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Abstract

This thesis proposes a modular Software Defined Network controller - (Multi-agent

SDN controller). The thesis is in two parts. The first part makes the proposition

and provides the necessary background information. The Software Defined Network

paradigm deviates from traditional networks by logically centralising and physically

separating the control plane from the data plane. Currently, SDN control planes

are monolithic, OpenFlow dependent and do not support application portability. A

modular architecture is proposed in the second part of the thesis to improve the

existing control plane. The architecture comprises social agents. The architecture

varies from reactive to learning agents based on the agent’s role and a knowledge

base to formally represent knowledge in a multi-agent system and provide simple

inferences. For information exchange, the agents exchange messages. A prototype is

designed and built to demonstrate controller operation in some common network

scenarios. Performance is evaluated at both the agent and system levels. While

it was observed that agent system performance compares well with a monolithic

controller, the agent system has higher latency when physically distributed.
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Chapter 1

Proposal

1.1 Introduction

This thesis sets out to build a modular Software Defined Networks control plane. The

control plane comprises autonomous, rational and social agents capable of sensing,

learning, reasoning and communicating. The agents employ learning techniques such

as reinforcement learning and incremental learning and reasoning mechanisms such

as constraint solving and inference to deduce unknown facts. The agents use local

and global knowledge base to store network information while exchanging messages

to share local information.

Contributions of this thesis include

1. an architecture to disintegrate the SDN control plane

2. a modular multi-agent based SDN control plane

3. an ontology and knowledge base for the agent system

4. agent interaction protocols

The above contributions culminate towards a prototype for a modular and physically

distributed SDN controller. The proposed modular controller can function as a one

2



1.2. MOTIVATION AND PROPOSAL

control entity on both physically localised (a single node) and physically distributed

(multiple nodes, cloud) infrastructure.

1.2 Motivation and Proposal

In this section the motivation for the thesis and proposition to build an agent-based

controller are presented.

1.2.1 Motivation

Traditional networks are distributed by design, consisting of devices that perform

dedicated operations leading to closed, propriety networks. The Software Defined

Network (SDN) paradigm deviates from traditional networks by logically centralising

and physically separating the control plane from the data plane. The control

plane communicates with the data plane via a Southbound Interface (SBI). While

the control plane instructs the data plane on packet handling, switches store the

instructions in flow tables as flow rules. Flow rules match against all incoming

packets and execute corresponding actions. In case of no match, the switch forwards

the packet to the controller for processing. Northbound Applications (NBA) running

on the controller process the incoming packet, create a flow rule and configure this

rule on the switch. Northbound Interfaces (NBI) establish a communication channel

between the controller core module and applications. Most SDN controllers fall into

one of three categories a) physically centralised, b) physically distributed, logically

centralised, and c)physically distributed, logically distributed. Physically centralised

controllers suffer from a single point of failure. Physically distributed controllers

require synchronisation for information exchange. Other undesirable features of most

of the existing control planes are listed below:

1. SBI Dependent: SDN is synonymous with OpenFlow (OF) [1]. Such an

association is beneficial for standardising SBIs; nevertheless, it results in severe

3



1.2. MOTIVATION AND PROPOSAL

dependency on a single SBI and hinders innovation. SDN applications and

OpenFlow are heavily intertwined. Most existing networks are traditional

(non-SDN), and adopting SDN is gradual. Such a setup with SDN and

non-SDN devices would result in a hybrid network. OpenFlow is incapable

of managing traditional networks. The absence of a singular SBI to manage

hybrid networks consisting of various forwarding devices (both SDN data paths

and traditional network devices (wired and wireless)) leads to physically and

logically distributed control planes. By decoupling applications from OpenFlow,

alternative applications and SBIs may be explored independently for a logically

centralised control plane for hybrid networks.

2. Monolithic: Monolithic software is a self-contained software application.

Components in monolithic software are tightly interdependent, coupled with

one another and act as a single entity [2]. Many smaller applications benefit

from monolithic design. They are easy to deploy and maintain and perform

better. Nevertheless, monolithic applications are rigid with resource allocation

and hard to scale and manage. Such applications also require extensive testing

for minor and major upgrades. Unfortunately, most of the existing SDN

controllers are monolithic by design [3], [4], [5]. NBAs, controller core and

OpenFlow protocol are tightly coupled. Monolithic design is not restricted to

physically centralised controllers. Distributed control plane consists of multiple

such replicas of the controller instances and do not necessarily modularise the

controller.

3. Application portability and code redundancy: Consider POX [6] and Ryu [7]

controllers. Both controllers are python-based SDN controllers; nevertheless,

applications written for the POX controller cannot run on the Ryu controller

and vice versa. Poor application portability is due to the non-standardisation

of NBIs. Current NBAs rely heavily on the interface provided by the controller

core. Most SDN applications perform a standard set of actions such as

exchanging packets with the data plane, parsing and un-parsing OF packets

4



1.2. MOTIVATION AND PROPOSAL

and storing network information creating redundant code; consolidating such

essential functions increases code re-usability.

4. Intelligence: Current SDN applications are reactive and rule-based, where

a domain expert defines their functionality. SDN provides a centralised view

of the environment opening up opportunities to build intelligent applications

capable of reacting to environmental changes by sensing, reasoning, acting and

learning.

This thesis aims to address above mentioned issues of existing SDN control plane

by setting and achieving the goals illustrated in Figure 1.1 and described in Section

1.2.2.

Figure 1.1: Focus of this thesis

5



1.2. MOTIVATION AND PROPOSAL

1.2.2 Proposal

To address the issues listed in Section 1.2, this thesis proposes to build an SDN

controller that has the following characteristics:

1. Modular: Modular design is an alternate approach to monolithic architecture.

Modular systems are built by disintegrating monolithic applications into

components (e.g. micro-services or agents). Modular architecture allows

isolation and flexible allocation of resources such as CPU and memory to

components. Components in such distributed systems are social and exchange

information with other components.

2. Supports one or more SBI: A logically centralised control plane allows seamless

information exchange between traditional and OpenFlow devices in a network.

Though OpenFlow is the desired SBI to manage SDN devices, the control plane

also receives, processes and uses information acquired from other managing

protocols such as NETCONF [8], SNMP [9].

3. Intelligent: Controller intelligence resides at multiple levels (application level

and system level). Application level intelligence combines SDN’s centralised

view of the data plane with learning and reasoning techniques. System level

intelligence is attained by communicating and coordinating applications.

The proposed architecture is called Multi-Agent SDN (MASDN). MASDN is a

SDN control plane architecture that consists of multiple social and rational agents.

The agent system is modular, supports multiple SBIs and possess application-level

intelligence. A prototype is developed to evaluate the operation and performance of

the proposed architecture.

Distributed systems comprise a group of entities. These entities are micro-services

or agents. Unlike micro-services, agents can perceive, measure and act in an

environment. They are autonomous and self-sufficient. From an implementation

6



1.3. KEY CONTRIBUTIONS

perspective, each agent runs as a system process, allowing isolated resource allocation

and fault detection.

Since agents are autonomous, various deployment options can be explored, such

as physically centralised, physically distributed, and cloud-based deployments. Each

agent in the agent system performs a singular network task. Agent system is scalable

to include additional agents. Agent upgrade and testing is isolated to a specific

agent, reducing efforts to upgrade and test the entire agent system. For example,

protocols such as NETCONF [8] can be wrapped into agents and added to the agent

system. With the assistance of a global knowledge base, all SBIs can manage and

maintain a hybrid network realising a centralised control plane for hybrid networks.

The autonomous and social nature of agents also makes applications portable. All

agents need not adopt the same technology stack to operate seamlessly. The agent

system can be deployed centrally on a single physical machine or distributed across

multiple physical devices (physical and virtual) while using a shared knowledge base

to maintain consistent information across various agents.

Social agents open up the possibility of composing applications differently, though

such composition is different from the goals this thesis aims to meet. Consider

two agents (Ag1 and Ag2). Ag1 performs load balancing, and Ag2 ensures QoS

compliance. In a traditional SDN setup, these agents are composed serially or in

parallel to yield a single flow rule. The proposed agent system facilitates the agents to

communicate, negotiate and arrive at a single composed flow rule. This thesis layouts

the foundation for such interaction but does not propose any specific framework for

negotiation and flow composition though such negotiations are possible in future.

1.3 Key contributions

This work presents a modular, agent-based SDN controller architecture (MASDN)

as a step toward building an intelligent SDN control plane. The control plane

comprises intelligent, social and autonomous agents capable of interacting with the
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environment (including other agents) reasoning, learning and acting. This thesis

makes the following contributions:

1. Modular control plane architecture comprising of below agents

(a) SBI agents to interact with the data plane.

(b) IP path agent to compute end-to-end path for data exchange.

(c) Reroute agent reroutes flows while ensuring congestion does not transfer

to other network parts. The agent reasons flow and path assignment as a

constraint satisfaction problem to find the optimal path to reroute a flow.

(d) TCP fairness agent ensures TCP fairness amongst flows that do not share

the same start time (in other words, non-synchronised flows) by altering

the congestion window of TCP flows. This agent uses reinforcement

learning to learn the desired behaviour.

(e) Incremental learning-based traffic prediction agent employs incremental

learning to predict network traffic.

(f) Topology agent periodically discovers topology.

(g) Port status agent handles port failures and reroutes traffic.

(h) Port stats agent gathers port statistics. These statistics are used by other

agents, such as rerouting and traffic prediction agents.

(i) Flow table agent to remove stale flow rules from global knowledge base.

(j) Knowledge Base agent to manage the knowledge base.

2. Ontology and knowledge base is also presented for use by agent systems. The

knowledge base agent executes a reasoner on the ontology to ensure consistency

and detect network abnormalities such as link failures and congestion. The

knowledge base agent notifies management agents of the abnormality for further

action.

3. Interaction protocols that agents use to communicate and exchange messages.

8
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1.4 Methodology

This thesis adopts build methodology to prototype the proposed multi-agent system.

[10] defines build methodology "as the process of building an artifact (software or

hardware) system to demonstrate an idea". Build approach [10] provides guidelines

for building a prototype to demonstrate an idea. These guidelines include - planning

the approach to prototype before building, reusing existing components, choosing a

programming language and periodic testing.

Multiple methodologies have been proposed to decompose a monolithic system

into a multi-agent one. Methodologies such as GAIA [11], Tropos [12], MESSAGE

[13], Prometheus [14], MaSE [15], and O-MaSE [16] are a few examples. From

a system level, the SDN controller performs periodic actions such as monitoring,

algorithm-based tasks such as path-computation for provisioning, reasoning tasks such

as maintaining a consistent network state and other advanced tasks involving learning.

Different agents perform different tasks. Thus, an agent’s architecture is determined

by the task an agent performs, resulting in agents that are simple reactive to proactive

learning agents. This thesis adopts MaSE methodology to decompose the SDN

controller into a multi-agent system. MaSE methodology is goal-based, independent

of agent architectures, programming language or communication framework. MaSE

supports UML representation and enables the building of heterogeneous agent systems

comprising agents with different architectures ranging from simple reactive agents

to complex learning agents. A simplified waterfall version of the methodology is

presented in Table 1.1.

Finally, the ontology presented in the thesis is used by the agents to build

messages for communication. Relationships are established in the ontology to build

a knowledge base. The knowledge base agent performs basic inferences on the

knowledge base to identify inconsistencies. Some common network use cases are

tested in two deployment methods - on a single node (physically centralised), on

multiple physical nodes (distributed).

9
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State Activities Tasks

Requirement
Analysis

Capture
Goals

Model Goals
Generate goal hierarchy

Apply Use
Cases

Use Cases
Sequence Diagrams

Refining
Roles

Define Roles
Concurrent Tasks

Design

Create Agent Classes Agent Classes

Construct Conversations Conversations

Assemble Agent Classes Agent Architecture

System Design Deployment Diagrams

Table 1.1: MaSE Methodology [15]

1.5 Results

The prototype of the proposed modular multi-agent SDN controller was evaluated

using various use case scenarios, including centralised, distributed, and agent and

system level. At the agent level, the operations of three complex agents are evaluated.

System level performance is evaluated in both operational modes and compared

against monolithic controller- Ryu [7]. The comparison is in terms of flow setup

duration and bandwidth conducted in network scenarios.

1.6 Outline

This thesis is organised into two parts: proposition and contribution. Part 1 of

the thesis presents the proposal (Chapter 1) and discusses background information

(Chapter 2, Chapter 3).

Chapter 2 introduces the reader to the field of Software Defined Networks (SDN).

This chapter describes the idea of separation of the data plane from the control plane,

discusses multiple control plane architectures supported by a discussion on relevant

literature.

10
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Chapter 3 introduces the field of multi-agent systems along with the concepts of

learning and reasoning in the agents. This chapter also briefly touches on knowledge

representation and presents a brief discussion on existing agent communication

languages.

Part - II (Chapter 4, Chapter 5, Chapter 6) of this thesis focuses on contributions.

Chapter 4 presents multi-agent SDN controller architecture by breaks down the

monolithic controller to an agent system. This chapter then proceeds to present the

proposed modular architecture and describes individual agents’ operations in detail.

Chapter 5 describes knowledge representation, presents an ontology, lists and

discusses the inferences made on the knowledge. To enable information exchange

among agents of the agent system, messages and communication patterns are

presented in the later part of the chapter.

Chapter 6 describes the framework used and presents the prototype. Various

operational modes of the prototype are presented and the prototype’s operation is

tested in multiple network scenarios. Finally, results for the fore-mentioned tests are

presented followed by a discussion.

Chapter 7 concludes this thesis and discusses some improvements and scope for

future work.
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Chapter 2

Software Defined Network

2.1 Introduction

Network infrastructure comprises forwarding devices, security devices and other

monitoring and management entities. Most forwarding devices, such as switches and

routers, have a data plane, a control plane, and a management plane to configure

and control data and the control plane. Ports and forwarding tables form the data

plane of a switch. The data plane forwards the packets based on information in

the forwarding table. In an instance when a forwarding device cannot handle an

incoming packet, the packet is handled by the control plane. The control plane runs

control protocols, updates the forwarding tables and enables communication with

other devices in the network.

A control plane is a central processing unit for handling generic device-directed

functions and implements control protocols such as Spanning Tree Protocol (STP),

Open Shortest Path First (OSPF), Border Gateway Protocol (BGP), and Local

Link Discovery Protocol (LLDP) and Internet Group Management Protocol (IGMP),

amongst others. On the other hand, the data plane has an Application-Specific

Integrated Circuit (ASIC) designed to perform specific functions configured in its

pipeline. ASICs are function specific and use Content-Addressable Memory (CAM)

and Tertiary CAM (TCAM) to store forwarding information, Access Control Lists
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2.1. INTRODUCTION

(ACLs) and Quality of Service (QoS) policies. A very high-speed lookup on the CAM

table leads to line-rate transmission speeds. ASIC pipeline design is vendor-specific,

leading to vendor lock-ins. Each network device operates as a fully autonomous

entity and conveys its existence to other devices by exchanging information with

other devices that run similar communication protocols. Exchanged information

includes routing tables, multi-cast membership, and port configuration information.

This information does not include data plane configurations such as QoS policies or

ACLs. Since the configuration and management of these protocols is a manual task,

human errors are possible, leading to inconsistency in forwarding information across

the network. Figure 2.1 reproduces an abstract, modified view of the operation of

traditional network devices presented in [17].

Figure 2.1: Traditional network with two interconnected devices

The ASIC makes Ethernet switches perform at significantly faster rates to achieve

higher throughput while inherently making the device cater to only one application,

quickly adding to a high number of application-specific devices [17]. SDN aims

to simplify the control plane while making way for vendor-agnostic devices. SDN

advocates decoupling control and data plane by physically separating and logically

aggregating the control plane from the data plane of a forwarding device such as a

switch. This separation effectively leads to a central control entity that manages the

data plane. A centralised control plane generates a consistent topology, QoS, ACL

policies. The control plane uses this universal network information and composes

forwarding policies for the data plane. Centralisation of control also leads to building
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more advanced network services and functions [18]. Applications running on the

control plane process the incoming packet using application logic. For example, a

firewall application can determine whether a packet is safe for admission. The Control

plane translates these results into flow rules and inserts them into the switches in

the data plane. This updated network architecture is shown in Figure 2.2.

Figure 2.2: A Software Defined Network with decoupled data and control plane

2.2 Software Defined Network

This section provides a quick primer on Software Defined Network (SDN) architecture.

Drawing parallels from a traditional network, SDN also has a data plane, a control

plane and an applications/ management plane. Unlike traditional networks, the

control plane of SDN is logically centralised and programmable, and the data plane

consists of interconnected forwarding elements (also known as data paths). A set of

applications running on the control plane execute network functions. Some examples

are path-finding, firewall, load balancing, resource management, policy enforcement,

authorisation and authentication applications. Southbound Interface (SBI) enables

the communication between the control and data planes, and a Northbound Interface

(NBI) enables the communication between the control plane and the application

plane. An east-west bound communication interface facilitates inter-controller
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communication. A summary on each plane is presented as follows.

2.2.1 Data Plane

Data Plane comprises (a) inter-connected forwarding elements (FE) and (b) SBI

protocol.

2.2.1.1 Forwarding Element

A Forwarding Element (FE) is a hardware or software data plane entity that forwards

and filters packets. A hardware FE is a physical switch with a fixed-function switch

ASIC or a programmable switch ASIC or Field-Programmable Gate Array (FPGA).

FE receives, parses the incoming packet, identifies header fields and matches the

fields against match-action rules. In a fixed-function switch ASIC, each stage matches

a specific header field and thus limits the number of protocols the switch can match

against. The switch hardware needs a replacement to support matching against new

protocol headers.

On the other hand, in a Programmable ASIC, each stage is programmable;

that is- it is possible to program a stage to match against a previously unmatched

protocol header. Such programmable ASICs allow flexible match-action forwarding

logic. Protocol Independent Switch Architecture (PISA) forms the underlying

architecture for a programmable ASIC [19]. Programming Protocol-Independent

Packet Processors (P4) [20] programming language is used to program PISA. Using

P4 programming language a programmer can define custom headers to match, actions

to take and exact processing sequence. P4 compiler compiles the program, produces

a target-specific configuration binary to configure the underlying ASIC.

A software FE is a virtual switch operating on any general-purpose processor.

Unlike ASICs in hardware switches, software switches are CPU based, making

them operate relatively slower than ASIC-based hardware devices. Software switch

components include virtual NIC, ports to send and receive packets, kernel to process
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packets and data structures to realise flow tables. Unlike fixed-size TCAMs used in

hardware switches, software implementation of flow-table circumvents size limitation

[17].

OpenVSwitch (OVS) [21] is a widely adopted virtual switch that supports

OpenFlow. OVS switch has a kernel module for fast and efficient packet handling.

ovs-vswitchd manages multiple ovs instances and handles packets sent by the kernel

module. Usually, the first packet of the flow is sent to ovs-vswitchd. Ovs-vswitchd

communicates with ovsdb-server and external controller. While ovsdb stores switch

configuration, the external controller provides forwarding information to ovs-vswitchd.

The flow table is updated with this information (known as the flow rule). All

subsequent packets are handled according to this flow rule.

Figure 2.3: OpenVSwitch [21]

A FE are also referred as a datapath and this thesis uses both the terms as

synonymous.

2.2.1.2 OpenFlow

Southbound Interface (SBI) enables the communication between the control and

data planes. The most popular SBI is OpenFlow [1]. OpenFlow was developed

primarily for network experimentation aimed toward building programmable networks.

Open Network Foundation (ONF) [22] standardised OpenFlow pipeline and protocol

specifications [23].
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The OpenFlow pipeline consists of multiple forwarding tables. Each table is

composed of multiple flow rules. A flow rule is an action that a switch performs upon

matching against a packet. OpenFlow pipeline processing is the order of matching

an incoming packet against flow tables. OpenFlow pipeline is an abstraction mapped

to the switch’s actual hardware as noted in [23], shown in Figure 2.4.

