

Investigation of miR-652 in Host Immunity Against Intracellular Bacterial Pathogens

by Maxwell T. Stevens

Thesis submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

under the supervision of Associate Professor Bernadette Saunders and Dr Matthew Padula

University of Technology Sydney Faculty of Science

July 2022

CERTIFICATE OF ORIGINAL AUTHORSHIP

I, Maxwell Stevens, declare that this thesis is submitted in fulfilment of the requirements

for the award of Doctor of Philosophy, in the Faculty of Science at the University of

Technology Sydney.

This thesis is wholly my own work unless otherwise referenced or acknowledged. In

addition, I certify that all information sources and literature used are indicated in the

thesis. This document has not been submitted for qualifications at any other academic

institution. This research is supported by the Australian Government Research Training

Program.

Production Note:

Signature:

Signature removed prior to publication.

Date:

30 July 2022

ii

Acknowledgments

The last 4 years have been an endurance event, and there are many people who I need to thank for helping me through.

Firstly, I would like to acknowledge and thank my supervisor Associate Professor Bernadette Saunders and my co-supervisor Dr Matthew Padula. Your support and guidance throughout my PhD have instilled me with the ethical and scientific base I needed to really delve into my study, continually learning and developing as a research scientist. You provided sound advice when I needed it most, but also gave me the reigns to drive my project and make the most of this opportunity. Also, thank you to Dr Nilesh Bokil for the technical introduction to kick off the whole project.

A big thank you to everyone who has been a part of the Saunders lab with me, with special thanks to Dr Jessica Pedersen and Giang Le. Your physical assistance and effervescent characters were the essential ingredients to get through arduous days in the PC3, toiling for hours through flow cytometry data, or carefully deciphering my most perplexing results. So much of this work would not have been accomplished without you all.

Thank you to Professor Warwick Britton and all the members of the mycobacteria group at the Centenary Institute. The technical expertise you've all shared has been amazing, and the opportunity to regularly present my work to you all has been invaluable. Presentation opportunities have been few and far between these 2 years, and I am very grateful. Your fresh perspectives and weekly discussion fostered my scientific thinking, which really made this thesis what it has finally become.

My parents, family, and friends have been a constant, not just through my PhD, but through all my work and education. Thank you so much for all your encouragement and support. To Matthew Hamlyn, thank you for your constant positivity, it is a very welcome light when things feel rough. To Dr Marley Pulbrook, thanks for your wit, humour, and encouragement as we've both been slogging through what feels like endless study.

And most importantly, thank you to my wife Emily. These years have been hard and I could not have done it without you. There were many months where you were literally the only person I saw, which is lucky because you are the best support I could wish for. Your love, friendship, and encouragement have kept me sane through long nights in the lab and prolonged weeks writing. Thank you so, so much; I love you!

Thesis format

This is a thesis by compilation, consisting of two published peer-reviewed papers, two results chapters, and a general discussion chapter.

Publications associated with this thesis

Stevens, M. T., B. D. Nagaria, W. J. Britton, and B. M. Saunders. 2021. Macrophages of different tissue origin exhibit distinct inflammatory responses to mycobacterial infection. *Immunol. Cell Biol.* 99: 1085-1092.

Stevens, M. T., and B. M. Saunders. 2021. Targets and regulation of microRNA-652-3p in homoeostasis and disease. *J. Mol. Med.* 99: 755-769.

Table of Contents

Acknowledgments	. iii
Thesis format	V
Publications associated with this thesis	V
Table of Contents	. vi
List of figures	kiii
List of tablesx	vii
Abbreviationsxv	/iii
Abstract	XX
Chapter 1. Targets and regulation of microRNA-652-3p in homeostasis and disease	
1.1. Preamble to Chapter 1	2
1.2. Chapter 1 – Declaration	5
1.3. Abstract	6
1.4. Introduction	6
1.5. Characteristics of miR-652	7
1.6. miR-652-3p in cardiovascular disease	8
1.7. miR-652-3p in cancer	12
1.7.1 Lung cancer	12
1.7.2 Breast cancer	14
1.7.3 Gastrointestinal cancers	15
1.7.4 Other cancers	17
1.8. miR-652-3p in mental illnesses and the central nervous system	19
1.9. miR-652-3p in other indications	21
1.10. miRNAs regularly associated with dysregulated miR-652-3p	23
1.11. Interspecies conservation of miR-652-3p and its validated target genes	25
1.12. Conclusion	27
1.13 Declarations	28

