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ABSTRACT

Music Emotion Recognition (MER), an important branch of Music Information

Retrieval (MIR) systems, has become a very active research area, driven by the need

to detect emotion in music automatically. A great deal of research has contributed to

this area. With the emergence of neural networks, MER research has evolved from

traditional machine learning methods combined with acoustic features to neural

network learning methods combined with multi-source features. However, research

gaps still exist in the following aspects. First, most existing research uses pre-

processed audio features as learning model inputs, which require domain knowledge

and work effort for feature selection. Limited attempts are made to use raw audio

as model input directly. Secondly, few researchers partitioned the given music clips

into shorter segments as model inputs due to the lack of segment-level target labels

for supervised learning. Additionally, utilizing social tags is a good way to provide

annotations for music emotion recognition. But tags are usually selected within a

limited set of emotion corpus as discrete labels. Research rarely focuses on large-

scale tags analysis and quantifies them in a dimensional emotion space.

I proposed solutions based on neural network methodologies to fill the above

research gaps. Regarding the first point, I adopt a novel end-to-end deep learning

architecture where multi-view convolutional neural networks are designed as fea-

ture extractors, followed by Bidirectional Long Short-Term Memory (BiLSTM) to

capture temporal context sufficiently and predict dynamic music emotion. For the

second one, I designed the two-stage learning framework, which uses music seg-

ments as model inputs without requiring segment-level labels. By applying the

unsupervised learning method, segment-level feature representation could be gen-

erated. Then these time-series segment-level features are assembled and fed into a

BiLSTM model to achieve the final music emotion classification. For the last one, I



vi

contributed to social tag analysis related to music emotion by utilizing neural word

embedding approaches. This way, social tags could be mapped into the dimensional

emotion plane for further quantitative use.

To conclude, my research aims to improve the performance of music emotion

recognition with neural network methods and study social tags representation for

emotion annotation using word embedding techniques. This thesis presents all of

the solution details. Meanwhile, music emotion background, related research work

and plans are added to give a better view.
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Chapter 1

Introduction

In the digital information age, facing an enormous amount of online music resources,

Music Information Retrieval (MIR) plays a significant role in retrieving information.

Music Emotion Recognition (MER) is one fast-growing branch of MIR. It benefits

emotion-based music applications and improves personality experiences through mu-

sic psychology, recommendation systems and artificial intelligence. Generally, MER

research consists of 4 parts: music data collection, emotion model definition, music

feature extraction and MER model design. First, the music dataset is collected. It

typically includes music samples (usually audio signals) and their emotional anno-

tation (tags or ratings). Meanwhile, a dimensional or categorical emotion model is

defined to annotate music. Then, music features are extracted from one or more

sources like raw audio and lyrics. After that, feature data is fed into the designed

learning model to train emotion prediction patterns, usually with emotion labels as

targets. Once the model finds the optimal pattern based on the evaluation matrix,

it could be used to recognize music emotion for other unlabelled music.

Before the widespread use of neural network approaches, traditional machine

learning models were mainly utilized to solve emotion classification or regression

problems, those models usually have less ability to represent features. So the per-

formance relied on feature collection before model training to a great extent. Con-

sidering this limitation of those models, most researchers tended to design and ex-

tract human-engineered audio features as model inputs to gain better performance

(Schmidt et al., 2010; Panda et al., 2018). In recent years, the rapid development of

deep learning has brought MER into a new stage. With layers of neural networks,

these models can learn music features automatically from raw data or low-level mu-

sic features. Due to this, researchers prefer to dedicate themselves to designing
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efficient model architectures (Choi et al., 2017; Dong et al., 2019), or explore the

combination of multiple feature sources (such as audio, lyrics, social tags and elec-

troencephalogram signals) with adopting multimodal fusion strategies (Lian et al.,

2018; Hu et al., 2017).

Regarding emotion annotation, it could be conducted by subjective test, but

this usually results in a heavy load on time consumption and labour cost (Yang

and Chen, 2012), which is not tractable with large-scale datasets like those seen in

MIR. Instead, increasing interest has been shown in crowdsourcing resources (Çano

and Morisio, 2017a). With the fast growth of web social media, social tags from

community users are viewed as a good source to provide annotation for music-related

tasks such as music auto-tagging (Choi et al., 2016), music emotion recognition

(Delbouys et al., 2018) or sentiment analysis (Çano and Morisio, 2017b). Social

tags save more effort than subjective annotation and serve training models better

for large-scale datasets.

This thesis focuses on music emotion research. The research aims to improve the

performance of music emotion recognition with deep learning methods and study

emotion representation from music social tags by using word embedding techniques.

Such emotion recognition will contribute to emotion-based music categorization and

retrieval. Further, some personalized music applications could combine organized

music and user-oriented data to select and recommend music based on emotion to

improve the listening experience and even music therapy. The rest of this chapter

presents the motivation, research questions, research objectives, results and contri-

butions, as well as the outline of this thesis.

1.1 Motivation and Research Questions

MER research has reached great achievements in many aspects. But issues and

limitations still exist mainly due to the subjectivity and vagueness of emotional re-

sponse. Moreover, researchers got used to reusing the common frameworks formed

in previous MER research. That leads to a lack of insights into some study points.

First, most researchers use pre-processed audio data rather than raw audio for train-
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ing models. Especially before the emergence of deep learning, performance was

mostly improved through better hand-engineered audio features. (Laurier et al.,

2010; Schmidt et al., 2010). But such feature extraction work usually requires pro-

fessional acoustic domain knowledge and operating cost, even though many musical

phenomena are not yet defined or understood in a unified way. If we could find a

way to use raw audio directly and make emotion predictions efficiently, then much

time and labour costs would be saved. Second, much research naturally adopts

supervised learning methods for labelled data. They usually used the given music

clips as model inputs to train the learning pattern and match the prediction with

the given target labels. There are few good methods to partition the given music

clips into shorter segments as model inputs due to the lack of segment-level target

labels, even if the duration of some music clips is relatively long and unsuitable

for analyzing emotion cues. In addition, previous research usually maps social tags

to the quadrants of the classic dimensional emotion model, then define annotation

schemes to project songs associated with tags to dimensional space (Panda et al.,

2018), rather than analyzing tags relationships in the context of music tag dataset.

Only a few research projects focused on tags analysis to reflect themselves on di-

mensional emotion model (Saari and Eerola, 2014; Laurier et al., 2009)). Still, these

approaches use conventional latent semantic analysis (LSA), which depends on ge-

ometrical transformations rather than neural text analysis. I pay attention to these

research gaps and expound my corresponding solutions in this thesis.

Based on the facts mentioned above, my research questions are proposed:

1. How to use raw audio rather than human-engineered features to predict music

emotion?

2. How to use segment-level music recordings to predict music emotion without

requiring extra annotations?

3. How to analyze and reflect on the relationship between social tags and music

emotion?
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1.2 Research Objectives

According to the research questions, the research objectives are set up as follows:

i. Design a deep neural network model that can directly use raw audio signal

data as training inputs rather than using pre-processed audio features and

achieve better performance for emotion prediction.

ii. Propose a deep learning architecture that could accept segments partitioned

from the given music clips as model inputs without collecting extra segment-

level annotations and complete final emotion recognition.

iii. Provide a solution for music social tags analysis with neural word embedding

models applied to represent tags in a dimensional emotion space.

1.3 Results and Contributions

The main contributions of my research work are presented below,

• A multi-view CNN (Convolutional Neural Network)-based model is designed.

It can accept raw audio as inputs and extract music features from multiple per-

spectives automatically and efficiently. Then these features are aggregated and

fed into Recurrent Neural Networks (RNNs) to learn time-varying information

for dynamic emotion variation. Based on this structure, music emotion could

be detected without expending too much effort on prior knowledge learning

and feature extraction. At the same time, the performance gained 4% and 16%

average improvement at RMSE and R2 matrices compared with the previous

model design.

• A segment-level two-stage MER architecture is proposed. It combines unsu-

pervised learning as a feature extractor and supervised learning as an emotion

recognizer. In the unsupervised learning module, a CNN-based autoencoder

is employed to represent segment-level audio data without considering labels.

Then, in the supervised learning stage, feature representations for time-series
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segments are fed into appropriate RNNs to complete the final emotion predic-

tion. In this way, the music pieces could be further partitioned into appropri-

ately short segments without requiring extra annotations for model training.

From the perspective of data augmentation, segment-level music increases the

data scale and data variation for unsupervised learning, thereby enhancing the

model performance. Compared to the previous model that used only music

sources, my model performance achieved more than 10% increases in valence

and arousal based on accuracy and F1-score. My model even competed with

the latest multimodal framework.

• The text analysis solutions are applied to large-scale music social tags to rep-

resent tags in dimensional emotion space. In tags analysis, tags are viewed as

terms rather than single words because tags may be phrases or sentences. The

social tags dataset is preprocessed to generate structured inputs such as a text

corpus or a factorized matrix for the subsequent tag analysis models. Then

the neural text embedding models are trained and output vector-based terms.

After a series of dimensional transformations, social tags could be represented

quantitatively and show their relationship with each other in a dimensional

emotion space.

Those contributions have been published in journal and conference papers. Refer

to the “List of Publications” page for details.

1.4 Thesis Organization

In this thesis, my work focuses on two scenarios for music emotion recognition

and one related study of social tags representation for music emotion. The first

scenario is detecting dynamic emotion variation by using raw audio signals. It

aims to solve a regression problem referring to the first research objective. The

other scenario focuses on static emotion classification to achieve the second research

objective. The study of social tags for emotion representation commits to the third

objective. This thesis is organized as follows:
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• Chapter 2: This chapter presents the background knowledge about music emo-

tion research, including emotion definition, emotion taxonomy, music features

and dataset introduction.

• Chapter 3: This chapter is the literature review about music emotion recogni-

tion and social tags analysis. In detail, it includes feature selection and impact,

emotion response time and segmentation, traditional machine learning meth-

ods, deep learning methods, multimodal strategies, social tags applications

and cross-domain methodologies.

• Chapter 4: This chapter elaborates on the deep learning model for dynamic

emotion detection using raw audio to achieve the first objective. The in-

troduction section identifies the problems in the previous research and the

superiority of my research. The methodologies part describes the multi-view

model architecture and introduces the augmentation methods for raw audio

data. Then the experimental details are given, followed by result analysis and

some discussion.

• Chapter 5: This chapter elaborates on the deep learning model for static

emotion classification to achieve the last two objectives. First, research gaps

are pointed out, and my research contribution is stated. Then the segment-

level two-stage model structure is presented with time and frequency masking

method included. Following this, experimental details are given, including

introducing two datasets, processing audio data, transforming annotation and

setting up model training. The results are shown based on different segment

levels and different baseline models. The performance analysis in multiple

aspects is provided in the discussion part.

• Chapter 6: This chapter presents social tag analysis work for music emotion.

The current research demand and my study are introduced briefly. Then,

based on a large-scale music tags dataset, methods for tag representation

are described, including data preprocessing, tag embedding, emotion vector

extraction and data transformation. Several tag embedding models are con-
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ducted in the experiments, and their performance is compared and visualized.

• Chapter 7: A summary of the thesis contents is given in this chapter. Future

works are listed as well.
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Chapter 2

Music Emotion and Music Features

Music plays a significant role in human life. With the rapid development of digital

technology, music recordings have transformed from physical materials to online

resources. Facing a huge amount of digital music information, the research for

music information retrieval has made great progress. Initially, music was usually

retrieved based on catalogue metadata such as song title, artist name, album name

and genre. Then, to improve the personalized experience, diversified user-oriented

systems and applications have been proposed. In this procedure, the fast-growing

demand of music organization by emotion has gained more attention (Yang and

Chen, 2012).

This chapter introduces the background of music emotion from the following

aspects.

• the concept, scope and taxonomy of music emotion

• the introduction of music features and related tools for feature extraction

• music feature selection and impact on emotion

• the overview of music-related datasets

2.1 Music Emotion

This part discusses the concept of music emotion and indicates the emotion type

my thesis focuses on in MER research. On the other hand, a series of typical emotion

definition models are illustrated.
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2.1.1 Music Emotion Introduction

What is emotion? From a psychological perspective, emotion is an immediate

physiological response to a perceived stimulus. Sometimes, we view other terms as

synonyms with emotion and use them interchangeably, such as feeling, mood, af-

fect, and sentiment. But Ketai (1975) pointed out that such words refer to distinct

psychological phenomena and should be used carefully. Feelings cover a larger scope

of subjective experience beyond emotions (Scherer, 2005). It includes the physical

and mental sensations, not only emotional experiences. A mood is an affective state

in psychology. In contrast to emotions, moods are less specific, less intense and

less likely to be provoked or instantiated by a particular stimulus or event (Beedie

et al., 2005). Affect is an umbrella term that embodies both emotion and mood.

Emotions are one class of expressions of affect. A sentiment involves both a physio-

logical reaction and a cognitive, subjective component. Unlike emotions, sentiments

are enduring dispositions targeted toward an object (Munezero et al., 2014). More-

over, these researchers also pointed out that the key factors of distinguishing them

are response time and duration. Compared with moods, feelings and sentiments,

emotions come first and have a relatively shorter duration. Regarding the affect you

are experiencing from music, my study focuses on music emotion research.

Further, we need to confirm the type of emotion in the study of music emotion

recognition. Generally, music emotions could be divided into expected, perceived,

and induced emotions (Zhao et al., 2019). Expected emotion is the emotion that

the music creator intends to convey, while the latter two refer to the emotional

response from listeners. The perceived emotion means what kind of emotion people

perceive in music, whereas the induced emotion (also known as felt emotion) is the

emotion actually experienced by the listeners. Kallinen and Ravaja (2006) argued

that induced emotion is more subjective than perceived emotion. Thus, the level

of agreement among listeners for perceived emotion is higher. On the other hand,

Song et al. (2013) showed that the gap in the agreement for both emotions is small.

To cover common situations, MER researchers tend to focus on perceived emotion.

In studying emotion perception, we must confirm that the research focuses on
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detecting stable or dynamic emotions. That relies on the research purpose and the

characteristics of music datasets. This thesis covers both scenarios and uses different

deep-learning models to detect either a single emotion or emotion variation.

2.1.2 Emotion Taxonomy

Regarding the subjectivity of human emotion and the difference in culture and

living background, it is difficult to define and encompass all human emotions. Even

so, there are two typical taxonomic approaches that most researchers follow: the cat-

egorical approach and the dimensional approach. The categorical approach maps

emotion descriptions into some typical discrete categories. The complexity of anno-

tation and classification is relatively low. Still, the semantic gap exists as a limited

set of terms restricts the coverage of the full range of human emotion, and even

people show different understandings of one term. By contrast, the dimensional

approach considers emotion as continuous values within a two- or three-dimensional

space, where emotion description is not discrete terms but ratings or numbers in

some metrics. So dimensional models are considered better approaches to avoid am-

biguity issues, despite the relatively higher cost of gaining quality annotation and

pattern recognition. Increasingly, much research tends to use a dimensional model

(Grekow, 2018) or quadrants in dimensional space (Panda et al., 2018) to narrow the

semantic gap between music experience and human perception. In MER tasks, we

usually view the categorical model as a classification problem to predict the emotion

classes. In contrast, the dimensional model is regarded as a regression problem to

predict values.

In the following parts, some typical categorical and dimensional models are in-

troduced. Those models reflect the main evolution of music emotion taxonomy.

Categorical Emotion Models

For the categorical models, they are usually made up of either several basic terms

(Laurier et al., 2010) or categories/clusters of terms (Hu et al., 2009; Bhattacharya

and Kadambari, 2018).



Figure 2.1 : Hevner’s eight clusters of affective terms (Hevner, 1936)

The emotion model description in the early stage could be traced back to the

paper written by Hevner (1936). She conducted experiments with approximately

450 subjects and concluded eight adjective clusters of affective terms laid out in a

circle (see Figure 2.1). The adjectives within one cluster are closely related and

compatible. While the adjacent clusters have some characteristics in common, the

meaning between them varies in a cumulative way until the clusters in the opposite

position have no likeness.

In recent decades, music emotion research has achieved great progress. One

typical categorical model was proposed by Hu and Downie (2007). It consists of

5 mood clusters (presented in Table 2.1) collected from the AMG (now known as

AllMusic ∗) mood repository. This model was adopted widely in mood classification

tasks initiated by the Music Information Retrieval Evaluation eXchange (MIREX)

∗https://www.allmusic.com/

11



12

campaign. On the other hand, benefited from the music social tags provided by

Last.fm†, some categorical models were derived from that large-scale dataset, such

as 18 mood categories for lyrics text mining (Hu et al., 2009).

Table 2.1 : The MIREX Mood Classification

Categories Labels

Cluster1 passionate, rousing, confident, boisterous, rowdy

Cluster2 rollicking, cheerful, fun, sweet, amiable/good natured

Cluster3 literate, poignant, wistful, bittersweet, autumnal, brooding

Cluster4 humorous, silly, campy, quirky, whimsical, witty, wry

Cluster5 aggressive, fiery, tense/anxious, intense, volatile, visceral

With the change of the times, the meaning of some words has been changed,

such as ’gay’ used in Hevner’s model. Also, acoustic and semantic overlaps across

clusters existed in the MIREX mood dataset (Panda et al., 2015). Such ambiguity

makes it difficult to guarantee annotation consistency.

Dimensional Emotion Models

Regarding the dimensional models, the most well-known one was articulated by

Russell (1980), who proposed 28 affect words located in a 2-dimensional circum-

plex model (see Figure 2.2), with finally evolved into a horizontal axis of valence

(pleasure-displeasure) and a vertical axis of arousal (active-inactive) (Russell and

Barrett, 1999). By contrast, Thayer (1989) proposed another dimensional model

based on tension and energy. These two models could quantitatively describe emo-

tion from different aspects (see Figure 2.3). Based on this, Scherer (2005) tried

to integrate them into a semantic space for measuring emotion-related social labels

(see Figure 2.4), which benefits much social information analysis regarding emotion

(Paltoglou and Thelwall, 2013; Saari and Eerola, 2014).

†http://www.last.fm
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Figure 2.2 : Russell’s circumplex model of affect (Russell, 1980)

Figure 2.3 : Schematic diagram of the combination of Russell’s and Thayer’s models

(Eerola and Vuoskoski, 2011)



14

Figure 2.4 : Scherer’s semantic space for emotion (Scherer, 2005)

On the other hand, 3-dimensional emotion models were designed as the extension

of the valence-arousal (VA) model. Schimmack and Grob (2000) proposed energetic

and tense arousal combined with valence and demonstrated that these three dimen-

sions could not be reduced into two dimensions. Another famous 3-dimensional

model is the valence-arousal-dominance (VAD) model (see Figure 2.5), where domi-

nance means the degree of control ranging from controlled to in control. This model

could distinguish some emotion types more clearly. For example, ’anger’ and ’fear’

are usually located in the same quadrant of VA space due to dimensionality limita-

tion, but we could see their difference intuitively through the dominance dimension.

Further, researchers developed some categorical models based on these dimen-

sional spaces, especially the 2D VA emotion model. They used either four quadrants

with representative terms in each quadrant or high/low levels of VA. Some typical

dimension-based categorical models are shown in Table 2.2
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Figure 2.5 : The Valence-Arousal-Dominance (VAD) 3-dimensional model (Bălan

et al., 2020)

Table 2.2 : The Dimension-based Classification

Related research Categories

Eerola and Vuoskoski (2011) happiness, sadness, tenderness, anger and fear

Laurier et al. (2009) 4 clusters located in four quadrants

Panda et al. (2018) quadrants based on dimensional space : Q1, Q2, Q3, Q4

Chung and Yoon (2012) high/low arousal; high/low valence
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2.2 Music Features

In MER tasks, a machine learning model is usually utilized to find the pattern

between music features and emotion labels, thereby using it to predict unlabelled

data. To do that, the first thing researchers need to determine is what kind of

features are used. According to the feature sources that current studies could obtain,

music features can be mainly classified into categories.

• Content-based audio features: These features are usually extracted from

raw audio signals or represented from low-level features through audio analysis

tools, such as loudness, pitch, timbre and tempo.

