
Proceedings of the 25th lASTED International Multi-Conference
SOFTWARE ENGINEERING
February 13-15, 2007, !nnsbruck, Austria
ISBN Hardcopy: 978-0-88986-641-6/ CD: 978-0-88986-643-0

IMPROVING AGILE SOFTWARE DEVELOPMENT BY THE APPLICATION
OF METHOD ENGINEERING PRACTICES

B. Henderson-Sellers, M.K. Serour, C. Gonzalez-Perez and A. Qumer
University of Technology, Sydney

P.O. Box 123
Broadway
NSW2007
Australia

{brian, mserour}@it.uts.edu.au. cesargon@verdewek.com, asif@it.uts.edu.au

ABSTRACT
Despite the vast attention and wide acceptance of the
newly engineered agile methods for software
development, those methods are seldom linked to the
goals of software process improvement (SPI), an
approach that aims to provide support for significant
improvement of both the quality of those methods as well
as the resultant software products. In this paper, we
propose an extension to agile methods by adding extra
characteristics in order for agile methods to better support
SPI. We explain how agile methods can gain those extra
attributes through the application of a method engineering
approach along with our new tool (4-DAT) that assists
method engineers and managers in selecting the most
appropriate method fragments for their needed agile
methods. Finally, we summarize a number of industrial
case studies carried out over several years in order to test
and improve the efficiency of our theory of adding SPI to
an agile methodological approach.

KEYWORDS
Software methodologies, Agility, SPI, Method
engineering

1. Introduction

While there are very many influences on the success or
failure of a software development project, two factors of
high importance are the people involved and the
methodological approach they use [1 ,2]. Since people
(and even organizations: [3]) learn, a static
methodological approach, as advocated by almost all
methodologists, can never support the goals of software
process improvement (SPI) [4].
As a reaction to so-called "heavyweight" or plan-based
methodologies [5], many practitioners have adopted the
recently introduced ideas of agility [6]. Use of an agile
method can indeed create a high quality environment and
high quality product. Its focus on the people rather than
on reporting deliverables is often seen as a welcome shift
of balance towards the most important factor in software

552-014 55

development: the personnel involved. However, their
agility is seen in the way that the people practising this
approach are able to react to changing situations,
particularly changing user requirements [7 ,8]. Otherwise,
they are fairly didactic in their rigidity. This means that
they only work if the knowledge of the people involved is
static i.e. the users and developers learn how to apply the
agile method as documented (e.g. in a book) but do not
learn further throughout the development process. This is
clearly the antithesis of a learning approach.
A second degree of agility was therefore introduced in
[4]. It is this second kind of agility that permits the
process itself to evolve and hence to offer the capability
and potential to support the ideals of SPI. In this paper,
we explain how dual agility can be attained more
effectively through the use of method engineering, and we
involve a new tool that assists a manager in performing
method engineering within an agiie environment. This
tool, called 4-DAT [9], provides a framework in which an
assessment of the four degrees of agility can be made for
an existing methodology and, more importantly, for SPI.
This is accomplished by assisting engineers in choosing
method fragments most appropriate for an agile SPI
development environment.

2. Agility and its Evaluation

Concerns about the viability of plan-based and potentially
mechanistic software developments around the turn of the
century (e.g. [10]) are often identified as the precursor to
the rise of so-called agile methods (e.g. [11]). Although
Cockburn [12] defmes the core of agile methods as "the
use of light-but-sufficient rules of project behaviour and
the use of human-and communication-oriented rules" and
the Agile Manifesto [6] provides agile principles and agile
values that qualitatively characterize the agile methods,
there remains no widely-agreed, precise and
comprehensive definition of agility. Based on a survey
and assessment of the various contemporary definitions,
Qumer and Henderson-Sellers [9,13] offer the following
definition:

"Agility is a persistent behaviour or ability of a
sensitive entity that exhibits flexibility to
accommodate expected or unexpected changes
rapidly, follows the shortest time span, uses
economical, simple and quality instruments in
a dynamic environment and applies updated
prior knowledge and experience to learn from
the internal and external environment. "

