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Abstract

In recent decades, the technology development in hardware and software has stimulated

robotics systems’ implementation in various fields. Robots are most commonly deployed

in dangerous or mundane working environments, significantly reducing accidents, injuries

and casualties in the workforce. Ideally, robots would be designed to perform the tasks

autonomously, conducting calculations and making decisions based on sensory data. How-

ever, although robotics research has continuously advanced throughout the last half a

century, there are still many complicated tasks where robots cannot achieve full autonomy

yet. In these scenarios, interaction from a human supervisor may be required to make

control decisions either locally or remotely. The quality of the decisions made by the su-

pervisor or operator depends heavily on the available sensory feedback from the robotics

system, which helps the human perceive the environment where the robot is operating.

Therefore, perception capabilities are required for all autonomous and semi-autonomous

robotics systems to process and make sense of the received data, so the system or the

operator can perform necessary actions.

This thesis focuses on developing an active perception framework for robots working re-

motely, where the human operator cannot directly perceive the surrounding environment.

The specific modality of sensor data received from the remote system is coloured Three-

Dimensional (3D) point cloud data obtained from sensing devices such as Light Detection
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and Ranging (LiDAR) or depth cameras. Additionally, this thesis investigates the practi-

cality and benefits of utilising Virtual Reality (VR) as a tool to visualise the data obtained

from a remote system.

This thesis firstly reviews multiple frontier detection algorithms for Two-Dimensional (2D)

exploration, comparing these algorithms with other notable frontier detection algorithms.

The algorithms are implemented to enable insight to be gained about the performance

of the inspected algorithms compared with the other notable algorithms. A 3D interac-

tive and active mapping framework for a mobile manipulator platform based on dynamic

Gaussian Probabilistic Implicit Surfaces (GPIS) was investigated and implemented to val-

idate its efficiency while simultaneously exploring and interacting with a large pile of

objects. The framework is shown to perform near real-time map updates for a dynami-

cally changing environment due to its probabilistic nature. Two perception systems are

presented that employ the point cloud data in the framework to perform object detection,

pose estimation and scene overlay annotation. Finally, a framework for sensor data visual-

isation in VR environments is presented, which acquires, transmits and renders real-time

RGB-D sensor data with integrated automatic perception annotations in a VR environ-

ment. This enables various data modalities and limiting factors to be investigated and

optimised to improve the subjective cognitive workload.

Experiments are conducted in both simulated and real-life scenarios. The two real robotic

platforms used in the experiments are mobile manipulators. The first platform is composed

of a 6 Degree of Freedom (DOF) manipulator and a commercial mobile base platform

and was mainly used to validate exploration algorithms. The second mobile manipulator

platform comprises a custom-designed mobile base and a 5 DOF manipulator, equipped

with a camera system consisting of two RGB-D calibrated cameras and a real-time VR

interface. This platform was used to conduct and investigate the optimal configuration for

operator performance during collaborative autonomy tasks.
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Glossary of Terms

Autonomous Without human intervention.

Active and passive

perception

Active perception involves actively seeking and processing

sensory information through exploration and interaction

with the environment, while passive perception involves re-

ceiving sensory information without any active involvement

on the part of the system.

Collaborative Auton-

omy

Refers to a mode of operation in which humans and robots

work together as a team to achieve a common goal, with

each entity contributing their unique strengths and abilities.

This approach leverages the strengths of both humans and

robots to enhance performance and efficiency beyond what

either entity could achieve individually.

Human operator A person who manipulates the robot’s action at a remote

location.

Human supervisor A person who oversees the robot’s operations and provides

the robot with instructions when needed.

Manipulator Robotic arm

Mobile base A robot that exclusively navigates on horizontal planes.

Occupancy map A discretised grid representing the environment is made up

of cells with values that indicate the likelihood that a given

point in space is obstructed.

Voxel Volumetric Pixel represents a 3D cube-like volume in Eu-

clidean space.

xv



Chapter 1

Introduction

Perception is an essential component of automated robotic systems. Most existing robots

utilise data received from sensors in one or more modalities, such as Two-Dimensional (2D)

Light Detection and Ranging (LiDAR) scans, Three-Dimensional (3D) point clouds, colour

or depth images. A research question studied over decades is how to perceive environments

using the information collected by sensors effectively. With the continuing development

of technology, sensors’ performance and accessibility have improved, providing extensive

and detailed data sets in various scenarios. The advancement of sensors’ performance and

availability of different sensor types present a need for new and more advanced techniques

and methods to collect and process the data to obtain the desired information.

Over recent years, robots more frequently need to operate in real-world environments

without prior knowledge and in the presence of dynamic objects. Thus, there has been

an increased interest in active perception problems. The complicated tasks and diversity

of working environments require the robot to actively relocate itself to gather information

and complete the task. However, the role of a human is also important due to the inade-

quacies of autonomous robot systems. Humans act as supervisors and operators to make

high-level decisions and collaborate with robots, which were developed to execute precise,

simple, repetitive tasks. Since human collaboration is part of the robotic system, useful

information and sensor data must be collected and presented to the human supervisor to

ensure their perception of the environment is clear and accurate.

1
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Therefore, further research is required to devise a functional, low-level automated active

perception framework that communicates and collaborates with human supervisors to

perform a task. The collaborative autonomy between humans and machines is another

aspect of the framework that needs to be addressed.

This chapter introduces the developed perception framework. It commences with a back-

ground of the targeted topic of active perception and details research questions and issues.

The other sections of this chapter describe the scope and the contributions and outline

the contents of other chapters of this thesis.

1.1 Background

The mining industry is a cornerstone of the Australian economy. In 2010, Australia’s

mineral sector contributed up to 8% of the country’s Gross Domestic Product (GDP).

The sector is among the world’s top five producers of several key mineral commodities.

Additionally, the resources sector’s annual export earnings are in the hundreds of bil-

lions of dollars, which is significantly higher than exports from both the agricultural and

manufacturing sectors [21].

Mining sites require extensive risk management plans to minimise dangerous hazards, en-

suring the safety of workers and others. Hazards in mining include ground and strata

failure, fire or explosion, and falls. Despite the risk management plans and safety methods

actively practised, there are recorded casualties and accidents annually. The Queensland

government documented the mining industry safety performance over the last few years

[22], which showed there is at least one casualty, approximately one hundred serious acci-

dents and thousands of potentially serious incidents yearly. Due to the serious accidents

that occurred frequently and unpredictably, machines have increasingly been implemented

in the mining industry to address safety issues and improve productivity [23].

At the beginning of the 20th century, the mining industry began extensively using me-

chanical machines, replacing human and animal power with diesel and electric machines

to improve productivity. As expectations rose and requirements became increasingly am-

bitious, the machines needed to progressively become larger and more powerful. However,
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due to practical limits, different approaches to improve the machines’ performance, such as

automation, were investigated. The development of technology, changes in the workforce,

and escalating health and safety concerns made automation a strong contender [24].

An approach to implementing automation in the mining industry is to utilise robotics

systems to perform mining activities. Throughout the last few decades, the automation

of multiple mining processes has become possible. Numerous robotics systems can per-

form low-level operations independently, allowing human operators to focus on high-level

control, supervision and management activities. Therefore, less human power and inter-

vention are required, significantly reducing the potential of incidents while increasing the

productivity of the mining activities.

Previous works on the implementation of different technologies and methods into semi-

autonomous remote control mining systems include autonomous path planning [25][26],

wireless communication [27], and navigation localisation [28]. In the past decade, the

research has focused more on the autonomous navigation of mobile mining robot bases.

Hence, to further optimise the system, it is important to consider the perceptive function-

ality of the robots.

