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Abstract
The integration of IoT and AI has gained significant attention as an emerging means to digitize
manufacturing industries and drive sustainability in the context of Industry 4.0. In recent times,
there has been a merging of AI and IoT technologies to form an "Artificial Intelligence of Things"
(AIoT) infrastructure. This integration aims to enhance various aspects such as human-machine
interactions, operations in the field of IoT, big data analytics, and more. AIoT-based solutions
offer numerous benefits to the manufacturing industry. These solutions improve efficiency,
reduce waste, and enhance safety measures. By utilizing AIoT, manufacturers are able to achieve
Industry 4.0 goals and increase productivity through automation, process optimization, and
more informed decision-making. Additionally, the adoption of AI and IoT-based solutions in
manufacturing companies has increased substantially. These solutions enable the early detection
and prevention of defects in equipment, leading to the production of high-quality products. By
minimizing waste, reducing costs, improving efficiency, and boosting productivity, manufacturers
can further optimize their operations. Academic researchers and industry practitioners are
currently prioritizing the development of highly advanced and streamlined AIoT-based solutions
specifically designed for sustainable manufacturing. The primary objectives of this paper are
(i) to provide a comprehensive overview of the domain-centric AIoT-based industry technology
for sustainable manufacturing; (ii) to conduct a thorough survey of the existing research on
AIoT-enabled manufacturing; (iii) to discuss the current challenges faced by AIoT in the context
of sustainable manufacturing and explore the research prospects in this field. Therefore, this paper
presents a systematic review of state-of-the-art AIoT-based techniques employed in industries for
sustainable manufacturing and analyzes the key contributions and opportunities. Finally, the key
challenges are explained for future research prospects.

1. Introduction
Manufacturing industries are transforming traditional manufacturing into sustainable and economically sound

manufacturing practices by embracing digital technologies to utilize natural resources and minimizing negative environ-
mental impacts more effectively [1]. Industry digitization and achieving Industry 4.0 goals are assisted by adopting
new technologies, such as artificial intelligence (AI) and the Internet of Things (IOT) [2]. Using these emerging tech-
nologies in industrial manufacturing can improve product quality, machine efficiency, employee safety, and predictive
maintenance and reduces overall energy consumption, negative environmental implications and production costs [3].
Moreover, concerns about air pollution and ecological implications are growing in relation to industrial production.
AI and IoT-based intelligent systems enhance the resource and process scheduling of manufacturing, which implicitly
reduces energy consumption and environmental pollutants. Additionally, the combination of AI and IoT to create
the Artificial Intelligence of Things (AIoT) infrastructure can quickly identify the level of toxins in the air and make
an appropriate decision based on an analysis of the data [4]. Incorporating an intelligent system in manufacturing
industries also improves the safety of workers [5]. For example, a top supplier to the automotive sector, Bosch1, uses
AI and IoT in autonomous driving and safety systems for vehicles and trucks to achieve the Vision Zero goal of having
no fatalities or serious injuries resulting from the digitization of automobile industries which assists the achievement of
sustainable manufacturing goals. These examples demonstrate how using these emerging technologies is changing
the world. This study presents an overview of AIoT for sustainable manufacturing and, state-of-the-art research, and
discusses the challenges and future research directions.
1.1. Motivation

The AIoT infrastructure incorporates intelligent capabilities on IoT devices to improve IoT operations, big data
analytics, and human-machine interactions. It represents an intelligent IoT infrastructure. The role of AIoT-based

ORCID(s):
1https://www.bosch.com/
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technologies in sustainable manufacturing is significant as it addresses the critical challenges of sustainability, especially
in manufacturing industries, and is able to drive decisions on big data generated by various sensors in different industrial
processes. Initiatives are needed to incorporate modern technologies to achieve sustainable manufacturing goals [6, 2, 7].
Recently, AI and IoT-based applications such as knowledge-based expert systems, intelligent scheduling, and fuzzy
controllers have been introduced in different manufacturing industries to maintain the sustainability of manufacturing [2].
However, the demand for utilizing AI and machine learning technologies has increased in the last two decades in relation
to analyzing the risk profiles of supply chain management [8]. Domain-centric AIoT-based sustainable manufacturing
research is ongoing, and its progress in incorporating the technology in manufacturing industries is in the initial stage.
The future of manufacturing is likely to be increasingly data-driven. Manufacturers can make better decisions and
improve operations as more data is collected from various process segments using multiple sensors and analyzed for
decision driven. However, it is hard to interlink them using traditional machine-learning approaches to derive real-time
forecasting, monitoring, fault detection, and decision modification. AIoT is able to analyze big data from different
perspectives and retrieve feature attributes from data using AI techniques to resolve this issue [9]. Therefore, AIoT is
involved in the complete cycle of sustainable production, i.e., product design, process planning, sustainable machining,
process scheduling, energy consumption, supply chain [10, 11, 8]. This study presents an extensive overview of the
research on AIoT for sustainable manufacturing.
1.2. Objectives of the Study

The primary focus of this study is to determine why AIoT should be applied in industrial manufacturing to
achieve sustainable manufacturing goals by maximizing resource utilization, increasing productivity and quality
control, improving safety, and reducing adverse environmental effects. To accomplish these goals by managing the
enormous volume of data generated from diverse industrial processes, it is essential to use AIoT manufacturing tools to
advance traditional manufacturing models. Businesses are quickly discovering the advantages of employing sustainable
production methods and strategies [12]. For instance, the perception that resources (raw materials, energy, water etc.)
are limited and frequently non-renewable may impact business operations. Anthropogenic activities also progressively
contribute to climate change, which can have adverse effects. Recent worries regarding the sustainability of corporate
strategies that are narrowly focused on economic growth and pay little attention to avoiding negative externalities have
also been sparked by the financial crisis. As a result, the demand for sustainable manufacturing from a wide range of
stakeholders, including workers, investors, suppliers, customers, rivals, communities, governments, and regulators is
rising. There are three pillars to sustainable manufacturing: economic, environmental and social [7]. This study follows
the principles of sustainable manufacturing. The objectives of the study are as follows:

• To provide an overview of how AIoT can be used in different industries to make manufacturing more sustainable
by optimizing energy use, reducing waste and improving product quality.

• To review the existing research on the use of AIoT in manufacturing.
• To discuss the challenges that need to be overcome to realize the potential of AIoT for sustainable manufacturing

fully. The paper also discusses the research prospects for this area and identifies the key areas where further
research is needed.

Although manufacturers have begun to notice how sustainability initiatives affect consumer behavior and help
build their brand’s value and image, there are still many obstacles to putting them into practice. Some manufacturing
industries involved in sustainable manufacturing need more assessment tools for measuring and analyzing manufacturing
performance, which can cause inefficiencies and inaccurate development tracking. Additionally, implementing AIoT
for sustainable manufacturing requires access to research and programs focused on the sustainable development of
manufacturing sectors, as more knowledge and assistance expand ideas and businesses’ capacities to realize them.
Manufacturers must create strategies that effectively address these issues and streamline the implementation of AIoT-
based sustainable manufacturing methods.
1.3. Comparisons with Previous Surveys

There are two tiers of technology associated with AIoT. The first is computing technology, which involves big data,
machine learning, computer vision, embedded computing, sensors and networks, and edge computing. The other is
related to specific industrial domains and deals with predictive maintenance, process mining, and optimization. While
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Table 1
Existing AIoT survey and their objectives

Reference Focus

Chang et al. [26] Edge computing powered AIoT
Zhang et al. [24] AIoT architecture with edge, cloud and fog computing
Revathi et al. [13] Agricultural production, crop monitoring
El Himer et al. [22] AIoT for renewable energy, distributed energy resources
Ghoreishi et al. [20] Eco-friendly business operation, circular economy
Bronner et al. [25] Technological transformations of business, Product-as-a-service
Yang et al. [4] AIoT for particulate patters monitoring, pollutant monitoring
Nishimura et al. [21] Industrial automation, AIoT-based industrial controllers
Yu et al. [23] Intelligent scheduling of manufacturing
Mao et al. [27] Energy-efficient AIoT
Wazid et al. [28] Blockchain technology incorporated in AIoT applications for security
He et al. [29] Sustainable manufacturing using digital twin

this survey aims to provide a comprehensive understanding of sustainable manufacturing, AIoT-based solutions, and
their implications and limitations based on our investigation of earlier publications, to the best of our knowledge, there is
no survey to date dedicated to AIoT for sustainable manufacturing. Although several recent surveys focus on AIoT-based
technologies, they focus on specific domains or problems, such as smart agriculture [13, 14], smart healthcare [15, 16],
smart homes [17, 18], and smart environment [4], supply chain and circular economy [19, 20]), industrial control
unit [21], renewable energy [22], and scheduling [23]. We are aware of some surveys on generic applications of
AIoT [24, 25, 26]. For example, [24] thoroughly assesses AIoT and discusses how AI may enable quicker, greener, safer,
and more intelligent IoT in a cloud-fog-edge computing setting. Another survey on edge-computing-powered AIoT
further covers the sensor and network domains and presents a fundamental AIoT architecture [26]. This survey differs
from previous relevant surveys by centering on AIoT for sustainable manufacturing from blended research, domains,
and industry perspectives. To present a better state-of-the-art view, we summarize the most relevant AIoT reviews in
Table 1.
1.4. Contributions

The key contributions of the study are as follows:
i. We overview why AIoT in industries is a promising tool from the perspective of sustainable manufacturing and

provide a thorough analysis of AIoT’s potential to support sustainable manufacturing.
ii. We survey the state-of-the-art research on AIoT-enabled manufacturing: the core integrated technology for achieving

the goals of sustainable manufacturing is AIoT.
iii. Finally, we discuss the current challenges of AIoT-enabled manufacturing and future research directions through

an extensive discussion. The key focus of the study is to undertake a thorough investigation of AIoT applications in
the field of sustainable manufacturing.