In order to benefit from this definition, these authors
developed a four dimensional framework (4-DAT) to
crystallize the key attributes of agility: flexibility, speed,
leanness, learning and responsiveness. Flexibility is the
ability to respond to the expected change and leanness
accentuates lower cost, reduced timeframe and quality
production [14]. A speedy method may help to show the
results quickly by following a specific approach; whereas
responsiveness refers to life, reaction and sensitivity.
Finally, learning refers to knowledge and improvement
and is an indispensable ability of an entity, achieved
primarily by using up-to-date knowledge and experience,
gained from previous practices. A learning method shows
continuous improvement over the period of time.
Consequently, by applying the above definition of agility
to the notion of a software development methodology, we
derive the defmition of an "agile method" as:

"A software development method is said to be
agile if it is people focused, flexible (ready to
adapt to expected or unexpected change at any
time), speedy (encourages rapid and iterative
development of the product in small releases),
lean (focuses on shortening timeframe and cost
without compromising on quality), responsive
(reacts appropriately to expected and
unexpected changes), and learning (focuses on
improvement during and after product
development)". (modified from [13]).

We can now apply this definition, in the form of the four
dimensional framework of 4-DAT (delineated in Table 1)
to an evaluation of existing (and future) software
development methods. Such an evaluation can determine
not only whether a method's elements can be considered
agile or not (binary) but can determine the degree of
agility exhibited by the method. The evaluation can be
applied at various levels of granularity. Since most agile
methods favour a discrimination between a high level
process or "phase" level and a lower level "best practices"
level, we select these two granularity levels as those to be
assessed separately in this study also.
Dimension 2 is the only one of the dimensions that can be
assessed quantitatively. Details of the algorithms
proposed are found in [9] and their application to two
exemplar agile methods (XP and Serum) in [15]. They
found that, while XP was evaluated as being more agile at
the phase level, Serum showed more agility at the
practices level (Figure 1).

56

Table 1: 4-DAT dimensions (derived from f9l)
DIMENSION I
Scope
1. Project Size

2. Team Size

3. Development
Style
4. Code Style

5. Technology
Environment

6. Physical
Environment

7. Business
Culture

8. Abstraction
Mechanism

DIMENSION2
Features
1. Flexibility

2.Speed

3. Leanness

4. Learning

5. Responsiveness

DIMENSION3
A2ile values
1. Individuals and
interactions over
processes and tools
2. Working
software over
comprehensive
documentation
3. Customer
collaboration over
contract
negotiation
4. Responding to
change over
following a plan

Description
Does the method specify support
for small, medium or large
projects (business or other)?
Does the method support for small
or large teams (single or
multiple teams)?
Which development style (iterative,
rapid) does the method cover?
Does the method specify code style
(simple or complex)?
Which technology environment
(tools, compilers) does the method
specify?
Which physical environment (co­
located or distributed) does the
method specify?
What type of business culture
(collaborative, cooperative or non­
collaborative) does the method
specify?
Does the method specify abstraction
mechanism (object-oriented,
agent-oriented)?

Description
Does the method accommodate
expected or unexpected changes?
Does the method produce results
quickly?
Does the method follow shortest
time span, use economical,
simple and quality instruments for
production?
Does the method apply updated
prior knowledge and experience to
learn?
Does the method exhibit
sensitiveness?

Description
Which practices value people and
interaction over processes and
tools?
Which practices value working
software over comprehensive
documentation?

Which practices value customer
collaboration over contract
negotiation?

Which practices value responding
to change over following a plan?

5. Keeping the Which practices helps in keeping
process agile the process agile?
6. Keeping the Which practices helps in keeping
process cost the process cost effective?
effective
DIMENSION4
Process Description
1. Development Which practices cover the main life
Process cycle process and testing (Quality

Assurance)?
2. Project Which practices cover the overall
Management management of the project?
Process
3. Software Which practices cover the process
Configuration that enables configuration
Control Process I management?
Support Process
4. Process Which practices cover the process
Management that is required to manage the
Process process itself?

