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Abstract

In recent years, localization-based Internet of Things (IoT) applications have

been developed and deployed, such as interactive and personalized routing, car

localization in underground parking systems and patient emergency localization.

However, in indoor environment, Global Positioning System signal is not available

because it is very sensitive to occlusion. Many researchers have been focusing on

utilizing other technologies such as Wi-Fi (Wireless Fidelity), Radio Frequency Iden-

tification, Bluetooth and so on for localization services. Among these technologies,

Wi-Fi has been most widely utilized for indoor localization due to its low cost and

wide availability. There are various signal measurements for the Wi-Fi-based indoor

localization such as Received Signal Strength (RSS), Time of Arrival, Time Differ-

ence of Arrival, Round Trip Time, Angle of Arrival, and Channel-State Information.

However, RSS remains the most popular signal measurement used in Wi-Fi-based

localization solution compared to other measurements, especially for localization of

low-cost IoT devices with limited computing and storage resources.

However, RSS-based indoor localization possesses many challenges due to mul-

tipath effects and noise, environment dynamics, device heterogeneity, limited high-

quality data, and security. To overcome these challenges, in this thesis, RSS fingerprinting-

based indoor localization methods are developed using machine learning methods

and deep learning methods. For RSS time-series data, the system of Kalman-DNN
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exploits the temporal dependency of these data by integrating the Kalman filter with

deep neural networks, and experiment results validate effectiveness of the Kalman-

DNN system. However, for single RSS readings vector, a system called CapsLoc

is proposed, which is an RSS fingerprinting-based indoor localization system based

on CapsNet (Capsule Network). The experimental results show that CapsLoc can

achieve accurate indoor localization, which outperforms some traditional machine

learning methods and existing deep learning methods. Especially for heterogeneous

IoT devices, RSS can be affected by superimposed challenges, i.e., device heterogene-

ity, database problem and energy efficiency. In order to improve localization speed,

EdgeLoc is proposed based on CapsNet and edge computing technology. Experi-

ment results show that EdgeLoc outperforms state-of-the-art deep learning methods

in performance of the localization accuracy and average positioning speed.

Considering security issues in localization where malicious attacks at APs (Access

Points) exist, a solution of SE-Loc is proposed for RSS fingerprinting-based indoor

localization utilizing the deep learning methods. Extensive experiments show that

SE-Loc demonstrates superior performance on secure indoor localization over the

baseline methods. To address challenges including the multipath effects and noise,

the environment dynamics, the device heterogeneity, data limitation, database prob-

lem and even malicious AP attacks, deep learning-based indoor localization methods

are proposed. In the future, it is necessary to develop security-enhanced deep learn-

ing techniques when facing other various security problems such as AP hijacking,

jamming, and man-in-the-middle attack.
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Chapter 1

Introduction

Based on the rapid development of Internet of things (IoT), localization-based

service (LBS) becomes key technology component of many indoor IoT applications.

For example, users can be navigated by IoT devices with LBS inside a building with

high accuracy and low delay. Even when confronted by the security threats like

malicious access point (AP) attacks, IoT devices can still support robust and secure

indoor localization for users. Currently, there are several open challenges including

high accuracy, low computation complexity, and security in indoor localization. This

chapter first presents the research background. Then, this thesis deals with the

motivation and challenges in indoor localization and deep learning, separately. At

last, the structure of this thesis is summarized.

1.1 Research Background

Nowadays, many IoT-based applications require indoor localization as shown in

Fig 1.1. There are a wide range of applications for localization of device or user

such as navigation in shopping mall, medicine localization in hospital, smart device

localization in smart house or building, car localization in underground parking and

emergency services in fire house and indoor sports place [8, 9].

The relationship between indoor localization signals/technologies, measurements
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Figure 1.1 . IoT application scenarios requires indoor localization.

and methods is illustrated in Fig. 1.2. There are many indoor localization technolo-

gies of IoT applications, which are mostly based on wireless communication tech-

nologies including Wi-Fi (Wireless Fidelity), Radio Frequency Identification (RFID),

Bluetooth, Ultra-Wideband (UWB), Ultrasound, Frequency Modulation (FM) Ra-

dio, Zigbee, Long Range Radio (LoRa), Mobile Networks (GSM (Global System

for Mobile Communications), 3G, 4G) [10]. Among these technologies, Wi-Fi is

popular since it requires no additional infrastructure, and is cost-effective to be ac-

cessed everywhere in indoor environment. Wi-Fi systems can carry out a variety of

localization-signal measurements for localization purpose, including Received Signal

Strength (RSS), Time of Arrival (TOA), Time Difference of Arrival (TDOA), Round

Trip Time (RTT), Angle of Arrival (AOA), and Channel-State Information (CSI).

The most ubiquitous Wi-Fi measurement is RSS, because it is hard to implement
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Figure 1.2 . The relationship between indoor localization signals, measurements,

methods.

some functions when other measurements are utilized.

Many methods have been proposed for indoor localization including geometri-

cal localization methods, fingerprinting-based methods, dead-reckoning (DR) and

hybrid localization methods [8, 11]. However, DR methods, such as pedestrian

DR, need additional inertial sensors for relative location estimation. Hybrid local-

ization methods integrate multiple types of measurements or signals. For exam-

ple, triangulation-based fusion enhances localization accuracy via combining several

kinds of measurements including RSS, TOA, TDOA, and AOA, which requires two

or more kinds of hardware components with extra cost. Since RSS can be easily

accessed, it has become the most popular signal measurement for geometrical local-

ization and fingerprinting-based methods. Geometrical localization methods include

multilateration, triangulation and proximity etc. In some areas (i.e., indoor and out-
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door open spaces), it is more suitable to use these methods with the ability to model

and parameterize explicitly. For example, many researchers utilize multilateration

and triangulation for IoT node location estimation, which is based on locations of at

least three APs and their distances to the IoT node. Its basic principle is to estimate

the circles for two-dimensional indoor localization [8], which is based on estimated

distances to APs. The path loss models are usually utilized to estimate the distance

from an AP to a node in complex indoor scenarios. However, environmental factors,

such as multipath loss, environment dynamics [12], measurement offset from device

heterogeneity [13] and even third-party attacks [14] are sources of error, which are

to be modeled and are hard to be mitigated.

In contrast, RSS fingerprinting-based methods can be utilized in complex indoor

scenarios that are hard to be parameterized. RSS fingerprinting-based methods are

made up of two parts: offline training and online localization. In the offline training

phase, RSS training data are stored and utilized to learn the localization model

between anchor locations and RSS fingerprinting data collected at an anchor from

the APs. In the online localization phase, RSS data are fed into the trained matching

model from the offline phase to estimate the node locations [15]. There are two types

of RSS fingerprinting-based methods including deterministic and probabilistic. As to

deterministic ones, they divide the interior space into units to create a radio map and

obtain the estimated location by looking for the best match between the RSS data

and the RSS radio map. As to probabilistic methods, namely distributed-based ones,

the radio map is constructed utilizing the RSS distribution based on AP, and then

the location of the node is estimated utilizing the probability distribution function.
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Deterministic localization algorithms, such as K-Nearest Neighbor (KNN) [16–18]

(relatively simple and popular), and Support Vector Machine (SVM) [19] are very

popular. However probabilistic localization algorithms, such as Näıve Bayes and

BayesNet [17] are more complex and rely on likelihood functions [18]. Nowadays,

as the development of deep learning techniques, many researchers are focusing on

deterministic localization utilizing deep learning techniques rather than traditional

machine learning techniques such as KNN [20]. Conventional machine learning

methods are inadequate to deal with raw RSS data and transform the initial data

into a precise feature or representation vector for location classification.

In indoor localization, deep learning methods are available for kinds of tasks

including dimension reduction of radio maps, feature extraction, regression, classifi-

cation, and forecasting of users’ locations under various and complex environments,

even facing security challenges [9]. Generally, main deep learning methods are the

Neural Network (NN)-based ones. For this reason, these models are often referred

to deep neural networks (DNN), which are composed of layers of interconnected

nodes [21], which are made up of an input layer, one or more hidden layer(s), and

an output layer. Typically, there are three kinds of deep learning: supervised, un-

supervised, and reinforcement learning. In supervised learning, all training data are

labeled. In unsupervised learning, all training data are unlabeled. In reinforcement

learning, to achieve a goal, an agent must learn to run or perform actions in an

unknown and certain complex space. And it gets a reward in return.

As to another type of deep learning, i.e., semisupervised learning, among all

data, the training ones are labeled and the rest ones are unlabeled. Among deep
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learning methods, the most popular one is supervised learning. During a training

process, it is necessary to compare the practical output with the predicted one

out of the network. Then an error between these two values is calculated by an

objective function. The adjustable parameters, namely weights, are updated to

reduce the error. A classical supervised learning model might consist of hundreds of

millions of those adjustable weights and labeled data for training a network. In the

last decade, supervised methods such as DNN [22, 37, 38] and convolutional neural

network (CNN) [6, 40] have been widely utilized for indoor localization. In addition,

in some situations, semisupervised learning methods are needed including Stacked

Autoencoder (SAE) [6], and Denoising AutoEncoder (DAE) [22]. For example,

when suffering from attacks, it is a challenge to set up a secured learning system

only with the labeled data. Because the unlabeled data are usually abundant and

may be changed by the attackers, Therefore, it is hoped that learning performance

can be enhanced with the appropriate amount of unlabeled data and labeled data.

1.2 Motivation and Challenges

This thesis discusses some of the significant challenges and motivations of Wi-Fi

RSS fingerprinting-based indoor localization methods utilizing deep learning tech-

nology:

• Multipath Effects and Noise. The existence of multipath effects is one of

essential challenges of indoor localization. Based on inherent nature of the Wi-Fi

signals, Wi-Fi radio signal can be reflected, refracted and diffracted by the buildings,

objects, and sometimes even human beings. RSS data can be utilized to calculate
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the distance between APs and mobile devices, while collecting these data is hard in

existence of multipath effects. It is an essential influencing factor of indoor localiza-

tion accuracy. The RSS data needs to be processed for accurate location estimation

with methods that can minimize or eliminate negative effects of multipath.

• Environment Dynamic. The characteristics of an indoor environment are

important factors influencing indoor localization. The performance of RSS-based

methods is related to the dynamic changes of the environment in the interior space

including the number of walls and ceilings, the different placement of furniture as

obstacles, and the number of people at different times. It is necessary to take all

these factors into account when utilizing suitable indoor localization methods. In

other words, RSS is time and location dependent according to environment set-

tings. Therefore RSS-based deep learning methods are valuable with resistance to

environment dynamics.

• Data Limitation. A single RSS reading vector is one-dimensional RSS data

collected from multiple APs. Deep learning models do not really reveal the relation-

ships among the features of raw RSS data, which is a limitation of the data. Typ-

ically, deep learning models are preceded by data pre-processing algorithm, which

processes raw RSS data and even ameliorates data limitation.

• Database-related Problem. For some of the publicly available databases to

be discussed in the next section, there are a number of drawbacks including lack of

validation, obsolescence, and limited data samples. Due to the above, a private radio

map can be built and utilized with drawbacks including low coverage space, limited

application scope, and low number of APs. For example, AP deployment map in
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UJIIndoorLoc database and Beijing University of Posts and Telecommunications

(BUPT) database are totally different, with 520 APs for UJIIndoorLoc database

and 6 APs for BUPT implementation. In order to address the above situation, AP

selection method is necessary when the number of deployed APs is very large.

• Device Heterogeneity. RSS measurements collected on different devices

transmitted from APs are different. This is a main challenge for a universal indoor

localization method. Most manufacturers have different implementations of hard-

ware components and computation abilities. The device heterogeneity creates a new

challenge in the adoption of an indoor localization method.

• Energy Efficient. Deep learning model has kinds of indispensable perfor-

mance including training time and positioning time. During model training process,

model is trained using labeled RSS data. During localization stage, a trained model

estimates the location given the RSS data as input. For deep learning-based local-

ization systems, achieving high accuracy at a low-energy consumption is difficult in

a battery. In order to achieve high localization accuracy, training and execution of

the deep learning models need big computation consumption. In order to address

this problem, edge computing theory is applied when designing a localization sys-

tem, where training processing can be put on the edge server and only localization

execution based on the trained deep learning model runs on IoT devices.

• Security. Most users are reluctant to share data related to their location.

The reason is that user and device location is pretty sensitive information as part of

security issue of any IoT applications. Even a malicious node can infiltrate a system

and perform system attacks in indoor localization that can certainly affect overall
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performance of indoor localization-based applications. A secured indoor localization

method should be robust to attacks. Thus, it is necessary to design secured indoor

localization system under malicious attacks.

Chapter 3 to Chapter 6 of this thesis has attempted to address these issues by

designing indoor localization solutions utilizing Wi-Fi RSS fingerprinting-based deep

learning methods for IoT devices and applications.

1.3 Thesis Overview

Based on the challenges this thesis discussed above, technical part of this thesis

consists of four chapters as shown in Fig. 1.3. In Chapter 3, in order to tackle

the challenges of multipath effects, noise and environment dynamic, a novel indoor

localization method is presented, which exploits temporal dependency of RSS time-

series data by utilizing Kalman filter with DNNs. In Chapter 4, to address typical

challenges with data limitation, CapsLoc is proposed, which is based on Capsule

Network (CapsNet) and RSS fingerprinting technology. For situations with database

problem together with device heterogeneity and energy efficiency issues, EdgeLoc

is proposed in Chapter 5, which is based on the CapsNet, RSS fingerprinting, and

edge computing. A deep learning-based SE-Loc solution is proposed in Chapter 6,

considering security challenge as discussed above.

1.4 Thesis Outline

The structure of this thesis is described as follows:

Chapter 2
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Figure 1.3 . An overview of the thesis structure.

The state-of-the-art indoor localization technologies, measurements, and meth-

ods are reviewed and discussed in this chapter, followed by literature review of deep

learning methods.

Chapter 3

RSS data are not only prone to multi-path reflections but also sensitive to time-

varying environmental dynamics, which is one of the basic challenges of indoor

localization. For example, RSS fluctuated sharply as people moving out of the room

for lunch. In contrast to existing solutions focusing on spatial features of RSS,

this chapter presents an innovative indoor localization method by exploiting the

temporal dependency of RSS time-series data and integrating Kalman filter with

DNNs. Experiment results show that with the same mean localization time, the

proposed Kalman-DNN model outperforms the Kalman-CNN model on localization
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accuracy.

Chapter 4

To achieve high localization accuracy with Wi-Fi fingerprinting, CapsLoc, a ro-

bust indoor localization system based on capsule networks is proposed. Specifically,

the proposed capsule network model can efficiently extract hierarchical structures

from Wi-Fi RSS fingerprint, which fluctuates due to multipath effects, noise and en-

vironment dynamics. This chapter then conducted experimental field test with over

33600 data readings. experimental results show that CapsLoc outperforms con-

ventional machine learning methods (KNN and SVM) and existing deep learning

methods (CNN and SAE-CNN).

Chapter 5

This chapter proposes EdgeLoc, a robust and real-time indoor localization sys-

tem considering heterogeneous IoT devices to solve significant challenges, such as

RSS variances caused by hardware heterogeneity, database problem, and energy ef-

ficiency. Extensive field experiments are conducted to validate the effectiveness of

EdgeLoc with a large-scale Wi-Fi fingerprint dataset. The results show that Edge-

Loc outperforms the state-of-the-art SAE-CNN method in localization accuracy.

Chapter 6

This chapter proposes SE-Loc, a deep learning-based localization method to

enhance resiliency and security of wireless indoor localization and improve the relia-

bility of localization. The solution of SE-Loc consists of two parts: (1) AP selection

for processing initially contaminated APs, and (2) a deep learning model based on
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a denoising autoencoder and convolution neural networks for feature learning and

location matching. Extensive experiments show that SE-Loc demonstrates superior

performance on secure indoor localization over the baseline methods. When con-

fronting up to 100 malicious attacking APs in the UJIIndoorLoc database, SE-Loc

can still achieve lowest average localization error with respect to other baselines.

Chapter 7

This chapter presents conclusions of this thesis and highlights potential research

work for further investigations.
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Chapter 2

Methods

2.1 Indoor Localization of IoT Applications

2.1.1 Indoor Localization Technologies

In indoor localization of IoT applications as shown in Fig. 1.1, many existing

technologies are utilized to provide indoor localization. Radio communication tech-

nologies including Wi-Fi, Bluetooth, ZigBee, UWB, and RFID are presented first,

followed by mobile network, and Ultrasound. Finally, several emerging technolo-

gies like camera and visible light are discussed. Among these technologies, Wi-Fi is

the most widely utilized for indoor localization because of its wide deployment and

availability[23].

1)RFID

RFID is utilized to transmit and store data from a transmitter to any radio frequency

(RF) compatible circuit via electromagnetic transmission. The RFID systems can

be divided into two types: active and passive. The active RFIDs in the Ultra

High Frequency and microwave frequency range are not easy to implement on most

portable user devices. Passive RFIDs have limited communication range (1-2m)

without battery, which is unsuitable for indoor localization [24]. So RFID is not

widely utilized for IoT indoor localization.
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2)Bluetooth

Bluetooth (or IEEE 802.15.1) comprises the physical and Medium Access Control

(MAC) layers specifications for connecting different fixed or portable wireless devices

in a specific personal area. The most advanced version of Bluetooth is Bluetooth

Low Energy (BLE), namely Bluetooth Smart. It is sponsored by Apple and is

being distributed in the form of beacons [10]. BLE offers advanced data rate of 24

Mbps and the coverage range of 70-100 meters, which is energy efficient than older

versions and narrower than the coverage range of Wi-Fi inside building. So BLE is

less utilized for indoor localization as compared to Wi-Fi.

3)ZigBee

ZigBee is a specification implemented based on IEEE 802.15.4 standard, focusing on

physical and MAC layer. In fact, it is also a low-rate wireless personal area network.

It can realize the design requirements of applications with low power consumption

but without large data throughput. ZigBee nodes can achieve signal coverage of up

to 100m in open areas, but generally 20m to 30m in indoor environments [25]. The

accuracy of ZigBee is very high, but unfortunately, for main user devices it is not

available. Hence it does not work well for indoor localization.

4)UWB

UWB is a short-range radio technology that transmits short pulses with less than

1ns over a large bandwidth with more than 500 MHz with a very low duty cycle.

Although UWB is less sensitive to multipath effects, it is subject to the Non-Line-of-

Sight (NLOS) effect with cover range of 10-20 m [26]. Meantime, the development of

UWB standards has been slow (although UWB has been initially proposed for use
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in personal area networks). This rate of development limits the marketing of UWB

in portable user devices and consumer goods, especially as a standard. Therefore,

UWB is not suitable for indoor localization.

5)Mobile Network

With appropriate program, Mobile networks including 3G, 4G, 5G, and GSM are

able to realize a very precise localization with low-cost since there is no extra in-

frastructure and hardware equipment needed. However, this technology is mostly

utilized for outdoor localization [26].

6)Ultrasound

The ultrasound signals are utilized for location estimation of the targeted node in-

cluding a mobile device by the emitter tags from the wireless ultrasonic beacons.

Main ultrasound tracking systems incorporate other technologies for distance es-

timation between the transmitter and receiver. The difference of arrival time is

extracted by correlation processing of two received signals, and then makes distance

estimation [27]. Usually, the necessary synchronization is achieved by combining

the RF pulse with the ultrasonic signal transmission. However, the speed of sound

varies significantly with humidity and temperature.

7)Camera

Received images of a scene from the camera are utilized for a presence detection,

and to locate elements within the scene. The location is through a transformation

between the scene image and angles of the camera as the contour tracking methods.

