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ABSTRACT

The massive demand for data rates aggravated the situation when the Coron-

avirus Disease 2019 (COVID-19) pandemic forced everything online. To support

data-hungry wireless devices and applications, high-speed data connectivity is

indispensable. Cost-effective low-earth-orbit (LEO) satellite links promise a depend-

able, robust, and viable solution for seamless high-speed internet connectivity, even

where terrestrial technologies are ineffective. High-gain beam-steering antennas are the

most crucial and costly radio-frequency (RF) technology for mobile satellite communi-

cations. Metasurface-driven antennas may offer an affordable alternative, but existing

approaches often employ heavy or expensive dielectric-based metasurfaces. The weights

and RF losses of dielectrics make them less attractive for practical applications. Also,

they are not preferable in space due to environmental challenges (e.g., carbonization,

high radiation, and cryogenic temperature). In high-power microwave systems, they

can lead to dielectric breakdown. Metasurfaces built on all-metal architecture could be

potential substitutes, but there is limited research, and many opportunities are yet to be

explored.

The research efforts in this thesis focus on the innovative design strategy of metallic

metasurfaces (MMs). The proposed approaches adopt new techniques to synthesize

entirely dielectric-free, self-sustained, polarization-independent, and fabrication-friendly

MMs, significantly reducing the weight and cost of low-loss dielectrics. The novel slots-

in-sheets (SiS) architecture proposed in constructing MMs retains structural rigidity – a

distinctive design feature from the state-of-the-art. Several antenna designs have been

analyzed and tested experimentally to evaluate the efficacy of the proposed solutions.

First, novel MMs are synthesized to correct the aperture near-field phase non-uniformity

of shortened horns and resonant cavity antennas. The study also explains wideband

gain-bandwidth improvement employing MMs thoroughly. Then, the potential research

gaps are addressed by developing an entirely new dual-band phase-correcting MM and

ultra-thin, single-layer dual-band metallic partially reflective surface for the first time.

Secondly, the research tackles the design challenges of phase gradient MMs compatible
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with the near-field meta-steering (NFMS) system. First, a wideband NFMS system with

measured scanning bandwidths of at least 700 MHz is demonstrated. Further research

advances the field significantly by developing a novel dual-band NFMS system of its first

kind operating in full-duplex simultaneously. A methodology has been devised to design

compact dual-band cells with greater freedom in tuning parameters to attain complete

360◦ phase shifts with excellent transmission efficiency.

Overall, the proposed antennas radically depart from traditional dielectric-based

metasurfaces and exhibit excellent performance, making them expedient for modern

satellite communications. They are also contenders for many cutting-edge applications,

including high-power systems and deep space exploration.
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