The reminder of the paper is organized as follows. The background of the study is covered in section two, including
the fundamentals of sustainable manufacturing, requirements for sustainable manufacturing, AIoT concepts and
architecture, and AIoT market analysis. Section three discusses the systematic literature review (SLR) methodology with
details on the research questions, the search keywords, and the sources used to retrieve the relevant literature. Section
four details the state-of-the-art AIoT approaches for sustainable manufacturing, application areas, and AIoT-based
industrial toolkits across sustainable manufacturing domains. A few open research problems and potential research
directions for AIoT are discussed in section five to encourage ongoing research activities. Finally, section six concludes
the SLR on AIoT for sustainable manufacturing.

2. Background
In this section, we cover the background of sustainable manufacturing, especially in terms of what sustainability

can be achieved through AIoT technology. We also introduce AIoT concepts, architecture, and workflow.
2.1. Sustainable Manufacturing

Sustainable manufacturing refers to manufacturing economically sound products by properly utilizing raw mate-
rials and reducing energy consumption and emissions. It is also referred to as green manufacturing or eco-friendly
First Author et al.: Preprint submitted to Elsevier Page 3 of 29
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Figure 1: Three pillars of sustainable manufacturing [7].

manufacturing. The ability to efficiently utilize resources for industrial manufacturing can be termed as sustainable
manufacturing. It helps develop goods and solutions that, due to technological advances, regulatory restrictions, and
socially entirely consistent objectives, satisfy economic, ecologic, and social goals while enhancing the living conditions
for individuals [7, 1, 30, 12]. Therefore, industries, the environment, and communities can all profit from sustainable
manufacturing. To measure manufacturing sustainability, holistically, organizations or industries have to measure
their sustainability from three aspects: the economy, society, and the environment. Technology and education are two
essential elements for binding together the three pillars of sustainable manufacturing to maintain a socioeconomic
balance, as shown in Figure 1. However, the three pillars of sustainable manufacturing are interconnected through
human involvement: economic sustainability depends on production that balances the supply and demand relationship,
social sustainability depends on safe and secure livelihoods, and environmental sustainability depends on conserving
global ecosystems and natural resources.

The digital transformation of industries has played a role in utilizing resources and reducing energy consumption and
emissions. In a world where renewable energy is produced from decentralized sources, such as solar systems [31], the
AIoT can play an essential role in managing decentralized energy supply and demand. The manufacturing and energy
sectors can be decarbonized by AIoT automation to improve resource use, scheduling, renewable energy adoption,
decentralized trading, intelligent buildings, and recycling and waste reuse [25, 32]. However, digital gadgets and IoT
infrastructures need energy to function. Two key concerns arise when considering intelligent technology incorporated
into industry. Firstly, energy is required for operating technology-oriented infrastructure and information processing,
and the other is changing production patterns and consumption according to market demand. These requirements can be
assessed by AIoT solutions specifically for improving sustainability and implementing intelligent footprint assessments
that will enable a sustainable economy with the aid of digital technologies. Industry 4.0 encourages the development
of high-performance-wise production plants with fully optimized resource usage, including essential and productive
resources like energy and water, as pillar product components like raw materials.

The main goals of sustainable manufacturing depend on three key characteristics: efficient production, improved
safety and security, and agile manufacturing. To incorporate these key features while manufacturing industrial products,
we must consider the following aspects for sustainable manufacturing:

• Avoiding negative environmental impacts such as pollution and emission while manufacturing products
• Reducing the cost of production by reducing the consumption of energy, raw materials, water, and other limited

resources
• Recycling waste and the proper maintenance of disposable and hazardous waste
• Improving safety and security for workers and nearby communities
Industries are pursuing sustainable solutions to align with the objectives of Industry 4.0 through changes in products

as per present market demand and automation of manufacturing systems. Currently, technology adaptation is rooted
in sustainable productivity and social welfare as well as improving the environmental aspects of manufacturing [33].
Industries are going through a transition period to adjust to the fourth industrial revolution. Therefore, manufacturing
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Figure 2: Elements of sustainable manufacturing and AIoT-enabled manufacturing support

industries are facing several challenges while shifting to the new trend considering the cost of production, present
market demand, and environmental impacts. In particular, the key challenges addressed in the previous studies are the
inadequate capabilities of industries to adopt advanced manufacturing technologies, sustainable processes, planning
and scheduling, waste management, safety and security, and supply chain management [34, 2, 35, 36]. Researchers
focus on addressing these issues and devising intelligent solutions using AIoT-based infrastructure. Figure 2 shows
what sustainability can be achieved through AIoT-enabled manufacturing support.
2.1.1. Boost Productivity through Efficient Resource Management

The issue most identified by operations research and control groups is the management of manufacturing activities
for sustainable production, particularly process and resource scheduling for sustainable manufacturing. Scheduling is
the process of allocating resources (both technical and human) to tasks throughout specific periods to optimize one or
more criteria [37]. By effectively utilizing resources to reduce energy consumption, sustainable process scheduling
is primarily intended to minimize production costs in manufacturing industries. The environment is polluted due to
excessive carbon emissions from industries. So industries must focus on efficient process scheduling to maximize
the use of resources and minimize the negative environmental effects. Concurrently, they need to consume energy to
produce goods to meet today’s market demand. Therefore, balancing both sides, i.e., reducing energy consumption
and manufacturing goods to meet market demand is a complex problem. This issue can be optimized by incorporating
AIoT-based process scheduling. Although analyzing big data generated from process industries needs computational
infrastructure, the comprehensive process scheduling provided by AIoT can be a sustainable solution.
2.1.2. Energy Management

AIoT-based manufacturing solutions reduce energy costs through resource and process scheduling [38]. When
energy consumption is reduced, manufacturing costs decrease along with carbon emissions. Additionally, increasing
grid efficiency, optimally utilizing renewable energy sources, and integrating AIoT to establish decentralized energy
trade are all ways that AIoT can help with efficient energy management [22]. However, AIoT technology depends
entirely on sensors, IoT devices, network connections, and data centers. To link the many connected devices, energy
is required to maintain the functioning of the AIoT infrastructure. Research is being conducted to reduce the energy
requirements for AIoT solutions [38, 39]. Furthermore, changes in consumer demands, behavior and technological
advancements have increased energy consumption. Energy management is now a significant issue for sustainable
manufacturing.
2.1.3. Safety and Security

Manufacturing industries play a significant role in balancing the supply and demand of the market. As previously
mentioned, the key goals of sustainable manufacturing are: to reduce energy use and pollutant emissions during
production, to monitor and evaluate the environmental footprint, and to control risks throughout life, which emphasizes

First Author et al.: Preprint submitted to Elsevier Page 5 of 29



AIoT for Sustainable Manufacturing

Figure 3: Sample prototype to reuse waste [49]

the need for stricter environmental regulations and improved accident prevention [40]. In any industry, employees
involved in operations can face security threats while working in an unhealthy and hazardous environment. Additionally,
many heavy workloads are beyond human capability. Using significant volumes of dangerous chemicals in the chemical
industry causes spatial variability in chemical operations and the introduction of more strict safety and environmental
requirements. Thus, many manufacturing industries are launching industrial robots, which increase productivity and
reduce the risk to human operators [41, 42, 43]. Several wired, wireless, and remote communication protocols have been
developed to solve this issue. Some researchers introduced remotely operated robots where the user operates the robot
remotely. However, noticing every aspect of an industrial environment is a complex issue and can be dangerous. The
AIoT and other emerging information technologies are extremely promising in relation to overcoming these challenges.
An AIoT-based human-machine interface (AHMI) can be a solution in this regard as it enables users to monitor devices,
control product quality, store documents safely on clouds, and issue instructions from a safe distance.
2.1.4. Waste Management and Recycling