• Lyrics: This is another important content-based feature to assist emotion

detection through text analysis (Hu et al., 2009). However, this feature is not

applicable to some music, like instrumental music.

• Context-based information: This usually includes music context such as

artist, title, album, genre, similarity, social tags and even user profile. Besides

that, biological signals responding to music is used increasingly in recent years.

2.2.1 Audio Feature Introduction

Before starting up an MER research, it is better to learn about some acous-

tic features of music. Basically, many features could be classified into the time

domain and frequency domain (spectral, cepstral and phase), but not limited to

these domains. Some research also organized features according to their physical or

perceptual basis (Aĺıas et al., 2016). Yang and Chen (2012) review some features

utilized in MER, including energy, rhythm, melody and timbre. Each of them repre-

sents a group of specific related features. Song et al. (2012) selected 55 features and

categorized them into four dimensions: dynamics, rhythm, spectral and harmony.

Then they evaluated the feature impact on the performance of emotion classifica-

tion. Grekow (2017) grouped music features as three sets (low-level features, rhythm

and tonal ) and checked the effect of feature combinations on the performance of

detecting valence and arousal. Panda et al. (2018) summarized eight categories
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of standard audio features. That is, melody, harmony, rhythm, dynamics, tone

colour (or timbre), expressive techniques, musical texture and musical form. Then

they proposed novel features that assist emotion recognition. Based on previous

work, Vatolkin and Nagathil (2019) also outlined features commonly used as energy,

harmony, rhythm and timbre. Generally, most features mentioned above could be

extracted from signal analysis tools or packages (see Table 2.3) and be viewed as

human-engineered features. Due to many music features varying with time, mean

and standard deviation are often used to calculate the total metrics for music. As

we can see, some categories are identified frequently. My thesis briefly introduces

these common emotionally-relevant musical features in the following part.

Table 2.3 : Music Audio Feature Analysis Tools

Tool Related Literature or Reference

Marsyas (Tzanetakis and Cook, 2000)

MIRToolbox (Lartillot et al., 2008)

PsySound (Cabrera et al., 2007)

openSMILE (Eyben et al., 2013)

Essentia (Bogdanov et al., 2013)

librosa‡ (McFee et al., 2015)

Energy

Energy usually means audio power that is caused by object vibration. In the

music domain, it usually represents a perceptual measure of intensity and activity

and is related to arousal. It also refers to the characteristics of sound in terms of

pitch, volume and frequency. In some MER research (Song et al., 2012; Panda et al.,

2018), they named dynamics to cover similar features. One of the typical energy-

related features is loudness. Loudness is the quality of a sound that is the primary

‡https://github.com/librosa
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psychological correlate of physical strength (amplitude). In some audio analysis

tools, they could be further extracted as total loudness, specific loudness sensation

coefficients (SONE) and so on (Zhang et al., 2017). Vatolkin and Nagathil (2019)

mentioned Zero-crossing rate (ZCR) as an energy feature representing the rate at

which the audio signal crosses the zero amplitude level in a certain interval. These

energy features are usually measured by ’high’ or ’low’.

Rhythm

Rhythm is the pattern of music over time and is the one indispensable element

for all music. Specifically, it reflects the regular notes/pulse/beats/meter changes

over time. It is mainly described through tempo and beat. Tempo means the speed

or pace of the music, measured by ’fast’ or ’slow’. Beat means the underlying pulse

in the music, measured by ’strong’ or ’weak’. Besides that, other rhythm-related

features are mentioned in some research work, such as fluctuation (Song et al., 2012),

rhythm strength, rhythm regularity, rhythm clarity (Yang and Chen, 2012), onsets

(Panda et al., 2018).

Timbre

Timbre, also known as tone colour or tone quality, is the perceived sound quality

of a musical note, sound or tone. It distinguishes different types of sound sources,

like musical instruments or human voices (even for the same note) or different instru-

ments in the same category. It is mainly related to frequency domain features, such

as cepstral timbre, spectral and phase domain timbre. A commonly used timbre

feature in MER is Mel-frequency cepstral coefficients (MFCC). It is a type of cep-

stral representation and reflects the average of the spectral distribution. However,

such averaging leads to the loss of spectral information. Due to this, Octave-based

spectral contrast was adopted to roughly reflect the relative distribution of the har-

monic components in the spectrum (Schmidt et al., 2010). Depending on the audio

analysis tools researchers used, they provided some spectral features from different

aspects. MIR toolbox could extract features related to the sensory dissonance of the

music, such as roughness, irregularity and brightness. In comparison, Marsyas could
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Figure 2.6 : Heat map for pitch and timbre§

extract features related to the noisiness of audio signals, such as spectral flatness

measures (SFM) and spectral crest factors (SCF). Moreover, much research clas-

sified ZCR into this music dimension (Saari et al., 2011; Song et al., 2012; Panda

et al., 2018), rather than energy feature.

Melody

Melody is a linear succession of musical tones that the listener perceives as a

single entity. It implies rhythmically ordered movement from pitch to pitch so that

melody features could be mainly identified as pitch. Pitch is a perceptual property

of sounds that allows their ordering on a frequency-related scale, usually measured

by ’high’ or ’low’. Based on the twelve-note chromatic scale, Figure 2.6 shows an

example of how the strength of pitch organizes in a music piece, contrasting with

timbre to give an intuitive sense.

Harmony

Harmony is another perceptual property of music, along with the melody. The

study of harmony involves chords, which means more than one note is played si-

multaneously. Harmony is often viewed as the “vertical” aspect of music, which is

distinguished from melody and rhythm viewed as the “horizontal” aspect. It also

§Pitch and timbre data shown here is obtained from Million Song Dataset. For more details,

please refer to https://developer.spotify.com/documentation/web-api/reference//operations/get-

audio-analysis
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refers to the concept of consonance and dissonance of chords, which impacts the

emotional perception of music in opposites. Harmony-related features commonly

used include chromagram, inharmonicity, key clarity, sharpness, etc.

Spectrogram

A spectrogram is a visual representation of the spectrum of frequencies of a signal

as it varies with time. It is computed through the short-time Fourier transform

(STFT). Considering the limited range of frequencies and amplitudes perceived by

humans, the spectrogram is usually further transformed to mel scale to form the mel

spectrogram. Its scaling is analogous to the range of human hearing. Inspired by

image processing in many deep learning models, spectrogram or mel spectrogram is

considered as 2-dimension audio feature input fed to convolutional neural networks

(Bhattacharya and Kadambari, 2018; Nayal et al., 2019). In order to leverage the

learning capability of such neural networks, I adopted spectrogram as music feature

inputs in one scenario of my research so that I could focus on optimizing model

design rather than feature selection.

2.2.2 Lyrics and Context-based Features

Lyrics is another important content-based feature source in MIR research (Hu

et al., 2009). Lyrics analysis is covered by the mature research area of Natural Lan-

guage Processing (NLP). It could reflect the song’s main idea, but it is not music’s

inherent attribute, thereby lacking universality. For instance, it is not applicable to

instrumental music. Based on text analysis, social media information such as user

comments or social tags also contribute effort to some MIR applications, especially

for auto-tagging (Choi et al., 2016) and emotion classification (Lin et al., 2011; Çano

and Morisio, 2017b). As the crowdsourcing data, social tags or comments could pro-

vide large-scale music annotation contrasted with the subjective test, but the work

effort for data cleaning is relatively high to solve synonymy, polysemy and noise,

even malice and bias (Lamere, 2008; Saari and Eerola, 2014). Apart from that,

song metadata (such as artist, title, album and genre) is a good source to build

up music similarities and benefit music classification (Hu and Downie, 2007) and
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recommendation (Han et al., 2010).

In recent years, many attempts have been made by using physiological signals

like electroencephalogram (EEG) signals (Tripathi et al., 2017) or Electrodermal

Activity (EDA) signals (Yin et al., 2020). Especially for affect research, traditional

methods often took advantage of verbal expressions or non-verbal behaviour such as

facial expressions and body gestures. The physiological responses provide new cues

to improve emotion estimation.

2.3 Audio Feature Selection and Impact on Emotion

As content-based music features, audio features play a critical role in emotion

recognition. Generally, music emotion impossibly depends on only one feature but

multiple features. However, not every feature is related to emotion. Due to this,

feature selection and impact were discussed intensively.

2.3.1 Audio Feature Selection

In the age of traditional machine learning methods widely used, human-engineered

audio features were very popular to be utilized as model inputs. Previous research

has explored plenty of audio features. But it does not mean that combining these

features as many as possible could lead to further increases in emotion prediction

accuracy, especially when these features do not provide any new emotion-relevant

information or even bring disturbance during machine learning.

Facing a large amount of human-engineered audio features, how to evaluate the

performance of each feature or feature combination gains much attention. Consid-

ering time cost and labour effort, it is impractical to evaluate features one by one

manually, especially when the magnitude of features is more than 100. Due to this,

some algorithms are applied to identify good features efficiently.

Generally, the three main strategies to select effective features are filter, wrap-

per and dimension reduction (Zhang et al., 2017). The filter methods use statistical

techniques to evaluate the relationship between each input feature and the tar-

get response. It is independent of any machine learning algorithm and focuses on
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the scores of statistical measures. The commonly used filter methods are ReliefF

(Robnik-Šikonja and Kononenko, 2003), mutual information (information gain) and

Correlation-based Feature Selection (CFS) (Hall, 2000). Yang et al. (2008) indicated

that ReliefF takes the correlation between features into account. Therefore, it is con-

sidered a better filter method. According to the data type of features and response

(either continuous or categorical), various evaluation metrics are used either for re-

gression problems or for classification problems, such as Pearson’s correlation coeffi-

cient, Analysis of Variance (ANOVA) and Chi-Squared test. The wrapper methods

use a predictive model to find out well-performing subsets of features, so it is benefi-

cial to explore feature combinations. However, it is a class of model-dependent meth-

ods usually with high computational costs. The common wrapper methods include

Forward Selection (FS), Backward Elimination (BE) and bi-directional elimination

(stepwise selection). Dimension reduction methods are also mentioned as embed-

ded methods that project all features into a lower-dimensional feature space. This

class of methods usually achieves feature selection in their intrinsic model process.

For the classification problem, the decision tree algorithm is a typical embedded

method. In regression analysis, Least Absolute Shrinkage and Selection Operator

(LASSO) with L1 penalty (Tibshirani, 2011) and Ridge Regression with L2 penalty

(Hoerl and Kennard, 1970) are often implemented to shrink many features to zero

or almost zero. Such built-in regularization could reduce overfitting effectively.

These feature selection methods are widely used in the MER research area. Yang

et al. (2008) utilized regression ReliefF to rank top-m selected features by importance

for valence and arousal from a set of 114 features. Panda et al. (2018) extracted

1,702 features and filtered out features with lower weights measured by ReliefF.

Saari et al. (2011) argued that wrapper methods could improve the classification

performance in music emotion recognition considering the generalizability and sim-

plicity of training models. Zhang et al. (2017) collected eight features to research

the feature impact on the arousal dimension. Based on this, they compared various

feature selection methods and concluded that the shrinkage methods (belonging to

embedded methods) outperform wrapper methods and are similar to entropy-based
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filter methods. Through these feature selection approaches, audio feature impact on

emotion could be identified.

In recent years, deep neural network models have shown their powerful capability

of extracting features autonomously. Due to this, some low-level features or raw

audio signals could be taken into account as model inputs without much human

intervention. Among these features, time-frequency audio representations such as

spectrogram or mel spectrogram are most commonly used for MER (Bian et al.,

2019; Nayal et al., 2019). Moreover, there is another increasing trend toward using

audio signals as training model inputs directly for reducing model complexity and

work effort on audio pre-processing. Orjesek et al. (2019) demonstrated that a

model using raw audio samples could outperform a model using pre-processed audio

features. In my thesis, the MER experiments are conducted in two scenarios, mainly

focusing on audio sources. In one scenario, raw audio clips are fed into stacked deep

neural networks to detect the emotional variation. In another scenario, the segment-

level log-mel spectrogram is adopted as model inputs and final emotion categories

are predicted through a deep learning framework.

2.3.2 Audio Feature Impact

Based on the valence-arousal (VA) emotion definition model, much research

has explored dedicated features for emotion detection. Gabrielsson and Lindström

(2001) pointed out that valence is related to mode (major/minor) and harmony (con-

sonant/dissonant) while arousal is related to the tempo (fast/slow), pitch (high/low),

loudness (high/low) and timbre (bright/soft). Yang et al. (2008) concluded that

spectral shape and pitch are the top features related to arousal. In contrast, energy-

related features are not much relevant to arousal, and the top features more related

to valence are rhythmic (beat and tempo) and pitch properties of sound. Further,

Yang and Chen (2011) used MIR Toolbox to extract more features for each dimen-

sion of the VA emotion model. They classified the features into three sets: melody,

timbre and rhythm, and argued that these features are related to emotion percep-

tion more closely. Panda et al. (2018) used selected standard features plus novel

features to identify which features have better effects on each dimensional quadrant.
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As shown in their experiments, except novel features they proposed, tone colour

features (related to timbre) contribute more to emotion recognition. Grekow (2017)

mainly used Essentia and Marsyas tools to extract music features and found that

low-level features (a full list of low-level features, please see the website ¶) take main

effect for the detection of both valence and arousal. Apart from that, rhythm fea-

tures impact arousal detection more, while tonal features which describe keys and

chords are more beneficial for valence. This research shows that some audio features

were commonly selected and showed the importance of emotion recognition, such as

rhythm and timbre. However, there are no unified feature sets to be applied. To a

great extent, this depends on what kind of music feature analysis tool researchers

used. Even for the same feature or feature categories, different tools provide differ-

ent subdivisions of acoustic attributes. Moreover, a feature might reflect different

degrees of influence on arousal and valence. This could explain why researchers set

up different experimental environments regarding music datasets, feature selection

methods, learning models, evaluation metrics, etc.

2.4 Dataset Introduction

This section introduces some well-known datasets used in MER tasks. Generally,

these datasets include music excerpts with emotional annotation. Some contain

lyrics, song metadata, acoustic features, tags, etc. Table 2.4 lists the details of these

datasets.

Most datasets provide music clips with a duration of 15-60 seconds in MPEG

layer 3 (MP3) format. Compared with no audio provided, these datasets are more

flexible for extracting features through deep neural networks. Moreover, the data

scale is an important factor that affects learning performance. Large-scale data

could be more likely to reduce overfitting. Contrasting to image and NLP research

that used thousands to millions of training samples in deep learning, the data scale

for MER is relatively small (mainly ranging from hundreds to thousands) due to

the unavailability of annotation. This might make it more challenging to conclude

¶https://essentia.upf.edu/streaming extractor music.html
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from deep learning experiments. Although lacking the quality to some extent, I

attempted to apply neural network models to MER datasets to improve the MER

performance. Otherwise, data augmentation technology might be utilized to increase

data diversity. Regarding data quality, annotation consistency should be guaranteed.

Due to emotional ambiguity and context changes, measuring emotion precisely is

difficult. Generally, dimensional annotation is more practical for both classification

and regression problems. Further, a good dataset must consider balanced samples,

especially in terms of emotion distribution and even genre, which would benefit

model training. From Table 2.4, we can see that the data scale of MSD and Music4all

is large, but they lacked either audio resources or the annotations my experiments

needed. Therefore, the datasets with required samples as many as possible are

selected, such as PMEmo, AllMusic and emoMusic.
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Table 2.4 : Music Emotion Dataset Introduction

Dataset

Name

Scale Annotation Audio Source More Infor-

mation

DEAM 1,802 excerpts valence, arousal 45-second music clips in MP3 format (Aljanaki et al.,

2017)

DEAP 120 excerpts valence, arousal, dominance 1-minute video (Koelstra et al.,

2012)

emoMusic 744 excerpts valence, arousal 45-second music clips in MP3 format (Soleymani

et al., 2013)

emotify 400 excerpts 9 emotional categories 1-minute clips in MP3 format in 4 gen-

res (rock, classical, pop, electronic)

(Aljanaki et al.,

2016)

GMD 1,400 songs genre, valence, arousal Greek songs, no audio but YouTube

links provided

(Makris et al.,

2015)

CAL500 500 songs a set of 174 different tags no audio available (Turnbull et al.,

2008)

MoodSwings 240 excerpts valence, arousal 30-second music clips, no audio avail-

able

(Kim et al.,

2008)
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Dataset

Name

Scale Annotation Audio Source More Infor-

mation

AMG1608 1,608 excerpts valence, arousal 30-second music clips, no audio avail-

able

(Chen et al.,

2015)

Million Song

Dataset (MSD)

1,000,000 songs linked with Last.FM corpus no audio available but song metadata

provided

(Bertin-

Mahieux et al.,

2011)

PMEmo 794 excerpts valence, arousal, EDA signals the chorus part of pop songs in MP3

format

(Zhang et al.,

2018)

Music4all 109,269 excerpts valence, energy, genres, tags and

so on

45-second music clips in MP3 format (Pegoraro San-

tana et al.,

2020)

soundtracks 360+110 excerpts Categorical (tension, anger, fear,

happy, sad, tender) and Dimen-

sional (valence, energy, tension)

15 seconds clips in MP3 format (Eerola and Vu-

oskoski, 2011)

AllMusic 1,000 excerpts 4 quadrants in VA space 30 seconds clips in MP3 format (Panda et al.,

2018)
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Chapter 3

Literature Review for Music Emotion Recognition

and Social Tags Analysis

This chapter introduces related work about music emotion recognition and social

tags analysis. It includes emotion response time to music and music segmenta-

tion, traditional machine learning methods for MER, neural network methods for

MER, multimodal with fusion strategies, social tags applications and cross-domain

methods.

3.1 Emotion Response Time to Music and Music Segmen-

tation

Similar to feature selection, it does not mean that the longer music stimuli could

convey more effective cues for emotion recognition. That’s why MER research usu-

ally analyzed music excerpts rather than the whole songs as experimental objects.

Bigand et al. (2005) studied emotion response time to music and the emotion percep-

tion from music excerpts with different duration. Through groups of experiments,

they demonstrated that music of 1-second length contains enough cues to evoke

emotion in the listeners, especially when these listeners previously experienced these

cues. Xiao et al. (2008) thought music emotion may vary within each song and then

discussed what is the best segment duration to present stable emotion. They tested 4

versions of datasets with different duration of music excerpts ranging from 4 seconds

to 32 seconds. The results show that the better duration for emotion recognition is

8 seconds and 16 seconds while 32 seconds might not be good due to emotion chang-

ing over a relatively long time. Nordström and Laukka (2019) tested the response

time for different emotions such as anger, happiness and sadness. They concluded

that stable emotion could be recognized within a million-second level (250ms). The
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longer duration may lead to emotional change. So it is acceptable to use such short

intervals to recognize music emotion.

Based on the research on response time, researchers generally conducted two

types of emotion recognition: static and dynamic (Yang and Chen, 2012). Static

emotion recognition usually provides an emotion label or value to represent a song

or a music excerpt. Referring to Table 2.4, the length of the music pieces for static

annotation usually ranges from 15 seconds to 45 seconds. While dynamic emotion

recognition focuses on tracking music emotion variation. In this situation, each

short time interval of the song is given an annotation. Those labels are usually

numeric data. In practice, such intervals could be 0.5 seconds or 1 second, matching

annotation sampling frequency of 2 Hz or 1 Hz.

To promote the MER performance, the appropriate length and excerpted posi-

tion for songs are chosen to balance acoustic homogeneity and surrounding context.

Zhang et al. (2018) collected the 30-second chorus part for each popular song to

achieve higher annotation consistency. Wu et al. (2014) argued that song-level fea-

tures may lead to inaccurate feature representation for emotion recognition due

to music emotion varying between segments. However, emotion is mostly consis-

tent within each segment. Further, Aljanaki et al. (2015a) distinguished emotional

segments from structural segments for music. They compared these two types of

segmentation and found that emotional boundaries coincide with structural bound-

aries very often. Therefore, segment-level emotion detection for music is reasonable.

In practice, researchers kept the original annotation for longer audio inputs but

carried on segment-level analysis and recognition through machine learning mod-

els. Lee et al. (2018) compared sample-level deep learning with frame-level one by

configuring convolution filter length and stride rather than partitioning the raw au-

dio at first. The segmentation occurs during training, which leads to no way to

obtain segment-level data for additional manipulation. In contrast, Sarkar et al.

