
UTS THESIS

I

Advanced Clustering

by Jie Yang

Thesis submitted in fulfilment of the requirements for

the degree of Doctor of Philosophy

under the supervision of

Principal Supervisor: Prof. Chin-Teng Lin

Co-Supervisor: Dr. Yu-Kai Wang

University of Technology Sydney

Faculty of Engineering and Information Technology

May 2022

Page 1 of 1 Certificate of Original Authorship, last updated 07/07/2022

Certificate of Original Authorship

Required wording for the certificate of original authorship

CERTIFICATE OF ORIGINAL AUTHORSHIP

I, Jie Yang, declare that this thesis is submitted in fulfilment of the requirements for the award of the Doctoral
Degree, in the Faculty of Engineering and Information Technology at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise referenced or acknowledged. In addition, I certify that all
information sources and literature used are indicated in the thesis.

This document has not been submitted for qualifications at any other academic institution.
*If applicable, the above statement must be replaced with the collaborative doctoral degree statement (see
below).

*If applicable, the Indigenous Cultural and Intellectual Property (ICIP) statement must be added (see below).

This research is supported by the Australian Government Research Training Program.

Signature:

Date: 2/April/2023

Collaborative doctoral research degree statement

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as
part of the requirements for a degree at any other academic institution except as fully acknowledged within the
text. This thesis is the result of a Collaborative Doctoral Research Degree program with [insert collaborative
partner institution].

Indigenous Cultural and Intellectual Property (ICIP) statement

This thesis includes Indigenous Cultural and Intellectual Property (ICIP) belonging to [insert relevant language,
tribal or nation group(s) or communities], custodians or traditional owners. Where I have used ICIP, I have
followed the relevant protocols and consulted with appropriate Indigenous people/communities about its
inclusion in my thesis. ICIP rights are Indigenous heritage and will always remain with these groups. To use, adapt
or reference the ICIP contained in this work, you will need to consult with the relevant Indigenous groups and
follow cultural protocols.

Production Note:

Signature removed prior to publication.

UTS THESIS

III

Acknowledgement

I would like to express my heartfelt appreciation to my principal supervisor,

Professor CT Lin, for his unwavering guidance, encouragement, and support

throughout my Ph.D. journey. I am grateful for his generosity in allowing me to pursue

research topics that interest me. During my time with Professor CT Lin, I have gained

valuable insights and learned a great deal. I would also like to extend my thanks to my

co-supervisor, Dr. YK Wang, for his invaluable assistance, guidance, and mentorship

throughout my Ph.D. studies.

My deepest gratitude goes to the CIBCI Lab and its members, who have provided

me with various resources and selfless support during my research. I would like to

extend a special thank you to Xiaofei Wang, Jia Liu, Fred Chang, and Liang Ou for

their help and support in overcoming the challenges that I faced.

I also want to thank my friends at TechLab for the fun and memorable times we

shared together, and for their continued support in my academic journey. Furthermore,

I am grateful to all the friends I have made at UTS, who have provided various forms

of assistance and support.

I would like to acknowledge the financial support of the Australian Research

Council (ARC) under discovery grants DP180100656 and DP210101093. Additionally,

I would like to express my gratitude to the UTS International Research Scholarship for

covering my tuition fees.

My heartfelt appreciation goes to my parents, who have been a constant source of

love, support, and guidance. I am grateful for their unwavering encouragement and

understanding.

Finally, I would like to thank myself for my hard work and persistence, especially

during the challenging times caused by the COVID-19 pandemic. Despite the difficult

circumstances, I remained committed to my research and was able to complete this

project.

UTS THESIS

IV

Published and Under Review Papers Related to This Thesis

[1] J. Yang and C.-T. Lin, “Multi-View Adjacency-Constrained Hierarchical

Clustering”, IEEE Transactions on Emerging Topics in Computational Intelligence, Vol.

Early Access, pp. 1-13, 2022 [Chapter 4]

[2] J. Yang, Y.-K. Wang, X. Yao, and C.-T. Lin, “Adaptive Initialization Method for

K-Means Algorithm,” Frontiers in Artificial Intelligence, vol. 4, 2021 [Chapters 1-2]

[3] J. Yang and C.-T. Lin, “Multi-View Adjacency-Constrained Nearest Neighbor

Clustering (Student Abstract),” AAAI-2022, Vol. 36, No. 11, pp. 13097-13098, 2022

[Chapter 4]

[4] J. Yang and C.-T. Lin, “Autonomous clustering by fast find of mass and distance

peaks”, submitted to IEEE Transactions on Pattern Analysis and Machine Intelligence

(Major Revision) [Chapter 3]

[5] J. Yang and C.-T. Lin, “PSO-based Multi-View Nearest Neighbor Clustering”,

submitted to IEEE Computational Intelligence Magazine (Under Review) [Chapter 5]

[6] J. Yang and C.-T. Lin, “Enhanced Adjacency-constrained Hierarchical Clustering

using Fine-grained Pseudo labels”, submitted to IEEE Transactions on Emerging Topics

in Computational Intelligence (Under Review)

[7] J. Yang and C.-T. Lin, “Almost Ultrametric Learning using Pseudo Labels from

Clustering” (Draft) [Chapter 6]

[8] J. Yang and C.-T. Lin, “Improve Torque Clustering by optimizing linkage” (Draft)

[9] J. Yang and C.-T. Lin, “Distributed Torque Clustering” (Draft)

UTS THESIS

V

Abstract

Clustering is a classical technique in the field of data mining. It has played a key

role in domains such as biology, medicine, business, and climatology, and is employed

in nearly all scientific and social sciences. Despite the significance and pervasiveness

of clustering and the plethora of existing algorithms, the current clustering methods

suffer from a variety of drawbacks. For example, standard hierarchical clustering has

an excessive computational overhead and requires some manually determined

conditions. Partition clustering, such as K-means, demands that the number of clusters

must either be known or estimated in advance and cannot detect non-convex clusters of

varying size or density. Density clustering typically requires a suite of thresholds to be

set in advance, such as cut-off distance. Model-based clustering generally relies on prior

knowledge of many parameter settings, which is often very difficult to acquire in

practice. Classic grid clustering also depends on many user-provided parameters, such

as interval values to divide space and density thresholds.

On the other hand, in recent years, multi-view clustering has become a new

research hotspot. Essentially, multi-view clustering arises from the combination of

clustering problems and multi-view learning. Different from the various conventional

single-view clustering methods mentioned above, as an extension of single-view

clustering, multi-view clustering is used to handle multi-view data gathered from

numerous feature collectors or collected from various sources in various domains.

However, most current multi-view clustering approaches suffer from the following

three problems: a) parameter tuning, b) significant computational cost, and c) difficulty

in finding globally optimal view weights.

To solve the above problems, this thesis first proposes a brand-new efficient

parameter-free autonomous clustering algorithm called Torque Clustering (TC). The

proposed TC overcomes almost all the shortcomings in previous clustering methods.

Furthermore, considering the good performance of the proposed TC, this thesis extends

TC to two multi-view clustering algorithms, containing multi-view adjacency-

constrained hierarchical clustering (MCHC) and particle swarm optimization (PSO)-

based multi-view nearest neighbor clustering (PMNNC). MCHC tries to solve two

problems in current multi-view clustering methods: a) parameter tuning and b)

UTS THESIS

VI

significant computational cost. PMNNC focuses on solving the third problem: c)

difficulty in finding globally optimal view weights. Finally, we further apply the pseudo

labels generated by TC to propose a new metric learning framework, named almost

ultrametric learning using pseudo labels of torque clustering (AUMLTC), which can

help other algorithms improve performance in a parameter-free and unsupervised

manner.

This Ph.D. thesis contains seven chapters. Chapter 1 introduces the background,

objectives, scope, organization, and contributions of the thesis. Chapter 2 presents the

literature review of the research. Chapter 3 proposes a new parameter-free autonomous

clustering, i.e., TC. Chapter 4 exploits the partial mechanism of TC in Chapter 3 as a

backbone to propose a new parameter-free multi-view clustering with low

computational overhead, i.e., MCHC. Chapter 5 also exploits the partial mechanism of

TC in Chapter 3 as a backbone to propose a novel multi-view clustering based on an

evolutionary algorithm, i.e., PMNNC. Chapter 6 leverages the pseudo labels of TC in

Chapter 3 to propose a new metric learning framework, i.e., AUMLTC. Chapter 7

includes an overview of the thesis's contents and some suggestions for future works.

Keywords: Clustering, Parameter-free, Multi-view Clustering, Autonomous, Metric

Learning

UTS THESIS

VII

Contents
Abstract………………………………………………………………………………………………….Ⅴ
Chapter 1. Introduction .. 1

1.1 Background .. 1
1.2 Insights and our solutions .. 4
1.3 Research objectives .. 5
1.4 Research scope ... 6
1.5 Thesis overview ... 7
1.6 Key contributions ... 8

Chapter 2. Literature review .. 11
2.1 Clustering ... 11

2.1.1 Hierarchical clustering .. 11
2.1.2 Partition-based clustering .. 14
2.1.3 Density-based clustering ... 16
2.1.4 Model-based clustering ... 18
2.1.5 Grid-based clustering .. 19

2.2 Multi-view clustering .. 21
2.2.1 Multi-view spectral clustering .. 21
2.2.2 Multi-view subspace clustering .. 22
2.2.3 Other multi-view clustering... 22

2.3 Distance metric learning ... 23
2.3.1 Supervised metric learning .. 24
2.3.2 Semi-supervised metric learning ... 24
2.3.3 Unsupervised metric learning ... 25

2.4 Summary .. 26
Chapter 3. Torque Clustering: Autonomous clustering by fast find of mass and distance peaks ... 27

3.1 Introduction ... 27
3.2 Proposed method ... 29

3.2.1 Define clusters and form connections between them .. 29
3.2.2 Define two properties of each connection to construct the decision graph 30
3.2.3 Define the torque of each connection and sort the connections in descending order
 ... 34
3.2.4 Define torque gap and find the largest gap to determine abnormal connections 35
3.2.5 Define halo connections to determine the noise .. 36
3.2.6 Complexity analysis ... 37
3.2.7 Algorithm analysis .. 39

3.3 Experiments and results .. 39
3.3.1 Evaluation on nine synthetic data sets ... 40
3.3.2 Evaluation on 11 real-world data sets .. 42
3.3.3 Results and analysis ... 45
3.3.4 Runtime .. 48
3.3.5 Further evaluation on 56 data sets with peculiar characteristics 49
3.3.6 Comparison to deep clustering algorithms on challenging image data sets 49

3.4 Discussion ... 50

UTS THESIS

VIII

3.4.1 Differences between TC and other hierarchical clustering algorithms 50
3.4.2 Differences between TC and density peak clustering algorithms 51
3.4.3 Differences between TC and subspace clustering algorithms .. 52
3.4.4 Potential limitations of TC ... 52

3.5 Conclusion .. 52
3.6 Experimental details and more results ... 54

3.6.1 Experimental details .. 58
3.6.2 Further evaluation on additional 56 data sets with peculiar characteristics 63
3.6.3 Robustness guarantees for the proposed TC ... 71

Chapter 4. Multi-view adjacency-constrained hierarchical clustering .. 74
4.1 Introduction ... 74
4.2 Proposed method ... 76

4.2.1 Fusion distance matrices with extreme weights (FDEW) .. 76
4.2.2 Adjacency-constrained nearest neighbor clustering (CNNC) ... 78
4.2.3 Internal evaluation index based on Rawls' max-min criterion (MMI) 81
4.2.4 Algorithm of MCHC and MCHC-PF .. 82

4.3 Experiments and results .. 86
4.3.1 Data sets description .. 86
4.3.2 Compared algorithms .. 87
4.3.3 Results and analysis ... 88
4.3.4 Runtime .. 90

4.4 Ablation study ... 91
4.4.1 Impact of fusion distance matrices with extreme weights (FDEW) 91
4.4.2 Impact of adjacency-constrained nearest neighbor clustering (CNNC) 92
4.4.3 Impact of internal evaluation index based on Rawls' max-min criterion (MMI) 94

4.5 Discussion ... 94
4.6 Conclusion .. 96

Chapter 5. PSO-based multi-view nearest neighbor clustering .. 97
5.1 Introduction ... 97
5.2 Proposed Method ... 98

5.2.1 Adjacency-constrained nearest neighbor clustering (CNNC) ... 98
5.2.2 Particle swarm optimization (PSO) .. 100
5.2.3 Fitness function based on a novel internal validity index: minimum spanning tree-
based Dunn’s index (MSTDI) ... 101
5.2.4 PSO-based multi-view nearest neighbor clustering .. 102

5.3 Experiment and results .. 104
5.3.1 Data sets description .. 104
5.3.2 Compared algorithms .. 105
5.3.3 Results and analysis ... 106

5.4 Ablation study ... 109
5.4.1 Impact of adjacency-constrained nearest neighbor clustering (CNNC) 109
5.4.2 Impact of minimum spanning tree-based Dunn’s index (MSTDI) 109
5.4.3 Impact of the two hyperparameters ... 110

5.5 Conclusion .. 111
Chapter 6. Almost ultrametric learning using pseudo labels from clustering 112

UTS THESIS

IX

6.1 Introduction ... 112
6.2 Proposed Method ... 113

6.2.1 Metric space and ultrametric space .. 113
6.2.2 Convert metric space to the proposed almost ultrametric (AUM) space 114
6.2.3 Exploit pseudo labels of torque clustering to approximate ground truth labels 116
6.2.4 Almost ultrametric learning using TC pseudo labels (AUMLTC) 119

6.3 Experiments and results .. 120
6.3.1 Data sets description .. 120
6.3.2 Compared algorithms .. 121
6.3.3 Results and analysis ... 121

6.4 Ablation study ... 123
6.5 Conclusion .. 124

Chapter 7. Conclusion and future work .. 127
7.1 Conclusion .. 127
7.2 Future work ... 128

Bibliography .. 130

UTS THESIS

1

Chapter 1. Introduction

1.1 Background

Clustering is a classical and well-known algorithm in the field of unsupervised data

mining. It has been instrumental in domains such as biology, medicine, business, and

climatology, and is employed in nearly all scientific and social sciences [1]. For example, in

the commercial field, Horng-Jinh Chang et al. introduced a clustering analysis-based model

that predicts the buying behavior of prospective customers [2]. In the biology field, clustering

is of central importance for the analysis of genetic data, as it is used to identify putative cell

types [3]. In addition, clustering can also be applied to image segmentation, object or

character recognition [4], [5], data reduction [6], [7], and representation learning [8].

From the perspective of clustering principles, the clustering algorithm mainly includes

hierarchical algorithms, partition-based algorithms, density-based algorithms, model-based

algorithms, and grid-based algorithms [9]. However, existing clustering algorithms suffer

from various inherent shortcomings.

With a typical time cost of 𝑂 𝑛 , standard hierarchical clustering is computationally

expensive; hence, large-scale data sets are not suited for these techniques. Furthermore,

stopping the clustering process requires manually determined conditions, such as “Stop at K

number of clusters”. Some of the newer algorithms circumvent these shortcomings by either

using a fast approximate nearest neighbor method to accelerate the clustering process [10]–

[13] or by pruning the cluster trees to determine the correct cluster number [14], [15].

Partition clustering algorithms like K-means [16] require either prior knowledge or

estimation of the number of clusters. Additionally, these algorithms cannot detect clusters

that are not convex in shape and have varying sizes or densities, and most of them are highly

sensitive to noise, outliers, and getting the initialization phase “right”. Improvements over

these algorithms include the X-means clustering [17], which is able to predict the

approximate number of clusters automatically, and kernel K-means and its variant, spectral

clustering, which solve the non-convex problem [18], [19]. Further methods address the

UTS THESIS

2

initialization problem [20], [21].

In the past, density clustering typically required a suite of thresholds to be set in

advance – for example, the cut-off radius distance used to calculate the density of data points,

the defined cluster needs to contain at least how many points, and so on. Today’s density-

based algorithms employ a variety of tricks and techniques to depend less on these thresholds

[22]–[30]. For example, Liang et al. [24] proposed the 3DC strategy based clustering that can

automatically identify the optimal number of clusters. Du et al. [30] introduced k nearest

neighbors (KNN) and principal component analysis (PCA) into density peak clustering to

predict the number of clusters with greater precision and achieve better results on high-

dimensional data sets.

Model-based clustering generally relies on prior knowledge of many parameter settings,

such as the distribution of each cluster, even though this information is often very difficult to

acquire in practice. Hence, solutions to alleviate this disadvantage have also emerged [31]–

[33]. For example, Scrucca, L. et al. [31] proposed an enhanced model-based clustering based

on data transformations, which can lead to improved model fitting and more accurate

clustering results. O’Hagan, A. et al. [32] proposed the Bayesian initialization averaging

method to generate high-quality initial parameter settings for the expectation–maximization

algorithm.

Last, classic grid clustering also depends on many user-provided parameters, such as

interval values to divide space and density thresholds, and most algorithms are not suitable

for high-dimensional data sets. Many variant algorithms have been proposed to solve these

problems [34]–[36]. For example, Chen, J. et al. [34] proposed a new grid-based clustering

algorithm for mixed data streams that can automatically determine the number of clusters,

their centers, and radii.

On the other hand, in the past few years, multi-view clustering has become a new

research filed. Essentially, multi-view clustering arises from the combination of clustering

problems and multi-view learning [37]. Different from the various conventional single-view

clustering methods mentioned above, as an extension of single-view clustering, multi-view

UTS THESIS

3

clustering can process multi-view data that are gathered from diverse sources in different

domains or acquired through various feature extraction methods [38]. For instance, multiple

heterogeneous features can be used to characterize an image, such as scale-invariant feature

transform (SIFT) descriptors [39], GIST descriptors [40], local binary patterns (LBP) [41],

etc. Multiple compatible and complementary features are combined in multi-view clustering

algorithms to enhance clustering performance.

Almost all multi-view clustering methods exploit single-view clustering methods as the

backbones to learn the complementary representation of multiple views to enhance clustering

accuracy. Multi-view clustering, for example, consists mostly of multi-view subspace

clustering and multi-view spectral clustering [42], which leverage single-view subspace

clustering and single-view spectral clustering as backbones, respectively. Despite the

importance of multi-view clustering and the abundance of existing algorithms in previous

decades, most contemporary approaches in multi-view clustering generally have the

following three issues: a) parameter tuning, b) high computational cost, and c) difficulty in

finding globally optimal view weights. For most multi-view clustering algorithms, e.g.,

multi-view spectral clustering algorithms [43]–[46] and multi-view subspace clustering

algorithms [47]–[50], the ultimate performance of the models is significantly influenced by

adjusting parameters. For example, Zong et al. proposed a multi-view spectral clustering

algorithm based on distinct view weights, which has two parameters that need to be set to

assign an optimal weight to each view [46]. Zheng et al. proposed a constrained bilinear

factorization multi-view subspace clustering algorithm, which also has two prior

information-related parameters to tune to obtain competitive performance [49]. For current

multi-view clustering, prior knowledge, such as noise level and label information, is required

to guide the specific parameter choice steps, which is troublesome. Furthermore, the

computational overhead of most prior multi-view clustering algorithms is also high; multi-

view clustering based on subspace learning and spectral representation learning, for example,

both have time complexities of 𝑂 𝑛 . Finally, many multi-view clustering algorithms

employ gradient-based optimization methods to find optimal view weights. However, one of

UTS THESIS

4

the limitations of gradient-based methods is the existence of numerous local optima, which

can result in solutions where achieving global optimality is challenging [51]. For example,

Erlin Pan et al. proposed a multi-view contrastive graph clustering algorithm, which exploits

the gradient-based method to learn a consensus graph shared by all views [52]. Salima

Ouadfel et al. suggested a weighted multi-view clustering algorithm that utilizes a multi-

objective gradient optimizer approach, which identifies an appropriate consensus clustering

that takes into account both the disparity between views and the significance of

characteristics in each view [53]. Most multi-view clustering algorithms have one or more of

the above three shortcomings. These three shortcomings also greatly hinder the application

of multi-view clustering in practical scenarios.

1.2 Insights and our solutions

As stated in the background section, from the perspective of clustering principles, a good

clustering solution would therefore be able to recognize various types of clusters with

different shapes, sizes, or densities; be parameter-free; not depend on a priori knowledge;

have a relatively low computational overhead and a reasonable time complexity; be robust to

noise and outliers; not require initialization; be able to determine the number of clusters

automatically; and preclude the need for a manually specified stopping condition. Therefore,

this thesis first proposes a parameter-free autonomous clustering algorithm with all the above

advantages: Torque Clustering (TC). Note that, like most previous clustering algorithms, TC

is a single-view clustering algorithm.

As an extension of single-view clustering, we have discussed the three main limitations

of the majority of current multi-view clustering techniques in the background section: a)

parameter choice, b) high computational cost, and c) difficulty in finding globally optimal

view weights. Considering that the abovementioned proposed TC has good clustering

performance, does not need to be adjusted with parameters, and has a low computational cost,

it is therefore natural that we further extend TC to two multi-view clustering algorithms,

including multi-view adjacency-constrained hierarchical clustering (MCHC) and particle

UTS THESIS

5

swarm optimization (PSO)-based multi-view nearest neighbor clustering (PMNNC). The

MCHC attempts to solve two problems in current multi-view clustering methods: a)

parameter tuning and b) significant computational expense. PMNNC focuses on solving the

third problem: c) difficulty in finding globally optimal view weights.

Thus far, this thesis has proposed three clustering algorithms, including TC, MCHC,

and PMNNC. The clustering algorithms proposed in this thesis can be used in various

scenarios. For example, these three clustering algorithms are exploited to process data sets in

various fields during our experimental study, including image recognition, biology, medicine,

physics, astronomy, etc. In addition, due to the superior performance of the proposed TC, at

the end of this thesis, we further apply the pseudo labels generated by TC to learn a new

distance metric to help other algorithms improve performance in a parameter-free and

unsupervised manner.

1.3 Research objectives

The following are the thesis's key research objectives.

i. To propose a brand-new parameter-free autonomous clustering algorithm

Despite the importance and ubiquity of clustering and the plethora of existing algorithms, the

current clustering methods suffer from a variety of drawbacks. For example, almost all

clustering algorithms need predetermined selection of the desired number of clusters. The

majority of partition-based clustering approaches cannot identify clusters that are non-convex

and have varying sizes or densities. Conventional hierarchical clustering has high

computational overhead. To achieve this objective, we propose a novel autonomous

clustering algorithm called Torque Clustering (TC). The proposed TC overcomes almost all

the shortcomings in previous clustering methods.

ii. To propose a new parameter-free multi-view clustering with low computational

overhead

Most currently available multi-view clustering algorithms have issues with computational

complexity and parameter tuning. Multi-view clustering that is based on subspace and

UTS THESIS

6

spectral representation, for example, both have time complexities of 𝑂 𝑛 . In this objective,

exploiting partial mechanism of TC in objective 1 as a backbone, we propose a new

parameter-free multi-view clustering with little computing expense, named multi-view

adjacency-constrained hierarchical clustering (MCHC).

iii. To propose a novel multi-view clustering combined an evolutionary algorithm

Many existing multi-view clustering algorithms employ gradient-based optimization

methods to find optimal view weights. However, these methods may become trapped in a

local minimum, resulting in poor performance. In contrast, evolutionary optimization

algorithms, such as particle swarm optimization (PSO) [236], are more likely to reach the

global optimum [54], [55]. In this objective, exploiting partial mechanism of TC in objective

1 as a backbone, a new multi-view clustering has been presented, named PSO-based multi-

view nearest neighbor clustering (PMNNC).

iv. To apply pseudo labels of clustering to metric learning

The application range of clustering is very broad. In previous studies, clustering can also be

applied to representation learning [8] or metric learning [56]. In this objective, exploiting TC

in objective 1 as a backbone, we propose a new metric learning framework, named almost

ultrametric learning using pseudo labels of torque clustering (AUMLTC).

1.4 Research scope

Clustering is a very classic machine learning or data mining paradigm. The main goal

of this thesis is to propose a relatively general clustering algorithm (i.e., TC) to meet the

needs of users or researchers in most cases. In addition, as a more in-depth study, we also

leverage TC or its clustering mechanism as the backbone and extend it into two new multi-

view clustering algorithms to solve related problems in the field of multi-view clustering. In

addition, we also combine TC's pseudo labels and the concept of ultrametric, build a bridge

between TC and metric learning, and propose a new metric learning framework. Therefore,

UTS THESIS

7

this thesis includes the related research and discussion on clustering, multi-view clustering,

metric learning based on pseudo labels of clustering, and other topics. In fact, it is not difficult

to further extend or improve TC. For example, following extending TC to the field of multi-

view clustering, researchers can also consider extending TC to deep clustering, distributed

clustering, semi-supervised clustering, and other related fields. Due to space limitations, this

thesis doesn't include other extension content.

1.5 Thesis overview

The thesis is organized as follows:

 Chapter 1: This chapter presents the background, objectives, scope, organization, and

contributions of the thesis.

 Chapter 2: The research literature review is presented in this chapter.

 Chapter 3: This chapter proposes a new parameter-free autonomous clustering, i.e., TC.

 Chapter 4: This chapter exploits the partial mechanism of TC in Chapter 3 as a backbone

to propose a new parameter-free multi-view clustering with low computational overhead,

i.e., MCHC.

 Chapter 5: This chapter also exploits the partial mechanism of TC in Chapter 3 as a

backbone to propose a new multi-view clustering based on an evolutionary algorithm,

i.e., PMNNC.

 Chapter 6: This chapter leverages the pseudo labels of TC in Chapter 3 to propose a new

metric learning framework, i.e., AUMLTC.

 Chapter 7: The final chapter contains an overview of the thesis's contents and

contributions. There are also suggestions for future works.

Fig. 1.1 shows the relationship between chapters. We can see that Chapters 4-6 can be

regarded as extensions or applications of Chapter 3. Both Chapter 4 and Chapter 5 inherit the

partial clustering mechanism of TC introduced in Chapter 3; Chapter 6 adopts the pseudo

labels of TC in Chapter 3 to perform metric learning.

Since this thesis is organized by the compilation of papers (Chapters) and each paper

UTS THESIS

8

(Chapter) has a different focus, to ensure that each chapter is self-contained, there may be

some repetitions between them, such as introduction, methodology, data sets, etc. In addition,

the expression of TC or its mechanism in each paper (Chapter) will be different. For example,

in Chapter 4 and Chapter 5, the partial clustering mechanism of TC is reformulated as

adjacency-constrained nearest neighbor clustering (CNNC).

Figure 1.1. The relationship between Chapters.

1.6 Key contributions

In Chapter 3, we propose a brand-new clustering algorithm (Torque Clustering, TC)

derived from the natural idea that a cluster and its nearest cluster with higher mass ought to

be merged into one cluster unless they both have relatively large masses and the distance

between them is also relatively large. The finding of mass and distance peaks reveals the

mergers that do not conform to the rule and should be removed. The TC algorithm is

parameter-free and harnesses this idea to recognize any cluster and find the proper number

of clusters and noise autonomously. The performance of the proposed TC algorithm was

evaluated on 76 synthetic and real-world data sets, demonstrating its remarkable versatility

and superiority over the top competing algorithm. Additionally, we also compare it with the

latest state-of-the-art deep clustering algorithms on several challenging image data sets. The

proposed TC algorithm without any deep representation achieves better or close performance

compared to deep clustering algorithms on image clustering.

UTS THESIS

9

In Chapter 4, we propose a simple but efficient framework: Multi-view adjacency-

Constrained Hierarchical Clustering (MCHC). Specifically, MCHC mainly consists of three

parts: the Fusion Distance matrices with Extreme Weights (FDEW); adjacency-Constrained

Nearest Neighbor Clustering (CNNC); and the internal evaluation Index based on Rawls'

Max-Min criterion (MMI). FDEW aims to learn a fusion distance matrix set, which uses both

consensus information among multiple views and the information from each individual view.

CNNC is utilized to generate multiple partitions based on FDEW, and MMI is designed for

choosing the best one from the multiple partitions. In addition, we propose a parameter-free

version of MCHC (MCHC-PF). Without any parameter selection, MCHC-PF can give

partitions at different granularity levels with a low time complexity. Comprehensive

evaluations on eight real-world data sets indicate that the proposed MCHC (-PF) approach

outperforms the 10 most advanced existing methods.

In Chapter 5, we propose a particle swarm optimization (PSO)-based Multi-view

Nearest Neighbor Clustering (PMNNC) algorithm. Different from previous spectral (or

subspace)-based multi-view clustering, we leverage adjacency-constrained nearest neighbor

clustering (CNNC) to enhance the clustering performance on fusion data from multiple views.

Furthermore, we propose a new fitness function based on the internal validity index to help

learn parameters more accurately. Ultimately, we integrate PSO and CNNC to acquire a

fusion distance matrix from multiple views, which enhances the clustering outcomes.

Comprehensive evaluations using seven real-world data sets illustrate the advantages of the

proposed PMNNC over the top 10 most advanced existing techniques.

In Chapter 6, we first introduce the difference between metric space and ultrametric

space. Then, we propose a novel metric called Almost UltraMetric (AUM) and prove that

under weak conditions, it will be a true ultrametric. Since the learning of the proposed AUM

requires the guidance of ground truth labels, we further propose using pseudo labels of TC to

approximate ground truth labels, thus making the learning process completely unsupervised.

We call this whole metric learning framework Almost UltraMetric Learning using Torque

Clustering's pseudo labels (AUMLTC). It is worth mentioning that, unlike most previous

UTS THESIS

10

methods, the proposed AUMLTC is unsupervised and parameter-free. The proposed

framework's superiority is demonstrated by comparison and ablation experiments conducted

on multiple data sets.

UTS THESIS

11

Chapter 2. Literature review

2.1 Clustering

Clustering refers to the procedure of dividing a population or a data set into numerous

groups based on their similarities, such that the data points within the same group exhibit

greater similarities than those in other groups. In other words, the goal is to sort groups with

similar characteristics into clusters. The clustering algorithms primarily comprise

hierarchical algorithms, partition-based algorithms, density-based algorithms, model-based

algorithms, and grid-based algorithms [9].

2.1.1 Hierarchical clustering

Clusters can be created using hierarchical clustering algorithms by iteratively

partitioning patterns using one of two strategies: top-down or bottom-up. There are two types

of hierarchical clustering: agglomerative and divisive [9]. The bottom-up technique is used

in agglomerative clustering to create clusters by combining small individual clusters to form

larger and more complex clusters until particular termination conditions are met. The top-

down technique is used in divisive hierarchical clustering to obtain clusters by breaking up

clusters containing atomic objects into smaller clusters until particular termination

requirements are met. Dendrograms are commonly formed using hierarchical approaches, as

seen in Fig. 2.1.

Figure 2.1. Dendrogram of hierarchical clustering [9].

UTS THESIS

12

The steps of agglomerative clustering can be condensed as follows [9].

1. Make a separate cluster for each point

2. Continue the step 3 until the clustering meets the desired level of satisfaction

3. Fuse the pair of clusters that have the smallest distance between them

4. End

The steps of divisive clustering can be condensed as follows [9].

1. Make a single big cluster with all of the points

2. Continue the step 3 until the clustering meets the desired level of satisfaction

3. Sever the cluster that results in the formation of two sub-clusters with the highest inter-

cluster distance

4. End

2.1.1.1 Linkage-based hierarchical clustering algorithms

Hierarchical clustering algorithms can be divided into different types based on various

measures of inter-cluster distance [9].

1) Single-linkage

The single-linkage method defines the distance between two clusters as the minimum

distance between any sample in one cluster and any sample in the other cluster [9] [57]. The

following is the distance between clusters A and B:
𝑑 𝐴,𝐵 min

∈ , ∈
𝑑 𝑎, 𝑏 (2.1)

2) Complete-linkage

In the complete-linkage method, the distance between two clusters is defined as the

maximum distance between any point in one cluster and any point in the other cluster [9]

[58]. The following is the distance between clusters A and B:
 𝑑 𝐴,𝐵 max

∈ , ∈
𝑑 𝑎, 𝑏 (2.2)

3) Average-linkage

The average-linkage method defines the distance between two clusters as the average

distance between any sample in one cluster and any sample in the other cluster [9] [59]. The

UTS THESIS

13

following is the distance between clusters A and B:

𝑑 𝐴,𝐵
| || |

∑ ∑ 𝑑 𝑎, 𝑏∈∈ (2.3)

4) Other linkages

In previous studies, various other methods have been proposed to define the distance

between clusters in hierarchical clustering. For example, Joe H. Ward, Jr. proposed the ward-

linkage algorithm [60]. Ward proposed a general agglomerative hierarchical clustering

process in which the optimal value of an objective function is used to determine which pair

of clusters to merge at each phase. "Any function that reflects the investigator's purpose"

could be this objective function [60]. Michael B. Eisen et al. [61] proposed the centroid-

linkage method to analyze genome-wide expression data from DNA microarrays. The

distance between two clusters in the centroid method is the distance between the clusters' two

mean vectors, and the process combines the two clusters with the least centroid distance at

each stage. Wei Zhang et al. proposed the graph degree linkage method for high-dimensional

data sets, which investigates the functions of indegree and outdegree, two important concepts

in graph theory, in the context of clustering [62].

2.1.1.2 Other hierarchical clustering algorithms

Conventional linkage-based hierarchical clustering has some drawbacks. For example,

standard hierarchical clustering requires significant computational resources and has a typical

time complexity of 𝑂 𝑛 ; hence, large-scale data sets are not suited for these techniques.

Furthermore, stopping the clustering process requires some manually determined condition,

such as “Stop at K number of clusters”. Finally, noise and outliers are problematic for most

traditional hierarchical clustering techniques [63]. Some of the newer algorithms circumvent

these shortcomings by either using a fast approximate nearest neighbor method to accelerate

the clustering process [10]–[13] or by pruning the cluster trees to estimate the proper number

of clusters [14], [15]. For example, Manoranjan Dash et al. utilized the "90-10 rule" to

decrease the computational consumption of traditional hierarchical clustering significantly

[11]. Hisashi Koga et al. utilized the locality-sensitive hashing algorithm, which is a fast

UTS THESIS

14

search algorithm for the nearest neighbor of each point, to reduce the computational cost of

the single-linkage method by quickly identifying nearby clusters to be connected [12]. M.

Saquib Sarfraz et al. leveraged the first neighbor relations to make the time complexity of

conventional hierarchical clustering 𝑂 𝑛𝑙𝑜𝑔𝑛 [13]. Kamalika Chaudhuri et al. proposed a

robust single-linkage method and a density-based method to predict the correct number of

clusters by pruning the cluster trees [15]. In addition, some studies have focused on proposing

robust hierarchical clustering algorithms [63], [64]. For example, Maria-Florina Balcan et al.

introduced and evaluated a novel and robust algorithm for bottom-up agglomerative

clustering procedures, which outperformed traditional agglomerative algorithms [8].

2.1.2 Partition-based clustering

Partition-based clustering generally assigns all samples from data to K clusters by

optimizing a specific criterion function [65]. An often-used optimization criterion is the total

distance between each data sample and its corresponding cluster centroid. K-means [16],

PAM [66], CLARA [66], CLARANS [67], fuzzy c-means [68], and other algorithms [69]

have been researched in this category.

2.1.2.1 K-means clustering algorithm

The K-means algorithm [16] is a well-tested, and simple partition-based clustering

algorithm that is commonly used to tackle clustering problems. A user-defined number of

clusters, K, needs to be set in advance to partition the given data set in this technique. The

next key step is to set a centroid for each cluster respectively, with a total of K centroids. The

optimization function J of K-means is:

𝑴𝒊𝒏 𝐽 ∑ ∑ 𝑥 𝑐 (2.4)

where 𝑥 𝑐 denotes the distance between the cluster centroid 𝑐 and a data point

𝑥 . The flow diagram of the K-means algorithm is shown in Figure 2.2.

UTS THESIS

15

Figure 2.2. Flow diagram of the K-means algorithm [9].

2.1.2.2 Other partition-based clustering algorithms

Similar to the K-means algorithm, in general, most partition clustering algorithms

demand that the number of clusters must either be known or estimated in advance.

Furthermore, these algorithms are incapable of identifying clusters that have irregular shapes

and differ in size or density, and most of them are highly sensitive to noise, outliers, and

getting the initialization phase “right”. Therefore, previous studies have proposed many

improved partition-based clustering algorithms. For example, Dan Pelleg et al. proposed the

X-means clustering algorithm, which leverages the Bayesian information criterion (BIC) and

the Akaike information criterion (AIC) to estimate the optimal number of clusters [17].

Argyris Kalogeratos et al. proposed the dip-means algorithm, which exploits the dip-dist

criterion to estimate the correct number of clusters [70]. Grigorios Tzortzis et al. proposed

the global kernel K-means clustering algorithm to solve the non-convex problem in the

conventional K-means algorithm [71]. Andrew Y. Ng et al. combined the K-means algorithm

and graph partitioning to propose the spectral clustering algorithm, which solves the non-

convex problem and noise robustness problem [72]. David Arthur et al. presented the K-

means++ clustering algorithm to solve the initialization issue in the original K-means

algorithm, which is ensured to produce a solution that is competitive with the optimal K-

means solution within 𝑂 log 𝑘 bounds [20]. Jie Yang et al. proposed the hybrid distance

UTS THESIS

16

model combining Euclidean distance and density to solve the initialization problem, which

makes the K-means algorithm achieve better performance [21].

2.1.3 Density-based clustering

The main idea of density-based clustering is to find the density of a region [73]. Density-

based clustering algorithms can discover clusters at various levels of granularity using proper

noise reduction. The density concept within these algorithms allows compact sections in the

data space to be separated from noise. Clusters are detected in density-based clustering as

places with a higher density than the rest of the data space. Density-based clustering aids in

the detection of arbitrary form clusters. Many density-based clustering approaches have been

presented throughout the previous two decades. These methods are designed to find clusters

of densities that are reasonably uniform across the data space. The most representative

density-based clustering algorithms include density-based spatial clustering of applications

with noise (DBSCAN) [74], density peak clustering (DPC) [75], and their variants.

2.1.3.1 Density peak clustering (DPC) algorithm

In 2014, the DPC algorithm is presented by Rodriguez et al. in Science [75]. DPC is a

relatively new density-based technique for clustering. This method is based on the idea that

cluster centers are surrounded by neighbors with lower local densities and are separated from

any points with higher densities by a greater distance. Each data point i is described by two

important metrics: its local density 𝜌 and its distance from the nearest greater density point

𝛿 [76].

There are two local density estimators introduced in the DPC algorithm, including the

cut-off distance method and the kernel distance method [76]. The local density 𝜌 of a data

point i is calculated using the cut-off distance approach in Eq. (2.5) and the kernel distance

method in Eq. (2.6).

𝜌 ∑ 𝜒 𝑑 𝑑 , 𝜒 𝑥
1, 𝑥 0
0, 𝑥 0 (2.5)

UTS THESIS

17

𝜌 ∑ 𝑒𝑥𝑝 (2.6)

where 𝑑 denotes the distance between two data points, i and j. The cut-off distance 𝑑 , is

the user-defined neighborhood radius of each data point, where 𝑑 >0. As a result, the number

of points with a distance from i of less than 𝑑 is positively associated with the local density

𝜌 . The most evident distinction between the two techniques is that 𝜌 in Eq. (2.5) is a

discrete value, and 𝜌 in Eq. (2.6) is a continuous value [76].

Following that, DPC defines another property 𝛿 for each point as in Eq. (2.7).

𝛿 min
:

𝑑 (2.7)

As demonstrated in Eq. (2.7), 𝛿 is the shortest distance between point i and another

point j with a 𝜌 greater than 𝜌 . Furthermore, the 𝛿 of point i with the largest 𝜌 is often

defined as Eq. (2.8).

𝛿 max 𝛿 (2.8)

The points with global or local maxima in terms of 𝜌 have the maximum 𝛿 , as

demonstrated in Eqs. (2.7) and (2.8).

In brief, finding the cluster centers (i.e., density peaks) from all the points, and allocating

the other points to their associated clusters are the two main steps in the DPC clustering

process. For the first step, the tuple 𝜌 ,𝛿 for each point i is generated in DPC algorithm.

The decision graph is then created using these tuples, with the X-axis being 𝜌 and the Y-

axis being 𝛿 . Then, as cluster centers, the points with relatively large 𝜌 and 𝛿 values are

picked. For the second step, following the selection of cluster centers, the remaining points

will be given to the clusters that contain their nearest neighbors with a higher density [76].

Like other clustering methods based on density, DPC also splits data points into three

kinds: boundary points, core points, and noise points [76]. The collection of points that

belong to a cluster but are separated from points in other clusters by less than the cut-off

distance 𝑑 form the border region for each cluster. The highest 𝜌 within a cluster's border

region is designated as 𝜌 . The point i with 𝜌 𝜌 in the cluster is regarded as the core

point, and all other points are the cluster halo, which is suitable to be noise.