The unrestricted dumping of manufacturing waste in public areas has become a significant concern worldwide.
Exposure to toxic waste can result in cause adverse health effects and have a detrimental impact on the environment. One
potential long-term approach to resolve these issues is an integrated waste management system [44]. Identifying and
classifying recyclable, hazardous, and disposal wastes is a serious challenge. AIoT applications may be very beneficial
as AIoT-based intelligent sensors can distinguish between waste comprising different materials and identify whether
products made of the same substance have been chemically contaminated, maintaining the purity of the waste stream.
Several waste management systems utilize such methods and IoT sensors to track how full garbage cans are throughout
the city. Although every stage of waste management is essential, reusing and recycling garbage has resulted in the
additional benefit of sustainable economic gain [45]. AI and IoT are being extensively researched for a sustainable waste
management strategy with progress in research transforming urban and industrial garbage management [46, 47, 48].
Given limited resources, manufacturers should focus on waste recycling for manufacturing sustainability and to reduce
environmental impact, as shown in Figure 3.
2.1.5. Employment and Social Sustainability

The public perceives that the traditional job market, especially in labor-oriented manufacturing [50, 51], will be
adversely impacted if AIoT technology is widely used, with sustainable development becoming unbalanced, and the
unemployment rate increasing [52, 53]. Hence, there is increased concern about how AI and IoT advancements impact

First Author et al.: Preprint submitted to Elsevier Page 6 of 29



AIoT for Sustainable Manufacturing

jobs. Will automation, for example, significantly reduce the need for several workers and, as a result, impact the working
capital and social performance of businesses? A study conducted in 2013 showed that 47% of total employment in
the United States is at a high risk of automation [54]. Unquestionably, the rise in inequality, stalling labor demand,
falling labor share in national revenue, and slower productivity growth are effects of advances in AI-driven automation
technologies [55]. A report by PricewaterhouseCoopers (PwC) found that by the early 2030s, 30% of jobs in the UK,
38% of jobs in the US, 35% of jobs in German, and 21% of jobs in Japan could be automated. The net employment
impact is unclear since new automation technologies will generate jobs, and there are practical obstacles to applying
automation [56]. This finding sparked additional research on the expected effects of AI-driven automation on the
economy [57]. The advancement of science and technology has resulted in enormous changes in society. Complex
social adaptations have been driven by technological progress. However, research strongly suggests that, over time,
AIoT advancement and industry automation both create a large number of new employment opportunities and increase
demand for those that already exist, more than compensating for the number of jobs it eliminates [58, 59].

Therefore, sustainable manufacturing has become an increasingly important research topic to address global threats
and increase technological adaptation for sustainable production. It is a pivotal element for industry conserving economic
development, which is also a key objective in human development to balance social, economic, and environmental
aspects [7]. Sustainable production brings socioeconomic balance to modern life and also addresses environmental
issues. It is a holistic, sustainable development process that provides a balanced socioeconomic environment [30].
Therefore, sustainable manufacturing is one of the critical matters of the industrial revolution Industry 4.0 [2]. The
process of manufacturing products considers economic development and minimizes adverse environmental implications
while using energy and natural resources. It is also referred to as green manufacturing or eco-friendly manufacturing
to increase productivity, employee safety, and community [60, 61]. According to state-of-the-art research on the
fourth industrial revolution, [2], the digitization of the manufacturing industry can significantly improve resource
and information efficiency, which is excellent for the environment [62]. Industry 4.0 technologies have a lower
environmental impact, consume less energy and minerals, reduce hazardous chemicals, exhibit greater energy efficiency,
reduce production costs, and enhance worker safety. Consequently, digital industrial innovation benefits mass production
and environmental sustainability [63]. Therefore, the major concern of researchers is to ensure all factors of sustainable
manufacturing are effectively incorporated into the industrial process. Researchers and industry collaborators have
been working together to develop intelligent automation for the rapidly changing global market. As a result, automated
manufacturing has begun to include smart solutions by integrating software and hardware to minimize production costs
and negative environmental impacts.
2.2. Artificial Intelligence of Things (AIoT)

Artificial Intelligence of Things (AIoT) has significant potential for utilizing AI and IoT to make IoT applications
intelligent [25, 65]. AIoT produces intelligent, interconnected systems where AI serves as the brain of the IoT devices.
IoT devices gather and transmit data from various sources to enhance the AI learning process used for automation.
The workflow of the AIoT infrastructure is shown in figure 5. Connecting IoT devices to sensors generate data from
different sources, which is scattered and complex. Artificial intelligence can elicit responses and guide intelligent
action by analyzing data from IoT devices. Digital technologies undoubtedly offer beneficial advantages to both
industry revolution and societies. The AIoT typically impacts automated process scheduling and overall product
output in industrial applications. The AIoT technology provides new opportunities in manufacturing industries that
arise from developing innovative process industries, enhancing product quality, and ultimately increasing productivity
and profitability. These factors are prerequisites for dealing with environmental issues and employee security for
manufacturing industries. AI and IoT-based systems enable a new set of product functions and capabilities such as
monitoring, scheduling, control, optimization, and autonomy [66] to boost operational efficiency, eliminate unplanned
outages, reduce machine downtime, enhance product quality and service, improve risk management, and ensure high
scalability (as shown in Figure 4). AIoT is currently employed as a digital technology for manufacturing data acquisition,
process, and analysis to learn, predict decisions, and take action (as shown in Figure 5). The outcome is an upward
spiral of value development for both areas: an increased number of IoT-based devices, increasing data volume, better AI
algorithms, and growing IoT technology. The advantages include IoT devices with AI to function independently, such as
logistics robots that move items in challenging areas like hospitals [25]. The overall flow of the AIoT infrastructure in
industry practice for sustainable manufacturing is shown in Figure 6. To control and optimize manufacturing production
in real-time, it is expected that AI and IoT technology, a digital replica of the physical system, will be employed widely.
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Figure 4: Benefits of AIoT in industrial manufacturing

.

Figure 5: Workflow of AIoT

AIoT technology creates an intelligent infrastructure for data analysis by integrating AI with IoT sensors and network
systems. All applications and solutions utilizing AIoT rely heavily on real-time data. So AIoT technology has vast
prospects for analyzing real-time manufacturing data. To develop an AI-based service function for industry, AIoT
can significantly impact industrial automation and build smart homes, smart cities, and smart transpiration systems.
The work in [67] recommends an AIoT-based system to track tunnel development in real-time. Their demonstration
showed how AIoT infrastructure improves overall automation when working on a project, facilitates decision-making,
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Figure 6: AIoT prototype in sustainable industrial practice [48]

and prevents accidents [68].The work in [69] presented a fast and energy-efficient framework for hybrid storage-class
memory in an AIoT terminal. The authors demonstrated that the proposed system could, on average, consume 46.2%
less energy than the conventional system. They utilized a sensor-based automated software manipulator to analyze the
virtual storage of AIoT. The hierarchy for material flow management was implemented using AIoT in [70]. A novel
two-step unsupervised error detection method that combines feature extraction and fuzzy clustering for typical AIoT
was proposed in [71]. In [72] described how industrial AIoT was used to increase quality at an HP factory. The findings
demonstrated the significant contribution this technology made to quality enhancement. The AIoT infrastructures are
divided into two paradigms based on the challenges of AI model building and interfacing, IoT device connectivity,
network communication, and data processing and computational strategy [64]: cloud-based AIoT and edge-cloud
collaborative AIoT, as shown in Figure 7.
2.2.1. Cloud-based AIoT

Cloud-based AIoT devices can make decisions locally by accessing local and central data. However, they have access
to start workflows in other connected systems. IoT devices can also send data to the cloud server. Both the training
and testing models utilize cloud servers equipped with powerful and flexible computing and storage resources [64].
However, this cloud-based AIoT infrastructure may face significant challenges due to the existing network and the
increasing volume of data created by edge IoT devices [73] and network capacity and communication delay between the
devices and distant cloud [74]. Despite this, the scalability, flexibility, and integration capabilities of cloud-based AIoT
devices can be the foundation for future intelligent applications. It can increase manufacturing efficiency as business
needs to respond quickly and easily expand or reconfigure access control systems while needing to change threat levels.
2.2.2. Edge-cloud Collaborative AIoT