(2020) indeed divided each audio clip into 5-second segments and transformed them

into mel spectrogram as inputs to VGGNet-style model (Simonyan and Zisserman,

2015). But they assigned original labels to segments as their training targets and
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set up rules to make the final decisions, which may mislead the final prediction. The

problem is there is no good way to avoid using segment-level annotation.

In my research, dynamic and static emotion recognition for music is studied

separately. For dynamic emotion recognition, 0.5 seconds is used as the sample

duration to detect emotion variation in VA space. For static emotion recognition, we

feed time-series segments of each music clip to the training model without requiring

new segment-level emotion labels and predict the final emotion classification.

3.2 Music Emotion Recognition Methods

Generally, music emotion recognition involves analysis for three types of prob-

lems: classification, regression and clustering. For the classification problem, the

predicted targets are one finite set of discrete emotion categories. In comparison,

the regression analysis aims to estimate the relationship between input features and

continuous values. Clustering analysis usually groups songs with social tags accord-

ing to their similarity, especially when emotion annotation is unavailable.

Basically, there are two learning paradigms for MER: supervised learning and

unsupervised learning, depending on the target labels given or not. Supervised

learning trains a model to determine the pattern between the inputs and the labelled

outputs. Unsupervised learning analyses unlabelled datasets to find out underlying

data correlation and representation automatically (Dieleman et al., 2011). Addition-

ally, falling between supervised learning and unsupervised learning, semi-supervised

learning combines a small amount of labelled data with a large amount of unlabelled

data during training (Wu et al., 2013). To solve classification or regression problems,

we often mention supervised learning (Laurier et al., 2010; Chung and Yoon, 2012).

While clustering is achieved by unsupervised learning (Laurier et al., 2009).

3.2.1 Traditional Machine Learning Methods for MER

Before the emergence of neural networks, traditional machine learning algorithms

were applied extensively in the MER research area. These models usually require

plenty of pre-processed human-engineered features as model inputs to build up learn-
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ing patterns. The data type of emotional response (either discrete categories or

continuous values) determines whether the learning models serve a classification

problem or a regression problem. Here some of the most popular learning methods

and their applications in MER are introduced.

The classification-based models mainly include Support Vector Machine (SVM),

Decision Tree, K-Nearest Neighbors (KNN), Naive Bayes and Logistic Regression.

SVM (Cortes and Vapnik, 1995) is a supervised machine learning algorithm that

can classify data into two classes by finding hyperplane in n-dimensional feature

space. The best hyperplane is the one with the maximized distances between the

nearest data points and the hyperplane. SVM is effective in high-dimensional feature

spaces but is not suitable for large-scale datasets or datasets with much noise.

A decision tree uses a tree-like structure. Each non-leaf node represents one

decision based on each feature. Data is classified along “branch” level by level until

’leaves’ where a class or a probability distribution over the classes is identified. De-

cision tree models are easy to interpret and perform well for large datasets regarding

computing resources. But such models are prone to overfitting due to much depen-

dence on the training data. The Random Forest algorithm is an extension of the

decision tree, where you first construct multiple decision trees with training data,

then fit your new data within one of the trees. Superior to a decision tree, it could

avoid sorting data into one irrelevant category.

KNN is a non-parametric classification method that uses the training dataset to

find the k closest relatives. It is one of the most simple machine learning models.

The k value and distance function are the main hyperparameters to impact the final

prediction. If the data scale is large, the KNN model is not a good choice on account

of computation cost.

Naive Bayes is based on Bayes’ Theorem, which calculates the probability of

whether a data point belongs within a certain category or not. Because only prob-

abilities are outputs, it runs fast and works well on multi-class prediction. But the

prerequisite for Naive Bayes models is the assumption of strong independence among
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features. This may limit the accuracy of prediction to some extent since many music

features are not orthogonal.

Logistic Regression uses a logistic function to calculate the probability of the out-

put so as to predict a binary outcome. It is also a fast and simple algorithm. But

different from Naive Bayes, which optimizes joint likelihood as a generative model,

Logistic Regression trains a discriminative model by optimizing the conditional prob-

ability based on inputs. So it can not be applied to non-linear classification problems

and is sensitive to outliers.

Researchers compared various classification-based learning methods to find the

better one for the MER tasks. Laurier et al. (2010) adopted nine algorithms, in-

cluding four different SVM algorithms, two different decision tree algorithms, K-NN,

logistic regression and Gaussian Mixture Models (GMMs) as training models and

find which algorithm can predict a certain emotion category with the highest accu-

racy. As a result, SVM showed the best performance. Kartikay et al. (2016) applied

four algorithms - SVM, Naive Bayes, decision tree and Linear Discriminant Analysis

(LDA) to the same dataset to compare the accuracy and find that LDA could gen-

erate the best result. Sharma et al. (2020) conducted a comparative study between

linear SVM, decision tree, Kernel SVM, K-NN, Naive Bayes, logistic regression and

random forest to classify high/low valence and arousal based on audio features. The

conclusion is that SVM has the maximum accuracy for both dimensions. Actually,

SVM is the most popularly used for emotion classification (Han et al., 2010; Lin

et al., 2010; Panda et al., 2018).

For regression-based models, linear regression is a widely used approach for mod-

elling the relationship between one or more feature inputs and a continuous output.

It is also termed Multiple Linear Regression (MLR) for more than one independent

variable. This method is easy to implement and fast to train. But it is only fit

to linear relationship and assumes that input features are uncorrelated with each

other. Besides linear regression, SVM, decision tree and KNN could also be used in

regression models where the outputs are continuous values. In this situation, SVM

usually appears as Support Vector Regression (SVR) (Schölkopf et al., 2000) for
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both linear and non-linear problems. SVR uses the same principles as the SVM.

The decision tree is called a regression tree or regression tree-based random forest

for non-linear problems. It splits a data set into smaller subsets resulting in a tree

with decision nodes and leaf nodes. KNN regression calculates the mean of k nearest

data points as the output. The advantages and disadvantages of SVR, regression

tree and KNN are similar to those used in classification.

Yang et al. (2007) formulated emotions as continuous valence and arousal (VA)

values and employed MLR, SVR and regression trees (Solomatine and Shrestha,

2004) to test the prediction accuracy. Consequently, SVR showed the best results.

Based on the VA emotion plane, regression-based models are usually used to evaluate

best music feature sets for MER (Yang et al., 2008; Grekow, 2017; Nawaz et al., 2018;

Vatolkin and Nagathil, 2019).

Table 3.1 lists some papers mentioning the typical traditional machine learning

methods in MER, but not limited to these papers. Generally, these methods are able

to achieve better performance by selecting a set of appropriate features. However,

that usually involved large time and labour costs for feature extraction and selection.

Together with the inherent limitation of these algorithms, the dataset scale is usually

not big, such as 195 songs (Yang et al., 2008), 324 songs (Grekow, 2017). That’s

the motivation to move forward to deep learning methods.
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Table 3.1 : Literature for traditional machine learning methods for MER

Predicted

Data

Type

Literature SVM SVR Naive

Bayes

MLR Decision

Tree(s)

Regression

Tree(s)

KNN Logistic

Regression

LDA GMMs

Categories

(Laurier

et al., 2010)

✓ ✓ ✓ ✓ ✓

(Kartikay

et al., 2016)

✓ ✓ ✓ ✓

(Sharma

et al., 2020)

✓ ✓ ✓ ✓ ✓

Clusters
(Patra et al.,

2016)

✓

(Panda

et al., 2015)

✓ ✓ ✓

3D regres-

sion

(Deng and

Leung, 2015)

✓

2D

(Yang et al.,

2007)

✓ ✓ ✓
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Predicted

Data

Type

Literature SVM SVR Naive

Bayes

MLR Decision

Tree(s)

Regression

Tree(s)

KNN Logistic

Regression

LDA GMMs

regression (Grekow,

2017)

✓ ✓

(Nawaz

et al., 2018)

✓

(Vatolkin

and Na-

gathil, 2019)

✓
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3.2.2 Neural Network Methods for MER

In recent years, neural network learning, as one class of machine learning meth-

ods, has developed quickly and applied to many research fields, including computer

vision, Natural Language Processing (NLP), speech recognition, machine transla-

tion and so on. Based on deep neural networks inspired by information processing

in biological systems, multiple layers of neural networks are used to progressively

extract high-level features from the raw input without too much human intervention.

Here some common neural network models related to music recognition are in-

troduced.

Convolutional Neural Networks (CNNs) are one kind of well-known Artificial

Neural Network (ANN) and are widely applied to image recognition. CNN has the

powerful capability of learning feature representation automatically. Generally, A

CNN model consists of an input layer, one or more hidden layers and an output

layer. Further, the hidden layers usually contain three main types of layers: con-

volutional layer, pooling layer and fully-connected (FC) layer. Among them, the

convolutional layer is the core building block of a CNN model, where a dot prod-

uct is performed between the convolution kernel and the layer’s input matrix. To

achieve better performance, stacked multiple sets of CNNs are designed to extract

features deeply, such as ResNet (Nayal et al., 2019) and DenseNet (Bian et al., 2019).

But the huge learning parameters with computation costs should be considered and

balanced. Inspired by the success in image detection, CNNs have been employed

in various music research (Choi et al., 2016; Senac et al., 2017; Lidy and Schindler,

2016). As for the input of a CNN model, music audio could be fed in two typical

ways: one-dimension (1D) raw audio waveform or 2-dimension (2D) time-frequency

representation like an image. Corresponding to this, CNN models could be 1D CNN

(Lee et al., 2018) or 2D CNN (Sarkar et al., 2020). In my work, these two types of

CNN models are used in different scenarios.

Recurrent neural networks (RNNs) are another famous set of neural network

models, especially useful for processing sequential data such as speech, music or

natural language. It includes a feedback loop where the output from step n−1 is fed
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back to the network to affect the outcome of step n, and so forth for each subsequent

step. Therefore, RNN models are context-sensitive and show dynamic behaviour

over time. For relatively long sequential data, traditional RNNs expose the drawback

of short-term memory, which may lose some key context information far away from

the current step. To overcome such problems, Long Short-term Memory (LSTM)

(Hochreiter and Schmidhuber, 1997) and Gated Recurrent Units (GRU) (Cho et al.,

2014) networks are designed to set up some gates for selective context retention.

They also belong to RNN models but avoid vanishing gradient problems, especially

for long-term dependency from a technical perspective. Further, Bidirectional LSTM

(BiLSTM) was proposed (Graves and Schmidhuber, 2005). Compared to those RNN

algorithms mentioned before that only leverage previous context, BiLSTM can access

context forwards and backwards to capture more information.

Since music is time-series data, RNN models are able to capture sequential in-

formation, which is a crucial factor in improving the performance of music emotion

variation detection. Especially, LSTM and Bidirectional LSTM (BiLSTM) could im-

prove the capability of exploiting contextual information over a long duration and

demonstrate superiority in music data processing (Weninger et al., 2014; Coutinho

et al., 2015; Li et al., 2016).

Further, combined with the feature learning of CNNs and sequence learning of

RNNs, integrating these neural networks have been implemented in music appli-

cations to gain better performance. Choi et al. (2017) proposed a convolutional

recurrent neural network (CRNN) for music classification. This model showed a

stronger performance compared to those models using CNN only in terms of the

scale of parameters and training cost. Malik et al. (2017) took advantage of the

capabilities of CNNs and bidirectional GRU to detect music emotion based on VA

space. This kind of stacked network achieved significantly better results than tradi-

tional machine learning models and the RNNs-only model.

Besides CNN and RNN, other neural networks also contributed efforts to MER

research. Li et al. (2015) utilized Deep Belief Network (DBN) to extract high-level

lyrics features and joint bag-of-character to get better performance. (Bhattarai
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and Lee, 2019) fed feature representations from pre-trained CNNs to Multi-layer

Perceptron (MLP) to detect music emotion in VA emotion space. For electroen-

cephalogram (EEG) signals from the neurons of the brain, researchers often utilized

Graph Neural Networks (GNNs) to deal with data in such graph domain, thereby

achieving EEG-based emotion recognition (Zhong et al., 2020).

Generally, neural network models are more effective than traditional machine

learning models. The output of a neural network model could be either classes,

probability values or real numbers depending on the appropriate loss function and

specific activation function in the output layer. So it is more flexible and generalized.

Moreover, neural network methods require few human-engineered features so as to

save too much effort on prior knowledge learning and music feature preparation. Due

to this, researchers could pay more attention to model design rather than feature

extraction. In current MER research, the relatively small data scale limits the

performance of neural network models, which usually require large data samples

to learn better patterns. However, we could still use neural networks to extract

feature representation and achieve better results than traditional machine learning

methods in some aspects. According to these considerations, my work mainly uses

neural network models to recognize music emotion.

3.2.3 Feature Representation

Artificial neural networks actually calculate feature representation. Distinct from

human-engineered features extracted from source data before model training, fea-

ture representation benefits from the ability of neural networks to extract inherent

information and generate vector-based features to represent sources. Then feature

representation can be considered as feature input for another learning model. Here

my thesis introduces some model design methods which are based on feature repre-

sentation from neural networks.

One effective method is transfer learning. It trains a learning model for one task

with enough data and then transfers the knowledge gained from this source domain

to a second task in related domains. In this way, transfer learning could benefit
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the tasks with insufficient training data and leverage knowledge from pre-trained

models to solve new problems. Fan et al. (2020) utilized a pretrained model VGGish

(Hershey et al., 2017) as a feature extractor where the audio data is converted into

latent feature vectors as inputs for subsequent training. Bhattarai and Lee (2019)

pre-trained 5-layer CNNs on Million Song Dataset (MSD) (Bertin-Mahieux et al.,

2011) and then applied this model to EmoMusic dataset (Soleymani et al., 2013)

to obtain a set of feature representations from these five CNN layers, followed by a

regression model to predict music emotion.

The unsupervised learning structure with embedded neural networks could also

provide feature representation. The commonly used methods are Autoencoder (AE)

and Restricted Boltzmann Machine (RBM). An autoencoder is an architecture used

to learn efficient codings of unlabeled data, which includes two main parts: an en-

coder that maps the input into the code and a decoder that reconstructs the input

from the code. The encoder output could be viewed as feature representations for

the input data. Sometimes, AE is also used to correlate and blend the multimodal

features into new features that contain more common information (Xianyu et al.,

2016). A Restricted Boltzmann Machine (RBM) is a generative stochastic artificial

neural network that can learn a probability distribution over its set of inputs. RBM

is usually used in multimedia applications to extract feature representations from

multiple sources, such as image-text and audio-video (Srivastava and Salakhutdinov,

2014). Regarding MER research, Huang et al. (2016) used Deep Boltzmann Machine

(DBM) based on RBM to extract both audio and lyric feature representation for

music emotion classification. Further, Zhou et al. (2019) proposed an architecture

to combine the advantages of AE and RBM, where AE trains audio data while RBM

trains lyric data. Then they concatenated those two types of feature representations

as the input of another supervised regression model to predict emotion. MusiCoder

(Zhao and Guo, 2021) combined transfer learning and unsupervised learning. They

conducted an autoencoder on unlabelled audio data to build a pretrained model that

serves other labelled datasets to form feature representation. The autoencoder is

adopted to extract audio feature representations in my emotion classification task.
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In that situation, unsupervised learning models usually act as feature extractors,

followed by supervised learning models for prediction. Although RBM can also gen-

erate representation, the algorithm is based on comparing probability distribution.

That is meaningless for segments within one song to compare each other. Addition-

ally, an autoencoder architecture allows CNN modules to be added so that we can

enhance image-like spectrogram analysis.

3.2.4 Multimodal and Fusion Strategies

In recent years, much research has tended to employ multimodal methodologies

based on multiple feature sources or multiple modalities to take advantage of their

complementarity. Another similar method is multi-view representation learning,

which means learning features from multiple perspectives/views/modalities.

Referring to feature sources, music audio data is the primary consideration.

Compared with traditional machine learning, where tens or hundreds of human-

engineered features are selected, the typical inputs for deep neural networks are

1-dimensional (1D) raw audio data (Lee et al., 2018) or 2-dimensional (2D) mel

spectrogram (Choi et al., 2016) or a mix of both (Wang et al., 2019). Further, some

research (de Berardinis et al., 2020) made use of a Music Source Separation (MSS)

module Demucs (Défossez et al., 2019) to generate vocals, drums, bass and other

sources from the raw waveform and fed them into deep learning models. On the

other hand, some attempts have been made by only using lyrics (Li et al., 2015),

(Corona and O’Mahony, 2015) or electroencephalogram (EEG) signals (Tripathi

et al., 2017). For multiple sources, the combination of audio and lyrics is the most

popular solution (Patra et al., 2016; Huang et al., 2016; Jeon et al., 2017; Bhat-

tacharya and Kadambari, 2018; Zhou et al., 2019). In these models, they extracted

features from audio and lyrics respectively and compared the performance of uni-

modal and bi-modal methods. All of the results showed that multimodal solutions

could boost performance effectively. With physiological signals applied to multi-

media research areas, researchers also combined audio and Electrodermal Activity

(EDA) to establish an end-to-end multimodal framework (Yin et al., 2020). Verma

and Tiwary (2017) applied SVM, KNN and MLP to pre-processed EEG with video
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features for 3D continuous valence-arousal-dominance recognition.

Corresponding to different feature sources, different models are used for learning

feature representation or prediction. For example, Delbouys et al. (2018) extracted

audio features through 2 stacked CNNs while extracting embedded lyric features

through CNN plus LSTM. For EEG data, Lin et al. (2010) sought emotion-specific

EEG features and fed them into SVM to classify four emotion categories. More

discussion on handling physiological signals data could be found in the latest review

(Bălan et al., 2020; Zhang et al., 2020).

Apart from using cross-domain resources, the single-domain resource could also

achieve multi-view learning that extracts features from multiple perspectives, like

3D shape detection (Su et al., 2015). By combining meaningful information from

different views, more comprehensive representations may be learned to contribute

to subsequent recognition. (Wu et al., 2014) explore music from multiple levels

(song-segment-sentence) thereby constructing a hierarchical training model. Such

models have performed much better than single-view models (Li et al., 2019). In

my research, the multi-view architecture extracts feature from raw audio compre-

hensively.

Along with multimodal structure, fusion strategies need to be discussed that

how to merge different modalities. Generally, there are several types of fusion ap-

proaches: data-level fusion, feature-level fusion and decision-level fusion (or late

fusion) (Lian et al., 2018). Data-level fusion usually happens before model training.

Thus it is called input-level fusion or early fusion. This fusion is applicable to raw

data or pre-processed data. The challenge is to make multiple data on the same

page regarding sampling rate, data dimensionality and unit of measurement, which

may bring extra costs for data preparation or limit the performance of the training

model. Feature-level fusion is applied during model training, where feature repre-

sentations are extracted and then merged. It still needs to synchronize data from

different modalities. However, with the help of neural networks, the correlations and

interactions between modalities could be exploited. Those end-to-end studies are

apt to adopt this strategy (Jeon et al., 2017; Yin et al., 2020; de Berardinis et al.,
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2020). In contrast with the fusion methods mentioned above, decision-level fusion

uses each data source with model training independently, followed by fusion at a

decision-making stage. It is especially suitable for the situation where data sources

are significantly varied from each other as it is difficult to unify them (Rozgic et al.,

2013; Poria et al., 2016). Delbouys et al. (2018) named feature-level fusion as mid-

level fusion and compared it with late fusion. Their experiments showed a clear

improvement in VA detection based on mid-level fusion. It also indicates that audio

and lyrics correlate in the model training stage. Further, some research built up

learning models for making fusion decisions. For instance, Fu et al. (2020) proposed

a graph attention network (GAT) to make decision-level fusion. In my multi-view

architecture, feature-level fusion is adopted since both views output homogeneous

data.

