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Abstract 

Airway remodelling occurs in chronic respiratory diseases (CRDs) such as asthma and 

chronic obstructive pulmonary disease (COPD). It is characterized by aberrant activation of 

epithelial reparation, excessive extracellular matrix (ECM) deposition, epithelial-to-

mesenchymal transition (EMT), and airway obstruction. The master regulator is 

Transforming Growth Factor-β (TGF-β), which activates tissue repair, release of growth 

factors, EMT, increased cell proliferation, and reduced nitric oxide (NO) secretion. Due to its 

fundamental role in remodelling, TGF-β is an emerging target in the treatment of CRDs. 

Berberine is a benzylisoquinoline alkaloid with antioxidant, anti-inflammatory, and anti-

fibrotic activities whose clinical application is hampered by poor permeability. To overcome 

these limitations, in this study, berberine was encapsulated in monoolein-based liquid 

crystalline nanoparticles (BM-LCNs). The potential of BM-LCNs in inhibiting TGF-β-

induced remodelling features in human bronchial epithelial cells (BEAS-2B) was tested. BM-

LCNs significantly inhibited TGF-β-induced migration, reducing the levels of proteins 

upregulated by TGF-β including endoglin, thrombospondin-1, basic fibroblast growth factor, 

vascular-endothelial growth factor, and myeloperoxidase, and increasing the levels of cystatin 

C, a protein whose expression was downregulated by TGF-β. Furthermore, BM-LCNs 

restored baseline NO levels downregulated by TGF-β. The results prove the in vitro 

therapeutic efficacy of BM-LCNs in counteracting TGF-β-induced remodelling features. This 

study supports the suitability of berberine-loaded drug delivery systems to counteract airway 

remodelling, with potential application as a treatment strategy against CRDs. 
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1. Introduction 

Chronic respiratory diseases (CRDs) are a heterogeneous group of diseases affecting the 

airways and other lung structures and including asthma, chronic obstructive pulmonary 

disease (COPD), occupational lung diseases, pulmonary hypertension, idiopathic pulmonary 

fibrosis, and others [1-3]. Lung cancer (LC), particularly non-small cell lung cancer 

(NSCLC), is often considered a CRD as well [4]. The main aetiologic factor associated with 

the development of these diseases is cigarette smoking through the exposure to the thousands 

of toxic chemicals in tobacco smoke, which promote a chronic pro-inflammatory and pro-

oxidant state that further prompts disease progression [5-7]. CRDs, particularly asthma, 

COPD, and LC, are among the leading causes of mortality and morbidity worldwide, and 

their global burden is significant [8]. According to recent data, in 2017-2019, COPD caused 

about 3.3 million deaths annually [9], while about 500,000 yearly deaths were associated with 

asthma [8]. Overall, LC is one of the deadliest types of cancer, with 1.7 million deaths 

attributed to LC globally in 2020, a trend that is currently increasing [12]. Although less 

frequent compared to other CRDs, idiopathic pulmonary fibrosis (IPF) is a chronic, 

progressive disease characterized by the irreversible scarring of the lung’s interstitial 

framework with a median survival of 3-5 years if untreated [16]. 

Current therapeutic approaches for CRDs include pharmacological and non-pharmacological 

strategies. These are severely limited and, in the case of asthma, IPF and COPD, aim at 

improving and managing disease symptoms rather than tackling the underlying disease 

mechanisms [16-18]. Despite showing some efficacy, the currently available 

pharmacotherapies for CRDs are limited by severe side effects [16, 21, 22]. With regards to 

LC, therapeutic approaches include various combinations of surgical removal, radiotherapy, 

chemotherapy, and immunotherapy, depending on the tumor stage [23]. Chemotherapies are 

all limited by severe organ toxicity, adverse effects, as well as by the eventual development 

of cancer multidrug resistance [23-25]. This underlines the need to develop novel 

therapeutics with improved treatment outcomes and reduced adverse effects. In this context, 

developing treatment strategies tackling one or more cellular and molecular mechanisms 

shared by different diseases would be advantageous. 

A fundamental feature shared between all these CRDs is the progressive radical deterioration 

and alteration of the structure of the respiratory tract, also termed airway remodelling [27, 29, 
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30]. Structural transformations in airway remodelling include subepithelial fibrosis, 

infiltration of immune cells, disruption of epithelial cell layers, excessive mucus secretion, 

excessive production of matrix metalloproteinases (MMPs), and thickening of the basement 

membrane due to excessive collagen deposition [31]. This leads to severe airway obstruction 

[27, 30, 32]. The thickening of the basement membrane is caused by the presence of an 

excessive number of highly synthetic myofibroblasts, which express alpha-smooth muscle 

actin (α-SMA) [32]. Epithelial-to-mesenchymal transition (EMT) of lung epithelial cells, 

which acquire increased proliferative and migratory capacity, is considered an important 

source of myofibroblasts contributing to airway remodelling. [32-34].   