Edge-cloud AIoT computing shifts AI inferencing to edge-computing installed inside IoT devices and analyses a
significant amount of the raw data locally instead of sending all the raw data back to the cloud for processing and analysis.
The challenges raised in cloud-based AIoT may be mitigated through the edge-cloud collaborative AIoT approach.
Therefore, edge computing can offer speed, reliability, low latency, and enhanced capacity using advanced AI models,
even though traditional cloud computing is still necessary for training them. Large volumes of data generated from
sensor-enabled conventional equipment are stored in the cloud database. However, difficulties arise when organizing
and analyzing large amounts of data to gain information. The AIoT-enabled infrastructure must be seamlessly connected
First Author et al.: Preprint submitted to Elsevier Page 9 of 29
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Figure 7: Two different paradigms of AIoT [64]

to the massive database to ensure the industry is artificially intelligent for economically sound manufacturing. To access
databases and maintain continuous communication in relation to device-sensor-storage and vice versa, a networking
infrastructure is essential for employing the AIoT system in real-time manufacturing.
2.3. AIoT market analysis

The growing use of AIoT technologies to improve decision making and the adoption of edge analytics solutions is
expected to boost market growth. Figure 8 shows the global market trend for AIoT. According to the Global Market
Insights research report 2, the global AIoT market is expected to grow from USD 9 billion in 2022 to USD 25 billion
by 2032, at a compound annual growth rate (CAGR) of 20%. The market share of AIoT end-users in 2022 is shown
in Figure 9. Moreover, a recent market research study by Transparency Market Research3 found that the global AIoT
industry was valued at 8.4 billion (USD) in 2022. The study also estimates that the market size will expand at a CAGR
of 24.6% from 2023 to 2031, reaching 58.4 billion (USD) by the end of the forecast period. The increasing adoption of
IoT devices and AI technologies is driving this growth.

3. Review Methodology
We conducted a systematic literature review of published scientific research articles using the PRISMA [75]

methodology. Additionally, a multidisciplinary strategy was used to gather relevant papers in a bottom-up manner [76].
The publications were sourced from significant web databases rather than specific journals. Figure 10 depicts the
procedure of retrieving relevant studies and their analysis. We utilized a three-phase SLR method for the study:

• Phase-I: We explored the top 5 online databases (as shown in Figure 10) to retrieve relevant studies. We identified
311 relevant studies for the SLR. Duplicate articles were removed at the end of this stage which left 265 articles
for screening.

• Phase-II: After completing Phase-I, we examined the preliminary study list to exclude unrelated articles by
2www.gminsights.com/industry-analysis/aiot-market
3www.transparencymarketresearch.com
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Figure 8: Global AIoT market size (Source: www.gminsights.com)

Figure 9: AIoT end-user market share-2022 (Source: www.gminsights.com)

carefully scrutinizing the articles’ titles, abstracts, and keywords. Then, we removed unrelated articles from the
list.

• Phase-III: Finally, we selected 146 articles from the 311 articles to prepare the SLR (as shown in Table 2).
The SLR provides an unbiased and realistic summary of the state-of-the-art research on AIoT for sustainable

manufacturing and elucidates the current challenges and prospects of AIoT in sustainable manufacturing. Therefore, the
outcome of the SLR can provide fruitful directions for AIoT-based technology adaptation in sustainable manufacturing.
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Figure 10: Review methodology for relevant study collection and analysis

Table 2
Search engines and number of studies

Search engine Preliminary selection of studies Final Selection of studies

Science Direct 76 48
IEEE Explore 47 30
Springer 43 24
Taylor & Francis 42 16
Google Scholar 103 28
Total 311 146

3.1. Research Questions
The primary purpose of the SLR is to answer the following three research questions regarding AIoT for sustainable

manufacturing:
• RQ1: Why is there a need to adopt AIoT-based automation in manufacturing industries?
• RQ2: What contributions have been made in the emerging AIoT research field?
• RQ3: What are the major challenges facing AIoT technology that need to be further explored to achieve sustainable

manufacturing objectives?
We include RQ1 to comprehensively understand AIoT and its importance regarding the objectives of the manufactur-

ing perspective. RQ2 summarises the current state-of-the-art regarding the main advantages of using AIoT technology
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Figure 11: Source of the selected articles and their categories

Figure 12: Publications by year

in industrial manufacturing. It is suggested that RQ2 explains the scope of AIoT applications in various manufacturing
domains. Finally, we anticipate identifying unsolved issues and research possibilities in response to RQ3 based on the
answers to the earlier questions.
3.2. Search Keywords

We focused on the literature topic and the most appropriate and specific synonyms while searching for relevant
articles in the databases. We used the primary alternatives and the “OR” and “AND” operators to locate the most
relevant works in the literature, as indicated in Table 3.
3.3. Literature Resources

We explored the following renowned databases namely Google Scholar, Springer, ACM Digital Library, Scopus,
Science Direct, IEEE Explorer, Wiley Online Library, and Taylor & Francis to retrieve relevant publications. The
percentage of articles retrieved from the databases is as follows: Science Direct (32%), IEEE Explore (18%), Springer
(14%), Taylor & Francis (11%), and Google Scholar (25%), with most of the studies being journal articles (as shown in

First Author et al.: Preprint submitted to Elsevier Page 13 of 29



AIoT for Sustainable Manufacturing

Figure 13: Publications by geographical distribution

Table 3
Search keywords for inclusion and exclusion of research studies

ID Keywords

1 (“AIoT” OR “Artificial Intelligence of Things”) AND (“Sustainable Manufacturing” OR “SM”)
2 (“AIoT” OR “Artificial Intelligence of Things”) AND (“Sustainable Manufacturing” OR “Industrial Manufacturing”)
3 (“AIoT” OR “Artificial Intelligence of Things” OR “Artificial Intelligence and IoT ”) AND (“Sustainable Manufacturing” OR

“Industrial Manufacturing”)
4 (“AIoT” OR “Artificial Intelligence of Things” OR “Artificial Intelligence and IoT ”) AND (“Sustainable Manufacturing” OR

“Industrial Manufacturing” OR ”Manufacturing”)
5 (“AIoT” OR “Artificial Intelligence of Things” OR “Artificial Intelligence and IoT ”) AND (“Sustainable Manufacturing” OR

“Industrial Manufacturing” OR ”Green Manufacturing”)
6 (“AIoT” OR “Artificial Intelligence of Things” OR “Artificial Intelligence and IoT ”) AND (“Sustainable Manufacturing” OR

“Industrial Manufacturing” OR ”Smart Manufacturing”)

Table 4
Top 10 venues of selected primary studies

Venue Name Publisher Papers

IEEE Internet of Things Journal IEEE Inc. 5
EEE Transactions on Industrial Informatics IEEE Computer Society 5
IEEE Access IEEE Inc. 5
International Journal of Production Research Taylor and Francis Ltd. 5
Procedia CIRP Elsevier 4
Journal of cleaner production Elsevier 4
Renewable and sustainable energy reviews Elsevier 3
Future Generation Computer Systems Elsevier 2
International Journal of Information Management Elsevier 2
Technological forecasting and social change Elsevier 2

Figure 11). The search phrase was developed by utilizing the extensive search possibilities provided by each entity of
these databases. We restricted the search to articles published between 2012 and 2022. The sources of the selected
studies are depicted in Figure 12 for a clear understanding of the growing research trend.
3.4. Metadata Analysis of the SLR

We extensively analyzed all 146 selected studies to obtain answers to our research questions. We compiled the
following details from each study: a complete reference, an overview, the type of contribution such as methodology
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Figure 14: Classification of selected studies

design or resolving issues, the specific applications, and suggested challenges. As shown in Figure 11, 81% of studies
were from reputed journals, with the most published in ScienceDirect/ Elsevier. Table 4 lists the top 10 venues of these
studies. We also established a connection between each study’s nation of affiliation of its first author. As illustrated in
Figure 13, it is interesting to note that all 146 primary research came from only 30 countries, with China, the USA,
India, Germany, and the UK leading the trend.

The selected studies were classified into four groups based on the paper contribution: use of analytics (41), application
design (38), methods & design issues (45), and literature review (22), as shown in Figure 14. The results show that 15%
of the publications are literature reviews, approximately 33% of the publications make new methodology contributions
and solve existing design issues, and 26% & 28% discuss the application design and use of analytics, respectively.

