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ABSTRACT 
 
Sydney Water has approximately 823km of gravity 
concrete sewers where concrete corrosion is a 
widespread issue. Early identification of corrosion 
levels is important to make decisions on fit-for-
purpose renewal methods. Sydney Water and the 
University of Technology Sydney (UTS) have 
collaborated in developing machine learning models 
and robotic systems to identify corrosion levels in the 
carriers as well as to quantitatively measure the 
depth of corrosion and the depth of reinforcement 
bars. The machine learning model predicts corrosion 
hotspots in the carrier, which are further inspected 
by a manhole deployable robotic system. The new 
robotic observations are fed back into the machine 
learning model for continuous improvement. This 
integrated system has many advantages compared 
to the current practice.   
 
 
INTRODUCTION 
Sewer corrosion prediction iscritical  for water 
utilities to improve efficiency and save costs in 
chemical dosing, sewer pipe rehabilitation and 
sensor deployment [De Muynck et al. (2009), Shook 
& Bell (1998)]. As sewer corrosion occurs in the 
presence of gaseous hydrogen sulphide (H2S) 
generated from sulphur compounds in the sewage, 
a new and reliable machine learning model has been 
developed. In this project, the spatiotemporal 
estimation of H2S and other factors is enabled. 
Based on the spatiotemporal estimation of factors, 
the machine learning model could further predict the 
sewer corrosion level on the entire sewer carriers. 
Reliable prediction of H2S and corrosion has often 
been hampered by insufficient observations for a 
high level of confidence modelling – a problem 
commonly referred to as “sparsity” in machine 
learning [Boon & Lister (1975)]. Therefore, machine 
learning modelling of spatiotemporal H2S 
distribution on the entire sewer carriers is nontrivial. 
Increasing the H2S monitoring sites is also not 
feasible due to cost and accessibility. Therefore, in 
this project, an attempt has been made to use 
emerging machine learning techniques to estimate 

the spatiotemporal distribution of H2S with a limited 
number of observations. The model does not only 
estimate the H2S quantity but also estimates the 
uncertainty associated with the prediction, which is 
an important measure in decision making. 
 
The length of wastewater piping in Australia can 
circle the globe more than six times, and 70% of it is 
underground. Sydney Water estimates it spends $40 
million annually rehabilitating sewers, relying on 
manual inspection to identify damage or areas for 
concern, with staff required to enter the sewers for a 
visual inspection. Replacing pipes that are 
approaching end of life is both costly and disruptive 
to the community. Sydney Water requires a safe and 
reliable method of detecting water pipe defects 
before critical failure in order to apply fit-for-purpose 
intervention. In this work, we have developed novel 
sensing and robotic toolkits that assess the condition 
of concrete sewer pipes. The technology provides 
Sydney Water with critical data used to inform 
renewal methods and reduce negative 
environmental, social, and economic impacts. 

Figure 1: The concrete gravity sewers in Sydney 
Water’s network. 



 
HIGHLIGHTS 
 
• Spatiotemporal estimation of corrosion factors 

on the entire sewer carriers. 
• Corrosion level prediction and uncertainty of the 

prediction on the entire sewer carriers. 
• The development of world-leading internal 

tethered pipe scanning tools. 
 
METHODOLOGY/ PROCESS 
 
Machine Learning Model  
 
This paper demonstrates how to make use of 
emerging machine learning techniques to estimate 
the spatiotemporal distribution of H2S with a limited 
number of observations (as shown in Figure 1). A 
new and reliable machine learning model, based on 
a data-driven technique leveraging Gaussian 
process, has been developed in this project, which 
enables spatiotemporal estimation of H2S and other 
factors. Based on the spatiotemporal estimation of 
factors, the machine learning model could further 
predict the sewer corrosion level on the entire sewer 
carriers with high prediction confidence. This work 
attempts to leverage a Bayesian nonparametric 
method to predict the sewer corrosion risk on the 
entire sewer carriers with a limited number of 
observations. Specifically, this is achieved in two 
steps: (1) Gaussian Process is used to estimate the 
distributions of the two influential factors, H2S and 
temperature, on the entire sewer carriers; (2) Based 
on the estimation results of influential factors, a 
second-level Gaussian Process is used to further 
predict the corrosion risk levels on the entire sewer 
carriers.  