One of the master regulators of tissue remodelling, particularly in the airways, is 

transforming growth factor-beta (TGF-β) [34-36]. TGF-β is a multifunctional cytokine 

present in three different isoforms: TGF-β1, TGF-β2, and TGF-β3, with partially overlapping 

biological activities [37, 38]. TGF-β is secreted in an inactive form called large latent 

complex (LLC), in which the functional protein is bound to the latency-associated peptide 

(LAP) and other proteins [36, 39]. The LLC is primarily localized in the ECM and it 

functions as a reservoir of inactive TGF-β [36]. The active form of TGF-β is released 

following different stimuli, including temperature spikes, acidification of the 

microenvironment, oxidative stress, proteolysis, and integrin binding [36]. Thrombospondin-

1 and MMPs are among the main proteins activating TGF-β, and the fact that these proteins 

are upregulated by TGF-β itself represents an important positive feedback mechanism 

enhancing TGF-β activation [40, 41]. Upon binding to its receptor, TGF-β regulates the 

expression of a plethora of target genes mainly through the canonical TGF-β/Smad pathway, 

in which Smad proteins are phosphorylated and translocated into the nucleus, where they act 

as transcription factors [42]. Many other proteins are involved in the regulation and action of 

TGF-β signalling in airway remodelling and EMT. These include growth factors such as the 

vascular endothelial growth factor (VEGF), which is a known inducer of lung remodelling 

[43] and whose secretion is enhanced by TGF-β in airway smooth muscle cells [44], as well 

as the basic fibroblast growth factor (bFGF), which is co-expressed with TGF-β in the lung of 

ovalbumin (OVA)-induced mice [45] and induces angiogenesis associated to remodelling in 

asthma and COPD [46]. Other proteins involved in TGF-β-induced remodelling and EMT 

include myeloperoxidase [47], and endoglin, which is associated with the TGF-β receptors 

and affects TGF-β responses [49]. TGF-β signalling is also controlled by negative regulators 

such as cystatin C [51].  
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An important mechanism through which TGF-β induces EMT in alveolar epithelial cells is 

through the reduction of baseline nitric oxide (NO) levels [52]. NO, in fact, is a critical factor 

that attenuates EMT, and TGF-β reduces its baseline production in the injured lung through 

the inhibition of the endothelial NO synthase (eNOS) [52] and other enzymes involved in NO 

production such as soluble guanylate cyclase (sGC) and cGMP-dependent protein kinase I 

(PKGI) [53]. 

Physiologically, TGF-β plays a pleiotropic role in lung health and development. Its activity is 

fundamental in lung organogenesis, and in the regulation of homeostatic alveolar epithelial 

growth, differentiation, and EMT [54]. Due to its fundamental role in lung homeostasis, 

dysregulation of TGF-β signalling is common in many diseases where tissue remodelling 

plays a relevant role, including CRDs [54, 55]. Considering its function as a promoter of 

EMT in healthy cells, dysregulation of TGF-β signalling is also an important factor 

contributing to increased cell migration and invasion in many types of cancer, including LC, 

where it is recognised as the most potent inducer of EMT [54]. Interestingly, increased levels 

of TGF-β have been detected in the airways of COPD, asthma, and LC patients, as well as 

tobacco smokers [54, 55].  

The multifaceted role played by TGF-β in CRDs makes it a valuable pharmacological target 

[35]. In the quest for novel pharmacological strategies to treat respiratory disorders, plant-

derived molecules, also known as phytoceuticals, are an endless source of inspiration [56]. In 

this context, one promising phytoceutical is berberine, an isoquinoline alkaloid found in 

barberry, tree turmeric, and other plants [57, 58]. Berberine is widely known for its potent 

antioxidant, anti-inflammatory, and anticancer properties [58-62], and it also exerts 

antifibrotic activity in the lungs, heart, liver, pancreas and kidneys of rodents [63]. In the 

lung, in particular, the antifibrotic activity of berberine is exerted through the suppression of 

nuclear factor-κB (NF-κB)-induced TGF-β activation [64]. Furthermore, berberine was 

shown to counteract TGF-β-induced EMT in vitro on A549 human NSCLC cells [65].  

Despite its promising biological activity, the clinical use of berberine, similarly to that of 

other phytoceuticals, is currently limited by its poor solubility and permeability which, 

together with a high rate of hepatobiliary excretion, translates into poor oral bioavailability 

and unfavourable pharmacokinetics [66, 67]. To overcome these limitations, encapsulation of 

phytoceuticals within advanced, nanoparticle (NP)-based drug delivery systems is an 

advantageous strategy [56, 68, 69]. This allows to drastically increase the solubility, 
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permeability, and stability of the encapsulated molecules, improving their bioavailability and 

pharmacokinetic properties [35, 56, 70, 71]. Among the many available classes of 

nanoformulations, liquid crystalline nanoparticles (LCNs) are particularly versatile in the 

treatment of pulmonary diseases [72]. Our research team has worked extensively with 

berberine-loaded LCNs, demonstrating their superior in vitro anticancer activity against A549 

lung cancer cells [60-62], as well as a potent antioxidant, anti-inflammatory, and anti-

senescence activity in cigarette smoke-induced BCi-NS1.1 human airway basal cells [58, 73] 

and antioxidant and anti-inflammatory activity in lipopolysaccharide (LPS)-induced mouse 

RAW264.7 macrophages [59]. 

