
Adversarial Active Learning with Guided BERT
Feature Encoding

Xiaolin Pang1, Kexin Xie1, Yuxi Zhang1, Max Flemming1, Damian Chen Xu1,
and Wei Liu2

1 Salesforce Inc., San Francisco, CA 94105
{xpang,kexin.xie,yuxi.zhang,m.fleming,damian.xu}@salesforce.com

2 School of Computer Science, University of Technology Sydney, NSW 2007, Australia
wei.liu@uts.edu.au

Abstract. Recent advances in BERT-based models has significantly im-
proved the performance of many applications on text data, such as text
classification, question answering, e-commerce search and recommenda-
tion system, etc. However, the labelling of text data is often complex
and time-consuming. While active learning can interactively query and
label the data, the effectiveness of existing active learning methods is
mostly limited by static text embedding approaches and by the insuffi-
ciency of training data. To address this critical problem, in this research
we propose a BERT-based adversarial semi-supervised active learning
(B-ASAL) model. In our approach, we use generative adversarial mod-
elling and semi-supervised learning to guide the fine-tuning of the BERT
and to optimize its corresponding text embeddings and feature encod-
ings. The adversarial generator paired with a semi-supervised classifier
guided the BERT model to adjust its feature encoding to best fit the dis-
tribution of not only class labels but also the discrimination of labeled
and unlabeled data. Moreover, our B-ASAL model selects data points
with high uncertainty and high diversity to be labeled using minimax
entropy regularization. To our best knowledge, this is the first work that
uses adversarial semi-supervised learning joined with active learning to
guide and optimize feature encoding. We evaluate our method on various
real-world text classification datasets and show that our model outper-
forms state-of-the-art approaches.

1 Introduction

Advances in deep learning has transformed the field of natural language pro-
cessing (NLP). BERT-based [4] models are widely used in various NLP tasks:
from text classification to question answering to e-commerce search and recom-
mendation etc. Meanwhile, data labelling, a fundamental bottleneck in machine
learning, becomes a critical problem due to annotation cost and the need of
large amount of labeled data for deep learning NLP tasks. For instance, to build
a question answering (QA) model, a human annotator must first read a piece of
text and then reason about the answer to the question from context. It is even
harder for domain specific labeling task due to the cost of using domain expert.
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In e-commerce, there are very few fine labeled data and professionals are needed
to annotate fine labels to map items to fine-grained categories. Therefore, it is
necessary to consider how to select more informative samples, so that a better
model can be trained with limited labelling capabilities.

Active learning (AL) is one method to collect labeled data cost-efficiently.
The goal is to choose the most relevant data points and then query labels from
an oracle. Using AL, we can query labels for a small subset of the most relevant
documents and immediately train a robust model. For instance, leveraging pre-
trained BERT-based language models, task-specific models can be fined-tuned
continuously by incorporating newly annotated samples in each iteration to boost
the model performance. However, the effectiveness of AL learning methods on
NLP tasks is mostly limited by static text embedding, the insufficiency of train-
ing data, and the similarity between labeled and unlabeled data distributions.

This research addresses the exact problems above. To address the static text
embedding problem, we propose an active learning framework while BERT is
fine-tuned in the training progress where the text embedding and feature en-
coding are both optimized for the training data. To address the problem of the
insufficiency of labeled training data, we use adversarial semi-supervised learning
to utilize unlabeled data for learning effective representations and for generating
new synthetic samples [1][18]. To discriminate labeled data from unlabeled ones,
we incorporate minimax entropy to measure and differentiate the distributions
of labeled and unlabeled data. We name our method BERT-based adversarial
semi-supervised active learning (B-ASAL). In summary, our contributions in this
research are as follows:

– We propose B-ASAL for learning from partially labeled text data. Our B-
ASAL model integrates active learning with the fine-tuning of BERT, which
guides the BERT to optimize text embedding and feature encoding according
to the distribution of the training data.