3.3 Music Social Tags Analysis

Regarding music social tags, researchers usually mentioned music annotation as

their purpose. In MIR research, annotation provides song labels so that training

models can use them as target labels. One method for this purpose is subjective

testing, which can be conducted by either experts or candidates, annotating songs in

categories (Lin et al., 2016), or rating songs within a predefined range in a numeric

space (Grekow, 2017; Yang and Chen, 2011). Another common method is to utilize

crowdsourcing resources such as MTurk workers (Aljanaki et al., 2017), collaborative

games (Law et al., 2007), social tags (Çano and Morisio, 2017b) or web service

(Knautz et al., 2011). Among them, social tags are relatively mature resources to

be explored and ready to use. However, social tags also contain problems such as

polysemy, misspellings, junk words and popularity bias (Lamere, 2008), which must

be preprocessed before being labelled.

3.3.1 Word Representation

Social tags analysis could draw on methods in text analysis research to explore

latent semantic features. To facilitate text analysis, researchers usually do word

representation using a vector-based model. A document or word is represented
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as a vector in such a model, where each dimension corresponds to one feature.

Then these vectors could be used in language modelling and feature learning in a

variety of applications, such as information retrieval (Ganguly et al., 2015), opinion

mining (Giatsoglou et al., 2017), question answering (Bordes et al., 2014), named

entity recognition (Lample et al., 2016) and syntactic-semantic parsing (Socher et al.,

2013).

Generally, the approaches of vector-based representation could be divided into

supervised and unsupervised methods (Turian et al., 2010). In supervised methods,

one-hot representation in Natural Language Processing (NLP) means a simple word-

based vector. It encodes binary vectors with the same length as the vocabulary size.

And only one element is ’1’ in each vector. Therefore it is easy to represent but

fails to capture syntactic (structure) and semantic (meaning) relationships in the

text context. Another classic representation is Vector Space Model (VSM) (Salton

et al., 1975), a document-based vector using term-specific weights rather than binary

data as element values. However, these two methods expose the drawback of data

sparsity in large-scale text analysis.

In contrast, unsupervised methods show better effectiveness in handling large-

size vocabulary and documents, which generate compact vectors with real value in

low dimensions. They reduce the vector sparsity effectively and can better mea-

sure semantic similarity with other words. These models are commonly known

as word embedding. One conventional word embedding method is distributional

representation, the essence of which is dimensionality reduction and utilizing ma-

trix factorization strategies. Among a variety of methods, a popular one is Latent

Semantic Analysis (LSA) (Deerwester et al., 1990; Evangelopoulos, 2013), which

performs Singular Value Decomposition (SVD). This method has been used widely

in tag representation (Laurier et al., 2009), and in music emotion modelling (Levy

and Sandler, 2007; Saari and Eerola, 2014; Schindler and Knees, 2019).

In emerging word embedding research, neural networks are leveraged to learn

low-dimensional word representations rather than first reducing dimensionality di-

rectly. One notable technique in Natural Language Processing (NLP) research area
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is word2vec (Mikolov et al., 2013). Two typical models for this technique are Skip-

gram and Continuous Bag-Of-Words (CBOW). Skip-gram aims to predict context

words from a given target word. In comparison, the CBOW architecture tries to pre-

dict the target word through its surrounding context. Word2vec focuses on context

information but poorly utilizes global statistical data. Thus, it captures more syn-

tactic regularities but few semantic regularities. Another popular technique is GloVe

(Pennington et al., 2014), which is a new global log-bilinear regression model com-

bining global matrix factorization like LSA with local context window like word2vec.

Due to this, it could cover both semantic and syntactic information better and out-

perform other models in the aspects of word analogy, word similarity and named

entity recognition.

3.3.2 Music Social Tags Application

Social tags could be used in many music applications, such as emotion recog-

nition, sentiment analysis and automatic tagging. Social tags, as a crowdsourcing

resource, especially for large-scale music datasets, save annotation costs effectively.

Social tags are utilized for music emotion recognition (MER) in several ways. In

a categorical model, researchers usually used tags as ground truth data directly (Lin

et al., 2011). While in a dimensional model, much research mainly used subjective

experiments (Yang et al., 2008) or mapped tags to other existing emotion definition

models (Panda et al., 2018). Then how to use tags to construct dimensional annota-

tion is a real need for large-scale music datasets. Because such a dataset is hard to

be annotated manually, considering labour and time cost. Saari and Eerola (2014)

have researched this area using conventional text analysis methods to generate Af-

fective Circumplex Transformation (ACT), then calculate songs’ emotions based on

associated tag weights and tag coordinates. In another research (Delbouys et al.,

2018), songs are labelled with continuous arousal/valence values based on emotion

tags and crowdsourcing word emotional ratings without considering the impact of

other kinds of tags and the popularity (weight) of tags. Few research mentions the

neural word embedding methods to explore the latent relationship of social tags and

then represent tags based on dimensional music emotion space.
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3.4 Correlation Domains with Music Emotion

For music emotion-related research, many state-of-the-art methodologies could

be inspired by related research areas, such as genre classification, speech recogni-

tion, music auto-tagging and text analysis. Based on music classification, genre

classification could be used as a reference. In music information retrieval, genre

classification has been a relatively mature research area. Lin et al. (2009) demon-

strated that genre and emotion are correlated and complementary for describing

music content. Further, they built up a two-layer structure where the first layer is

a genre-specific classifier as a precursor to reducing the diversity of songs to ben-

efit emotion prediction in the second layer (Lin et al., 2011). Content-based deep

neural networks for genre classification (Zhang et al., 2015; Jeong and Lee, 2016;

Senac et al., 2017) could be applied to emotion classification. From the audio signal

perspective, speech emotion recognition is also a good reference, especially on ex-

tracting signal features and proposing end-to-end models (Palaz et al., 2015; Wang

et al., 2020). (Aĺıas et al., 2016) reviewed audio feature extraction techniques for

speech, music and environmental sounds. Those audio signals have many common

characteristics that apply to similar processing methods Purwins et al. (2019). Re-

garding music emotion annotation, Lin et al. (2011) collected online emotion tags

to construct a large-scale emotion ground truth. To some degree, emotion classifica-

tion could use almost the same learning models for music auto-tagging (Choi et al.,

2016; Lee et al., 2017; Wang et al., 2019). Further, the analysis of music social tags

and lyrics data could draw on text analysis experiences in NLP research (Lamere,

2008; Hu et al., 2009; Laurier et al., 2009; Saari and Eerola, 2014). In multimedia

applications, the development of deep neural networks has been promoted by image

recognition (Krizhevsky et al., 2017), video emotion classification (Soleymani et al.,

2012) and facial expressions (Soleymani et al., 2016). Corresponding to various

media sources, multimodal solutions and methods for extracting feature represen-

tation could be applied in MER research (Zhang et al., 2020). Another example

is the attention mechanism that did not originate from the music domain, but this

technique has benefited music-related research. Zhao and Guo (2021) proposed an
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autoencoder model with multiple layers of multi-head attention, which is also known

as the transformer architecture inspired by the research of NLP (Devlin et al., 2019)

and speech recognition (Liu et al., 2020). However, the complexity of this approach

is very high, and the pre-training duration is beyond 800 hours for each dataset.

It may not be productive for some MER tasks to train such an attention model in

terms of computing cost.
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Chapter 4

Deep Learning Regression Model for Dynamic

Music Emotion Recognition

4.1 Introduction

In this work, we focus on detecting dynamic music emotion in 2-dimensional

valence-arousal space, which turns MER into a regression problem. The dimensional

taxonomy is thought of as a better one to reduce ambiguity issues and reflect time-

series emotion variation.

Given the music dataset, we need to determine the strategy of feature collection

first. Most previous MER research prepared pre-processed audio features for train-

ing models, resulting in some unavoidable problems caused by the pre-processing.

Before deep learning approaches became widespread, traditional machine learning

models were the main ways to solve classification or regression problems. Such mod-

els usually require human-engineered audio features as input (Laurier et al., 2010;

Schmidt et al., 2010), which require professional-level acoustic domain knowledge

as well. In recent years, deep learning models have gained widespread attention in

music recognition tasks (Bian et al., 2019; Jeon et al., 2017; Delbouys et al., 2018).

They usually utilized the time-frequency representation (such as mel spectrograms)

as input. With the help of the automatic learning capabilities of deep neural net-

works, these solutions simplify the feature engineering work but still rely on the

pre-processing of raw audio. Apart from that, extracting temporal and spectral

audio features from raw audio through some kinds of clipping, scaling and transfor-

mation may lead to information loss in this procedure.

Considering the above issues, we propose using raw audio signal data as training

model input directly rather than pre-processed audio features. In this way, it can

avoid expending too much effort on prior knowledge learning and feature extraction.
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Figure 4.1 : Overview of our multi-view neural networks solution. CNN represents

a convolutional neural network, RNNs represent recurrent neural networks, and FC

represents a fully connected layer.

Moreover, the raw audio samples with the entire original information are passed

to the deep learning model, which makes it possible to learn more comprehensive

features with less human intervention.

To process this input, a novel architecture with deep neural networks is proposed

for emotion prediction illustrated in Figure 4.1. The multi-view Convolutional Neu-

ral Networks (CNNs) are utilized as multiple feature extractors to automatically

learn music features from different perspectives. Then these features are aggregated

and fed into Recurrent Neural Networks (RNNs) to learn time-varying information

for dynamic emotion variation. Finally, the Fully Connected (FC) layer outputs 2

continuous values representing valence and arousal. Based on this structure, the

stacked multi-view convolutional recurrent neural network is termed MCRNN. To

the best of current knowledge, the proposed model is the first multi-view neural

network for music emotion recognition using raw audio signals.

4.2 Methodologies

Facing raw audio signals, we need to design a model that can effectively exploit

features from signal data. The architecture of our MCRNN model is illustrated in

Figure 4.2. The deep learning model is stacked in feature learning and sequence

learning. In the feature learning part, two parallel CNN models are designed to

learn features from multiple one-dimension views of the raw audio signal and then
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Figure 4.2 : Architecture of the MCRNN model

fuse these features into a single and compact representation. Then, in the sequence

learning part, two layers of bidirectional LSTM are employed to learn music con-

textual information over time. Finally, the output of sequence learning is densely

connected into two values representing valence and arousal.

4.2.1 Model Input

As the input of the proposed model, raw sampled audio signals are used instead

of traditional engineered features such as MFCC or spectrograms. Here the signal

sampling rate is defined as Rs, which means the sampling frequency of audio signal

per second. On the other hand, the annotation interval Ia needs to be confirmed in

microseconds, during which music emotion is annotated. Based on this, the sequence

of audio signals is clipped into non-overlapping training samples. At each time step,
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the length of signal sequence as model input Ls is computed by Eqn 4.1.

Ls = Rs ×
Ia
1000

(4.1)

For example, given signal sampling rate Rs as 44,100 and annotation interval Ia

as 500, then Ls equals 22,050. That is, 22,050 signal samples make up one training

model input.

4.2.2 Feature Learning

In the first part of our model, two parallel CNN modules are utilized as multi-

view feature extractors. The following parts introduce the algorithm details.

As one important kind of deep learning architecture, CNN was initially designed

to analyze 2D data like images. Correspondingly, CNN is applied as 2D CNN.

In recent years, along with the increasing demand for dealing with 1D data (like

signals) through deep learning, the variant version of 2D CNN has been developed

in the form of 1D CNN (Hsieh et al., 2020; Kiranyaz et al., 2021; Zahid et al., 2021).

Similar to conventional 2D CNN, the typical structure of 1D CNN contains the input

layer, the convolutional layer followed by the pooling layer. The difference is that

the input shape of 1D CNN is one dimension rather than two dimensions. That

means the algorithm with hyper-parameters needs to be changed, such as kernel

size, pooling window size and output shape.

1D Convolutional Layer

Given one model input S, its convolutional feature representation C mainly

depends on the weight matrix W , the stride Tc and the number of filters (weight

matrices) N . In 1D CNN, the weight matrix is one dimension, and its shape is

defined as kernel (filter) size K. The stride means the offset by which the kernel

slides to the next analysis window over the data sequence. The number of filters

indicates the depth of the convolutional feature map.
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Specifically, each unit of the convolutional feature is defined as the Eqn 4.2:

cn,m = σ

(
K∑
i=1

si+Tc×(m−1)wi

)
(4.2)

where cn,m is themth unit of the nth convolutional feature; wi is the ith weight of the

1D weight matrix; si+Tc×m means one unit of input signals, its position is determined

by the stride Tc, m and i; σ(·) is the activation function. In most situations, ReLU

(Rectified Linear Unit) activation function is used. Further, the whole convolutional

features could be formulated as below:

Cn = σ (S ∗Wn) (n = 1, 2, ..., N) (4.3)

where Cn is the nth convolutional feature; ∗ is the convolutional operation that

calculates the dot product of the nth filter Wn with the input signals S; σ(·) is still

the activation function.

To apply filters across the whole signal sequence and let each signal at the cen-

tre of the filters, it is necessary to use “padding” to explore complete convolution

features from input signals. The padding means adding zero value to the border of

the real sequence data. In this way, filters could cover the whole input sequence.

Meanwhile, the padding operation does not affect the convolution result.

In the situation of padding applied, the length of each convolutional feature Lc

could be computed as below:

Lc = ⌈Ls

Tc

⌉ (4.4)

where Ls is the length of the signal sequence as one model input mentioned in

Section 4.2.1. Tc is the stride. ⌈·⌉ function means taking the least integer greater

than an integral part of the division.

1D Max Pooling Layer

Following the 1D convolutional layer, a 1D max pooling layer is applied. The

pooling layer is the process of down-sampling feature maps to extract the main fea-

tures and exclude disturbances. Two common pooling methods are average pooling
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and max pooling, which average values and grab the maximum value in the pool-

ing window respectively. The pooling operation usually keeps the same number of

represented features as the convolutional layer. For the 1D max pooling layer, each

unit of the output from this layer is defined as below:

pn,m =
P
max
i=1

(
cn,i+Tp×(m−1)

)
(4.5)

where pn,m is the mth unit of the nth down-sampled feature; P is the size of the

pooling window; Tp is the stride by which the pooling window slides; the max pooling

function max(·) takes the maximum value from a section of nth convolutional feature

cn covered by the pooling window.

In the pooling layer, we still could use “padding” to evenly down-sampling data.

Similar to the padding operation in the convolutional layer, the length of each pooled

feature Lp could be computed as below:

Lp = ⌈Lc

Tp

⌉ (4.6)

where Lc is the length of each feature in the 1D convolutional layer; Tp is the stride

of max pooling; ⌈·⌉ function is the ceiling function as same as the one in Eqn 4.4.

Multi-view CNN Model

In my work, two parallel CNNmodules are designed as fine-view CNN and coarse-

view CNN separately. Figure 4.3 shows the transformation process of signal data

sequence through multi-view layers. To adapt the audio signal input, both CNN

modules apply 1D convolutional layers, which receive the same sample sequence.

The main difference between convolutional neural networks is the kernel size and

the stride. Due to this, the output shapes of convolutional features are usually

different. However, both views are kept to have the same depth of feature maps

all the time. Further, the outputs of both convolutional layers are normalized for

speeding up learning and then go forward to respective max pooling layers. The

size of the pooling window in each view needs to be tuned to guarantee the same

output shape from two CNN modules so that data from two views can be merged

into one set of features for subsequent training layers.
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Figure 4.3 : Data transformation through the layers of multi-view feature learning

These two views are similar to sample-level learning and frame-level learning

mentioned in (Lee et al., 2017). Sample-level learning uses a relatively small kernel

size to detect phase variations within a frame. In contrast, frame-level learning uses

a relatively long sample length to capture all possible audio patterns in periodic

waveforms. Based on this point, two views are appropriate for learning feature

representations for raw audio input. Inspired by this, two filters are applied in

parallel to the given inputs in our model. Compared with stacked layers of CNNs

that decompose the inputs hierarchically fit for multi-dimensional data, the parallel

single-layer CNNs are more proper for learning multiple features from 1D raw audio

signals.

As shown in Figure 4.2, the hyperparameter details are given. These hyperpa-

rameters were picked mainly based on experimenting with various values and classics

from mainstream research. For fine-view CNN, the convolutional layer is configured

with kernel size 32×1 and the stride of 8, where the rectified linear unit (ReLU) ac-

tivation and L2 regularization are applied. The output of the 1D convolutional layer
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has the feature maps with a depth of 8, further handled by the BatchNormalization

(Ioffe and Szegedy, 2015) layer and one-dimensional max pooling (MaxPooling1D)

layer with 8 × 1 window size to avoid the overfitting issue. Meanwhile, Conv1D

in coarse-view CNN adopts 128 × 1 kernel size and the stride of 32, as well as ap-

plies ReLU activation. The following processing is similar to fine-view CNN except

changing the pooling window size to 2× 1 in the MaxPooling1D layer.

4.2.3 Sequence Learning

The second part of our model is the sequence learning part. Music is a kind of

time series data. The recurrent neural network structure is appropriate to explore

the pattern from such sequential data. Here is the technical detail about this learning

model.

LSTM

Given the data sequence X = (x1, x2, ..., xT ), each unit in this sequence is a

N -dimensional feature vector that is fed into an LSTM cell. These LSTM cells are

connected in order with adjacent hidden states and cell memory passed. In each

LSTM cell, there are 3 gates: the input gate i, the forget gate f and the output

gate o. These gates are used to determine which features could be forwarded to the

subsequent LSTM cells. Figure 4.4 illustrates how the LSTM cells are connected

corresponding to sequential inputs and the internal structure of one LSTM cell.

The following equations explain how the gates work to calculate the output of

the hidden layer and cell memory.

it = σ (Wxixt +Whiht−1 + bi) (4.7)

ft = σ (Wxfxt +Whfht−1 + bf ) (4.8)

ot = σ (Wxoxt +Whoht−1 + bo) (4.9)

ct = ftct−1 + it tanh(Wxcxt +Whcht−1 + bc) (4.10)

ht = ot tanh(ct) (4.11)

where xt(t = 1, 2, ..., T ) is the tth input vector obtained from the feature maps of our

multi-view CNN model; i, f, o represent three gates respectively for this step; σ(·)
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Figure 4.4 : The diagram of LSTM cells sequence and cell structure

denotes the sigmoid activation function; ht−1 is the output of the previously hidden

layer; b is the bias assigned to each gate, it is usually set as zero by default; W

means the weight matrix, each operation node contains particular weight matrices;

tanh(·) means hyperbolic tangent which denotes another activation function. Each

LSTM cell outputs the cell memory ct and the output of the hidden layer ht. For

the final output of the LSTM model, either a sequence of hidden states for each time

step or the last hidden state is selected, depending on the specific requirement.

BiLSTM

A bidirectional LSTM (BiLSTM) consists of two layers of LSTM models: one

LSTM layer in a forward direction and another LSTM layer in a backward direc-

tion. Since emotion is associated with the context of music, BiLSTM is a better

choice because of its ability to capture both preceding and succeeding information.

Besides this, increasing more layers of LSTM neural networks is taken into account.

Additional hidden layers can recombine the learned representation from prior layers
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and create new representations at high levels of abstraction, and hence disentangle

underlying relationships in temporal structure more easily (Pascanu et al., 2014).

However, the learning efficiency and training difficulty should be balanced when

increasing the size and depth of LSTM models. In this scenario, two bidirectional

LSTM modules are employed.

Figure 4.5 indicates how our sequence learning model works. The first BiLSTM

module receives the output of our multi-view CNN model. The input for each time

step is a N -dimensional feature vector over feature maps. All inputs are fed into

the corresponding LSTM cells in the forward and backward layers. The output

of the first BiLSTM module is a sequence y1t (t = 1, 2, ..., T ), each of which is the

concatenation of the output of the hidden layer of each LSTM cell in bidirectional

LSTM layers. Then, this sequence is fed into the second BiLSTM module with

another bidirectional LSTM layer as sequential data input. Unlike the first BiLSTM,

we only select the last hidden state y2F from the forward layer and the counterpart

y2B from the backward layer and concatenate them as the final output of this module.

Finally, the dense layer connects all sequential learning vectors and outputs two

regression values representing valence and arousal within a continuous range[-1, 1].

As shown in Figure 4.2, the dimensionality of the output of LSTM layers is set

as 32. In the training procedure, the dropout function is added (labelled in grey in

Figure 4.2) with the 0.2 rates to further prevent overfitting by ignoring randomly

selected neurons, thus reducing the sensitivity to the specific weights of individual

neurons. Note that these drop layers are not included in the evaluation stage.