~
1.00

·c, 0.80
Ill 0.60
0

0.40 Q)

I!!
0.20 Cl

Q)

c 0.00
XP Serum

Figure I Comparison of the degree of agility for XP and
Serum as measured for the phases level and the practices
level (after [15])

3. Increasing Agility through SPI

As noted earlier, the foci of many agile methods are for
them to support flexibility at the level of a single
enactment i.e. within a single project, where they support
changes well, particularly those engendered by the client.
However, they only support method flexibility (as
opposed to the flexibility of method enactment for which
they were solely designed) very informally and in an ad
hoc manner (e.g. [16]). Addition of a second kind of
agility, method agility, was proposed by [4]. The resulting
method is said to exhibit "dual agility" and can now
support SPI, particularly if linked with a method
engineering mindset.

3.1 Dual Agility

The first agility/flexibility dimension makes the method
more able to adapt to changes not only for requirements
but also for design, technology and people.
The second agility dimension makes the method more
flexible so that it can be changed or reengineered if and

57

when a need arises, in response to organizational
evolution and maturation. Although this can be
accomplished informally, a more repeatable approach is
seen to be beneficial. This is more easily facilitated when
using a rich repository of method fragments (see Section
3.2) such as those found in the OPEN Process Framework
(OPF) [17] or in recent versions of the Rational Unified
Process (RUP) [18].

3.2 Situational Method Engineering and the use of 4-
DAT

In a situational method engineering (SME) approach [19-
22], small pieces of a method are identified and stored as
method fragments or method chunks [23] in a repository
or methodbase [24,25]. For each project, the method
engineer selects appropriate method fragments from the
methodbase, perhaps with the help of an outside
consultant or a software tool such as a Computer Assisted
Method Engineering (CAME) tool [25,26]. The method is
thus "constructed" or engineered from its component parts
in such a way that only relevant components, as
represented by the method fragments, are incorporated
into the constructed method and those not useful can be
safely ignored (e.g. [21]). Construction rules are required
for this assembly process [27,28]. This is arguably one of
the most challenging parts of SME. In the construction of
an agile method (as discussed in this paper), it is
important to be able to identify those fragments that may
have appropriate agility (and the extent of that agility
characteristic). One potential problem in the context of
agile methodologies is that the agile culture perceives a
method as being emergent rather than constructed.
Notwithstanding, it is interesting to evaluate whether the
addition of SME practices to an agile approach is both
valuable and can be accepted by that community's
culture.
In traditional SME, it is left to the judgement of the
method engineer to ascertain whether each method
fragment selected from the methodbase is appropriate or
not. For the construction of an agile methodology, we can
use the 4-DAT to add an "agility value" to any such
fragments. This value will assist method engineers in their
decision-making process.
4-DAT's dimension 2 (Table 1) is the only quantitative
measure and can be applied at the individual practice level
e.g. one specific technique. For this purpose a table can be
constructed (Table 2) in which cell values of 0 or 1 are
entered for each phase (for a high level assessment) or for
each individual practice (technique in the OPF example)
[15]. The five agility features of flexibility (FY), speed
(SD), leanness (LS), learning (LG) and responsiveness
(RS) for each fragment are considered and then the
overall method total (and hence average degree of agility)
can be calculated. Based on our quantitative evaluations
of pre-existing (and known) agile methods such as XP and
Serum, we can offer as a ballpark figure a threshold value
of around 0.5-0.6 for any constructed agile method to

Table 2 Schematic table for the calculation of the agility ofx individual phases andy practices (OPF techniques) and
the overallllgi.IJ!y of the constructe d h d met o

~l!!Y_ Features l
FY SD

(i) Phases
Phase 1 0 orl 0 or 1
Phase 2 0 or 1 0 or 1
Phase 3 0 or 1 0 or I
etc. 0 orl 0 or 1
Total (O-x) (0-~
Degree of Agility (O-x)/ (O-x)/
(high level) X X

(ii) Practices
Practice 1 0 or 1 0 or 1
Practice 2 0 or 1 0 or 1
etc. 0 or 1 0 or 1
Total (0-y) (0-y)

