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Abstract
Self-organised nanoscale networks are currently under investigation because of their potential to be
used as novel neuromorphic computing systems. In these systems, electrical input and output
signals will necessarily couple to the recurrent electrical signals within the network that provide
brain-like functionality. This raises important questions as to whether practical electrode
configurations and network geometries might influence the brain-like dynamics. We use the
concept of criticality (which is itself a key charactistic of brain-like processing) to quantify the
neuromorphic potential of the devices, and find that in most cases criticality, and therefore optimal
information processing capability, is maintained. In particular we find that devices with multiple
electrodes remain critical despite the concentration of current near the electrodes. We find that
broad network activity is maintained because current still flows through the entire network. We
also develop a formalism to allow a detailed analysis of the number of dominant paths through the
network. For rectangular systems we show that the number of pathways decreases as the system size
increases, which consequently causes a reduction in network activity.

1. Introduction

Complex self-assembled networks of nanomaterials have recently emerged as promising systems for neuromor-
phic computing [1]. The general concept is that since these networks exhibit structures or behaviours that are
similar to those of the brain, they may enable novel methods of brain-like information processing, with poten-
tially attractive features such as ultra-low power consumption. Many different types of neuromorphic networks
have been investigated, taking advantage of building blocks that include a variety of types of nanowires and
nanoparticles [2–11]. Recent advances include demonstrations of criticality [4, 12] and edge of chaos learn-
ing [13]. Furthermore, various computational tasks were successfully demonstrated using approaches [14–16]
based on reservoir computing (RC) [17], where the non-linear dynamics and memory capacity of the network
are exploited for information processing.

One of the attractions of self-assembled networks of nanomaterials is that they allow all-electrical imple-
mentations of RC, which are promising for real-world applications [18]. In these implementations electrical
contacts (electrodes) are required in order for signals to be input to and read out from the network, and this
leads to an important and thus far overlooked issue: different electrode configurations can modify the network
dynamics. Figure 1 provides a simple example in which the choice of electrode configuration (red: inputs; pink:
outputs) changes the current pathways through a network. Since the components in neuromorphic networks
are memristors or switches, and the behaviour of each component depends on the local currents and volt-
ages, differences in the current pathways can lead to differences in the network dynamics. Consequently, the
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Figure 1. Schematic of a simple square resistor network with different possible electrode configurations, illustrating different
current flows in each configuration. Left: two-electrode system (2ES); middle: four-electrode system (4ES); right:
alternating-electrode system (AES). Colours are the same as those used below in simulations of the current flow in the actual
percolating network of nanoparticles. Red and pink squares denote input (applied voltage) and output (current to ground)
electrodes respectively. High, medium and low currents in each path are indicated schematically with red, purple/dark blue, light
blue bonds respectively.

electrode configuration has the potential to impact RC performance. In a worst-case scenario, the electrode
configuration could cause only a small part of the network to be active (e.g. due to concentration of the current
through a small number of paths) potentially leading to poor RC performance. Note that this issue does not
arise in RC implementations such as echo-state networks [19] or optical systems [20, 21], as in those cases the
readout and the network dynamics are decoupled.

Here we investigate the effects of the electrode configuration on the dynamics of networks of nanoscale
electronic components, using detailed and realistic simulations. We consider the impact of the configuration
of inputs and outputs as well as the size and aspect ratio of the network. We develop a method to quantify
the number and length of pathways through the complex network and show that for a constant voltage, the
number of pathways decreases with increasing system size, reducing network activity. Despite this, the network
dynamics are usually not strongly affected by the electrode configuration and network geometry, and critical
dynamics are observed [4]. Criticality is important because it is associated with optimal information processing
capability [22], and is a key feature of the biological brain [23–25]. Hence we quantify the neuromorphic
potential of the networks using the strict mathematical definition of criticality.

This work focuses on practical, experimentally realizable, configurations of outputs, that are suitable for
implementation of RC algorithms in real-world devices. In contrast, in the RC literature it is usual to assume
that output signals can be extracted from all nodes in the network [9, 18, 19, 26]. While this is possible in
simulations, access to the internal nodes is not practically feasible in a physical device.