This thesis is originally motivated by an ongoing project at the University of Technology,

Sydney (UTS) to develop a semi-autonomous remote-control robotic mobile manipulator

platform to perform rock-scaling on walls of open pits and underground mines. Currently,

human workers are performing rock-scaling tasks at heights with the potential for falling

rocks (Figure 1.1). They risk overexertion injuries, falling, crushing and even death. The

project’s ultimate objective is to substitute the manual labour at the rock face for a High

Access Localised Operations (HALO) robot platform and move the people into remote

supervisory roles. Thus, eliminating the exposure to risks associated with the specified

hazardous environment.

1.2 Motivation

A user’s performance and experience, while remotely operating or supervising a robot, can

be enhanced by removing the low-level operations, thus enabling the user to perform tasks
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Figure 1.1: Abseiling workers performing manual rock-scaling operations.

more efficiently and comfortably by solely interacting with high-level control decisions.

To allow for such capabilities, the robotic system must execute the actions inherent in

high-level commands autonomously and independently of human interactions. To achieve

the required level of autonomy while working in an uncertain, unstructured, and poten-

tially dynamic environment, a system must be capable of collecting sufficient sensor data

required to perform the operations and process the data to obtain necessary informa-

tion. Afterwards, the robotic system has to determine the subsequent actions based on

the received information. More importantly, the system must maintain continuous com-

munication with the remote operator, displaying the process status, data collected and

decisions made over time. Since every decision the low-level automated system makes is

based on the data collected, robotic systems need to ensure accurate and sufficient data

are accumulated during the operations.

The procedure for obtaining and processing data varies among different types and models

of sensors. The sensing modality also differs between different data types, such as point

clouds and image streams, the focused features, the surrounding effects, etc. On the other

hand, data transmissions, storage and visualisation are also limitations to be considered.

For this thesis, the chosen data modality is mainly 3D data generated by RGB-D cameras

or LiDAR sensors. Additionally, the placement and viewpoint of sensors can drastically

affect the quality and quantity of the amount of useful information collected by the system.

Commercial RGB-D cameras are becoming progressively more affordable and better. Re-

searchers and engineers are utilising them for numerous projects both for study purposes

and industrial product development. However, most commercial RGB-D cameras suffer
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significant performance deficiency under challenging lighting and exposure conditions (i.e.

outdoor areas, intense direct sunlight). Moreover, the further away objects are from the

camera, the higher the error of the objects’ readings. For example, to execute rock scaling

tasks at the mine site, an autonomous perception system, which utilises RGB-D cameras,

is required to operate in a harsh environment to target large-sized objects. Because of the

limited FOV and reliable camera range, the camera must be relatively close to the targets

while also being able to observe the entire object or at least its critical features. Therefore,

an autonomous active perception framework is required to actively accumulate informa-

tion over time about the object from a focused viewpoint. An alternative sensing device

is LiDAR. Although not as affordable as RGB-D cameras, LiDAR devices have improved

accuracy, FOV and accessibility over the years. Unlike cameras, where the placement of

the sensors must be mobile to improve the coverage, LiDAR has a much higher accuracy

even at a distance but suffer from a smaller vertical FOV. In general, depending on the

model of LiDAR, it can have a large FOV on one axis and a small FOV on the other two

or worse resolution due to the limited number of rays available. Therefore, LiDAR may

not be required to be mobile, but its placement and viewpoint must be carefully selected.

1.3 Scope

This research aims to develop an active perception framework that can operate in collabo-

ration with a human operator. Unlike a passive perception framework, an active perception

framework can actively observe the environment to collect meaningful information, focus-

ing on specific targets to assist both the robot’s and the human operator’s perceptions.

The framework will be responsible for low-level automated processes while collaborating

with the user, who will make high-level decisions. In addition to the semi-autonomous

system, the research also investigates possible and intuitive approaches for data presen-

tation and human interaction, which is important for the collaboration between the user

and the robotic system.
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1.3.1 Aims

The aims of this research project are:

Develop an autonomous active perception framework

In recent years, technology development and various sensing devices have facilitated re-

searchers and engineers with multiple approaches to allow robotic systems to perceive the

surrounding environment. Among sensing devices, RGB-D cameras and LiDAR sensors

can provide the most information in the form of point clouds. However, RGB-D cameras

have substantial limitations in their FOV, range or accuracy. While LiDAR does not have

identical limitations, the data generated from LiDAR are relatively sparse compared to

RGB-D cameras. Sensor limitations impede a robot’s ability to perceive the surrounding

environment. Therefore, if robots can replicate the human’s ability to actively “look” at

objects instead of passively “observe”, they can target specific locations and optimise the

information collection process to obtain the most meaningful data for the perception of

the environment.

Improve the communication of what a robot perceives, so the visualisation is

useful for a human supervisor

Although a robot will ideally be able to complete tasks autonomously without the help

of humans, as the task complexity increases, or for safety, a remote human supervisor

will often have to intervene to provide instruction or authorisation. The quality of the

supervisor’s decision is based entirely on their perception of the robot’s surrounding envi-

ronment. Due to limits in network bandwidth and human cognition, care must be taken

when transferring this data and presenting it to the human supervisor. Virtual Reality

(VR) has proven to be a successful way to immerse a human into a virtual environment,

allowing the user to interact with the robot intuitively. This visualisation modality, com-

bined with image processing and annotation techniques, can be utilised to ensure that

the perceptual data on which the supervisor bases their decision is up-to-date, accurate,

relevant and comprehensible.

Implementation of point cloud processing algorithms to analyse and highlight

important information

As discussed in the previous aim, the user performance in collaboration with the robotic
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system heavily depends on the human’s perception of the world surrounding the robot.

Since humans do not see the world similarly to robots, human operators can easily be

overwhelmed by the large amount of data obtained from sensors. This can be avoided by

presenting only relevant information to the current task. Therefore, it is necessary for the

robotics system to autonomously analyse the raw sensor data before transferring them to

the user. Since this thesis mainly focuses on 3D point cloud data, implementing point

cloud processing algorithms is required as part of the automated system to detect features

in the scene that are useful for the user.

1.3.2 Objectives

The objectives of the research project are to:

• Implement and produce experimental results of multiple algorithms to explore an

unknown environment

• Experimentally evaluate an active perception framework that autonomously manip-

ulates the camera to explore and interact with a dynamic environment

• Implement point cloud processing algorithms into the framework to analyse and

detect meaningful features for human collaboration

• Implement methods that enable a robot’s perceptual information to be communi-

cated and visualised by a human supervisor in VR

• Design systems for conducting the experiments in both simulated and real-life envi-

ronments, and draw conclusions from the generated results

1.4 Contributions

This thesis reviewed and implemented multiple frontier detection algorithms for 2D ex-

ploration, comparing these algorithms with other notable frontier detection algorithms.

The algorithms are implemented in both simulations and real-life experiments to provide
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insightful conclusions about the performance of the inspected algorithms compared with

the other notable frontier detection algorithms. Additionally, a 3D interactive and ac-

tive mapping framework for a mobile manipulator platform based on dynamic GPIS was

implemented to validate its efficiency through simulated and real-life experiments. Two

perception systems are presented that employ the point cloud data in the framework to

perform object detection, pose estimation and scene overlay annotation. The first system

was published and nominated for best paper at Australian Conference on Robotics and

Automation (ACRA) 2019, while the second system contributed to the best student paper

at ACRA 2022. Lastly, a framework for sensor data visualisation in VR environments is

presented. User studies were conducted to determine the optimal configuration for human

supervision.

1.5 Methodology

1.5.1 Evaluation of Frontier-Based Exploration and Dynamic Mapping

Algorithms for Autonomous Robotic Systems

All autonomous robotic systems need to perceive their environment. Robotic systems

require knowledge of the environment to perform tasks and navigate themselves around.

Therefore, when encountering an area with no prior knowledge, it is essential for the robot

to perform exploration. For most exploration algorithms, the environment map is created

and saved as a two-dimensional grid map through the information obtained from a 2D

LiDAR. Many robotics exploration approaches that utilise 2D LiDAR sensor data also use

the concept of frontier cells. Frontier-based exploration approaches repeatedly detect fron-

tiers and move towards them until there are no more frontiers, and the map is completed.