4. AIoT for Sustainable Manufacturing: State-of-the-art
Manufacturing industries will enforce sustainable production to increase productivity as well as to achieve the

objectives of Industry 4.0. Many technologies, such as the IoT, AI, cyber-physical systems (CPS), big data, intelligent
sensors, and 3D printing, have advanced to the point where they can now be used in the manufacturing industry.
Some of these technologies have already been incorporated to design task-specific applications. AI and IoT are the
two technologies that are utilized the most frequently in smart factories, which control whole systems using data
received from sensors installed on every piece of equipment in the facility [77, 78]. The demand to extract essential
information to drive decisions from big data accumulated in various industries such as food manufacturing, chemical
goods manufacturing, and healthcare is steadily increasing. Improvements made to the manufacturing industry with a
consistent focus on automation, robotics, and complex analytics increase efficiency. For sustainable manufacturing
goals, the AIoT enables the establishment of the manufacturing ecosystem and synchronization with several information
systems [79]. This section details AIoT approaches, application areas of AIoT in manufacturing, and AIoT-based
industrial toolkits.
4.1. AIoT Approaches to Sustainable Manufacturing

In this section, we explain the state-of-the-art AIOT-based research for sustainable manufacturing. We introduce
intelligent process scheduling for resource management, predictive maintenance and fault diagnosis to enhance produc-
tivity and reduce machine downtime, intelligent energy management for the efficient use of energy, and supply chain
management to manage the life cycle of manufacturing products from design to production and distribution.
4.1.1. Intelligent Process Scheduling

In sustainable manufacturing, intelligent process scheduling is a challenging issue. AI and IoT tools can solve this
problem in several ways. The arrival rate of data packets varies dynamically in the IoT ecosystem, which consists of
different types of sensors. The system’s dependability and quality can be seriously compromised if data packets are

First Author et al.: Preprint submitted to Elsevier Page 15 of 29



AIoT for Sustainable Manufacturing

Table 5
Existing research on process scheduling and energy consumption

Reference Problem Addressed Proposed Approach and Methods Significance

Liang et al. [82] Resource load scheduling and device
connections problem at the edge of
AIoT

Hybrid resource scheduling archi-
tecture; Edge computing, a linear
weighting strategy, multi-objective
algorithms

Reduce the AIoT processing delay
and energy consumption

Zhu et al. [38] Resource management and energy
consumption

Intelligent edge computing frame-
work; Reinforcement-learning, on-
line scheduling problem

Reduce energy consumption

shi et al. [83] Network congestion and energy con-
sumption

AIoT architecture for crop monitor-
ing system(CMS); Edge computing,
Deep reinforcement learning (DRL)

Optimize task scheduling and reduce
energy consumption

Vermesan et al. [84] The optimization problem in the mi-
crocontroller for complex DNS com-
putation

Real-time AIoT scheme; Edge com-
puting: Micro Edge, Deep Edge

Improve system optimization and
product quality, reducing energy con-
sumption

Rustia et al. [85] Data unavailability and insufficient
knowledge about integrated pest
management (IPM)

Intelligent and Integrated Pest
and Disease Management (I2PDM);
Edge computing

Sustainable and data-driven IPM

Mun et al. [86] Quality and production cost Power monitoring and load classifi-
cation system; ANN

Improve the quality control of manu-
facturing lines, efficient load schedul-
ing, and reduce energy consumption

Hu et al. [87] Lack of efficient and intelligent man-
ufacturing system

iRobot-Factory; Edge Computing improving productivity and efficiency
and reducing production cost and
energy consumption

Feng et al. [88] Analysing high-dimensional and un-
balanced data for real-time quality
prediction

Integrated Quality Prediction model;
Random forest, SMOTE-Adaboost,
Edge Computing

improving quality prediction and ac-
curacy

not processed following the QoS requirement. The Q-learning scheduling approach is used to schedule data packages
generated by several sensor nodes [80]. Due to the wide range of product functionality, scheduling algorithms frequently
need to be modified to satisfy the needs of industry. An approach has been proposed that combines machine learning and
the Monte Carlo tree search (random search) to deal with re-entrant flow-shop scheduling problems with the requirement
for eliminating problem-specific knowledge [81].

The logistics industry is also experiencing an increase in scheduling issues. To tackle a production scheduling
challenge in a manufacturing plant, a scheduling problem is approached using Google’s Deep Mind DQN Q-learning
algorithm [89]. A neural network (NN) is trained to anticipate the action once the problem is given as a Markov decision
process. In addition to this prediction, the DQN algorithm, a reinforcement learning technique, links choices to better
actions. Tensorforce reinforcement is implemented using NN for order dispatching [90]. The hyperparameters, reward
function, and state representation are all given in-depth descriptions. Additionally, these publications are aimed at
engineers who need to learn more about ML and reinforcement learning. In [91], the author used a similar strategy for
task scheduling in a smart factory. Reinforcement learning and Q-learning models are utilized to deal with a real-time
scheduling issue. A reinforcement learning-based scheduling framework is proposed in [38] to develop energy-efficient
AIoT systems. Details of some of the research on AIoT-based industrial resources and process scheduling is shown in
Table 5.
4.1.2. Predictive Maintenance and Fault Diagnosis

Predictive maintenance refers to the physical status of industrial equipment and determining when necessary
maintenance tasks are needed to extend the equipment’s service life while reducing the risk of failure. AI and IoT
applications are growing due to developments in data collection methods, algorithms, and processing power. AI
algorithms are frequently employed for predictive maintenance and machine fault diagnosis to enhance productivity and
reduce machine downtime. The timely diagnosis of machine faults helps manufacturers to decrease machine downtime
and failure. As a result, manufacturers can provide products promptly and cost effectively and maintain a high level of
product quality. However, predicting machine faults in advance is challenging; much of the time spent during downtime
is spent finding faults rather than making repairs or undertaking the maintenance. Several fault detection approaches
have been introduced using machine learning techniques such as ANN [92, 93, 94], BN [95, 96, 97], HMM [98, 99],
SVM [100, 101]. With the advancement of IoT technology, data storage, and internet speeds, factories are becoming
smarter and process big data to increase manufacturing performance through AI-based predictive maintenance. AIoT
supports intelligent predictive maintenance to boost machine efficiency and enhance industrial productivity [102]. Some
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Table 6
AI-methods for predictive maintenance and fault Diagnosis

Reference Methods Applications

Fang et al. [103] Hybrid Predictive maintenance and measure processing time
left over during production

Wang et al. [102] Deep Learning, BRNN Intelligent predictive maintenance
Glaeser et al. [104] CNN Fault diagnosis
Liu et al [105] CNN, Hybrid Machine health monitoring
Carbery et al. [106] RF, and XGBoost Applying predictive analytics framework to the Bosch

and SECOM datasets to identify faults
Susto et al. [107] SAEF Predictive maintenance
Zhang et al. [108] CNN, Hybrid Intelligent process fault recognition and diagnosis
Paolanti et al. [109] RF Predictive maintenance
Usuga et al. [110] CNN, Hybrid Estimating the length of manufacturing machine failures

AI-based predictive maintenance and machine health diagnosis approaches are shown in Table 6.
4.1.3. Intelligent Energy Management

Energy consumption and emission reduction are two crucial objectives for industry in today’s environmentally
conscious society, particularly energy-intensive manufacturing businesses. AI and IoT technologies have advanced
quickly and can now be used in the industrial sector, creating opportunities to design and build dynamic decision
support systems to enhance energy efficiency. Energy is a fundamental requirement in industrial operations for a
variety of functions. With the growth of the balanced economy, the industrial sector now consumes roughly half of the
energy used worldwide [111]. AI and IoT have made it possible to collect data on energy usage from manufacturing
processes and the real-time status of resources. Real-time production management can improve energy efficiency using
these industrial data. Multi-source production data are becoming easier to acquire and more commonplace due to the
expansion of AI and IoT technology into the manufacturing sector. Real-time monitoring of the energy consumption
status of manufacturing processes enables the resulting data to be mined and knowledge to be discovered. As a result,
inefficiencies in energy consumption can be addressed, such as the energy used while a machine is idle or often
transitions between shutdown and operation. The work in [112] proposed a real-time energy efficiency optimization
method (REEOM) for energy-intensive manufacturing industries to apply AI and IoT technology to enhance energy
efficiency. Ontology modeling, multiagent technology integrations, and load-balancing systems have been proposed
to achieve effective dynamic resource management and reduce energy consumption [113]. Intelligent manufacturing
is enabled by dynamic resource management through AIoT-based manufacturing, which offers a solution to complex
resource allocation issues in present production situations and reduces energy consumption (as shown in Table 5).
Energy-intensive manufacturing industries are forced to boost production with efficient energy use and decrease their
associated environmental impacts due to rising energy prices, intensifying competition, new environmental legislation,
and concerns over environmental issues.

