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Abstract: Bifidobacterium are prominent gut commensals that produce the short-chain fatty acid
(SCFA) acetate, and they are often used as probiotics. Connections between the gut and the lung,
termed the gut–lung axis, are regulated by the microbiome. The gut–lung axis is increasingly
implicated in cigarette smoke-induced diseases, and cigarette smoke exposure has been associated
with depletion of Bifidobacterium species. In this study, we assessed the impact of acetate-producing
Bifidobacterium longum subsp. longum (WT) and a mutant strain with an impaired acetate production
capacity (MUT) on cigarette smoke-induced inflammation. The mice were treated with WT or MUT
B. longum subsp. longum and exposed to cigarette smoke for 8 weeks before assessments of lung
inflammation, lung tissue gene expression and cecal SCFAs were performed. Both strains of B. longum
subsp. longum reduced lung inflammation, inflammatory cytokine expression and adhesion factor
expression and alleviated cigarette smoke-induced depletion in caecum butyrate. Thus, the probiotic
administration of B. longum subsp. longum, irrespective of its acetate-producing capacity, alleviated
cigarette smoke-induced inflammation and the depletion of cecal butyrate levels.

Keywords: probiotic; Bifidobacterium; cigarette smoke; COPD; inflammation; SCFA; acetate

1. Introduction

The genus Bifidobacterium is comprised of strictly anaerobic Gram-positive rods [1,2].
Whilst they are particularly prominent in the gut microbiome during early life, especially
amongst breastfed infants, their role in human health remains important in adulthood, and
they are widely used as probiotics [2–4]. Bifidobacterium are considered to be beneficial
components of the gut microbiome, inducing a range of immunoregulatory responses
in the host, and promoting the effective clearance of bacterial and viral infections in the
gastrointestinal tract, while limiting excessive inflammation [1,2]. Although the beneficial
effects of Bifidobacterium spp. are often associated with their production of the short-
chain fatty acid (SCFA) acetate [5], they can also regulate immune responses through other
metabolites or direct interactions with immune cells via antigen presentation to host pattern
recognition receptors [6,7].

The connections between the gut microbiome and the lungs are being increasingly
well recognized, and cigarette smoking has a strong influence on the microbiome and
the gut–microbiome–lung axis [8,9]. Gut microbiome changes are implicated in smoking-
associated lung diseases such as chronic obstructive pulmonary disease (COPD) [10] and
lung cancer [11], as well as inflammatory bowel [12] and non-alcoholic fatty liver [13]
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diseases. The abundance of Bifidobacterium and SCFAs (including acetate) are reduced
by cigarette smoke exposure in humans [4,14,15] and rats [16]. Additionally, cigarette
smoke condensate impaired the growth, exopolysaccharide and acetate production of
Bifidobacterium animalis in vitro [17].

Bifidobacterium longum subsp. longum is an acetate-producing species that is commonly
used as a probiotic [18], and it has been previously associated with a lower incidence
of asthma [19], demonstrating a likely involvement in the gut–lung axis. Additionally,
the insertional mutagenesis of an ABC-type transporter gene in B. longum subsp. longum
NCC2705 produced a strain with a severely impaired ability to produce acetate [5]. This
enabled us to distinguish between the effects mediated by acetate and those mediated by
other bacterial products to define the underlying mechanisms by which this bacterium
interacts with host immunity.

Given the critical role of smoking in the development of chronic respiratory and
systemic inflammatory diseases [20–23] and its association with reduced Bifidobacterium
abundance [8,14,16], we aimed to assess the effectiveness of probiotic B. longum subsp.
longum in reducing cigarette smoke-induced inflammation in mice. We utilized two strains
of B. longum subsp. longum which differed in their acetate production capacity and fa-
cilitated the investigation of the role of acetate in mediating the effects. Airway and
parenchymal inflammation were assessed after cigarette smoke exposure. The gene ex-
pression of inflammatory cytokines and adhesion factors was also assessed, and the SCFA
abundance was quantified in caecum contents. This demonstrated that both the strains of
B. longum subsp. longum alleviated cigarette smoke-induced inflammation and the expres-
sion of cytokines and adhesion factors, which is associated with protection against cigarette
smoke-induced depletion in caecum butyrate levels.

