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Abstract 

Landslide susceptibility prediction can be considered a crucial step in landslide risk assessment. This prediction 

helps in planning the land use properly. The primary aim of the study is to investigate different machine learning 

methods and develop anatomy to train and validate the landslide susceptibility prediction models with the help of 

various statistical techniques. The Kullu-Rohtang pass transport corridor has been selected as the study area. 

Initially, a landslide inventory was prepared using different sources and nine landslide triggering features were 

used for further study. All landslide locations in the study area were arbitrarily divided into a ratio of 67:33 to 

train and test various landslide susceptibility prediction models. The best-triggering features were chosen with the 

help of the information gain ratio (IGR) defining the predictive capability of different triggering features. 

Afterwards, five landslide susceptibility prediction models were constructed using a decision tree, k-nearest 

neighbour (KNN), Gaussian naïve Bayes, support vector machine (SVM) and multilayer perceptron (MLP). The 

comparison and validation study of different resulting models was done by applying the receiver operating 

characteristic (ROC) curve, the kappa index and other statistical methods. Results show that the different models 

have the outstanding predictive capability with the decision tree model (100 %), the Gaussian naïve Bayes model 

(100 %), the SVM model (100%), and the MLP model (100 %) and the KNN model (99.9 %). The result indicates 

statistical differences among various models. The validation results demonstrate the perfect agreement between 

the expected and predicted landslides along the transport corridor. 

Keywords: Landslide Susceptibility Prediction, Machine Learning, Statistical Measures, Landslide Inventory, 

Transport Corridor  
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1. Introduction 

Landslides are among the most severe natural hazards that possess a menace to human lives and the economy of 

the prone regions. The Kullu-Rohtang Pass transport corridor is highly exposed to landslides and the vulnerability 

has been further increased due to road construction activities and deforestation. The increasing demand for land 

and the rapid urbanization has further escalated the threats of landslide occurrence (Saha et al. 2005; Achour et 

al. 2017). The key to lessen the landslides is to predict the frequency and the locations accurately. Identifying the 

site and type of landslide is generally conducted through landslide susceptibility analysis considering different 

meteorological and geo-environmental factors. There are several different procedures for predicting landslide 

susceptibility. In this era of computers, machine learning techniques have emerged as a boon for solving various 

scientific as well as engineering problems. These machine learning techniques are data-driven and are followed 

to predict landslide susceptibility accurately and successfully (Brenning 2005; Marrapu and Jakka 2013). These 

predictions help to take adequate actions to mitigate the landslide hazards and also provide a base for the 

administration to take appropriate steps for the development of the area (Lian et al. 2013; Pourghasemi et al. 2013; 

Bai et al. 2014; Trigila et al. 2015; Rokach 2016; Wang et al. 2016). Therefore, landslide susceptibility prediction 

is crucial for better land use planning and raising the economy of the region.   

The landslide susceptibility prediction has been done using different approaches including heuristic, 

statistical and different machine learning methods (Lee 2005; Bui et al. 2011; Pradhan 2013; Felicísimo et al. 

2013; Costanzo et al. 2014; Achour et al. 2018). Various statistical approaches applied for landslide susceptibility 

prediction are comprised of multivariate regression, information value techniques, linear regression, and 

discriminant analysis (Lee 2005; Guzzetti et al. 2006; Budimir et al. 2015; Chen et al. 2017b; Arabameri et al. 