UTS THESIS

18

2.1.3.2 Other density-based clustering algorithms

Density clustering typically requires a suite of thresholds to be set in advance, for

example, the cut-off distance used to calculate the density of points in DPC and how many

points does a defined cluster contain at least in DBSCAN [74]. Today’s density-based

algorithms employ a variety of tricks and techniques to depend less on these thresholds [22]–

[30]. For example, Liang et al. [24] proposed the 3DC strategy based clustering, which can

automatically predict the proper number of clusters. Du et al. [30] introduced k nearest

neighbors (KNN) and principal component analysis (PCA) into density peak clustering to

estimate the number of clusters more accurately and achieve better results on high-

dimensional data sets. Mariad’Errico et al. applied a non-parametric density estimator PAk

to the DPC algorithm to make it fully automatic [77]. Leland McInnes et al. extended

DBSCAN by converting it into a hierarchical clustering algorithm called HDBSCAN, which

reduces two hyper-parameters in DBSCAN to only one [78]. Zohreh Akbari et al. proposed

a parameter-free DBSCAN algorithm based on the statistical technique for outlier detection

[79]. Jianghong Zhao et al. proposed the AQ-DBSCAN algorithm, which is a segmentation

method for density clustering that involves the use of Gaussian projection [80]. The

DBSCAN algorithm can be improved by tackling the challenge of automatically estimating

the parameter for neighborhood radius. This approach specifically targets this problem,

resulting in a refined and enhanced version of the algorithm.

2.1.4 Model-based clustering

Traditional clustering algorithms such as K-means [16] and hierarchical clustering are

heuristic-based algorithms that draw clusters directly from the data rather than including a

measure of probability or uncertainty in the cluster allocations. Model-based clustering aims

to address this issue by providing a soft assignment in which observations have a chance of

belonging to one of the clusters. In general, model-based clustering methods use

mathematical models to optimize and determine the appropriateness of given data. Model-

based clustering methods, like traditional clustering techniques, uncover informative features

UTS THESIS

19

for each cluster. In this case, each cluster is indicative of a distinct concept or class [9].

Model-based clustering assumes that the data come from a variety of latent probability

distributions. The Gaussian mixture model (GMM) [81] is the most often used method, in

which each observation is assumed to be distributed as one of K multivariate-normal

distributions, with K denoting the number of clusters (commonly referred to as components

in model-based clustering).

However, model-based clustering generally relies on prior knowledge of many

parameter settings, such as the distribution of each cluster, even though this information is

often very difficult to acquire in practice. Hence, solutions to alleviate this disadvantage have

also emerged [31]–[33]. For example, Scrucca, L. et al. [31] proposed an improved model-

based clustering using data transformations, which can lead to improved model fitting and

more accurate clustering results. O’Hagan, A. et al. [32] proposed the Bayesian initialization

averaging method to generate high-quality initial parameter settings for the expectation-

maximization algorithm.

2.1.5 Grid-based clustering

Grid-based clustering methods partition the feature space into a grid system, on which

all clustering steps are conducted [9]. The approach's key benefit is its quick processing time,

the lack of distance computations, and the ease with which clusters are defined as neighbors

[9]. Outlined below are the fundamental stages of a grid-based algorithm [9].

1. Create a grid cell set

2. Calculate the density of each grid cell by allocating data samples to the appropriate

grid cell

3. Eliminate cells that have a density below a certain threshold.

4. Group dense cells together to form clusters

Wang et al. [82] developed the STING (statistical information grid method) in 1997,

which is an algorithm with high scalability, capable of breaking down a data set into multiple

UTS THESIS

20

levels of complexity. It takes in geographical data and segments it into rectangular cells with

varying levels of resolution [9].

However, classic grid clustering also depends on many user-provided parameters, such

as interval values to divide space and density thresholds, and most algorithms do not scale to

high-dimensional data sets. Many variant algorithms have been proposed to overcome these

problems [34]–[36]. For example, Chen, J. et al. [34] proposed a new grid-based clustering

algorithm for the mixed data stream, which can automatically discover the properties of

clusters.

Table 2.1 summarizes the ideas and disadvantages of the above five types of clustering

algorithms. In addition to the above five categories of clustering algorithms, there are also

some algorithms based on other ideas or theories. For instance, D.W. van der Merwe et al.

proposed a particle swarm optimization (PSO)-based data clustering algorithm [83]. Ehsan

Elhamifar et al. combined subspace learning theory and clustering to propose subspace

clustering [84]. Moreover, over the past few years, there has been a surge of interest in

utilizing deep neural networks to acquire a low-dimensional representation that is conducive

to clustering. As a result, there has been a substantial improvement in the performance of

clustering algorithms [85]. This type of clustering algorithm is called deep clustering.

Table 2.1. The ideas and disadvantages of the five types of clustering algorithms.

Types Ideas Disadvantages
Hierarchical

clustering
Combine the two closest sub-clusters;

Separate cluster into the two farthest sub-
clusters.

High computational cost, require
manually determined conditions,

sensitive to noise, etc.
Partition-based

clustering
Assign all data samples to K clusters by
optimizing a specific criterion function.

Require setting number of
clusters, cannot detect non-

convex clusters, etc.
Density-based

clustering
Find the density of regions, and regard those

with high density as clusters.
Requires a suite of thresholds to

be set in advance, etc.
Model-based

clustering
Employ mathematical models to evaluate the
suitability of provided data and perform a soft

assignment for every sample.

Rely on prior knowledge of
many parameter settings, etc.

Grid-based
clustering

Divide the feature space into a grid
configuration and assign samples to specific

cells within the structure.

Depend on many user-provided
parameters, etc.

UTS THESIS

21

2.2 Multi-view clustering

To improve clustering performance, multi-view clustering is used to learn compatible

and complementary information from multi-view data [43]–[47], [86]–[96]. Multi-view data

pertains to data that is acquired from disparate sources in distinct domains or obtained from

different feature collectors [38]. Essentially, multi-view clustering arises from the

combination of clustering problems and multi-view learning [37]. From the perspective of

basic clustering principles, there are three kinds of methods that almost constitute a complete

family of multi-view clustering: the first type includes the algorithms based on multi-view

spectral representation learning, namely multi-view spectral clustering methods; the second

type includes the algorithms based on multi-view subspace learning, i.e., multi-view

subspace clustering methods; the third type combines various other theories and is often

referred to other multi-view clustering methods [42].

2.2.1 Multi-view spectral clustering

By combining information from multiple graphs, multi-view spectral clustering can

learn latent cluster structures [97]. Multi-view spectral clustering is based on learning a

consensus and complementary graph that contains information from multi-view data and then

using the spectral clustering approach on the learned graph to generate clustering results [42].

For example, an illustration of the spectrum perturbation theory of spectral clustering was

utilized by Zong and colleagues to develop a weighted multi-view spectral clustering

algorithm [46]. The proposed algorithm employs spectral perturbation to imitate the weights

of various views. To distinguish the clustering capacity differences of different views, Nie et

al. developed an adaptively weighted Procrustes technique, where an indicator matrix can be

generated [91]. The proposed method in [92] enhances clustering accuracy by utilizing

multiple graphs with distinct weights to integrate complementary data perspectives. The

iterative training of a unified graph using mutual reinforcement leads to promising

improvements in clustering performance when compared to existing methods [42]. Chang

Tang et al. proposed a one-step multi-view spectral clustering method that combines spectral

UTS THESIS

22

embedding and K-means into a single framework to provide discrete clustering labels in a

single step [98]. Shaojun Shi et al. applied the nuclear norm to multi-view spectral clustering

to further improve the clustering results, where the nuclear norm makes the view-specific

information better explored [99].

2.2.2 Multi-view subspace clustering

Multi-view subspace clustering enhances clustering performance by leveraging multiple

data perspectives and learning a uniform subspace representation that captures both shared

and unique information across views, making it suitable for complex and high-dimensional

data and providing a more complete understanding of the data structure compared to single-

view clustering methods [42] [100]. Zheng et al., for example, introduced a multi-view

constrained bilinear factorization subspace clustering method that improves clustering results

by performing constrained bilinear factorization on the low-rank representation of multiple

views [49]. By concatenating multi-view features into a joint representation, Zheng et al.

introduced feature concatenation based multi-view subspace clustering to explore the

consensus information of multi-view data [50]. The proposed method in [101] for multi-view

subspace clustering improves clustering performance by jointly learning a latent

representation from multiple views while considering the consensus and complementary

information, resulting in effective handling of high-dimensional data and improved accuracy.

Guang-Yu Zhang et al. proposed kernelized multi-view subspace clustering based on auto-

weighted graph learning, which uses kernel-induced functions to transform multi-view data

from linear to nonlinear space [102].

2.2.3 Other multi-view clustering

Furthermore, various other multi-view clustering algorithms have recently been

presented [48], [87], [94], [103]. For example, by introducing a collaborative deep matrix

decomposition framework, the method proposed in [87] attempts to learn the hidden

representations from multi-view data. Xu et al. proposed a deep autoencoder-based method

UTS THESIS

23

to learn embedded representations, which takes both complementary and consensus

information of multiple views into account [94]. The multi-view clustering method proposed

in [104] obtains clustering results automatically by considering geometric consistency and

cluster assignment consistency.

Multi-view clustering is a relatively new subfield compared to traditional single-view

clustering. However, despite the importance of multi-view clustering and the abundance of

existing algorithms in previous decades, the most recent approaches in multi-view clustering

suffer from the following three problems: 1) parameter choice, 2) high computational cost,

and 3) difficulty in finding globally optimal view weights. Most multi-view clustering

techniques suffer one or more of the three flaws listed above. These three flaws also make it

difficult to use multi-view clustering in real-world applications. Table 2.2 summarizes the

ideas and disadvantages of the above three types of multi-view clustering algorithms.

Table 2.2. The ideas and disadvantages of the three types of multi-view clustering algorithms.

2.3 Distance metric learning

Distance metric learning has gained significant attention in recent years for improving

the performance of distance-based methods like KNN [105] and K-means [16], after being

first introduced in 2003. The primary objective of metric learning is to reduce intra-class

distance while increasing inter-class distance, resulting in each point being closer to other

points with the same label and farther away from those with different labels [106]. Distance

metric learning can be mainly divided into three categories: supervised metric learning, semi-

supervised metric learning, and unsupervised metric learning [106]. The difference between

Types Ideas Disadvantages
Multi-view

spectral clustering
Learn a consensus and complementary graph

that contains information from multi-view data.
Need to tune hyperparameters,
require high computational cost
(e.g., O 𝑛), have difficulty in
finding globally optimal view

weights, etc.

Multi-view
subspace clustering

Learn a uniform subspace representation from
multiple views.

Other multi-view
clustering

Learn embedded representations based on the
autoencoder framework;

Learn the hidden representations based on the
collaborative deep matrix decomposition

framework; etc.

UTS THESIS

24

the three lies in the use of ground truth labels.

2.3.1 Supervised metric learning

Supervised metric learning learns distance metrics based on the information from data

points and all their labels. For example, one of the most often used supervised linear

embedding algorithms is linear discriminant analysis (LDA) [107]. It looks for projection

paths that allow data from different classes to be segregated well. Relevant component

analysis (RCA) is another well-known supervised distance metric learning approach that

makes use of paired data restrictions [108]. RCA is used to find a transformation that

amplifies key variability while decreasing irrelevant variability. Average neighborhood

margin maximization (ANMM) is a local supervised method that attempts to discover

projection paths that maximize local class discriminability [109]. The Mahalanobis metric

for clustering (MMC) learns an useful and friendly distance metric for clustering under

similarity-relative constraints using semidefinite programming [110]. Furthermore, in recent

years, some studies have combined deep learning and metric learning to propose (supervised)

deep metric learning models, which learn the higher level of nonlinear characteristics of data

directly in the classification structure [111]. For instance, Elad Hoffer et al. proposed the

triplet network model for deep metric learning, which aims to learn useful representations by

distance comparisons [112].

2.3.2 Semi-supervised metric learning

Semi-supervised methods in machine learning aim to learn distance measures from data

sets where labeled data is limited, and most of the data is unlabeled. These algorithms use

both labeled and unlabeled data during the learning process. One example is MPCK-Means,

proposed in Ref. [113], which combines K-Means clustering and distance metric learning

with known pairwise constraints [106]. MPCK-Means partitions the data set into

homogeneous clusters using K-means while simultaneously learning a generalized

Mahalanobis distance metric with a distinct precision matrix for each cluster [106]. Semi-

UTS THESIS

25

supervised metric learning using pairwise constraints (SMLPC) is a kernel-based metric

learning approach that delivers a nonlinear transformation by considering the topological

structure of data as well as both positive and negative constraints [114]. Similarly, based on

the strong representation learning ability of deep neural networks, semi-supervised metric

learning has also been further extended to semi-supervised deep metric learning [115].

2.3.3 Unsupervised metric learning

 Any supervised information is generally not needed for unsupervised distance metric

learning methods; instead, they attempt to learn an optimum distance metric or low-

dimensional embedding solely from the data matrix or original data, achieving some

geometric or discriminative optimality. For example, a popular technique for extracting

projection directions from data to achieve the highest variance is known as Principal

Component Analysis (PCA) [116]. PCA is commonly employed in high-dimensional data

clustering pre-processing. The t-distributed stochastic neighbor embedding (t-SNE)

technique is another popular nonlinear dimensionality reduction technique for embedding

high-dimensional data in a two- or three-dimensional space for visualization [117]. t-SNE

also represents each high-dimensional object as a point in either two or three dimensions, in

a way that ensures that similar objects are modelled by nearby points with a high probability,

while dissimilar objects are modelled by more distant points. Uniform manifold

approximation and projection (UMAP) is another modern method for reducing the

dimensionality of data that can be utilized for both visualization purposes and general

nonlinear dimension reduction [118]. Recently, some deep metric learning methods have tried

to replace ground truth labels with pseudo labels from clustering, making the whole metric

learning process unsupervised, which is called unsupervised deep metric learning [119],

[120]. For instance, Ujjal Kr Dutta et al. proposed an unsupervised deep metric learning

model via orthogonality-based probabilistic loss [120].

Most previous metric learning methods also have some flaws. For example, many

methods, such as UMAP, require hyperparameter tuning. In particular, for unsupervised deep

UTS THESIS

26

metric learning, uninterpretability and the inaccessibility of high-quality pseudo labels are

two major obstacles. Table 2.3 summarizes the ideas and disadvantages of the above three

types of metric learning algorithms.

Table 2.3. The ideas and disadvantages of the three types of metric learning algorithms.

2.4 Summary

This chapter first introduces five types of clustering algorithms and several

representative algorithms and analyzes their respective shortcomings. Second, this chapter

also introduces three common types of multi-view clustering algorithms and summarizes the

shortcomings of most current methods. Finally, this chapter also briefly introduces the

concept, common classifications of metric learning, and some shortcomings of current

methods.

Types Ideas Disadvantages
Supervised metric

learning
Learn distance metrics based on the

information from data points and all their
labels.

Require hyperparameter tuning,
inaccessibility of high-quality

pseudo labels, uninterpretability,
etc. Semi-supervised

metric learning
Learn distance measures from data where

supervised information is limited.
Unsupervised

metric learning
Learn an optimum distance metric or low-

dimensional embedding solely from the data
matrix or original data, achieving some
geometric or discriminative optimality.

UTS THESIS

27

Chapter 3. Torque Clustering: Autonomous clustering by fast

find of mass and distance peaks

3.1 Introduction

Grouping similar objects to derive insights from classes of things is a fundamental tool

in the search for knowledge. It is used in virtually all the natural and social sciences and plays

a central role in biology, astronomy, psychology, medicine, and chemistry [1]. Like many

disciplines, grouping objects in data science is called clustering, and, as one of the three

broadest categories of machine learning algorithms, clustering in one form or another is the

important method of learning from unlabeled data.

Yet, despite the importance and ubiquity of clustering, and the plethora of existing

algorithms, the current clustering methods suffer from a variety of drawbacks [1]. Much work

has been done to overcome, circumvent, or minimize these problems. Many strategies are

targeted, many are ingenious, and several tackles more than one problem. Yet none dispense

with enough issues to be considered a universal clustering choice, because optimal clustering

is typically an NP-hard problem. Often this means, researchers and analysts must test and

tune several alternatives to determine which best suits their needs.

From the literature review in Chapter 2, a good solution would therefore: be able to

recognize various types of clusters with different shapes, sizes or densities; be parameter-free;

not depend on a priori knowledge; have a relatively low computational overhead and a

reasonable time complexity; be robust to noise and outliers; not require initialization; be able

to automatically determine the number of clusters; and preclude the need for a manually-

specified stopping condition.

To achieve these goals, we propose a novel clustering algorithm, called Torque

Clustering (TC), derived from the natural idea that a cluster and its nearest cluster with higher

mass ought to be merged into one cluster unless they both have relatively large masses and

the distance between them is also relatively large.

The merger process of this algorithm is inspired by the gravitational interactions when

UTS THESIS

28

galaxies merge. In previous studies, the evolution of galaxies was described as a hierarchical

process by astronomers using galaxy merger trees [121]–[124]. Galaxy mergers can occur

when two or more galaxies come close enough to each together, and can be classified into

two types due to their comparative size of the merging galaxies, including minor mergers and

major mergers. According to the predictions of merger rates of dark matter haloes, minor

mergers are expected to be much more common than major mergers [125]. TC simulates the

process of galaxy minor mergers, so that clusters with larger masses continuously merge

adjacent clusters with smaller masses. Similarly, the TC algorithm generates a hierarchical

tree that reflects the natural structure of the data set.

After generating the hierarchical tree, TC estimates the correct number of clusters by

pruning the cluster tree. However, unlike the existing methods based on probability density

[14], [15], TC reveals the reasonable partition by the find of mass and distance peaks. This

idea is inspired by the nature of intergalactic distances in the universe [126]. The galaxies

usually have very large masses and the intergalactic distances between them are also very

large. Regard 𝑚 and 𝑚 (i.e., galaxy masses) as the number of samples in two data

clusters, and 𝑟 as the distance between them. TC exploits the two properties, 𝑚 𝑚 and

𝑟 , to describe the merger of each pair of clusters. As a result, reasonable cluster (or galaxy)

partitions can be obtained by removing the mergers with relatively larger 𝑚 𝑚 and 𝑟 .

We evaluated TC on 20 data sets across five different domains: image recognition,

biology, medicine, physics, and astronomy, and 19 state-of-the-art algorithms were included

in the experiment for performance comparison. Regarding accuracy, TC obtained the top

position in 15 out of the 19 data sets (excluding one that lacked ground-truth labels),

surpassing the best algorithm compared by an average factor of 4 in ranking. Furthermore,

when compared to the best previous automatic clustering algorithm, TC accurately identified

the exact number of ground-truth clusters in 15 out of the 20 data sets, whereas the previous

algorithm achieved perfect accuracy in only 10 of the data sets. Moreover, we conducted an

additional comprehensive evaluation on 56 data sets with noise, outliers, overlaps, imbalance,

and high dimensionality. TC still retained a great performance advantage on these data sets.

UTS THESIS

29

Finally, we also compared TC with latest state-of-the-art deep clustering algorithms on

several challenging image data sets. Interestingly, TC without any deep representation can

achieve better or close performance than deep clustering algorithms on image clustering.

3.2 Proposed method

Loosely based on conventional hierarchical clustering structures [127], the TC

algorithm generates a hierarchical tree that reflects the natural structure of the data set.

However, unlike most existing hierarchy-based algorithms, TC reaches higher accuracy with

a significantly smaller number of merger steps and is robust to noise and outliers. In addition,

no manual stopping condition is required; the final number of clusters does not need to be

defined in advance; the density of each data sample does not need to be estimated, nor does

the distribution of each cluster; and the feature space does not need to be divided into

distributions. The comparison in mass and distance governs the merger process of TC, while

the find of mass and distance peaks reveals the mergers that should be removed to leave a

reasonable cluster partition. The TC algorithm is described in sections 3.2.1-3.2.7 below.

3.2.1 Define clusters and form connections between them

Consider a data set denoted as 𝑋 𝑥 , 𝑥 , … , 𝑥 , where 𝑥 ∈ 𝑅 . The first step is to

determine the initial “mass” of the data set, which is simply the number of samples. Thus,

initially, each data sample 𝑥 is considered to be its own cluster , which yields an initial

cluster set of Γ , , … , . This forms the first layer of the hierarchical tree. A count

of the set gives us the initial mass, denoted as Θ 𝜃 ,𝜃 , … ,𝜃 . At this initial step, each

𝜃 1. The following rule is then applied to form connections between clusters:

 → , 𝑖𝑓 𝜃 𝜃 (3.1)

where denotes the 1-nearest cluster to , and 𝜃 denotes the number of samples

 contains. The symbol " → " denotes the connection (i.e., merger) 𝐶 between and

. Regarding each cluster as a vertex, then a connected graph G can be obtained.

UTS THESIS

30

A new set of clusters Γ can be formed by

Γ Φ 𝐺 (3.2)

where Φ identifies the samples contained in each connected component as a new cluster.

Then, applying Eq. (3.1) to Γ generates new connections 𝐶 , which alters the

connected graph G. Eq. (3.2) on G generates the next cluster set Γ , and the cycle continues

until there is only one all-encompassing cluster at the top of a hierarchical tree. Different

from the classic agglomerative hierarchical clustering, this constrained method of merging

avoids yielding undesirable elongated clusters and can be performed in parallel as long as

two neighboring clusters satisfy the requirement of Eq. (3.1). Additionally, this exercise of

treating each data sample as a cluster and taking the set through a series of mergers until all

have fully merged does three things: 1) It builds a hierarchical map of partitioning clusters at

different granularities; 2) it provides a map for the algorithm to choose the most appropriate

clustering scheme; and 3) it gives analysts the choice to manually override the automatic

selections and choose a different granularity if desired. This leaves the question of what

criteria the algorithm uses to determine the “most appropriate” scheme. Based on the above

idea, if a connection has both a relatively large mass and stretches over a long distance, it is

“abnormal”; removing it should reveal a more reasonable partition structure. The following

steps set out the mechanisms for detecting and removing abnormal connections.

3.2.2 Define two properties of each connection to construct the decision graph

Abnormal connections can be identified by observing two intuitive properties of the

connection 𝐶 . One of the properties is the product of the mass value of the two clusters it

connects

 𝑀 𝜃 𝜃 (3.3)

the other is the square of the distance between the two clusters it connects

 𝐷 𝑑 , (3.4)

Plotting all the connections on a two-dimensional graph of the two properties, called a

decision graph, will reveal that the mass and distance of the abnormal connections are

UTS THESIS

31

abnormally larger than, and further away from, those of the normal connections. Fig. 3.1

provides an example to illustrate the core idea of the proposed TC algorithm.

There are many studies on defining the distance between two clusters [128]. Here, we

simply leverage the minimum distance from any sample in one cluster to any sample in the

other cluster as the distance between the two clusters, i.e., 𝑑 , 𝑚𝑖𝑛 𝑑 𝑥 , 𝑥 , 𝑥 ∈

, 𝑥 ∈ . With large-scale data, a fast approximate nearest neighbor method like k-d tree

or locality-sensitive hashing may be a more appropriate choice to search nearest cluster since

the distance computation approach used in these methods negates the need to actually know

the distances between any two clusters [12], [13]. Further, the computation costs would be

low and the complexity could be kept to O(nlog(n)) as compared to the complexity of

standard hierarchical clustering algorithms, which is 𝑂 𝑛 . In this way, the proposed TC

algorithm is highly scalable. A detailed analysis of the time and space complexity of TC is

presented in section 3.2.6.

The detail of how TC works is best explained through an example, which is set out step-

by-step in Fig. 3.2 and Table 3.1.

Figure 3.1. The core idea of the proposed algorithm. The red dotted lines delineate the clusters A-H in this two-
dimensional data distribution, derived from Eq. (3.1) and Eq. (3.2). The black lines 𝐶 -𝐶 indicate the connections from
each cluster to its nearest cluster with a length of 𝐿 , where 𝐿 is the longest. Each cluster is at one end of a connection
𝐶 , and contains several samples. For example, the clusters A and E each have four samples, the clusters B, C, D, and F
each have three samples, and the clusters G and H each have 10 samples. Our goal is to find abnormal connections,
which are defined as those with both a relatively large distance (i.e., 𝐷 in Eq. (3.4)) and a relatively large number of
samples (i.e., 𝑀 in Eq. (3.3)). Obviously, connection 𝐶 , with 10 samples in each of the clusters it connects, is carrying
the greatest mass and it is the longest 𝐿 . But what is key is the relativity. 𝐶 is unique in that it is markedly longer
than the other sets of connections. Removing 𝐶 and calculating the connected components according to Eq. (3.2)
results in a final, more reasonable, set of clusters. This approach is consistent with human intuition as well as the natural
laws of gravitational interactions.

Figure 3.2. A step-by-step example of how TC works.
Consider a data set where, initially, each sample has a mass
of 1 and is treated as its own cluster. Applying Eq. (3.1) to

UTS THESIS

32

each cluster establishes connections between clusters,
resulting in a connected graph. Applying Eq. (3.2) to the
graph, new clusters begin to emerge (indicated in different-
colored circles) with a mass equal to the number of samples
within them (the value in the circles).
A
Applying Eq. (3.2) to the
connected graph of the
initial clusters reveals
seven new larger clusters.

B
Connections 𝐶 - 𝐶 can
then be added according to
the adjacency relationship
given by Eq. (3.1). Now,
the two properties 𝑀 and
𝐷 of 𝐶 - 𝐶 can be
calculated according to
Eqs. (3.3)- (3.4), as shown
in Table 3.1A.
C
Again, applying Eq. (3.2)
to the connected graph of
Fig. 3.2B reveals three new
larger clusters. The mass of
each new cluster is equal to
the sum of the masses of the
sub-clusters it contains.

D
Connections 𝐶 - 𝐶 can
then be added according to
the adjacency relationship
given by Eq. (3.1). Now,
the two properties 𝑀 and
𝐷 of 𝐶 - 𝐶 can be
calculated Eqs. (3.3)- (3.4),
as shown in Table 3.1B.
E
Again, applying Eq. (3.2)
to the connected graph of
Fig. 3.2D, we now have one
big cluster, and the merging
process is complete. Steps
A-E show that this process
has established a hierarchical tree of clustering partitions at
different granularities, as illustrated in Fig. 3.2H.

UTS THESIS

33

F
Returning to Fig. 3.2D for a
moment, it is easy to see
from the decision graph in
Fig. 3.2G that the relative
maxima of the two
properties that need to be
removed are at 𝐶 ,𝐶 .
These connections are
identified as abnormal, as
indicated by the red dotted lines.

G
Plotting all six
connections on a two-
dimensional graph of the
properties, i.e., the
decision graph, indeed
shows that 𝐶 ,𝐶 are
abnormally further away
and larger than 𝐶 -𝐶 .
H
Hence, connections 𝐶 ,𝐶
are removed to arrive at the
final partitioning scheme.
This entire clustering
process can be represented
as a hierarchical tree, as the
dendrogram to the right shows.

Table 3.1A. Properties of the clusters and connections in
Figs. 3.2A and 3.2B.

Table 3.1B. Properties of the clusters and connections in
Figs. 3.2C and 3.2D.

UTS THESIS

34

3.2.3 Define the torque of each connection and sort the connections in descending
order

The decision graph produced by TC provides an efficient visualization tool to determine

and remove abnormal connections. However, because a manual inspection of the 2D plot

would be both prone to error and time-consuming, we propose an automatic method to

determine abnormal connections based on a metric to indicate the gaps between connections.

We call this metric the Torque Gap (TGap) because of its similarity in mathematical

expression. The TGap is calculated by first calculating the torque 𝜏 of all connections,

where

𝜏 𝑀 𝐷 (3.5)

Obviously, if the two clusters connected by a connection have relatively large masses

and the distance between them is relatively large, the 𝜏 of the connection must also be large.

Then we sort all connections in descending order according to their corresponding

torque values, and call it the torque sorted connections list (TSCL). The connection in TSCL

and its torque are denoted as 𝐶 and 𝜏̀ , respectively.

According to our core idea above, abnormal connections must be the top several

connections in the TSCL, because they have the largest torque values among all the

Figure 3.2I. After calculating the torque of each connection generated from Figs. 3.2A-E, all connections are
sorted in the order of decreasing torque to obtain the torque sorted connection list (TSCL, i.e.,
𝐶 ,𝐶 ,𝐶 ,𝐶 ,𝐶 ,𝐶). Furthermore, Eqs. (3.6)-(3.9) are applied to find the largest torque gap between two adjacent
connections in the TSCL (i.e., the torque gap between 𝐶 and 𝐶). As a result, 𝐶 and 𝐶 are regarded as the
abnormal connections to be removed.

UTS THESIS

35

connections. But how to specify the "several" ones? This requires us to calculate TGap on

TSCL.

3.2.4 Define torque gap and find the largest gap to determine abnormal connections

The 𝑇𝐺𝑎𝑝 between each connection along with its following connection in the TSCL

is calculated next. The formula for computing 𝑇𝐺𝑎𝑝 is

𝑇𝐺𝑎𝑝 𝜔
̀

̀
, 𝜏̀ 0 (3.6)

where 𝜔 is a weighted value that indicates the proportion of connections among the top i

connections of TSCL that have relatively large 𝑀 , 𝐷 , and 𝜏 values.

The process for defining 𝜔 is as follows: Eq. (3.1) will reveal many connections 𝐶

throughout the entire clustering process and, as we know, each 𝐶 has two properties, 𝑀

and 𝐷 . Therefore, the set of connections that have relatively large 𝑀 , 𝐷 , and 𝜏 values

among all the connections (denoted as 𝐿𝑎𝑟𝑔𝑒_𝐶) can be defined as:

𝐿𝑎𝑟𝑔𝑒_𝐶 𝐶 | 𝜏 𝑚𝑒𝑎𝑛_𝜏 ∩ 𝑀 𝑚𝑒𝑎𝑛_𝑀 ∩ 𝐷 𝑚𝑒𝑎𝑛_𝐷 (3.7)

where 𝑚𝑒𝑎𝑛_𝜏 is the mean value of all 𝜏 , 𝑚𝑒𝑎𝑛_𝑀 is the mean value of all 𝑀 , and

𝑚𝑒𝑎𝑛_𝐷 is the mean value of all 𝐷 .

𝑇𝑜𝑝_𝐶 is the set of the top i connections of TSCL, and can be defined as

𝑇𝑜𝑝_𝐶 𝐶 ,𝐶 , … ,𝐶 (3.8)

Based on 𝐿𝑎𝑟𝑔𝑒_𝐶 and 𝑇𝑜𝑝_𝐶 , 𝜔 is defined as:

𝜔
| _ ∩ _ |

| _ |
 (3.9)

The largest 𝑇𝐺𝑎𝑝 is denoted as 𝑇𝐺𝑎𝑝 , and the L connections at the top of the TSCL

(i.e., 𝐶 ,𝐶 , … ,𝐶) are regarded as abnormal connections to be removed. Fig. 3.2I

simulates the above process.

The TGap in Eq. (3.6) considers two important factors in determining the abnormal

connections at the same time:
̀

̀
 is the natural torque gap between adjacent connections in

TSCL, and 𝜔 represents the natural clustering resolution. The larger the torque gap, the

more suitable it is as a cutting point. The purpose of calculating
̀

̀
 is to find a fracture

between the connections with larger torque values and the connections with smaller torque

UTS THESIS

36

values among the sorted connections. 𝜔 exists to defend against the uneven distribution or

imbalance of clusters in data set. For example, there is a data set containing three relatively

balanced ground-truth clusters, {A}, {B}, and {C}. After performing TC on this data set, we

get the connection between A and B, and the connection between B and C, denoted as 𝐶

and 𝐶 , respectively. Suppose the distance between A and B is much larger than the distance

between B and C, and the distance between B and C is much larger than the distances between

sub-clusters in A, B, and C. If we only rely on
̀

̀
 to determine the abnormal connections,

it is likely to just remove 𝐶 to get the partition: {A}, {B, C}. However, we can consider

both
̀

̀
 and 𝜔 at the same time. Since the 𝑀 , 𝐷 , and 𝜏 of 𝐶 , are also large

relative to other connections except 𝐶 (i.e., 𝜏 𝑚𝑒𝑎𝑛_𝜏,𝑀 𝑚𝑒𝑎𝑛_𝑀,𝐷

𝑚𝑒𝑎𝑛_𝐷), then TC is more likely to remove both 𝐶 and 𝐶 to get the correct partition,

{A}, {B}, and {C}.

3.2.5 Define halo connections to determine the noise

In cluster analysis, noise detection is also an important step. In our algorithm, we define

another type of connection to determine the noise, which is called “halo connections”

(denoted as Halo_C). Halo connections are characterized by a relatively large 𝐷 and a

relatively small 𝑀 . The formula for computing halo connections is

𝐻𝑎𝑙𝑜_𝐶 𝐶 | 𝑀 𝑚𝑒𝑎𝑛_𝑀 ∩ 𝐷 𝑚𝑒𝑎𝑛_𝐷 ∩ 𝑚𝑒𝑎𝑛_ (3.10)

where the 𝑚𝑒𝑎𝑛_ is the mean value of all .

In section 3.2.4, after removing the L abnormal connections, L+1 clusters can be

obtained. In this step, the halo connections are further removed, and then some small sub-

clusters in the L+1 clusters can be found, which are considered as part of the cluster halo

(suitable to be considered as noise). Fig. 3.3 provides an example to illustrate the power of

abnormal connections and halo connections. The pseudocode of TC is provided in Algorithm

3.1.

UTS THESIS

37

A. Original data distribution B. Removed abnormal connections C. Removed halo connections

Figure 3.3. TC on the synthetic data set with 30% uniform noise. (A) is the original data distribution,
including convex and non-convex clusters with 30% uniform noise; (B) illustrates the results of TC after
removing the abnormal connections; (C) illustrates the results of TC after removing the halo connections,
which is also the final partition.

3.2.6 Complexity analysis

 Time complexity

According to the pseudocode of TC in Algorithm 3.1, if the input is a distance matrix, the

time complexity of Step 1 is 𝑂 𝑛 . Steps 3 and 4 each require 𝑂 𝑛 . Steps 6, 8 and 9 are

in the loop. Suppose the loop needs to be executed m times, where 𝑚 ≪ 𝑛, the total time

cost of steps 6, 8 and 9 is 𝑂 3𝑚𝑛 , because each of them requires 𝑂 𝑛 . Step 7 also needs

to be executed m times, and its time cost in each loop is 𝑂 𝑙 due to computing distances

Algorithm 3.1: Algorithm of the proposed TC

1: Input: Distance matrix 𝑆 ∈ 𝑅 or data set 𝑋 ∈ 𝑅 .
2: Output: Cluster partition 𝜙 , , … , and cluster halo.
3: Initializing connected graph G.
4: Constructing cluster set 𝛤 (Initially, regard each sample as a cluster, i.e., 𝑙 𝑛).
5: while cluster set 𝛤 have more than two clusters do
6 : Computing the mass 𝜃 of each cluster in 𝛤, where
Θ 𝜃 .
7: Searching the nearest cluster of according to S or by using a fast approximate nearest neighbor method, e.g. kd-
tree.
8: Generating the connections 𝐶 and Updating G by Eq. (3.1).
9: Computing the two properties 𝑀 and 𝐷 of 𝐶 by Eqs. (3.3)-(3.4), and save these to 𝑀 and 𝐷 ,
respectively.
10: Computing the connected components of G to update the cluster set 𝛤 by Eq. (3.2).
11: end
12: Computing the torque 𝜏 of each connection based on 𝑀 and 𝐷 by Eq. (3.5).
13: Sorting all connections in descending order according to their corresponding torque values to get TSCL.
14: Computing 𝑇𝐺𝑎𝑝 between each consecutive connection in the TSCL by Eqs. (3.6)-(3.9).
15: Finding the largest 𝑇𝐺𝑎𝑝 denoted as 𝑇𝐺𝑎𝑝 and treat the L connections at the top of the TSCL as abnormal.
16: Updating G by removing the L abnormal connections, and then compute the connected components of G to obtain
the final cluster partition 𝜙 , , … , .
17: Finding the halo connections by Eq. (3.10).
18: Updating G by removing the halo connections, and then compute the connected components of G to obtain the
cluster halo.

UTS THESIS

38

between neighboring clusters. However, initially, we regard each sample as its own cluster,

so the distances between neighboring data samples can be regarded as the distances between

neighboring clusters in the first loop without extra computing. Therefore, the total cost of

step 7 is 𝑂 𝑚 1 𝑙 . For step 10, since m loops generate a total of n-1 connections, its

time cost is 𝑂 𝑚𝑛 𝑛 1 𝑂 𝑚 1 𝑛 1 . Steps 12, 14, 15 and 17 each require

𝑂 𝑛 , and step 13 requires 𝑂 𝑛𝑙𝑜𝑔𝑛 . The time cost of step 16 is 𝑂 𝑛 𝑛 1 𝐿 ,

approximately equal to 𝑂 2𝑛 . Similarly, step 18 also requires 𝑂 2𝑛 . Hence, with a

distance matrix as the input, TC’s total time cost approximately equal to 𝑂 𝑛

𝑂 𝑛𝑙𝑜𝑔𝑛 𝑂 4𝑚 11 𝑛 𝑂 𝑚 1 𝑙 , its time complexity is approximately

𝑂 𝑛 . However, when using a fast approximate nearest neighbor method, we don't need to

compute the distance matrix S, so the time cost of step 1 becomes 0 and 𝑂 𝑚𝑙 ∗ 𝑙𝑜𝑔𝑙 for

step 7, giving a total time cost of 𝑂 𝑛𝑙𝑜𝑔𝑛 𝑂 4𝑚 11 𝑛 𝑂 𝑚𝑙 ∗ 𝑙𝑜𝑔𝑙 . Therefore,

the time complexity here is approximately 𝑂 𝑛𝑙𝑜𝑔𝑛 .

 Space complexity

Over the entire algorithm, the following items need to be stored: the cluster set 𝛤 with a

mass of 𝛩, the sparse adjacency matrix for G, two properties of each connection 𝑀 and

𝐷 , the torque 𝜏 of each connection, and the torque gap 𝑇𝐺𝑎𝑝 between each connection

in TSCL. Therefore, base space requirement is about 𝑂 7𝑛 , the space complexity is

 Step 1 Step 2 Step 3 Step 4 Step 5

 AC-S AC-W FINCH DPC TC

Figure 3.4. Visualization of the step-by-step results of TC (top) and the final results of related methods (bottom)
on a synthetic data set.

UTS THESIS

39

approximately 𝑂 𝑛 . This requirement does not change when using a fast approximate

nearest neighbor method. However, if the input is a distance matrix, which needs to be stored

additionally, the space cost increases to 𝑂 𝑛 𝑂 7𝑛 , and the space complexity here is

approximately 𝑂 𝑛 .

3.2.7 Algorithm analysis

For better clarity, we visualize the step-by-step results of TC and the final results of

several related methods on a synthetic data set, as shown in Fig. 3.4. TC follows the rule of

Eq. (3.1) to gradually complete the merging of clusters, and finally automatically determines

the exact number of clusters. In addition, we can see that in step 1, the red cluster and the

blue cluster have been formed, which matches the ground truth. In steps 2-5, due to the

constraint in Eq. (3.1), the red and blue clusters do not further merge their 1-nearest clusters

but are "waiting" for other sub-clusters to complete the merging, where this process prevents

wrong merging in conventional agglomerative methods.

On the other hand, according to Fig. 3.4, agglomerative clustering single-linkage (AC-

S) is sensitive to outliers, leading to wrong results. Agglomerative clustering ward-linkage

(AC-W) cannot detect clusters with complex shapes. FINCH [13] is an agglomerative method

based on nearest neighbor statistics completely without any constraints. Obviously, the result

of FINCH contains some wrong mergers. Density peak clustering (DPC) [75] is not robust

to the varied density data sets, also leading to wrong results. Besides, all other methods need

to manually set the number of clusters (or granularity levels) except for TC.