The speed of exploration approaches that employ frontier cells can be enhanced by im-

proving the frontier detection algorithms. However, the detection algorithms’ performance

is situational and dependent on the environment. Therefore, reviewing and experimenting

with multiple frontier detection algorithms is necessary to develop insightful conclusions

for each algorithm.
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On the other hand, due to the complexity of tasks, the autonomous robotic system usually

employs platforms that combine mobile bases with robotic arms to enhance the robot’s

movement capabilities. Due to the implementation of manipulators on mobile platforms,

3D maps of the environment are required. In addition, the working environment is not

static for most real-world applications. Therefore, the mapping framework must incorpo-

rate the environment’s dynamic characteristics and generate a 3D representation of the

surroundings. Selected mapping frameworks need to be implemented and experimented

with in different settings to determine the performance and efficiency of dynamic mapping

algorithms.

1.5.2 Enhancing Human-Robot Collaboration through Processing and

Presentation of 3D Sensor Data in VR

Human supervision is often required to make high-level decisions in collaboration with the

automated low-level processes that are handled by the robot. However, raw 3D sensor data

is often dense, noisy and incomprehensible, especially when shown to humans. Therefore,

the 3D data obtained directly from sensors must be processed before being presented

to humans. Various algorithms were created to filter out the noise, extract features, and

perform object detection on raw data. By exploiting the existing perception and estimation

algorithms, systems can be developed that first attempt to minimise the noise, simplify

the raw data, and then perform feature extraction for specific applications.

Leveraging VR to represent the real world is advantageous because users can immerse

themselves in the scene. Due to the large amounts of information in 3D sensor data,

challenges such as appropriate point cloud processing, data transmission, and presentation

have not yet been thoroughly addressed in the literature. Since the raw 3D point clouds

cannot be transferred between the robot system and VR, other data modalities, which

can be utilised to generate the point cloud, need to be considered. The problem of data

presentation in VR requires user studies to be conducted to derive an optimal setting for

data visualisation and to include perception and estimation algorithms to enhance the

comprehension of sensor data.
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and experimental results of the related topics. Chapter 3 to 6 presents the research activ-

ities conducted within the scope of this thesis. The detailed outline of each chapter is as

follows:

Chapter 2 presents the related works on the different problems of an active perception

system. The chapter covers the past work addressing the three main issues of active

perception systems: sensor data processing, robotics mobile manipulator exploration and

mapping, and data sensor visualisation utilising VR and Augmented Reality (AR).

Chapter 3 investigates multiple approaches to enhance the speed of the mobile base ex-

ploration process. This chapter focuses on improving exploration activities by speeding up

frontier detection algorithms for 2D maps. Several algorithms were studied and compared

with other state-of-the-art frontier detection algorithms. The results from experiments

conducted in both simulated and real-life environments are also outlined in this chapter.

Chapter 4 implements an interactive probabilistic mapping framework for a mobile ma-

nipulator picking objects from a pile. The framework actively maps a dynamic environment

while interacting with the environment simultaneously. The framework creates 3D occu-

pancy grid maps by utilising an RGB-D camera. Experiments conducted to validate and

compare the framework performance in real-world environments are also outlined.

Chapter 5 presents two separate point cloud-based processing systems. The first system

aims to detect rectangular-shaped surfaces and estimate the surfaces’ poses for precise

grasping tasks. The second system aims to detect objects above ground level and annotate

them with bounding boxes to distinguish the objects from the background. Simulated and

real-world experimental results are provided for both systems.

Chapter 6 presents the work done to integrate Robot Operating System (ROS) and VR

systems. This chapter outlines the basic integration setup that consists of two computers,

one with ROS and the other with the VR environment. Two problems with the integration

were reviewed, and an approach has been proposed to address each problem. Additionally,

a study on the effects of sensor data configuration and modalities on human users is

conducted and presented in the chapter.
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Chapter 7 summarises the research work that was done for this thesis. It discusses the

shortcomings of the frameworks and their applications. The research conclusions are then

drawn, and potential future research directions are suggested.

Appendix provides details of the ethics approval relating to the user studies.



Chapter 2

Review of Related Work

This chapter presents the literature review of the related works for the different approaches

to the active perception problem. The literature is divided to focus on the three most

important and related issues of active perception systems: mobile robotic manipulator

exploration and mapping, sensor data processing and data sensor visualisation utilising

VR and AR. Regarding the robotic exploration and mapping topic, the review focuses on

algorithms to speed up the exploration process and 3D dynamic mapping. This chapter

also reviews sensor data processing to investigate the methods that are used to process and

analyse 3D point cloud data, such as filtering, segmentation and clustering. Finally, the

topic of data visualisation in VR and AR explores existing implementations in robotics,

with a particular focus on the problem of rapidly transmitting large perception data sets

in real-time.

2.1 Mobile Robot Exploration and Mapping

The navigation system of mobile robots requires information about the surrounding envi-

ronment. Depending on the applications, the information can be collected from various

sensors and utilised to generate maps with useful attributes. The organisation of this sec-

tion is as follows. Section 2.1 focuses on frontier-based exploration, including the concept

of frontier-based exploration and algorithms to speed up the exploration process. Section

13
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2.1.2 studies the tools to gradually build the map over time and navigate within the given

map. This section considers the navigation problems in both 2D and 3D environments.

Section 2.1.3 focuses on active and interactive perception, where a robot needs to perceive

a dynamic environment that is changed due to the robot’s actions or other reasons.

2.1.1 Frontier-based Exploration

Maps are frequently depicted using occupancy grids, or connected regions, in which each

cell represents a specific location in space ([29]). A cell can be in one of three different

states: “unknown”, meaning there may or may not be an obstruction there; “known

freespace” meaning there is no obstacle there and it can be safely passed through; or

“known occupied”. The terms “known freespace” and “known occupied” are also known

as freespace and occupied, respectively. This status is typically expressed with a value

between 0 and 1, showing the possibility that the cell contains an obstruction. The concept

of frontiers was first proposed by [30]. Frontiers are freespace cells of an occupancy grid

that have at least one neighbouring cell that has an unknown state ([30]). Since then, a

variety of robot exploration techniques have used frontiers, whether they are used by single

robots ([31–37]) or teams of multiple robots ([38–40]). Although there are probabilistic

methods for frontier detection ([15]), these methods cannot be directly compared to the

developed algorithms since they use different types of fundamental data structures.

The Näıve algorithm detects frontiers by evaluating every cell in the robot’s map and

determines whether it is freespace and has at least one unknown neighbour. If the cell

is freespace and at least one of its neighbours is unknown, the cell is considered to be

a frontier. Table 2.1 demonstrates the drawback of this algorithm in terms of speed

when implemented in large real-life environments. The table presents the experimental

results from the implementation of the Näıve algorithm to perform frontier detection in

the Freiburg datasets ([41]) in both 2D and 3D scenarios. The significant difference in the

total calculation time is shown, depending on how quickly the frontiers can be detected

(8.79 seconds compared to 2.25 weeks as the number of cells being evaluated increased).

Previous works have proposed faster algorithms such as Wavefront Frontier Detector

(WFD) ([42]). The WFD algorithm begins with a Breadth-First Search (BFS) from the
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Table 2.1: Example iteration times for Näıve frontier detection if cell evaluations take
1ms, 1us, or 1ns. The first two rows are the 2D areas of the “FR-079 corridor” and
“Freiburg campus” data sets, respectively. The second two rows are the full 3D volumes

of the same data sets, [20].

