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Abstract

Gradient-based edge detection is a straightforward method
to identify the edge points in the original grey-level image.
It is consistent with the intuition that in the human vision
system the edge points always appear where the change of
grey-level is greatest within their neighbourhood. In this
paper, triple-diagonal gradient-based edge detection is
introduced. It is based on the features of Spiral
Architecture and computes the gradients in three diagonal
directions instead of approximating the gradient in one
direction only as the traditional methods do. Essentially, it
improves the accuracy for locating edge points. As a
result, it does not need any supplementary processing to
enhance the edge map.
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1. Introduction

Edge detection is an important aspect of image analysis in
computer vision. It is a data reduction process. Images
contain enormous amounts of data, typically on the order
of hundreds of kilobytes or even megabytes. Often, much
of this information is not necessary for solving a specific
computer imaging problem. Edge detection can eliminate
much unnecessary information while retaining the key
shape information. This simplifies further processing.

Gradient-based edge detection is a straightforward method
to identify the edge points from the original grey-level
image. It is consistent with the intuition that in the human
vision system the edge points always appear where the
change of grey-level is greatest within their
neighbourhood. In this approach, the edge detection
operator computes the relationship between a pixel and its
neighbours. The edge detection operator examines each
pixel neighbourhood, and quantifies the slope and often
the direction (i.e., gradient) as well, of the grey-level
transition. If a pixel's change of grey-level value is similar
to those of pixels in the gradient direction, it may not be
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identified as an edge point. In [1], edge point is defined by
Lindeberg as follows.

Definition 1. A pixel is classified as an edge point if and
only if the amplitude of the gradient of brightness function
at this pixel is a local maximum compared with the
gradient magnitudes at all its neighbouring points in the
gradient direction.

Gradient-based edge detection has been developed from a
concept within continuous domains. Theoretically,
gradient based edge detection on an image should create a
perfect edge map. However, as the image domain for
digital image processing is discrete, it is not always
possible to get the exact gradient value of a pixel. Instead,
we obtain only an approximation of the gradient value.

There are many operators reported [2] for approximation
of gradient values. The quality of edge map detected
depends on the approximation method chosen and the
detection error produced. There are two problems that one
will always face when dealing with edge detection. Firstly,
a detection operator may inaccurately locate the
neighbouring pixels in the gradient direction of a pixel.
When the gradient direction of a pixel does not exactly
point to (the centre of) any of the neighbouring pixels, the
pixel in the gradient direction is approximated by the
neighbouring pixel that is closest to the gradient direction.
It is possible that some edge points are not found while
some non-edge points are detected and included in the
edge map. It is also possible that some edge points
detected are a few pixels away from their real locations.
The second problem is with computation error of an edge
detection algorithm that produces unexpected gaps
between edge points. Although the well-known Laplacian
of Gaussian (LOG) [3] method guarantees the closed edge
boundaries, it introduces many false edge points and
retains many insignificant edge points. In addition, the
LOG method suffers from the computational complexity
as it needs the computation of second-order derivatives.

In order to improve the quality of edge map, a triple-
diagonal gradient-based edge detection scheme will be
developed in this paper. This new method is based on the

244



features of Spiral Architecture [4], a developing theory in
image processing. We will compute the gradient
components of each pixel in three diagonal directions
instead of approximating the gradient in a single direction
as computed by the traditional methods.

Figure I: Distribution of Cones on the Retina

(a) Rectangular (b) Spiral
Architecture Architecture

Figure 2: Unit of vision in the two image
architectures

One will find that the accuracy for locating edge points
will be greatly improved so that it will no longer need any
supplementary processing to further enhance the edge
map.

The organization of this paper is as follows. Spiral
Architecture is introduced in Section 2. This is followed
by the triple-diagonal gradient-based edge detection in
Section 3. We show the experimental results using the
new edge detection methods in Section 4. We conclude in
Section 5.