We expect that the effects of electrode configuration and network geometry will be similar for all types
of nanoscale electronic networks but focus here on percolating networks of nanoparticles (PNNs) [4, 27],
which are illustrated schematically in figure 2. PNNs are particularly attractive for neuromorphic computing
because straightforward experimental methods exist for preparing them at a critical point, using simple cost-
effective deposition techniques [4, 27]. The deposition of nanoparticles is stopped close to the percolation
threshold (onset of conduction across the network), which ensures that the networks contain many tunneling
gaps (i.e. voids between well-connected groups of nanoparticles, figure 2(b)). Tunnel gaps emulate some of the
integrate-and-fire characteristics of biological neurons via atomic-scale switching processes [28]. Formation
and destruction of atomic-scale filaments occurs in response to applied input signals [27], as illustrated in the
inset of figure 2(b). When one switch changes state, consequent changes in the distribution of voltages/currents
across the network lead to other switching events, and hence to complex patterns of correlated electrical signals
that are distributed across the network [5] (note that the memristive properties of individual tunnel junctions
[12] are difficult to probe directly due to this collective behaviour). The resulting switching dynamics are
consistent with avalanches observed in cortical tissue [29] and meet strict statistical criteria for criticality [4].

2. Simulations of percolation with tunneling and switching

It is well-established that the experimental nanoparticle networks can be well-described by simulational models
of 2D continuum percolation [27, 28, 30–32]. [For completeness we include a brief comparison with other
types of percolating system in supplementary section I (https://stacks.iop.org/NCE/2/024009/mmedia).] The
deposited particles are represented by overlapping disks, which form groups as they land on each other, as in the
experiments. Below the percolation threshold (surface coverage p < pc ∼ 0.68), the overlapping disks do not
form a continuous path and so conduction is possible only due to tunneling through the gaps between groups
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Figure 2. System overview. (a) Schematic showing a percolating nanoparticle network with two electrodes (gold) where the
colours represent groups of connected particles. (b) Schematic showing a percolating nanoparticle network with multiple
electrodes. The zoomed region demonstrates the response of a tunnel gap between groups to an electric field (orange) and the
formation of a filament between two groups of particles (red).

of particles/disks (figure 2). The conductance of each gap is Gi = A exp(−δLi), where A and δ are constants
and Li is the gap size in units of the particle diameter (for convenience the particle diameter is set to 1 and
A = 1Ω−1; it has been found that δ = 100 gives good agreement with experiments) [27, 32].

2.1. Key parameters
We present results for p = 0.65 as this coverage is close enough to pc to allow observation of critical dynamics
but far enough away to ensure that unrealistic network configurations (e.g. those with very large groups and
hence a small numbers of gaps between the electrodes) can be avoided. Note that we have simulated systems
with a range of surface coverages and find similar results throughout the range 0.64 < p < pc [5]. We focus
on square systems of size 200 × 200 particle diameters, as this is large enough to produce critical dynamics
without being computationally exhaustive. Supplementary section II presents similar results for 400 × 400
systems with a greater number of electrodes.

2.2. Model of switching behaviour
Upon applying an external voltage stimulus, atomic scale filaments can form within the tunnel gaps. Atomic
filament formation is described by a deterministic model [28] in which the formation is driven by the electric
field (Ei) in the ith gap via the processes of electric field induced evaporation and electric field induced surface
diffusion [33, 34]. The size of each tunnel gap (di) changes according to

Δdi =

{
rd(Ei − ET), if Ei � ET

0, otherwise.
(1)

Once a filament has formed (with an initial width w0), its destruction can be explained by electromigration
effects [35] where the current (Ij) through the filament decreases its width (wj) according to

Δwj =

{
rw(Ij − IT), if Ij � IT

0, otherwise.
(2)

ET (IT) represents the electric field (current) threshold, above which di increases (wi decreases) at a rate of rd

(rw). ET = 10 V (per unit length, measured in particle diameters) and IT = 0.01 A are chosen to best reproduce
experimental results [27, 28]. After the formation of a filament, the conductance is set to 10 Ω−1. Note that the
precise conductance values could be scaled to match the experimental values more closely but do not affect the
overall results and so are chosen to maintain consistency with previous work [32]. This model is described in
detail in [28] and exhibits criticality and avalanches of signals that are similar to both the experimental data
and to neuronal signals in the cortex [4, 28].

We emphasise that this model of the switching behaviour is similar to general models of memristive switch-
ing [36]. In fact the equivalence between the models can be made exact for appropriate choices of the resistances
in the ‘on’ and ‘off’ states of each switch. Hence, taken together, our models of the network structure and
switching dynamics capture the essential features of a wide range of self-organised nanoscale networks.