3.3 Experiments and results

To evaluate the performance of TC, we measured its performance on numerous synthetic

and real-world data sets and compared its performance to other 19 well-known or latest

algorithms. These algorithms include: K-means++ (K-M++) [20], GMM, Fuzzy clustering

(Fuzzy) [68], Spectral clustering (SC) [72], [129], Hierarchical agglomerative clustering

single-linkage (AC-S), complete-linkage (AC-C), average-linkage (AC-A), ward-linkage

UTS THESIS

40

(AC-W), centroid-linkage (AC-CR) [127]; Density peak clustering (DPC) [75] and its three

latest variants, Dynamic graph-based label propagation for density peak clustering (DPCLP)

[27], Shared-nearest-neighbor-based density peak clustering (SNNDPC) [76], and Automatic

density peak clustering (DPA) [77]; Efficient parameter-free clustering using first neighbor

relations (FINCH) [13], DBSCAN (DB) [74], Mean-shift (MS) [130], Affinity Propagation

(AP) [131], Border-Peeling clustering (BP) [132], and Robust continuous clustering (RCC)

[1]. Among them, DPA, FINCH, DB, MS, AP, BP, and RCC can automatically determine the

number of clusters.

In each experiment, the optimal values for the free parameters of all the compared

methods were selected based on their best performance across a wide range of possible

settings or runs. This approach provided a significant advantage to the compared methods.

Implementation details on each of these baselines are provided in the section 3.6. Contrarily,

the reported performance of TC is from just a single run.

All experiments were evaluated in terms of the two commonly-used external indices:

normalized mutual information (NMI) [133] and accuracy (ACC). Additionally, we also

compared TC with other automatic clustering algorithms for their ability to determine the

optimal number of clusters. We counted the number of data sets each automatic clustering

algorithm returns the exact ground-truth number of clusters, denoted as NGC.

3.3.1 Evaluation on nine synthetic data sets

Fig. 3.5 presents the results of tests with nine different synthetic data sets reflecting

seven challenges commonly faced in clustering. These data sets have been widely used as

benchmark comparisons for many clustering algorithms [134]. Table 3.2 provides the

descriptive statistics of these data sets.

As the tests in Figs. 3.5A-3.5I show, the TC algorithm conquered every trial. In addition,

TC automatically found the exact number of clusters for all nine data sets, matching the

ground-truth numbers perfectly. As a means of visual comparison, we also conducted these

same tests with K-means [16]. As shown in Fig. S3.1 in the section 3.6, K-means failed on

UTS THESIS

41

eight of the nine data sets, the exception being the first. Additionally, see Table 3.3 for the

full quantitative comparison with the 19 state-of-the-art clustering algorithms on these

synthetic data sets.
Figure 3.5. Results with seven different clustering
challenges. As the results show, the proposed TC algorithm
recognized all the clusters regardless of their shape, size, or
density.
A.[135] Highly overlapping: TC
was easily able to recognize the
15 clusters in this data set with
substantial overlaps.

B.[136] FLAME: TC was able
to find the two clusters in this
case designed to test fuzzy
clustering by local
approximation of membership
(FLAME).

C.[137] Spectral-path: This
data set was used to illustrate the
performance of a path-based
spectral clustering algorithm. TC
was perfectly able to identify the
three clusters without the need to
generate a path-based
connectivity graph.
D.[138] Unbalanced: Severe
imbalances in the data did not
present a problem to TC as the
hugely disproportionate clusters
to the right show.

E.[75] Noisy: This data was
originally used to showcase how
a density peak clustering handles
noise. TC was able to detect the
five clusters with lots of noise.

F.[139] Heterogeneous
geometric: TC intuitively found
the three clusters without the
need to calculate point symmetry
distances, as was required in.

Multi-objective: Figs. 3.5G-3.5I show examples of multi-
objective clustering. With these types of tasks, more than one
type of clustering algorithm is needed to reveal all the
different types of cluster structures in the data [140]. The

UTS THESIS

42

current standard is to use ensemble learning to optimize
multiple objective functions. TC was able to identify the
different structures naturally.
 G.[141] H. [142]

I. [143]

3.3.2 Evaluation on 11 real-world data sets

In this section, we evaluated TC on a further 11 real-world clustering tasks (data sets)

across five different domains: image recognition, biology, medicine, physics, and astronomy.

Full descriptive statistics for the 11 data sets used are provided in Table 3.2. Here, we report

the details of the tasks and TC’s individual performance with each of them. Furthermore,

Table 3.3 gives the full quantitative comparison with the 19 state-of-the-art clustering

algorithms on these real-world data sets.

The image recognition experiments comprised handwritten digit recognition, face

recognition, object recognition, and Pose, Illumination, Expression (PIE) recognition as four

independent tasks. We used the popular benchmark data set MNIST [144] for the digit

recognition task, where it was preprocessed using the method in [13]. Each digit from 0 to 9

should be clustered together to form a total of 10 clusters. TC correctly classified the digits

with an accuracy of 99.22%.

The face recognition task was performed on the Olivetti Face Database (OFD) [145].

The results are shown in Fig. S3.2 color-coded by cluster. For ease of reporting, we have only

included the first 100 images, denoted as OFD-F100. Using the similarity measure outlined

in Ref. [146], TC completed the task with 92% accuracy.

The object recognition was conducted on the extremely high-dimensional data set

UTS THESIS

43

COIL-100 (the Columbia University Image Library) [147] comprising 72 viewpoints on 100

objects, making a total of 7,200 samples and 49,152 pixels. TC completed the task with an

NMI of 97.2%.

The PIE recognition was conducted on the CMU Pose, Illumination, and Expression

(CMU-PIE) data set [148], which contains 13 different poses, under 43 different illumination

conditions, and with 4 different expressions. TC completed the task with a perfect accuracy

of 100%.

Figure 3.6. Projection of the five clusters (tumors) of the
RNA-seq data set found by TC in a three-dimensional
subspace.

Figure 3.7. The result for the Atom data set. TC
correctly identified the two clusters: the atom’s kernel and
hull.

Table 3.2. Statistics of the 20 data sets. The Noisy data set has no ground truth labels.

Data sets Instances Dimensions Clusters Imbalance
Highly overlapping 5000 2 15 ~1

FLAME 240 2 2 ~2
Spectral-path 312 2 3 ~1
Unbalanced 2000 2 3 8

Noisy 4000 2 5 -
Heterogeneous geometric 400 2 3 ~2

Multi-objective 1 1000 2 4 1
Multi-objective 2 1000 2 4 1
Multi-objective 3 1500 2 6 ~4

OFD-F100 100 10304 10 1
MNIST 10000 4096 10 ~1

COIL-100 7200 49152 100 1
Shuttle 58000 9 7 4558

RNA-seq 801 20531 5 ~4
Haberman 306 3 2 ~3

Zoo 101 16 7 ~10
Atom 800 3 2 1

Soybean 47 35 4 ~2
Cell-track 40 40 2 1
CMU-PIE 2856 1024 68 1

UTS THESIS

44

The biology experiments comprised tasks in gene expression analysis, cell tracking

analysis, and animal recognition. The gene expression task [3] was conducted with the RNA-

seq data set [149], which is a random extraction of gene expressions in patients with five

different types of tumors. TC correctly recognized all five with 99.88% accuracy. A more

intuitive representation appears in Fig. 3.6 with a plot of the 20,531-dimensional feature

space distilled to 3D space using PCA [116].

For the cell tracking task, we used the cancer cell tracking (Cell-track) data set from

GitHub [150]. The goal is to use cell movements to determine whether they are in the RGDS

or FSL layer. TC correctly tracked the cells to each of the two layers with 87.5% accuracy.

The last task, animal recognition, with the Zoo data set from the UCI Machine Learning

Repository [151] was completed by TC with an accuracy of 92.08%.

The two tasks in the medicine domain were soybean disease diagnosis, and diagnosis of

survival time in breast cancer patients.

The Soybean data set [152] contains observations of four diseases present in soybean

plants. TC identified the diseases with a perfect accuracy of 100%.

 Last in this domain was the survival time for breast cancer patients task using

Haberman’s Survival (Haberman) data set [153]. Survival times in this data are categorized

into two groups – less or more than 5 years – based on three surgical features: the age of the

patient at the time of their operation, the year of the operation, and the number of positive

axillary nodes detected. TC identified three clusters with comparatively high accuracy, which

is very close to the ground-truth of two clusters. Closer inspection of the additional cluster

revealed samples with a reasonable survival time prediction in between the two bipartite

clusters.

In the physics domain, we performed one task with the Atom data set [154], which

contains 3D data similar to an atom kernel and hull. The data set contains two clusters in 𝑅

with a completely overlapping convex hull and has 800 samples in total [155]. This task is to

discriminate between the kernel and hull of the atom. As shown in Fig. 3.7, this was another

task TC performed with perfect accuracy.

UTS THESIS

45

 To evaluate the performance of our TC in the astronomy domain, we tested the NASA

Shuttle data set, which comprises 58,000 instances generated by seven unique conditions in

the radiator subsystem [1]. TC completed this task with an accuracy of 90.63%.

3.3.3 Results and analysis

3.3.3.1 Performance advantage

According to the full quantitative comparison (see Table 3.3), TC indisputably

outperformed all other state-of-the-art algorithms, given its best-in-show performance on 15

of the data sets.

In terms of the rank in Table 3.3, the next-best algorithm, SNNDPC, was about four

times higher than TC in its ranking scores both on NMI and ACC, even then, needs to set the

ground truth number of clusters in advance.

Moreover, beyond simple ranking metrics, there are some important quality-of-life

issues to note:

Table 3.3A. Performance comparison of all algorithms on all data sets, measured by NMI. The Noisy data
set does not contain ground-truth labels, we removed it in the comparison. “NA” means not applicable.

Table 3.3B. Performance comparison of all algorithms on all data sets, measured by ACC.

Data sets/Methods K-M++ GMM Fuzzy SC AC-A AC-W AC-S AC-C AC-CR DPC DPCLP SNNDPC DPA FINCH DB MS AP BP RCC TC
Highly overlapping .9652 .9713 .9537 .0128 .9596 .9354 .0346 .8867 .9455 .9747 .8497 .9572 .9705 .8665 .2830 .9474 .7542 .8460 .7887 .9568

FLAME .4843 .4477 .4422 .0479 .4832 .3297 .0479 .0770 .0479 .4132 .7937 .8288 .5805 .4896 .8374 .8673 .4408 .9083 .6492 1.0000
Spectral-path .0012 .0678 .0003 1.0000 .0031 .0068 1.0000 .0106 .0119 1.0000 .3037 1.0000 .3903 .5359 1.0000 .3999 .5546 .2056 .5940 1.0000
Unbalanced .4453 1.0000 .4429 1.0000 .6108 .6109 1.0000 .4406 .6351 1.0000 .6228 1.0000 .6526 .3720 1.0000 .6962 .3841 .5134 .3310 1.0000

Heterogeneous geometric .8089 1.0000 .8016 1.0000 1.0000 1.0000 1.0000 .4611 1.0000 .7445 1.0000 1.0000 1.0000 .5583 1.0000 .8143 .5855 .8017 .5648 1.0000
Multi-objective 1 .8357 .9696 .6008 1.0000 .6895 .5981 .8633 .7008 .6636 .8044 .9673 1.0000 .8766 .6995 .9977 .7071 .6180 .8750 1.0000 1.0000
Multi-objective 2 .6807 .9448 .6072 1.0000 .6894 .6130 1.0000 .6920 .6775 .6663 1.0000 1.0000 .8660 .6846 1.0000 .7968 .6517 .7999 .8781 1.0000
Multi-objective 3 .7065 .8272 .5319 .7881 .7020 .7229 .8341 .7052 .7204 .9950 .6868 .7304 .7030 .7947 .9709 .8253 .5988 .9092 .5956 .9925

OFD-F100 .9057 .8225 .4923 .8218 .7278 .7927 .5846 .6063 .6744 .8666 .5195 .9136 .8538 .8746 .5195 .8166 .8379 .0000 .0000 .9362
MNIST .9741 .8396 .3338 .9761 .9751 .9714 .0143 .9741 .9754 .9751 .0000 .9765 .8555 .9755 .9686 .8543 .7364 .7888 .7774 .9767

COIL-100 .8281 NA .2866 .8564 .7256 .8353 .6990 .7428 .6577 .8657 .0760 .6919 .8504 .7897 .7223 .0270 .8388 .5510 .9628 .9720
Shuttle .3247 .3888 .2415 .5860 .0277 .2671 .0385 .0516 .0285 .5769 NA NA .3700 .0368 .5113 .6060 NA .3273 .4858 .6389

RNA-seq .9808 .8400 .5711 .9948 .0464 .9860 .0318 .7252 .0320 .8348 .0000 .9895 .9745 .8785 .5712 .5716 .6633 .8960 .9287 .9948
Haberman .0785 .0706 .0000 .0057 .0006 .0204 .0387 .0006 .0083 .0114 .0118 .0000 .0344 .0295 .0448 .0736 .0653 .0249 .0438 .0847

Zoo NA .8587 NA .8438 .8728 .8640 .5025 .9023 .8916 .4937 .3530 .8082 .5257 .8725 .8605 NA .7928 .5643 .8518 .8988
Atom .3060 .9681 .3082 .0158 .2257 .2257 1.0000 .2107 .0620 .2735 1.0000 1.0000 .8236 .5560 1.0000 .6249 .4345 .6382 .4492 1.0000

Soybean NA .9441 NA 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .8025 .0000 .7928 1.0000 .7539 .8489 NA .7914 .6179 1.0000 1.0000
Cell-track .4835 .5617 .3793 .3351 .0620 .5466 .0620 .0620 .0620 .3464 .0631 .3988 .3744 .3986 .3793 .3474 .3817 .1281 .3857 .4592
CMU-PIE .5550 .4284 .1297 .8123 .5060 .5982 .9897 .4920 .3859 .9532 .3857 .3930 .9152 .7977 .7589 .0205 .8365 .2099 .3411 1.0000
Rank 10.5 7.9 16.2 7.3 11.7 10.3 9.5 12.9 12.4 8.7 12.7 6.7 7.7 10.5 7.1 11.1 12.9 12.1 10.4 1.6

Data sets/Methods K-M++ GMM Fuzzy SC AC-A AC-W AC-S AC-C AC-CR DPC DPCLP SNNDPC DPA FINCH DB MS AP BP RCC TC
Highly overlapping .9808 .9842 .9561 .0773 .9754 .9570 .0738 .8514 .9138 .9858 .8548 .9740 .9842 .7468 .1334 .9682 .3124 .7318 .4734 .9714

FLAME .8583 .8417 .8500 .6458 .8333 .7208 .6458 .5167 .6458 .7875 .9625 .9708 .5375 .2292 .9375 .9792 .1375 .9833 .6167 1.0000
Spectral-path .3526 .4295 .3401 1.0000 .3590 .3750 1.0000 .3878 .4038 1.0000 .5769 1.0000 .4744 .1571 1.0000 .3462 .1571 .5032 .2692 1.0000
Unbalanced .6150 1.0000 .4732 1.0000 .5435 .5440 1.0000 .5320 .6795 1.0000 .7215 1.0000 .5160 .1015 1.0000 .7445 .0670 .3510 .1150 1.0000

Heterogeneous geometric .9325 1.0000 .9325 1.0000 1.0000 1.0000 1.0000 .6075 1.0000 .8500 1.0000 1.0000 1.0000 .1350 1.0000 .8225 .1675 .7700 .1700 1.0000
Multi-objective 1 .8530 .9900 .6055 1.0000 .5890 .6580 .7490 .6180 .5760 .6560 .9890 1.0000 .7450 .4280 .9990 .5880 .1320 .8620 1.0000 1.0000
Multi-objective 2 .7910 .9820 .6860 1.0000 .8070 .7140 1.0000 .8090 .7830 .7320 1.0000 1.0000 .7500 .5490 1.0000 .7750 .2280 .7100 .8660 1.0000
Multi-objective 3 .7280 .7607 .5179 .5072 .7153 .7840 .7520 .7093 .7833 .9987 .6547 .7213 .5860 .6133 .9833 .6907 .1160 .9193 .1460 .9980

OFD-F100 .9100 .8200 .2990 .7593 .5900 .7600 .3300 .5200 .4400 .7800 .4100 .8200 .7700 .7700 .3700 .5900 .7000 .1000 .1000 .9200
MNIST .9915 .7842 .2086 .9921 .9917 .9903 .1141 .9912 .9919 .9916 .1135 .9922 .6925 .9918 .9838 .8918 .2662 .6625 .5497 .9922

COIL-100 .5992 NA .0233 .6368 .2794 .6053 .3504 .3521 .2175 .5482 .0187 .3089 .5385 .3922 .4313 .0107 .3529 .2532 .8307 .8633
Shuttle .5456 .5116 .3000 .7581 .7834 .7663 .7862 .6386 .7837 .8893 NA NA .2912 .5788 .8232 .8855 NA .0669 .6619 .9063

RNA-seq .9950 .8939 .5546 .9988 .3645 .9963 .3758 .7403 .3758 .7990 .3745 .9975 .9850 .8240 .6067 .6242 .2784 .9288 .9001 .9988
Haberman .7582 .6667 .5098 .5229 .7320 .7288 .7386 .7320 .7353 .5425 .7353 .6863 .6209 .4771 .7386 .7418 .1242 .7386 .3301 .7549

Zoo NA .8812 NA .7228 .8614 .8812 .5248 .9109 .8911 .4752 .4752 .8515 .4950 .8713 .8317 NA .6733 .5941 .8020 .9208
Atom .7212 .9962 .7362 .5025 .6575 .6575 1.0000 .6450 .5250 .6963 1.0000 1.0000 .8163 .5675 1.0000 .6300 .0975 .6250 .2863 1.0000

Soybean NA .9787 NA 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .8085 .3617 .7021 1.0000 .5106 .7872 NA .5106 .5745 1.0000 1.0000
Cell-track .8750 .9000 .8250 .8000 .5250 .9000 .5250 .5250 .5250 .8250 .6250 .8500 .7750 .7750 .8250 .5250 .6750 .5750 .6000 .8750
CMU-PIE .2479 .2255 .0516 .6524 .1961 .2272 .9496 .1719 .1457 .7892 .1089 .1499 .7539 .3592 .6933 .0259 .3631 .0525 .0882 1.0000
Rank 8.9 7.7 14.8 7.4 10.2 8.0 8.5 11.5 10.4 7.8 11.3 6.1 9.7 13.6 6.6 12.6 16.6 12.6 13.1 1.5

UTS THESIS

46

 Most algorithms that outperformed TC on several data sets are sensitive to

initialization/parameters, so the reported accuracies are the highest of many runs with

different initializations or with different parameters. TC, however, is parameter-free and

does not need any initialization, so the accuracy levels reported are from just a single

run.

 Most algorithms require the analyst to specify the ground truth number of clusters before

running the clustering procedure, whereas TC can automatically determine the number

of clusters.

3.3.3.2 Automatic determination of number of clusters

For a completely unsupervised clustering algorithm, it is important to be able to

automatically determine the number of clusters. The TC algorithm, applied to the 20 data sets

above, returned the exact or close to the exact number of clusters across the board without

human intervention (15 exact, 5 close to). Table 3.4 highlights TC’s performance against the

seven comparators that can also automatically determine the number of clusters. TC was 50%

more accurate than the next-best algorithm, DB, which only identified the correct number of

clusters on 10 data sets even parameters tuning to get these results required many runs. The

others ranged from 0 to 6 sets.

Table 3.4. The performance comparison of eight automatic methods on predicting the ground-truth number of
clusters. #C means the ground-truth number of clusters. NGC indicates the number of data sets each automatic
clustering algorithm returns the exact ground-truth number of clusters.

Data sets/Methods #C DPA FINCH DB MS AP BP RCC TC
Highly overlapping 15 15 56 2 15 116 29 10 15

FLAME 2 6 19 2 2 21 2 5 2
Spectral-path 3 5 56 3 6 35 3 33 3
Unbalanced 3 4 128 3 3 80 12 744 3

Noisy 5 4 29 5 5 144 54 176 5
Heterogeneous geometric 3 3 36 3 3 24 7 33 3

Multi-objective 1 4 6 26 4 2 40 6 4 4
Multi-objective 2 4 2 63 4 4 37 8 14 4
Multi-objective 3 6 10 7 7 5 75 6 104 6

OFD-F100 10 11 8 3 13 17 1 1 12
MNIST 10 42 10 10 15 80 20 149 10

COIL-100 100 129 44 64 11 568 32 90 129
Shuttle 7 336 16 8 56 - 204 144 4

RNA-seq 5 6 4 3 63 36 5 4 5
Haberman 2 5 3 2 5 19 1 6 3

Zoo 7 12 8 3 - 11 3 14 6
Atom 2 2 29 2 13 55 9 80 2

Soybean 4 4 12 3 - 9 2 4 4
Cell-track 2 3 4 1 10 9 1 11 2
CMU-PIE 68 61 271 67 4 231 3 6 68

 NGC - 4 1 10 6 0 4 2 15

UTS THESIS

47

It is worth pointing out, however, that in many fields, choosing the right number of

clusters can be subjective, depending more on the user’s requirements than a ground-truth.

This is why many clustering algorithms, including the well-known clustering method [75],

DPC, all adopt similar kinds of decision graphs to visualize the cluster structure of the data

set. Visualization helps users to estimate the ideal number of clusters, and offering a choice

helps users better meet their own needs. However, because there is no objective and agreed

definition of a cluster, people use different, subjective determinations of where the borders

between clusters are [156]. The research by Balcan et al. on the problem of discovering

ground-truth clustering revealed that using a list of partitions or a hierarchy instead of a single

flat partition is preferable [157]. Decision graphs do not identify a specific number of clusters,

but they do provide a customized way for users to choose for themselves, which complies

with the above views.

The decision graphs of the first 100 images of the Olivetti Face Database (see Fig. S3.4A)

and the nine data sets in Figs. 3.5A-I (see Fig. S3.3) clearly show the cluster structure of each

data set as compared to the decision graph for the DPC algorithm (see Fig. S3.4B). Further,

the ease of estimating the ideal number of clusters with TC is clear. But these decision graphs

provide another benefit. On the Olivetti Face Database data set, the TC algorithm identified

11 abnormal connections and removed them to leave 12. Yet, when looking at the decision

graph, the actual number of abnormal connections is obviously nine. Removing these leaves

10 clusters, which is exactly the ground-truth number. The final recognition accuracy

therefore moves from 92% with TC up to 95%. Thus, the decision graph is also helpful for

manually correcting the TC algorithm in situations of excessive sensitivity.

Further, in the cases where the ground-truth number of clusters K is known, then K-1

connections with the largest 𝜏 in Eq. (3.5) can simply be regarded as abnormal connections.

Table 3.5. Runtime comparison of TC with the state-of-art clustering algorithms on COIL-100 data
set. The results are reported in HH:MM:SS.

K-M++ Fuzzy GMM SC AC-A AC-W AC-S AC-C AC-CR DPC
0:00:28 00:12:16 NA 00:03:41 00:02:02 00:02:27 00:01:53 00:01:57 00:02:07 00:02:11
DPCLP SNNDPC DPA FINCH DB MS AP BP RCC TC

 00:07:25 00:15:08 00:02:28 00:00:48 00:04:03 00:07:09 00:07:59 11:47:26 06:16:51 00:00:31

UTS THESIS

48

For example, with the COIL-100 data set, removing the 99 connections with the largest 𝜏

generates 100 clusters and 89.51% accuracy – higher than TC’s at 86.33%. What this

demonstrates is that if the ground-truth number of clusters is known in advance, TC’s

performance further improves.

3.3.4 Runtime

To reflect the effectiveness of TC more intuitively, we compared the running time of TC

with that of all 19 algorithms. In general, three attributes of the data set, i.e., the number of

samples, dimensions, and clusters, all affect the execution time. Therefore, we chose COIL-

100 as the test data set because all three attributes are reflected in relatively large numbers.

All algorithms were implemented in Matlab or Python. All of the tests were run on a

workstation with two 14-core Intel Xeon 6132 CPUs running at 2.6 GHz and 3.7 GHz, as

well as 96GB of RAM. The average execution time is reported for the clustering algorithms

that need to be executed multiple times. The code provided by the author for GMM fails to

function correctly when applied to this data set. The results in Table 3.5 show the running

time of TC is less than that of all other algorithms except K-means++.

Additionally, Fig. 3.8 illustrates the time taken by TC to run on subsets of the Shuttle

data set that were randomly selected. The proposed TC can produce clustering results in

Figure 3.8. Runtime of TC. We assess the runtime of TC by considering the data set size as a variable,
which is accomplished by randomly selecting subsets of varying sizes from the Shuttle data set for
analysis.

UTS THESIS

49

roughly 12 seconds for all subsets.

3.3.5 Further evaluation on 56 data sets with peculiar characteristics

In this section, we conducted an additional comprehensive evaluation on 56 data sets in

total that includes 27 data sets with noise, outliers, overlaps, or other peculiar distributions,

nine synthetic data sets with unbalanced clusters, five synthetic data sets with uniform noise

and 15 poorly-separated, high-dimensional gene expression data sets. The results are reported

in Tables S3.4-S3.7 and Figs S3.5-S3.7. Overall, TC still retained a great performance

advantage on these data sets.

3.3.6 Comparison to deep clustering algorithms on challenging image data sets

Image data sets usually have very high dimensions, and traditional clustering algorithms

often cannot achieve good results on them. Numerous recent investigations have centered on

utilizing deep neural networks to train a low-dimensional representation that is conducive to

clustering. This kind of approach, often called deep clustering, has led to a substantial

enhancement in clustering performance, particularly for image data sets [85]. Hence, in this

section, we also compared TC with the latest state-of-the-art deep clustering algorithms on

several challenging image data sets, including UMIST [158], FRGC-v2.0 [159], COIL-20

[160], COIL-40 [147], Pendigits [161], and the two mentioned above, COIL-100 [147] and

CMU-PIE [148]. We run TC directly on the raw features (or pixels) of these image data sets

without any other representation. Further, we combined the leaderboards of the "papers with

code", a website that ranks the performance of open-source algorithms, and the latest papers

on deep clustering algorithms, to list the results of the top six deep clustering algorithms that

perform best on these seven image data sets (measured by NMI), as shown in Table 3.6. On

CMU-PIE, COIL-40, and UMIST data sets, TC outperforms all state-of-the-art deep

clustering algorithms. Besides, the results of TC are also competitive on other data sets.

In summary, TC without any deep representation can achieve better or close

performance on challenging image data sets, compared with state-of-the-art deep clustering

UTS THESIS

50

Table 3.6. Comparison to Deep Clustering algorithms, measured by NMI.

algorithms. Deep clustering algorithms also face some challenges. For example, they have

several hyper-parameters that are non-trivial to set, lack interpretability, and have high

computational complexity.

3.4 Discussion

3.4.1 Differences between TC and other hierarchical clustering algorithms

Although TC appears to be a hierarchy-based clustering algorithm, it is different from

the existing algorithms in several major ways.

First, most of the previous hierarchical clustering algorithms are completely based on

the nearest neighbors' statistics without constraints. However, we introduce a simple but very

effective constraint (i.e., the requirement in Eq. (3.1)) in TC, which prevents wrong merging

usefully (see Fig. 3.4). This idea is inspired by the gravitational interactions of galaxy minor

mergers. Second, in each step of TC, if any two neighboring clusters satisfy the requirement

of Eq. (3.1), a connection can be formed, and thus mergers can be performed in parallel. That

means a large cluster can form within very few steps (see Table S3.2), greatly improving

clustering efficiency and reducing the algorithm’s execution time (Table 3.5 and Fig. 3.8).

However, standard hierarchical clustering algorithms need to perform merging at least n-K

times to get K clusters. Third, TC algorithm automatically determines the number of clusters

Data sets CMU-PIE COIL-100 COIL-40 COIL-20 FRGC-v2.0 UMIST Pendigits
Rank 1 1

JULE [162]
2016

.985
JULE [162]

2016

.967
A-DSSC [163]

2020

1
JULE [162]

2016

.651
DNB [164]

2021

.917
DSC-FEDL [165]

2020

.868
EAEDC [166]

2021
Rank 2 1

DDSNnet [167]
2021

.946
A-DSSC [163]

2020

.963
J-DSSC [163]

2020

.981
DSC-FEDL [165]

2020

.610
DEPICT [168]

2017

.893
𝑆 DSCAG [169]

2020

.863
N2D [170]

2019
Rank 3 .970

DAutoED [171]
2021

.943
J-DSSC [163]

2020

.951
DSC-FEDL [165]

2020

.979
SADSC [172]

2021

.580
MI-ADM [173]

2021

.890
DSC-DAG [169]

2020

.820
DnC-SC[174]

2021
Rank 4 .965

MI-ADM [173]
2021

.910
DGMM [175]

2021

.928
RGRL [176]

2020

.974
𝑆 DSCAG [169]

2020

.574
JULE [162]

2016

.881
RGRL [176]

2020

.817
DipDECK [177]

2021

Rank 5 .964
DEPICT [168]

2017

.905
DBC [178]

2018

.920
DASC [179]

2018

.958
DSC-DAG [169]

2020

.544
DPSC [180]

2021

.877
JULE [162]

2016

.814
GCML [181]

2022
Rank 6 .925

DPSC [180]
2021

.886
DDSNnet[167]

2021

.916
DSC-DAG [169]

2020

.910
DGMM [175]

2021

.522
DDSNnet [167]

2021

.851
DNB [164]

2021

.801
AESC[182]

2020
TC 1 .972 .989 .960 .586 .931 .849

UTS THESIS

51

by removing abnormal connections based on a new TGap metric. Instead, most of the existing

hierarchical algorithms still need to manually set the number of clusters (or granularity levels),

even if dendrograms are provided. Finally, TC is robust to noise and outliers and can identify

noise clusters. However, many of the classic agglomerative clustering algorithms are not

robust to noise [63]. As the case study in Fig. 3.4 and the empirical results in Table 3.3, TC

outperforms other hierarchy-based clustering algorithms.

3.4.2 Differences between TC and density peak clustering algorithms

Even though the decision graph of TC is similar to that of DPC techniques, it is also

different from the existing algorithms in several major ways.

First, decision objects are different. TC determines which connections between

neighboring clusters are abnormal connections, and then prunes the clustering tree by

removing them to get the results. The DPC is to decide which data samples are cluster centers,

and then complete the label assignments of the remaining samples according to them.

Excluding the distance between clusters (or between samples), as the basis for determining

abnormal connections, TC only needs to count the number of samples (i.e., mass) contained

in each cluster to obtain 𝑀 in Eq. (3.3), without any hyper-parameters. While DPC uses

some density estimators to estimate the local density of each sample to determine the cluster

centers, where these density estimators usually contain hyper-parameters such as cutoff

distance. Second, label assignment strategies are different. TC leverages the constrained

method of merging in Eq. (3.1) to assign labels to samples in clusters, which can effectively

improve accuracy. DPC, on the other hand, assigns labels to samples based on selected cluster

centers (i.e., density peaks). However, once the cluster centers are wrongly chosen, then there

may be many more samples subsequently misassigned. For example, in the varied density

data set of Fig. 3.4, DPC erroneously selects two cluster centers (i.e., the blue and red ones)

in a ground truth cluster, which eventually leads to wrong label assignment. Finally,

robustness is different. DPC is not robust to the varied density data sets, since it assumes that

density peaks must be cluster centers. While TC has parallelism in the merging process, that

UTS THESIS

52

is, if any two neighboring clusters satisfy the requirement of Eq. (3.1), a connection can be

formed, which can effectively reduce the sensitivity to varied density in conventional

hierarchical clustering (see Fig. 3.4).

3.4.3 Differences between TC and subspace clustering algorithms

Clustering algorithms attempt to classify elements into categories, or clusters, on the

basis of their similarity metric [75]. Currently, there are some well-known methods that

combine clustering and subspace learning (or metric learning), such as subspace clustering

(SSC) [84], which achieve good results on high-dimensional data sets. However, like most

classical clustering algorithms, such as K-means, linkage methods, the proposed TC tries to

find possible clusters based on the commonly used similarity metric (e.g., Euclidean, cosine),

without learning a new subspace or new similarity metric.

3.4.4 Potential limitations of TC

On the one hand, the merging process of TC relies on nearest-neighbor statistics and

leverages a method like single-linkage to measure the distance between clusters. Therefore,

the performance of TC on some high-dimensional and sparse data sets is not particularly

satisfactory (see Table S3.7), even if still outperforming related methods. On the other hand,

since TC relies on the global mean variable values (i.e., mean_M, mean_D, and mean_) to

detect cluster halo, it is more suitable to be used to identify uniform noise, and may not be

able to accurately identify all non-uniform noise. We will address these issues in future work.

3.5 Conclusion

Whether compared to the classic or very recent methods, TC demonstrates itself to be a

highly accurate algorithm, superior in performance to all its counterparts and with an

unprecedented level of versatility. Overall, we have presented a clustering algorithm that is:

parameter-free, can recognize various types of clusters with different shapes, sizes or densities;

does not depend on a priori knowledge; is robust to noise and outliers; does not need any

UTS THESIS

53

initialization; automatically determines the number of clusters, and does not demand a manually-

specified stopping condition. Moreover, the ability to use any desired method of 1-nearest-cluster

computation means TC is scalable to large data sets with a relatively low computational overhead

and a reasonable time complexity, especially when choosing an approximate nearest neighbor

search method, such as k-d tree or locality-sensitive hashing [12], [13]. In this chapter, we

presented many test cases to showcase TC’s versatility. Even more experimental details and

comparisons of clustering quality versus state-of-the-art methods are provided in Tables S3.1-

S3.7 and Figs. S3.5-S3.9 in the section 3.6.

UTS THESIS

54

3.6 Experimental details and more results

 A B C

 D E F

 G H I

Fig. S3.1. K-means comparisons to the nine experiments in Fig. 3.5. The results reported are the best solution
from 100 runs according to the ground-truth labels or, in the case of data set E, the objective function, as this data
set does not contain ground-truth labels. The initialization method was K-means++. The value of K was set to the
ground-truth number of clusters.

UTS THESIS

55

Fig. S3.2. Cluster analysis of the first 100 images of the Olivetti Face Database. Faces with the same color
wash belong to the same cluster, as identified by TC. TC recognized 12 faces with a ground truth of 10, giving a
92% accuracy rate. The two extra clusters returned were as a result of the method we used for calculating similarity
(i.e., Ref. [146]). This method is biased toward rotations, which, in this case, made the intra-cluster distance of
Class 1 much larger than the other classes. In other words, it made the samples in Class 1 too sparse, which caused
the TC algorithm to identify two extra abnormal connections (see Table. S3.3).

UTS THESIS

56

 A B C

 D E F

 G H I

Fig. S3.3. TC decision graphs for the data point distributions in Fig. 3.5. 𝐷 is on the horizontal axis, and 𝑀
is on the vertical axis. The abnormal connections determined by TC algorithm in each data set appear in bold.
Removing these connections leaves the final cluster partitions for each data set.

UTS THESIS

57

 A B

Fig. S3.4. TC and DPC decision graphs for the Olivetti Face Database tests. TC’s decision graph is
helpful for correcting excessive sensitivity to abnormal connections. Here, (A) shows TC with 𝐷 on
the horizontal axis and 𝑀 on the vertical axis. TC automatically determined the number of abnormal
connections to be 11, inconsistent with the ground-truth of 9. However, it is easy to see the nine
abnormal connections in the decision, which appear in bold. Removing them leaves the 10 ground-truth
clusters. By comparison, (B) shows the decision graph for DPC with data density on the horizontal axis
and density-relative distance on the vertical axis. Identifying the correct 10 clusters here by eye would
be extremely difficult, if not impossible.

UTS THESIS

58

3.6.1 Experimental details

In this study, we benchmarked TC against 19 representative clustering algorithms on 20

data sets (nine synthetic + 11 real-world). Following common practice, Euclidean metric was

used as the similarity measure for most data sets. However, considering the advantage of

cosine metric in processing functional data sets [183] and capturing semantic relations [184],

[185], cosine metric was used as the similarity measure for these data sets: MNIST, COIL-

100, Shuttle, RNA-seq, Haberman, and CMU-PIE. Additionally, Jaccard metric was used for

the categorical data sets with non-numeric features, Zoo and Soybean, following Ref. [186],

and the image similarity measure outlined in Ref. [146] was used for the Olivetti face

database (OFD-F100) in consideration of comparison fairness. Figure S3.8 gives an example

to illustrate the robustness of TC with respect to changes in the metric.

Details of the 19 baselines chosen for comparison follow. The parameter settings for

those algorithms that require them are given in Table S3.1.

K-M++: K-means++ [20]

We used the implementation provided in Matlab and, as recommended, report the best index

values at termination from 100 runs.

GMM: Gaussian mixture model clustering

We used the implementation provided by Ref. [187] and, again, report the best index values

at termination from 100 runs as recommended.

Fuzzy: Fuzzy clustering [68]

We used the Matlab implementation and present the results averaged over 100 random

initializations.

SC: Spectral clustering [72], [129]

As with Fuzzy, we used the Matlab implementation and present the results averaged over 100

random initializations.

AC-S: Hierarchical agglomerative clustering single-linkage

The implementation was provided by Matlab.

AC-C: Hierarchical agglomerative clustering complete-linkage

UTS THESIS

59

As above, the implementation was provided by Matlab.

AC-A: Hierarchical agglomerative clustering average-linkage

As above, Matlab.

AC-W: Hierarchical agglomerative clustering ward-linkage

As above, Matlab.

AC-CR: Hierarchical agglomerative clustering centroid-linkage [127]

As above, Matlab.

DBSCAN (DB) [74]

Another implementation from Matlab. DB has two parameters: Minpts and Eps. The paper

[188] gives a rule of thumb, Minpts = 2*no. of dimensions, which we also followed on the

low-dimensional data sets, i.e., Highly overlapping, FLAME, Spectral-path, Unbalanced,

Noisy, Heterogeneous geometric, Multi-objective 1, Multi-objective 2, Multi-objective 3,

Shuttle, Haberman, and Atom. However, if we had followed this rule for the high-

dimensional data sets (OFD-F100, MNIST, COIL-100, RNA-seq, Zoo, Soybean, Cell-track

and CMU-PIE), Minpts would be close to or greater than the total number of samples, which

means most or all samples would be considered noise. Therefore, for the high-dimensional

data sets, we tested 𝑀𝑖𝑛𝑝𝑡𝑠 10, 20, 30, 40, 50, then chose the best setting for each data

set.

The Eps settings for all data sets were determined by the method in Ref. [189], i.e., �̅�

∑ 𝑑 𝑥 , �̅� , where �̅� ∑ , 𝑑 , denotes the distance, and 𝑥 or 𝑥 means the

samples. We tested 𝐸𝑝𝑠 �̅�, �̅�/2, �̅�/3, … , �̅�/10, and chose the best setting for each data

set.

MS: Mean Shift [130]

We used the implementation provided by Ref. [190]. MS has a bandwidth parameter ℎ. We

borrowed the idea from paper [191] to set ℎ ∑ 𝑑 𝑥 , 𝑥 , , where 𝑥 , is the 𝑘 th

distant neighbor from 𝑥 . In addition, we tested k = [5% n], [10% n], [15% n], …, [30% n],

then chose the best setting for each data set, where means rounding.

UTS THESIS

60

AP: Affinity Propagation [131]

We used the codes provided by the authors [192] with their recommended parameter settings.

DPC: Clustering by fast search and find of density peaks [75]

We followed the implementation recommended in the original paper [193]. DPC has a

parameter, dc, which is used to calculate the density of samples. To maximize the clustering

quality, we followed the guidelines in the paper and tested 𝑑𝑐 1.0% through 2.0% in

steps of .1%, then we chose the best setting for each data set. Further, in some data sets, it

was very difficult to determine the optimal number of clusters from the decision graphs alone

(see Fig. S3.4B). Hence, to maximize DPC’s clustering quality with these data sets, we used

the ground-truth number of clusters instead of referring to the decision graphs.

FINCH: Efficient parameter-free clustering using first neighbor relations [13]

With this algorithm, we also followed the implementation recommended in the original paper

[194]. FINCH is a parameter-free algorithm that provides several options cluster partitions

and asks the user to make a subjective decision as to which is the “ideal” scheme. As an

example, with the MNIST image set, FINCH generated five partitioning schemes ranging

from 1,699 clusters right down to 10 clusters. Therefore, to maximize clustering quality, we

chose the scheme closest to the ground-truth number of clusters, which accords with the

authors’ approach [13].

RCC: Robust continuous clustering [1]

We used the Python implementation provided by Ref. [195] with the default recommended

parameter settings.

BP: Border-Peeling Clustering [132]

We used the codes provided by the authors [196] with their recommended parameter settings.

DPCLP: Dynamic graph-based label propagation for density peaks clustering [27]

We followed the implementation from the authors [197]. This implementation has two

parameters that need to be input: p (fraction of instances) and C (number of clusters).

According to the original paper, we set p to [0.0002, 0.001, 0.01, 0.16] and chose the best

setting for each data set. We set C to the ground-truth number of clusters.

UTS THESIS

61

DPA: Automatic topography of high-dimensional data sets by non-parametric Density

Peak clustering [77]

We used the Python implementation provided by Ref. [198] with the default recommended

parameter settings.