2. Results

Female C57BL/6 mice were administered either vehicle (PBS + 0.05% L-cysteine) or
B. longum subsp. longum by gavage three times per week and exposed to cigarette smoke or
normal air for 8 weeks before assessments of inflammation, cytokine and adhesion factor
gene expression, and cecal SCFA abundance were performed. Two strains of B. longum
subsp. longum were used: a wild-type strain (WT; NCC2705) capable of producing acetate
and a genetically modified strain (MUT; NCC9036) which has an impaired ability to produce
acetate [5].

2.1. B. longum subsp. longum Reduced Cigarette Smoke-Induced Airway and
Parenchymal Inflammation

Cigarette smoke exposure induced airway inflammation in vehicle-treated mice, with
increased total leukocytes, neutrophils, macrophages and lymphocytes in bronchoalveolar
lavage fluid (BALF, Figure 1A–D). In the mice administered with either strain of B. longum
subsp. longum, the cigarette smoke exposure also increased the amount of total leukocytes,
neutrophils and macrophages (p = 0.06; WT), but the magnitude of airway inflammation
was significantly lower in the mice receiving the B. longum subsp. longum MUT strain. The
parenchymal immune cells were enumerated in hematoxylin/eosin-stained histopathology
sections, and this demonstrated that both strains of B. longum subsp. longum significantly
attenuated cigarette smoke-induced parenchymal inflammation. Thus, the mutant strain of
B. longum subsp. longum, with a lower acetate production potential, attenuated both airway
and parenchymal inflammation, whilst wild-type B. longum subsp. longum attenuated
parenchymal inflammation only.
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8 weeks. (A) Total leukocytes, (B) neutrophils, (C) macrophages, and (D) lymphocytes were quan-

tified in bronchoalveolar lavage fluid (BALF). (E) Immune cells in lung parenchyma were quantified 

in hematoxylin/eosin-stained lung sections. (F) Representative histology images. Black arrows indi-

cate immune cells. Data are presented as mean ± SEM. N = 5–6. * = p < 0.05. 
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associated with the suppression of cytokine and adhesion factor expression. 

Figure 1. Probiotic Bifidobacterium longum subsp. longum reduced cigarette smoke-induced lung
inflammation. Mice received wild-type (WT) or mutant (MUT) B. longum subsp. longum or vehicle
(Veh) by oral gavage and were exposed to cigarette smoke (CS; black) or normal air (Air; white)
for 8 weeks. (A) Total leukocytes, (B) neutrophils, (C) macrophages, and (D) lymphocytes were
quantified in bronchoalveolar lavage fluid (BALF). (E) Immune cells in lung parenchyma were
quantified in hematoxylin/eosin-stained lung sections. (F) Representative histology images. Black
arrows indicate immune cells. Data are presented as mean ± SEM. N = 5–6. * = p < 0.05.

2.2. B. longum subsp. longum Reduced Cigarette Smoke-Induced Cytokine and Adhesion
Factor Expression

The gene expression of cytokines and adhesion factors was assessed in the whole
lung tissue by qPCR. The cigarette smoke exposure increased the mRNA expression of the
cytokines tumor necrosis factor-α (Tnfa), chemokine (C-C motif) ligand (Ccl)8, chemokine
(C-X-C motif) ligand 2 (Cxcl2), and Ccl22 (Figure 2A–D). WT B. longum subsp. longum
significantly attenuated Tnfa and Ccl8 expression (Figure 2A,B), and MUT B. longum subsp.
longum attenuated Tnfa, Ccl8, and Cxcl2 expression (Figure 2A–C). However, Ccl22 expres-
sion was not reduced by either strain of B. longum subsp. longum (Figure 2D). The cigarette
smoke also induced increases in the expression of adhesion factors such as vascular cell
adhesion molecule-1 (Vcam1) and intercellular adhesion molecule-1 (Icam1; Figure 2E,F).
These increases were alleviated by both the WT and MUT strains of B. longum subsp.
longum, demonstrating that their anti-inflammatory impacts are likely associated with the
suppression of cytokine and adhesion factor expression.
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butyrate in the mice treated with WT B. longum subsp. longum and exposed only to normal 