 
The proposed method has the following desirable 
properties: 
 
• The method is able to integrate expert domain 

knowledge (physical model) into the prediction 
model to alleviate the issue of insufficient data. 
The adopted machine learning technique is a 
Bayesian nonparametric method, which 
provides a way to regularise the prediction with 
domain knowledge. 

 
• The method is flexible. The prediction model in 

this work can readily incorporate more factors 
related to sewer corrosion. Therefore, the model 
can be easily improved by employing additional 
data collected in the future. In addition, the 
proposed model can handle large-scale sewer 
Carriers, making it widely applicable. 

 
• As the model is built on Gaussian processes, it 

not only predicts the sewer corrosion level 
quantitatively, but also estimates the uncertainty 
of the prediction, as illustrated in Figure 3. This 
uncertainty is an important measure in decision 
making and cost-effective sewer operations. For 
example, it can be used to prioritise high 
corrosion areas, recommend chemical dosing 
locations, and suggest the deployment of 
sensors. 

 

 
Figure 3: Illustration of Gaussian process on a sewer 
carrier. 

Figure 2: Overall Framework. 



Factor Estimation  
 
This subsection introduces how the Gaussian 
process has been used to estimate H2S 
concentration on the entire sewer carriers. In this 
task, we simply used zero as the mean function (i.e., 
no prior knowledge is used regarding H2S 
concentration) and an exponential kernel function as 
the covariance function described in the following. 
 
Due to the constraints of the carriers structure, we 
first compute the shortest geodesic path between 
any two points on the carriers as the distance 
between these two points. Then, the exponential 
kernel can be defined in terms of the shortest 
geodesic distance: 
 

𝐾𝐾𝑖𝑖,𝑗𝑗
𝐺𝐺𝐺𝐺𝐺𝐺 = exp(−𝑑𝑑𝑖𝑖𝑗𝑗/𝜎𝜎2)                              (1) 

 
where 𝐾𝐾𝐺𝐺𝐺𝐺𝐺𝐺  denotes the 𝑁𝑁 × 𝑁𝑁  kernel matrix, 𝐾𝐾𝑖𝑖,𝑗𝑗𝐺𝐺𝐺𝐺𝐺𝐺 
denotes the element in the 𝑖𝑖 -th row and the 𝑗𝑗 -th 
column, 𝑑𝑑𝑖𝑖𝑗𝑗  is the shortest geodesic distance from 
point 𝑖𝑖  to point 𝑗𝑗  and 𝜎𝜎  is the band-width of the 
exponential kernel. 
 
In order to take into account the flow directions 
between two points, we have adopted two band-
widths {𝜎𝜎1, 𝜎𝜎2}  to differentiate the sewer flow 
direction: 𝜎𝜎1  for the case where there is no reverse 
flow direction from one point to the other, and 
another 𝜎𝜎2 for the case where there is a reverse flow 
direction from one point to the other. As a result, the 
above kernel function should be written as 
 

𝐾𝐾𝑖𝑖,𝑗𝑗
𝐺𝐺𝐺𝐺𝐺𝐺′ = exp(−𝟏𝟏𝑛𝑛𝐺𝐺𝑛𝑛𝐺𝐺𝑛𝑛𝐺𝐺𝑛𝑛𝑛𝑛𝐺𝐺 ⋅

𝑑𝑑𝑖𝑖𝑖𝑖
𝜎𝜎12
− 𝟏𝟏𝑛𝑛𝐺𝐺𝑛𝑛𝐺𝐺𝑛𝑛𝑛𝑛𝐺𝐺 ⋅

𝑑𝑑𝑖𝑖𝑖𝑖
𝜎𝜎22

)           (2) 

