .9459 .9566 .0216  6 .6068 15 .9449 

s=0.5 15  .2619 .8494 .9395 .9331 .9382 .0185  5 .5988 15 .9599 

s=0.6 15  .2629 .8840 .9418 .9379 .9335 .0163  7 .5569 15 .9538 

s=0.7 15  .0388 .8760 .9460 .9496 .9481 .0161  2 .2622 15 .9596 

s=0.8 15  .2701 .8548 .9392 .9444 .9378 .0138  2 .2748 15 .9621 

s=0.9 15  .0348 .8939 .9593 .9391 .9551 .0131  2 .2723 15 .9565 

Rank  7.0 4.89 2.22 3.11 3.33 8.0  6.0 1.44 

NGC  -  0 9 
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Table S3.6. Performance comparison on five synthetic data sets with different degrees of uniform noise, 
measured by NMI. 
We used the original synthetic data sets in Fig. 3.3 and controlled the degree of noise by adding 5%-30% uniform 
noise respectively. #C stands for the ground-truth cluster number, and NC denotes the cluster number identified 
by the automatic algorithms. NGC indicates the number of data sets each automatic clustering algorithm returns 
the exact ground-truth number of clusters. Compared with the other two algorithms, TC is more robust to noise. 

 Data set 0% noise 5% noise 10% noise 20% noise 30% noise Rank NGC 
#C 12 12 12 12 12 

NC determined 

automatically 

TC NC 12 12 12 12 12 1.0 5 
NMI 1 .9765 .9614 .9418 .9163 

DB NC 12 22 52 20 1 2.4 1 
NMI 1 .8508 .6929 .0755 .0097 

NC set manually DPC NMI .8266 .6924 .7017 .6065 .4882 2.4 - 
 
 
 
 
 
 

 
Fig. S3.6. The performance comparison of eight methods on the data sets with unbalanced 
clusters.  
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Fig. S3.7. Results on the synthetic data sets with different degrees of uniform noise. (A)- (E) visualize the results 
of TC on the data sets with different degrees of uniform noise. (F) gives the comparison results of TC and other 
two density-based clustering algorithms on the data sets with different degrees of uniform noise, measured by 
NMI. Compared with the other two algorithms, TC is more robust to noise. 
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Table S3.7. Performance comparison on 15 poorly-separated, high-dimensional gene expression data sets, 
measured by NMI. 
These are data sets of cancer gene expressions from Ref. [204]. They are poorly-separated, high-dimensional, 
and contain outliers. #C stands for the ground-truth cluster number, and NC indicates the cluster number 
identified by the algorithms. NGC indicates the number of data sets each automatic clustering algorithm returns 
the exact ground-truth number of clusters. Note that DB returned an NC of 0 on the Nutt-2003-v3 and Pomeroy-
2002-v1 data set, which means it classified all the data samples as noise. 
 

  NC set manually  NC determined automatically 

Algorithm  AC-S AC-C AC-A AC-W AC-CR SC  DB TC 

Data Set #C  NMI  NC NMI   NC NMI 

Alizadeh-2000-v2 3  .0342 .5608 .7226 .5490 .7226 .5838  1 .6325 2 .7642 

Alizadeh-2000-v3 4  .5847 .4528 .5987 .4602 .5847 .5934  1 .5077 2 .6258 

Armstrong-2002-v2 3  .0673 .7812 .5849 .7580 .5714 .8944  2 .4496 3 .8074 

Bittner-2000 2  .0640 .0323 .0026 .0588 .0640 .0183  2 .1120 7 .4223 

Golub-1999-v1 2  .0684 .0660 .1376 .8328 .1376 .6916  2 .5494 2 .6190 

Gordon-2002 2  .0083 .6482 .0219 .6709 .0083 .7469  1 .5994 2 .6659 

Laiho-2007 2  .0263 .0085 .0340 .0177 .0263 .0177  1 .1453 7 .1651 

Lapointe-2004-v1 3  .0466 .0684 .1826 .1826 .0285 .0314  1 .1057 14 .3086 

Liang-2005 3  .3545 .3545 .3545 .3545 .3545 .3545  2 .3545 3 .3545 

Nutt-2003-v3 2  .0527 .1395 .0527 .0420 .0527 .0196  0 0 6 .2520 

Pomeroy-2002-v1 2  .1457 .1337 .0079 .0079 .1457 .0688  0 0 7 .1715 

Shipp-2002-v1 2  .0937 .0602 .0937 .1477 .0937 .1770  2 .1265 2 .1811 

Tomlins-2006 5  .1196 .3192 .4933 .4848 .0957 .4463  1 .0556 5 .4503 

Tomlins-2006-v2 4  .1120 .1850 .3491 .3311 .0928 .3536  1 .0482 21 .4807 

West-2001 2  .0563 .4508 .4965 .4965 .0563 .4965  1 .3578 2 .5231 

Rank  5.13 5.2 3.6 3.87 4.73 3.67  5.13 1.47 

Mean  .1223 .2841 .2755 .3596 .2023 .3663  .2696 .4528 

NGC  -  3 7 
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3.6.3 Robustness guarantees for the proposed TC 

In this section, we showed that if we add some samples (possibly adversarially) to the 

original data set, then the number of clusters will not change and the clustering assignments 

are preserved (i.e. no new clusters generated, no old clusters merged, etc.) when using TC. 

The related proof is based on two previous definitions of data distribution, one is 𝛼,𝐾

𝑠𝑡𝑟𝑖𝑐𝑡𝑙𝑦 𝑠𝑒𝑝𝑎𝑟𝑎𝑏𝑙𝑒 and the other is ,𝐾 𝑠𝑡𝑟𝑖𝑐𝑡𝑙𝑦  𝑎𝑑𝑑𝑖𝑡𝑖𝑣𝑒 𝑠𝑒𝑝𝑎𝑟𝑎𝑏𝑙𝑒 [205]. 

 

Guarantees on Results when manually setting number of clusters. 

The original data set is denoted as X, and the data set after adding adversarial samples 

is denoted as 𝑋 . The adversarial samples are denoted as 𝑊 𝑤|𝑤 ∈ 𝑋 ,𝑤 ∉ 𝑋 . 

 

Theorem 1. Suppose a data set X is ,𝐾  𝑠𝑡𝑟𝑖𝑐𝑡𝑙𝑦 𝑎𝑑𝑑𝑖𝑡𝑖𝑣𝑒 𝑠𝑒𝑝𝑎𝑟𝑎𝑏𝑙𝑒, adding some 

adversarial samples W to X to get 𝑋  . If max
∈

min
∈

𝑑 𝑤, 𝑥   and 𝑋   is 𝑛

2 𝑛 ,𝐾 𝑠𝑡𝑟𝑖𝑐𝑡𝑙𝑦 𝑠𝑒𝑝𝑎𝑟𝑎𝑏𝑙𝑒, the clustering assignments are preserved when setting the 

number of clusters as K. 

 

  A   B  
 
 
 
 
 
 
 
 
 
 
 

 

Fig. S3.8. The robustness of TC with respect to changes in the metric. (A) shows the original data 
distribution. (B) shows the clustering results of TC under four different distance metrics, visualized by t-
SNE. TC achieved a perfect accuracy among these four cases. 
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Proof: Since X is ,𝐾  𝑠𝑡𝑟𝑖𝑐𝑡𝑙𝑦 𝑎𝑑𝑑𝑖𝑡𝑖𝑣𝑒 𝑠𝑒𝑝𝑎𝑟𝑎𝑏𝑙𝑒 , so for all 𝑖 𝑗  and all 𝑥,𝑦 ∈

, 𝑧 ∈  , 𝑑 𝑥,𝑦 𝑑 𝑥, 𝑧  . And because the adversarial sample W satisfies 

max
∈

min
∈

𝑑 𝑤, 𝑥 , according to Eq. (3.1) of TC, all adversarial samples will be merged 

by some or all of the unique clusters in , … ,  . On the other hand, since 𝑋   is 

𝑛 2 𝑛 ,𝐾  𝑠𝑡𝑟𝑖𝑐𝑡𝑙𝑦 𝑠𝑒𝑝𝑎𝑟𝑎𝑏𝑙𝑒, then for all 𝑖 𝑗 and all 𝑥, 𝑦 ∈ , 𝑧 ∈ ,  

   𝑑 𝑥,𝑦 𝑑 𝑥, 𝑧                               (3.11) 

where 𝑛  and 𝑛  are the number of samples in  and . Because 𝑑 𝑥, 𝑦 ,𝑑 𝑥, 𝑧 0, 

then    

  𝑑 𝑥,𝑦 𝑑 𝑥, 𝑧                               (3.12) 

We can further derive 

                                               𝑑 𝑥,𝑦 𝑛 𝑛 𝑑 𝑥, 𝑧                             (3.13) 

Suppose there are any two sub-clusters in  , the numbers of samples they contain are 

𝑠𝑛 and 𝑠𝑛  respectively, so 

 𝑠𝑛 𝑠𝑛 𝑛                                  (3.14) 

Since 𝑠𝑛 𝑠𝑛 2 𝑠𝑛 𝑠𝑛 , then 

 𝑛 4𝑠𝑛 𝑠𝑛                                 (3.15) 
So according to (13), we have 

        𝑠𝑛 𝑠𝑛 𝑑 𝑥, 𝑦 𝑑 𝑥,𝑦 𝑛 𝑛 𝑑 𝑥, 𝑧                    (3.16) 

that is,  

 𝑠𝑛 𝑠𝑛 𝑑 𝑥,𝑦 𝑛 𝑛 𝑑 𝑥, 𝑧                              (3.17) 

According to the definition of 𝜏  (i.e., Eq. (3.5)), the Eq. (3.17) above, and the arbitrariness 

of x, y and z, if we perform TC on X , the torque values of connections formed between 

ground truth clusters must be greater than the torque values of connections formed between 

sub-clusters in the ground truth clusters. Therefore, if setting the cluster number as K, the K-

1 abnormal connections must be the connections formed between the ground truth clusters, 

the results will be preserved. 
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Guarantees on Results when automatically setting number of clusters. 

Theorem 2. Suppose that the conditions of Theorem 1 hold. Let 𝑇𝐺𝑎𝑝  and 𝑇𝐺𝑎𝑝  be the 

torque gap when performing TC on X and 𝑋 , respectively. If additionally, the following 

holds: 

𝑎𝑟𝑔𝑚𝑎𝑥 𝑇𝐺𝑎𝑝 𝑎𝑟𝑔𝑚𝑎𝑥 𝑇𝐺𝑎𝑝 𝐾 1                       (3.18) 

then the clustering assignments are preserved when using the mechanism for automatically 

determining abnormal connections (i.e., Eqs (3.6)-(3.9)). 

 

Proof: According to the proof for Theorem 1 and the mechanism for automatically 

determining abnormal connections (i.e., Eqs (3.6)-(3.9)), the proof for Theorem 2 is obvious. 

As an illustration, we added some adversarial samples to the three synthetic data sets 

introduced in the main text. As the Fig S3.9 shown, TC still achieved good results. 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 
 
 
 
 
 

                                                          
Figure S3.9. Results of TC on the data sets with adversarial samples. 
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Chapter 4. Multi-view adjacency-constrained hierarchical 

clustering 

 

4.1 Introduction 

Recently, multi-view clustering has been a research hotspot as an important learning 

paradigm in machine learning. Different from traditional clustering methods, multi-view 

clustering is exploited to process multi-view data. Multi-view data means the data is collected 

from different sources in diverse domains, or obtained from various feature collectors [38]. 

For example, multiple heterogeneous features can be used to characterize an image, such as 

scale-invariant feature transform (SIFT) descriptors [39], GIST descriptors [40], local binary 

patterns (LBP) [41], etc. Multiple compatible and complementary features are combined in 

multi-view clustering algorithms to improve clustering performance. 

Yet despite the importance of multi-view clustering and the plethora of existing 

algorithms in past decades, most contemporary approaches in multi-view clustering have 

problems with the following two issues: a) parameter tuning and b) significant computational 

expense. For most multi-view clustering, e.g., multi-view spectral clustering [43]–[46] and 

multi-view subspace clustering [47]–[50], the final performance of the models is heavily 

dependent on parameter tweaking. For example, Zong et al. proposed a multi-view spectral 

clustering algorithm based on distinct view weights, which has two parameters that need to 

be set in order to assign an optimal weight to each view [46]. Zheng et al. proposed a 

constrained bilinear factorization multi-view subspace clustering algorithm, which also has 

two prior information-related parameters to tune in order to obtain competitive performance 

[49]. For most current multi-view clustering methods, prior knowledge, such as noise level 

and label information, is required to guide the specific parameter choice steps, which is 

troublesome. Furthermore, the computational complexity of most existing multi-view 

clustering algorithms is also high; multi-view clustering based on subspace learning and 

spectral representation learning, for example, both have time complexities of 𝑂 𝑛  . 

Additionally, in some multi-view clustering algorithms [86], the iterative optimization of the 
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objective function will also greatly increase the computational overhead. These two 

limitations significantly impede the practical use of multi-view clustering. 

On the other hand, from the perspective of basic clustering principles, many previous 

multi-view clustering algorithms are based on spectral clustering or subspace clustering, 

which have some inherent limitations. For example, spectral clustering [72], [129] suffers 

from the following three problems: a) the instability of results caused by different 

initializations; b) the K value required to construct adjacency matrix needs to be adjusted; 

and c) it can only provide clustering results with a single granularity. For subspace clustering 

[206], a) establishing the global density threshold causes the method to perform poorly in 

detecting clusters with varying densities; and b) setting regularization parameters for the 

number of subspaces is time-consuming. Few multi-view clustering algorithms are based on 

hierarchical clustering [42]. Compared with spectral clustering and subspace clustering, 

hierarchical clustering does not need extra hyper-parameters, and a dendrogram can be 

generated to provide clustering results with different granularity levels. 

We propose a Multi-view adjacency-Constrained Hierarchical Clustering algorithm 

(MCHC) in this chapter to overcome the issues above. MCHC consists of three main parts: 

including the Fusion Distance matrices with Extreme Weights (FDEW); adjacency-

Constrained Nearest Neighbor Clustering (CNNC); and the internal evaluation Index based 

on Rawls' Max-Min criterion [207] (MMI). FDEW attempts to learn a fusion distance matrix 

set, which only uses complementary and consensus information among multiple views, but 

exploits the information from each single view. CNNC obeys an intuitive rule that one cluster 

and its nearest neighbor with higher mass (size) should be merged into one bigger cluster 

during the clustering procedure. CNNC generates multiple partitions based on FDEW. MMI 

is exploited to choose the best one from the multiple partitions. MCHC just needs to be 

assigned a desired number of clusters, which can be estimated based on the decision graph 

of CNNC. In addition, we propose a parameter-free version of MCHC (MCHC-PF). Without 

any parameter selection, MCHC-PF can give partitions at different granularity levels. 

MCHC-PF has lower time complexity, which is 𝑂 𝑛𝑙𝑜𝑔𝑛 . 
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The following are the main contributions of this chapter: 

• 1) Proposing a multi-view adjacency-constrained hierarchical clustering (MCHC) 

algorithm that can obtain promising clustering results. 

• 2) Proposing a parameter-free MCHC algorithm with low computational complexity. 

• 3) Proposing the fusion distance matrices with extreme weights, which only uses 

complementary information among multiple views, but exploits the information from each 

single view. 

• 4)  Proposing the internal evaluation index based on Rawls' Max-Min criterion for selecting 

best partition. 

• 5)  The proposed methods' superiority is demonstrated by experimental results on eight 

real-world data sets. 