SNNDPC: Shared Nearest Neighbor-based Clustering by Fast Search and Find of

Density Peaks [76]

We used the Matlab implementation provided by the authors [199], and set the algorithm to

assign the hyper-parameter K automatically. Besides, we set the target number of clusters to

the ground-truth number of clusters.

Table S3.1. Parameter settings for baselines

Algorithm Parameter settings
K-means++ EmptyAction= 'singleton', MaxIter= 100, Replicates= 1, K= ground-truth number of clusters
GMM tol = 10 , maxiter = 500, required number of clusters = ground-truth number of clusters
Fuzzy exponent for the matrix U= 2.0, MaxIter= 100, threshold= 10 , required number of clusters = ground-truth

number of clusters
SC LaplacianNormalization= 'randomwalk', SimilarityGraph= 'knn', NumNeighbors= 10, KNNGraphType=

'complete', ClusterMethod= 'kmeans'
AC-S ‘cutoff’= ground-truth number of clusters
AC-C ‘cutoff’= ground-truth number of clusters
AC-A ‘cutoff’= ground-truth number of clusters
AC-W ‘cutoff’= ground-truth number of clusters
AC-CR ‘cutoff’= ground-truth number of clusters
DB – Minpts = 2*the no. of dimensions for the low-dimensional data sets (Highly overlapping, FLAME, Spectral-

path, Unbalanced, Noisy, Heterogeneous geometric, Multi-objective 1, Multi-objective 2, Multi-objective 3,
Shuttle, Haberman, and Atom).

– 𝑀𝑖𝑛𝑝𝑡𝑠 ∈ 10, 20, 30, 40, 50 for the high-dimensional data sets (OFD-F100, MNIST, COIL-100, RNA-seq,
Zoo, Soybean, Cell-track and CMU-PIE)

– 𝐸𝑝𝑠 ∈ �̅�, �̅�/2, �̅�/3, … , �̅�/10 , where �̅� ∑ 𝑑 𝑥 , �̅� , �̅� ∑ for all data sets

MS ℎ ∑ 𝑑 𝑥 , 𝑥 , , where 𝑘 ∈ 5% 𝑛 , 10% 𝑛 , 15% 𝑛 , … , 30% 𝑛

AP 'maxits'=1000, 'convits'=100, 'dampfact'=0.9, Preference = median of similarities
DPC 𝑑𝑐 ∈ 1.0%, 1.1%, 1.2%, 1.3%, 1.4%, 1.5%, 1.6%, 1.7%, 1.8%, 1.9%, 2% , ideal number of clusters= ground-

truth number of clusters
DPCLP 𝑝 ∈ 0.0002, 0.001, 0.01, 0.16 , C= ground-truth number of clusters
DPA Z=1, k_max=1000 or k_max=n/2 when the number of samples is less than 1000
SNNDPC 'AutoPick'= ground-truth number of clusters, K=0
RCC k=10, verbose=’True’, preprocessing=’none’, clustering_threshold=1.0
BP pca=’none’, spectral=’none’

All experiments were performed in Matlab2019b or Python 3.6 (2.7 for BP algorithm as

the authors recommended), and performance was evaluated against the two well-known

external metrics, NMI [200] and ACC [201]. The results for all baselines on all data sets are

reported in Tables 3.3A and 3.3B, with the maximum values highlighted in bold. We also

ranked each algorithm according to its average performance across all data sets. If an

algorithm could not be scaled to a data set, we set its ranking to last for that data set. We also

UTS THESIS

62

evaluated the ability of the automatic clustering algorithms to estimate the ground-truth

number of clusters. The number of clusters determined by each automatic algorithm is

provided in Table 3.4. Exact estimates are marked in bold. When an algorithm needed to be

run many times under different parameters to determine the optimal settings, i.e., DB and

MS, we took the number of clusters corresponding to their maximum metric values. The

Noisy data set does not contain ground-truth labels, so we could not calculate values for the

external metrics. However, the ground-truth number of clusters is known, so, for DB and MS,

we took the number of clusters closest to the ground-truth from many runs.

Table S3.2. Hierarchical tree of TC for each data set.
Table S3.2 shows the number of clusters in each layer of the hierarchical tree for each data set produced by
the TC algorithm. In Step 0, the number of clusters equals the number of samples but, by the end of the
process, each data set will have been merged into one giant cluster. Notably, TC’s hierarchies averaged 7.5
mergers (layers) across the 20 data sets used in this study. A standard hierarchical clustering algorithm would
require an average of 4784.1 mergers because it needs to merge each sample n-1 times, where n is the number
of samples in the data set.

Step Step0 Step1 Step2 Step3 Step4 Step5 Step6 Step7 Step8 Step9 Step10 Step11 Step12

Highly overlapping 5000 1530 618 267 99 38 19 9 5 4 1 - -
FLAME 240 63 22 9 4 2 1 - - - - - -
Spectral-path 312 113 43 21 10 6 4 2 1 - - - -
Unbalanced 2000 626 259 118 54 25 10 4 1 - - - -
Noisy 4000 1217 490 209 98 47 22 8 4 2 1 - -
Heterogeneous geometric 400 126 51 28 14 9 5 3 1 - - - -
Multi-objective 1 1000 342 146 65 32 14 6 4 2 1 - - -
Multi-objective 2 1000 332 153 69 33 16 12 9 6 4 1 - -
Multi-objective 3 1500 164 70 31 13 5 3 2 1 - - - -

OFD-100 100 31 11 4 1 - - - - - - - -
MNIST 10000 1699 528 155 54 19 9 4 3 1 - - -
COIL-100 7200 2211 975 473 241 119 53 18 8 2 1 - -
Shuttle 58000 15884 5963 2362 928 375 163 78 36 12 5 2 1

RNA-seq 801 80 18 7 3 2 1 - - - - - -

Haberman 306 96 40 19 9 5 2 1 - - - - -

Zoo 101 23 7 3 1 - - - - - - - -

Atom 800 240 104 38 16 6 2 1 - - - - -

Soybean 47 12 5 2 1 - - - - - - - -

Cell-track 40 4 2 1 - - - - - - - - -

CMU-PIE 2856 799 213 108 54 11 2 1 - - - - -

Table S3.3. The intra-cluster distance of each class on OFD-F100 data set.
We took the average of the distances between any two samples in each class as the intra-cluster distance and
found that the samples of Class 1 are too sparse because of the bias toward rotations of the similarity calculation
of Ref. [146]. As a result, the TC algorithm automatically identified two more abnormal connections in Class 1,
making 11 abnormal connections in total.

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 Class 10
.3846 .1566 .2621 .2266 .2376 .1898 .0684 .1404 .2000 .2304

UTS THESIS

63

3.6.2 Further evaluation on additional 56 data sets with peculiar characteristics

In this set of tests, we examined how the eight clustering algorithms performed on the

data sets from four different sources. These included: (1) data sets with noise, outliers,

overlaps, or other peculiar distributions from a benchmark database; (2) synthetic data sets

with different degrees of unbalance; (3) synthetic data sets with different degrees of uniform

noise; and (4) poorly-separated, high-dimensional data sets.

The seven comparators included the two well-known algorithms of the 19 mentioned

above, DB and SC. Moreover, since TC is hierarchy-based, five standard hierarchical

clustering algorithms, AC-S, AC-C, AC-A, AC-W, AC-CR, were also included. For a fair

comparison, considering the bias toward data unbalance of accuracy [202], the following

results were measured only by NMI, which is the most widely used metric for evaluation in

the clustering community [203].

A. Test on 27 data sets with noise, outliers, overlaps, or other peculiar distributions

from the benchmark database

Table S3.4 provides the details of the data sets [134], [135], save to say each contains various

numbers of clusters, degrees of noise, overlaps and outliers or other distribution peculiarities.

Fig. S3.5 plots the results for the 27 data sets. TC achieved the highest NMI on 18 of them

and was highest overall in mean rankings, outperforming the next-best algorithm, SC, by

more than two times (1.59 vs. 3.59). TC returned the exact number of ground-truth clusters

on 25 of the 27 data sets compared to the next best automatic algorithm, DB, with perfect

accuracy on only 10.

B. Test on nine synthetic data sets with unbalanced clusters

In this experiment, to evaluate the robustness of TC to data set unbalance, we used the Highly

overlapping data set in Fig. 3.5 and the parameter s was adjusted between 0.1 and 0.9 to

manage the level of unbalance. Class 14 received a probability of 1, class 0 received a

UTS THESIS

64

probability of s, and all other classes were linearly varied between s+0.1 and 1. We evaluated

the performance of TC and the seven algorithms for each value of s in terms of NMI. The

results appear in Fig. S3.6 and Table S3.5. TC still retained the performance advantage on

the data sets with unbalanced clusters and identified the correct numbers of clusters on all the

nine data sets.

C. Test on five synthetic data sets with different degrees of uniform noise

In this experiment, to evaluate the robustness of TC to noise, we used the original synthetic

data set in Fig. 3.3 and controlled the degree of noise by adding 5%-30% uniform noise

respectively. We compared TC and two density-based algorithms, DB and DPC, which have

the noise detection capability. TC achieved the highest NMI and identified the correct

numbers of clusters on all the five data sets. Compared with the other two algorithms, TC is

more robust to noise. Table S3.6 and Fig. S3.7 give the quantitative and visualized results,

respectively.

D. Test on 15 poorly-separated, high-dimensional gene expression data sets

These poorly-separated, high-dimensional real-world data sets of cancer gene expressions

[204] come from various tissues of the human body. They also contain outliers. The results

are shown in Table S3.7. TC achieved the highest NMI on 11 of the 15 data sets, and SC was

highest on only three but was given knowledge of the ground-truth number of clusters in

advance. TC achieved the highest mean NMI across the data sets, and interestingly, it

outperformed the next-best algorithm, SC, by about 9%. Additionally, TC returned the exact

number of ground-truth clusters on seven of the 15 data sets compared to the next best

automatic algorithm, DB, with perfect accuracy on only three.

UTS THESIS

65

Table S3.4. Performance comparison on 27 data sets with noise, outliers, overlaps, or other peculiar
distribution, measured by NMI.
#C means the ground-truth cluster number, and NC stands for the cluster number identified by the algorithms.
NGC indicates the number of data sets each automatic clustering algorithm returns the exact ground-truth
number of clusters. "NA" means not applicable; here, SC broke within 100 runs on the Insect data set.

 NC set manually NC determined automatically

Algorithm AC-S AC-C AC-A AC-W AC-CR SC DB TC

Data Set #C NMI NC NMI NC NMI

Zelnik2 2 .0776 .5164 .1063 .5165 .1275 .5178 2 1 2 .9084

Zelnik4 4 .0845 .7255 .6176 .7224 .6185 .7220 4 .9897 4 .9609

Cluto-t5-8k 6 .0173 .6817 .8183 .8229 .8198 .0210 1 0 6 .8838

S1 15 .8090 .9770 .9835 .9848 .9830 .0127 8 .8409 15 .9880

S2 15 .0334 .8786 .9308 .9268 .9259 .0121 2 .2795 15 .9341

S3 15 .0376 .7071 .7516 .7705 .7437 .0123 11 .0508 15 .7800

S4 15 .0373 .6200 .6690 .6942 .6585 .0119 6 .0463 15 .7164

2d-20c-no0 20 .9164 .9230 .9600 .9908 .9481 .9919 20 .9786 20 .9943

2d-4c-no4 4 .7029 .6880 .8698 .9930 .8698 .7029 10 .8668 4 .9930

DS-850 5 .7206 .8052 .9470 .9750 .9316 .9862 5 .9715 5 .9918

D31 31 .6784 .9519 .9517 .9508 .9518 .9600 5 .5803 31 .9573

R15 15 .8822 .9844 .9922 .9864 .9913 .9942 12 .9203 15 .9893

2d-10c 9 .9538 .9257 .9963 1 1 .9516 8 .9545 9 1

Insect 3 .1859 .5399 .5031 .5654 .5031 NA 2 .4614 2 .5887

Longsquare 6 .6860 .8525 .9088 .8719 .9001 .9897 10 .9128 6 .9834

Square4 4 .0230 .6012 .6915 .6859 .7139 .7253 9 .5525 4 .6940

Tetra 4 .0386 .9823 .9899 .9640 1 1 2 .6369 4 1

Triangle2 4 .4955 .7985 .9014 .9550 .9060 .9829 6 .9038 4 .9763

Chainlink 2 1 .3899 .3615 .3673 .4519 1 2 1 2 1

Compound 6 .8109 .8100 .8371 .7338 .8394 .8335 5 .9300 3 .8217

Diamond9 9 .8022 .9990 .9967 .9961 .9967 .9971 1 0 9 1

Ds4c2sc8 8 .1917 .7213 .8458 .8783 .7907 .8866 9 .7163 8 .8586

Lsun 3 1 .5317 .4988 .5150 .4988 1 3 1 3 1

Wingnut 2 1 1 1 .4935 1 .9795 2 1 2 1

Zelnik3 3 1 .5156 .5595 .5723 .5595 1 3 1 3 1

Zelnik5 4 1 .5797 .6481 .6695 .5501 1 4 1 4 1

Banana 2 1 .5067 .3763 .3934 .6020 1 2 1 2 1

Rank 5.93 5.48 4.52 4.22 4.19 3.59 4.33 1.59

NGC - 10 25

UTS THESIS

66

Zelnik2

Zelnik4

Cluto-t5-8k S1

S2

S3

S4

2d-20c-no0

2d-4c-no4

DS-850

D31

R15

2d-10c

Insect

Longsquare

Square4

Tetra

Triangle2

Chainlink

Compound

UTS THESIS

67

Diamond9

Ds4c2sc8

Lsun

Wingnut

Zelnik3

Zelnik5 Banana

Fig. S3.5. TC’s results on 27 data sets with noise, outliers, overlaps, or other peculiar distribution.

Table S3.5. Performance comparison on nine synthetic data sets with unbalanced clusters, measured by
NMI.
We used the Highly overlapping data set (see Fig. 3.5) and the parameter s was adjusted between 0.1 and 0.9 to
manage the level of unbalance. Class 14 received a probability of 1, class 0 received a probability of s, and all
other classes were linearly varied between s+0.1 and 1. #C means the ground-truth cluster number, and NC
means the cluster number identified by the algorithms. NGC indicates the number of data sets each automatic
clustering algorithm returns the exact ground-truth number of clusters. TC still retained the performance
advantage on the data sets with unbalanced clusters.

 NC set manually NC determined automatically

Algorithm AC-S AC-C AC-A AC-W AC-CR SC DB TC

Data Set #C NMI NC NMI NC NMI

s=0.1 15 .6090 .9241 .9507 .9446 .9417 .0412 17 .8805 15 .9512

s=0.2 15 .6127 .9365 .9556 .9459 .9308 .0300 14 .8788 15 .9560

s=0.3 15 .5243 .9146 .9518 .9354 .9409 .0260 8 .5964 15 .9526

s=0.4 15 .2542 .8527 .9555 .9459 .9566 .0216 6 .6068 15 .9449

s=0.5 15 .2619 .8494 .9395 .9331 .9382 .0185 5 .5988 15 .9599

s=0.6 15 .2629 .8840 .9418 .9379 .9335 .0163 7 .5569 15 .9538

s=0.7 15 .0388 .8760 .9460 .9496 .9481 .0161 2 .2622 15 .9596

s=0.8 15 .2701 .8548 .9392 .9444 .9378 .0138 2 .2748 15 .9621

s=0.9 15 .0348 .8939 .9593 .9391 .9551 .0131 2 .2723 15 .9565

Rank 7.0 4.89 2.22 3.11 3.33 8.0 6.0 1.44

NGC - 0 9

UTS THESIS

68

Table S3.6. Performance comparison on five synthetic data sets with different degrees of uniform noise,
measured by NMI.
We used the original synthetic data sets in Fig. 3.3 and controlled the degree of noise by adding 5%-30% uniform
noise respectively. #C stands for the ground-truth cluster number, and NC denotes the cluster number identified
by the automatic algorithms. NGC indicates the number of data sets each automatic clustering algorithm returns
the exact ground-truth number of clusters. Compared with the other two algorithms, TC is more robust to noise.

 Data set 0% noise 5% noise 10% noise 20% noise 30% noise Rank NGC
#C 12 12 12 12 12

NC determined

automatically

TC NC 12 12 12 12 12 1.0 5
NMI 1 .9765 .9614 .9418 .9163

DB NC 12 22 52 20 1 2.4 1
NMI 1 .8508 .6929 .0755 .0097

NC set manually DPC NMI .8266 .6924 .7017 .6065 .4882 2.4 -

Fig. S3.6. The performance comparison of eight methods on the data sets with unbalanced
clusters.

UTS THESIS

69

 A B C

0% noise 5% noise 10% noise

 D E F

 20% noise 30% noise Robustness comparison

Fig. S3.7. Results on the synthetic data sets with different degrees of uniform noise. (A)- (E) visualize the results
of TC on the data sets with different degrees of uniform noise. (F) gives the comparison results of TC and other
two density-based clustering algorithms on the data sets with different degrees of uniform noise, measured by
NMI. Compared with the other two algorithms, TC is more robust to noise.

UTS THESIS

70

Table S3.7. Performance comparison on 15 poorly-separated, high-dimensional gene expression data sets,
measured by NMI.
These are data sets of cancer gene expressions from Ref. [204]. They are poorly-separated, high-dimensional,
and contain outliers. #C stands for the ground-truth cluster number, and NC indicates the cluster number
identified by the algorithms. NGC indicates the number of data sets each automatic clustering algorithm returns
the exact ground-truth number of clusters. Note that DB returned an NC of 0 on the Nutt-2003-v3 and Pomeroy-
2002-v1 data set, which means it classified all the data samples as noise.

 NC set manually NC determined automatically

Algorithm AC-S AC-C AC-A AC-W AC-CR SC DB TC

Data Set #C NMI NC NMI NC NMI

Alizadeh-2000-v2 3 .0342 .5608 .7226 .5490 .7226 .5838 1 .6325 2 .7642

Alizadeh-2000-v3 4 .5847 .4528 .5987 .4602 .5847 .5934 1 .5077 2 .6258

Armstrong-2002-v2 3 .0673 .7812 .5849 .7580 .5714 .8944 2 .4496 3 .8074

Bittner-2000 2 .0640 .0323 .0026 .0588 .0640 .0183 2 .1120 7 .4223

Golub-1999-v1 2 .0684 .0660 .1376 .8328 .1376 .6916 2 .5494 2 .6190

Gordon-2002 2 .0083 .6482 .0219 .6709 .0083 .7469 1 .5994 2 .6659

Laiho-2007 2 .0263 .0085 .0340 .0177 .0263 .0177 1 .1453 7 .1651

Lapointe-2004-v1 3 .0466 .0684 .1826 .1826 .0285 .0314 1 .1057 14 .3086

Liang-2005 3 .3545 .3545 .3545 .3545 .3545 .3545 2 .3545 3 .3545

Nutt-2003-v3 2 .0527 .1395 .0527 .0420 .0527 .0196 0 0 6 .2520

Pomeroy-2002-v1 2 .1457 .1337 .0079 .0079 .1457 .0688 0 0 7 .1715

Shipp-2002-v1 2 .0937 .0602 .0937 .1477 .0937 .1770 2 .1265 2 .1811

Tomlins-2006 5 .1196 .3192 .4933 .4848 .0957 .4463 1 .0556 5 .4503

Tomlins-2006-v2 4 .1120 .1850 .3491 .3311 .0928 .3536 1 .0482 21 .4807

West-2001 2 .0563 .4508 .4965 .4965 .0563 .4965 1 .3578 2 .5231

Rank 5.13 5.2 3.6 3.87 4.73 3.67 5.13 1.47

Mean .1223 .2841 .2755 .3596 .2023 .3663 .2696 .4528

NGC - 3 7

UTS THESIS

71

3.6.3 Robustness guarantees for the proposed TC

In this section, we showed that if we add some samples (possibly adversarially) to the

original data set, then the number of clusters will not change and the clustering assignments

are preserved (i.e. no new clusters generated, no old clusters merged, etc.) when using TC.

The related proof is based on two previous definitions of data distribution, one is 𝛼,𝐾

𝑠𝑡𝑟𝑖𝑐𝑡𝑙𝑦 𝑠𝑒𝑝𝑎𝑟𝑎𝑏𝑙𝑒 and the other is ,𝐾 𝑠𝑡𝑟𝑖𝑐𝑡𝑙𝑦 𝑎𝑑𝑑𝑖𝑡𝑖𝑣𝑒 𝑠𝑒𝑝𝑎𝑟𝑎𝑏𝑙𝑒 [205].

Guarantees on Results when manually setting number of clusters.

The original data set is denoted as X, and the data set after adding adversarial samples

is denoted as 𝑋 . The adversarial samples are denoted as 𝑊 𝑤|𝑤 ∈ 𝑋 ,𝑤 ∉ 𝑋 .

Theorem 1. Suppose a data set X is ,𝐾 𝑠𝑡𝑟𝑖𝑐𝑡𝑙𝑦 𝑎𝑑𝑑𝑖𝑡𝑖𝑣𝑒 𝑠𝑒𝑝𝑎𝑟𝑎𝑏𝑙𝑒, adding some

adversarial samples W to X to get 𝑋 . If max
∈

min
∈

𝑑 𝑤, 𝑥 and 𝑋 is 𝑛

2 𝑛 ,𝐾 𝑠𝑡𝑟𝑖𝑐𝑡𝑙𝑦 𝑠𝑒𝑝𝑎𝑟𝑎𝑏𝑙𝑒, the clustering assignments are preserved when setting the

number of clusters as K.

 A B

Fig. S3.8. The robustness of TC with respect to changes in the metric. (A) shows the original data
distribution. (B) shows the clustering results of TC under four different distance metrics, visualized by t-
SNE. TC achieved a perfect accuracy among these four cases.

UTS THESIS

72

Proof: Since X is ,𝐾 𝑠𝑡𝑟𝑖𝑐𝑡𝑙𝑦 𝑎𝑑𝑑𝑖𝑡𝑖𝑣𝑒 𝑠𝑒𝑝𝑎𝑟𝑎𝑏𝑙𝑒 , so for all 𝑖 𝑗 and all 𝑥,𝑦 ∈

, 𝑧 ∈ , 𝑑 𝑥,𝑦 𝑑 𝑥, 𝑧 . And because the adversarial sample W satisfies

max
∈

min
∈

𝑑 𝑤, 𝑥 , according to Eq. (3.1) of TC, all adversarial samples will be merged

by some or all of the unique clusters in , … , . On the other hand, since 𝑋 is

𝑛 2 𝑛 ,𝐾 𝑠𝑡𝑟𝑖𝑐𝑡𝑙𝑦 𝑠𝑒𝑝𝑎𝑟𝑎𝑏𝑙𝑒, then for all 𝑖 𝑗 and all 𝑥, 𝑦 ∈ , 𝑧 ∈ ,

 𝑑 𝑥,𝑦 𝑑 𝑥, 𝑧 (3.11)

where 𝑛 and 𝑛 are the number of samples in and . Because 𝑑 𝑥, 𝑦 ,𝑑 𝑥, 𝑧 0,

then

 𝑑 𝑥,𝑦 𝑑 𝑥, 𝑧 (3.12)

We can further derive

 𝑑 𝑥,𝑦 𝑛 𝑛 𝑑 𝑥, 𝑧 (3.13)

Suppose there are any two sub-clusters in , the numbers of samples they contain are

𝑠𝑛 and 𝑠𝑛 respectively, so

 𝑠𝑛 𝑠𝑛 𝑛 (3.14)

Since 𝑠𝑛 𝑠𝑛 2 𝑠𝑛 𝑠𝑛 , then

 𝑛 4𝑠𝑛 𝑠𝑛 (3.15)
So according to (13), we have

 𝑠𝑛 𝑠𝑛 𝑑 𝑥, 𝑦 𝑑 𝑥,𝑦 𝑛 𝑛 𝑑 𝑥, 𝑧 (3.16)

that is,

 𝑠𝑛 𝑠𝑛 𝑑 𝑥,𝑦 𝑛 𝑛 𝑑 𝑥, 𝑧 (3.17)

According to the definition of 𝜏 (i.e., Eq. (3.5)), the Eq. (3.17) above, and the arbitrariness

of x, y and z, if we perform TC on X , the torque values of connections formed between

ground truth clusters must be greater than the torque values of connections formed between

sub-clusters in the ground truth clusters. Therefore, if setting the cluster number as K, the K-

1 abnormal connections must be the connections formed between the ground truth clusters,

the results will be preserved.

UTS THESIS

73

Guarantees on Results when automatically setting number of clusters.

Theorem 2. Suppose that the conditions of Theorem 1 hold. Let 𝑇𝐺𝑎𝑝 and 𝑇𝐺𝑎𝑝 be the

torque gap when performing TC on X and 𝑋 , respectively. If additionally, the following

holds:

𝑎𝑟𝑔𝑚𝑎𝑥 𝑇𝐺𝑎𝑝 𝑎𝑟𝑔𝑚𝑎𝑥 𝑇𝐺𝑎𝑝 𝐾 1 (3.18)

then the clustering assignments are preserved when using the mechanism for automatically

determining abnormal connections (i.e., Eqs (3.6)-(3.9)).

Proof: According to the proof for Theorem 1 and the mechanism for automatically

determining abnormal connections (i.e., Eqs (3.6)-(3.9)), the proof for Theorem 2 is obvious.

As an illustration, we added some adversarial samples to the three synthetic data sets

introduced in the main text. As the Fig S3.9 shown, TC still achieved good results.

Figure S3.9. Results of TC on the data sets with adversarial samples.

UTS THESIS

74

Chapter 4. Multi-view adjacency-constrained hierarchical

clustering

4.1 Introduction

Recently, multi-view clustering has been a research hotspot as an important learning

paradigm in machine learning. Different from traditional clustering methods, multi-view

clustering is exploited to process multi-view data. Multi-view data means the data is collected

from different sources in diverse domains, or obtained from various feature collectors [38].

For example, multiple heterogeneous features can be used to characterize an image, such as

scale-invariant feature transform (SIFT) descriptors [39], GIST descriptors [40], local binary

patterns (LBP) [41], etc. Multiple compatible and complementary features are combined in

multi-view clustering algorithms to improve clustering performance.

Yet despite the importance of multi-view clustering and the plethora of existing

algorithms in past decades, most contemporary approaches in multi-view clustering have

problems with the following two issues: a) parameter tuning and b) significant computational

expense. For most multi-view clustering, e.g., multi-view spectral clustering [43]–[46] and

multi-view subspace clustering [47]–[50], the final performance of the models is heavily

dependent on parameter tweaking. For example, Zong et al. proposed a multi-view spectral

clustering algorithm based on distinct view weights, which has two parameters that need to

be set in order to assign an optimal weight to each view [46]. Zheng et al. proposed a

constrained bilinear factorization multi-view subspace clustering algorithm, which also has

two prior information-related parameters to tune in order to obtain competitive performance

[49]. For most current multi-view clustering methods, prior knowledge, such as noise level

and label information, is required to guide the specific parameter choice steps, which is

troublesome. Furthermore, the computational complexity of most existing multi-view

clustering algorithms is also high; multi-view clustering based on subspace learning and

spectral representation learning, for example, both have time complexities of 𝑂 𝑛 .

Additionally, in some multi-view clustering algorithms [86], the iterative optimization of the

UTS THESIS

75

objective function will also greatly increase the computational overhead. These two

limitations significantly impede the practical use of multi-view clustering.

On the other hand, from the perspective of basic clustering principles, many previous

multi-view clustering algorithms are based on spectral clustering or subspace clustering,

which have some inherent limitations. For example, spectral clustering [72], [129] suffers

from the following three problems: a) the instability of results caused by different

initializations; b) the K value required to construct adjacency matrix needs to be adjusted;

and c) it can only provide clustering results with a single granularity. For subspace clustering

[206], a) establishing the global density threshold causes the method to perform poorly in

detecting clusters with varying densities; and b) setting regularization parameters for the

number of subspaces is time-consuming. Few multi-view clustering algorithms are based on

hierarchical clustering [42]. Compared with spectral clustering and subspace clustering,

hierarchical clustering does not need extra hyper-parameters, and a dendrogram can be

generated to provide clustering results with different granularity levels.

We propose a Multi-view adjacency-Constrained Hierarchical Clustering algorithm

(MCHC) in this chapter to overcome the issues above. MCHC consists of three main parts:

including the Fusion Distance matrices with Extreme Weights (FDEW); adjacency-

Constrained Nearest Neighbor Clustering (CNNC); and the internal evaluation Index based

on Rawls' Max-Min criterion [207] (MMI). FDEW attempts to learn a fusion distance matrix

set, which only uses complementary and consensus information among multiple views, but

exploits the information from each single view. CNNC obeys an intuitive rule that one cluster

and its nearest neighbor with higher mass (size) should be merged into one bigger cluster

during the clustering procedure. CNNC generates multiple partitions based on FDEW. MMI

is exploited to choose the best one from the multiple partitions. MCHC just needs to be

assigned a desired number of clusters, which can be estimated based on the decision graph

of CNNC. In addition, we propose a parameter-free version of MCHC (MCHC-PF). Without

any parameter selection, MCHC-PF can give partitions at different granularity levels.

MCHC-PF has lower time complexity, which is 𝑂 𝑛𝑙𝑜𝑔𝑛 .

UTS THESIS

76

The following are the main contributions of this chapter:

• 1) Proposing a multi-view adjacency-constrained hierarchical clustering (MCHC)

algorithm that can obtain promising clustering results.

• 2) Proposing a parameter-free MCHC algorithm with low computational complexity.

• 3) Proposing the fusion distance matrices with extreme weights, which only uses

complementary information among multiple views, but exploits the information from each

single view.

• 4) Proposing the internal evaluation index based on Rawls' Max-Min criterion for selecting

best partition.

• 5) The proposed methods' superiority is demonstrated by experimental results on eight

real-world data sets.

4.2 Proposed method

4.2.1 Fusion distance matrices with extreme weights (FDEW)

When dealing with multi-view clustering problems, there are two intuitive methods to

fuse multi-view data. One is concatenating all the features of multiple views, and then

performing single-view algorithms directly on the concatenation [208]. Obviously, this

method increases the dimensionality of fusion data, thereby increasing the computational

complexity and possibly reducing the clustering accuracy because of the curse of

dimensionality. The other method is to calculate an average similarity matrix 𝑆̅ ∑ 𝑆 ,

and then input it to a single-view clustering algorithm [209]. The above two methods give

each view the same weight. In fact, the importance of each view may be different. Treating

the data of each view equally may reduce the final clustering accuracy. There are many

studies devoted to assigning different weights to each view according to the discriminative

power of the view [209], but this also brings some problems. Firstly, this may introduce more

parameters (i.e., weights-related parameters), thereby reducing the ease of use of the model;

secondly, when using optimization algorithms to iteratively update the weights, it will greatly

UTS THESIS

77

increase the computational cost and operation time. On the other hand, previous research has

pointed out that sometimes the utilization of multiple views may even deteriorate the final

performance, which is even worse than the performance of best single-view [210]. Therefore,

only extracting information from each single view is also important.

Based on the above analysis, we propose fusion distance matrices with extreme weights

(FDEW). FDEW gives the fixed weights to the distance matrix of each view, which does not

need to be optimized. Besides, FDEW not only uses the complementary information among

multiple views, but also exploits the information from each single view.

Given multi-view data 𝑋 collected from v views, for i-th view, 𝑋 ∈ 𝑅 ,

where n and 𝑑𝑖𝑚 denote the number of data points and the dimensions of the i-th view

respectively.

On the one hand, we regard the distance matrix 𝐷 (𝐷 ∈ 𝑅) of each view as a

fusion distance matrix with extreme weights, that is

𝐷 1 𝐷 ∑ 0 𝐷, (4.1)

On the other hand, we define a fusion distance matrix with equal weights:

 𝐷∗ ∑ 𝐷 (4.2)

𝐷 assigns the weight of 𝐷 to 1, and assigns the weight of the distance matrix of other

views to 0. 𝐷∗ treats the distance matrix of each view equally, and assigns the same weight

to the distance matrix of each view. 𝐷 only uses the information from each single view,

but 𝐷∗ exploits complementary information among multiple views. Combine 𝐷 and 𝐷∗

to form fusion distance matrices with extreme weights (FDEW), where 𝐹𝐷𝐸𝑊

𝐷 ,𝐷 , … ,𝐷 ,𝑎𝑛𝑑 𝐷∗ .

When calculating the distance matrix 𝐷 of each view, we exploit cosine distance.

For the cosine distance between any two samples 𝑥 , 𝑥 in the i-th view, it is defined as

𝑑 𝑥 , 𝑥 1 (4.3)

where 𝑑 𝑥 , 𝑥 ∈ 0,2 .

Theorem 1. The cosine distance between 𝑥 𝑎𝑛𝑑 𝑥 in the 𝑖-th view is equivalent to the

UTS THESIS

78

cosine distance between them on the latent representation [42].

Next, we use a single-view clustering algorithm to get cluster partitions based on each

distance matrix in FDEW.

4.2.2 Adjacency-constrained nearest neighbor clustering (CNNC)

Recently, nearest neighbor clustering (NNC) has become a research focal point [13],

[59], [211]. NNC is a kind of hierarchy-based clustering. Compared with traditional

 Since this thesis is organized by the compilation of papers (Chapters) and each paper (Chapter) has a different

focus, the partial clustering mechanism of TC in Chapter 3 is expressed as CNNC here.

(a) Conventional NNC

(b) Adjacency-constrained NNC

Figure 4.1. a simple example of the traditional NNC merging process (a), and the CNNC procedure (b). We
use dotted lines to denote clusters (i.e., A, B, C, etc.), and rectangles or triangles to represent data samples. We
can see that, in iteration1, the generated clusters from conventional NNC and adjacency-constrained NNC are
the same. Initially each sample is regarded as a cluster, and they all have the same mass (i.e., 1); i.e., they all
satisfy the mass requirement in Eq. (4.4), so if the neighbor relationship is satisfied, a connection can be
generated between clusters. In iteration 2, for conventional NNC, cluster A, cluster B, cluster C and cluster D
are chosen to merge into one big cluster, E. Because cluster A and cluster B are the nearest neighbor of each
other, the nearest neighbor of cluster C is cluster B, and the nearest neighbor of cluster D is cluster C. However,
in the CNNC procedure, cluster C and cluster D are not chosen to merge because mass(D)>mass(C). Cluster
A and cluster B, and cluster B and cluster C are both chosen to merge because mass(A) mass(B) and
mass(C) mass(B).

Original data Iteration 1 Iteration 2

Original data Iteration 1 Iteration 2

UTS THESIS

79

hierarchical clustering, such as average-link or ward-link, NNC has lower computational

complexity (i.e.,𝑂 𝑛𝑙𝑜𝑔𝑛) and can achieve better clustering performance. In addition, NNC

can provide natural partitions at different granularity levels to meet the requirements for

different clustering resolutions in application scenarios. Existing NNC approaches, on the

other hand, are entirely based on the statistic of nearest neighbor, i.e., the merging is done as

long as the neighbor relationship is satisfied. Data samples from different classes may be also

merged in this fashion, lowering clustering accuracy. In this study, we introduce a parameter-

free adjacency-constrained nearest neighbor clustering (CNNC) algorithm, which exploits

the clusters with relatively large mass to guide the merging process, preventing trivial wrong

merging in conventional NNC approaches. The difference between the traditional NNC

method and the CNNC method is shown in Fig. 4.1.

Given a single-view data 𝑋 , initially, each sample is its own cluster. Given the

number of samples contained in a cluster as the mass of the cluster, therefore, in the beginning,

the mass of each cluster equals 1. Then, the following rule is applied to form connections

between clusters:

 → , 𝑖𝑓 𝑚𝑎𝑠𝑠 𝑚𝑎𝑠𝑠 (4.4)

where denotes the j-th cluster, denotes the 1-nearest cluster of . Much research has

been conducted to define the distance between two clusters. Here, we simply leverage the

minimum distance from any sample in one cluster to any sample in the other cluster as the

distance between the two clusters, which is similar to the single-linkage method. 𝑚𝑎𝑠𝑠

represents the mass of (i.e, the number of samples contains). Similarly, 𝑚𝑎𝑠𝑠

is the mass of . The symbol " → " denotes a connection (i.e, merger) 𝐶 between

and .

This process can be also defined in a graph G,

𝐴 ,
1, 𝑖𝑓 𝑚𝑎𝑠𝑠 𝑚𝑎𝑠𝑠
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (4.5)

where A stands for the adjacency matrix of G. Then, new clusters can be obtained by

calculating the connected components of the adjacency matrix A. At this point, one iteration

UTS THESIS

80

has been completed. By repeating this merger process according to Eq. (4.4), all clusters will

eventually merge into one cluster and form a hierarchical tree. Each layer of the hierarchical

tree can be regarded as a partition under a specific granularity.

Each connection (i.e., merger) 𝐶 has two intuitive properties. One of the properties is

the product of the mass of the two clusters it connects

 𝑀 𝑚𝑎𝑠𝑠 𝑚𝑎𝑠𝑠 (4.6)

The other is the square of the distance between the two clusters it connects

 𝑆 𝑑 , (4.7)

Plotting all the connections on a two-dimensional graph of the two properties, called the

decision graph. By observing the decision graph and finding the connections with relatively

large 𝑀 and 𝑆 , remove these connections to get the final reasonable partition.

CNNC is parameter-free. A reasonable partition can be obtained through a certain layer

(granularity) of the clustering tree, or it can be obtained by observing the decision graph and

removing the connections with relatively large 𝑀 and 𝑆 . However, CNNC can also be

assigned the desired number of clusters K. After simply removing K-1 connections with

relatively large 𝑀 𝑆 , then we can get a partition containing K clusters. On the other hand,

in each iteration, CNNC only needs to find the nearest neighbor of each cluster. An efficient

method for obtaining nearest neighbors is through the use of approximate nearest neighbor

search techniques, such as locality-sensitive hashing. Therefore, the complexity of the

algorithm can be reduced to 𝑂 𝑛𝑙𝑜𝑔𝑛 . Compared with traditional hierarchical clustering

algorithms, CNNC has a lower computational overhead.

Exploiting CNNC to perform clustering based on each fusion distance matrix in FDEW,

then v+1 partitions 𝑃 can be obtained, where 𝑃 𝑃 ,𝑃 , … ,𝑃 ,𝑃 .

So which partition is the best? This requires an evaluation index to evaluate the clustering

quality of each partition.

UTS THESIS

81

4.2.3 Internal evaluation index based on Rawls' max-min criterion (MMI)

In practice, the ground-truth labels are often not known in advance. Therefore, we

cannot objectively judge which partition is the best. A simple idea is to use internal evaluation

indices to evaluate each partition to find the best one. Most of the past internal evaluation

indices need to know cluster centers of partition [212]. However, CNNC does not output

specific cluster centers. Here we propose a new internal clustering evaluation index based on

distance matrix to select the best partition based on Rawls' max-min criterion [207], which is

called Max-Min Index (MMI).

For a partition 𝑃 , 1) we arbitrarily select two clusters, and then arbitrarily select a

sample from each cluster, and use the distance between the two samples as the inter-class

distance; 2) We again, choose a cluster arbitrarily, and use the average of the distance between

any two samples in this cluster as the intra-class distance. Based on 1) and 2), we first define

an initial evaluation index:∀𝑥 ∈ ∀ ,∀𝑥 ∈ ∀ ; ∀𝑥 , 𝑥 ∈ ∀ ,

 𝐼
,

| | | |
∑ ,

 (4.8)

The larger 𝐼 , 𝑃 may have a larger inter-class distance and a smaller intra-class distance,

but it is not certain. This is because we randomly select clusters and samples when calculating

𝐼 , which may not be representative. According to Rawls' max-min criterion, the right

decision is that which maximizes the minimum outcome. Inspired by the max-min criterion,

we first calculate the minimum value of 𝐼 :

 𝑚𝑖𝑛 𝐼 𝑚𝑖𝑛
,

∑ ,

xa
r ∈ζk

r ,xb
r ∈ζl

r
,

∑ ,
xc

r ,xd
r ∈ζm

r
 (4.9)

Furthermore, we believe that 𝑃 that maximizes 𝑚𝑖𝑛 𝐼 is the best, that is

𝑠 argmax𝑚𝑖𝑛 𝐼 𝑎𝑟𝑔max
xa

r ∈ζk
r ,xb

r ∈ζl
r

,

∑ ,
xc

r ,xd
r ∈ζm

r
 (4.10)

Therefore, we can finally determine that 𝑃 is the best partition by Eq. (4.10). Compared

with other distance matrix-based internal indices, the proposed MMI is more accurate in

UTS THESIS

82

selecting the best partition (see Table 4.10). The method proposed in [213] can be utilized to

reduce the computational complexity of MMI.