2.3. Two-electrode systems—basic properties
Experimental studies of PNNs [4, 5] have focused on simple two-electrode systems (2ESs), with the input
and output electrodes on the left and right hand edges, respectively (figure 2(a)). Therefore we begin by
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Figure 3. Properties of a 200 × 200 percolating nanoparticle network. (a) Conductance (G) of a two electrode system (2ES) over
time. The input voltage is applied to the electrode on the left side (3V) while the electrode on the right side is grounded. Inset 1
(left): initial increase in conductance upon applying a voltage. As filaments are formed in multiple gaps throughout the network,
G increases. Inset 2 (right): patterns of switching behaviour. After ∼104 time steps the conductance fluctuates around an average
value (G, red horizontal line) as the system is in a meta-stable state in which a dynamical equilibrium is maintained (where
filaments are continuously formed and broken). (b) Illustration of the groups of particles, which are separated from each other by
tunnel gaps. The groups forming the input electrode (left) and output electrode (right) are shown in black with the other colours
representing different particle groups. (c) Active sites (tunnel gaps that switched at least once) over 5 × 105 time steps are shown
in red while the shades of blue represent different particle groups. (d) The distribution of potentials at each group. Input and
output electrodes are shown in black with the colours representing the potential gradient from high (red) to low (blue).
(e) Current map. Each filled circle/black dot represents the centre of a group of particles with lines denoting a connection between
groups via a tunnel gap. Red and pink circles represent the groups connected to the input and output electrodes, respectively. The
line colours indicate the magnitude of the current through the network, red (high) to blue (low). Note that the grey lines
represent tunnel gaps carrying no current. (d)–(e) Are representative snapshots of the network at time step 5 × 105.

illustrating the basic properties of those devices. Figure 3(a) shows the conductance as a function of time
for a long simulation with a DC applied voltage. The increases (decreases) in conductance each correspond to
switching events in which a filament forms (or ruptures). These results are very similar [28] to those observed
experimentally. The left inset shows the initial increase in conductance before the system settles into a dynami-
cal equilibrium where formation and destruction of filaments are persistent and conductance fluctuates about
some constant mean value (G, where indicates an average over time). The right inset shows the patterns of
switching behaviour, which include avalanches of activity as previously discussed in [28]. Figure 3(b) shows
a map of the percolating network, with the different groups of particles shown using different colours. The
active switching sites (tunnel gaps) are shown in red in figure 3(c). Figures 3(d) and (e) show snapshots of the
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voltage gradient and current paths though the network respectively. Note that the 2ES is used as an example
here and systems with different sizes, aspect ratios, and electrode configurations are discussed below.

3. Results

As noted above, previous experimental studies of PNNs focus on simple 2ESs (figure 2(a)) but devices with
multiple electrodes (figure 2(b)) are required for applications like RC. In these devices, the positions of the
electrodes around its periphery define the size and shape of the active part of the network. We first simulate
the effect of the size of the system on the switching activity and conductance (section 3.1) and the number
and length of the current pathways through the network (section 3.2). We then consider the effect of shape
in 2ESs with different aspect ratios, L/W. Note that here we use ‘length’ (L) for the size of the system in the
horizontal direction (i.e. electrode separation) and ‘width’ (W) for the size of the system in the vertical direc-
tion. We specifically consider the effect of increasing L when W is fixed (as in figure 2(b) where W � L for
opposite electrodes; in our experimental multicontact devices W

L ∼ 1
14 [37]). Finally, we investigate the effect

of electrode configuration in systems with multiple electrodes (section 4).

3.1. Size and aspect ratio—effect on switching activity and conductance
Figure 4(a) shows the properties of square 2ESs as a function of L (left column, W = L), while figure 4(b) shows
results for rectangular 2ESs with different aspect ratios (right column, W = 200). Figures 4(a) and (b) shows
〈G〉 (top row), where 〈〉 indicates an average over 24 network realizations. Also shown are the average number
of active sites (〈NA〉, middle row) [at which a switching event occurs at least once] and the average density
of active sites (〈ρA〉 = 〈NA〉/(LW), bottom row). Results are shown for different levels of voltage stimulus, in
order to demonstrate the effect of the voltage distribution throughout the system.