 

4.2 Proposed method 

4.2.1 Fusion distance matrices with extreme weights (FDEW) 

When dealing with multi-view clustering problems, there are two intuitive methods to 

fuse multi-view data. One is concatenating all the features of multiple views, and then 

performing single-view algorithms directly on the concatenation [208]. Obviously, this 

method increases the dimensionality of fusion data, thereby increasing the computational 

complexity and possibly reducing the clustering accuracy because of the curse of 

dimensionality. The other method is to calculate an average similarity matrix 𝑆̅ ∑ 𝑆 , 

and then input it to a single-view clustering algorithm [209]. The above two methods give 

each view the same weight. In fact, the importance of each view may be different. Treating 

the data of each view equally may reduce the final clustering accuracy. There are many 

studies devoted to assigning different weights to each view according to the discriminative 

power of the view [209], but this also brings some problems. Firstly, this may introduce more 

parameters (i.e., weights-related parameters), thereby reducing the ease of use of the model; 

secondly, when using optimization algorithms to iteratively update the weights, it will greatly 
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increase the computational cost and operation time. On the other hand, previous research has 

pointed out that sometimes the utilization of multiple views may even deteriorate the final 

performance, which is even worse than the performance of best single-view [210]. Therefore, 

only extracting information from each single view is also important.  

Based on the above analysis, we propose fusion distance matrices with extreme weights 

(FDEW). FDEW gives the fixed weights to the distance matrix of each view, which does not 

need to be optimized. Besides, FDEW not only uses the complementary information among 

multiple views, but also exploits the information from each single view.  

Given multi-view data 𝑋  collected from v views, for i-th view, 𝑋 ∈ 𝑅 , 

where n and 𝑑𝑖𝑚  denote the number of data points and the dimensions of the i-th view 

respectively.  

On the one hand, we regard the distance matrix 𝐷  (𝐷 ∈ 𝑅 ) of each view as a 

fusion distance matrix with extreme weights, that is 

𝐷 1 𝐷 ∑ 0 𝐷,                          (4.1) 

On the other hand, we define a fusion distance matrix with equal weights: 

 𝐷∗ ∑ 𝐷                                   (4.2)   

𝐷  assigns the weight of 𝐷  to 1, and assigns the weight of the distance matrix of other 

views to 0. 𝐷∗ treats the distance matrix of each view equally, and assigns the same weight 

to the distance matrix of each view. 𝐷  only uses the information from each single view, 

but 𝐷∗ exploits complementary information among multiple views. Combine 𝐷  and 𝐷∗ 

to form fusion distance matrices with extreme weights (FDEW), where 𝐹𝐷𝐸𝑊

𝐷 ,𝐷 , … ,𝐷 ,𝑎𝑛𝑑 𝐷∗ . 

When calculating the distance matrix 𝐷  of each view, we exploit cosine distance. 

For the cosine distance between any two samples 𝑥 , 𝑥  in the i-th view, it is defined as 

𝑑 𝑥 , 𝑥 1                       (4.3) 

where 𝑑 𝑥 , 𝑥 ∈ 0,2 .  

Theorem 1. The cosine distance between 𝑥 𝑎𝑛𝑑 𝑥  in the 𝑖-th view is equivalent to the 
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cosine distance between them on the latent representation [42]. 

Next, we use a single-view clustering algorithm to get cluster partitions based on each 

distance matrix in FDEW.  

4.2.2 Adjacency-constrained nearest neighbor clustering (CNNC) 

Recently, nearest neighbor clustering (NNC) has become a research focal point [13], 

[59], [211]. NNC is a kind of hierarchy-based clustering. Compared with traditional 

 
 Since this thesis is organized by the compilation of papers (Chapters) and each paper (Chapter) has a different 

focus, the partial clustering mechanism of TC in Chapter 3 is expressed as CNNC here. 

 
 
 
 
 
 

                                                          

 
 
 
                                                                  
                                                                 

(a) Conventional NNC 
 
 
 
 
 
 
 
 
 
 
 
                                                                     
                                                                 

(b) Adjacency-constrained NNC 
 
Figure 4.1. a simple example of the traditional NNC merging process (a), and the CNNC procedure (b). We 
use dotted lines to denote clusters (i.e., A, B, C, etc.), and rectangles or triangles to represent data samples. We 
can see that, in iteration1, the generated clusters from conventional NNC and adjacency-constrained NNC are 
the same. Initially each sample is regarded as a cluster, and they all have the same mass (i.e., 1); i.e., they all 
satisfy the mass requirement in Eq. (4.4), so if the neighbor relationship is satisfied, a connection can be 
generated between clusters. In iteration 2, for conventional NNC, cluster A, cluster B, cluster C and cluster D 
are chosen to merge into one big cluster, E. Because cluster A and cluster B are the nearest neighbor of each 
other, the nearest neighbor of cluster C is cluster B, and the nearest neighbor of cluster D is cluster C. However, 
in the CNNC procedure, cluster C and cluster D are not chosen to merge because mass(D)>mass(C). Cluster 
A and cluster B, and cluster B and cluster C are both chosen to merge because mass(A)  mass(B) and 
mass(C) mass(B). 

Original data Iteration 1 Iteration 2 

Original data Iteration 1 Iteration 2 
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hierarchical clustering, such as average-link or ward-link, NNC has lower computational 

complexity (i.e.,𝑂 𝑛𝑙𝑜𝑔𝑛 ) and can achieve better clustering performance. In addition, NNC 

can provide natural partitions at different granularity levels to meet the requirements for 

different clustering resolutions in application scenarios. Existing NNC approaches, on the 

other hand, are entirely based on the statistic of nearest neighbor, i.e., the merging is done as 

long as the neighbor relationship is satisfied. Data samples from different classes may be also 

merged in this fashion, lowering clustering accuracy. In this study, we introduce a parameter-

free adjacency-constrained nearest neighbor clustering (CNNC) algorithm, which exploits 

the clusters with relatively large mass to guide the merging process, preventing trivial wrong 

merging in conventional NNC approaches. The difference between the traditional NNC 

method and the CNNC method is shown in Fig. 4.1. 

Given a single-view data 𝑋  , initially, each sample is its own cluster. Given the 

number of samples contained in a cluster as the mass of the cluster, therefore, in the beginning, 

the mass of each cluster equals 1. Then, the following rule is applied to form connections 

between clusters: 

                 → , 𝑖𝑓 𝑚𝑎𝑠𝑠 𝑚𝑎𝑠𝑠                        (4.4) 

where  denotes the j-th cluster, denotes the 1-nearest cluster of . Much research has 

been conducted to define the distance between two clusters. Here, we simply leverage the 

minimum distance from any sample in one cluster to any sample in the other cluster as the 

distance between the two clusters, which is similar to the single-linkage method. 𝑚𝑎𝑠𝑠  

represents the mass of  (i.e, the number of samples  contains). Similarly, 𝑚𝑎𝑠𝑠  

is the mass of . The symbol " → " denotes a connection (i.e, merger) 𝐶  between  

and . 

This process can be also defined in a graph G, 

𝐴 ,
1, 𝑖𝑓 𝑚𝑎𝑠𝑠 𝑚𝑎𝑠𝑠
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                            

                (4.5) 

where A stands for the adjacency matrix of G. Then, new clusters can be obtained by 

calculating the connected components of the adjacency matrix A. At this point, one iteration 
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has been completed. By repeating this merger process according to Eq. (4.4), all clusters will 

eventually merge into one cluster and form a hierarchical tree. Each layer of the hierarchical 

tree can be regarded as a partition under a specific granularity. 

Each connection (i.e., merger) 𝐶  has two intuitive properties. One of the properties is 

the product of the mass of the two clusters it connects 

                    𝑀 𝑚𝑎𝑠𝑠 𝑚𝑎𝑠𝑠                        (4.6)  

The other is the square of the distance between the two clusters it connects 

                  𝑆 𝑑 ,                                  (4.7) 

Plotting all the connections on a two-dimensional graph of the two properties, called the 

decision graph. By observing the decision graph and finding the connections with relatively 

large 𝑀  and 𝑆 , remove these connections to get the final reasonable partition. 

CNNC is parameter-free. A reasonable partition can be obtained through a certain layer 

(granularity) of the clustering tree, or it can be obtained by observing the decision graph and 

removing the connections with relatively large 𝑀   and 𝑆  . However, CNNC can also be 

assigned the desired number of clusters K. After simply removing K-1 connections with 

relatively large 𝑀 𝑆 , then we can get a partition containing K clusters. On the other hand, 

in each iteration, CNNC only needs to find the nearest neighbor of each cluster. An efficient 

method for obtaining nearest neighbors is through the use of approximate nearest neighbor 

search techniques, such as locality-sensitive hashing. Therefore, the complexity of the 

algorithm can be reduced to 𝑂 𝑛𝑙𝑜𝑔𝑛 . Compared with traditional hierarchical clustering 

algorithms, CNNC has a lower computational overhead. 

Exploiting CNNC to perform clustering based on each fusion distance matrix in FDEW, 

then v+1 partitions 𝑃   can be obtained, where 𝑃 𝑃 ,𝑃 , … ,𝑃 ,𝑃  . 

So which partition is the best? This requires an evaluation index to evaluate the clustering 

quality of each partition. 
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4.2.3 Internal evaluation index based on Rawls' max-min criterion (MMI) 

In practice, the ground-truth labels are often not known in advance. Therefore, we 

cannot objectively judge which partition is the best. A simple idea is to use internal evaluation 

indices to evaluate each partition to find the best one. Most of the past internal evaluation 

indices need to know cluster centers of partition [212]. However, CNNC does not output 

specific cluster centers. Here we propose a new internal clustering evaluation index based on 

distance matrix to select the best partition based on Rawls' max-min criterion [207], which is 

called Max-Min Index (MMI). 

For a partition 𝑃 , 1) we arbitrarily select two clusters, and then arbitrarily select a 

sample from each cluster, and use the distance between the two samples as the inter-class 

distance; 2) We again, choose a cluster arbitrarily, and use the average of the distance between 

any two samples in this cluster as the intra-class distance. Based on 1) and 2), we first define 

an initial evaluation index:∀𝑥 ∈ ∀ ,∀𝑥 ∈ ∀ ;  ∀𝑥 , 𝑥 ∈ ∀ , 

  𝐼
,

| | | |
∑ ,

                            (4.8) 

The larger 𝐼 , 𝑃  may have a larger inter-class distance and a smaller intra-class distance, 

but it is not certain. This is because we randomly select clusters and samples when calculating 

𝐼  , which may not be representative. According to Rawls' max-min criterion, the right 

decision is that which maximizes the minimum outcome. Inspired by the max-min criterion, 

we first calculate the minimum value of 𝐼 : 

 𝑚𝑖𝑛 𝐼 𝑚𝑖𝑛
,

∑ ,

xa
r ∈ζk

r ,xb
r ∈ζl

r
,

∑ ,
xc

r ,xd
r ∈ζm

r
  (4.9)  

Furthermore, we believe that 𝑃  that maximizes 𝑚𝑖𝑛 𝐼  is the best, that is 

𝑠 argmax𝑚𝑖𝑛 𝐼   𝑎𝑟𝑔max
xa

r ∈ζk
r ,xb

r ∈ζl
r

,

∑ ,
xc

r ,xd
r ∈ζm

r
           (4.10)    

Therefore, we can finally determine that 𝑃  is the best partition by Eq. (4.10). Compared 

with other distance matrix-based internal indices, the proposed MMI is more accurate in 
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selecting the best partition (see Table 4.10). The method proposed in [213] can be utilized to 

reduce the computational complexity of MMI. 

 

4.2.4 Algorithm of MCHC and MCHC-PF 

For Multi-view data 𝑋  , we first calculate 𝐹𝐷𝐸𝑊   according to Eqs. 

(4.1)-(4.3). Then we use CNNC to perform clustering based on each 𝐹𝐷𝐸𝑊  , and get 

𝑃 . Finally, we select the best partition 𝑃  in 𝑃  according to Eqs. (4.8)-

(4.10). Fig. 4.2 shows the simple flowchart of MCHC, and Algorithm 4.1 shows the pseudo 

code of MCHC. 

In real life, the correct number of clusters is often not known in advance. Therefore, we 

provide a parameter-free version of MCHC (MCHC-PF). Algorithm 4.2 gives the pseudo 

code of MCHC-PF. MCHC-PF does not require any parameters, it can provide several 

partitions at different granularity levels, and draw a decision graph according to Eqs. (4.6)-

(4.7) for users to estimate a reasonable number of clusters. On the other hand, MCHC-PF 

only uses CNNC to perform clustering based on the fusion distance matrix with equal weights 

𝐷∗ from FDEW, so it has a shorter runtime than MCHC. Fig. 4.3 shows the decision graph 

of MCHC-PF on the data set UCI-digits (this data set will be introduced in the experimental 

 
Figure 4.2. The workflow diagram of the proposed MCHC. We take the data set containing two views 
as an example. First, we calculate the distance matrix of each view by Eq. (4.3) to get D1 and D2. Then we 
calculate 𝐷 ∗  by Eq. (4.2). D1, D2, and 𝐷 ∗  together form Fusion Distance matrices with Extreme 
Weights (FDEW). Next, based on each distance matrix in FDEW, we exploit adjacency-Constrained 
Nearest Neighbor Clustering (CNNC) to obtain three partitions (i.e., Partition 1, Partition 2, and Partition 
3). Finally, we choose the most reasonable partition (i.e., Partition 2) based on MMI (i.e., Eqs. (4.8)-(4.10)). 
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part). It can be clearly seen that there are 9 connections (mergers) with larger 𝑀  and 𝑆 . 

Remove them in the adjacency matrix, and we can get the correct 10 clusters, which matches 

the ground truth. 

There are three main differences between MCHC and MCHC-PF. First, MCHC not only 

uses complementary information among multiple views, but exploits the information from 

each single view. However, MCHC-PF only exploits the complementary information among 

multiple views. Second, MCHC uses naive way to calculate distance matrix for each view, 

while MCHC-PF uses k-d tree to approximate the calculation to obtain a sparse distance 

matrix. Third, like most existing multi-view clustering methods, MCHC needs to be set target 

number of clusters. However, MCHC-PF does not need to set this parameter. It provides 

multiple clustering results at different granularity levels for users to choose according to 

specific scenarios. 

Now we analyze the complexity of MCHC and MCHC-PF. We first analyze the 

complexity of MCHC. According to Algorithm 4.1, Steps 3-7 costs 𝑂 𝑣𝑛 , where v is the 

number of views. When the distance matrix is known, the cost of CNNC is 𝑂 𝑛 . Therefore, 

the cost of Steps 8-19 is 𝑂 𝑣 1 𝑛  . Steps 20-23 costs 𝑂 𝑣 1 𝐾   for MMI 

calculation and best partition finding, where K is the target number of clusters. In summary, 

the total cost of MCHC is 𝑂 𝑣𝑛 𝑂 𝑣 1 𝑛 𝑂 𝑣 1 𝐾 , approximately 𝑂 𝑛 . 