4.2.4 Data Augmentation

Data augmentation (DA) is a method to generate synthetic data to increase the

diversity of data for training models. In this way, the model could learn features

from more relevant data and reduce overfitting effectively, especially for small-scale

datasets. According to music audio characteristics, the commonly used methods in-

clude noise injection, time shifting, pitch shifting and time stretch. To keep the same

size of model input without changing audio duration and target labels meanwhile
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Figure 4.5 : The structure of bidirectional LSTM in our model

Figure 4.6 : Comparison between original and pitch-shifting audio



Figure 4.7 : Comparison between original and reversed audio

considering implementation cost, two approaches for audio data augmentation are

adopted. One approach is pitch shifting which shifts the pitch of audio clips. Here

the pitch of a waveform is lowered by a semitone. Figure 4.6 illustrates the change

before and after shifting pitch. Such slight perturbations would increase sample

diversity but not impact the original music expression. Distinguishing from other

common methods used in audio data, the second approach is data reverse inspired by

image processing (Krizhevsky et al., 2017) and time-series application (Wen et al.,

2020). This research reverses the raw audio sequences in each annotation interval.

Figure 4.7 shows the comparison between original audio and reversed audio during

one interval. From the technical view, this reversed data could enhance sequence

learning through backward LSTM in our model architecture. From the music per-

ceptual view, the duration of each sample is very short, so the impact on emotional

change is negligible. All synthetic data are generated from raw audio samples using

Librosa∗ API.

∗https://librosa.org/doc/

58
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4.3 Experiments

4.3.1 Data Description

The proposed model is applied to emoMusic† dataset proposed by Soleymani et al.

(2013) which was utilized in MediaEval Emotion in Music Challenge. This dataset is

collected from the Free Music Archive (FMA)‡, including raw audio in mp3 format.

Removing a set of duplicates in the initial 1,000 songs, 744 songs are left. For

the target labels, songs are annotated via crowd-sourcing on Amazon Mechanical

Turk (AMT) in the dimensions of valence and arousal independently, including

static ratings given to the whole 45-second clips and dynamic annotations for the

last 30-second clips at a frequency of 2Hz. According to the dataset description

and related data research (Aljanaki et al., 2017; Vale, 2017), the class imbalance

exists in terms of dimensional emotion quadrants, genre and artists. The annotation

consistency is also a concern. However, it is the largest dataset available with

dynamic valence/arousal annotations and is worthy of study. These limitations

should be taken into consideration when analyzing experimental results.

After confirming data information, some preliminary work for model input is

carried out. We check the sampling frequency of raw data for each song and keep the

songs at 44,100Hz so that our model can be trained with consistent input shape of the

raw audio signal. After this filtering, 705 excerpts are retained for our experiments.

Then, the last 30-second audio is divided into segments with a duration of 500ms

to match the dynamic annotation. According to Eqn 4.1, 22,050 sequential audio

samples at each time step are regarded as an input of our model to predict a pair

of VA values corresponding to each dynamic annotation.

4.3.2 Evaluation

We evaluate models with 10-fold cross-validation. For each fold, the train-

ing/validation/test sets are split with a ratio of 8:1:1. Specifically, all raw audio

†http://cvml.unige.ch/databases/emoMusic/

‡https://freemusicarchive.org/
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files are partitioned into 10 sets with 70 songs in each set. Taking Fold1 as an

example, the first 70 songs are chosen as the test set, followed by the next 70 songs

as a validation set. The remainder of the dataset is a training set. Based on this

procedure, the dataset is iterated over with the stride size of 70 songs and dividing

3 sets for each fold. It is noticed that the validation set of the last fold is the first

70 songs due to reaching the end of the loop.

Following previous research, Root Mean Square Error (RMSE) is used for model

evaluation. RMSE measures the average deviation of the estimates from the ob-

served values, which is an absolute measure of fit. Additionally, R2 scores are added

to compute the coefficient of determination, which is considered a relative mea-

sure of fit. Through this approach, the proposed model could be evaluated more

comprehensively.

Due to the 10-fold cross-validation implemented, the overall RMSE is calculated

based on RMSE metrics in each fold. Given the predicted value ŷij of the jth test

sample in the ith fold and the corresponding true value yij, then overall RMSE can

be defined as Eqn 4.12:

RMSE =

√√√√∑k
i=1

∑Ni
j=1(yij−ŷij)2

Ni

k
(4.12)

where k is the total number of folds, Ni is the total test samples in the ith fold.

And overall R2 scores are the average of R2 scores in 10 folds. In the ith fold,

given the predicted value ŷij of the jth test sample and the corresponding true value

yij, the R
2
i scores of this fold is defined as Eqn 4.13:

R2
i = 1−

∑Ni

j=1(yij − ŷij)
2∑Ni

j=1(yij − ȳi)2
(4.13)

where Ni is the total test samples in the ith fold, ȳi =
∑Ni

j=1 yij

Ni

So overall R2 scores are defined as:

R2 =

∑k
i=1 R

2
i

k
(4.14)

where k is the total number of folds.
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4.3.3 Baseline

We take the Deep Neural Network (DNN) model proposed by Orjesek et al.

(2019) as the baseline. The dataset it used was provided for the “Emotion in Music”

(EiM) task at MediaEval Campaign (Aljanaki et al., 2015b). EiM dataset is the

extension of emoMusic dataset where the development sets have the same source

and data distribution (Aljanaki et al., 2017). We argue that the models applied

to these two datasets are comparable. Since the baseline model is the same as our

research in the aspect of using raw audio as inputs, this baseline model is reproduced

on emoMusic database. By using the same dataset and evaluation methods, it

could keep two models in the same conditions to compare model architectures more

convincingly.

The DNN model structure is shown in Figure 4.8. The raw audio inputs are fed

into the 1D convolutional layer with kernel size 220 × 1 (equivalent to 5ms) and a

stride of 110 (equivalent to 2.5ms). Similar to our model, the depth of feature maps

is 8. The ReLU activation and Batch Normalization are applied. Following this,

the convolutional outputs are fully connected into 16 units in a time-distributed

way. Then the dropout function with the 0.25 rate is implemented. After that, a

bidirectional Gated Recurrent Unit (BiGRU) network handles the data and feeds

the results into a fully-connected layer to output final valence and arousal values.

For more experimental details, it could refer to the document (Orjesek et al., 2019).

4.3.4 Implementation Details

Apart from model hyperparameters mentioned in Figure 4.2, L2 regularization

is added by setting the factor as 0.0001 to reduce overfitting in the fine-view CNN

layer. Due to no pre-trained procedure in our MCRNN model, it is crucial to have

a good initialization during training. Here the normal initializer proposed in (He

et al., 2015) is adopted instead of the Glorot uniform initializer, which produces

better performance. Additionally, the batch size is set as 32, and Adam (Kingma

and Ba, 2015) is used as the optimizer with a learning rate of 0.001.

In practice, the model training is conducted on the training set for each fold
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Figure 4.8 : The architecture of DNN model (Orjesek et al., 2019)

with an early stopping strategy. This strategy monitors the loss function of Mean

Square Error (MSE) with the patience set to 10 on the validation set. Once the

training is finished, the predictive pattern is evaluated on the test set. The training

and evaluation are implemented through the Keras library running on top of a

TensorFlow backend in Python.

4.4 Results and Discussion

This section compares the proposed model with the state-of-the-art neural net-

work models using either raw audio signals or engineered audio features for music

emotion recognition. Then the ablation study is conducted to demonstrate the ef-

fectiveness of the solution. Also, the dynamic valence/arousal values predicted by

the proposed model and DNN model (Orjesek et al., 2019) are visualized in spatial

and temporal views for a model performance discussion.

First, models with different input types are compared based on RMSE metrics
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Table 4.1 : RMSE of different neural network models in valence and arousal dimen-

sion

Model Model Input Type Arousal Valence Average

DBLSTM (Li et al., 2016) engineered features 0.225 0.285 0.255

CRNN-NB (Malik et al.,

2017)

engineered features 0.231 0.279 0.255

DNN (Orjesek et al., 2019) raw audio 0.214 0.240 0.227

DNNa raw audio 0.218 0.227 0.223

MCRNN raw audio 0.212 0.219 0.215

aReproduced DNN (Orjesek et al., 2019) on EmoMusic database

Table 4.2 : R2 scores compared with the baseline in Valence and Arousal dimension

Model Valence Arousal Average

DNNa 0.08 0.405 0.243

MCRNN 0.133 0.430 0.282

aReproduced DNN (Orjesek et al., 2019) on EmoMusic database

in terms of valence, arousal and their average in Table 4.1. The results show that

DNN (Orjesek et al., 2019) model using raw audio as input outperforms DBLSTM

(Li et al., 2016) and CRNN-NB (Malik et al., 2017) models that use human engi-

neered audio features as inputs. The raw audio inputs contribute to good perfor-

mance, especially in valence recognition. So we argue that using raw audio signals

with appropriate deep neural networks could model features well and gain better

performance compared with traditional engineering-feature-based models in this ap-

plication.

Then, our MCRNN model is compared with the reproduced DNN model in
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the EmoMusic dataset based on RMSE and R2 scores. Table 4.1 shows that our

model gains lower RMSE scores than the baseline model in both valence and arousal

dimensions with an average 4% improvement. Regarding the R2 scores as shown

in Table 4.2, the metric increases approximately 16% on average. Especially in the

valence dimension, the result shows a great increment of 66%. Further, to prove

the statistical significance of model improvement, the paired t-test is carried out

ten folds by measuring RMSE and R2 scores for these two models. The p-value

is less than 0.023 and 0.028 respectively. The standard deviation of RMSE and R2

scores across folds are 0.02 and 0.1 to give a better understanding of those intra-folds

variations.

4.4.1 Performance Results Analysis

Compared with our model, the DNN model only focuses on frame-level feature

extraction but ignores phase variation at the sample level. The results show that

learning sample-level features could benefit valence recognition more. The outcome

confirms that the multi-view architecture could reveal more complementary infor-

mation from different perspectives, thereby learning more comprehensive features

than those the single-view learning solution makes. Valence performance is still

lower than arousal when focusing on emotion dimensions, as in most previous re-

search. One possible reason is that audio features might contribute more cues to

arousal prediction than valence. Another reason may be the short duration of each

music sample, making it difficult to keep consistent valence responses from listeners,

thereby impacting the annotation quality. Further, the relationship between model

performance and the distributions of music genre and emotion cross folders might

be a good point to investigate.

4.4.2 Ablation Study

The ablation study evaluates the effect of multi-view structure and data aug-

mentation. The results are illustrated in Fig. 4.9. Based on R2 and RMSE scores in

valence, arousal and their average, it can be seen that the multi-view CNNs model

outperforms single-view models in the same condition of no data augmentation.



65

Figure 4.9 : Ablation study based on MCRNN model measured by R2 and RMSE

of valence, arousal and their average. Four situations are compared. That is, our

MCRNN solution, single coarse-view CNN, single fine-view CNN and multi-view

CNNs without data augmentation.

Further, the coarse-view model shows better performance than the fine-view model.

That is, frame-level features play more significant roles in emotion prediction than

sample-level features. In addition, the coarse-view model has a slight performance

gap against the MCRNN model. It isn’t demonstrated that the coarse-view model is

enough. Still, there is more potential to improve the collaboration of multiple views

and significantly enhance the design of the fine-view model. From the perspective

of emotion dimensions, the fine-view model provides more helpful information for

valence prediction than for arousal. This could be considered for a new model design

in future to train valence and arousal recognition models, respectively, because each

emotion dimension may be detected better by different patterns towards different

levels (such as sample or frame in raw audio data) of feature representation. On the

other hand, data augmentation improves emotion prediction due to increasing the

diversity and scale of learning samples.

4.4.3 Performance Visualization

To evaluate the fitness of models intuitively, we visualized the predicted data

of our model contrasting with ground truth and reproduced DNN in 2D emotion

space and time sequence. One song from Fold3 and two from Fold5 are selected.
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Figure 4.10 : Distributions of dynamic music emotion. Each subfigure represents

one song’s dimensional Valence (x-axis) and Arousal (y-axis) distribution. Blue data

points represent ground truth data; green data points represent baseline predicted

data; and red data points represent MCRNN predicted data. 60 data points of

dynamic VA values are plotted for each song.

According to the RMSE and R2 metrics of the 10-fold cross-validation, those two

folds show the worst and the best performance. Then the data related to these songs

is visualized in 2 views for comparison.

One view is illustrated in Figure 4.10, which visualizes the distribution of points

representing time-varying VA values in 2D emotion space regarding ground truth,

our MCRNN model and DNN baseline model separately. It indicates that our model

prediction is closer to the ground truth than the baseline. Even so, an obvious

difference could be observed between the predicted data of the two models and the

ground truth. These songs are located in different quadrants based on the ground

truth, while both sets of predicted data are distributed close to the origin of 2D

coordinates extending to Quadrant1 (Q1) and Quadrant3 (Q3). This may arise

from the imbalanced distribution of training data (see Figure 4.11), where most VA

values are annotated in the range of [-0.5, 0.5] intensively, and the high proportion

of annotations are located in Q1 and Q3. The predicted results tend to fall into

these areas to minimise the training loss. For the points deviating from the main

distribution, their position would be weakened during training to relieve the loss. For

example, in the left subfigure in Figure 4.10, the ground truth is on the edge of data

distribution and in Quadrant4 (Q4), which contains the fewest training samples. It

can be seen that the prediction is not good. In contrast, the better one occurs in
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Figure 4.11 : Distributions of dynamic emotion of all songs in 2D space

the right subfigure. Therefore, eliminating data imbalance should be considered as

one way to improve model performance.

The other view visualizes the variation of valence and arousal over time in Fi-

arousaleffig:timevis. It shows that ground truth is almost a straight line since it is

uncommon for listeners to perceive dramatic emotional change within short time in-

tervals. Compared with ground truth, the emotion predicted by either the MCRNN

model or the baseline model fluctuate much in a similar waveform. Despite this,

both predicted lines go up and down, trending to ground truth. This could be ex-

plained by the fact that raw audio as model input leads to this pattern, and at the

same time, the target labels lack consistency and precision to some extent. There

is still space to optimize model architecture for improving the feature learning from

raw audio to final regression output.

4.5 Summary

This chapter introduces novel multi-view neural networks trained end-to-end us-

ing raw audio signals directly to predict dynamic music emotion in dimensional

valence-arousal space. The experimental results demonstrate that our MCRNN

model could perform better than models using pre-processed audio features and
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Figure 4.12 : Variation of valence and arousal in time series. Each subfigure repre-

sents the variation of valence (solid line) and Arousal (dashed line) over time (x-axis)

for one song corresponding to Figure 4.10. Blue lines represent ground truth data;

green lines represent baseline predicted data; and red lines represent MCRNN pre-

dicted data. Each time step is 0.5 seconds for a total timespan of 30 seconds.
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single-view architecture models. In contrast with conventional music recognition

methods, our solution does not use crafted audio features, thus avoiding professional

acoustic knowledge learning and intense feature engineering effort. Moreover, our

model employs multi-view convolutional neural networks stacked by double bidirec-

tional LSTM layers, which could capture more features from multiple perspectives

combined with time-series analysis to improve recognition performance. This chap-

ter has resulted in a publication (He and Ferguson, 2020b) © 2020, IEEE, thus

validated by peer-reviewers already.
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Chapter 5

Deep Learning Architecture for Static Music

Emotion Classification

5.1 Introduction

In Music Information Retrieval (MIR) research, emotion recognition is an im-

portant branch and benefits various MER application areas. In recent years, deep

learning models have become primary methods used to implement emotion predic-

tion (Jeon et al., 2017; He and Ferguson, 2020b). With layers of neural networks,

these models are capable of learning music features automatically from raw audio

or low-level audio features. In Music Emotion Recognition (MER) tasks, much re-

search is based on music datasets containing emotion annotation, which naturally

adopts supervised learning methods to find patterns between each music input and

its corresponding annotation. Few studies take into account unsupervised learning

for labelled data. In addition, most researchers keep the duration of each audio input

in accordance with the given annotation, seldom considering the effect of changing

that duration. For dynamic emotion detection, to match the time-varying annota-

tion sampling frequency, which is usually 2 Hz or 1 Hz, the length of each music clip

is 0.5s or 1s. These audio clips are fed into a training model and thus implement

a one-to-one mapping with those labels (Aljanaki et al., 2017). For static emotion

recognition, each music excerpt (usually the duration of 30s or more) corresponds

to one annotation. According to this approach, researchers usually extract music

features from these music excerpts without further splitting them into shorter seg-

ments. However, not all kinds of music duration are appropriate for emotion analysis

and model training (Xiao et al., 2008; Yang and Chen, 2012). Some research even

splits longer-duration music recordings into a series of short segments but assign

presumptive segment-level labels as the training targets rather than using the orig-
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inal annotation (Sarkar et al., 2020). Few research has paid attention to adjusting

the length of audio input without adding extra annotation.

This study focuses on static emotion recognition and proposes an architecture

that uses music segments split from each music excerpt as model inputs while only

using the original emotion annotation. Here the framework is divided into two

parts. The first part is an unsupervised learning model which generates the feature

representation for segment-level music without defining new emotion labels for them.

The second part is a supervised training model where segments are viewed as the

sequential units of each music excerpt and trained in a deep learning model of

handling time-series data to predict the final emotion. In the module of unsupervised

learning, the SpecAugment technique (Park et al., 2019) is utilized to partially mask

log-mel spectrogram input data from frequency and time dimensions to enhance the

robustness of the training model.

The main contribution of this work is designing a two-stage MER architecture

that combines segment-based unsupervised learning as a feature extractor and su-

pervised learning as an emotion detector. In this way, each music excerpt could be

split into contiguous segments without having to provide segment-level annotations.

We can feed these segments into appropriate training models to explore potential

features effectively. From the perspective of data augmentation, segment-level music

with partial masking increases the data scale and data variation for unsupervised

learning, thereby boosting the model performance.

5.2 Methodology

A two-stage learning framework is proposed as seen in Fig. 5.1. The first stage

is an unsupervised learning model to obtain segment-level feature representation.

The second stage is a supervised learning model to predict emotion classification.

Regarding feature source, music audio data is used to serve this model structure.

For emotion taxonomy, 2D valence-arousal emotion space initiated by Russell (1980)

is applied and viewed as a classification problem in this scenario.
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Figure 5.1 : Model overview. The two-stage learning framework includes an un-

supervised learning model as a segment-level feature extractor and a supervised

learning model as an emotion recognizer

5.2.1 Feature Representation

The detailed design for feature representation is shown in Fig. 5.2. First, each

music excerpt is split into segments that are transformed into a log-mel spectrogram.

Then the data is partially masked in time and frequency dimensions separately.

After that, masked data are passed into an autoencoder architecture to encode and

decode to minimise the loss between the reconstructed outputs and the original

inputs. In this way, the feature encoder module with the optimized training weights

becomes a feature extractor that accepts log-mel spectrogram of segment-level audio

data and outputs their feature representation.

Frequency and Time Masking

Inspired by SpecAugment (Park et al., 2019) and MusiCoder (Zhao and Guo,

2021), the input data is partially masked to increase the robustness of the training

model against partial loss of information. More importantly, this procedure feeds

the model with deliberately perturbed data to reduce overfitting during training.

Due to the log-mel spectrogram applied, such data is masked in both the frequency

and time domains.

Frequency masking: Given the total number of mel frequency channels Fc,
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Figure 5.2 : The detailed design for feature representation. Each segment-level audio

is transformed into log-mel spectrogram, followed by frequency and time masking.

Then such input is fed into a CNN-based autoencoder with the target of minimizing

loss. The feature encoder with the optimized weights is used as a feature extractor

to provide segment-level feature representations.

the frequency mask parameter F is set and made F < Fc. A span of consecutive

mel frequency channels [f0, f0+ f) is specified to be masked, where f is a randomly

selected number from a uniform distribution over [0, F ) and f0 is a randomly selected

number from a uniform distribution over [0, Fc − f).