Figure 2. Probiotic Bifidobacterium longum subsp. longum suppressed cigarette smoke-induced
cytokine and adhesion factor gene expression. Mice were treated with wild-type (WT) or mutant
(MUT) B. longum subsp. longum or vehicle (Veh) by oral gavage and were exposed to cigarette
smoke (CS: black) or normal air (Air: white) for 8 weeks. (A) Tnfa, (B) Ccl8, (C) Cxcl2, (D) Ccl22,
(E) Vcam1, and (F) Icam1 gene expression relative to Hprt was assessed by qPCR in lung tissues. Data
are presented as mean ± SEM. N = 5–6. * = p < 0.05.

2.3. B. longum subsp. longum Prevented Cigarette Smoke-Induced Butyrate Depletion

The production of acetate is severely impaired in the MUT B. longum subsp. longum
strain, which appeared to have greater anti-inflammatory impacts compared to those of the
WT strain. The cigarette smoke exposure increased the total SCFA abundance in the mice
treated with WT, but not in those treated with MUT B. longum subsp. longum (Figure 3A).
This effect was primarily driven by acetate, the amount of which was significantly increased
by the cigarette smoke exposure in both the vehicle and WT B. longum subsp. longum-treated
mice, but not in the MUT B. longum subsp. longum-treated mice (Figure 3B). Propionate
abundance was highly variable and not significantly altered by either the cigarette smoke
exposure or treatment (Figure 3C). However, cigarette smoke exposure reduced caecum
butyrate (Figure 3D), which was partially alleviated by the treatment with WT B. longum
subsp. longum. This also corresponded to an increase (p = 0.0503) in butyrate in the mice
treated with WT B. longum subsp. longum and exposed only to normal air. Interestingly,
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MUT B. longum subsp. longum completely reversed the cigarette smoke-induced depletion
of butyrate, to the extent that the cigarette smoke increased the butyrate levels in the MUT
B. longum subsp. longum-treated mice to be greater than those of the air-exposed controls.
Overall, the anti-inflammatory effects of B. longum subsp. longum were associated with
protection against the cigarette smoke-induced depletion of butyrate, which was most
pronounced in the mice treated with MUT B. longum subsp. longum.
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Figure 3. Probiotic Bifidobacterium longum subsp. longum protected against cigarette smoke-induced
decreases in cecal butyrate. Mice treated with wild-type (WT) or mutant (MUTMUT) B. longum subsp.
longum or vehicle (Veh) by oral gavage and were exposed to cigarette smoke (CS: black) or normal air
(Air: white) for 8 weeks. (A) Total levels of short chain fatty acids (SCFAs), (B) acetate, (C) propionate,
and (D) butyrate were quantified in cecal contents by gas chromatography. Data are presented as
mean ± SEM. N = 5–6. * = p < 0.05.

3. Discussion

Overall, these results demonstrate that probiotic B. longum subsp. longum alleviates
cigarette smoke-induced lung inflammation in mice, as evidenced by the reduced number
of BALF and parenchymal immune cells. While further research is required in specific
disease contexts, these findings indicate the use of B. longum subsp. longum or other
probiotics as potential treatments to reduce the risk of developing chronic inflammatory
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diseases of the lungs. Smokers frequently struggle to stop smoking behavior, and even
if smoking cessation is successful, chronic inflammation and microbial dysbiosis persist
afterward, which are key drivers of disease [24,25]. Billions of people worldwide are
exposed to chronic air pollution, which can exert similar effects [22,26]. Interventions to
rectify these chronic mechanisms of pathogenesis, including probiotics, could alleviate this
disease burden.

