
Generation and Matching of Ontology Data for

the Semantic Web in a Peer-to-peer Framework

Chao Wang, Jie Lu and Guangquan Zhang

Faculty of Information Technology, University of Technology, Sydney
PO Box 123, Broadway, NSW 2007, Australia
{cwang, jielu, zhangg}@it.uts.edu.au

Abstract. The abundance of ontology data is very crucial to the emerg-
ing semantic web. This paper proposes a framework that supports the
generation of ontology data in a peer-to-peer environment. It not only
enables users to convert existing structured data to ontology data aligned
with given ontology schemas, but also allows them to publish new on-
tology data with ease. Besides ontology data generation, the common
issue of data overlapping over the peers is addressed by the process of
ontology data matching in the framework. This process helps turn the
implicitly related data among the peers caused by overlapping into ex-
plicitly interlinked ontology data, which increases the overall quality of
the ontology data. To improve matching accuracy, we explore ontology
related features in the matching process. Experiments show that adding
these features achieves better overall performance than using traditional
features only.

1 Introduction

Ontology has been realized to be an essential layer of the emerging semantic web
[1]. According to description logics (DL) [2], an ontology as a knowledge base
normally consists of a “TBox” and a “ABox”. The TBox consists of concepts
and their relations while the ABox consists of instances of concepts or individ-
uals. For an ontology expressed in the web ontology language (OWL) [3], we
use the term ontology schema and ontology data for the part corresponding to
the notion of TBox and ABox respectively. Through the semantic web search
engine Swoogle (http://swoogle.umbc.edu), we’ve found that there are plenty of
ontology schemas available over the web. But in contrast, ontology data does
not seem to be very abundant.

The abundance of information and data in the current web has made the web
an important place for people to seek information. This leads us to believe that
the abundance of ontology data in the semantic web is very crucial. Therefore,
besides the development of ontology schemas, the generation of ontology data
also plays an important role for the semantic web.

Generation of ontology data can be achieved through different ways. This pa-
per proposes a framework that supports the generation of ontology data through
conversion and authoring. It is designed with the peer-to-peer architecture, which



is more flexible and scalable in terms of ontology data management and distri-
bution. Although several (ontology) data management or sharing frameworks
based on peer-to-peer architecture have been proposed (e.g. Edutella [4], Piazza
[5],and etc), our framework has an advantage that differentiate it from them in
that it deals with the issue of ontology data matching across peers. Normally,
the ontology data for a certain domain contributed by one peer may not be
complete but may be implicitly related to those contributed by other peers as
data overlapping often occurs. Our framework, designed with a matching pro-
cess to discover the implicit relations, is able to help reduce the redundancy and
increase the amount of richly inter-linked ontology data.

The rest of the paper is organized as follows. Section 2 discusses related work.
An overview of the framework is given in Section 3 . Section 4 describes how
the framework supports the generation of ontology data. Section 5 presents the
function of ontology data matching. Experimental results about ontology data
matching are shown in Section 6. Section 7 concludes the paper.

2 Related Work

We discuss relate work from two aspects: ontology data generation and data
matching.

There are a few ways to generate ontology data. Some ontology development
tools such as Pretege (http://protege.stanford.edu), SWOOP [6] can be used to
create new ontology data as well as to develop ontology schemas. However, as
these tools are designed with an emphasis on knowledge representation, they are
often used by experienced domain experts familiar with ontology related tech-
niques. Ordinary users may have difficulty using it, which hinders the generation
of ontology data in a large scale. Annotation of existing data with ontologies is
another way to generate ontology data (e.g., CREAM [7]). Ontology data can
also be generated by automatically annotating web pages (e.g. [8]). Although a
large amount of ontology data can be generated by this type of methods, some
applications may not be able to use them due to its relatively poor quality.

On the other hand, data matching is mostly a research topic in the traditional
database community. It involves creating semantic matching between objects, in-
stances, or records from different data sources (mainly different databases) [9].
Different techniques have been employed to perform data matching in differ-
ent applications (e.g., [10, 11]). Although we can directly use these methods to
perform ontology data matching by treating instances in ontology data as data
records in databases, this ignores the particular features that ontology data in-
herently has, which may affect the performance of ontology data matching.