Compared to 𝑂 𝑛  of most multi-view spectral clustering or subspace clustering methods, 

the complexity of MCHC is acceptable. For MCHC-PF, we leverage the k-d tree to compute 

the sparse distance matrix for each view, so Steps 3-6 costs 𝑂 𝑣𝑛𝑙𝑜𝑔𝑛 . Because MCHC-

PF only runs CNNC on the fusion distance matrix with equal weights 𝐷∗, the cost of Steps 

7-16 is approximately 𝑂 𝑛 . Therefore, the total cost of MCHC-PF is 𝑂 𝑛𝑙𝑜𝑔𝑛 .  
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 Algorithm 4.1: Algorithm of the proposed MCHC 

1  Input: Multi-view data 𝑋   and the target 

number of clusters K. 
2   Output: Best partition 𝑃 . 
3   for i=1:v do 
4      Calculating distance matrix 𝐷  by Eq. (4.3). 
5   end 
6   Calculating 𝐷∗ by Eq. (4.2).  
7   Combine 𝐷  and 𝐷∗ to get FDEW. 
8   for r=1:v+1 do 
9   Initializing adjacency matrix A. 
10  Constructing cluster sets  (Initially, regard each 

sample as a cluster). 
11  while cluster sets  have more than two clusters 

do 
12  Searching the nearest cluster of   with higher 

mass according to 𝐹𝐷𝐸𝑊 . 
13  Updating A by Eqs. (4.4)-(4.5) (Using two nearest 

samples respectively from two clusters to represent 
these two clusters). 

14  Calculating 𝑀  and 𝑆  of 𝐶  by Eqs. (4.6)-(4.7). 
15  Updating cluster sets  based on A. 
16  end 
17 Updating A by removing K-1 𝐶   with largest 

𝑀 𝑆 . 

18  Getting partition 𝑃  based on A. 
19  end 
20  for r=1:v+1 do 
21    Calculating 𝑚𝑖𝑛 𝐼  by Eqs. (4.8)-(4.9). 
22  end 
23  Finding best partition 𝑃  by Eq. (4.10). 
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Table 4.1. Statistics of multi-view data sets. 
Data sets #Views #Samples #Clusters 

100-leaves 3 1600 100 
UCI-digits 3 2000 10 
COIL20 3 1440 20 

Handwritten 2 2000 10 
ORL 3 400 40 

UMIST 3 575 20 
CMU-PIE 3 2856 68 
COIL100 3 7200 100 

 

Algorithm 4.2: Algorithm of the proposed MCHC-PF 

1  Input: Multi-view data 𝑋 . 
2  Output: partitions at different granularity levels 

𝑅 . 
3   for i=1:v do 
4   Calculating sparse distance matrix 𝐷   by Eq. 

(4.3). 
5   end 
6   Calculating 𝐷∗ by Eq. (4.2).  
7   Initializing adjacency matrix A. 
8   Constructing cluster sets   (Initially, regard 

each sample as a cluster). 
9   while cluster sets   have more than two 

clusters do 
10  Searching the nearest cluster of   with higher 

mass according to 𝐷∗. 
11  Updating A by Eqs. (4.4)-(4.5) (Using two nearest 

samples respectively from two clusters to represent 
these two clusters). 

12  Getting partition 𝑅   at current granularity level 
based on A. 

13  Calculating 𝑀   and 𝑆   of 𝐶   by Eqs. (4.6)-
(4.7). 

14  Updating cluster sets  based on A. 
15  end 
16  Plotting decision graph by 𝑀  and 𝑆 . 

 
Figure 4.3. Decision graph of MCHC-PF on the UCI-digits data set. The horizontal axis 
represents the property 𝑀  of each connection in the CNNC, and the vertical axis represents the 
property 𝑆  of each connection. The nine connections in the red circle have relatively large 𝑀  
and 𝑆 . Remove them to leave 10 clusters, which exactly matches the ground-truth. 
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4.3 Experiments and results 

In this part, we conducted several experiments to show the superiority of MCHC and 

MCHC-PF. 

4.3.1 Data sets description 

(1) 100-leaves: There are 1600 samples in the 100-leaves data set, divided into 100 categories. 

The original 100-leaves photos are also different in size. There are three views which display 

samples from several angles using shape descriptors, fine scale margins, and texture 

histogram characteristics [229]. 

(2) UCI-digits: The UCI-digit data set can be found in the UCI repository 

(https://archive.ics.uci.edu/ml/index.php). The digits (0–9) in this collection were extracted 

from Dutch utility maps in 2000 samples. Each class contains 200 samples, each of which is 

represented by six feature sets. We employed three feature sets following [214]: 76 character 

shape Fourier coefficients, 216 profile correlations, and 64 Karhunen-Loève coefficients. 

(3) COIL20: This data set has 1440 grayscale photos of 20 different objects [160]. Each 

image is downscaled to 32 by 32 pixels for the original features scenario. Three types of 

features are extracted in the case of several hand-crafted features: Intensity, LBP, and Gabor. 

The sizes of their features are 1024, 3304 and 6750, respectively [217]. 

(4) Handwritten: The data set comprises 2000 instances of handwritten digits ranging from 

0 to 9, each of which is represented by two distinct views. The first view is a feature vector 

with 240 elements, calculated as the average of pixels in 2×3 windows, while the second 

view is a Fourier coefficient vector with 76 elements [215]. 

(5) ORL: This is made up of 400 photos of 40 people's faces. Following [47], each image is 

down-sampled to 32 by 32 pixels for the original features scenario. Each image in the 

handcrafted features scenario is represented by three types of features. 

(6) UMIST: This collection [158] contains 564 photos of 20 people (mixed race, gender, and 

appearance). Each person is depicted in a variety of poses, from profile to frontal perspectives. 

Each image has a resolution of about 220×220 pixels and a 256-bit greyscale. Following 

[216], each image is represented by three heterogeneous feature sets:30 isometric projection 
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(ISO), 30 principal component analysis (PCA), and 30 neighborhood preserving embedding 

(NPE). 

(7) CMU-PIE: This data set [148] contains 2856 frontal-face photos of 68 persons, with 42 

distinct illuminations for each object. Each photograph was cropped to a size of 32×32 pixels. 

Three feature sets are used to express each image: 30 ISO, 30 PCA, and 30 NPE. Fig. 4.4 

shows some sample face images from the CMU-PIE database. 

(8) COIL-100: This data set [147] is a library of 7200 color images representing 100 different 

types of objects. Each image is 128×128 pixels in size. Each object has 72 distinct photos in 

various positions. Each image is expressed using three feature sets: 30 ISO, 30 PCA, and 30 

NPE. The full statistics of these data sets are shown in Table 4.1.  

 

4.3.2 Compared algorithms 

We compared MCHC and MCHC-PF with 10 state-of-the-art multi-view clustering 

algorithms. They include: K-means; Graph-based multi-view clustering (GMC) [92]; Unified 

graph learning for multi-view clustering (UGLMC) [89]; View variation and view heredity 

clustering (V3H) [217]; Affinity aggregation for spectral clustering (AASC) [43]; Multi-view 

clustering via adaptively weighted Procrustes (AWP) [91]; Co-regularized multi-view 

spectral clustering (CoReg) [44]; Multi-view consensus graph clustering (MCGC) [218]; 

Robust multi-view spectral clustering (RMSC) [219]; and Weighted multi-view spectral 

clustering (WMSC) [46]. We employed three widely used external clustering validation 

indices to evaluate the efficacy of clustering algorithms: Accuracy (ACC), Normalized 

mutual information (NMI) [133], and F-score [220]. The best and second-best clustering 

results were highlighted and underlined respectively. We presented the optimal clustering 

outcomes of multiple views for K-means, which is a clustering algorithm that operates on a 

single view of the data. For other multi-view clustering algorithms, the parameters were tuned 

according to the suggestions of the original papers to obtain the best results. All experiments 

were conducted on a workstation with two 14-core Intel Xeon 6132 CPUs clocked at 2.6 
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GHz and 3.7GHz and 96GB memory.  

 

4.3.3 Results and analysis 

Tables 4.2, 4.3, and 4.4 show the clustering results and Fig. 4.5 give the average rankings 

for all multi-view clustering methods on all data sets. In essence, the proposed MCHC 

outperforms all other clustering methods. Whether compared with single-view clustering 

algorithms or multi-view clustering algorithms, MCHC shows unparalleled performance 

advantages. In particular, for the metric ACC, the results of our MCHC were about 4.8%, 

6.3%, 26.4%, 22.5%, and 12.5% better than the second-best (except for MCHC-PF) 

clustering results on Handwritten, ORL, UMIST, CMU-PIE and COIL100 data set, 

respectively. For the metric NMI, the results of our MCHC were about 5.1%, 4.5%, 8.9%, 

8.6%, and 4.5% better than the second-best clustering results on Handwritten, ORL, UMIST, 

CMU-PIE and COIL100 data set, respectively. Finally, for the metric F-score, the results of 

our MCHC were about 6.9%, 7.2%, 7.7%, 28.1%, 24.5%, and 15.9% better than the second-

best clustering results on COIL20, Handwritten, ORL, UMIST, CMU-PIE and COIL100 data 

set, respectively. Besides, in terms of the rank in Fig. 4.5, the next-best algorithm, CoReg, 

was three times plus higher than MCHC in its ranking scores among ACC, NMI, and F-score. 

 
Table 4.2. Clustering results of MCHC and other methods in the metric of ACC. 

Sources Methods 100-leaves UCI-digits COIL20 Handwritten ORL UMIST CMU-PIE COIL100 
- K-means .5780 .6814 .6410 .6921 .5703 .4617 .5377 .5737 

TKDE-20 GMC .8238 .8495 .7910 .8300 .6325 .5217 .7048 .7692 
ICDM-19 UGLMC .8001 .8825 .9014 .7425 .6900 .6043 .1863 .7267 

TAI-21 V3H .8219 .9078 .6005 .8670 .7478 .5245 .7283 .6514 
CVPR-12 AASC .8779 .8505 .7806 .8334 .7352 .4428 .5396 .6564 
KDD-18 AWP .7800 .8670 .7708 .9315 .6975 .5461 .7749 .7029 

NeurIPS-11 CoReg .8421 .9570 .8280 .9111 .7880 .5294 .7382 .7839 
TIP-18 MCGC .6075 .4920 .3882 .1005 .5950 .4487 .7006 .5194 

AAAI-14 RMSC .7313 .2474 .4092 .4098 .7977 .4753 .7465 .2216 
AAAI-18 WMSC .8789 .8410 .8463 .8335 .8068 .4897 .6633 .7142 

- MCHC-PF .6931 .6820 .8236 .8805 .8100 .6557 .8883 .8385 
- MCHC .8888 .9655 .9250 .9795 .8700 .8678 1 .9087 

 
Table 4.3. Clustering results of MCHC and other methods in the metric of NMI. 

Sources Methods 100-leaves UCI-digits COIL20 Handwritten    ORL  UMIST CMU-PIE COIL100 

- K-means .7996 .7025 .8004 .7071 .7784 .6771 .7990 .8239 
TKDE-20 GMC .9296 .9013 .9410 .8767 .8590 .7373 .8892 .9371 
ICDM-19 UGLMC .9196 .9231 .9705 .8505 .8630 .8373 .3919 .9309 
TAI-21 V3H .9099 .8145 .7663 .7425 .8632 .6833 .8666 .8656 
CVPR-12 AASC .9590 .9025 .8958 .8827 .8538 .6619 .7921 .8676 



UTS THESIS 

89 
 

KDD-18 AWP .9013 .8949 .9264 .9026 .8584 .7203 .9140 .9163 
NeurIPS-11 CoReg .9325 .9197 .9425 .8811 .8905 .7412 .8829 .9264 

TIP-18 MCGC .7606 .7395 .6515 .0350 .8035 .6716 .8070 .7841 
AAAI-14 RMSC .8828 .3425 .7155 .4814 .8896 .6673 .8432 .5092 
AAAI-18 WMSC .9527 .8839 .9484 .8772 .8950 .7047 .8610 .9026 

- MCHC-PF .9146 .8407 .9452 .9214 .9228 .8486 .9666 .9663 
- MCHC .9466 .9276 .9826 .9535 .9404 .9262 1 .9816 

 
    
 
 

 Table 4.4. Clustering results of MCHC and other methods in the metric of F-score. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Unlike the other 11 multi-view clustering methods (including MCHC) that require at 

least the ground-truth number of clusters to be set, MCHC-PF can give natural partitions at 

different granularity levels without any parameters. Table 4.5 shows the number of clusters 

obtained at different granularity levels. For most data sets, the clustering results obtained by 

Sources Methods 100-leaves UCI-digits COIL20 Handwritten ORL UMIST CMU-PIE COIL100 

- K-means .4662 .6331 .6125 .6356 .4547 .4078 .4744 .5164 
TKDE-20 GMC .5042 .8426 .7943 .8113 .3599 .4620 .6171 .7195 
ICDM-19 UGLMC .7501 .8709 .8696 .7547 .5951 .5701 .0332 .5252 

TAI-21 V3H .7469 .8276 .5622 .7613 .6591 .4403 .6178 .5902 
CVPR-12 AASC .7783 .8440 .7758 .8167 .5948 .3656 .3766 .4795 
KDD-18 AWP .7129 .8455 .7187 .8875 .6163 .4891 .7555 .6985 

NeurIPS-11 CoReg .7907 .9171 .8088 .8588 .7091 .4778 .6790 .7583 
TIP-18 MCGC .0991 .5294 .1992 .1810 .2588 .3189 .2694 .1390 

AAAI-14 RMSC .5129 .2158 .3194 .2881 .7178 .2846 .3751 .0465 
AAAI-18 WMSC .8467 .8315 .8331 .8187 .7283 .4177 .6079 .6916 

- MCHC-PF .6228 .6718 .8311 .8715 .7560 .6461 .8829 .8605 
- MCHC .8212 .9323 .9389 .9591 .8051 .8509 1 .9174 

 
Figure 4.5. Average rankings for all multi-view 
clustering methods on all data sets. 

 
 
 
 
 
     

  Figure 4.4. Sample face images from the CMU-PIE 
database. MCHC achieved 100% accuracy on this data 
set. 
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MCHC-PF can yield a relatively accurate number of clusters. The clustering results of 

MCHC-PF in Tables 4.2, 4.3, and 4.4 are based on the number of clusters that are closest to 

the ground truth. The clustering performance of MCHC-PF was worse than that of MCHC, 

because MCHC-PF only considers the complementary information (i.e., 𝐷∗) from multiple 

views, not the information from each single view. However, as Fig. 4.5 shows, compared 

with all other methods, MCHC-PF still achieved competitive results. Particularly, on the five 

data sets (i.e., Handwritten, ORL, UMIST, CMU-PIE and COIL100), regarding the NMI 

index, the results of MCHC-PF was better than that of other 10 state-of-the-art multi-view 

clustering algorithms. 

From a theoretical point of view, the reasons why the performance of most multi-view 

spectral or subspace clustering methods is not competitive to MCHC are mainly due to the 

following two aspects. First, the backbones of these methods are spectral clustering or 

subspace clustering, which have inherent limitations. For example, it is hard for spectral 

clustering to accurately capture the intrinsic manifold structure in data when constructing the 

k-nearest neighbor similarity graph. However, CNNC in MCHC can catch it more accurately 

due to its constrained way of merging. Second, when conflicting views exist in multi-view 

data, performing clustering on the information from a specific single view may achieve better 

results than that on the complementary information from multiple views. Most compared 

methods only consider the consensus information from multi-view data. However, MCHC 

not only uses complementary information among multiple views but exploits the information 

from each single view, achieving better results. 

 

4.3.4 Runtime 

To demonstrate the efficiency of the proposed methods, we compared the runtime of the 

proposed MCHC and MCHC-PF to three algorithms, including AWP, CoReg, and V3H, from 

the 10 state-of-the-art multi-view clustering algorithms. Among them, AWP and CoReg are 

the two best-compared ones according to the ACC rankings, and V3H is the latest one. 
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According to Table 4.6, the proposed MCHC-PF can produce clustering results in roughly 20 

seconds for all data sets. The total runtime of MCHC-PF on all data sets was the lowest. The 

runtime of MCHC was significantly more than that of MCHC-PF, because MCHC needs to 

run the CNNC algorithm multiple times and once needed for MCHC-PF. However, the 

clustering performance of MCHC was better than that of all other clustering algorithms (see 

Tables 4.2-4.4). 