– We also introduce in the B-ASAL model a generative adversarial network
joint with semi-supervised learning, a strategy that can utilize unlabeled
data and generalize latent features to select samples for labelling.

– We employ minimax entropy optimization for the unlabeled data to reduce
the distribution gap with labeled data while extracting discriminative fea-
tures for selecting highly representative data samples. Moreover, we also
employ conditional entropy maximization in the adversarial network to en-
hance the robustness and generate uniform-distributed samples.

– We conduct extensive experiments on public datasets and show that our
model outperforms state-of-the-art approaches.

2 Related work

Deep Active Learning (DAL) DAL integrates data labeling and deep model
training to improve model performance with minimal amount of labeled data.1

1 In this work, we will only consider the most common pool-based deep active learning.
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The scoring function for labeling can be entropy or confidence-score based. Core-
set active learning [13] selects a small set of points that approximates the shape
of a larger point set using concept of computational geometry. [19] combines
clustering with a pre-trained language model (BERT) to select samples. Vari-
ational adversarial active learning (VAAL) [14] is proposed as a task-agnostic
diversity-based algorithm that samples data points using a discriminator trained
adversarially to discern labeled and unlabeled points.
GAN Semi-supervised Learning Semi-supervised models are able to improve
the generalization capability by learning from fewer labeled data points with the
help of a large number of unlabeled data points. Semi-Supervised GAN (SS-
GAN)[12] extends standard GAN [7] where the labeled data is used to train
the discriminator, while the unlabeled data (as well as the ones automatically
generated) improve its inner representations. CatGAN [15] proposes categorical
GAN for unsupervised and semi-supervised framework by utilizing unlabeled
data to learn multi-class classifier. Besides, GAN-BERT [2], a semi-supervised
learning model for natural language processing task, enriches the BERT fine-
tuning process with a SS-GAN perspective.
Pre-trained BERT BERT [4] has been used in combination with AL to se-
lect representative samples to reduce labelling effort for text classification [5, 8].
In [5], it presents a large-scale an empirical study on AL techniques for BERT-
based classification, covering a diverse set of AL strategies and datasets on binary
text classification. [8] also conducts an empirical study by comparing different
uncertainty-based acquisition strategies on two classical NLP multi-class classi-
fication datasets.
Entropy regularization Entropy regularization has been widely used in var-
ious deep learning models. In the field of domain adaptation, [11] uses entropy
optimization for matching source data to target data distribution. The MAL
framework [6] uses the similar idea and proposes a semi-supervised minimax
entropy-based active learning algorithm in an adversarial manner for image re-
lated tasks. CatGAN [15] and the study of SS-GAN use entropy regularization
[3] to improve generation of images conditioned on class assignment.

3 Learning Framework
In this section, we describe our proposed method, the B-ASAL (the BERT-based
adversarial semi-supervised active learning) model.

3.1 Problem Formulation

We consider exploiting unlabeled data points and formulate semi-supervised gen-
erative adversarial active learning problem as: given an initial labeled data set
Sl : (X l,Y l) = {(xl, yl)}, where l ∈ {1, ...,m} with size M , and a large unlabeled
data pool Su : X u = {(xu)}, where u ∈ {1, ..., n} with size N (M ≪ N) and
yl ∈ {0, 1} is the class label of xl for binary classification, or yl ∈ {1, ...,K}
for multi-class classification. We also have a set of generated adversarial data
points Sg: X g = {(xg)}, pairing with true data points to enhance model learn-
ing, where xg is transformed by noise input {z1, ..., zm+n} ∼ U{0, 1} (i.e. pz)
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Fig. 1: Workflow of our B-ASAL model. There are Four components in our model:
Generator (G), BERT Encoder (E), Classifier (C) and Discriminator (D). Each
component and loss function has detailed explanations in Section 3.2 and 3.3.