3 Framework Overview

We first give a brief overview of our framework that supports the generation and
matching of ontology data. The framework uses the super peer topology [4] for
the peer-to-peer architecture. Different from traditional client/server architec-
ture, it shifts part of the tasks of the server (super peer) to the clients (ordinary



peers). For example, when processing a query, a super peer can simply tell the
query issuer from which peers they can get potential query results instead of
returning the complete query results directly.

Fig. 1. The framework that supports ontology generation and matching with a design
of a peer-to-peer architecture

Accordingly, as shown in Fig. 1, our framework introduces two types of peers:
super peer and ordinary peer (or just denoted as peer). The super peer acts as
a coordinator for peers connected to it. It hosts the backbone ontology schema
used for the generation of ontology data and provides related functions, one
of which is ontology data matching (Section 5). On the other hand, peers offer
functions that support ontology data generation (ontology data publication) and
query (ontology data query).

4 Generation of Ontology Data from Peers

4.1 Data Conversion

As many existing data are stored in databases or formatted in XML with no
ontologies to interpret them, it is desirable to convert them into formats that
can be explained by given ontology schemas and ready to be integrated. Mostly
we use OWL to encode these converted data according to the backbone ontology.
Here we only discuss the case of XML data due to limited space.

XQuery [12] is used to convert ordinary XML data into OWL format.Executed
by a XQuery-compatible engine, a query written in XQuery takes XML files as
input and generates results in an XML format defined by the query itself. Since
OWL is also based on XML syntax, the problem is then transformed into how
to design the query so that the output results are actually the desired OWL
format. The advantage of using XQuery instead of developing our own programs
for conversion is obvious. We don’t have to design any custom conversion rules
and to maintain the program, which might be time-consuming and error-prone.
As a W3C candidate recommendation, XQuery is versatile enough to satisfy our
needs and has several implemented query engines for us to choose. Therefore, to
convert XML data to desired OWL format, we only focus on the design of the
queries and use Nux (http://dsd.lbl.gov/nux/), a java toolkit capable of XQuery
processing, to process them.



4.2 Data Authoring

While existing data is very useful for the ontology data generation, it is equally
important to allow new data to be created and published in the framework.

Data authoring is the process during which peers create their own ontol-
ogy data and publish it into the framework. Like the current Web, where data
is directly contributed and published by various individuals and organizations,
our framework should also enable different individuals or organizations to pub-
lish their new data via their corresponding peers. Therefore, the data in the
framework will be very dynamic, often reflecting its very recent status while still
retaining reasonable semantics thanks to the backbone ontology schemas.

Users who want to author their concerned data through the peers should be
familiar with the backbone ontology schemas. We develop web-based programs
at each peer server so that users can get familiar with them easily and quickly.
For example, Fig. 2 (a) shows the interface that allows users to learn a back-
bone ontology schema describing the university settings by browsing intuitively.
Therefore, the users don’t have to study the original ontology schema encoded
in OWL with more efforts. A professor, if he/she wants to publish some data
about his/her recent publications, can choose the class that is most appropriate
for the data. He/She then can use the selected class to create the ontology data,
through a friendly interface as shown in Fig. 2 (b). With the data supplied by
the user, the program at the peer server generates the corresponding ontology
data in OWL format as shown in Fig. 2 (c). In summary, supported with these
functionalities, users can create and publish ontology data with ease.

5 Ontology Data Matching

Data matching process is designed to deal with the problem of implicit relations
among the data from different peers. The necessity of it can be illustrated by
the following example. Suppose a professor has a peer contributing data about
his/her own details including contact information, research interests, supervised
students, research groups, selected publications (without details such as abstracts
and full texts), and etc. Meanwhile a publisher’s peer contributes information
of a detailed publication list, which includes some publications (with full texts)
of that professor. The publisher’s peer lets us know details of publications by
that professor. All the data are published as instances of concepts of the given
ontology. Because the instance describing the professor from the publisher’s peer
is not explicitly related to that from the professor’s peer due to the decentralized
environment, we only get a partial view of the professor’s information from these
separate peers. It is impossible to issue an enquiry like getting some publication
details of a professor whose research interests are of a given area.

Therefore, the task is to match the instances from different peers, making
their implicit relations explicit. It is common to compute similarities between
instances to determine if they are matched. Several similarity measurements from
different aspects are used in the framework. A learning mechanism is employed



Fig. 2. The user interface for data authoring and the generated data

to implicitly combine these measurements in a meaningful and adaptive way.
This involves a learning phase to build the model and an matching phase to
apply the model for data matching.