OpenFlow-enabled switches can either be OpenFlow-hybrid or OpenFlow-only

[23]. OpenFlow-only switches handle packets using only the OpenFlow pipeline,

while OpenFlow-hybrid switches can process packets either using the OpenFlow

pipeline or the non-OpenFlow (L2-switch) pipeline.

Figure 2.4: OpenFlow switch

Flow tables store flow rules. Each flow rule has match criteria, action criteria and

counters. A match is a list of all protocol header fields of an incoming packet the

flow rule will match against, and instructions are a list of actions mapped against the

fore-mentioned match criteria. Match fields and action fields are listed in Figure 2.5.

A counter associated with a flow rule maintains statistics for the rule. The number

of transmitted bytes, received bytes and number of packets processed by the queue

are maintained using counters per flow rule. Apart from the flow table, the group

table and meters table entries also maintain counters.

OpenFlow packet processing pipeline starts at table 0. The switch performs

lookups on the flow table, matching incoming packet headers against flow rules,

incoming ports and metadata of the packet. Upon a successful match, the switch

executes corresponding actions. Actions can include, updating counters, headers,
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(a) Select Match feilds

(b) Actions

Figure 2.5: Match, Action field values of a flow rule

sending to a specific outport or sending to next table for processing. If a lookup does

not return an action, that is, if a packet does not match against any flow rule, the

switch performs actions against a table-miss flow rule. In the absence of table-miss

entry, datapath drops the packet. Figure 2.6 reproduces the pipeline from [23].

OpenFlow Protocol standardises communication patterns and messages between

the control and data plane. Some exchanges are initiated by the controller, e.g., to

install a flow rule in the flow table, and some by the switch, e.g., to send information

about dead ports to the controller. As mentioned below, three communication

patterns exist between the controller and the data plane.

• Symmetric messages are initiated by either the switch or controller.
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Figure 2.6: OpenFlow Pipeline processing [23]

OFPT_HELLO, OFPT_ECHO_REQUEST and OFPT_ERROR_MSG

messages are an example of symmetrical messages. OFPT_HELLO messages

are exchanged during the connection startup phase, and echo messages are

exchanged to keep the connection alive. Error messages are exchanged to notify

each other of connection problems.
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• Asynchronous messages are unsolicited messages a switch sends to the

controller to inform the controller about a state change. The switch sends

an OFPT_PACKET_IN message to pass the control of a table-miss packet

to the control plane. An OFPT_FLOW_REMOVED message notifies the

controller of a removed flow rule. OFPT_PORT_STATUS message is used to

notify the controller about any port state changes. OFPT_ROLE_STATUS,

OFPT_TABLE_STATUS and OFPT_REQUEST_FORWARD are other

asynchronous messages sent by the switch.

• Controller-to-switch messages are sent by the controller intending to gather

switch information or change the switch’s state. These messages include

OFPT_FEATURES_REQUEST and OFPT_GET_CONFIG_REQUEST.

The controller uses OFPT_FEATURES_REQUEST to query switches’

capabilities during the handshake process. The controller modifies the behaviour

of the flow table using an OFPT_TABLE_MOD message, and flow rules within

the flow table are modified using the OFPT_FLOW_MOD message. Adding

a new rule, modifying an existing rule and deleting a rule are considered

modifications to a flow rule. The physical port’s behaviour is modified using

the OFPT_PORT_MOD message. Group tables are modified using the

OFPT_GROUP_MOD message, and OFPT_METER_MOD are used to

modify meter tables.

The controller also initiates OFPT_MULTIPART_REQUEST, a multipart

request message. The multipart message type field distinguishes various

multipart messages. The controller sends a OFPMP_DESC message to gather

information about the switch. While a OFPMP_FLOW message is sent

to collect individual flow stats, OFPMP_PORT_STATS is sent to gather

port statistics. OFPMP_QUEUE_STATS message is used to collects Queue

statistics. The controller uses OFPT_PACKET_OUT to en-queue packets

to a specific switch port. The controller sends other control messages, such as

OFPT_ROLE_REQUEST to change the controller’s role in a multi-controller
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environment.

OpenFlow Versions

The first version of OpenFlow (version 1.0) [24] was introduced in 2009 and supported

single table and matched against 12 feilds. OpenFlow 1.1 [25] had full support for

VLAN and MPLS tags and accommodated multiple tables. OpenFlow 1.1 also offered

group abstraction with a group table. OpenFlow 1.2 [26] introduced flexible matching

and provision to rewrite packet feilds with set_field extension. OpenFlow 1.2 also

enhanced support for multiple controller and IPV6. OpenFlow 1.3 [27] released in

April 2012, was the first long term release, supporting per flow meter tables and

offered more flexible support for table miss flows. On-demand flow counters and

duration for stats were other enhancements introduced in OpenFlow 1.3. OpenFlow

1.4 [28] supported optical ports, flow monitoring in presence of multiple controller

and enabled role change notification for multi-controller setups. The latest version

of OpenFlow 1.5 [29] released on 2015 supported packet type aware pipeline along

with the provision to match against TCP bits.

This thesis uses OpenFlow 1.3.

2.2.1.3 Alternate SBIs

While the ability to program the data plane was the initial drive behind SDN and

OpenFlow as SBI, other attempts were made before and after OpenFlow to make

the data plane programmable. A brief discussion of these attempts follows.

Forwarding and Control Element Separation (ForCES) [30] advocates decoupling

of the control element (CE) and forwarding element (FE) within a given network

device but does not necessarily place the CE in an external logically centralised

controller. CE controls and communicates with FE via Logical Function Block (LFB)

provisioned in FE.

Ever-increasing protocol match fields in OpenFlow demand switches to understand
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and parse an increasing number of protocol fields in packet headers. Authors of

[31] argue that such a requirement is unnecessary and instead propose Protocol

Oblivious Forwarding (POF) to make the FE a white box. POF is a protocol-agnostic

southbound interface that addresses the high overhead in OpenFlow switches while

parsing and matching OpenFlow header information. The authors of POF propose a

generic, platform-independent flow instruction set (FIS). FIS allows the controller to

parse the packets and only pass table-lookup instructions to the forwarding plane in

search keys. FE extracts the search keys from the packet and uses information in

FIS to perform actions.

DevoFlow [32] proposes to devolve control of most of the flows back to the

forwarding devices while the controller retains control over a few significant flows.

DevoFlow uses wildcards to reduce TCAM entries and the switch controller interaction

instances. By pushing most of the control back to forwarding devices, FEs are enabled

with local decision-making capabilities.

OpFlex [33] advocates pushing some of the complexities back to the data plane,

in which the control plane computes policies centrally. The edge devices retain their

intelligence as in traditional networks, while OpFlex formulates and pushes policies

to the end devices.

[18], [34] provides a comprehensive survey of SBIs. A detailed discussion on

programmable data plane can be found in [35].

2.2.2 Control Plane

The Data plane forwards packets based on flow rules in flow tables. With the data

plane stripped of the ability of decision-making, flow rules must be populated in

flow tables either manually or composed by an external entity. Manual configuration

is unsustainable, poorly scalable, static and error-prone. Composition of flow rule

by an external entity such as an SDN controller is automated, programmable. An

SDN controller is a logically centralised entity that connects to, communicates,
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and configures the SDN data plane. An OpenFlow SDN controller establishes and

maintains a secure channel to each switch in the data plane using OpenFlow. The

controller-switch communication is either in-band or out-of-band. A generic SDN

controller architecture is presented in Figure 2.7.

Figure 2.7: A generic SDN controller architecture

A controller’s core components include I/O functions, event handling and essential

components such as topology discovery and path-finding. The core component handles

connections from switches, receives messages from switches and registers them as

events for handling. The core also dispatches messages from various applications

(NBAs) for further processing. Some applications include traffic policies, monitoring

and generation of dashboards, load balancing and applications to maintain QoS.

These applications use the information gathered by the core components to build

their logic.

2.2.2.1 Control Plane architecture

From an architectural perspective, control planes are commonly classified into

1) Physically centralised architectures and 2) Physically distributed architectures.

While centralised controllers are challenging to scale and prone to a single point of

failure, consistency across multiple controller instances is challenging in distributed

architectures. Below is a summary of a few well-known controllers in each category.
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A detailed survey of architectures and performance of the control plane can be found

in [18], [36], [37], [38].

Physically centralised architecture

A controller has all or most core components and applications on a single hardware

entity. Such configuration immediately translates to scalability issues, single point of

failures, zero-fault tolerance and bottlenecks. These issues have been documented in

[39], [36], [40]. Below are a few well-known examples of physically centralised SDN

controllers.

NOX [41] is the first open-source OpenFlow controller. NOX is a single-threaded,

asynchronous, event-based controller. The controller core components include I/O

operations, OpenFlow API, threading and event management components.

NOX-MT [42] is a performance enhancement on NOX [41] SDN controller.

NOX-MT employs multi-threading and other optimisation techniques such as I/O

batching, Boot Async I/O for handling incoming connections and fast processor-aware

malloc to improve performance. Though NOX-MT only addresses some of the

performance issues around NOX, it still outperforms the NOX controller.

Ryu [7] is also a component-based controller like NOX and NOX-MT. Like NOX,

Ryu’s core components consist of OpenFlow API to handle OpenFlow messages,

event handler, memory management and messaging service.

Faucet [43] is a compact controller based on Ryu controller. Faucet has two primary

components - Faucet controller and Gauge. While the controller connects to router

module and other external systems, Gauge establishes a connection with the datapath,

gather network statistics and feeds the information to visualisation tool Graphana

[44].

Beacon [45] is a Java-based controller aiming at providing the run-time ability

to start and stop applications running on the controller with high performance. To

achieve high performance, Beacon implements a multi-threaded core.
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FloodLight [46] is also a multi-threaded controller aiming at improving controller

performance. Like the above-discussed controllers, Floodlight’s core components

include an I/O handler to read OpenFlow messages and generate events for handling

by other controller modules. Other core components include a topology manager, a

path computation, and REST API for accessing the modules.

While Ryu and NOX are single-threaded controllers, NOX-MT, Beacon, and

Floodlight controllers are multi-threaded systems that take advantage of multiple

cores [18].

Physically distributed architecture

Alternatively, a physically distributed SDN control plane contains multiple control

entities handling the data plane. Based on how the control elements in the control

plane interact, they can be further sub-classified as logically centralised and logically

distributed [36].

Logically centralised SDN controllers maintain a consistent global network state.

That is, each controller synchronises all local information with other controllers using

a variety of state dissemination mechanisms to build a network-wide view amongst

all controller instances. Below are some well-known logically centralised SDN control

plane architectures.

ONOS [47] is distributed but logically centralised. One of the early primary

challenges ONOS addressed was creating and maintaining a global network view.

ONOS cluster consists of several ONOS servers. Each server instance discovers

network topology, collects host information, and constructs a global view. The

authors of [47] mention that the prototype of ONOS adopted modules from FloodLight

[46]. While the network view is implemented using the Titan graph database, the

Cassandra Key-value store is used for the distribution and persistence of information.

ONIX [48] states that "the principal contribution of Onix is defining a useful

and general API for network control that allows for the development of scalable
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applications". In this process, the authors propose an Onix API that provides

functions for programmers to use, a control logic that determines network behaviour

and runs on top of Onix API, and Onix distributed system that runs on a cluster of

one or more physical servers. Onix stores network states as Network Information

Base (NIB), which are read and written on by ONIX applications.

Hyperflow [49] is an application on NOX [41]. Hyperflow is designed as a

distributed event-based, logically centralised and physically distributed control plane.

The Hyperflow application and the event propagation system establish inter-controller

communication. When a local controller receives a state-altering event, this event

is published to construct a global view, and the rest of the controllers use this

information. In case of a controller failure, the switches connect to the nearest

backup controller.

KANDOO [50] control plane architecture is hierarchical. There are two levels

of controllers. a) local controller b) root controller. Local controllers run local

applications and consult root controllers only when they need to run a global

application. The authors mention that KANDOO controllers (local controllers)

cannot run applications that need global information in isolation and consult the

root controller. The root controller runs instance of HyperFlow or ONOS controller.

The local controllers do not appear to communicate amongst themselves and rely on

the root controller for global information. Hence, KANDOO is logically centralised

and not distributed.

OpenDayLight (ODL) [51] was initially conceived to provide a control platform

to manage both OpenFlow and non-OpenFlow devices. ODL is a generic and

general-purpose controller administered by the Linux Foundation. ODL clustering

is a later release of ODL aimed at distributed deployment. AMQP is used for

inter-instance messaging.

Elasticon [52] is logically centralised control plane consisting of a cluster of

controller servers where each server is responsible for the data plane. All controller

servers form a mesh using TCP connections, and a centralised module migrates
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switches between servers. Information amongst servers is stored through Hazlecast

distributed data store [53].

Logically distributed SDN controllers consist of control elements controlling some

parts of the network (as in domains) and communicating on a need basis. Examples

of such architectures are as follows:

DISCO [54] views data planes as domains where a single controller controls one

domain. DISCO has two main components. Intra-domain controller and inter-domain

communication mechanism. The intra-domain controller is built on FloodLight [46]

controller, and the messaging module is an application running on the floodlight

controller which exchanges relevant information with other controllers.

D-SDN [55] physically and logically distributes control using a hierarchy of

controllers. There are two sets of controllers - primary and secondary controllers.

The main controllers delegate their actions to the secondary controller. Only those

secondary controllers authorised by the primary controller can function on behalf of

the primary controller. Secondary controllers can also act as fail-over controllers for

other secondary controllers.

ORION [56] is a hybrid hierarchical control plane aiming to reduce computational

complexity. There are two control planes, a lower-level area controller handling

requests from the data plane and a higher-level domain controller handling information

from area controllers. Area controllers collect device information, link information,

process intra-area requests, and build network views. More importantly, the area

controller abstracts these views and passes them to the domain controller. A domain

controller can handle multiple area controllers and sees area controllers as nodes, stack

the abstract views passed on by area controllers, and compute abstract paths. Area

controllers cannot directly communicate with each other and can only communicate

via a domain controller, while domain controllers use a distribution protocol for

information dissipation.
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(a) Physically centralised SDN control plane
(b) Physically distributed, logically
centralised SDN control plane

(c) Physically distributed, hierarchical SDN
control plane

(d) Physically distributed, logically
distributed SDN control plane

Figure 2.8: SDN control plane architecture

2.2.2.2 Northbound Interface

Northbound Interface (NBI) establishes a communication channel between the control

and application planes. While there is no consensus on the standardisation of NBI,

unlike SBI, some NBIs provides a high-level abstraction for application development

[34]. Some of the well-known NBIs are discussed below:

Frenetic [57] is a language for programming OpenFlow networks. Frenetic has two

sub-languages. First, network query language is used explicitly to install flow rules

for querying the network state. Querying packets using high-level patterns result in

the generation of an event. Such events are used in a variety of applications. Queries

can also be composed to avoid overlap of flow rules and suppress superfluous packets

to avoid race conditions. Second, a network policy management library generates

policies to install flow rules on a switch.

Pyretic [58] allows programmers to specify network policies using high-level

abstractions, allowing programmers to specify rules at the network level rather than

for individual switches. Pyretic uses predicate policies to distinguish packets based

on their locations, modify packet headers and compose flow rules in a serial and
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parallel fashion. Pyretic facilities write dynamic policies and complex applications

while inheriting the modular nature of Frenetic language.

Procera [59] is a controller architecture that allows network programmers to

express high-level policies. Procera is reactive in a sense reacting to signals. Signals

are transformed by signal functions defined by programmers and generate incoming

network events. Core language is based on functional reactive programming.

NetCore [60] is a high-level declarative language to express packet-forwarding

policies in SDN. Similar to pyretic, it uses predicate logic to forward packets to a

set of locations. Complex predicates are built using logical operators such as union

and intersection. NetCore provides compilation algorithms and a run-time system to

install flow rules.

Flowlog [61] is a tireless language to support controller programming. A Flowlog

program compilation consists of prepossessing rules to check compatibility and

identify weaknesses, followed by an evaluation to extract predicates for composing a

netcore policy.

NetKAT [62] is based on Kleen algebra to build primitives forwarding, modifying

and filtering packets.

SCOR [63] proposes constraint-based NBI to address complex routing problems.

SCOR defines predicates such as network path, link capacity constraint, residual

capacity, path capacity constraint, path cost, delay, congestion, and link utilisation.

By solving a combination of predicates, various network applications can be realised.

For instance, a feasible flow path can be identified by combining and solving network

path and link capacity constraints.

Apart from the above network programming languages, few controllers provide

custom NBIs. PANE [64] adopts an idea of participatory networks where the network

provides users or principles a configurable API. Application developers, end users,

and applications are all considered principles. While all principals can create policies,

policy conflicts are resolved using Hierarchical Flow tables. Thus PANE aims to offer
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flexible mechanisms while resolving policy conflicts. ONIX is another such controller

that provides a general API.

ONOS uses standard APIs such as Representational State Transfer (REST)API

and JAVA for programmer interaction with applications. ONOS also uses Remote

Procedural calls (gRPC) to enable distributed applications.

2.2.3 Applications

Authors of [18] categorise network applications into five categories: traffic engineering,

mobility and wireless, measurement and monitoring, data centre networking and

security and dependability. Some applications in traffic engineering and network

monitoring, measurement and management category are as follows.

Traffic engineering applications perform forward / route packets. These applications

forward packets on certain criteria, for example, to maintain QoS, schedule flows,

load balance, or route packets on least cost paths. Hedera [65] propose a dynamic flow

scheduler for multi-stage switch topology to maximise aggregate network utilisation.

It does so by looping to find large flows at edge switches, estimating the natural

demand of large TCP flows and using placement algorithms to compute good paths.

Authors of [66] proposed Dynamic Flowentry-Saving Multipath (DFSM) to satisfy

latency demands between data centres (DC) in a Wide Area Network (WAN). By

releasing resources from over-fulfilled DC pairs and allocating them to each unsatisfied

DC pair, latency demands are satisfied. Work presented in [67] proposes Weighted

Cost MultiPath (WCMP) routing, where flows are distributed within a port group

based on port weights. The weights assigned to each port are proportional to

the capacity of paths associated with that port. Work presented in [68] propose

Automatic Rerouting with Loss Detection (ARLD) to flag congested links, build

virtual topology only with valid links, find alternate paths in the new topology, and

assign flows in the new path. Authors of [69] proposes SD-FAST. Unlike previous

solutions, SD-FAST is implemented at the switch. Bidirectional Forwarding Detection
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is used to identify ports and SD-FAST updates flow rules with backup flow rules

from OVSDB. [70] addresses congestion in the data centre by rerouting large flows.

Flow-bender [71] is an end-host-driven load balancing scheme where congested flows

are rerouted. Each TCP socket keeps track of a value V that is inserted into a

flexible hashing field, the per-RTT fraction of marked ACKs as F. By using the

value of F, a potential congested flow is detected. [72] propose a flow-scheduling

algorithm. The algorithm aims to minimise network cost, which is the sum of convex

functions of link utilisation. The algorithm performs better than ECMP. Mahout

[73] proposes a Mahout controller and data plane shim. The shim in the data plane

detects elephant flows, marks them and forwards them to the Mahout controller for

appropriate action.

Monitoring and measuring applications gather network statistics regarding

throughput, packet loss, delay and jitters. This information is made available

for other applications. Network statistics are measured either actively or passively.

During active measurements, additional traffic is injected into the network, and the

behaviour of these packets is observed. On the other hand, passively measuring

network traffic involves observing and not injecting any additional packets. Some

of the monitoring and measuring applications designed for SDN are discussed here.

Most of the applications make use of provisions in OpenFlow to monitor the network.

