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Abstract: Fibrous concrete has good properties such as high ductility, high strength, suitable energy 

absorption and cracking resistance, which can be useful in many applications. This type of concrete 

is one of the best materials used in the construction of impact-resistant masonries, such as burial 

masonry structures, and explosive masonry warehouses. In this study, an artificial intelligence as-

sessment based on the experimental test data from a laboratory has been performed on the fibrous 

concrete to evaluate the behavior of the samples at elevated temperatures and determine the most 

governing parameter on the mechanical properties of the fibrous concrete at elevated temperatures. 

For the first time, a hybrid intelligence algorithm has been developed based on the neural network 

structure using both genetic and swarm optimization algorithms. The ANFIS-PSO-GA (APG) algo-

rithm was trained with experimental data and evaluated the flexural load and deflection of the sam-

ples. In order to detect the most prominent feature in the fire resistance of the fibrous concrete, five 

different subdatasets were designed. The results of the APG algorithm have been challenged with 

the ANFIS-PSO algorithm, which is a well-known hybrid numerical evaluation algorithm. As per 

the results, the newly designed APG algorithm has been successfully performed on both deflection 

and flexural prediction phases. Based on the numerical achievements, fiber features such as the fiber 

content and fiber mechanical properties are governing factors on the fibrous concrete resistance at 

elevated temperatures. 
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1. Introduction 

Using reinforcing fibers, fibrous concrete (FC) in fact is a composite with higher ten-

sile and compressive strength [1]. This composite has good integrity and consistency and 

enables concrete to be utilized as an appealing material for producing high-strength sur-

faces. FC is also extremely energy-absorbing and cannot be easily annihilated under im-

pact loads. In the construction of industrial flooring, this type of concrete can be used 

instead of conventional reinforced concrete ]2[ . Other applications of this concrete in-

clude the construction of prefabricated building components such as canopy panels or 

concrete spraying on curved surfaces such as tunnels. Notably, concrete samples with 

moderate Al/Si ratios demonstrate greater resistance to structural evolutions compared to 

samples with other Al/Si ratios [3–5]. 

Applying this concrete to a structure also has the advantages of being insulated 

against sound and high-speed performance, but as the fibers inside the concrete are com-

Citation: Lihua, C.; Far, H.;  

Mortazavi, M.; Ragab, A.E.  

Comparative Study in Design of  

Fiber-Reinforced Concrete at  

Elevated Temperatures by  

Numerical Evaluation through  

Developed Hybrid Metaheuristic  

Algorithms. Buildings 2023, 13, 2045. 

h�ps://doi.org/10.3390/ 

buildings13082045 

Academic Editors: Jiajia Zhou and 

Chang Wu 

Received: 1 June 2023 

Revised: 29 July 2023 

Accepted: 4 August 2023 

Published: 10 August 2023 

 

Copyright: © 2023 by the authors. Li-

censee MDPI, Basel, Swi�erland. 

This article is an open access article 

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (h�ps://cre-

ativecommons.org/licenses/by/4.0/). 



Buildings 2023, 13, 2045 2 of 39 
 

pletely random, they cannot usually be used in concrete. Steel fibers resist crack propaga-

tion and increase concrete resistance against fatigue, impact, shrinkage and thermal stress. 

Polymeric fibers used in concrete are natural and synthetic polymer and have various for-

mulations, including acrylic, aramid, carbon, nylon, polyester, polyethylene (PE) and pol-

ypropylene (PP). Basalt fiber-reinforced polymer (BFRP) sheets significantly enhance the 

shear capacity and ductility of reinforced concrete (RC) beams, which has been demon-

strated through experiments and validated with a cohesive element-based 3D finite-ele-

ment model [6–9]. The uniform dispersion of fibers in cement-based materials enhances 

deformation performance, inhibits shrinkage, and improves fracture toughness [10–12]. 

Approximate costs and some of the leading mechanical and physical properties of poly-

meric fibers are indicated in Table 1 ]13[ . 

Table 1. Typical fiber features. 

Fiber Type 
Specific Grav-

ity (kg/m3) 

Modulus of Elas-

ticity (Gpa) 

Tensile 

Strength (Mpa) 

Elongation at 

Break (%) 

Acid/Alkali Re-

sistance 

Cost 

($/kg) 

Polypropylene (PP) 

[14–16] 
910 1.5–12 240–900 15–80 High 1–2.5 

Polyethylene (PE) 

[17–19] 
920–960 5–100 80–600 4–100 High 2–20 

Steel (ST) for com-

parison [20] 
7840 200 500–2000 0.5–3.5 Low to High 1–8 

Concrete is a vulnerable material against fire and elevated temperatures; as per stud-

ies, spalling is the most significant shortcoming of plain concrete at elevated temperatures 

[21,22]. Likewise, other types of concrete against different heats may present complicated 

behavior like reducing compressive strength depending on the amount of exposure time 

and the level of the temperature. The strength at relatively low temperatures remains con-

stant, and in some cases, it moderately increases. It is supposed that this increment is due 

to a hydration reaction between leftover unhydrated cement particles and the free water 

inside the concrete [23]. The strength reduces by about 15–40% when the temperature is 

close to 300 °C. At 550 °C, it decreases by about 55–70% compared to its initial value. The 

change in color is also seen in addition to the strength’s change. Between 300 and 400 °C, 

the color changes from gray to red because of iron oxide oxidation, which is available in 

the aggregate and the cement paste. The compressive and flexural experiments performed 

by Lau and Anson were carried out on both plain concrete and 1% SFRC at elevated tem-

peratures in the range of 105 °C and 1200 °C [24]. The authors reported that fibrous con-

crete with 0.25% to 0.5% of FC showed an average enhanced shear strength of 8.82% to 

13.44% at higher temperatures up to 800 °C [25]. 

Based on a study of self-consolidating concrete containing PP fibers at elevated tem-

peratures, a specific behavior was observed, which includes lower residual compressive 

strength than plain concrete. Accordingly, this performance was due to producing micro-

channels along fibers melting at higher temperatures [26]. The elasticity modulus of con-

crete in subheated environments above 100 °C is approximately 100 times higher than that 

of PP samples, and it also increases about 1000 times at 150 °C [27]; in the volumes of 0.1% 

and 0.2%, the porosity of PPFRC increased considerably with rising temperature. At 300 

°C, the relative porosity of PPFRC is 152% higher than that of non-fiber concrete. The split-

ting tensile, compressive strengths and elasticity modulus of PPFRC were reduced stead-

ily with increasing temperature [28]. 

Raising the ambient state to 400 °C leads to improving the toughness of the PEFRC 

concrete which is due to the enhanced bond interactions induced by the increased molec-

ular heat of the concrete texture and the fluxing surface of the PE fibers [29]. The behavior 

of mortar incorporating PP-PE fibers with a different dosage in the range of 0.3% to 1.2% 
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subjected to elevated temperatures was evaluated, and it was found that the flexural de-

flection of this mortar has significantly increased compared to non-fiber specimens [30]. 

At 650 °C, the reduction in deflection of plain mortar was obtained by about 77%, while 

mortar containing 9% fiber was only about 13% (e.g., from 1.40 to 1.22 mm). 

Although there are several investigations performed regarding FRC at elevated tem-

peratures, most of the performed experiments were not able to indicate the capability of 

FRC. Frame beams offer easy construction, steel savings and robust seismic performance 

with optimized parameters [31–33]. For the identification of fiber properties, using a single 

value of mechanical strength at the first crack moment is not conservative. Likewise, based 

on the first crack strength, any conclusion could be misleading [34].  

On the other hand, the flexural toughness test appears to be a more suitable option 

to reach the fiber’s properties compared to the compression test. This is because the main 

purpose of mixing fibers into concrete is for enhancing the ability of concrete in terms of 

energy absorption and load bearing after the first crack [35–38]. Accordingly, by a�rib-

uting the toughness indices to the related flexural toughness, reliable information would 

derive and empower be�er access to the properties of fiber under high temperatures [39]. 

The composite beam externally bonded with a carbon fiber-reinforced plastic plate en-

hances the flexural behavior and load capacity, providing a solution to weak tensile ca-

pacity in ordinary concrete beams [40]. By understanding the statistical random rules gov-

erning construction safety accidents, this research contributes to enhancing safety 

measures and risk management in the construction sector [41–43]. 