TNFα, which is primarily produced by macrophages, drives numerous inflammatory
responses including the upregulation of Icam1 and Vcam1 [27,28]. It has been implicated
in cigarette smoke-induced airway remodeling, emphysema, the epithelial–mesenchymal
transition, and lung cancer [29,30]. Ccl8 is a monocyte chemoattractant [31], whilst CXCL2
acts largely as a neutrophil chemoattractant [32] and promotes neutrophil adhesion for
migration to the sites of inflammation [33]. The production of inflammatory cytokines
such as Tnfa, Ccl8, and Cxcl2 is a normal acute response to cigarette smoke exposure,
but chronic exposure leads to persistent inflammation that drives chronic respiratory
disease [21,29,32,34,35], suggesting that there are benefits to alleviation by B. longum subsp.
longum. However, the protective effects of B. longum subsp. longum were not universal, as
neither strain alleviated the cigarette smoke-induced expression of Ccl22.

The adhesion molecules Icam1 and Vcam1 contribute to the adhesion and migration
of immune cells from the circulation into lung tissue, and their reduced expression may
contribute to the anti-inflammatory effects of B. longum subsp. longum. In addition, smokers
are at increased risk of respiratory infections [36,37], and Icam1 is an adhesion target
for bacterial and viral pathogens such as Haemophilus influenzae [38] and rhinovirus [39].
B. longum subsp. longum has been associated with protection against both bacterial [40]
and viral infections in mice [3,41], and the use of Bifidobacterium probiotics reduces the
incidence of respiratory infections in humans [42–44]. Similarly, Icam1 has also been
implicated in tumor metastasis in the lung [45], and both Icam1 and Vcam1 contribute to
atherosclerosis [46], which are diseases associated with cigarette smoking [34]. Although
these findings of a reduced mRNA expression of cytokines and adhesion factors indicates a
potential mechanism by which B. longum subsp. longum alleviates cigarette smoke-induced
inflammation, we did not investigate the changes in the proteins. The validation of changes
in the protein abundance should be further investigated.

Interestingly, the MUT B. longum subsp. longum strain, which has a severely impaired
ability to produce acetate, successfully alleviated all of the measures of lung inflamma-
tion, and unlike the WT strain, it even reduced the BALF immune cell influx. Thus, the
mechanism of protection was independent of acetate production. Indeed, in contrast to the
findings in humans [15] and rats [16], the total SCFAs were not decreased by the cigarette
smoke exposure, but they were increased by it, which was driven largely by the increased
acetate levels in the vehicle and WT B. longum subsp. longum-treated mice. Other models
in mice have identified no impact of cigarette smoke on the fecal SCFA levels, albeit with
the concurrent administration of poly I:C, which suggests that cigarette smoke-induced
changes in SCFA abundance are dependent on the experimental conditions [47].

The presence or absence of particular bacteria, such as the nicotine-degrading Bac-
teroides xylanisolvens can substantially alter the responsiveness of the microbiome to exoge-
nous challenges such as cigarette smoke [13]. Moreover, host–microbiome interactions are
bi-directional, and the characteristics of the host can influence the effects of microbiota and
vice versa. For example, heat-inactivated Bifidobacterium spp. isolated from allergic infants
induced greater pro-inflammatory responses than those did from healthy individuals [48].
Cigarette smoke can directly affect the virulence of bacteria [49], and it alters the growth,
metabolism, and exopolysaccharide structure of B. animalis [17]. Given that cigarette smoke
exposure causes a gastrointestinal pathology [35,50–52], there is likely a direct influence
of cigarette smoke on local microbiota which is further influenced by host–microbe and
microbe–microbe interactions in this complex system. Thus, it is likely that the host species
and/or environment-associated differences in the microbiome composition account for the
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differing effects of cigarette smoke exposure on SCFA abundance between the previous
studies and our current findings.