1.14.	. Acknowledgements	28
1.15.	Online resources	29
Chapter response	r 2. Macrophages of different tissue origin exhibit ses to mycobacterial infection	•
2.1.	Chapter 2 – Declaration	31
2.2.	Abstract	32
2.3.	Introduction	33
2.4.	Results	34
2.4	4.1 Macrophages from distinct origins retain control o34	of mycobacterial growth
2.4	4.2 iNOS activity is influenced by macrophage tissue o	rigin36
2.4	4.3 Increased proinflammatory cytokines expression in36	n alveolar macrophages
2.4	4.4 Surface phenotype of alveolar macrophage	es indicates stronge
pro	oinflammatory response to mycobacterial infection	37
2.5.	Discussion	39
2.6.	Methods	42
2.6	6.1 Cell culture	42
2.6	6.2 Bacterial cultures	42
2.6	6.3 Macrophage infections with mycobacteria	43
2.6	6.4 Cytometric bead array	43
2.6	6.5 Nitrite assay	43
2.6	6.6 Flow cytometry	43
2.6	6.7 Cell viability	44
2.6	6.8 Statistical analysis	44
2.7.	Acknowledgements	44

Chapter 3.	General materials and methods	46
3.1. Ma	terials	46
3.1.1	General solutions	46
3.1.2	Bacterial culture media	46
3.1.3	Bacteria	47
3.1.4	Animals	47
3.1.5	Cell lines	48
3.1.6	Plasmids	48
3.1.7	miRNA mimics	50
3.1.8	Tissue culture media	50
3.1.9	Western blotting solutions	50
3.1.10	Western blot staining antibodies	51
3.1.11	Primer oligonucleotides for RT-qPCR	51
3.1.12	Flow cytometry staining antibodies	53
3.1.13	Flow cytometer	54
3.1.14	Reagents for protein isolation and processing	54
3.2. Me	thods	55
3.2.1	Mammalian cell line tissue culture	55
3.2.2	Bacterial culture	56
3.2.3	Enumeration of bacterial colony forming units	56
3.2.4	Tissue homogenisation to determine bacterial load	57
3.2.5	Histology	57
3.2.6	Tissue dissociation to single cells for flow cytometry	57
3.2.7	Flow Cytometry	58
3.2.7	7.1 Surface antigen staining	58
3.2.7	7.2 Intracellular staining	58

	3.2.8	Res	azurin metabolic activity assay	59
	3.2.9	Cyt	ometric bead array cytokine assay	59
	3.2.10	We	stern blot for protein phosphorylation	60
	3.2.	10.1	Assessing protein concentration	60
	3.2.	10.2	Separation by gel electrophoresis	61
	3.2.	10.3	Western blot membrane transfer	61
	3.2.	10.4	Antibody staining and stripping	62
	3.2.	10.5	Western blot band quantitation	63
	3.2.11	RN	A purification	63
	3.2.12	Det	ermining mRNA expression by quantitative PCR	64
	3.2.	12.1	RNA purification and cDNA synthesis from mRNA template	64
	3.2.: qPC	12.2 R)	Quantitative real-time quantitative polymerase chain reaction 65	(RT-
	3.2.	12.3	Relative expression calculation	65
	3.2.13	Det	ermining miRNA expression by quantitative PCR	66
	3.2.	13.1	cDNA synthesis from miRNA template	66
	3.2.	13.2	Quantitative RT-qPCR for miRNA expression	67
	3.2.	13.3	Relative miRNA expression calculation	67
	3.2.14	Sta	tistical analyses	68
Chap	oter 4.	The	e impact of miR-652 during mycobacterial infection	70
4.	1. Int	trodu	ction	70
4.	2. M	ethod	s	72
	4.2.1	Isol	ation and culture of primary mouse bone marrow cells	72
	4.2.2	In v	vitro mycobacterial infection	72
	4.2.3	In v	vivo mycobacterial infection	73
	4.2.4	Flo	w cytometry gating	74