OpenNetMon [74] measures per-flow metrics by querying the first and last switches

in a path to retrieve flow statistics for predefined link destination pairs. Similarly,

packet loss is estimated by polling the switch’s ports. Authors of [75] propose a

network-state management service-Statesman. Stateman allows maintaining three

different network states- Observed state, target state and proposed state. While

Applications use the observed state, the target state is desired network state that

Stateman is responsible for updating. The proposed state is an intermediate state to

allow conflict-less transition between the observed state and the target state. [76]

propose a technique to measure available bandwidth using port stats captured by

OpenFlow.
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Realising the need for SDN control plane disintegration, a few researchers

suggested alternate controller architectures. [3] suggested dis-aggregating SDN

controller and extending the idea of externalisation of packet processing to external

event processing mechanisms presented in [77]. The system uses Apache Kafka [78]

to receive a stream of incoming packets and distribute them on the Kafka cluster

for consumption by external applications. An application subscribes to listen to a

specific packet event; upon the occurrence of this event, Kafka message distribution

messages pass the packet to a possibly externally hosted application via the Kafka

cluster. The application uses gRPC or REST API to install flow rules.

[79] proposes LEGOSDN, a fault-tolerant controller framework. Each application

and controller core runs in their processes, and a component - AppVisor handles the

exchange of SDN events and control messages between the controller and applications.

This solution predominately detects application crashes wherein all network changes

are rolled back and the application is restored.

[80] proposes µABNO, a cloud-native architecture for optical SDN controllers.

The controller is decomposed into microservices and interacts with gRPC protocol

based on ONF [22] transport API. Kubernets [81] manages the microservices. Some

of the microservices are a) a connection microservice to compute paths, b) a virtual

network topology Manager (VNTM) microservice c ) a connection microservice,

which then configures the necessary network configuration element. Thanks to

Kubernetes managing the microservices, auto-scaling and auto-healing are inherent

characteristics for the SDN controller.

[5] also propose a microservices-based SDN control plane. The controller and

applications are built and run inside docker containers that communicate over

messaging channels; furthermore, the controller core comprises multiple yang modules.

[82] propose Zero-SDN, flexible and modular architecture to achieve full-range

distribution of event-based network control. The architecture is based on micro-kernel

architectures where the controller logic is split into lightweight network modules-

controllets. Controllets run in individual modules, are possibly distributed and can
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communicate amongst themselves. This architecture stands apart in a way that

controllets are also running locally on switches and all controllets communicate

amongst themselves using a unified message bus - ZeroMQ [83].

[84] also propose a micro-services-based SDN controller architecture where

internal controller components are decomposed into microservices. Micro-services

use REST API for communication while gRPC and Web-socket are other alternative

communication interfaces. The system is based on the Ryu SDN controller, where

Ryu applications are containerised. [85] proposed a multi-agent-based autonomic

network management architecture, where functions at each layer (Infrastructure,

control and virtualisation and application layer) are recast into agents.

2.3 Conclusion

This chapter presented a brief overview of Software Defined Networks. Control

planes are either logically centralised or distributed and operate on a single physical

node or multiple nodes. Most existing controllers are monolithic in design, with

tight coupling between the controller core and components. Multiple applications

running on the controller are composed in sequence or parallel. Nevertheless uses

OpenFlow’s primitives to communicate with the data plane directly. More recently,

modular control plane architectures have been proposed to disintegrate control planes

using technologies such as microservices. The next chapter introduces the reader

to multi-agent systems, following which the thesis advances to building a modular

control plane as an agent system.

33



Chapter 3

Multi-Agent Systems

3.1 Introduction

Distributed System as defined by Steen in [86] is a collection of autonomous

computing elements that appears to its users as a single coherent system. They are

characterised by the following:

1. Concurrency: ability to run multiple processes simultaneously.

2. Isolated failures: Failure of one module in a distributed system does not affect

the operation or functioning of other modules in the system

3. Scalable: Possible increase in system capability to meet a computing element’s

demand.

4. Social: Modules exchange information amongst themselves by sending messages.

Computing elements in distributed systems are software components. [87] defines

a software component as an independent software unit that can be composed of other

units to create a software system. Components have interfaces that define what

services the components expect from other components and what services they can

offer to other components. The internal methods are invoked by external components
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via an interface, and all interactions must happen through these well-defined interfaces.

A component’s methods can be accessed or invoked remotely. A middleware intercepts

remote calls and passes them to appropriate components. Middlewares, such as

COBRA [88], are implemented as a set of libraries installed on each host system,

along with a run-time system to translate calls and manage communications between

components. Middleware in distributed systems supports two major interaction

patterns.

1. Procedural-based: In Remote Procedure Calls (RPCs), components call remote

procedures on other components using globally unique component names.

2. Message-based: In message-based interactions, a component creates a request

message for another component. The receiving component responds with

relevant information if any.

3.2 Multi-Agent Systems

Multi-agent systems (MAS) have been around since the late 1980s. They are

distributed systems [89] with no centralised control. MAS comprise agents, and agents

communicate with each other. Agents are concurrent, loosely coupled, distributed

and isolated. They are either physically distributed or centralised, allowing flexible

resource allocation (processing and memory) and large-scale computing. Agents are

isolated; thus, any agent can go offline without affecting the entire multi-agent system

allowing graceful degradation and repairs. The autonomy of decision-making also

characterises agents, ability to reason and learn and react to environment perceptions

[90].

What is an agent

There is no standard definition of an agent. [91] defines an agent as an entity in

an environment that perceives the surroundings and acts to change the state of the
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Figure 3.1: Multi-agent system

environment. [92] defines an agent as " a computer system that is situated in some

environment and that is capable of autonomous action in this environment in order

to meet its delegated objectives". [93] classifies and propose a minimum list of three

attributes agents possess -autonomy, learning and communication using an agent

communication language. Based on the attributes that agents possess [92] pens terms

weak agency and strong agency. Generally, any hardware or software-based computer

with autonomy, social ability, reactivity and pro-activeness has a weak agency. Strong

agency also includes ’human-like’ mental properties such as possessing knowledge,

beliefs, intentions and rational choices to the properties mentioned earlier.

Any entity that can respond to environmental changes is an autonomous agent if

the agent performs such actions without the influence of external entities (humans,

agents, environment). When such an agent makes choices while working towards

a goal and always makes the right decisions, then it is a rational agent. Learning

agents explore unknown environments and learn from percepts.

An agent can fall under any of the agent types mentioned; all the agents generally

possess the ability to socialise with other agents using agent communication language

and behave autonomously to a certain extent.
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Figure 3.2: Agent’s interaction with Environment [91]

3.2.1 Software Agent Architecture

An agent comprises a reasoning module, a knowledge module, a communication

module, and an optional learning module. [94] broadly classifies software agents as

deliberative or reactive. [91] proposes a third and advanced type - a learning agent.

3.2.1.1 Reactive agents

1. Reflex agent selects actions based only on current percept. Actions are mapped

to precepts as rules, and the agent performs a specific action mapped against a

percept.

2. Model based agent is a reflex agent with an internal stored percept history state.

Thus, the agent takes decisions based on stored history and current percept.

3.2.1.2 Deliberative agents

1. Goal-based agents set a target goal and perform a sequence of actions to achieve

this target state. Unlike reflex agents, goal-based agents contemplate based on

current percepts and act. Though it might take longer, this contemplation is

more flexible than reflex agents as no set rules are defined.

2. Utility based agents quantify how well a goal has been achieved using some

performance measure. These agents try to maximise the utility function while

achieving a goal.
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3.2.1.3 Learning agents

Learning agents have an advantage over reactive and deliberate agents as they can

operate in unknown environments and learn from this experience—both reactive and

deliberate agents can learn using an additional learning component.

As mentioned earlier, these are only some of the available definitions for agent

architecture. [92] classifies agents as reactive, deductive, and practical. While

reactive agents are simple reflex agents, deductive agents use logical languages such

as PROLOG [95] to represent and reason about the environment. On the other hand,

practical agents employ the Belief-Desire-Intentions (BDI) methodology to reason

about actions to perform. The agents are called as practical agents, since they weigh

actions available and decision is influenced by the beliefs and desires the agents hold.

In general, the agent’s knowledge about the environment is Belief of the agent, while

Desire is a goal state and Intention are intermediate steps to fulfilling a desire.

3.2.2 Reasoning

Agent architectures can be classified based on the environment the agents are

operating in and the amount of knowledge available to the agent. While reflex agents

do not necessarily reason, deliberate agents reason about their environment. [91]

classify them as following.

1. Problem-solving agents search the solution space for a solution. These search

methods include classical strategies such as uninformed and informed methods,

sometimes using heuristics. Beyond such classical search strategies, these

agents can also employ advanced techniques such as searching in unknown

environments, searching in continuous spaces, employing techniques such as

Alpha-Beta pruning and finally, employing Constraint satisfaction to find

solutions [91].
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2. Logical agents, on the other hand, represent the world in first-order facts and

rules. Deductive reasoning and inductive reasoning are some examples.

3.2.3 Learning

Machine learning techniques generally involve identifying actions that have arisen

in response to a specific behaviour. Some of the learning techniques employed by

agents are:

1. Inductive learning : learning a general function or a rule from specific input-output

pairs. Inductive learning programs combine logic and machine learning.

(a) Supervised learning : available feedback enables learning of the function of

form y = f(x), where y is the target value for input, x. If the function is

discrete, the method is called classification; if the function is continuous,

it is called regression.

(b) Unsupervised learning : No prior information on inputs or expected outputs

are provided to the agent. The agent employs techniques such as clustering

to learn the underlying relations between features and outputs. K-means

clustering [96] is an example of unsupervised learning.

2. Analytical or deductive learning : a priori knowledge exists. Improving the

knowledge base is based on data/feedback and extending or simplifying data.

Also, from a known general fact to a new facts are logically entailed.

3. Reinforcement learning : enables the agent to try and learn from the feedback

received from the environment. The feedback is either a reward or a punishment.

A typical reinforcement learning setup is a Markov decision process having a

state (S), transition probabilities (T), possible action set (A) and a reward

function (R). Reinforcement learning is either model-based or model-free based

on knowledge of the environment. The agent knows the transaction matrix (T)

and reward function (R) in model-based learning. On the other hand, as in
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most real-life environments, the agent uses model-free learning in the absence

of a transition matrix and reward function. Q-learning [97] is an example of

model-free learning.

3.2.4 Knowledge representation

Knowledge needs a formal representation to maintain consistent information and

enable communication among agents. This formal definition of a body of knowledge

is known as ontology [92]. Two main benefits of formalising knowledge are reasoning

with a reasoner to deduce and to standardise information representation across

multiple agents and enable communication. Thus an ontology defines and represents

concepts and establishes relations between these concepts. An ontology is expressed

with varying degrees of expressiveness-ranging from a simple controlled vocabulary

to a very complex formulation involving logical constraints. Most popular ontology

languages include Knowledge Interchangable Format (KIF) [98], Extensible MarkUp

Language (XML) [99] and Web Ontology Language (OWL) [100]. XML uses tags to

define new vocabulary to identify entities. XML only provides the basic vocabulary

to store information and does not perform advanced functions such as creating

sub-classes and properties or defining relationships between different entities that

need processing by XML applications. That is, sentences such as " A person who

teaches is a teacher " cannot be represented using XML. KIF, on the other hand,

is very expressive, but it is computationally complex [92]. While being human and

machine understandable, OWL allows for automated reasoning to check ontology’s

consistency and identify any contradictions within the representation. This thesis

represents knowledge in OWL language as discussed in Chapter 5.

3.2.5 Communication

Communication is an essential entity of any multi-agent system. Synchronising

the agent’s actions is necessary to maintain data and state consistency. [92]
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distinguishes between agent communication and object communication. While

object communication (software components) invokes other objects’ public methods,

agents, on the other hand, choose to act upon receiving a message. Thus, agents

exhibit autonomous behaviour while communicating with other agents.

To achieve strong agency, communication in multi-agent systems uses performative

verbs such as request, inform, promise, believe and want, among others. Multiple

Agent Communication Languages (ACLs) have been proposed to enable inter-agent

conversations. Predominant ACLs include Knowledge Query, and Manipulative

Language (KQML) [101], which defines message formats for communication. KQML

does not concern itself with the message’s contents but rather just the format

of the message and is a message-based language. FIPA-ACL [102] is another

agent-communication language. FIPA, like KQML, defines performative. Performative

conveys the intent of the message and the sender. For instance, a performative

inform is used to inform another agent, and no response is expected. In an argument,

performative such as accept-proposal is used.

3.3 Software agents vs software components

To summarise, components of distributed software are distributed across a network. A

self-contained and isolated component must have necessary and well-defined interface.

External components access public methods using the interfaces. A well-defined

interface makes updating components seamless to external components as long as

the interface does not change. A middleware enables and supports interaction (both

procedural and message based) between the components. Interaction using procedural

calls such as Representational State Transfer API (REST) [103] is synchronous. It

requires both components to be online, whereas for message-based interaction,

messages are stored in a message queue for the receiver component to use when

available. Hence message-based interaction is asynchronous.

Micro-services, like software components, operate using well-defined APIs such as
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REST/HTTP. Micro-services are incapable of proactively taking initiatives based on

percepts from the environment. Instead, they react promptly on inbound requests

from other agents.

Agents share some characteristics such as autonomy, composition and sociability

with components. Nevertheless, an agent cannot invoke the methods of other agents.

Unlike micro-services, agents interact with the environment to react and take actions

proactively. Also, to achieve strong agency, agents use speech performative such as

request and negotiate, which components are incapable of while maintaining a belief

system.

Indeed, both microservices and agents are candidates for building a modular,

disintegrated SDN control plane. Some earlier work in this area include [80], [5], [84],

which propose a micro-service architecture and [82] present a micro-kernel-based

SDN controller architecture.

Figure 3.3: components vs agents

This thesis identifies computing entities as agents because they are autonomous,

social and exhibit varying degree of agent intelligence. No external entity can influence

how the entity operates, react to environmental changes (monitoring agents), and

proactively try to achieve goals (management agents). In other words, the entities

exhibit weak agency.

3.4 Conclusion

This chapter attempted to familiarise the reader with multi-agent systems and agents

in general. The concept of an agent is discussed. Various agent architectures and

agent abilities such as reasoning and learning are defined. Knowledge representation
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and communication aspects are briefly discussed. Chapter 5 discusses knowledge

representation and agent communication in detail.
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Chapter 4

MASDN Controller Architecture

4.1 Introduction

This chapter is the first of three chapters detailing the design and operation of the

proposed MASDN controller. This chapter analyses and disaggregates the existing

SDN control plane into agents by identifying agent roles, following which individual

agent’s behaviour is described in detail.

4.2 Breaking the monolith

The first step in breaking the monolithic SDN controller is identifying the

responsibilities and goals of the controller. Next, sub-goals and tasks that entail

fulfilling high-level responsibilities are identified. Each agent is assigned a role

associated with performing one or more tasks. SDN controller’s primary responsibilities

are provisioning flows, monitoring the network and managing the network both

reactively and proactively, as shown in Figure 4.1. The goal of the agent ag is to

perform task t to fulfil a responsibility r. A goal is an abstract concept that captures

what the agent needs to achieve but not how. Optionally, a performance metric

(utility) measures how well an agent performs a task. Complex agents use the metric

to improve their decisions.
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Figure 4.1: Primary responsibilities of SDN controller

Figure 4.2 lists high-level goals and sub-goals for monitoring activities. Mainly,

monitoring responsibility has four high-level goals. They are 1.1 monitor port status,

1.2 monitor flow tables, 1.3 monitor port counters and 1.4 discovering topology.

Goals 1.1 monitoring ports’ operational status and 1.3 monitoring port counters are

periodic, and an agent performs tasks periodically to fulfil periodic goals. All goals

need not have precedence, but a sub-goal must be fulfilled to achieve a high-level

goal. For example, only after the agent receives link information (sub-goal 1.4.1)

and updates the knowledge base with the link information (sub-goal 1.4.2) do we

consider goal 1.4 to discover the topology fulfilled. While most sub-goals identified

are necessary goals of monitoring agents, sub-goal 1.3.1 is optional but demonstrates

a complex agent in action.

Figure 4.2: Goal hierarchy diagram for monitoring responsibility

Figure 4.3 lists SDN controller’s goals and sub-goals of provisioning responsibility.

46



4.2. BREAKING THE MONOLITH

There are two primary goals 2.1 to provision a new flow and 2.2 to re-provision an

active flow. Acquiring an updated topology and using a path-finding algorithm are

two sub-goals of the primary goal 2.1, as shown in the goal hierarchy branch for

2.1 in Figure 4.3. The sequence of goals indicates precedence. A topology must be

available (sub-goal 2.1.1) for the system to find the path between a source and a

destination node (sub-goal 2.1.2) using any path-finding algorithm. Goal 2.1.3 /2.2.1

is a common goal.

Figure 4.3: Goal hierarchy diagram for provisioning responsibility

High-level network management goals are 3.1 recovering from link failures, 3.2

alleviating congestion and 3.3 ensuring fairness amongst TCP flows. While goal 3.1

is necessary for network management, goals 3.2 and 3.3 are optional and demonstrate

complex agent integration and operation in the agent system. The system must first

identify network abnormalities (captured in sub-goals 3.1.1, 3.2.1 and 3.3.1) as a

prerequisite for managing network abnormalities. Flows may be rerouted to alternate

paths while not shifting congestion to other network parts to alleviate congestion

on a few links. In contrast, in the event of link failures, rerouting flows on available

paths is prioritised over adhering to bandwidth constraints. Goal 3.3 ensures TCP

fairness amongst heterogeneous TCP flows by adjusting sending rates. Figure 4.4

shows the hierarchy of the agent system’s management goals.

Monitoring activities such as topology discovery, gathering port statistics, and
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Figure 4.4: Goal hierarchy diagram for management responsibility

port status are periodic tasks and do not require complex logic. On the other

hand, identifying congestion and link failures requires decision-making capabilities.

Identifying unfair resource allocation and traffic prediction requires agents to possess

learning capabilities. While this thesis builds use cases that require a varying degree

of agent intelligence, the agent system is expandable to include additional agents to

fulfil additional responsibilities.

The second step of MaSE methodology is applying use cases to demonstrate

communication. Chapter 5 of the thesis describes the communication patterns and

messages exchanged by the agents. Agent roles are defined in the third step. An

agent’s role fulfils a responsibility by achieving goals [15]. While there is usually

one-to-one mapping between roles and goals, it is common for a role to achieve

multiple goals. Commonly, a goal is distributed across multiple roles and requires

communication. Figure 4.5 captures agent roles assigned based on the agent’s

responsibilities and goals agents achieve.

Different agents fulfil different roles. While micro-roles can be created for sub-goals

(for example 1.4.1, 1.4.2), defined roles in the proposed agent system reduce excessive
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Figure 4.5: Agent roles

communication between agents and assign dependant tasks to the same agent. For

example, goal 1.4.1 has two tasks - sending LLDP packets and processing the received

packets. These tasks can be performed to two different agents. Such assignment

not only increases agent communication but also introduces latency in the system.

Instead, sending and receiving LLDP packets and updating the knowledge base with

this information are all tasks assigned to a single role - topology builder.

The agents in the proposed MASDN control plane are broadly grouped based

on their high-level responsibilities. Unlike traditional layered architectures, there is

no top-down or bottom-up hierarchy in the layers of the proposed solution. Figure

4.6 shows a high-level architecture of the agent system. The connectivity between

communicating agents is represented using colour arrows, and each colour indicates

an end-to-end communication channel. Broadly,

1. South Bound agents interact with the data plane.

2. Provisioning agents provision new flows using packet information such as

Virtual LAN (VLAN) ID, Source and destination MAC addresses or source

and destination IP information.

3. Monitoring agents monitor various aspects of the network and maintain a
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network state in the knowledge base.

4. Management agents manage the network and handle network anomalies by

rerouting flows to balance traffic, adjusting congestion window, reroute affected

flows in case of link failures.

5. Knowledge layer stores a global network state in OWL format.

Figure 4.6: High-level architecture of proposed agent-based system

The upcoming sections discuss individual agent architectures. Some agents

exhibit cyclic behaviour (those in monitoring and management layers) and others

are reactive.
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4.3 SBI Layer

This layer consists of agents communicating with the data plane and implementing the

southbound interface. OpenFlow agent and ovs-ofctl agent are two agents operating

in this layer.