As the emerging technology, cameras are widely utilized in localization of various

precision levels, and its main application field is sub-millimeter. However, the cov-
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erage range of a localization camera is 1-10 m [25].

8)Visible Light

As a promising technology, visible light communication utilizes visible light of 400-

800 THz for high-speed data communication and transmission, and its modulation

and emission are mainly based on Light Emitting Diodes (LEDs). Usually, the

receiver has to be equipped with a sensor to detect the LEDs’ locations. There are

always multiple LEDs in a room, which increases localization accuracy, but their

emitted lights can not overlap with each other [10]. Meanwhile, it is high-cost to

utilize this technology for localization.

9)Wi-Fi

The IEEE 802.11 standard, namely Wi-Fi, is primarily utilized to provide wireless

Internet access of different devices in private, public and business scenarios. Initially,

Wi-Fi has a reception range from about 200 meters (indoor) to about 5 kilometers

(km) (outdoor) [26] in IEEE 802.11a. Wi-Fi-based methods are widely utilized for

indoor localization due to the ubiquitous availability of Wi-Fi networks and Wi-Fi

enabled devices.

2.1.2 Indoor Localization Measurements

Many localization methods are based on Wi-Fi signals for the user’s location

estimation. There are many measurements from Wi-Fi signals including RSS, TOA,

TDOA, AOA, CSI, and RTT. Among these measurements, RSS is the most popular

because it is the easiest parameter to measure.

1) RSS
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RSS is one of the most accessible and popular measurement methods in Wi-Fi-based

indoor localization. RSS refers to the signal power strength received from APs of

Wi-Fi networks at the user devices, whose unit of measurement is milliWatts (mW)

or decibel-milliwatts (dBm). However, RSS is an inaccurate measurement to esti-

mate distance caused by shadowing, fading, reflections, scattering, and refraction,

especially in complex indoor environment.

2) TOA

The principle of TOA-based method is that the distance between Wi-Fi AP and user

device can be calculated according to the speed and propagation time of measured

signal. Because the speed of Wi-Fi signal is the same as that of light (around

300000 km/s), namely it only takes about 20ns for Wi-Fi signals to transmit 6

meters [28]. In Fig. 2.1, TOA (ti) from three different APs (APi, i = 1, 2, 3) is

utilized to estimate distances (di = vti with the signal velocity of v) between APs and

a device. Multilateration is the traditional method of calculating the device location

relative to the APs. However, it requires highly accurate synchronization between

APs and a device. In synchronization, when there is a nanosecond error, the distance

error is 30 cm. Furthermore, performance degradation caused by environmental

impacts (i.e., multipath and NLOS) becomes even more significant [8]. Because it

is the most important and basic cause of indoor localization error.

3) TDOA

TDOA takes advantage of the difference in the propagation time of signals, which

is measured on the device from different APs. TOA technology utilizes absolute

travel time of the signal, which is different from TDOA. The TDOA from at least
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Figure 2.1 . TOA-based indoor local-

ization.

Figure 2.2 . TDOA-based indoor lo-

calization and proximity detection.

three APs is necessary for calculating the device location, which is the intersection

of three (or more) hyperboloids [24]. The principle of location estimation utilizing

three APs is shown in the Fig. 2.2. In this figure, the measurements collected from

the APs are presented as hyperbolas for location estimation. TDOA can solve the

synchronization error problem in certain degree, because it only requires synchro-

nizing between APs. However, the NLOS propagation of Wi-Fi signals has a great

impact on the performance of TDOA-based methods.

4) RTT/ two-way TOA/ Roundtrip TOA

RTT refers to round-trip signal propagation time, which is measured to calculate

the distance between a device and APs. Ranging scheme for both TOA and RTOA

is the same. After receiving the signal from an AP, the device responds to the AP,

which then calculates total RTT. Compared to TOA, RTT doesn’t require highly

accurate synchronization between APs and the device. However, the accuracy of

RTT estimation is affected by the homogeneous error sources of TOA [8]. Meantime,
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the response delay for a device also depends on its electronics and network protocol

implementation, which cannot be ignored for indoor localization [24].

5) AOA

AOA is an indoor localization technology that utilizes receiving antenna array to

estimate the signal propagation direction [28]. It is an enhanced ranging technology,

which is based on measurements of distance and angle. Under ideal circumstances,

it only requires two anchor nodes for location estimation [29]. While in contrast to

RSS-based methods, it requires more accurate calibration and sophisticated hard-

ware, and AOA is on the basis of LOS setting thus is often hard to measure required

data because of multipath effects from indoor surroundings. In Fig. 2.3, AOA (with

the same angle of γ) based on antenna array with the fixed spacing of d can be

utilized to estimate the user location.

6) CSI

CSI-based localization is also one of the enhanced ranging techniques. It is avail-

able to achieve precise estimation of received signal over the entire bandwidth of

signal. Channel impulse response or its Fourier pair (namely, channel frequency

response) is usually utilized by upper layers to calculate CSI. It is based on channel

phase and amplitude response with various central frequencies and between different

transmitting and receiving antennae pairs [30]. And it has higher granularity than

that of RSS. However, it may not be available on off-the-shelf network interface

controllers [8]. Meantime, the complexity of CSI technology is higher than RSS

technology.
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2.1.3 RSS-based Indoor Localization Methods

RSS-based indoor localization methods are divided into geometrical localization

methods and fingerprinting-based methods.

For geometrical localization methods, RSS can be utilized to estimate distances

between mobile devices and Wi-Fi APs. According to statistical analysis, RSS is

negatively correlated with the distance, which is defined in path loss propagation

model. Mostly, the distance d between the mobile device and the Wi-Fi AP is

calculated from log-normal shadowing model [31] as:

RSSi[dB] = RSSi(d0) + 10ηlog(
di
d0

) + nσi, (2.1)

where η is the path loss exponent, and d0 is the reference distance. RSSi(d0) is the

reference path loss from the ith Wi-Fi AP, which is calculated using the path loss

formula. The parameter ni is a zero-mean Gaussian random variable (in dB) with

standard deviation σi. Then the estimated distance can be utilized to calculate the

user location by traditional geometrical methods such as multilateration as shown

in Fig. 2.4.

However, in some situations, it is inevitable to encounter security threats with

malicious AP attacks at Wi-Fi APs deployed. In attack-resistant localization sys-

tems, an attack variable is introduced in RSS model as follows:

RSSi[dB] =


I if there is the ith AP attack,

RSSi(d0) + 10ηlog( di
d0
) + nσi otherwise,

, (2.2)

I ∼ U{−100, 0}
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Figure 2.3 . AOA-based indoor local-

ization.

Figure 2.4 . RSS-based multilateration

method.

where I denotes attack perturbation from the ith Wi-Fi AP, and it is not zero only

when the ith Wi-Fi AP attack is malicious [14]. Therefore, it is tough to realize the

estimation of the geometrical distance in complex indoor environment, especially

when facing security challenges. In these cases, RSS Fingerprinting-based methods

as shown in Figure 2.5 are utilized rather than geometrical methods.

Two types of RSS fingerprinting-based methods are deterministic and probabilis-

tic. In [17], deterministic algorithms such as KNN, sequential minimal optimization,

probabilistic methods, and decision tree including BayesNet and Näıve Bayes, are

machine learning algorithms. Among these algorithms, KNN is superior to all other

methods in estimating location [17]. While in complex environments where data

dimension is high and feature extraction is tough, deep learning technology has

a broad application prospect in improving localization accuracy. In [20], a dis-

criminant and adaptive NN is proposed, which updates the weights based on the
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Figure 2.5 . The principle of Wi-Fi fingerprinting.

information extracted from the collected data (i.e. the discriminant component).

2.2 Deep Learning Technique

The word “deep” means that there are plenty of layers to be utilized to transform

data. Or rather, deep learning is usually structured as multi-layer modules. The

obedience principle of these modules is self-learning of non-linear input-output map-

pings. Each of them converts its input that increases both features’ selectivity and

invariance. With multiple non-linear layers, such as depths of 5 to 15, the network

performs pretty complex functions on its inputs, which are sensitive to important

details at the same time rather than to many separate variations such as the com-

plex environment and dynamic human beings [32]. In indoor localization scenarios,

many researchers utilize deep learning for multiple tasks, such as feature extraction,
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dimension reduction of radio maps, classification, regression, and forecasting of de-

vices’ locations [9]. The basic principle of a typical neural network is introduced,

and deep learning-based methods are discussed.

2.2.1 Basic Principle of a Typical Neural Network

Fig. 2.6 shows a typical NN including one input layer (X), two hidden layers

(H1 and H2) and one output layer (Y), where each layer constitutes a module by

which gradients can be backpropagated. The equations are utilized to calculate the

forward pass in NN. At each layer, the input of layer z (i.e. zk) is calculated with a

weighted sum of the outputs of next layer (i.e. yi). After that a non-linear function

f(.) is utilized to z to calculate the output of this layer (i.e. yk). In brief, bias

terms are omitted. The non-linear functions applied in NN contain the rectified

linear unit (ReLU) f(z) = max(0, z), which is widely utilized in these years, even

the more traditional sigmoid, including the hyperbolic tangent, f(z) = exp(z)−exp(−z)
exp(z)+exp(−z)

and logistic function, f(z) = 1
1+exp(−z)

[32]. Fig. 2.7 shows the back propagation

process of a NN. At the output layer, error E is calculated from the output of NN

(yl) and the true result (ytrue). Then, the error derivative ( ∂E
∂yl

) corresponding to yl

is computed by differentiating a cost function (lk). At each hidden layer, the error

derivative (i.e. ∂E
∂yk

) corresponding to the output of each layer (i.e. yk) is a weighted

sum of the error derivatives (i.e. ∂yk
∂zk

) corresponding to the total inputs (i.e. zk)

calculated from the outputs of the above layer. The error derivative (i.e. ∂E
∂zk

)

corresponding to the output is the error derivative (i.e. ∂E
∂yk

) multiplied by gradient

(i.e. ∂yk
∂zk

) of f(z). For example, if a cost function of unit i is 0.5(yi − ti)
2 (ti is the
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Figure 2.6 . Multilayer neural net-

works.

Figure 2.7 . Backpropagation.

target value), there will be ∂E
∂yi

= yi−ti. Once the ∂E
∂yl

is given, the error-derivative of

the weight wjk on the connection from unit j in the layer below is exactly yj
∂E
∂yl

[32].

2.2.2 Deep Learning-based Indoor Localization Utilizing Wi-Fi RSS Fin-

gerprinting

Many researchers have utilized deep learning for Wi-Fi RSS Fingerprinting-based

indoor localization in recent years. The key point is to find an exact match between

the RSS data and custom grid points on a fingerprint map. However, RSS suf-

fers from multipath effects, environment dynamics, device heterogeneity, database

problem and even privacy and security. So, it is hard to achieve exact match by

the traditional machine learning methods, like KNN and SVM due to limit learning
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ability. Many researchers have studied deep learning-based localization methods.

Multilayer perceptrons (MLPs) [33, 34] and CNNs [33–35] are the baseline deep

learning models, which are widely utilized for RSS fingerprinting-based indoor lo-

calization. In [34], CNN model outperforms MLP (typical DNN) on localization

accuracy in indoor environment. In [33], a one-dimension CNN model (for fea-

ture extraction) combined with MLP model outperforms DNN model for location

estimation. However, learning ability of CNN model is lower than that of Casp-

Net [36] because CapsNet can capture the hierarchical structure of entities in RSS

data. Supervised deep learning methods such as DNN and CNN are utilized for

database with large labeled data. But there are many databases with insufficient la-

beled data or randomly unlabeled data caused by the security concern. In this way,

semi-supervised deep learning methods are more suitable. In particular, Generative

Adversarial Networks (GANs) [37], AutoEncoder (AE) [35, 38–40], SAE [6], Vari-

ational Autoencoder (VAE) [41], and DAE [22] have been employed. These meth-

ods leverage augmented data for indoor localization. Then DNN [22, 37, 38] and

CNN [6, 40] are utilized for location estimation. These deep learning-based methods

have the ability of high computational power and feature extracting, but they are

also energy-consuming with low accuracy. So light-weight and high-accuracy deep

learning-based indoor localization methods are necessary.

2.3 Summary

In order to extract features from RSS data with fluctuations caused by factors

such as multipath effects, noise and environment dynamic, a novel indoor localiza-
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tion method is presented in Chapter 3 [1], which exploits temporal dependency of

RSS time-series data by integrating Kalman filter with DNNs. When considering ex-

tra challenge of data limitation, CapsLoc [2] is designed in Chapter 4 for RSS-based

indoor localization based on CapsNet model. In applications where device hetero-

geneity and real-time requirement are considered together with other challenges,

Edgeloc [3] is proposed in Chapter 5 for RSS-based indoor localization, which is

based on the CapsNet model and edge computing. Security concern makes RSS

data become more randomly available, and fluctuation of testing RSS data set can

be different from that of training RSS data set. In order to solve the above issue,

SE-Loc is proposed in Chapter 6 for security-enhanced indoor localization. Finally,

the thesis is concluded in chapter 7 followed by possible future work.
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Chapter 3

Kalman-DNN: Exploiting Temporal Dependency

of RSS Data with Deep Learning for Resilient

Indoor Localization

With ubiquitous demand for indoor location-based services (ILBSs) and perva-

sive deployment of Wi-Fi hotspots, wireless indoor localization has been widely stud-

ied by utilizing various Wi-Fi signal measurements. Most existing schemes leverage

RSS of Wi-Fi signal to conduct cost-efficient indoor localization. However, RSS data

are not only prone to multi-path effects, but also sensitive to time-varying environ-

mental dynamics, making it quite daunting to achieve robust indoor localization.

In contrast to existing solutions that focus on spatial features of RSS, this chap-

ter exploits temporal dependency of RSS time-series data by integrating Kalman

filter with deep neural networks. In particular, to tame time-varying noises and

preserve valuable temporal features in RSS measurements, this chapter proposes

a time-varying RSS filtering algorithm based on the Kalman filter and a refined

post-processing module. Moreover, a deep learning model based on DNN is fur-

ther utilized for effective feature extraction on one-dimension RSS fingerprints. The

experiment results show that the proposed Kalman-DNN model improves at least

25% localization accuracy in comparison with conventional DNN model. Further-

more, with the localization time as 0.02 millisecond (ms), the Kalman-DNN model

outperforms Kalman-CNN model in localization accuracy by at least 10%.
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3.1 Introduction

With proliferation of portable IoT devices and penetration of wireless networks

in public indoor space, indoor localization has become imperative to support a va-

riety of ILBSs. To facilitate wireless indoor localization, researchers have explored

many short-range communication technologies, including ZigBee, Bluetooth, Wi-Fi,

cellular networks, as well as their combinations [42]. Due to its wide availability and

ubiquitous accessibility, Wi-Fi has become one of the most attractive infrastructures

for indoor localization. In particular, RSS of Wi-Fi has received intensive research

interests from research community in achieving none-line-of-sight indoor localiza-

tion. However, RSS-based indoor localization is inherently vulnerable to multi-path

effects and environmental dynamics, which lead to signal reflections and even signal

fading [43]. The above vulnerabilities may significantly compromise efficiency and

accuracy of Wi-Fi RSS-based indoor localization.

Existing efforts mainly focus on taming external influence on RSS to enhance

the performance of indoor localization. For instance, He et al. proposed a Gaus-

sian regression model to compensate for frequency-dependent shadowing effects and

multi-path in RSS [44]. To further reduce error, Katwe et al. presented an effective

hybridization measurement of time of arrival and RSS [45]. While existing schemes

can improve localization accuracy in some typical indoor scenarios, the fundamental

limit of RSS’s continuous dependency on environmental dynamics is still not fully

addressed yet [46]. To overcome above limitations, RSS fingerprinting has been

extensively applied to enable efficient data collection and radio map construction.
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This chapter explores temporal dependency of RSS data through technologies

of Kalman filter and deep learning. This chapter aims to achieve effective RSS

signal processing and devise an RSS filtering algorithm based on Kalman filter the-

ory. Then, a post-processing module is also proposed to compress RSS time-series

data and reduce computation complexity, where it transforms original RSS input

into dynamic-resistant RSS time-series fingerprints. This chapter exploits further

employ a deep neural network (DNN) to extract useful representations from RSS

time-series used in localization model training stage. This chapter conducts exten-

sive experiments through real-world indoor localization testbed. Results show the

benefits of combining Kalman filtering algorithm with deep learning to process RSS

measurements for IoT-oriented indoor localization.

The rest of this section is organized as follows. Section 3.2 introduces system

architecture of the proposed indoor localization system. Section 3.3 elaborates the

algorithm of Kalman-DNN that exploits temporal dependency of RSS data. Sec-

tion 3.4 presents experimental results. At last, Section 3.5 concludes this chapter.

3.2 Overview of Kalman-DNN System

As shown in Fig. 3.1, the system architecture of Kalman-DNN consists of 5

modules, i.e., data collection module, RSS filtering module, data post-processing

module, online testing module and localization module. Different from existing

studies, this chapter exploits temporal dependency of fingerprints by utilizing RSS

time-series data in feature extraction and model training processes. This chapter

denotes each reference point (RP) as Li(i = 1, 2 . . . I) and use {RSSn
Tk
, . . . , RSSn

Tk+t}
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Figure 3.1 . The system architecture of Kalman-DNN.

to represent raw RSS time-series measured from nth AP in time slot Tk to Tk + t,

where k ∈ N+.

During offline training procedure, raw RSS time-series are pre-processed by the

time-varying RSS filtering algorithm to reduce noises caused by multi-path effects

and environmental dynamics. Then, the filtered RSS time-series are further pro-

cessed and compressed by the post-processing module to decrease computation

complexity. After that, a DNN model learns temporal features from RSS time-

series fingerprints with corresponding labeled locations. For online testing phase,

this chapter utilizes raw RSS time-series collected by mobile users for localization.

The main steps of RSS filtering and post-processing are the same as offline phase.

Note that the trained DNN model with optimized parameters is employed to com-

pute the similarity between the RSS time-series measurements and radio maps in
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Algorithm 1 The Time-varying RSS Filtering Algorithm

Input: The measured RSS value of the current state at time t: y(t); The estimated

RSS value of the previous state at time t-1: x̃(t− 1); The smoothed estimated

error covariance of the previous state at time t-1: P̃ (t− 1); The system process

variance matrix: Q; The system noise covariance matrix: R;

Output: The smoothed estimated RSS value of the current state at time t: x(t);

The smoothed estimated error covariance at time t: P̃ (t);

1: Predict the prior estimate of RSS value at time t: x̃(t|t− 1) by Equation 3.3;

2: Predict the prior estimate of error covariance at the time t: P̃ (t|t − 1) by

Equation 3.4;

3: Predict the gain at time t: K(t) by Equation 3.5;

4: Predict the smoothed estimated error covariance at time t: P̃ (t) by Equation

3.6;

5: Predict the smoothed estimated RSS value at time t: x̃(t) by Equation 3.7;

6: return x̃(t), P̃ (t);

the offline database. Finally, the Kalman-DNN outputs localization results with the

best-match with RSS inputs.