The partial inclusion of fiber in FRC leads to changes in the properties such as me-

chanical properties [44,45]. Although these changes could be seen in the experiment, real-

izing the most influencing parameter may not be easy at all. To solve this issue, employing 

artificial intelligence (AI) can be helpful [46–48]. On the one hand, an adaptive neuro-

fuzzy inference system (ANFIS) automatically performs the learning and adaptation cy-

cles, which is a compliment in comparison to other algorithms. On the other hand, ANFIS 

can process and evaluate multivariable problems without adjusted system factors just by 

employing simpler solutions [49]. The first priority of using ANFIS among other neural 

networks is avoiding a high nonlinearity of approaches. As a ma�er of fact, the ANFIS has 

been successfully used to find the most governing parameters of flexural strength [50]. 

Furthermore, ANFIS has the ability to diminish the ambiguity in the process by eliminat-

ing selected input parameters to prepare the most desirable prediction conditions [51]. In 

other words, the ANFIS network was used to convert the multiple performance charac-

teristics into a single performance index. Establishing a database of 3D aggregates from 

X-ray CT scans enables realistic heterogeneous modeling and distributive analysis in con-

crete composite research [52]. Generally, fuzzy systems are used to interpret and assess 

the data; however, some shortcomings have already been faced with the use of these al-

gorithms as accuracy and versatility. Particle swarm optimization (PSO) is an evolution-

ary intelligence algorithm that was inspired by the social behavior of bird flocking or fish 

schooling [53]. As per different studies, PSO is potentially comparable to genetic algo-

rithm (GA), and it has been utilized satisfactorily in many engineering issues [54]. Due to 

the relatively irregular laboratory data in the concrete sector, as well as investigations on 

the application of different fibers, artificial intelligence models can be well suited for the 

prediction of FRC properties. This algorithm benefits from a swift convergence rate 

among the other evolutionary algorithms, and it is basically continuous. In this article, the 

optimization process is completed by the PSO algorithm. Since the objective function must 

be evaluated many times in metaheuristic algorithms, it is easier to use PSO instead of 

simulation software. Using a fuzzy neural network, we obtained the pa�ern between the 

variables of the problem and the objective function and then used it to calculate the bend-

ing load and concrete strength. 

In order to identify FRC properties, for the first time, an ANFIS algorithm is adopted 

to work along with two different pioneer hybrid metaheuristic algorithms as PSO and 

PSO-GA not only to detect the most determining deflection factor of the FRC but also to 
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predict the flexural response of the FRC at elevated temperatures. Based on an experi-

mental test of FRC structural elements against higher-level heats, the inputs are collected 

and prepared for the soft-computing section [55]. The APG algorithm is developed by la-

boratory data and employed to predict and evaluate the properties of the fibrous concrete. 

The ANFIS-PSO is performed to challenge the APG results. Based on the achieved results, 

the new APG algorithm was successfully developed where the behavior of the samples 

was accurately predicted, most of the governing factors for FRC design have been intro-

duced, and the ways of a reliable design have been discussed. 

2. Materials and Methods 

2.1. Test Procedure and Data Derivation 

The conducted data have been collected from a previous test that has worked on the 

same concept and characteristics [29]. All of the samples were produced from the same 

concrete in the 15 cm × 15 cm × 15 cm standard cubes. The method of curing for the con-

crete specimens involved a specific heating profile following the ISO 834 fire curve. The 

test specimens were subjected to a transient heating process in an electric furnace. Before 

heating, the specimens were covered with a layer of steel mesh to protect the furnace from 

potential damage caused by concrete debris resulting from explosive spalling. The objec-

tive of the mix design was to achieve a compressive strength of over 90 MPa and prevent 

explosive spalling under fire conditions. Figure 1 illustared the oven chamber section 

based on ASTM E119-98.  To be�er acknowledge the mix proportions, we have enlisted 

the significant properties below: 

 Cement: ASIA@CEM I 52.5 N Portland cement was used to achieve high strength. 

 Silica Fume: Grade 940 silica fume from Elkem Microsilica@ was included in the mix. 

 Coarse Aggregate: Chippings with a maximum size of 10 mm were used as the coarse 

aggregate. 

 Fine Aggregate: Natural river sands were used as the fine aggregate. 

 Superplasticizer: Sika® Visc°Crete®-2192 (71800, Nilai, Negeri Sembilan D.K., Malay-

sia) was applied as a superplasticizer to improve workability. 

 Polypropylene (PP) Fibers: Monofilament PP fibers, 12 mm long with a diameter of 

30 µm, were included at a dosage of 0.2% in terms of volumetric content. 

 Steel Fibers: Steel fibers with a length of 35 mm and a diameter of 540 µm, sourced 

from Dramix® 3D 6535BG (Bosfa ©, Manukau, Auckland, New Zealand), were used 

at a dosage of 1% in terms of volumetric content. 

The mix design resulted in a slump of 170 mm, which was classified as S4 according 

to EN 12350-2, implying good workability. 

In the case of the flexural load capacity test, for each sample, a simple support beam 

was used and three-point loading was applied to the 300 mm span with an identified rate 

of 0.05 in./min. In terms of the load–deflection curve, using a PC-based data acquisition 

system, the results were collected. The samples were subjected to three determined heats 

including 400 °C, 600 °C and 800 °C (Figure 2) [12]. As per Figure 3 according to ASTM 

C1018, the toughness indices have been calculated by load–deflection curve derived from 

the test results. Temperatures increased according to the ASTM E119-98 standard temper-

ature–time curve. 

Prior to the peak, the FRC response was completely affected by the response of the 

concrete matrix. Whatever happened to plain concrete under high temperature showed 

similar effects on the pre-peak responses of the FRC. On the other hand, there are two 

factors that affect the post-peak flexural response of FRC including the temperature level 

and FRC type. At lower temperatures near 400 °C, the post-peak response was found to 

improve by a brief period of heat as seen by the increasing post-peak load and flexural 

toughness. By increasing the temperature to more than 400 °C, the type of fiber strongly 

affects the post-peak response. Due to the fiber evaporation, large drops of load–deflection 

responses were observed for the PP and PEFRC. As for the SFRC, heat leads to changing 
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the color of the steel fiber but not evaporation; hence, high temperature does not affect the 

post-peak response of SFRC as much as it affects PP and PPFRC. 

 

Figure 1. Specimens in oven chamber according to ASTM E119-98. 

 

Figure 2. Standard fire curves. 

 

Figure 3. Process of calculating toughness indexes (ASTM C1018). 

Here, the flexural characteristics are: 

Flexural toughness (δ) = Area under the curve up to elastic limit (OAB) 
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Flexural index (I5) = Area OACD/Area OAB 

The flexural responses of different concrete schemes after exposure to high tempera-

tures are given in Figures 4–7. At room temperature, the average peak load of plain con-

crete was 13 kN. The effect was not initiated immediately after exposure to high temper-

atures. The peak load stays unchanged at temperatures lower than 400 °C. At tempera-

tures more than 400 °C, this effect was more noticeable: at 600 °C and 800 °C, it decreased 

by about 24% and 45%, respectively. In addition to strength, by increasing the tempera-

ture, the slope of the load–deflection curve decreased, which shows that the stiffness of 

the beam is also influenced by the temperature increment. Meanwhile, dramatical 

strength reduction could be a�ributed to the continuum cracking and spalling related to 

the thermal expansion inside composite elements. 

 

Figure 4. Flexural responses of (a) 0.5% PEFRC and (b) 1.0% PEFRC after thermal expansion. 

  

Figure 5. Flexural responses of (a) 0.5% PPFRC and (b) 1.0% PPFRC after thermal expansion. 
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Figure 6. Flexural responses of (a) 0.5% SFRC and (b) 1.0% SFRC after thermal expansion. 

 

Figure 7. Flexural response of plain concrete after thermal expansion. 

2.2. Artificial Intelligence Algorithms 

2.2.1. ANFIS Architecture 

ANFIS is a fuzzy inference system integrated within a neural network [50,56]. The 

ANFIS network has five layers (Figure 8) while the central core is a fuzzy inference system. 

The first layer receives inputs and converts them to fuzzy values by membership functions 

[57,58]. 

Based on the theory of ANFIS network abilities, a single node without any identified 

weight moves in a system of adjusted layers to another until the final node finds the cor-

rect answer [34,59,60]. The aforementioned cycle has been demonstrated in Figure 8; five 

layers are typically performed in succession and have a membership function effect on the 

final layer. Just in the case of conservation, the authors assume that the ANFIS has two 

described inputs such as V1 and V2, and one output as f. According to the Takagi, Sugeno 

and Kang theory [34], two rules are described below: 

First: Assuming (v is V1) and (d is D1), the output can be derived as �� = ��� + ��� +

��. 

Second: Assuming (v is V2) and (d is D2), the output can be derived as �� = ��� +

��� + ��. 