4.3.1 OpenFlow agent

OpenFlow agent (OFagent) implements a TCP server to establish OpenFlow

communication sessions with the data plane. OFagent maintains connections with the

data plane, parses incoming OpenFlow packets and passes this information to other

agents. OFagent also receives information from other agents, packs the information

into OpenFlow messages and forwards it to the data plane. OFagent runs two event

loops, each catering to the data plane and the agent system for exchanging messages.

OFagent receives a message, identifies the receiver of the message and forwards the

message to the intended recipient. The agent is equipped to handle OpenFlow control

messages such as OFPT_HELLO, OFPT_ECHO_REQUEST and

OFPT_FEATURE_REPLY. For non-control messages such as OFPT_PACKET_IN,

OFPT_PORT_STATS, OFPT_FLOW_STATS, OFPT_PORT_STATUS messages,

the agent relies on other agents for processing. Such interaction with external agents

to handle OpenFlow packets deviates from traditional SDN controller applications.

Traditional controller applications consume OpenFlow packets and are thus tightly

coupled with OpenFlow.

In contrast, the OFagent outsources packet handling to an external agent.

OFagent’s decision on where to forward the packet payload is based on the incoming

packet’s payload type. For instance, if OFPT_PACKET_IN’s payload is a Link

Local Discovery Protocol packet (LLDP), the agent forwards this information to the

topology agent. Similarly, an IP packet received due to the absence of flow rules

(and the presence of a table miss entry) is forwarded by OFagent to the IPPath agent

51



4.3. SBI LAYER

for provisioning the flow. Monitoring messages such as OFPT_PORT_STATS are

parsed, and information is passed to PortStats agent. The agent forwards information

obtained by parsing the incoming OFPT_PORT_STATUS packet to the PortStatus

agent. The data plane sends unsolicited messages to inform the agent about a

change in the network, for example, a port’s status change or when flow rules are

removed from the datapath due to timeouts. OFagent forwards this information to

corresponding agents responsible for updating the global knowledge base. In case

of a port status change from up to down, the OFagent forwards the information

to the PortDown agent, which handles the re-provisioning of affected flows. The

agent creates OpenFlow messages as a response to requests from other agents. For

example, the agent creates and sends OFPT_PORT_STATS messages to the data

plane upon receiving a request from the PortStats agent. Similarly, the agent creates

OFPT_FLOW_MOD messages to add and delete flow rules from the data plane.

OFagent’s operation is summarised in Figure 4.7.

Monitoring and management agents do not necessarily have to interact with

the data plane using OFagent. Indeed, some agents in the management layer

autonomously operate via the ovs-ofctl agent.

4.3.2 OVS-ofctl agent

OVS-ofctl agent (OVagent) provides access to datapath’s flow tables using the

OpenVSwitch management tool ovs-ofctl. Specifically, this agent accepts flow-stats

requests from Reroute agent, formats the information and responds to Reroute agent.

The agent also provided flow-table access to the TCPFairness agent to install flow

rules. The agent’s operation is shown in Figure 4.8.

While both OVagent and OFagent use OpenFlow protocol, OVagent agent access

the switch’s flow tables using the ovs-ofctl tool and not OpenFlow messages. OVagent

and OFagent in the SBI layer demonstrate the idea of concurrent access to the data

plane by multiple SBI agents. NETCONF [8], YANG [104] agents are other possible
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Figure 4.7: OpenFlow agent

additions to the agent system aimed at managing traditional (non-OpenFlow) devices.

Figure 4.8: OVS-ofctl agent
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4.4 Provisioning Layer

4.4.1 IP Path agent

As the name suggests, the IPPath (IPagent) agent primarily finds paths to provision

flows. Aflow is a stream of packets originating from a source node towards a

destination node. The agent computes complete end-to-end paths and provides this

information to OFagent for flow installation. Path information of form {(dp1, pr1),

(dp2, pr2), ..., (dpn, prn)} is a complete path where dpi is datapath ID and pri is outport

of dpi. IPagent springs into action after receiving provisioning and re-provisioning

request from other agents, including OFagent, Reroute agent and knowledge base

agents.

The IPagent agent implements Dijkstra’s path-finding algorithm to provision

a new flow. For re-provisioning requests from management agents, the agent

computes complete path information and sends the new information to OFagent for

re-configuration of affected flows. Finally, the agent maintains a local copy of the

topology to compute paths. This local copy is obtained from the knowledge base

agent and updated periodically. The knowledge base agent also pushes new copies

upon any change in topology (such as port failures or the addition of new links).

The operation of the IPagent agent is shown in Figure 4.9.
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Figure 4.9: IP Path agent

4.5 Monitoring

Monitoring agents are a group of agents responsible for monitoring and maintaining

an updated network view. The agents periodically query the network via OFagent

and update the knowledge base with the information.

4.5.1 Topology agent

The topology agent (TOagent) periodically requests OFagent to rediscover topology.

The TOagent processes the link information, composes the topology, and updates the

knowledge base with the information. TOagent agent gathers a list of all datapaths

and connected ports information from OpenFlow features response message. Using

this information, the TOagent initiates the topology discovery process by requesting

OFagent to pump LLDP packets into the data plane. The received LLDP responses

55



4.5. MONITORING

are processed to compose links between datapaths. A network graph is created using

the link information. Link information and graph are stored in the knowledge base.

4.5.2 PortStats agent and FlowTable agent

PortStats agent (PSagent) estimates the current throughput and available bandwidth

on all links. As mentioned in chapter 2, network monitoring is either active or

passive. Active probing techniques involve sending a probe packet regularly to gauge

the network state. Works of [105], [106] estimate available bandwidth using active

methods in traditional networks. Authors of [107], [76], [108], [109], [110] estimated

traffic or available resources in SDN using active methods. On the other hand,

passive techniques use statistical models to estimate available bandwidth as listed in

[111]. SDN allows active monitoring of OpenFlow switches, and a study conducted

in [112] suggest that pure SDN-based results are sufficient for selected applications.

PSagent periodically requests OFagent to collect port counter information

(transmitted bytes txn and received bytes rxn) from all ports. The agent queries

for port counters every t secs ( for example 15 secs), and collected port stats are

stored in the global knowledge base. The bandwidth capacity of the link bwl is the

maximum number of bits that the link l can transfer for a unit of time and is usually

measured in bits per sec (bps).

Thus, for a link l with bandwidth capacity bwl, link throughput thl is the

actual number of bits traversing the link. Link throughput is computed using two

consecutive port counter readings xn, xn−1 bits at times tn and tn−1 instances and

given by Formula 4.1.

thl = (xn − xn−1)/(tn − tn−1) (4.1)

Link utilisation ul is the percentile of bandwidth capacity used and given by
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Formula 4.2.

ul = (thl/bwl) ∗ 100 (4.2)

Finally, the available bandwidth of a link abwl is leftover or unused bandwidth

given by Formula 4.3.

abwl = bwl − thl (4.3)

IPagent sets an idle timeout on all the flow rules and enables flow-removal notifications

for all the flow rules. Thus, when a flow is no longer active, FlowTable agent FTagent

receives flow-removal messages from OFagent and purges the knowledge base. This

ensures updated flow information in the knowledge base.

A generic monitoring agent’s operation is shown in Figure 4.10.

Figure 4.10: Generic monitoring agent

4.5.3 Traffic prediction agent

Predicting network traffic is a desirable feature for better network management.

While long-term predictions over days or months allow better network resource

planning, short-term predictions over minutes and seconds have an immediate effect

on the network caused by proactive network management. In the past, linear and

non-linear prediction models were applied to predict network traffic patterns. Linear
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techniques consider network traffic as a time series and apply forecasting models such

as Auto-Regression (AR), Moving Average (MA), Auto-Regression Moving-Average

(ARMA) and Auto-Regression Integrated Moving-Average (ARIMA). Non-linear

methods apply machine learning techniques - both classical and Deep Learning

techniques to predict network traffic.

4.5.3.1 Related Work

Authors of [113] apply AR, MA and ARMA to predict network traffic. Auto

Correlation Function (ACF) and Partial Auto Correlation Function (PACF) plots are

used to ensure the stationality of the series. The authors conclude that AR makes

the best predictions for daily traffic.

[114] apply ARIMA on observations made with SNMP made every 30 secs and

work presented in [115] perform video traffic prediction using Fractional Autoregressive

Integrated Moving Average (FARIMA). The proposed method considers the self-similar

nature of network traffic, which exhibits long-range dependence.

In [116], the authors propose a combination of linear techniques such as ARIMA

with non-linear Generalised auto-regressive conditional heteroscedasticity (GARCH)

model to accurately predict traffic while capturing long-range dependence characteristics

of network traffic.

Work presented in [117] employs non-linear methods such as Long Short Term

Memory (LSTM) to predict network traffic. Though the technique marginally

decreases the packet loss ratio, a higher delay is observed due to resource-intense

training of the neural network.

[118] propose Deep Neural Network based traffic prediction with bandwidth data

aggregated over 60 minutes and predicting every hour.

Authors of [119] propose to apply Bidirectional LSTM and Bidirectional Gated

Recurrent Unit (GRU) and use Mean Squared Error (MSE), Root Mean Squared

Error (RMSE) and Mean Absolute Error (MAE) as metrics to validate the model. The
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solution also employs Convolutional Neural Network (CNN) for feature extraction.

While pure GRU and Bidirectional-LSTM did not outperform pure LSTM-based

predictions, their hybrid proposal results were comparable to pure LSTM-based

proposals.

Most prediction models use an available dataset created over time to make

predictions. Such mechanisms are untimely and require extensive training, specifically

in non-linear techniques such as the application of neural networks. The dataset is

usually divided into training and test set, and data characteristics such as stationality

and correlation are understood and dealt with. A model thus obtained is then used

to make predictions. This type of learning is known as offline learning or batch

training.

4.5.3.2 Incremental learning

Usually, a machine learning (ML) model trains on the training dataset. Training

generally involves adjusting the model parameters based on a cost function. In batch

training, the model stores the entire dataset in memory and model parameters are

adjusted over the entire dataset. Once a model is trained, the model is retrained

with the next batch of some fixed window of size w. Batch training suffers from high

latency caused by processing large data sets resulting in untimely predictions for

most recent data [120]. Batch learning is also called offline learning as the model is

trained only in intervals when a new batch of data is available.

Now, consider the problem of predicting traffic on a link. The PSagent agent

reads port stats periodically, creating a continuous stream of data. Consider a jth

entry in a batch of size w collected at time ti. The next predicted value is for time

instance ti+(w−j)+1 and not at ti+1, which is untimely, as the model trains over the

entire batch and waits until all data points are available.

An alternative to offline learning is online learning (incremental learning), where

the model does not require a dataset in batches of size w and is trained for every
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incoming data point in real-time. In other words, the w is 1. Online learning is

designed for machine learning models to learn from a continuous data stream. Unlike

offline learning, an online learning module starts learning with just one data point.

A single data point is loaded in memory and processed at any given time, requiring

fewer resources than an offline process. Real-time prediction, allowing data evolution

at any time and catering to infinite data streams without resource restrictions are

some known benefits of incremental learning [120]. These benefits make incremental

learning a suitable learning mechanism for traffic-predicting agents.

In linear regression [121], an output (y) is a linear function of inputs (x). A

linear regression model is of form Equation 4.4:

yt = w0 + w1x1,t + w2x2,t...+ wkxk,t + b0 (4.4)

where yt is output, x1,t,x2,t,...,xk,t are inputs at time t and w0,w1,w2,...,wk are

parameters.

Most standard techniques, such as ordinary least squares, computes the distance

between the actual value and the regression line generated by the model to estimate

the weights wi. These parameters are adjusted to reduce the distance between actual

and predicted values. This algorithm is known as Gradient Descent and requires the

availability of an entire dataset.

Linear regression parameters w0,w1,w2,...,wk can also be adjusted incrementally

for each iteration using Stochastic Gradient Descent (SGD) [122]. Unlike gradient

descent that batch learning uses where gradient over the entire dataset is computed,

SGD computes gradient over a single data point to reduce cost function given by

Equation 4.5 :

wt+1 = wt + αt ∗ ▽(Q(xt, wt)) (4.5)

where wt+1 and wt are parameters at times t + 1 and t , ▽(Q(xt, wt)) is the
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gradient of loss function and α is the learning rate. Typical Loss functions minimised

are MAE and RMSE. SGD is a preferred way to fit continuous data.

When output yt is a linear combination of past values, the process is called

Auto Regression (AR). In a Moving Average (MA) model, the output yt is a linear

combination of forecast errors. In Auto Regression Moving Average (ARMA) model,

both AR (p) and MA (q) are used to predict yt as shown in Equation 4.6 [121].

y′t = c+ ϕ1y
′
t−1 + ϕ2y

′
t−2 + ...+ ϕpy

′
t−p⏞ ⏟⏟ ⏞

auto−regression

+ θ1ϵt−1 + θ2ϵt−2 + ...+ θqϵt−q + ϵt⏞ ⏟⏟ ⏞
moving−average

(4.6)

Where order p captures the number of past values y future value of y depends

on. yt−1,yt−2,...,yt−p are previous observations of y, ϕ1,ϕ2,...,ϕp are parameters and

order q captures the number of past values of ϵ, the future value of y depends on,

ϵt−1,ϵt−2,...,ϵt−q are past errors and θ1,θ2,...,θq are parameters.

Values of p and q are calculated using ACF to identify correlation between

captured data for batch learning. Since the entire dataset is unavailable for incremental

learning, the value of p cannot be determined by using ACF plots.

4.5.3.3 Operation

TPagent treats network traffic as a continuous data stream while applying a simple

linear mechanism of ARMA to predict traffic one step ahead. The agent does not

use a large training dataset but starts predicting and learning with a single data

point. To minimise computed loss, the agent calculates a simple rolling average using

incoming data points and adjusts weights using SGD. Such operation allows the

agent to learn incrementally while making immediate predictions based on historical

observations.

The agent’s operation is captured in Figure 4.11. The agent creates individual

ARMA models for each link. Since each link is mapped to a unique model, different
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model parameters such as p, and q can be customised for the individual link for better

predictions. While PSagent agent periodically queries and gathers port statistics and

updates the global knowledge base, the TPagent predicts the next value ypredt+1

based on current reading ytruet and past p readings. This process is repeated for

all the links. In the next instance, t+ 1, the agent calculates loss over the received

ytruet+1 and predicted value ypredt+1 using the loss function MAE in Equation 4.7

to adjust weights of the model φ1, φ2, .., φp and θ1, θ2, ..., θq.

MAE = 1/n(
n∑

i=1

ytruet − ypredt) (4.7)

Figure 4.11: Traffic prediction agent

62



4.6. MANAGEMENT

4.6 Management

Management layer agents work towards maintaining a desirable state. Network

abnormalities in hardware - such as link and network device faults, physical link

loops or software - such as unfair resource allocation, forwarding loops, non-optimal

link utilisation, non-adherence to Service Level Agreements, and security breaches

are undesirable. Rerouting, TCPFairness and PortDown agents are three agents that

operate in the management layer.

Reroute agent (RRagent) rerouting flows to alternate paths to distribute traffic

across the network. RRagent reasons flow allocation problem as a Constraint

Satisfaction Problem. TCPFairness agent (TFagent) ensures fair bandwidth allocation

amongst different TCP senders. This agent uses reinforcement learning to allocate

bandwidth to TCP flows fairly. PortDown agent (PDagent) reroutes affected flows

to alternate paths under no bandwidth constraints.

Management agents are autonomous, in the sense they constantly interact with

the knowledge base and act upon identifying a network anomaly.

4.6.1 PortDown agent

Port status fluctuation triggers the datapath to send an OFPT_PORT_STATUS

message to OFagent. Specifically, when a port status changes from down to up, the

TOagent rediscovers the entire network. When a port status changes from up to down,

this information is sent to the PDagent. PDagent removes the port and corresponding

link information from the knowledge base and initiates the process of re-provisioning

affected flows. KBagent identifies affected flows and IPagent reprovisions affected

flows. PDagent doesnt wait for flow rules to timeout, and purges the knowledge base

proactively.
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4.6.2 Reroute agent

As previously described, agents in the provisioning layer provision a flow on the

perceived best path at a given instance, as shown in Figure 4.12a. Nevertheless,

since flow demands and duration vary, bandwidth can be further utilised efficiently

by rerouting active flows.

In Figure 4.12a, active flows f1, f2 and f3 are provisioned on paths p1, p2, p3

respectively. New flow f4 is provisioned on the perceived best path p2 leading to

congesting path p2. The desired behaviour would be as shown in Figure 4.12b where

flow f2 is rerouted via p3 to free up resources for f4 on p2.

(a) pre-rerouting (b) post-rerouting

Figure 4.12: Active flow rerouting

The knowledge base provides congested links, and corresponding affected flows

information to RRagent. A link is congested if the link load exceeds a set link

threshold of 80%. It has been observed that a threshold of 70% causes frequent

reroutes, and a threshold of 90% results in delayed or no rerouting. The agent chooses

an arbitrary number of flows {F} of varying demands to reroute.

In the current setup, the agents choose these flows randomly. By choosing

only high-demand flows to reroute, no path might exist to accommodate such high

demands. On the other hand, if only flows of low demand are chosen, many such

flows need to be rerouted to alleviate congestion. In either case, the agent would

have to iterate over multiple sets of flows repeatedly to find a suitable set to reroute.

Hence, a random selection allows agents to choose flows of varying demands.

64



4.6. MANAGEMENT

4.6.2.1 Related Work

Weighted Cost Multipath Routing (WCMP) [123] distributes traffic amongst the

available next-hop nodes in proportion to available link capacity.

Authors of [71] propose FlowBender that enables end-host to drive flow-level load

balancing scheme by using Explicit Congestion Notification (ECN) for congestion

detection and rerouting large flows. The solution uses the Equal Cost Multi-Path

(ECMP) hashing mechanism to hash against a flexible field in the packet. This field

is updated in case of congestion, thus allowing ECMP to handle packets differently.

In [124], authors propose an OFLoad scheme that separates elephant flows from

mice flows and aims to minimise network congestion by routing the elephant flows

on a single shortest path. Mice flows are aggregated and routed using WCMP.

[73] proposes Mahout, which introduces a Shim layer at the end-host to detect

elephant flows. Switches use a packet’s Differential Services (DS) Field to notify the

controller of elephant flows. The controller places elephant flows on the best path.

In [65], authors aims to maximise aggregated network utilisation by dynamically

scheduling flows.[125] proposes Niagara that uses wild card rules to split aggregate

incoming traffic on the same set of next-hop nodes based on a weight vector.

In [72], weights are assigned to links, and new flows are configured on the path

with the least weight. In [126], Dijkstra’s algorithm finds multiple equal-length paths.

In the event of congestion, higher priority flows are rerouted to links with the least

cost and form the shortest path.

In [127], authors describe a network monitoring module that monitors the data

plane every second. A load distribution module calculates the amount of load to be

rerouted to backup paths.

Unlike earlier works, RRagent reassigns active flows using constraint solving as

described in the following section.
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4.6.2.2 Constraint-solving using backtracking and pruning

Classical search techniques find a solution by systematically searching through a

solution tree. The agent backtracks upon reaching a leaf and navigates through new

branches until a solution is found. Navigating all possible nodes is resource-consuming.

Backtracking search [91] with constraint propagation is a systematic search mechanism

where a partial solution is extended, and any assignment that fails to satisfy a

constraint results in the pruning of the entire branch, and the algorithm backtracks

to navigate and find alternate solutions.

Suppose {V } is the set of variables and set {D} is the domain of all possible

values a variable can take. In that case, a solution is found if all variables in V

have a legal value assigned from D. A legal value is a value that satisfies a set of

constraints [91]. Backtracking search assigns a variable v1 a legal value d1 from {D}.

The algorithm then assigns the next unassigned variable v2 a value d2. This process

continues as long as constraints are satisfied, and {D} has legal values to assign it

to variable vi, and the search stops when a solution is found. Upon detection of an

assignment that fails constraint or when a variable has no legal values for assignment,

a branch is considered unsuitable and pruned entirely and allows the algorithm to

backtrack early, as shown in Figure 4.13.