2019). The evolution of machine learning has resulted in different models with upgraded outcomes. These models 

include decision tree (Nefeslioglu et al. 2010; Pradhan 2013; Maheshwar and Kumar 2019), support vector 

machine (SVM) (Brenning 2005; Yao et al. 2008; Yilmaz 2010; Yeon et al. 2010; Pradhan 2013; Pourghasemi et 

al. 2013; Hong et al. 2015; Chen et al. 2017a; Kalantar et al. 2018; Pourghasemi and Rahmati 2018), naïve Bayes 

(Pham et al. 2016, 2017; Goyal and Maheshwar 2019), multilayer perceptron models and entropy-based models 

(Zare et al. 2013; Pham et al. 2017; Esteves et al. 2019). These machine learning models have been used in various 

dimensions, for example, mapping flood-prone regions, gully erosion prediction and ecological modelling. These 

machine learning models have been used by many researchers to find the best model for landslide susceptibility 

prediction (Carrara and Pike 2008). Some bio-inspired algorithms like particle swarm optimization (PSO) and 
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genetic algorithm have also been used (Maheshwar et al. 2015; Jahed Armaghani et al. 2017; Chen et al. 2017b; 

Mohamad et al. 2018). 

The primary objective of this study is to learn about different landslide triggering features to predict the 

landslide susceptibility in a region with different machine learning models. The transport corridor faces huge 

losses due to landslides occurring during the monsoon season leading to the requirement of appropriate landslide 

susceptibility prediction to take prevention measures. It has been observed that many times the nearby regions 

along the transport corridor face a complete cut-off because of the massive landslide occurrences. In this study, 

five machine learning models such as the decision tree, the k-nearest neighbour (KNN), the naïve Bayes, the 

support vector machine (SVM) and the multilayer perceptron (MLP) have been used and a comparative study of 

their results has been done to find out the best suitable model for landslide susceptibility prediction in the study 

area. 

The entire research work is compiled as follows: After a brief introduction in section 1, section 2 discusses 

the inventory preparation and the dataset with triggering features. It summarizes all the resources of the dataset 

and landslide inventory with significant triggering features. Section 3 enlightens the various methodologies along 

with statistical measures used in the study. Different machine learning models and accuracy assessment measures 

have been discussed in this section. Section 4 explores the results by evaluating each machine learning model on 

training and validating the dataset separately using different quality parameters. Different tests conducted to 

analyze the statistical differences among the various machine learning models are discussed in this section. The 

area under the receiver operating characteristic (AUROC) curve for different models is examined to evaluate their 

performances. Thereafter, a brief discussion and conclusion are given in section 5 followed by references. 

2. Study Area and database 

2.1 Study Area 

The study area selected for carrying out research is along the Kullu-Rohtang Pass transport corridor with a length 

of 90 km. The latitudinal extent of the study area is from 32° 0’ 0’’ N to 32° 20’ 0’’ N and the longitudinal is from 

77° 5’0’’E to 77° 15’0’’E (Fig. 1). To perform the landslide susceptibility prediction, a buffer of one kilometre 

on both sides of the corridor is considered. The study area lies in the state of Himachal Pradesh of India in the 

Himalayas ranges with elevations ranging between 1,279 m and 3,979 m from mean sea level (MSL). The average 

rainfall observed in the study area is about 1,363 mm. Most of the landslides primarily occurred from July to 

September because of heavy rainfall during these months. The temperature range lies from 4oC to 25oC.  
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The study area is comprised of various types of soil such as red loamy soil, brown hill soil and mountain 

meadow soil. The river Beas flows along the transport corridor. Different engineering activities like urbanization, 

road construction etc. along with deforestation have scaled up the landslide frequencies. The landslide incidences 

have led to escapable effects on transportation because many times the transportation facilities completely 

disconnect the region and impact the region’s economy adversely. 

2.2 Database 

To carry out the study, ASTER DEM with 30m spatial resolution was used to perform topographic analysis. The 

survey of India (SoI) topographic sheet no. 52 H/3 and 52 H/4 on the scale of 1:50, 000 were used to digitize the 

benchmarks. ASTER DEM, USGS was used to analyse the topographic and geographic features such as 

elevation, slope, distance to drainage and distance to the road. Google Earth and Landsat 8 OLI, USGS was used 

to prepare land use and land cover (LULC) data. Geological quadrangle maps and GSI were used to prepare 

Geological and geomorphological data while ground water prospects maps by NRSA were used for preparing 

lineament density data. Landslide occurrence locations, their types, frequency and occurrence year were 

cumulated from BRO, Manali and PWD, and Kullu (Table 1). 