and g ∈ {1, ...,m+n}. For all of feature inputs: X l, X l and X g, we assume they
denotes encoded input through encoder. The AL model M parameterized by
θ ∈ Θ is trained on labeled data with their labels, unlabeled data and adversar-
ial data (i.e. Sl ∪ Su ∪ Sg). This training can be formalized by the optimization
problem:

argmin
θ

L(θ; yi|x ∈ X u ∪ X l ∪ X g, y ∈ Y l), (1)

where L is the loss function composed of supervised loss trained for labeled data,
unsupervised loss trained for unlabeled data and generated fake data. In each
AL cycle, trained model M selects top k% samples (denoted as Sq and Sq ∈ Su)
constrained by query budget limit and a designed acquisition function f(x,M):
argmaxx∈Xu f(x,M|x ∈ X u) to obtain their labels from the oracle. Sl and Su

are then updated in next cycle, and M is retrained on Sl ∪ Su ∪ Sg.

3.2 Proposed Framework: B-ASAL

In this work, we propose a BERT-based adversarial semi-supervised active learn-
ing (B-ASAL) framework. We design each possible component to come up with
a model learning objective and acquisition strategy. The components are: Gen-
erator (G), Classifier (C), Discriminator (D) and BERT Encoder (E) as shown
in Figure 1.

To utilize unlabeled data, we introduce a semi-supervised GAN framework
built with BERT fine-tuning across the entire training process. In an adversarial
manner, the generator is used to fool the classifier by generating highly realistic
data samples. It takes noise input2 and transforms to map true data distribution.
The transformed noise input is treated as k + 1th addition class for the semi-
supervised learner. To enhance the robustness and reduce mode collapse, the
generator is trained to apply feature matching between generated samples and

2 Here we generate noise following a uniform distribution (which can be easily replaced
by other distributions when needed). We denote noise as: {z1, ..., zn} ∼ U{0, 1}
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real data. Moreover, conditional entropy maximization over samples from the
generator is employed as well.

The classifier is designed to pair with the generator and can be treated as
a multi-class discriminator for K+1 classes. For labeled data, it is trained to
differentiate k classes and k+1th fake class. For unlabeled data, a minimax loss
is optimized by performing entropy maximization with respect to the predicted
class and entropy minimization with respect to fine-tuned feature encoder. It
reduces the distribution gap while extracting discriminative features. We select
samples having high entropy to be labeled, which indicates these samples are
predicted by the model with high uncertainty.

The discriminator is a binary classifier, we use it to predict whether a sample
is labeled or not based on a latent representation from our encoder. We select
unlabeled data points with low discriminator scores, which indicates that these
samples are sufficiently different from previously labeled ones.

BERT encoder is used as the feature encoder. It is fine-tuned, and the fine-
tuning encoded features are through the logit activation layer of the classifier
and the discriminator. For labeled data, It is trained to maximize the probability
of class assignment from the classifier. It is also trained to differentiate label
and unlabeled data from the discriminator. For unlabeled data, it is trained to
minimize the entropy to have better discriminative features.

In each AL cycle, samples that have high uncertainty and diversity are se-
lected from unlabeled data for labelling. Detailed steps of our method are shown
in Algorithm 1.

3.3 Learning Objective

Now we discuss the overall cost function by incorporating each decomposed
component, including generator loss (LG), discriminator loss (LD), and classifier
loss (LC). Each type of these losses has supervised loss for labeled data (LL)
and unsupervised loss for unlabeled data (LU ).

Labeled Data Learning BERT Encoder(E) and Classifier (C) are trained to
classify labeled data points correctly into {1, ...,K} class by both standard cross
entropy loss and conditional entropy loss over samples uniformly distributed to
K classes from the generator (G) to achieve optimal classification results. The
generator (G) generates fake data points belonging to K + 1th class. It tries
to minimize the loss between generated fake data points with real data points,
including the loss of feature matching and misclassification loss to K classes,
while the classifier (C) tries to maximize it. This min-max loss is trained through
an adversarial setting and can be denoted as:

LL = −min
G

max
C
LCl + LGl (2)

The loss function of Classifier (C) ( LCl):

LCl = −E(x,y)∈Sl log[p(y ≤ k|x)]− Ez∼pzHg[p(y ≤ k|G(z), C)], (3)
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where conditional entropy Hg = −
∑m

1 p(y = k|G(z), C)log[p(y = k|G(zm), C)]
and k ∈ {1, ...,K} classes and m ∈ M .