Here,  

p1, p2, q1, q2, r1 and r = linear parameters which are mostly adjusted and identified by 

training and testing procedures. 

V1, V2, D1 and D2 = nonlinear parameters, for instance V1 and D1 are the membership 

functions of ANFIS (antecedent). 
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It is clear that more accurate evaluation means a slight difference between the ANFIS 

answer and the real value [61,62]. 

 

Figure 8. Typical architecture of ANFIS [2]. 

First of all, an individual unweighted node moves in the first layer just by a node 

function, which has been represented as Equation (1). 

��
� = ���(�) (1)

where 

�� = linguistic label; 

��
� = membership function of ��. 

Accordingly, the bell-shaped function selects for adjustment in ANFIS while having 

the most capacity for nonlinear regression [55,63,64]. 

�(�) = ����(�; ��, ��, ��) =
1

1 + ��
� − ��

��
�

�

�
��

 
(2)

where 

{��, �� , �� , ��} = adjusted factors; 

� = input. 

The typical function of the second layer is described in Equation (3) while a node 

multiplies to the incoming signals and moves to the third layer. 

�� = ���(�) × ���(�),       � = 1,2. (3)

The third layer is the rule layer. In fact, every output exhibits the firing strength of a 

rule. 

��
∗ =

��

�� + ��

                          � = 1,2. (4)

where 

��
∗ = normalized firing strength; 

As per the ANFIS rule, every input should turn into fuzzy mode, and the fourth layer 

has been designed to convert the nodes into defuzzied mode. 

��
� = ��

∗�� = ��
∗(��� + ��� + ��) (5)

where 

��
∗= third layer output;  

{��, ��, ��} = adjusted factors. 
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In the final layer, the output of each cycle is derived as the evaluated value, which is 

computed by cumulating all the incoming signals. 

��
� = � = � ��

∗��

�

 (6)

2.2.2. Particle Swarm Optimization 

Kennedy and Eberhart have proposed an optimization algorithm based on the clus-

tering and lifestyle of birds and fishes [65]. Generally, the first in PSO is the definition of 

an initial population and then searching for optima derived by recalculating generations 

without evolution operators such as crossover and mutation [21]. Particles are the poten-

tial solutions while moving along the solution space using their own experiences and 

reaching the optimum solutions. PSO is a powerful algorithm for optimization in nonlin-

ear, non-convex and discontinuous environments. Using the PSO can solve all kinds of 

optimization problems, both continuous and discrete [53]. This algorithm is very strong 

and efficient, but it needs to define much fewer parameters than other algorithms, and the 

development of this algorithm is actually very simple. It is be�er than other optimization 

methods. This algorithm has been widely used in optimization problems, and the goal of 

the PSO algorithm is to find the optimum of the objective function [51]. In this algorithm, 

the particles are the constituent units of our population and they cooperate with each 

other, and with their intelligence, a certain amount of intelligence is created that is not 

comparable to the intelligence of each of them. That is why it is called swarm intelligence 

[66]. The most important feature of each particle is its position, and the most important 

issue is what indicator or goal the particle suggests and at what speed it moves. In this 

paper, new positions of each point have been achieved through the adjusted velocity of 

the point which has been wri�en in Equation (7). In other words, at every step, each par-

ticle is updated using the top two values as shown in Equation (8).  

�(� + 1) = �(�) + �1 ∗ ����(�) ∗ ������(�) − ��������(�)�  + �2 ∗ ����(�) ∗ (�����(�) − ��������(�)) (7) 

��������(� + 1) = ��������(�) + �(� + 1) (8) 

where 

V(t + 1) = upgrade velocity;  

Pbest = best situation the particle has ever been able to reach; 

Gbest = best position ever obtained by the particle population (collective intelligence). 

Using the PSO algorithm, the calculation of the minimization of the objective function 

is performed. This algorithm selects the optimal state of the desired variables. In general, 

it may seem that multi-objective optimization algorithms should be used for this problem, 

but we will see in the following that these two objective functions are actually global 

points. It is optimized and therefore is enough to mean only one of them. 

2.2.3. ANFIS-PSO Architecture 

Figure 9 presents the diagram of the sequential PSO and ANFIS combination [66]. In 

each cycle of the hybrid system, the new velocity and particle can be presented by Equa-

tions (9) and (10): 

�� ⇀ (� + 1) = ��� ⇀ (�) + ��∅� ⇀. ��� ⇀ (�) − �� ⇀ (t)� + ��∅� ⇀. ��� ⇀ (�) − �� ⇀ (t)� (9) 

�� ⇀ (� + 1) = �� ⇀ (�) + �� ⇀ (� + 1) (10) 

where 

vi⇀ = particles velocity; 

pi⇀ = best point in the entire population; 

w = inertia weight; 

c1 and c2 = positive acceleration coefficients; 
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∅1⇀ and ∅2⇀ = random vectors; 

si⇀ = particles position. 

Finally, according to vi⇀ and si⇀, the particle population tends to cluster around the 

best. 

 

Figure 9. Diagram of the sequential combination of ANFIS-PSO algorithm. 

2.2.4. ANFIS-PSO-GA (APG) Architecture 

Figure 10 shows the combination of sequential PSO-GA and ANFIS. In PSO, a swarm 

is initiated by a group of random resolutions as a particle; the whole concept has been 

represented in Equation (11), in which the new velocity could be provided. 

             1 1 2 21i i i i i iv t wv t c p t x t c p t x t      
 

(11)

where 

1c  and 2c  = positive acceleration coefficients; 

1


 and 2


= random vectors [0, 1]; 

pig



 = location of input point; 

W = inertia weight; 

The new position for each point can be achieved by Equation (12). 

     1 1
i i i

s t s t v t     (12)

where 

si


 = particle’s position; 

vi


 = particle’s velocity. 

Start
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End
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Based on 
vi


 and 
si


, the particle population tends to cluster around the best num-

ber. 

 

Figure 10. The sequential combination of hybrid APG algorithm. 

2.3. Precision Evaluation 

Accordingly, in the case of precision detection and performance evaluation, three 

well-known regression criteria were employed including the root mean squared error 

(RMSE), Pearson correlation coefficient (r) and determination coefficient (R2) [67] as fol-

lows: 

n
2

i i
i=1

(P -O )

RMSE=
n


 

(13)

n n n

i i i i
i 1 i 1 i 1

2 2n n n n
2 2
i i i i

i 1 i 1 i 1 i 1

n O P O P

r

n O O n P P

  

   

     
       

     
      

                 

  

   
 

(14)
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2n

i i i i
i 12

n n

i i i i
i 1 i 1

O O P P

R

O O P P



 

 
   

 

  



 
 

(15)

where P� and O� are the predicted and observed variables and n is the total number of 

considered data. Also, to compare the code performance of APG and ANFIS-PSO, 

MATLAB (2019) was deployed in one computer system with no external compiler or 

toolbox implementation. 

2.4. Statistical Data 

To investigate and analyze the characteristics affecting the flexural response of the 

specimens exposed to high temperatures, we selected and studied nine structural param-

eters to more accurately predict the deflection and flexural capacity of the specimens [28]. 

The selected a�ributes are obtained based on the importance and quality of the experi-

mental study in the preceding section. The collected database was composed of 2002 da-

tasets. Experimental data of deflection (mm), flexural capacity (k.N), toughness index (�), 

flexural index (�5), pulse velocity (� �)⁄ , fiber aspect ratio (l/d), fiber content (%), fiber 

tensile strength (N./mm2) and temperature (°C) were used as inputs in each model for pre-

diction and optimization. Table 2 shows the details of the dataset for hybrid models. 

Table 2. Details of the input and output variables. 

Inputs and Outputs Variables Minimum Maximum Mean Value Standard Deviation 

Input 1 Temperature (°C) 25.00 800.00 456.25 272.92 

Input 2 Fiber content (%) 0.00 1.00 0.50 0.23 

Input 3 Tensile strength of fiber (N./mm2) 450.00 1000.00 690.00 188.85 

Input 4 Aspect ratio of fiber (l/d) 52.00 90.00 68.67 16.29 

Input 5 Toughness index (�5) 1.80 6.80 3.91 1.42 

Input 6 Flexural toughness (�) 1.10 12.50 2.54 1.95 

Input 7 Pulse velocity (� �)⁄  2808 4795 4033.27 640.17 

Input 8 Deflection (mm) 0.00 8.00 2.68 2.35 

Input 9 Load (k .N) 0.00 24.54 7.29 5.29 

Output 1 Load (k .N) 0.00 24.54 7.29 5.29 

Output 2 Deflection (mm) 0.00 8.00 2.68 2.35 

Output 3 Flexural toughness (�) 1.10 12.50 2.54 1.95 

2.5. Models Development 

As stated in the introduction section, the main purpose of this article is to find the 

most effective characteristic of fiber-reinforced concrete to optimize and predict the flex-

ural response. In addition, with respect to the selected inputs and considering the different 

scenarios, the five subdatabases were chosen as the defining reference of these a�ributes 

[29], where subdatabase1 comprises mere flexural properties including (δ) and (I5). Sub-

database2 focuses on the mere fiber properties, subdatabase3 only focuses on the pulse 

velocity characteristic and subdatabase4 and subdatabase5 both examined the flexural 

toughness. Thus, using each of these five subdatabases, one can analyze the effect of a key 

portion of FRC so that by comparing the results derived from their placement in artificial 

intelligence models, the quality of their effect and determination will be understood. A 

summary of this information can be found in Tables 3–7. 
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Table 3. Inputs and outputs of subdatabase1. 