In square systems (figure 4(a)), for a 3 V stimulus, the conductance decreases with increasing system size.
This is because at large L current pathways between electrodes contain more tunnel gaps in series and so the
average voltage across each gap is lower. Consequently, the decrease in 〈ρA〉 shows that there is reduced switch-
ing activity due to a lower proportion of tunneling gaps maintaining a significant electric field across them (i.e.
E > ET, above the threshold for switching in equation (1)). For a 50 V stimulus, the conductance stays nearly
constant with increasing system size because at this stimulus level the proportion of tunnel gaps that exhibit
switching activity remains constant. Hence, 〈ρA〉 is nearly constant and 〈NA〉 increases in accordance with the
increase in area.

In rectangular systems (figure 4(b)), the conductance decreases with increasing L, for all voltage stimuli.
This is because, as with the square systems, the number of tunnel gaps in series increases with L. The average
voltage across each gap then decreases, resulting in a dramatic reduction in switching activity: 〈NA〉 decreases
to zero for L > 500 with a 2 V voltage stimulus. For a large stimulus (50 V), the average voltage across each
gap increases causing 〈NA〉 to increase for all L.

3.2. Size and aspect ratio—effect on current pathways
The size and aspect ratio of PNNs also affect the number (NP) and length (LP) of the dominant current path-
ways that span the input and output electrodes. Figure 5(a) shows 〈NP〉 and 〈LP〉 (determined via the algorithm
described in supplementary section III) as a function of L for square systems (left column). 〈NP〉 increases with
L initially (from L = 100 to 200) but decreases for L > 200. This is because for L � 200 the 3 V stimulus is
sufficient to maintain E > ET across many tunneling gaps. However, as L increases, 〈LP〉 increases, as shown in
figure 5(c). This is because the increasing L increases the number of tunnel gaps required for a path to span the
network, reducing the average voltage across each gap. As already mentioned in section 3.1, some gap voltages
consequently fall below the threshold for switching so that they remain open, decreasing 〈NP〉. This results in
relatively low currents, even along the highest conductance paths. The increase in 〈LP〉 and the overall decrease
in 〈NP〉 both act to decrease the mean conductance, as shown in the upper panel of figure 4(a).

The number and length of the pathways through rectangular systems evolve in a similar way, as shown in
figures 5(b) and (d). Since W is fixed, as L is increased the number of parallel paths decreases even more quickly
than in square systems; 〈LP〉 increases roughly in proportion to L and 〈NP〉 decreases to zero for large L.

4. Systems with multiple electrodes

For RC we require multi-electrode systems (MESs) with multiple inputs and outputs [14, 15, 26, 38], as shown
in figure 2(b). Data for MESs with many electrodes is presented in supplementary section II, but in this section
we illustrate the key points by considering simpler systems with just four electrodes.

We compare three cases for the same 200 × 200 network: a 2ES, a four-electrode system (4ES) and an
alternating-electrode system (AES). These configurations are the same as those illustrated schematically in
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Figure 4. Comparison of key properties of systems with different sizes and aspect ratios. (a) Square systems (W = L); blue: 3 V;
red: 50 V. (b) Rectangular systems with different aspect ratios (fixed W = 200); applied voltages are represented by the line colour.
Upper panel: mean conductance 〈G〉 after the system has reached dynamical equilibrium (as in figure 3). Middle panel: the
average number of active sites 〈NA〉, i.e. the number of tunnel gaps that exhibit any switching activity during the simulation.
Lower panel: average number of active sites per unit area 〈ρA〉. Grey dashed lines have a slope of ±1 and ±1/2 for (a) and
(b), respectively, and are shown for reference. Note that the error bars are the standard deviation over 24 realisations of the
network.

figure 1 but the network being modelled is a PNN, rather than a resistor array. As described above, the standard
2ES (see current map in figure 6(g)) has input and output electrodes along the left and right edges of the
system, respectively. For the 4ES (figure 6(h)), input (output) electrodes are connected to two different groups
on the left (right) edge. For the AES (figure 6(i)), the input electrodes are connected to groups on the left and
right edges, while the output electrodes are connected to groups on the top and bottom edges. Note that in
simulations the electrode positions for the 4ES and AES are selected to ensure they are well-connected to the
network, i.e. the electrode has a high conductance connection to a group of particles. In experimental devices
the electrodes are much larger (as is the system size: L � 104 particle diameters), which ensures that they are
well-connected to at least one group. Also note that the configuration of the electrodes in experiments can be
varied in many ways, but these arrangements are a reasonable starting point for investigation of the impact of
electrode placement on the network dynamics.