Dimensions (m)
cm2 Cells

/ cm3 Voxels
1ms 1us 1ns

43.8 x 18.2 8.79×106 2.44hrs 8.79s 0.01s
292 x 167 4.88×108 5.6days 8.13min 0.49s

43.8 x 18.2 x 3.3 2.90×109 4.8wks 48.35min 2.90s
292 x 167 x 28 1.37×1012 43.41yrs 2.25wks 22.76min

robot’s current location through freespace cells until frontier cells are encountered. This

algorithm is more effective than the Näıve algorithm because it only evaluates the map’s

freespace subset, neglecting occupied and unknown cells. Another algorithm, Incremental

Wavefront Frontier Detector (WFD-INC) [43], has a similar principle as WFD, but BFS is

restricted to only the active area of the latest scans received since the last time WFD-INC

was called. An active area refers to the area that was modified by the latest scan. By lim-

iting BFS to the active area, WFD-INC processing time is proportional to the number of

voxels in the restricted area rather than the size of the complete map. Incremental-Parallel

Frontier Detector [43] is similar to WFD-INC, but parallel computation is exploited to im-

prove the algorithm speed further.

Fast Frontier Detection (FFD) only evaluates the cells of each individual scan, particularly

the cells at the perimeters of the scan range, along which any new frontier must necessarily

lie [42, 43]. A bounding box is built around the scanned area. Frontiers detected from

the previous timestep that reside in the bounding box are checked to see whether they are

still frontiers after FFD is performed on the latest scan. Compared to WFD, this algo-

rithm is faster, but it must be repeated after every new scan from the sensor is obtained.

Additionally, FFD is less effective in detecting frontiers at the maximum range of sensors.

Divergence in laser points at extreme ranges causes the line tessellation method imple-

mented by FFD, Bresenham’s line algorithm (see Figure 2.1), to pass through unknown

space, which means it does not detect all the frontiers on the way.

Another algorithm called OBB-based Frontier Detector, presented by Senarathne et al.

([44, 45]), efficiently updates the set of frontier cells by keeping track of the cells being

updated and their previous states. This algorithm suffers a drawback where cells are

checked unnecessarily if the edges of the new observation have many updated cells.
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Figure 2.1: The rays that traverse the occupancy grid (grey cells are unknown space, and
white cells are freespace). The dashed lines show the cells that Bresenham’s line algorithm

traverses when determining the cells that are on the line between a ray’s endpoints.

A frontier detection algorithm introduced in [46] employs the idea behind a randomly

exploring tree. A tree is constructed from the robot’s current position to locate the frontiers

in the map by using customised branching and selection rules. The robot passes through

the area when a set of frontier cells is detected. Afterwards, the branches on the tree

are removed to free up memory and enhance the speed of the calculation process. [47]

proposed an algorithm to perform frontier detection utilising multiple robots. Each robot

performs frontier detection and creates distinct local maps. By combining the information

from all local maps, a global map can be constructed with all the frontiers detected.

The Näıve Active Area frontier detection (NäıveAA) algorithm was introduced in [48].

In this algorithm, only cells that are in the active area need to be assessed to see if

they have changed into a frontier or are no longer a frontier, as per NäıveAA algorithm’s

principle. Thus, NäıveAA iterates through each cell, c, in the active area, At, of any scans

performed since the last frontier detection step, including the immediately adjacent cells

to the scanned areas. The list of frontier cells at time t, Ft, is updated to include cells that

are new frontiers while subtracting cells that are no longer frontiers. Then, to discover

which frontier cells are linked in O(|F |) time, Kosaraju’s series of Depth First Searches
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(KOSARAJU DFS) [49] is executed.

An additional algorithm called EWFD with an initial iteration process that is comparable

to WFD is also suggested by [48]. Freespace cells are analysed using BFS to determine

whether or not they are frontiers. A cell is added to the frontier set if it is next to an

unknown cell. The adjacent cells of freespace cells are added to the queue. Each cell

that BFS visits is labelled as visited. After the initial iteration, this labelling is left in

place. Once a set of frontiers exists, an additional step is included in subsequent iterations

of EWFD. The set of boundaries from the previous timestep that is located inside the

active area of the most recent scan is determined before the start of BFS. These cells

are added to BFS queue and labelled as “unvisited.” Freespace cells are now evaluated

as they are removed from the queue, considering their frontier status. They are removed

from the frontier set if the previous timestep’s frontier set includes them as frontiers, but

the current timestep does not. The set of connected frontier groups is obtained using

Kosaraju’s connectivity algorithm [49] once the set of frontiers has been updated.

FTFD exploits the border of the current observation that has a high possibility of in-

tersecting with existing frontiers [1]. The frontiers that reside in the observed area and

the endpoints of sensor rays are used as initial points to start searching for new frontiers,

which are part of the latest observation’s perimeter. The task is to update the frontier

set from the previous timestep, Ft−1 to incorporate the information from the observation

made at t, Ot. The set of frontiers at t, Ft is the updated Ft−1. Initially, Ft is equal to

Ft−1. The active area frontiers, Faa is a subset of the frontier cells in Ft−1 that lie inside

At. BFS is initialised with a queue consisting of Faa and cells by the endpoints of the rays

used to integrate the latest scan into the map. A cell, c is removed from the queue at each

iteration of BFS. If c is an unvisited frontier, then it is added to Ft, and the adjacent

freespace cells which belong to the map’s active area are included in the queue. If c is

not a frontier at t, but was previously a frontier at t − 1, then it is removed from Ft. If

c is occupied, its neighbouring freespace cells will be added to the queue. The resulting

pattern of cells that is evaluated is shown in Figure 2.2(a). This pattern for FTFD is

compared to that of EWFD in Figure 2.2(b).
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(a) (b)

Figure 2.2: (a) FTFD; (b) EWFD. Thick red borders indicate the cells that are deter-
mined to be potential frontiers; dashed borders are the cells that are removed from the
queue but are discarded before full evaluation. The blue cells are frontier cells from the
previous timestep, which are also evaluated. The thick black lines denote the sensor FOV

[1].

2.1.2 Localisation and Mapping

SLAM endows mobile robots with the ability to operate in an unknown environment

autonomously. The SLAM problem raises the question of whether the robot can gradually

build up information about the environment without prior knowledge while aware of its

location within the environment [50]. Researchers have formulated the SLAM problem,

and numerous solutions have been proposed practically and theoretically.

The combination of 2D LiDAR and SLAM is an efficient way to create a map of the working

environment. The completed map is crucial for the navigation system of mobile robots

to execute map-based localisation tasks [51]. However, the environment map obtained

from SLAM and 2D LiDAR can be faulty due to environmental conditions, including loop

closure, glass and transparent material. The error causes the loop closure problem when

the mobile robot’s relative pose is computed using scan-to-scan matching. The errors

quickly accumulate over time and, eventually, prevent the SLAM algorithm from correctly

connecting the loops in the map. The work in [52] presented a new approach addressing

the loop closure problem of SLAM, which is competitive with well-known algorithms. The

paper proposed a system that treats loop closure as a pose optimisation problem. Jiang [53]
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proposed an approach for transparent environment map building using 2D LiDAR. The

proposed method implemented neural networks to classify glass objects and build a glass-

confidence map. 3D localisation is also desirable, especially for robotic systems that require

the robot to operate at different heights in the environment, such as mobile manipulators

or drones. In these scenarios, 3D LiDAR and RGB-D cameras are preferred because they

provide information in the form of 3D data. Fallon proposed a 3D localisation algorithm for

indoor environments using an RGB-D camera [54]. The introduced algorithm generates a

3D model of the environment with large planes extracted from several consecutive frames

captured by the camera. The particle filter then utilises the generated model for 3D

localisation.

Navigating with a mobile robotic system given a map of an environment requires the robot

to have the ability to localise, and recognise its current position and orientation within

the map. Monte Carlo localisation (MCL) is a probabilistic approach to the localisation

problem [55]. In the first phase of MCL, a set of random particles is generated, presenting

the possible robot poses. In the second phase, for each time step, the motion model

is applied to all particles to predict the current pose of each particle. Based on sensor

data readings, particle filter algorithms are then implemented to eliminate particles with

low likelihood. The two phases of MCL are repeated recursively. Adaptive Monte Carlo

localisation (AMCL) is a variant of MCL commonly utilised in robotic navigation systems

through ROS. The AMCL variants differ from the original algorithms because AMCL

utilises the Kullback–Leibler distance (KLD) sampling to bound the approximation error

generated by the particle filter of MCL [56]. By implementing KLD-sampling to adapt the

estimated size of sample sets, the efficiency of the particle filter in AMCL is increased.