Inputs and Outputs Minimum Maximum Average 

Temperature (°C) 25.00 800.00 456.25 

Flexural toughness (�) 1.10 12.50 2.54 

Toughness index (�5) 1.80 6.80 3.91 

Deflection (mm) * 0.00 8.00 2.68 

Load (kN) * 0.00 24.54 7.29 

* Deflection and load were employed both as input and output. 

Table 4. Inputs and outputs of subdatabase2. 

Inputs and Outputs Minimum Maximum Average 

Temperature (°C) 25.00 800.00 456.25 

Fiber content (%) 0.00 1.00 0.50 

Tensile strength of fiber (N/mm2) 450.00 1000.00 690.00 

Aspect ratio of fiber (l/d) 52.00 90.00 68.67 

Deflection (mm) * 0.00 8.00 2.68 

Load (kN) * 0.00 24.54 7.29 

* Deflection and load were employed both as input and output. 

Table 5. Inputs and outputs of subdatabase3. 

Inputs and Outputs Minimum Maximum Average 

Temperature (°C) 25.00 800.00 456.25 

Pulse velocity (� �)⁄  2808 4795 4033.27 

Deflection (mm) * 0.00 8.00 2.68 

Load (kN) * 0.00 24.54 7.29 

* Deflection and load were employed both as input and output. 

Table 6. Inputs and outputs of subdatabase4. 

Inputs and Outputs Minimum Maximum Average 

Temperature (°C) 25.00 800.00 456.25 

Fiber content (%) 0.00 1.00 0.50 

Tensile strength of fiber (N/mm2) 450.00 1000.00 690.00 

Deflection (mm) * 0.00 8.00 2.68 

Flexural toughness (�) * 1.10 12.50 2.54 

* Deflection and flexural toughness were employed both as input and output. 

Table 7. Inputs and outputs of subdatabase5. 

Inputs and Outputs Minimum Maximum Average 

Temperature (°C) 25.00 800.00 456.25 

Fiber content (%) 0.00 1.00 0.50 

Tensile strength of fiber (N/mm2) 450.00 1000.00 690.00 

Load (kN) 0.00 24.54 7.29 

Deflection (mm) * 0.00 8.00 2.68 

Flexural toughness (�) * 1.10 12.50 2.54 

* Deflection and flexural toughness were employed both as input and output. 

The provided paragraph discusses three variables: load, deflection, and temperature, 

which are present in three different subdatabases. Notably, the temperature variable is a 

pivotal a�ribute shared across all subdatabases because it serves as a reference point for 

the other variables, namely load and deflection. Moreover, within each subdatabase, the 
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variables’ load and deflection are interchangeable with one another, meaning they can act 

as either input or output, depending on their order of placement in the data structure. 

This flexibility in their roles within the subdatabases allows for different approaches in 

the analysis and interpretation of experimental results. 

To ensure optimal performance and accuracy in the analyses, various metaheuristic 

parameters are employed. The process involves adjusting these parameters to achieve the 

best possible outcomes in terms of the stability and efficiency of the algorithms used for 

data processing and analysis. By fine-tuning these metaheuristic parameters, researchers 

can enhance the robustness of their algorithms and ensure reliable results during the data-

driven exploration and investigation of the variables. 

Overall, the following subdatasets outline the key elements of the research setup, in-

cluding the importance of temperature as a pivotal a�ribute, the relationship between 

load, deflection, and the teacloth properties, the interchangeability of load and deflection 

in the subdatabases, and the process of optimizing metaheuristic parameters to ensure 

algorithmic stability and reliability in the analysis of the gathered data. 

2.5.1. ANFIS-PSO Adjustment 

Subdatabase1 was used as the base database to optimize the algorithm and find the 

best parameters for each artificial intelligence model. Accordingly, all parameters of the 

ANFIS-PSO hybrid algorithm were first considered constant, and only the population was 

adjusted so that by placing different population numbers, the first one was found to be 

be�er than the nearest population number that was optimized (Figure 11). 

The obtained results were then documented and summarized in Table 8, which pre-

sents a comprehensive tabulation of the analytical performance parameters. These param-

eters likely include metrics related to accuracy, convergence, and efficiency, among others, 

that were used to assess and compare the performance of the different artificial intelli-

gence models under consideration. By conducting this rigorous optimization process and 

recording the analytical performance parameters, the researchers were able to identify an 

optimal configuration for the ANFIS-PSO hybrid algorithm when applied to subdata-

base1. This enhanced algorithm configuration likely contributed to more accurate and ef-

ficient analyses, potentially leading to improved results in various AI-based applications, 

such as pa�ern recognition, prediction, or decision-making tasks [66–67]. 

Table 8. Performance parameters of ANFIS-PSO adjustment based on population number. 

Population 
Test Train 

RMSE r R2 RMSE r R2 

25 3.712577 0.725924 0.527 3.831084 0.696089 0.4859 

65 3.508492 0.750727 0.5636 3.637986 0.729853 0.5429 

75 3.497266 0.783102 0.6132 3.219799 0.781098 0.6227 

85 2.626729 0.869537 0.7561 2.533611 0.879021 0.7777 

95 2.885258 0.843709 0.7118 3.128901 0.818919 0.6597 

105 2.865556 0.846867 0.7172 1.85006 0.866333 0.7532 

145 3.30335 0.78746 0.6201 3.423689 0.756888 0.5915 

500 3.513862 0.764782 0.5849 3.083961 0.796095 0.6635 

535 2.803131 0.865807 0.7496 2.70398 0.853733 0.7355 

545 2.55558 0.880936 0.776 2.223289 0.910195 0.828 

555 2.669889 0.869614 0.7562 2.577172 0.881952 0.7678 

745 3.110781 0.808255 0.6533 3.199169 0.803118 0.6475 
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Figure 11. ANFIS-PSO adjustment based on population number: (a) effect of population number on 

(RMSE), (b) effect of population number on (R2), (c) effect of population number on (r). 

The results presented in Table 8 reveal that the ANFIS-PSO algorithm achieved its 

optimal performance when configured with a population number of 545. Building upon 

this crucial finding, the subsequent step in the research investigation involved a more de-

tailed exploration of the algorithm’s behavior by adjusting the number of iterations as a 

variable (as depicted in Figure 12). The number of iterations plays a pivotal role in the 

convergence behavior of the algorithm and can significantly influence its overall perfor-

mance. By systematically varying the number of iterations and monitoring its effects on 

the algorithm’s convergence rate and accuracy, the researchers aimed to gain deeper in-

sights into the algorithm’s behavior and identify the most effective iteration count for 

achieving superior results. 

Figure 11 likely provides a graphical representation of the algorithm’s performance 

across different iteration values, displaying trends such as convergence curves and con-

vergence rates. Moreover, Table 9 presumably presents the test and train parameters used 

in the experimentation process. These parameters are crucial for evaluating the algo-

rithm’s generalization capabilities and its ability to perform accurately on unseen data 

(test set) after being trained on a known dataset (train set). 

Table 9. Performance parameters of ANFIS-PSO adjustment based on iteration number. 