4.2.4 Algorithm of MCHC and MCHC-PF

For Multi-view data 𝑋 , we first calculate 𝐹𝐷𝐸𝑊 according to Eqs.

(4.1)-(4.3). Then we use CNNC to perform clustering based on each 𝐹𝐷𝐸𝑊 , and get

𝑃 . Finally, we select the best partition 𝑃 in 𝑃 according to Eqs. (4.8)-

(4.10). Fig. 4.2 shows the simple flowchart of MCHC, and Algorithm 4.1 shows the pseudo

code of MCHC.

In real life, the correct number of clusters is often not known in advance. Therefore, we

provide a parameter-free version of MCHC (MCHC-PF). Algorithm 4.2 gives the pseudo

code of MCHC-PF. MCHC-PF does not require any parameters, it can provide several

partitions at different granularity levels, and draw a decision graph according to Eqs. (4.6)-

(4.7) for users to estimate a reasonable number of clusters. On the other hand, MCHC-PF

only uses CNNC to perform clustering based on the fusion distance matrix with equal weights

𝐷∗ from FDEW, so it has a shorter runtime than MCHC. Fig. 4.3 shows the decision graph

of MCHC-PF on the data set UCI-digits (this data set will be introduced in the experimental

Figure 4.2. The workflow diagram of the proposed MCHC. We take the data set containing two views
as an example. First, we calculate the distance matrix of each view by Eq. (4.3) to get D1 and D2. Then we
calculate 𝐷 ∗ by Eq. (4.2). D1, D2, and 𝐷 ∗ together form Fusion Distance matrices with Extreme
Weights (FDEW). Next, based on each distance matrix in FDEW, we exploit adjacency-Constrained
Nearest Neighbor Clustering (CNNC) to obtain three partitions (i.e., Partition 1, Partition 2, and Partition
3). Finally, we choose the most reasonable partition (i.e., Partition 2) based on MMI (i.e., Eqs. (4.8)-(4.10)).

UTS THESIS

83

part). It can be clearly seen that there are 9 connections (mergers) with larger 𝑀 and 𝑆 .

Remove them in the adjacency matrix, and we can get the correct 10 clusters, which matches

the ground truth.

There are three main differences between MCHC and MCHC-PF. First, MCHC not only

uses complementary information among multiple views, but exploits the information from

each single view. However, MCHC-PF only exploits the complementary information among

multiple views. Second, MCHC uses naive way to calculate distance matrix for each view,

while MCHC-PF uses k-d tree to approximate the calculation to obtain a sparse distance

matrix. Third, like most existing multi-view clustering methods, MCHC needs to be set target

number of clusters. However, MCHC-PF does not need to set this parameter. It provides

multiple clustering results at different granularity levels for users to choose according to

specific scenarios.

Now we analyze the complexity of MCHC and MCHC-PF. We first analyze the

complexity of MCHC. According to Algorithm 4.1, Steps 3-7 costs 𝑂 𝑣𝑛 , where v is the

number of views. When the distance matrix is known, the cost of CNNC is 𝑂 𝑛 . Therefore,

the cost of Steps 8-19 is 𝑂 𝑣 1 𝑛 . Steps 20-23 costs 𝑂 𝑣 1 𝐾 for MMI

calculation and best partition finding, where K is the target number of clusters. In summary,

the total cost of MCHC is 𝑂 𝑣𝑛 𝑂 𝑣 1 𝑛 𝑂 𝑣 1 𝐾 , approximately 𝑂 𝑛 .

Compared to 𝑂 𝑛 of most multi-view spectral clustering or subspace clustering methods,

the complexity of MCHC is acceptable. For MCHC-PF, we leverage the k-d tree to compute

the sparse distance matrix for each view, so Steps 3-6 costs 𝑂 𝑣𝑛𝑙𝑜𝑔𝑛 . Because MCHC-

PF only runs CNNC on the fusion distance matrix with equal weights 𝐷∗, the cost of Steps

7-16 is approximately 𝑂 𝑛 . Therefore, the total cost of MCHC-PF is 𝑂 𝑛𝑙𝑜𝑔𝑛 .

UTS THESIS

84

 Algorithm 4.1: Algorithm of the proposed MCHC

1 Input: Multi-view data 𝑋 and the target

number of clusters K.
2 Output: Best partition 𝑃 .
3 for i=1:v do
4 Calculating distance matrix 𝐷 by Eq. (4.3).
5 end
6 Calculating 𝐷∗ by Eq. (4.2).
7 Combine 𝐷 and 𝐷∗ to get FDEW.
8 for r=1:v+1 do
9 Initializing adjacency matrix A.
10 Constructing cluster sets (Initially, regard each

sample as a cluster).
11 while cluster sets have more than two clusters

do
12 Searching the nearest cluster of with higher

mass according to 𝐹𝐷𝐸𝑊 .
13 Updating A by Eqs. (4.4)-(4.5) (Using two nearest

samples respectively from two clusters to represent
these two clusters).

14 Calculating 𝑀 and 𝑆 of 𝐶 by Eqs. (4.6)-(4.7).
15 Updating cluster sets based on A.
16 end
17 Updating A by removing K-1 𝐶 with largest

𝑀 𝑆 .

18 Getting partition 𝑃 based on A.
19 end
20 for r=1:v+1 do
21 Calculating 𝑚𝑖𝑛 𝐼 by Eqs. (4.8)-(4.9).
22 end
23 Finding best partition 𝑃 by Eq. (4.10).

UTS THESIS

85

Table 4.1. Statistics of multi-view data sets.
Data sets #Views #Samples #Clusters

100-leaves 3 1600 100
UCI-digits 3 2000 10
COIL20 3 1440 20

Handwritten 2 2000 10
ORL 3 400 40

UMIST 3 575 20
CMU-PIE 3 2856 68
COIL100 3 7200 100

Algorithm 4.2: Algorithm of the proposed MCHC-PF

1 Input: Multi-view data 𝑋 .
2 Output: partitions at different granularity levels

𝑅 .
3 for i=1:v do
4 Calculating sparse distance matrix 𝐷 by Eq.

(4.3).
5 end
6 Calculating 𝐷∗ by Eq. (4.2).
7 Initializing adjacency matrix A.
8 Constructing cluster sets (Initially, regard

each sample as a cluster).
9 while cluster sets have more than two

clusters do
10 Searching the nearest cluster of with higher

mass according to 𝐷∗.
11 Updating A by Eqs. (4.4)-(4.5) (Using two nearest

samples respectively from two clusters to represent
these two clusters).

12 Getting partition 𝑅 at current granularity level
based on A.

13 Calculating 𝑀 and 𝑆 of 𝐶 by Eqs. (4.6)-
(4.7).

14 Updating cluster sets based on A.
15 end
16 Plotting decision graph by 𝑀 and 𝑆 .

Figure 4.3. Decision graph of MCHC-PF on the UCI-digits data set. The horizontal axis
represents the property 𝑀 of each connection in the CNNC, and the vertical axis represents the
property 𝑆 of each connection. The nine connections in the red circle have relatively large 𝑀
and 𝑆 . Remove them to leave 10 clusters, which exactly matches the ground-truth.

UTS THESIS

86

4.3 Experiments and results

In this part, we conducted several experiments to show the superiority of MCHC and

MCHC-PF.

4.3.1 Data sets description

(1) 100-leaves: There are 1600 samples in the 100-leaves data set, divided into 100 categories.

The original 100-leaves photos are also different in size. There are three views which display

samples from several angles using shape descriptors, fine scale margins, and texture

histogram characteristics [229].

(2) UCI-digits: The UCI-digit data set can be found in the UCI repository

(https://archive.ics.uci.edu/ml/index.php). The digits (0–9) in this collection were extracted

from Dutch utility maps in 2000 samples. Each class contains 200 samples, each of which is

represented by six feature sets. We employed three feature sets following [214]: 76 character

shape Fourier coefficients, 216 profile correlations, and 64 Karhunen-Loève coefficients.

(3) COIL20: This data set has 1440 grayscale photos of 20 different objects [160]. Each

image is downscaled to 32 by 32 pixels for the original features scenario. Three types of

features are extracted in the case of several hand-crafted features: Intensity, LBP, and Gabor.

The sizes of their features are 1024, 3304 and 6750, respectively [217].

(4) Handwritten: The data set comprises 2000 instances of handwritten digits ranging from

0 to 9, each of which is represented by two distinct views. The first view is a feature vector

with 240 elements, calculated as the average of pixels in 2×3 windows, while the second

view is a Fourier coefficient vector with 76 elements [215].

(5) ORL: This is made up of 400 photos of 40 people's faces. Following [47], each image is

down-sampled to 32 by 32 pixels for the original features scenario. Each image in the

handcrafted features scenario is represented by three types of features.

(6) UMIST: This collection [158] contains 564 photos of 20 people (mixed race, gender, and

appearance). Each person is depicted in a variety of poses, from profile to frontal perspectives.

Each image has a resolution of about 220×220 pixels and a 256-bit greyscale. Following

[216], each image is represented by three heterogeneous feature sets:30 isometric projection

UTS THESIS

87

(ISO), 30 principal component analysis (PCA), and 30 neighborhood preserving embedding

(NPE).

(7) CMU-PIE: This data set [148] contains 2856 frontal-face photos of 68 persons, with 42

distinct illuminations for each object. Each photograph was cropped to a size of 32×32 pixels.

Three feature sets are used to express each image: 30 ISO, 30 PCA, and 30 NPE. Fig. 4.4

shows some sample face images from the CMU-PIE database.

(8) COIL-100: This data set [147] is a library of 7200 color images representing 100 different

types of objects. Each image is 128×128 pixels in size. Each object has 72 distinct photos in

various positions. Each image is expressed using three feature sets: 30 ISO, 30 PCA, and 30

NPE. The full statistics of these data sets are shown in Table 4.1.

4.3.2 Compared algorithms

We compared MCHC and MCHC-PF with 10 state-of-the-art multi-view clustering

algorithms. They include: K-means; Graph-based multi-view clustering (GMC) [92]; Unified

graph learning for multi-view clustering (UGLMC) [89]; View variation and view heredity

clustering (V3H) [217]; Affinity aggregation for spectral clustering (AASC) [43]; Multi-view

clustering via adaptively weighted Procrustes (AWP) [91]; Co-regularized multi-view

spectral clustering (CoReg) [44]; Multi-view consensus graph clustering (MCGC) [218];

Robust multi-view spectral clustering (RMSC) [219]; and Weighted multi-view spectral

clustering (WMSC) [46]. We employed three widely used external clustering validation

indices to evaluate the efficacy of clustering algorithms: Accuracy (ACC), Normalized

mutual information (NMI) [133], and F-score [220]. The best and second-best clustering

results were highlighted and underlined respectively. We presented the optimal clustering

outcomes of multiple views for K-means, which is a clustering algorithm that operates on a

single view of the data. For other multi-view clustering algorithms, the parameters were tuned

according to the suggestions of the original papers to obtain the best results. All experiments

were conducted on a workstation with two 14-core Intel Xeon 6132 CPUs clocked at 2.6

UTS THESIS

88

GHz and 3.7GHz and 96GB memory.

4.3.3 Results and analysis

Tables 4.2, 4.3, and 4.4 show the clustering results and Fig. 4.5 give the average rankings

for all multi-view clustering methods on all data sets. In essence, the proposed MCHC

outperforms all other clustering methods. Whether compared with single-view clustering

algorithms or multi-view clustering algorithms, MCHC shows unparalleled performance

advantages. In particular, for the metric ACC, the results of our MCHC were about 4.8%,

6.3%, 26.4%, 22.5%, and 12.5% better than the second-best (except for MCHC-PF)

clustering results on Handwritten, ORL, UMIST, CMU-PIE and COIL100 data set,

respectively. For the metric NMI, the results of our MCHC were about 5.1%, 4.5%, 8.9%,

8.6%, and 4.5% better than the second-best clustering results on Handwritten, ORL, UMIST,

CMU-PIE and COIL100 data set, respectively. Finally, for the metric F-score, the results of

our MCHC were about 6.9%, 7.2%, 7.7%, 28.1%, 24.5%, and 15.9% better than the second-

best clustering results on COIL20, Handwritten, ORL, UMIST, CMU-PIE and COIL100 data

set, respectively. Besides, in terms of the rank in Fig. 4.5, the next-best algorithm, CoReg,

was three times plus higher than MCHC in its ranking scores among ACC, NMI, and F-score.

Table 4.2. Clustering results of MCHC and other methods in the metric of ACC.

Sources Methods 100-leaves UCI-digits COIL20 Handwritten ORL UMIST CMU-PIE COIL100
- K-means .5780 .6814 .6410 .6921 .5703 .4617 .5377 .5737

TKDE-20 GMC .8238 .8495 .7910 .8300 .6325 .5217 .7048 .7692
ICDM-19 UGLMC .8001 .8825 .9014 .7425 .6900 .6043 .1863 .7267

TAI-21 V3H .8219 .9078 .6005 .8670 .7478 .5245 .7283 .6514
CVPR-12 AASC .8779 .8505 .7806 .8334 .7352 .4428 .5396 .6564
KDD-18 AWP .7800 .8670 .7708 .9315 .6975 .5461 .7749 .7029

NeurIPS-11 CoReg .8421 .9570 .8280 .9111 .7880 .5294 .7382 .7839
TIP-18 MCGC .6075 .4920 .3882 .1005 .5950 .4487 .7006 .5194

AAAI-14 RMSC .7313 .2474 .4092 .4098 .7977 .4753 .7465 .2216
AAAI-18 WMSC .8789 .8410 .8463 .8335 .8068 .4897 .6633 .7142

- MCHC-PF .6931 .6820 .8236 .8805 .8100 .6557 .8883 .8385
- MCHC .8888 .9655 .9250 .9795 .8700 .8678 1 .9087

Table 4.3. Clustering results of MCHC and other methods in the metric of NMI.

Sources Methods 100-leaves UCI-digits COIL20 Handwritten ORL UMIST CMU-PIE COIL100

- K-means .7996 .7025 .8004 .7071 .7784 .6771 .7990 .8239
TKDE-20 GMC .9296 .9013 .9410 .8767 .8590 .7373 .8892 .9371
ICDM-19 UGLMC .9196 .9231 .9705 .8505 .8630 .8373 .3919 .9309
TAI-21 V3H .9099 .8145 .7663 .7425 .8632 .6833 .8666 .8656
CVPR-12 AASC .9590 .9025 .8958 .8827 .8538 .6619 .7921 .8676

UTS THESIS

89

KDD-18 AWP .9013 .8949 .9264 .9026 .8584 .7203 .9140 .9163
NeurIPS-11 CoReg .9325 .9197 .9425 .8811 .8905 .7412 .8829 .9264

TIP-18 MCGC .7606 .7395 .6515 .0350 .8035 .6716 .8070 .7841
AAAI-14 RMSC .8828 .3425 .7155 .4814 .8896 .6673 .8432 .5092
AAAI-18 WMSC .9527 .8839 .9484 .8772 .8950 .7047 .8610 .9026

- MCHC-PF .9146 .8407 .9452 .9214 .9228 .8486 .9666 .9663
- MCHC .9466 .9276 .9826 .9535 .9404 .9262 1 .9816

 Table 4.4. Clustering results of MCHC and other methods in the metric of F-score.

Unlike the other 11 multi-view clustering methods (including MCHC) that require at

least the ground-truth number of clusters to be set, MCHC-PF can give natural partitions at

different granularity levels without any parameters. Table 4.5 shows the number of clusters

obtained at different granularity levels. For most data sets, the clustering results obtained by

Sources Methods 100-leaves UCI-digits COIL20 Handwritten ORL UMIST CMU-PIE COIL100

- K-means .4662 .6331 .6125 .6356 .4547 .4078 .4744 .5164
TKDE-20 GMC .5042 .8426 .7943 .8113 .3599 .4620 .6171 .7195
ICDM-19 UGLMC .7501 .8709 .8696 .7547 .5951 .5701 .0332 .5252

TAI-21 V3H .7469 .8276 .5622 .7613 .6591 .4403 .6178 .5902
CVPR-12 AASC .7783 .8440 .7758 .8167 .5948 .3656 .3766 .4795
KDD-18 AWP .7129 .8455 .7187 .8875 .6163 .4891 .7555 .6985

NeurIPS-11 CoReg .7907 .9171 .8088 .8588 .7091 .4778 .6790 .7583
TIP-18 MCGC .0991 .5294 .1992 .1810 .2588 .3189 .2694 .1390

AAAI-14 RMSC .5129 .2158 .3194 .2881 .7178 .2846 .3751 .0465
AAAI-18 WMSC .8467 .8315 .8331 .8187 .7283 .4177 .6079 .6916

- MCHC-PF .6228 .6718 .8311 .8715 .7560 .6461 .8829 .8605
- MCHC .8212 .9323 .9389 .9591 .8051 .8509 1 .9174

Figure 4.5. Average rankings for all multi-view
clustering methods on all data sets.

 Figure 4.4. Sample face images from the CMU-PIE
database. MCHC achieved 100% accuracy on this data
set.

UTS THESIS

90

MCHC-PF can yield a relatively accurate number of clusters. The clustering results of

MCHC-PF in Tables 4.2, 4.3, and 4.4 are based on the number of clusters that are closest to

the ground truth. The clustering performance of MCHC-PF was worse than that of MCHC,

because MCHC-PF only considers the complementary information (i.e., 𝐷∗) from multiple

views, not the information from each single view. However, as Fig. 4.5 shows, compared

with all other methods, MCHC-PF still achieved competitive results. Particularly, on the five

data sets (i.e., Handwritten, ORL, UMIST, CMU-PIE and COIL100), regarding the NMI

index, the results of MCHC-PF was better than that of other 10 state-of-the-art multi-view

clustering algorithms.

From a theoretical point of view, the reasons why the performance of most multi-view

spectral or subspace clustering methods is not competitive to MCHC are mainly due to the

following two aspects. First, the backbones of these methods are spectral clustering or

subspace clustering, which have inherent limitations. For example, it is hard for spectral

clustering to accurately capture the intrinsic manifold structure in data when constructing the

k-nearest neighbor similarity graph. However, CNNC in MCHC can catch it more accurately

due to its constrained way of merging. Second, when conflicting views exist in multi-view

data, performing clustering on the information from a specific single view may achieve better

results than that on the complementary information from multiple views. Most compared

methods only consider the consensus information from multi-view data. However, MCHC

not only uses complementary information among multiple views but exploits the information

from each single view, achieving better results.

4.3.4 Runtime

To demonstrate the efficiency of the proposed methods, we compared the runtime of the

proposed MCHC and MCHC-PF to three algorithms, including AWP, CoReg, and V3H, from

the 10 state-of-the-art multi-view clustering algorithms. Among them, AWP and CoReg are

the two best-compared ones according to the ACC rankings, and V3H is the latest one.

UTS THESIS

91

According to Table 4.6, the proposed MCHC-PF can produce clustering results in roughly 20

seconds for all data sets. The total runtime of MCHC-PF on all data sets was the lowest. The

runtime of MCHC was significantly more than that of MCHC-PF, because MCHC needs to

run the CNNC algorithm multiple times and once needed for MCHC-PF. However, the

clustering performance of MCHC was better than that of all other clustering algorithms (see

Tables 4.2-4.4).

Table 4.5. Clustering results of MCHC-PF at different granularity levels. #C means the ground-truth number
of clusters, and NC means the number of clusters.

Data sets #C
NC at different granularity

levels
Closest

NC
100-leaves 100 {391, 155, 76, 33, 14, 5, 1} 76
UCI-digits 10 {429, 134, 45, 17, 7, 3, 1} 7

COIL20 20
{414, 181, 88, 47, 24, 13, 5,

3, 1}
24

Handwritten 10 {397, 125, 41, 17, 9, 3, 2, 1} 9
ORL 40 {113, 44, 17, 6, 3, 2, 1} 44

UMIST 20 {184, 84, 42, 21, 11, 7, 4, 1} 21

CMU-PIE 68
{972, 397, 154, 78, 33, 12, 4,

3, 1}
78

COIL100 100
{2148, 924, 469, 251, 127,

52, 14, 6, 2, 1}
127

Table 4.6. Runtime (in seconds) comparison with three representative compared algorithms. The lowest
runtimes were marked in bold.

Data sets AWP CoReg V3H MCHC MCHC-PF
100-leaves 0.87 14.60 687.10 2.19 0.60
UCI-digits 0.59 11.20 876.83 2.99 0.92
COIL20 2.47 10.26 412.52 4.16 2.79

Handwritten 0.40 7.79 617.86 2.51 0.75
ORL 0.18 2.69 155.72 0.38 0.12

UMIST 0.27 3.72 22.67 0.53 0.15
CMU-PIE 2.63 92.72 1568.32 12.14 3.07
COIL100 26.77 1276.28 14584.9 84.74 20.35

4.4 Ablation study

4.4.1 Impact of fusion distance matrices with extreme weights (FDEW)

According to Eqs. (4.1)-(4.3), FDEW not only uses the fusion distance matrix with equal

weights (i.e., 𝐷∗) containing complementary information from multiple views, but exploits

the distance matrix 𝐷 of each view, which includes the information from each single view.

In this section, we explored the results of CNNC on each distance matrix in FDEW to show

the necessity of including these two pieces of information. As Table 4.7 shows, partitions 1-

UTS THESIS

92

3 denotes the results of CNNC on the distance matrix 𝐷 of each single view, and partition∗

means the results of CNNC on the fusion distance matrix with equal weights (i.e., 𝐷∗). Here,

we exploited NMI to evaluate the performance of each partition. The best and MMI-selected

clustering results were highlighted and underlined respectively. On the one hand, the best

clustering results were from partitions 1-3 on some data sets (e.g., COIL20 and ORL), or

from partition∗ on some data sets (e.g., 100-leaves and UCI-digits). Therefore, it is necessary

to consider both the information from each single view and the complementary information

from multiple views. On the other hand, MMI can accurately select the best one from several

partitions.

Table 4.7. the results of CNNC on each distance matrix in FDEW using the metric of NMI. The best and
MMI-selected clustering results are highlighted and underlined respectively.

Data sets Partition1 Partition2 Partition3 Partition∗
100-leaves .8020 .6550 .7577 .9466
UCI-digits .7711 .7697 .9163 .9276
COIL20 .9555 .9826 .9769 .9662

Handwritten .9186 .7697 - .9535
ORL .8175 .9404 .8912 .9309

UMIST .7677 .9262 .8102 .8854
CMU-PIE .8946 .9432 1 .9801
COIL100 .8913 .9816 .9159 .9782

4.4.2 Impact of adjacency-constrained nearest neighbor clustering (CNNC)

To show the superiority of CNNC in the proposed model, on the one hand, we explored

CNNC’s clustering performance advantage by comparing it with other state-of-the-art single-

view hierarchical clustering methods or nearest neighbor clustering (NNC) methods. Seven

well-known hierarchical clustering methods were used including single-linkage, complete-

linkage, average-linkage, ward-linkage, centroid-linkage, median-linkage, weighted-linkage.

Three recent NNC methods, GDL [62], SNNDPC [76] and Finch [13], were used for

comparison. For each of the eight multi-view data sets described above, we concatenated all

the features of multiple views, and then performed CNNC and other baselines directly on the

concatenation. As Table 4.8 shows, compared with other state-of-the-art single-view

clustering methods, CNNC achieved the best results on all data sets.

On the other hand, in the MCHC framework, we replaced CNNC with other hierarchical

clustering or NNC methods and kept other components in the framework unchanged. The

UTS THESIS

93

generated new multi-view hierarchical clustering (MHC) methods were named as MHC-

single, MHC-complete, MHC-average, MHC-ward, MHC-centroid, MHC-median, MHC-

weighted and MHC-GDL, respectively. MHC-SNNDPC and MHC-Finch were removed,

because SNNDPC and Finch need to know the coordinates of data points, and the coordinates

of data points corresponding to 𝐷∗ are unknown. We also performed these alternative ones

on the eight multi-view data sets mentioned above. According to Table 4.9, MCHC still

achieved the best performance on all data sets.

From the above two experiments, CNNC has better performance than previous NNC

Table 4.8. Performance comparison for CNNC and other hierarchical clustering or NNC methods, in the
metric of NMI.

Methods 100-leaves UCI-digits COIL20 Handwritten ORL UMIST CMU-PIE COIL100

Single-linkage .5343 .0348 .9708 .0370 .4951 .6456 .7586 .8847

Complete-linkage .8159 .4727 .7693 .5383 .7221 .5836 .4708 .7753

Average-linkage .8477 .4958 .7745 .6046 .7221 .6461 .4634 .7899

Ward-linkage .8634 .6204 .8664 .7022 .7889 .6228 .5563 .8242

Centroid-linkage .8234 .5387 .6454 .4013 .5784 .5788 .3790 .7727

Median-linkage .8054 .4286 .6713 .1106 .6446 .5998 .4595 .7918

Weighted-linkage .8318 .5071 .7784 .5510 .7324 .6276 .5324 .8033

GDL .8890 .7623 .9318 .8871 .7769 .7488 .7916 .9442

SNNDPC .6875 .6733 .8035 .8200 .6363 .6570 .4243 .6986

Finch .8811 .6002 .8377 .8111 .5729 .6252 .3959 .8435

CNNC .9072 .7715 .9715 .9186 .8181 .9221 .9455 .9816

Table 4.9. Performance comparison with other multi-view hierarchical clustering methods, in the metric of
NMI. The COIL100 data set causes errors in the author's GDL code.

Methods 100-leaves UCI-digits COIL20 Handwritten ORL UMIST CMU-PIE COIL100

MHC-single .6215 .0348 .9708 .0348 .6742 .6693 .9383 .8847

MHC-complete .8731 .5666 .7504 .6289 .8245 .5842 .6827 .7724

MHC-average .8885 .5878 .7854 .5878 .8611 .6524 .7171 .8506
MHC-ward .9219 .7041 .8954 .7041 .8937 .6276 .7335 .8319

MHC-centroid .8645 .5549 .5019 .0347 .3486 .5148 .7093 .7727

MHC-median .8618 .3585 .6980 .3015 .4279 .5633 .6977 .7905

MHC-weighted .8774 .6596 .8009 .6693 .8306 .6663 .7118 .8067

MHC-GDL .9325 .9010 .9374 .9141 .8983 .7573 .8518 -

MCHC .9466 .9276 .9826 .9535 .9404 .9262 1 .9816

Table 4.10. Performance comparison with other distance matrix-based internal indices, in the metric of
NMI.

Data sets Best partition DI Sil CVNN CVDD MMI
100-leaves 0.9466 0.9466 0.9466 .8020 .9466 0.9466
UCI-digits 0.9276 0.9276 0.7711 .7711 .7711 0.9276
COIL20 0.9826 0.9826 0.9769 .9769 .9662 0.9826

Handwritten 0.9535 0.9535 0.9535 .7697 .9535 0.9535
ORL 0.9404 0.9404 0.8912 .8175 .8175 0.9404

UMIST 0.9262 0.7677 0.8102 .9262 .9262 0.9262
CMU-PIE 1 0.8946 1 1 1 1
COIL100 0.9816 0.9816 0.8913 .8913 .9816 0.9816

UTS THESIS

94

methods or hierarchical clustering methods, whether processing single-view data or multi-

view data. This is because the constrained merging way of CNNC can more accurately

capture the manifold structure in the data.

4.4.3 Impact of internal evaluation index based on Rawls' max-min criterion (MMI)

To show the validity of the Internal evaluation index based on Rawls' max-min criterion

(MMI), we exploited four other distance matrix-based internal indices, including Dunn Index

(DI) [221], Silhouette index (Sil) [222], Clustering Validation index based on Nearest

Neighbors (CVNN) [223] and Clustering Validity index based on Density-involved Distance

(CVDD) [224] to select the best partition in the MCHC framework, and kept other

components in the framework unchanged. DI and Sil are two classic internal validity indices,

and CVNN and CVDD are the recent ones. After that, the metric NMI was used to objectively

evaluate the selected partition based on the ground-truth labels. According to Table 4.10, the

proposed MMI can select the best partition on all data sets, whereas the other four distance

matrix-based internal indices cannot.

From a theoretical point of view, the other four distance matrix-based internal indices

all have some inherent flaws. For example, DI exploits the distance between the two farthest

points in cluster as the intra-class distance, which is obviously susceptible to outliers.

Additionally, Sil does not adapt well to non-spherical data sets, and CVDD is susceptible to

changing densities in clusters.

4.5 Discussion

The proposed MCHC consists of three main components: including FDEW, CNNC, and

MMI. Here, we will explain why FDEW, CNNC, and MMI are combined into MCHC, that

is, the theoretical significance of the combination of these three components. First, this is

determined by the generalized paradigm of multi-view clustering. Almost all multi-view

clustering methods first learn complementary (or consensus) information from multi-view

UTS THESIS

95

data, and then use a single-view clustering method for post-processing of the complementary

information. The proposed MCHC framework follows this paradigm. Second, another

significance for combining these three components is to inherit their respective advantages.

For example, FDEW alleviates the poor impact of conflicting views; CNNC can capture the

manifolds in data and improve clustering accuracy compared to traditional NNC methods;

MMI can select the best one from several partitions in an unsupervised manner, no additional

manual intervention is required.

On the other hand, most previous multi-view clustering methods focus on exploring the

different importance of each view to learn an optimal clustering-friendly representation.

However, they ignore the optimization for the clustering mechanism and are only based on

the existing backbone of spectral clustering or subspace clustering. Instead, this study focuses

on the optimization of the clustering mechanism. Even based on representations with extreme

weights (i.e., FDEW), the proposed frameworks still achieved state-of-the-art performance,

which provides new thinking for multi-view clustering. Besides, according to Table 4.7, we

can see that for five out of the eight data sets, the best clustering results were obtained by one

single view. This confirms the viewpoint in [210]: sometimes the utilization of multiple views

may even deteriorate the final performance, which is even worse than the performance of the

best single view.

We further discussed the potential limitations of MCHC and MCHC-PF. On the one

hand, both MCHC and MCHC-PF are based on the single-view clustering method of CNNC.

However, the merging process of CNNC relies on nearest-neighbor statistics and leverages a

method like single-linkage to measure the distance between clusters. Therefore, the

performance of CNNC on some high-dimensional and sparse data sets may be particularly

satisfactory, which also further leads to the non-competitive performance of MCHC and

MCHC-PF. On the other hand, unlike MCHC, MCHC-PF does not consider the information

from each single view. When there are conflicting views in the multi-view data, the

performance of MCHC-PF may decrease.

UTS THESIS

96

4.6 Conclusion

This chapter proposes a Multi-view adjacency-Constrained Hierarchical Clustering

(MCHC) and its parameter-free version (MCHC-PF). By introducing the fusion distance

matrices with extreme weights, adjacency-constrained nearest neighbor clustering and the

internal evaluation index based on Rawls' Max-Min criterion, the promising clustering

performance can be obtained by MCHC. Furthermore, without any parameter selection,

MCHC-PF can provide partitions at different granularity levels with a low time complexity.

Extensive tests on eight real-world data sets demonstrate that the proposed MCHC (-PF)

method outperforms the 10 current state-of-the-art methods.

UTS THESIS

97

Chapter 5. PSO-based multi-view nearest neighbor clustering

5.1 Introduction

This chapter will mainly address another issue in prior multi-view clustering algorithms,

difficulty in finding globally optimal view weights.

On the one hand, most previous multi-view clustering algorithms are based on spectral

clustering [88], [225] or subspace clustering [47], [101]. However, from the perspective of

basic clustering principles, both spectral clustering and subspace clustering have some

inherent limitations. For example, spectral clustering [72], [129] suffers from the following

three problems: a) the instability of results caused by different initializations; b) the K value

required to construct adjacency matrix needs to be adjusted, and c) it can only provide

clustering results with a single granularity. For subspace clustering [206], a) setting the global

density threshold causes the algorithm to have poor performance in identifying clusters with

varying densities; b) regularization parameters regarding the number of the subspaces are

cumbersome to be set.

On the other hand, most multi-view clustering algorithms employ gradient-based

optimization algorithms in finding optimal view weights. However, these algorithms may

become trapped in a local minimum, resulting in poor performance. Moreover, these

optimization algorithms generally require that objective (fitness) functions must be derivable

and continuous, thereby greatly reducing the diversity of objective functions. In contrast,

evolutionary optimization algorithms, such as particle swarm optimization (PSO) [236], are

more likely to reach the global optimum [54], [55], and are much less restrictive on the

properties of the objective functions. Furthermore, evolutionary optimization algorithms are

widely used to improve single-view clustering algorithms [83], [227], but there are very few

works that explore PSO to optimize multi-view clustering.

Based on the above analysis, in this chapter, we propose a particle swarm optimization

(PSO)-based Multi-view Nearest Neighbor Clustering (PMNNC) algorithm. Different from

most previous multi-view clustering based on spectral clustering or subspace clustering, we

UTS THESIS

98

introduce an adjacency-constrained nearest neighbor clustering (CNNC) to enhance the

clustering performance on fusion data from multiple views. Further, we propose a new fitness

function based on the clustering internal validity index to help learn parameters more

accurately. Finally, we combine PSO and CNNC to learn a fusion distance matrix from

multiple views to improve the clustering results.

The following are the main contributions of this chapter:

• 1) Proposing a particle swarm optimization (PSO)-based Multi-view Nearest Neighbor

Clustering (PMNNC) algorithm that can obtain promising clustering results.

• 2) Proposing a new fitness function based on the clustering internal validity index to help

learn parameters more accurately.

• 3) The proposed method’s superiority is demonstrated by experimental results on seven

real-world data sets.

5.2 Proposed Method

5.2.1 Adjacency-constrained nearest neighbor clustering (CNNC)*

Nearest neighbor clustering (NNC) has recently become a research focus [13], [59],

[211]. Compared with conventional hierarchical clustering algorithms, such as average-

linkage and ward-linkage, NNC has a reduced computing complexity (i.e., O(nlogn)),

* Since this thesis is organized by the compilation of papers (Chapters) and each paper (Chapter) has a different

focus, the partial clustering mechanism of TC in Chapter 3 is expressed as CNNC here.

 (a) (b)

Figure 5.1. a simple example of the traditional NNC merging process (a), and the CNNC procedure (b). We
employ dotted lines to denote clusters (i.e., A, B, and C), and circles or triangles to represent data samples.
In traditional NNC, cluster A and cluster B are chosen to merge, cluster C and cluster B are chosen to merge,
because cluster A and cluster B are the nearest neighbor of each other, and the nearest neighbor of cluster C
is cluster B. However, in the CNNC, cluster C and cluster B are not chosen to merge because
mass(C)>mass(B).

UTS THESIS

99

because, in each iteration, NNC merges several clusters that are close to each other, instead

of merging only one nearest cluster like traditional hierarchical clustering. However, whether

traditional hierarchical clustering or NNC, it is based on the statistic of nearest neighbor, that

is, as long as the neighbor relationship is satisfied, the merger is performed. In this way,

samples from different classes may also be merged, thereby impairing clustering accuracy.

Here, we introduce an adjacency-constrained nearest neighbor clustering (CNNC) algorithm,

which leverages clusters with larger masses to guide the merging process, thereby preventing

trivial wrong merging in conventional NNC methods. Fig. 5.1 illustrates the difference

between the conventional nearest neighbor clustering and the adjacency-constrained nearest

neighbor clustering.

Given a data set 𝑋, initially, each sample is its own cluster. Given the number of samples

contained in a cluster as the mass of the cluster, therefore, in the beginning, the mass of each

cluster equals 1. The following rule is then applied to form connections between clusters:

 → , 𝑖𝑓 𝑚𝑎𝑠𝑠 𝑚𝑎𝑠𝑠 (5.1)

where denotes the j-th cluster, denotes the 1-nearest cluster of . 𝑚𝑎𝑠𝑠

represents the mass of (i.e, the number of samples contained). Similarly, 𝑚𝑎𝑠𝑠

is the mass of . The symbol " → " denotes a connection (i.e, merger) 𝐶 between

and . This process can be also defined in a graph G,

𝐴 ,
1, 𝑖𝑓 𝑚𝑎𝑠𝑠 𝑚𝑎𝑠𝑠
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (5.2)

where A stands for the adjacency matrix of G. Then, new clusters can be obtained by

calculating the connected components of the adjacency matrix A. At this point, one iteration

has been completed. By repeating this merger process according to Eq. (5.2), all clusters will

eventually merge into one cluster and form a hierarchical tree. Each layer of the hierarchical

tree then can be regarded as a partition under a specific granularity.

Each connection (i.e., merger) 𝐶 has two intuitive properties. One is the product of the

mass of the two clusters it connects

𝑀 𝑚𝑎𝑠𝑠 𝑚𝑎𝑠𝑠 (5.3)

UTS THESIS

100

The other is the square of the distance between the two clusters it connects

 𝐷 𝑑 , (5.4)

A reasonable partition can be obtained through a certain layer (granularity) of the

clustering tree, Besides, CNNC can also be assigned the desired number of clusters K. After

simply removing K-1 connections with relatively large 𝑀 𝐷 , then we can get a partition

containing K clusters.

5.2.2 Particle swarm optimization (PSO)

Particle Swarm Optimization (PSO) is an effective method for optimizing continuous

nonlinear functions that models so-called social behaviors [83], [226]. A swarm in the context

of PSO is a collection of potential solutions to an optimization problem, each of which is

referred to as a particle. The primary objective of PSO algorithm is to find the particle's

position that results in the best assessment of the fitness (objective) function. Each particle

in the search space is represented by a position in 𝑁 dimensional space, and the algorithm

moves the particles across this multi-dimensional space, adjusting their position towards the

best position they have discovered so far, as well as the best position in their respective

neighborhoods [83], [226].

In addition, each particle retains the following values:

• 𝑥 , its current position

• 𝑣 , its current velocity

• 𝑦 , its best position, found so far [83], [226].

Based on the above notation, the position of a particle is modified as per the following

equation:

𝑣 , 𝑡 1 𝑤𝑣 , 𝑡 𝑐 𝑟 , 𝑡 𝑦 , 𝑡 𝑥 , 𝑡 𝑐 𝑟 , 𝑡 𝑦 𝑡 𝑥 , 𝑡 (5.5)

 𝑥 𝑡 1 𝑥 𝑡 𝑣 𝑡 1 (5.6)

In Eq. (5.5), 𝑤 stands for the inertia weight, 𝑐 and 𝑐 for acceleration constants, while

𝑟 , 𝑡 and 𝑟 , 𝑡 are taken from a uniform distribution 𝑈 0,1 . The particle's velocity is

UTS THESIS

101

then determined using 1) its prior velocity, 2) a cognitive component relating to its best-

achieved distance, and 3) a social component that considers the best-achieved distance over

all the particles in the swarm. The best position of a particle is calculated using Eq. (5.7),

which simply updates the best position if the current 𝑖-timestep's fitness value is less than

the particle's prior fitness value.

𝑦 𝑡 1
𝑦 𝑡 𝑖𝑓 𝑓 𝑥 𝑡 1 𝑓 𝑦 𝑡

𝑥 𝑡 1 𝑖𝑓 𝑓 𝑥 𝑡 1 𝑓 𝑦 𝑡
 (5.7)

The PSO is commonly run by using Eqs. (5.5)-(5.6) repeatedly until a certain number

of iterations is reached. It is crucial to note that, whereas [83], [226] presents two types of

PSO techniques, gbest, and lbest, where the social components are essentially bound to the

particle's current neighborhood rather than the entire swarm, we refer only to the fundamental

gbest proposal in this study.

5.2.3 Fitness function based on a novel internal validity index: minimum spanning

tree-based Dunn’s index (MSTDI)

To evaluate the performance of PSO after each iteration, we need to propose a fitness

function. Here we consider using internal validity index [221] – Dunn’s index (DI),

𝐷𝐼 min min ∈ , ∈
,

, ∈
,

 (5.8)

where is the 𝑗-th cluster, 𝑑 𝑎, 𝑏 stands for the distance between the samples 𝑎 and 𝑏.