In section 4.1 we illustrate the effects of the electrode configuration on the basic device properties (current
flow and switching dynamics). In section 4.2 we investigate whether the critical avalanche dynamics observed
in 2ES [4] are still observed in 4ES and AES geometries.

4.1. Current flow and switching dynamics in MESs
Figure 6 shows the conductance variation with time (top panels) for a 2ES (figure 6(a)) compared to a 4ES
(figure 6(b)) and an AES (figure 6(c)). The switching dynamics shown are qualitatively similar for all three
systems, with similar average conductances (2ES: G = 0.193; 4ES: G = 0.175 Ω−1; AES: G = 0.206 Ω−1). The
maps in figures 6(d)–(f) show that the switching activity is qualitatively similar for all three systems but is
concentrated near the electrodes (the groups of particles coloured in red) in the AES because the tunnel gaps
on shorter paths are more likely to exhibit switching behaviour. This is because there are fewer tunnel gaps in
series, reducing the path resistance and increasing local potentials. Supplementary section IV shows an example
of a 400× 400 AES which more clearly demonstrates the concentration of the current. In both cases, despite the
concentration of current near the electrodes, currents flow throughout the entire network (figures 6(g)–(i)).
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Figure 5. Properties of conducting pathways for different length (L) square systems (left column, W = L) and rectangular
systems (right column, W = 200) with applied voltage 3 V. (a) and (b) Average number of conducting pathways that span the
input and output electrodes 〈NP〉. (c) and (d) Mean length of the dominant current paths (in terms of the number of tunnel gaps)
〈LP〉. The current threshold is 1% (see supplementary section III for further details). The averages 〈NP〉 and 〈LP〉 were calculated
for 24 realizations of the network. Each panel shows the mean value (green) as well as the maximum (blue) and minimum
(brown) values. Note that these values are calculated from one representative instant in time after the system has reached
dynamical equilibrium (as in figure 3) but the trends remain the same across multiple instants in time.

Figures 7(a)–(c) shows the distributions of inter-event intervals (IEIs) [times between consecutive switch-
ing events] are power law distributed with similar slopes for all of the 2ES, 4ES, and AES configurations.
This is indicative of scale-free temporal dynamics [5]. Additionally, the autocorrelation functions (ACFs,
figures 7(d)–(f)) for all three systems show strong correlations between events. Hence the 2ES, 4ES, and AES
all exhibit complex, correlated switching dynamics with power-law distributed IEIs. These are necessary but
not sufficient criteria for criticality and so we explore criticality more rigorously in section 4.2.

4.2. Critical avalanches
Critical avalanche dynamics have been observed both in cultured cortical tissue [39] and in experimental 2ES
PNNs [4]. As critical dynamics are thought to maximize several key information processing metrics [22],
it is crucial to determine whether criticality in PNNs is conserved under different electrode geometries. In
accordance with previous analyses of critical systems [40], the size (S) and duration (T) of each avalanche of
signals is defined by counting the total number of events in the avalanche and the number of time bins over
which the avalanche propagates. For critical systems, S and T have power-law distributions

P(S) ∼ S−τ (3)

and
P(T) ∼ T−α, (4)

and the mean sizes of the avalanches are related to their durations according to

〈S〉(T) ∼ T1/σνz, (5)

where 1/σνz is a key characteristic exponent. The critical exponents are discussed in detail in [41] and the
analysis methods in [4].

The key test for criticality is that the exponent obtained from equation (5) should be consistent with two
other estimates of 1/σνz. The first is obtained from the ‘crackling relationship’ [42]