 
Table 4.5. Clustering results of MCHC-PF at different granularity levels. #C means the ground-truth number 
of clusters, and NC means the number of clusters. 

Data sets #C 
NC at different granularity 

levels 
Closest 

NC 
100-leaves 100 {391, 155, 76, 33, 14, 5, 1} 76 
UCI-digits 10 {429, 134, 45, 17, 7, 3, 1} 7 

COIL20 20 
{414, 181, 88, 47, 24, 13, 5, 

3, 1} 
24 

Handwritten 10 {397, 125, 41, 17, 9, 3, 2, 1} 9 
ORL 40 {113, 44, 17, 6, 3, 2, 1} 44 

UMIST 20 {184, 84, 42, 21, 11, 7, 4, 1} 21 

CMU-PIE 68 
{972, 397, 154, 78, 33, 12, 4, 

3, 1} 
78 

COIL100 100 
{2148, 924, 469, 251, 127, 

52, 14, 6, 2, 1} 
127 

 
 

Table 4.6. Runtime (in seconds) comparison with three representative compared algorithms. The lowest 
runtimes were marked in bold. 

Data sets AWP CoReg V3H MCHC MCHC-PF 
100-leaves 0.87 14.60 687.10 2.19 0.60 
UCI-digits 0.59 11.20 876.83 2.99 0.92 
COIL20 2.47 10.26 412.52 4.16 2.79 

Handwritten 0.40 7.79 617.86 2.51 0.75 
ORL 0.18 2.69 155.72 0.38 0.12 

UMIST 0.27 3.72 22.67 0.53 0.15 
CMU-PIE 2.63 92.72 1568.32 12.14 3.07 
COIL100 26.77 1276.28 14584.9 84.74 20.35 

 

4.4 Ablation study 

4.4.1 Impact of fusion distance matrices with extreme weights (FDEW) 

According to Eqs. (4.1)-(4.3), FDEW not only uses the fusion distance matrix with equal 

weights (i.e., 𝐷∗) containing complementary information from multiple views, but exploits 

the distance matrix 𝐷  of each view, which includes the information from each single view. 

In this section, we explored the results of CNNC on each distance matrix in FDEW to show 

the necessity of including these two pieces of information. As Table 4.7 shows, partitions 1-
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3 denotes the results of CNNC on the distance matrix 𝐷  of each single view, and partition∗ 

means the results of CNNC on the fusion distance matrix with equal weights (i.e., 𝐷∗). Here, 

we exploited NMI to evaluate the performance of each partition. The best and MMI-selected 

clustering results were highlighted and underlined respectively. On the one hand, the best 

clustering results were from partitions 1-3 on some data sets (e.g., COIL20 and ORL), or 

from partition∗ on some data sets (e.g., 100-leaves and UCI-digits). Therefore, it is necessary 

to consider both the information from each single view and the complementary information 

from multiple views. On the other hand, MMI can accurately select the best one from several 

partitions. 
 
Table 4.7. the results of CNNC on each distance matrix in FDEW using the metric of NMI. The best and 
MMI-selected clustering results are highlighted and underlined respectively. 

Data sets Partition1 Partition2 Partition3 Partition∗ 
100-leaves .8020 .6550 .7577 .9466 
UCI-digits .7711 .7697 .9163 .9276 
COIL20 .9555 .9826 .9769 .9662 

Handwritten .9186 .7697 - .9535 
ORL .8175 .9404 .8912 .9309 

UMIST .7677 .9262 .8102 .8854 
CMU-PIE .8946 .9432 1 .9801 
COIL100 .8913 .9816 .9159 .9782 

4.4.2 Impact of adjacency-constrained nearest neighbor clustering (CNNC) 

To show the superiority of CNNC in the proposed model, on the one hand, we explored 

CNNC’s clustering performance advantage by comparing it with other state-of-the-art single-

view hierarchical clustering methods or nearest neighbor clustering (NNC) methods. Seven 

well-known hierarchical clustering methods were used including single-linkage, complete-

linkage, average-linkage, ward-linkage, centroid-linkage, median-linkage, weighted-linkage. 

Three recent NNC methods, GDL [62], SNNDPC [76] and Finch [13], were used for 

comparison. For each of the eight multi-view data sets described above, we concatenated all 

the features of multiple views, and then performed CNNC and other baselines directly on the 

concatenation. As Table 4.8 shows, compared with other state-of-the-art single-view 

clustering methods, CNNC achieved the best results on all data sets. 

On the other hand, in the MCHC framework, we replaced CNNC with other hierarchical 

clustering or NNC methods and kept other components in the framework unchanged. The 
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generated new multi-view hierarchical clustering (MHC) methods were named as MHC-

single, MHC-complete, MHC-average, MHC-ward, MHC-centroid, MHC-median, MHC-

weighted and MHC-GDL, respectively. MHC-SNNDPC and MHC-Finch were removed, 

because SNNDPC and Finch need to know the coordinates of data points, and the coordinates 

of data points corresponding to 𝐷∗ are unknown. We also performed these alternative ones 

on the eight multi-view data sets mentioned above. According to Table 4.9, MCHC still 

achieved the best performance on all data sets. 

From the above two experiments, CNNC has better performance than previous NNC 

Table 4.8. Performance comparison for CNNC and other hierarchical clustering or NNC methods, in the 
metric of NMI. 

Methods 100-leaves UCI-digits COIL20 Handwritten ORL UMIST CMU-PIE COIL100 

Single-linkage .5343 .0348 .9708 .0370 .4951 .6456 .7586 .8847 

Complete-linkage .8159 .4727 .7693 .5383 .7221 .5836 .4708 .7753 

Average-linkage .8477 .4958 .7745 .6046 .7221 .6461 .4634 .7899 

Ward-linkage .8634 .6204 .8664 .7022 .7889 .6228 .5563 .8242 

Centroid-linkage .8234 .5387 .6454 .4013 .5784 .5788 .3790 .7727 

Median-linkage .8054 .4286 .6713 .1106 .6446 .5998 .4595 .7918 

Weighted-linkage .8318 .5071 .7784 .5510 .7324 .6276 .5324 .8033 

GDL .8890 .7623 .9318 .8871 .7769 .7488 .7916 .9442 

SNNDPC .6875 .6733 .8035 .8200 .6363 .6570 .4243 .6986 

Finch .8811 .6002 .8377 .8111 .5729 .6252 .3959 .8435 

CNNC .9072 .7715 .9715 .9186 .8181 .9221 .9455 .9816 

 

Table 4.9. Performance comparison with other multi-view hierarchical clustering methods, in the metric of 
NMI. The COIL100 data set causes errors in the author's GDL code. 

Methods 100-leaves UCI-digits COIL20 Handwritten ORL UMIST CMU-PIE COIL100 

MHC-single .6215 .0348 .9708 .0348 .6742 .6693 .9383 .8847 

MHC-complete .8731 .5666 .7504 .6289 .8245 .5842 .6827 .7724 

MHC-average .8885 .5878 .7854 .5878 .8611 .6524 .7171 .8506 
MHC-ward .9219 .7041 .8954 .7041 .8937 .6276 .7335 .8319 

MHC-centroid .8645 .5549 .5019 .0347 .3486 .5148 .7093 .7727 

MHC-median .8618 .3585 .6980 .3015 .4279 .5633 .6977 .7905 

MHC-weighted .8774 .6596 .8009 .6693 .8306 .6663 .7118 .8067 

MHC-GDL .9325 .9010 .9374 .9141 .8983 .7573 .8518 - 

MCHC .9466 .9276 .9826 .9535 .9404 .9262 1 .9816 

 
Table 4.10. Performance comparison with other distance matrix-based internal indices, in the metric of 
NMI. 

Data sets Best partition DI Sil CVNN CVDD MMI 
100-leaves 0.9466 0.9466 0.9466 .8020 .9466 0.9466 
UCI-digits 0.9276 0.9276 0.7711 .7711 .7711 0.9276 
COIL20 0.9826 0.9826 0.9769 .9769 .9662 0.9826 

Handwritten 0.9535 0.9535 0.9535 .7697 .9535 0.9535 
ORL 0.9404 0.9404 0.8912 .8175 .8175 0.9404 

UMIST 0.9262 0.7677 0.8102 .9262 .9262 0.9262 
CMU-PIE 1 0.8946 1 1 1 1 
COIL100 0.9816 0.9816 0.8913 .8913 .9816 0.9816 
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methods or hierarchical clustering methods, whether processing single-view data or multi-

view data. This is because the constrained merging way of CNNC can more accurately 

capture the manifold structure in the data. 

 

4.4.3 Impact of internal evaluation index based on Rawls' max-min criterion (MMI) 

To show the validity of the Internal evaluation index based on Rawls' max-min criterion 

(MMI), we exploited four other distance matrix-based internal indices, including Dunn Index 

(DI) [221], Silhouette index (Sil) [222], Clustering Validation index based on Nearest 

Neighbors (CVNN) [223] and Clustering Validity index based on Density-involved Distance 

(CVDD) [224] to select the best partition in the MCHC framework, and kept other 

components in the framework unchanged. DI and Sil are two classic internal validity indices, 

and CVNN and CVDD are the recent ones. After that, the metric NMI was used to objectively 

evaluate the selected partition based on the ground-truth labels. According to Table 4.10, the 

proposed MMI can select the best partition on all data sets, whereas the other four distance 

matrix-based internal indices cannot. 

From a theoretical point of view, the other four distance matrix-based internal indices 

all have some inherent flaws. For example, DI exploits the distance between the two farthest 

points in cluster as the intra-class distance, which is obviously susceptible to outliers. 

Additionally, Sil does not adapt well to non-spherical data sets, and CVDD is susceptible to 

changing densities in clusters. 

 

4.5 Discussion 

The proposed MCHC consists of three main components: including FDEW, CNNC, and 

MMI. Here, we will explain why FDEW, CNNC, and MMI are combined into MCHC, that 

is, the theoretical significance of the combination of these three components. First, this is 

determined by the generalized paradigm of multi-view clustering. Almost all multi-view 

clustering methods first learn complementary (or consensus) information from multi-view 
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data, and then use a single-view clustering method for post-processing of the complementary 

information. The proposed MCHC framework follows this paradigm. Second, another 

significance for combining these three components is to inherit their respective advantages. 

For example, FDEW alleviates the poor impact of conflicting views; CNNC can capture the 

manifolds in data and improve clustering accuracy compared to traditional NNC methods; 

MMI can select the best one from several partitions in an unsupervised manner, no additional 

manual intervention is required. 

On the other hand, most previous multi-view clustering methods focus on exploring the 

different importance of each view to learn an optimal clustering-friendly representation. 

However, they ignore the optimization for the clustering mechanism and are only based on 

the existing backbone of spectral clustering or subspace clustering. Instead, this study focuses 

on the optimization of the clustering mechanism. Even based on representations with extreme 

weights (i.e., FDEW), the proposed frameworks still achieved state-of-the-art performance, 

which provides new thinking for multi-view clustering. Besides, according to Table 4.7, we 

can see that for five out of the eight data sets, the best clustering results were obtained by one 

single view. This confirms the viewpoint in [210]: sometimes the utilization of multiple views 

may even deteriorate the final performance, which is even worse than the performance of the 

best single view. 

We further discussed the potential limitations of MCHC and MCHC-PF. On the one 

hand, both MCHC and MCHC-PF are based on the single-view clustering method of CNNC. 

However, the merging process of CNNC relies on nearest-neighbor statistics and leverages a 

method like single-linkage to measure the distance between clusters. Therefore, the 

performance of CNNC on some high-dimensional and sparse data sets may be particularly 

satisfactory, which also further leads to the non-competitive performance of MCHC and 

MCHC-PF. On the other hand, unlike MCHC, MCHC-PF does not consider the information 

from each single view. When there are conflicting views in the multi-view data, the 

performance of MCHC-PF may decrease. 
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4.6 Conclusion 

This chapter proposes a Multi-view adjacency-Constrained Hierarchical Clustering 

(MCHC) and its parameter-free version (MCHC-PF). By introducing the fusion distance 

matrices with extreme weights, adjacency-constrained nearest neighbor clustering and the 

internal evaluation index based on Rawls' Max-Min criterion, the promising clustering 

performance can be obtained by MCHC. Furthermore, without any parameter selection, 

MCHC-PF can provide partitions at different granularity levels with a low time complexity. 

Extensive tests on eight real-world data sets demonstrate that the proposed MCHC (-PF) 

method outperforms the 10 current state-of-the-art methods. 
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Chapter 5. PSO-based multi-view nearest neighbor clustering 

 

5.1 Introduction 

This chapter will mainly address another issue in prior multi-view clustering algorithms, 

difficulty in finding globally optimal view weights.  

On the one hand, most previous multi-view clustering algorithms are based on spectral 

clustering [88], [225] or subspace clustering [47], [101]. However, from the perspective of 

basic clustering principles, both spectral clustering and subspace clustering have some 

inherent limitations. For example, spectral clustering [72], [129] suffers from the following 

three problems: a) the instability of results caused by different initializations; b) the K value 

required to construct adjacency matrix needs to be adjusted, and c) it can only provide 

clustering results with a single granularity. For subspace clustering [206], a) setting the global 

density threshold causes the algorithm to have poor performance in identifying clusters with 

varying densities; b) regularization parameters regarding the number of the subspaces are 

cumbersome to be set. 

On the other hand, most multi-view clustering algorithms employ gradient-based 

optimization algorithms in finding optimal view weights. However, these algorithms may 

become trapped in a local minimum, resulting in poor performance. Moreover, these 

optimization algorithms generally require that objective (fitness) functions must be derivable 

and continuous, thereby greatly reducing the diversity of objective functions. In contrast, 

evolutionary optimization algorithms, such as particle swarm optimization (PSO) [236], are 

more likely to reach the global optimum [54], [55], and are much less restrictive on the 

properties of the objective functions. Furthermore, evolutionary optimization algorithms are 

widely used to improve single-view clustering algorithms [83], [227], but there are very few 

works that explore PSO to optimize multi-view clustering. 

Based on the above analysis, in this chapter, we propose a particle swarm optimization 

(PSO)-based Multi-view Nearest Neighbor Clustering (PMNNC) algorithm. Different from 

most previous multi-view clustering based on spectral clustering or subspace clustering, we 
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introduce an adjacency-constrained nearest neighbor clustering (CNNC) to enhance the 

clustering performance on fusion data from multiple views. Further, we propose a new fitness 

function based on the clustering internal validity index to help learn parameters more 

accurately. Finally, we combine PSO and CNNC to learn a fusion distance matrix from 

multiple views to improve the clustering results.  

The following are the main contributions of this chapter: 

• 1) Proposing a particle swarm optimization (PSO)-based Multi-view Nearest Neighbor 

Clustering (PMNNC) algorithm that can obtain promising clustering results. 

• 2) Proposing a new fitness function based on the clustering internal validity index to help 

learn parameters more accurately. 

• 3) The proposed method’s superiority is demonstrated by experimental results on seven 

real-world data sets. 

 

5.2 Proposed Method 

5.2.1 Adjacency-constrained nearest neighbor clustering (CNNC)* 

Nearest neighbor clustering (NNC) has recently become a research focus [13], [59], 

[211]. Compared with conventional hierarchical clustering algorithms, such as average-

linkage and ward-linkage, NNC has a reduced computing complexity (i.e., O(nlogn)), 

 
* Since this thesis is organized by the compilation of papers (Chapters) and each paper (Chapter) has a different 

focus, the partial clustering mechanism of TC in Chapter 3 is expressed as CNNC here. 