𝜋 denotes a partition generated from a clustering algorithm. DI is a distance matrix-based

validity index, which doesn’t need to know specific coordinates of data samples. As Eq. (5.8)

shows, DI is calculated by dividing the minimum inter-cluster distance by the maximum

intra-cluster distance. However, DI uses the distance between the two samples furthest apart

in the cluster as the intra-class distance. This method of calculating intra-class distance is

extremely susceptible to noise or outliers. Therefore, we alleviate this shortcoming based on

the minimum spanning tree (MST) to propose an MST-based DI. We transform each cluster

 to a connected, weighted, undirected graph 𝐺 𝑉,𝐸 , where each node corresponds to a

UTS THESIS

102

data sample, and each weight corresponds to the distance between samples. Then we exploit

Prim’s algorithm [228] to generate an MST, 𝑇 𝑉,𝐸′ for . For each edge 𝑞, 𝑠 ∈

𝑇 𝑉,𝐸′ , there is a weight 𝑑 𝑞, 𝑠 associated with it. Finally, we exploit the weighted sum

of the edges in 𝑇 𝑉,𝐸′ as the intra-class distance . MSTDI can be formulated as

𝑀𝑆𝑇𝐷𝐼 min min ∈ , ∈
,

∑ ,, ∈ ,

 (5.9)

Since both MSTDI and DI are positively correlated with clustering performance, we take the

reciprocal of MSTDI as the fitness function (F), that is

 𝐹
∑ ,, ∈ ,

∈ , ∈
,

 (5.10)

5.2.4 PSO-based multi-view nearest neighbor clustering

Given multi-view data 𝑋 collected from h views, for o-th view, 𝑋 ∈

𝑅 , 𝐷 is the distance matrix of 𝑋 , where n and 𝑑𝑖𝑚 denote the number of

instances and the dimensions of the o-th view respectively. Our goal is to learn a fusion

distance matrix (FDM) from these ℎ views. Therefore, in the context of the PSO-based

clustering, a single particle 𝑥 represents an ℎ-dimension weight vector.

𝑥 𝑝 , … ,𝑝 , … 𝑝 (5.11)

 𝐹𝐷𝑀 ∑ 𝑝 𝐷 𝑥 ⋅ 𝐷 (5.12)

where 𝑝 is the weighting for the o-th view distance matrix in the 𝑖-th particle. That is,

each particle 𝑥 corresponds to a fusion distance matrix 𝐹𝐷𝑀 . We perform the CNNC

algorithm on 𝐹𝐷𝑀 and get the partition 𝜋 , then leverage the fitness function 𝐹 to

evaluate the loss. Therefore, the induced optimization model of this strategy is as follows

𝐦𝐢𝐧𝐹 𝑥 , 𝐷
∑ ,, ∈ ,

∈ , ∈
,

 (5.13)

 𝑠. 𝑡.∑ 𝑝 1,𝑝 ∈ 0,1 (5.14)

where 𝑑 denotes the distance between samples in i-th fusion distance matrix 𝐹𝐷𝑀 . A

simple flowchart of the proposed PMNNC is shown in Fig. 5.2, and the pseudocode of

UTS THESIS

103

PMNNC is presented in Algorithm 5.1.

Figure 5.2. A simple flowchart of the proposed PMNNC.

Algorithm 5.1: Algorithm of the proposed PMNNC

1 Input: Multi-view data 𝑋 , the desired cluster number K.

2 Output: Best partition 𝜋 .
3 Calculating the distance matrix 𝐷 of each view.
4 for t=1: 𝑡 do
5 for z=𝑥 : 𝑥 do
6 Calculating 𝐹𝐷𝑀 by Eq. (5.12).
7 Initializing adjacency matrix A.
8 Constructing cluster sets (Initially, regard each sample as a cluster).
9 while cluster sets have more than two clusters do
10 Searching the nearest cluster of with higher mass according to 𝐹𝐷𝑀 .
11 Updating A by Eqs. (5.1)-(5.2) (Using two nearest samples respectively from two clusters to represent

these two clusters).
12 Calculating 𝑀 and 𝐷 of 𝐶 by Eqs. (5.3)-(5.4).
13 Updating cluster sets based on A.
14 end
15 Updating A by removing K-1 𝐶 with largest 𝑀 𝐷 .
16 Getting partition 𝜋 based on A.
17 Calculating F by Eqs. (5.13)-(5.14).
18 end
19 Updating the global best and local best positions.
20 Updating the weight vectors by Eqs. (5.5)-(5.6).
21 end
22 Return the optimal weight vector 𝑥 and its corresponding partition 𝜋 .

UTS THESIS

104

5.3 Experiment and results

5.3.1 Data sets description

Table 5.1. Statistics of multi-view data sets.

(1) 100-leaves: The 100-leaves data set [229]. The size of the original 100-leaves images

varies as well. Shape descriptors, fine-scale margins, and texture histogram features are used

to display samples from various perspectives in three different views.

(2) COIL20: There are 1440 grayscale images of 20 different things in this data set [160].

For the original features scenario, each image is downscaled to 32 by 32 pixels. In the case

of numerous hand-crafted features, three sorts of features are extracted. Their features are

1024, 3304, and 6750 pixels in size, respectively.

(3) Handwritten: This is made up of 2000 samples spanning from 0 to 9 digits. Each sample

is represented by two views: the first is a 240-feature vector formed from the average of

pixels in 2x3 windows, and the second is a 76-feature Fourier coefficient vector [229] [215].

(4) ORL: This is made up of 400 images of the faces of 40 different people. For the original

features scenario, each image is down sampled to 32 by 32 pixels [47] [145]. Three different

types of features are used to represent each image in the handcrafted features scenario.

(5) UMIST: There are 564 photographs of 20 persons in this collection [158] (mixed race,

gender, and appearance). Each individual is shown in several positions, ranging from profile

to frontal views. Each image has a 256-bit greyscale with a resolution of around 220 by 220

pixels. Each image is represented by three heterogeneous feature sets, as described in [216]:

30 isometric projection (ISO), 30 principal component analysis (PCA), and 30 neighborhood

preserving embedding (NPE).

Datasets #Views #Samples #Clusters
100-leaves 3 1600 100

COIL20 3 1440 20
Handwritten 2 2000 10

ORL 3 400 40
UMIST 3 575 20

CMU-PIE 3 2856 68
COIL100 3 7200 100

UTS THESIS

105

(6) CMU-PIE: This data set [148] includes 2856 frontal-face images of 68 people, each with

42 different illuminations. Each photograph was reduced to a 32×32-pixel size. Each image

is expressed using three feature sets: 30 ISO, 30 PCA, and 30 NPE.

(7) COIL-100: This data set [147] is a collection of 7200 color photographs that represent

100 different objects. Each image has a resolution of 128×128 pixels. There are 72 different

images in varied positions for each object. Three feature sets are used to express each image:

30 ISO, 30 PCA, and 30 NPE. Table 5.1 contains the complete statistics for these data sets.

5.3.2 Compared algorithms

We put PMNNC up against 10 state-of-the-art multi-view clustering techniques. They

include: K-means; Graph-based multi-view clustering (GMC) [92]; Unified graph learning

for multi-view clustering (UGLMC) [89]; View variation and view heredity clustering (V3H)

[217]; Affinity aggregation for spectral clustering (AASC) [43]; Multi-view clustering via

adaptively weighted Procrustes (AWP) [91]; Co-regularized multi-view spectral clustering

(CoReg) [44]; Multi-view consensus graph clustering (MCGC) [218]; Robust multi-view

spectral clustering (RMSC) [219]; and Weighted multi-view spectral clustering (WMSC)

[46]. To evaluate the performance of clustering algorithms, we utilized three widely used

external clustering validation indices: Accuracy (ACC), Normalized mutual information

(NMI) [133], and F-score [220]. The best clustering results were highlighted. We also

presented the best clustering results of multiple views for K-means, a single-view clustering

algorithm. To get the best results from various multi-view clustering algorithms, the settings

were tweaked as specified in the original papers. For PMNNC, we set the swarm sizes and

maximum iterations equal to 5 and 40, respectively (i.e., set 𝑥 𝑥 and 𝑡 40 in

Algorithm 5.1) and took the average results of the three runs. All the tests were run on a

workstation with two 14-core Intel Xeon 6132 CPUs running at 2.6 GHz and 3.7 GHz, as

well as 96GB of RAM.

UTS THESIS

106

Table 5.2. Clustering results of PMNNC and other algorithms in the metric of ACC.

Sources Methods 100-leaves COIL20 Handwritten ORL UMIST CMU-PIE COIL100
- K-means .5780 .6410 .6921 .5703 .4617 .5377 .5737

TKDE-20 GMC .8238 .7910 .8300 .6325 .5217 .7048 .7692
ICDM-19 UGLMC .8001 .9014 .7425 .6900 .6043 .1863 .7267

TAI-21 V3H .8219 .6005 .8670 .7478 .5245 .7283 .6514
CVPR-12 AASC .8779 .7806 .8334 .7352 .4428 .5396 .6564
KDD-18 AWP .7800 .7708 .9315 .6975 .5461 .7749 .7029

NeurIPS-11 CoReg .8421 .8280 .9111 .7880 .5294 .7382 .7839
TIP-18 MCGC .6075 .3882 .1005 .5950 .4487 .7006 .5194

AAAI-14 RMSC .7313 .4092 .4098 .7977 .4753 .7465 .2216
AAAI-18 WMSC .8789 .8463 .8335 .8068 .4897 .6633 .7142

- PMNNC .9273 .9771 .9775 .8642 .8145 1.0000 .9261

Table 5.3. Clustering results of PMNNC and other algorithms in the metric of NMI.
Sources Methods 100-leaves COIL20 Handwritten ORL UMIST CMU-PIE COIL100

- K-means .7996 .8004 .7071 .7784 .6771 .7990 .8239
TKDE-20 GMC .9296 .9410 .8767 .8590 .7373 .8892 .9371
ICDM-19 UGLMC .9196 .9705 .8505 .8630 .8373 .3919 .9309
TAI-21 V3H .9099 .7663 .7425 .8632 .6833 .8666 .8656
CVPR-12 AASC .9590 .8958 .8827 .8538 .6619 .7921 .8676
KDD-18 AWP .9013 .9264 .9026 .8584 .7203 .9140 .9163

NeurIPS-11 CoReg .9325 .9425 .8811 .8905 .7412 .8829 .9264
TIP-18 MCGC .7606 .6515 .0350 .8035 .6716 .8070 .7841
AAAI-14 RMSC .8828 .7155 .4814 .8896 .6673 .8432 .5092
AAAI-18 WMSC .9527 .9484 .8772 .8950 .7047 .8610 .9026

- PMNNC .9643 .9866 .9493 .9385 .9056 1.0000 .9841

Table 5.4. Clustering results of PMNNC and other algorithms in the metric of F-score.
Sources Methods 100-leaves COIL20 Handwritten ORL UMIST CMU-PIE COIL100

- K-means .4662 .6125 .6356 .4547 .4078 .4744 .5164
TKDE-20 GMC .5042 .7943 .8113 .3599 .4620 .6171 .7195
ICDM-19 UGLMC .7501 .8696 .7547 .5951 .5701 .0332 .5252

TAI-21 V3H .7469 .5622 .7613 .6591 .4403 .6178 .5902
CVPR-12 AASC .7783 .7758 .8167 .5948 .3656 .3766 .4795
KDD-18 AWP .7129 .7187 .8875 .6163 .4891 .7555 .6985

NeurIPS-11 CoReg .7907 .8088 .8588 .7091 .4778 .6790 .7583
TIP-18 MCGC .0991 .1992 .1810 .2588 .3189 .2694 .1390

AAAI-14 RMSC .5129 .3194 .2881 .7178 .2846 .3751 .0465
AAAI-18 WMSC .8467 .8331 .8187 .7283 .4177 .6079 .6916
- PMNNC .8817 .9646 .9552 .8149 .8243 1.0000 .9280

5.3.3 Results and analysis

The clustering results are shown in Tables 5.2-5.4. On all data sets, the proposed

Figure 5.3. Average rankings for all multi-view
clustering methods on all data sets.

UTS THESIS

107

PMNNC beat all other clustering algorithms. Whether compared with single-view clustering

algorithms or multi-view clustering algorithms, PMNNC shows considerate performance

advantages. In particular, the results of our PMNNC were roughly 21%, 22.5%, and 14.2%

better than the second-best clustering results on UMIST, CMU-PIE, and COIL100 data sets,

respectively, using the metric ACC. For the metric NMI, the results of our PMNNC were

about 6.8%, 8.6%, and 4.7% better than the second-best clustering results on UMIST, CMU-

PIE, and COIL100 data sets, respectively. Finally, our PMNNC results were roughly 9.5%,

25.4%, 24.5%, and 17% better than the second-best clustering results on COIL20, UMIST,

CMU-PIE, and COIL100 data sets, respectively, using the metric F-score. Besides, in terms

of the rank in Fig. 5.3, the next-best algorithm, CoReg, was three times plus higher than

PMNNC in its ranking scores among ACC, NMI, and F-score. Finally, Fig. 5.4. shows the

trend of best fitness function value with PSO iterations on the seven real-world data sets,

where we can conclude that PMNNC converges quickly on most data sets.

From a theoretical perspective, the inferior performance of numerous multi-view

spectral or subspace clustering methods in comparison to PMNNC can primarily be ascribed

to two key aspects. Firstly, these techniques are based on spectral clustering or subspace

clustering, both of which exhibit inherent limitations. For instance, spectral clustering faces

difficulties in accurately discerning the intrinsic manifold structure within data when

generating the k-nearest neighbor similarity graph. This challenge arises due to the fact that

spectral clustering is not adept at capturing complex structures. Conversely, CNNC, which

is a component of PMNNC, can more effectively capture this structure owing to its

constrained merging manner, providing more accurate connections between data samples.

Secondly, the majority of previous algorithms rely on gradient-based optimization strategies

to learn the weight of each view, with the aim of discovering a globally optimal joint

representation. However, this objective is impeded by the very nature of gradient-based

optimization algorithms, as they have a tendency to become ensnared in local optima.

Consequently, the learned view weights fail to contribute positively to the final clustering

phase. In stark contrast, PMNNC employs PSO to determine the most appropriate view

UTS THESIS

108

weights. By utilizing PSO, the algorithm is better equipped to find the optimal global

solution, thereby more effectively serving the subsequent clustering step. This advantage

ultimately results in a more robust and efficient clustering process, overcoming the

limitations faced by traditional multi-view spectral or subspace clustering techniques.

Table 5.5. Performance comparison with other PSO-based multi-view clustering methods, in the metric of
ACC. The COIL100 data set causes errors in the GDL and SC codes.

Data sets PMC-
avg

PMC-
ward

PMC-
GDL

PMC-
SC

PMNNC

100-leaves .6677 .8635 .8048 .4008 .9273
COIL20 .4516 .7338 .8620 .6623 .9771

Handwritten .5208 .9393 .8785 .7408 .9775
ORL .6575 .7958 .7225 .7258 .8642

UMIST .3548 .4284 .4913 .4470 .8145
CMU-PIE .3910 .4230 .9895 .9076 1
COIL100 .6038 6703 - - .9261

Table 5.6. Performance comparison with other distance matrix-based internal indices, in the metric of
ACC.

Data sets DI CVNN CVDD MSTDI
100-leaves .8977 .6415 .9140 .9273

COIL20 .8525 .9431 .9155 .9771
Handwritten .9775 .9067 .9670 .9775

 100-leaves COIL-20 Handwritten ORL

UMIST CMU-PIE COIL-100

Figure 5.4. The trend of best fitness function value with PSO iterations on the seven real-world data sets
respectively.

UTS THESIS

109

ORL .8625 .6783 .7692 .8642
UMIST .6064 .6701 .8209 .8145

CMU-PIE .8964 .7588 .9834 1
COIL100 .9194 .8428 .9261 .9261

5.4 Ablation study

5.4.1 Impact of adjacency-constrained nearest neighbor clustering (CNNC)

To show the superiority of CNNC in the proposed model. We replaced CNNC of

PMNNC with other well-known clustering methods that can be performed on distance (or

similarity) matrices, including average-linkage, ward-linkage, GDL [62], and spectral

clustering (SC). GDL is a recent NNC-based hierarchical clustering algorithm. The generated

new PSO-based multi-view clustering (PMC) methods were PMC-avg, PMC-ward, PMC-

GDL, and PMC-SC. Similarly, we performed them on the seven data sets and used ACC to

evaluate the results. The metric ACC was used to evaluate the results. According to Table 5.5,

PMNNC still achieved the best performance on all data sets. Essentially, CNNC of PMNNC

outperforms prior NNC methods or hierarchical clustering techniques when handling the

fusion distance matrix. The superior performance can be attributed to CNNC's constrained

merging manner, which enables it to more precisely identify the manifold structure present

within the data.

5.4.2 Impact of minimum spanning tree-based Dunn’s index (MSTDI)

To show the validity of the proposed MSTDI, we replaced it with the original validity

index Dunn Index (DI) [221] and other two recent distance matrix-based internal validity

indices, Clustering Validation index based on Nearest Neighbors (CVNN) [223] and

Clustering Validity index based on Density-involved Distance (CVDD) [224] in the PMNNC

framework. The metric ACC was used to evaluate the results. According to Table 5.6,

compared with other three distance matrix-based internal validity indices, the proposed

MSTDI is more suitable as the fitness function of PSO. Theoretically speaking, the other

UTS THESIS

110

three distance matrix-based internal indices each possess some intrinsic shortcomings. For

instance, DI calculates the intra-class distance using the distance between the two most

distant points within a cluster, making it vulnerable to outliers. Moreover, CVNN struggles

with adapting to sparse data sets, while CVDD is sensitive to variations in cluster densities.

5.4.3 Impact of the two hyperparameters

The PSO algorithm used in PMNNC typically involves two hyperparameters, namely

the swarm size and maximum iterations. While PMNNC inherits these hyperparameters, we

fixed the swarm size and maximum iterations at 5 and 40, respectively, for all the experiments

reported in this study. We made this decision based on the observation that increasing these

hyperparameters' values can lead to easier convergence to smaller fitness function values but

also entails greater computational overhead. Thus, we arrived at a compromise setting for

these hyperparameters.

To further investigate the impact of these hyperparameters on PMNNC's performance,

we conducted additional experiments on the CMU-PIE data set, where we varied the swarm

sizes within the range of {3, 4, 5, 6, 7} and the maximum iterations within the range of {20,

30, 40, 50, 60}. As illustrated in Figure 5.5, the ACC scores of PMNNC remained at 1 for all

hyperparameter settings, indicating that the algorithm's performance is relatively insensitive

to these hyperparameters. However, it is worth noting that the optimal hyperparameter values

for PMNNC may vary across different data sets and applications, and further research is

necessary to explore their impact fully.

Figure 5.5. The ACC scores of PMNNC under varying
hyperparameter settings on the CMU-PIE data set.

UTS THESIS

111

5.5 Conclusion

This chapter proposes a particle swarm optimization (PSO)-based Multi-view Nearest

Neighbor Clustering (PMNNC). By introducing an adjacency-constrained nearest neighbor

clustering (CNNC) algorithm and a new fitness function based on the clustering internal

validity index, the promising clustering performance can be obtained by PMNNC. Extensive

tests using seven real-world data sets demonstrate the supremacy of the proposed PMNNC

over the 10 current state-of-the-art approaches.

UTS THESIS

112

Chapter 6. Almost ultrametric learning using pseudo labels from
clustering

6.1 Introduction

In machine learning, measuring similarity between data points is a fundamental

operation that plays a crucial role in many tasks. Similarity measures are used in various

applications, such as clustering, classification, and retrieval systems, to identify patterns and

similarities in the data. Under the right similarity measures, an unknown pattern can be

accurately identified. Distance is a typical measure of similarity that is used in traditional

machine learning algorithms such as KNN [105] and K-means [16]. The performance of

KNN and K-means is strongly reliant on distance, with Euclidean distance being used in the

majority of applications. Conversely, the Euclidean distance measure considers all the

components of a feature vector as equal, without taking into account their relative importance

when calculating the vector's output [106]. Therefore, in many real-world scenarios, using

Euclidean distance as a metric will degrade the performance of machine learning algorithms.

The emergence of distance metric learning solves this problem [230], [231]. Distance metric

learning has gained significant attention in recent years for improving the performance of

distance-based methods like KNN [105] and K-means [16], after being first introduced in

2003. The primary objective of metric learning is to reduce intra-class distance while

increasing inter-class distance, resulting in each point being closer to other points with the

same label and farther away from those with different labels [106].

On the other hand, past studies have shown that if a distance metric space is closer to an

ultrametric space, it tends to have better clusterability, that is, it is more friendly to clustering

[232]. An ultrametric space is a metric space where the triangle inequality is reinforced to

𝑑 𝑥,𝑦 𝑚𝑎𝑥 𝑑 𝑥, 𝑧 ,𝑑 𝑧, 𝑦 in mathematics [232]. The associated metric, ultrametric, is

used in a variety of fields, such as condensed matter physics, geography, and landscape

ecology.

In this chapter, we first introduce the difference between metric space and ultrametric

space. Then, we propose a new metric called Almost UltraMetric (AUM) and prove that

UTS THESIS

113

under weak conditions, it will be a true ultrametric. Since the learning of the proposed AUM

requires the guidance of ground truth labels, we further propose using pseudo labels to

approximate ground truth labels, thus making the learning process completely unsupervised.

Since the pseudo labels are obtained by Chapter 3 (torque clustering), we call this whole

metric learning framework, Almost UltraMetric Learning using Torque Clustering's pseudo

labels (AUMLTC). It is worth mentioning that, unlike most previous methods, the proposed

AUMLTC is unsupervised and parameter-free. The comparison and ablation experiments

tested on several data sets validate the superiority of the proposed framework.

The following are the main contributions of this chapter:

• 1) Proposing a new metric called Almost UltraMetric (AUM).

• 2) Proving that under weak conditions, the proposed AUM will be a true ultrametric. Several

additional properties of AUM are also extended.

• 3) Proposing a new parameter-free unsupervised metric learning framework, Almost

UltraMetric Learning using Torque Clustering's pseudo labels (AUMLTC).

• 4) The proposed framework’s superiority is demonstrated by experimental results on six data

sets.

6.2 Proposed Method

6.2.1 Metric space and ultrametric space

A dissimilarity on a set of distinct points 𝑃 is a mapping 𝑑:𝑃 𝑃 → ℝ such that

i. 𝑑 𝑥,𝑦 0;

ii. 𝑑 𝑥,𝑦 𝑑 𝑦, 𝑥 ;

iii. 𝑑 𝑥,𝑦 0 if and only if 𝑥 𝑦;

A dissimilarity on 𝑃 that adheres to the triangular inequality

iv. 𝑑 𝑥,𝑦 𝑑 𝑥, 𝑧 𝑑 𝑧, 𝑦

for every 𝑥,𝑦, 𝑧 ∈ 𝑃 is a metric [232]. Furthermore, if the following condition is also

satisfied

v. 𝑑 𝑥,𝑦 𝑚𝑎𝑥 𝑑 𝑥, 𝑧 ,𝑑 𝑧, 𝑦

UTS THESIS

114

in this case, 𝑑 becomes an ultrametric, and the pair 𝑃,𝑑 is an ultrametric space [232]. A

ultrametric must be a metric, but not vice versa. It is worth noting that in an ultrametric space,

any 𝑟-spheric clustering is a perfect clustering [233].

6.2.2 Convert metric space to the proposed almost ultrametric (AUM) space

Consider a data set 𝑋 including some distinct data points, and suppose their labels are

known as ℒ; points with the same label are represented as a class (or cluster). For 𝑥,𝑦 ∈

𝑋 and labels ℒ of 𝑋 , write 𝑥~ℒ 𝑦 if 𝑥 and 𝑦 belong to the same class in ℒ and

𝑥 ≁ℒ 𝑦 otherwise. First, we map 𝑋 to a widely used metric space (e.g., Euclidean), denoted

as 𝑋,𝑑 . We regard 𝑋,𝑑 as the original metric space. Then, the proposed AUM space

𝑋,𝑑 can be obtained from the original space as follows.

For 𝑥~ℒ 𝑦, from any class, the distance between them on the AUM space can be defined as:
𝑑 𝑥,𝑦 min min

, ∈
𝑑 𝑥,𝑦 (6.1)

For 𝑥 ≁ℒ 𝑧, from any two different classes, the distance between them on the AUM space

can be defined as:
𝑑 𝑥, 𝑧 max max max

∈ , ∈
𝑑 𝑥, 𝑧 (6.2)

Essentially, for Eq. (6.1), guided by labels ℒ , we take the minimum value of the

distances between any two points from the same class in the original space as the distance

between any two points from the same class in the proposed AUM space; for Eq. (6.2), we

take the maximum value of the distances between any two points from different classes in

the original space as the distance between any two points from different classes in the

proposed AUM space. According to Eqs. (6.1)-(6.2), in the AUM space, the distances

between points belonging to the same class are reduced, and the distances between points

belonging to different classes are increased. That is, the proposed metric space shrinks the

intra-class (or cluster) distance and enlarges the inter-class (or cluster) distance.

Property 1. The proposed AUM space 𝑋,𝑑 is an ultrametric space if

𝑚𝑖𝑛 𝑚𝑖𝑛
, ∈

𝑑 𝑥,𝑦 𝑚𝑎𝑥𝑚𝑎𝑥 𝑚𝑎𝑥
∈ , ∈

𝑑 𝑥, 𝑧 in the original metric space.

UTS THESIS

115

Proof: We first consider the condition min min
, ∈

𝑑 𝑥, 𝑦 max max max
∈ , ∈

𝑑 𝑥, 𝑧 . For

𝑥,𝑦, 𝑧 ∈ 𝑋, there are three possibilities:

a) 𝑥,𝑦, 𝑧 belong to the same class, that is, 𝑥~ℒ 𝑦, 𝑦~ℒ 𝑧, and 𝑧~ℒ 𝑥. According to Eq.

(6.1), 𝑑 𝑥,𝑦 𝑑 𝑦, 𝑧 𝑑 𝑧, 𝑥 min min
, ∈

𝑑 𝑥,𝑦 , so Eq. ⅴ in section 6.2.1 is

satisfied.

b) 𝑥,𝑦 belong to the same class, and 𝑥, 𝑧 and 𝑦, 𝑧 do not belong to the same class, that is,

𝑥~ℒ 𝑦 , 𝑦 ≁ℒ 𝑧 , and 𝑧 ≁ℒ 𝑥 . According to Eqs. (6.1)-(6.2), 𝑑 𝑥,𝑦

min min
, ∈

𝑑 𝑥,𝑦 max max max
∈ , ∈

𝑑 𝑥, 𝑧 𝑑 𝑦, 𝑧 𝑑 𝑧, 𝑥 , so Eq. ⅴ in section

6.2.1 is satisfied.

c) Any two of 𝑥,𝑦, 𝑧 do not belong to the same class, that is, 𝑥 ≁ℒ 𝑦 , 𝑦 ≁ℒ 𝑧 , and

𝑧 ≁ℒ 𝑥 . According to Eq. (6.2), 𝑑 𝑥, 𝑦 𝑑 𝑦, 𝑧 𝑑 𝑧, 𝑥

max max max
∈ , ∈

𝑑 𝑥, 𝑧 , so Eq. ⅴ in section 6.2.1 is also satisfied.

We can visualize the three cases a), b), and c) as shown in Fig. 6.1.

When min min
, ∈

𝑑 𝑥,𝑦 max max max
∈ , ∈

𝑑 𝑥, 𝑧 , no matter which of a), b), and c) holds,

𝑥,𝑦, 𝑧 will form an equilateral triangle, so Eq. ⅴ in section 6.2.1 is also satisfied.

min min
, ∈

𝑑 𝑥, 𝑦 max max max
∈ , ∈

𝑑 𝑥, 𝑧 is a weak condition, which means that

 (a) (b) (c)

Figure 6.1. The illustration of the three cases (a), (b) and (c).

UTS THESIS

116

the proposed AUM is always an ultrametric.

In the past, many studies explained the characteristics of data sets from the perspective

of metric space [157], [232]. The distribution characteristic of the data set is related to its

clusterability. For example, if a data set is strictly separable, many clustering algorithms are

robust on it [205]. Here, we first introduce two definitions [234], [205].

Definition 1. (,𝑘 𝑠𝑡𝑟𝑖𝑐𝑡𝑙𝑦 𝑎𝑑𝑑𝑖𝑡𝑖𝑣𝑒 𝑠𝑒𝑝𝑎𝑟𝑎𝑏𝑙𝑒). A data set with 𝑋,𝑑 is ε, K

strictly additive separable if there exists a unique clustering 𝛤 , … , of X so that

for all 𝑖 𝑗 and all 𝑥,𝑦 ∈ , 𝑧 ∈ , 𝑑 𝑥,𝑦 𝑑 𝑥, 𝑧 234 , 205 .

Definition 2. (Nice clustering). The clustering result 𝕃 of a data set with 𝑋,𝑑 is nice if

for all 𝑥,𝑦, 𝑧 ∈ 𝑋, 𝑑 𝑦, 𝑥 𝑑 𝑧, 𝑥 whenever 𝑥~𝕃 𝑦, 𝑦 ≁𝕃 𝑧 234 , 205 .

According to definitions 1 and 2, we can easily deduce that the proposed AUM space

has the following two properties.

Property 2. A data set with the proposed AUM space 𝑋,𝑑 is ε, K

strictly additive separable if 𝑚𝑖𝑛 𝑚𝑖𝑛, ∈
𝑑 𝑥, 𝑦 𝑚𝑎𝑥𝑚𝑎𝑥 𝑚𝑎𝑥

∈ , ∈
𝑑 𝑥, 𝑧 , where

0.

Property 3. The clustering result 𝕃 of a data set with the proposed AUM 𝑋,𝑑 is nice if

𝑚𝑖𝑛 𝑚𝑖𝑛
, ∈

𝑑 𝑥,𝑦 𝑚𝑎𝑥𝑚𝑎𝑥 𝑚𝑎𝑥
∈ , ∈

𝑑 𝑥, 𝑧 .

The proofs for properties 2 and 3 are obvious, so we omit them here. From properties 2 and

3, we can see that the AUM space is very friendly to clustering.

6.2.3 Exploit pseudo labels of torque clustering to approximate ground truth labels

Even if the AUM space has some good properties, it still needs to be guided by labels

ℒ. However, in the real world, the acquisition of ground truth labels is expensive. Therefore,

we consider using pseudo labels 𝕃 to approximate it, that is,

𝕃 ℒ (6.3)

UTS THESIS

117

Pseudo labels are easily obtained by some clustering algorithms. To make the pseudo labels

closer to the ground truth labels, we need to choose a relatively general clustering algorithm.

In Chapter 3, we proposed a parameter-free autonomous clustering algorithm called torque

clustering (TC). The algorithm has shown good performance on many data sets with different

characteristics, such as overlapping, unbalanced, shaped, multi-objective, etc. Therefore, here

we leverage TC to generate pseudo labels 𝕃.

Given a data set 𝑋, initially, each sample is its own cluster. Given the number of samples

contained in a cluster as the mass of the cluster, therefore, in the beginning, the mass of each

cluster equals 1. The following rule is then applied to form connections between clusters:

 → , 𝑖𝑓 𝑚𝑎𝑠𝑠 𝑚𝑎𝑠𝑠 (6.4)

where denotes the j-th cluster, denotes the 1-nearest cluster of . 𝑚𝑎𝑠𝑠

represents the mass of (i.e, the number of samples contained). Similarly, 𝑚𝑎𝑠𝑠

is the mass of . The symbol " → " denotes a connection (i.e, merger) 𝐶 between

and . This process can be also defined in a graph G,

𝐴 ,
1, 𝑖𝑓 𝑚𝑎𝑠𝑠 𝑚𝑎𝑠𝑠
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (6.5)

where A stands for the adjacency matrix of G. Then, new clusters can be obtained by

calculating the connected components of the adjacency matrix A. At this point, one iteration

has been completed. By repeating this merger process according to Eq. (6.5), all clusters will

eventually merge into one cluster and form a hierarchical tree. Each layer of the hierarchical

tree then can be regarded as a partition under a specific granularity.

Each connection (i.e., merger) 𝐶 has two intuitive properties. One is the product of the

mass of the two clusters it connects

𝑀 𝑚𝑎𝑠𝑠 𝑚𝑎𝑠𝑠 (6.6)

The other is the square of the distance between the two clusters it connects

 𝐷 𝑑 , (6.7)

Plotting all the connections on a two-dimensional graph of the two properties, called the

decision graph. The decision graph helps to determine the abnormal connections, which have

UTS THESIS

118

relatively large 𝑀 and 𝐷 . Then, removing these abnormal connections to get the final

reasonable partition.

On the other hand, TC provides an automatic mechanism, named Torque Gap (TGap),

to determine abnormal connections, eliminating the need to manually observe abnormal

connections from the decision graph. The TGap is calculated by first calculating the torque

𝜏 of all connections, where

𝜏 𝑀 𝐷 (6.8)

Then sorting all connections in descending order according to their corresponding torque

values, and call it the torque sorted connections list (TSCL). The connection in TSCL and its

torque are denoted as 𝐶 and 𝜏̀ , respectively. Abnormal connections must be the top several

connections in the TSCL, because they have the largest torque values among all the

connections.

The 𝑇𝐺𝑎𝑝 between each connection along with its following connection in the TSCL

is calculated next. The formula for computing 𝑇𝐺𝑎𝑝 is

 𝑇𝐺𝑎𝑝 𝜔
̀

̀
, 𝜏̀ 0 (6.9)

where 𝜔 is a weighted value that indicates the proportion of connections among the top j

connections of TSCL that have relatively large 𝑀 , 𝐷 , and 𝜏 values.

The process for defining 𝜔 is as follows: Eq. (6.4) will reveal many connections 𝐶

throughout the entire clustering process and, as we know, each 𝐶 has two properties, 𝑀

and 𝐷 . Therefore, the set of connections that have relatively large 𝑀 , 𝐷 , and 𝜏 values

among all the connections (denoted as 𝐿𝑎𝑟𝑔𝑒_𝐶) can be defined as:

 𝐿𝑎𝑟𝑔𝑒_𝐶 𝐶 | 𝜏 𝑚𝑒𝑎𝑛_𝜏 ∩ 𝑀 𝑚𝑒𝑎𝑛_𝑀 ∩ 𝐷 𝑚𝑒𝑎𝑛_𝐷 (6.10)

where 𝑚𝑒𝑎𝑛_𝜏 is the mean value of all 𝜏 , 𝑚𝑒𝑎𝑛_𝑀 is the mean value of all 𝑀 , and

𝑚𝑒𝑎𝑛_𝐷 is the mean value of all 𝐷 .

𝑇𝑜𝑝_𝐶 is the set of the top j connections of TSCL, and can be defined as

 𝑇𝑜𝑝_𝐶 𝐶 ,𝐶 , … ,𝐶 (6.11)

Based on 𝐿𝑎𝑟𝑔𝑒_𝐶 and 𝑇𝑜𝑝_𝐶 , 𝜔 is defined as:

 𝜔
_ ∩ _

| _ |
 (6.12)

UTS THESIS

119

The largest 𝑇𝐺𝑎𝑝 is denoted as 𝑇𝐺𝑎𝑝 , and the L connections at the top of the TSCL

(i.e., 𝐶 ,𝐶 , … ,𝐶) are regarded as abnormal connections to be removed. The pseudo code

of the torque clustering is shown as Algorithm 6.1.

Algorithm 6.1: Algorithm of Torque Clustering (TC)
1 Input: Data set 𝑋.
2 Output: Clustering labels 𝕃.
3 Initializing adjacency matrix A.
4 Constructing cluster sets (Initially, regard each sample as a cluster).
5 while cluster sets have more than two clusters do
6 Searching the nearest cluster of with higher mass according to the distance matrix of 𝑋 or via

k-d tree.
7 Updating A by Eqs. (6.4)-(6.5) (Using two nearest samples respectively from two clusters to represent these

two clusters).
8 Calculating 𝑀 and 𝐷 of 𝐶 by Eqs. (6.6)-(6.7).
9 Updating cluster sets by calculating the connected components of A.
10 end
11 Computing abnormal connections by Eqs. (6.8)-(6.12).
12 Updating A by removing abnormal connections.
13 Getting clustering labels 𝕃 by calculating the connected components of A.

6.2.4 Almost ultrametric learning using TC pseudo labels (AUMLTC)

Combining AUM and TC, we can obtain a pseudo label-based AUM space learning

method, which we call AUMLTC. Given a data set 𝑋, we first use torque clustering (TC) to

obtain the pseudo labels 𝕃 on 𝑋 and then leverage 𝕃 to convert the original metric space

to the proposed AUM space. Since TC is an unsupervised and parameter-free clustering

algorithm, the proposed AUMLTC framework remains parameter-free and unsupervised. The

pseudocode of AUMLTC is shown in Algorithm 6.2.

We further analyze the time complexity of AUMLTC in Algorithm 6.2. According to

Chapter 3, the time complexity of TC is 𝑂 𝑛 , so the complexity of step 3 is also 𝑂 𝑛 .

The complexity of steps 4-6 is 𝑂 𝑛 , 𝑂 𝑛 , and 𝑂 𝑛 respectively. The sum of the

complexity of steps 7-8 is 𝑂 𝑛 . To sum up, the time complexity of AUMLTC is

approximately 𝑂 𝑛 . In addition, if the nearest neighbor estimation algorithm such as the

k-d tree is used when calculating the distance matrix, the sum of the complexity of step 3,

UTS THESIS

120

step 5, and steps 7-8 will be reduced to 𝑂 𝑛𝑙𝑜𝑔𝑛 . At this point, the time complexity of

AUMLTC is approximately 𝑂 𝑛𝑙𝑜𝑔𝑛 .

Algorithm 6.2: Algorithm of the proposed AUMLTC.
1 Input: Data set 𝑋.
2 Output: New distance matrix 𝐷𝑀 .
3 Getting pseudo labels 𝕃 using Torque Clustering (i.e., Algorithm 6.1).
4 Getting class (or cluster) sets 𝛤 , … , by 𝕃.
5 Computing the original distance matrix of 𝑋, denoted as 𝐷𝑀, where 𝑑 𝑥,𝑦 ,𝑑 𝑥, 𝑧 ∈ 𝐷𝑀.
6 Initializing a new distance matrix 𝐷𝑀 , where 𝑑 𝑥,𝑦 ,𝑑 𝑥, 𝑧 ∈ 𝐷𝑀 .
7 For 𝑥~ℒ 𝑦, from any class of 𝛤, computing 𝑑 𝑥, 𝑦 by Eq. (6.1).
8 For 𝑥 ≁ℒ 𝑧, from any two different classes of 𝛤 respectively, computing 𝑑 𝑥, 𝑧 by Eq. (6.2).
9 Return 𝐷𝑀 .

6.3 Experiments and results

6.3.1 Data sets description
Table 6.1. Statistics of the test data sets.

Data sets Instances Dimensions Clusters
FLAME 240 2 2

Spectral-path 312 2 3
Multi-objective 1500 2 6

COIL-20 1440 16384 20
UMIST 575 10304 20

CMU-PIE 2856 1024 68

In the experiment, we leveraged three synthetic data sets and three real-world data sets,

including FLAME, Spectral-path, Multi-objective, UMIST, COIL-20, and CMU-PIE.

1) FLAME [136]: This data set was designed to test fuzzy clustering by local approximation

of membership.

2) Spectral-path [137]: This data set was used to illustrate the performance of a path-based

spectral clustering algorithm.

3) Multi-objective [143]: This data set was exploited to test an improved multi-objective

clustering algorithm.

4) COIL-20 [160]: There are 1440 greyscale pictures of 20 different objects in this data set.

For the original feature scenario, each image is downscaled to 32 by 32 pixels.

5) UMIST [158]: There are 564 photographs of 20 people in this collection (mixed race,

gender, and appearance). Each person is shown in a number of positions, ranging from

UTS THESIS

121

profile to frontal views. Each image has a 256-bit greyscale and a resolution of

approximately 220 220 pixels.

6) CMU-PIE [148]: This data set includes 2856 frontal-face images of 68 people, each with

42 different illuminations. Each photograph was reduced to 32 32 pixels in size. Table

6.1 contains the complete statistics for these data sets.

6.3.2 Compared algorithms

We processed the six data sets mentioned above with the proposed AUMLTC and

several classic or recent unsupervised metric learning methods and then ran the K-means

algorithm on these processed data sets. Note that K-means can be run directly on the distance

matrix due to its duality [235]. The compared metric learning methods include PCA [116], t-

SNE [117], and UMAP [118]. UMAP is the latest method and can be used as an effective

preprocessing step to enhance the performance of clustering. In addition, we included two

metric learning-based clustering algorithms for comparison, i.e., spectral clustering (SC) [72]

and subspace clustering (SSC) [84]. All experiments were evaluated in terms of the two

commonly used external indices: normalized mutual information (NMI) [133] and accuracy

(ACC). Due to the randomness of the K-means results, we took the average of 10 times as

the final results. The experimental results are shown in Table 6.2 and Table 6.3.