2. Spiral Architecture

Spiral Architecture is inspired from anatomical
considerations of the primate's vision [5]. From studies of
the geometry of the cones of a primate's retina (See Figure
1), it has been concluded that the cones' distribution has
inherent organization and is featured by its potential
powerful computation abilities. In Spiral Architecture, an
image is represented as a collection of hexagonal pixels. A
hexagonal pixel relates to the image as the cones relate to
the primate's retina. Spiral Architecture consists of
organizational uhtis' 'of vision. Each unit is a set of seven
hexagonal pixels in contrast with the traditional 3 x 3

vision unit in the rectangular image architecture as shown
in Figure 2.

In Spiral Architecture, each pixel has only six
neighbouring pixels that are an equal distance away. They
together form a vision unit. Each pixel is identified by a
number, base 7, called a spiral address. The numbered (or
addressed) hexagons form the cluster of size 7°, where n is
a positive integer. These hexagons starting from address 0
towards address 7° tile the plane in a recursive modular
manner along a spiral-like curve. As an example, a cluster
with size of 72 and the corresponding spiral addresses are
shown in Figure 3.

Figure 3: Cluster of size 49
including spiral addresses

6

4
3 5o
2

Figure 4: Example of mimic Spiral Architecture
with the corresponding spiral addresses

Spiral Architecture possesses some geometric and
algebraic properties, which are very useful and can be
interpreted in terms of a Euclidean ring (Refer to [6] for
details of this mathematical object). Two algebraic
operations have been defined on Spiral Architecture based
on spiral addresses. They are Spiral Addition and Spiral
Multiplication. These two operations correspond to two
transformations on Spiral Architecture, which are
translation and rotation with a scaling.

In order to make research results based on Spiral
Architecture practically workable with the existing image
capture devices, a mimic Spiral Architecture [7] has been
widely used. In the mimic Spiral Architecture, a set of
four square pixels that are adjacent to each other and form
a bigger square like those in Figure 4 is used to mimic one
hexagonal pixel (See Figure 4). In this paper, we once
again use the mimic Spiral Architecture.
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3. Edge Detection on Spiral Architecture

In this section, we present a novel gradient-based edge
detection method on Spiral Architecture. In this method,
three gradient components on three diagonal directions are
computed at each point (pixel).

Let L,be the gradient of the brightness function L at a

given reference point and It, I (i E {I, 2, 3} ) be the three

gradient components in the three diagonal directions
respectively for a given reference point as shown in Figure
5. We call the three gradient components triple-diagonal
gradient components. In the real Spiral Architecture, the
distance between the reference point and any of its
neighbouring point is the same. Without loss of generality,
we assume that the distance is 1. It is then easy to see that
(refer to [8])

L, = 1£,1(0, 1) + It.-I (.J} / 2,112) + It.1(.J} / 2, -1 / 2)

(1)
where the three vectors correspond to the three diagonal
directions.

:IE,\
Reference
Point

Diagonal
Direction

Figure 5: Triple-diagonal gradient
components on Spiral Architecture

Each gradient component is dependent on the grey values
at two neighbouring points of the reference point in the
corresponding diagonal direction. It can be computed
using the following equation (refer to [8]),

IL.I=ILi.\-L,.,1/2 (2)
where L,.I and L,., i E {I, 2, 3} are the grey values of two

neighbouring points of the reference point in the lh
diagonal direction. As can be seen in Equation 2, we use
the difference of two grey values at two neighbouring
pixels of a reference point to approximate the magnitude
of the first-order directional derivative in a diagonal
direction at the reference point.

Unlike the work done in [8] where a neural network was
used for edge detection, our proposed edge detection
scheme in this paper is based on these three gradient
components. These three gradient components are
distributed onto exact three diagonal directions as shown
in Figure 5. This prevents edge detection from being
affected by the errors due to the gradient direction offset.