 
 
 
 
 

         (a)                                                (b) 
 
 
Figure 5.1. a simple example of the traditional NNC merging process (a), and the CNNC procedure (b). We 
employ dotted lines to denote clusters (i.e., A, B, and C), and circles or triangles to represent data samples. 
In traditional NNC, cluster A and cluster B are chosen to merge, cluster C and cluster B are chosen to merge, 
because cluster A and cluster B are the nearest neighbor of each other, and the nearest neighbor of cluster C 
is cluster B. However, in the CNNC, cluster C and cluster B are not chosen to merge because 
mass(C)>mass(B). 
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because, in each iteration, NNC merges several clusters that are close to each other, instead 

of merging only one nearest cluster like traditional hierarchical clustering. However, whether 

traditional hierarchical clustering or NNC, it is based on the statistic of nearest neighbor, that 

is, as long as the neighbor relationship is satisfied, the merger is performed. In this way, 

samples from different classes may also be merged, thereby impairing clustering accuracy. 

Here, we introduce an adjacency-constrained nearest neighbor clustering (CNNC) algorithm, 

which leverages clusters with larger masses to guide the merging process, thereby preventing 

trivial wrong merging in conventional NNC methods. Fig. 5.1 illustrates the difference 

between the conventional nearest neighbor clustering and the adjacency-constrained nearest 

neighbor clustering. 

Given a data set 𝑋, initially, each sample is its own cluster. Given the number of samples 

contained in a cluster as the mass of the cluster, therefore, in the beginning, the mass of each 

cluster equals 1. The following rule is then applied to form connections between clusters: 

 → , 𝑖𝑓 𝑚𝑎𝑠𝑠 𝑚𝑎𝑠𝑠                         (5.1)         

where   denotes the j-th cluster,  denotes the 1-nearest cluster of  . 𝑚𝑎𝑠𝑠  

represents the mass of   (i.e, the number of samples  contained). Similarly, 𝑚𝑎𝑠𝑠  

is the mass of  . The symbol " → "  denotes a connection (i.e, merger) 𝐶   between  

and  . This process can be also defined in a graph G, 

𝐴 ,
1, 𝑖𝑓 𝑚𝑎𝑠𝑠 𝑚𝑎𝑠𝑠
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                            

                       (5.2)    

where A stands for the adjacency matrix of G. Then, new clusters can be obtained by 

calculating the connected components of the adjacency matrix A. At this point, one iteration 

has been completed. By repeating this merger process according to Eq. (5.2), all clusters will 

eventually merge into one cluster and form a hierarchical tree. Each layer of the hierarchical 

tree then can be regarded as a partition under a specific granularity. 

Each connection (i.e., merger) 𝐶  has two intuitive properties. One is the product of the 

mass of the two clusters it connects   

𝑀 𝑚𝑎𝑠𝑠 𝑚𝑎𝑠𝑠                             (5.3)         
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The other is the square of the distance between the two clusters it connects 

                          𝐷 𝑑 ,                                 (5.4)         

A reasonable partition can be obtained through a certain layer (granularity) of the 

clustering tree, Besides, CNNC can also be assigned the desired number of clusters K. After 

simply removing K-1 connections with relatively large 𝑀 𝐷 , then we can get a partition 

containing K clusters. 

 

5.2.2 Particle swarm optimization (PSO) 

Particle Swarm Optimization (PSO) is an effective method for optimizing continuous 

nonlinear functions that models so-called social behaviors [83], [226]. A swarm in the context 

of PSO is a collection of potential solutions to an optimization problem, each of which is 

referred to as a particle. The primary objective of PSO algorithm is to find the particle's 

position that results in the best assessment of the fitness (objective) function. Each particle 

in the search space is represented by a position in 𝑁  dimensional space, and the algorithm 

moves the particles across this multi-dimensional space, adjusting their position towards the 

best position they have discovered so far, as well as the best position in their respective 

neighborhoods [83], [226]. 

In addition, each particle retains the following values: 

• 𝑥 , its current position 

• 𝑣 , its current velocity 

• 𝑦 , its best position, found so far [83], [226]. 

Based on the above notation, the position of a particle is modified as per the following 

equation: 

𝑣 , 𝑡 1 𝑤𝑣 , 𝑡 𝑐 𝑟 , 𝑡 𝑦 , 𝑡 𝑥 , 𝑡 𝑐 𝑟 , 𝑡 𝑦 𝑡 𝑥 , 𝑡   (5.5)         

 𝑥 𝑡 1 𝑥 𝑡 𝑣 𝑡 1                          (5.6) 

In Eq. (5.5), 𝑤 stands for the inertia weight, 𝑐  and 𝑐  for acceleration constants, while 

𝑟 , 𝑡  and 𝑟 , 𝑡  are taken from a uniform distribution 𝑈 0,1 . The particle's velocity is 
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then determined using 1) its prior velocity, 2) a cognitive component relating to its best-

achieved distance, and 3) a social component that considers the best-achieved distance over 

all the particles in the swarm. The best position of a particle is calculated using Eq. (5.7), 

which simply updates the best position if the current 𝑖-timestep's fitness value is less than 

the particle's prior fitness value. 

𝑦 𝑡 1
𝑦 𝑡    𝑖𝑓  𝑓 𝑥 𝑡 1 𝑓 𝑦 𝑡

𝑥 𝑡 1   𝑖𝑓  𝑓 𝑥 𝑡 1 𝑓 𝑦 𝑡
             (5.7)  

The PSO is commonly run by using Eqs. (5.5)-(5.6) repeatedly until a certain number 

of iterations is reached. It is crucial to note that, whereas [83], [226] presents two types of 

PSO techniques, gbest, and lbest, where the social components are essentially bound to the 

particle's current neighborhood rather than the entire swarm, we refer only to the fundamental 

gbest proposal in this study. 

 

5.2.3 Fitness function based on a novel internal validity index: minimum spanning 

tree-based Dunn’s index (MSTDI) 

To evaluate the performance of PSO after each iteration, we need to propose a fitness 

function. Here we consider using internal validity index [221] – Dunn’s index (DI), 

𝐷𝐼 min min ∈ , ∈
,

, ∈
,

                   (5.8) 

where  is the 𝑗-th cluster, 𝑑 𝑎, 𝑏  stands for the distance between the samples 𝑎 and 𝑏. 

𝜋 denotes a partition generated from a clustering algorithm. DI is a distance matrix-based 

validity index, which doesn’t need to know specific coordinates of data samples. As Eq. (5.8) 

shows, DI is calculated by dividing the minimum inter-cluster distance by the maximum 

intra-cluster distance. However, DI uses the distance between the two samples furthest apart 

in the cluster as the intra-class distance. This method of calculating intra-class distance is 

extremely susceptible to noise or outliers. Therefore, we alleviate this shortcoming based on 

the minimum spanning tree (MST) to propose an MST-based DI. We transform each cluster 

 to a connected, weighted, undirected graph 𝐺 𝑉,𝐸 , where each node corresponds to a 
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data sample, and each weight corresponds to the distance between samples. Then we exploit 

Prim’s algorithm [228] to generate an MST, 𝑇 𝑉,𝐸′   for  . For each edge 𝑞, 𝑠 ∈

𝑇 𝑉,𝐸′ , there is a weight 𝑑 𝑞, 𝑠  associated with it. Finally, we exploit the weighted sum 

of the edges in 𝑇 𝑉,𝐸′  as the intra-class distance . MSTDI can be formulated as  

𝑀𝑆𝑇𝐷𝐼 min min ∈ , ∈
,

∑ ,, ∈ ,

              (5.9) 

Since both MSTDI and DI are positively correlated with clustering performance, we take the 

reciprocal of MSTDI as the fitness function (F), that is 

  𝐹
∑ ,, ∈ ,

∈ , ∈
,

                      (5.10) 

 

5.2.4 PSO-based multi-view nearest neighbor clustering 

Given multi-view data 𝑋   collected from h views, for o-th view, 𝑋 ∈

𝑅  , 𝐷   is the distance matrix of 𝑋  , where n and 𝑑𝑖𝑚   denote the number of 

instances and the dimensions of the o-th view respectively. Our goal is to learn a fusion 

distance matrix (FDM) from these ℎ  views. Therefore, in the context of the PSO-based 

clustering, a single particle 𝑥  represents an ℎ-dimension weight vector.  

𝑥 𝑝 , … ,𝑝 , … 𝑝                                 (5.11) 

  𝐹𝐷𝑀 ∑ 𝑝 𝐷 𝑥 ⋅ 𝐷                      (5.12) 

where 𝑝  is the weighting for the o-th view distance matrix in the 𝑖-th particle. That is, 

each particle 𝑥   corresponds to a fusion distance matrix 𝐹𝐷𝑀  . We perform the CNNC 

algorithm on 𝐹𝐷𝑀   and get the partition 𝜋  , then leverage the fitness function 𝐹   to 

evaluate the loss. Therefore, the induced optimization model of this strategy is as follows 

𝐦𝐢𝐧𝐹 𝑥 , 𝐷  
∑ ,, ∈ ,

∈ , ∈
,

          (5.13) 

              𝑠. 𝑡.∑ 𝑝 1,𝑝 ∈ 0,1                            (5.14) 

where 𝑑  denotes the distance between samples in i-th fusion distance matrix 𝐹𝐷𝑀 . A 

simple flowchart of the proposed PMNNC is shown in Fig. 5.2, and the pseudocode of 
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PMNNC is presented in Algorithm 5.1. 
 

 
Figure 5.2. A simple flowchart of the proposed PMNNC. 

 
 

Algorithm 5.1: Algorithm of the proposed PMNNC 

1 Input: Multi-view data 𝑋 , the desired cluster number K. 

2 Output: Best partition 𝜋 . 
3 Calculating the distance matrix 𝐷  of each view. 
4 for t=1: 𝑡  do 
5 for z=𝑥 : 𝑥  do 
6 Calculating 𝐹𝐷𝑀  by Eq. (5.12). 
7 Initializing adjacency matrix A. 
8 Constructing cluster sets  (Initially, regard each sample as a cluster). 
9 while cluster sets  have more than two clusters do 
10 Searching the nearest cluster of  with higher mass according to 𝐹𝐷𝑀 . 
11 Updating A by Eqs. (5.1)-(5.2) (Using two nearest samples respectively from two clusters to represent 

these two clusters). 
12 Calculating 𝑀  and 𝐷  of 𝐶  by Eqs. (5.3)-(5.4). 
13 Updating cluster sets  based on A. 
14 end 
15 Updating A by removing K-1 𝐶  with largest 𝑀 𝐷 . 
16 Getting partition 𝜋  based on A. 
17 Calculating F  by Eqs. (5.13)-(5.14). 
18 end 
19 Updating the global best and local best positions. 
20 Updating the weight vectors by Eqs. (5.5)-(5.6). 
21 end 
22 Return the optimal weight vector 𝑥  and its corresponding partition 𝜋 . 
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5.3 Experiment and results 

5.3.1 Data sets description 

Table 5.1. Statistics of multi-view data sets. 

 

 

 

 

 

(1) 100-leaves: The 100-leaves data set [229]. The size of the original 100-leaves images 

varies as well. Shape descriptors, fine-scale margins, and texture histogram features are used 

to display samples from various perspectives in three different views. 

(2) COIL20: There are 1440 grayscale images of 20 different things in this data set [160]. 

For the original features scenario, each image is downscaled to 32 by 32 pixels. In the case 

of numerous hand-crafted features, three sorts of features are extracted. Their features are 

1024, 3304, and 6750 pixels in size, respectively. 

(3) Handwritten: This is made up of 2000 samples spanning from 0 to 9 digits. Each sample 

is represented by two views: the first is a 240-feature vector formed from the average of 

pixels in 2x3 windows, and the second is a 76-feature Fourier coefficient vector [229] [215]. 

(4) ORL: This is made up of 400 images of the faces of 40 different people. For the original 

features scenario, each image is down sampled to 32 by 32 pixels [47] [145]. Three different 

types of features are used to represent each image in the handcrafted features scenario. 

(5) UMIST: There are 564 photographs of 20 persons in this collection [158] (mixed race, 

gender, and appearance). Each individual is shown in several positions, ranging from profile 

to frontal views. Each image has a 256-bit greyscale with a resolution of around 220 by 220 

pixels. Each image is represented by three heterogeneous feature sets, as described in [216]: 

30 isometric projection (ISO), 30 principal component analysis (PCA), and 30 neighborhood 

preserving embedding (NPE). 

Datasets #Views #Samples #Clusters
100-leaves 3 1600 100

COIL20 3 1440 20
Handwritten 2 2000 10

ORL 3 400 40
UMIST 3 575 20

CMU-PIE 3 2856 68
COIL100 3 7200 100
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(6) CMU-PIE: This data set [148] includes 2856 frontal-face images of 68 people, each with 

42 different illuminations. Each photograph was reduced to a 32×32-pixel size. Each image 

is expressed using three feature sets: 30 ISO, 30 PCA, and 30 NPE. 

(7) COIL-100: This data set [147] is a collection of 7200 color photographs that represent 

100 different objects. Each image has a resolution of 128×128 pixels. There are 72 different 

images in varied positions for each object. Three feature sets are used to express each image: 

30 ISO, 30 PCA, and 30 NPE. Table 5.1 contains the complete statistics for these data sets. 

 

5.3.2 Compared algorithms 

We put PMNNC up against 10 state-of-the-art multi-view clustering techniques. They 

include: K-means; Graph-based multi-view clustering (GMC) [92]; Unified graph learning 

for multi-view clustering (UGLMC) [89]; View variation and view heredity clustering (V3H) 

[217]; Affinity aggregation for spectral clustering (AASC) [43]; Multi-view clustering via 

adaptively weighted Procrustes (AWP) [91]; Co-regularized multi-view spectral clustering 

(CoReg) [44]; Multi-view consensus graph clustering (MCGC) [218]; Robust multi-view 

spectral clustering (RMSC) [219]; and Weighted multi-view spectral clustering (WMSC) 

[46]. To evaluate the performance of clustering algorithms, we utilized three widely used 

external clustering validation indices: Accuracy (ACC), Normalized mutual information 

(NMI) [133], and F-score [220]. The best clustering results were highlighted. We also 

presented the best clustering results of multiple views for K-means, a single-view clustering 

algorithm. To get the best results from various multi-view clustering algorithms, the settings 

were tweaked as specified in the original papers. For PMNNC, we set the swarm sizes and 

maximum iterations equal to 5 and 40, respectively (i.e., set 𝑥 𝑥  and 𝑡 40 in 

Algorithm 5.1) and took the average results of the three runs. All the tests were run on a 

workstation with two 14-core Intel Xeon 6132 CPUs running at 2.6 GHz and 3.7 GHz, as 

well as 96GB of RAM.  
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Table 5.2. Clustering results of PMNNC and other algorithms in the metric of ACC. 