In the present work, we tested a monoolein-based berberine LCN formulation (BM-LCNs) 

against a model of airway remodelling and EMT obtained by stimulating BEAS-2B human 

bronchial epithelial cells with TGF-β [32]. We show that BM-LCNs significantly attenuate 

the functional and molecular features associated with TGF-β-induced remodelling and EMT. 

This study highlights the enormous potential of nanoparticle-based drug delivery systems in 

enhancing the use of phytoceuticals for the treatment of lung diseases, providing proof of the 

applicability of BM-LCNs as a potential therapeutic agent tackling the aberrant airway 

remodelling process that drives the pathogenesis of CRDs. 

 

2. Materials and Methods 

2.1. Formulation and Physicochemical Characterisation of BM-LCNs 

Berberine hydrochloride (Cat. #B3251), monoolein (Cat. #CRM44893), and poloxamer 407 

(Cat. #16758) were purchased from Sigma-Aldrich, Australia, and were used for the 

preparation of BM-LCNs. BM-LCNs were formulated using the ultrasonication method, and 

characterised for physicochemical characteristics such as particle size, polydispersity index, 

zeta potential, entrapment efficiency, morphology, and in vitro release, as reported in a 

previous study [62]. Briefly, 200 mg monoolein were melted at 70 °C in a glass vial. 

Poloxamer 407 (20 mg) was dissolved in 4.8 mL deionized water and heated to 70 °C in a 

glass vial. Berberine powder (5 mg) was added to the melted monoolein and vortexed until 

completely dissolved. Then, the poloxamer 407 solution was added to the berberine-

monoolein solution until formation of a coarse dispersion. The coarse dispersion was finally 

subjected to size reduction using a probe sonicator, using an amplitude of 80 for 5 minutes, 

with 5-seconds-on and 5-seconds-off cycles.  
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2.1 Cell Culture  

The human bronchial epithelial cells (BEAS-2B, ATCC #CRL-9609) were a kind gift from 

Professor Alaina Ammit (Woolcock Institute of Medical Research, Sydney, NSW, Australia). 

These cells were used at passages between 15 and 25 throughout the study, and were cultured 

at 37 °C in Dulbecco’s Modified Eagle Medium (DMEM, Sigma-Aldrich, Australia, Cat. 

#D6046) supplemented with 5% fetal bovine serum (Sigma-Aldrich, Australia, Cat. #F9423), 

100 unit/ml penicillin and 100 μg streptomycin (Pen-Strep solution, Sigma-Aldrich Australia, 

Cat. #P4333) in a humidified atmosphere containing 5% CO2.  

2.2 Cell viability assay - MTT 

The MTT cell viability assay was performed as reported in a previous study [59]. The BEAS-

2B cells were seeded at a density of 5,000 cells/well in a transparent, clear-bottom 96-well 

plate and left to attach overnight. The following day, the cells were incubated in the presence 

of 5 ng/mL human TGF-β1 (R&D Systems Biotechnology, Minnesota, USA, Cat. # 

754BH005), at 37 °C for 24 h. The cells were then incubated for 24 more hours in the 

presence of BM-LCN concentrations ranging between 0 and 10 µM or with empty LCNs at 

dilutions representative to the BM-LCNs concentrations tested. Then, 250 µg/mL MTT ((3-

(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide, Sigma-Aldrich, Australia, Cat. 

#M2003) was added to each well and incubated at 37°C for further 4 h. Upon incubation, the 

supernatant was removed, and the formed formazan crystals were dissolved using 100 µL 

dimethyl sulfoxide (DMSO, Sigma-Aldrich, Australia, Cat. #D8418). The absorbance was 

read at 570 nm wavelength using a TECAN Infinite M1000 plate reader (Tecan Trading AG, 

Switzerland). 

2.2 Cell viability assay – Trypan Blue staining 

The impact of BM-LCNs on cell viability has also been assessed using Trypan Blue staining, 

similarly to how reported in a previous study [62]. Briefly, 10,000 cells/well were seeded in a 

48-well plate and left to attach overnight. The following day, the cells were incubated in the 

presence of 5 ng/mL human TGF-β1, at 37 °C for 24 h. The cells were then incubated for 24 

more hours in the presence of BM-LCN concentrations ranging between 0 and 10 µM. After 

incubation, the cells were treated with 300 µL 1X Trypsin-EDTA solution (Sigma-Aldrich, 

Australia, Cat. # T4299), incubating at 37 °C for 2 minutes to allow cell detachment. The 
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trypsin was then inactivated by adding 300 µL FBS-supplemented DMEM, and the cells were 

centrifuged at 500 x g, for 5 minutes, at room temperature. The cell pellet was then 

resuspended in 20 µL FBS-supplemented DMEM and mixed at a 1:1 ratio with 0.4% Trypan 

Blue solution (ThermoFisher Scientific, Australia, Cat. #15250061). The number of live 

cells/mL was counted using a Neubauer Improved haemocytometer, using a light microscope 

at 10X magnification. 