For a given reference point, there are three possible cases
when comparing gradient components at this reference
point with the gradient components at all its six
neighbouring points.

1. Any of three gradient components in its diagonal
direction is larger than the corresponding gradient
component for each of the two neighbouring pixels in
this direction.

In other words, as shown in Figure 5, the gradient
component for the central pixel in the diagonal
direction (0,1) is larger than the gradient components
for the two neighbouring pixels of the reference point
in the diagonal direction (0, I). These two
neighbouring pixels are the one above the central
pixel and the other one below the central pixel.

The same argument applies to the other two diagonal
directions.

2. At least two gradient components in two diagonal
directions are both larger than their corresponding
gradient components for all four neighbouring points
of the reference point in the two diagonal directions.

3. At least one gradient component in one direction is
larger than its corresponding gradient components for
the neighbouring points of the reference point in that
direction.

Definition 2. A pixel is classified as an edge point of type
1 if and only if case 1 above is met when the given pixel
acts as a reference point.

Defmition 3. A pixel is classified as an edge point of type
2 if and only if case 2 above is met when the given pixel
acts as a reference point.

Definition 4. A pixel is classified as an edge point of type
3 if and only if case 3 above is met when the given pixel
acts as a reference point.

It is easy to see that Case 3 implies Case 2, and Case 2
implies Case I. In another word, an edge point of type I is
an edge point of type 2, and an edge point of type 2 is an
edge point of type 3.

Figure 6 shows three binary edge maps of a toy duck
(Figure 7a). Figure 6a is the edge map consisting of all
edge points of type I, Figure 6b is the edge map
consisting of all edge points of type 2, and Figure 6c is the
edge map consisting of all edge points of type 3. The
flowing theorems are obvious.

Theorem 1. Almost any edge point of type 1 is an edge
point as defined in Definition 1.
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(a) Type 1 (b) Type 2
Figure 6: Edge maps of three types

(c) Type 3

Proof. Without loss of generality, let us test the pixel
with spiral address 0 as shown in Figure 3. Note that the
gradient magnitude at each pixel is the absolute value of
L, as defined in Equation 1. Hence, by the definition of
type 1 edge point, if the pixel with spiral address 0 is an
edge point of type l, then 1£..1 value at this pixel is lager
than the 1£..1 values in the pixels with spiral addresses 1

and 4 as shown in Figure 3. Similarly, I~I value at the

central pixel is lager than the IL: 1 values in the pixels

with spiral addresses 2 and 5, and IL~Ivalue at this pixel
is lager than the It, I values in the pixels with spiral

addresses 3 and 6. Let denote the \E,Ivalues at spiral

addresses land 4 by II:; Iand It.; I respectively.

Similarly, we denote the I~I values at spiral addresses 2
and 5 by IL~Iand I~I respectively, and denote the

It, Ivalues at spiral addresses 3 and 6 by It; Iand It; 1
respectively.

Without loss of generality, let assume that the gradient L,

is closest to (0, l) among the three diagonal directions,
then the gradient magnitude IL,I is close to \E,I.
Furthermore, at the gradient direction, the two
neighbouring pixels of the central pixel are the pixels with
spiral addresses land 4. Note that the gradient
magnitudes at these two pixels are also close to II:;I and
IE;I· Since IE,I > \E; Iand IE,\ > IE; I, the gradient
magnitude at the central pixel assumes a local maximum
at the gradient direction. 0

Theorem 2. Almost any edge point as defined in
Definition 1 is an edge point a/type 3.

Proof. If the central pixel with spiral address 0 in Figure 3
is not an edge point of type 3, then the following three
cases are all met.

1. Either 1£..1 ::; IE;lor 1£..1 ::; IE;I·
2. Either I~I ::;I~I or I~I ::;I~I·
3. Either I~I ::;It; Ior I~I ::;1t;1·

Hence, similar to the proof of Theorem l, we can claim
that the central pixel is not a edge point as defined in
Definition 1. 0

Based on Theorems I & 2, we can claim that an edge map
of type 1 (Figure 6a) contains minimum number of edge
points, and the edge map of type 3 (Figure 6c) contains
maximum edge points.