The loss function related to G (LG) includes feature matching loss to make
generated data are very close to the real ones and also considers the error induced
by fake data correctly identified by classifier.

LGl = ∥Ex∈Slf(x)− Ex∈Sgf(x)∥22 − Ex∈Sg log[1− p(y ≤ k|x)], (4)

where f is the layer with logits through the classifier and fine-tuning encoder.

Unlabeled Data Learning When training on the unlabeled data, the un-
suprevised loss is LU = Lu

H+Lu
G , where Lu

H denotes minimax entropy employed
on classifier and feature encoder; Lu

G denotes feature matching loss for gener-
ated samples paired with unlabeled data, same as first term in Ll

G. They are
computed as:

Lu
H = −min

E
max
C

Hs[p(y ≤ k|x)], (5)

where the minimax entropy Hs = −
∑K

1 p(y = k|x)log(p(y = k|x) and k ∈
{1, ...,K} classes; we first minimize the entropy in feature encoder to have more
discriminative representation and then maximize entropy in classifier to have a
more uniform feature representation.

Lu
G = ∥Ex∈Suf(x)− Ex∈Sgf(x)∥22, (6)

where this part can be combined with first term of Eq. 4 as learning feature
matching loss for all of generated samples coming from generator.

Discrimitive Learning for labeled and Unlabeled Data The diversity of
the data is predicted by a binary classifier (i.e. discriminator denoted as D) that
is trained to distinguish between the labeled and unlabeled encoded features.
The loss function of D is:

LD = −E(x,y)∈Sl log[p(yl|xl)]− E(x,y)∈Su log[p(yu|xu)]. (7)

Acquisition Strategy In our acquisition strategy, we select data points with
high diversity and high uncertainty to be labeled. The selection criteria are:
(a) high diversity : we use the probability associated with the discriminator’s
(D) predictions as a score to rank samples. The lower the probability, the more
confident D is that it comes from the unlabeled pool. (b) high uncertainty : the
entropy obtained by the classifier on the unlabeled data is used to choose the
data points. A higher entropy value is associated with a lower confidence score.
The top-k% samples that meet both criteria are selected for labeling.
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Algorithm 1 BERT-based Adversarial Semi-Supervised Active Learning (B-
ASAL)

Input: labeled data Sl, unlabeled data Su. Initialize parameters of generator ϕG,
discriminator γD , classifier σC and BERT encoder βE .

Output: Optimized ϕG, γD , σC and βE

1: for i = 1 to epochs do
2: Sample batch of size n from Sl labeled and Su unlabeled data |Sl| = |Su| = n
3: Sample {z1, . . . , zm+n} ∈ Sg from the prior Pz

4: Generate encode E(Sl), E(Su) and E(Sg)
5: For labeled data (x, y ∈ Sl):
6: Compute Ll

C from Eq. 3
7: Update C by descending:
8: σC ← σC − λ1Ll

C

9: For unlabeled data (x ∈ Su):
10: Compute Lu

H from Eq. 5
11: Update E and C by descending/ascending:
12: βE ← βE + λ2Lu

H

13: σC ← σC − λ3Lu
H

14: For labeled data (x, y ∈ Sl) and unlabeled data (x ∈ Su ∪ Sg):
15: Compute LG from Eq. 4 and Eq. 6
16: Update G by descending:
17: ϕG ← ϕG − λ4LG

18: Compute LD from Eq. 7
19: Update D by descending:
20: γD ← γD − λ5LD

21: end for

4 Experiments

To study the effectiveness of our approach, we evaluate model performance on
multiple open public data sets by comparing them with the different sampling
strategy.

Datasets: Total of five data sets are used for evaluation: Fine and Coarse
Question Classification (QC) [9], Match and Mismatched pair MNLI dataset [16]
and Multi-label emotion data [10].