Iteration 
Test Train 

RMSE r R2 RMSE r R2 

150 3.383412 0.764805 0.5849 3.292399 0.780195 0.6032 

250 3.668915 0.718894 0.5168 3.463981 0.770327 0.5882 

350 2.6410 0.869586 0.7562 2.7200 0.86274 0.7574 

450 3.1374 0.81602 0.6659 2.8910 0.839018 0.6994 

550 2.7653 0.852937 0.7275 2.5608 0.879944 0.7792 

650 2.3018 0.905074 0.8192 2.1895 0.914906 0.8219 

750 3.003843 0.826912 0.6838 3.1114 0.821586 0.6793 

850 3.083801 0.812916 0.6608 3.171664 0.813298 0.6751 

 

Figure 12. ANFIS-PSO adjustment based on iteration number: (a) effect of iteration number on 

(RMSE), (b) effect of iteration number on (R2), (c) effect of iteration number on (r). 
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In the final phase, the cluster number parameter for the fuzzy segment was subjected 

to optimization. This parameter plays a significant role in fuzzy clustering algorithms, as 

it determines the number of clusters into which the data are partitioned. By visually ex-

amining the trends and pa�erns in Figure 13, it can gain insights into the algorithm’s be-

havior as the cluster number changes and can identify the cluster number that leads to the 

most favorable outcomes in terms of cluster quality and separation. Furthermore, the spe-

cific results of this optimization process, along with corresponding performance metrics, 

are typically documented and tabulated in Table 10. This table offers a systematic over-

view of the algorithm’s performance for each tested cluster number value. 

Table 10. Performance parameters of ANFIS-PSO adjustment based on cluster number. 

Clusters 
Test Train 

RMSE r R2 RMSE r R2 

4 2.9738 0.844155 0.7126 3.0613 0.834815 0.6969 

7 3.2573 0.790532 0.6249 3.0672 0.816433 0.6666 

10 2.3018 0.905074 0.8192 2.1895 0.914906 0.8219 

13 3.0232 0.834038 0.6956 2.6844 0.850599 0.7235 

16 3.0500 0.817362 0.6681 3.0039 0.834937 0.6971 

 

Figure 13. ANFIS-PSO adjustment based on cluster number: (a) effect of cluster number on (RMSE), 

(b) effect of cluster number on (R2), (c) effect of cluster number on (r). 

In this research study, the damping ratio parameter (w) was a critical factor that un-

derwent comprehensive investigation and fine-tuning. The damping ratio is a fundamen-

tal parameter in various optimization and control algorithms, and its adjustment plays a 

crucial role in determining the algorithm’s stability and convergence characteristics. After 

a thorough evaluation, it was observed that the damping ratio value of 0.991 resulted in 

the best performance for the hybrid ANFIS-PSO program. This optimal value demon-

strated superior convergence behavior, striking a balance between rapid convergence and 

preventing oscillations or divergence, thereby enhancing the algorithm’s overall efficiency 

and effectiveness. To provide a clear and systematic presentation of the final parameter 

configuration, the researchers documented the results in Table 11. This table tabulates the 

optimized parameters, along with associated performance measures or other relevant 

metrics, providing a comprehensive overview of the hybrid ANFIS-PSO program’s effi-

cacy. 

Table 11. Parameter characteristics utilized for ANFIS-PSO. 

FIS Clusters Population Size Iterations Inertia Weight Damping Ratio 
Learning Coefficient 

Personal Global 

10 545 650 1.00 0.991 1 2 
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2.5.2. APG Adjustment 

Accordingly, each step has been presented briefly, as the technical process was the 

same as in the previous section. In this section, subdatabase1 was used to adjust the dif-

ferent parameters of the ANFIS-PSO-GA algorithm, as was the case for the ANFIS-PSO 

algorithm. Initially, the algorithm efficiency was evaluated by changing the population 

number. As can be seen in Figure 14, a population of 90 yields the best algorithm returns. 

Table 12 lists the numerical accuracy indices corresponding to each imported population. 

Table 12. Performance parameters of APG adjustment based on population number. 

Population 
Test Train 

RMSE r R2 RMSE r R2 

50 3.299182 0.781941 0.6114 3.195194 0.806186 0.6499 

80 3.255189 0.749049 0.5611 3.534075 0.729853 0.5382 

90 2.643244 0.871738 0.7699 2.587535 0.875461 0.7664 

100 3.054091 0.816756 0.6671 3.045109 0.825002 0.6806 

110 3.376154 0.756638 0.5725 3.310291 0.793831 0.6302 

150 3.716255 0.709193 0.503 3.696705 0.728039 0.53 

 

Figure 14. APG adjustment based on population number: (a) effect of population number on 

(RMSE), (b) effect of population number on (R2), (c) effect of population number on (r). 

Further, considering a population of 90, using subdatabase1, another parameter of 

the PSO algorithm is adjusted. Different PSO iterations were tested, and the results are 

presented in Table 13 and Figure 15. 

Table 13. Performance parameters of APG adjustment based on iteration number. 

PSO Iteration 
 Test   Train  

RMSE r R2 RMSE r R2 

20 2.823024 0.846474 0.7165 2.871513 0.84599 0.7157 

30 2.554562 0.886002 0.785 2.741211 0.855664 0.7322 

45 2.607353 0.872721 0.7616 2.569105 0.878173 0.7712 

50 2.744641 0.852209 0.7263 2.680724 0.868312 0.754 

60 2.813234 0.84719 0.7177 2.74642 0.860313 0.7401 

 

Figure 15. APG adjustment based on PSO iteration number: (a) effect of iteration number on 

(RMSE), (b) effect of iteration number on (R2), (c) effect of iteration number on (r). 
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According to Table 13, the number of PSO iterations is considered to be 45. The num-

ber of sub-iterations was also adjusted as one of the adjustable parameters in the GA al-

gorithm. As can be seen in Figure 16 and Table 14, the PSO-GA algorithm has shown its 

best numerical efficiency in sub-iteration number 40. 

Table 14. Performance parameters of APG adjustment based on GA sub-iteration number. 

GA Sub-Iteration 
Test Train 

RMSE r R2 RMSE r R2 

10 2.590722 0.870225 0.7573 2.627477 0.873973 0.7638 

20 2.942502 0.820655 0.6735 2.656337 0.873065 0.7622 

30 2.795555 0.844398 0.713 2.570393 0.880338 0.775 

40 2.548629 0.877919 0.7707 2.487351 0.886501 0.7859 

45 2.858059 0.841623 0.7083 2.813826 0.85322 0.728 

50 2.975344 0.833438 0.6946 2.712527 0.861689 0.7425 

80 3.161902 0.807712 0.6524 3.241185 0.796085 0.6338 

 

Figure 16. APG adjustment based on GA sub-iteration number: (a) effect of sub-iteration number on 

(RMSE), (b) effect of sub-iteration number on (R2), (c) effect of sub-iteration number on (r). 

In the following, the MAX iteration is optimized as another parameter of the GA al-

gorithm; the tuning process of the MAX iteration number is given in Figure 17 and Table 

15. 

Table 15. Performance parameters of APG adjustment based on MAX iteration number. 

Max Iteration 
Test Train 

RMSE r R2 RMSE r R2 

20 3.880335 0.690107 0.4762 3.943241 0.691182 0.4777 

50 2.809624 0.848597 0.7201 2.533668 0.882422 0.7787 

100 2.553774 0.880666 0.7618 2.441867 0.889812 0.7756 

140 2.393413 0.898524 0.7873 2.538099 0.879129 0.7729 

150 2.589503 0.881595 0.7772 2.411496 0.890905 0.7937 

160 2.964227 0.833475 0.6947 2.866023 0.845298 0.7145 

 

Figure 17. APG adjustment based on MAX iteration number: (a) effect of MAX iteration number on 

(RMSE), (b) effect of MAX iteration number on (R2), (c) effect of MAX iteration number on (r). 
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Finally, the damping ratio (w) parameter was investigated and adjusted to obtain the 

most accurate results (Figure 18). According to Table 16, the most appropriate figure for 

w is 0.988, which yields the best numerical results. 

Table 16. Performance parameters of APG adjustment based on damping ratio. 

Damping Ratio 
Test Train 

RMSE r R2 RMSE r R2 

0.986 2.836168 0.843828 0.712 2.757289 0.859219 0.7383 

0.988 2.104214 0.921673 0.8495 1.903745 0.934057 0.8725 

0.989 2.477554 0.887488 0.7876 2.279348 0.905039 0.8191 

0.99 3.17987 0.816025 0.6659 3.034619 0.81916 0.671 

0.991 2.470995 0.887526 0.7877 2.444386 0.89027 0.7926 

1.00 4.399623 0.611487 0.3739 4.249338 0.631111 0.3983 

 

Figure 18. APG adjustment based on damping ratio number: (a) effect of damping ratio number on 

(RMSE), (b) effect of damping ratio number on (R2), (c) effect of damping ratio number on (r). 

The derived performance parameters were tuned for the hybrid APG program and 

tabulated in Table 17. 

Table 17. Parameter characteristics employed for APG. 