Landslide inventory encompasses important data for predicting landslide occurrence (Pandey et al. 

2022). The landslide inventory has been constructed using Geographic Information System (GIS) software 

(ArcGIS 10.2.2) with the help of satellite imageries and GPS waypoints. An overarching field inspection of 54 

landslides eventuated along the transport corridor has been done using the Global Position System (GPS) and 

Google earth images. The spatial-temporal map has been prepared with the help of landslide data cumulated 

from BRO, Manali and PWD, Kullu. The major types of landslides that occurred along the transport corridor are 

rock falls and debris slides (Fig. 2). The landslide types are as per the records of BRO, Manali and PWD, Kullu. 

The largest and the smallest landslides mapped along the transport corridor are 4000 m3 and 120 m3 respectively.   

For predicting landslides, the relation between geo-environmental factors and historical landslide events 

is carried out. To perform landslide susceptibility prediction, a set of nine triggering features (slope, elevation, 

land use and land cover, geology & geomorphology, lineament density, distance to drainage, distance to road, 

aspect and relative relief) has been taken into consideration. Continuous factors (slope, elevation, lineament 

density and so on) have been discretized using their normalized values which are calculated by using Analytical 

Hierarchical Process (AHP) model (Saaty 1990). Landslide triggering features are categorized into different 

classes. A detailed description of all triggering features is presented in Table 2. 
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2.3 Methodology 

2.3.1. Training and testing dataset preparation 

Landslide prediction can be considered as a binary classification problem where each landslide index is classified 

into landslide class and non-landslide class. Landslide locations are represented with a value of “1” and the non-

landslide locations with a value of “0”. Based on original triggering features, the dataset is pre-processed first. All 

the features are normalized using min-max normalization with Analytical Hierarchy Process (AHP). For landslide 

prediction, the landslide locations datasets are grouped into training and validating datasets. The training dataset 

is used for training the different machine learning models while the validating dataset is used for testing the 

models’ performance and accuracy. All the landslide locations are divided into these two subsets randomly with 

a ratio of 67:33. The 36 landslide locations are used to train the models while 18 landslide locations are used to 

test the models’ performance. The same amount of non-landslide locations are randomly sampled from the study 

area and added to the training and test datasets. In the next step, the nine landslide triggering features are analysed 

to train and test datasets. 

2.3.2. Landslide triggering features analysis 

Multicollinearity refers to the situation when there is a dependency among the triggering features in the dataset 

owing to a high correlation that results in errors during analysis (Bui et al. 2011). To analyse multicollinearity, 

different methods have been suggested such as the conditional index, the variance decomposition proportions, 

Pearson’s correlation coefficients and variance inflation factors (VIF) and tolerances. The VIF and tolerances are 

the most widely used method to detect the multicollinearity among the triggering features while Pearson’s 

correlation coefficients are also commonly used in different fields (O’brien 2007). 

To spot the multicollinearity, the standard errors’ variation of the triggering features are measured using 

VIF and tolerances. The higher the value of VIF the higher the multicollinearity. A VIF of a value of 10 or above 

and tolerance with a value less than 0.1 indicate the multicollinearity problem present in the dataset. Pearson’s 

correlation coefficient method is used to assess the correlation coefficient of two landslide triggering features. 

Pearson’s correlation coefficient can be stated as the covariance of two triggering features divided by the product 

of their standard deviations. A value of Pearson’s correlation coefficient higher than 0.7 shows high collinearity 

among the features.  

All landslide triggering features present in the initial dataset may not contribute equally to the prediction 

of a landslide. Some features may act as noise and reduce the landslide predictive ability of the machine learning 

model. Consequently, the predictive ability of landslide triggering features should be analysed and the features 
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with low predictiveness should be eliminated from the dataset. This will help in attaining more accuracy of the 

machine learning model. 