2.3 Wound healing assay 

To assess the anti-migratory activity of BM-LCNs on TGF-β-stimulated BEAS-2B cells, the 

wound healing assay was performed. Briefly, 100,000 BEAS-2B cells/well were seeded into 

6-well plates and incubated at 37 °C overnight. The following day, the cell monolayer was 

scratched using the tip of a sterile 200 µL pipette tip, and the wells were washed five times 

with sterile PBS (Sigma-Aldrich, Australia, Cat. #P3813). The cells were then incubated in 

the presence of 5 ng/mL TGF-β1 alone or in the presence of 5 ng/mL TGF-β1 and 0.5µM 

BM-LCNs for up to 48 h. The distance between the edges of the scratch was measured under 

a light microscope, at 10X magnification, at 0, 24, and 48 h time points. The percentage of 

wound closure was normalized as a percentage compared to the control (untreated) group. 

2.4 Human cytokine protein array 

The effect of BM-LCNs on the expression of cytokines and other proteins in TGF-β-induced 

BEAS-2B cells was studied using the Proteome Profiler Human XL Cytokine Array Kit 

(R&D Systems, Minneapolis, MN, USA, Cat. #ARY022B), as described previously [58]. The 

cells were seeded in a 6-well plate at a density of 100,000 cells/well and left to attach 

overnight. The following day, the cells were incubated in the presence of 5 ng/mL TGF-β1 

and incubated at 37 °C for 24 h. The cells were then incubated for another 24 h in the 

presence of 0.5 µM BM-LCNs. Following incubation, the cells were lysed with 500 µL RIPA 

buffer (ThermoFisher Scientific, Australia, Cat. #89900) supplemented with protease 

inhibitor tablets (Roche Diagnostics GmbH, Mannheim, Germany, Cat. #11697498001). An 

amount of 300 µg of proteins from each experimental group was loaded onto each array and 

incubated overnight at 4 °C. The further incubation steps with antibodies and 

chemiluminescent reagents were performed following the manufacturer’s instructions. The 

arrays were photographed using a ChemiDoc MP (Bio-Rad, Hercules, CA, USA) and the 

pixel density for each spot was analysed with ImageJ (version 1.53c, Bethesda, MD, USA). 

2.5 NO levels determination with Griess reagent 
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The relative levels of NO released by BEAS-2B cells in the culture supernatants were 

determined using the modified Griess reagent (Sigma-Aldrich, Australia, Cat. #G4410). The 

cells were seeded in a 6-well plate at a density of 100,000 cells/well and left to attach 

overnight. The following day, the cells were incubated in the presence of 5 ng/mL TGF-β1 

and incubated at 37 °C for 24 h. The cells were then incubated for another 24 h in the 

presence of 0.5 µM BM-LCNs. Following incubation, the culture supernatants were 

collected, and 100 µL of the supernatants were added to a clear-bottom, transparent 96-well 

plate. The supernatants were mixed in a 1:1 ratio with the Griess reagent and the plates were 

incubated for 30 min at room temperature in dark. The relative NO levels were determined 

using a TECAN Infinite M1000 plate reader (Tecan Trading AG, Switzerland) by measuring 

the absorbance at 540 nm. Unconditioned cell culture media was used as a blank, and its 

absorbance was subtracted from the absorbance of each sample. Relative NO levels were 

reported as a percent change compared to the untreated group. 

2.6. Statistical analysis 

The data are presented as mean ± SEM. The data were analysed by ordinary one-way 

ANOVA, followed by Tukey multiple comparison test, using GraphPad Prism (v.9.4, 

GraphPad Software, San Diego, CA, USA). A two-tailed of p-value <0.05 was considered 

statistically significant for pairwise comparisons.  

3. Results 

3.1. Identification of an optimal concentration of BM-LCNs for treating TGF-β-

stimulated BEAS-2B cells 

To find a non-lethal BM-LCNs concentration to treat BEAS-2B cells, the MTT assay and the 

Trypan Blue assay were performed to assess the cell viability following treatment of TGF-β-

induced BEAS-2B cells with increasing BM-LCNs concentrations. The results are shown in 

Figure 1a (MTT assay) and Figure 1b (Trypan Blue assay). Furthermore, the toxicity of 

empty LCNs on BEAS-2B cells was tested through MTT assay (Figure 1c). Treatment with 

BM-LCNs concentrations of 0.25 and 0.5 µM resulted in a slight, not statistically significant, 

reduction in cell viability of 4.5% and 12.8%, respectively (Figure 1a, p>0.05 against the 

TGF-β-treated group for both groups). At higher concentrations of 1, 2.5, 5, and 10 µM, 

treatment with BM-LCNs caused a significant reduction of cell viability of 28.0%, 29.4%, 