6.3.3 Results and analysis

As Tables 6.2-6.3 show, the proposed AUMLTC outperformed all other metric learning

methods. In particular, for the NMI score, the results of our AUMLTC were approximately

11.2%, 20.3%, 7.1%, and 18.8% better than the second-best metric learning results on the

FLAME, Multi-objective, COIL-20, and UMIST data sets, respectively. For the ACC score,

the results of our AUMLTC were approximately 44.1% and 31% better than the second-best

metric learning results on the Multi-objective and UMIST data sets, respectively. Compared

to the original K-means results, AUMLTC greatly boosts its clustering performance. Besides,

UTS THESIS

122

in terms of the rank in Fig. 6.2, the next-best algorithm, SC, was two times plus higher than

AUTCML in its ranking scores both on NMI and ACC.

To more intuitively reflect the performance of AUMLTC, for the three synthetic data

sets FLAME, Spectral-path, and Multi-objective, we showed the heatmaps of the original

distance matrix and the new distance matrix learned by AUMLTC (see Fig. 6.3). In addition,

we applied t-SNE to reduce the new distance matrix to 2D, which was compared with the

original data distribution, as shown in Fig. 6.4.

Table 6.2. Comparison of AUMLTC with other unsupervised metric learning methods, measured by NMI.

Table 6.3. Comparison of AUMLTC with other unsupervised metric learning methods, measured by ACC.

Data sets Kmeans Kmeans+PCA Kmeans+t-SNE Kmeans+UMAP SC SSC Kmeans+AUTCML

FLAME .4261 .4441 .4278 .8502 .8883 .1786 1

Spectral-path .0001 .0001 .0057 .5512 1 .0023 1

Multi-objective .5973 .5535 .6580 .7152 .7895 .3508 .9925

COIL20 .7596 .7680 .8796 .8838 .8870 .8734 .9583

UMIST .6434 .6538 .7434 .6989 .7025 .7321 .9310

CMU-PIE .4131 .3995 .6313 .8512 .8518 .9964 1

Data sets Kmeans Kmeans+PCA Kmeans+t-SNE Kmeans+UMAP SC SSC Kmeans+AUTCML

FLAME .8425 .8454 .8154 .9750 .9833 .6292 1

Spectral-path .3446 .3458 .3776 .7513 1 .3622 1

Multi-objective .5574 .4899 .5529 .5030 .5053 .2727 .9980

COIL20 .5706 .5977 .7558 .7592 .8240 .7306 .8489

UMIST .4167 .4250 .5233 .4927 .4755 .5530 .8626

CMU-PIE .1932 .1765 .3471 .6501 .7249 .9790 1

Figure 6.2. Average rankings for unsupervised
metric learning methods on all data sets.

UTS THESIS

123

6.4 Ablation study

TC is an agglomerative clustering algorithm based on nearest neighbor statistics, and

the performance of AUMLTC relies on the pseudo labels of TC. To illustrate this, in the

AUMLTC framework, we replaced TC with other clustering algorithms based on nearest

neighbor statistics and kept other components in the framework unchanged. These clustering

algorithms include agglomerative clustering single-linkage (AC-S) [127], ward-linkage (AC-

W), graph degree-linkage (GDL) [62], FINCH [13], and SNNDPC [76]. Among them,

FINCH and SNNDPC are the two latest ones. The generated new metric learning frameworks

were named MLACS, MLACW, MLGDL, MLFINCH, and MLSNNDPC. We compared

these frameworks with the proposed AUMLTC on the six data sets and still exploited NMI

and ACC to evaluate the results. As Tables 6.4-6.5 show, AUMLTC still maintained the

advantages. Therefore, we conclude that the pseudo labels from TC are more suitable for

learning the proposed AUM space. In addition, we can also see the impact of the accuracy of

the pseudo labels on the performance of the AUM space learning from the experimental

results. In Chapter 3, we have demonstrated that the accuracy of the above clustering

algorithms is not as good as TC. Therefore, if their relatively inaccurate pseudo labels are

adopted, the performance of the AUM space learning will decrease accordingly.

Table 6.4. Replace the pseudo labels of TC with those of other clustering algorithms, measured by NMI.

Data sets MLACS MLACW MLFINCH MLGDL MLSNNDPC AUMLTC
FLAME .0479 .3297 .1216 1 .8288 1

Spectral-path 1 .0068 .1377 .4740 1 1
Multi-objective .8341 .7229 .7812 .9906 .7304 .9925

COIL20 .7415 .7601 .6702 .9418 .5576 .9583
UMIST .6685 .6092 .6963 .7410 .6146 .9310

CMU-PIE .9897 .5982 .5291 .9047 .3930 1

Table 6.5. Replace the pseudo labels of TC with those of other clustering algorithms, measured by ACC.
Data sets MLACS MLACW MLFINCH MLGDL MLSNNDPC AUMLTC
FLAME .6458 .7208 .6038 1 .9708 1

Spectral-path 1 .3750 .4019 .7340 1 1
Multi-objective .7520 .7840 .6133 .9973 .7213 .9980

COIL20 .3993 .5444 .4280 .8556 .3354 .8489
UMIST .4261 .3826 .4452 .5600 .4226 .8626

CMU-PIE .9496 .2272 .2738 .7850 .1499 1

UTS THESIS

124

6.5 Conclusion

Compared with the previous metric learning algorithms, the proposed AUMLTC has the

following advantages. First, unlike most existing metric learning algorithms, the AUMLTC

is parameter-free; Second, the time complexity of most existing algorithms is 𝑂 𝑛 ,

however, the cost of AUMLTC can be reduced to 𝑂 𝑛𝑙𝑜𝑔𝑛 ; Finally, compared with existing

algorithms, the AUMLTC generates a feature space that is more friendly to clustering.

Overall, there is a certain positive correlation between data ultrametricity and data

clusterability [232]. This study is inspired by this viewpoint. First, we propose a new metric

called the almost ultrametric (AUM) and prove that under certain weak conditions, the

proposed AUM will be a true ultrametric. Then, based on a parameter-free clustering

algorithm, torque clustering (TC), we propose using the pseudo labels of TC to approximate

ground truth labels to learn the AUM. This learning framework is called AUMLTC. Both

comparison and ablation experiments demonstrate the superiority of the proposed AUMLTC.

UTS THESIS

125

(a) Original distance matrix of (b) Original distance matrix of (c) Original distance matrix of
 FLAME data set Spectral-path data set Multi-objective data set

(d) New distance matrix of (e) New distance matrix of (f) New distance matrix of
 FLAME data set Spectral-path data set Multi-objective data set

Figure 6.3. The visualization of the original distance matrix and the new distance matrix, on FLAME, Spectral-path, and
Multi-objective data set, respectively.

UTS THESIS

126

(a) Original data distribution of (b) Original data distribution of (c) Original data distribution of
 FLAME data set Spectral-path data set Multi-objective data set

(d) New data distribution of (e) New data distribution of (f) New data distribution of
 FLAME data set Spectral-path data set Multi-objective data set

Figure 6.4. The visualization of the original data distribution and the new data distribution, on FLAME, Spectral-path, and
Multi-objective data set, respectively.

UTS THESIS

127

Chapter 7. Conclusion and future work

This chapter presents the conclusions of the entire research and discusses future

research directions.

7.1 Conclusion

This research can be divided into four main stages:

In stage one, to overcome various shortcomings in the previous clustering algorithms,

we propose a brand-new autonomous clustering algorithm (Torque Clustering, TC) based on

classical physics theory. The TC algorithm is parameter-free and can recognize various kinds

of clusters and find the proper number of clusters and noise autonomously. Experiments on

76 synthetic and real-world data sets show the enormous versatility of the proposed TC

algorithm, which remarkably outperforms the best compared algorithm. In particular, when

compared with 19 state-of-the-art algorithms, the average ranking of these algorithms is at

least four multiplicative factors higher than that of TC over all data sets. Additionally, we

also compare TC with the latest state-of-the-art deep clustering algorithms on several

challenging image data sets. The proposed TC algorithm without any deep representation

achieves better or similar performance compared to deep clustering algorithms on image

clustering.

In stage two, due to the good performance of the proposed TC, we exploit the clustering

mechanism of TC as a backbone to propose a simple but efficient multi-view clustering

framework: multi-view adjacency-constrained hierarchical clustering (MCHC). MCHC tries

to solve two problems in existing multi-view clustering methods: a) parameter tuning and b)

significant computational expense. Extensive tests on eight real-world data sets demonstrate

that the proposed method outperforms the 10 current state-of-the-art methods. The average

ranking of these algorithms is at least three multiplicative factors higher than that of MCHC

over all data sets.

In stage three, we also exploit the clustering mechanism of TC as a backbone to propose

a particle swarm optimization (PSO)-based Multi-view Nearest Neighbor Clustering

UTS THESIS

128

(PMNNC) algorithm. Different from the gradient-based optimization methods used in most

prior multi-view clustering algorithms, PMNNC leverages the PSO optimization algorithm

to calculate the optimal view weights, which solves the problem in current methods: difficulty

in finding globally optimal view weights. Extensive tests using seven real-world data sets

demonstrate the supremacy of the proposed PMNNC over the 10 current state-of-the-art

approaches. The average ranking of these algorithms is at least three multiplicative factors

higher than that of PMNNC over all data sets.

In stage four, we further apply the pseudo labels generated by TC to learn a new distance

metric to help other algorithms improve performance in a parameter-free and unsupervised

manner. We call this whole metric learning framework, Almost UltraMetric Learning using

Torque Clustering's pseudo labels (AUMLTC). The comparison and ablation experiments

tested on several data sets validate the supremacy of the proposed AUMLTC framework. The

average ranking of prior algorithms is at least two multiplicative factors higher than that of

AUMLTC over all data sets.

First, this research promotes the development of clustering theory and proposes a brand-

new clustering algorithm (i.e., TC) that does not require any human intervention. Second,

this research also overcomes the three problems in current multi-view clustering from

different perspectives. Finally, this study also combines ultrametric space theory with pseudo

labels from clustering to propose a new unsupervised and parameter-free metric learning

method.

7.2 Future work

For Chapter 3, first, the proposed TC leverages a method such as single-linkage to

measure the distance between clusters, which only considers the clusters' local structure. In

future work, we will use other methods to compute the distance between clusters. Second,

when determining the cluster halo, we will try to set different thresholds for different clusters,

rather than relying on the global mean variable values, to make TC more robust to non-

uniform noise. Thirdly, considering that TC's performance on certain high-dimensional and

UTS THESIS

129

sparse data sets is not entirely satisfactory, future efforts will involve combining TC's pseudo

labels with a deep neural network to develop representations better suited for TC. This

procedure remains unsupervised, as the neural network is trained under the guidance of TC's

pseudo labels. Fourth, in certain scenarios, data may be dispersed across multiple nodes,

prompting us to consider extending TC into a distributed TC method in the future.

Specifically, we could run TC independently and concurrently on each node, followed by

further data compression for each node. After inter-node communication, we would perform

the final clustering stage using TC on the compressed data at a hub once more. Lastly, taking

into account that in certain situations, users might have specific preferences regarding

clustering resolution, the necessity for two data samples to be in the same or different clusters,

and the prior semantics of clusters, we plan to integrate certain decision rules and semi-

supervised learning techniques to evolve TC into an interactive, self-governing clustering

approach in the future.

For Chapters 4 and 5, the proposed MCHC and PMNNC, respectively, overcome some

shortcomings in current multi-view clustering methods. For example, MCHC attempts to

solve two problems in current multi-view clustering methods: a) parameter tuning and b)

significant computational expense. PMNNC focuses on solving the third problem: c)

difficulty in finding globally optimal view weights. Firstly, although both MCHC and

PMNNC utilize TC's partial clustering mechanism, they focus on addressing different issues.

This raises a new question: can we merge the advantages of MCHC and PMNNC to

simultaneously tackle the three aforementioned problems? This will be a future research

direction. Secondly, multi-view data may be distributed across various nodes, and adapting

MCHC or PMNNC to this situation is another potential avenue for future research. One

possible solution involves running MCHC or PMNNC in parallel on each node to further

compress multi-view data. Once inter-node communication is complete, MCHC or PMNNC

can be performed on a hub for the final clustering step. Lastly, in some cases, multi-view data

may be presented as data streams. Extending MCHC and PMNNC into real-time multi-view

clustering methods is another potential area of exploration. One possible approach includes

UTS THESIS

130

integrating specific decision rules to determine whether current clusters should be further

merged or divided, and if necessary, updating the current clusters by continuously executing

MCHC or PMNNC.

For Chapter 6, the performance of the proposed AUMLTC relies on pseudo labels

provided by TC. However, the performance of TC on some high-dimensional and sparse data

sets is not particularly satisfactory. Therefore, in future work, we will try to obtain consensus

pseudo labels from multiple clustering algorithms based on ensemble learning to further

improve the performance of AUMLTC.

Bibliography

[1] S. A. Shah and V. Koltun, “Robust continuous clustering,” Proc. Natl. Acad. Sci., vol.

114, no. 37, pp. 9814–9819, Sep. 2017, doi: 10.1073/pnas.1700770114.

[2] H.-J. Chang, L.-P. Hung, and C.-L. Ho, “An anticipation model of potential customers’

purchasing behavior based on clustering analysis and association rules analysis,”

Expert Syst. Appl., vol. 32, no. 3, pp. 753–764, Apr. 2007, doi:

10.1016/j.eswa.2006.01.049.

[3] V. Y. Kiselev, T. S. Andrews, and M. Hemberg, “Challenges in unsupervised clustering

of single-cell RNA-seq data,” Nat. Rev. Genet., vol. 20, no. 5, pp. 273–282, May 2019,

doi: 10.1038/s41576-018-0088-9.

[4] C. Dorai and A. K. Jain, “Shape spectra based view grouping for free-form objects,”

in Proceedings., International Conference on Image Processing, Oct. 1995, vol. 3, pp.

340–343 vol.3. doi: 10.1109/ICIP.1995.538548.

[5] S. D. Connell and A. K. Jain, “Learning prototypes for online handwritten digits,” in

Proceedings. Fourteenth International Conference on Pattern Recognition (Cat.

No.98EX170), Aug. 1998, vol. 1, pp. 182–184 vol.1. doi: 10.1109/ICPR.1998.711110.

[6] Z. Huang, “A Fast Clustering Algorithm to Cluster Very Large Categorical Data Sets

in Data Mining,” DMKD, vol. 3(8), pp. 34–39, 1997.

UTS THESIS

131

[7] D. Jiang, G. Chen, B. C. Ooi, K.-L. Tan, and S. Wu, “epiC: An Extensible and Scalable

System for Processing Big Data,” Proc VLDB Endow, vol. 7, no. 7, pp. 541–552, Mar.

2014, doi: 10.14778/2732286.2732291.

[8] L. Mahon and T. Lukasiewicz, “Selective Pseudo-Label Clustering,” in KI 2021:

Advances in Artificial Intelligence, Cham, 2021, pp. 158–178. doi: 10.1007/978-3-

030-87626-5_12.

[9] A. Saxena et al., “A review of clustering techniques and developments,”

Neurocomputing, vol. 267, pp. 664–681, Dec. 2017, doi:

10.1016/j.neucom.2017.06.053.

[10] L. McInnes and J. Healy, “Accelerated Hierarchical Density Based Clustering,” in

2017 IEEE International Conference on Data Mining Workshops (ICDMW), Nov.

2017, pp. 33–42. doi: 10.1109/ICDMW.2017.12.

[11] M. Dash, H. Liu, P. Scheuermann, and K. L. Tan, “Fast hierarchical clustering and its

validation,” Data Knowl. Eng., vol. 44, no. 1, pp. 109–138, Jan. 2003, doi:

10.1016/S0169-023X(02)00138-6.

[12] H. Koga, T. Ishibashi, and T. Watanabe, “Fast agglomerative hierarchical clustering

algorithm using Locality-Sensitive Hashing,” Knowl. Inf. Syst., vol. 12, no. 1, pp. 25–

53, May 2007, doi: 10.1007/s10115-006-0027-5.

[13] S. Sarfraz, V. Sharma, and R. Stiefelhagen, “Efficient Parameter-Free Clustering Using

First Neighbor Relations,” in 2019 IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR), Jun. 2019, pp. 8926–8935. doi:

10.1109/CVPR.2019.00914.

[14] S. Kpotufe and U. von Luxburg, “Pruning nearest neighbor cluster trees,”

ArXiv11050540 Cs Stat, May 2011, Accessed: Nov. 23, 2020. [Online]. Available:

http://arxiv.org/abs/1105.0540

[15] K. Chaudhuri, S. Dasgupta, S. Kpotufe, and U. von Luxburg, “Consistent Procedures

for Cluster Tree Estimation and Pruning,” IEEE Trans. Inf. Theory, vol. 60, no. 12, pp.

7900–7912, Dec. 2014, doi: 10.1109/TIT.2014.2361055.

UTS THESIS

132

[16] J. MacQueen, “SOME METHODS FOR CLASSIFICATION AND ANALYSIS OF

MULTIVARIATE OBSERVATIONS,” in Proceedings of the fifth Berkeley symposium

on mathematical statistics and probability, 1967, vol. 1(14), pp. 281–297.

[17] D. Pelleg and A. Moore, “X-means: Extending K-means with Efficient Estimation of

the Number of Clusters,” in In Proceedings of the 17th International Conf. on Machine

Learning, 2000, pp. 727–734.

[18] I. S. Dhillon, Y. Guan, and B. Kulis, “Kernel k-means: spectral clustering and

normalized cuts,” in Proceedings of the tenth ACM SIGKDD international conference

on Knowledge discovery and data mining, New York, NY, USA, Aug. 2004, pp. 551–

556. doi: 10.1145/1014052.1014118.

[19] Rong Zhang and A. I. Rudnicky, “A large scale clustering scheme for kernel K-Means,”

in Object recognition supported by user interaction for service robots, 2002

International Conference on Pattern Recognition, Aug. 2002, vol. 4, pp. 289–292 vol.4.

doi: 10.1109/ICPR.2002.1047453.

[20] D. Arthur and S. Vassilvitskii, “k-means++: The Advantages of Careful Seeding,” Proc.

Eighteenth Annu. ACM-SIAM Symp. Discrete Algorithms Soc. Ind. Appl. Math., pp.

1027–1035, 2007.

[21] J. Yang, Y. Ma, X. Zhang, S. Li, and Y. Zhang, “An Initialization Method Based on

Hybrid Distance for k -Means Algorithm,” Neural Comput., vol. 29, no. 11, pp. 3094–

3117, Nov. 2017, doi: 10.1162/neco_a_01014.

[22] M. Wang, W. Zuo, and Y. Wang, “An improved density peaks-based clustering method

for social circle discovery in social networks,” Neurocomputing, vol. 179, pp. 219–

227, Feb. 2016, doi: 10.1016/j.neucom.2015.11.091.

[23] T. Liu, H. Li, and X. Zhao, “Clustering by Search in Descending Order and Automatic

Find of Density Peaks,” IEEE Access, vol. 7, pp. 133772–133780, 2019, doi:

10.1109/ACCESS.2019.2939437.

[24] Z. Liang and P. Chen, “Delta-density based clustering with a divide-and-conquer

strategy: 3DC clustering,” Pattern Recognit. Lett., vol. 73, pp. 52–59, Apr. 2016, doi:

UTS THESIS

133

10.1016/j.patrec.2016.01.009.

[25] A. Lotfi, P. Moradi, and H. Beigy, “Density peaks clustering based on density

backbone and fuzzy neighborhood,” Pattern Recognit., vol. 107, p. 107449, Nov. 2020,

doi: 10.1016/j.patcog.2020.107449.

[26] R. J. G. B. Campello, D. Moulavi, and J. Sander, “Density-Based Clustering Based on

Hierarchical Density Estimates,” in Advances in Knowledge Discovery and Data

Mining, Berlin, Heidelberg, 2013, pp. 160–172. doi: 10.1007/978-3-642-37456-2_14.

[27] S. A. Seyedi, A. Lotfi, P. Moradi, and N. N. Qader, “Dynamic graph-based label

propagation for density peaks clustering,” Expert Syst. Appl., vol. 115, pp. 314–328,

Jan. 2019, doi: 10.1016/j.eswa.2018.07.075.

[28] W. Zhang and J. Li, “Extended fast search clustering algorithm: widely density clusters,

no density peaks,” Comput. Sci. Inf. Technol. CS IT, pp. 01–17, Apr. 2015, doi:

10.5121/csit.2015.50701.

[29] J. Xie, H. Gao, W. Xie, X. Liu, and P. W. Grant, “Robust clustering by detecting density

peaks and assigning points based on fuzzy weighted K-nearest neighbors,” Inf. Sci.,

vol. 354, pp. 19–40, Aug. 2016, doi: 10.1016/j.ins.2016.03.011.

[30] M. Du, S. Ding, and H. Jia, “Study on density peaks clustering based on k-nearest

neighbors and principal component analysis,” Knowl.-Based Syst., vol. 99, pp. 135–

145, May 2016, doi: 10.1016/j.knosys.2016.02.001.

[31] L. Scrucca and A. Raftery, “Improved initialisation of model-based clustering

using Gaussian hierarchical partitions,” Adv. Data Anal. Classif., vol. 9, no. 4,

pp. 447–460, 2015, Accessed: Nov. 23, 2020. [Online]. Available: https://ideas.

repec.org/a/spr/advdac/v9y2015i4p447-460.html

[32] A. O’Hagan and A. White, “Improved model-based clustering performance using

Bayesian initialization averaging,” Comput. Stat., vol. 34, no. 1, pp. 201–231, Mar.

2019, doi: 10.1007/s00180-018-0855-2.

[33] E. Kebriaei, K. Bijari, and H. Zare, “Improved model-based clustering using

evolutionary optimization,” in 2017 Artificial Intelligence and Robotics (IRANOPEN),

UTS THESIS

134

Apr. 2017, pp. 182–187. doi: 10.1109/RIOS.2017.7956464.

[34] J. Chen, X. Lin, Q. Xuan, and Y. Xiang, “FGCH: a fast and grid based clustering

algorithm for hybrid data stream,” Appl. Intell., vol. 49, no. 4, pp. 1228–1244, Apr.

2019, doi: 10.1007/s10489-018-1324-x.

[35] B. Wu and B. M. Wilamowski, “A Fast Density and Grid Based Clustering Method for

Data With Arbitrary Shapes and Noise,” IEEE Trans. Ind. Inform., vol. 13, no. 4, pp.

1620–1628, Aug. 2017, doi: 10.1109/TII.2016.2628747.

[36] Q. Liu, K. Zhang, J. Shen, Z. Fu, and N. Linge, “GLRM: An improved grid-based

load-balanced routing method for WSN with single controlled mobile sink,” in 2016

18th International Conference on Advanced Communication Technology (ICACT), Jan.

2016, pp. 34–38. doi: 10.1109/ICACT.2016.7423264.

[37] L. Fu, P. Lin, A. V. Vasilakos, and S. Wang, “An overview of recent multi-view

clustering,” Neurocomputing, vol. 402, pp. 148–161, Aug. 2020, doi:

10.1016/j.neucom.2020.02.104.

[38] Y. Yang and H. Wang, “Multi-view clustering: A survey,” Big Data Min. Anal., vol. 1,

no. 2, pp. 83–107, Jun. 2018, doi: 10.26599/BDMA.2018.9020003.

[39] D. G. Lowe, “Object recognition from local scale-invariant features,” in Proceedings

of the Seventh IEEE International Conference on Computer Vision, Sep. 1999, vol. 2,

pp. 1150–1157 vol.2. doi: 10.1109/ICCV.1999.790410.

[40] A. Oliva and A. Torralba, “Modeling the Shape of the Scene: A Holistic Representation

of the Spatial Envelope,” Int. J. Comput. Vis., vol. 42, no. 3, pp. 145–175, May 2001,

doi: 10.1023/A:1011139631724.

[41] L. Wang and D.-C. He, “Texture classification using texture spectrum,” Pattern

Recognit., vol. 23, no. 8, pp. 905–910, Jan. 1990, doi: 10.1016/0031-3203(90)90135-

8.

[42] Q. Zheng, J. Zhu, and S. Ma, “Multi-view Hierarchical Clustering,” ArXiv201007573

Cs, Oct. 2020, Accessed: Aug. 25, 2021. [Online]. Available:

http://arxiv.org/abs/2010.07573

UTS THESIS

135

[43] H.-C. Huang, Y.-Y. Chuang, and C.-S. Chen, “Affinity aggregation for spectral

clustering,” 2012 IEEE Conf. Comput. Vis. Pattern Recognit., pp. 773-780, 2012, doi:

10.1109/CVPR.2012.6247748.

[44] A. Kumar, P. Rai, and H. Daume, “Co-regularized Multi-view Spectral Clusteri

ng,” in Advances in Neural Information Processing Systems, 2011, vol. 24. Ac

cessed: Aug. 19, 2021. [Online]. Available: https://papers.nips.cc/paper/2011/has

h/31839b036f63806cba3f47b93af8ccb5-Abstract.html

[45] J. Wu, Z. Lin, and H. Zha, “Essential Tensor Learning for Multi-View Spectral

Clustering,” IEEE Trans. Image Process., vol. 28, no. 12, pp. 5910–5922, Dec. 2019,

doi: 10.1109/TIP.2019.2916740.

[46] L. Zong, X. Zhang, X. Liu, and H. Yu, “Weighted Multi-View Spectral Clustering

Based on Spectral Perturbation,” in AAAI, Vol. 32, No. 1, 2018.

[47] P. Ji, T. Zhang, H. Li, M. Salzmann, and I. Reid, “Deep Subspace Clustering

Networks,” in Advances in Neural Information Processing Systems, 2017, vol.

30. Accessed: Aug. 18, 2021. [Online]. Available: https://papers.nips.cc/paper/20

17/hash/e369853df766fa44e1ed0ff613f563bd-Abstract.html

[48] Z. Kang, W. Zhou, Z. Zhao, J. Shao, M. Han, and Z. Xu, “Large-scale Multi-view

Subspace Clustering in Linear Time,” in AAAI, Vol. 34, No. 04, pp. 4412-4419, 2020.

doi: 10.1609/AAAI.V34I04.5867.

[49] Q. Zheng, J. Zhu, Z. Tian, Z. Li, S. Pang, and X. Jia, “Constrained bilinear factorization

multi-view subspace clustering,” Knowl.-Based Syst., vol. 194, p. 105514, Apr. 2020,

doi: 10.1016/j.knosys.2020.105514.

[50] Q. Zheng, J. Zhu, Z. Li, S. Pang, J. Wang, and Y. Li, “Feature concatenation multi-

view subspace clustering,” Neurocomputing, vol. 379, pp. 89–102, Feb. 2020, doi:

10.1016/j.neucom.2019.10.074.

[51] O. Dababneh, T. Kipouros, and J. F. Whidborne, “Application of an Efficient Gradient-

Based Optimization Strategy for Aircraft Wing Structures,” Aerospace, vol. 5, no. 1,

Art. no. 1, Mar. 2018, doi: 10.3390/aerospace5010003.

UTS THESIS

136

[52] E. Pan and Z. Kang, “Multi-view Contrastive Graph Clustering,” in Advances

in Neural Information Processing Systems, 2021, vol. 34, pp. 2148–2159. Acce

ssed: May 09, 2022. [Online]. Available: https://papers.nips.cc/paper/2021/hash/1

0c66082c124f8afe3df4886f5e516e0-Abstract.html

[53] S. Ouadfel and M. Abd Elaziz, “A multi-objective gradient optimizer approach-based

weighted multi-view clustering,” Eng. Appl. Artif. Intell., vol. 106, p. 104480, Nov.

2021, doi: 10.1016/j.engappai.2021.104480.

[54] M. Nasser Al-Andoli, S. Chiang Tan, and W. Ping Cheah, “Distributed parallel deep

learning with a hybrid backpropagation-particle swarm optimization for community

detection in large complex networks,” Inf. Sci., vol. 600, pp. 94–117, Jul. 2022, doi:

10.1016/j.ins.2022.03.053.

[55] K. E. Parsopoulos and M. N. Vrahatis, “On the computation of all global minimizers

through particle swarm optimization,” IEEE Trans. Evol. Comput., vol. 8, no. 3, pp.

211–224, Jun. 2004, doi: 10.1109/TEVC.2004.826076.

[56] B. X. Nguyen, B. D. Nguyen, G. Carneiro, E. Tjiputra, Q. D. Tran, and T.-T. Do, “Deep

Metric Learning Meets Deep Clustering: An Novel Unsupervised Approach for

Feature Embedding,” ArXiv200904091 Cs, Sep. 2020, Accessed: May 12, 2022.

[Online]. Available: http://arxiv.org/abs/2009.04091

[57] P. H. A. Sneath and R. R. Sokal, Numerical Taxonomy: The Principles and Practice of

Numerical Classification. W. H. Freeman and Co., 1973.

[58] B. King, “Step-Wise Clustering Procedures,” J. Am. Stat. Assoc., vol. 62, no. 317, pp.

86–101, Mar. 1967, doi: 10.1080/01621459.1967.10482890.

[59] W.-B. Xie, Y.-L. Lee, C. Wang, D.-B. Chen, and T. Zhou, “Hierarchical clustering

supported by reciprocal nearest neighbors,” Inf. Sci., vol. 527, pp. 279–292, Jul. 2020,

doi: 10.1016/j.ins.2020.04.016.

[60] J. H. Ward, “Hierarchical Grouping to Optimize an Objective Function,” J. Am. Stat.

Assoc., vol. 58, no. 301, pp. 236–244, Mar. 1963, doi:

10.1080/01621459.1963.10500845.

UTS THESIS

137

[61] M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein, “Cluster analysis and

display of genome-wide expression patterns,” Proc. Natl. Acad. Sci., vol. 95, no. 25,

pp. 14863–14868, Dec. 1998, doi: 10.1073/pnas.95.25.14863.

[62] W. Zhang, X. Wang, D. Zhao, and X. Tang, “Graph Degree Linkage: Agglomerative

Clustering on a Directed Graph,” in Computer Vision – ECCV 2012, Berlin, Heidelberg,

2012, pp. 428–441. doi: 10.1007/978-3-642-33718-5_31.

[63] M.-F. Balcan, Y. Liang, and P. Gupta, “Robust Hierarchical Clustering,” J. Mach.

Learn. Res., vol. 15, no. 118, pp. 4011–4051, 2014, Accessed: Feb. 19, 2022. [Online].

Available: http://jmlr.org/papers/v15/balcan14a.html

[64] P. D’Urso and V. Vitale, “A robust hierarchical clustering for georeferenced data,” Spat.

Stat., vol. 35, p. 100407, Mar. 2020, doi: 10.1016/j.spasta.2020.100407.

[65] D. Lam and D. C. Wunsch, “Chapter 20 - Clustering,” in Academic Press Library in

Signal Processing, vol. 1, P. S. R. Diniz, J. A. K. Suykens, R. Chellappa, and S.

Theodoridis, Eds. Elsevier, 2014, pp. 1115–1149. doi: 10.1016/B978-0-12-396502-

8.00020-6.

[66] L. Kaufman and P. J. Rousseeuw, Finding Groups in Data: An Introduction to Cluster

Analysis. John Wiley & Sons, 2009.

[67] R. T. Ng and J. Han, “CLARANS: a method for clustering objects for spatial data

mining,” IEEE Trans. Knowl. Data Eng., vol. 14, no. 5, pp. 1003–1016, Sep. 2002,

doi: 10.1109/TKDE.2002.1033770.

[68] J. C. Bezdek, R. Ehrlich, and W. Full, “FCM: The fuzzy c-means clustering algorithm,”

Comput. Geosci., vol. 10, no. 2–3, pp. 191–203, Jan. 1984, doi: 10.1016/0098-

3004(84)90020-7.

[69] A. Nagpal, A. Jatain, and D. Gaur, “Review based on data clustering algorithms,” in

2013 IEEE Conference on Information Communication Technologies, Apr. 2013, pp.

298–303. doi: 10.1109/CICT.2013.6558109.

[70] A. Kalogeratos and A. Likas, “Dip-means: an incremental clustering method fo

r estimating the number of clusters,” in Advances in Neural Information Proce

UTS THESIS

138

ssing Systems, 2012, vol. 25. Accessed: May 15, 2022. [Online]. Available: htt

ps://proceedings.neurips.cc/paper/2012/hash/a8240cb8235e9c493a0c30607586166c-

Abstract.html

[71] G. Tzortzis and A. Likas, “The global kernel k-means clustering algorithm,” in 2008

IEEE International Joint Conference on Neural Networks (IEEE World Congress on

Computational Intelligence), Jun. 2008, pp. 1977–1984. doi:

10.1109/IJCNN.2008.4634069.

[72] A. Y. Ng, M. I. Jordan, and Y. Weiss, “On Spectral Clustering: Analysis and an

algorithm,” in Advances in Neural Information Processing Systems 14, T. G. Dietterich,

S. Becker, and Z. Ghahramani, Eds. MIT Press, 2002, pp. 849–856. Accessed: Mar.

05, 2020. [Online]. Available: http://papers.nips.cc/paper/2092-on-spectral-clustering-

analysis-and-an-algorithm.pdf

[73] P. Bhattacharjee and P. Mitra, “A survey of density based clustering algorithms,” Front.

Comput. Sci., vol. 15, no. 1, p. 151308, Sep. 2020, doi: 10.1007/s11704-019-9059-3.

[74] M. Ester, H.-P. Kriegel, and X. Xu, “A Density-Based Algorithm for Discovering

Clusters in Large Spatial Databases with Noise,” in Kdd, 1996, vol. 96(34), pp. 226–

231.

[75] A. Rodriguez and A. Laio, “Clustering by fast search and find of density peaks,”

Science, vol. 344, no. 6191, pp. 1492–1496, Jun. 2014, doi: 10.1126/science.1242072.

[76] R. Liu, H. Wang, and X. Yu, “Shared-nearest-neighbor-based clustering by fast search

and find of density peaks,” Inf. Sci., vol. 450, pp. 200–226, Jun. 2018, doi:

10.1016/j.ins.2018.03.031.

[77] M. d’Errico, E. Facco, A. Laio, and A. Rodriguez, “Automatic topography of high-

dimensional data sets by non-parametric density peak clustering,” Inf. Sci., vol. 560,

pp. 476–492, Jun. 2021, doi: 10.1016/j.ins.2021.01.010.

[78] L. McInnes, J. Healy, and S. Astels, “hdbscan: Hierarchical density based clustering,”

J. Open Source Softw., vol. 2, p. 205, Mar. 2017, doi: 10.21105/joss.00205.

[79] Z. Akbari and R. Unland, “Automated Determination of the Input Parameter of

UTS THESIS

139

DBSCAN Based on Outlier Detection,” in Artificial Intelligence Applications and

Innovations, Cham, 2016, pp. 280–291. doi: 10.1007/978-3-319-44944-9_24.

[80] J. Zhao et al., “An Automatic Density Clustering Segmentation Method for Laser

Scanning Point Cloud Data of Buildings,” Math. Probl. Eng., vol. 2019, Jul. 2019, doi:

10.1155/2019/3026758.

[81] J. D. Banfield and A. E. Raftery, “Model-Based Gaussian and Non-Gaussian

Clustering,” Biometrics, vol. 49, no. 3, pp. 803–821, 1993, doi: 10.2307/2532201.

[82] W. Wang, J. Yang, and R. Muntz, “STING : A Statistical Information Grid Approach

to Spatial Data Mining,”, Vldb, Vol. 97, pp. 186-195, 1997.

[83] D. W. van der Merwe and A. P. Engelbrecht, “Data clustering using particle swarm

optimization,” in The 2003 Congress on Evolutionary Computation, 2003. CEC ’03.,

2003, vol. 1, pp. 215-220 Vol.1. doi: 10.1109/CEC.2003.1299577.

[84] E. Elhamifar and R. Vidal, “Sparse Subspace Clustering: Algorithm, Theory, and

Applications,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 11, pp. 2765–2781,

2013, doi: 10.1109/TPAMI.2013.57.

[85] E. Min, X. Guo, Q. Liu, G. Zhang, J. Cui, and J. Long, “A Survey of Clustering With

Deep Learning: From the Perspective of Network Architecture,” IEEE Access, vol. 6,

pp. 39501–39514, 2018, doi: 10.1109/ACCESS.2018.2855437.

[86] M. Brbić and I. Kopriva, “Multi-view low-rank sparse subspace clustering,” Pattern

Recognit., vol. 73, pp. 247–258, Jan. 2018, doi: 10.1016/j.patcog.2017.08.024.

[87] S. Huang, Z. Kang, and Z. Xu, “Auto-weighted multi-view clustering via deep matrix

decomposition,” Pattern Recognit., vol. 97, p. 107015, Jan. 2020, doi:

10.1016/j.patcog.2019.107015.

[88] Y. Jia, H. Liu, J. Hou, S. Kwong, and Q. Zhang, “Multi-View Spectral Clustering

Tailored Tensor Low-Rank Representation,” IEEE Trans. Circuits Syst. Video Technol.,

pp. 1–1, 2021, doi: 10.1109/TCSVT.2021.3055039.

[89] Y. Liang, D. Huang, and C.-D. Wang, “Consistency Meets Inconsistency: A Unified

Graph Learning Framework for Multi-view Clustering,” in 2019 IEEE International

UTS THESIS

140

Conference on Data Mining (ICDM), Nov. 2019, pp. 1204–1209. doi:

10.1109/ICDM.2019.00148.

[90] J. Lv, Z. Kang, B. Wang, L. Ji, and Z. Xu, “Multi-view subspace clustering via partition

fusion,” Inf. Sci., vol. 560, pp. 410–423, Jun. 2021, doi: 10.1016/j.ins.2021.01.033.

[91] F. Nie, L. Tian, and X. Li, “Multiview Clustering via Adaptively Weighted Procrustes,”

in Proceedings of the 24th ACM SIGKDD International Conference on Knowledge

Discovery & Data Mining, New York, NY, USA, Jul. 2018, pp. 2022–2030. doi:

10.1145/3219819.3220049.

[92] H. Wang, Y. Yang, and B. Liu, “GMC: Graph-Based Multi-View Clustering,” IEEE

Trans. Knowl. Data Eng., vol. 32, no. 6, pp. 1116–1129, Jun. 2020, doi:

10.1109/TKDE.2019.2903810.

[93] W. Xia, Q. Wang, Q. Gao, X. Zhang, and X. Gao, “Self-supervised Graph

Convolutional Network for Multi-view Clustering,” IEEE Trans. Multimed., pp. 1–1,

2021, doi: 10.1109/TMM.2021.3094296.

[94] J. Xu, Y. Ren, G. Li, L. Pan, C. Zhu, and Z. Xu, “Deep embedded multi-view clustering

with collaborative training,” Inf. Sci., vol. 573, pp. 279–290, Sep. 2021, doi:

10.1016/j.ins.2020.12.073.

[95] X. Yu, H. Liu, Y. Wu, and C. Zhang, “Fine-grained similarity fusion for Multi-view

Spectral Clustering,” Inf. Sci., vol. 568, pp. 350–368, Aug. 2021, doi:

10.1016/j.ins.2021.03.059.

[96] G.-Y. Zhang, Y.-R. Zhou, C.-D. Wang, D. Huang, and X.-Y. He, “Joint representation

learning for multi-view subspace clustering,” Expert Syst. Appl., vol. 166, p. 113913,

Mar. 2021, doi: 10.1016/j.eswa.2020.113913.

[97] F. Ye, Z. Chen, H. Qian, R. Li, C. Chen, and Z. Zheng, “New Approaches i

n Multi-View Clustering,” Recent applications in data clustering, Vol. 195, 20

18, doi: 10.5772/intechopen.75598.

[98] C. Tang, Z. Li, J. Wang, X. Liu, W. Zhang, and E. Zhu, “Unified One-step Multi-view

Spectral Clustering,” IEEE Trans. Knowl. Data Eng., pp. 1–1, 2022, doi:

UTS THESIS

141

10.1109/TKDE.2022.3172687.

[99] S. Shi, F. Nie, R. Wang, and X. Li, “Self-weighting multi-view spectral clustering

based on nuclear norm,” Pattern Recognit., vol. 124, p. 108429, Apr. 2022, doi:

10.1016/j.patcog.2021.108429.

[100] G. Liu, Z. Lin, S. Yan, J. Sun, Y. Yu, and Y. Ma, “Robust Recovery of Subspace

Structures by Low-Rank Representation,” IEEE Trans. Pattern Anal. Mach. Intell., vol.

35, no. 1, pp. 171–184, Jan. 2013, doi: 10.1109/TPAMI.2012.88.

[101] C. Zhang, Q. Hu, H. Fu, P. Zhu, and X. Cao, “Latent Multi-view Subspace Clustering,”

in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jul.

2017, pp. 4333–4341. doi: 10.1109/CVPR.2017.461.

[102] G.-Y. Zhang, X.-W. Chen, Y.-R. Zhou, C.-D. Wang, D. Huang, and X.-Y. He,

“Kernelized multi-view subspace clustering via auto-weighted graph learning,” Appl.