5.1 Learning Phase

The learning phase involves the training of a binary classifier from matched and
unmatched instances. Support vector machines [13] are chosen as the classifica-
tion model in the proposed framework. First, a certain amount of initial data
are gathered by super peer from different peers. This data set should contain
a portion of matched instances. These matched instances are not discovered
and specified initially, while training an SVM classifier requires both specified
matched instances and unmatched instances as positive and negative samples.
Therefore, these initial data should be checked and tagged manually for the
training. An initial similarity checking and sorting process based on selected
instances properties is performed to make the manual tagging easier. After all
these initial data are tagged and the matched and unmatched instance pairs are
created, it is ready to train the classifier.

Several similarity measurements are used to compute similarity/distance
scores for instance pairs as different feature scores. string edit distance [14] (de-
noted as SED) and cosine similarity based on TF-IDF [15] (denoted as SIM) are
used to measure the string similarity of instance properties at character level and
at word level respectively. In addition to string-based similarities, ontology-based
similarities are also used. We define the term of “concept distance” (denoted as
CD), which can measure the distance of concepts of two given instances accord-
ing to the ontology. Instances belonging to the same concepts have the closest
distances while those belonging to disjoint concepts have the largest distances.
As ontology technology allows instances to be related by object properties [3], it
is useful to check the “context similarity” (denoted as CS) for object properties



of two instances. If the instances that are related to two target instances via
the same object property are similar according to string-based similarities, the
two target instances will have high context similarity. Details of these similarity
measurements are presented in another paper due to limited space.

Given the above different similarity measurements, we create feature vector
for each pair of instances from the initial tagged data set. For a pair of instance
a and instance b, its feature vector is composed as follows:

p(a, b) = [SIMd1
(a, b), . . . , SIMdm

(a, b),

SEDd1
(a, b), . . . , SEDdm

(a, b),

CSo1
(a, b), . . . , CSon

(a, b),

CD(a, b)]. (1)

where d1, · · · , dm are data type properties [3] of the instances; and o1, · · · , on

are object properties. These feature vectors together with the tagged informa-
tion (matched or unmatched) enable us to build the classification model for the
matching.

5.2 Matching Phase

During the Matching phase, the super peer matches instances from the peers
when they contribute their own data. When a peer has some data published,
the super peer will be notified. Instances in those data will be sent to the super
peer for an initial check upon its request. The initial check searches potentially
matched instances that are previously indexed for the new instances through
an inverted index. If no instances are found for the new instances or the found
instances have very low hits, these new instances will be ignored. This initial
check screens off a number of instances. For those instances with potentially
matched instances found, instance pairs are created as the input of the classifier.

The trained SVM classifier is used to determine if the instance pairs are
matched pairs with the following classification function:

f(q) =

l∑

i=1

αiyiK(pi,q) + b (2)

where K(p,q) is a kernel function used for mapping features into different spaces,
αi is the Lagrangian coefficient of the i-th training instance pair, yi ∈ {−1, +1}
is the label of the training instance pair. In this function, αi, b are obtained
during the learning phase and f(q) indicates the distance of q from the optimal
hyperplane. So we can use this value to evaluate the confidence level of the
pair being matched [11]. That is, if f(r) > f(q), then r is more likely to be a
matched pair than q. For a potentially matched instance pair q, we regard q as
a matched pair if f(q) > δ, where δ is obtained from experiments. This δ allows
the classifier to achieve the maximum F measure [16] in the cross validation.

After matched instance pairs are found through the above process, an index
storing data relation information among peers is updated by adding information



about these pairs. This index reveals the semantic relations of the data across
the peers. It is therefore possible to query related information from more than
one peer.

6 Experiments

Experiments are conducted to test the effectiveness of ontology data matching.
Data related to the university setting (Professors, Publications, and etc) are col-
lected from five different sources over the Web. As these existing data are in
various formats, data conversion has been performed to make them aligned to a
backbone ontology schema that describes the university setting. Totally there are
453 instances in the data set. After manually checking these instances, 136 in-
stances are found to match with each other. Instance pairs including matched and
unmatched pairs are then generated from these tagged instances. The SVMlight

package [17] is used in our experiments. 20 random experimental trials are con-
ducted. For one trial we split the pair set into two folds randomly, one for train-
ing, the other for testing and then reverse. Traditional measurements such as
precision, recall and F measure [16] are used for evaluation. We record the max-
imum F measure achieved in each trial and its corresponding recall and precision.
The overall results, shown in table 1, are obtained by averaging all these trials.
The first row indicates the different methods of similarity measurements (or their
combinations) used in creating the feature vectors. “ONTO” indicates the fea-
tures related to ontology (CD, CS) are used. Overall, the method that explores
the ontology features yields the best result.