Time masking: Given a log-mel spectrogram with the total time steps Ts, the

time mask parameter T is set and made T < Ts. A span of consecutive time steps

[t0, t0 + t) is specified to be masked, where t is the randomly selected number from

a uniform distribution over [0, T ) and t0 is the randomly selected number from a

uniform distribution over [0, Ts − t).

Here one span of data is masked for each domain respectively. Because the time

duration for each segment is not very long and only mel-scaled frequency is included.

Masking multiple spans of time or frequency may increase the risk of underfitting

during training due to too much information loss. Similarly, the parameters F and

T are adjusted based on an appropriate ratio between the width of masking and each
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input signal by referring to the previous work (Park et al., 2019; Wang et al., 2020;

Chen et al., 2021). For the option of the masked value that replaces the true value,

either zero or the mean value could be applied. These two situations are compared

in the experiments to find better performance.

Convolutional Autoencoder

Generally, an autoencoder model consists of a feature encoding module ϕ and a

decoding module φ. The feature representation F is the intermediate result of the

transition process defined as:

F = ϕ(X) (5.1)

φ(F) ∼ X (5.2)

where X is model inputs; F is the output of the encoder; the output of the decoder

is an approximation of input X. To achieve this, the autoencoder is trained to

minimize the reconstruction error L:

Lmin(X) = ∥X − (φ ◦ ϕ)X∥2 (5.3)

where ◦ denotes the composition of function ϕ and φ; squared error is usually used

to measure the loss.

As shown in Fig. 5.2, this autoencoder model is a deep CNN-based architecture.

The initial design was inspired by deep temporal clustering research (Madiraju et al.,

2018) where the encoder outputs latent signal features. Considering 2D spectrogram

data as model inputs in my design, multiple layers of CNN are used, which refers to

spectrogram-based research proposed by Sarkar et al. (2020). As for the number of

CNN modules applied, on the one hand, we need to design enough layers to compress

the input data gradually. On the other hand, we need to limit the scale of training

weights that would increase with more layers. Since the scale of MER datasets

is usually small, using dense layers with too many training parameters regarding

overfitting is not appropriate.
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Based on such consideration, the feature encoder ϕ consists of 3 groups of stacked

layers where each 2D CNN layer is followed by a 2D max-pooling layer. The CNN

layers extract latent audio features and the max-pooling layers compact represen-

tations. Specifically, given the model input X, it is a 2D matrix representing the

segment-level log-mel spectrogram. For 2D CNN, the weight matrixW as the kernel

(filter) is a 2D matrix as well. In the CNN layer, each element of the kth convolu-

tional feature map Ck is defined as:

Ck[m,n] =
(
X ∗W k

)
[m,n] = σ

(∑
i

∑
j

W k
i,jXm+i,n+j

)
(5.4)

where each element is the sum of the element-wise product of the input and the

kernel (filter); m and n are the indexes of the 2D feature matrix; W k is the kth

filter with i and j as the indexes; σ(·) is the activation function. In this equation,

the stride is set as one by default and all indexes start from zero.

Following the 2D CNN layer, the 2D max-pooling layer is implemented as:

Pk[m,n] = max
i,j
(Ck[i+ Tp ×m, j + Tp × n]) (5.5)

where Pk[m,n] is the element of the kth downsampled feature; m and n are the

indexes of the 2D feature matrix after the pooling operation; i and j are the indexes

of the 2D pooling window; Tp is the stride by which the pooling window slides; the

max-pooling function max(·) takes the maximum value from a bunch of elements

in the kth convolutional feature map Ck covered by the pooling window. Still, all

indexes in this equation start from zero.

The output of the feature encoder retains the most relevant information of the in-

put and achieves dimensionality reduction. The reconstruction work is implemented

by the decoder function φ where a series of 2D CNN layers with 2D upsampling lay-

ers are applied. Here the 2D CNN layers perform convolution the same as Eqn 5.4

but increase the depth of feature maps corresponding to the encoder’s reverse op-

eration. Cooperating with convolutional layers, the upsampling layers repeat the

rows and columns of feature maps to reconstruct the approximations of the original

inputs. Similar to the encoder, each CNN layer is applied activation function. In
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common situations, the rectified linear units (ReLU) activation function is used to

improve training efficiency. Through this unsupervised learning architecture, feature

representations are extracted for music segments without labelling the emotion for

them.

In practice, the masked log-mel spectrogram data is fed into the feature en-

coder and trained in the whole autoencoder model. Once the output of the decoder

achieves the minimized loss against the original input, the optimized weights are

saved for the feature encoder that is used as a feature extractor to generate latent

feature representation. The whole processes could be denoted as Eqn 5.6, 5.7, 5.8.

X̂ =MaskF,T (X) (5.6)

Lmin(X, X̂) =
∥∥∥X − (ϕ ◦ φ)X̂

∥∥∥2 (5.7)

F = ϕLmin
(X) (5.8)

Loss Function

During the autoencoder model training, the squared error is usually used to

monitor the best reconstruction. In this work, Huber loss is used instead. Huber

loss is a robust regression loss that is less sensitive to outliers than the squared error

loss (Girshick, 2015). This loss function is defined below,

Lδ(x) =

0.5 · x
2 if |x| ⩽ δ

δ · |x| − 0.5 · δ2 otherwise

(5.9)

where x means the difference between the observed and predicted values. δ = 1

is set by default. In this way, Huber loss could reduce the impact of the outliers and

promote training convergence (Zhao and Guo, 2021).

5.2.2 Emotion Classification

The second part of the framework is a supervised learning structure for emo-

tion classification. A Bidirectional Long-Term Memory (BiLSTM) model captures



77

temporal music information and detects emotion classification. For this model, each

input is a sequence of feature representations of time-series segments that constitute

one music excerpt. The output is the Valence/Arousal (VA) predictions correspond-

ing to this music excerpt. From the perspective of model implementation, the feature

encoder and BiLSTM could be considered as a whole. During training, the encoder

module is frozen and holds the optimal weights from unsupervised training while

the BiLSTM neural network tunes the weight itself to achieve the final fitting.

5.3 Experiment

5.3.1 Dataset Description

To validate the model, the PMEmo dataset∗ is employed, which is designed for

MER research. The dataset contains songs with VA annotations, song metadata,

EDA signals, pre-computed audio features, lyrics and even user comments. This

music set targets popular songs and collects the chorus part for each song in mp3

format. Among the total 794 songs, my study selects 767 songs that have been

labelled with static VA annotations. Regarding annotation consistency, each subject

listened to 20 excerpts, including duplicated ones. Each song was annotated by at

least 10 subjects, and the bias for repeated annotation from one subject was taken

into consideration. So that the quality of the annotation is guaranteed. The chorus

excerpts are of various lengths. Most of them are not less than 30 seconds (30s).

According to this, the 30s is retained for each song. Song lengths less than the 30s

are padded into 30s by repeating themselves from the start to the end. Totally, 230

clips are processed. In this manner, the experiment ensures all music excerpts have

the same duration to facilitate subsequent audio processing. More details about this

dataset could refer to PMEmo document (Zhang et al., 2018). Based on this dataset,

the proposed model is compared with previous models to check the effect of audio

segmentation and model architecture. However, PMEmo dataset has some problems

such as single genre (pop music) and imbalanced target labels (see Section 5.3.3). It

is necessary to add another dataset to support some viewpoints in the experiment.

∗https://github.com/HuiZhangDB/PMEmo
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To prove the effectiveness of the model, it is also validated on AllMusic dataset

(Panda et al., 2018). This dataset contains 900 song clips balanced in terms of

Russell’s VA quadrants and genres in each quadrant, which avoids the pitfall of

PMEmo dataset. The quadrantal annotation is obtained based on AllMusic emotion

tags and Warriner’s list (Warriner et al., 2013). A manual blind inspection was

conducted to exclude songs with unclear emotions so as to validate the annotation.

Most songs are 30-second clips. Only about 2% songs need to be padded to 30s by

using the same strategy in PMEmo dataset. This dataset is mainly used to check the

performance of different segment duration and masking.

Compared with other MER datasets, these two datasets provide raw data with

VA annotations, which meet the design requirement. Also, the datasets are the

largest ones (refer to Table 2.4) available to use in deep learning.

5.3.2 Audio Processing

This music audio data is processed to prepare the inputs for the training model.

First, each 30-second music excerpt is split into contiguous segments. The selection

of the segment duration should balance the validity of emotional response and the

homogeneity of each segment for feature learning and meanwhile consider the model

adaptability. Referring to previous research (Bigand et al., 2005; Xiao et al., 2008;

Nordström and Laukka, 2019; Fan et al., 2020), segment duration from the value set

of {1s, 3s, 5s, 10s} are tested and the corresponding results are compared. Regarding

data normalization, no extra normalisation is required for PMEmo dataset due to audio

signal values falling into the range [−1, 1]. For AllMusic dataset, the audio data is

normalized into the same range to facilitate the subsequent processing.

Then each segment-level audio is converted into a mel-scaled spectrogram Sm by

using the function provided in Python Librosa† package. The mel scale is some kind

of non-linear transformation of the frequency scale. Its range is analogous to the

range of human hearing. The expected data size for each input is 216× 128, where

128 represents the number of mel frequency channels while 216 is the number of

†https://librosa.github.io/librosa/
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fast Fourier transform (FFT) windows calculated from audio data. In order to gain

the same data shape for different segment duration to adapt to the model, the size

of the FFT window n fft and the number of samples between successive windows

hop length need to be adjusted when computing the mel spectrogram. Table 5.1

lists the parameters for mel spectrogram transformation.

Table 5.1 : The parameters for mel spectrogram transformation

Dataset
Sample Segment n fft hop length

Rate Duration

PMEmo 44,100Hz

1s 1,024 205

3s 1,024 615

5s 2,048 1,024

10s 2,048 2,048

AllMusic 22,050Hz

3s 1,024 307

5s 1,024 512

10s 2,048 1,024
Note: In this table, ’s’ denotes second. For AllMusic dataset, ’1s’ segment duration is inapplicable

due to the limitation of the model input shape

To reduce the impact of outliers, the value range of Sm is further checked, and

then it is transformed into a logarithmic scale base 10. The detail is defined as:

Slm = lg(η × Sm +∆) (5.10)

Based on this, some empirical values of η and ∆ are tested, and the value ranges

are listed in Table 5.2 for further comparison. The preliminary experiment found

that η = 1 and ∆ = 1 could result in a relatively narrow data range with non-

negative numbers, which brings about lower reconstruction losses. After converting

that, 2D log-mel spectrogram data is transposed to generate the inputs before the

masking operation.

For the frequency and time masking, F = 30 and T = 32 are set. Then the
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Table 5.2 : The parameters for log mel spectrogram transformation

Signal Process

Method

η ∆ Value Range Mean

mel spectrogram - - [0, 10,107.66] 12.83

log-mel spectrogram 10 1e-6 [-6, 5.005] -0.19

log-mel spectrogram 1 1e-6 [-6, 4.005] -1.12

log-mel spectrogram 10 1 [0, 5.005] 0.76

log-mel spectrogram 1 1 [0, 4.006] 0.33
Note: In this table, we take one set of songs in PMEmo dataset as the reference. The segment

duration is 5 seconds.

masked spans are padded by either zero or the mean value of the log-mel spectro-

gram. As observed, the mean value is not zero but the gap is small. Hence, padding

the mean value shows a very small increase in performance. Figure 5.3 shows the

differences between the original spectrogram, masked spectrogram with mean value

and masked spectrogram with zero value. It can be seen that the mean-value span

is more distinct than the zero-value span. The following experiments use the mean

value to mask the frequency and time spans.

5.3.3 Annotation Transformation

For PMEmo dataset, the original annotation data was based on subjective re-

sponses in the range from 1 to 9 for both valence and arousal and had been scaled

into [0, 1] in the form of continuous values for storage in the dataset. To consider

this task a classification problem, these continuous values must be transformed into

categories. The distribution of the annotation data is observed in 2D emotion space

as seen in Fig. 5.4. Quadrantal classification is not appropriate due to imbalanced

training samples in each quadrant (see Table 5.3). Thus, binary classification based

on high/low levels for each dimension is adopted. Further, the method used in (Yin

et al., 2017, 2020) is drawn on to adjust the neutral threshold. In detail, K-means

clustering is applied to generate two clusters, followed by calculating two cluster
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Figure 5.3 : The log-mel spectrogram with masking. (a) the spectrogram without

masking (b) spectrogram masked by mean value (c) spectrogram masked by zero

centers and their midpoint. Then the threshold lines are set up for each dimension

on the basis of the coordinates of the midpoint. In this way, the labels for training

data could be balanced in each category.

In AllMusic dataset, the original annotation is balanced quadrants. In accor-

dance with the predictive targets and the annotation used in PMEmo dataset, quad-

rants are transformed into high/low valence and arousal labels.

5.3.4 Training Model Setup

In the unsupervised learning stage, the masked data is fed into a CNN-based

autoencoder model. The parameters of the proposed neural networks are given in

Table 5.4. All of the 2D CNN layers are specified 3× 3 kernel size with one stride.
2 × 2 pool size with a stride length of 2 is applied for 2D max pooling layers, and
the same size is applied for 2D upsampling layers as well. The depth of feature

maps starts with 128 and decreases layer by layer in the encoder, then increases

correspondingly in the decoder ending with 1 to return to the initial shape. During

optimization, the L2 regularizer applies a penalty to the output of the first CNN
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Figure 5.4 : The distribution of static emotion annotation and the division for

target classes. (a) 2 centers of k-means clustering and their midpoint (b) binary

classification for high/low valence (c) binary classification for high/low arousal

Table 5.3 : The distribution of training samples in each quadrant based on PMEmo

dataset

Quadrant Training Samples Percentage

Q1 382 49.8%

Q2 76 9.9%

Q3 224 29.2%

Q4 85 11.1%

layer with a 0.001 learning rate to benefit model convergence. Once the training

is finished, the optimal weights of the encoder module are saved. Then the feature

representations are generated by feeding original inputs into the optimal encoder

module. The data visualization for this learning stage is illustrated in Figure 5.5. In

each figure, the horizontal axis represents frequency, while the vertical axis represents

time. Specifically, Figure 5.5a shows the comparison between the masked log-mel

spectrogram inputs and the reconstructed outputs. This reflects the performance of

the autoencoder model for reconstruction. Based on the best performance, the latent

feature representations generated from the encoder module are shown in Figure 5.5b.

We could see what feature representations look like compared with the original log-

mel spectrogram inputs.

82



83

Table 5.4 : The parameters of the proposed autoencoder model

Layer Type Parameters Output Shape

Input - (216, 128, 1)

2D CNN kernel=3× 3, stride=1, output depth=128 (216, 128, 128)

2D Maxpooling pool size=2× 2, stride=2 (108, 64, 128)

2D CNN kernel=3× 3, stride=1, output depth=64 (108, 64, 64)

2D Maxpooling pool size=2× 2, stride=2 (54, 32, 64)

2D CNN kernel=3× 3, stride=1, output depth=32 (54, 32, 32)

2D Maxpooling pool size=2× 2, stride=2 (27, 16, 32)

2D CNN kernel=3× 3, stride=1, output depth=32 (27, 16, 32)

2D Upsampling size=2× 2 (54, 32, 32)

2D CNN kernel=3× 3, stride=1, output depth=64 (54, 32, 64)

2D Upsampling size=2× 2 (108, 64, 64)

2D CNN kernel=3× 3, stride=1, output depth=128 (108, 64, 128)

2D Upsampling size=2× 2 (216, 128, 128)

2D CNN kernel=3× 3, stride=1, output depth=1 (216, 128, 1)

In the supervised learning stage, the temporal segment-level representations are

assembled sequentially through the saved encoder module and then put into the

BiLSTM model. The output units of the LSTM layers are set as 512 for forward

and backward directions separately. After that, the dropout rate of 0.5 is applied.

The final binary classification is obtained through the dense layer with the soft-

max activation. In this part, LSTM and GRU (Gated Recurrent Unit) models are

also under consideration due to fewer parameters and training costs. However, the

BiLSTM model could capture sequential information in both directions (see Sec-

tion 4.2.3 for more details) and performs better in the experiment. On the other

hand, the training cost for the BiLSTM model is checked: the training time for each

epoch is generally 5s–21s and the number of epochs to converge is an average of 25.

Based on this, the time cost is completely affordable. Therefore, we give priority to
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Table 5.5 : The hyper-parameters for model training

Hyper-parameter Unsupervised

Learning

Supervised

Learning

Optimizer Adam Adam

Optimizer’s Learning Rate 1e-3 1e-5

Batch Size 64 10

Loss Huber Categorical

Cross Entropy

performance and choose the BiLSTM model.

The whole model is evaluated by running 10-fold cross-validation and obtaining

the average performance based on classification accuracy and F1 score. Accordingly,

the training/test sets are split with a ratio of 9:1. Specifically, the partitioning strat-

egy is stratified random sampling based on valence labels to generate ten folds. For

each pair of sets, 1 round of unsupervised learning (considering computing cost)

and five rounds of supervised learning are conducted in the training set, and Va-

lence/Arousal are predicted respectively in the test set to check the statistical re-

sults. For both unsupervised learning and supervised learning, the Adam optimizer

(Kingma and Ba, 2015) is used, and the early stopping strategy is configured with

the patience of 10-epoch for the validation dataset to avoid overfitting during train-

ing. The first-stage model monitors reconstruction Huber loss while the second-stage

model monitors classification accuracy. The details of some hyper-parameters are

summarized in Table 5.5. Moreover, the general time cost of two-stage model train-

ing on two datasets is reported (see Table 5.6). All experiments are implemented via

Nvidia GeForce GTX 1080 GPU. The unsupervised learning usually takes 100–200

epochs per fold to converge. Supervised learning usually takes 20-30 epochs per fold

to converge.

A baseline model is built to validate the advantage of the proposed autoencoder
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Figure 5.5 : Data visualization in the unsupervised learning stage. We take five

training samples and visualize the data before and after transformation. (a) shows

the data change from the masked log-mel spectrogram inputs to the reconstructed

outputs; (b) shows the original log-mel spectrogram inputs and their feature repre-

sentations generated from the encoder module.
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Table 5.6 : The general time cost of the proposed model during training

Dataset
Segment Unsupervised Learning Supervised Learning

Duration (CNN-based autoen-

coder)

(BiLSTM)

PMEmo

1s 75s/epoch, 3h/fold 21s/epoch, 525s/fold

3s 24s/epoch, 1h/fold 13s/epoch, 325s/fold

5s 15s/epoch, 0.6h/fold 7s/epoch, 175s/fold

10s 8s/epoch, 0.3h/fold 5s/epoch, 138s/fold

AllMusic

3s 28s/epoch, 1.1h/fold 18s/epoch, 450s/fold

5s 18s/epoch, 0.7h/fold 13s/epoch, 325s/fold

10s 9s/epoch, 0.4h/fold 9s/epoch, 225s/fold
Note: In this table, ’s’ denotes second and ’h’ denotes hour.

model, which combines CNN and BiLSTM directly. The CNN module reuses the

structure of the feature encoder in unsupervised learning, followed by BiLSTM for

emotion classification. These two parts are trained together.

5.4 Results

This section reports the experiment results based on selected segment duration,

and the model performance is compared with previous work.

5.4.1 Performance of Different Segment Duration

The segments of different duration have been applied in the experiments. In

multiple runs for each segment duration, the 10-fold scores are averaged. The re-

sults are shown in Table 5.7, and show that the performance for arousal recognition

is always better than valence in all of the segment lengths investigated. The results

also indicate that shorter segment length shows better performance on the valence

dimension while longer segment duration benefits arousal performance. For exam-

ple, in PMEmo dataset, the 1-second segment shows the best valence results with
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79.01% accuracy and 83.2% F1-score while 5s/10s’ segments show better accuracy

(83.62%/83.51%) and F1-score (86.52%/86.62%) on arousal dimension. AllMusic

dataset shows similar trends. For such results, the possible reasons are explained in

the discussion section.