FIS Clusters Population Size PSO Iterations GA Sub-Iteration MAX Iteration Inertia Weight Damping Ratio 
Learning Coefficient 

Personal Global 

10 90 50 45 150 1.00 0.988 1 2 

3. Results and Discussion 

3.1. ANFIS-PSO 

As explained in the previous section, the parameters of the ANFIS-PSO algorithm 

were adjusted according to Table 11. The process of analysis was initiated from subdata-

base1 to subdatabase5 with the new optimized algorithm. Initially, the inputs of subdata-

base1 were defined and predicted, and the flexural load and deflection were predicted 

separately through different analyses. 

In this stage of the research, the obtained results were thoroughly analyzed and pre-

sented using regression graphs and comparative graphs, as depicted in Figures 19 and 20, 

respectively. Regression graphs are useful for visually assessing the relationship between 

predicted values and actual values, enabling researchers to evaluate the accuracy and re-

liability of the algorithm’s predictions. On the other hand, comparative graphs allow for 

a side-by-side comparison of the predicted values with the ground truth data, offering 

insights into the algorithm’s performance across different samples or experimental condi-

tions. In conjunction with the graphical representations, Table 18 was utilized to present 

the detailed results of the analysis. This table likely contains quantitative metrics and sta-

tistical measures, such as root mean square error (RMSE), standard deviation (Std), or the 

coefficient of determination (R-squared), which are commonly used to assess the predic-

tive performance of regression models. The results in Table 18 serve as a comprehensive 
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reference for evaluating the algorithm’s accuracy and precision in predicting both flexural 

strength and deflection values of the samples. According to the outcomes illustrated in 

Figure 20, the algorithm demonstrates the ability to predict the flexural strength and de-

flection of the samples with acceptable errors, which are denoted as “normal errors.” This 

suggests that the algorithm performs reasonably well in capturing the underlying pa�erns 

and trends in the data, leading to predictions that are generally close to the actual values. 

However, it is important to note that the results are not precisely in line with the real 

values, indicating that there is still room for improvement in the predictive accuracy of 

the algorithm. 

Table 18. Subdatabase1 analytical prediction results through ANFIS-PSO. 

Flexural load prediction 

Test Train 

RMSE 2.3018 RMSE 2.1895 

R2 0.8192 R2 0.8219 

r 0.9051 r 0.9149 

Std * 2.3032 Std 2.2517 

e mean 0.0502 e mean 0.0196 

Deflection prediction 

Test Train 

RMSE 1.9248 RMSE 1.9257 

R2 0.3150 R2 0.3108 

r 0.5613 r 0.5514 

Std 1.9262 Std 1.9394 

e mean 0.0270 e mean 0.0048 

* Std = standard deviation. 

 

Figure 19. ANFIS-PSO prediction vs. experimental results regression for subdatabase1: (a) flexural 

load test phase, (b) flexural load train phase, (c) deflection test phase, (d) deflection train phase. 
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Figure 20. ANFIS-PSO prediction vs. experimental diagram for subdatabase1: (a) flexural load test 

phase, (b) flexural load train phase, (c) deflection test phase, (d) deflection train phase. 

Then, using subdatabase2, the corresponding inputs are defined, and flexural load 

and deflection are estimated and predicted in two steps (Figures 21 and 22). Table 19 con-

cluded the performance precision parameters of this phase. As the subdatabase1 results 

show, the ANFIS-PSO algorithm has estimated the mechanical properties of the samples 

with considerable convergence against the real values. 

Table 19. Sub-database2 analytical prediction results through ANFIS-PSO. 

Flexural load prediction 

Test Train 

RMSE 3.7334 RMSE 3.5986 

R2 0.4747 R2 0.5912 

r 0.6890 r 0.7566 

Std 3.7311 Std 3.4896 

e mean 0.02019 e mean 0.0029 

Deflection prediction 

Test Train 

RMSE 2.1251 RMSE 2.2445 

R2 0.1595 R2 0.1356 
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r 0.3993 r 0.3277 

Std 2.1159 Std 2.1767 

e mean 0.02150 e mean 0.0002 

 

Figure 21. ANFIS-PSO prediction vs. experimental results regression for subdatabase2: (a) flexural 

load test phase, (b) flexural load train phase, (c) deflection test phase, (d) deflection train phase. 
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Figure 22. ANFIS-PSO prediction vs. experimental diagram for subdatabase2: (a) flexural load test 

phase, (b) flexural load train phase, (c) deflection test phase, (d) deflection train phase. 

As before, subdatabase3 data were used to predict flexural load and deflection. Fig-

ures 23 and 24 illustrate the regression and comparative graphs of the performed analysis, 

respectively. Table 20 presents the results of the prediction. Due to the unsuccessful pre-

diction by ANFIS-PSO for FRC properties, we have employed other subdatasets for the 

prediction of flexural toughness of the FRC. 

Table 20. Subdatabase3 analytical prediction results through ANFIS-PSO. 

Flexural load prediction 

Test Train 

RMSE 2.1576 RMSE 2.1272 

R2 0.1496 R2 0.2010 

r 0.3785 r 0.3941 

Std 2.1594 Std 2.0926 

e mean 0.0008 e mean 0.0169 

Deflection prediction 

Test Train 

RMSE 3.6708 RMSE 3.1612 

R2 0.3150 R2 0.3108 

r 0.7165 r 0.8148 

Std 3.6730 Std 3.3946 

e mean 0.0785 e mean 0.0257 
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Figure 23. ANFIS-PSO prediction vs. experimental results regression for subdatabase3: (a) flexural 

load test phase, (b) flexural load train phase, (c) deflection test phase, (d) deflection train phase. 
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Figure 24. ANFIS-PSO prediction vs. experimental diagram for subdatabase3: (a) flexural load test 

phase, (b) flexural load train phase, (c) deflection test phase, (d) deflection train phase. 

In the final phase, the prediction of flexural toughness was carried out using subdata-

base4 and subdatabase5. The results obtained from the analysis of subdatabase4 are de-

picted in Figures 25 and 26, and the corresponding quantitative metrics are presented in 

Table 21. Similarly, the results from subdatabase5 are illustrated in Figures 27 and 28, and 

the associated quantitative results are tabulated in Table 22. The predictive performance 

of the ANFIS-PSO algorithm was found to be remarkably accurate in estimating the flex-

ural toughness of the samples. This success can be a�ributed to several factors, one of 

which is the presence of irregular pa�erns in the results of subdatabase4 and subdata-

base5. The algorithm’s adaptability and robustness in handling complex and irregular 

data pa�erns allowed it to effectively capture the underlying trends in the data, leading 

to precise predictions. 

Additionally, the presence of fiber characteristics in the samples likely played a cru-

cial role in influencing their flexural behavior. The incorporation of fibers in fiber-rein-

forced concrete (FRC) is known to enhance the material’s mechanical properties, includ-

ing toughness. The algorithm’s ability to accurately predict flexural toughness in the pres-

ence of fiber characteristics further highlights its effectiveness in capturing the impact of 

these material features on structural behavior. A direct comparison between Tables 21 and 

22 revealed that the predictions from Table 21, which used subdatabase4, were closer to 

the real values. This suggests that subdatabase4, with its specific characteristics and con-

figurations, provides more relevant and representative data for the prediction of flexural 

toughness. As a result, the findings conclude that the presence of fibers has a governing 

role in influencing the flexural behavior of fiber-reinforced concrete (FRC) specimens. 

Table 21. Subdatabase4 analytical prediction results through ANFIS-PSO. 

Flexural Toughness Prediction 

Test Train 

RMSE 0.4430 RMSE 0.4588 

R2 0.9536 R2 0.9403 

r 0.9765 r 0.9710 

Std 0.4432 Std 0.4648 

e mean 0.0136 e mean 0.0003 
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Figure 25. ANFIS-PSO prediction vs. experimental results regression for subdatabase4: (a) flexural 

toughness test phase, (b) flexural toughness train phase. 

 

Figure 26. ANFIS-PSO prediction vs. experimental diagram for subdatabase4: (a) flexural load 

toughness phase, (b) flexural toughness train phase. 

Table 22. Subdatabase5 analytical prediction results through ANFIS-PSO. 

Flexural Toughness Prediction 

Test Train 

RMSE 0.3568 RMSE 0.3453 

R2 0.9697 R2 0.9709 

r 0.9847 r 0.9808 

Std 0.3561 Std 0.3253 

e mean 0.0276 e mean 0.0023 

 

Figure 27. ANFIS-PSO prediction vs. experimental results regression for subdatabase5: (a) flexural 

toughness test phase, (b) flexural toughness train phase. 
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Figure 28. ANFIS-PSO prediction vs. experimental diagram for subdatabase5: (a) flexural load 

toughness phase, (b) flexural toughness train phase. 