Experiments Settings: We fetch all of the above data from HuggingFace
datasets library.We run 3 different seeds and 3 epochs for each experiment. We
take the mean of the results. [17]

Performance Evaluation: The model performance is measured by the clas-
sification accuracy on balanced datasets and measuring micro-F1, macro-F1 and
hamming score on imbalanced datasets/multi-label datasets by varying percent-
age of labeled data, ranging from {1%, 2%, ..., 10%} or {0.1%, 2%, ..., 5%} de-
pending on data size.

Acquisition Strategies: To compare with our acquisition function (i.e. B-
ASAL), we use three baselines: random sampling (Rdm), diversity sampling
(Div) and entropy uncertainty sampling (En).
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Table 1: Comparisons of Sampling Methods on Accuracy. The percentages shown
in the table (and the same for all tables hereafter) refer to the percentages of
training data labeled by active learning.

Method
QC-Coarse QC-Fine

1% 2% 5% 10% 20% 30% 1% 2% 5% 10% 20% 30%
Rdm 21.2 36.3 58.3 84.4 92.8 94.4 8.1 11.6 33.9 56.3 72.0 77.8
En 22.1 36.5 81.1 89.1 93.6 94.5 7.2 13.5 38.7 54.9 67.9 75.9
Div 18.7 35.0 58.7 86.5 92.8 94.6 10.5 11.0 45.0 60.8 71.5 75.2
B-ASAL 26.2 42.6 90.4 94.5 95.5 96.3 17.3 19.2 57.4 62.4 76.9 80.8

Table 2: Comparisons of Sampling Methods on F1

Method
MNLI-mismatch MNLI-match

0.1% 0.2% 0.5% 1% 2% 5% 10% 0.1% 0.2% 0.5% 1% 2% 5% 10%
Rdm 22.3 40.0 46.4 78.3 76.7 85.2 88.3 21.2 21.4 42.6 58.2 80.0 84.6 85.0
En 25.0 31.0 40.7 73.7 79.7 86.3 88.1 24.0 29.3 54.0 69.0 82.0 87.3 91.3
Div 25.0 27.0 42.3 73.7 81.3 86.7 87.0 22.7 37.3 43.0 65.7 71.0 88.0 87.7
B-ASAL 29.0 42.3 55.7 77.0 86.7 89.7 91.7 29.3 39.7 74.3 77.7 83.3 91.0 94.2

Implementation: For Classifier (C), Discriminator (D), Generator (G), we
use the Multi-Layer Perceptron (MLP) neural network with one hidden layer
activated by a leaky-relu function followed by a softmax layer for the multi-class
prediction and sigmoid layer for multi-label prediction. The dropout is 0.1 after
the hidden layer. The input noise vector of G is uniformly distributed. BERT
Encoder (E) is loaded from the pre-trained BERT model and fine-tuned through
C, D and G.

4.1 Question Answering Classification

Question Classification (QC) dataset [9] has both a six-class (QC-Coarse) and a
fifty-class (QC-Fine) version. Both have 5,452 training data and 500 test data.
Table 1 shows the experiment output. The accuracy performance of QC-Coarse
data can achieve 90%+ when using only 5% labeled data and QC-Fine set
achieves around 80% by using 20% labeled data. Our sampling strategy (i.e.
B-ASAL) achieves much better performance.

4.2 Multi-Genre Natural Language Inference

The Multi-Genre Natural Language Inference (MultiNLI) corpus is a collection
of 433k sentence pairs annotated with textual entailment information [16]. The
task is to infer the relationship between the premise and hypothesis in binary
classification. We evaluated matched and mismatched data sets. The results
are shown in Table 2. The F1-score of mismatch data can achieve 90%+ when
using only 10% labeled data, and match set achieves around 80% by using only
2% labeled data. Our sampling strategy (i.e. B-ASAL) consistently shows much
better performance over the rest three baselines.