Figure 4.13: Back Tracking with Pruning
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4.6.2.3 Operation

Displacement of congestion from one part of the network to a different part is a

possible risk of rerouting. Not all paths can accommodate the new flow demands, and

though some paths can accommodate a flow, provisioning the flow might congest the

path for other active flows. This requirement is captured in the link-load constraint

4.6.2.3.

In addition to definitions of bandwidth capacity of link l bwl, throughput thl

4.1 (also referred to as link-load), available BW abwl 4.3 established in section 4.5.2

following definitions aid in formulating rerouting problem:

• Flow: A flow f represents packets originating from source IP address (src_ip)

towards destination IP address (ds_ip), port (pr) tuple.

• Path: If v is the set of all nodes in a fully connected network, and L is the set

of all links, then a path p between source src and destination nodes dst is a

subset of nodes vp, sourcing at src and sinking at dst, connected via a subset

of links Lp.

• Path-capacity: If abwl1, abwl2, abwl3...abwln are the available bandwidth along

links l1, l2, .., ln in path p. A path’s available capacity pcp is the lowest available

bandwidth in the path p given by Formula 4.8

pcp = min(abwl1, abwl2, abwl3...abwln) (4.8)

Such a definition of path capacity will allow the algorithm to not provide a

path with a flow beyond the capacity currently offered by the most congested

link in the path.

• Path-load: If thl1, thl2, thl3...thln are current link throughput of a path p,then

path-load plp of path p is given by Formula 4.9

plp = max(thl1, thl2, thl3...thln) (4.9)
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• Flow-demand: Flow-demand fdf of a flow f is current throughput of a flow.

This information is queried from the datapath and calculated using Equation

4.10, where x is the number of bits matched against a flow rule and flow

duration is the duration of the flow.

fdf = x/flow − duration (4.10)

Thus, the RRagent has to reroute a flow that satisfies Link-Load Constraint C1

4.6.2.3.

C1: A flow f of flow-demand fd can be provisioned on path p, if and only if

there exists no link whose link-load (or throughput) exceeds link threshold due to

action plp + fdf . Such a constraint prevents the agent from displacing congestion

from one link to another.

The RRagent performs constraint checking and backtracking to prune all solutions

that do not satisfy constraint 4.6.2.3. Finding a solution begins with assigning a flow

f of flow-demand fdf to a path p with path load plp and extending this solution

to configure other affected flows only if the link-load constraint 4.6.2.3 is satisfied.

Since a link can be part of multiple paths used by other flows, the agent checks for

constraint satisfaction for all the links and proceeds to extend this current solution

cur_sol by provisioning remaining flows. If an assignment does not satisfy the

constraint, the agent backtracks and assigns f to an alternative path and prunes all

the subsequent flow assignments of the current branch. The process is repeated until

all selected flows are assigned to a path. At this stage, the agent has a complete

solution cur_sol. In Figure 4.14, the agent back-tracks at Step1 as assigning flow f1

(fdf1 = 9) to path p1 (plp1 = 8) doesn’t satisfy constraint C1 (8 + 9 > threshold(16)).

The agent backtracks without investigating further assigning along this branch and

examines other assignments, as shown in Step 2.

Backtracking algorithm and corresponding constraint check mechanism employed

by the agent as listed below:
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Figure 4.14: Example flow assignment

find-solutions(cur_sol, feasible_set)

1 f = select unassigned flow(F )

2 if f == None

3 feasible_set.append(cur_sol)

4 return feasible_set

5 recompute available_bandwidths()

6 if cur_sol[f ] == None

7 for p ∈ paths

8 plp = plp + fdf

9 cur_sol[f ] = p

10 if constraint-satisfied()

11 find-solutions(cur_sol, feasible_set)

12 cur_sol[f ] = None

13 plp = plp − fdf

14 return feasible_set
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constraint-satisfied()

1 for l ∈ links

2 if thl > thresholdl

3 return False

4 return True

4.6.2.4 Cost-Function: Standard Deviation

A single search might not necessarily yield the best solution; a solution that minimises

cost function is considered the best. The agent continues to search for other possible

solutions for the best solution. RRagent aims to minimise the standard deviation of

path-loads across a set of paths as a cost function.

cost-function(feasible_set)

1 for sol ∈ feasible_set

2 for f ∈ sol

3 plp = plp + fdf

4 sol_std = standard− deviation(thl)

5 sol_val = sol_std/mean

6 return min(sol_val), sol

At this point, a solution is available for the agent to reroute active flows.

Corresponding end-to-end flow rules are composed and configured on the data

plane. The agent’s operation is shown in Figure 4.15.

Since the cost function fluctuates as new flows are added to the path, it does

not exhibit any increasing or decreasing trends, hence a non-monotonic function.

Thus, solutions based on greedy and premature calculations of the cost function are

rendered useless. Standard deviation amongst the path loads can only be calculated

at the tree’s leaves after all selected flows are assigned to paths.
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Figure 4.15: operation of rerouting agent

4.6.3 TCP Fairness agent

Transport Control Protocol (TCP) is a reliable, connection-oriented point-to-point

transport protocol where end devices negotiate connection parameters during the

initial handshake (also called a three-way handshake). TCP establishes session

buffers during handshake and exchanges this information with connecting end device.

Since TCP is full-duplex, end hosts on either side have a send buffer sndbuf and a

receive buffer rcvbuf. Application data is captured by TCP and held in sndbuf at

the sender node, and rcvbuf is used to hold data from the IP layer and read by the

application at the receiver end. The sender tracks the sequence of bytes sent using a

sequence number (SEQ). The receiver tracks received bytes using the ACK number.

At the receiver end, rwnd is the free buffer space available before the receiver hits an

overflow. rwnd is a variable and varies on factors such as application read rate. At

any given instance, the sender must not send more bytes than can be held in rwnd.

The sender uses a variable cwnd to determine the number of bytes to send before
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Figure 4.16: Sending and Receiving buffer

expecting an acknowledgement. At a minimum, it takes 1 Round Trip Time (RTT)

for the sender to receive an Acknowledgement (ACK) from the receiver. Thus, the

sender’s sending rate for cwnd bytes of data is given by Formula 4.11 [128].

cwnd

RTT
bytes/sec (4.11)

and TCP throughput is given by Formula 4.12.

TCPthroughput =
MSS

RTT ∗
√︁

(L)
bytes/sec (4.12)

where MSS is the maximum segment size, and L is the probability of packet loss.

Flows with the same RTT and start time adjust their congestion window cwnd

simultaneously according to TCP’s Additive Increase Multiplicative Decrease (AIMD)

mechanism, thus are allocated resources fairly. Typically, in such a setup - the rate

of transmission of a flow is R/n where R is the rate of transmission of a link and n

is the number of flows using a link. Such equal resource allocation for flows sharing

a bottleneck link is ideal and of rare occurrence. Jain’s fairness index Formula 4.13

[129] quantifies how fair TCP allocates bandwidth for the same link-sharing flows.

FairnessIndex =
(
∑︁n

i=1 xi)
2

n ∗
∑︁n

i=1 x
2
i

(4.13)

where xi is the rate of transmission of a flow i, and n is the total number of flows
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sharing the bottleneck link.

For flows with unequal RTT, flows with smaller RTT will receive acknowledgements

early and increase cwnd faster than flows with higher RTT. Such flows with unequal

RTTs sharing a bottleneck link are referred to as heterogeneous flows [130]. Since

sending rate is directly proportional to cwnd and inversely proportional to RTT,

a flow’s throughput is inversely proportional to RTT. Higher RTT can result from

network congestion or propagation delays; thus, flows with higher RTT are starved

of TCP resources. In Figure 4.17, link speeds for hosts h3 and h4 are set to 10Mbps.

Host h4 is set to experience a delay of 30ms while host h3 experiences a delay of

5ms. As is evident from Figure 4.17a, the transmission rate of h3 is higher than h4,

and the fairness index varies between 0.65 and 0.85, as shown in Figure 4.17b.

(a) Throughput (b) Fairness Index

Figure 4.17: TCP Throughput and Fairness index for heterogeneous flows

4.6.3.1 Related Work

Traditionally, fairness in heterogeneous TCP flows was ensured by employing mechanisms

such as Random Early Detection (RED) [131] to detect congestion and drop packets

in advance before the occurrence of congestion. Early detection solves the TCP

synchronisation problem amongst heterogeneous flows and ensures fairness. CHoKE

proposed in [132], matches incoming packets with a randomly chosen packet from the

First-In-First-Out (FIFO) queue and, upon a match, drops the packet. Both RED

and CHOKe perform early detection to drop packets to penalise misbehaving flows.
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With the advent of machine learning, new techniques to address congestion

and fairness are being researched and investigated. [133] proposes QTCP based on

NewReno TCP that applies reinforcement learning to vary congestion window cwnd.

While network parameters such as sending interval, ACK interval and RTT are

chosen to represent the network state, the agent varies cwnd and reaps the rewards

based on higher throughput and low latency. Authors employ a model-free technique

of Q_learning [97] to choose appropriate actions (increase 10 bytes, decrease 1 byte

or not change) for the cwnd window during the congestion avoidance phase of new

Reno.

[134] proposed two machine-learning models to address TCP congestion control.

A loss Predictor agent (LP-TCP) is a supervised learning-based model with a learning

agent, an actuator and a sensing engine. While the sensing engine senses ACKs and

provides the learner with state information, the learner estimates the probability of

current packet loss and provides this info to the actuator. Based on the probability

of loss, the actuator decides if to send the packet. The second formulation of the

problem is based on Reinforcement Learning (RL-TCP). In this formulation, the

learner reaps a reward from the network and provides the actuator with action values

to determine the best action to choose.

[135] propose AURORA. AURORA applies Deep Reinforcement learning to adjust

sending rate. As for any reinforcement learning algorithm, the state information

includes latency ratio, sending ratio and latency gradient. Actions that the agent is

allowed to perform are adjusting sending rate, and the agent reaps the rewards as a

function of throughput, latency and packet loss. [136] formulate TCP’s congestion

control mechanism as reinforcement learning based TCP-RL where the network’s

state snapshot is captured in throughput, RTT and loss rate. The agent adjusts the

initial congestion window and the congestion control algorithm based on the state

and reaps the rewards as a function of throughput and RTT.

While the earlier works propose reinforcement learning-based TCP congestion

control mechanisms, the following works address TCP fairness amongst heterogeneous
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TCP flows.

[137] proposes a mechanism to improve fairness achieved by QTCP by increasing

the cwnd in the AIMD manner, unlike Multiplicative Increase Multiplicative Decrease

(MIMD) manner of the original QTCP. [138] proposes Deep Q-Network (DQN) based

congestion control mechanism to adjust cwnd while maintaining a higher utilisation

rate. The agent considers link threshold, cwnd, RTT for state space, and action

space includes adjustments to cwnd based on the probability of congestion. The

agent gains reward based on cwnd, RTT.

The proposed TCP fairness agent in the MASDN control plane employs a

reinforcement learning algorithm to adjust the flow’s congestion window with the

highest throughput to maintain fairness in resource allocation. Term Fast sender

referes to such sender whose cwnd increases at a faster rate than a slow sender’s cwnd.

The reinforcement learning agent specifically learns to flag congestion to decrease

the sending rate of the fast sender, thus allowing the slow sender to increase its

congestion window gradually.

4.6.3.2 Reinforcement Learning

Reinforcement learning is a sub-branch of machine learning algorithms. As briefly

mentioned in Chapter 3, machine learning algorithms are broadly classified into

supervised, unsupervised, and reinforcement learning. In over-simplified terms, in

supervised learning, a model is trained on datasets (inputs: X, outputs: Y) to learn

function f such that f(x) = y where x ∈ X, y ∈ Y . Upon encountering a new data

point xi the model plugs xi in f(x) and produces corresponding y′i as output. This

predicted value y′i is compared with the actual output yi to compute the loss of the

model. Training the model with vast data sets reduces loss. Unsupervised learning

algorithms handle unlabeled data by classifying and grouping them based on inferred

patterns.

Reinforcement learning (RL) is online learning. That is, the agent does not
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train on datasets. Instead, the agent explores the environment in which it operates,

performs some actions and eventually learns what actions are beneficial. A typical

reinforcement learning setup is a Markov decision process having a state (S), transition

probabilities (T), possible action set (A) and a reward function (R). Figure 4.18

shows the interaction between RL-agent and environment.

Figure 4.18: Reinforcement learning agent in action [139]

For the reader’s convenience, below is a brief reproduction of definitions provided

in [139]. For further reading, readers are directed to the same.

• Reward signal Rt formalizes the goal of the agent. Expected return (Gt) 4.14 is

a function of these reward signals over time and γ is a discount factor of future

rewards. The agent’s purpose is then to maximise this return.

Gt
.
= Rt+1 + γRt+2 + γ2Rt+3... =

∞∑︂
k=0

γkRt+k+1 (4.14)

• Policy π is mapping between states and probability density functions of actions

one can take in that state. (a|s) is probability of taking an action a in a state

s, policy π(s) is an legal action a recommended by policy π in state s. A policy

that yields maximum value is optimal π∗.

• Value function computes the worth of states and actions as functions of rewards.

Value function of state V(s) is simply the expected return of following a policy

π in a state s and is given by Bellman’s equation 4.15 for vπ.

vπ(s)
.
= Eπ[Gt|St = s] =

∑︂
a

π(a|s)
∑︂
s′,r

p(s′, r|s, a)[r + γvπ(s
′)], ∀s ∈ S (4.15)

76



4.6. MANAGEMENT

where p(s′, r|s, a) is the probability of landing in-state s′ and reaping reward r

after taking action a in state s.

Thus, the value function of a state is simply the probability of taking an

action times immediate reward and future state’s values, as visualised in Figure

4.19(a).

• Value function qπ(s, a) of an action a under policy π in state s is given by

Bellman’s equation 4.16 for qπ.

qπ(s, a)
.
= Eπ[Gt|St = s, At = a] =

∑︂
s′,r

p(s′, r|s, a)[r + γqπ(s
′)], ∀s ∈ S (4.16)

Thus, the value function of action is the probability of landing in a state, times

the immediate reward gained and the value of future actions. The term Q-value

refers to the an action a’s value function.

Slightly modified versions of backup diagrams provided [139] are visualised in

Fig 4.19(b).

Figure 4.19: Backup diagram for vπ and qπ[139]

• Transition model mimics the changes in the environment. When a transition

model is available, the agent knows the state it might land in upon acting.

Only sometimes are transition models available to the agent.
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Q-Learning

[140] coins the phrase primitive learning to refer to an agent that does not have or

does not estimate a transition model or a reward function. Such learning is also

known as model-less learning. Q-learning [140] is one such learning technique that

requires no prerequisite information about transition models and reward functions.

Instead, Q-learning is based on temporal difference prediction. The agent updates

the estimate incrementally as a weighted sum of the existing Q-value and newly

computed Q-value as in Equation 4.18.

Q(s, a)← (1− η) ∗ currentestimate + η ∗ newestimate (4.17)

that is,

Q(s, a)← (1− η)Q(s, a) + η(r + γmaxaQ(s′, a)) (4.18)

where η is a constant (0 < η ≤ 1)

The agent starts by exploring the environment by choosing a random action.

Random actions allow the agent to explore the environment and to transition into as

many new states as possible. Such discovery of new states and rewards is called an

experience, and the Q-learning agent maintains a Q-table to store all the observations.

An observation is a tuple of current state, action, immediate reward and next state

(s,a,r,s’). Exploration allows agents to discover new state-action pairs but hinders

agents from reaching the goal early. On the other hand, if the agent exploits learnt

best actions of a state too prematurely, the agent eventually ignores less frequented

state action pairs- thus learning inefficiently and landing in local maxima. Thus,

most agents employ ϵ − greedy approach to balance exploration and exploitation.

The agent chooses a random action with a probability of ϵ and the best action with

a probability of 1− ϵ. The best action has maximum Q_value maxaQ(s′, a).

Q-learning algorithm [140] for estimating policy π is as below
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Q-Learning()

1 for ep in episodes

2 initialise s

3 for each_step in ep

4 choose an action a using ϵ-greedy algorithm

5 act and observe the next-state, reward

6 update q-value as Q(s, a)← (1− η)Q(s, a) + η(r + γmaxaQ(s′, a))

7 state ← next_state

8 if state == terminal:

9 break

Deep Q-Network

In discrete environments and environments with smaller state space, the agent stores

policy (π : S → A) in a Q-table. However, the tabular method becomes impractical

in environments with large state or action spaces, such as continuous environments.

Instead, a function approximator is used to generalise unknown states and reduce

state size. This reduction is achieved by mapping sample state space to a small set

of features.

While linear regression is one example of linear function approximation, function

approximators can be non-linear such as a neural network. Deep Q-Network (DQN)

proposed in [141], [142] employs a non-linear function approximator- a neural network

with network weights (θ) as Q-network to predict Q_value Q(s, a; θi). Using SGD,

the agent minimises the error Li(θi) in Equation 4.19.

Li(θi) = E(s,a)∼P (s,a)[(yi −Q(s, a; θi))
2] (4.19)

where

yi = Es′∈S[R(s, a) + γmaxa′Q(s′, a′; θi−1)|s, a] (4.20)
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where R(s, a) is reward for current state-action pair, and Q(s′, a′; θi−1) is Q-value of

next state, action pair (s′, a′) using network parameters of earlier iteration (θi−1).

The authors of [141] employ experience replay to address the high correlation

between successive observations where observations are stored in memory and

randomly sampled to train the network to eliminate the correlation between sequential

observations.

4.6.3.3 Operation

TCP allocates resources fairly when all the flows sharing a link have approximately

equal throughput. Since TCP throughput is dependent on the congestion window

(cwnd) and RTT of a flow, throughput varies significantly for flows sharing the same

bottleneck link with different RTTs. For flows with higher RTT, the increase in cwnd

is slower because ACK takes longer to reach the sender. Upon detecting congestion,

TCP modifies cwnd for all the flows on a bottleneck link based on AIMD (additive

increase multiplicative decrease) mechanism, adversely affecting slow senders.

Congestion is notified to a sender internally or explicitly. Both end devices

and intermediate nodes can flag congestion explicitly using Explicit Congestion

Notification (ECN). Intermediate devices flag congestion by turning on the congestion

Encountered (CE) bit in IP header. Traditionally, an intermediate node with Active

Queue Management (AQM) can only enable the CE bit. Upon receiving the CE

flag-enabled IP segment, the receiver relays it back to the fast sender by setting the

ECN-Echo bit in TCP header, triggering the sender to reduce its congestion window.

TFagent does not use AQM, but instead installs flow rules to falsely flag congestion

to force the fast sender to reduce sending rate.

TFagent adjusts cwnd of only those flows consuming high bandwidth (fast senders)

while leaving low-bandwidth utilising flows (slow senders) to progressively increase

their cwnd according to TCP’s AIMD mechanism. To flag congestion, the agent

configures a higher priority, hard-timeout flow rule on an intermediate switch. Thus
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upon receiving a packet from the fast sender, the switch enables the IP header’s

CE flag, indicating congestion to the destination. The destination node enables the

Explicit Congestion Echo (ECE) flag in TCP header to relay congestion notification

back to the fast sender. As a response to the notification, the fast sender reduces

the cwnd.

It has to be noted that random or continuous flagging of false congestion will

result in the sender’s cwnd reduced to a minimum, which is not desirable as this will

reduce the overall throughput of the link.

As mentioned earlier, a reinforcement learning agent performs actions in a given

environment to reap the rewards. Thus, TFagent’s parameters are:

1. Environment’s state is an observation made by the agent. Each observation

is a list of the throughput x1, x2..., xn of all flows f1, f2, .., fn occupying a link

and is of the form

s = [x1, x2, x3...xn]

2. Agent’s actions are a list of possible actions at the agent’s disposal. TFagent

has three actions to choose from.

• by choosing action 0 agent does not act on the current state of the

environment.