3.3 RSS Filtering, Data Processing and Model Training

3.3.1 Time-varying RSS Filtering Algorithm

As shown in Fig. 3.2, for time T1 and T2, this chapter samples T consecutive RSS

time-series data, respectively. Notation T means consecutive T sampling points as
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Figure 3.2 . The RSS time-series and the corresponding Normally distributed

probability density function (Normpdf) before/after Kalman filtering.

shown in Fig. 3.3, where the solid line represents the raw data, and the dashed

line represents the filtered data. It can be observed from RSS time-series data that

there are different types of fluctuations in RSS values at T1 and T2. Caused by

environmental dynamics, such random and abrupt changes in RSS measurements

can significantly reduce the accuracy of indoor localization. This chapter aims to

tame such fluctuations by proposing a time-varying RSS filtering algorithm based

on Kalman filter. The Kalman filter-based algorithm takes measured RSS time-

series of the current state (i.e., a period of T ) as an input, which is denoted by

y(t) = (RSS1
t , RSS2

t , . . . RSSn
t ) and (t = Tk + 1, Tk + 2 . . . Tk + T ). Then, for

RSS time-series data in the previous state, this chapter denotes its error covariance

matrix as P̃ (t − 1) and utilize it to predict the smoothed values of estimated RSS

time-series of current state x̃(t) = (R̃SS
1

t , R̃SS
2

t , . . . R̃SS
n

t ).

To this end, the state space model for the proposed Kalman filter can be written
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Figure 3.3 . At one location, the RSS time-series collected from several APs at

300 sample time points before/after Kalman filtering.

as

x(t) = x(t− 1) + w(t− 1), (3.1)

y(t) = x(t) + v(t), (3.2)

where x(t) and y(t) are state and measurement variances, respectively. w(t) and

v(t) are the system noise and observation noise with covariance matrices Qn and

Rn, respectively.

This chapter further combines system noise and observation noise to calculate

the estimated RSS time-series of the current state with the following equations:

x̃(t|t− 1) = x̃(t− 1), (3.3)

P̃ (t|t− 1) = P̃ (t− 1) +Q, (3.4)

K(t) = P̃ (t|t− 1)(P̃ (t|t− 1) +R)−1, (3.5)

P̃ (t) = (1−K(t))P̃ (t|t− 1), (3.6)
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x̃(t) = x̃(t|t− 1) +K(t)(y(t)− x̃(t|t− 1)), (3.7)

where x̃(t|t − 1) and P̃ (t|t − 1) represent posteriori state estimate and the error

covariance matrix at time t, given measurements until time t − 1. x̃(t − 1) and

P̃ (t − 1) represent posteriori state estimate and error covariance matrix at time

t− 1, given measurements until time t− 1. K(t) is the Kalman gain, Q and R are

covariances of process and measurement noise, respectively.

Based on the above mathematical equations of a basic linear Kalman filter, this

chapter further devises the time-varying RSS filtering algorithm and its pseudo-code

in Algorithm 1. This chapter presets the initial error covariance matrix P (0) as [1],

the noise covariance matrix Q as [0.001] and the observed noise covariance matrix

R as [0.1].

3.3.2 Data Post-processing

RSS Data Post-processing

This chapter further proposes the post-processing module, which is designed

to compress RSS data and reduce its computation complexity. First, this chapter

derives the mean value of each set of T RSS time-series samples, which is the mean

value of T RSS reading values collected from the same AP at the same place. Then,

this chapter normalizes the calculated RSS values by

ri =


0 RSSi is none,

0.1 ∗ (RSSi −min) otherwise,

(3.8)
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where ri is the normalized RSS value from AP i, RSSi is the raw RSS value from

AP i, and min is the smallest RSS value in all the averaged RSS measurements.

Label Processing

To determine the label of RSS fingerprints at each reference point, this chapter

divides the localization area into a number of zones. Each zone is a grid area with

size of 1.6 × 1.6 m2, which covers 4 RPs to reduce the number classification and

computing complexity. To generate the label for each grid, this chapter adopts One-

Hot Encoding method [47] to map each grid onto a One-Hot vector. Consequently,

each individual grid represents a categorical variable, and the indoor localization

task essentially becomes a classification problem across all grids with ground-truth

fingerprints.

3.3.3 DNN Model Training

As shown in Fig. 3.4, the Kalman-DNN model consists of a multi-layered DNN

model with multiple hidden layers. The proposed DNN consists of three types of

layers, including input layer, hidden layers, and output layer. Based on the output

of the previous layer, a non-linear function of hidden layers is defined as follows.

hl(i) = f(W l(i)hl(i−1)

bl
(i)

), (3.9)

where W l(i) is the matrix of weights, indicating all the synaptic connections between

each neuron of layer l(i−1). Each h neuron of layer l(i), bl
(i)

is the bias vector of

layer l(i), hl(i−1)
is the output of the previous layer l(i−1), and f(·) is the activation

function that calculates the non-linear relationship between layers [32].
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Figure 3.4 . The flowchart of the offline training phase and the architecture and

parameters of the DNN model.

Fig. 3.4 presents the flowchart of the offline training phase for indoor localiza-

tion and the parameters of the DNN model. For parameter tuning, this chapter

conducts a grid search to find the best parameters to improve localization accuracy.

Because it is easy to find the best matching of grid rather than RP’s location, which

means higher possibility to achieve accurate localization. This chapter also trains

DNN model with different parameter settings for comparison purposes. This chapter

chooses the rectified linear (i.e., RELU) function as the activation function for the

input and hidden layers. The output unit’s activation function is the Softmax and

its loss function is the categorical cross-entropy. The Softmax activation function is

given a vector of raw outputs of the neural network and returns a vector of prob-

ability scores. The location classification is a multiclass one, then the output layer
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would have one node per class and a Softmax activation should be utilized. In the

model training process, this chapter employs Adam (Adaptive Moment Estimation)

as the optimizer of the proposed Kalman-DNN model.

3.4 Experimental Study

This chapter implements a real-world indoor localization testbed in the IoT lab

of Beijing University of Posts and Telecommunications, as illustrated in Fig. 3.5. In

this experimental environment, this chapter deploys 6 Wi-Fi APs to cover three lab

rooms and a corridor area (totally 460 m2). To achieve cost-efficient localization,

this chapter places 2 TP-Link wireless APs in each room and set a number of

reference points that are evenly distributed across each room. The distance between

two adjacent RPs is 0.8m and this chapter measures RSS fingerprints at each RP

for 300 times. The final dataset contains over 33, 600 fingerprinting samples, with

60% fingerprints as the training set and the rest 40% as testing set. The data are

collected in the real world, but the localization system is simulated via Python. The

proposed Kalman filter algorithm and DNN model are implemented in the Tensor

Flow framework, using a Dell laptop with Intel Core i7-7600 CPU.

Experiment evaluation indicators. The experiment evaluation indicators of

this chapter include localization error, average localization error, mean localization

time. Localization error is the Euclidean distance between estimated coordinates

and actual ones of the same location. Average localization error is the mean value of

localization error of all testing data. Localization time is the time that one testing

data is processed by all online modules. Mean localization time is the mean time of
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Figure 3.5 . The floor plan of the experiment field.

all testing data.

3.4.1 The Effect of DNN Parameters on Localization Errors

Fig. 3.6 shows the Cumulative Distribution Function (CDF) of localization er-

rors () by Kalman-DNN model with different parameter settings. For instance, the

model parameter 128-128-128-128 indicates the Kalman-DNN model that has 4 fully

connected layers with 128 filters in each layer. Note that the final output layer of

the Kalman-DNN is a fully connected neural network layer. From Fig. 3.6, It can be

observed the localization accuracy is positively correlated to the number of filters in

each layer. For instance, when the model parameter is 128-128-128-128, the local-

ization errors for over 99% of testing data are under 2 m. Moreover, with the same

number of filters, when the number of layers is reduced from 5 to 3, the localization

accuracy significantly drops (e.g., the localization errors are larger than 2 m for over
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of DNN and Kalman-DNN.

8% of the testing results).

3.4.2 Experiment Result of the RSS Filtering Algorithm

Recall from Fig. 3.2 that T RSS time-series starting from T1 and T2 are different

with noises, especially when confronting abrupt fluctuations caused by environmen-

tal dynamics. This chapter leverages a Kalman-based filtering algorithm to tame

the above noises and fluctuations. The experimental results are shown in Fig. 3.7.

This chapter shows average localization errors of conventional DNN model and the

proposed Kalman-DNN model. In particular, when model parameters are set as

8-8-8-8, 16-16-16-16, 32-32-32-32, 64-64-64-64 and 128-128, the proposed Kalman-

DNN model consistently outperforms the basic DNN model with reduction of 0.07

m, 0.2 m, 0.16 m, 0.01 m and 0.08 m in average localization errors, respectively.

Although BUPT testbed has only 6 APs and is in small-scale localization scenarios,
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the proposed Kalman-DNN model has already made a remarkable difference in im-

proving localization accuracy. This chapter also verified the significant improvement

of Kalman-DNN through experiments with large-scale indoor localization datasets,

such as UJIIndoorLoc dataset and Tampere dataset [6].

3.4.3 Performance Comparison of Different Localization Algorithms

To further evaluate the performance of Kalman-DNN that integrates tempo-

ral RSS features with deep neural networks, this chapter compares the localization

performance of DNN, CNN, Kalman-DNN and Kalman-CNN in Fig. 3.8. In this

experiment, this chapter sets the mean localization, i.e., the mean computation time

for an RSS fingerprint input in online testing, as 0.02 milliseconds. The CNN and

Kalman-CNN models both have three layers, with 16 filters for convolutional oper-

ations. Similarly, the DNN and Kalman-DNN models both have three layers, with

128 filters in each layer. First, as shown in Fig. 3.8a, the Kalman-DNN achieves the

best performance with localization errors smaller than 1.13 m with 99% of the cases.

By exploiting temporal dependency of RSS measurements, the Kalman-DNN model

improves at least 25% and 10% in accuracy in comparison with the conventional

DNN model and the Kalman-CNN model, respectively. Second, this chapter fur-

ther studied their performances as shown in Fig. 3.8b. Overall, Kalman-based deep

learning models achieve better localization results with smaller errors than conven-

tional deep learning models. For instance, the Kalman-CNN improves the medium

localization error by 0.2 m in comparison with conventional CNN model. It seems

the Kalman-CNN performs poorer than the Kalman-DNN because its parameter
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Figure 3.8 . The overall performance comparisons among Kalman-DNN and the

baseline methods.

complexity is not enough to realize more useful feature learning for localization.

The above experimental results show that the Kalman filters can effectively tame

the noises in RSS time-series and improve localization accuracy. By exploiting tem-

poral features of RSS measurements, the proposed Kalman-DNN model achieves the

best performance among all other methods in the literature.

3.5 Conclusion

In this section, this chapter proposed a novel indoor localization method utilizing

the temporal dependency of RSS data with DNN for IoT-oriented wireless indoor

localization. The Kalman filter-based RSS filtering algorithm is leveraged to tame

the random noises in RSS time-series data. To further reduce the computation com-

plexity, a post-processing module has been proposed together with a label processing
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module. To efficiently extract robust features, a DNN-based deep learning model is

further applied with online training process. Extensive field experiments have been

conducted using a real-world testbed, and experimental results validate the effec-

tiveness of the proposed Kalman-DNN model. Overall, the Kalman-DNN model can

improve up to 25% localization accuracy in comparison with the conventional DNN

model. In addition, the Kalman-DNN model outperforms the Kalman-CNN model

by 10% in localization accuracy with the mean localization time of 0.02 ms.
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Chapter 4

CapsLoc: A Robust Indoor Localization System

with Wi-Fi Fingerprinting using Capsule

Networks

With the unprecedented demand of location-based services in indoor scenarios,

wireless indoor localization is emerging as an essential technology for mobile users.

While line-of-sight Global Positioning System (GPS) signal is not available in indoor

space, Wi-Fi fingerprinting using RSS has become popular with its ubiquitous ac-

cessibility. Although fingerprinting data can be easily collected by portable mobile

devices, how to achieve robust and efficient indoor localization remains challenging

with two constraints.

First, localization accuracy is degraded by random fluctuation of signals that

comes from multipath effects and noise of RSS signals and environment dynamic.

Second, indoor localization algorithms are time-consuming due to the handcrafting

features and complex filtering on raw data. To achieve high localization accuracy

with Wi-Fi fingerprinting, this chapter proposes CapsLoc, a robust indoor local-

ization system based on capsule networks. Specifically, capsule network model can

efficiently extract hierarchical structures from Wi-Fi fingerprint with three main

components: a convolutional layer, a primary capsule layer and a feature capsule

layer. This chapter conducts real-world experiments to test over 33600 data points.

The experimental results show that CapsLoc can achieve accurate indoor local-
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ization with an average error of 0.68m, which outperforms conventional machine

learning methods (KNN and SVM) and existing deep learning methods (CNN and

SAE-CNN).

4.1 Introduction

localization technology has played a significant role in the era of IoT. With ubiq-

uitous deployment of wireless systems and pervasive use of smart devices, ILBSs,

such as marketing and advertising [48], tracking and navigation [49], interactive and

personalized routing [50], have become essential for smart cities. While GPS signal

is too sensitive to occlusion and it cannot deliver satisfactory ILBSs, many differ-

ent wireless technologies [42] have been utilized in the literature, including Wi-Fi,

Bluetooth, RFID, UWB, radar and cellular networks, etc. Among the above, Wi-Fi

has the widest availability and is supported by the majority of mobile devices, thus

it becomes the most popular radio signal-based technique for indoor localization.

A variety of measurements have been proposed to enable Wi-Fi-based indoor posi-

tioning, including AOA, TOA, CSI and RSS [42]. In recent years, the RSS-based

fingerprinting for localization has received numerous efforts to achieve accurate and

practical Non-Line-of-Sight localization.

The basic rationale of Wi-Fi fingerprinting for localization is that indoor location

can be identified by a record of RSS signatures from surrounding Wi-Fi APs. Ac-

cordingly, fingerprinting-based localization generally consists of two phases [51]: (1)

an offline training phase for RSS fingerprint collection and localization model con-

struction; (2) an online phase for real-time localization by RSS-location mapping.
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For the offline phase, fingerprints are usually collected at evenly distributed reference

points (RPs) across indoor space. While for the online phase, localization systems

employ localization algorithms to find the best match between the fingerprint and

indoor location.

To enable accurate and real-time online localization, a key challenge is to extract

useful and reliable features from fingerprint database, and further develop effective

mapping functions to perform localization. In the past, most of conventional RSS

fingerprint-based localization systems have relied on machine learning algorithms

such as KNN, SVM and Compressive Sensing (CS) [52]. However, these methods

are subject to variations and fluctuations of RSS signals as they can only learn

handcrafted features from fingerprinting data. Furthermore, conventional machine

learning algorithms only have shallow representation spaces, and they typically can-

not attain refined features from floor-level and building-level fingerprinting datasets,

which may have up to hundreds of Wi-Fi APs involved.

To efficiently extract high-dimensional representation from complex fingerprint

data, neural network-based architectures have been proposed recently. The core

idea of deep learning is to learn features from data in an incremental, layer-by-layer

way and jointly develop complex representations. Existing deep learning architec-

tures for indoor localization include DNN, Deep Belief Network (DBN), CNN, SAE

and Recurrent Neural Network (RNN) [53]. Among these architectures, CNN shows

remarkable performance in processing data in the form of arrays by extracting high-

level features with consecutive convolution operations and pooling operations. How-

ever, some valuable spatial information of layer-to-layer neurons may get lost with
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pooling operations (e.g., max pooling) in CNNs. For indoor localization, losing such

information can directly degrade localization accuracy, as RSS-based fingerprints

are spatially distributed and have strong correlations. To address above problem,

Hinton et al. [36] proposed CapsNet as an alternative to CNNs. The Capsules are

composed of neurons that use vectors to learn and store feature information, with

each neuron’s output representing a different property of each feature. Consequently,

CapsNet is efficient in capturing hierarchical structure of entities in input data such

as images. For example, the CapsNet model trained from scratch on multi-MNIST

training data achieves higher test classification accuracy than the convolutional base-

line model [36]. Indoor localization with RSS fingerprinting can also be considered

as a classification problem.

To enhance robustness and accuracy of indoor localization, this chapter proposes

CapsLoc, an indoor localization system by using CapsNet with Wi-Fi fingerprinting

data. In particular, this chapter builds a real-world experimental system of CapsLoc

to test the performance of CapsNet for indoor localization. The experimental results

show that CapsLoc can achieve accurate indoor localization with an average error of

0.68m, which outperforms conventional machine learning methods (KNN and SVM)

and existing deep learning methods (CNN and SAE-CNN).

The remainder of this Chapter is organized as follows. In Section 4.2, this chap-

ter provides a literature review of related work on RSS-based indoor localization

and applications based on CapsNet. Next, this chapter introduces CapsLoc system

in data processing, offline training and online localization in Section 4.4. Then, this

chapter presents the design of using CapsNet for robust indoor localization in Sec-
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tion 4.3. Section 4.5 is about the experimental performance analysis. Finally, this

chapter is summarized in Section 4.6.

4.2 Related Work

4.2.1 Review of Indoor Localization with RSS Fingerprinting

With ubiquitous accessibility of Wi-Fi APs in indoor space, RSS fingerprinting

has become one of the most promising methodologies for indoor localization. Mean-

while, there are still some key challenges [52], such as multipath effects, fluctuation

of RSS signals and the trade-off between data collection and localization accuracy,

which need to be formally addressed when performing localization with RSS fin-

gerprinting. To achieve higher localization accuracy, a variety of machine learning

methods have been developed for indoor localization. For instance, Li et al. [54] pro-

posed a feature-scaling-based KNN algorithm to assign differential weights to signal

differences at different RSS levels with improved localization accuracy. Hong et

al. [55] proposed a device-free passive localization with RSS signals by using multi-

class SVMs to process a combination of spatial and temporal array signal features.

In an early attempt of deep learning for indoor localization, Moreover, Zhang et

al. [56] tamed the variant and unpredictable RSS signals for positioning with a four-

layer DNN, which is pre-trained by Stacked Denoising Autoencoder to learn reliable

features from noisy samples without hand-engineering. Song et al. [6] proposed a

novel CNN combined with SAE to deliver more accurate floor-level localization,

with the model scalable to different indoor environments and datasets. Recently,

RNN and Long Short-Term Memory models have also been adopted to perform
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indoor localization with sequential dataset to enhance the localization accuracy in

large-scale indoor spaces [57].

4.2.2 Capsule Networks

The concept of ‘capsules’ was firstly introduced by Hinton et al. [58]. Sabour et

al. [36] proposed CapsNet with dynamic routing for Capsules. Since then, many

innovative models have been proposed based on CapsNet for different applications,

including feature representation [59], image classification [60], audio processing [61]

and multi-task learning [62]. In [63], Own et al. used SVM model in indoor envi-

ronments and further employed conventional capsule networks to process 2.4G and

5G Wi-Fi signals. In this work, this chapter proposes CapsNet-based solution for

robust and accurate indoor localization with Wi-Fi fingerprinting. The experimental

results validate the effectiveness of CapsNet in extracting high-level features from

Wi-Fi fingerprinting.

4.3 Capsule Networks

The core architecture for CapsNet is shown in Fig. 4.1. The input data is the

preprocessed data as introduced in Subsection 4.4.1. Then, the data is processed

by the convolutional operation with filters in the Convolutional (Conv) Layer. In

the next Primary-Capsule (PC) Layer, the data is further processed by a Conv

with squash activation and then is reshaped. After that, the processing of reshaped

data is routed based on ‘Dynamic Routing’ scheme to derive feature capsules in

Feature-Capsule (FC) Layer. At last, an Auxiliary Layer replaces each capsule in

FC Layer with its length matching the true label in form of One-Hot encoder [47].
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Figure 4.1 . The architecture of CapsNet for indoor localization

This chapter introduces core operations in the CapsNet as follows.