2.1.3 Active and Interactive Perception

The representation of the map is crucial for mobile manipulators interacting with dynamic

environments. The mapping representation must efficiently reflect the changing environ-

ment. KinectFusion [57] is a mapping system that utilises RGB-D cameras. The map

generated is volumetrically built as a Truncated Signed Distance Function (TSDF) data

structure. The transient noise is smoothed out by averaging the information of each voxel
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over time. Therefore, the model is capable of handling dynamic environments. However,

significant topological changes are only addressed after a delay. The 3D world can also be

represented by occupancy maps, such as Octomap [20]. These maps present each voxel in

space by its probability of occupancy. Octomap was implemented to create a robust multi-

stage pipeline for bin-picking applications [17]. However, the resolution and precision of the

Octomap are compromised because structural correlations between neighbouring cells are

not addressed. Also, it is difficult to reason about object shape or perform detection [58].

Gaussian Processes Occupancy Maps (GPOM) is a method of combining Gaussian Pro-

cess (GP) with occupancy mapping that is probabilistic and continuous but incurs a large

computational complexity. Hilbert Maps utilises kernel approximation methods to form

a faster and simpler occupancy map type [59]. The work was then extended to handle

dynamic obstacles and model learning through regression in [60].

Despite all of the aforementioned benefits, GPIS exhibits O(n3) computational complexity,

which limits its use [61, 62]. An online GPIS solution was described by Lee et al. [16]

that incrementally combines consecutive scans from diverse views and saves data in small

clusters for quick parallel processing. However, this approach does not address dynamic

environments because once an object has been mapped, it stays in the GPIS data even

after it has been physically removed from the scene. Here, the fundamental perspective of

GP is implemented as a tool for instantaneous probabilistic conditioning of the immediate

training data [63]. The map is demonstrated to be instantly updated in the pertinent local

regions if a system is created to recognise and filter out training points that represent the

removed object.

Other dynamic mapping research has concentrated on finding and monitoring moving ele-

ments in static settings [64] [65] or removing dynamic elements from the environment [66]

to create accurate static maps.

An Information Gain (IG) metric can be used to determine the best course of action in

robotic exploration. Applications for mapping and exploration frequently use occupancy

maps and Octomaps because of their probabilistic occupancy representation [67, 68]. Re-

cently, GP has also been employed for IG-based exploration tasks, such as mutual infor-

mation maximisation [69], conditional entropy reduction [70], and entropy reduction [71].
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Using restricted Variational Sparse GP and online kernel learning, [72] proposed an effec-

tive method for active shape modelling that maintains the precision of the reconstruction.

Another IG metric is the entropy gradient [73, 74]. The advantage is that it pulls the

robot firmly towards the boundary between the explored and unknown areas by creating

a rough gradient formulation for discretised 3D occupancy maps. Later, Jadidi et al. [69]

produced continuous gradient frontier maps using a 2D GPOM variation, but an analytical

expression was omitted because their map definition was not straightforward. The NBV

candidates are identified using the gradient map, but they did not evaluate NBV utility.

Shape detection, classification, and validation in interactive applications have used GPIS

with built-in surface normals [58]. A robotic arm fitted with tactile sensors is used by

the GPIS-based architecture described in [75] to explore and map the environment. [70]

proposed an approach to optimise a manipulator trajectory that is reconstruction-aware

to accurately estimate the object’s 3D shape for pick-and-place operations.

2.2 3D Point Cloud Processing

Point Cloud Library (PCL) is a library introduced in 2011 that includes algorithms for

3D point cloud processing [2]. The library is still one of the most widely known and

implemented libraries when working with the 3D point cloud. Figure 2.3 presents three

implementation examples of the library’s built-in algorithms. The library’s original algo-

rithms are often used as a benchmark for validating the results of other research. More

recent works that implemented functions of the PCL include adopting the voxel grid filter

module to ensure evenly distributed input data by Zhang et al.[76]. Whelan et al. de-

veloped the Kintinuous extension of the Microsoft Kinect Fusion algorithm based on the

PCL variant [77]. The author later published another paper that utilised PCL’s colour

integration module to the Kintinuous extension to create 3D mesh-based maps [78].

The organisation of this section is as follows. Section 2.2.1 focuses on the filtering problem

when engaging with a 3D point cloud. The importance of the filtering process is described,

and then several filtering algorithms and their related works are examined. Section 2.2.2

focuses on the 3D point cloud segmentation problem. Similar to the previous section, the
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(a)

(b)

Figure 2.3: Example of PCL applications [2]. (a) RangeImage display utilising PCL
Visualisation (bottom) for a 3D data set (top). (b) PCL StaticalOutlierRemoval appli-
cation. Left: Raw data. Middle: StaticalOutlierRemoval result. Right: The algorithm’s

rejected points.

importance of the segmentation process is discussed, followed by the concepts, ideas and

basic algorithms that address the segmentation problem. Related works on the variants

of the basic algorithms are also inspected. Section 2.2.3 focuses on the data clustering

problem in general. The data clustering problem is a multi-disciplinary topic. Therefore,

the early algorithms were not specifically designed for the computer vision field. However,

these algorithms are later implemented to solve precisely the 3D point cloud clustering

problems. Section 2.2.3 looks into the original algorithms for data clustering and their
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variants.

2.2.1 Filtering Algorithms

In robotic perception, with extremely large datasets and limited processing time, it is

necessary to pre-process the input data to minimise the computational time. It is ideal

that the sensor data can be processed before the next set of data arrives. Although the

robotic systems might not require the processed sensor information for every data set, it

is optimal to have the data handled and ready when needed. Over the past two decades,

computing devices have developed significantly, improving both the processing power and

available memory size. However, the typical RGB-D camera sensor has a resolution of

up to 1920x1080 and operates at 30Hz. The camera produces a point cloud with over a

million 3D coloured points, updated 30 times every second. Therefore, filtering algorithms

to optimise the initial point cloud are needed to eliminate redundant information while

maintaining valuable dataset features.

Moreno et al. published a comparison of multiple well-known 3D point cloud filtering

algorithms [3]. The work presented was interested in the performance of three filtering

algorithms in real-time video streaming. The final result concludes that, individually,

none of the algorithms was able to produce a close to real-time performance. The filtering

algorithms considered include pass-through filter, voxel grid filter and approximate voxel

grid filter (Figure 2.4).

Similar to Moreno’s work, Dziubich also investigated different algorithms’ efficiency as a

pre-processing step for a system aimed to process and stream point cloud [79]. A previous

publication proposed an improved pass-through filter algorithm with further optimisation.

This optimised pass-through filter processing speed can be enhanced more than two times

compared to the original PCL pass-through filter algorithm [80]. Voxel grid filter was a

noise removal tool for 3D point cloud data. It was utilised to evaluate and compare more

recent algorithms such as the Growing Neutral Gas (GNG) noise filtering network [4], as

shown in Figure 2.5. With multiple filtering layers, it is possible to focus on the object

of interest and eliminate all the unnecessary surrounding data. However, this effect and

the filtering layers depend mainly on the environment and unique features of the targets.
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Figure 2.4: Qualitative comparison of the filtering methods investigated by Moreno [3].
(a) - (d) The point cloud after the implementation of various filtering methods: (a) No

filter, (b) Pass-through filter, (c) Voxel grid filter, (d) Approximate voxel grid filter.

Three layers of filtering consisted of two pass-through filters, and one voxel grid filter was

utilised in [81] to obtain a sparse 3D point cloud of specific colour and distance. Existing

3D point cloud filtering algorithms were reviewed and categorised into seven groups based

on their traits in 2017 [82]. Han et al. also proposed an algorithm for 3D point cloud

filtering inspired by the 2D guided image filter technique [83].