Different methods have been used to quantify the predictive ability of features, for example, Information 

Gain, Relief, Fuzzy-Rough Set and Information Gain Ratio (IGR). Information gain ratio is a very popular and 

commonly used method for selecting triggering features (Quinlan 1996; Tien Bui et al. 2016). Attributes having 

a higher value of the IGR have high predictive ability. 

2.3.3. Machine learning models for predictions 

To predict the landslides in the selected region, five machine learning models, Decision Tree (Bhardwaj and Pal 

2012; Bertsimas and Dunn 2017; Dinov 2018), K-Nearest Neighbour (KNN) (Bröcker and Smith 2007; 

Pedregosa et al. 2011), Gaussian Naïve Bayes (Tien Bui et al. 2012), Support Vector Machine (SVM) (Tien Bui 

et al. 2012) and Multilayer Perceptron (MLP) (Kavzoglu and Mather 2003) are used. The research has been 

carried out using Python language with IDLE Python 3.8 version and ArcGIS 10. 

2.3.4. Accuracy analysis and comparison 

2.3.4.1. Area under receiver operating characteristics (AUROC) curve and Kappa index 

The receiver operating characteristics (ROC) curve is used to assess the performance of machine learning 

models.  ROC curve represents the graph between Sensitivity and Specificity with different thresholds. To 

perform the comparative study, the AUROC value can be used to compare the overall performance of machine 

learning models. AUROC represents the probability with which a model correctly classifies a randomly chosen 

landslide location as a landslide. An AUROC with a value of 1 indicates that the model has perfectly classified 

all landslide and non-landslide locations. 

Kappa index can be used to measure the reliability of a machine learning model (Cohen 1960; Saito et 

al. 2009). Kappa index indicates the machine learning model’s ability to classify the landslide locations and is 

evaluated as the proportion of observed agreement beyond that expected by chance (Guzzetti et al. 2006). The 

kappa index value shows an agreement with 0.8-1.0 meaning the perfect agreement, 0.6-0.8 meaning substantial, 

0.4-0.6 meaning moderate, 0.2-0.4 means fair, 0.2-0.0 means slight and ≤ 0.0 means the poor agreement is there. 

2.3.4.2. Accuracy measure and different quality parameters 

To access the performance of the machine learning model, five statistical measures have been used namely 

Positive predicted value, Negative predicted value, Sensitivity, Specificity and Accuracy. The Positive predicted 

value shows the probability of the locations correctly classified as landslide locations and the Negative predicted 

value represents the probability of the locations correctly classified as non-landslide locations. Sensitivity 
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represents the proportion of landslide locations that are correctly classified as landslide locations. Specificity 

represents the proportion of non-landslide locations that are correctly classified as non-landslide locations. 

Accuracy measures the proportion of landslide and non-landslide locations that the machine learning model has 

correctly classified.  

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 (%) = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

   (1) 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 (%) = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

   (2) 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

      (3) 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

      (4) 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹

     (5) 

Where, TP (True positive) represents the number of landslide locations that are correctly classified, TN (True 

negative) represents the number of non-landslide locations that are correctly classified, FN (False negative) 

represents the number of landslide locations that are classified as non-landslide locations and FP (False positive) 

represents the number of non-landslide locations that are classified as landslide locations. 

2.3.4.3. Statistical evaluation measures 

Different parametric and non-parametric statistical methods can be implemented to check if a machine learning 

model can be counted better than any other model or not. The Friedman test is a non-parametric method that can 

be used without having prior knowledge of the data and is used in this study. Friedman test can perform multiple 

comparisons at once to detect the significant differences among the models (Friedman 1937). The Friedman test 

is based on the null hypothesis that states that there is no significant difference in the performances of machine 

learning models. The p-value returned by the Friedman test represents the probability of null hypothesis rejection.  