Degree of Agility (0-y)/ (0-y)/
(low level) y y

have sufficient measured agility to qualify for
consideration as an agile method.
The other three dimensions of 4-DAT, as shown in Table
1, are qualitative and can be used in an SME context once
the proposed method has been constructed. These three
dimensions relate to an evaluation of various higher level
aspects of the methodology. If they are found to be
missing or poorly represented, then the 4-DAT has been
used as an iD.dicator of poor quality. Hence, before release
to the development team, the method engineer has the
chance of improving the proposed method.
In summary, the use of situational method engineering has
three direct advantages to the software development
organization and to the software development team:
i) The method that is constructed for the current project is
ultimately what is required both in terms of processes
activities, tasks, techniques, guidelines (depending on
your choice of terminology) as well as in terms of the
people involved (actually roles), the extent of bureaucratic
reporting and project management and the lifecycle model
itself.
ii) For subsequent projects, the team will develop
confidence in self-tuning (tailoring) their own method to
fit these projects and also in responding to any change in
the development environment - perhaps the scope of the
projects they undertake will change; as they grow in
sophistication and software development capability so
must the process (see also [29]). Consequently, elements
in the method repository previously eschewed may now
prove useful. Perhaps there is a technique for finding
classes and agents that the project team felt they didn't
have the skills to use previously; perhaps there is a
training role for team expansion.

LS LG RS Total

0 or 1 0 or 1 0 or 1 0-5
0 or 1 0 or 1 0 or 1 0-5
0 or 1 0 or 1 0 or 1 0-5
0 or 1 0 or 1 0 or 1 0-5

_(0-x)
(O-x)/
X

0 or 1
0 or 1
0 or 1
(0-y)

(0-y)/
y

58

(O-x) (O-x) 0-5*x
(O-x)/ (O-x)/ Total divided
X X by number of

cells in table

0 or 1 0 or 1 0-5
0 or 1 0 or 1 0-5
0 or 1 0 or 1 0-5
(0-y) (0-y) 0-5*y

(0-y)/ (0-y)/ Total divided
y y by number of

cells in table

iii) Building trust in the team members' ability to make
use of their method. The development team will be
highly motivated and enthusiastic to fully utilize their
method as a result of gaining method ownership.

4. Brief Summary of Case Study Results

The application of dual agility in order to support method
maturation and hence software process improvement has
been studied using Action Research [30] by [31-33] in a
number of projects in two major organizations in Sydney,
Australia. To illustrate the efficacy of this approach, we
briefly summarize some of these empirical studies here
using an SME approach. The first project [31] took more
than two years and successfully assisted an IT department
within a legal publisher company in Sydney to construct
an agile method for their new web development projects;
whereas the second project [32] was conducted for more
than a year in a governmental department within the New
South Wales government during their transformation
process to e-government.
The main objective of these empirical evaluations was
therefore to evaluate the introduction of an SME approach
using the OPF in order to test our construction of a dual­
agile methodology for these two organizations, a
construction done in such a way that the methodology can
be instantiated and then fully customized to suit
individual projects.
In one of these experiments, a minimal subset of method
fragments was chosen purposefully from the OPF
methodbase as a precursor to future SPI by the maturation
of the approach, typically by the addition of more method

fragments traditionally associated with higher
SPICE/CMM levels. The web development team within
the study organization was facing an increased pressure to
develop a set of new web-based applications under
evolving requirements and changing technologies within a
very tight timeframe. The method engineering team
realized the urgent need for engineering a process that
was more adaptive than predictive and more people­
oriented than process-oriented - the newly constructed
"agile" process was thus in accordance with the agile
manifesto, as exemplified by the four key values of the
"Manifesto for Agile Software Development". This
method was only successful for the very first project [34].
For the second and subsequent projects, some of the
existing method fragments were identified as being
unnecessary and other method fragments were seen to be
missing. As a result, the company's previously engineered
method was modified by the addition of the second agility
feature, by supplying an ability for the developer to self­
tune or reengineer their method to accommodate different
projects. For nearly eight months, both the researchers
and practitioners teams worked in close collaboration with
everyone involved, including customers, to produce a
flexible method to satisfy the process needs of
organization. The resulting methodology was well
accepted and is still cherished by both management and
technical people.