26.5%, and 51.9%, respectively (Figure 1, p<0.0001 against the TGF-β-treated group for all 

groups). In the Trypan Blue assay, treatment with BM-LCNs concentrations of 0.25 and 0.5 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



µM resulted in a slight, not statistically significant, increase in cell viability of 0.8% and 

1.5%, respectively (Figure 1b, p>0.05 against the TGF-β-treated group for both groups). At 

higher concentrations of 1, 2.5, 5, and 10 µM, treatment with BM-LCNs caused a significant 

reduction of cell viability of 18.1% (p<0.01 against the TGF-β-treated group), 30.2% 

(p<0.001 against the TGF-β-treated group), 54.7% (p<0.0001 against the TGF-β-treated 

group), and 89.4% (p<0.0001 against the TGF-β-treated group), respectively (Figure 1b). The 

highest non-toxic BM-LCNs concentration resulted to be 0.5 µM across both assays, and this 

concentration was used to treat cells in the following experiments. Furthermore, treatment of 

BEAS-2B cells with empty LCNs used at a concentration corresponding to 0.25, 0.5, and 1 

µM BM-LCNs resulted in a slight, not significant, reduction in cell viability (of 1.4%, 1.6%, 

and 4.2% respectively (p>0.05 against the untreated group, Figure 1c). Treatment with higher 

concentrations of empty LCNs, corresponding to 2.5, 5, and 10 µM BM-LCNs, resulted in a 

significant reduction of cell viability of 15.8% (p<0.001 against the untreated group), 16.5% 

(p<0.0001 against the untreated group), and 27.9% 16.5% (p<0.0001 against the untreated 

group), respectively (Figure 1c). Treatment with either TGF-β alone or with TGF-β and 0.5 

µM BM-LCNs did not result in significant changes in the cells’ morphology (Figure 1d). 

 

 

Figure 1. Impact of BM-LCNs treatment on the cell viability and morphology of TGF-β-

induced BEAS-2B. BEAS-2B cells were incubated for 24 h in the presence of 5 ng/mL TGF-

β and for a further 24 h with increasing concentrations of BM-LCNs (0.25, 0.5, 1, 2.5, 5, 10 
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µM, Figure 1a, b). Subsequently, the MTT assay (a) or the Trypan Blue assay (b) was 

performed to assess cell viability. BEAS-2B cells were incubated for 24 h in the presence of 

increasing empty LCN concentrations, corresponding to 0.25, 0.5, 1, 2.5, 5, 10 µM BM-

LCNs, and the MTT assay was performed to assess cell viability (c). The BEAS-2B cell 

morphology upon treatment with TGF-β alone or with TGF-β and 0.5 µM BM-LCNs is 

shown in (d). Scale bar = 300 µm. The results in (a-c) were normalised as a percentage 

compared to untreated control and indicated as mean ± SEM (n = 3, **: p<0.01; ***: 

p<0.001; ****:  p<0.0001 with one-way ANOVA test). 

3.2. Anti-migratory activity of BM-LCNs in TGF-β-induced BEAS-2B cells 

The effect of treatment with 0.5 µM BM-LCNs on the migratory capacity of TGF-β-induced 

BEAS-2B cells was assessed through the wound healing assay after 24 and 48 h of treatment 

(Figure 2a and 2b, respectively). At the 24 h time, the percentage of wound closure of the 

untreated group was 36.3% (Figure 2a). Treatment with TGF-β resulted in a significant 42% 

increase in the percentage of wound closure compared to the untreated group (percentage 

wound closure of 51.5%, p<0.0001, Figure 2a). Simultaneous treatment with BM-LCNs 

reversed the effect of TGF-β, resulting in a significantly lower percent wound closure similar 

to the untreated group (34.8%, p<0.0001 vs TGF-β-induced group, Figure 2a). At the 48 h 

time point, the percentage of wound closure of the untreated group was 65.5% (Figure 2b), 

and treatment with TGF-β resulted in a significant 18% increase in the percentage of wound 

closure compared to the untreated group (percentage wound closure of 77.3%, p<0.01, Figure 

2b). Simultaneous treatment with BM-LCNs reversed the effect of TGF-β, resulting in a 

significantly lower percent of wound closure which was similar to the untreated group 

(63.0%, p<0.01 vs TGF-β-induced group, Figure 2b). Representative figures of the cells at 

the indicated time points are shown in Figure 2c. Jo
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Figure 2. Anti-migratory activity of BM-LCNs in TGF-β-induced BEAS-2B cells. The 

wound was created by scratching, with a sterile pipette tip, a layer of BEAS-2B cells. Cells 

were then treated with 5 ng/mL TGF-β1 with or without the presence of 0.5 µM BM-LCNs. 

Photographs were acquired using a light microscope at 10x magnification. The distance 

between the edges of the wounds was measured before treatment (0 h) and after 24 h (a) and 

48 h (b) incubation in order to calculate the percent wound closure. Representative pictures of 
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the cells at the indicated time points are shown in (c). Magnification: 10X; Scale bar = 300 

µm. Values are expressed as mean ± SEM (n = 3; ns: p>0.05; **: p<0.01; ****: p<0.0001 

with one-way ANOVA test).  