• by choosing action 1 agent enables CE flag for a flow with low flow

demand. This is generally a bad action as it might lead to further reduced

resources allocated to this flow.

• by choosing action 2 agent enables the CE flag for a flow with high

demand. This is a desirable action as it leads to the slowing down fast

transmitters while other slow transmitters additively increase their cwnd.

3. Agent’s rewards are obtained from a reward function. An agent is not explicitly

aware of effect of its action’s consequences. Actions can only be quantified

based on their consequences in the environment and a reward function qualities
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these consequences. Since, the goal of the agent is to increase fairness and

maintain a healthy aggregate link throughput, the agent’s reward function

is based on fairness and the link’s aggregate throughput. The agent reward

function is given below.

rew =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

+5, fairness > 0.9

+1, fairness > 0.85

−1, aggr.th < 0.6

0, otherwise

Where fairness is Jain’s fairness index

fairness =
(
∑︁n

i=1 xi)
2

n ∗
∑︁n

i=1 x
2
i

And aggregated throughput is

aggr.th =
n∑︂

i=1

xi

If the agent’s action results in high fairness, a reward of 5 is gained. The agent

gains a reward of 1 for maintaining fairness. The agent is punished if the

aggregated throughput is below 60%, ensuring that the agent does not operate

inefficiently while only maintaining fairness. Such punishment also ensures

that the agent does not only aim to reap high rewards by constantly flagging

congestion. The agent reaps no rewards otherwise.

Unlike supervised or unsupervised machine learning, reinforcement learning is

incremental and occurs episodically or continuously. In each episode, the DQN-based

TFagent observes the environment, an array of current flow sending rates. Observations

are made at the source switches of each flow. Agent balances between exploration and

exploitation by starting with extensive exploration and eventually tending towards

exploiting actions. This transition is controlled by a parameter (exploration-rate ϵ).
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During initial episodes, ϵ is high, allowing the agent to explore and choose random

actions. As training episodes progress, ϵ reduces, and the agent chooses actions

with better rewards. Selecting action 1, 2 translates to the configuration of the

flow rule at the terminal switch. The agent waits for 1 sec allowing cwnd change

to take effect before observing the environment. Once observed, the agent’s neural

network (Q-network) updates the Q-value of the action. This process continues for

the entirety of the episode, as shown in Figure 4.20.

Figure 4.20: Operation of TCP fairness agent

4.7 Conclusion

This chapter presents an agent-based SDN controller architecture, and each agent’s

functionality is described. The operation of simple agents for topology discovery,

provisioning flows, and collecting network statistics is presented. Three complex

agents possessing various reasoning and learning capabilities have been discussed.

RRagent reroutes active flows onto alternate paths under bandwidth constraints,

TFagent ensures TCP fairness by learning to slow the fast sender and maintain high

throughput temporarily.TPagent agent incrementally learns to predict traffic. The

next chapter discusses the knowledge base used by the agent system and the agent

system’s communication patterns.
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Chapter 5

Knowledge Representation and

Communication

5.1 Introduction

As introduced in Chapter 3, agents use available knowledge to make decisions

and knowledge is formally represented in logical languages such as Knowledge

Interchangable Format (KIF) [98], First Order Language (FOL) [143], or in HTML

type Extensible MarkUp Language (XML) [99], Resource Description Framework

(RDF) [144] or in Web Ontology Language (OWL) [145] [92]. An ontology of a

domain is a formal specification of concepts and relations amongst them in that

domain while defining vocabulary for interaction and implementation [146]. Formal

knowledge representation also allows automated reasoning, which requires elaborate

domain representation. Reasoning is a process of deducing new facts from existing

facts. In a traditional programming approach (e.g., object-oriented programming), a

program handles facts based on the domain-specific logic programmed into functions

or methods and cannot deduce new facts [91].

Agents in a multi-agent system interact and use global knowledge described in an

ontology. Reasoners such as HermiT [147] infer new facts and inconsistencies based

on this ontology. While the ontology presented in this chapter is sufficient for the
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proposed agent system, it is not claimed to be complete. Instead, this chapter aims

to provide a reference for building a further detailed SDN Knowledge base (KB).

Ontology for the agent-based controller is defined in OWL standardised by the W3C

working group.

5.2 OWL for ontology

This section briefly introduces OWL ontology building language and associated

reasoner HermiT [148].

5.2.1 OWL language

In OWL, Classes represent concepts and roles represent properties. Classes can

be related. A class might also be a subclass of (owl:subclassOf ), or equivalent to

(owl:equivalentOf ) or disjoint of (owl:disjointOf ) another class. A subclass member is

automatically inferred as a member of the parent class. Two classes can be equivalent

to each other. Disjoint classes do not share members. These relations are essential

in OWL, where an individual can belong to multiple classes. All things (classes,

individuals and properties) are sub-classes of a default owl: Thing class. owl: Nothing

is another default class with no instances.

Class constructors allow the creation of complex or composite classes from simple

classes. OWL provides intersection (owl:intersectionOf ), union (owl:unionOf ) and

complement of (owl:complementOf ) logical operators to construct complex classes.

An intersection of two classes is a collection of objects belonging to both classes.

A union of two classes is a collection of objects belonging to either of the classes.

Finally, a complement class consists of objects that do not exist in another class.

Roles are properties of a class. An owl:ObjectProperty links two classes. These

classes are called domain to capture the subject and range to capture the object in a
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statement. Thus an object property is of the form:

objproperty(domain, range)

owl:DatatypeProperty links data (values) to the domain. The difference is range is

now a data value - such as a decimal, float or a string. Data property is of the form:

dataproperty(domain, value)

Like class constructs, role restrictions enforce logical restrictions on various

class relations. owl:allValuesFrom functions as a universal quantifier ∀ whereas

owl:someValuesFrom functions as an existential quantifier ∃. Numerical restrictions

such as owl:hasValue assign values to a datatype role. As a rule of thumb, sub-classes

have an is-a relation with the main class, and roles have a has-a relation with classes.

Instances of a class are called individuals. Like classes, individuals have relations

with other individuals. owl:DifferentFrom relation establishes that two individuals

are different from one another. Two individuals are the same if they are related by

owl:sameAs relation.

Figure 5.1 presents an example ontology. Class Person has two sub-classes -

Professor and Student. Also, the Professor class is disjoint with the Student class,

implying that a person cannot be both Professor and student.

Protégé-2000 [149] is a graphical tool for representing and building OWL ontologies.

In this thesis, ontology for the agent system is demonstrated using Protégé.

Professor and Student classes thus created are shown in Figure 5.2a, and class

hierarchy is shown in Figure 5.2b.

A statement such as ’Professor X teaches Subject C101’, and ’Student A takes

Subject C101’ can be stated using object properties. In the statement ’Professor X

teaches Subject C101’ while Professor X and Subject C101 are class instances, teaches

is an object property that establishes a relation between Professor X and Subject
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Figure 5.1: Ontology for Classroom

(a) Classes

(b) Class Hierarchy

Figure 5.2: Classes in OWL

C101. Similarly, students have student IDs for individual identification. Relations

between class instances and data types (integers, strings) are captured using data

properties. hasID is a data property that assigns a student ID to a student. Object

properties and data properties for the Example 5.2a are listed in Figure 5.3a and

5.3b, respectively.

Composite statements are made of two or more statements. For example, the
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(a) Object properties

(b) Data properties

Figure 5.3: Roles in OWL

statement ’Student A is taught by Professor X’ breaks down as ’Student A takes

Subject C101’ and ’Subject C101 is taughtby Professor X’. Chaining of properties

expresses composite statements. Similarly, the classmate class can be expressed as a

relation between two students who attend the same Professor’s class. Classmates

class is equivalent to group all students who take some subject taught by Professor.

Some is a class restriction here. These composite statements are shown in Figure

5.4a and Figure 5.4b, respectively.

(a) Chaining properties

(b) Equivalent classes

Figure 5.4: Roles restrictions
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5.2.2 Reasoning

Work in [148] propose HermiT ontology reasoner. HermiT reasoner supports OWL

2 ontology language, reasons and identifies inconsistencies in the data presented.

The main components of HermiT reasoner classify roles (Classification), chain roles

(Loading), and manage instances (Realisation). Unlike other reasoners such as

Pellet [150], HermiT uses hypertableau calculus [151]. HermiT represents ontology as

Descriptive Logic (DL) [152]. Like OWL, DL works with individuals, concepts and

roles. Indeed OWL is based on DL. DL represents the knowledge base as a set of

assertions (ABox) that stores all named individuals and a set of terminology (TBox)

to store complex descriptions of concepts and roles. Like OWL, DL allows universal

∀, existential ∃, unionof ⊔, intersectionof ⊓ relationships. The reasoner component

in HermiT reconstructs OWL ontology into a set of assertions A and DL-clauses. A

DL-clause is of form 5.1 [148], where Bi and Hi are atomic statements constructed

from ontology.

B1 ∧ ... ∧ Bn → H1 ∨ ...Hm (5.1)

The reasoner solves the above FOL clauses to infer new facts and identify inconsistencies.

Continuing the earlier example, based on the information that Students A and B

takes subject C101, the reasoner deduced that C101 is a subject taught by Professor

X, and Professor X teaches Student A and Student B. The reasoner also inferred

that since Professor X teaches Students A and B, A and B are classmates, as seen in

Figure 5.6b. The reasoner derives new facts based on existing facts- which non-logical

programming languages are incapable of.

Inferred information is highlighted in yellow.
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(a) Student A

(b) Professor X

Figure 5.5: Roles restrictions

(a) Subject C101

(b) Classmates

Figure 5.6: Inferences
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5.3 Ontology for Agent-based controller

It is now established that inference relies on the formal representation of knowledge.

In this section, various entities of ontology designed for the multi-agent system are

introduced. Necessary classes, roles and restrictions to capture information used

by agents in the agent system are described. Since the concepts are not specific

to the agent system, the ontology is extendable to include other network functions

related to management and security. That said, the current ontology version captures

information about switches, links, ports, topology, flows, flow rules and network

abnormalities such as port down events and network congestion. A high class-level

view of the ontology is presented in Figure 5.7.

Figure 5.7: Classes in SDN ontology
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Navigating from the root node owl: Thing, concepts captured by first-level classes

are as below

• Hardware - broadly captures concepts for physical layer. This includes switches,

hosts, links and ports.

– Port subclass captures the concept of hardware and software ports

associated with hosts and datapaths. Every port has an ID and name for

identification. Counters (TxBytes, RxBytes) keep track of the number of

bytes transmitted and received by the port, and the rate of transfer in bps

is captured in Txbps and Rxbps data properties. Port state can be one of

the three states - up, down and unknown. While the up state indicates

the normal functioning of the port, the down state indicates a port whose

status is down due to possible abnormality. Unknown states indicate a

non-readable port state. Figure 5.8a summarises data properties of the

port class.

– Link subclass captures the concept of media (e.g. a LAN cable) connecting

a pair of nodes. A node is either a host or a datapath, and a link connects a

pair of nodes. The current definition of the link represents uni-directional

links. For example, l14 represents a link from datapath dp1 to datapath

dp4, and l41 represents a link from datapath dp4 to datapath dp1. Link

subclass has an ID and name for identification. The link state is captured

as up, down and unknown. Like port status definitions, up is considered a

normal operational state, and down states indicate a port whose status

transitioned from up to down. Down states indicate a port abnormality

(physical or operational). Link state is influenced by port state and

vice-versa as when a port’s status is registered as down, the corresponding

link’s status is inferred as down, maintaining consistency between port

and link statuses. Figure 5.8b summarises data attributes for the link

class.
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– Datapath subclass is a high-level subclass to capture the behaviour of

an OpenFlow switch. Datapath has ID, name and status as datatype

properties. Directly connected datapaths and neighbours are inferred

using object properties described in the upcoming section.

– Host subclass identifies an end device with name, IP, and MAC address

as datatype properties. Hosts are connected to datapaths.

Data attributes for datapath and host classes are summarised in Figure

5.8c and Figure 5.8d, respectively.

Subclasses of hardware class and their corresponding properties are shown in

Figure 5.8.

(a) Data attributes of port (b) Data attributes of link

(c) Data attributes of datapath (d) Data attributes of host

Figure 5.8: Sub-classes of hardware class and corresponding properties

• Software - while the hardware class captures information of all physical

components, the software class groups and captures the software configurations

of these devices. Agent system’s software classes are defined and classified as

below:

– Match subclass captures match criteria information used to compose a

flow rule. Match sub-class’s datatype properties are source and destination

MAC addresses, source and destination IP addresses, Ethernet protocol

and source, destination TCP ports for TCP flows and source and source

and destination UDP port numbers and incoming port information.
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– Action subclass has three subclasses. all action refers to flooding on all

ports, an outport action refers to a unicast, and a none action indicates a

packet drop action.

– FlowTable subclass stores flow rules similar to a OpenFlow datapath’s flow

table. As per the definition of flow rule, this subclass has two components

- Match criteria to match the flows against, instructions to store action

sequences to perform on flows.

– AddressTable subclass combines functions of an Address Resolution Protocol

(ARP) table and a MAC address table. It represents a host’s IP address,

MAC address and connected switch information.

(a) Data attributes of match class (b) Sub-classes of action class

Figure 5.9: Sub-classes of software class and corresponding properties

• Traffic sub-class represents network traffic at two levels of abstraction.

– Packet subclass represents a generic network packet. The packet class is

sub-classed into L2, L3 and L4 packets based on the packet header.

∗ L2 subclass represents L2 datagram such as Ethernet. As with

Ethernet packets, individuals in this subclass have a source MAC

address, destination MAC address and EtherType as data properties.

∗ L3 subclass represents L3 packets. The L3 packet header has the

source IP address, destination IP address, and IP protocol information

captured in data properties. The IPv4 packet is a subclass of the L3
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subclass. As with the L2 subclass, this can be extended to include

other L3 packets, such as ICMP or IPV6 header information.

∗ L4 subclass represents L4 packets. The L4 packet header has the

source port address and destination port address information. The

L4 subclass has TCP and UDP subclasses.

– Flow subclass captures packet information at a high-level.

• NWState- sub-class identifies network state as normal or abnormal. Currently,

two abnormalities are captured and represented in the abnormal class. The

instances of the abnormal class are inferred and not pre-defined. The individuals

are reclassified as instances of an abnormal class. This reclassification is based

on the properties of an individual. Thus, two sub-classes of NWstate class are

shown in Figure 5.10.

Figure 5.10: Network states

– Normal subclass represents a fully operational network. This is the default

state of a network.

∗ PortUp subclass represents all the individuals of the Port class with

the state up. This subclass is disjoint from the PortDown subclass.

∗ LinkUp subclass represents individuals of the link class connecting

two ports in up state.

– Abnormal subclass represents a network state considered not normal.

There are two types of abnormal states captured in sub-classes.
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∗ PortDown subclass represents all the individuals of the Port class

with the state down.

∗ CongestedPort subclass represents individuals of the port class with

port counters exceeding a threshold and ports are classifies as congested.

CongestedLink subclass is a link that connects to a congested port similarly,

a LinkDown identifies a link whose at least one connecting port is in down

state. PortUp and PortDown classes are subclasses of both the NWState

class and the Port class. They are disjoint classes and capture that a port

cannot simultaneously be in both up and down states. Figure 5.11 summarises

abnormal port state definitions.

(a) PortDown subclass

(b) CongestedPort subclass

Figure 5.11: PortDown and CongestedPort class definitions

Table 5.2 summarises definitions of all data properties, their domains and ranges.

Representing the concept of neighbourhood

Data properties are data attributes of classes, whereas object properties establish

a relation between classes. For example, switch and port are distinct classes. A
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Data property Domain Range

hasFlowRate Flow xsd:float

hasProto Match or L3 or L4 xsd:integer

hasRXBytes Port xsd:integer

hasTxbps Port xsd:decimal

hasRxbps Port xsd:decimal

hasTxBytes Port xsd:integer

hasDstMAC Match or L2 or L3 or L4 xsd:string

hasSrcMAC Match or L2 or L3 or L4 xsd:string

hasFlowDemand Flow xsd:float

hasDstUDP Match or L4 xsd:integer

hasSrcUDP Match or L2 or L3 or L4 xsd:integer

hasDstTCP Match or L2 or L3 or L4 xsd:integer

hasSrcTCP Match or L2 or L3 or L4 xsd:integer

hasDstIP Match or L3 or L4 xsd:string

hasSrcIP Match or L3 or L4 xsd:string

hasID Datapath or Host or Link or Port xsd:integer

hasIPAddr Host xsd:string

hasPortState Port xsd:string

hasEtherType Match or L2 or L3 or L4 xsd:string

hasInPort Match xsd:integer

hasMACAddr Host xsd:string

hasflowDuration Flow xsd:float

hasName Datapath or Host or Link or Port xsd:string

Table 5.1: Data properties

statement - ’port belongs to switch’ establishes a belongs to relation between port

and switch. Here Port class is domain, and the switch class is range. Interconnected

or chained simple properties give rise to composite properties. Chaining properties

result in transitive behaviour. Consider the topology in Figure 5.12a to elaborate

further. Dp1, dp2, dp3, dp4 and dp5 are individuals of the datapath class. Dp1pr1,
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dp1pr2, dp1pr3, dp1pr4 are individuals of port class representing ports of dp1 and

l14, l15 are individuals of link class identifying links connecting dp1 to dp4 and dp1

to dp5 respectively

Consider datapath dp1. The concept of a port belonging to a switch is established

using hasPort (domain: Node, Range: Ports) object property resulting in (dp1

hasPort dp1pr1, dp1 hasPort dp1pr2 , dp1 hasPort dp1pr3, dp1 hasPort dp1pr4)

relations. In a physical network, media connects to ports. The concept is expressed

similarly using hasLink (domain: Ports, Range: Links) object property resulting in

(dp1pr3 hasLink l14, dp1pr5 hasLink l15) object properties. Such definitions are

extended to other datapaths in the ontology.

Inverse properties define inverse relations. For example, PortOf (domain: Ports,

Range: Nodes) is an inverse property of hasPort (domain: Nodes, Range: Ports) and

ToPort (domain: Links, Range: Ports) is an inverse property of hasLink (domain:

Ports, Range: Links) property.

By chaining hasPort, hasLink and corresponding inverse properties, neighbour

relation hasNeighbour (domain: Node , range: Node) is established between dp1,

dp4 and dp1, dp5. The rule 5.2 expresses the neighbour relationship between two

physically connected data paths by chaining multiple properties. To establish dp1

and dp5 as neighbours, datapath dp1 has a port dp1pr4 that has a link l15. By

inverse property, link l15 is connected to port dp5pr1, which is a port of datapath

dp5.

hasPort ◦ hasLink ◦ ToPort ◦ PortOf → hasNeighbour (5.2)

The rule, 5.3 chains neighbours to define the connection to other datapaths.

For example, dp1 is not a neighbour of dp3 as they do not share a link. However,

datapath dp1 has a neighbour dp5, which, inturn, has a neighbour dp3. Thus, dp1
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(a) Topology

(b) Neighbours and Connectivity

Figure 5.12: Defining neighbour relations

and dp3 are connected.

hasNeighbour ◦ hasNeighbour → hasConnectionTo (5.3)

In Figure 5.12b, we see that not only is dp5 inferred as dp1’s neighbour, but links

l15 and l51 are also identified as connected to dp1. Similarly, dp1’s connectivity to

other datapaths is also established using inference.

Usually, such information is statically programmed in an object-oriented program

as data structures or object properties. The program cannot infer that dp1 and dp5

are neighbours as they share the same link. Instead, the developer programs a logic

to check that if a pair of nodes share a link, they are neighbours.
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Representing a port down event

A normally functioning port has hasPortState data property set to up as shown in

rule 5.4 whereas a malfunctioning port’s state is set to down as shown in rule 5.5.

Rule 5.4 puts a restriction that an individual of the Port class, with data property

hasPortState set to up, belongs to PortUp class. Rule 5.5 puts a restriction that an

individual of the Port class, with data property hasPortState set to down, belongs to

PortDown class.