 
where 𝟏𝟏𝑛𝑛𝐺𝐺𝑛𝑛𝐺𝐺𝑛𝑛𝐺𝐺𝑛𝑛𝑛𝑛𝐺𝐺 and 𝟏𝟏𝑛𝑛𝐺𝐺𝑛𝑛𝐺𝐺𝑛𝑛𝑛𝑛𝐺𝐺 are indicator functions 
– if the statement is true, the function returns 1, 
otherwise 0. After computing the kernels of all pairs 
on the entire sewer carriers we can obtain a 𝑁𝑁 × 𝑁𝑁 
kernel matrix 𝐾𝐾𝐺𝐺𝐺𝐺𝐺𝐺′. 
 
Based on the H2S concentration values 𝑦𝑦𝐿𝐿𝐻𝐻2𝑆𝑆 of the 
observed sites, we can estimate the values 𝑦𝑦𝑈𝑈𝐻𝐻2𝑆𝑆 of 
the unobserved sites using the following equation: 
 
𝑦𝑦𝑈𝑈𝐻𝐻2𝑆𝑆 = 𝐾𝐾𝑈𝑈𝐿𝐿𝐺𝐺𝐺𝐺𝐺𝐺′(𝐾𝐾𝐿𝐿𝐿𝐿𝐺𝐺𝐺𝐺𝐺𝐺′ + 𝜎𝜎0 ⋅ 𝐼𝐼)−1𝑦𝑦𝐿𝐿𝐻𝐻2𝑆𝑆                      (3) 

 

where 𝐾𝐾𝐿𝐿𝐿𝐿𝐺𝐺𝐺𝐺𝐺𝐺′ denotes the kernel matrix between the 
observed sites and 𝐾𝐾𝑈𝑈𝐿𝐿𝐺𝐺𝐺𝐺𝐺𝐺′ denotes the kernel matrix 
between the unobserved sites and the observed 
sites. Note that both 𝐾𝐾𝐿𝐿𝐿𝐿𝐺𝐺𝐺𝐺𝐺𝐺′  and 𝐾𝐾𝑈𝑈𝐿𝐿𝐺𝐺𝐺𝐺𝐺𝐺′  are 
submatrices of 𝐾𝐾𝐺𝐺𝐺𝐺𝐺𝐺′; 𝜎𝜎0 is a constant parameter and 
𝐼𝐼 denotes an identity matrix.  
 

By using Equation (3), we can estimate the H2S 
concentrations on the entire sewer carriers. 
Temperature can be estimated in the same way by 
inputting the observed temperature 𝑦𝑦𝐿𝐿

𝑇𝑇𝐺𝐺𝑇𝑇𝑇𝑇. 
 
Corrosion Prediction  
 
We have also used the Gaussian Process to 
estimate the deterioration rate (Structure Grade loss 
per year). In this GP, we have the following settings. 
The mean function is set as the physical model 
derived from the University of Newcastle [Wells & 
Melchers (2016)]: 
 

𝐶𝐶𝐶𝐶 = 𝐴𝐴 × [𝐻𝐻2𝑆𝑆]0.5 × (0.1602𝐻𝐻−0.1355)
(1−0.977𝐻𝐻)

× 𝑒𝑒(−45,000/𝑅𝑅𝑇𝑇) (4) 

 
where 𝐴𝐴  is a constant parameter determined 
empirically, 𝐻𝐻2𝑆𝑆 is the H2S concentration, 𝐻𝐻 is the 
fractional relative humidity of the sewer atmosphere, 
𝐶𝐶 is the universal gas constant, and 𝑇𝑇 is the absolute 
temperature. 
 