1/σνz = (α− 1)/(τ − 1) (6)

and the second from avalanche shape ‘collapse’ i.e. scaled avalanche profiles should collapse onto a single curve,
yielding an independent estimate of 1/σνz [41].
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Figure 6. Comparison of switching dynamics for 200 × 200 systems with different device geometries. Left column: 2ES; middle
column: 4ES; right column: AES. (a)–(c) Snapshot of conductance G variation with time. The dashed line indicates the mean
conductance G in the state where a dynamical equilibrium is maintained, after the initial increase in conductance shown in inset 1
of figure 3. (d)–(f) Maps of switching activity over 5 × 105 time steps in the state where a dynamical equilibrium is maintained.
Each line represents a connection between groups of nanoparticles (i.e. a tunnel gap) and the colour of the line represents the
total number of switching events occurring in that gap NE. The groups of particles comprising the input and output electrodes are
shown in red. (g)–(i) Maps of current at one representative instant (time step 5 × 105) in time. Each filled circle/black dot
indicates the centre of a group of particles; red: input groups; pink: output groups. Each line represents a tunnel gap and the
colour of the line represents the magnitude of the current I (A). Note that the grey lines represent tunnel gaps carrying no current.

Figures 8(a) and (b) show that the sizes and durations of the avalanches are distributed as power laws
for each of the 2ES, 4ES, and the AES (red, green and blue respectively). Figure 8(c) is a plot of the mean
avalanche size given duration (〈S〉 (T)) for each system and figures 8(d)–(f) demonstrates shape collapse.
Table 1 shows the critical exponents obtained from these distributions (following the detailed methodology
of [4, 39]). Importantly, table 1 shows that in each case the three estimates for the critical parameter 1/σνz
are in agreement within statistical uncertainty, thereby demonstrating that rigorous criteria for criticality are
satisfied for all three systems [4, 39, 41].

It is interesting to note that some previous studies focused on the response of percolating networks to a
stepwise increase (decrease) in the input voltage [43, 44]. In that case the networks exhibit rather different
avalanches, in which the active switches all turn on (off) in succession, i.e. the conductance transitions occur
in a single direction, causing the mean conductance to increase (decrease). The critical size exponent is then
τ = 1.5 [44], which is much smaller than that shown in table 1. This difference arises from the fact that the
avalanches considered here occur in a balanced state [28] (for a constant DC applied voltage) where there are
both increases and decreases in conductance around some mean value, as shown in figures 3 and 6.

5. Discussion

In the preceding sections criticality was observed for a range of network geometries and electrode configura-
tions. In this section we discuss cases in which critical dynamics are not observed and practical factors which
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Figure 7. Comparison of properties of systems with different electrode geometries. Left column: 2ES; middle column: 4ES; right
column: AES. (a)–(c) Distribution of inter-event intervals (IEIs); black: maximum likelihood fit; red: linear bins; blue:
logarithmic bins; slopes: 2ES = −2.92; 4ES =−2.97; AES =−2.51. (d)–(f) Autocorrelation function A(t); dashed line:
confidence level. Note that the three systems have similar G (2ES: 0.201 Ω−1; 4ES: 0.188 Ω−1; AES: 0.204 Ω−1) and event densities
i.e. proportion of time steps in which a switching event occurs (2ES: 6.6%; 4ES: 6.3%; AES: 4.6%).

can make the demonstration of criticality difficult in large systems. Finally, we comment on possible choices
of the type of electrode.

5.1. Non-critical cases
Simulations in which criticality is not observed are reported in detail in supplementary section V. In these
cases regular spiking behaviour occurs, where the same switch turns on and off repeatedly. [Similar spiking
behaviour was also reported in recent experiments [37].] The relevant quantities (S and T) then no longer
follow power law distributions and the criteria for criticality are not met. Spiking dominates the pattern of
switching activity in these electrode configurations because a small number of switching sites are dominant,
as shown in figure S8b. This problem can be exacerbated in larger systems (see next section) where there are
a large number of candidate switching sites, each of which may exhibit spiking behaviour at different times.
While in principle the regular spiking can be removed from the data by filtering or thresholding, this is not
straightforward in networks with short path lengths where large amplitude spiking behaviour can be observed,
or when different sites cause spiking at different times.

5.2. Practical factors in larger systems
Supplementary section II presents simulated data for 400 × 400 square systems. While these larger systems
are critical, there are two contraposed factors that make performing the criticality analysis challenging. Firstly,
larger systems have more switching sites, which all have the potential to contribute to the observed switching
activity, and at high applied voltages could lead to very high switching rates. The criticality analysis [4, 39],
however, requires identification of avalanches of switching activity that are clearly separated from each other.
This means that the applied voltage cannot be too high. Secondly, as discussed in sections 3.1 and 3.2, since
the applied voltage is distributed across more tunnel gaps (in series with each other), a higher applied voltage
is required to achieve electric fields larger than the threshold ET (see equation (1)) in a significant number of
tunnel gaps across the network.