4.3.1 Convolution Operation

Let xi ∈ R be one-dimensional data. The input data vector xj of length n

is represented as xj = [xj
1, x

j
2, . . . , x

j
n], j = 1, 2, . . .M , where M is the number of

training points and n is the number of APs. A convolution operation involves a

filter wj ∈ Rn, which is applied to the vector xj to produce a new feature. For

instance, a feature cji is generated from the vector xj by:

cji = f(wj � xj + bj). (4.1)

Here, notation � is the convolution operation. bj ∈ Rn is a bias term; f is a non-linear

activation function that introduces nonlinearities to CNN and is an ideal method

for multilayer networks to recognize the nonlinear characteristics of input data. The

filter wj is applied to every vector xj, where j is the number of the vector to produce
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a featuremap as[36]:

cj = [cj1, c
j
2, . . . c

j
n]. (4.2)

4.3.2 Dynamic Routing

A capsule is defined as a group of neurons in a CapsNet. It is a vector that

has both direction and length. The direction of capsule captures the entity’s at-

tributes. The length of capsule represents the probability of entity existence. The

shortcomings of CNNs mainly stem from pooling layers. As in CapsNet, these lay-

ers are replaced with a more appropriate standard, namely ‘routing by agreement’.

According to this standard, the outputs are sent to all parent capsules in the layer

below. However, their coupling coefficients are not equal. Each capsule makes an

effort to measure the output of its parent capsules. Once the prediction corresponds

to the practical output of a parent capsule, coupling coefficients between those two

capsules are increased.

ui is taken as the output of capsule i, the prediction of parent capsule j is

calculated as:

ûj|i = Wijui, (4.3)

where ûj|i is the prediction variable of the output of the jth capsule at higher level,

calculated by capsule i of the PC layer; and Wij is the weighting matrix to be

learned by the CapsNet in backward pass. According to the degree of conformation

between the capsules of the layer below and parent capsules, coupling coefficients

cij can be calculated according to the following Softmax function:

cij =
exp(bij)∑
j exp(bij)

, (4.4)
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where bij is the logarithmic probability that whether capsule i is coupled with capsule

j, and it is given as 0 at the early stage of the process, namely routing by agreement.

Accordingly, the input vector for the parent capsule j is calculated as:

Sj =
∑
i

cijûj|i. (4.5)

At last, the non-linear squashing function below is utilized to prevent the output

vectors of Capsules from exceeding, through which the final output of each Capsule

is formed according to its initial vector’ value. The function now is defined in

Equation 4.5:

vj =
||Sj||2

1 + ||Sj||2
Sj

||Sj||
, (4.6)

where Sj is the input vector of Capsule j and vj is the output; ”||” means logical

disjunction operation. The log probabilities should be iterated in the routing process

according to the agreement between vj and ûj|i, based on the fact that once the two

vectors agree, there is a large inner product. So the agreement aij that is used to

iterate log probabilities bij and coupling coefficients cij, is computed as:

aij = vjûj|i. (4.7)

Each capsule k in FC layer is related to a loss function lk, which puts a high loss

value on capsules with long output instantiation parameters when the entity does

not actually exist. The loss function lk is defined as:

lk = Tkmax(0,m+ − ||vk||)2 + λ(1− Tk)max(0, ||vk|| −m−)2, (4.8)

where Tk is 1 whenever class k is actually present and is 0 otherwise. Terms m+,

m−, and λ are the hyper parameters to be learned in the training process[36].
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Figure 4.2 . The framework of CapsLoc indoor localization system

4.4 Overview of the CapsLoc

This section presents an overview of the proposed Capsule Network based indoor

localization for IoT devices. Fig. 4.2, shows the architecture of CapsLoc, as this

chapter utilizes signals from Wi-Fi APs in an indoor environment to create the RSS

fingerprint. This chapter assumes an indoor scenario with n APs where there are k

RPs across the entire space. At each RP, this chapter samples m fingerprints that

are labeled by the two-dimension location (row and column) on the ground. In this

way, the unrolled fingerprint database can be regarded as a huge matrix containing

mk ∗n vectors, where mk = m∗k; notation ∗ is the multiplication operation. Then,

in the offline phase, training data from database is firstly pre-processed by the data

processing module and then further utilized to train CapsNet model. In the online

localization phase, testing data will also be fed into the data processing model and

then the trained CapsNet model to estimate the locations of mobile users.
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4.4.1 Data Preprocessing

1) RSS Data Processing. To enrich the representations of RSS data, this chapter

increases the dimension of original RSS fingerprints by adding a new feature set.

The detailed features are set as follows [64]:

•Raw: The original features that are directly generated from the RSS finger-

prints.

•R: A set of features that represent the mutual differences of RSS values from

different APs. For instance, a basic entry of ri−rj, where i, j ∈ n, can represent the

difference between the RSS value from AP i and AP j. Entirely, the feature arrays

of each individual AP together form a feature matrix R as:

R =



0 r1 − r2 r1 − r3 · · · r1 − rn

r2 − r1 0 r2 − r3 · · · r2 − rn

r3 − r1 r3 − r2 0 · · · r3 − rn

...
...

...
. . .

...

rn − r1 rn − r2 rn − r3 · · · 0


. (4.9)

2) Label Preprocessing. To determine the label of RSS fingerprints at each ref-

erence point, this chapter first divides the localization area into a number of small

zones, i.e., where each zone is a grid area covering 1.6 × 1.6 m2. To generate the

label for each grid, this chapter adopts One-Hot Encoding [47] to map each grid

onto a One-Hot vector. Consequently, each individual grid represents as a categor-

ical variable, and then indoor localization task essentially becomes a classification

problem across all grids with the fingerprints. For example, as shown in Fig. 4.3,
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Figure 4.3 . The label processing example for BUPT database.

when there are 16 reference points (even-numbered), the labeling process works as

below: In the training phase on the edge server, these reference points are classified

into 4 types and are further mapped onto 4 one-hot encodings, as shown in the Ta-

ble. In turn, in the localization phase at edge devices, one-hot encodings generated

by the CapsNet model will be decoded into corresponding X/Y coordinates, so as

to estimate the actual user location.

4.4.2 Offline Training Phase

The preprocessing results of N training samples are further utilized to train the

CapsNet model. After training session, the trained CapsNet model will be capable of

localizing mobile users with their fingerprints as the inputs. Such that the proposed

CapsLoc system can perform real-time positioning during the online localization

phase.

4.4.3 Online Localization Phase

The online phase is to provide real-time indoor localization for mobile users. A

mobile user with unknown location can simply send current measurement of RSS

fingerprint to the CapsLoc system. Then, the real-time data will be preprocessed
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and fed into the trained CapsNet model to determine the most possible grid that

the mobile user belongs to. In this way, the CapsLoc system can use the center of

the corresponding grid as the estimated user location.

4.5 Experiment Setup and Evaluation

4.5.1 Experimental Setup

This chapter implements a real-world indoor localization system of CapsLoc in

the IoT lab at Beijing University of Posts and Telecommunications as illustrated in

Fig. 3.5. To achieve efficient localization, this chapter deploys 6 Wi-Fi APs to cover

an area of 460m2, where there are three lab rooms (each room has two APs) along

with a corridor area. Here, the APs are TP-Link wireless routers. Meanwhile, this

chapter installs a number of RPs that are evenly distributed across the space, with

distance of 0.8m between two adjacent RPs.

4.5.2 Dataset Collection

In real-world indoor space, multi-path effects and fluctuations of RSS signals

always challenge accuracy and stability of indoor localization. In CapsLoc system,

this chapter employs a laptop installed with Phoenix Wi-Fi Collector to collect (soft-

ware for collecting RSS data) and store Wi-Fi fingerprints. To tame the variations

in RSS signals, this chapter samples the RSS fingerprints of 6 APs at each RP for

300 times. These samples are stored in a local database for training and testing

purposes. Overall, this chapter collected 33600 data points, with each data point la-

beled by the location of row and column shown in Fig. 3.5. Thereafter, this chapter
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splits the dataset into two parts: 60% data points for training and 40% data points

for testing.

4.5.3 Baseline Methods

To validate the performance of CapsNet for indoor localization, this chapter fur-

ther employs some conventional machine learning methods and existing deep learn-

ing methods as baselines. Particularly, this chapter performs the same localization

experiments of CapsNet with CNNLoc [5], CNN [65], KNN [54] and SVM [19]. This

chapter implements CapsNet along with the above baseline methods using frame-

work of Tensorflow and Keras in Python 3.6. The hardware platform is a DELL

Latitude 5480 equipped with a 4-thread Intel i7-7600U CPU of 2.9 GHz and 16GB

RAM.

4.5.4 Evaluation Studies

Experiment evaluation indicators. The experiment evaluation indicators

of this chapter include localization error, localization accuracy, mean positioning

time. Localization error is the Euclidean distance between estimated coordinates

and actual ones of the same location. Localization accuracy is the probability that

estimated location classification of testing data is correct. Positioning time is the

time that one testing data is processed by all online modules. Mean positioning

time is the mean time of all testing data.

Parameter Settings: The basic dataflow of CapsNet for indoor localization

is depicted in Fig. 4.4, where the CapsNet in CapsLoc consists of five layers: an

input layer, a convolution layer, a primary capsule layer, a digit capsule layer and
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Figure 4.4 . The graph of layers and dataflow in CapsNet for indoor localization

an output layer. The input and output data of each layer are all specified in tensor

format, and the input and any layer share the tensor with the same shape. The basic

parameters of each individual layer are listed in the Parameters Blocks. For Conv1,

this chapter sets the convolutional kernel size as 3, convolutional strides as 1, ‘ReLU’

as the activation function. This chapter further evaluates the impact of number of

filters (n filters). For Primarycap, this chapter sets the convolutional kernel size

as 2, convolutional strides as 2, ‘Squash’ as the activation function, and further

evaluate the impact of number of channels (n channels) and dimension of capsule

(dim capsule). For Digitcaps (the feature layer), this chapter sets the number of

routing iterations as 3 and number of capsules as the number of grids of the area,
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and further evaluate the impact of dim capsule. Note that, this chapter sets the

same number of dim capsule for both Primarycap and Digitcaps.

Baseline Comparison: First, the distribution of localization errors by different

methods is shown in Fig. 4.5. KNN has low localization performance where more

than 60% testing results have errors ranging from 2m to 8m. Meanwhile, SVM-

based localization method has some improvement, but still 20% testing results are

with errors larger than 2m, and 5% of the testing cases have errors of 3m and

more. In addition, CNN-based localization methods can extract high-level features

and further enhance the localization accuracy, with 80% to 90% testing samples

having errors less than 2m, respectively. It can be seen that SAE-CNN improves

the performance of CNN by encoding raw RSS fingerprints into features as the input

of CNN. Since CapsNet preserves the valuable spatial information for between-layer

neurons, it successfully achieves the best indoor localization results over all baseline

methods, with 99% testing results being within errors lower than 2m and over 40%

testing results being within errors around 1m. To make it clearer, this chapter

shows the results by a box-plot in Fig. 4.6. It is obvious that KNN method has the

biggest distance between maximum error and minimum error as well as the largest

Interquartile Range (IQR, i.e., the distance between first quartile and third quartile).

In comparison with CNN and SAE-CNN, CapsNet has slightly smaller IQR and a

much lower average localization error of 0.68m. The above results also show that

CapsNet outperforms both conventional machine learning methods and state-of-

the-art deep learning methods for the indoor localization system of CapsLoc. Next,

this chapter evaluates the impact of parameter settings of CapsNet on localization
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accuracy and positioning time.

Parameter’s impact on localization accuracy: As this chapter has men-

tioned in parameter settings part, this chapter firstly shows how different parameters

in CapsNet impact localization accuracy in CapsLoc. For the Primarycap layer, this

chapter sets the n channels as 8 and 16 for evaluation purposes. In the meantime,

this chapter tunes the dim capsule (i.e., the dimension of the output vectors by the

capsules) from 8 to 16 and 32. Then, this chapter conducts a grid search over 32,

64, 128, 256, 512, 1024 for the n filters in Conv1 layer. The evaluation results of

parameter’s impact on localization accuracy are presented in Fig. 4.7. First, overall

localization accuracy improves stably with larger n filters in Conv1 layer. Mean-

while, as the n channels increases, localization accuracy has a slight enhancement.

Second, the dim capsule has a direct impact on the indoor localization accuracy,

since that CapsNet shows up to 10% accuracy improvement in both subfigures when

the dim capsule is 8 and 32, respectively. However, with the increasing n filters in



62

32 64 128 256 512 1024

Number of Filters in Conv1 Layer

0.7

0.75

0.8

0.85

0.9

0.95

1
L

o
c

a
li

z
a

ti
o

n
 A

c
c

u
ra

c
y

dim_capsule=8

dim_capsule=16

dim_capsule=32

(a) Primarycap layer with 8 channels
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Figure 4.7 . Comparison of localization accuracy by CapsLoc with 8 channels and

16 channels

Conv1 layer, such gap generally shrinks to below 5%. The above evaluations give us

an insight of contributions of different components in CapsNet, while the trade-off

between localization accuracy and parameter settings is further investigated in the

following.

Parameter’s impact on mean positioning time: Similar to the scenarios

of evaluations on localization accuracy, this chapter sets the n channels of Prima-

rycap layer as 8 and 16, respectively, with other parameters using the same tuning

space. Since the positioning time would directly influence the user experience of

an indoor localization system, in this section, this chapter explores the impact of

various parameters on the mean positioning time of CapsNet. As shown in Fig. 4.8a

and Fig. 4.8b, positioning time generally increases with increased n channels in

Primarycap layer, dim capsule and n filters in Conv1 layer. Therefore, by jointly

considering the performance on localization accuracy in Fig. 4.7, this chapter finds
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Figure 4.8 . Comparison of positioning time by CapsLoc with 8 channels and 16

channels

a CapsNet with 512 filters in Conv1 layer, 32 capsules and the dim capsule of 32,

can achieve the best trade-off between localization accuracy and positioning time

(e.g., 98% accuracy within an average time of 0.5 ms).

4.6 Summary

This chapter proposed the CapsLoc, a robust indoor localization system with Wi-

Fi fingerprinting using CapsNet, which can overcome the typical challenges. The

experimental results validate the effectiveness of CapsNet, which outperforms the

CNN-based indoor localization methods and conventional KNN-based and SVM-

based methodologies. With extensive experimental results, it is believed to be

worthwhile to preserve spatial hierarchies in extracting high-level features from RSS

fingerprint dataset for high-accuracy indoor localization.
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Chapter 5

EdgeLoc: Capsule Network based Indoor

Localization towards Heterogeneous IoT Edge

Devices

Indoor localization has become an essential demand driven by ILBSs for mobile

users. With the rising of IoT applications and services, heterogeneous smartphones

and wearables have become ubiquitous. However, ILBSs for heterogeneous IoT

devices confront significant challenges, such as RSS variances caused by the super-

imposed factors (hardware heterogeneity, energy constraint, and database related

problem, which is described in Section1.2), and other classic factors with wireless

communications (multipath reflections and environment dynamics).

In this Chapter, EdgeLoc is presented, which is a robust and real-time indoor

localization system for heterogeneous IoT devices by solving the above challenges.

In particular, RSS fingerprinting data of Wi-Fi is employed for localization by tack-

ling the heterogeneity of IoT devices in two folds: first, feature-level and signal-level

solutions are presented to address the problem of random RSS variances; at the

feature level, this chapter proposes a novel capsule neural network model to effi-

ciently extract incremental features from RSS fingerprinting data. At the signal

level, a multi-step data-flow is further devised to convert RSS fingerprints to image-

like data, which utilizes feature matrix to reduce absolute sensing errors introduced

by device heterogeneity. Second, an edge-IoT framework is designed to utilize edge
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server to train deep learning model and further support real-time localization for

heterogeneous IoT devices. Extensive field experiments with over 33,600 data points

are conducted to validate the effectiveness of EdgeLoc with a large-scale Wi-Fi fin-

gerprint dataset. The results show that EdgeLoc outperforms the existing SAE-CNN

method in localization accuracy by up to 14.4%, with an average error of 0.68 m

and an average positioning time of 2.05 ms.

5.1 Introduction

With the ubiquitous deployment of Wi-Fi networks and pervasive use of portable

smart devices, ILBSs, such as mobile advertising [66], navigation [67], and interac-

tive routing [68], are prevailing as part of smart city solutions. As a fundamental

prerequisite for ILBSs, indoor localization is considered as a significant necessity.

Since GPS signal is susceptible to occlusion (e.g., buildings), it cannot provide in-

door localization service. In contrast, Wi-Fi networks are widely available in smart

buildings and supported by smart devices, thereby has become a promising tech-

nology to enable indoor localization [30]. Recently, considerable efforts have been

made in Wi-Fi-based signal strength fingerprinting (RSS) to achieve NLOS indoor

localization. Intuitively, it is generally assumed that an indoor location can be iden-

tified based on a unique signal vector of RSS values measured from different Wi-Fi

APs [52]. Fingerprinting-based localization generally consists of two phases [51]:

(1) an offline phase for data collection, fingerprint database construction and model

training; (2) an online phase for indoor localization through mapping users onto a

radio map [42].
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While conventional RSS fingerprint-based approaches use the same type of de-

vices for training and testing models, heterogeneity of IoT devices poses significant

challenges to indoor localization [69]. With different signal measuring sensitivi-

ties, RSS values measured from heterogeneous IoT devices fluctuate even at the

same locations, thereby causing mismatch problems in cross-device fingerprinting

database [70]. In other words, random variances of RSS values are caused not only

by multipath effects from complex indoor environments [71], but also by different

hardware specifications of IoT devices. In addition, computation capacity varies

from device to device in heterogeneous IoT systems, which makes it hard to guaran-

tee real-time calculation of localization. Consequently, both model training (offline)

and real-time localization (online) phases of fingerprint-based localization are influ-

enced, leading to unfavorable errors and positioning delays in localization service.

To this end, two major challenges need to be addressed for indoor localization

with IoT device heterogeneity.

� Challenge 1: Taming cross-device fingerprint with random variances : Mul-

tipath effect of Wi-Fi signals is ubiquitous in indoor scenarios [72], which ul-

timately causes random fluctuations of RSS. In the meantime, RSS variances

caused by IoT heterogeneity need to be further eliminated. While existing

work has proposed signal-level calibrations for RSS measurements [73–75], the

requirement of localization accuracy calls for more comprehensive solutions to

make cross-device fingerprint compatible.

� Challenge 2: Locating heterogeneous devices in real-time: ILBSs have rigor-
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ous instantaneity requirements of localization [76–78]. However, the difficulty

of delivering real-time localization is increased by computation capacity dif-

ference among heterogeneous devices. Deep neural network models generally

have tens of thousands of or millions of parameters to learn, thus it becomes

much more daunting to achieve deep learning-based indoor localization with

heterogeneous devices in real-time.

To tackle the above challenges, EdgeLoc, a robust and real-time indoor local-

ization system towards heterogeneous edge devices of IoT, is designed and imple-

mented. Firstly, in Challenge 1, RSS data from heterogeneous devices are processed

at both feature level and signal level. At the feature level, a deep learning model

is leveraged to automatically extract multi-level features from cross-device finger-

printing data. In specific, noises in cross-device fingerprints are tamed by utilizing

a CapsNet to learn high-dimensional representations from complex fingerprint data.