4.3 Multi-Label Emotion Classification

SemEval-2010 Task is for multi-label emotion classification (11 emotions) [10].
Hamming, F1-micro and F1-macro scores are used to evaluate model perfor-



Adversarial Active Learning with Guided BERT Feature Encoding 9

Table 3: Comparisons of Sampling Methods on Multi-label Emotion Dataset

Method
Micro-F1 Macro-F1 Hamming

1% 2% 5% 10% 20% 1% 2% 5% 10% 20% 1% 2% 5% 10% 20%
Rdm 19.6 25.0 50.7 57.7 60.6 7.51 11.4 27.1 32.4 38.2 11.5 14.8 34.0 40.5 43.5
En 20.6 23.7 41.1 54.8 56.3 7.6 7.96 18.4 26.8 28.2 12.2 13.4 26.5 37.7 38.9
Div 19.6 23.8 41.0 54.3 55.9 7.9 7.98 25.9 26.5 27.2 11.5 13.6 26.4 37.3 38.1
B-ASAL 23.9 33.9 54.6 58.2 60.9 8.51 13.1 27.3 32.7 38.5 13.7 20.6 37.6 40.8 43.8

Table 4: Ablation Studies on Accuracy

Method
QC-Coarse QC-Fine

1% 2% 5% 10% 20% 30% 1% 2% 5% 10% 20% 30%
L-only 20.4 36.0 79.5 91.1 94.2 95.1 8.4 13.4 39.1 59.8 72.9 76.7
No-GAN 25.1 37.3 72.8 79.6 93.2 95.0 13.2 14.1 24.6 43.6 61.7 67.8
BERT 20.1 21.4 50.0 81.6 93.4 95.1 0.8 3.5 17.0 30.5 54.7 64.9
B-ASAL 26.2 42.6 90.4 94.5 95.5 96.3 17.3 19.2 57.4 62.4 76.9 80.8

mance defined by the Task. Our method’s performance outperforms the other
sampling strategies and with only 20% labeled samples, our method can almost
achieve the benchmark performance (as shown in Table 3).

4.4 Further Analysis

To investigate the contribution of each component and understand the benefit
of utilizing the unlabeled data points, we designed several types of experiments
to show the overall effectiveness of B-ASAL.

Labeled-only vs. (Labeled ∪ Unlabeled) We study the effectiveness of semi-
supervised learning compared to supervised learning by having GAN component.
The comparison outputs are shown on the row of L-only vs. the row of B-ASAL in
Tables 4 and 5, where L-only denotes only labeled data is used for training with
GAN and B-ASAL is our model utilizing semi-supervised learning with GAN.
The results show that semi-supervised B-ASAL performs better than supervised
GAN where there are only annotated data in training.

With GAN vs. Without GAN We study the performance of the model with
Generator (G) compared to the model without G. The model without G is when
B-ASAL only has components E, D and C. The output shows on the row of No-
GAN vs. the row of B-ASAL in Table 4 and 5. The results show GAN generates
better performance by utilizing unlabeled data and pairing with the classifier.

B-ASAL vs. BERT-only We compare our model performance with the fully
supervised BERT classifier. Results are shown on the row of BERT vs. the
row of B-ASAL in Table 4 and 5. Apparently, B-ASAL outperforms supervised
classification without utilizing GAN and unlabeled data.

BERT Encoder Fine-tuning vs. No Fine-tuning To demonstrate fine-
tuning BERT plays an important role throughout the entire B-ASAL training,
we study the performance of fine-tuning vs. no fine-tuning (Figure 2a). It shows
the encoder plays an important role not only as a representation encoder but
also as a collaborator with component of D and C to achieve the optimal results.
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Table 5: Ablation Studies on F1 Score