Intell., vol. 52, no. 1, pp. 716–731, Jan. 2022, doi: 10.1007/s10489-021-02365-8.

[103] H. Zhao, Z. Ding, and Y. Fu, “Multi-view clustering via deep matrix factorization,” in

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, San

Francisco, California, USA, Feb. 2017, pp. 2921–2927.

[104] X. Peng, Z. Huang, J. Lv, H. Zhu, and J. T. Zhou, “COMIC: Multi-view Clustering

Without Parameter Selection,” in International Conference on Machine Learning,

May 2019, pp. 5092–5101. Accessed: Aug. 25, 2021. [Online]. Available:

https://proceedings.mlr.press/v97/peng19a.html

[105] T. M. Cover, “Rates of convergence for nearest neighbor procedures,” presented at

Proceedings of the Hawaii international conference on system sciences, Vol. 415, 1968.

[106] D. Li and Y. Tian, “Survey and experimental study on metric learning methods,”

Neural Netw., vol. 105, pp. 447–462, Sep. 2018, doi: 10.1016/j.neunet.2018.06.003.

[107] Fukunaga, K., “Introduction to Statistical Pattern Recognition,” Elsevier, 2013.

[108] N. Shental, T. Hertz, D. Weinshall, and M. Pavel, “Adjustment Learning and Relevant

Component Analysis,” in Proceedings of the 7th European Conference on Computer

Vision-Part IV, Berlin, Heidelberg, May 2002, pp. 776–792.

UTS THESIS

142

[109] F. Wang and C. Zhang, “Feature Extraction by Maximizing the Average Neighborhood

Margin,” in 2007 IEEE Conference on Computer Vision and Pattern Recognition, Jun.

2007, pp. 1–8. doi: 10.1109/CVPR.2007.383124.

[110] E. Xing, M. Jordan, S. J. Russell, and A. Ng, “Distance Metric Learning with

Application to Clustering with Side-Information,” in Advances in Neural Information

Processing Systems, 2002, vol. 15. Accessed: Apr. 30, 2022. [Online]. Available:

https://proceedings.neurips.cc/paper/2002/hash/c3e4035af2a1cde9f21e1ae1951ac80b

-Abstract.html

[111] M. Kaya and H. Ş. Bı̇lge, “Deep Metric Learning: A Survey,” Symmetry, vol. 11, no.

9, Art. no. 9, Sep. 2019, doi: 10.3390/sym11091066.

[112] E. Hoffer and N. Ailon, “Deep Metric Learning Using Triplet Network,” in Similarity-

Based Pattern Recognition: Third International Workshop, SIMBAD 2015,

Copenhagen, Denmark, pp. 84–92, 2015, doi: 10.1007/978-3-319-24261-3_7.

[113] M. Bilenko, S. Basu, and R. J. Mooney, “Integrating constraints and metric learning in

semi-supervised clustering,” in Proceedings of the twenty-first international

conference on Machine learning, New York, NY, USA, Jul. 2004, p. 11. doi:

10.1145/1015330.1015360.

[114] M. S. Baghshah and S. B. Shouraki, “Semi-supervised metric learning using pairwise

constraints,” in Proceedings of the 21st International Joint Conference on Artificial

Intelligence, San Francisco, CA, USA, Jul. 2009, pp. 1217–1222.

[115] Y. Liang, K. Maeda, T. Ogawa, and M. Haseyama, “Cross-Domain Semi-Supervised

Deep Metric Learning for Image Sentiment Analysis,” in ICASSP 2021 - 2021 IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP), Jun.

2021, pp. 4150–4154. doi: 10.1109/ICASSP39728.2021.9414150.

[116] S. Wold, K. Esbensen, and P. Geladi, “Principal component analysis,” Chemom. Intell.

Lab. Syst., vol. 2, no. 1, pp. 37–52, Aug. 1987, doi: 10.1016/0169-7439(87)80084-9.

[117] L. van der Maaten and G. Hinton, “Visualizing Data using t-SNE,” J. Mach. Learn.

Res., vol. 9, no. 86, pp. 2579–2605, 2008, Accessed: Apr. 29, 2022. [Online]. Available:

UTS THESIS

143

http://jmlr.org/papers/v9/vandermaaten08a.html

[118] L. McInnes, J. Healy, N. Saul, and L. Großberger, “UMAP: Uniform Manifold

Approximation and Projection,” J. Open Source Softw., vol. 3, no. 29, p. 861, Sep.

2018, doi: 10.21105/joss.00861.

[119] X. Cao, B.-C. Chen, and S.-N. Lim, “Unsupervised Deep Metric Learning via

Auxiliary Rotation Loss,” arXiv, arXiv:1911.07072, Nov. 2019. doi:

10.48550/arXiv.1911.07072.

[120] U. K. Dutta, M. Harandi, and C. C. Sekhar, “Unsupervised Deep Metric Learning via

Orthogonality Based Probabilistic Loss,” IEEE Trans. Artif. Intell., vol. 1, no. 1, pp.

74–84, 2020, doi: 10.1109/TAI.2020.3026982.

[121] G. De Lucia and J. Blaizot, “The hierarchical formation of the brightest cluster

galaxies,” Mon. Not. R. Astron. Soc., vol. 375, no. 1, pp. 2–14, Feb. 2007, doi:

10.1111/j.1365-2966.2006.11287.x.

[122] M. S. Petersen, M. D. Weinberg, and N. Katz, “Using torque to understand barred

galaxy models,” Mon. Not. R. Astron. Soc., vol. 490, no. 3, pp. 3616–3632, Dec. 2019,

doi: 10.1093/mnras/stz2824.

[123] E. R. Stanway et al., “Exploring the cosmic evolution of habitability with galaxy

merger trees,” Mon. Not. R. Astron. Soc., vol. 475, no. 2, pp. 1829–1842, Apr. 2018,

doi: 10.1093/mnras/stx3305.

[124] S. Cole, C. G. Lacey, C. M. Baugh, and C. S. Frenk, “Hierarchical galaxy formation,”

Mon. Not. R. Astron. Soc., vol. 319, no. 1, pp. 168–204, Nov. 2000, doi:

10.1046/j.1365-8711.2000.03879.x.

[125] K. R. V. Casteels et al., “Galaxy And Mass Assembly (GAMA): refining the local

galaxy merger rate using morphological information,” Mon. Not. R. Astron. Soc., vol.

445, no. 2, pp. 1157–1169, Dec. 2014, doi: 10.1093/mnras/stu1799.

[126] O. Bertolami, F. Gil Pedro, and M. Le Delliou, “Dark energy–dark matter interaction

and putative violation of the equivalence principle from the Abell cluster A586,” Phys.

Lett. B, vol. 654, no. 5, pp. 165–169, Oct. 2007, doi: 10.1016/j.physletb.2007.08.046.

UTS THESIS

144

[127] S. C. Johnson, “Hierarchical clustering schemes,” Psychometrika, vol. 32, no. 3, pp.

241–254, Sep. 1967, doi: 10.1007/BF02289588.

[128] Y. Jeon, J. Yoo, J. Lee, and S. Yoon, “NC-Link: A New Linkage Method for Efficient

Hierarchical Clustering of Large-Scale Data,” IEEE Access, vol. 5, pp. 5594–5608,

2017, doi: 10.1109/ACCESS.2017.2690987.

[129] Jianbo Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE Trans.

Pattern Anal. Mach. Intell., vol. 22, no. 8, pp. 888–905, Aug. 2000, doi:

10.1109/34.868688.

[130] K. Fukunaga and L. Hostetler, “The estimation of the gradient of a density function,

with applications in pattern recognition,” IEEE Trans. Inf. Theory, vol. 21, no. 1, pp.

32–40, Jan. 1975, doi: 10.1109/TIT.1975.1055330.

[131] B. J. Frey and D. Dueck, “Clustering by Passing Messages Between Data Points,”

Science, vol. 315, no. 5814, pp. 972–976, Feb. 2007, doi: 10.1126/science.1136800.

[132] H. Averbuch-Elor, N. Bar, and D. Cohen-Or, “Border-Peeling Clustering,” IEEE Trans.

Pattern Anal. Mach. Intell., vol. 42, no. 7, pp. 1791–1797, Jul. 2020, doi:

10.1109/TPAMI.2019.2924953.

[133] A. Strehl and J. Ghosh, “Cluster Ensembles --- A Knowledge Reuse Framewo

rk for Combining Multiple Partitions,” J. Mach. Learn. Res., vol. 3, no. Dec,

pp. 583–617, 2002, Accessed: Mar. 20, 2020. [Online]. Available: http://www.j

mlr.org/papers/v3/strehl02a.html

[134] B. Tomas, “Clustering benchmarks,” 2019. https://github.com/deric/clustering-

benchmark

[135] P. Fränti and O. Virmajoki, “Iterative shrinking method for clustering problems,”

Pattern Recognit., vol. 39, no. 5, pp. 761–775, May 2006, doi:

10.1016/j.patcog.2005.09.012.

[136] L. Fu and E. Medico, “FLAME, a novel fuzzy clustering method for the analysis of

DNA microarray data,” BMC Bioinformatics, vol. 8, no. 1, p. 3, Jan. 2007, doi:

10.1186/1471-2105-8-3.

UTS THESIS

145

[137] H. Chang and D.-Y. Yeung, “Robust path-based spectral clustering,” Pattern Recognit.,

vol. 41, no. 1, pp. 191–203, Jan. 2008, doi: 10.1016/j.patcog.2007.04.010.

[138] S. Guha, R. Rastogi, and K. Shim, “Cure: an efficient clustering algorithm for large

databases,” Inf. Syst., vol. 26, no. 1, pp. 35–58, Mar. 2001, doi: 10.1016/S0306-

4379(01)00008-4.

[139] M.-C. Su, C.-H. Chou, and C.-C. Hsieh, “Fuzzy C-Means Algorithm with a Point

Symmetry Distance,” Int. J. Fuzzy Syst., no. 7(4), pp. 175–181, 2005.

[140] M. H. C. Law, A. P. Topchy, and A. K. Jain, “Multiobjective data clustering,” in

Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and

Pattern Recognition, 2004. CVPR 2004., Jun. 2004, vol. 2, p. II–II. doi:

10.1109/CVPR.2004.1315194.

[141] A. Garcia-Piquer, A. Sancho-Asensio, A. Fornells, E. Golobardes, G. Corral, and F.

Teixidó-Navarro, “Toward high performance solution retrieval in multiobjective

clustering,” Inf. Sci., vol. 320, pp. 12–25, Nov. 2015, doi: 10.1016/j.ins.2015.04.041.

[142] H. Julia and K. Joshua, “Multiobjective clustering with automatic determination of the

number of clusters,” Tech. Rep., 2004.

[143] K. Faceli, T. C. Sakata, M. C. P. de Souto, and A. C. P. L. F. de Carvalho, “Partitions

selection strategy for set of clustering solutions,” Neurocomputing, vol. 73, no. 16, pp.

2809–2819, Oct. 2010, doi: 10.1016/j.neucom.2010.03.028.

[144] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to

document recognition,” Proc. IEEE, no. 86(11), pp. 2278–2324, 1998.

[145] F. S. Samaria and A. C. Harter, “Parameterisation of a stochastic model for human face

identification,” in Proceedings of 1994 IEEE Workshop on Applications of Computer

Vision, Dec. 1994, pp. 138–142. doi: 10.1109/ACV.1994.341300.

[146] M. P. Sampat, Z. Wang, S. Gupta, A. C. Bovik, and M. K. Markey, “Complex Wavelet

Structural Similarity: A New Image Similarity Index,” IEEE Trans. Image Process.,

vol. 18, no. 11, pp. 2385–2401, Nov. 2009, doi: 10.1109/TIP.2009.2025923.

[147] S. A. Nene, S. K. Nayar, and H. Murase, “Columbia Object Image Library (COIL-

UTS THESIS

146

100),” Tech. Rep., no. CUCS-006-96, 1996.

[148] T. Sim, S. Baker, and M. Bsat, “The CMU Pose, Illumination, and Expression (PIE)

database,” in Proceedings of Fifth IEEE International Conference on Automatic Face

Gesture Recognition, May 2002, pp. 53–58. doi: 10.1109/AFGR.2002.1004130.

[149] The Cancer Genome Atlas Research Network et al., “The Cancer Genome Atlas Pan-

Cancer analysis project,” Nat. Genet., vol. 45, no. 10, pp. 1113–1120, Oct. 2013, doi:

10.1038/ng.2764.

[150] A. Dogan, “Cell-Tracking-Analysis-with-K-Means-Clustering-Method.” https://git

hub.com/ddaskan/Cell-Tracking-Analysis-with-K-Means-Clustering-Method

[151] “Zoo Data Set - UCI Machine Learning Repository.” https://archive.ics.uci.edu/

ml/datasets/zoo

[152] Tan, M., and Eshelman, L. “Using Weighted Networks to Represent Classification

Knowledge in Noisy Domains,” Mach. Learn. Proc. 1988, pp. 121–134, Jan. 1988,

doi: 10.1016/B978-0-934613-64-4.50018-9.

[153] S. J. Haberman, “Generalized residuals for log-linear models,” presented at the In

Proceedings of the 9th international biometrics conference, 1976, pp. 104–122.

[154] A. Ultsch, “Strategies for an artificial life system to cluster high dimensional data,”

Abstr. Synth. Princ. Living Syst., vol. GWAL-6, pp. 128–137, 2004.

[155] M. C. Thrun and A. Ultsch, “Clustering benchmark datasets exploiting the

fundamental clustering problems,” Data Brief, vol. 30, p. 105501, Jun. 2020, doi:

10.1016/j.dib.2020.105501.

[156] V. Estivill-Castro, “Why so many clustering algorithms: a position paper,” ACM

SIGKDD Explor. Newsl., vol. 4, no. 1, pp. 65–75, Jun. 2002, doi:

10.1145/568574.568575.

[157] M.-F. Balcan, A. Blum, and S. Vempala, “A discriminative framework for clustering

via similarity functions,” in Proceedings of the fortieth annual ACM symposium on

Theory of computing, Victoria, British Columbia, Canada, May 2008, pp. 671–680.

doi: 10.1145/1374376.1374474.

UTS THESIS

147

[158] D. B. Graham and N. M. Allinson, “Characterising Virtual Eigensignatures for General

Purpose Face Recognition,” in Face Recognition: From Theory to Applications, H.

Wechsler, P. J. Phillips, V. Bruce, F. F. Soulié, and T. S. Huang, Eds. Berlin, Heidelberg:

Springer, 1998, pp. 446–456. doi: 10.1007/978-3-642-72201-1_25.

[159] “Face Recognition Grand Challenge (FRGC v.2.0) data collection.” [Online].

Available: https://cvrl.nd.edu/projects/data/#face-recognition-grand-challenge-frgc-

v20-data-collection

[160] S. A. Nene, S. K. Nayar, and H. Murase, “Columbia Object Image Library (COIL-20),”

Tech. Rep., vol. Technical Report CUCS-005-96, 1996.

[161] F. Alimoglu and E. Alpaydin, “Combining multiple representations and classifiers for

pen-based handwritten digit recognition,” in Proceedings of the Fourth International

Conference on Document Analysis and Recognition, Aug. 1997, vol. 2, pp. 637–640

vol.2. doi: 10.1109/ICDAR.1997.620583.

[162] J. Yang, D. Parikh, and D. Batra, “Joint Unsupervised Learning of Deep

Representations and Image Clusters,” in 2016 IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), Jun. 2016, pp. 5147–5156. doi:

10.1109/CVPR.2016.556.

[163] D. Lim, R. Vidal, and B. Haeffele, “Doubly Stochastic Subspace Clustering,” ArXiv,

arXiv:2011.14859, 2020.

[164] Z. Wang, Y. Ni, B. Jing, D. Wang, H. Zhang, and E. Xing, “DNB: A Joint Learning

Framework for Deep Bayesian Nonparametric Clustering,” IEEE Trans. Neural Netw.

Learn. Syst., pp. 1–11, 2021, doi: 10.1109/TNNLS.2021.3085891.

[165] Q. Huang, Y. Zhang, H. Peng, T. Dan, W. Weng, and H. Cai, “Deep subspace clustering

to achieve jointly latent feature extraction and discriminative learning,”

Neurocomputing, vol. 404, pp. 340–350, Sep. 2020, doi:

10.1016/j.neucom.2020.04.120.

[166] X. Huang, Z. Hu, and L. Lin, “Deep clustering based on embedded auto-encoder,” Soft

Comput., vol. 27, no. 2, pp. 1075-1090, 2023, doi: 10.1007/s00500-021-05934-8.

UTS THESIS

148

[167] W. Wang, F. Chen, Y. Ge, S. Huang, X. Zhang, and D. Yang, “Discriminative deep

semi-nonnegative matrix factorization network with similarity maximization for

unsupervised feature learning,” Pattern Recognit. Lett., vol. 149, pp. 157–163, Sep.

2021, doi: 10.1016/j.patrec.2021.06.013.

[168] K. G. Dizaji, A. Herandi, C. Deng, W. Cai, and H. Huang, “Deep Clustering via Joint

Convolutional Autoencoder Embedding and Relative Entropy Minimization,”

presented at the 2017 IEEE International Conference on Computer Vision (ICCV), Oct.

2017, pp. 5747–5756. doi: 10.1109/ICCV.2017.612.

[169] Z. Yu, Z. Zhang, W. Cao, C. Liu, J. Philip Chen, and H. S. Wong, “GAN-based

Enhanced Deep Subspace Clustering Networks,” IEEE Trans. Knowl. Data Eng., pp.

1–1, 2020, doi: 10.1109/TKDE.2020.3025301.

[170] R. McConville, R. Santos-Rodriguez, R. J. Piechocki, and I. Craddock, “N2D:

(Not Too) Deep Clustering via Clustering the Local Manifold of an Autoenco

ded Embedding,” ArXiv E-Prints, vol. 1908, p. arXiv:1908.05968, Aug. 2019,

Accessed: Feb. 11, 2021. [Online]. Available: http://adsabs.harvard.edu/abs/2019

arXiv190805968M

[171] M. Yang and S. Xu, “Orthogonal Nonnegative Matrix Factorization using a novel deep

Autoencoder Network,” Knowl.-Based Syst., vol. 227, p. 107236, Sep. 2021, doi:

10.1016/j.knosys.2021.107236.

[172] Z. Chen, S. Ding, and H. Hou, “A novel self-attention deep subspace clustering,” Int.

J. Mach. Learn. Cybern., vol. 12, no. 8, pp. 2377–2387, 2021, doi: 10.1007/s13042-

021-01318-4.

[173] M. Jabi, M. Pedersoli, A. Mitiche, and I. B. Ayed, “Deep Clustering: On the Link

Between Discriminative Models and K-Means,” IEEE Trans. Pattern Anal. Mach.

Intell., vol. 43, no. 06, pp. 1887–1896, Jun. 2021, doi: 10.1109/TPAMI.2019.2962683.

[174] H. Li, X. Ye, A. Imakura, and T. Sakurai, “Divide-and-conquer based Large-Scale

Spectral Clustering,” Neurocomputing, vol. 501, pp. 664-678, 2022.

[175] J. Wang and J. Jiang, “Unsupervised deep clustering via adaptive GMM modeling and

UTS THESIS

149

optimization,” Neurocomputing, vol. 433, pp. 199–211, Apr. 2021, doi:

10.1016/j.neucom.2020.12.082.

[176] Z. Kang, X. Lu, J. Liang, K. Bai, and Z. Xu, “Relation-Guided Representation

Learning,” Neural Netw., vol. 131, pp. 93–102, Nov. 2020, doi:

10.1016/j.neunet.2020.07.014.

[177] C. Leiber, L. G. M. Bauer, B. Schelling, C. Böhm, and C. Plant, “Dip-based Deep

Embedded Clustering with k-Estimation,” in Proceedings of the 27th ACM SIGKDD

Conference on Knowledge Discovery & Data Mining, New York, NY, USA:

Association for Computing Machinery, 2021, pp. 903–913. Accessed: Feb. 14, 2022.

[Online]. Available: https://doi.org/10.1145/3447548.3467316

[178] F. Li, H. Qiao, and B. Zhang, “Discriminatively boosted image clustering with fully

convolutional auto-encoders,” Pattern Recognit., vol. 83, pp. 161–173, Nov. 2018, doi:

10.1016/j.patcog.2018.05.019.

[179] P. Zhou, Y. Hou, and J. Feng, “Deep Adversarial Subspace Clustering,” in 2018

IEEE/CVF Conference on Computer Vision and Pattern Recognition, Jun. 2018, pp.

1596–1604. doi: 10.1109/CVPR.2018.00172.

[180] W. Hu, C. Chen, F. Ye, Z. Zheng, and Y. Du, “Learning deep discriminative

representations with pseudo supervision for image clustering,” Inf. Sci., vol. 568, pp.

199–215, Aug. 2021, doi: 10.1016/j.ins.2021.03.066.

[181] L. Wu, Z. Liu, J. Xia, Z. Zang, S. Li, and S. Z. Li, “Generalized Clustering

and Multi-Manifold Learning with Geometric Structure Preservation,” presented

 at the Proceedings of the IEEE/CVF Winter Conference on Applications of C

omputer Vision, 2022, pp. 139–147. Accessed: Feb. 15, 2022. [Online]. Availa

ble: https://openaccess.thecvf.com/content/WACV2022/html/Wu_Generalized_Clust

ering_and_Multi-Manifold_Learning_With_Geometric_Structure_Preservation_WA

CV_2022_paper.html

[182] X. Li, X. Zhao, D. Chu, and Z. Zhou, “An autoencoder-based spectral clustering

algorithm,” Soft Comput., vol. 24, no. 3, pp. 1661–1671, 2020, doi: 10.1007/s00500-

UTS THESIS

150

019-03994-5.

[183] T. Zhu and J.-T. Zhang, “Cosine Similarity-Based Classifiers for Functional Data,” in

Contemporary Experimental Design, Multivariate Analysis and Data Mining:

Festschrift in Honour of Professor Kai-Tai Fang, J. Fan and J. Pan, Eds. Cham:

Springer International Publishing, 2020, pp. 277–292. doi: 10.1007/978-3-030-46161-

4_18.

[184] B. Li and L. Han, “Distance Weighted Cosine Similarity Measure for Text

Classification,” in Intelligent Data Engineering and Automated Learning – IDEAL

2013, Berlin, Heidelberg, 2013, pp. 611–618. doi: 10.1007/978-3-642-41278-3_74.

[185] H. V. Nguyen and L. Bai, “Cosine Similarity Metric Learning for Face Verification,”

in Computer Vision – ACCV 2010, Berlin, Heidelberg, 2011, pp. 709–720. doi:

10.1007/978-3-642-19309-5_55.

[186] de França, F. O., “A hash-based co-clustering algorithm for categorical data,” Expert

Syst. Appl., vol. 64, pp. 24–35, Dec. 2016, doi: 10.1016/j.eswa.2016.07.024.

[187] C. Michael, “Perform EM algorithm for fitting the Gaussian mixture model.”

http://www.ccs.neu.edu/home/vip/teach/MLcourse/3_generative_models/HW3/emg

m.m.pdf

[188] J. Sander, M. Ester, H.-P. Kriegel, and X. Xu, “Density-Based Clustering in Spatial

Databases: The Algorithm GDBSCAN and Its Applications,” Data Min. Knowl.

Discov., vol. 2, no. 2, pp. 169–194, Jun. 1998, doi: 10.1023/A:1009745219419.

[189] L. Bai, X. Cheng, J. Liang, H. Shen, and Y. Guo, “Fast density clustering strategies

based on the k-means algorithm,” Pattern Recognit., vol. 71, pp. 375–386, Nov. 2017,

doi: 10.1016/j.patcog.2017.06.023.

[190] F. Bryan, “Perform MeanShift Clustering of data using a flat kernel.”

https://ww2.mathworks.cn/matlabcentral/fileexchange/52698-k-means-mean-shift-

and-normalized-cut-segmentation

[191] A. Mayer and H. Greenspan, “An Adaptive Mean-Shift Framework for MRI Brain

Segmentation,” IEEE Trans. Med. Imaging, vol. 28, no. 8, pp. 1238–1250, Aug. 2009,

UTS THESIS

151

doi: 10.1109/TMI.2009.2013850.

[192] “APCLUSTER Affinity Propagation Clustering (Frey/Dueck, Science 2007).”

[Online]. Available: https://www.mathworks.com/matlabcentral/mlc-downloads/do

wnloads/submissions/52053/versions/1/previews/apcluster.m/index.html

[193] R. A. and L. A., “Clustering by fast search-and-find of density peaks.”

https://people.sissa.it/~laio/Research/Res_clustering.php (accessed Nov. 27, 2020).

[194] S. Sarfraz, “Efficient Parameter-free Clustering Using First Neighbor Relations,

https://github.com/ssarfraz/FINCH-Clustering.” Nov. 26, 2020. Accessed: Nov. 27,

2020. [Online]. Available: https://github.com/ssarfraz/FINCH-Clustering

[195] “A python implementation of Robust Continuous Clustering.” [Online]. Available:

https://github.com/yhenon/pyrcc

[196] “Border-Peeling Clustering.” [Online]. Available: https://github.com/nadavbar/Bor

derPeelingClustering

[197] S. A. Seyedi, “Dynamic Graph-Based Label Propagation for Density Peaks Clustering,

https://github.com/amjadseyedi/DPC-DLP.” Oct. 05, 2020. Accessed: Nov. 27, 2020.

[Online]. Available: https://github.com/amjadseyedi/DPC-DLP

[198] “Density Peaks Advanced clustering.” [Online]. Available: https://github.com/ma

riaderrico/DPA

[199] “Shared Nearest Neighbor-based Clustering by Fast Search and Find of Densit

y Peaks.” [Online]. Available: https://github.com/liurui39660/SNNDPC/tree/Matla

bImplementation

[200] C. Mo, “Normalized mutual information.” https://www.mathworks.com/matlabce

ntral/mlc-downloads/downloads/submissions/35625/versions/2/previews/InfoTheory/

nmi.m/index.html

[201] W. Lingfei, “Accuracy.” https://github.com/IBM/SpectralClustering_RandomBinni

ng/blob/master/accuracy.m

[202] M. Galar, A. Fernandez, E. Barrenechea, H. Bustince, and F. Herrera, “A Review on

Ensembles for the Class Imbalance Problem: Bagging-, Boosting-, and Hybrid-Based

UTS THESIS

152

Approaches,” IEEE Trans. Syst. Man Cybern. Part C Appl. Rev., vol. 42, no. 4, pp.

463–484, Jul. 2012, doi: 10.1109/TSMCC.2011.2161285.

[203] X. Liu, H.-M. Cheng, and Z.-Y. Zhang, “Evaluation of Community Detection

Methods,” IEEE Trans. Knowl. Data Eng., vol. 32, no. 9, pp. 1736–1746, Sep. 2020,

doi: 10.1109/TKDE.2019.2911943.

[204] M. C. de Souto, I. G. Costa, D. S. de Araujo, T. B. Ludermir, and A. Schliep,

“Clustering cancer gene expression data: a comparative study,” BMC Bioinformatics,

vol. 9, no. 1, p. 497, Nov. 2008, doi: 10.1186/1471-2105-9-497.

[205] J. Moore and M. Ackerman, “Foundations of Perturbation Robust Clustering,” in 2016

IEEE 16th International Conference on Data Mining (ICDM), 2016, pp. 1089–1094.

doi: 10.1109/ICDM.2016.0141.

[206] V. Menon, G. Muthukrishnan, and S. Kalyani, “Subspace Clustering Without Knowing

the Number of Clusters: A Parameter Free Approach,” IEEE Trans. Signal Process.,

vol. 68, pp. 5047–5062, 2020, doi: 10.1109/TSP.2020.3018665.

[207] T. Kameda et al., “Rawlsian maximin rule operates as a common cognitive anchor in

distributive justice and risky decisions,” Proc. Natl. Acad. Sci., vol. 113, no. 42, pp.

11817–11822, Oct. 2016, doi: 10.1073/pnas.1602641113.

[208] P. Zhao, Y. Jiang, and Z.-H. Zhou, “Multi-View Matrix Completion for Clustering with

Side Information,” in Advances in Knowledge Discovery and Data Mining, Cham,

2017, pp. 403–415. doi: 10.1007/978-3-319-57529-2_32.

[209] F. Nie, J. Li, and X. Li, “Self-weighted Multiview Clustering with Multiple Graphs,”

In IJCAI, pp. 2564–2570, 2017, Accessed: Aug. 15, 2021. [Online]. Available:

https://www.ijcai.org/proceedings/2017/357

[210] H. Tao, C. Hou, X. Liu, T. Liu, D. Yi, and J. Zhu, “Reliable Multi-View Clustering,”

In Proceedings of the AAAI conference on artificial intelligence, vol. 32, no. 1, 2018.

[211] L. Ertoz, M. Steinbach, and V. Kumar, “A New Shared Nearest Neighbor Clu

stering Algorithm and its Applications,” 2nd SIAM Int. Conf. Data Min., Vol.

8, 2002, Accessed: Aug. 25, 2021. [Online]. Available: https://www.semanticsc

UTS THESIS

153

holar.org/paper/A-New-Shared-Nearest-Neighbor-Clustering-Algorithm-Ertoz-Stein

bach/a46d877a1b7948e7b62ad1ea0bab28269bfcae6b

[212] Y. Liu, Z. Li, H. Xiong, X. Gao, and J. Wu, “Understanding of Internal Clustering

Validation Measures,” in 2010 IEEE International Conference on Data Mining, Dec.

2010, pp. 911–916. doi: 10.1109/ICDM.2010.35.

[213] A. Bakshi and D. P. Woodruff, “Sublinear time low-rank approximation of distance

matrices,” in Proceedings of the 32nd International Conference on Neural Information

Processing Systems, Red Hook, NY, USA, Dec. 2018, pp. 3786–3796.

[214] C. Lu, S. Yan, and Z. Lin, “Convex Sparse Spectral Clustering: Single-View to Multi-

View,” IEEE Trans. Image Process., vol. 25, no. 6, pp. 2833–2843, Jun. 2016, doi:

10.1109/TIP.2016.2553459.

[215] X. Cai, F. Nie, and H. Huang, “Multi-View K-Means Clustering on Big Data,” in IJCAI,

pp. 2598–2604, 2013.

[216] J. Han, J. Xu, F. Nie, and X. Li, “Multi-view K-Means Clustering with Adaptive Sparse

Memberships and Weight Allocation,” IEEE Trans. Knowl. Data Eng., pp. 1–1, 2020,

doi: 10.1109/TKDE.2020.2986201.

[217] X. Fang, Y. Hu, P. Zhou, and D. O. Wu, “V3H: View Variation and View Heredity for

Incomplete Multiview Clustering,” IEEE Trans. Artif. Intell., vol. 1, no. 03, pp. 233–

247, Jul. 2020, doi: 10.1109/TAI.2021.3052425.

[218] K. Zhan, F. Nie, J. Wang, and Y. Yang, “Multiview Consensus Graph Clustering,”

IEEE Trans. Image Process., vol. 28, no. 3, pp. 1261–1270, Mar. 2019, doi:

10.1109/TIP.2018.2877335.

[219] R. Xia, Y. Pan, L. Du, and J. Yin, “Robust Multi-View Spectral Clustering via Low-

Rank and Sparse Decomposition,” Proc. AAAI Conf. Artif. Intell., vol. 28, no. 1, Art.

no. 1, Jun. 2014, Accessed: Aug. 19, 2021. [Online]. Available:

https://ojs.aaai.org/index.php/AAAI/article/view/8950

[220] D. M. Powers, “Evaluation: from Precision, Recall and F-measure to ROC,

Informedness, Markedness and Correlation,” Journal of Machine Learning

UTS THESIS

154

Technologies, vol. 2, no. 1, pp. 37–63, Dec. 2011, Accessed: Oct. 20, 2019. [Online].

Available: https://dspace.flinders.edu.au/xmlui/handle/2328/27165

[221] J. C. Dunn, “A Fuzzy Relative of the ISODATA Process and Its Use in Detecting

Compact Well-Separated Clusters,” J. Cybern., vol. 3, no. 3, pp. 32–57, Jan. 1973, doi:

10.1080/01969727308546046.

[222] P. J. Rousseeuw, “Silhouettes: A graphical aid to the interpretation and validation of

cluster analysis,” J. Comput. Appl. Math., vol. 20, pp. 53–65, Nov. 1987, doi:

10.1016/0377-0427(87)90125-7.

[223] Y. Liu, Z. Li, H. Xiong, X. Gao, J. Wu, and S. Wu, “Understanding and Enhancement

of Internal Clustering Validation Measures,” IEEE Trans. Cybern., vol. 43, no. 3, pp.

982–994, Jun. 2013, doi: 10.1109/TSMCB.2012.2220543.

[224]L. Hu and C. Zhong, “An Internal Validity Index Based on Density-Involved Distance,”

IEEE Access, vol. 7, pp. 40038–40051, 2019, doi: 10.1109/ACCESS.2019.2906949.

[225] W. Hao, S. Pang, and Z. Chen, “Multi-view spectral clustering via common structure

maximization of local and global representations,” Neural Netw., vol. 143, pp. 595–

606, Nov. 2021, doi: 10.1016/j.neunet.2021.07.020.

[226] A. L. Ballardini, “A tutorial on Particle Swarm Optimization Clustering,”

ArXiv180901942 Cs, Sep. 2018, Accessed: Jan. 11, 2022. [Online]. Available:

http://arxiv.org/abs/1809.01942

[227] X. Zhu, J. Shang, Y. Sun, F. Li, J.-X. Liu, and S. Yuan, “PSO-CFDP: A Particle Swarm

Optimization-Based Automatic Density Peaks Clustering Method for Cancer

Subtyping,” Hum. Hered., vol. 84, no. 1, pp. 9–20, 2019, doi: 10.1159/000501481.

[228] R. C. Prim, “Shortest connection networks and some generalizations,” Bell Syst. Tech.

J., vol. 36, no. 6, pp. 1389–1401, 1957, doi: 10.1002/j.1538-7305.1957.tb01515.x.

[229] D. Dua and C. Graff, “UCI Machine Learning Repository.” 2017. [Online]. Available:

http://archive.ics.uci.edu/ml

[230] F. Wang and J. Sun, “Survey on distance metric learning and dimensionality reduction

in data mining,” Data Min. Knowl. Discov., vol. 29, no. 2, pp. 534–564, Mar. 2015,

UTS THESIS

155

doi: 10.1007/s10618-014-0356-z.

[231] A. Gupta, D. Foster, and L. Ungar, “Unsupervised Distance Metric Learning Using

Predictability,” Tech. Rep. CIS, vol. 885, Jun. 2008, [Online]. Available:

https://repository.upenn.edu/cis_reports/885

[232] D. Simovici and K. Hua, “Data ultrametricity and clusterability,” J. Phys. Conf. Ser.,

vol. 1334, no. 1, p. 012002, 2019, doi: 10.1088/1742-6596/1334/1/012002.

[233] M. Ackerman, S. Ben-David, S. Brânzei, and D. Loker, “Weighted Clustering,” Proc.

AAAI Conf. Artif. Intell., vol. 26, no. 1, pp. 858-863, 2012, Accessed: Apr. 25, 2022.

[Online]. Available: https://ojs.aaai.org/index.php/AAAI/article/view/8282

[234] M. Ackerman and S. Dasgupta, “Incremental clustering: the case for extra clusters,” in

Proceedings of the 27th International Conference on Neural Information Processing

Systems - Volume 1, Cambridge, MA, USA, Dec. 2014, pp. 307–315.

[235] Z. Yu et al., “Transitive Distance Clustering with K-Means Duality,” in 2014 IEEE

Conference on Computer Vision and Pattern Recognition, Jun. 2014, pp. 987–994. doi:

10.1109/CVPR.2014.131.

[236] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of ICNN’95

- International Conference on Neural Networks, Nov. 1995, vol. 4, pp. 1942–1948

vol.4. doi: 10.1109/ICNN.1995.488968.

	Title Page
	Certificate of Original Authorship
	Acknowledgement
	Published and Under Review Papers Related to This Thesis
	Abstract
	Contents
	Chapter 1. Introduction
	1.1 Background
	1.2 Insights and our solutions
	1.3 Research objectives
	1.4 Research scope
	1.5 Thesis overview
	1.6 Key contributions

	Chapter 2. Literature review
	2.1 Clustering
	2.1.1 Hierarchical clustering
	2.1.2 Partition-based clustering
	2.1.3 Density-based clustering
	2.1.4 Model-based clustering
	2.1.5 Grid-based clustering

	2.2 Multi-view clustering
	2.2.1 Multi-view spectral clustering
	2.2.2 Multi-view subspace clustering
	2.2.3 Other multi-view clustering

	2.3 Distance metric learning
	2.3.1 Supervised metric learning
	2.3.2 Semi-supervised metric learning
	2.3.3 Unsupervised metric learning

	2.4 Summary

	Chapter 3. Torque Clustering: Autonomous clustering by fast find of mass and distance peaks
	3.1 Introduction
	3.2 Proposed method
	3.2.1 Define clusters and form connections between them
	3.2.2 Define two properties of each connection to construct the decision graph
	3.2.3 Define the torque of each connection and sort the connections in descending order
	3.2.4 Define torque gap and find the largest gap to determine abnormal connections
	3.2.5 Define halo connections to determine the noise
	3.2.6 Complexity analysis
	3.2.7 Algorithm analysis

	3.3 Experiments and results
	3.3.1 Evaluation on nine synthetic data sets
	3.3.2 Evaluation on 11 real-world data sets
	3.3.3 Results and analysis
	3.3.4 Runtime
	3.3.5 Further evaluation on 56 data sets with peculiar characteristics
	3.3.6 Comparison to deep clustering algorithms on challenging image data sets

	3.4 Discussion
	3.4.1 Differences between TC and other hierarchical clustering algorithms
	3.4.2 Differences between TC and density peak clustering algorithms
	3.4.3 Differences between TC and subspace clustering algorithms
	3.4.4 Potential limitations of TC

	3.5 Conclusion
	3.6 Experimental details and more results
	3.6.1 Experimental details
	3.6.2 Further evaluation on additional 56 data sets with peculiar characteristics
	3.6.3 Robustness guarantees for the proposed TC

	Chapter 4. Multi-view adjacency-constrained hierarchical clustering
	4.1 Introduction
	4.2 Proposed method
	4.2.1 Fusion distance matrices with extreme weights (FDEW)
	4.2.2 Adjacency-constrained nearest neighbor clustering (CNNC)
	4.2.3 Internal evaluation index based on Rawls' max-min criterion (MMI)
	4.2.4 Algorithm of MCHC and MCHC-PF

	4.3 Experiments and results
	4.3.1 Data sets description
	4.3.2 Compared algorithms
	4.3.3 Results and analysis
	4.3.4 Runtime

	4.4 Ablation study
	4.4.1 Impact of fusion distance matrices with extreme weights (FDEW)
	4.4.2 Impact of adjacency-constrained nearest neighbor clustering (CNNC)
	4.4.3 Impact of internal evaluation index based on Rawls' max-min criterion (MMI)

	4.5 Discussion
	4.6 Conclusion

	Chapter 5. PSO-based multi-view nearest neighbor clustering
	5.1 Introduction
	5.2 Proposed Method
	5.2.1 Adjacency-constrained nearest neighbor clustering (CNNC)
	5.2.2 Particle swarm optimization (PSO)
	5.2.3 Fitness function based on a novel internal validity index: minimum spanning tree-based Dunn’s index (MSTDI)
	5.2.4 PSO-based multi-view nearest neighbor clustering

	5.3 Experiment and results
	5.3.1 Data sets description
	5.3.2 Compared algorithms
	5.3.3 Results and analysis

	5.4 Ablation study
	5.4.1 Impact of adjacency-constrained nearest neighbor clustering (CNNC)
	5.4.2 Impact of minimum spanning tree-based Dunn’s index (MSTDI)
	5.4.3 Impact of the two hyperparameters

	5.5 Conclusion

	Chapter 6. Almost ultrametric learning using pseudo labels from clustering
	6.1 Introduction
	6.2 Proposed Method
	6.2.1 Metric space and ultrametric space
	6.2.2 Convert metric space to the proposed almost ultrametric (AUM) space
	6.2.3 Exploit pseudo labels of torque clustering to approximate ground truth labels
	6.2.4 Almost ultrametric learning using TC pseudo labels (AUMLTC)

	6.3 Experiments and results
	6.3.1 Data sets description
	6.3.2 Compared algorithms
	6.3.3 Results and analysis

	6.4 Ablation study
	6.5 Conclusion

	Chapter 7. Conclusion and future work
	7.1 Conclusion
	7.2 Future work

	Bibliography