2.2.2 Segmentation Algorithms

Point cloud segmentation is a fundamental step in 3D point cloud processing [84]. The

segmentation algorithms aim to classify the point cloud data into multiple homogeneous

regions. Each represents a set of points with similar attributes. The set of points is isolated

from the remaining points in the dataset and can be treated as an individual point cloud.

The segmented and analysed point cloud is the prerequisite for other processes, such as

object recognition, classification, and template matching, where each separate region is

the input. Previous work demonstrated a segmentation process followed by a template

matching problem [5]. The paper presents an algorithm to segment a rigid object in a

2D image using region-based segmentation and estimating the object’s 3D pose. The pose
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Figure 2.5: GNG vs Voxel Grid Comparison. Top Left: Noisy model. Top Right:
Original CAD model. Bottom left: filtered model using GNG method. Bottom right:

filtered model using Voxel Grid [4].

Figure 2.6: Segmentation of natural colour image. (an) Challenging problem initialisa-
tion. (bn) Final result with the proposed algorithm in [5].

was calculated using prior knowledge of the target object’s 3D model. By combining 2D

and 3D information, the presented algorithm was robust to noise, occlusions and missing

information (Figure 2.6).

Oehler proposed a coarse-to-fine point cloud segmentation algorithm [85]. The author’s

method executes surface segmentation of the scene on multiple resolutions, starting from

the coarsest data. The final result is obtained by refining and merging segments from

coarser resolutions. Trevor et al. [86] introduced an algorithm for segmentation targeting

specifically organised point clouds. The paper also presented an edge refinement algorithm
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and discussed the tabletop object segmentation application of the proposed algorithm.

Edge-based segmentation algorithms focus on the boundaries of multiple regions in an

image. Iannizzotto et al. presented a 2D edge-based segmentation process utilising active

contour [87]. The active contour proposed is fast due to the low computation complexity.

The result from the process introduced is a closed chain of points which is an advantage

for the subsequent representation process. Patil implemented the edge-based segmentation

module created by PCL to extract the edges of two halves of welding materials [88]. The

shared edge of the halves is detected through 3D point clouds by utilising a variant of

Canny Edge Detection.

Region-based segmentation algorithms examine the neighbours of a point. The nearby

points are combined if they have similar properties or separate when dissimilarities are

observed. Region-based segmentation algorithms are categorised as seeded and unseeded.

The main difference between the two algorithms is the required inputs. Seeded algorithms

expect a set of points, while unseeded algorithms only request the condition for subdivi-

sion. Seeded region growing was introduced by Adams et al. [6]. The original algorithm

was designed for grey-scale images (Figure 2.7) but can be extended to colour or point

cloud data. This algorithm is robust and independent of tuning parameters but heavily

affected by the selection of the initial seeds. The unseeded region growing was designed

to address the drawbacks of the seeded algorithm. Unseeded region growing [7] is robust

and independent of tuning parameters designed for 3D segmentation and does not require

the initial set of seeds (Figure 2.8). However, the unseeded region growing algorithm was

affected mainly by the noise in the input data. Multiple layers of noise filtering can be

implemented to negate the disadvantage of this region growing algorithm. Xu presented

a robust region growing segmentation algorithm for planar surfaces with distinctive geo-

metric features compared to surrounding objects [89]. The mentioned method combines

multiple methods, including voxel structure, region growing strategy and robust principal

component analysis (RPCA).
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Figure 2.7: Seeded region growing experimental results. (a) Artificial image with noise.
(b) to (h) Results with different initial seeds sets [6].

Figure 2.8: Unseeded region growing experimental results. (a)(c) Artificial images with
different noise levels. (b)(d) Results of (a) and (c), respectively [7].
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2.2.3 Clustering Methods

Clustering is the unsupervised classification process that aims to distribute patterns into

groups or clusters [8]. Clustering is one of the preliminary steps often encountered in data

analysis used by researchers in many disciplines. Das et al. [90] combined ground plane

segmentation with a clustering process to create a variant of the Normal Distributions

Transform (NDT) scan registration algorithm. Das et al. proposed a segmented greedy

cluster NDT (SGC-NDT) variant, which segments the ground and clusters the remaining

data before performing NDT to guarantee the convergence of the optimisation function.

Tazir utilised a clustering algorithm to represent a cluster of points of the same surface as

one point [91]. This one point is then provided as an input for the ICP matching process.

The proposed algorithm aims to tackle the difficulty of working with multiple 3D point

cloud sensor sources, each with a different resolution. Paul et al. clustered a generated grid-

based point cloud based upon the grid’s normal vector to locate the normal dissimilarity

of a surface [37]. The grid-based point cloud was created by triangulating a 3D point

cloud received from an RGB-D camera. Paul et al. identify the normal dissimilarities on

the surface of steel bridge structures and designates them as possible locations of rivets.

The clustering step was a back-end solution to detect voxels containing rivets, which the

previous process might have missed or filtered in a steel structural environment.

Hierarchical clustering algorithms generate a tree diagram representing the grouped pat-

terns and the similarity levels, which determine the grouping condition of patterns [8]. The

two fundamental hierarchical clustering algorithms are single-link and complete-link. The

basic concept of the single-link clustering algorithm considers all patterns as vertices of a

graph [92]. If the distance between any two vertices is less than a user-defined threshold

(∆) then the two vertices are connected with an edge. The clusters with similarity level ∆

are groups of connected patterns. The limitation of the single-link algorithm was due to the

method by which the distance between two clusters is computed. The algorithm regards

the minimum distance between any two points belonging to different clusters to be the

distance between clusters. This results in the chaining effect in which two random clusters

can be considered as one cluster if a string of noisy data exists at the centre, acting as the

connection (Figure 2.9). The complete-link clustering algorithm was developed to form
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Figure 2.9: Single-link vs Complete-Link on a data set containing two classes (1 And
2) connected by noisy patterns (*) [8].

compact clusters that avoid the extremes of the single-link algorithm. The work presented

by Hansen et al. [93] points out and discusses the difference between the two algorithms.

The complete-link algorithm differs from the single-link one since the distance between 2

clusters is the maximum distance between any two points, each belonging to a distinct

cluster, as opposed to the minimum distance in the case of the single-link algorithm. Due

to how the distance between clusters is calculated, the complete-link algorithm results in

overly separated clusters, which is undesirable. However, overall, the complete-link al-

gorithm is more likely to produce useful clusters compared to the single-link algorithm

[8].

Partitional clustering algorithms have a relatively low computational cost, which makes

these algorithms advantageous when processing large datasets. The partitional clustering

algorithms generate clusters through the optimisation process of a criterion function. The

most common and simple algorithm is the k-means algorithm, which utilises the squared

error criterion[8]. In this algorithm, k initial patterns are selected as centres for k clusters.

All the remaining patterns are then distributed to their closest cluster. After all the

points have been allocated, the centre of each cluster is recomputed. Even if the criterion

function does not converge, a new set of k cluster centres can be selected before repeating

the process. Zhao et al. evaluated the performance of partitional algorithms on large

document datasets compared to agglomerative clustering algorithms [94]. The paper also

described a variant of the original k-means algorithm, which performs k-way partitioning

via repeated bisections. This variant obtains k clusters by performing the 2-way partition

clustering k − 1 times.
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Figure 2.10: Results of shared nearest neighbor algorithm [9].

Nearest neighbour clustering algorithms assign a pattern to the same cluster of its nearest

neighbour if the distance to the nearest neighbour is below a threshold [8]. Another

approach for nearest neighbour clustering algorithms suggested considering the shared

nearest neighbours instead of the distance to these neighbours [9]. The shared nearest

neighbours approach addresses the difficulties when working with high-dimensional data.