Method
MNLI-mismatch MNLI-match

0.1% 0.2% 0.5% 1% 2% 5% 10% 0.1% 0.2% 0.5% 1% 2% 5% 10%
L-only 23.3 26.6 44.6 47.6 77.3 85.3 87.6 23.2 26.1 44.3 61.6 78.3 86.0 91.2
No-GAN 22.7 29.3 43.2 65.2 71.5 88.3 89.2 23.4 34.3 39.5 60.4 74.7 88.1 88.5
BERT 22.2 26.4 48.3 58.3 65.5 72.7 73.9 26.3 32.1 48.3 58.2 65.4 70.4 71.9
B-ASAL 29.0 42.3 55.7 77.0 86.7 89.7 91.7 29.3 39.7 74.3 77.7 83.3 91.0 94.2

(a) No fine-tuning vs. Fine-tuning BERT (b) MEn vs. MMEn

Fig. 2: Two of our Ablation Studies

Table 6: Comparisons When Labels are Partially Available at Training

Method
20 out of 50 classes 40 out of 50 classes

2% 5% 10% 20% 30% 2% 5% 10% 20% 30%
Random 13.0 29.2 49.4 64.8 75.2 22.7 39.2 57.8 64.8 67.1
En 15.4 27.9 41.5 64.3 64.8 31.1 41.6 59.0 64.4 70.3
Div 15.5 35.0 46.3 65.7 65.9 31.2 48.0 59.6 64.7 71.5
B-ASAL 16.5 38.1 50.5 66.9 75.6 36.1 40.1 60.0 66.6 75.9

Entropy Optimization For unlabeled data, we perform entropy minimax
optimization. Fig. 2(b) plots out the study when minimax optimization (MMEn)
is used for our approach vs. when only entropy minimization (MEn) is used for
extracting discriminative features. It shows entropy value decreases with the
increase of epochs, and the entropy of MMEn is higher than that of MEn, which
demonstrates a more effective optimization of the objective function.
Robustness In our method, Classifier (C) chooses data with high uncertainty
for labelling, while Discriminator (D) differentiates labeled data from unlabeled
ones. To evaluate the effectiveness, we studied QC-Fine dataset and randomly
use 20 classes and 40 classes (out of 50) in the initial training set as a labeled pool.
The results are shown in Table 6, which demonstrates our model is less affected
when initially labeled data don’t well represent the entire data distribution.
Discriminative Feature Visualization We demonstrate the discriminative
features learned from the model. Figure 3 shows the results using 10% labeled
MNL-match data for training: (a) feature encoded from Pre-trained Bert before
tuning, (b) feature learned at first epoch, (c) feature learned by BERT classifier,
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(a) Pre-Train:
Initialization

(b) Model 1st
epoch: acc=0.32

(c) Sup. classifier:
acc=0.89

(d) B-ASAL:
acc=0.94

Fig. 3: MNL-Match Feature Visualizaton

(a) No En. Regularization
(b) Conditional En. Regularization

Fig. 4: MNL-mismatch: samples generation from G

and (d) feature learned by B-ASAL. It can be seen that B-ASAL generates more
discriminative features.
Sample Generation We study the Generator capability and distribution cov-
erage of generated samples. We take MNL-mismatch data (5 classes total) as an
example and use 5% annotated data to train our model. The sample generation
is compared by having conditional entropy regularization on the generator with
not having an entropy regularizer. Figure 4(a) shows the histogram of generated
classes without conditional entropy regularize, and Figure 4(b) shows the his-
togram of generated classes by imposing conditional entropy regularizer. These
outputs illustrate that the conditional entropy regularizer helped the generator
to generate effective samples to represent true data distribution.

5 Conclusions and Future Work

In this paper, we proposed a BERT encoder-based semi-supervised active learn-
ing algorithm, B-ASAL, which guides the fine-tuning of BERT to better fit the
training data, creates synthetic data to address data insufficiency problems, and
incorporates minimax entropy to differentiate the distribution of labeled data
from that of unlabeled data. We introduced a hybrid sampling strategy that
selects samples that are most diverse and have high uncertainty from class as-
signments learned by the multi-class classifier. Our experiments demonstrated
significant improvements over the existing state-of-the-art methods. In future,
we plan to extend this research to more NLP applications such as question-
answering and recommendation systems.
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