The Wilcoxon signed-rank test is also used to check the statistical significance of the difference between 

the two models. This model is also based on the null hypothesis stating that there is no statistical difference 

between the two models (Beasley and Zumbo 2003). A p-value less than 0.05 represent a significant difference 

between the models and greater than 0.05 means there is no significant difference between the models. 

3. Results and discussion 

3.1. Landslide triggering features analysis  
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In the presented research, multicollinearity among the landslide triggering features is determined by using VIF 

values along with tolerance (Table 3). Table 4 shows the Pearson’s correlation coefficient of different features.   

It can be inferred from the result that the highest VIF value is 1.592 and the lowest tolerance is 0.628. For 

multicollinearity among the nine triggering features, the VIF value must be greater than 10 and tolerance must be 

less than 0.1 Geology & geomorphology and lineament density (0.69) showed the highest Pearson’s correlation 

value. Nevertheless, this value is less than 0.7 which represents high collinearity (Table 4). 

 

Following this, the step is to choose the best triggering features. In this research, the IGR value and its standard 

deviation for nine triggering features are calculated as shown in table 5. It could be noticed that elevation 

(0.603995) has the highest IGR value. It is succeeded by distance to drainage (0.135158), lineament density 

(0.094374), distance to road (0.073846), LULC (0.046241), slope (0.031531), geology & geomorphology 

(0.024267), aspect (0.001268) and relative relief (0.001179). It can be observed that the IGR value of aspect and 

relative relief is too low to contribute to the prediction of landslide events. Therefore, these two features can be 

treated as noise and are removed for further analysis. 

3.2. Machine learning models results and analysis 

After selecting the best-triggering features, five machine learning models Decision Tree, KNN, Gaussian Naïve 

bays, SVM and MLP are trained on the training dataset (Fig. 3). Tables 6 and 7 summarize the results. It can be 

inferred that the performance of the Decision Tree is highest in respect of classification accuracy at 100 %. This 

is succeeded by the MLP model (95.59 %), the SVM model (94.12 %), the KNN model (91.18 %) and the 

Gaussian Naïve Bays model (86.76 %). 

The Decision Tree has a 100 % positive predicted value indicating that the model has correctly predicted the 

landslide in 100 % of cases. The positive predicted value for the SVM model 94.29 % is followed by the MLP 

model (91.89 %), the KNN model (91.18 %) and the Gaussian Naïve Bayes model (87.88 %). The negative 

predicted value is highest for the Decision Tree model (100 %) and the MLP model (100 %) shows that the 

probability of correctly classifying the non-landslide locations is 100 %.  The SVM model has a negative predicted 

value (96.96 %) followed by the KNN model (91.18 %) and the Gaussian Naïve Bayes model (85.71 %). 

The sensitivity is highest for the Decision Tree model (100 %) and the MLP model indicating that 100 

% of the landslide locations are correctly classified under the landslide class. It is followed by the SVM model 

(94.18 %), the KNN model (91.18 %) and the Gaussian Naïve Bayes model (88.24 %). The Decision Tree model 

has the highest specificity (100 %) showing that 100 % of the non-landslide locations are correctly classified 
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under the non-landslide class. This is accompanied by the SVM model (93.94 %), the KNN model (91.18 %) and 

the MLP model (91.18 %) and the Gaussian Naïve Bayes model (88.24 %). 

The Decision Tree model has an outstanding AUROC value (1.000) indicating that the model has 

excellent prediction capability. The AUROC values for the KNN model (0.966), the Gaussian Naïve Bayes model 

(0.933), the SVM model (0.977) and the MLP model (0.894) show a very good predictive capability. The Kappa 

index values (Table 7) for the Decision Tree model (1.00), the KNN model (0.824), the SVM model (0.912) and 

the MLP model (0.912) show a perfect agreement between actual and predicted landslides. The Kappa index for 

the Gaussian Naïve Bayes model (0.735) shows a substantial agreement between the actual and predicted 

landslides. 