Table 5.7 : The performance comparison based on different segment duration

Dataset Segment
Valence Arousal

Duration Accuracy F1-score Accuracy F1-score

PMEmo

1s 79.01% 83.2% 83.19% 86.1%

3s 78.75% 82.95% 82.67% 85.59%

5s 78.23% 82.64% 83.62% 86.52%

10s 77.58% 82.18% 83.51% 86.62%

AllMusic

3s 67.11% 67.11% 85.67% 85.67%

5s 66.89% 66.89% 86.56% 86.56%

10s 66.45% 66.45% 86.11% 86.11%

5.4.2 Performance Comparison with Different Models and Sources

Table 5.8 shows a performance comparison with cutting-edge benchmarks based

on different models and sources. This comparison shows that the proposed model

can outperform any models using a single data source, either music or electroder-

mal activity signals. Compared to the model (Yin et al., 2019) that uses music

sources only, the accuracy for valence prediction in the proposed model increases by

more than 12% and the corresponding F1-score increases by more than 10%. Sim-

ilarly, there are increases of almost 17% and 13% on arousal recognition in terms

of accuracy and F1-score, respectively. The proposed model even competes with

the latest multimodal framework (Yin et al., 2020) that utilizes EDA signals and

music together with attention neural networks. Furthermore, the proposed model

is compared with the baseline model, which uses segment-level inputs but lacks the

autoencoder architecture. The results show that the two-stage model is superior to
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the baseline model in both emotion dimensions.
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Table 5.8 : The performance comparison with different models and different sources based on PMEmo dataset

Models Core Methods Input Audio Valence Arousal

Source Segmentation Accuracy F1-score Accuracy F1-score

RTCAN-1D (Yin

et al., 2020)

attention module +

ResNet + openSMILE

EDA +

Music

No 77.30% 80.94% 82.51% 85.62%

RTCAG (Yin et al.,

2020)

attention module +

ResNet

EDA - 63.61% 62.47% 64.05% 64.82%

SVM (Yin et al.,

2019)

SVM Music No 70.43% 75.32% 71.49% 76.36%

SVM (Sharma

et al., 2020)

SVM Music +

Lyrics

No 61.98% - 68.75% -

The baseline CNN + BiLSTM Music Yes 77.44% 81.91% 82.79% 85.17%

Proposed model CNN-based autoen-

coder + BiLSTM

Music Yes 79.01% 83.2% 83.62% 86.52%
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5.5 Discussion

5.5.1 Segment Duration Analysis

The performance in Table 5.7 indicates that a longer segment length contains

more acoustic cues for arousal recognition, while a shorter one has less distracted in-

formation for valence prediction. Compared with segments of long duration, shorter

segments are more likely to avoid changes in musical characteristics and reflect con-

sistent perceptual properties of music like harmony and pitches that benefit valence

recognition (Gabrielsson and Lindström, 2001). In contrast, the relatively long du-

ration may capture more time-domain regularities like beat and tempo that benefit

arousal recognition (Grekow, 2017). Further, the paired t-test is conducted to ex-

amine the performance of different segment duration. The results demonstrate that

there is no statistical significance concerning which segment duration is best. The

possible reason is that a log-mel spectrogram with the same input shape is used

for different segment durations, which limits the selection of the FFT window and

the hop length, thereby impacting the musical pattern extraction from audio data.

Another reason is to what extent the segment duration could match the emotional

boundary. Each fold contains songs with various emotional segmentation. The bet-

ter performance depends on whether the fixed segmentation could cover emotional

segmentation well for most songs (Aljanaki et al., 2015a). Generally, the 5-second

segment is a relatively better choice for the proposed model as this duration is a

reasonable trade-off between performance and computing cost.

5.5.2 Performance Analysis between Two Datasets

From Table 5.7, it also can be seen that the performance of valence recognition

on PMEmo dataset is much better than that on AllMusic dataset. One reason is the

dataset’s peculiarity. All music excerpts in PMEmo dataset are the chorus portion of

popular songs. It usually consists of an acoustic pattern that repeats. Due to this,

emotional segmentation is more likely to coincide with those repetitive segments,

which benefits emotion recognition (Aljanaki et al., 2015a). Another possible rea-

son is the different ways to obtain annotation. The AllMusic dataset combined
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social tags with the Warriner’s VA ratings. Social tags have some problems, such

as polysemy, misspellings and popularity bias (Lamere, 2008). The Warriner’s VA

ratings are based on word stimuli rather than music perception. Although the anno-

tation was validated in a manual blind way, the deviation exists for some emotion-

related terms. For example, ’black’ and ’dark’ are supposed to be linked with low

valence, but their ratings are opposite in the Warriner’s measurement. Therefore,

such annotation maybe impact model prediction patterns.

5.5.3 Performance Analysis Compared with Other Models

In this part, the segment-based framework and model structures are discussed.

Compared with the models in Table 5.8, the proposed model using segment-level

learning shows better performance than other models that used the whole music

excerpts directly. The long duration may contain acoustic cue variations and emo-

tional state changes (Xiao et al., 2008), which may make learning models confused

and have difficulties extracting unified musical features targeted to one kind of emo-

tion (Aljanaki et al., 2015a). Segment-based learning relieves this problem as the

relatively shorter duration usually reflects consistent music feature patterns that

facilitate emotion recognition and improve the effectiveness of learning (Wu et al.,

2014). On the other hand, two models with audio segmentation are compared. Un-

der the same experimental circumstance, the two-stage model with the autoencoder

structure outperforms the baseline model. It is demonstrated that the autoencoder

can contribute to increasing final performance. The advantage is that the autoen-

coder separates two-stage training with their optimum parameters. In the meantime,

no labels are required as an unsupervised learning method. Further, segment-level

unsupervised learning brings about more flexibility in the model structure design.

The framework is divided into two parts. One part concentrates on feature repre-

sentation, while the other part focuses on target prediction. It is possible that one

part could be replaced without changing the other part as long as the data inter-

faces could match well with each other meaningfully. For example, another effective

deep neural network predicts the final emotion instead of the LSTM model. Other

advanced learning models could be considered in future research.
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(a) (b) (c)

(d) (e) (f)

Figure 5.6 : Masking impact on the performance. For PMEmo dataset: (a) shows

the accuracy for valence; (b) shows F1-score for valence; (c) shows the accuracy

for arousal; (d) shows F1-score for arousal. For AllMusic dataset: (e) shows F1-

score for valence; (f) shows F1-score for arousal; the accuracy comparison is same

as F1-score.

Another factor to be considered is the cost. The state-of-the-artwork adopted

attention mechanisms (Yin et al., 2020). This is powerful for learning music repre-

sentations, but it introduces more training parameters and increases the complexity

of computing, which requires more computing resources and aggravates the burden

of the operating environment, even extra time cost (He and Sun, 2015). My de-

sign replaces the attention architecture with stacked convolutional neural networks,

which reduces the time cost (refer to Table 5.6) but achieves the equivalent results.

We argue that the model structure in this research is more cost-effective.
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5.5.4 Ablation Test for Masking Data

The ablation test is carried out to examine the effectiveness of the masking

method. The 10 folds of accuracy and F1-score for valence/arousal recognition are

visualized in Fig. 5.6. In each subfigure, both lines represent the model’s perfor-

mance without masking and the model with masking. For PMEmo dataset, both

lines cross several times. The characteristics of the dataset can explain this result.

The chorus part of a popular song contains the repetition of musical content that

shows more explicit and more intense emotional expression (Yeh et al., 2014). Such

data morphology decreases the data variation and the outliers to lessen the effect of

masking methodology. For AllMusic dataset, it contains different genres of songs

and balanced training samples. The effectiveness of masking is statistically signifi-

cant. Overall, it is believed that masking could benefit the model’s robustness. In

future work, we may investigate the effect of different proportions of masking spans

on performance.

5.6 Summary

In this chapter, a segment-level two-stage learning framework is proposed. This

naturally combines unsupervised learning as a feature extractor with supervised

learning as a music emotion classifier. First, a CNN-based autoencoder calculates

feature representations for contiguous segments that comprise each music excerpt.

And then, the time-series segments are fed into the BiLSTM model to predict emo-

tion for this music excerpt. In this way, segment-level features are extracted without

being limited to song-level annotation. Additionally, the time/frequency masking

approach is applied to the segment inputs to enhance model robustness. The exper-

imental results show that the proposed model performs better than those using a

single feature source, even competing with the cutting-edge multi-modal framework.

Compared with the whole music excerpts as model inputs, segments with relatively

short duration increase the data scale and contain less change of acoustic cues. Due

to this, the learning models could detect the correlation between musical features

and emotion more effectively. Apart from that, this two-stage training framework
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is more flexible and makes changing the combinations of neural networks possible.

That means much potential for performance improvement. This chapter has resulted

in a publication (He and Ferguson, 2022), thus validated by peer-reviewers already.
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Chapter 6

Music Social Tags Representation in Dimensional

Emotion Space

6.1 Introduction

In music emotion recognition research, much research has sought to recognize

and retrieve music based on emotion labels. These labels are usually obtained from

either subjective tests or crowd-sourcing resources. With the widespread use of

social media, social tags are ready-made data and are a good option to extract

emotion annotation for music training models. Researchers usually used emotion-

based social tags either by grouping tags into emotion categories or clusters directly,

or by mapping tags to dimensional quadrants simply. Few research has undertaken

text-based analysis covering more kinds of social tags (not only emotion tags) to

explore the relationship between tags and represent them in a dimensional emotion

space, especially through neural word embedding techniques and the large-scale

dataset.

To narrow that research gap, this study proposes a solution for tags analysis and

representation based on neural word embedding methods. The results show that

these methods outperform traditional semantic analysis methods. This solution

can model joint representations of tags rather than be limited to a single type of

tag corpus (such as emotion or genre only) and quantify social tags in dimensional

emotion space. This might be utilized as emotion annotation for music.

6.2 Methodology

This section describes how to process tags information and represent them in di-

mensional emotion space. Figure 6.1 shows the overview of the solution. The social

tags dataset is preprocessed to filter out some redundant information and prelimi-



96

Figure 6.1 : The overview of tags analysis solution

narily converted into a text corpus or the factorized matrix. Then tag embedding

models are applied to the structured data to explore the latent feature vectors for

tags. Once the vector-based tags are ready, typical emotion tags are extracted to

match the reference emotion plane later. Then these vectors with high dimensions

are transformed into low-dimension vectors that are represented in a dimensional

emotion space. In this workflow, tag preprocessing and tag embedding play signif-

icant roles in reducing the sparsity of social tags. The selection of emotion tags

and the emotion measurement criteria determine the quality of tag representation

to some extent.

6.2.1 Tag Preprocessing

A large-scale set of social tags is collected from Last.fm∗ which is combined with

the Million Song Dataset (MSD) (Bertin-Mahieux et al., 2011) and has been used

in many music classification research projects (Hu and Downie, 2007; Laurier et al.,

2009; Song et al., 2016). Based on previous research (Lamere, 2008), it is necessary to

preprocess tags to reduce the impact of noisy information and irrelevant information

in this tag dataset.

∗http://www.last.fm
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The first step is to construct a text corpus to facilitate tag preprocessing. To

describe the solution comprehensively, each track in the songs dataset is viewed as a

document and tags for one track are viewed as text in one document. Besides that,

each tag is defined as a “term”, not a “word” since not all tags are single words. Like

term frequency in documents, Last.fm dataset contains tag popularity for tracks.

Some researchers used these normalised counts to calculate Term Frequency-Inverse

Document Frequency (TF-IDF) (Saari and Eerola, 2014; Levy and Sandler, 2008).

This solution combines these normalised counts and corresponding tags to build up

tag content for each track to construct a text corpus for all tracks. In detail, each file

in Last.fm dataset represents one song identified by its “track id”. The file content

is JSON-encoded. For example, the “tags” part shows each tag with its popularity

for one song like this:

“tags”: [[“happy”, “5”], [“pop”, “2”], [“powerful”, “1”]]

Then the tag document for this song is organized like this:

“happy happy happy happy happy pop pop powerful”

Once the text corpus for all songs is ready, tags are categorized to determine

what strategies should be applied to this corpus to process different types of tags.

Based on previous research work (Hu et al., 2009; Saari and Eerola, 2014; Çano

and Morisio, 2017b), music social tag categories are summarized with examples as

below:

• meaningless terms:

stop words: a, the, this, no, not

junk tags or misspellings: zzzzzzz, Grrl

• non-emotion terms:

opinion words: good, bad, poor

genre, instrument, epoch, locale: jazz, guitar, 60s, usa

ambiguous tags: love

emotion-irrelevance tags : song, beat
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• emotion terms:

lemmatization: depression, depressive, depressed

synonym: melancholy and sadness

Meaningless Terms

For the stop words, most of them are meaningless for semantic analysis but take

a high proportion in the corpus. Due to this, stopwords are removed by referring

to the snowball† list of stopwords. At the same time, negative words in this list

remain thereby keeping the original meaning for some terms such as ‘not happy’.

The junk tags and misspellings should be removed to improve the validity of the

tags. Considering the variety of tag content, it is impossible to find out all tags

mentioned above and filter them manually. Supposing that these terms are either

very common or low-frequency, a series of statistical thresholds are set to filter them:

• term count min: minimum number of occurrences over all documents

• doc proportion max: maximum proportion of documents that should con-

tain the term

• doc proportion min: minimum proportion of documents that should con-

tain the term

In this way, most meaningless, noisy, high-frequency terms could be excluded. To

some extent, the thresholds determine the quality of term analysis to balance be-

tween removing irrelevant information and avoiding information loss.

Non-emotion Terms

Previous research work (Lamere, 2008) explored Last.fm tags dataset and found

that tags mainly include genre, emotion, instruments, locales, opinions and so on.

Among them, genre accounts for a high proportion (68%) followed by locale (12%)

while mood only accounts for 5% followed by opinion (4%) and instruments (4%).

†http://snowball.tartarus.org/algorithms/english/stop.txt
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Focusing on emotion tags analysis, most research usually removes all non-emotional

terms and only keeps tracks labelled by emotion tags. Such approaches result in a

great deal of information loss and lack of generalization since a large number of tracks

without emotion tags are excluded. In my research, more tracks are involved in a

subsequent tag embedding model so that more tags relationship could be explored

in vector space. Using this method, even if a track is not labelled by emotion

tags, it could be linked to emotion terms through term similarity and analogy.

For ambiguous tags and other emotion-irrelevance tags, most of them are excluded

through statistical filtering mentioned in Section 6.2.1

Emotion Terms

Considering the inflection of words and synonyms, some researchers (Hu et al.,

2009) tried to build up synsets for clustering emotion terms while others (Çano and

Morisio, 2017b) extended term inflected forms derived from a lemmatization process

to construct emotion corpus. In my research, no change is made for all emotion terms

so that we could explore whether these terms have distinct dimensional values from

each other.

After the preprocessing mentioned above, the final tag corpus is established and

then a corpus of textual data representing all tracks is vectorized for further use.

6.2.2 Tag Embedding

Corresponding to different word embedding models, different types of input are

required and constructed from the vectorized text corpus mentioned above. The

following parts introduce a series of model algorithms for tag semantic analysis.

Latent Semantic Analysis

The conventional Latent Semantic Analysis (LSA) technique requires a Document-

term matrix (DTM) as input and tries to find a low-rank approximation to the

term-document matrix. DTM describes the frequency of terms that occur in a

collection of tag documents. To reduce the impact of high-frequency terms, the

term-weighting scheme TF-IDF (Wu et al., 2008) is usually applied to adjust term
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weights. The rank-lowering process is based on the theory of linear algebra called

SVD (singular value decomposition), which conducts the matrix factorization. The

new low-dimensional term-document matrix is viewed as a set of term vectors. That

could be used to explore the relationship between terms (tags) or documents (songs)

for many purposes. In my research, LSA is used as a baseline.

CBOW and Skip-gram

Neural word-embedding models CBOW (Continuous Bag-Of-Words) and skip-

gram take the vectorized text corpus as input directly rather than using global

matrix factorization. These two models can learn the local context for each term

automatically. The CBOW model predicts the target term according to its context.

On the contrary, the skip-gram model learns to predict the surrounding terms from a

given target term. Both models are neural networks with one hidden layer embedded.

The optimal weights of the hidden layer during training are the term vectors we want

to use.

As shown in Fig. 6.2, the CBOW model takes N co-occurred terms as inputs and

each term is an encoded vector of size V based on tags corpus. The hidden layer

contains K-dimension neurons and the output is the target term of size V through

softmax calculations. While the operation of the Skip-gram model is reversed. The

input layer is a target term of size V and the output is the probability distributions

of N context terms based on this target term. Similarly, the hidden layer is made

of K-dimension neurons. For both models, the goal of model training is not for

prediction, but for obtaining the weight matrixWV×K . This weight matrix is viewed

as tag embeddings that represent V terms with the K-dimension feature vector for

each.

GloVe

GloVe is an unsupervised learning model. The model is trained based on the

term-co-occurrence matrix (TCM). TCM is the statistics of terms in the vectorized

corpus in a form of matrix X. Each element Xij in such matrix represents how often

term i appears in the context of term j. The algorithm utilizes a new weighted least
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Figure 6.2 : Neural network structure for tag embedding

squares regression model (Pennington et al., 2014). It defines a cost function like

this:

J =
V∑
i=1

V∑
j=1

f(Xij)(w
T
i wj + bi + bj − log(Xij))

2 (6.1)

Here wi means the vector for the main term i and wj means the vector for the

context term j. bi and bj are scalar biases for the main and context terms. f is a

weighting function that avoids frequent co-occurrences of being overweight, see the

definition as:

f(Xij) =
{ (Xij/Xmax)

α if Xij < Xmax

1 otherwise
(6.2)

Here Xmax defines the threshold of term co-occurrences value. Only Xij less than

Xmax take effect to regression model through f . α is a factor in the weighting

function, set to 0.75 by default.

The GloVe model decomposes TCM into two low-rank matrices that are two sets

of term vectors called main term vectors and context term vectors. In practice, the
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final term vectors are the average or a sum of these two vectors.

Through tag embedding, all of these models output a vector-based matrix, where

• each row presents each term in the corpus of tags

• all elements in each row is a feature vector for that term

• the vector size means dimensions of tag embedding

6.2.3 Emotion Vectors Extraction

Once term vectors are ready, vectors for specified terms could be extracted to

analyse the tags’ relationship and check the tag-embedding model performance. A

set of terms can belong to one specified type such as emotion, genre or theme,

which reflects the generalization of our solution. In this thesis, social tags analysis

is based on emotion representation, hence the emotion vocabulary is defined for

vector extraction and subsequent mapping.

6.2.4 Vector-based Data Transformation

In this step, the non-metric multidimensional scaling (nMDS) method and Pro-

crustes analysis are applied to emotion term vectors for vector-based dimensionality

reduction and transformation. Dimensional emotion models proposed in the previ-

ous research are usually two or three dimensions with the reason that more than 3

dimensions could not reflect emotion variation intuitively and one dimension could

not distinguish emotion sufficiently. In this research, nMDS (Kruskal, 1964) is uti-

lized to generate 2D and 3D models separately for performance comparison. Then

Procrustes transformation (Gower, 2015) make emotion tags approximate to a clas-

sic Valence-Arousal (VA) model.

To assess the quality of nMDS, nMDS is compared with other typical dimension-

ality reduction solutions including Principal component analysis (PCA), Locally

Linear Embedding (LLE), kernel PCA (kPCA) and AutoEncoder, through RNX

measurement defined in (Kraemer et al., 2018). Taking a set of our vector-based

data as input, the RNX values with log-scaled rank K are shown in Fig. 6.3. The
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Figure 6.3 : Performance comparison of different dimensionality reduction methods,

where a value of 0 corresponds to a random embedding and a value of 1 to a perfect

embedding into the k neighbourhood. The legend contains AUClnk measurement

defined in (Kraemer et al., 2018).

results show that nMDS is the best way to represent the pairwise distance and dis-

similarity for terms in low dimensions meanwhile keeping the pairwise relationship

changing as few as possible.

In the procedure of Procrustes analysis, the 2D and 3D term vectors are further

transformed through translation, rotation and scaling to find an optimal approxi-

mation to the VA reference. Given the VA reference as target X, our vectors as Y

are transformed to conform to X. Yt is the final 2D emotion tags representation.

Equation (6.3) shows how PA works.

Yt = f(Y ) = b ∗ Y ∗ T + c (6.3)

where b is scale component, T is orthogonal rotation and reflection component, and

c is translation component.