While deep learning-based CNN shows remarkable performance in extracting high-

level features, some valuable spatial information of layer-to-layer neurons may be

lost through pooling operations [79]. For cross-device fingerprints, missing such in-

formation can directly degrade localization accuracy, as RSS-based fingerprints are

spatially distributed and have strong correlations [2]. Therefore, a novel CapsNet

is designed to efficiently capture the hierarchical features in cross-device RSS fin-

gerprinting data. In this CapsNet model, capsules are composed of neurons that

learn and store feature information, with each neuron’s output representing the

unique property of the same feature [58]. At the signal level, a two-dimensional

Signal Strength Difference (SSD) in feature matrix is devised to represent mutual
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differences among RSS measurements from different APs. Rather than utilizing the

original RSS as a location fingerprint, SSD provides a more stable location signature

for any mobile device irrespective of its hardware specification [80]. In addition, the

differences in feature matrix would expand feature dimension and further facilitate

the CapsNet model to learn valuable features.

Secondly, to address the second challenge above, a hierarchical edge-IoT architec-

ture is proposed to utilize computation resource of an edge server to meet real-time

localization requirement. An edge server has a local database to store RSS data and

trained localization model [81]. Once a mobile device senses its RSS fingerprint,

it can acquire optimized model parameters from an edge server and leverage the

well-trained model to compute its own location in real-time [82].

The contributions of this work are summarized as follows:

� EdgeLoc, a real-time and high-accurate localization system taking heteroge-

neous IoT devices into consideration is proposed. To the best of the knowledge,

this is the first study to combine edge computing with CapsNets to tame device

heterogeneity of indoor localization.

� The problem of random variances of RSS data collected at heterogeneous de-

vices is solved at both signal level and feature level to find the best CapsNet

model with training data to maintain robustness and accuracy of indoor lo-

calization. At the feature level, a capsule neural network-based deep learning

model is proposed to efficiently capture the hierarchical representations from

cross-device fingerprinting data. At the signal level, a two-dimensional feature
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matrix is constructed with mutual SSD as the input of CapsNet.

� The method leverages the edge-IoT framework to build a real-world indoor

localization system. The architecture of edge-IoT framework is hierarchical,

which consists of edge server, edge devices, and Wi-Fi APs for real-time indoor

localization. In particular, an edge server performs model training and offloads

optimized parameters to heterogeneous devices. Therefore, heterogeneous IoT

devices are free from computation-costly model training and can only focus on

real-time localization with one-hop communication delay and low computation

complexity.

� Extensive evaluations are conducted on the EdgeLoc system with a real-world

field experiment and a large-scale fingerprinting dataset (i.e., UJIIndoorLoc

dataset). The results demonstrate that EdgeLoc achieves 98.5% localization

accuracy with heterogeneous IoT devices by combining edge computing with

deep learning, with an average error of 0.68 m and an average positioning time

of 2.05 ms.

The rest of this Chapter is organized as follows: Section 5.2 provides state-of-the-

art literature review on edge computing, indoor localization and capsule networks.

The architecture and dataflow of the EdgeLoc system are presented in Section 5.3

and Section 5.4, respectively. Section 5.5 presents the experimental results from

implemented EdgeLoc system with comprehensive analysis. Finally, Section 5.6

concludes this Chapter.
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5.2 Related Work

In this section, the related work on indoor localization is discussed including clas-

sic wireless indoor localization methods and RSS-based Wi-Fi fingerprinting meth-

ods.

Wireless Indoor Localization. Indoor localization has received numerous re-

search efforts in the past decades and can be divided into two sub-domains: device-

based localization and device-free localization [42]. In device-based localization, a

target equipped with a wireless device (e.g., a smartphone) can be located through

wireless signals sent from other terminals (e.g., Wi-Fi APs) [83]. In contrast, device-

free localization methodologies are less intrusive and can identify locations of target

entities via their signal reflections. Overall, various wireless signals support both

device-based and device-free indoor localization [51], including Wi-Fi, acoustics, FM

radios, Bluetooth, cellular signals, UWB radar, RFID, and LoRa etc. Wi-Fi-based

indoor localization is the most ubiquitous approach and Wi-Fi technology provides

multiple location-related measurements, such as TOA, AOA, RSS and CSI [84]. The

work utilizes the RSS for indoor localization in a novel way that image-like finger-

prints are created to enrich the representations of original input data. Moreover,

this chapter applies edge computing method in RSS-based indoor localization for

efficient location computing with a massive amount of fingerprinting data.

RSS-based Wi-Fi Fingerprinting for Indoor localization. The received

signal strength of Wi-Fi has the advantage of easy accessibility, NLOS and low cost,

making it feasible to enable wireless indoor localization [24]. With the intensive
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deployment of Wi-Fi networks and the complex indoor environment, multi-path

effect, device heterogeneity and signal variation can significantly influence RSS and

degrade the performance of conventional RSS-based distance estimation for indoor

localization [43]. Consequently, the RSS-based fingerprinting for indoor localization

is proposed by leveraging a unique signal vector of RSS values as the label for each

location [43]. The basic procedure of indoor localization with Wi-Fi RSS fingerprints

consists of an offline phase to establish radio maps and an online phase to map the

RSS measurement onto a corresponding location in the radio map. Various machine

learning-based and deep learning-based methods have been developed for RSS-based

indoor localization [6, 64, 85]. For instance, Felix et al. used DNN and DBN to

reduce errors in the dynamic indoor environment for localization [85]. Moreover,

Song et al. proposed a scalable neural network model by combining CNN with

SAE to deliver multi-building and multi-floor localization [6]. Different from the

above existing solutions, this paper explores cross-device fingerprints at the signal

level and the feature level. In addition, a capsule neural network and an edge-IoT

framework are proposed to learn high-level spatial features from RSS fingerprints

among heterogeneous IoT devices to achieve robust and real-time indoor localization.

5.3 The Architecture of Edge-IoT Framework for Heteroge-

neous IoT Devices

The system architecture of EdgeLoc is constructed for real-time indoor localiza-

tion with heterogeneous IoT devices is shown in Fig. 5.1. EdgeLoc consists of three

components: Wi-Fi APs, edge devices, and edge server. The details of the above
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Figure 5.1 . The edge-IoT framework for real-time indoor localization towards

heterogeneous IoT devices.

components are introduced as follows.

Edge Server: The edge server consists of a local database and a control center

for edge-IoT indoor localization. The edge server is mainly responsible for data

storage, data processing, and model training. Particularly, since the training process

of the deep learning model is complicated and costly for edge devices, the CapsNet

model is trained on the edge server. When the local database is updated, the

parameter set is fed into the training model for re-training. For an edge device

requesting localization service, the edge server will download the well-trained model

parameters to the edge device. After that, each edge device can have its own model

for light-weight localization.

Edge Devices: Heterogeneous IoT devices are ubiquitous with Wi-Fi connec-
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tions in various indoor scenarios, and can perform edge computing tasks (e.g., in-

door localization) for mobile users. These devices, including smartphones, watches,

tablets, and bands, generally have limited resources for computation and storage.

Hence, edge IoT devices can only execute light-weight tasks for indoor localization,

such as data collection, data processing, and location computation. It is also not fea-

sible to perform model training on these edge devices [82]. As illustrated in Fig. 5.1,

the edge devices collect Wi-Fi RSS data and leverage the optimized parameters

of the deep learning model from the edge server for localization computation. In

the experiments, a Raspberry Pi and an Android smartphone are used to test and

verify these functions including light-weight data processing and computation for

indoor localization. Note that the RSS fingerprints in the database are collected

from heterogeneous IoT devices.

Wi-Fi APs: Wireless APs are the key components in EdgeLoc framework for

indoor localization. Generally, Wi-Fi APs broadcast beacon frames to advertise

their presence in the network (typically 100 ms per transmission). Upon scanning

the channels to receive beacon information from surrounding Wi-Fi APs, mobile

devices further calculate RSS from each AP [81]. RSS fingerprinting leverages RSS

values (e.g., a vector containing a series of RSS data) from multiple Wi-Fi APs

as a unique fingerprint of the current location (e.g., reference point). With RSS

fingerprints from different locations stored in a local database, the location of the

edge device (user reference point) can be estimated by finding the best match of its

RSS measurement vector and the fingerprints of the anchor reference point [86].
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Figure 5.2 . The dataflow of EdgeLoc from the perspective of an edge-IoT platform.

5.4 The System Dataflow

In this section, the dataflow of the EdgeLoc system is described. As shown

in Fig. 5.2. the overall dataflow involves two phases, i.e., computation on the edge

server and computation at edge devices.

For computation on the edge server, RSS fingerprint dataset is stored in a local

database. The local database has the full historical RSS fingerprint data collected

by the heterogeneous IoT devices. The raw data samples are then processed by the

preprocessing module to construct the feature matrix. After that, the edge server

starts training the deep learning model (CapsNet) with the labeled data to optimize

model parameters for fingerprint-based indoor localization. For computation at edge

devices, the RSS fingerprints are first collected by edge devices and are sent to the

data preprocessing module. During the localization step, an edge device downloads
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the optimized model parameters from the edge server and employs the well-trained

CapsNet model to perform real-time indoor localization.

The critical idea of system dataflow is to convert the RSS vector into the image-

like data. The processed values of the vector correspond to the gray-scale in the im-

age, which can directly reveal the influence of the indoor environment. Fig. 5.3 shows

gray-scale images of normalized RSS vectors from the UJIIndoorLoc dataset [87],

where fingerprints are collected from 25 heterogeneous Android devices. These de-

vices are utilized to collect RSS data in different place at different time. Here,

the dimensions of gray-scale images are set as the closest square to the number of

selected APs for indoor localization [14]. For instance, the original RSS vector in

Fig. 5.3 consists of 40 APs, so that the gray-scale image has 49 (closest square to 40)

pixels. Correspondingly, the dimensions of the image are set to 7×7, where 9 pixels

with zero intensity are padded at the end of the original RSS vector to increase the

size from 40 to 49. By following the above procedure, RSS fingerprinting images in

Fig. 5.3 are converted from the normalized vectors at the same location, collected by

Android devices of numbers 0, 9, 13, and 15. These images carry the most relevant

features that can be learned by the proposed CapsNet model for indoor localization,

such as the hierarchical feature of RSS data collected by various devices. However,

some features in image-like RSS data still contain fluctuations caused by dynamic

environment or multipath effects. The data preprocessing procedures as described in

Section 4.4.1 are proposed to further improve the representativeness of input data.
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Figure 5.3 . The gray-scale image of normalized RSS vectors of 40 APs, sampled

at the same location by different Android devices. Images (a) and (c): data collected

device 13; Images (e) and (f): data collected device 15; image (b) and (d): data

collected by devices 0 and 9, respectively.

5.4.1 Dataflow in Model Training on the Edge Server

The flowchart of the training phase on the edge server is shown in Fig. 5.4. This

subsection introduces the dataflow and parameters of the CapsNet model from the

input to the output as follows:

� The input layer takes the feature matrix R into the model, which is down-

sampled to the size of n× n.

� The second layer is a Conv layer, where the size of the convolution kernel is

3× 3 and the stride is 1. Here, the number of filters in the CNN layer is to be

learned.

� The third layer is a PC layer. Similarly, the kernel for the convolutional
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Figure 5.4 . The flowchart of the proposed methodology and the

dataflow/parameters in the CapsNet model.

operation in this layer is 2 × 2, but the stride is 2. The number of channels

(i.e., filters) and the dimension of the capsule in this layer are to be learned.

� The fourth layer is a FC layer, where the number of capsules is equal to the

number of grids in the experimental area (as illustrated in Section 4.4.1). The

dimension of a capsule here is the same as that in the PC layer.

� The last layer is the output layer, which replaces each capsule with its length

to match the label’s shape. The dimension of the output is the same as in the

FC layer.
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5.4.2 RSS Fingerprinting Data

The method utilizes RSS data collected from Wi-Fi APs in an indoor environ-

ment to create an RSS fingerprint database. Assuming that there are n APs and k

reference points across the indoor space, at each point, r RSS samples are collected.

Each RSS sample is labeled by the two-dimension location information (i.e., row

and column) as the ground-truth. In this way, the unrolled fingerprint database can

be considered a huge matrix with m× n vectors (m = r ∗ k).

5.5 Experimental Studies

In experimental studies, a prototype system of EdgeLoc is deployed in Building 1

at Beijing University of Posts and Telecommunications. The floor plan and deployed

Wi-Fi APs are illustrated in Fig. 3.5 as shown in Section 3.4.

5.5.1 Experimental Setup

System Setup. As illustrated in Fig. 5.5, a Dell Latitude 5480 laptop is em-

ployed as edge server, with a Raspberry Pi 3 and a Redmi smartphone working as

edge IoT devices. The edge server has a 4-thread Intel i7-7600U CPU of 2.9 GHz and

16GB RAM. For edge IoT devices, the Raspberry Pi has a 64-bit quad-core ARMv8

CPU and the Redmi smartphone is equipped with a 64-bit Qualcomm Kryo 470

CPU. The localization model of EdgeLoc is implemented on Keras framework of

TensorFlow using Python 3.6.

Data Collection. In a typical indoor environment, fluctuations of measured

RSS signals always reduce the accuracy and stability of indoor localization. BUPT
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Figure 5.5 . The system implementation of EdgeLoc.

database is collected as shown in Section 4.5.2. However, UJIIndoorLoc RSS database

are collected from edge devices rather than laptop because device heterogeneity

problem is considered.

Baseline Methods. To fully evaluate the performance of EdgeLoc, represen-

tative baseline methods of indoor localization are adopted for comparison as shown

in Section 4.5.3.

Experiment evaluation indicators. The experiment evaluation indicators of

this chapter include localization error, average localization error, localization accu-

racy, mean positioning(prediction) time. Localization error is the Euclidean distance

between estimated coordinates and actual ones of the same location. Average local-

ization error is the mean value of localization error of all testing data. Localization

accuracy is the probability that estimated location classification of testing data is
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correct. Positioning time is the time that one testing data is processed by all online

modules. Mean positioning time is the mean time of all testing data.

Parameter Settings. The dataflow of the CapsNet model is presented in

Fig. 5.4. The input and the output of each layer are tensors that share the same

data format. The main parameters of each layer are listed in the Parameters block.

In specific, for the Conv1 layer, the convolutional kernel size is set as 3, the con-

volutional stride is set as 1, and the activation function is ‘ReLU’. The impact of

different numbers of filters (n filters) is evaluated in experiments. For the PC layer,

the convolutional kernel size is set as 2, the convolutional stride is set as 2, and

the activation function is ‘Squash’. Similarly, the impact of the numbers of chan-

nels (n channels) and the dimension of the capsule (dim capsule) are studied. For

the FC layer, the number of routing iterations is set to 3, the number of capsules

equals the number of grids in the localization area and the impact of dim capsule

are evaluated. Note that the values of dim capsule for both PC and FC layers are

the same.

5.5.2 Performance on BUPT Database at the IoT Edge Devices

Overall Localization Performance. The performance of EdgeLoc in compar-

ison with other baseline methods is shown in Fig. 5.6. Overall, EdgeLoc outperforms

all the baseline methods, where 99% of testing results are within errors of lower than

2 m, and over 40% of testing samples are with errors of around 1 m. In contrast,

as shown in the Cumulative Distribution Function (CDF) distribution of Fig. 5.6a,

FS-kNN [54] has the most unsatisfactory performance with more than 60% local-
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Figure 5.6 . Comparison of localization accuracy by EdgeLoc with 8 channels and

16 channels.

ization errors from 2 m up to 8 m. For SVM [19], nearly 20% of testing results

are with errors larger than 2 m and 5% of testing results are with errors larger

than 3 m. Moreover, CNN [65] extracts high-level features to enhance localization

accuracy, resulting in less than 2 m in 80% of testing data. SAE-CNN [5] further

improves the performance by encoding raw RSS fingerprints into high-level features

for CNN. Fig. 5.6b further depicts a box-plot for the localization results. Compared

with CNN and SAE-CNN, the proposed EdgeLoc has the smallest IQR (i.e., the

distance between first quartile and third quartile) and the lowest median localization

error of 0.68 m. In contrast, KNN-based method shows the worst performance with

the largest IQR and the highest median error. As the existing baseline methods,

CNN and SAE-CNN models have similar performance to EdgeLoc overall except for

higher median errors. The above results show that by preserving valuable spatial
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RSS fingerprinting information in between-layer neurons, EdgeLoc is superior to

conventional machine learning models and existing deep learning models.

To achieve the best trade-off of EdgeLoc’s model parameters, localization accu-

racy and positioning time are evaluated, respectively. Before tuning parameters of

the CapsNet model, Fig. 5.7 visualizes the localization accuracy of EdgeLoc in the

training session and testing session. It shows that EdgeLoc can achieve over 90%

localization accuracy after 8 epochs for both training data and testing data.

Parameters’ impact on the localization accuracy: In the PC layer, the

number of channels (i.e., n channels) is set as 8 and 16 for evaluation, respectively.

The dimension of the capsules (i.e., dim capsule) ranges from 8 to 16 and 32. More-

over, a grid search is then conducted for the number of filters (i.e., n filters) in

the Conv1 layer, over the parameter set of {32, 64, 128, 256, 512, 1024}. Fig. 5.8

shows the evaluation results on the parameter’s impact on localization accuracy.

First, the overall localization accuracy improves steadily with a larger n filter in the

Conv1 layer. Meanwhile, as the n channels increases from 8 to 16, the localization



83

32 64 128 256 512 1024

Number of Filters in Conv1 Layer

0.7

0.75

0.8

0.85

0.9

0.95

1
L

o
c

a
li

z
a

ti
o

n
 A

c
c

u
ra

c
y

dim_capsule=8

dim_capsule=16

dim_capsule=32

(a) PC layer with 8 channels

32 64 128 256 512 1024

Number of Filters in Conv1 Layer

0.7

0.75

0.8

0.85

0.9

0.95

1

L
o

c
a

li
z
a

ti
o

n
 A

c
c

u
ra

c
y

dim_capsule=8

dim_capsule=16

dim_capsule=32

(b) PC layer with 16 channels

Figure 5.8 . Comparison of localization accuracy by EdgeLoc with 8 channels and

16 channels.

accuracy is not significantly enhanced. Second, the dim capsule directly impacts

the indoor localization accuracy, as EdgeLoc shows an improvement of up to 10%

in Fig. 5.8a and Fig. 5.8b. Meanwhile, with the increasing value of n filters in the

Conv1 layer, the improvement of localization accuracy shrinks to nearly 5%. The

above evaluations give an insight into the contributions of different components in

EdgeLoc, where the best setting of EdgeLoc is with 64 filters in the Conv1 layer and

8 capsules, with a dimension of 16 in each capsule in the settings.

Fig. 5.9 shows the localization accuracy of EdgeLoc with different training sam-

ples and different batch sizes during the training process, where ”batch sizes” means

the size of each batch of data. Here, β denotes the size of the training samples in pro-

portion to the overall RSS fingerprinting dataset. As revealed by the experimental

results in Fig. 5.9, with a larger size of the training samples, the overall localization

accuracy significantly improves (e.g., up to 7.2% when batch size is 50). Moreover,
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taking β = 0.5 as an example, the performance of EdgeLoc decreases from 0.96 to

0.9 with batch sizes of 20 and 50 accordingly.

Parameters’ impact on the mean positioning time: Similar to the eval-

uation of localization accuracy, two cases are tested, where the n channels of the

PC layer are 8 and 16, and with other parameters remaining the same. As shown

in Fig. 5.10a and Fig. 5.10b, the positioning time has positive correlations to the

n channels in the PC layer, larger dim capsule, and larger n filters in the Conv1

layer.

Fig. 5.11 depicts the mean positioning time of the EdgeLoc, where CapsNet

model is with 8 channels, 8-dimension capsules and varying numbers of Conv1 filters.