Sources Methods 100-leaves COIL20 Handwritten ORL UMIST CMU-PIE COIL100 
- K-means .5780 .6410 .6921 .5703 .4617 .5377 .5737 

TKDE-20 GMC .8238 .7910 .8300 .6325 .5217 .7048 .7692 
ICDM-19 UGLMC .8001 .9014 .7425 .6900 .6043 .1863 .7267 

TAI-21 V3H .8219 .6005 .8670 .7478 .5245 .7283 .6514 
CVPR-12 AASC .8779 .7806 .8334 .7352 .4428 .5396 .6564 
KDD-18 AWP .7800 .7708 .9315 .6975 .5461 .7749 .7029 

NeurIPS-11 CoReg .8421 .8280 .9111 .7880 .5294 .7382 .7839 
TIP-18 MCGC .6075 .3882 .1005 .5950 .4487 .7006 .5194 

AAAI-14 RMSC .7313 .4092 .4098 .7977 .4753 .7465 .2216 
AAAI-18 WMSC .8789 .8463 .8335 .8068 .4897 .6633 .7142 

- PMNNC .9273 .9771 .9775 .8642 .8145 1.0000 .9261 
 

Table 5.3. Clustering results of PMNNC and other algorithms in the metric of NMI. 
Sources Methods 100-leaves COIL20 Handwritten ORL UMIST CMU-PIE COIL100 

- K-means .7996 .8004 .7071 .7784 .6771 .7990 .8239 
TKDE-20 GMC .9296 .9410 .8767 .8590 .7373 .8892 .9371 
ICDM-19 UGLMC .9196 .9705 .8505 .8630 .8373 .3919 .9309 
TAI-21 V3H .9099 .7663 .7425 .8632 .6833 .8666 .8656 
CVPR-12 AASC .9590 .8958 .8827 .8538 .6619 .7921 .8676 
KDD-18 AWP .9013 .9264 .9026 .8584 .7203 .9140 .9163 

NeurIPS-11 CoReg .9325 .9425 .8811 .8905 .7412 .8829 .9264 
TIP-18 MCGC .7606 .6515 .0350 .8035 .6716 .8070 .7841 
AAAI-14 RMSC .8828 .7155 .4814 .8896 .6673 .8432 .5092 
AAAI-18 WMSC .9527 .9484 .8772 .8950 .7047 .8610 .9026 

- PMNNC .9643 .9866 .9493 .9385 .9056 1.0000 .9841 
 

Table 5.4. Clustering results of PMNNC and other algorithms in the metric of F-score. 
Sources Methods 100-leaves COIL20 Handwritten ORL UMIST CMU-PIE COIL100 

- K-means .4662 .6125 .6356 .4547 .4078 .4744 .5164 
TKDE-20 GMC .5042 .7943 .8113 .3599 .4620 .6171 .7195 
ICDM-19 UGLMC .7501 .8696 .7547 .5951 .5701 .0332 .5252 

TAI-21 V3H .7469 .5622 .7613 .6591 .4403 .6178 .5902 
CVPR-12 AASC .7783 .7758 .8167 .5948 .3656 .3766 .4795 
KDD-18 AWP .7129 .7187 .8875 .6163 .4891 .7555 .6985 

NeurIPS-11 CoReg .7907 .8088 .8588 .7091 .4778 .6790 .7583 
TIP-18 MCGC .0991 .1992 .1810 .2588 .3189 .2694 .1390 

AAAI-14 RMSC .5129 .3194 .2881 .7178 .2846 .3751 .0465 
AAAI-18 WMSC .8467 .8331 .8187 .7283 .4177 .6079 .6916 
- PMNNC .8817 .9646 .9552 .8149 .8243 1.0000 .9280 

 

 

 

 

 

 

 

5.3.3 Results and analysis 

The clustering results are shown in Tables 5.2-5.4. On all data sets, the proposed 

 
Figure 5.3. Average rankings for all multi-view 
clustering methods on all data sets. 
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PMNNC beat all other clustering algorithms. Whether compared with single-view clustering 

algorithms or multi-view clustering algorithms, PMNNC shows considerate performance 

advantages. In particular, the results of our PMNNC were roughly 21%, 22.5%, and 14.2% 

better than the second-best clustering results on UMIST, CMU-PIE, and COIL100 data sets, 

respectively, using the metric ACC. For the metric NMI, the results of our PMNNC were 

about 6.8%, 8.6%, and 4.7% better than the second-best clustering results on UMIST, CMU-

PIE, and COIL100 data sets, respectively. Finally, our PMNNC results were roughly 9.5%, 

25.4%, 24.5%, and 17% better than the second-best clustering results on COIL20, UMIST, 

CMU-PIE, and COIL100 data sets, respectively, using the metric F-score. Besides, in terms 

of the rank in Fig. 5.3, the next-best algorithm, CoReg, was three times plus higher than 

PMNNC in its ranking scores among ACC, NMI, and F-score. Finally, Fig. 5.4. shows the 

trend of best fitness function value with PSO iterations on the seven real-world data sets, 

where we can conclude that PMNNC converges quickly on most data sets. 

From a theoretical perspective, the inferior performance of numerous multi-view 

spectral or subspace clustering methods in comparison to PMNNC can primarily be ascribed 

to two key aspects. Firstly, these techniques are based on spectral clustering or subspace 

clustering, both of which exhibit inherent limitations. For instance, spectral clustering faces 

difficulties in accurately discerning the intrinsic manifold structure within data when 

generating the k-nearest neighbor similarity graph. This challenge arises due to the fact that 

spectral clustering is not adept at capturing complex structures. Conversely, CNNC, which 

is a component of PMNNC, can more effectively capture this structure owing to its 

constrained merging manner, providing more accurate connections between data samples. 

Secondly, the majority of previous algorithms rely on gradient-based optimization strategies 

to learn the weight of each view, with the aim of discovering a globally optimal joint 

representation. However, this objective is impeded by the very nature of gradient-based 

optimization algorithms, as they have a tendency to become ensnared in local optima. 

Consequently, the learned view weights fail to contribute positively to the final clustering 

phase. In stark contrast, PMNNC employs PSO to determine the most appropriate view 
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weights. By utilizing PSO, the algorithm is better equipped to find the optimal global 

solution, thereby more effectively serving the subsequent clustering step. This advantage 

ultimately results in a more robust and efficient clustering process, overcoming the 

limitations faced by traditional multi-view spectral or subspace clustering techniques. 

 
 
Table 5.5. Performance comparison with other PSO-based multi-view clustering methods, in the metric of 
ACC. The COIL100 data set causes errors in the GDL and SC codes. 

Data sets PMC-
avg 

PMC-
ward 

PMC-
GDL 

PMC-
SC 

PMNNC 

100-leaves .6677 .8635 .8048 .4008 .9273 
COIL20 .4516 .7338 .8620 .6623 .9771 

Handwritten .5208 .9393 .8785 .7408 .9775 
ORL .6575 .7958 .7225 .7258 .8642 

UMIST .3548 .4284 .4913 .4470 .8145 
CMU-PIE .3910 .4230 .9895 .9076 1 
COIL100 .6038 6703 - - .9261 

 
Table 5.6. Performance comparison with other distance matrix-based internal indices, in the metric of 
ACC. 

Data sets DI CVNN CVDD MSTDI 
100-leaves .8977 .6415 .9140 .9273 

COIL20 .8525 .9431 .9155 .9771 
Handwritten .9775 .9067 .9670 .9775 

 
 
 
 
 
 
 
 
 
 
     100-leaves              COIL-20             Handwritten              ORL 
 
 
 
 
 
 
 
 
                                                                                 
                                

 
UMIST              CMU-PIE           COIL-100            

 
Figure 5.4. The trend of best fitness function value with PSO iterations on the seven real-world data sets 
respectively. 
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ORL .8625 .6783 .7692 .8642 
UMIST .6064 .6701 .8209 .8145 

CMU-PIE .8964 .7588 .9834 1 
COIL100 .9194 .8428 .9261 .9261 

 

5.4 Ablation study 

5.4.1 Impact of adjacency-constrained nearest neighbor clustering (CNNC) 

To show the superiority of CNNC in the proposed model. We replaced CNNC of 

PMNNC with other well-known clustering methods that can be performed on distance (or 

similarity) matrices, including average-linkage, ward-linkage, GDL [62], and spectral 

clustering (SC). GDL is a recent NNC-based hierarchical clustering algorithm. The generated 

new PSO-based multi-view clustering (PMC) methods were PMC-avg, PMC-ward, PMC-

GDL, and PMC-SC. Similarly, we performed them on the seven data sets and used ACC to 

evaluate the results. The metric ACC was used to evaluate the results. According to Table 5.5, 

PMNNC still achieved the best performance on all data sets. Essentially, CNNC of PMNNC 

outperforms prior NNC methods or hierarchical clustering techniques when handling the 

fusion distance matrix. The superior performance can be attributed to CNNC's constrained 

merging manner, which enables it to more precisely identify the manifold structure present 

within the data. 

 

5.4.2 Impact of minimum spanning tree-based Dunn’s index (MSTDI) 

To show the validity of the proposed MSTDI, we replaced it with the original validity 

index Dunn Index (DI) [221] and other two recent distance matrix-based internal validity 

indices, Clustering Validation index based on Nearest Neighbors (CVNN) [223] and 

Clustering Validity index based on Density-involved Distance (CVDD) [224] in the PMNNC 

framework. The metric ACC was used to evaluate the results. According to Table 5.6, 

compared with other three distance matrix-based internal validity indices, the proposed 

MSTDI is more suitable as the fitness function of PSO. Theoretically speaking, the other 
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three distance matrix-based internal indices each possess some intrinsic shortcomings. For 

instance, DI calculates the intra-class distance using the distance between the two most 

distant points within a cluster, making it vulnerable to outliers. Moreover, CVNN struggles 

with adapting to sparse data sets, while CVDD is sensitive to variations in cluster densities. 
 

5.4.3 Impact of the two hyperparameters 

The PSO algorithm used in PMNNC typically involves two hyperparameters, namely 

the swarm size and maximum iterations. While PMNNC inherits these hyperparameters, we 

fixed the swarm size and maximum iterations at 5 and 40, respectively, for all the experiments 

reported in this study. We made this decision based on the observation that increasing these 

hyperparameters' values can lead to easier convergence to smaller fitness function values but 

also entails greater computational overhead. Thus, we arrived at a compromise setting for 

these hyperparameters. 

To further investigate the impact of these hyperparameters on PMNNC's performance, 

we conducted additional experiments on the CMU-PIE data set, where we varied the swarm 

sizes within the range of {3, 4, 5, 6, 7} and the maximum iterations within the range of {20, 

30, 40, 50, 60}. As illustrated in Figure 5.5, the ACC scores of PMNNC remained at 1 for all 

hyperparameter settings, indicating that the algorithm's performance is relatively insensitive 

to these hyperparameters. However, it is worth noting that the optimal hyperparameter values 

for PMNNC may vary across different data sets and applications, and further research is 

necessary to explore their impact fully. 

 

 

 

 

 

 
 

Figure 5.5. The ACC scores of PMNNC under varying 
hyperparameter settings on the CMU-PIE data set.  
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5.5 Conclusion 

This chapter proposes a particle swarm optimization (PSO)-based Multi-view Nearest 

Neighbor Clustering (PMNNC). By introducing an adjacency-constrained nearest neighbor 

clustering (CNNC) algorithm and a new fitness function based on the clustering internal 

validity index, the promising clustering performance can be obtained by PMNNC. Extensive 

tests using seven real-world data sets demonstrate the supremacy of the proposed PMNNC 

over the 10 current state-of-the-art approaches. 
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Chapter 6. Almost ultrametric learning using pseudo labels from 
clustering 

 
6.1  Introduction 

In machine learning, measuring similarity between data points is a fundamental 

operation that plays a crucial role in many tasks. Similarity measures are used in various 

applications, such as clustering, classification, and retrieval systems, to identify patterns and 

similarities in the data. Under the right similarity measures, an unknown pattern can be 

accurately identified. Distance is a typical measure of similarity that is used in traditional 

machine learning algorithms such as KNN [105] and K-means [16]. The performance of 

KNN and K-means is strongly reliant on distance, with Euclidean distance being used in the 

majority of applications. Conversely, the Euclidean distance measure considers all the 

components of a feature vector as equal, without taking into account their relative importance 

when calculating the vector's output [106]. Therefore, in many real-world scenarios, using 

Euclidean distance as a metric will degrade the performance of machine learning algorithms. 

The emergence of distance metric learning solves this problem [230], [231]. Distance metric 

learning has gained significant attention in recent years for improving the performance of 

distance-based methods like KNN [105] and K-means [16], after being first introduced in 

2003. The primary objective of metric learning is to reduce intra-class distance while 

increasing inter-class distance, resulting in each point being closer to other points with the 

same label and farther away from those with different labels [106]. 

On the other hand, past studies have shown that if a distance metric space is closer to an 

ultrametric space, it tends to have better clusterability, that is, it is more friendly to clustering 

[232]. An ultrametric space is a metric space where the triangle inequality is reinforced to 

𝑑 𝑥,𝑦 𝑚𝑎𝑥 𝑑 𝑥, 𝑧 ,𝑑 𝑧, 𝑦  in mathematics [232]. The associated metric, ultrametric, is 

used in a variety of fields, such as condensed matter physics, geography, and landscape 

ecology. 

In this chapter, we first introduce the difference between metric space and ultrametric 

space. Then, we propose a new metric called Almost UltraMetric (AUM) and prove that 
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under weak conditions, it will be a true ultrametric. Since the learning of the proposed AUM 

requires the guidance of ground truth labels, we further propose using pseudo labels to 

approximate ground truth labels, thus making the learning process completely unsupervised. 

Since the pseudo labels are obtained by Chapter 3 (torque clustering), we call this whole 

metric learning framework, Almost UltraMetric Learning using Torque Clustering's pseudo 

labels (AUMLTC). It is worth mentioning that, unlike most previous methods, the proposed 

AUMLTC is unsupervised and parameter-free. The comparison and ablation experiments 

tested on several data sets validate the superiority of the proposed framework. 

The following are the main contributions of this chapter: 

• 1) Proposing a new metric called Almost UltraMetric (AUM). 

• 2) Proving that under weak conditions, the proposed AUM will be a true ultrametric. Several 

additional properties of AUM are also extended. 

• 3) Proposing a new parameter-free unsupervised metric learning framework, Almost 

UltraMetric Learning using Torque Clustering's pseudo labels (AUMLTC). 

• 4) The proposed framework’s superiority is demonstrated by experimental results on six data 

sets. 

 

6.2 Proposed Method 

6.2.1 Metric space and ultrametric space 

A dissimilarity on a set of distinct points 𝑃 is a mapping 𝑑:𝑃 𝑃 → ℝ such that 

i. 𝑑 𝑥,𝑦 0; 

ii. 𝑑 𝑥,𝑦 𝑑 𝑦, 𝑥 ; 

iii. 𝑑 𝑥,𝑦 0 if and only if 𝑥 𝑦; 

A dissimilarity on 𝑃 that adheres to the triangular inequality 

iv. 𝑑 𝑥,𝑦 𝑑 𝑥, 𝑧 𝑑 𝑧, 𝑦  

for every 𝑥,𝑦, 𝑧 ∈ 𝑃  is a metric [232]. Furthermore, if the following condition is also 

satisfied 

v. 𝑑 𝑥,𝑦 𝑚𝑎𝑥 𝑑 𝑥, 𝑧 ,𝑑 𝑧, 𝑦  
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in this case, 𝑑 becomes an ultrametric, and the pair 𝑃,𝑑  is an ultrametric space [232]. A 

ultrametric must be a metric, but not vice versa. It is worth noting that in an ultrametric space, 

any 𝑟-spheric clustering is a perfect clustering [233]. 

 

6.2.2 Convert metric space to the proposed almost ultrametric (AUM) space 

Consider a data set 𝑋 including some distinct data points, and suppose their labels are 

known as ℒ; points with the same label are represented as a class  (or cluster). For 𝑥,𝑦 ∈

𝑋  and labels ℒ  of 𝑋 , write 𝑥~ℒ 𝑦  if 𝑥  and 𝑦  belong to the same class in ℒ  and 

𝑥 ≁ℒ 𝑦 otherwise. First, we map 𝑋 to a widely used metric space (e.g., Euclidean), denoted 

as 𝑋,𝑑 . We regard 𝑋,𝑑  as the original metric space. Then, the proposed AUM space 

𝑋,𝑑  can be obtained from the original space as follows. 