By defining PortUp and PortDown classes as disjoint and placing restrictions

listed in rules 5.4 and 5.5, respectively, we ensure that a port is not identified as

both up and down simultaneously.

Port and (hasPortState value "up"^^xsd:string) (5.4)

Port and (hasPortState value "down"^^xsd:string) (5.5)

A link is identified to malfunction if at least one connecting port is in down state.

This restriction is captured in rule 5.6. The restriction states that an individual

of link class, connected toPort some port whose hasPortState attribute is down, is

classified as an instance of LinkDown class.

link and (ToPort min 1 (hasPortState value "down"^^xsd:string))

(5.6)

A port in up state is an instance of PortUp class. When the port’s state

transitions to down state, it is no longer classified as a member of PortUp class;

rather, the reasoner reclassifies the port as a member of PortDown class. Thus, all

the associations of the previous class, including flows, and links are removed. This

transition is shown in Figure 5.13a and Figure 5.13b, respectively. In Figure 5.13a

100



5.3. ONTOLOGY FOR AGENT-BASED CONTROLLER

the port dp1pr4 of datapath dp1 is operational and connects to datapath dp5 via

link l15 and used by flow 10.0.0.1:0,10.0.0.5:0,1. In Figure 5.13b, we see that flows

no longer use this port, and the port does not connect to any links while in down

state. The flow has also been reassigned to use link l14 connecting node dp1 to dp4

as seen in Figure 5.13c.

(a) dp1pr4 port up

(b) dp1pr4 port down

(c) dp1pr4 port up

Figure 5.13: Abnormality 1 - Change of port state from UP to DOWN

Defining network congestion

Like the PortDown class, a different class (CongestedPort) is created and used to

identify congested ports. A port is reclassified as CongestedPort if it is operating

at 80% of the transmission rate. Rule 5.7 places restrictions for classifying a port

as a member of CongestedPort. The restriction states that any port that hasTxbps

value greater than 800000.0 is a congested port. Similarly, rule 5.8 states that any

link connected to any port whose hasTxbps value greater than 800000.0 is a member
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CongestedLink class.

Port and (hasTxbps some xsd:decimal[>= 800000.0]) (5.7)

Link and (ToPort some (hasTxbps some xsd:decimal[>=800000.0]))

(5.8)

Figure 5.14 shows an example of CongestedPort dp3pr1.

Figure 5.14: Abnormality 2 - Port Congestion

Representing flows

A flow table comprises multiple flow rules, which are match-action tuples. By creating

match and action classes and establishing an object-type relation between them,

we can capture the concept of flow rules. Flow-table class captures the flow rules

(matches and associated actions). A packet can match multiple flow rules with

different actions. Such flows are created by multiple network applications running on

the controller. Though some actions can be performed serially, there will be actions

whose occurrence is disjoint from other actions. Forwarding and filtering actions are

examples of disjoint actions. The current version of ontology identifies such minor

inconsistencies in flow rules.

Table 5.2 summaries object properties
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Object property Domain Range Inverse Type

hasLink Port Link ToPort -

hasFlowTable Datapath FlowTable - -

hasMatch FLowTable Match - -

hasAction Match Action or Port hasFlow -

hasPort Datapath Port PortOf -

UsesLink Match Link CarriesFlow -

PortOf Port Datapath hasPort Functional

hasDP Link Datapath DPhasLink -

hasFlow Port Match hasAction -

hasHost Datapath Host - -

hasConnectionTo Datapath Datapath - Transitive

CarriesFlow Link Match UsesLink -

ToPort Link Port hasLink -

DPhasLink Datapath Link hasDP -

FTBelongstoDP Datapath FlowTable - -

hasNeighbour Datapath Datapath - -

Table 5.2: Object properties

5.4 Communication

Social ability is an essential aspect of multi-agent or distributed systems. Distributed

systems, as briefly discussed in chapter 3, use one of the two modes of interaction

(procedural or messages), and a middleware usually manages communication in

distributed systems. In Procedural interaction, a component’s methods are invoked

by an external component using the component’s global ID. Remote Procedural

Calls (RPCs) access other component’s exposed procedures via a stub. Similarly,

in Remote Method Invocation (RMI), an object invokes methods of another object.

Both components and objects are not autonomous, allowing external entities to access

their methods and modify their internal state. In contrast, agents are autonomous

and control decision-making, including deciding whether to act. Agents interact
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by exchanging messages and not by remotely invoking other agents’ methods, thus

maintaining their autonomous nature. Agents exchange messages to request, query,

inform and negotiate. This section details the proposed agent-based controller’s

communication framework starting with a brief overview of existing agent communication

protocols and communication patterns in distributed systems. Agent communication

patterns in the proposed agent system follow this discussion. Communication patterns

are discussed using five common network scenarios.

5.4.1 Communication in distributed systems

A communication pattern defines how messages are exchanged between two nodes

via a message communication channel. Common communications patterns [153] are:

1. Pair messaging pattern has exactly two endpoints.

2. Client-Server messaging pattern has clients requesting data and a server

attending to those requests by providing requested data. Also known as

the Request-response pattern.

3. Push-Pull messaging pattern has producers pushing tasks on the consumers.

Consumers sometimes push the results forward towards a collector, aggregating

all results.

4. Publish-Subscribe messaging pattern has publisher publishing messages, and

all the subscribers subscribed to this message receive and process the message

The push-Pull mechanism is different from the Publish-Subscribe mechanism.

Smaller tasks are pushed on the workers /consumers in the push-pull mechanism. In

the case of the publish-subscribe pattern, all subscribers receive the same message

from the publisher [83]. Figure 5.15 illustrates the communication patterns listed

above.
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(a) Client-server messaging pattern

(b) Push-pull messaging pattern
(c) Publish-subscribe messaging
pattern

Figure 5.15: Common messaging patterns in distributed systems

5.4.2 FIPA for agent communication

Human speech actions such as ask, propose have influenced agent communication

language [92] and are called performatives or speech acts. Performatives play a similar

role as their counterpart in the physical world. Agent communication languages such

as Knowledge Query and Manipulative Language (KQML) [101], and Foundation for

Intelligent Physical Agents (FIPA) [102] use speech performatives that operate on top

of communication setup as illustrated in Figure 5.16. From a software implementation

perspective, each performative is implemented as an agent method [154], [155], [156].

Figure 5.16: Communication acts operate on established communication patterns

FIPA [102] specifies standards for (a) agent communication, (b) agent management

(c) agent message transport stages of agent interaction. Agent communication

standard concerns itself with (a) interaction protocols, (b) communication acts and

105



5.4. COMMUNICATION

(c) content languages. Agent interaction protocols use communication acts (speech

acts) for interaction. There are twenty-two communication acts agents use. A subset

of speech acts used by agents in the proposed agent-based controller architecture are:

1. inform to convey information to an agent

2. request to request a receiver agent to perform some action

3. failure to convey to the requester agent of failure to execute an expected action

4. not-understood receiver agents use this performative to convey to the requester

agent that a received message was not understood

A comprehensive list of all communicative acts proposed by FIPA standard is listed

in [157]. Interaction Protocols describe ten interaction protocols between agents.

FIPA request interaction and FIPA query interaction protocols are widely used

interaction protocols. Various other FIPA interaction protocols are found in [158].

In FIPA request interaction protocol, an agent requests another agent to perform

some action [159]. The receiving agent agrees and performs the actions and responds

with the corresponding outcome using one of failure, inform-done or inform-ref acts.

The agent can also refuse to act. This information is conveyed to the requester

using refuse action. FIPA request interaction protocol is shown in Figure 5.17a. In

FIPA query interaction protocol, an agent requests a receiving agent to perform an

inform action [160]. The receiving agent uses one of the four communicative acts -

not-understood, refuse, failure, inform to reply to the querying agent. FIPA query

interaction protocol is shown in Figure 5.17b.

FIPA message standards defined are [161]. Some of the main fields in messages

are :

1. type of communication act to capture performative

2. participants in communication to identify sender and receiver

3. message content to store content of message
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(a) FIPA Request interaction protocol (b) FIPA Query interaction protocol

4. control of conversation to capture the FIPA interaction protocol in use.

5.5 Agent interactions

This section discusses agent communication patterns in common network scenarios

ranging from simple monitoring functions to complex management functions. Agents

exchange messages as per FIPA request protocol.

5.5.1 Discovering new links

TOagent periodically discovers links by requesting OFagent using a request message.

OFagent in turn generates a LLDP packet and collects the responses, and relays the

responses back to TOagent as a inform message. In the event of a port’s state change

to up, OFagent informs TOagent. TOagent updates KB and requests OFagent to

initiate a complete link discovery process. This ensures correct and updated link

information to knowledge base (KB) by KBagent. Agent interactions are shown in

Figure 5.18.

The message exchanged during the process are listed in Table.5.3. The list of

links in the message is a list of connected datapath and port and is of the form

{(dp1, pr1) : (dp2, pr1), (dp2, pr2), (dp3, pr1)...} where dpi is a datapath ID, and pri is

port number.
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Figure 5.18: Discovering new links

Type Sender Receiver Act Content

new link TOagent OFagent request topo::

new link OFagent TOagent inform new_link::[list of links]

new link TOagent KBagent inform new_link::[list of links]

port up OFagent TOagent inform port_up::[sw,pr]

port up TOagent KBagent inform port_up::[sw,pr]

port up TOagent OFagent request topo::

port up OFagent TOagent inform new_link::[list of links]

port up TOagent KBagent inform new_link::[list of links]

Table 5.3: Messages exchanged while discovering new links

5.5.2 Provisioning

OFagent parses incoming Packet-In message from data plane and requests IPagent for

a path to provision the flow on. IPagent uses a recent copy of topology to compute a

path and informs OFagent and updates KB.

Agent interactions while provisioning a flow are shown in Figure 5.19, and

corresponding messages exchanged are listed in Table 5.4

Flow_path information of form path::flow :: [(dpa, pra), (dpb, prb), ..., (dpn, prn)]

where (dpi, prj) is (dpid, outport) tuple of intermediate datapath is sent to OFagent.
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Figure 5.19: Provisioning a new flow

Type Sender Receiver Act Content

provision OFagent IPagent request path::flow

provision IPagent OFagent inform path::flow::flow_path

provision IPagent KBagent inform path::flow::flow_path

Table 5.4: Messages exchanged during flow provisioning

Flow is a tuple of form (srcaddr, dstaddr, protocol) where srcaddr is the source

address, dstaddr is the destination address, and protocol is application information.

5.5.3 Recovering from link failures

Two common network abnormalities previously discussed are a) link failure and b)

congestion. Unlike network congestion, a link failure incident is registered when

PDagent receives a port state change to down information from OFagent. PDagent

updates the internal network state stored in the KB, as seen in Figure 6.11. KB

responds with information on all affected flows. PDagent does not wait until

flow-rule times out, rather proactively deletes flow rules from the datapath and

triggers reprovisioning.

5.5.4 Addressing congestion

In case of congestion, there is no explicit notification from the data plane. PSagent

updates the port’s information. KB infers if a port is congested. In case a port is
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Figure 5.20: Handling port down event

Type Sender Receiver Act Content

port down OFagent PDagent inform port_down::(dp,pr)

port down PDagent KBagent request port_down::(dp,pr)

port down KBagent PDagent inform affected_flows::[list of flows]

port down PDagent OFagent request affected_flows::[list of flows]

Table 5.5: Messages exchanged during link failures

congested, the KBagent requests RRagent find alternate paths to provision affected

flows. RRagent requests flow demands (fdf) from OVagent and attempts to find

alternate paths to configure affected flows. The RRagent requests IPagent to provision

flows on new paths. While requesting IPagent to provision might occur as an extra

step in the process, two reasons validate this step. First, each agent in an agent

system performs a specific task. While an agent can perform multiple tasks, multiple

agents cannot perform the same task. This is as per the agent roles identified in

Chapter 4. Secondly, IPagent computes the end-to-end path, which is a combination

of datapath and outgoing port, whereas RRagent only computes the path in terms

of datapaths. Hence to configure flows on the new path, RRagent requests IPagent

to provision. While IPagent configures new flow rules, old flow rules timeout after

the idle-timeout period and FTagent purges KB of stale flow , path information by

removing port, flow associations and flow table flow rule associations.
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RRagent finds only those paths whose loads are within the constraints of the

available link bandwidth after provisioning new flows. Figure 5.21 shows agent

interactions, and Table 5.6 lists messages exchanged during the process.

Figure 5.21: Agent interaction during link congestion

Type Sender Receiver Act Content

congestion KBagent RRagent request congestion::(dp,pr)

congestion RRagent OVagent request flow_stats::(dp,pr)

congestion OVagent RRagent inform flow_stats::[flows_stats]

congestion RRagent IPagent request reprov::[(flows::path)]

congestion IPagent OFagent request reprov::[(flows::path)]

Table 5.6: Messages exchanged during link failures

5.5.5 Maintaining fair resource allocation among TCP flows

TFagent uses pre-trained neural network model to control the cwnd of fast sender.

The agent makes observations and, based on an action chosen, requests OVagent to

install a temporary CE-bit enabled flow rule.

Figure 5.22 shows agent interactions, and Table.5.7 lists messages exchanged

during the process.
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Figure 5.22: Agent interaction to ensure fairness

Type Sender Receiver Act Content

control cwnd TFagent OVagent request flow rule

control cwnd OVagent TFagent inform status

Table 5.7: Messages exchanged to ensure fairness

5.5.6 Gathering port counter information

PSagent periodically requests OFagent to query port stats. KB is updated with the

information. TPagent uses this information to predict network traffic. Figure 5.23

shows agent interactions for gathering port stats and performing incremental traffic

prediction on links, and Table.5.8 lists messages exchanged during the process.

Figure 5.23: Agent interaction during monitoring port counters

Port counters received from OFagent are of form {dp1 : {pr1 : val1, pr2 :

val2, ..prn : val3}}
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Type Sender Receiver Act Content

port stats PSagent OFagent request port_stats::

port stats OFagent PSagent inform port_counters::[port counters]

port stats PSagent KBagent inform port_counter::[port counters]

port stats KBagent TPagent inform readings::[port counters]

Table 5.8: Messages exchanged during port statistics gathering process

5.6 Conclusion

This chapter introduced an ontology to formalise the information in the agent system.

Various roles, restrictions and rules of ontology are established. Operation of KB is

explained in terms of inferences made. KBagent operates on KB and enables other

agents to communicate with KB. Next, interactions among the agents including

message format and communication patterns were discussed. The agents exchange

FIPA complaint messages for communication. In the next chapter, implementation

and results are presented.
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Chapter 6

Implementation

6.1 Introduction

This chapter evaluates the prototype build for the proposed agent-based SDN

controller in two sections. The first section demonstrates the operations of three

agents. The later section examines distributed agent controller’s performance and

makes a comparison against monolithic controller- Ryu [7] in various controller

operational modes. The comparison is in terms of flow set-up duration and bandwidth

conducted in network scenarios listed in chapter 5.

6.1.1 Prototype Setup

The proposed prototype is implemented in Python 3.9. Osbrain [162] is a Python-based

multi-agent platform. Each agent is a system process, and multiple agents communicate

using Inter-Process Communication IPC or TCP in multi-node environments. Agents

use a broker-less messaging queue- ZeroMQ [83] to exchange messages with each

other in one of the communication patterns - Publish-Subscribe, Push-Pull and

Request-Response mechanisms discussed in Chapter 5. The Osbrain platform is

generic and does not prescribe any specific agent architecture, hence suitable for

building a proposed prototype.
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OFagent is a multi-threaded agent that subscribes to both Osbrain’s ZMQ message

loop to exchange messages with other agents and to Asyncio [163] event loop to

exchange messages with the data plane. The asyncio event loop and ZMQ messaging

loop run on a dedicated threads. OFagent uses a lightweight python library PyOF

[164] to parse OpenFlow packets. This prototype uses OpenFlow v.1.3.

6.1.2 Operation modes

The controller prototype operates in two modes as below:

1. Single node: Agents are co-located on the same physical node and communicate

using IPC to operate as a single system while still exhibiting all the characteristics

of an agent-based system.

2. Multiple nodes (distributed) - Agents are located on different physical devices

and require an operational network set-up to communicate over TCP.

A controller in distributed set-up does not differ from a single-node set-up in

functionality, as the agents are isolated in both operational modes and interact by

exchanging messages. In comparison, the agents in single-node mode use either IPC

or TCP for communication and agents in distributed mode communicate over TCP

and require a fully functional communication network as a requirement. The tests

were conducted for the topology shown in Figure 6.1 (unless mentioned otherwise)

emulated in a well-known mininet [165] topology emulator. The topology is a two-tier

network consisting of five switches (s1, s2, s3, s4, s5) and six hosts (h1, h2, h3, h4,

h5). Links connecting adjacent neighbours, for example, the link connecting s1 and

s4, is labelled as l14. The links are unidirectional; hence link l14 is not the same as

l41. While the topology is simple, the experiments demonstrate the operation of the

agent-based controller and agents.
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Figure 6.1: Emulated topology for testing operation of agent-based controller

6.2 Functional tests to verify agent operations

Three agents discussed in this section are the RRagent, the TFagent and TPagent.

The RRagent is tasked with rerouting active flows to alleviate congestion by evenly

distributing flows across possible paths. The TFagent adjusts the congestion window

of fast senders to allocate bandwidth fairly across multiple flows, and the TPagent

predicts link loads incrementally. This section provides the reader with results

from functional testing of the for-mentioned agents. Experiments in this section

were conducted on the single-node mode of the agent system as these agents are

autonomous, and their functionality remains same across different operational modes.

6.2.1 Rerouting agent

This test verifies the operation of the RRagent. The RRagent receives congestion

notification from KBagent and attempts to reroute a subset of active flows. For

this experiment, each link’s bandwidth is set to 1 Mbps. Dijkstra’s shortest path

algorithm (SPF) assigns flows to paths with the least cost. Link costs are updated

periodically. The IPagent chooses a path based on the last received statistics at a

given instance. For all flows initiated in parallel, originating from h1 towards h5, the

IPagent chooses the same least-cost path, such as (s1-s4-s3), to configure flows. Such
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choice results in fully utilising links l14 and l43 and underutilising other possible

paths such as (s1-s5-s3). This behaviour is seen in Figure 6.2a.

Rerouting a subset of active flows to an alternate path (s1-s5-s3) reduces utilisation

on links l14 and l43, while links l15 and 53 are better utilised, as seen in Figure 6.2b.

(a) Link load prior to rerouting (b) Link load after rerouting

In Test 2, we verify the effect of rerouting on the jitter and bandwidth. All links

operate at 1 Mpbs bandwidth. The link connecting s3 and h5 is set to operate at

2Mbps. Each host h1, h2, h3 and h4 generates UDP traffic for 60 secs towards

h5 and averages are computed across hosts h1, h2, h3 and h4. Network topology

information is collected every 20 secs.

Using SPF IPagent identifies the same path as the best path for all the active

flows. Provisioning all flows on a single path leads to higher average jitter and lower

average transfer rate.

On the other hand, rerouting a subset of active flows on alternate paths leads

to higher average transfer rates resulting from higher average bandwidth and lower

average jitter across hosts h1, h2, h3, and h4. as shown in Figure 6.3a and 6.3b

respectively.

Discussion The maximum total number of possible solutions computed by the

agent is pf where p is the number of paths for f number of flows. A high number of

solutions are generated when a minimum number of branches are pruned during the

backtracking process, which implies a high number of successful flow assignments
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(a) Avg. bandwidth comparison with and
without rerouting

(b) Avg. jitter comparison with and without
rerouting

Figure 6.3: Measuring bandwidth allocated and jitter experienced with or without
rerouting of active flows.

satisfy the constraints. This is possible only when many paths have sufficient capacity

to accommodate most of the flows. In this case, we can conclude that the paths are

not highly congested- thus making the rerouting process redundant. This behaviour

was observed when the threshold value was set to 70%.

In other words, the agent performs worst when there is less congestion in the

network. Hence the congestion threshold has been set to 80%.