The kernel function is set as the linear combination 
of three kernels, which is defined as 
 
𝐾𝐾𝐶𝐶𝑅𝑅 = 𝛼𝛼1 ⋅ 𝐾𝐾𝐺𝐺𝐺𝐺𝐺𝐺′ + 𝛼𝛼2 ⋅ 𝐾𝐾𝐻𝐻2𝑆𝑆 + 𝛼𝛼3 ⋅ 𝐾𝐾𝑇𝑇𝐺𝐺𝑇𝑇𝑇𝑇              (5) 
 
where 𝐾𝐾𝐺𝐺𝐺𝐺𝐺𝐺′ is the exponential kernel defined above, 
𝐾𝐾𝐻𝐻2𝑆𝑆 is the Gaussian kernel with the difference of 
𝐻𝐻2𝑆𝑆  concentration as the distance, 𝐾𝐾𝑇𝑇𝐺𝐺𝑇𝑇𝑇𝑇  is the 
Gaussian kernel with the difference of 𝑇𝑇𝑒𝑒𝑇𝑇𝑇𝑇𝑒𝑒𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒 
as the distance, and 𝛼𝛼1, 𝛼𝛼2,𝛼𝛼2  are the coefficients 
(constant parameters) for the linear combination of 
the three kernel matrices. In other words, we define 
the “distance” between two points on the sewer 
carriers in terms of geodesic distance, H2S 
difference, and temperature difference (unobserved 
H2S/temperature is filled in with the estimation 
obtained using the factor estimation model 
introduced in the previous section) – If two pipes are 
close and have similar H2S and temperature values, 
they are likely to have similar deterioration rates.  
 
We can estimate the deterioration rate and its 
variance as follows: 
 

𝑦𝑦𝑈𝑈𝐷𝐷𝐺𝐺𝐷𝐷𝑅𝑅𝐷𝐷𝐷𝐷𝐺𝐺 = 𝐾𝐾𝑈𝑈𝐿𝐿𝐶𝐶𝑅𝑅(𝐾𝐾𝐿𝐿𝐿𝐿𝐶𝐶𝑅𝑅 + 𝜎𝜎0 ⋅ 𝐼𝐼)−1𝑦𝑦𝐿𝐿𝐷𝐷𝐺𝐺𝐷𝐷𝑅𝑅𝐷𝐷𝐷𝐷𝐺𝐺 + 𝐶𝐶𝐶𝐶𝑈𝑈 

[𝜎𝜎𝑈𝑈𝐷𝐷𝐺𝐺𝐷𝐷𝑅𝑅𝐷𝐷𝐷𝐷𝐺𝐺]2 = 𝐾𝐾𝑈𝑈𝑈𝑈𝐶𝐶𝑅𝑅 + 𝜎𝜎02 − 𝐾𝐾𝑈𝑈𝐿𝐿𝐶𝐶𝑅𝑅(𝐾𝐾𝐿𝐿𝐿𝐿𝐶𝐶𝑅𝑅 + 𝜎𝜎0 ⋅ 𝐼𝐼)−1𝐾𝐾𝐿𝐿𝑈𝑈𝐶𝐶𝑅𝑅 (6) 
 

where 𝑦𝑦𝐿𝐿𝐷𝐷𝐺𝐺𝐷𝐷𝑅𝑅𝐷𝐷𝐷𝐷𝐺𝐺  denotes the observed deterioration 
rates on the set of ground truth sewer pipes (which 
have two records of Structure Grade in the traverse 
reports), 𝐾𝐾𝐿𝐿𝐿𝐿𝐶𝐶𝑅𝑅 denotes the kernel matrix between the 
observed sites and 𝐾𝐾𝑈𝑈𝐿𝐿𝐶𝐶𝑅𝑅  denotes the kernel matrix 
between the unobserved sites and the observed 



sites, and 𝐶𝐶𝐶𝐶𝑈𝑈 denotes the prior values calculated 
using Equation (4). 
 