Although there was no cigarette smoke-induced depletion of caecum acetate and
B. longum subsp. longum did not increase the amount of acetate, WT B. longum subsp.
longum partially alleviated the cigarette smoke-induced butyrate depletion and MUT
B. longum subsp. longum increased the amount of butyrate in the cigarette smoke-exposed
mice. B. longum subsp. longum is not a butyrate producer, but it can increase the rate of
butyrate production through the cross-feeding of bacteria containing butyryl CoA:acetate
CoA-transferase [53]. Thus, Bifidobacterium species can co-operate with other members of
the microbiome to more efficiently digest complex carbohydrates, facilitating an increased
availability of nutrients for butyrogenesis by other commensal microorganisms [54].

Finally, while increased butyrate abundance may contribute to the anti-inflammatory
effects of B. longum subsp. longum, Bifidobacterium species can directly interact with the
hosts’ immunity independent of the SCFAs. B. breve reduced the inflammatory responses in
macrophages exposed to cigarette smoke extract in vitro [6], and mice treated intranasally
with exopolysaccharide from B. longum subsp. longum stimulated TLR2 to promote al-
lergic tolerance through IL-10 and an increased M1/M2 macrophage ratio [7]. Such anti-
inflammatory effects help to maintain homeostatic immune tolerance to commensal gut
microbiota [55], and they may directly influence the immune cells in the lung if ligands
enter the circulation through cigarette smoke-induced “leaky” epithelial barriers [50]. Inter-
estingly, cigarette smoke alters the structure of the TLR2-agonist exopolysaccharide [17],
and TLR2 protects against cigarette smoke-induced lung pathology [56], but whether this
is associated with stimulation by the gut microbiota is unclear.

Overall, this study demonstrates that the probiotic administration of B. longum subsp.
longum, irrespective of their acetate-producing capacity, alleviated cigarette smoke-induced
inflammation and the depletion of cecal butyrate levels. Further research in specific disease
contexts will aid in determining whether this is a viable intervention.

4. Materials and Methods
4.1. Mice, Cigarette Smoke Exposure, and Probiotic Treatment

Female C57BL/6 mice (6–8 weeks old) were obtained from Australian Bioresources
(Moss Vale, Australia). The mice were exposed to normal air or the smoke of twelve 3R4F
reference cigarettes (University of Kentucky, Lexington, KY, USA) in a custom-designed,
purpose-built, nose-only inhalation apparatus (CH Technologies, Westwood, NJ, USA)twice
per day, 5 days per week, for 8 weeks, as previously described [24,51,52,57–64]. The mice
were treated with 3 × 108 colony forming units (cfu) of B. longum subsp. longum by intra-
gastric gavage, with non-treated mice receiving a vehicle (PBS + 0.05% L-cysteine, 150 µL).
Two strains were utilized: B. longum subsp. longum NCC2705 (WT), or the genetically
modified strain B. longum subsp. longum NCC9036 (MUT), where the sugar ABC trans-
porter solute-binding protein BL0033 was disrupted by insertional mutagenesis, causing a
significantly reduced capacity to produce acetate [5]. All of the experiments were approved
by the University of Newcastle Animal Care and Ethics Committee (A-2013–303).

4.2. Airway Inflammation

Airway inflammation was quantified by the total and differential enumeration of
inflammatory cells in BALF [24,56–58]. Briefly, two 0.4 mL washes with PBS of the left lung
were performed, the red blood cells were removed by lysis, and the total inflammatory
cells counted, cytospun, air dried and stained with May–Grunwald–Giemsa stain for
differential counts.

4.3. Parenchymal Inflammation

For the histological analysis, the lung tissue was perfused with saline administered via
a cardiac puncture, inflated (500 µL), and fixed in formalin prior to mounting, sectioning,
and staining. Parenchymal inflammation was assessed from hematoxylin and eosin (H&E)-
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stained lung sections by counting the number of inflammatory cells in 10 randomized fields
of view at 100×magnification [24,56,58,65].