3.3. BM-LCNs counteract the protein expression signature induced by TGF-β 

The relative protein levels of endoglin, basic FGF, myeloperoxidase, thrombospondin-1, 

VEGF, myeloperoxidase, and cystatin C are shown in Figure 3, as detected using the Human 

XL Cytokine Protein Array. Treatment with 0.5 µM BM-LCNs counteracted the action of 

TGF-β by reducing the expression of endoglin, basic FGF, myeloperoxidase, 

thrombospondin-1, and VEGF (Figure 3a to 3e, respectively), which are induced by TGF-β, 

as well as by partially restoring the expression of cystatin C, which is suppressed by TGF-β 

(Figure 3f). A representative array for each experimental group is shown in Figure 3g. In 

particular, treatment of BEAS-2B cells with TGF-β resulted in a nearly statistically 

significant increase in the signal intensity correlated to the levels of endoglin (1.14-fold, p = 

0.07, Figure 3a), as well as a statistically significant increase in the signal of basic FGF (1.37-

fold, p<0.01, Figure 3b), and myeloperoxidase (1.35-fold, p<0.05, Figure 3c). Simultaneous 

treatment with BM-LCNs resulted in a significant reduction of the signal intensity for all 

these proteins. The signal corresponding to endoglin was reduced by 15.7% (p<0.05, Figure 

3a), the signal corresponding to basic FGF was reduced by 21.6% (p<0.05, Figure 3b), and 

the signal corresponding to myeloperoxidase was reduced by 24.0% (p<0.01, Figure 3c). A 

similar trend, although not statistically significant, was observed for  thrombospondin-1 

(THBS1) and VEGF. Upon treatment with TGF-β, THBS1 signal was increased by 1.58-fold 

and VEGF signal was increased by 2-fold (Figures 3d and 3e, respectively, p>0.05). 

Treatment with BM-LCNs reduced the signal related to the expression of these proteins by 

34.4% (p>0.05, Figure 3d) and 21.2% (p>0.05, Figure 3e), respectively. With regards to 

cystatin C, its expression was significantly reduced by 65% upon treatment with TGF-β 

(p<0.0001, Figure 3f). Treatment with BM-LCNs resulted in a 1.68-fold increase in the signal 

correlated to cystatin C (p = 0.053, Figure 3f).  
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Figure 3. BM-LCNs counteract the expression patterns of proteins induced by TGF-β. 

BEAS-2B cells were treated with 5 ng/mL TGF-β1 for 24 h with or without a successive 24 h 

treatment with 0.5 µM BM-LCNs. The relative protein expression levels of endoglin (a), 

basic FGF (b), myeloperoxidase (c), thrpmbospondin-1 (THBS1) (d), VEGF (e), and cystatin 

C (f) were determined using the Human XL Cytokine Protein Array. A representative array 

for each group is shown in (g). Values in (a-f) are expressed as mean ± SEM (n=4, *: p<0.05; 

**: p<0.01; ****: p<0.0001; #: p=0.07; $: p=0.053 with one-way ANOVA test). 

 

3.4. BM-LCNs restore baseline levels of NO 

The effect of BM-LCNs on NO production in BEAS-2B cells was assessed by measuring NO 

levels in the cell culture supernatant using the Griess reagent. The results are shown in Figure 

4. Treatment of BEAS-2B cells with TGF-β resulted in a significant 36.4% reduction of the 

NO levels compared to untreated group (p<0.01, Figure 4). The subsequent treatment with 

BM-LCNs restored the secretion of NO to the same levels as the untreated group (p<0.01 

against the TGF-β-treated group, Figure 4). No statistically significant difference was 

observed between the untreated group and the TGF-β + BM-LCNs treated group (Figure 4). 
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Figure 4. BM-LCNs restore baseline levels of NO. BEAS-2B cells were treated with 5 

ng/mL TGF-β1 for 24 h with or without a successive 24 h treatment with 0.5 µM BM-LCNs. 

The NO levels in the cell culture supernatant were determined using the Griess reagent and 

measuring the absorbance at 540 nm. The values indicated are mean ± SEM (n=3; **: p<0.01 

with one-way ANOVA test). 

 

4. Discussion 

CRDs are among the leading causes of morbidity and mortality worldwide, causing 

substantial medical and economic burdens [8]. Cigarette smoking is considered to be among 

the main causative factors for this heterogeneous group of diseases due to the fact that it 

results in the exposure of the respiratory system to thousands of different noxious chemicals, 

promoting chronic inflammation, oxidative stress, and consequentially severe tissue damage 

[11, 74, 75]. Traditional therapies for CRDs are mainly aimed at improving disease 

symptoms, and they are often ineffective at restoring the destroyed airways and lung 

parenchyma [76]. Furthermore, the currently available pharmacological strategies for these 

ailments are hampered by severe side effects [21]. This is particularly true in the case of LC 

due to the elevated toxicity of the currently used chemotherapeutic drugs [24]. 