5. Conclusion and Future Work

Extant agile methods can be seen as rigid in their
application over a number of projects. While supporting
agility within the project they are poor at supporting
agility across several projects, agility that leads to support
for SPI. Consequently, a second degree of agility was
proposed [4]. In this paper, we extend these ideas to link
in with, firstly, the concepts of method engineering and,
secondly, with a new assessment framework, the 4-DAT
tool [9]. To exemplify the synergy of these components,
we relate the theory to our empirical evidence from
several Sydney-based IT groups who have adopted an
agile approach that also takes into account SPI as an
objective and context.
The next stage of this work is to evaluate companies's use
of agile methods and SPI outside of our local environment
in Australia and to commence some inter-regional
evaluations. At the same time we anticipate some possible
feedback to improve the 4-DAT evaluative framework
discussed here.

Acknowledgement

We acknowledge financial support from the Australian
Research Council for this project. This is contribution
number 06/06 of the Centre for Object Technology
Applications and Research.

59

References

[1] D. Phillips, The software project manager's handbook:
principles that work at work (Hoboken, NJ, USA: John
Wiley & Sons, 2004).
[2] H. Kerzner, Project management: a systems approach
to planning, scheduling, and controlling (9th ed.)
(Chichester, Sussex, UK: Wiley, 2005).
[3] P. Senge, The fifih discipline: the art and practice of
the learning organization (New York, NY, USA:
DoubleDay, 1990)
[4] B. Henderson-Sellers & M.K. Serour, Creating a dual
agility method - the value of method engineering, J
Database Management, 16(4), 2005, 1-24.
[5] T. Chau, F. Maurer & G. Melnik, Knowledge sharing:
agile methods vs. Tayloristic methods, Procs. 121

h IEEE
International Workshop on Enabling Technologies:
Infrastructure for Collaborative Enterprises
(WETICE'03), IEEE Computer Society Press, Los
Alamitos, CA, USA, 2003, 302-307
[6] AgileManifesto, Manifesto for agile software
development. http://www.agilemanifesto.org/. Accessed
14 March 2005.
[7] J. Newkirk, Introduction to agile processes and
extreme programming, Procs. ICSE '02, ACM Press,
2002, 695-696.
[8] J. Bettin, Practicalities of implementing component­
based development and model-driven architecture,
Process Engineering for Object-Oriented and
Component-Based Development. Procs. OOPSLA 2003
Workshop, Centre for Object Technology Applications
and Research, Sydney, Australia, 2003, 19-30.
[9] A. Qumer & B. Henderson-Sellers, Measuring agility
and adoptability of agile methods: a 4-dirnensional
analytical tool, Procs. IADIS International Conference
Applied Computing 2006 (eds. N. Guimaraes, P. Isaias
and A. Goikoetxea), IADIS Press, 2006, 503-507.
[10] J. Nandhakumar & D.E. Avison, The fiction of
methodological development: a field study of information
systems development. Information Technology & People,
12, IEEE Computer Society, Washington DC USA, 1999,
176-191.
[11] K. Beck, 2000, Extreme Programming Explained
(Boston, MA, USA: Addison-Wesley, 2000).
[12] A. Cockburn, Agile Software Development (Boston,
MA, USA: Addison-Wesley, 2002).
[13] A. Qumer & B. Henderson-Sellers, 2006,
Crystallization of agility: back to basics, Procs. ICSOFT,
Setubal, Portugal, 2006.
[14] R. Dove, The Meaning of Life and the Meaning of
Agility. Paradigm Shift International, 1997,
www.parshift.com/library.htm.
[15] A. Qumer & B. Henderson-Sellers, 2006,
Comparative evaluation of XP and Serum using the 4D
Analytical Tool (4-DAT), Proceedings of the European
and Mediterranean Conference on Information Systems
2006 (EMCIS2006) (eds. Z. Irani, O.D. Sarikas, J. Llopis,
R. Gonzalez and J. Gasco), CD, Brunei University, West
London, UK.