4.4. RNA Extraction, Reverse Transcription, and qPCR

Freshly excised lung and colon tissues were snap frozen for subsequent storage at
80 ◦C. The RNA was extracted using standard protocols [50,56,58,59,65]. Briefly, the tissue
was thawed and homogenized (1 mL of TRIzol, 4 ◦C; ThermoFisher Scientific, Scoresby,
Australia) using a tissue tearor homogenizer (Biospec Products, Bartlesville, OK, USA).
The DNA was precipitated by chloroform addition, which was followed by centrifugation
(12,000× g, 15 min, 4 ◦C), and the RNA-containing aqueous phase was collected. The RNA
was precipitated by the addition of isopropyl alcohol and pelleted (12,000× g, 10 min,
4 ◦C) prior to 2 washes with 75% ethanol. The RNA pellets were dissolved in nuclease-
free water, and the RNA purity and quantity were assessed by absorbance at 260 and
280 nm using a Nanodrop spectrophotometer. For the cDNA synthesis, the RNA (1000 ng)
was pre-incubated with 1 unit of DNAse I (Sigma-Aldrich, Macquarie Park, Aus; 15 min,
room temperature). The samples were heated (10 min, 65 ◦C) prior to the addition of
random hexamer primers (50 ng, Meridian Bioscience, Memphis, TN, USA) and dNTPs
(10 mM, Meridian Bioscience, Memphis, TN, USA), and it was further heated (5 min,
65 ◦C). Dithiothreitol (10 mM) and Bioscript reverse transcriptase (200 units in reaction
buffer, Meridian Bioscience, Memphis, TN, USA) were added, and reverse transcription
was performed (10 min, 25 ◦C; 50 min, 42 ◦C; 15 min, 70 ◦C). The qPCR analysis was
performed in 384-well plates with primers for specific transcripts (Table 1) and SYBR-green-
based detection using a Viia 7 Real Time PCR system (ThermoFisher Scientific, Scoresby,
Australia). Data are expressed as the relative abundance compared to hypoxanthine-
guanine phosphoribosyltransferase (Hprt).

Table 1. List of primers for qPCR.

Target Forward Sequence (5′–3′) Reverse Sequence (5′–3′)

Hprt AGGCCAGACTTTGTTGGATTTGAA CAACTTGCGCTCATCTTAGGCTTT
Tnfa TCTGTCTACTGAACTTCGGGGTGA TTGTCTTTGAGATCCATGCCGTT
Ccl8 GCAGCAGGTGACTGGAGCCT GCCTGCTGCTCATAGCTGTCCC
Cxcl2 TGCTGCTGGCCACCAACCAC AGTGTGACGCCCCCAGGACC
Ccl22 TGGCTACCCTGCGTCGTGTCCCA CGTGATGGCAGAGGGTGACGG
Vcam1 CCCACCATTGAAGATACCGGGA TAGTATAGGAGAGGGGCTGACC
Icam1 GCCTTGGTAGAGGTGACTGAG GACCGGAGCTGAAAAGTTGTA

4.5. SCFA Quantification

The SCFA quantification was performed using established methods [66,67]. Briefly,
caecum contents were mixed thoroughly with ultrapure water (2000 µL) by mechanically
disrupting the contents using a pipette tip and vortexing them. The extracts were passed
through 0.22 µm filters, and an aliquot of sample (100 µL) mixed with 10% formic acid
(11 µL) and injected into a gas chromatograph with a polar capillary column (DB-FFAP;
Agilent, Santa Clara, CA, USA) at 140 ◦C and a flame ionization detector at 250 ◦C. A
standard calibration curve was used to quantify the SCFAs by the peak area.

4.6. Statistical Analysis

The statistical analysis was performed using GraphPad Prism v9.0 (San Diego, CA,
USA), including the identification of the outliers using Grubbs test. The data were analyzed
by one-way ANOVA with Holm-Šídák’s post hoc test.
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