A common feature shared between the CRDs is the process of airway remodelling, consisting 

of radical structural changes occurring in both the large and small airways and contributing to 

severe airway obstruction [30, 35]. The main structural alterations in airway remodelling 

include EMT of epithelial layers, excessive collagen and mucus secretion, and thickening of 
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the basement membrane. These processes are orchestrated by TGF-β, whose expression and 

signalling are aberrant in virtually all CRDs [36, 77]. In this context, a therapeutic agent 

tackling the TGF-β signalling would be advantageous. It would find widespread clinical 

application as a therapy for all diseases where tissue remodelling and fibrosis play a 

fundamental role [78]. 

The plant world represents an endless source of inspiration for novel compounds, collectively 

termed phytoceuticals or nutraceuticals, with the most disparate pharmacological activities 

[56]. Many phytoceuticals are known to downregulate TGF-β signalling and therefore show 

great promise in treating CRDs and fibrotic disorders [63]. One of these compounds is 

berberine, which has been shown to suppress TGF-β expression and signalling and 

subsequent cell motility, proliferation, and EMT in vitro in many types of cancer [79-84] and 

is embedded with potent multi-organ antifibrotic activity in vivo [63]. Despite its potent 

biological activity, the clinical application of berberine is limited by a poor pharmacokinetic 

profile, mainly deriving from its scarce permeability. This results in the necessity to 

administer large doses of berberine to achieve therapeutic efficacy, with an increased risk of 

adverse effects [66]. To overcome this important obstacle to the clinical application of 

berberine and other phytoceuticals, several types of advanced drug delivery systems are 

currently being developed [35, 56]. 

The present study shows that berberine encapsulated in a liquid crystalline nanoparticle 

formulation attenuates some of the TGF-β-induced remodelling features in BEAS-2B human 

bronchial epithelial cells. In particular, treatment of TGF-β-induced BEAS-2B cells with 

BM-LCNs significantly reduced the cells’ increased motility up to 48 h of treatment, as 

assessed through wound healing assay, resulting in an extent of migration that was 

comparable to that observed in the untreated group. This is in accordance with previous 

reports showing, in different cell systems, that berberine is capable of inhibiting cell 

migration [62, 83].  

The protein array experiment revealed fundamental mechanistic insights about the pathways 

impacted by berberine in counteracting TGF-β action. Endoglin is a known interactor of 

TGF-β receptors I and II. It is an auxiliary component of the TGF-β signalling machinery 

capable of modulating the downstream signalling [49]. Among its different functions, 

endoglin is known to regulate actin cytoskeletal organization in endothelial cells, and this 

could contribute to the increased angiogenesis observed in tissue remodelling [85]. The 
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present study is the first to report that berberine treatment results in the downregulation of 

endoglin levels, restoring them to levels compared to untreated cells. Other factors activated 

upon TGF-β signalling and contributing to various aspects of tissue remodelling, including 

angiogenesis, are thrombospondin-1, VEGF, and bFGF. In this study, treatment with BM-

LCNs reduced the expression of these proteins to levels comparable to the untreated group. 

Besides being among the main activator factors of latent TGF-β, thrombospondin-1 is 

involved in physiological tissue repair and pathologic fibrosis in TGF-β-dependent and 

independent pathways [86]. The present study is the first to report that berberine inhibits the 

expression of thrombospondin-1.  

With regards to VEGF and bFGF, these two cytokines are known to mediate TGF-β-induced 

remodelling and angiogenesis in various diseases, including asthma and COPD [45-47]. 

Furthermore, these two cytokines are considered among the most important inductors of 

angiogenesis in cancers such as NSCLC [87]. The finding that BM-LCNs counteract the 

TGF-β-induced upregulation of these proteins are in accordance with reports showing that 

berberine (i) suppresses the expression of bFGF in breast cancer cells, and (ii) downregulates 

the expression of VEGF in hepatocellular carcinoma cells, concomitantly inhibiting their 

angiogenic potential [88].  

Myeloperoxidase is mainly produced by neutrophils and other body cells [89], and it plays a 

pivotal role in airway inflammation and tissue remodelling in diseases such as COPD [47]. In 

the present study, berberine significantly counteracted the TGF-β-induced increase in 

myeloperoxidase expression in BEAS-2B cells. This is in accordance with a study where 

berberine was shown to alleviate dextran sulfate sodium (DSS)-induced colitis in mice 

through the reduction of inflammation and oxidative stress, which was exerted via 

mechanisms including the downregulation of myeloperoxidase levels [90]. 

Treatment of BEAS-2B cells with TGF-β further resulted in the downregulation of Cystatin C 

protein expression. This is a negative regulator of TGF-β signalling [51]. Administration of 

Cystatin C, in particular, has been shown to have preclinical efficacy against the oncogenic 

activity of TGF-β in an in vivo model of breast cancer [92]. In the present study, BM-LCNs 

partially restored the TGF-β-induced downregulation of the expression of Cystatin C , further 

highlighting the potent activity of BM-LCNs in inhibiting TGF-β signalling.  

