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Abstract

In recent decades, the technology development in hardware and software has stimulated
robotics systems’ implementation in various fields. Robots are most commonly deployed
in dangerous or mundane working environments, significantly reducing accidents, injuries
and casualties in the workforce. Ideally, robots would be designed to perform the tasks
autonomously, conducting calculations and making decisions based on sensory data. How-
ever, although robotics research has continuously advanced throughout the last half a
century, there are still many complicated tasks where robots cannot achieve full autonomy
yet. In these scenarios, interaction from a human supervisor may be required to make
control decisions either locally or remotely. The quality of the decisions made by the su-
pervisor or operator depends heavily on the available sensory feedback from the robotics
system, which helps the human perceive the environment where the robot is operating.
Therefore, perception capabilities are required for all autonomous and semi-autonomous
robotics systems to process and make sense of the received data, so the system or the

operator can perform necessary actions.

This thesis focuses on developing an active perception framework for robots working re-
motely, where the human operator cannot directly perceive the surrounding environment.
The specific modality of sensor data received from the remote system is coloured Three-

Dimensional (3D) point cloud data obtained from sensing devices such as Light Detection
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and Ranging (LiDAR) or depth cameras. Additionally, this thesis investigates the practi-
cality and benefits of utilising Virtual Reality (VR) as a tool to visualise the data obtained

from a remote system.

This thesis firstly reviews multiple frontier detection algorithms for T'wo-Dimensional (2D)
exploration, comparing these algorithms with other notable frontier detection algorithms.
The algorithms are implemented to enable insight to be gained about the performance
of the inspected algorithms compared with the other notable algorithms. A 3D interac-
tive and active mapping framework for a mobile manipulator platform based on dynamic
Gaussian Probabilistic Implicit Surfaces (GPIS) was investigated and implemented to val-
idate its efficiency while simultaneously exploring and interacting with a large pile of
objects. The framework is shown to perform near real-time map updates for a dynami-
cally changing environment due to its probabilistic nature. Two perception systems are
presented that employ the point cloud data in the framework to perform object detection,
pose estimation and scene overlay annotation. Finally, a framework for sensor data visual-
isation in VR environments is presented, which acquires, transmits and renders real-time
RGB-D sensor data with integrated automatic perception annotations in a VR environ-
ment. This enables various data modalities and limiting factors to be investigated and

optimised to improve the subjective cognitive workload.

Experiments are conducted in both simulated and real-life scenarios. The two real robotic
platforms used in the experiments are mobile manipulators. The first platform is composed
of a 6 Degree of Freedom (DOF) manipulator and a commercial mobile base platform
and was mainly used to validate exploration algorithms. The second mobile manipulator
platform comprises a custom-designed mobile base and a 5 DOF manipulator, equipped
with a camera system consisting of two RGB-D calibrated cameras and a real-time VR
interface. This platform was used to conduct and investigate the optimal configuration for

operator performance during collaborative autonomy tasks.
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Glossary of Terms

Autonomous

Active and passive

perception

Collaborative Auton-

omy

Human operator

Human supervisor

Manipulator

Mobile base

Occupancy map

Voxel

Without human intervention.

Active perception involves actively seeking and processing
sensory information through exploration and interaction
with the environment, while passive perception involves re-
ceiving sensory information without any active involvement
on the part of the system.

Refers to a mode of operation in which humans and robots
work together as a team to achieve a common goal, with
each entity contributing their unique strengths and abilities.
This approach leverages the strengths of both humans and
robots to enhance performance and efficiency beyond what
either entity could achieve individually.

A person who manipulates the robot’s action at a remote
location.

A person who oversees the robot’s operations and provides
the robot with instructions when needed.

Robotic arm

A robot that exclusively navigates on horizontal planes.

A discretised grid representing the environment is made up
of cells with values that indicate the likelihood that a given
point in space is obstructed.

Volumetric Pixel represents a 3D cube-like volume in Eu-

clidean space.
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