4.3.	Res	ults	77
4.	3.1	In vitro cytokine expression by infected macrophages is impaired by m	iR-
65	52 kno	ckout	77
4.	3.2	Inflammatory pathways are downregulated in infected miR-652	2-/-
m	acrop	hages	78
	3.3	miR-652 knockout in macrophages does not impair control	
m	ycoba	cterial growth	79
4.	3.4	miR-652 ^{-/-} mice capably control <i>M. tuberculosis</i> bacterial load	83
4.	3.5	Lung immune cell populations are not affected by miR-652 knockout	87
4.4.	Disc	cussion	94
Chapte		The impact of miR-652 during <i>Listeria monocytogenes</i> infection1	
5.1.	Intr	oduction1	03
5.2.	Met	thods1	05
5.	2.1	Isolation and culture of primary mouse peritoneal macrophages1	05
5.	2.2	In vitro L. monocytogenes infection1	05
5.	2.3	In vivo L. monocytogenes infection1	06
5.	2.4	Flow cytometry gating1	07
5.	2.1	Proteomics analysis of protein expression1	11
	5.2.1.	1 Protein isolation and alkylation1	11
	5.2.1.	2 Protein digestion and clean-up1	11
	5.2.1.	3 Protein normalisation by STAGE-tip desalting1	11
	5.2.1.	4 LC/MS/MS1	12
	5.2.1.	5 Data analysis1	12
5.	2.2	Mammalian cell transient transfection1	13
5.	2.3	Firefly luciferase luminescence assay1	14
5.3.	Res	ults1	15

	5.3.1	miR-652 ^{-/-} mice are highly susceptible to <i>L. monocytogenes</i> infection	115
	5.3.2	Liver inflammation is increased in susceptible miR-652-/- mice	120
	5.3.3	miR-652 ^{-/-} macrophages capably control <i>L. monocytogenes</i> bacterial	load
	in vitro	132	
	5.3.4	Proinflammatory pathways are downregulated in miR-652 ^{-/-} macroph 134	nages
	5.3.5	miR-652 targeting of <i>Capzb</i> in mouse macrophages	140
5.	4. Disc	cussion	143
Chap	oter 6.	General Discussion	152
6.	1. Tub	erculosis and miR-652 as a prospective therapeutic	152
	6.1.1	TB as a continuing problem	152
	6.1.2	Targeting miR-652 as a host-directed therapy	153
	6.1.3	Known miR-652 targets in TB therapy	154
	6.1.3	1 ARRB1	154
	6.1.3	2 KLF9	154
	6.1.3	3 RORα	155
	6.1.3	4 ZEB1	156
	6.1.3	.5 HOXA9	157
	6.1.3	6 ENPP1	158
6.	2. Me	tabolism and antimicrobial defence	159
	6.2.1	Deconvolution of metabolism and leukocyte action	159
	6.2.2	Cell metabolism and tuberculosis	160
	6.2.3	Metabolic targets as tuberculosis therapeutics	163
	6.2.4	Host-microbe metabolic interactions – targets in the microbiome?	165
6.	3. Dev	reloping miRNA molecules for infectious disease treatment	166
	6.3.1	Feasibility of miRNA as therapeutic targets	166

	6.3.1.1	Population variability	167
	6.3.1.2	Off-target effects	169
6.4.	Limitatio	ons	171
6.5.	Future S	itudies	172
6.6.	Conclusi	ion	172
Chapte	r 7. Bibl	liography	174
Append	dix 1		232
Append	dix 2		248
Append	dix 3		259
Append	dix 4		268
Append	dix 5		274
Append	dix 6		278