Instead of using fossil fuels as a source of energy, manufacturing industries concentrate on renewable energy to
mitigate energy resource limitation and emission issues [114, 115, 22]. AIoT-based Distributed Energy Resource (DER)
systems can boost renewable energy production and distribution [22]. However, various renewable energy sources such
as wind turbines, solar panels, and transformers are difficult to access and are located in remote areas. By utilizing
AIoT, predictive maintenance may foresee equipment breakdown and schedule preventative maintenance in advance.
AIoT enables DER systems to reduce operational expenses by minimizing unplanned downtime. When machines and
IoT sensors are connected through a network, it is significantly more advantageous for DER systems than the traditional
disconnected operation style. AI, in addition to IoT connections, accelerates DER development by predicting outcomes,
autonomously optimizing system operations, and automatically discovering flaws. Hence, through the use og AIoT,
DER systems can be described as “green energy systems”. The main advantages of using AIoT in DER systems are
boosting operational efficiency and reducing downtime.
4.1.4. AIoT-based Supply Chain Management

AIoT can analyze continuous data streams and identify precise patterns for making decisions. AI and machine
learning can also predict operational circumstances and identify factors that need to be altered for the best results. The
IoT provides data on which processes take too long and are redundant and which ones may be changed to become more
efficient. To modernize supply chain management and improve value creation across all industries, emerging Industry
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4.0 technologies are the main drivers in these areas [116]. Consequently, AIoT can also make the traditional supply
chain management system smart and more intelligent. However, most supply chain decision-makers need help to obtain
sufficient data in terms of quantity and quality to meet demands. Difficulties are mainly caused by the time-consuming
process of locating and validating reliable data sources, followed by the challenges of cleaning and classifying the
data into smaller chunks [116]. The shortage of high-quality data also creates an obstacle due to the low level of data
transparency. To be more precise, some AI techniques, such as decision trees and scorecards, are simple to understand.
However, other AI techniques, like neural networks, are still mysterious and challenging to understand, making it
difficult for practitioners to understand the rationale behind the decisions made by AI methods. In addition, a lack
of adequate and scalable storage is a problem for supply chains that must deal with such large data clusters [117].
Furthermore, adopting AIoT solutions is difficult to incorporate immediately due to current challenges such as resource
constraints and initial installation costs. However, it is clear that most of the AIoT research in supply chain management
is conceptual and is still in the early stages of development, lacking the successful application of AIoT infrastructure.
4.2. Application Areas

There are several manufacturing areas4, such as food and beverage manufacturing, agricultural manufacturing, textile
and apparel, footwear and accessories, pulp and paper products, chemicals and plastics, metal, machinery and equipment,
etc. [118], where AIoT technology can be incorporated for sustainable manufacturing. This section introduces some of
the manufacturing sectors where AIoT technology can be used to increase productivity and efficiency.
4.2.1. Food and Agricultural Manufacturing

The food and agricultural industry is going through a significant transformation by adopting new automation
technology to improve efficiency and safety and prevent production disruption. Technology development has increased
intelligence at the edge, enabling IoT devices to make better decisions with high performance, low power processing,
and built-in security. AIoT enables production optimization, waste reduction and maintenance, and environmental
sustainability to develop intelligent and adaptive industrial applications. The adoption of AIoT solutions in the food and
agricultural manufacturing industry has assisted in overcoming production and execution-related issues by minimizing
the possibility of human error and moving manual labour to an automatic system that is essential for the quality of
products. AIoT can be used to improve the quality of food and agricultural production, which can lead to increased
customer satisfaction and economic benefits. Therefore, the manufacturing industry can benefit from using AIoT in
predictive quality analytics and predictive maintenance and identifying machine failures that reduce productivity.

The manual labour system is automated using sensors, cameras, and actuators built into autonomous machines.
AIoT-based systems can track, monitor, and manage waste throughout its life cycle, including collecting data on waste
generation, transportation, and disposal to identify opportunities for recycling and reuse. With various sensors, IoT
devices, and edge technologies, AIoT systems can monitor food quality and safety, and AI-based food safety solutions
help forecast food product concerns. Data from sensors are collected, labeled, and analyzed using AI algorithms.
Food and agricultural manufacturing facilities are adopting capital-intensive machinery to enhance and optimize their
utilization of machines and resources. Examples of AIoT-based research are detailed in Table 7.
4.2.2. Chemical Manufacturing

Sustainable manufacturing in the chemical industry aims to maximize production by ensuring safety requirements
and reducing abnormal chemical incidents. Therefore, chemical processes should be smart to avoid safety incidents and
maximize productivity. Abnormal situations and safety management in chemical industries have been researched for
more than two decades to gain and utilize operational knowledge to address complicated abnormal circumstances that
are challenging for operators to identify and prevent. AIoT can provide significant support in this regard to improve
safety and productivity. Several conceptual AI and IoT-based (digital twins) intelligent frameworks have been introduced
in [124, 125, 126] for chemical process scheduling, control and optimization, and predictive maintenance. In [70], an
AIoT-based intelligent linkage service for a material flow management approach was proposed using deep learning
to resolve manual loading, labour waste, and safety issues. The Chemiscal5 introduced an AIoT-based application to
improve the efficiency of chemical synthesis.

AIoT technology integration in the chemical industry has distinguished research prospects to accelerate chemical
goods production. One of the significant aspects of AIoT technology adoption in chemical industries is to boost

4https://business.gov.au/planning/industry-information/manufacturing-industry
5https://www.chemiscal.com/index_en.html
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Table 7
AIoT for food and agricultural manufacturing

Reference Problem Addressed Proposed Approach and Methods Significance

Vermesan et al. [84] The optimization problem in Soy-
bean Manufacturing

Real-time AIoT scheme; Edge com-
puting: Micro Edge, Deep Edge

Improve system optimization and
product quality, reducing energy con-
sumption

Chen et al. [119] Pests identification from image data Pests Detection; YOLOv3 Assisting farmers in advance with
pests control and operations, reduc-
ing crop damage from agricultural
pests and raising crop yield

Liu et al. [120] Food Safety Proposed 5 layers Internet of Agri-
cultural Things (AIoT) Architecture

The architecture supports the entire
management of the food life cycle
from production to sale, Trace and
trace products, decentralized supply
chain

Wang et al. [121] Inability of farmers to use the exist-
ing agricultural information interface

Intelligent IoT-based smart green-
house application

Replaces the traditional, unfriendly
operation interface for farmers

Li et al. [122] Technology adaptation in agricul-
ture

AIoT platform for Smart Agriculture Pests detection, intelligent plant dis-
ease monitoring,

Shi et al. [83] Network congestion and energy con-
sumption problems in traditional
IoT-based crop monitoring system

AIoT architecture for crop monitor-
ing system(CMS); Edge computing,
Deep reinforcement learning (DRL)

Optimize task scheduling and reduce
energy consumption

Coppola et al. [123] Environmental issues due to wine
and champagne production

Deep edge AI solution using intel-
ligent sensors, DNNs, LoRaWAN
technology

Optimize product quality and reduce
energy consumption and deployment
costs.

sustainable manufacturing aligned with Industry 4.0, which will influence the future manufacturing process. Therefore,
the fundamental research principle of chemical industrial automation is to significantly enrich the use of AIoT across
the entire manufacturing process to reduce energy and material use and enhance safety, environmental sustainability,
and economic productivity.
4.2.3. Textile and Apparel Manufacturing

The textile and apparel (T&A) industry has also undergone a revolution as a result of AI and IoT, which encompasses a
wide range of activities, including design support systems, fashion recommendation systems through sensory evaluation,
intelligent tracking systems, textile quality control, fashion forecasting, decision-making in supply chain management
or social networks, and fashion e-marketing [127]. Environmental experts have recently expressed severe worries about
textile manufacturing, which contributes significantly to global pollution. The slow implementation of sustainability
solutions in the textile sector is having negative social and environmental repercussions. IoT sensors and AI algorithms
can generate more effective interaction among T&A manufacturing to speed up production. Managing the product life
cycle and improving preventive maintenance, re-use, and recycling operations are made possible using data to track
and trace product development. Such technologies can assist in up-cycling and recycling used clothing through digital
platforms, helping preserve the value of the products while lowering the use of virgin materials. IoT and AI have the
ability to speed up prototyping, make predictions, and reduce the number of flaws in the garment business. As a result,
sustainable manufacturing is boosted by lowering prototyping waste and increasing and optimizing energy efficiency.