3.3. Model validation and comparison 

The performance and prediction probability of landslide models is evaluated using the test dataset (Fig. 4), 

AUROC value, Kappa index value and various statistical measures. The outcomes have been summarized in 

Tables 8 and 9. It can be visualised that outstanding performance with AUROC=1.000 except for the KNN model 

(AUROC =0.999) has been achieved by all models (Fig. 5). The Kappa index value for all models is 1.0 except 

for the KNN model (0.95) shows the perfect agreement between the expected and predicted landslides (Table 9). 

All models have outstanding predictive capability and correctly classify the landslides data into landslide class 

and non-landslide class (Table 8).  

Sensitivity and specificity are also 100 % for the Decision Tree model, the Gaussian Naïve Bayes model, 

the SVM model and the MLP model. The KNN model has 100 % sensitivity and 95 % specificity. This indicates 

that all models have good capability to predict landslide locations as landslide class and all non-landslide locations 

as a non-landslide class. 

Friedman's test at a 5 % significant level is used to evaluate whether landslide models are significantly 

different from each other or not. The p-value achieved is 0.00721 which is less than 0.05 and signifies that the 

null hypothesis can be rejected. The null hypothesis states that no significant difference between the two models 

at the significant level of α=0.05. The Friedman test merely signifies the performance distinction of all landslide 

susceptibility models; it is unable to compare any two models. 

To perform this, Wilcoxon signed-rank test is used to evaluate pairwise statistical differences between 

landslide models with a significant level α at 0.05. The results are summarized in Table 10. It can be seen that the 

Decision Tree model has a statistical difference from the Gaussian Naïve Bayes model and the MLP model.  The 
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MLP model is also statistically different from the KNN model, the Gaussian Naïve Bayes model and the SVM 

model. 

 

4. Conclusions 

In this paper, a comparative study of five machine learning models, decision tree, KNN, naïve Bayes, SVM and 

MLP for landslide susceptibility prediction is carried out. The Kullu-Rohtang Pass transport corridor in Himachal 

Pradesh, India has been selected as the study area. The landslide inventory has been prepared from different 

sources including landslide data collected from BRO, Manali and PWD, Kullu. A total of 54 landslide locations 

have been taken into consideration. These locations are described by nine triggering features namely; aspect, 

relative relief, slope, elevation, LULC, lineament density, geology and geomorphology, distance to road and 

distance to drainage. Information gain measure is used to identify the irrelevant features and thus eliminated them 

from the dataset. Therefore, aspect and relative relief do not take part in machine learning model training and 

validating purposes. Thereafter, the landslide samples are divided into training and test datasets in a ratio of 67:33. 

The same amounts of randomly selected non-landslide locations are added to the datasets. All five machine 

learning models are trained on the training data with the decision tree model (100 %), the MLP model (95.59 %), 

the SVM model (94.12 %), the KNN model (91.18 %) and the Gaussian Naïve Bays model (86.76 %) accuracy. 

The machine learning models’ performance was then validated on the test dataset. All machine learning models 

have shown outstanding results with the decision tree (100%), the MLP model (100 %), the SVM model (100%), 

the KNN model (97.5 %) and the Gaussian Naïve Bays model (100%) accuracy. The AUROC curve values for 

the decision tree model (1.000), the KNN model (0.999), the naïve Bayes model (1.000), the SVM model (1.000) 

and the MLP model (1.000) indicate that all models have outstanding predictive capabilities. Different statistical 

measures are used to evaluate the significance of a machine learning model. The Friedman test and Wilcoxon 

signed-rank test analysis have shown that the machine learning models have significant differences. It must be 

noted that the performance of machine learning models is dependent on the data and the results may vary for 

different cases. 