Nitric oxide (NO) plays a fundamental role in preserving the epithelial phenotype of lung 

epithelial cells by preventing EMT [52]. In this context, one of the mechanisms by which 
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TGF-β induces EMT is the reduction of endogenous NO production via the downregulation 

and inhibition of eNOS [52], sGC, and PKGI [53]. In the present study, treatment of TGF-β-

induced BEAS-2B cells with BM-LCNs significantly counteracted the effect of TGF-β, 

restoring the baseline NO production to levels comparable to the untreated group. An 

increased NO production induced by berberine was shown in a study by Wang et al (2009), in 

which treatment of high-fat-diet and streptozotocin-induced diabetic rats with berberine 

resulted in increased eNOS expression and, concomitantly, higher NO levels [93]. 

Interestingly, in a previous report, treatment of lipopolysaccharide (LPS)-stimulated 

RAW264.7 mouse macrophages with a similar berberine-LCN formulation resulted in a 

significant reduction of the elevated NO levels induced by LPS, which was exerted through 

the downregulation of the expression of the inducible NO synthase (iNOS) [59]. This shows 

proof of the multifaceted, context-dependent biological activity of berberine, that promotes 

physiological levels of NO and a generally healthy cell phenotype through its potent anti-

inflammatory, antioxidant, and anti-fibrotic properties. The findings reported in this study are 

summarized in the Graphical Abstract of the present manuscript. 

 

 

An important advantage of the present study is that BM-LCNs significantly counteracted 

TGF-β-induced remodelling features at an equivalent berberine concentration of 0.5 µM. This 

concentration is substantially lower (10- to 600-fold) compared to the average concentration 

range of free berberine powder that was shown to be active in counteracting TGF-β-induced 

features in previous reports (5-300 µM) [79-84]. Although these mentioned studies were 

performed on different cell lines and with different experimental setups, this strong 

discrepancy in active berberine concentration reflects the fact that nanoparticle-based drug 

delivery systems such as LCNs allow improved delivery of the therapeutic cargo, with 

resulting lower doses necessary to achieve a significant therapeutic effect. This is in 

agreement with previous reports from our research team showing that encapsulating 

phytoceuticals in LCNs or other nanoparticle-based delivery systems resulted in potent 

activity at lower concentrations than the free molecule [58, 59, 94-96]. 

Despite the promising activity of BM-LCNs in counteracting TGF-β-induced remodelling 

features, the present study is not exempt from limitations. The main limitation is that these 

study findings are reported only on TGF-β- induced BEAS-2B bronchial epithelial cells, 
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which represent a rather simplistic in vitro model of airway remodelling that does not account 

for the totality of the cellular and molecular mechanisms involved. Despite the fact that 

epithelial cell proliferation is one of the key factors driving airway remodelling [31], and that 

TGF-β signalling plays a central role in this process [97],the lung, like any other organ, is 

composed of different cell types that, together, orchestrate its function in health and disease. 

Airway remodelling itself is an extremely complex process, which involves several other cell 

types as well as other pro-fibrotic factors that work in synergism with TGF-β [98]. Similar 

studies performed on other cell types, such as alveolar epithelial cells, endothelial cells, and 

macrophages, would provide a more complete picture of the true potential of BM-LCNs in 

counteracting TGF-β-mediated aberrant airway remodelling. In this context, the use of in 

vitro models consisting of the co-culture of different cell lines [98, 99], especially in 

conjunction with microfluidic [100] and “airway-on-a-chip” devices [101], would provide a 

more accurate and detailed depiction of the airway remodelling process. Furthermore, to 

allow the translation of these in vitro results to the clinic, BM-LCNs should be tested on 

suitable animal models of asthma, COPD, and pulmonary fibrosis.  

5. Conclusions 

This study highlights the potent activity of BM-LCNs in counteracting TGF-β-induced 

remodelling features in human bronchial epithelial cells. This activity is exerted through the 

inhibition of TGF-β-induced cell migration, by regulating the expression of several cytokines 

and mediators dysregulated by treatment with TGF-β, and by restoring physiological baseline 

NO levels. The findings reported in this manuscript provide further proof of the multifaceted 

applicability of BM-LCNs as a potential therapy for CRDs where aberrant tissue remodelling 

plays a pivotal role. However, in order to achieve clinical translation, the results of this 

finding must be further confirmed and validated by investigating the effect of BM-LCNs on 

more complex in vitro systems, as well as on in vivo models of CRDs. 
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Highlights 

 TGF-β is the main orchestrator of airway remodelling in chronic respiratory diseases 

 We encapsulated berberine in liquid crystalline nanoparticles (BM-LCNs) 

 BM-LCNs counteract TGF-β-induced remodelling features in BEAS-2B bronchial cells 

 BM-LCNs reverse TGF-β effects on cell motility, protein expression, and NO secretion 

 Encapsulation of berberine in LCNs grants potent activity at low concentrations 
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