Table 1. Overall results of different methods of similarity measurements used for
ontology data matching

Similarity SIM SED SIM+SED SIM+SED+ONTO

Precision 0.909 0.945 0.919 0.929

Recall 0.910 0.752 0.933 0.946

F measure 0.909 0.837 0.926 0.937

7 Conclusions and Future Work

This paper proposes a framework that supports the generation and matching of
ontology data in a peer-to-peer environment. It helps users generate ontology
data in two ways. Besides data generation, the issue of ontology data matching
in the peer-to-peer environment is also addressed . Experiments show that the
proposed matching method which explores the ontology features outperforms
other traditional methods. With a matching process that employs this method
in the framework, ontology data across peers can be interrelated to offer better
information services.



Future work includes the refinement of the data matching process and the
design of particular query services based on interrelated ontology data after
matching. Since the ontology data matching method can not completely guar-
antee correct decisions, it is desirable to incorporate peer interaction to correct
them. Given the interrelated data across different peers, particular query or rea-
soning services will be designed to take advantage of them.

References

1. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American
284(5) (2001) 34–43

2. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P., eds.:
The description logic handbook : theory, implementation, and applications. Cam-
bridge University Press, New York (2002)

3. McGuinness, D.L., Harmelen, F.v.: Owl web ontology language overview. w3c
recommendation. http://www.w3.org/TR/owl-features/ (2004)

4. Nejdl, W., Wolf, B., Qu, C., Decker, S., Sintek, M., Naeve, A., Nilsson, M., Palmer,
M., Risch, T.: Edutella: a p2p networking infrastructure based on rdf. In: WWW
2002. ACM Press, Honolulu, Hawaii, USA (2002) 604–615

5. Halevy, A.Y., Ives, Z.G., Mork, P., Tatarinov, I.: Piazza: data management infras-
tructure for semantic web applications. In: WWW2003. (2003) 556–567

6. Kalyanpur, A., Parsia, B., Sirin, E., Cuenca-Grau, B., Hendler, J.: Swoop: A ’web’
ontology editing browser. Journal of Web Semantics 4(2) (2006) 144–153

7. Handschuh, S., Staab, S., Maedche, A.: Cream: creating relational metadata with
a component-based, ontology-driven annotation framework. In: Proceedings of the
international conference on Knowledge capture. ACM Press (2001) 76–83

8. Cimiano, P., Handschuh, S., Staab, S.: Towards the self-annotating web. In:
Proceedings of the 13th international conference on World Wide Web. (2004) 462–
471

9. Doan, A., Halevy, A.Y.: Semantic-integration research in the database community.
AI Mag. 26(1) (2005) 83–94

10. Tejada, S., Knoblock, C.A., Minton, S.: Learning domain-independent string trans-
formation weights for high accuracy object identification. In: KDD ’02, New York,
NY, USA, ACM Press (2002) 350–359

11. Bilenko, M., Mooney, R.J.: Adaptive duplicate detection using learnable string
similarity measures. In: KDD ’03, New York, NY, USA, ACM Press (2003) 39–48

12. Boag, S., Chamberlin, D., Fernndez, M.F., Florescu, D., Robie, J., Simeon, J.:
Xquery 1.0: An xml query language. http://www.w3.org/TR/xquery (2006)

13. Vapnik, V.N.: The nature of statistical learning theory. 2nd edn. Statistics for
engineering and information science. Springer, New York (1999)

14. Gusfield, D.: Algorithms on strings, trees, and sequences : computer science and
computational biology. Cambridge University Press (1997)

15. Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval.
Inf. Process. Manage. 24(5) (1988) 513–523

16. Baeza-Yates, R., Ribeiro, B.d.A.N.: Modern information retrieval. Addison-Wesley
Longman, Reading, Mass. (1999)

17. Joachims, T.: Text categorization with suport vector machines: Learning with
many relevant features. In: ECML ’98: Proceedings of the 10th European Confer-
ence on Machine Learning, London, UK, Springer-Verlag (1998) 137–142