Here, the positioning time is strongly correlated to the number of filters in the Conv1

layer. The reason is that the Conv1 layer has a more powerful representation learning

capability with larger filters, thereby improving the response time in calculating the

matched reference point from the fingerprinting database [5].
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channels.
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In addition, Table 5.1 shows the mean positioning time vs. batch size, where

EdgeLoc is with 64 filters in the Conv1 layer, 8 capsules with 16-dimension at the

edge. When the batch size becomes more extensive, the mean positioning time is

reduced from 2.05 ms to 1.60 ms.

To this end, by jointly considering the performance of localization accuracy and

the mean positioning time, the EdgeLoc model with 1024 filters in the Conv1 layer

and 8 capsules with 16-dimension can achieve the best trade-off between localization
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Table 5.1 : The mean positioning time of EdgeLoc vs. batch size.

Batch Size 20 30 40 50

Mean Positioning Time (ms) 2.05 1.85 1.72 1.60
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Parameters of the CapsNet Model in Heterogeneous Devices
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Figure 5.12 . The mean positioning time by different devices with different model

parameters on BUPT dataset.

accuracy and positioning time on the edge server, with the localization accuracy of

98.5% and the average positioning time of 2.05 ms.

Impact of Device Heterogeneity on Localization Time: The last exper-

iment compares the localization time of two heterogeneous IoT devices with the

edge server using BUPT dataset. In Fig. 5.12, a Raspberry Pi and a Redmi K30

smartphone are employed as two edge devices to perform indoor localization tasks.

Note that for the same parameter setting on the above two types of devices, Edge-

Loc has the same localization accuracy and demonstrates its scalability towards

heterogeneous IoT devices. For example, combination of ‘8-16-1024’ means that
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parameter setting in CapsNet model is: n channels = 8, dim capsule = 16, and

n filters = 1024. Due to different computation capabilities, edge devices show

higher positioning time than the edge server (e.g., a Dell laptop). Similarly, as

the Redmi K30 smartphone has better computation power than the Raspberry Pi,

it only needs half of the computation time of the Raspberry Pi’s. Nevertheless,

the average computation time for all devices is only within a few milliseconds. It

further validates the effectiveness of the proposed edge-IoT framework for indoor

localization with heterogeneous IoT devices.

5.5.3 Extensive Experiments on the UJIIndoorLoc Dataset at the IoT

Edge Devices

Scalability of the CapsNet on the UJIIndoorLoc dataset: To further

study the scalability of EdgeLoc, UJIIndoorLoc dataset is applied for performance

evaluation [87]. UJIIndoorLoc dataset covers three different buildings (with ID 0,

1, and 2) of more than 110,000 m2 indoor areas, with 19,937 training samples and

1111 test samples of RSS fingerprints. These samples are collected by heterogeneous

IoT devices (25 Android devices) and contain random variances. In particular, the

Building 0 from UJIIndoorLoc dataset is chosen to evaluate EdgeLoc and the top-40

APs (out of a total 520 APs) are selected to characterize RSS fingerprints by ranking

all APs’ frequency of occurrence in descending order. The localization performance

of all baseline methods is presented in Table 5.2, where term ”level” is the level

number of the building. EdgeLoc achieves the best localization performance and

outperforms the existing SAE-CNN [5] by up to 14.4% at level 3.
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Table 5.2 : The average localization errors (m) of various models on the UJIIndoor-

Loc dataset.

Models

Level
0 1 2 3 all

EdgeLoc 8.28 7.36 8.32 7.75 7.93

KNN [54] 8.43 7.50 8.61 7.86 8.10

SVM [19] 8.85 7.68 9.49 8.14 8.54

CNN [65] 8.59 8.15 8.85 7.79 8.35

SAE-CNN [5] 8.43 8.27 9.12 9.05 8.72

Impact of the number of Wi-Fi APs on the localization accuracy for

the UJIIndoorLoc dataset: Table 5.3 shows the average localization errors of

EdgeLoc by adopting different numbers of APs in the UJIIndoorLoc dataset for in-

door localization. The 520 APs are ranked in descending order by their frequency of

occurrence and this chapter selects the top 20, 30, 40, and 50 APs to generate finger-

print data, respectively. As revealed in Table 5.3, with more APs, EdgeLoc shows

higher accuracy in performing localization. Besides, the performance of EdgeLoc

converges with 40 APs, which demonstrates that the RSS fingerprints from top-40

APs are already sufficient for EdgeLoc to extract representative features in localiza-

tion.
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Table 5.3 : The average localization error (m) of EdgeLoc based on different numbers

of Wi-Fi APs in Building 0.

APs

Level
0 1 2 3 all

50 APs 8.63 7.53 8.26 7.70 8.03

40 APs 8.28 7.36 8.32 7.75 7.93

30 APs 9.52 8.39 8.58 9.32 8.95

20 APs 10.61 9.30 8.98 9.36 9.56

5.6 Summary

In this Chapter, a novel, robust and real-time indoor localization solution to-

wards heterogeneous IoT devices called EdgeLoc is proposed. Furthermore, an edge-

IoT framework is presented to enable heterogeneous IoT devices to share optimized

model parameters from the edge server for real-time localization. The solution fur-

ther addresses the superimposed and typical challenges through signal-level and

feature-level data processing, respectively. EdgeLoc is set up in a real-world experi-

mental field and extensive experiments are conducted. Evaluation results show that

EdgeLoc can achieve up to 98.5% accuracy for indoor localization at an average

positioning time of only 2.05 ms.



90

Chapter 6

SE-Loc: Security-Enhanced Indoor Localization

with Semi-Supervised Deep Learning

Wireless indoor localization has become one of the key technologies for indus-

trial ILBSs. Given ubiquitous deployment of Wi-Fi networks, Wi-Fi fingerprinting

of RSS has been widely adopted in indoor localization. Meanwhile, existing RSS

fingerprint-based methods lack security awareness and are vulnerable to malicious

attacks. When security vulnerabilities are concerned, mobile users may confront

indoor localization mismatches, faults and even localization system failures. This

chapter proposes SE-Loc, a semi-supervised learning-based technique to enhance

security and resiliency of fingerprint-based localization. The architecture of SE-Loc

consists of two parts: (1) a correlation-based AP selection for processing RSS finger-

prints and fingerprint-image generation, and (2) a deep learning model based on a

denoising autoencoder and convolutional neural network for robust feature learning

and location matching. Extensive experiments show that under potential attacks on

Wi-Fi networks, SE-Loc demonstrates superior performance on indoor localization

over state-of-the-art methods. With up to 100 malicious attacks at APs via UJIIn-

doorLoc edge server, SE-Loc can still achieve the lowest error fluctuation of 1.7 m

and the lowest average localization error of 8.9 m.
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6.1 Introduction

With the rising of the IoT industry, indoor localization has become a key enabler

to many ILBS, such as indoor navigation [67] and motion detection [84]. To deliver

pervasive wireless localization, Wi-Fi networks have become one of the commonly

utilized solutions due to wide availability with IoT devices. Moreover, Wi-Fi RSS

fingerprinting has received considerable interests for achieving non-line-of-sight in-

dustrial indoor localization. Intuitively, an indoor location can be identified based

on a unique RSS vector collected from different Wi-Fi APs. In general, Wi-Fi

fingerprint-based localization consists of two phases [42]: (1) an offline phase to

collect RSS data at the locations of interest and construct the fingerprint dataset

(i.e., radio maps) for model training; (2) an online phase to locate users in real-time

by matching their fingerprint observations with radio maps in the dataset. Besides,

Wi-Fi fingerprint-based indoor localization has been integrated into commercial mo-

bile applications by various industrial counterparts, including Google Maps, Apple

Maps and Bing Maps [88].

To improve localization accuracy, many techniques that are based on RSS fin-

gerprints have been developed to accurately match user-observed fingerprints with

radio maps [42]. More recently, deep learning models are introduced to extract in-

cremental representations from the fingerprinting inputs. The typical deep learning-

based indoor localization models include WiDeep [89], CNNLoc [5], EdgeLoc [3], and

iToLoc [90]. The above models are built to achieve efficient and effective localiza-

tion for various industrial scenarios through jointly learning features from complex
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RSS fingerprints in a layer-by-layer manner. Despite that high-level and useful fin-

gerprinting features are expected from the learning process of indoor localization,

security is considered as an underline premise for reliability of industrial indoor

localization [91].

The generic security issue of industrial indoor localization refers to external

threats and AP attacks that bring severe RSS fluctuations and further result in

abrupt changes in fingerprints, which has been investigated [14]. As suggested

by [92], RSS-based indoor localization techniques are particularly vulnerable to se-

curity threats, such as AP jamming, AP spoofing, Wi-Fi signal interference and

malicious AP impersonation [91]. When confronting the above security threats, RSS

fingerprints of legitimate APs can be severely changed, leading models to generate

localization results with large errors and even wrong locations. Therefore, it remains

daunting to deal with security vulnerabilities of RSS-based indoor localization with

the following challenges.

Challenge 1: Taming unpredicted RSS fluctuations under random attacks on

Wi-Fi APs : To bypass security checks and avoid detections, most malicious AP at-

tacks would be random and almost imperceptible for both online and offline phases

of indoor localization [93]. Therefore, it is challenging to tame unpredicted RSS fluc-

tuations and eliminate abrupt changes in fingerprints caused by malicious attacks.

Challenge 2: Achieving security enhancement without compromising effective-

ness and efficiency of indoor localization: ILBS demands high accuracy and time

efficiency in indoor localization. However, integrating any attack detection mod-

ule into localization framework can significantly increase computing complexity of
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indoor localization process [94]. Besides, the possible misjudgments of attack de-

tection module may label legitimate APs identified as malicious ones, thus degrade

localization accuracy. Hence, it remains challenging to enhance security without

compromising the performance of indoor localization.

Existing works only partially solve security challenges from perspectives of data

extrapolation (S-CNNLOC [14]), feature selection (RMBMFL [92]) and privacy

preservation (PILOT [95]). This chapter proposes SE-Loc, a security-enhanced

framework with semi-supervised deep learning, aiming to deal with the above chal-

lenges simultaneously. SE-Loc leverages signal-level and feature-level enhancements

to secure indoor localization against potential AP attacks, respectively. To tame

abnormal RSS fluctuations and abrupt changes in fingerprints, SE-Loc employs the

Pearson Correlation Coefficient (PCC) method in AP selection and fingerprint image

generation. In addition, SE-Loc combines a DAE with CNNs for effective feature

extraction and representation learning on RSS fingerprints. First, DAE model com-

ponent denoises sharp changes (e.g., abnormal increase or decrease) in RSS values

and extracts robust features to reduce the risk of being influenced by malicious at-

tacks. Second, the CNNs model is responsible for accurately and efficiently matching

the user-observed fingerprints with the radio map. Overall, SE-Loc achieves relia-

bility and enhances security of indoor localization process.

The main contributions of this chapter are summarized as follows:

� To the best of the knowledge, it is the first work to enhance security of in-

door localization with a deep learning model that consists of DAE and CNN.
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In particular, this chapter addresses security and reliability issues of Wi-Fi

fingerprint-based indoor localization simultaneously.

� At the signal level, a rigorous and efficient computing process for PCC-based

AP selection is conducted to eliminate APs that are attacked and contami-

nated. At the feature level, this chapter proposes a deep learning model that

combines DAE with CNN for effective feature extraction and efficient repre-

sentation learning on RSS fingerprints.

� Extensive experiments show that when confronting up to 100 malicious at-

tacking APs in the UJIIndoorLoc dataset, SE-Loc performs the best among

all state-of-the-art baselines, with the lowest error fluctuation and the highest

average localization accuracy.

The rest of this chapter is organized as follows: Section 6.2 reviews up-to-date

related work. Section 6.3 introduces the preliminaries of fingerprinting-based indoor

localization under malicious AP attacks. Section 6.4 proposes the architecture of

the SE-Loc. Section 6.5 introduces detailed implementation and data processing

procedures. Section 6.6 presents extensive experimental results and the comprehen-

sive analysis of the implemented SE-Loc. Section 6.7 concludes the chapter.

6.2 Related Work

Feature extraction for Wi-Fi RSS fingerprints. Wi-Fi RSS fingerprint-

based indoor localization techniques are resistant to multi-path effects and radio fre-

quency shadowing effects [96]. Meanwhile, signal variations and device heterogeneity
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remain the primary obstacles to localization accuracy. This attracts subsequent re-

search on various methods for feature enhancements on Wi-Fi RSS fingerprints,

including feature scaling [54], signal calibration [97] and multivariate linear regres-

sion [70]. For instance, [98] proposed Ellipsoid features by employing tuples of pairs

of RSS values to eliminate device dependence and compensate performance degra-

dation. More recently, spatial and temporal features have been leveraged for indoor

localization and relevant extractors have been developed. Li et al. [99] exploited spa-

tial awareness in Wi-Fi fingerprints and used spatial features of RSS from nearby

locations to mitigate spatial ambiguity and temporal instability of fingerprints in

indoor localization. Different from the above, SE-Loc utilizes correlation-based AP

selection, fingerprint-image generation and mutual difference-based feature matrix

for reliable feature extraction.

Deep learning models for accurate indoor localization. To achieve accu-

rate indoor localization, various deep learning models have been applied to effectively

learn RSS fingerprinting features [100]. [5] proposed CNNLoc, a convolutional neural

network-based indoor localization system for multi-building and multi-floor local-

ization. Based on CNNs, many variant models have been further developed to solve

different issues in indoor localization, including the WiDeep [89], StoryTeller [101],

CapsLoc [2], etc. To enable automatic indoor radio map construction and model

adaption, adversarial learning methods have been further adopted [102]. [90] de-

signed a domain adversarial learning framework to solve deterioration problems,

which can automatically learn indoor localization model through the co-training

process. [103] proposed a feature-metric point cloud registration framework with
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encoder and multi-task branches, so as to minimize projection errors and enable

spatial localization in 3D scenes with point cloud registration. [104] presented a hu-

man activity recognition scheme using the matching network with enhanced channel

state information to facilitate one-shot learning. Motivated by the above advances

of deep learning, SE-Loc combines a denoising autoencoder and convolutional neural

networks to learn attack-resistant representations for indoor location matching.

Security-oriented solutions for indoor localization. Apart from the accu-

racy and robustness, security issue becomes another major challenge to the reliability

of indoor localization, as most existing methods are quite vulnerable to AP-oriented

attacks [14]. Yuan [91] identified two practical RSS attacks on fingerprinting-based

indoor localization and further designed a fingerprint-matching mechanism with a

novel truncated distance metric. Moreover, Saideep et al. [14] modified the existing

technique CNNLoc [5] with an offline fingerprint dataset extrapolation method to

improve the resiliency of indoor localization. Li et al. [105] proposed an optimized

multi-voting mechanism to defend indoor localization against physical-layer signal

strength attacks. Different from the above, SE-Loc leverages signal-level and feature-

level enhancements for secure indoor localization against potential attacks, which is

more robust to overcome random AP attacks and is more effective to maintain the

efficiency of localization.
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6.3 Preliminaries of fingerprinting-based indoor localization

under malicious AP attacks

Traditional Wi-Fi RSS fingerprinting system consists of an indoor Wi-Fi network

with N APs. An RSS vector sent from these APs is represented as a vector RSS =

[RSS1, . . . RSSi, . . . RSSN ], where RSSi represents the measured RSS from the ith

AP. These collected data are utilized to estimate location by RSS fingerprinting-

based indoor localization methods. A typical fingerprinting localization process can

be divided into two phases: In the offline phase, for each node in a set of K nodes,

collected RSS data has the form of [RSSk, lk], where RSSk represents the RSS

vector collected at the kth node (lk). Collected data is stored in an RSS dataset

as training data. In the online phase, a device measures fingerprinting vector R̃SS

and uploads it to the server of indoor localization system. By matching the R̃SS

with the established radio map in the dataset, the server sends back an estimated

location l̃ to a mobile device.

Conventional Wi-Fi RSS fingerprinting-based localization methods are unreliable

due to false fingerprint problem in smart buildings. The false fingerprint problem

is mainly caused by environmental factors or even security threats. Taking a local

zone from UJIIndoorLoc dataset as an example, there are passive interference (en-

vironmental factors) and active interference (security threats), as shown in Fig. 6.1.
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Figure 6.1 . An illustration of passive (environmental) interference and active (AP

attacks) interference cases for RSS fingerprinting-based indoor localization.

6.3.1 RSS Path Loss Model with Passive Interference

Once the noise caused by multi-path interference and device heterogeneity (pas-

sive interference) in complex indoor scenario as shown in Fig. 6.1 is defined, wireless

signal propagation model popularly called the path loss model towards heteroge-

neous IoT devices can aptly reflect the shadow effect statistically as shown in the

equation below:

RSSi[dB] = RSSi(d0) + 10ηlog(
di
d0

) + nσi + ns, (6.1)

where η is the path loss exponent, d0 is the reference distance, and RSSi(d0) is

the reference path loss from the ith Wi-Fi AP, which can be calculated using the

path loss formula. The parameter ni is a zero-mean Gaussian random variable

(in dB) with standard deviation σi. And ns is the random variable (in dB) from
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heterogeneous IoT devices.

6.3.2 RSS Measurements with Malicious AP Attacks

Apart from the environmental interference, this chapter further addresses the

vulnerabilities of RSS fingerprinting-based indoor localization by considering mali-

cious AP attacks. As shown in Fig. 6.1, attackers could deploy attacking AP nodes

to actively interfere RSS measurements of legitimate APs. This section summa-

rizes vulnerabilities of RSS fingerprinting that can be exploited to attack indoor

localization as follows.

� Man-in-the-Middle (MitM) Attacks. The MitM attackers set up fraudulent

access points and configure them with the same SSID (Service Set Identifier),

IP (Internet Protocol) and even MAC address as the legitimate ones [106]. The

adversary APs can be adjusted to have significantly stronger signals to cover

the original RSS and ultimately influence RSS fingerprints. When confronting

MitM attacks, the offline phase of indoor localization will induce inevitable

noises in the fingerprint dataset and the online phase will receive mismatched

localization results.

� Distributed Denial of Service (DDoS). The DDoS attackers aim to disrupt the

availability of system resources to legitimate users [107, 108]. For the indoor

localization scenario, an adversary can perform DDoS attacks on physical layer

or the data link layer, by jamming the radio frequencies or spoofing packets.

For instance, an adversary jammer emits malicious Wi-Fi signals to occupy a

wireless channel and produces signal interference with legitimate Wi-Fi APs
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on the same channel. Correspondingly, the localization system or mobile users

will lose visibility of attacked APs and the localization accuracy will be com-

promised without causing any notice.

� Key-recovery attacks. The key-recovery attackers aim to associate with a Wi-

Fi network by using a range of crack techniques [109]. The recovered key

would provide the adversary with capabilities to exploit various vulnerabili-

ties against indoor localization procedure, launching Evil Twin attacks and

Address Resolution Protocol spoofing to make interference. In addition, mo-

bile user’s location will be leaked to the adversary, causing further privacy and

even personal security issues.

� Dataset corruption. Based on the above attacking procedures, the malicious

third party can have chances to corrupt fingerprint dataset, by changing RSS

values associated with a large scale of legitimate APs [110]. Since the estab-

lished radio maps contain critical information for indoor localization, it would

significantly jeopardize the whole indoor localization system by destructing

the reliability of the fingerprint dataset.

Given the above attack modes, the key impact of various AP attacks is to change

RSS values observed by mobile users. These changes appear as abrupt, random,

fluctuating and undesirable noises to indoor localization systems. As traditional

machine learning methods can not handle these, their localization performance can

degrade significantly when confronting malicious AP attacks. To maintain resistance

of indoor localization with external attacks, this chapter adopts semi-supervised deep
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learning method to take random changes of both labeled and unlabeled RSS data

into consideration, thus taming the performance degradation caused by potential

AP attacks. By referring to the existing model in [14], this chapter introduces the

RSS measurement function considering AP attacks as follows.