The conditions for a type 1 edge map are too strict to
cover all the edge points. There are too many edge points
filtered and only a small amount of edge points added to
the edge map. On the other hand, the edge map of type 3
may contain some points that are less significant or are
false (and should not be classified as) edge points.

In our work in this paper, a method to generate contours
from edge points called linking edge [9] is adopted. It
works together with edge maps of all three types. Our
edge detection scheme tends to find all significant edge
points while removing as many false points as possible.
The procedure for linking edge is presented as follows.

1. We start from the edge map of type 1.We look at
all neighbouring points of any edge point of type
1.

2. If any neighbouring point of a type 1 edge point
is found in the edge map of type 2, it is added to
the edge map obtained in Step I above. This
rocess continues until no more neighbouring
points of any point in the most updated edge map
can be found in the edge map of type 2, and
hence can be added to the existing edge map.

3. A similar process to Step 2 above is performed.
This time, we add the edge points of type 3 to the
edge map obtained in Step 2. If any neighbouring
point of an edge point in the ex~ting edge map is
found in the edge map of type 3, it is added to the
existing edge map. This process continues until
no more neighbouring points of any point in the
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(a) Duck (Original Image) (b) Duck (Edge Map)

Figure 7: Triple-diagonal gradient-based edge detection

(c) Lena (Original Image) (d) Lena (Edge Map)

most updated edge map can be found in the edge map
of type 3.

Shaving edge is the step immediate after the linking edge
procedure described above. This step further improves the
quality of edge map. It consists of two operations:
eliminating single points and thinning edges. There may
still be some disassociated points that are not connected to
any other edge points after linking edge procedure. They
can be regarded as noise points and hence are removed
immediately from the edge map obtained from Step 3
above. In addition, thinning edge narrows any edge
segment (a set of contiguous edge points) to one pixel
wide. Thinning edge is important because object shape
analysis [9] benefits from single-pixel-wide object
boundaries.

4. Experimental Results

In our experiment, the proposed algorithm is tested using
two representative images, toy duck and Lena, of which
both are 256 grey level images.

We first mapped these two images to Spiral Architecture
as shown in Figure 7a and Figure 7c. They were then
blurred using a Gaussian Multi-scale process [7] to
suppress noise and insignificant edge points. This was
followed by the triple-diagonal gradient-based edge
detection process including a shaving edge step.

Experimental results show that our new edge detection
algorithm has successfully extracted high-quality object
edges as shown in Figure 7b and Figure 7d.

5. Conclusion

In this paper, a triple-diagonal gradient-based edge
detection scheme has been presented. This novel
algorithm is based on the features of Spiral Architecture.
It also required the properties of the hexagonal (mimic)
array [6]. The gradient components in three diagonal
directions were used to define three types of edge points.
Based on the edge maps of three types and the techniques
used for suppressing image noise, linking edge points,

eliminating edge points and thinning edge segments, high-
quality single-pixel-wide object edge maps have been
obtained.

Our new edge detection scheme has greatly improved the
accuracy for locating edge points. It does not need any
supplementary processing to enhance the edge map.

Furthermore, our new method can eliminate most of the
noise points and other trivial edge points while retaining
key points as well as fine shape information of objects in
an image. For example, the folds of feathers on the tail of
the duck can still be seen clearly in the edge map (Figure
7b).

If one wants to further eliminate the false edge points
caused by noise or computation errors, a threshold on
gradient magnitude can be applied. Any edge points
whose gradient amplitudes are below a threshold such as
10% of maximum gradient magnitude can be eliminated
or removed from the edge map. The threshold can be
estimated using different methods including histogram
analysis or other statistical methods.
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