List of figures

Chapter 1
Figure 1.1. Regulation of cell polarity and Notch signalling by miR-652-3p11
Figure 1.2. Human miRNAs reported dysregulated with hsa-miR-652-3p in lung cancer, breast cancer, and gastrointestinal cancers
Figure 1.3. Human miRNAs reported dysregulated with hsa-miR-652-3p in cardiovascular disease, cancer, and mental health and central nervous system diseases.
Figure 1.4. mir-652-3p target sequences are conserved between humans and mice 27
Chapter 2
Figure 2.135
Figure 2.237
Figure 2.339
Chapter 3 Figure 3.1. The western blot transfer stack
Chapter 4
Figure 4.1. Flow cytometry gating strategy for the analysis of myeloid lineage cells in tissue of <i>M. tuberculosis</i> -infected mice
Figure 4.2. Flow cytometry gating strategy for the analysis of T cells in tissue from <i>M. tuberculosis</i> -infected mice
Figure 4.3. Proinflammatory cytokine expression is reduced in miR-652 ^{-/-} macrophages after mycobacterial infection

Figure 4.4. Activation of the AKT-mTOR pathway is decreased in miR-652% macrophages following mycobacterial infection	80
Figure 4.5. Notch receptor expression is not impaired in miR-652 ^{-/-} cells after mycobacterial infection.	81
Figure 4.6. Wild type and miR-652 ^{-/-} BMDMs control <i>M. tuberculosis</i> growth	82
Figure 4.7. Wild type and miR-652 ^{-/-} macrophages are metabolically active 24 hours after mycobacterial infection	82
Figure 4.8. <i>In vivo Mycobacterium tuberculosis</i> infection in mice	85
Figure 4.9. Wild type and miR-652 ^{-/-} mice control <i>M. tuberculosis</i> bacterial load 8	85
Figure 4.10. Lung inflammation progresses in both wild type and miR-652 ^{-/-} mice following <i>M. tuberculosis</i> infection	86
Figure 4.11. Myeloid leukocyte populations are not affected by miR-652 expression in M. tuberculosis-infected mice	
Figure 4.12. Lymphocyte populations are altered during chromic <i>M. tuberculosis</i> infection of miR-652 ^{-/-} mice	90
Figure 4.13. miR-652 deficiency does not affect activation of effector T cell population in <i>M. tuberculosis</i> -infected mice	
Figure 4.14. Helper T cell populations are similar in wild type and miR-652 ^{-/-} mice during <i>M. tuberculosis</i> infection.	92
Figure 4.15. Memory cytotoxic T cell populations are decreased during acute <i>M. tuberculosis</i> infection of miR-652 ^{-/-} mice	93
Chapter 5	
Figure 5.1. Flow cytometry gating strategy for analysis of T cell populations in the spleen of <i>L. monocytogenes</i> -infected mice	08
Figure 5.2. Flow cytometry gating strategy for analysis of myeloid lineage cell populations in the spleen of <i>L. monocytogenes</i> -infected mice	09
Figure 5.3. Flow cytometry gating strategy for analysis of T cell cytokine expression, following intracellular staining of spleen cells from <i>L. monocytogenes</i> -infected mice.	10
Figure 5.4. <i>In vivo Listeria monocytogenes</i> infection in mice1	
	17 17

Figure 5.6. Infection-induced weight loss is increased and prolonged in miR-652 ^{-/-} mice
Figure 5.7. Bacterial growth was uncontrolled in moribund ET mice119
Figure 5.8. Cytokine expression is increased in miR-652 ^{-/-} mice and moribund ET mice from both groups
Figure 5.9. Wild type mice contain <i>L. monocytogenes</i> in compact liver lesions123
Figure 5.10. <i>L. monocytogenes</i> induces large necrotic liver lesions in miR-652 ^{-/-} mice.
Figure 5.11. Spleen CD8 ⁺ T cell expansion was diminished in miR-652 ^{-/-} mice after <i>L. monocytogenes</i> infection
Figure 5.12. CD4 ⁺ effector T cell populations are elevated in miR-652 ^{-/-} mice early during <i>L. monocytogenes</i> infection
Figure 5.13. Activation marker expression is similar on wild type and miR-652 ^{-/-} effector T cells during <i>L. monocytogenes</i> infection
Figure 5.14. Cytokine-expressing T cell populations are similar in <i>L. monocytogenes</i> -infected wild type and miR-652 ^{-/-} mice
Figure 5.15. Single, double- and triple-positive cytokine expressing T cells are comparable between wild type and miR-652 ^{-/-} mice
Figure 5.16. miR-652 expression does not affect mouse macrophage metabolic activity or control of <i>Listeria</i> infection
Figure 5.17. TNF expression is not suppressed in Listeria-infected miR-652 ^{-/-} macrophages
Figure 5.18. Protein expression patterns are altered by miR-652 knock-out135
Figure 5.19. Essential cellular pathways downregulated in miR-652-/- macrophages135
Figure 5.20. STRING network shows interacting pathways with known anti-bacterial activity were dysregulated in miR-652 ^{-/-} macrophages137
Figure 5.21. Gene expression trends infected macrophages correlated with differential protein expression
Figure 5.22. miR-652 overexpression did not impact <i>Capzb</i> transcription141
Figure 5.23. miR-652 overexpression did not cause decreased translation of CAPZB protein
Figure 5.24. miR-652 does not target to predicted site in the <i>Capzb</i> 3'UTR142