The basis of the shared nearest neighbours algorithm defines similarities between patterns

by their mutual neighbour patterns. Due to the nature of this algorithm, it is also highly

effective in eliminating noise from the dataset (Figure 2.10). Noise elimination is achieved

by targeting elements in the dataset with a limited number of nearby neighbours.

2.3 Virtual and Augmented Reality in Robotics

In recent years, 3D point cloud technology has proven capable of representing both static

and dynamic 3D objects at various scales ranging from blood vessels to buildings or even

cities. Furthermore, researchers have shifted their focus towards point cloud data visual-

isation in VR environments. Numerous methods were considered and investigated, such

as estimating the current frame, utilising the data from the previous frame, and filling in
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the difference with the latest measurements [95]. An alternative approach involves ren-

dering the point cloud data by combining various techniques, from good data structures

to complex optimisation and sampling algorithms [96]. Another method proposed over-

laying the 3D point cloud with an existing CAD model, which can be displayed in a VR

environment [97].

The VR environment also enables the display and annotation of meaningful information

from the raw point cloud data. Works have been conducted regarding providing an intu-

itive and straightforward tool for annotating point cloud data in VR [98][99], where it has

been shown to be effective while also remaining relatively intuitive to use.

Section 2.3.1 focuses on the applications of VR technology in training programs in vari-

ous fields, including industrial assembly, robotics surgery, human-robot collaboration, and

many others. Section 2.3.2 focuses on the applications of AR technology in control inter-

faces. The implementation of AR aimed to improve the users’ performance by providing

additional information about the task on screen. Section 2.3.3 focuses on data transmission

between VR and ROS in remote operations.

2.3.1 Virtual and Augmented Applications in Training Programs

Currently, there is a large body of literature investigating the application of VR and AR

in training for industrial assembly tasks. VR and AR environments can be utilised in

assembly tasks training platforms and have been demonstrated to outperform traditional

methods [100]. As they become widely applied in industrial assembly, training, and re-

mote operations, assessment systems are required to evaluate the simulations and user

performance therein.

In addition to industrial assembly training, VR and AR platforms are also implemented

to assist the training and work experience in various industries, such as over ten years of

VR training for robotics surgery [101] and flight simulation [102]. In education, learning

systems utilised VR and haptic technology to learn handwritten Japanese characters [103].

The combination of haptic technology and VR allows the learner to see and learn through

the sense of touch.
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(a) (b)

Figure 2.11: Virtual Reality teleoperation. (a) Real-life implementation. (b) First-
person view from inside VR [10].

The design and assessment of VR simulators for diverse fields, including human-robot

collaboration and industrial training, have been extensively researched. Previous work

demonstrated the design of a VR human-robot collaborative environment for industrial

training purposes [104]. Other researchers investigated an evaluation procedure to empir-

ically assess VR and AR training simulator’s performance and effectiveness for industrial

maintenance and assembly tasks [105]. A prototype system for aircraft maintenance has

been presented [106], which addressed the limitations of AR technology when building

user interfaces to display documentation as digital and graphical records.

VR has also been used in various robotics systems to assist with manipulation tasks, such

as [10] implementing VR to teleoperate a 6DOF robotic arm performing complex tasks

(Figure 2.11). Here, VR assists in the process of obtaining demonstrations required by

a deep imitation learning network. In a different study, VR was utilised to program a

grasp recognition algorithm, implementing programming by demonstration [107]. The

VR environment gave the system essential information, including hand postures, contact

points and computed normals. This information can then be implemented into a pre-grasp

planning algorithm.

Upper limb rehabilitation can be augmented by VR gamification and haptic robotic manip-

ulator feedback [11], as shown in Figure 2.12, to improve the connection between patients

and therapists, increasing the productivity of therapists administering rehabilitation. It

enabled remote routine customisation for the patient by providing an avenue for rehabili-

tation in a domestic setting. However, this work did not provide the VR user with any way
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(a) (b)

Figure 2.12: (a) A system based on the GAVRe2 framework. (b) First-person view
from inside VR [11].

to incorporate real-world sensor data to enhance their experience. The real-world sensor

data, such as a video feed textured onto a live geometric representation of the therapist,

is hypothesised to improve the experience for everyone involved.

In a previous work [12], it was shown that VR could interface with the control system

of a real-world mobile manipulator, which facilitated a natural and intuitive method for

human-robot interaction. The technology used in most commercial VR platforms has the

ability to track movements in 3D space and translate performed motions, coupled with

intuitive controls, such as grabbing and pointing, which provides a compelling approach

to resolve the limitations of traditional remote robot teleoperation methods (Figure 2.13).

The proposed future work was to integrate live real-world sensor data and investigate the

influence of the data limitations on a user’s ability to perform manipulation tasks. To

remove any controlling variables and isolate the sensing aspect, the experimental tasks

presented were directly enacted by the user’s own hands rather than via the previously

presented VR-based remote control interface.

2.3.2 Virtual and Augmented Reality Applications in Control Interfaces

In recent years, the applications of VR technology in robotics systems have been a popu-

lar research topic. VR helps create an intuitive and effective control interface for remote

control robotics systems while enhancing the user’s perception ability through 3D data

visualisation. Previous work has implemented VR to create the control interface for un-

derwater undetonated munitions removal [108]. The work presented is also designed as
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Figure 2.13: The interfaces given to users. Left: 2D interface. Right: 3D VR interface
[12].

Figure 2.14: Virtual hand operating in VR, controlled through motion-capture glove
[13].

a ROS package for straightforward integration into other applications. A different ROS-

VR teleoperation package was introduced in [109]. The developed framework is designed

to be implemented with any VR headset that is compatible with Unity. The paper also

conducted a user study to obtain insights into the framework’s performance in various

manipulation tasks. In other research, VR was utilised in a control interface for real-time

fine-grained dexterous control of the robot remotely [110]. Additionally, VR improves

the users’ awareness of the environment and the contact surface by bestowing the user

with the manipulability of the viewpoint. An alternative approach to interacting with

a VR environment is through direct motions of a teleoperated virtual hand [13]. The

article illustrated a VR system that combines real-time motion capture, physics simula-

tions, stereoscopic visualisation and a motion-capture glove to control the virtual hand

(Figure 2.14).

The applications of VR in robotics systems also involve training simulations for multiple

processes, such as [111] implementing VR to create an industrial robot operation training
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system. The presented system was not limited to simulation training but could also act

as the control interface for real-world industrial manipulators. A prior study investigated

the applications of VR in human-robot collaborative systems [112]. The author developed

a VR-based framework integrating human responses into the system design process. The

human-robot collaboration system layout design and the control program can also be op-

timised by utilising an event-driven simulation created with VR. Ruckert et al. proposed

a systematic approach to adopt VR into collaborative assembly processes [113]. Addition-

ally, the work introduced a specific VR system derived from an assembly process, achieving

the highest possible immersion.

AR is widely implemented in control interfaces. However, unlike VR, AR focuses on pro-

viding users with additional overlay information. A user study was conducted to compare

the performance of AR and VR in selection and transformation tasks on a 9 DOF ob-

ject [114]. The study indicated that better users’ performance, which was measured by

completion time, occurred when using AR instead of VR. The overlay information AR

provides can be documentation and guidance on the ongoing task [115] [116], or processed

sensor data. A novel robot operation interface for a system that composes a self-tracking

device and a depth camera with AR support was presented in [117]. The operation in-

terface renders information, such as basic robotics manipulation commands and object

detection results from the depth camera. In a different paper, AR was utilised to display

the 3D information collected from a remote area interactively [118]. Furthermore, the

paper introduced a gesture operating interface that converts the operator’s movements

into control commands in real-time. Alternatively, the remote control system can receive

inputs from a haptic feedback device [119]. The article proposed an intuitive interface for

remote welding robots programming that involves AR and haptic feedback. The proposed

system reconstructs the surfaces of the workpieces and utilises AR to visualise the welding

torch, assisting the operator with the planning phase of the welding task.