By using Equation (6), we can  estimate the 
deterioration rates of pipes on the entire sewer 
Carriers. As the deterioration rate is per year, we 
need to use the following equation to compute the 
Structure Grade of a pipe at any month 𝑇𝑇: 
 

𝑆𝑆𝑇𝑇𝐶𝐶𝑆𝑆𝑇𝑇𝑇𝑇𝑑𝑑𝑒𝑒(𝑇𝑇) = 

𝑆𝑆𝑇𝑇𝐶𝐶𝑆𝑆𝑇𝑇𝑇𝑇𝑑𝑑𝑒𝑒(𝑇𝑇0) + 1
12
∑ 𝐷𝐷𝑒𝑒𝑇𝑇𝐶𝐶𝑇𝑇𝑇𝑇𝑒𝑒(𝑇𝑇′)𝐷𝐷0<𝐷𝐷′≤𝐷𝐷          (7) 

 
where 𝐷𝐷𝑒𝑒𝑇𝑇𝐶𝐶𝑇𝑇𝑇𝑇𝑒𝑒(𝑇𝑇′) denotes the deterioration rate of 
a pipe at month 𝑇𝑇′ , which is regarded unchanged 
during the investigation period, that is 𝐷𝐷𝑒𝑒𝑇𝑇𝐶𝐶𝑇𝑇𝑇𝑇𝑒𝑒(𝑇𝑇′) =
𝑦𝑦𝑈𝑈𝐷𝐷𝐺𝐺𝐷𝐷𝑅𝑅𝐷𝐷𝐷𝐷𝐺𝐺. Given the Structure Grade at month 𝑇𝑇0 and 
the deterioration rate 𝑦𝑦𝑈𝑈𝐷𝐷𝐺𝐺𝐷𝐷𝑅𝑅𝐷𝐷𝐷𝐷𝐺𝐺, the Structure Grade 
of the pipe at month 𝑇𝑇  can be obtained using 
Equation (7). 

 
Robotic Sensing:  
 
The NDT contact-based sensors need to be 
scanning the pipe surface to quantitatively estimate 
the good concrete over the rebar,  therefore the need 
for a state-of-the-art robotic platform that can handle 
these sensor payloads is important. A floating 

platform with active manipulation of sensor payload 
has been identified as the most feasible design 
approach and CRAFT platform (Figure 6) has been 
developed to meet the design specifications. A multi-
actuator expansion module has been integrated into 
CRAFT robot to provide the dexterity required to 
navigate through the sewer pipeline and handle the 
sensor suite to collect NDT measurements.  
 
The sensing suite on CRAFT comprises of Ground 
Penetrating Sensor (GPR) and Pulsed Eddy Current 
Sensor (PEC) which work in unison to provide 
estimate of the soft layer thickness and good 
concrete cover over the rebar in the pipe. GPR 
sensor operates at a frequency range of 200 – 4000 
MHz (central frequency of 2000MHz), with a supply 
voltage of 12V and peak power of 3W. These signals 
are reflected from different layers of the concrete and 
provide a unique signature correlating to the 
characteristics of the material beneath the wall 
surface. PEC sensor includes sensor coils, driver 
circuit to control the excitation pulses and process 
the received pulses including the signal conditioning 
and ADC modules are packed into a compact form 
factor that can detect and estimate the distance to 
rebar up to 90mm with high resolution. A custom UI 
has been developed (Figure 4) to control and 
monitor various operations of the platform with 
several tabs including Status, Camera, Motor, PEC 
and GPR. 
 

Figure 5: CRAFT V1 tested in a DN1200 concrete 
pipe with rebar under lab conditions. 

Figure 4: CRAFT V1 with scissor lift expansion arms to handle sensor payload, 100m Cable reel with 
power and communication to CRAFT. 

Figure 6: CRAFT V1 deployed at Fairfield West 
Carrier – Sydney in Mar 2021. 



RESULTS/ OUTCOMES 
 
H2S & Corrosion Prediction: Our model enables 
evaluation of optimisation via the facility to upload a 
second H2S data set for comparison. This allows the 
user to directly compare the diurnal average H2S 
before and after a dosing change has been 
implemented. We have evaluated the proposed H2S 
prediction model using the real data provided by 
Sydney Water (Figure 7). Based on our experiments, 
20% of the predicted high risky pipes in our model 
cover 52.64% of the observed risky pipes (Structure 
Grade level 4 & 5) in three years (Figure 9). The 
machine learning engine uses the estimations of 
H2S and other parameters such as temperature and 
hydraulic information to predict corrosion levels on 
the entire carriers. The output of the evaluation is a 
map of structure grade for the entire sewer carriers. 
We have summarized and compared the predicted 
structure grade and the ground-truth structure grade 
of each of the pipes traversed in 2020 (Figure 8). 
One can see that the majority of predictions have 
less than a 4% difference compared to the 
corresponding ground truths. In average, the 
prediction error is less than 4% (0.2/5 = 4%) as 
shown in Figure 9. 