Exchanging accurate data and information among the various processes of T&A manufacturing is crucial to
achieving sustainability. This improves resource efficiency and optimization and speeds up material recycling and
circulation operations [128]. Furthermore, AI and IoT can assist in the management and optimization of warehouses.
Data on product availability in storage facilities and warehouses is transferred to management, which helps in estimating
consumer demand and, as a result, reduces the occurrence of unnecessary manufacturing. Products are created in an
intelligent manner based on IoT, blockchain, and AI according to market demand. Since these items can be traced, it is
possible to monitor their whole life cycle and personalize, improve, and upgrade them in response to user demand [128].
T&A manufacturing can be aided by the use of RFID tags that store all pertinent data about the components and
chemicals in the products. RFID tags make it easier to track product availability in stores and analyze customer behaviour
and needs. RFID tags can assist in providing precise and real-time data to manufacturers without the need for the
involvement of merchants, allowing better judgments to be made when producing goods and offering services to end
consumers. AI can improve the transparency, availability, and reliability of data because there is a vast amount of data
to be gathered for the lifespan assessment of the items [129]. However, the lack of data availability has made it difficult
for decisions to be made within the manufacturing process on the basis of such data. Therefore, AIoT-based applications
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Table 8: Smart manufacturing solutions, vendors and their objectives

Vendor Solution Name Objectives

Advantech 6 iFactory smart manufactur-
ing suite

Allows users to monitor machine availability, production status, power
consumption, and energy efficiency to increase productivity, decrease
loss, and boost profits

Oracle 7 Smart Manufacturing Detect, analyze, and respond to IoT signals in factory settings. Enable
real-time visibility of asset health, location, and utilization

GE 8 Proficy Smart Factory
(MES) and Brilliant Manu-
facturing Suite

Intelligent factory management, predictive analytics, improve productiv-
ity, execution, and optimization through advanced analytics

Siemens 9 MindSphere Predictive maintenance and machine monitoring

Google (partner: ClearObject,
Quantiphi, etc.) 10

Google Cloud Platform,
Google Cloud, and
Professional Services
Organization

Predictive maintenance, remote monitoring, and streaming data analyt-
ics, asset tracking

Microsoft 11 Azure IoT Edge Predictive maintenance, remotely monitor devices, end-to-end threat
protection and security posture management

IBM 12 IBM Edge Computing
Solutions

Infrastructure for data and AI at the edge, deliver edge-enabled industry
solutions, automate operations, improve the experience and enhance
safety measures

Amazon 13 AWS IoT Greengrass Remote monitoring, anomaly detection in precision agriculture, opti-
mized analytics

PTC 14 ThingWorx Asset monitoring, digital performance management, scalability, improved
quality, and productivity

6 www.advantech.com
7 www.oracle.com
8 www.ge.com
9 www.plm.automation.siemens.com
10cloud.google.com/iot-core
11azure.microsoft.com
12www.ibm.com/au-en/edge-computing
13www.amazonaws.cn/en/greengrass
14www.ptc.com/en/products/thingworx

may be the best solution to assist sustainable T&A manufacturing.
4.3. AIoT-based Industrial Toolkits

Data analysis and automated production are two fundamental applications of AIoT technology in manufacturing.
Industrial manufacturing benefits from data-analysis-based forecasting, including demand forecasting and predictive
maintenance [130]. Therefore, data gathered from industrial contexts has been analyzed using AI technology, including
conventional machine learning and deep learning techniques. Existing IoT-based solution providers are now transforming
their solutions into AIoT to provide intelligent service for different industrial purposes. Some smart manufacturing tool
kits are listed in Table 8.

Siemens developed and launched MindSphere9, an open cloud-based operating system for the Internet of Things
(IoT), in 2016. This powerful system allows for the monitoring of machines and facilitates predictive maintenance by
integrating data from various sources. MindSphere utilizes artificial intelligence and the Internet of Things (AIoT)
technology, enabling the analysis of extensive data and measurements during machine operation. Deep learning
techniques and neural networks are employed to optimize systems. Additionally, Siemens collaborated with IBM to
enhance MindSphere by incorporating IBM Watson Analytics and additional tools, enhancing its intelligence and
capabilities.

To assist sustainable manufacturing objectives, GE has launched the Brilliant Manufacturing Suite 8 to improve
productivity, execution, and optimization through advanced analytics and the realization of the digital thread. It utilizes
big data analytics across the whole product life cycle to improve efficiency in a closed loop from design to production,
operations, and maintenance to service—a new breed of data-driven tool. Digital industrial businesses will benefit from
intelligent software that can analyze a multitude of data and measurements during operation and combine manufacturing
analytics; production losses are reduced, quality is increased, resources are used effectively, and production execution is
managed for adaptability, consistency, and repeatability.

Advantech is one of the leading IoT intelligent system brands boosting industry digital transformation. Advan-
tech’s iFactory 6 smart manufacturing suite offers a WISE-PaaS private server with several integrated applications
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Figure 15: Architecture of Advantech iFactory [131]

designed specifically for industrial users. This remote server includes OEE (Overall Equipment Effectiveness), EHS
(Environmental Health and Safety), and EAN (Event, Alarm and Notification) applications, allowing users to monitor
machine availability, production status, power consumption, and energy efficiency to increase productivity, decrease
loss, and boost profits. The Advantech system also offers immediate event alarms and notifications to inform users
of abnormal circumstances in production and enable quick action. The overall architecture of iFactory is shown in
Figure 15. Advantech has some long-term and short-term goals to primarily focus on incorporating AIoT technology
and fostering the AIoT ecosystem [131].

Alibaba Cloud Intelligence formally introduced Hardware as a Service (HaaS) [132], a platform-building tool to
assist small and medium-sized business industries in upgrading their AIoT more quickly. This tool was created to assist
small and medium-sized AIoT developers to concentrate on their businesses while swiftly putting the pieces of software
and hardware together. They can safely move devices to the cloud by doing this.

5. Obstacles and Future Directions
The emergence of AIoT technology is significantly altering the manufacturing landscape. However, the progress of

AIoT adaptation in manufacturing sectors is still in the initial stage because of its limitations. In this section, we explore
some existing challenges of AIOT-enabled manufacturing and future research directions.
5.1. Open Challenges

Based on the SLR methodology and the comprehensive analysis of the state-of-the-art AIoT-based research, we
identified the following challenges of AIOT-based manufacturing that require additional investigation.
5.1.1. Heterogeneous Data Acquisition, Processing, and Information Integration

Smart manufacturing industries use different types of sensors, IoT devices, and other data-acquisition systems to
collect real-time data. Other incalculable data are extracted from raw data through complicated production processes,
such as industrial activity records, machine logs, performance, the history of the working environment, and so forth.
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The manufacturing steps, such as conceptual design, validation, product design, prototyping, testing, and system design,
are all interconnected in the process sector, along with storage, usage, transportation, and waste management. Every
process has different functionalities. They produce heterogeneous information types in different types of data formats.
However, they are interlinked through a network. From the AIoT perspective, the interconnected network system
collects data from heterogeneous host devices and sends it to the cloud storage facility, and decisions and forecasting
information are returned to the host machines. The information must also be exchanged from agent to agent, system
to system, and organization to organization in a manufacturing facility. In the real world, a manufacturing factory’s
enormous output capability results in the collection of vast amounts of data. As a result, there is a significant need for
information processing and storage capability. Additionally, information isolation and integration problems arise in
interconnected multiple-process fields. In studying multiple process fields, data is hampered by improper information
transmission between various processes. AIoT adoption in the process sector should start with the complex tasks of
integrating a wealth of information and creating knowledge bases. However, this data comes from various systems that
are hard to connect or integrate, not to mention variations in data formats, sample rates, and data collection techniques.
These problems also hamper the integration of safety-related information into the process life cycle. Additionally,
the data gathered across multiple life-cycle activities is supported by various disciplines, and combining knowledge
and factual data into a coherent system is not easy. Several AI methods such as knowledge graphs [133, 134], deep
learning [135, 136], and Bayesian networks [137, 138] have been used to resolve heterogeneous data isolation and
integration problems.
5.1.2. Resource Connectivity and Management

Numerous applications, including smart healthcare and smart homes, have been made possible by AIoT advance-
ments. Various sensors and IoT devices are dynamically interconnected through a network used in AIoT systems
for collecting data, communicating, and decision driving. It is challenging to carry out latency-sensitive operations
on their limited computing resources and power-constrained storage capabilities. The complexity of heterogeneous
resources and service environments makes it difficult to predict what will happen. Robust network connectivity with
high bandwidth is essential for continuous heterogeneous device connectivity that boosts cost and energy consumption.
Therefore, to handle significant AIoT tasks and ensure constant resource connectivity on IoT devices, it is necessary to
utilize edge resource orchestration and provisioning, which is also a complex procedure. A joint caching and computing
policy was proposed in [139] to reduce bandwidth and energy consumption. Systematic resource coordination methods
should be developed to maintain heterogeneous end-device connectivity following various task requirements.
5.1.3. Information Security and Privacy