RSSAttack
i [dB] =


I if there is an attack on the ith AP,

RSSi otherwise,

(6.2)

where I ∼ U{−100, 0} (I ranges from -100 to 0 randomly.) denotes attack pertur-

bation from the ith Wi-Fi AP, and it is not zero only when the ith Wi-Fi AP attack

is malicious. RSSi is described in the Equation 6.1.

6.3.3 Normalization for RSS Measurements with Malicious AP Attacks

As a basic step to tame tainted RSS measurements under malicious attacks,

this chapter normalizes the raw RSS data through the following data processing

procedure.

ri =



0 RSSAttack
i = 0,

0.1 ∗ (I −min) if there is an attack on the ith AP,

0.1 ∗ (RSSi −min) otherwise,

(6.3)

where RSSi is the raw RSS value from AP i, ri is the normalized RSS value of AP

i, I ∼ U{−100, 0} is the perturbation factor for attacked AP and min is the lowest

RSS value among all raw RSS values.
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Figure 6.2 . The fingerprint image of

the normalized RSS data with varying

φ at level 2 building 0, UJIIndoorLoc

dataset.
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Figure 6.3 . The impact of the up-

per limit of AP attacks (ϕ) against

K-Nearest-Neighbor-based and CNN-

based indoor localization methods.

6.3.4 RSS Fingerprinting-based Indoor Localization under Malicious AP

Attacks

As shown in Equation 6.2, I is not related to the distance di between the kth

user location and the ith Wi-Fi AP, when the ith Wi-Fi AP attack is malicious. In

other words, I is interference factor for location estimation, which is not related to

the location lk. Specially, the interference values of unlabeled RSS data are different

from that of labeled ones, which can increase the localization error of unlabeled data

by traditional RSS fingerprinting-based methods.

Fig. 6.2 shows the gray image of the normalized RSS data (described in Sec-

tion 6.4.3) collected at location lk with different numbers of malicious AP attacks

(φ = 0, 5, 10, 15, 20, 25) on the UJIIndoorLoc dataset of level 2 building 0. Fig. 6.3



103

shows the average localization error of CNN method utilizing normalized RSS data

of the UJIIndoorLoc dataset of level 1 and 2 building 0 with varying φ. As the φ

increases, there are more interference RSS values (ri = 0.1 ∗ (I −min)), which can

increase the average localization error of RSS fingerprinting-based methods utilizing

traditional machine learning model (KNN) and baseline deep learning model (CNN)

as shown in Fig. 6.3.

6.4 The Architecture of SE-Loc

This section introduces the system architecture of SE-Loc. The design of SE-Loc

aims to secure fingerprinting-based indoor localization against potential AP attacks

with signal-level and feature-level enhancements. To achieve the above goal, SE-

Loc leverages four core modules to produce localization results with labeled and

unlabeled RSS fingerprinting as the input data.

6.4.1 System Overview

Fig. 6.4 presents an overview of the proposed SE-Loc. To begin with, potential

malicious APs may interfere RSS fingerprinting measurements. The Normaliza-

tion Module (Section 6.3.3 and Section 6.4.3) normalizes RSS measurements and

visualizes them by generating 2D fingerprint images. The AP Selection Module

(Section 6.4.2) employs PCC for high-correlated AP selection, which improves the

representation ability of RSS fingerprints. Then, the Image Generation Module

(Section 6.4.3 and Section 6.5.3) further extrapolates fingerprints and generates fine-

grained fingerprints image for more useful and robust feature extraction. At last, the

DAE-CNN Module combines a denoising autoencoder with convolutional neural
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Figure 6.4 . System Architecture of SE-Loc.

network.

In the offline phase, labeled RSS data is fed into the Normalization Module,

AP Selection Module, Image Generation Module and DAE-CNN Module in turn.

In particular, unlabeled RSS data is utilized to train the DAE model in DAE-CNN

Module. After that, the DAE-CNNmodel is trained with both labeled and unlabeled

RSS data. In the online phase, the above four modules are utilized together to

process the unlabeled RSS data and find its best-match to predict corresponding

location. Based on the above design, SE-Loc addresses the security and reliability

issues of Wi-Fi fingerprint-based indoor localization simultaneously. The details of

each module are introduced in corresponding Sections. This chapter presents the

last three modules as follows.
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6.4.2 Correlation-based AP Selection Module

In the real-world, an RSS fingerprint contains tens of and even hundreds of RSS

measurements from surrounding APs. The computation complexity is significantly

increased if all the RSS measurements from surrounding APs are processed. As

a measure to deal with this issue, Threshold is denoted as the lower bound to

trigger AP selection process. For instance, with the total number of surrounding

AP in an indoor environment as NAP , it becomes necessary to select APs for indoor

localization when NAP >= Threshold, and vice versa. It would be significantly

difficult to identify malicious APs and exclude them from the fingerprinting data.

Inspired by the previous observation that AP attacks always cause abrupt, random

and fluctuant contaminations on top of RSS values of legitimate APs, this chapter

introduces a correlation-based AP selection procedure in SE-Loc. The goal is to

select the most stable, robust and mutual-correlated APs, while taming potential

AP attacks and malicious interference on legitimate APs.

Assuming that in an industrial scenario, there are N APs and K reference points

across the entire space. The normalized RSS value collected from the ith AP at

the kth location is denoted by rki . Therefore, this chapter uses a column vector

Wi = [r1i , r
2
i , . . . , r

K
i ] to represent the normalized RSS values of the ith AP across

all K locations. This chapter calculates the PCC [65] between each column vector

Wi and the location vector l = [l1, l2, . . . , lK ], where lK is the location of the Kth

node. The equation can be derived by:

PCCi =
Cov(Wi, l)

δWi
δl

, (6.4)
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where Cov(Wi, l) denotes the covariance between Wi and l, and δ denotes the stan-

dard deviation. The calculation result is a vector of correlation values denoted by

C. Note that the coefficient values range from -1 to 1, where a coefficient of -1 rep-

resents strong, negative correlation and a coefficient of 1 represents strong, positive

correlation. Accordingly, a coefficient of 0 means that the input and output have no

relationship [65]. Considering the magnitude of the correlation, if the RSS value of an

AP has low correlation to the target location, it will not be useful to the fingerprints

for localization. Therefore, this chapter chooses to select APs that have correlation

values of target locations above a certain threshold (e.g., |PCC| >= 0.25, derived

experimental studies in Section 6.6). As shown in Fig. 6.5, APs whose correlation to

the locations is over the threshold are selected. As a result, inconsequential RSS val-

ues of attacked APs and irrelevant APs can be removed from the RSS fingerprints.

In addition, the correlation-based AP selection also helps to reduce computational

load of SE-Loc’s semi-supervised deep learning model, improve localization accuracy,

and reduce location prediction time.

6.4.3 Image Generation Module

To fully enhance the expressive ability of RSS fingerprints, this chapter designs an

image generation module to convert RSS measurements into image-like fingerprints.

Initially, the image generation module converts the above matrix into a gray image,

where each element’s value corresponds to the intensity of each pixel in the image.

Note that the dimension of the 2D-fingerprint image is set as the square root of the

closest squared value to the number of selected APs.
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Figure 6.5 . The Pearson Correlation Coefficient of 520 APs in building 0 level 2.

For instance, in Fig. 6.6, given 56 selected APs, the closest squared value is 64

and the dimension of the fingerprint image is 8 × 8. To fill up the image, 8 zero

intensity are padded to the end of fingerprint vector [14]. In particular, 6 fingerprint

images in Fig. 6.6 are captured at the same location, across different time under

random AP attacks. It can be observed that the features of the above 6 images are

distinctive from each other, showing that the normalized RSS vector cannot fully

resist AP attacks.

To further enhance robustness and representativeness of the fingerprint image,

this chapter enriches the characteristics of RSS data by introducing mutual dif-

ference, a new feature set in Section 6.5.3. The mutual differences of all selected
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Figure 6.6 . The fingerprint images of

normalized RSS vector from the selected

56 APs, captured at location l1 at level

2, building 0, UJIIndoorLoc dataset.

Figure 6.7 . The fingerprint images of

processed RSS vector from the selected

56 APs, captured at location l1 at level

2, building 0, UJIIndoorLoc dataset.

APs form a symmetric matrix, with all diagonal elements as 0. The fingerprint

images based on mutual differences are shown in Fig. 6.7, where features are more

fine-grained and stabilized.

This chapter further injects random AP attacks into RSS data by varying the

number of attacking APs φ, where φ = 5, 10, 15, 20, 25. The observations from

Fig. 6.8 validate that the newly generated fingerprint images are resilient to any

scales of AP attacks, showing stable and robust features that will benefit the feature

extraction and feature learning process of SE-Loc.
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Figure 6.8 . The fingerprint images of processed RSS vector from the selected 56

APs, captured at location l1 at level 2, building 0, UJIIndoorLoc dataset, by varying

the number of attacks φ.

6.4.4 DAE-CNN Module for Feature Extraction with Semi-supervised

Learning

This chapter designs a DAE-CNN module and extract useful features from RSS

fingerprints for semi-supervised learning. The deep learning model of SE-Loc con-

sists of a feature extractor based on DAE and a location predictor based on CNN.

Feature Extraction Based on DAE

Conventionally, the AE is a neural network model to learn efficient features from

input data. However, if an autoencoder has more hidden layers than inputs, there

is a risk for the autoencoder to learn the identity function (e.g., the output simply

equals the input), making the learning process become useless. To solve this issue,
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the Denoising Autoencoders (namely DAE) attempt to avoid this risk by introducing

noise [111], so that the autoencoder must then ‘denoise’ or reconstruct the original

input. For RSS fingerprinting data with malicious attacks, this chapter randomly

corrupts the original RSS measurements with noises that are brought by random

attacks.

The encoder of the AE model is a deterministic mapping function fθ that trans-

forms an input vector X into hidden representation H . This chapter adopts the

typical form for the encoder as an affine mapping with a non-linearity operation:

H = fθ(X) = f(WX + b). (6.5)

where W is a weight matrix, b is an offset vector and θ = {W,b} is the parameter

set.

The hidden representation H is then mapped back to a reconstructed vector Z.

According to the input vector X, there will be Z = gθ′(H). Here, the decoder of

the AE model is a mapping function gθ′ . Its typical form is again an affine mapping

optionally followed by a squashing non-linearity:

Z = gθ′(H) = g(W ′H + b′), (6.6)

where θ′ = {W ′, b′} is the parameter set.

Based on the above basic AE model, this chapter further proposed a DAE in

SE-Loc by referring to [112]. The DAE model is designed to extract features and

reconstruct the processed fingerprint images, which contain labeled and unlabeled

RSS measurements from legitimate and malicious APs. In particular, as shown in
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Fig. 6.9, after original processing, the RSS image X is corrupted to X̃ by

X̃ = q(X). (6.7)

where the encoder of DAE is the mapping function from the corrupted RSS image

X̃ to H . Meanwhile, the decoder is another mapping function from H to Z by

H = fθ(X̃) = f(WX̃ + b),Z = gθ′(H) = g(W ′H + b′). (6.8)

The final feature matrix extracted from the above DAE model is H , which is then

fed into the location prediction model.

Location Prediction Model Based on CNN

As shown in Fig. 6.9, the CNN model in SE-Loc performs location prediction

tasks, which consists of the input layer, the convolution (Conv) layers, the pooling

layers, the up-sampling layers, a fully connected layer and the output layer [5]. The

input of CNN model is the feature matrix H generated from the DAE model. The

2-dimensional convolutional operation in the CNN model of SE-Loc is described as

follows.

xl(i)

j =
M∑
k=1

xl(i−1)

j � wl(i)

kj + b
l(i)
j . (6.9)

Here, notation � is the convolution operator, matrix xl(i−1)

j is the jth feature map of

the previous layer l(i−1), and matrix xl(i)

j is the jth feature map of the current layer

l(i). In addition, M is the number of feature map in the layer l(i−1), and wl(i)

kj is the

depth of kernel for the jth feature map of layer l(i). Note that wl(i)

kj and b
l(i)
j are

randomly initialized and initialized by zero, respectively. There are several types of

nonlinear operations in the above CNN model and this chapter applies the ReLU

for their optimizations.
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Figure 6.9 . The semi-supervised learning model of DAE-CNN in SE-Loc.

In SE-Loc, multiple filters in CNNs are utilized to extract consecutive features

at different levels. These features form the penultimate layer and are then passed

to a fully connected Softmax layer. The final output is a probability distribution

over a number of labels of reference points for localizations. The categorical cross-

entropy is chosen as the loss function l of the above location prediction process for

optimization, which can be computed by

l = −
N∑
i=1

yilog(pi), (6.10)

where N is the number of classification labels. When pi equals the ith value of the

Softmax output, yi = 1; otherwise yi = 0.
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6.5 Implementation

For implementation, this chapter uses a Dell laptop with an Intel Core i7-

7600U CPU as the system server of SE-Loc. The DAE-CNN model of SE-Loc is

implemented on TensorFlow and Keras using Python 3.

6.5.1 BUPT Fingerprint Dataset Collection

In a practical Wi-Fi network, the malicious attacks and multi-path effects vary

with the location of a mobile device. To verify the proposed approach to enhanc-

ing security and reliability of indoor localization, this chapter conducted a field

experiment in a lab located at the main building of Beijing University of Posts and

Telecommunications. As shown in Fig. 3.5, this chapter deploys TP-Link wireless

routers as the Wi-Fi APs at different locations. For RSS measurement collection,

this chapter employs a laptop equipped with a Phoenix Wi-Fi collector. At each

reference point, the system server sequentially collects the corresponding RSS sam-

ples from all APs for 300 times. Overall, this chapter collected 33, 600 labeled RSS

fingerprints, with 20, 160 as the training set and 13, 440 as the testing set.

6.5.2 UJIIndoorLoc Dataset and Extrapolated Fingerprints

To further verify the scalability of SE-Loc, this chapter further adopts a public

Wi-Fi RSS fingerprint dataset called UJIIndoorLoc [87]. The indoor environment of

UJIIndoorLoc covers 108,703 m2 indoor areas across 3 adjacent buildings. Totally,

21,049 RSS measurements have been collected from 520 wireless APs, with 19,938

as the training set and the rest as the testing set. To enrich the scale of RSS
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fingerprints, this chapter reconstructs M extrapolated copies and inject malicious

APs in the new copies by introducing random fluctuations in RSS values with an

upper limit (ϕ) [91]. Correspondingly, in the extrapolated fingerprints, RSS vectors

can have up to ϕ noise-induced values [14]. In the simulations, this chapter sets

M = 10, ϕ = {0, 10, 50, 100}. Correspondingly, there are 10 copies of each RSS

fingerprints vector.

To determine the label of RSS fingerprints at each reference point, this chapter

divides the localization area into a number of zones, i.e., each zone is a grid area

covering 12 × 12 m2. To generate the label for each grid, this chapter adopts One-

Hot Encoding [47] to map each grid into a One-Hot vector. Consequently, each

individual grid represents a categorical variable, and the indoor localization task

essentially becomes a classification problem across all grids, with the center of each

grid as the reference point.

6.5.3 Data Processing

To enrich the characteristics of RSS data, this chapter adds a new feature set

R to increase the dimension of fingerprints. R is the set of features that represent

the mutual differences between the normalized RSS values of different APs. For

instance, a basic entry of ri − rj (i, j ∈ APs) represents the difference between

the normalized RSS value of AP i and AP j. Together, the feature array of each
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individual AP together forms a feature matrix R as:

R =



0 r1 − r2 r1 − r3 · · · r1 − rn

r2 − r1 0 r2 − r3 · · · r2 − rn

r3 − r1 r3 − r2 0 · · · r3 − rn

...
...

...
. . .

...

rn − r1 rn − r2 rn − r3 · · · 0


. (6.11)

According to Equation 6.1, the mutual differences between RSS values of AP i

and AP j at the location k can be calculated as:

RSS(dki )−RSS(dkj ) = RSS(d0
k
i ) + 10ηlog(

dki
d0ki

) + nσ
k
i + ns

−RSS(d0
k
j )− 10ηlog(

dkj
d0kj

)− nσ
k
j − ns

= a+ b ∗ log(d
k
i

dkj
) + ∆n,

(6.12)

where b = 10η, a = RSS(d0
k
i )−RSS(d0

k
j )+blog(

d0kj
d0ki

) and ∆n = nσ
k
i−nσ

k
j . According

to the above equation, the difference between the normalized RSS value from AP i

and AP j can be derived by:

ri − rj = a′ + b′ ∗ log(d
k
i

dkj
) + ∆n′, (6.13)

where a′ = θ ∗a, b′ = θ ∗ b and ∆n′ = θ ∗∆n, dki is the range between the mobile user

and AP i, dkj is the range between the mobile user and the AP j. Consequently, the

value of
dki
dkj

is dependent on the location of the mobile users once all APs are deployed.

The above deduction suggests that the localization result is highly dependent on the

feature matrix R, showing the feasibility of the data processing procedure in SE-Loc.
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6.6 Experimental Study

This chapter conducts extensive experiments to evaluate: (a) the localization

performance of SE-Loc under malicious AP attacks, (b) the effectiveness of AP

selection component in SE-Loc, and (c) parameter tuning for the deep learning

model, (d) ablation study.

6.6.1 Overall Performance Comparison with Baseline Methods

In evaluations, this chapter compares SE-Loc with the following state-of-the-art

baseline methods. S-CNNLoc [14]: a CNN–based model with AP security-oriented

fingerprint extrapolation. DP-CNN [65]: a CNN-based indoor localization method

with fingerprint data processing. CNNLoc (SAE-CNN) [5]: a representative deep

learning model that combines SAE and CNN for multi-building and multi-floor in-

door localization. DAE-CNN: a CNN-based model combined with the DAE network.

VAE-CNN [41]: a CNN-based model constructed with the VAE network. SE-Loc:

a novel security-enhanced indoor localization model that this chapter constructs

with DAE and CNN networks, combined with a rigorous AP selection component

and fingerprint data processing. To fully evaluate the performance of SE-Loc, this

chapter conducts indoor localization experiments with fingerprinting datasets from

indoor scenarios of different scales. For the small-scale environment, this chapter

leverages the BUPT dataset to evaluate the scalability of the above methods and the

effectiveness of unsupervised learning by SE-Loc. For the large-scale environment,

this chapter adopts the UJIIndoorLoc dataset and test the performance of indoor

localization methods under different levels of AP attacks.
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Figure 6.10 . Comparison of localization accuracy with different methods.

Performance comparison on BUPT dataset: The comparison of localiza-

tion results on BUPT dataset is shown in Fig. 6.10a. Overall, SE-Loc outperforms

all state-of-the-art baseline methods and achieves the highest indoor localization

accuracy, where 99% of localization errors are lower than 2 m and over 40% of local-

ization results are within 1 m to the groundtruth. The second-best performance is

achieved by the DP-CNN method, showing that data processing plays an important

role in extracting useful features from RSS fingerprints for deep learning models to

learn. While the CNN-based method [65] only extracts high-level features to en-

hance localization accuracy, it guarantees 2 m localization errors for only 80% of all

testing fingerprinting samples. SAE-CNN [5] further improves the performance of

CNN as it encodes raw RSS fingerprints by the SAE for its CNN network to learn

more useful representations. The DP-VAE-CNN method performs the worst, where

only 29% of all testing data is with localization error under 2 m.
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Figure 6.11 . The performance comparison of SE-Loc and the baseline methods

in building 0, levels 1 and 2 of the UJIIndoorLoc dataset, with the upper limit of

AP attacks varying from 0 to 100.