 
In Australia, the total length of sewer pipes is over 
110,000 km and the value of wastewater 
infrastructure construction completed across 
Australia amounted to around 3 billion Australian 
dollars in the 2020 fiscal year. The annual cost due 
to the failure of water/wastewater pipelines alone in 
Australia was estimated to be over $250 million. The 
proposed machine learning model for corrosion level 
prediction has been deployed in a Sydney sewer 
carriers. The evaluation results have demonstrated 
the high prediction level of confidence in the 
proposed machine learning model, with an average 
Structure Grade conficence level of 52.64% with 
only 20% pipes selected from our predicted priority 
list for Sydney Water. With a suitable, validated 
model, Sydney Water could defer as much as $16M 
annually from its current rehabilitation cost which 
vary between $60-80M annually.   
 
Robotic Sensing: We have deployed the CRAFT 
V1 in the sewer carriers at Fairfield West Carrier in 
March 2021 (Figure 10) which has a downstream 
length of 200m and validated the operation of the 
platform sub-systems, deployment strategies, data 
collection, platform stability and sensor evaluation. 

Figure 7: H2S Prediction results 2019-2021. 

Figure 8: Corrosion level prediction results 2019-2021. 



The PEC tab in the UI (Figure 11) plots the live 
sensor data and colour coded with green, yellow and 
red with preset rebar depth values. Any depth less 
than 40mm is marked as red showing that the 
concrete cover is less and needs attention. “Rebar 
Diameter” is selectable between “12 and 16mm” 
which loads the corresponding calibration file. GPR 
tab controls has time resolution of the GPR sensor 
that can be switched between Default and Custom 
which corresponds to lower and higher depth 
penetration of GPR signals. For near-surface 
detection, the default option can be used. The 
“FILTER” button enables the inbuilt filter which 
processes the GPR scans through the time window 
and provides better visualization of the data in the 
window above. Filter coefficients can be configured 
using the + and – buttons at the bottom. 
 
CRAFT V2 is in the developmental stage based on 
the field deployment learnings of CRAFT V1. The 
scissors lift mechanism is replaced with a robotic 

manipulator. Figure 12 shows the CRAFT V2 
prototype.  
 
CONCLUSION 
 
With a limited number of monitoring sites, it is a 
challenge to predict H2S concentration and sewer 
corrosion levels on the entire carriers.  A machine 
learning model based on a Gaussian process, was 
used to predict spatio-temporal H2S and corrosion 
hot spots with > 80% confidence on the three gravity 
concrete sewer systems of Sydney Water. The 
predicted results can help to prioritise high-risk 
areas, recommend chemical dosing locations, and 
suggest the deployment of robotic sensors. Applying 
robotic sensing and advanced signal processing to 
the ground penetrating radar and pulse eddy current 
sensor data provides an estimation of the depth of 
the soft concrete layer and the distance to 
reinforcement bars. These methods can be used for  
900 – 1500mm concrete sewers, and for > 1500mm 
traversable sewers with handheld tool kits. This 

 

Figure 10: CRAFT UI – PEC sensor control tab 

Figure 9: The average level of confidence for corrosion prediction. 



world leading ability to non-destructively measure 
soft concrete depth with an interface that allows the 
operator to assess the performance while the 
measurement is carried out is a significant 
innovation in action. The remaining life of the 
concrete pipes can then be calculated by integrating 
the fit-for-purpose coating decision-making process. 
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Figure 11: CRAFT UI - GPR sensor control tab. 

Figure 12: CRAFT V2 prototype. 
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