For 𝑥~ℒ 𝑦, from any class, the distance between them on the AUM space can be defined as: 
𝑑 𝑥,𝑦 min min

, ∈
𝑑 𝑥,𝑦                  (6.1) 

For 𝑥 ≁ℒ 𝑧, from any two different classes, the distance between them on the AUM space 

can be defined as: 
𝑑 𝑥, 𝑧 max max max

∈ , ∈
𝑑 𝑥, 𝑧             (6.2) 

Essentially, for Eq. (6.1), guided by labels ℒ , we take the minimum value of the 

distances between any two points from the same class in the original space as the distance 

between any two points from the same class in the proposed AUM space; for Eq. (6.2), we 

take the maximum value of the distances between any two points from different classes in 

the original space as the distance between any two points from different classes in the 

proposed AUM space. According to Eqs. (6.1)-(6.2), in the AUM space, the distances 

between points belonging to the same class are reduced, and the distances between points 

belonging to different classes are increased. That is, the proposed metric space shrinks the 

intra-class (or cluster) distance and enlarges the inter-class (or cluster) distance. 

 

Property 1. The proposed AUM space 𝑋,𝑑   is an ultrametric space if 

𝑚𝑖𝑛 𝑚𝑖𝑛
, ∈

𝑑 𝑥,𝑦 𝑚𝑎𝑥𝑚𝑎𝑥 𝑚𝑎𝑥
∈ , ∈

𝑑 𝑥, 𝑧  in the original metric space. 
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Proof: We first consider the condition min min
, ∈

𝑑 𝑥, 𝑦 max max max
∈ , ∈

𝑑 𝑥, 𝑧  . For 

𝑥,𝑦, 𝑧 ∈ 𝑋, there are three possibilities: 

a) 𝑥,𝑦, 𝑧 belong to the same class, that is, 𝑥~ℒ 𝑦, 𝑦~ℒ 𝑧, and 𝑧~ℒ  𝑥. According to Eq. 

(6.1), 𝑑 𝑥,𝑦 𝑑 𝑦, 𝑧 𝑑 𝑧, 𝑥 min min
, ∈

𝑑 𝑥,𝑦  , so Eq. ⅴ in section 6.2.1 is 

satisfied. 

b) 𝑥,𝑦 belong to the same class, and 𝑥, 𝑧 and 𝑦, 𝑧 do not belong to the same class, that is, 

𝑥~ℒ 𝑦 , 𝑦 ≁ℒ  𝑧 , and 𝑧 ≁ℒ  𝑥 . According to Eqs. (6.1)-(6.2), 𝑑 𝑥,𝑦

min min
, ∈

𝑑 𝑥,𝑦 max max max
∈ , ∈

𝑑 𝑥, 𝑧 𝑑 𝑦, 𝑧 𝑑 𝑧, 𝑥 , so Eq. ⅴ in section 

6.2.1 is satisfied. 

c) Any two of 𝑥,𝑦, 𝑧  do not belong to the same class, that is, 𝑥 ≁ℒ  𝑦 , 𝑦 ≁ℒ  𝑧 , and 

𝑧 ≁ℒ  𝑥 . According to Eq. (6.2), 𝑑 𝑥, 𝑦 𝑑 𝑦, 𝑧 𝑑 𝑧, 𝑥

max max max
∈ , ∈

𝑑 𝑥, 𝑧 , so Eq. ⅴ in section 6.2.1 is also satisfied. 

We can visualize the three cases a), b), and c) as shown in Fig. 6.1.  

 

When min min
, ∈

𝑑 𝑥,𝑦 max max max
∈ , ∈

𝑑 𝑥, 𝑧 , no matter which of a), b), and c) holds, 

𝑥,𝑦, 𝑧 will form an equilateral triangle, so Eq. ⅴ in section 6.2.1 is also satisfied. 

min min
, ∈

𝑑 𝑥, 𝑦 max max max
∈ , ∈

𝑑 𝑥, 𝑧  is a weak condition, which means that 

 
 
 
 
 
 

                                                          

 
 
 
                                                                  
                                                                 
 
 
 
 
 
                  (a)                     (b)                             (c)                 
 

Figure 6.1. The illustration of the three cases (a), (b) and (c). 
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the proposed AUM is always an ultrametric. 

In the past, many studies explained the characteristics of data sets from the perspective 

of metric space [157], [232]. The distribution characteristic of the data set is related to its 

clusterability. For example, if a data set is strictly separable, many clustering algorithms are 

robust on it [205]. Here, we first introduce two definitions [234], [205]. 

Definition 1. ( ,𝑘 𝑠𝑡𝑟𝑖𝑐𝑡𝑙𝑦  𝑎𝑑𝑑𝑖𝑡𝑖𝑣𝑒 𝑠𝑒𝑝𝑎𝑟𝑎𝑏𝑙𝑒 ). A data set with 𝑋,𝑑   is ε, K

strictly  additive separable if there exists a unique clustering 𝛤 , … ,  of X so that 

for all 𝑖 𝑗 and all 𝑥,𝑦 ∈ , 𝑧 ∈ , 𝑑 𝑥,𝑦 𝑑 𝑥, 𝑧 234 , 205 . 

 

Definition 2. (Nice clustering). The clustering result 𝕃 of a data set with 𝑋,𝑑  is nice if 

for all 𝑥,𝑦, 𝑧 ∈ 𝑋, 𝑑 𝑦, 𝑥 𝑑 𝑧, 𝑥  whenever 𝑥~𝕃 𝑦, 𝑦 ≁𝕃  𝑧 234 , 205 . 

 

According to definitions 1 and 2, we can easily deduce that the proposed AUM space 

has the following two properties. 

Property 2. A data set with the proposed AUM space 𝑋,𝑑   is ε, K

strictly  additive separable  if 𝑚𝑖𝑛 𝑚𝑖𝑛, ∈
𝑑 𝑥, 𝑦 𝑚𝑎𝑥𝑚𝑎𝑥 𝑚𝑎𝑥

∈ , ∈
𝑑 𝑥, 𝑧  , where 

0. 

 

Property 3. The clustering result 𝕃 of a data set with the proposed AUM 𝑋,𝑑  is nice if 

𝑚𝑖𝑛 𝑚𝑖𝑛
, ∈

𝑑 𝑥,𝑦 𝑚𝑎𝑥𝑚𝑎𝑥 𝑚𝑎𝑥
∈ , ∈

𝑑 𝑥, 𝑧 . 

The proofs for properties 2 and 3 are obvious, so we omit them here. From properties 2 and 

3, we can see that the AUM space is very friendly to clustering. 

 

6.2.3 Exploit pseudo labels of torque clustering to approximate ground truth labels  

Even if the AUM space has some good properties, it still needs to be guided by labels 

ℒ. However, in the real world, the acquisition of ground truth labels is expensive. Therefore, 

we consider using pseudo labels 𝕃 to approximate it, that is, 

𝕃 ℒ                                 (6.3) 
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Pseudo labels are easily obtained by some clustering algorithms. To make the pseudo labels 

closer to the ground truth labels, we need to choose a relatively general clustering algorithm. 

In Chapter 3, we proposed a parameter-free autonomous clustering algorithm called torque 

clustering (TC). The algorithm has shown good performance on many data sets with different 

characteristics, such as overlapping, unbalanced, shaped, multi-objective, etc. Therefore, here 

we leverage TC to generate pseudo labels 𝕃. 

Given a data set 𝑋, initially, each sample is its own cluster. Given the number of samples 

contained in a cluster as the mass of the cluster, therefore, in the beginning, the mass of each 

cluster equals 1. The following rule is then applied to form connections between clusters: 

 → , 𝑖𝑓 𝑚𝑎𝑠𝑠 𝑚𝑎𝑠𝑠                            (6.4)         

where   denotes the j-th cluster,  denotes the 1-nearest cluster of  . 𝑚𝑎𝑠𝑠  

represents the mass of   (i.e, the number of samples  contained). Similarly, 𝑚𝑎𝑠𝑠  

is the mass of  . The symbol " → "  denotes a connection (i.e, merger) 𝐶   between  

and  . This process can be also defined in a graph G, 

𝐴 ,
1, 𝑖𝑓 𝑚𝑎𝑠𝑠 𝑚𝑎𝑠𝑠
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                            

                    (6.5)    

where A stands for the adjacency matrix of G. Then, new clusters can be obtained by 

calculating the connected components of the adjacency matrix A. At this point, one iteration 

has been completed. By repeating this merger process according to Eq. (6.5), all clusters will 

eventually merge into one cluster and form a hierarchical tree. Each layer of the hierarchical 

tree then can be regarded as a partition under a specific granularity. 

Each connection (i.e., merger) 𝐶  has two intuitive properties. One is the product of the 

mass of the two clusters it connects   

𝑀 𝑚𝑎𝑠𝑠 𝑚𝑎𝑠𝑠                              (6.6)         

The other is the square of the distance between the two clusters it connects 

                    𝐷 𝑑 ,                                        (6.7)          

Plotting all the connections on a two-dimensional graph of the two properties, called the 

decision graph. The decision graph helps to determine the abnormal connections, which have 
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relatively large 𝑀   and 𝐷  . Then, removing these abnormal connections to get the final 

reasonable partition. 

On the other hand, TC provides an automatic mechanism, named Torque Gap (TGap), 

to determine abnormal connections, eliminating the need to manually observe abnormal 

connections from the decision graph. The TGap is calculated by first calculating the torque 

𝜏  of all connections, where  

𝜏 𝑀 𝐷                                 (6.8) 

Then sorting all connections in descending order according to their corresponding torque 

values, and call it the torque sorted connections list (TSCL). The connection in TSCL and its 

torque are denoted as 𝐶  and 𝜏̀ , respectively. Abnormal connections must be the top several 

connections in the TSCL, because they have the largest torque values among all the 

connections. 

The 𝑇𝐺𝑎𝑝  between each connection along with its following connection in the TSCL 

is calculated next. The formula for computing 𝑇𝐺𝑎𝑝  is 

                                                      𝑇𝐺𝑎𝑝 𝜔
̀

̀
, 𝜏̀ 0                       (6.9) 

where 𝜔  is a weighted value that indicates the proportion of connections among the top j 

connections of TSCL that have relatively large 𝑀 , 𝐷 , and 𝜏  values.  

The process for defining 𝜔  is as follows: Eq. (6.4) will reveal many connections 𝐶  

throughout the entire clustering process and, as we know, each 𝐶  has two properties, 𝑀  

and 𝐷 . Therefore, the set of connections that have relatively large 𝑀 , 𝐷 , and 𝜏  values 

among all the connections (denoted as 𝐿𝑎𝑟𝑔𝑒_𝐶) can be defined as: 

      𝐿𝑎𝑟𝑔𝑒_𝐶 𝐶 | 𝜏 𝑚𝑒𝑎𝑛_𝜏 ∩ 𝑀 𝑚𝑒𝑎𝑛_𝑀 ∩ 𝐷 𝑚𝑒𝑎𝑛_𝐷       (6.10)         

where  𝑚𝑒𝑎𝑛_𝜏 is the mean value of all 𝜏 , 𝑚𝑒𝑎𝑛_𝑀  is the mean value of all 𝑀  , and 

𝑚𝑒𝑎𝑛_𝐷 is the mean value of all 𝐷 . 

𝑇𝑜𝑝_𝐶  is the set of the top j connections of TSCL, and can be defined as  

                                        𝑇𝑜𝑝_𝐶 𝐶 ,𝐶 , … ,𝐶                                  (6.11) 

Based on 𝐿𝑎𝑟𝑔𝑒_𝐶 and 𝑇𝑜𝑝_𝐶 , 𝜔  is defined as: 

                                        𝜔
_  ∩ _

| _ |
                                   (6.12) 
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The largest 𝑇𝐺𝑎𝑝  is denoted as 𝑇𝐺𝑎𝑝 , and the L connections at the top of the TSCL 

(i.e., 𝐶 ,𝐶 , … ,𝐶 ) are regarded as abnormal connections to be removed. The pseudo code 

of the torque clustering is shown as Algorithm 6.1. 
 

Algorithm 6.1: Algorithm of Torque Clustering (TC) 
1 Input: Data set 𝑋. 
2 Output: Clustering labels 𝕃. 
3 Initializing adjacency matrix A. 
4 Constructing cluster sets  (Initially, regard each sample as a cluster). 
5 while cluster sets  have more than two clusters do 
6 Searching the nearest cluster of  with higher mass according to the distance matrix of 𝑋 or via  

k-d tree. 
7 Updating A by Eqs. (6.4)-(6.5) (Using two nearest samples respectively from two clusters to represent these 

two clusters). 
8 Calculating 𝑀  and 𝐷  of 𝐶  by Eqs. (6.6)-(6.7). 
9 Updating cluster sets  by calculating the connected components of A. 
10 end 
11 Computing abnormal connections by Eqs. (6.8)-(6.12). 
12 Updating A by removing abnormal connections. 
13 Getting clustering labels 𝕃 by calculating the connected components of A. 

 
 

6.2.4 Almost ultrametric learning using TC pseudo labels (AUMLTC) 

Combining AUM and TC, we can obtain a pseudo label-based AUM space learning 

method, which we call AUMLTC. Given a data set 𝑋, we first use torque clustering (TC) to 

obtain the pseudo labels 𝕃 on 𝑋 and then leverage 𝕃 to convert the original metric space 

to the proposed AUM space. Since TC is an unsupervised and parameter-free clustering 

algorithm, the proposed AUMLTC framework remains parameter-free and unsupervised. The 

pseudocode of AUMLTC is shown in Algorithm 6.2. 

We further analyze the time complexity of AUMLTC in Algorithm 6.2. According to 

Chapter 3, the time complexity of TC is 𝑂 𝑛 , so the complexity of step 3 is also 𝑂 𝑛 . 

The complexity of steps 4-6 is 𝑂 𝑛  , 𝑂 𝑛  , and 𝑂 𝑛   respectively. The sum of the 

complexity of steps 7-8 is 𝑂 𝑛  . To sum up, the time complexity of AUMLTC is 

approximately 𝑂 𝑛 . In addition, if the nearest neighbor estimation algorithm such as the 

k-d tree is used when calculating the distance matrix, the sum of the complexity of step 3, 
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step 5, and steps 7-8 will be reduced to 𝑂 𝑛𝑙𝑜𝑔𝑛 . At this point, the time complexity of 

AUMLTC is approximately 𝑂 𝑛𝑙𝑜𝑔𝑛 . 

 
Algorithm 6.2: Algorithm of the proposed AUMLTC. 
1 Input: Data set 𝑋. 
2 Output: New distance matrix 𝐷𝑀 . 
3 Getting pseudo labels 𝕃 using Torque Clustering (i.e., Algorithm 6.1). 
4 Getting class (or cluster) sets 𝛤 , … ,  by 𝕃. 
5 Computing the original distance matrix of 𝑋, denoted as 𝐷𝑀, where 𝑑 𝑥,𝑦 ,𝑑 𝑥, 𝑧 ∈ 𝐷𝑀. 
6 Initializing a new distance matrix 𝐷𝑀 , where 𝑑 𝑥,𝑦 ,𝑑 𝑥, 𝑧 ∈ 𝐷𝑀 . 
7 For 𝑥~ℒ  𝑦, from any class of 𝛤, computing 𝑑 𝑥, 𝑦  by Eq. (6.1). 
8 For 𝑥 ≁ℒ 𝑧, from any two different classes of 𝛤 respectively, computing 𝑑 𝑥, 𝑧  by Eq. (6.2). 
9 Return 𝐷𝑀 . 