The false positive and false negative section of the confusion matrix shows the errors in landslide 

susceptibility prediction. The false positive results are sometimes acceptable though they may restrict the land use 

in the area by misclassifying the non-landslide locations as the locations of the landslides. The false negative 

section is the area to be studied carefully as if landslide locations are falsely classified as non-landslide locations 

then it may result in catastrophic outcomes. From table 8, it is clear that all models have both false positive and 
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false negative values as 0. Thus, models are well trained to classify the landslide and non-landslide locations 

correctly except for the KNN model with a false positive value of to 1which is not a serious issue of concern and 

is affecting the economy faintly. 
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Table 1 Dataset types and their sources. USGS (United States Geological Survey), BRO (Border Road 
Organization), PWD (Public Work Department), GSI (Geological Survey of India), NDMA (National Disastrous 
Management Authority), NRSA (National Remote Sensing Agency) 
 

Data Type Data Base Resolution 
and Scale  

Data Derivative 

Topographic map Survey of India (SoI) RF 1: 50, 000 The boundary of the study area, 
transport route 

Imagery data Google Earth, Landsat 8 30 meters Land use and land cover 

ASTER DEM USGS 30 meters Slope, distance to Road, distance 
to Drainage, Elevation  

Landslide data BRO. Manali 
PWD, Kullu and NDMA govt. 
reports 

 Landslide locations, frequency, 
types of landslides, year of 
occurrence, road damage and 
cost  

Ancillary data 

Geological Quadrangle Map, 
GSI 

1:250,000 Geology and Geomorphology 

GSI and Ground Water Prospects 
Map by NRSA 

1:250,000 and 
1:50,000 

Lineament Density 
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Table 2 Landslide triggering features 
 

S. No Landslide triggering factors Class 

1 Slope (degree) (1) very gentle (0-15o); (2) gentle (15o -30o); (3) moderate (30o -45o);(4) steep (45o -60o); (5) very steep (>60o) 

2 Elevation (m) (1) <1000; (2) 1000-2000; (3) 2000-3000; (4) >3000 

3 Land use and land cover (1) dense forest; (2) agriculture; (3) sparse forest; (4) settlement;(5) barren land; (6) snow cover 

4 Geology & geomorphology (1) highly dissected hill and valley; (2) snow cover; (3) schist and quartzite; (4) granitic gneiss and granitoid; (5) fluvglacial 
deposits and quaternary alluvium; (6) quartzite schist; (7) carbonaceous slate and limestone; (8) Biotite schist and kyanite 
gneiss 

5 Lineament density (km/km2) (1) low; (2) medium; (3) high 

6 Distance to road (m) (1) <200; (2) 200-400 (3) >400 

7 
 
8 
 
9 

Distance to drainage (m) 
 
Aspect 
 
Relative Relief (m) 

(1) <200; (2) 100-200; (3) >200 
 
(1) Flat (2) North (3) Northwest (4) East (5) Southeast (6) South (7) Southwest (8) Northeast (9) West 
(1) <100 (2) 101-184 (3) >184 
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Table 3 Multicollinearity analysis of landslide triggering features  
Features VIF Tolerance 

Slope 1.193 0.839 
Elevation 1.592 0.628 
LULC 1.188 0.841 
Distance to road 1.485 0.673 
Distance to drainage 1.260 0.794 
Geology & 

geomorphology 1.543 0.648 
Lineament density 1.340 0.746 
Aspect 1.193 0.839 
Relative Relief 1.592 0.628 

 

 

Table 4 Pearson’s Correlation between landslide triggering features 

 Slope Elevation LULC 
Distance 
to road 

Distance 
to 

drainage 

Geology & 
Geomorphology 

Lineament 
Density 

Aspect 
Relative 
Relief 

Slope 1         

Elevation 0.39 1        

LULC 0.2 0.097 1       

Distance to road -0.24 -0.55 -0.16 1      

Distance to 

drainage 
0.14 0.32 0.25 -0.56 1     

Geology & 

Geomorphology 
0.24 0.68 0.23 -0.55 0.37 1    

Lineament 

Density 
0.3 0.7 -0.046 -0.29 0.18 0.69 1   

Aspect -0.12 0.24 0.037 0.03 -0.11 0.098 0.45 1  

Relative Relief 0.098 0.044 0.167 0.249 -0.012 0.66 -0.020 0.127 1 
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Table 5 IGR values for landslide triggering features 
Features Gain ratio Standard 