This chapter further draws a box-plot based on localization results on BUPT

dataset in Fig. 6.10b. Compared with the CNN and SAE-CNN, SE-Loc has the

smallest Inter-Quartile Range (IQR, i.e., the distance between first quartile and third

quartile) and the lowest median localization error of 0.66 m. Basically, CNN, DP-

CNN, SAE-CNN and DAE-CNN models have similar performances, but with higher

median errors than the method. The DP-VAE-CNN method performs the worst

with the highest median errors of 2.9 m. The above results show that by selecting

correlated APs and denoising RSS fingerprints with the DAE-CNN model, SE-Loc

can successfully improve localization accuracy in the small-scale indoor environment.

Performance comparison on UJIIndoorLoc dataset with AP attacks:

The localization results by different methods on UJIIndoorLoc dataset are presented

in Fig. 6.11. In this experiment, this chapter sets ϕ as the upper limit of random



119

AP attacks and vary it from 0 to 20, 40, 60, 80 and 100. Here, an AP attack (i.e.,

jamming or spoofing) changes the RSS value of a legitimate AP, as introduced in

Equation 6.2. Accordingly, with the upper limit of attacked APs increased, the

RSS fingerprint would become outliers to the groundtruth. In Fig. 6.11a, as the

upper limit of AP attacks increases to 100, the average localization error of SE-Loc

increases from 7.2m to 8.9m at level 1. However, the performance degradation of 1.7

m is the smallest among all baseline methods. The corresponding error fluctuations

of CNN, AD-CNN, CNNLoc and DAE-CNN methods are 5.4 m, 1.9 m, 5.0 m and

2.4 m, respectively. Meanwhile, the highest localization error is up to 52.3 m when

applying the AD-VAE-CNN model. Similar performance results are observed at

level 2 in Fig. 6.11b, where SE-Loc remains resistant to any scales of malicious

attacks on Wi-Fi APs in the localization system. Meanwhile, for CNN, CNNLoc,

and DAE-CNN, the error fluctuations equal to 3.1 m, 4.7 m, and 3.3 m, respectively.

Moreover, the error fluctuation of the AD-CNN method is stable, varying from 7.8

m to 9.5 m when ϕ increases from 0 to 100.

Fig. 6.12a to Fig. 6.12d further visualize the CDF of localization errors by differ-

ent methods at levels 2, building 0, when the upper limit ϕ of random AP attacks

increases from 0 to 10, 50 and 100. The four CDF results show that SE-Loc main-

tains over 80% and 70% of localization errors within the errors of 10 m, despite

that there are ϕ = 50 and ϕ = 100 random AP attacks. The 10% performance

degradation also outperforms all baseline methods, which validates the effectiveness

of the security enhancement of SE-Loc for indoor localization. The above compari-

son results demonstrate that SE-Loc has superior resilience to different scales of AP
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Figure 6.12 . The Localization performance of the proposed method as compared

to other methods on UJIIndoorLoc dataset of building 0 level 2 with a varying upper

limit of malicious APs.

attacks and is reliable to deliver stable and effective indoor localization results.

6.6.2 Evaluation of the AP Selection Component

Next, this chapter evaluates SE-Loc’s AP selection component. Note that the

UJIIndoorLoc dataset contains RSS measurements collected from 520 APs, but only

part of them are highly correlated, as this chapter has introduced in Section 6.4.2.
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For indoor localization systems under malicious AP attacks, the AP selection process

tackles contaminated APs and data redundancy simultaneously.

To test the effectiveness of the AP selection component, this chapter conducted

a series of experiments, and the results are summarized in Table 6.1. Here, the key

factor is the threshold of Pearson Correlation Coefficient, which indicates the corre-

lation value of APs that can be chosen to form RSS fingerprints. This chapter sets

the threshold’s value from 0 (e.g., DAE-CNN is without AP selection component)

to 0.1, 0.15, 0.2, 0.25 and 0.3.

As shown in Table 6.1, when the PCC threshold decreases from 0.3 to 0.1, the

numbers of selected APs at levels 1, 2 and 3 increase from 41 to 89, 45 to 103

and 34 to 83, respectively. Correspondingly, the average location prediction time

increases from 0.55 ms to 0.63 ms, as more APs are involved in the computation

process. Compared with the DAE-CNN method, which has no AP selection process,

SE-Loc achieves more stable and accurate localization results with lower errors for

most levels of building 0. The above results validate that it is essential for indoor

localization systems to combine the AP selection component, since AP selection

helps to reduce localization time and improves localization accuracy even under

potential AP attacks. Considering a trade-off between localization accuracy and

location prediction time, this chapter highlights a gray column that features the

most suitable PCC threshold (i.e., 0.25) for SE-Loc. In the following experiments,

this chapter sets the PCC value of SE-Loc model as 0.25.
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Table 6.1 : Evaluation on the AP selection component with different PCC values at building 0, UJIIndoorLoc dataset.

Methods PCC Threshold

Localization Error based on

UJIIndoorLoc dataset of building 0 (m)

Number of Selected APs Average prediction

time (ms)

Level 1 Level 2 Level 3 Level 1 Level 2 Level 3

DAE-CNN + AP Selection

0.3 8.23 8.05 7.99 41 45 34 0.55

0.25 7.84 7.85 7.94 50 56 39 0.57

0.2 7.48 7.62 7.84 61 63 46 0.58

0.15 7.41 7.9 8.57 69 85 57 0.6

0.1 7.29 7.65 7.36 89 103 83 0.63

DAE-CNN 0 8.51 7.9 8.9 520 1.43
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6.6.3 Parameter Tuning and Ablation Study for SE-Loc’s Model

This chapter further evaluates SE-Loc’s model (i.e., DP-DAE-CNN) by tuning

different parameters. The key parameters for SE-Loc include the number of Conv

layers in DAE, the number of Conv layers in CNN, and the number of filters (e.g.,

kernels) in all Conv layers. For example, a parameter set 3-5-8 equals to a SE-Loc

model with 3 DAE layers, 5 CNN layers (including a fully connected Softmax layer)

and 8 filters in all Conv layers. Meanwhile, all the other parameters are set as

follows: the kernel size is 2 × 2, the stride value is 1, the max-pooling is by 2 × 2

and the up-sampling is by 1× 1.

Impact of Model Parameters on the Localization Performance in BUPT

Dataset

First, this chapter focuses on the number of filters in all convolution layers.

According to the first three groups of bars in Fig. 6.13, when the number of filters

increases from 8 to 16 and 32, the localization accuracy improves for all compared

methods. The average localization errors decrease from 1.1 m to 0.7 m, 0.76 m to

0.66 m and 0.7 m to 0.65 m by the DAE-CNN, DP-CNN and DP-DAE-CNN (i.e.,

SE-Loc), respectively. The above results reflect the negative correlation between the

number of filters and the average localization error. Second, this chapter evaluates

the impact of DAE layers on the localization results. According to the 2nd, 4th and

5th groups of bars, when the number of Conv layers in DAE increases from 3 to 4

and 5 while the other parameters keep the same, the localization errors show a slight

rise for DAE-CNN while staying the same level for DP-CNN and DP-DAE-CNN.
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Figure 6.13 . The average localization

errors by different methods with differ-

ent model parameters in BUPT dataset.
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Figure 6.14 . The average localization

errors by tuning parameters of SE-Loc

at all levels of building 0, UJIIndoorLoc

dataset.

Third, this chapter studies the impact of number of layers in CNN. Based on the

6th, 7th and 2nd groups of bars, the average localization errors decrease significantly

with fewer Conv layers in CNN.

Impact of Model Parameters on the Localization Performance in UJI-

IndoorLoc Dataset

Fig. 6.14 shows the average localization errors by the proposed DAE-CNN model

with different parameters at levels 1, 2 and 3, building 0 in the UJIIndoorLoc dataset.

The key parameters are the same, including the number of Conv layers in DAE, the

number of Conv layers in CNN, and the number of filters (e.g., kernels) in all Conv

layers. In the first three groups of bars, as the number of filters in all Conv layers

increases from 8 to 16 and 32, the average localization errors by SE-Loc fluctuate
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Figure 6.15 . The CDF of prediction time with different model parameters in

BUPT dataset via the Raspberry Pi.

from 7.6 m to 7.1 m, 7.6 m to 7.3 m and 7.9 m to 7.4 m at three levels, respectively.

It can also be observed from the 2nd, 4th, and 5th groups of bars that the localization

performance of SE-Loc shows a decline when the DAE has more layers. According

to the 2nd, 6th, and 7th groups of bars, the average localization improves slightly

at all levels as the number of layers in CNN model increases from 3 to 5. The above

results show that by having more layers in the CNN model, SE-Loc can extract

better representations from RSS fingerprints with AP attacks, thus enhancing the

reliability and accuracy of indoor localization.

Impact of Model Parameters and Device Heterogeneity on the Mean

Prediction Time

For ILBSs providers, location prediction time (i.e., computation time of localiza-

tion) is of great importance in system performance. In this subsection, this chapter

conducts extensive experiments to evaluate the impact of model parameters and de-
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Figure 6.16 . The mean prediction time by tuning parameters of SE-Loc at all

levels of building 0, UJIIndoorLoc dataset via different devices.

vice heterogeneity on the mean prediction time of SE-Loc. First, this chapter varies

the model parameter of SE-Loc and conduct localization experiments with a Rasp-

berry Pi using BUPT dataset. Overall, the CDF curves in Fig. 6.15 show that the

Raspberry Pi runs SE-Loc within 1ms for most parameter settings. The prediction

time slightly increases when more layers are added to each component of SE-Loc’s

model. Second, this chapter further evaluates the impact of device heterogeneity on

the mean prediction time of SE-Loc in Fig. 6.16. This chapter conducts experiments

by varying the model parameters and using different devices on the UJIIndoorLoc

dataset. Fig. 6.16a, Fig. 6.16b and Fig. 6.17 present the experimental results with a

Raspberry Pi, a Redmi K30 and a Dell laptop, respectively. It can be observed that

for SE-Loc model with the same parameter, the mean prediction times on different



127

3-
5-

8

3-
5-

16

3-
5-

32

4-
5-

16

5-
5-

16

3-
3-

16

3-
4-

16

Parameters

0

5

10

15

20

m
e

a
n

 p
re

d
ic

ti
o

n
 t

im
e

(m
s
)

level 1 (50 APs)

level 2 (56 APs)

level 3 (39 APs)

Figure 6.17 . The mean prediction time by tuning parameters of SE-Loc at all

levels of building 0, UJIIndoorLoc dataset on the server.

devices are similar and stable. Moreover, SE-Loc shows more efficiency in prediction

time when it has less complex model parameters.

The above results validate that SE-Loc is robust to device heterogeneity, mean-

while, its model parameters can make trade-off with the mean prediction time.

Combing the experimental results in Fig. 6.14, the SE-Loc model with 3 Conv lay-

ers in DAE, 5 Conv layers in CNN, and 16 filters in all Conv layers can achieve the

best trade-off between localization accuracy and mean prediction time on heteroge-

neous devices, with the localization error of 0.65 m and mean prediction time of 25

ms.

Ablation Study on SE-Loc

To illustrate the effectiveness of each model component, this chapter further

conducts an ablation study with different variants of SE-Loc as follows. Table 6.2

presents the localization performance of SE-Loc together with its three variants on
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Table 6.2 : Comparison of localization errors by different methods based on two types of datasets

Methods

Localization error (m)

on UJIIndoorLoc dataset Methods
Localization error (m)

on BUPT dataset

level 1 level 2 level 3

DAE-CNN 8.51 7.9 8.9 DAE-CNN 0.8

AP Selection + DAE-CNN 7.84 7.85 7.94 N/A –

AP Selection + Data Processing + CNN 7.67 7.79 7.87 Data Processing + CNN 0.69

AP Selection + Data Processing + DAE-CNN 7.24 7.32 7.62 Data Processing + DAE-CNN 0.66
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the UJIIndoorLoc dataset and BUPT dataset, respectively. On the left side of Ta-

ble 6.2, the variant DAE-CNN shows the largest errors across all levels. Meanwhile,

DAE-CNN with the AP selection component or/and the data processing compo-

nent can achieve more accurate localization results. In addition, when the DAE is

removed from SE-Loc, the localization error increases significantly. On the right

side of Table 6.2, this chapter compares compare two variants with SE-Loc. Note

that for BUPT dataset, this chapter skips the AP selection component as the total

number of APs is limited. Similar to localization results on UJIIndoorLoc, SE-Loc

outperforms other variants in the BUPT dataset by achieving the smallest aver-

age localization error (i.e., 0.66 m). Without the data processing component or the

DAE component, the performance of SE-Loc’s variants degrades to different degrees.

The above ablation study validates the effectiveness of each component of SE-Loc,

showing that each component has its own contribution to improving localization

accuracy.

6.6.4 Evaluation of Semi-Supervised Learning of SE-Loc

Finally, this chapter evaluates the effectiveness of semi-supervised learning of

SE-Loc with BUPT dataset. As introduced in Sec. 6.4.4, SE-Loc is integrated

with a denoising autoencoder that can extract features from RSS fingerprints with

attacking APs and reconstruct original fingerprinting data. Let α and β denote the

size of training set and the ratio of labeled samples in the training set.

Fig. 6.18a shows the average localization error by SE-Loc by varying the ratio

of labeled samples. When β increases from 10% to 100%, the localization error
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Figure 6.18 . Average localization error with different sizes of the labeled set in

the training data on BUPT dataset.

continues to decrease for all values of α. For example, when α = 0.1, the localization

error is reduced from 1.5 m to 0.75m by 50%. When β = 0.6, the localization results

are all within 1 m to the groundtruth regardless of the size of the training set,

showing that SE-Loc can achieve satisfactory semi-supervised indoor localization

with only 60% of training data labeled.

Fig. 6.18b presents the localization error of SE-Loc with respect to α. As the

value of α increases from 0.1 to 0.9, SE-Loc shows performance improvements with

smaller average localization errors. When α = 0.5, with only 50% of data as the

training set, SE-Loc can still achieve a small localization error (i.e., less than 0.8

m) in most cases. Fig. 6.19 presents the localization results by varying the size of

training set for SE-Loc with different model parameters. When the parameters are

set as 3-5-8 (i.e., 3 Conv layers in DAE, 5 Conv layers in CNN, and 8 filters in all

Conv layers), the average localization error decreases sharply as α increases from
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Figure 6.19 . Average localization error vs. different model parameters and dif-

ferent sizes of training set.

0.1 to 0.4. When the parameters are set as 3-5-16 and 3-5-32, similar performance

is observed. For α with values larger than 0.6, SE-Loc can only slightly improve the

localization results.

6.7 Conclusion

This chapter proposes SE-Loc, a deep learning-based technique to overcome

the security vulnerabilities of indoor localization under random and unpredicted

AP attacks. To achieve both reliable and secure localization, SE-Loc features

both signal-level and feature-level enhancements simultaneously. In particular, this

chapter combines a denoising autoencoder with convolutional neural networks for

effective feature extraction and effective representation learning on RSS fingerprints.

Extensive experiments have demonstrated that when confronting AP attacks, SE-

Loc has superior performance over the baseline methods.
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Chapter 7

Thesis Conclusions and Future Works

7.1 Summary of Thesis

In this thesis, Wi-Fi RSS fingerprinting-based indoor localization utilizing deep

learning is analyzed and studied. In Chapter 1, an overview of indoor localization of

IoT applications (covering the LBS of IoT applications, signals and measurements)

and deep learning-based methods (mainly supervised and semisupervised) is pre-

sented. Secondly, the main motivations and challenges in indoor localization are

discussed, including multipath effects and noise, environment dynamic, database

problem, device heterogeneity, energy efficiency, and privacy and security. In Chap-

ter 2, the existing works of the traditional indoor localization and promising deep

learning methods are reviewed. After that, four Wi-Fi RSS fingerprinting-based

indoor localization utilizing deep learning are presented from Chapter 3 to Chapter

6, respectively. In this chapter, the technical contributions and future work of this

thesis are presented.

7.2 Summary of Contributions

The main contributions of this thesis are listed as follows:

(1) Firstly, RSS data are not only prone to multi-path reflections but also sensi-

tive to time-varying environmental dynamics, which are the basic challenges
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of indoor localization. In contrast to existing solutions focusing on spatial

features of RSS, a novel indoor localization method is proposed by exploiting

the temporal dependency of RSS time-series data and integrating the Kalman

filter with DNNs. Extensive field experiments are conducted with a real-world

testbed, and the experiment results validate the effectiveness of the Kalman-

DNN method.

(2) Secondly, CapsLoc, a robust indoor localization system utilizing CapsNet is

proposed, which can achieve high localization accuracy with Wi-Fi RSS fin-

gerprinting. Specifically, hierarchical structures in Wi-Fi RSS fingerprinting

can be efficiently extracted by the CapsNet model to address the typical chal-

lenges, such as the multipath effects and noise, the environment dynamics,

and data limitation. The experimental results show that CapsLoc can real-

ize higher localization performance over traditional machine learning methods

(KNN and SVM) and existing deep learning methods (CNN and SAE-CNN).

(3) Thirdly, RSS data collected at the heterogeneous devices are time-varying

when facing the challenges such as the device heterogeneity and database prob-

lem together with other classic challenges with wireless communications. To

address these significant challenges, EdgeLoc, a robust and real-time indoor

localization system towards heterogeneous IoT devices is presented. Extensive

field experiment results show that EdgeLoc outperforms the state-of-the-art

SAE-CNN method in localization accuracy.

(4) Finally, SE-Loc, a deep learning-based technique to enhance resiliency and
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security of wireless indoor localization is presented to address the security

challenge in Wi-Fi indoor localization. The architecture of SE-Loc consists

of two parts: (1) AP selection for processing initially contaminated APs, and

(2) a deep learning model based on a DAE and CNN for feature learning and

location estimation. Extensive experiments show that SE-Loc outperforms

the baseline methods on secured indoor localization. When there are up 100

malicious attacking APs in the UJIIndoorLoc database, SE-Loc can still realize

a low error fluctuation and lowest average localization error compared to the

state-of-the-art baselines.

7.3 Future Works

The future work includes designing and developing ultra-light and low-cost local-

ization algorithms for IoT devices, such as IoT-enabled lighting bubbles and coin-

battery-powered IoT devices [113]. These IoT devices have limited computation

power and constrained battery capacity, so that energy and computation aware lo-

calization solutions are the keys to success. In recent years, efficient neural networks

that may have the ability of achieving high performance on various types of edge de-

vices include SqueezeNet[114], MobileNets[115], ShuffleNet[116], MobileNetv2[117],

PeleeNet[118], ShuffleNetv2[119], MnasNet[120], MobileNetv3[121] and MobileViT[122]

etc.. A possible solution may be allocating heavy tasks to the edge server and letting

IoT devices run ultra-lighting jobs [101].

In addition to the heterogeneity of IoT devices, the vulnerability of Wi-Fi APs

may lead to various security threats to ILBS users [14]. Although malicious AP



135

attacks are taken into consideration in this thesis, there are various other attacks.

With the vulnerability of Wi-Fi signals at both mobile devices and APs [123], other

various attacks can be conducted towards wireless indoor localization, for example,

AP hijacking, jamming, and man-in-the-middle attack [124]. These attacks not only

degrade the performance of indoor localization but also introduce significant risks to

the confidential location data of valuable and critical IoT assets [92]. Therefore, it

is of great significance to take the vulnerabilities of indoor localization systems into

consideration and develop security-enhanced deep learning techniques to protect

indoor localization from the above attacks.
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