3.2. APG 

To ensure the accuracy and reliability of the predictions, optimal values for the pa-

rameters listed in Table 15 were carefully selected. Subsequently, the data in subdatabase1 

were used as inputs, and the APG algorithm was utilized to predict flexural load and de-

flection as the target values. The accuracy of the APG algorithm’s predictions was evalu-

ated through various quantitative metrics and graphical representations. The regression 

graphs and comparison graphs in Figures 29 and 30, respectively, offer visual insights into 

the relationship between the laboratory data and the predicted values. By plo�ing the pre-

dicted values against the actual data, researchers can assess the algorithm’s performance 

in capturing the trends and pa�erns present in the data. 

Furthermore, Table 23 presents a comprehensive summary of the analytical predic-

tion results for this phase of the analysis. The table likely includes performance metrics 

such as root mean square error (RMSE), R-squared (R2), correlation coefficient (r), stand-

ard deviation (Std), and the mean error (e mean) for both flexural load and deflection pre-

dictions. These metrics are used to evaluate the accuracy, precision, and goodness of fit of 

the APG algorithm’s predictions. 

For flexural load prediction in subdatabase1, the APG algorithm achieved an RMSE 

of 2.1042 in the test set and 1.9255 in the training set. The R-squared values were found to 

be 0.8495 and 0.8725 for the test and train sets, respectively. The correlation coefficient (r) 

indicates a strong positive relationship between predicted and actual values, with values 

of 0.9217 and 0.9342 for the test and train sets, respectively. The standard deviation (Std) 

reflects the spread of the errors, while the mean error (e mean) represents the average 

error of the predictions compared to the true values. 

Similarly, for deflection prediction in subdatabase1, the APG algorithm achieved an 

RMSE of 1.7372 in the test set and 1.6368 in the training set. The R-squared values were 

found to be 0.4430 and 0.4779 for the test and train sets, respectively. The correlation co-

efficient (r) indicates a moderate positive relationship between predicted and actual de-

flection values, with values of 0.6656 and 0.7053 for the test and train sets, respectively. 

The standard deviation (Std) and mean error (e mean) offer additional insights into the 

precision and accuracy of the deflection predictions. 

The obtained results from Table 23 demonstrate that the APG algorithm’s predictions 

for flexural load are relatively accurate, as indicated by the low RMSE, high R-squared, 

and strong correlation coefficient values. However, the predictions for deflection show 
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some room for improvement, with moderate R-squared values and lower correlation co-

efficients compared to the flexural load predictions. 

Table 23. Subdatabase1 analytical prediction results through APG. 

Flexural load prediction 

Test Train 

RMSE 2.1042 RMSE 1.9255 

R2 0.8495 R2 0.8725 

r 0.9217 r 0.9342 

Std 2.1043 Std 1.9044 

e mean −0.0835 e mean 0.0037 

Deflection prediction 

Test Train 

RMSE 1.7372 RMSE 1.6368 

R2 0.4430 R2 0.4779 

r 0.6656 r 0.7053 

Std 1.7375 Std 1.6888 

e mean −0.0633 e mean 0.0036 

 

Figure 29. APG prediction vs. experimental results regression for subdatabase1: (a) flexural load test 

phase, (b) flexural load train phase, (c) deflection test phase, (d) deflection train phase. 
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Figure 30. APG prediction vs. experimental diagram for subdatabase1: (a) flexural load test phase, 

(b) flexural load train phase, (c) deflection test phase, (d) deflection train phase. 

In this phase of the research, subdatabase2 was utilized as the input data for the hy-

brid algorithm, and flexural load and deflection were predicted as the corresponding out-

puts. To assess the accuracy and performance of the hybrid algorithm, the predictions 

were compared with the actual data through regression and comparative graphs, as 

shown in Figures 31 and 32, respectively. Additionally, Table 24 presents a detailed sum-

mary of the analytical prediction results for subdatabase2 using the APG. The regression 

graph (Figure 30) visually depicts the relationship between the predicted and actual val-

ues of flexural load and deflection. 

Table 24 contains essential numerical properties of the analysis for subdatabase2. For 

the flexural load prediction, the hybrid algorithm achieved an RMSE of 3.2102 in the test 

set and 3.2297 in the training set. The R-squared values (R2) indicate the proportion of 

variance explained by the model, and they were found to be 0.3150 and 0.3108 for the test 

and train sets, respectively. The correlation coefficient (r) represents the strength of the 

relationship between the predicted and actual values, and values of 0.7956 and 0.8057 

were obtained for the test and train sets, respectively.  

Additionally, for deflection prediction in subdatabase2, the hybrid algorithm 

achieved an RMSE of 1.9833 in the test set and 1.8 in the training set. The R-squared values 

(R2) were found to be 0.2644 and 0.3943 for the test and train sets, respectively, indicating 
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a moderate relationship between predicted and actual deflection values. The correlation 

coefficient (r) for deflection prediction was found to be 0.5142 in the test set and 0.6502 in 

the train set. The standard deviation (Std) and mean error (e mean) provide additional 

insights into the accuracy and precision of the deflection predictions. 

The results presented in Table 24 indicate that the hybrid algorithm’s predictions for 

flexural load and deflection in subdatabase2 have moderate accuracy, as indicated by the 

RMSE values and R-squared values, which are below the values obtained in subdatabase1. 

The correlation coefficients (r) suggest that there is a significant positive relationship be-

tween predicted and actual values, but the predictive power is not as strong as observed 

in subdatabase1. Otherwise, subdatabase2 is not way off from subdatabase1, and this dif-

ference in accuracy could be a�ributed to the effect of geometrical features and fiber con-

tent on the mechanical function of FRC [59]. 

Table 24. Subdatabase2 analytical prediction results through APG. 

Flexural load prediction 

Test Train 

RMSE 3.2102 RMSE 3.2297 

R2 0.3150 R2 0.3108 

r 0.7956 r 0.8057 

Std 3.2110 Std 3.1290 

e mean −0.1069 e mean −0.0012 

Deflection prediction 

Test Train 

RMSE 1.9833 RMSE 1.8 

R2 0.2644 R2 0.3943 

r 0.5142 r 0.6502 

Std 1.7375 Std 1.6888 

e mean −0.0412 e mean 0.0007 

 

Figure 31. APG prediction vs. experimental results regression for subdatabase2: (a) flexural load test 

phase, (b) flexural load train phase, (c) deflection test phase, (d) deflection train phase. 
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Figure 32. APG prediction vs. experimental diagram for subdatabase2: (a) flexural load test phase, 

(b) flexural load train phase, (c) deflection test phase, (d) deflection train phase. 

In this part, subdatabase3 data were utilized to predict the flexural load and deflec-

tion using the APG algorithm. The results of this prediction were evaluated and presented 

through regression and comparative graphs, which are depicted in Figures 33 and 34, re-

spectively. Additionally, Table 25 offers a detailed summary of the analytical prediction 

results for subdatabase3 using the APG algorithm. The regression graph (Figure 33) visu-

ally showcases the relationship between the predicted and actual values of flexural load 

and deflection. The comparative graph (Figure 34) provides a direct comparison between 

the predicted and laboratory values, enabling a visual evaluation of the algorithm’s per-

formance in predicting flexural load and deflection for subdatabase3. 

Table 25 presents crucial numerical metrics derived from the prediction analysis. For 

flexural load prediction in subdatabase3, the APG algorithm achieved an RMSE of 3.5509 

in the test set and 3.1600 in the training set. The R-squared values (R2) indicate the propor-

tion of variance explained by the model, and they were found to be 0.5580 and 0.6080 for 

the test and train sets, respectively. The correlation coefficient (r) represents the strength 

of the relationship between the predicted and actual values with values of 0.7481 and 

0.7830 for the test and train sets, respectively.  

Similarly, for deflection prediction in subdatabase3, the APG algorithm achieved an 

RMSE of 1.8977 in the test set and 1.8748 in the training set. The R-squared values (R2) 
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were found to be 0.3395 and 0.3773 for the test and train sets, respectively. The correlation 

coefficient (r) for deflection prediction was found to be 0.5781 in the test set and 0.6215 in 

the train set. The standard deviation (Std) and mean error (e mean) offer additional in-

sights into the accuracy and precision of the deflection predictions.  

The results presented in Table 25 indicate that the APG algorithm’s predictions for 

flexural load and deflection in subdatabase3 demonstrate moderate accuracy. The RMSE 

values and R-squared values are higher than those obtained in subdatabase1 but lower 

than those observed in subdatabase2. The correlation coefficients (r) suggest a positive 

relationship between predicted and actual values, indicating that the algorithm is captur-

ing relevant pa�erns in the data. This smooth performance of the APG algorithm thor-

oughly confirms that the elasticity of the fibers has a significant role in the flexural behav-

ior of FRC [33–35]. 