Appendices

Figure A 1. pISO luciferase expression plasmid map	275
Figure A 2. pISO-Capzb-WT luciferase reporter plasmid map	276
Figure A 3. pISO-Capzb-mut luciferase reporter plasmid map	277
Figure A 4. A small minority of mycobacteria are removed in culture supernatant, leaving the majority internalised by macrophages, or adherent to the assay plate	279
Figure A 5. Internalised mycobacteria have small effect on resazurin metabolic acti	vity
assay fluorescence readout 24 hours post-infection	280

List of tables

Chapter 3
Table 3.1. Oligonucleotide gene fragments for insertion into pISO49
Table 3.2. Antibodies used in western blot staining procedure51
Table 3.3. Primers sequences used in mRNA qPCR reactions52
Table 3.4. Forward primer sequences used in miRNA qPCR reactions52
Table 3.5. Fluorescent antibodies for flow cytometry staining53
Table 3.6. Fortessa X20 lasers and detectors54
Table 3.7. cDNA synthesis reaction for messenger RNA template64
Table 3.8. mRNA qPCR reaction reagent volumes65
Table 3.9. cDNA synthesis reaction for microRNA template66
Table 3.10. miRNA qPCR reaction reagent volumes67
Chapter 5
Table 5.1. Euthanasia times for <i>L. monocytogenes</i> -infected mice118
Table 5.2. KEGG pathways enriched in differentially expressed proteins from Listeria-infected peritoneal macrophages
Chapter 6
Table 6.1. Single nucleotide polymorphisms identified in the miR-652 binding sequence