Deviation 

Elevation 0.603995 ±0.026 

Distance to drainage 0.135158 ±0.024 

Lineament density 0.094374 ±0.027 

Distance to road 0.073846 ±0.025 

LULC 0.046241 ±0.143 

Slope 0.031531 ±0.124 

Geology & 

geomorphology 

0.024267 ±0.086 

Aspect 0.001268 ±0.073 

Relative Relief 0.001179 ±0.012 

 

 

Table 6 Machine learning models performance 

Parameters 
Decision 

Tree 
KNN 

Gaussian 

Naïve 

Bayes 

SVM MLP 

True positive 34 31 29 33 34 

True negative 34 31 30 32 31 

False positive 0 3 4 2 3 

False negative 0 3 5 1 0 

Positive predicted value 

(%) 
100 91.18 87.88 94.29 91.89 

Negative predicted value 

(%) 
100 91.18 85.71 96.96 100 

Sensitivity 100 91.18 85.29 94.18 100 

Specificity 100 91.18 88.24 93.94 91.18 

Accuracy 100 91.18 86.76 94.12 95.59 
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Table 7 AUROC and Kappa index values of landslide models on the training dataset 
Number Landslide Model AUROC  Kappa 

Index 

1 Decision Tree 1.000  1.0 

2 KNN 0.966  0.824 

3 Gaussian Naïve Bays 0.933  0.735 

4 SVM 0.977  0.912 

5 MLP 0.894  0.912 

 

Table 8 Machine learning models validation 

Parameters 
Decision 

Tree 
KNN 

Gaussian 

Naïve 

Bayes 

SVM MLP 

True positive 20 20 20 20 20 

True negative 20 19 20 20 20 

False positive 0 1 0 0 0 

False negative 0 0 0 0 0 

Positive predicted value 

(%) 
100 95.24 100 100 100 

Negative predicted value 

(%) 
100 100 100 100 100 

Sensitivity 100 100 100 100 100 

Specificity 100 95 100 100 100 

Accuracy 100 97.5 100 100 100 

 

. 

. 
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Table 9 AUROC and Kappa index values of the five landslide models on the test dataset 
Number Landslide Model AUROC  Kappa 

Index 

1 Decision Tree 1.000  1.0 

2 KNN 0.999  0.95 

3 Gaussian Naïve Bays 1.000  1.0 

4 SVM 1.000  1.0 

5 MLP 1.000  1.0 

 

Table 10 Wilcoxon signed-rank test for pairwise comparative study of machine learning models  
Number Pairwise comparison p-value Significance 

1 Decision tree vs. KNN 0.119 No 

2 Decision tree vs. Gaussian Naïve Bays 0.021 Yes 

3 Decision tree vs. SVM 0.000 Yes 

4 Decision Tree vs MLP 0.741 No 

5 KNN vs. Gaussian Naïve Bays 0.131 No 

6 KNN vs. SVM 0.064 No 

7 KNN vs. MLP 0.000 Yes 

8 Gaussian Naïve Bays vs. SVM 0.696 No 

9 Gaussian Naïve Bays vs. MLP 0.000 Yes 

10 SVM vs. MLP 0.016 Yes 
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Fig. 1. The study area location 
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Fig. 2. (a) Rock Fall (b) Debris slide 
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Fig. 3. Landslide susceptibility prediction on training data 
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Fig. 4. Landslide susceptibility prediction on test data  
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Fig. 5. AUROC curve for machine learning models on training and test data 

 
 
 