 

6.3 Experiments and results 

6.3.1 Data sets description 
Table 6.1. Statistics of the test data sets. 

Data sets Instances Dimensions Clusters 
FLAME 240 2 2 

Spectral-path 312 2 3 
Multi-objective 1500 2 6 

COIL-20 1440 16384 20 
UMIST 575 10304 20 

CMU-PIE 2856 1024 68 

In the experiment, we leveraged three synthetic data sets and three real-world data sets, 

including FLAME, Spectral-path, Multi-objective, UMIST, COIL-20, and CMU-PIE. 

1) FLAME [136]: This data set was designed to test fuzzy clustering by local approximation 

of membership. 

2) Spectral-path [137]: This data set was used to illustrate the performance of a path-based 

spectral clustering algorithm. 

3) Multi-objective [143]: This data set was exploited to test an improved multi-objective 

clustering algorithm. 

4) COIL-20 [160]: There are 1440 greyscale pictures of 20 different objects in this data set. 

For the original feature scenario, each image is downscaled to 32 by 32 pixels. 

5) UMIST [158]: There are 564 photographs of 20 people in this collection (mixed race, 

gender, and appearance). Each person is shown in a number of positions, ranging from 
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profile to frontal views. Each image has a 256-bit greyscale and a resolution of 

approximately 220 220 pixels. 

6) CMU-PIE [148]: This data set includes 2856 frontal-face images of 68 people, each with 

42 different illuminations. Each photograph was reduced to 32 32 pixels in size. Table 

6.1 contains the complete statistics for these data sets. 
 
 

6.3.2 Compared algorithms 

We processed the six data sets mentioned above with the proposed AUMLTC and 

several classic or recent unsupervised metric learning methods and then ran the K-means 

algorithm on these processed data sets. Note that K-means can be run directly on the distance 

matrix due to its duality [235]. The compared metric learning methods include PCA [116], t-

SNE [117], and UMAP [118]. UMAP is the latest method and can be used as an effective 

preprocessing step to enhance the performance of clustering. In addition, we included two 

metric learning-based clustering algorithms for comparison, i.e., spectral clustering (SC) [72] 

and subspace clustering (SSC) [84]. All experiments were evaluated in terms of the two 

commonly used external indices: normalized mutual information (NMI) [133] and accuracy 

(ACC). Due to the randomness of the K-means results, we took the average of 10 times as 

the final results. The experimental results are shown in Table 6.2 and Table 6.3. 

 

6.3.3 Results and analysis 

As Tables 6.2-6.3 show, the proposed AUMLTC outperformed all other metric learning 

methods. In particular, for the NMI score, the results of our AUMLTC were approximately 

11.2%, 20.3%, 7.1%, and 18.8% better than the second-best metric learning results on the 

FLAME, Multi-objective, COIL-20, and UMIST data sets, respectively. For the ACC score, 

the results of our AUMLTC were approximately 44.1% and 31% better than the second-best 

metric learning results on the Multi-objective and UMIST data sets, respectively. Compared 

to the original K-means results, AUMLTC greatly boosts its clustering performance. Besides, 
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in terms of the rank in Fig. 6.2, the next-best algorithm, SC, was two times plus higher than 

AUTCML in its ranking scores both on NMI and ACC. 

To more intuitively reflect the performance of AUMLTC, for the three synthetic data 

sets FLAME, Spectral-path, and Multi-objective, we showed the heatmaps of the original 

distance matrix and the new distance matrix learned by AUMLTC (see Fig. 6.3). In addition, 

we applied t-SNE to reduce the new distance matrix to 2D, which was compared with the 

original data distribution, as shown in Fig. 6.4. 
 
 

Table 6.2. Comparison of AUMLTC with other unsupervised metric learning methods, measured by NMI. 

 
Table 6.3. Comparison of AUMLTC with other unsupervised metric learning methods, measured by ACC. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Data sets Kmeans Kmeans+PCA Kmeans+t-SNE Kmeans+UMAP SC SSC Kmeans+AUTCML 

FLAME .4261 .4441 .4278 .8502 .8883 .1786 1 

Spectral-path .0001 .0001 .0057 .5512 1 .0023 1 

Multi-objective .5973 .5535 .6580 .7152 .7895 .3508 .9925 

COIL20 .7596 .7680 .8796 .8838 .8870 .8734 .9583 

UMIST .6434 .6538 .7434 .6989 .7025 .7321 .9310 

CMU-PIE .4131 .3995 .6313 .8512 .8518 .9964 1 

Data sets Kmeans Kmeans+PCA Kmeans+t-SNE Kmeans+UMAP SC SSC Kmeans+AUTCML 

FLAME .8425 .8454 .8154 .9750 .9833 .6292 1 

Spectral-path .3446 .3458 .3776 .7513 1 .3622 1 

Multi-objective .5574 .4899 .5529 .5030 .5053 .2727 .9980 

COIL20 .5706 .5977 .7558 .7592 .8240 .7306 .8489 

UMIST .4167 .4250 .5233 .4927 .4755 .5530 .8626 

CMU-PIE .1932 .1765 .3471 .6501 .7249 .9790 1 

 
Figure 6.2. Average rankings for unsupervised 
metric learning methods on all data sets. 
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6.4 Ablation study 

TC is an agglomerative clustering algorithm based on nearest neighbor statistics, and 

the performance of AUMLTC relies on the pseudo labels of TC. To illustrate this, in the 

AUMLTC framework, we replaced TC with other clustering algorithms based on nearest 

neighbor statistics and kept other components in the framework unchanged. These clustering 

algorithms include agglomerative clustering single-linkage (AC-S) [127], ward-linkage (AC-

W), graph degree-linkage (GDL) [62], FINCH [13], and SNNDPC [76]. Among them, 

FINCH and SNNDPC are the two latest ones. The generated new metric learning frameworks 

were named MLACS, MLACW, MLGDL, MLFINCH, and MLSNNDPC. We compared 

these frameworks with the proposed AUMLTC on the six data sets and still exploited NMI 

and ACC to evaluate the results. As Tables 6.4-6.5 show, AUMLTC still maintained the 

advantages. Therefore, we conclude that the pseudo labels from TC are more suitable for 

learning the proposed AUM space. In addition, we can also see the impact of the accuracy of 

the pseudo labels on the performance of the AUM space learning from the experimental 

results. In Chapter 3, we have demonstrated that the accuracy of the above clustering 

algorithms is not as good as TC. Therefore, if their relatively inaccurate pseudo labels are 

adopted, the performance of the AUM space learning will decrease accordingly. 

 
Table 6.4. Replace the pseudo labels of TC with those of other clustering algorithms, measured by NMI. 

Data sets MLACS MLACW MLFINCH MLGDL MLSNNDPC AUMLTC 
FLAME .0479 .3297 .1216 1 .8288 1 

Spectral-path 1 .0068 .1377 .4740 1 1 
Multi-objective .8341 .7229 .7812 .9906 .7304 .9925 

COIL20 .7415 .7601 .6702 .9418 .5576 .9583 
UMIST .6685 .6092 .6963 .7410 .6146 .9310 

CMU-PIE .9897 .5982 .5291 .9047 .3930 1 
 
 

Table 6.5. Replace the pseudo labels of TC with those of other clustering algorithms, measured by ACC. 
Data sets MLACS MLACW MLFINCH MLGDL MLSNNDPC AUMLTC 
FLAME .6458 .7208 .6038 1 .9708 1 

Spectral-path 1 .3750 .4019 .7340 1 1 
Multi-objective .7520 .7840 .6133 .9973 .7213 .9980 

COIL20 .3993 .5444 .4280 .8556 .3354 .8489 
UMIST .4261 .3826 .4452 .5600 .4226 .8626 

CMU-PIE .9496 .2272 .2738 .7850 .1499 1 
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6.5 Conclusion 

Compared with the previous metric learning algorithms, the proposed AUMLTC has the 

following advantages. First, unlike most existing metric learning algorithms, the AUMLTC 

is parameter-free; Second, the time complexity of most existing algorithms is 𝑂 𝑛  , 

however, the cost of AUMLTC can be reduced to 𝑂 𝑛𝑙𝑜𝑔𝑛 ; Finally, compared with existing 

algorithms, the AUMLTC generates a feature space that is more friendly to clustering. 

Overall, there is a certain positive correlation between data ultrametricity and data 

clusterability [232]. This study is inspired by this viewpoint. First, we propose a new metric 

called the almost ultrametric (AUM) and prove that under certain weak conditions, the 

proposed AUM will be a true ultrametric. Then, based on a parameter-free clustering 

algorithm, torque clustering (TC), we propose using the pseudo labels of TC to approximate 

ground truth labels to learn the AUM. This learning framework is called AUMLTC. Both 

comparison and ablation experiments demonstrate the superiority of the proposed AUMLTC. 
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(a) Original distance matrix of           (b) Original distance matrix of           (c) Original distance matrix of  
   FLAME data set                      Spectral-path data set                   Multi-objective data set  

                              
                            
 

 
 
 
 
 
 
 
 
 
 
 

 
(d) New distance matrix of              (e) New distance matrix of              (f) New distance matrix of  
   FLAME data set                      Spectral-path data set                   Multi-objective data set  

 
Figure 6.3. The visualization of the original distance matrix and the new distance matrix, on FLAME, Spectral-path, and 
Multi-objective data set, respectively. 
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(a) Original data distribution of         (b) Original data distribution of          (c) Original data distribution of  
   FLAME data set                     Spectral-path data set                   Multi-objective data set  

                              
                            
 

 
 
 
 
 
 
 
 
 

(d) New data distribution of            (e) New data distribution of             (f) New data distribution of  
   FLAME data set                     Spectral-path data set                   Multi-objective data set  

 
Figure 6.4. The visualization of the original data distribution and the new data distribution, on FLAME, Spectral-path, and 
Multi-objective data set, respectively. 
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Chapter 7. Conclusion and future work 

This chapter presents the conclusions of the entire research and discusses future 

research directions. 

 

7.1 Conclusion 

This research can be divided into four main stages: 

In stage one, to overcome various shortcomings in the previous clustering algorithms, 

we propose a brand-new autonomous clustering algorithm (Torque Clustering, TC) based on 

classical physics theory. The TC algorithm is parameter-free and can recognize various kinds 

of clusters and find the proper number of clusters and noise autonomously. Experiments on 

76 synthetic and real-world data sets show the enormous versatility of the proposed TC 

algorithm, which remarkably outperforms the best compared algorithm. In particular, when 

compared with 19 state-of-the-art algorithms, the average ranking of these algorithms is at 

least four multiplicative factors higher than that of TC over all data sets. Additionally, we 

also compare TC with the latest state-of-the-art deep clustering algorithms on several 

challenging image data sets. The proposed TC algorithm without any deep representation 

achieves better or similar performance compared to deep clustering algorithms on image 

clustering. 

In stage two, due to the good performance of the proposed TC, we exploit the clustering 

mechanism of TC as a backbone to propose a simple but efficient multi-view clustering 

framework: multi-view adjacency-constrained hierarchical clustering (MCHC). MCHC tries 

to solve two problems in existing multi-view clustering methods: a) parameter tuning and b) 

significant computational expense. Extensive tests on eight real-world data sets demonstrate 

that the proposed method outperforms the 10 current state-of-the-art methods. The average 

ranking of these algorithms is at least three multiplicative factors higher than that of MCHC 

over all data sets. 

In stage three, we also exploit the clustering mechanism of TC as a backbone to propose 

a particle swarm optimization (PSO)-based Multi-view Nearest Neighbor Clustering 
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(PMNNC) algorithm. Different from the gradient-based optimization methods used in most 

prior multi-view clustering algorithms, PMNNC leverages the PSO optimization algorithm 

to calculate the optimal view weights, which solves the problem in current methods: difficulty 

in finding globally optimal view weights. Extensive tests using seven real-world data sets 

demonstrate the supremacy of the proposed PMNNC over the 10 current state-of-the-art 

approaches. The average ranking of these algorithms is at least three multiplicative factors 

higher than that of PMNNC over all data sets. 

In stage four, we further apply the pseudo labels generated by TC to learn a new distance 

metric to help other algorithms improve performance in a parameter-free and unsupervised 

manner. We call this whole metric learning framework, Almost UltraMetric Learning using 

Torque Clustering's pseudo labels (AUMLTC). The comparison and ablation experiments 

tested on several data sets validate the supremacy of the proposed AUMLTC framework. The 

average ranking of prior algorithms is at least two multiplicative factors higher than that of 

AUMLTC over all data sets. 

First, this research promotes the development of clustering theory and proposes a brand-

new clustering algorithm (i.e., TC) that does not require any human intervention. Second, 

this research also overcomes the three problems in current multi-view clustering from 

different perspectives. Finally, this study also combines ultrametric space theory with pseudo 

labels from clustering to propose a new unsupervised and parameter-free metric learning 

method. 

 

7.2 Future work 

For Chapter 3, first, the proposed TC leverages a method such as single-linkage to 

measure the distance between clusters, which only considers the clusters' local structure. In 

future work, we will use other methods to compute the distance between clusters. Second, 

when determining the cluster halo, we will try to set different thresholds for different clusters, 

rather than relying on the global mean variable values, to make TC more robust to non-

uniform noise. Thirdly, considering that TC's performance on certain high-dimensional and 
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sparse data sets is not entirely satisfactory, future efforts will involve combining TC's pseudo 

labels with a deep neural network to develop representations better suited for TC. This 

procedure remains unsupervised, as the neural network is trained under the guidance of TC's 

pseudo labels. Fourth, in certain scenarios, data may be dispersed across multiple nodes, 

prompting us to consider extending TC into a distributed TC method in the future. 

Specifically, we could run TC independently and concurrently on each node, followed by 

further data compression for each node. After inter-node communication, we would perform 

the final clustering stage using TC on the compressed data at a hub once more. Lastly, taking 

into account that in certain situations, users might have specific preferences regarding 

clustering resolution, the necessity for two data samples to be in the same or different clusters, 

and the prior semantics of clusters, we plan to integrate certain decision rules and semi-

supervised learning techniques to evolve TC into an interactive, self-governing clustering 

approach in the future. 

For Chapters 4 and 5, the proposed MCHC and PMNNC, respectively, overcome some 

shortcomings in current multi-view clustering methods. For example, MCHC attempts to 

solve two problems in current multi-view clustering methods: a) parameter tuning and b) 

significant computational expense. PMNNC focuses on solving the third problem: c) 

difficulty in finding globally optimal view weights. Firstly, although both MCHC and 

PMNNC utilize TC's partial clustering mechanism, they focus on addressing different issues. 

This raises a new question: can we merge the advantages of MCHC and PMNNC to 

simultaneously tackle the three aforementioned problems? This will be a future research 

direction. Secondly, multi-view data may be distributed across various nodes, and adapting 

MCHC or PMNNC to this situation is another potential avenue for future research. One 

possible solution involves running MCHC or PMNNC in parallel on each node to further 

compress multi-view data. Once inter-node communication is complete, MCHC or PMNNC 

can be performed on a hub for the final clustering step. Lastly, in some cases, multi-view data 

may be presented as data streams. Extending MCHC and PMNNC into real-time multi-view 

clustering methods is another potential area of exploration. One possible approach includes 
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integrating specific decision rules to determine whether current clusters should be further 

merged or divided, and if necessary, updating the current clusters by continuously executing 

MCHC or PMNNC. 

For Chapter 6, the performance of the proposed AUMLTC relies on pseudo labels 

provided by TC. However, the performance of TC on some high-dimensional and sparse data 

sets is not particularly satisfactory. Therefore, in future work, we will try to obtain consensus 

pseudo labels from multiple clustering algorithms based on ensemble learning to further 

improve the performance of AUMLTC. 
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