In case where links are fully congested, the RRagent does not yield any solution as

no alternative paths can be found that satisfy the constraints. Also, it was observed

that longer polling intervals reduce the benefits of rerouting, because the rerouting

process occurs only after a polling event. Longer polling intervals let the link stay

congested for a long.

6.2.2 TCP fairness agent

This test verifies the TCP agent’s operation in increasing fairness across TCP flows,

as mentioned in chapter 4. The agent learns to maintain a high fairness index

while ensuring not to throttle throughput to a drastically low rate, resulting in the

under-utilisation of available bandwidth. In other words, the agent is punished if the

congestion window is reduced when the action might result in low throughput. All
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links operate at 10Mbps for topology in Figure 6.1 for this test. All links experience

a delay of 10ms, while the link connecting s2 to h4 experiences a delay of 30ms. The

rationale behind this configuration is that increase in RTT results in TCP increasing

host h4’s cwnd at a slower rate than host h3 resulting in a lower sending rate as seen

in Figure 6.4a. This results in an average Fairness index as seen in Figure 6.4b.

(a) Throughput of host h3 , h4 (b) Jain’s fairness index

Figure 6.4: Unfair sending rates of hosts h3 and h4

TFagent learns to reduce the congestion window of a fast sender by falsely

indicating congestion using the CE flag in the IP header. The agent uses a pre-trained

model to choose actions based on current observation. As mentioned in chapter 4,

observation is a list of current sending rates of sources. The agent has three actions

to choose from - 0 not to act, 1 to reduce the sending rate of a slow sender, and 2 to

reduce the sending rate of a fast sender. Though the agent operates autonomously,

the agent interacts with the OVagent to install flow rules on the terminal datapath

s3.

As mentioned earlier, the agent uses a pre-trained model to select an action. An

Open AI gym [166] environment was created to train the agent and build a model

for the agent to use. Prior to this work [167], [168] developed gym environments for

mininet. [167] proposed Iroko framework, [168] builds a gym environment to train

the agent to select primary MPLS up-link over Internet up-link.
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Open AI Gym [166] provides a standard interface for researchers and developers

to develop and test their Reinforcement learning agents, allowing consistent testing

and bench-marking of various algorithms. Though the environment for data networks

is unavailable, OpenAI gym provides guidelines for building custom environments.

A custom environment built to train the TFagent interacts with topology emulated

in mininet, as shown in Figure 6.5.

Figure 6.5: Mininet-OpenAI gym env

A custom gym environment maps domain-specific actions, such as installing flow

rules to discrete actions of the DQN agent. For example, action 2 is mapped with

the OVagent installing a temporary flow rule in Listing 1 to flag congestion to a fast

sender.

ovs-ofctl add-flow s3 -O OpenFlow13 priority=20,ipv4,hard_timeout=1,nw_src=<nw_src>,
nw_dst=<nw_dst>,action=mod_nw_ecn:3,output:<out_port>

Listing 1: Flow rule to enable CE flag

where nw_src is the fast sender’s IP address. Similarly, the environment

calculates and rewards the agent based on observations of hosts h3 and h4 sending

rates.

A custom Open-AI gym environment has

1. initialise method to initialise the environment.

2. step method to capture the ’observe -act- reward’ cycle.
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3. reset method to reset the environment at the end of the execution episode.

4. close method to close the environment.

An agent performs possible action from the action_space. Action_spaces are

either:

1. Discrete to store discrete actions

2. Box store continuous actions

The agent observes the consequence of choosing an action in the form of environmental

change. An observation is a snapshot of the environment. Observation_space is a

collection of all such snapshots. Observation_spaces can themselves be of various

formats as:

1. Box to store continuous observations

2. Discrete to store discrete observations

3. Tuple to store observations with multiple values

4. Dictionary similar to Tuple, but stores different features of observations using

key: value pairs.

The TFagent is trained for 750 episodes. Since the agent is a reinforcement learning

agent, the agent starts by exploring the environment. The exploration rate is set

to 1.0 and decays at a rate of 0.95. Each episode runs until a terminal state is

encountered. The terminal state is that nodes h3 and h4 are no longer connected to

h5. Hosts h3 and h4 transmit data for 300 secs.

The rewards gained by the agent are shown in Figure 6.6.

Higher rewards also translate into better sending rates for h4 and better fairness

index, as shown in Figure 6.7a and Figure 6.7b, respectively.
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Figure 6.6: Rewards received by the TFagent

(a) Throughput of host h3 , h4 (b) Jain’s fairness index

Figure 6.7: Fair sending rates of hosts h3 and h4 achieved by TCP agent

Discussion During initial episodes, the agent explores the action space based on

an epsilon-greedy algorithm. The agent explores all actions with random chance and

collects rewards for acting on that specific observation. As the episodes progress, the

agent explores less and exploits actions with maximum rewards, thus proactively

working towards gaining more rewards. Working proactively does not necessarily

imply consistently reducing the congestion window. For example, consider an instance

when h3 is transmitting at 4Mbps, and h4 is transmitting at 2Mbps on a 10Mbps

link. The current sending rates remain unchanged by choosing action 0 (no action).

A second choice (action 1) is to reduce the sending rate of the slow sender (i.e. h4).

This action reduces the sending rate of h4 from 2Mbps to 1 Mbps. Third choice

(action 2) is that the agent can reduce the fast sender’s congestion window (i.e.
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h3). Third action reduces the sending rate of h3 to 2Mbps. By choosing action 2 a

Fairness index is 1 is achieved but at the cost of utilising 4Mbps of 10Mbps available

bandwidth. Such action selection is undesirable, and the agent does not reap any

rewards. Similarly, by choosing action 1, neither a higher fairness index nor better

throughput is achieved. Thus a suitable action for this observation is action 0- to

not act.

Also, in order to not cause a prolonged decrease in the fast sender’s sending rate,

a hard timeout of 1 sec has been set for the flow rule flagging congestion. This rule

thus causes a temporary slow down of the fast sender by reducing the congestion

window by half. Once the rule expires after 1 sec, the fast sender resumes additively,

increasing the congestion window.

Since only two flows were considered for this test, the agent learnt in relatively

fewer episodes. The scale of the experiment must be increased to test the agent’s

behaviour for a more significant number of flows. Further work is also required on

reducing the neural network’s training time. Training the neural network consumes

time, and the observations made no longer reflect the effect of the action performed

if the training time is greater than the observation interval. This is a general

experimental observation made during the build stage.

6.2.2.1 Traffic prediction agent

The TPagent receives port status information from KBagent. The agent predicts

traffic on a link for a one-step ahead time stamp. The topology shown in Figure 6.1

has been used. All links operate at a bandwidth of 10Mbps. Hosts h1, h2, h3, and

h4 generate UDP traffic for random duration between 1 to 3secs towards h5 and h6

in ON_OFF fashion before sleeping for a few seconds. This process is repeated for

60 mins, and corresponding true values are fed to TPagent one at a time to make a

one-step-ahead prediction. Parameters used to train ARMA model are p = 3, d = 0,

q = 1, initial_intercept =5 , SGD=0.01, learning_rate = 0.3). The agent calculates

the Mean Absolute Error MAE of the predicted value in the next timestamp after
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receiving the true value. TPagent uses Python library River [169] for incremental

learning.

(a) Traffic on link l14 (b) Traffic on link l15

(c) Traffic on link l24
(d) Traffic on link l25

(e) Traffic on link l43 (f) Traffic on link l53

Figure 6.8: Predicting traffic on various links

Discussion There were two possible ways to train the model- by considering all

links as features for a single model and training one model with traffic from all links

or training a unique model for each link. Since TPagent learns incrementally and

does not consume resources, second approach was preferred where each link was

mapped to a unique model. Such a mapping accommodates network changes, such
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as the addition or removal of links or changes in traffic on a specific link does not

require retraining a single model with a changed number of links. To add new links,

a new model is created.

The parameters for the current models were chosen based on the model with

the least MAE. Unlike batch training, cross-validation cannot be performed in

incremental learning as the agent does not store datasets that can be split into

training and testing datasets. Finally, in batch learning, parameters p,q is chosen

using ACF and PACF. Since the entire data set is not available , parameters p,q

have been chosen based on experimentation. Values of p,q that yielded the lowest

MAE have been chosen. Traffic predictions by TPagent for links l14, l15, l24, l25

and l43 and l53 are shown in Figure 6.8.

6.3 Functional and Performance evaluation

In this section, the controller’s response time for setting up a single flow on a

multi-hop network, for setting up multi-flows in multi-hop topology and recovery

from link failures in single node operational mode and distributed mode is measured

and compared against response times of Python-based Ryu [7] SDN controller. The

agent system is set to operate on a single Linux device in the single node operational

mode. The agent system is deployed on Raspberry Pi units for a distributed set-up.

A subset of controller agents is used for the evaluations. For the distributed mode

of operation, OFagent and KBagent run on a Linux machine, as handling the data

plane connections and maintaining knowledge graphs are resource-intense activities.

TOagent, IPagent, PSagent and FTagent agent each run on individual Raspberry

Pis. All the agents in the agent system communicate over TCP on wireless channels.

Distributed set-up using Raspberry Pis is shown in Figure 6.9.
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Figure 6.9: Agents on Raspberry Pi

6.3.1 Provisioning

This section provides results of provisioning multiple flows and a single flow on a

multi-hop path. Agent-based controller’s response time calculated for comparison

purposes.

Setting up a flow

A linear topology of fifty switches is used to compute response time for provisioning

a single flow on paths of varying hop lengths. h1 connected to switch s1 is the

source and progressively sends packets to h2, h3, ..., h25, h26,..., h50 connected

to switches s2, s3,...,s25, s26,...s50. Flow set-up duration is calculated as the time

elapsed between an arriving Packet-In message and the final outgoing Flow-Mod

message from the controller. The longer the hop count, the higher the flow set-up

time. Ten such runs were conducted to measure flow set-up times for path lengths

from 1 to 50. The test was repeated on both agent-based controller operational

modes and compared against the Ryu controller’s set-up duration. The average flow

set-up time for x hops across all runs is calculated using time stamps obtained from

Wireshark [170]. Results are shown in Figure 6.10a.
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Configuring multiple TCP flows

The topology shown in Figure 6.1 is used to compute flow set-up time for multiple

flows. h5, h6 are destination nodes and h1, h2 generate TCP traffic towards the h5,

h6. A run consists of generating an increasing number of flows [5, 10, 15,...,45, 50]

and calculating flow set-up times for x number of flows. An average flow rule set-up

time and reverse flow rule set-up time are computed as set-up time for x number of

flows. As with the earlier test, the test was performed on both operational modes of

the agent controller and compared against the Ryu controller’s set-up time. Each

run’s packet’s time stamps were extracted using Wireshark. The results of this test

are shown in Figure 6.10b.

(a) flow set up time over multiple hops (b) flow set up time for multiple flows

Figure 6.10: comparison of flow set-up duration

6.3.2 Recovering from link failures

This test aims to evaluate the duration the agent system takes to react and recover

from link failures in terms of the time taken by the controller to re-provision an

affected flow. The topology shown in Figure 6.1 is used for the test. For every run,

a link is shut down ten times and the time taken by the controller to configure a

new flow rule to reroute the affected flow is computed. Response time is calculated

as time lapses between the incoming Port-down message and the final outgoing

flow-mod message. Timestamps for these packets were obtained from Wireshark.
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As with previous experiments, agent controller response times have been compared

with the Ryu controller’s response time. It has to be noted that the agent system

reroutes affected flows proactively. The controller reroutes the flows upon receiving

the Port-down message and does not wait for the Packet-In message. Figure 6.11

captures the response time for this test.

Figure 6.11: Handling port down event

Discussion Figures Figure 6.10a, Figure 6.10b, and Figure 6.11 show that the

physically distributed set-up performs the worst, while the agent system operating

on a single node performs relatively better. This is still promising as no optimisation

techniques have yet been used to improve the system performance. Using multi-

threading and other IO techniques can improve the performance of the system.

However, this has not been the focus of this thesis. The system’s performance in

distributed operation mode depends on multiple factors, such as device capabilities,

underlying communication hardware, and how libraries have been modified to operate

on these devices.

6.4 Conclusion

This chapter presents evaluations and results of the proposed agent-based SDN

controller. Complex agents’ behaviours are evaluated individually, and the performance

of the agent system as a whole is evaluated in common network scenarios. Tests
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have been conducted for single and distributed modes of operation of the controller.

It is observed that distributed set-up has a high flow-setup duration, whereas are

single operation mode has relatively comparable results with Ryu. The next chapter

concludes the thesis and discusses future work.
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Chapter 7

Conclusion

This thesis presented a modular SDN control plane as an alternative to existing

monolithic control planes to isolate components, enable flexible resource allocation.

It also diversifies the SBI plane to develop multiple SBI to interact with the data

plane.

This thesis proposed breaking the controller into a group of agents, by loosely

adopting the MaSE methodology, to identify system goals. Agent roles were created

to achieve system goals, and various agents performed various tasks to fulfil a network

function.

Not all agents in the agent system are simple agents. Specifically, TOagent,

IPagent, PSagent and FTagent are reactive agents. Advanced agents such as RRagent

reason under constraints, whereas TFagent agent learns to reduce the cwnd of the

fast sender. TPagent incrementally learns to predict network traffic.

The agents, while autonomous, interact amongst themselves to exchange information.

An OWL-based Knowledge base is also presented. Reasoners like HermiT make

inferences on the knowledge base to deduce new facts such as congestion, flows

configured on ports, link down events.

The performance of the agent system is evaluated at the agent and system

levels. At the system level, the proposed agent-based controller’s performance while

130



7.1. FURTHER WORK

operating on a single node is comparable to the monolithic Ryu [7] SDN controller.

The controller, though, experienced latency in a physically distributed setup.

7.1 Further Work

The proposed agent system MASDN is modular, autonomous and social.

Synchronisation and latency are two issues that affect distributed systems. These

issues also affect the proposed agent system. Currently, the system uses a global

timer to synchronise agents. More advanced techniques must be investigated and

applied to attain global synchronisation while reducing latency.

As mentioned in chapter 3 and chapter 1, this thesis does not provide a framework

for social decision-making. Interactions in the current prototype are limited to

information exchange, and agents do not use advanced interaction protocols such

as negotiations, bargaining and conflict resolutions to arrive at social decisions.

Social decisions are those decisions taken by the agent system as a whole. In the

context of SDN, social decisions are the prospective mechanism to achieve application

composition. Ensuring OVagent and OFagent do not install conflicting flow rules in

the datapath, or agent precedence over other agents. This can only be answered by

employing cooperative decision-making ability in the agents leading to strong agency

amongst agents. Achieving such strong agency among agents is a possible direction

for future work in this area.

For experimentation purposes, it was assumed that traffic sources are well-behaved

and transmit traffic at constant bit rate to verify the behaviour of RRagent and

TFagent and TPagent and on-off nature of real network was recreated by switching

traffic sources ON and OFF. Real-time network traffic is self-similar [171], [172] with

periods of traffic bursts. Observing and updating the functionality of these agents

based on realistic network traffic is an interesting future work. Such future upgrades

also demonstrate the benefits of using an agent based controller, where the agents

behaviour is constantly upgraded without impacting the overall system behaviour.
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Improving the prototype’s performance in terms of latency and number of active

connections also requires investigation. While the prototype successfully demonstrates

the operation of a modular SDN controller, OFagent’s scalability to increase the

number of datapath connections, improving efficiency of inter-agent communication

are few of the system-level enhancements worth investigation. At the agent level,

reducing the time taken to train TFagent, enhancing TFagent’s ability to handle

TCP flows and ensure fairness, and reducing the time taken by KBagent to make

inferences need investigation is also a fruitful future investigation area.

The proposed agent-based architecture is the first of its kind. Though modular

SDN controller designs have been presented in the past, at the time of writing, no

working prototypes were described. With proposed future work and performance

enhancements, the MASDN controller is a promising step towards building autonomous

SDN controllers.

7.2 Conclusion

This thesis is a step towards an intelligent and autonomous SDN control plane.

Firstly, the modular agent system is cloud-ready and edge-ready. It is possible to

wrap agents into containers (for example, as dockers) and deploy them on the cloud.

Container management systems such as Kubernetes can manage the containers.

Flexible resource allocation and self-starting are some of the benefits. Similarly,

as demonstrated in chapter 6, agents can also be deployed on end devices such

as Raspberry Pis and Internet of Things devices. The proposed agent system is

scalable. New agents for performing other network activities such as IP routing,

VLAN forwarding, handling MPLS packets, load balancing, and firewalls can join

the agent system without any change to the existing system.
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Acronyms

ACF Auto-Correlation Function. 58, 61, 125

ACL Access Control lists. 13

AR Auto Regression. 58, 61

ARIMA Auto Regression Integrated Moving Average. 58

ARMA Auto Regression Moving Average. 58, 61, 123

ARP Address Resolution Protocol. 94

ASIC Application-Specific Integrated Circuit. 12

BGP Border Gateway Protocol. 12

CAM Content-Addressable Memory. 12

CNN Convolutional Neural network. 59

DL Descriptive Logic. 89

DQN Deep Q-Network. 120

FE Forwarding Element. 15

FIPA Foundation for Intelligent Physical Agents. 105–107, 113

FOL First Order Logic. 84, 89
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FPGA Field Programmable Gate Array. 15

FTagent FlowTable agent. 57, 110, 125, 130

GRU Gated Recurrent Unit. 58, 59

IGMP Internet Group Management Protocol. 12

IP Internet Protocol. 80, 81, 93, 94, 119

IPagent IPPath agent. 54, 57, 63, 108, 110, 116, 117, 125, 130

IPC Inter-Process Communication. 114, 115

KB KnowledgeBase. 85, 107–109, 112, 113

KBagent KnowledgeBase agent. 63, 107, 110, 113, 116, 123, 125, 132

LLDP Link Local Discovery Protocol. 12, 51, 55, 107

LSTM Long Short Term Memory. 58, 59

MA Moving Average. 58, 61

MAC Media Access Control. 93, 94

MAE Mean Absolute Error. 58, 61, 62, 123, 125

MAS Multi-agent System. 35

MASDN Multi-agent Software-defined network. 6, 7, 45, 49, 75, 131, 132

NBA NorthBound Application. 3, 4

NBI NorthBound Interface. 3

OF OpenFlow. 3

OFagent OpenFlow agent. 51, 52, 54–57, 63, 107–109, 112, 115, 125, 131, 132
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Acronyms

OSPF Open Shortest Path First. 12

OVagent OVS-vsctl agent. 52, 110, 111, 119, 120, 131

OWL Web Ontology Language. 50, 84–86, 89

P4 Programming Protocol-Independent Packet Processors. 15

PACF Auto-Correlation Function. 58, 125

PDagent PortDown agent. 63, 109

PISA Protocol Independent Switch Architecture. 15

PSagent PortStats agent. 56, 59, 62, 109, 112, 125, 130

QoS Quality of Service. 13

RDF Resource Description Framework. 84

RL Reinforcement Learning. 75

RMSE Root Mean Squared Error. 58, 61

RRagent Reroute agent. 63–65, 68, 70, 83, 110, 111, 116, 118, 130, 131

RTT Round Trip Time. 72–75, 80

SBI SouthBound Interface. 3, 4, 6–8, 14, 130

SDN Software-Defined Network. 3

SGD Stochastic Gradient Descent. 60, 61, 79

SNMP Simple Network Management protocol. 58

SPF Shortest Path First. 117

STP Spanning Tree Protocol. 12
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TCAM Tertiary Content-Addressable Memory. 12

TCP Transport Control Protocol. 47, 51, 63, 71, 73–75, 80, 81, 83, 93, 95, 114, 115,

118, 119

TFagent TCPFairness agent. xii, 63, 80–83, 111, 116, 119–122, 130–132

TOagent Topology agent. 55, 63, 107, 125, 130

TPagent TrafficPrediction agent. 61, 62, 83, 112, 116, 123–125, 130, 131

UDP User Datagram Protocol. 93, 95
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