Table 25. Subdatabase3 analytical prediction results through APG algorithm. 

Flexural load prediction 

Test Train 

RMSE 3.5509 RMSE 3.1600 

R2 0.5580 R2 0.6080 

r 0.7481 r 0.7830 

Std 3.2110 Std 3.1290 

e mean 0.0760 e mean 0.0199 

Deflection prediction 

Test Train 

RMSE 1.8977 RMSE 1.8748 

R2 0.3395 R2 0.3773 

r 0.5781 r 0.6215 

Std 1.8992 Std 1.6888 

e mean 0.0166 e mean 0.0049 

 

Figure 33. APG prediction vs. experimental results regression for subdatabase3: (a) flexural load test 

phase, (b) flexural load train phase, (c) deflection test phase, (d) deflection train phase. 
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Figure 34. APG prediction vs. experimental diagram for subdatabase3: (a) flexural load test phase, 

(b) flexural load train phase, (c) deflection test phase, (d) deflection train phase. 

In the final step of the research, the prediction of flexural toughness involved the use 

of two separate subdatabases: subdatabase4 and subdatabase5. The results obtained from 

the analysis of subdatabase4 are illustrated in Figures 35 and 36, with a comprehensive 

summary of the analytical prediction outcomes presented in Table 26. Similarly, the re-

sults obtained from the analysis of subdatabase5 are shown in Figures 37 and 38 along 

with the associated analytical prediction metrics presented in Table 27. 

Table 26 provides a detailed assessment of the APG (Artificial Pollination Algorithm) 

algorithm’s predictive performance for flexural toughness in subdatabase4. The algo-

rithm’s predictions were evaluated using various metrics, such as the root mean square 

error (RMSE), R-squared (R2), correlation coefficient (r), standard deviation (Std), and 

mean error (e mean). The RMSE values indicate the average magnitude of the errors in 

predicting flexural toughness for the test and train sets, respectively. The R-squared val-

ues (R2) indicate the proportion of variance in the data explained by the algorithm’s pre-

dictions, with higher values suggesting be�er predictive performance. The correlation co-

efficients (r) represent the strength and direction of the linear relationship between the 

predicted and actual flexural toughness values, while the standard deviation (Std) and 

mean error (e mean) offer insights into the precision and accuracy of the algorithm’s pre-

dictions. 
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For subdatabase4, the APG algorithm demonstrated excellent predictive perfor-

mance for flexural toughness, with an RMSE of 0.3772 for the test set and 0.3919 for the 

train set. The high R-squared values of 0.9684 and 0.9572 for the test and train sets, respec-

tively, indicate that a significant portion of the variance in the flexural toughness data is 

explained by the algorithm’s predictions. The correlation coefficients (r) of 0.9841 for the 

test set and 0.9780 for the train set signify strong positive linear relationships between 

predicted and actual values. Additionally, the small standard deviation (Std) values of 

0.3775 for the test set and 0.3865 for the train set, along with the mean error (e mean) values 

close to zero, demonstrate the algorithm’s precision and accuracy in predicting flexural 

toughness [50]. 

Likewise, Table 27 presents the analytical prediction results for flexural toughness in 

subdatabase5 using the APG algorithm. The algorithm’s predictive performance metrics 

are evaluated and include RMSE, R-squared (R2), correlation coefficient (r), standard de-

viation (Std), and mean error (e mean). The results indicate that the APG algorithm 

achieved an RMSE of 0.3776 for the test set and 0.3749 for the train set, showcasing con-

sistent performance. The R-squared values (R2) of 0.9642 for the test set and 0.9628 for the 

train set suggest strong predictive capabilities of the algorithm. The correlation coeffi-

cients (r) of 0.9819 for the test set and 0.9821 for the train set indicate a highly positive 

linear relationship between predicted and actual values. Moreover, the small standard de-

viation (Std) values of 0.3777 for the test set and 0.3670 for the train set, along with the 

mean error (e mean) values close to zero, further confirm the algorithm’s accuracy and 

precision in predicting flexural toughness in subdatabase5 [45]. 

The findings from Tables 26 and 27 demonstrate that the APG algorithm successfully 

predicts flexural toughness for both subdatabase4 and subdatabase5 with high accuracy 

and precision. The high R-squared values and strong correlation coefficients indicate that 

the algorithm captures the complex relationships between input data and flexural tough-

ness with exceptional accuracy [55–57]. The consistently low RMSE and small standard 

deviation values further validate the reliability and consistency of the algorithm’s predic-

tions. 

Table 26. Subdatabase4 analytical prediction results through APG algorithm. 

Flexural Toughness Prediction 

Test Train 

RMSE 0.3772 RMSE 0.3919 

R2 0.9684 R2 0.9572 

r 0.9841 r 0.9780 

Std 0.3775 Std 0.3865 

e mean 0.0084 e mean 0.0000 

 

Figure 35. APG prediction vs. experimental results regression for subdatabase4: (a) flexural tough-

ness test phase, (b) flexural toughness train phase. 
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Figure 36. APG prediction vs. experimental diagram for subdatabase4: (a) flexural load toughness 

phase, (b) flexural toughness train phase. 

Table 27. Subdatabase5 analytical prediction results through APG algorithm. 

Flexural Toughness Prediction 

Test Train 

RMSE 0.3776 RMSE 0.3749 

R2 0.9642 R2 0.9628 

r 0.9819 r 0.9821 

Std 0.3777 Std 0.3670 

e mean 0.0130 e mean 0.0001 

 

Figure 37. APG prediction vs. experimental results regression for subdatabase5: (a) flexural tough-

ness test phase, (b) flexural toughness train phase. 
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Figure 38. APG prediction vs. experimental diagram for subdatabase5: (a) flexural load toughness 

phase, (b) flexural toughness train phase. 

4. Conclusions 

In this study, the behavior of fibrous concrete under elevated temperatures was in-

vestigated using a novel design artificial intelligence algorithm called APG (ANFIS-PSO-

GA hybrid algorithm). By combining ANFIS (Adaptive Neuro-Fuzzy Inference System) 

with population-based algorithms, including the genetic algorithm and the particle 

swarm optimization algorithm, the APG algorithm was developed for comprehensive 

evaluation. Although using AI (artificial intelligence) has facilitated modeling the behav-

ior of FRC, lack of data and time-consuming analysis were limitations of the work. The 

experimental test data were divided into five subdatasets to thoroughly analyze the per-

formance of the algorithms. Based on the achieved results, several important conclusions 

were drawn. 

 Firstly, it was observed that fibers play a significant governing role in the flexural 

behavior of fiber-reinforced concrete (FRC), especially at elevated temperatures. The 

incorporation of fibers in concrete enhances its strain capacity, impact resistance, en-

ergy absorption, wear resistance, and tensile strength, which are crucial properties 

for various engineering applications. 

 Among the mechanical properties of FRC, the flexural load was identified as the most 

influential factor. The APG algorithm successfully predicted the deflection and flex-

ural characteristics (flexural load and flexural toughness) of FRC. Notably, flexural 

toughness was found to be directly related to the mechanical properties of the fibers. 

 The findings highlight the importance of evaluating the fiber content and fiber elas-

ticity to design suitable FRC samples with desired properties. The proper selection 

and evaluation of fibers are essential for achieving the desired mechanical perfor-

mance and behavior of FRC under different conditions. 

 The APG algorithm demonstrated superior performance and accuracy in estimating 

the flexural properties of FRC compared to the ANFIS-PSO algorithm. The successful 

application of the APG algorithm paves the way for further studies to predict and 

evaluate other properties of FRC, such as compressive strength, using the same ap-

proach. Additionally, exploring the combination of population-based heuristic algo-

rithms with Convolutional Neural Networks presents another promising avenue for 

challenging and enhancing prediction results. 
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In conclusion, this study presents a novel and effective approach to evaluate the be-

havior of fibrous concrete under elevated temperatures using the APG algorithm. The re-

sults demonstrate the importance of fibers in influencing the flexural behavior of FRC and 

provide valuable insights for designing and optimizing FRC compositions for specific en-

gineering applications. The successful application of the APG algorithm in predicting flex-

ural properties opens up new possibilities for material characterization and structural 

analysis in the field of civil engineering. For future research, the suggested extension of 

the APG algorithm to predict other properties of FRC and explore hybridization with Con-

volutional Neural Networks promises to further advance the understanding and applica-

tion of artificial intelligence in concrete technology and structural engineering. 
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