The provision of information security is one of the main challenges for digitizing manufacturing businesses through
AIoT applications. For AIoT-based industrial automation, a variety of physical and digital systems are interconnected
to generate and maintain data communication using IoT technology and artificial intelligence for analysis, enabling
real-time decision making. However, there is a high risk of increasing the attack level [140]. Vulnerabilities in any of
these devices can expose the system to assaults when several machines and devices are linked to single or multiple
networks in intelligent processes [141]. AIoT systems need to generate and process large volumes of data. To collect
real-time data from different manufacturing units to implement intelligent manufacturing systems, a range of physical
IoT devices and digital strategies need to work together, which makes them appealing attack targets [140]. These device
vulnerabilities make systems vulnerable to attack when large numbers of machines and devices are connected to single
or multiple networks and are intelligently operated [142]. Due to the low cost, IoT devices are typically unsecured
and open to cyber attacks, so security assurance becomes a complex problem. The following criteria must be met by
an adequate security and privacy assurance method for AIoT: data confidentiality and integrity, user authentication
and authorization, service availability, data freshness, forwards and backward secrecy assurance [143]. AIoT system
developers must prepare for operational data vulnerabilities at the machine level and organizational system weaknesses.
Therefore, manufacturing industries usually rely on intelligent systems to address these security issues. Blockchain
technology and federated learning have the potential to be used to create distributed, lightweight algorithms that
guarantee security and privacy in the AIoT and assist front-end devices in carrying out the intricate tasks required by
security services [143, 144].
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5.1.4. Energy Requirements for AIoT Application
AIoT technology is an essential technology in planning mass production, quality control, process control, predictive

maintenance, and logistics optimization for smart industries. However, an AIoT infrastructure comprises diverse
subsystems based on various industrial manufacturing applications. Each subsystem consists of enormous IoT devices
that generate massive amounts of data. A robust network links all the subsystems to maintain continuous communication
and interaction by exchanging data among heterogeneous subsystems and cloud data centers. Overall, running the entire
AIoT workflow—from storing massive data in the cloud data center to processing complex data using AI techniques for
wise decision-making—requires a considerable amount of energy. The exponential rise of cloud computing facilities
is similar to the exponential growth of AIoT applications. Therefore, additional efforts are needed to overcome
the aforementioned issues by developing lightweight AIoT mechanisms for IoT device connectivity, network data
transmission, and processing. Energy use in data centers should be an area of concern.
5.1.5. Inadequate Capabilities/Limitations of Industries

Automation powered by AIoT for sustainable manufacturing is emerging. The future of manufacturing industries is
inextricably linked to AI and IoT. Some intelligent applications have already been incorporated in process industries [145],
which are insufficient to achieve sustainable manufacturing objectives. It is a complex phenomenon to modernize all
manufacturing industries due to their limitations. Some industries can adopt AIoT technology and transform it into
smart manufacturing. However, a large proportion of the manufacturing sector is not able to transition to the new trend
due to technical limitations [34]. Usually, installed conventional systems are not replaced until they have lost all their
value. Investments in infrastructure are typically made with extremely long-term horizons in mind. Decision makers
can delay the implementation of AI systems even though they provide new capabilities and increased productivity [25].
To resolve this issue, the AI transformation playbook [146] outlines five steps: execute pilot projects to gain momentum,
build an in-house AI team, provide comprehensive AI training, develop an AI strategy, and finally, develop internal and
external communications.
5.2. Future Directions

The IoT is a technology that supports people in rethinking their daily lives. However, the underlying driving force
behind IoT’s full potential is AI. The growing partnership between AI and the IoT suggests that a more innovative
future may be closer than first envisioned, from the most basic manufacturing applications to its vast potential through
industrial and urban development. The results of our study show that it is essential that manufacturing industries
incorporate AIoT solutions to improve production processes, product quality, machine control and efficiency, supply
chain management, and predictive maintenance. We also discovered that AIoT assists industries in implementing
Industry 4.0 practices. Future research might explore the effects of AIoT approaches in Industry 4.0 from a sustainable
manufacturing perspective, which would be of greater interest. It would also assist in providing detailed instructions on
how AIoT technology might be advantageous for sustainable manufacturing. Additionally, the following directions can
help to understand the research improvements needed for future AIoT solutions in manufacturing industries.
5.2.1. Real-time AIoT-based Manufacturing Datasets for Domain-specific Research

Deriving accurate decisions requires having access to enough correct information. Massive manufacturing data is
generated from low-cost IoT devices, which can assist intelligent systems in understanding the current manufacturing
progress and machine conditions and making better judgments. However, IoT applications can be restricted by the
absence of efficient data analysis. Before constructing an intelligent AIoT-based framework, a problem-specific data
production plan is crucial from the perspective of system analysis. Since AI is a vital component of AIoT frameworks,
none of the AIoT solutions will perform one hundred percent accurately. Still, some error or biasing opportunities must
be considered (i.e., wrong prediction or biased decisions). AI-based systems frequently fall victim due to insufficient
training data. If the algorithms are flawed, AIoT applications will provide incorrect forecasts. It could also have unjust
outcomes and hinder the manufacturing process. Therefore, real-time AIoT-based task-specific manufacturing datasets
are essential for testing and training the AIoT framework to measure system feasibility. Then, more research will
be possible on manufacturing datasets to develop accurate decision-driven algorithms for task-specific AIoT-based
manufacturing applications.
5.2.2. Decentralized AIoT Architecture for Private and Secure Computing

A decentralized AIoT architecture transfers data and services from network nodes to edge nodes for processing
and decision making. Edge nodes process data faster and share it more efficiently since they are closer to the client
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terminal device. Due to the attributes of IoT sensors, such as cost, size, and power, sensor systems are attractive for
various applications, even though they frequently lack quantifiable functionality. So, to compare and assess how sensor
systems and reference data interact, standard data transfer protocols need to be designed to handle data transmission
from the edge node to the cloud and vice-versa. The issues of protecting data privacy and secure computing are difficult
to handle given the rapid growth of AI and IoT technologies. Intelligent IoT devices must exchange data using the finest
encryption techniques to prevent manufacturing data leakage. Additionally, authentication protocols are required to
achieve mutual authentication between communication entities (i.e., IoT devices, cloud servers, and manufacturers).
To prevent unauthorized parties from accessing the system, future research should focus on implementing blockchain
architecture for access control measures to ensure data privacy. Integrating blockchain technology with AIoT can be
viewed as a naturally beneficial and promising area of research. Therefore, everything must be made apparent to the
system’s programmer. As a result, research projects should be conducted to enhance the privacy of the AIoT framework.
5.2.3. Lightweight AI Algorithms for Edge or Resource-restrained Devices

Edge computing plays a crucial role in enabling the widespread adoption of AI services, particularly in resource-
constrained AI devices used for manufacturing. The limited availability of resources in most IoT devices poses a
challenge when it comes to handling complex AI activities in AIoT applications. In order to efficiently manage decision-
driven processes in AIoT operations, it becomes essential to offload them to cloud and edge computing platforms that
offer abundant resources. However, further research is needed to develop lightweight AI algorithms tailored for edge
and resource-restrained devices. These algorithms would not only promote energy-efficient operations in machining
processes but also minimize energy consumption at the intelligent service end, specifically in addressing big data
analysis within the industrial domain.
5.2.4. Systematic Evaluation of AIOT Systems

In the future, researchers can compare the effectiveness of different AI techniques in solving specific manufacturing
problems. In addition, it is essential to systematically evaluate the trustworthiness and ethical implications of AIoT
systems, which are a rapidly growing field. The systematic evaluation of AIoT systems should consider the accuracy
of the data used to train the system, the transparency of the algorithms used in the system, the security of the system,
the privacy of the data collected by the system, the potential for bias in the system, the fairness of the system, and the
accountability of the system. As a result, systematic evaluation ensures that the AIoT systems are safe, reliable, fair,
and ethical. This will help to build trust in AIoT systems and promote their responsible development and deployment.
Moreover, it is essential to assess what changes and actions are needed to align the objectives of Industry 4.0 with
sustainable manufacturing by changing existing manufacturing patterns with AIoT applications.

6. Conclusion
As digitalizing manufacturing industries are becoming increasingly significant to achieve sustainable manufacturing

goals, the intelligence of IoT devices, known as AIoT, integrates AI methodologies into IoT devices to improve IoT
operations and data analysis. Until now, AIoT has been implemented in manufacturing industries for multiple purposes,
from promoting productivity, machine efficiency, and product quality to decreasing total energy consumption and
enhancing knowledge-based maintenance and predictions. These AIoT-based solutions eventually cut off production and
labor costs, reduce environmental pollution, and make manufacturing industries more intelligent overall. In this work,
we thoroughly analyzed the important contributions and prospects of state-of-the-art efforts on AIoT-based applications.
As more productive and efficient AIoT-based manufacturing solutions are to appear and attract the increasing interest of
researchers and businesses, this survey provides a comprehensive overview of the area. It pinpoints the remaining pain
points and future directions for future researchers.
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