These contradictory requirements lead to a narrow range of voltages in which the criticality analysis can
be performed. At lower voltages too few events are observed to perform the analysis, and at higher voltages
there are too many. This constraint is important in the analysis of simulations, where a relatively high event
rate is desirable to reduce computation time. Similar issues can be avoided in experiments performed at high
sampling speeds—e.g. MHz sampling rates [37] ensure that it is straight forward to demonstrate criticality.
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Figure 8. Evidence of criticality for a 200 × 200 2ES (red), 4ES (green), and AES (blue). (a) Distribution of avalanche sizes S.
Dashed lines: ML fits (slopes correspond to the critical exponent τ). (b) Distribution of avalanche durations T. Dashed lines: ML
fits (slopes correspond to the critical exponent α). (c) Mean avalanche sizes 〈S〉(T). Dashed lines: ML fits. Note that the slopes are
very similar and so the lines overlap. (d)–(f) Average avalanche shapes for each duration showing collapse onto a universal scaling
function (black line); (d): 2ES; (e): 4ES; (f): AES. The slopes for (a)–(c) and the corresponding estimates of the critical exponent
1/σνz for (d)–(f) can be found in table 1.

Table 1. Demonstration of criticality for 200 × 200 systems with different device geometries. The critical exponent 1/σνz is obtained
from the crackling relationship (α− 1)/(τ − 1), mean avalanche size given duration 〈S〉(T ), and avalanche shape collapse. The
agreement of these three independent estimates of 1/σνz is a rigorous requirement for criticality. For more criticality analysis details see
[4, 39, 41].

Exponent τ α Crackling relationship (1/σνz) 〈S〉(T ) (1/σνz) Shape collapse (1/σνz)

2ES 2.4 ± 0.1 2.9 ± 0.1 1.4 ± 0.2 1.33 ± 0.02 1.31 ± 0.05
MES 2.2 ± 0.1 2.7 ± 0.1 1.4 ± 0.2 1.30 ± 0.02 1.33 ± 0.05
AES 2.3 ± 0.1 2.6 ± 0.1 1.2 ± 0.2 1.34 ± 0.02 1.34 ± 0.04

5.3. Types of electrode
Finally we comment on the differences in the types of electrodes that must be used for measurement of
nanoscale electronic networks and in neuroscience. An important difference is that the propagation of electri-
cal signals through nanoscale networks can be modified by the number and placement of electrodes whereas
in neuroscience it is assumed that the electrodes are passive measuring devices and have no impact on the
behaviour of a network of neurons. If high impedance voltage probes were connected to nanoscale electronic
networks, i.e. they recorded voltages and not currents, they would not drain current and would have less influ-
ence on the network dynamics. They would therefore perform a similar role to those used in neuroscience.
However, for all electronic systems, there must be at least one electrode through which current flows to ground
and the placement of the grounded electrode or electrodes will always modify the current flow, and thereby
influence the dynamics, to some extent. The remarkable feature of these results is that, despite differences
in the local currents (see figure 6), the critical network dynamics are generally not affected by the electrode
placement.

6. Conclusions

We have demonstrated the impact of device geometry and electrode configuration on the correlated switch-
ing behaviour of nanoscale electronic networks through the example of PNNs. In particular, we have shown
that increasing the system size and aspect ratio results in a distribution of the applied voltage across a greater
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number of junctions, reducing the number of ‘on’ switches and decreasing the system conductance. The finite
width of systems with larger aspect ratios restricts the number of conducting pathways, exacerbating this effect.
We have also compared a two-electrode configuration to a multi-electrode configuration and found that the
switching dynamics and correlations are qualitatively similar, and that despite the concentration of currents
near the electrodes, current still flows through the entire system. We have demonstrated that the addition of
multiple electrodes and the increase of system size (which are essential for RC applications) do not alter the
critical dynamics previously demonstrated in two-electrode systems.

The multi-electrode configurations investigated here provide an intuitive basis for a RC [17] approach
where the electrodes act as the required input and output nodes. Importantly, since criticality is observed in
all geometries investigated, the computational benefits of criticality are retained which is necessary for effi-
cient RC [22–25, 45]. These results therefore support further experimental efforts directed at the physical
implementation of RC approaches using nanoelectronic systems.
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