[16] S. Henninger, A. Ivaturi, K. Nuli & A.
Thirunavukkaras, Supporting adaptable methodologies to
meet evolving project needs, Procs. 1st ICSE Workshop
on Iterative, Adaptive, and Agile Processes, Orlando,
Florida, USA, May 25, 2002.
[17] D.G. Firesmith & B. Henderson-Sellers, The OPEN
process framework. an introduction (London, UK:
Addison-Wesley, 2002).
[18] B. Macisaac, An overview of the RUP as a process
engineering platform, Process Engineering for Object­
Oriented and Component-Based Development. Procs.
OOPSLA 2003 Workshop, Centre for Object Technology
Applications and Research, Sydney, Australia, 2003, 43-
52.
[19] K. Kumar & R.J. Welke, Methodology engineering:
a proposal for situation-specific methodology
construction, in Challenges and Strategies for Research in
Systems Development (eds. W.W. Cotterman and J.A.
Senn) (Chichester, Sussex, UK: J. Wiley & Sons, 1992),
257-269.
[20] S. Brinkkemper, Method engineering: engineering of
information systems development methods and tools, Inf
Software Techno!., 38(4), 1996, 275-280.
[21] S. Brinkkemper, M. Saeki & F. Harmsen, Meta­
modelling based assembly techniques for situational
method engineering, Information Systems, 24(3), 1999,
209-228
[22] B. Henderson-Sellers, Method engineering for 00
system development, Comm. ACM, 46(10), 2003, 73-78
[23] A.H.M. Ter Hofstede & T.F. Verhoef, On the
feasibility of situational method engineering, Information
Systems, 22, 1997,401-422.
[24] J. Ralyte, Reusing scenario based approaches in
requirement engineering methods: CREWS method base,
Proceedings of the 1dh International Workshop on
Database and Expert Systems Applications (DEXA '99), 1'1

International Workshop on the Requirements Engineering
Process - Innovative Techniques, Models, Tools to
support the RE Process (REP'99), Florence, Italy, 1-3
September 1999, IEEE Computer Society, Los Alamitos,
CA, USA, 1999,305-309
[25] M. Saeki, CAME: the first step to automated
software engineering, Process Engineering for Object­
Oriented and Component-Based Development. Procs.
OOPSLA 2003 Workshop, Centre for Object Technology
Applications and Research, Sydney, Australia, 2003, 7-18
[26] J.-P. Tolvanen, M. Rossi & H. Liu, Method
engineering: current research directions and implications
for future research, in Method Engineering, Principles of
Method Construction and Support (eds. S. Brinkkemper,
K. Lyytinen and R. Welke), Chapman-Hall, London, UK,
1996, 296-317
[27] J.-P. Tolvanen, Incremental method engineering with
modeling tools: theoretical principles and empirical
evidence, Ph.D. Thesis, University of Jyvaskyla, Finland,
1998.
[28] J. Ralyte & C. Rolland, An assembly process model
for method engineering, Procs. CAiSE 2001, LNCS 2068,
Springer-Verlag, Berlin, 2001, 267-283.

60

[29] M. Bajec, M. Krisper & R. Rupnik, The scenario for
constructing flexible, people-focused systems
development methodologies, Procs. ECIS 2004, 2004.
[30] D.E. Avison, F. Lau, M. Myers & P.A. Nielsen,
Making academic research more relevant,
Communications of the ACM, 42(1), 1999, 94-97.
[31] M.K. Serour & B. Henderson-Sellers, Introducing
agility: a case study of situational method engineering
using the OPEN Process Framework, Procs. 28th Annual
International Computer Software and Applications
Conference. COMPSAC 2004, IEEE Computer Society
Press, Los Alamitos, CA, USA, 2004, 50-57.
[32] M.K. Serour & B. Henderson-Sellers, Empowering a
software development team with a new methodology: a
case study of e-gove~ent in Australia, Information
Technology and Organizations in the 21st Century:
Challenges & Solutions (ed. K.S. Soliman), International
Business Information Management Association, 2004,
214-223
[33] M.K. Serour & B. Henderson-Sellers, OPEN for
agility: an action research study of introducing method
engineering into a government sector, Procs. 13th Int.
Conf on Information Systems Development. Advances in
Theory, Practice and Education (eds. 0. Vasilecas, A.
Caplinskas,W. Wojtkowski, W.G. Wojtkowski, J.
Zupancic and S. Wrycza), Vilnius Gediminas Technical
University, Vilnius, Lithuania, 2004, 105-116.
[34] M. Serour, B. Henderson-Sellers, J. Hughes, D.
Winder & L. Chow, Organizational transition to object
technology: theory and practice, Object-Oriented
Information Systems (eds. Z. Bellahsene, D. Patel and C.
Rolland), LNCS 2425, Springer-Verlag, Berlin, 2002,
229-241.