To obtain the better goodness-of-fit, b, T and c are adjusted to minimize the
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root mean squared error (RMSE) defined below:

f(Y )→
√∑

min(X − Yt)2

N
(6.4)

where N means the number of terms in the vector-based data.

If Y is a 3D vector, then 2D VA reference X is filled with one column of zero

to match dimensions. Alternatively, the dominance ratings (Warriner et al., 2013)

could be used as the third dimension but this situation is not covered here.

6.3 Experiments

Corresponding to the workflow mentioned in Section 6.2, The experiment details

are described step by step. Tags processing and transformation are implemented by

R language. The code source could refer to the GitHub‡.

6.3.1 Dataset Preprocessing

The social tags dataset is collected from Last.fm associated with 504,555 tracks

in Million Song Dataset (MSD). After removing stop words, a vocabulary is created

containing a total of 463,487 unique tag terms. Then very common terms and

low-frequency terms are filtered out based on statistical thresholds. Fig. 6.4 shows

how many terms are left with different combinations of thresholds. From the view

of the minimum proportion of documents containing terms, it shows differences

starting from 0.0002. Then combined with the view of the minimum number of

occurrences over all documents, it changes obviously since 1000. For the maximum

proportion of documents containing terms, not too much gap exists between 0.1 and

0.8. All of these parameters determine the number of remaining terms. If the scale

is too big, it might lead to a relatively large deviation in dimensional reduction.

By experimenting with parameters and analyzing the results, Table 6.1 is the final

set to balance information noise with information loss. This results in a total of

7,685 terms and a corpus of 470,280 tracks. Finally, this corpus is vectorized for the

‡https://github.com/Sandy-HE/Tag analysis
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subsequent process. All preprocessing is implemented through the R development

environment.

6.3.2 Tag Embedding Model Setup

In the process of tag embedding, embedding dimensions K need to be consid-

ered. Given that the final emotion model is 2 or 3 dimensions, the higher K values

would increase the dimension gap and may give rise to underfitting by leaving out

important dimensions of the dissimilarity data when implementing dimensionality

reduction. Due to this, K is selected from the set of {4, 8, 16, 32, 64, 128}.

In this experiment, the natural language processing package text2vec§ in R

software environment is used to generate pruned corpus, DTM with TF-IDF, TCM

and run LSA and GloVe models. CBOW and Skip-gram models are implemented

by word2vec function in python library gensim¶. Table 6.2 lists the detail of input

and some key hyper-parameters used in embedding models. For other parameters,

the default values are used as defined in the functions.

Table 6.1 : Thresholds of term filtering

Parameter Value

term count min 1,000

doc proportion max 0.8

doc proportion min 0.0002

6.3.3 Emotion Terms Selection

The selecting of emotion vocabulary is based on dimensional emotion models

(Russell, 1980; Scherer, 2005; Saari and Eerola, 2014), emotion clustering (Hu et al.,

2009; Laurier et al., 2009), and MIREX Mood Categories (Hu et al., 2008). In

§https://cran.r-project.org/web/packages/text2vec/

¶https://pypi.org/project/gensim/



106

Figure 6.4 : Terms count statistics after filtering

my experiment, the initial term list was established according to the mood clusters

summarised by Laurier et al. (2009). Then some terms were crossed out because

they might not apply exactly as before, such as “gay”. To balance terms in each

quadrant, other terms are added regarding research in recent decades mentioned

above. At the same time, it should be checked that the selected terms are in the

set of social tags and show appropriate positions after data transformation based on

experimentation. Finally, 44 common emotion terms are selected as the benchmark,

corresponding to VA emotion quadrants considering term balance in each quadrant

(see Table 6.3).

6.3.4 Data Transformation

In this step, the nMDS method is applied to reduce K-dimension vectors to 2D

and 3D vectors, respectively, followed by Procrustes transformation. In Procrustes

analysis, the target VA references are chosen from the Warriner’s list (Warriner

et al., 2013), which provides continuous ratings of valence, arousal and dominance

for 13,915 English words. Still, all data transformations are implemented under the
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Table 6.2 : Tag-embedding models summary

Model Input Hyper-parameters for embedding

LSA DTM with TF-IDF vector size = K

CBOW Corpus vector size = K

context window = 5

training epoch = 10

Skip-gram Corpus vector size = K

context window = 5

training epoch = 10

GloVe TCM vector size = K

(context window = 5) Xmax = 10

training epoch = 25

learning rate = 0.15

R development environment.

6.4 Results and Discussion

This section compares the performance of neural tag embedding models and

GloVe with the LSA baseline. Further, tag topology structure based on dimensional

emotion space is visualized, and the influence factors for tag representation are

discussed.

6.4.1 Tag Embedding Models Performance

The performance comparison between four tag embedding models is shown in

Fig. 6.5 based on Procrustes RMSE as the evaluation metrics. It illustrates that

better performance is located in the higher K range {32, 64, 128} for all models

because that values narrow the gap between the sparse high-dimension corpus and
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Table 6.3 : The emotion tags in dimensional quadrants

Q1 Q2 Q3 Q4

happy angry sad relax

joyful brutal melancholy calm

party aggressive sadness peaceful

fun scary depressive mellow

sexy frustration bittersweet sweet

upbeat bitter gloomy soothing

uplifting sarcastic sorrow hopeful

exciting cynical desperate dreamy

triumphant black dark chill

intense quirky lonely serious

romantic heartbroken sleepy quiet

K-dimension embedding vectors. The best solution for each K-dimension embed-

ding is one of the neural tag embedding models rather than LSA. This demonstrates

that neural word embedding techniques outperform conventional text analysis meth-

ods. Further, GloVe and Skip-gram models’ performance varies dramatically with

K value changing while the performance of the CBOW model is relatively stable.

It can be seen that GloVe and Skip-gram models are more sensitive to the embed-

ding size, and hence selecting the appropriate size could achieve better performance.

There is no certain regularity to impact performance in selecting 2D or 3D vector

space. In my experiment, the best results are based on 64-dimension tag embedding,

where the vectors from the GloVe model are reduced to 2D while the vectors from

the Skip-gram model are reduced to 3D.
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Figure 6.5 : Procrustes analysis performance comparison between different models

6.4.2 Tags Visualization

In this part, the transformed results from Procrustes analysis are used to visu-

alize the final 2D emotion space based on the social tags relationship. Here two

models with the best performance are selected: GloVe 64D+MDS 2D and Skip-

gram 64D+MDS 3D. The results are shown in Fig. 6.6 and Fig. 6.7. In these two

emotion models, it can be seen that tags could be grouped into four quadrants con-

forming to the typical VA emotion model. Tags representation based on the Skip-

gram model shows the typical terms better than the one based on the GloVe model,

such as happy, angry, sad, and relax. The deviation of ’sad’ in Fig. 6.6 is caused

by GloVe combining global matrix factorization. In such latent semantic analysis,

many co-occurrence terms with ’sad’ are non-emotion terms, but these terms co-

occur with other high-frequency emotion terms, which are not located in Q3 but in

Q4. While the Skip-gram model in Fig. 6.7 only utilizes local context information,

reflecting the latent relationship with ’sad’ better and reducing the impact of noise

information. It illustrates that terms in the social tag corpus are strongly correlated
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with the terms nearby with similar popularity, and cleaning irrelevant information

is very important for GloVe models as it covers the global context. Skip-gram is the

better choice without cleaning the corpus on a large scale.

Another reason for the position deviation is the calculation of the Procrustes

analysis. It tries to minimize the sum of residuals for all tags between term vectors

and VA references. To serve the whole performance, some terms sacrifice their

correct positions to bridge the gap of inappropriate positions of terms influenced

by irrelevant information, such as angry and aggressive in Fig. 6.6. Besides that,

the Warriner’s VA ratings bring about some deviations. The difference exists for

some terms because those ratings are based on word stimuli rather than music. For

example, ’heartbroken’ in music emotion models are supposed to be located in low

arousal, but its reference is labelled in high arousal. Similarly, ’black’ and ’dark’

are usually linked with heavy metal music and express low valence and middle or

high arousal, but their ratings are opposite in VA reference. Therefore, a better VA

reference could enhance the transformation performance dramatically. More details

can be found in Appendix A.

6.4.3 Music Emotion Annotation based on Tags

In Music Emotion Recognition tasks, social tags are used for music annotation in

several ways (Çano and Morisio, 2017b; Panda et al., 2018; Laurier et al., 2009). But

most prior research applied these tags to solve music classification problems rather

than regression problems because there is no good way to quantify tags and then

quantify emotion for songs. In contrast, my solution provides a more flexible and

effective way to represent tags as embedding vectors to map them into dimensional

emotion space. On the one hand, the quantified emotion for music based on tags

could be provided as mentioned in (Saari and Eerola, 2014). On the other hand,

annotating songs without labelled emotion tags in a dimensional emotion space could

be considered by exploring the tags relationship, such as tags semantic analysis and

tags analogy. It is more reasonable to get emotional annotation for more songs.
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Figure 6.6 : Tag representation based on GloVe model. In detail, the data flow

includes 64D tag embeddings from the Glove model, 2D tag vectors from nMDS, and

a final approximation from Procrustes analysis. In this figure, blue dots represent

social tag positions, and red circles represent Warriner’s VA reference of tags.
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Figure 6.7 : Tag representation based on Skip-gram model. In detail, the data

flow includes 64D tag embeddings from the Skip-gram model, 3D tag vectors from

nMDS, and a final approximation from Procrustes analysis. In this figure, blue dots

represent social tag positions, and red circles represent Warriner’s VA reference of

tags.
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6.5 Summary

This research proposes an effective solution to analyse the music social tags

relationship, where the neural word embedding models are applied to obtain vector-

based terms for large-scale tags datasets. Apart from that, non-metric MDS and

Procrustes transformation quantify terms in a 2D VA emotion model. The experi-

mental results show that neural tag embedding models outperform the conventional

LSA model. The solution transforms the sparse, discrete and messy tags information

into dense, quantified and correlated data. In this way, it allows more than one type

of term (e.g. genre, emotion) in the corpus for tag analysis and can reflect tags’ re-

lationship covering multiple vocabulary sets. Moreover, the semantic analysis could

link songs without labelling emotion tags with emotion terms. This provides a good

resource for emotion annotation in music emotion recognition work.

Considering how to adapt this approach to MER tasks, Saari and Eerola(2014)

gave some extensions based on similar quantified tags. No ready dataset containing

audio data matched with such large-scale social tags exists. Million Song Dataset

provided some audio features metadata, but the expected data in my research is

music audio. A considerable effort is needed to collect such raw data and extract

appropriate music clips. Besides data collection, the critical research point is cal-

culating music emotions based on their tags. Many factors should be taken into

account, such as using a full or partial set of tags for one song, along with tag popu-

larity or not, etc. Also, the design for tag denoising should be optimised to promote

quantitative quality. The future study might cover these tasks. This chapter has

resulted in a publication (He and Ferguson, 2020a) © 2020, IEEE, thus validated

by peer-reviewers already.



114

Chapter 7

Conclusion

7.1 Summary and Conclusions

This thesis focuses on music emotion-related research with neural network ap-

plied, mainly including music emotion recognition (MER) by using deep learning

models and social tags representation in the dimensional emotion space through

neural word embedding models. In previous research, some traditional study pat-

terns and methodologies could be breakthroughs: using human-engineered audio

features as learning model inputs; using the whole music excerpts as model inputs

to match the given annotations without considering music segmentation or limited to

segment-level annotation; using music social tags discretely without exploring tags

relationship through text-based analysis or neural word embedding applied. Cor-

respondingly, this thesis set out three objectives: i) design a deep neural network

model that is able to use raw audio signal data as training inputs directly instead

of using preprocessed audio features and achieve better performance; ii)propose a

deep learning architecture that could accept segments partitioned from the given

music clips as model inputs without collecting extra segment-level annotations and

complete final emotion recognition. iii) provide a solution for music social tags anal-

ysis with neural word embedding models applied to represent tags in a dimensional

emotion space.

To better understand these studies, this thesis introduces the background knowl-

edge in Chapter 2 and related work in Chapter 3.

In MER tasks, the research achievements are validated in two MER scenarios:

one scenario detects dynamic emotion variation covering the first objective; the

other scenario is conducting static emotion classification covering the second research

objective. For social tags analysis, four tag embedding models are implemented to
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compare the performance of dimensional emotion representation, which commits

to the third objective. This thesis introduces methodologies, experiment details,

results, and discussion for each goal.

In Chapter 4, an end-to-end deep learning approach is proposed to address music

emotion recognition as a regression problem, using the raw audio signal as input

(to achieve Objective i). The multi-view convolutional neural networks as feature

extractors are adopted to learn representations automatically. Then the extracted

feature vectors are merged and fed into two layers of Bidirectional Long Short-

Term Memory to capture temporal context sufficiently. In this way, my model can

recognise dynamic music emotion without requiring too much workload on domain

knowledge learning and audio feature processing. The experimental results show

that my model outperforms the state-of-the-art baseline with a significant margin

in terms of R2 score (more than 10%) on the emoMusic Dataset.

In Chapter 5, a segment-based two-stage model is proposed to combine unsuper-

vised and supervised learning. In the first stage, an unsupervised autoencoder with

stacked deep neural networks generates feature representation (to achieve Objective

ii). In the second stage, these features are fed into a supervised learning model

to predict emotion. Based on the architecture mentioned above, segmentation is

applied. Each music excerpt is split into contiguous segments. In the unsupervised

learning stage, these segments are fed into the autoencoder to extract segment-level

feature representations. In the supervised learning stage, these time-series music

segments as the whole inputs are fed into a Bidirectional Long Short-Term Memory

deep learning model to achieve the final music emotion classification (to achieve

Objective iii). Compared with the whole music excerpts, segments as model inputs

could be the proper granularity for model training and augment the scale of train-

ing samples to reduce the risk of overfitting during deep learning. Also, masking

frequency and time are applied to segment-level inputs in the unsupervised learn-

ing part to enhance training performance. The proposed model is evaluated on

two datasets: PMEmo and AllMusic. The results show that the proposed model

outperforms state-of-the-art models, some of which even use multimodal architec-
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tures. And the performance comparison also evidences the effectiveness of audio

segmentation and the autoencoder with masking in an unsupervised way.

Chapter 6 proposes a tag analysis solution for dimensional emotion representa-

tion. This solution includes social tags preprocessing, tag embedding, dimensionality

reduction for tag feature vectors and vector transformation to approximate VA emo-

tion ratings. The crucial part of this solution is tag embedding with neural network

algorithms applied. Four tag embedding methods are compared. The results show

that neural tag embedding methods outperform traditional semantic analysis meth-

ods. This solution allows social tags to be represented in dimensional emotion space

without being limited to emotion corpus and quantify tags to facilitate emotion

annotation.

7.2 Future Works

With the advance of technology in related domains, there is still a possible chance

to improve music emotion recognition and social tags analysis, such as data collec-

tion, data processing and model design.

7.2.1 Data Collection

Combined with the result analysis in two MER scenarios, the dataset plays a

significant performance role. The effect of the dataset is mainly reflected in two

aspects: what kind of music excerpts are selected; the quality of annotation. For

PMEmo dataset, the music excerpts are chorus part of pop music, which limits itself to

one genre and repetitive acoustic pattern. Due to this, the training pattern is more

likely to lack generalization. In contrast, AllMusic dataset contains songs with

various genres that enhance the ability of model prediction. On the other hand,

training samples with imbalanced labels bring about learning bias during model

training such as EmoMusic dataset. Additionally, the annotation methods are also

worth paying more attention to. In future work, dataset quality could be improved

by complying with the following rules: consistent annotation from crowd sources or

subjects mainly based on emotional responses from music rather than other stimuli;
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balanced training samples; audio data covering multiple genres; diversified music

excerpts. Currently, the relatively small data scale limits the performance of neural

network models, which usually require large amounts of data samples to learn better

patterns like the ones used in computer vision and NLP research. To take advantage

of deep learning, it is better to build up a large-scale MER dataset, including emotion

labels of quality.

In future work, the practical method of annotating music emotion through tags

representation should be further studied combined with subjective tests as valida-

tion. Based on social tags analysis, the quantified tags could be considered the

resource of emotion annotation, especially for the regression problem. On the other

hand, it is better to build up the large-scale emotion ratings from music rather than

other stimuli as mentioned above, which would boost the approximation accuracy

during tag vector transformation.

7.2.2 Data Processing

In deep learning models for music emotion recognition, raw audio signals and

spectrogram are most commonly used as inputs. Convolutional neural networks

usually receive fixed-size inputs due to data structure requirements. However, the

music samples are provided with various duration. Thus, data padding could be

adopted during preprocessing. In future research, more effective padding methods

could be considered to minimize the impact on emotional expression. Some audio

augmentation methodologies may be applied.

Regarding music segmentation, segments with different duration are transformed

into spectrograms of the same size due to the limitation of the training model. Such

transformation may not be appropriate for all granularities of segments. Then how

to optimize segmentation and extract features for those different segments properly

could be taken into account in future work.

To enhance model robustness, data masking is utilized in many research areas.

But some related details still need further discussion. For example, based on time

and frequency dimensions in music research, how to select the appropriate span of the
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mask; how many masking bands are applied; which position is proper for masking;

what value is filled for the masking part and so on. More experiments could be

conducted in a future study to consolidate the masking function and improve the

performance.

Although neural network models require fewer human-engineered features as

model inputs, we still need to learn more about musical knowledge and musical phe-

nomena combined with music psychology to know how music and emotion interact,

thus enabling us to create more appropriate music features.

7.2.3 Model Design

Focus on the performance of each dimension in emotion space, the model could be

designed for valence and arousal separately. Especially for valence, the experimental

results were relatively low in either the classification or regression models. In future

work, we need to explore more about the relationship between music and valence

dimension, thus designing a model better fit for valence prediction.

With the fast development of deep learning technology in many research fields,

some advanced model designs could be applied. In the multi-view model or the two-

stage model, it is possible to replace CNN or LSTM modules with more efficient

neural networks. For example, segments could be viewed as time-series nodes that

constitute a graph. Then we could attempt to utilize Graph Neural Network (GNN)

to predict emotion in future research. On the other hand, the alternative model

design needs to balance the computing cost and the model benefit.

In my current MER research, audio music data is the only input source of the

training models. In future work, multiple feature sources can be combined with

appropriate multimodal design and fusion strategies. Apart from the traditional

music feature analysis for audio and lyrics, model design for biological signal data

may be paid more attention to since such data involves the emotional response more

exactly.

In my experiments, the data scale is relatively small due to the cost of collecting

high-quality annotations. But deep learning usually requires large-scale training
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samples to explore the learning pattern in case of overfitting. Facing music samples

with limited annotation, some model architectures could be used for reference to

enhance the training model or augment the data scale. One effective method is

transfer learning, where a large-scale dataset model is first well-trained. Then this

model is applied to a small-scale music dataset for feature representation or emotion

recognition. For data augmentation, besides manipulating data directly, Generative

Adversarial Network (GAN) could be explored to generate more samples for emotion

recognition.

Considering social tags analysis, some advanced deep learning models for text

analysis could be leveraged to replace current tag embedding algorithms. Also,

transfer learning based on a large-scale well-trained text corpus might be utilized

to explore the relationship between tags. In future studies, how to calculate music

emotions based on their tags and use them in MER research could be taken into

account.
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Appendix A

Warriner’s list

Warriner’s list (Warriner et al., 2013) provides norms of valence, arousal, and dom-

inance for 13,915 English lemmas. The scale ranges from 1 to 9 complying with the

human intuitive low-to-high scale. 1 means either lowest valence or lowest arousal

while 9 means highest valence or arousal. 5 could be considered as neutral status.

All emotion ratings could be found under “electronic supplementary material” ∗

column of the online version of that article.

Table A.1 : The Valence-Arousal reference for some terms cited in this thesis

Term Valence Arousal

happy 8.47 6.05

angry 2.53 6.2

sad 2.1 3.49

relax 7.82 2.38

heartbroken 1.95 6.6

black 5.4 3.58

dark 5.08 4.09

aggressive 3.08 5.87

Note: the value of valence and arousal cited in the table is the mean ratings.

∗https://link.springer.com/article/10.3758/s13428-012-0314-xSecESM1
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