Abbreviations

3'UTR 3' untranslated region

ADC Albumin dextrose catalase

ANOVA Analysis of variance

BMDM Bone marrow-derived macrophage

BSA Bovine serum albumin

CBA Cytometric bead array

cDNA Complementary deoxyribonucleic acid

CFU Colony forming unit

cGAMP Cyclic GMP-AMP

CNS Central nervous system

CVD Cardiovascular disease

DC Dendritic cell

DNA Deoxyribonucleic acid

dsDNA Double stranded deoxyribonucleic acid

DTT Dithiothreitol

EDTA Ethylenediaminetetraacetic acid

ET Ethical threshold

FBS Foetal bovine serum

LB Lysogeny broth

LPS Lipopolysaccharide

MDR TB Multidrug-resistant

miRNA microRNA

MLN Mediastinal lymph node

MOI Multiplicity of infection

NK cell Natural killer cell

NP Nanoparticle

OADC Oleic acid albumin dextrose catalase

PAMP Pathogen-associated molecular pattern

PBMC Peripheral blood mononuclear cell

PBS Phosphate buffered saline

PC3 Physical containment level 3

PEG Polyethylene glycol

PEI Polyethylenimine

Pre-miR Pre-microRNA

Pri-miR Primary microRNA

RISC RNA-induced silencing complex

RNA Ribonucleic acid

ROC curve Receiver operating characteristic curve

RT-qPCR Real time quantitative polymerase chain reaction

SD Standard deviation

SDS-PAGE Sodium dodecyl sulphate polyacrylamide gel electrophoresis

SEM Standard error of the mean

siRNA Small interfering ribonucleic acid

SNP Single nucleotide polymorphism

TBST Tris-buffered saline Tween 20

TCA cycle Tricarboxylic acid cycle

TCEP Tris(2-carboxyethyl)phosphine

TFA Trifluoroacetic acid

TLR Toll-like receptor

TP Time point

Abstract

Tuberculosis (TB) is an infectious respiratory disease caused by the bacterial pathogen *Mycobacterium tuberculosis*. Each year, 1.5 million deaths are attributable to TB and survivors are prone to increased all-cause mortality, due to excessive TB-associated pulmonary inflammation. Recent literature indicated the microRNA hsa-miR-652-3p (miR-652) was downregulated in plasma of Chinese TB patients, and further decreased in patients who failed to clear the bacteria after antibiotic therapy. This thesis investigated the activities of miR-652 during *in vitro* and *in vivo* infections with intracellular bacterial pathogens, with a special focus on the macrophage response to infection.

My initial study aimed to characterise the phenotypic differences between murine alveolar (AMJ2-C11) and peritoneal (IC-21) macrophage cell lines during *in vitro* mycobacterial infections, in order to illustrate the influence of tissue origin on macrophage function. Both cell lines were able to control *M. bovis* BCG and *M. tuberculosis* H37Rv bacterial loads. However, AMJ2-C11 cells exhibited a more inflammatory phenotype, with significantly increased cytokine release and nitric oxide generation. Additionally, expression of inflammatory cell surface markers was increased on AMJ2-C11 cells relative to IC-21 cells. These data suggest that whilst tissue origin can influence macrophage phenotype, cell plasticity ensures diverse macrophages can respond to invading pathogens.

Chapter 4 investigated the impact of miR-652 on the murine immune response to *M. tuberculosis*. Bone marrow macrophages from miR-652-/- C57BL/6 mice were able to control bacterial growth over 6 days *in vitro*, though IL-6, TNF, MIP-1α, and KC expression was significantly lower than in their wild type counterparts. Western blot results indicated AKT and mTOR activation was attenuated in miR-652-/- macrophages. miR-652-/- mice infected aerogenically with *M. tuberculosis* were able to control the bacterial load in the lungs and spleen equal to wild type mice over 13 weeks. Leukocyte populations were comparable between mouse strains, however, early CD8+ effector T cell numbers were elevated in the lung and lymph node miR-652-/- mice, suggesting miR-652 may have some impact on T cell differentiation during bacterial infection.

Chapter 5 investigated this question in a CD8+ T cell-focused infection model; intraperitoneal *Listeria monocytogenes* infection. miR-652-/- mice were highly susceptible to a low-dose infection of 2000 CFU/mouse, exhibiting significantly increased weight loss and high morbidity. The early onset of morbidity indicated a deficiency in the innate immune response. Highly necrotic liver lesions in miR-652-/- mice displayed intense recruitment of neutrophils and macrophages, but bacterial load was uncontrolled in these mice. To investigate the antimicrobial phenotype of miR-652-/- macrophages, primary peritoneal macrophages were infected with *L. monocytogenes in vitro*. A proteomic analysis highlighted dysregulation of key immune pathways, including the lysosome pathway and the pentose phosphate pathway. Also downregulated was the *in silico*-predicted miR-652 target CAPZB. Transfection experiments using luciferase reporter constructs indicated miR-652 does not target a predicted sequence in the CAPZB 3'UTR. Further, CAPZB mRNA and protein were unaffected by transfection with a miR-652 mimic in IC-21 mouse peritoneal macrophage cells, indicating CAPZB expression is unaffected by miR-652.

This thesis demonstrates miR-652 plays clear roles in the proper innate immune response to acute infection with an intracellular bacterial pathogen. The pathways impacted in miR-652-/- macrophages position miR-652 as an important regulator of immune function, potentially regulating inflammation and cell metabolism. Host-directed therapies possess amazing potential as a complement to existing antimicrobial drugs. microRNA-based therapeutics for infectious diseases are progressing well through clinical trials. Analysis of the genes validated as targets for miR-652 underscores the promise for a miR-652 mimic as a therapeutic in chronic TB, particular when administered with a cell-targeted delivery mechanism. Additional holistic research is needed to evaluate the impacts of miR-652 in macrophages to realise the potential of miR-652 as a therapeutic miRNA.