2.3.3 Dense 3D Data Transmission

Point clouds are a source of feedback that enhances the visualisation of depth informa-

tion implemented in various algorithms. A point cloud is a type of data that is generally
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constructed of a set of unconnected [X,Y, Z] geometric coordinates representing a single

point in R3 space. Although they are a good way to represent objects in space, they are

an inherently inefficient way to transmit or store data [120]. This has led researchers to

present a data compression approach aimed at solving bottlenecks in 3D point cloud data

transmission. It involved mapping the point cloud data onto panoramic images, which can

be encoded using conventional image compression techniques. Another approach by [121]

suggested removing unneeded features to reduce the amount of data transmitted. The

authors could transmit point cloud data in near real-time by removing unnecessary noise

and information through filtering and segmentation algorithms. A more recent paper has

shown successful preliminary experimental results in real-time 3D point data transmis-

sion [122]. The researchers achieved this by implementing the Octree-based compression

technique provided by the PCL and encoding the point cloud data into a text file before

transmission.

2.4 Summary

Robotic perception and map-based mobile robot navigation problems have been investi-

gated by various researchers in the past. However, there remain unanswered problems on

the topics. In robotic perception, numerous variants of the original concepts and methods

were developed and proved to be applicable to certain tasks. However, in most cases, the

variant was established to address the specific problem or environment it was created to

solve. Therefore, new problems and questions are introduced for mobile robots based on

their operating environment.

Active perception is the combined problem of NBV selection, robotic perception and

robotic manipulation. While there has been a substantial amount of research done for

robotic perception and mobile robots, the NBV problem is highly situational, and possible

solutions still need to be investigated. The answer to this problem largely depends on

the specific task the robot aims to solve. Human collaboration is a solution proposed in

several scenarios in which the robot is responsible for completing low-level tasks while the

human makes high-level decisions. For remote control systems, the chosen NBV is heavily



Chapter 2. Review of Related Work 37

dependent on the information provided by the robot. This leads to the problem of data

visualisation and human-robot interaction and collaboration.

The development of VR hardware and software has enabled the representation of the real

world in a virtual environment. Additionally, when combining VR with sensors, such as

LiDARs and RGB-D cameras, it is possible to capture the state of real-world objects in

real-time within a VR environment. VR also enables users to immerse themselves into

the environment, creating an intuitive environment when interacting with the robot while

operating remotely. Therefore, VR was selected herein as the data visualisation tool for

collaborative autonomy. However, user studies are required to determine the optimised

configurations for displaying data and whether assistive annotation information is practical

and effective.



Chapter 3

Frontier Detection Algorithms

3.1 Introduction

Environment perception is compulsory for every robotic system regardless of its task and

purpose. One of the most researched questions in the robotic field over the last few

decades is how to build a map to assist the navigation of a mobile robot. Usually, the

navigation map is a two-dimensional grid map created utilising data obtained from range

sensors. The process of perceiving the environment to generate the grid map involves

distinct problems such as exploration, localisation, saving or updating the map through

time. Modern robotic systems are often designed to operate in various environments, most

with minimal to no prior knowledge. Thus, the ability to perform exploration is required.

Many robot exploration algorithms that utilise LiDAR sensor data rely on the concept of

frontier cells. Frontier cells form the edge between the known and the unknown space.

Frontier-based exploration involves repeatedly detecting the frontiers while moving towards

them. Depending on the computation time of each iteration, one or multiple scans can be

performed from the LiDAR viewpoints as the robot moves. The map frontiers and the next

action is then determined based on the obtained information. The exploration is finished

when no frontiers and unknown regions remain. This chapter presents the implementation

of six algorithms for detecting frontiers in simulated and real-world scenarios and the

findings of a comparative study.

38
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Since frontier detection is a component of exploration algorithms, the speed of the explo-

ration process can be enhanced by improving the frontier detection speed. The advance in

frontier detection speed may also improve the quality of the decisions made by the explo-

ration algorithms since faster decisions can be made with more recent data. In addition,

with the technology development, frontier detection is more likely to be the bottleneck

to the speed of the exploration algorithm instead of the sensors’ data acquisition speed.

Therefore, it is necessary for frontier detection algorithms to be efficient.

3.2 Methodology

This chapter presents the implementation and evaluation of six frontier detection algo-

rithms in simulations and real-world scenarios. The implemented algorithms are: Näıve,

WFD [42], WFD-INC [43], NäıveAA and EWFD[48], FTFD [1]. The details of these

algorithms have been presented and reviewed in Chapter 2. However, they must be com-

pared in similar environments to ascertain their strengths and weaknesses. The Näıve

algorithm evaluates all cells to determine if they are frontiers based on the definition of

a frontier. WFD differs from the Näıve algorithm because it targets the freespace cells

subset. WFD-INC use BFS, similar to WFD, to detect frontiers among the freespace cells

in the active area. The NäıveAA algorithm only evaluates cells that have recently become

a frontier or are no longer a frontier. The initial iteration of EWFD is identical to WFD,

but it incorporates the labelling process to speed up the frontier detection process. FTFD,

on the other hand, exploits the fact that the border of the current observation has a high

possibility of intersecting with existing frontiers. The experimental results, conclusions

and insights for all algorithms are discussed and presented in this section. The exper-

iments and analysis are performed for various 2D environments, including pre-recorded

Freiburg maps, Gazebo simulation and real-world indoor hallways. The run-time of all

six algorithms is determined theoretically and through simulations and compared to each

other.

Three experiments have been conducted using the same algorithmic implementation code,

developed in MATLAB. Experiment 1 uses simulated data to test the relative efficiency

of the algorithms when detecting exploration frontiers in a controlled, known, simulated
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environment. An image of a known map was used to emulate the SLAM process as a map is

gradually constructed from a sequence of sensor observations. Experiment 2 uses Gazebo as

the simulation engine environment and a ROS node in MATLAB to handle the calculation

of the algorithms. In this experiment, the aim is to investigate the possible overhead in

this system setup and to test the stability and repeatability of the algorithms when they

are fed simulated sensor data from Gazebo that mimics real-world scenarios. Experiment

3 was conducted in a 60x60m real-world office environment at the UTS, where a MP-

700 [14] mobile robot equipped with a SICK-S300 laser scanner was manually controlled

to construct a map. The software and system setup was similar to Experiment 2, with

most processes handled in ROS. The MATLAB ROS node handles the frontier detection

calculations for each algorithm. The main difference is that in Experiment 3, a real robot

replaced the Gazebo simulator used in Experiment 2. For all scenarios, the calculation

times per scan have been recorded alongside the total number of cells evaluated per scan.

The algorithms compared are the Näıve, NäıveAA, WFD, WFD-INC, EWFD, and FTFD.

The experiments have been conducted to investigate and validate the following ideas:

• Given a set of different frontier detection algorithms, investigate which algorithms

perform more efficiently and effectively in several typical mobile robot scenarios,

then highlight the differences, strengths, and weaknesses of all algorithms;

• As a robot explores an environment, the number of frontier cells tends to increase.

Therefore, it is necessary to investigate the relationship between each algorithm’s

calculation time and the number of frontier cells;

• Given that the experiments are conducted in both simulation and on a real robot,

investigate if there are relationships or contradictions between the results obtained

from the simulated experiments and the real-world cases;

• Determine whether the MATLAB ROS node implementation is fit for handling the

task of frontier detection in real-time (i.e. faster than sensor data can arrive) for all

setups and with all algorithms in both real-world and simulation.

In all scenarios, the experiments were conducted 10 times for each algorithm, and the

median time taken is shown. Since the algorithms are not running on a real-time operating



Chapter 3. Frontier Detection Algorithms 41

system, occasionally (but very infrequently), Linux system processes will cause one-off non-

repeatable spikes in processing time. The spikes in processing time caused by Linux are

in the order of tens of milliseconds. Using the median values of 10 runs, this noise is

filtered out. Finally, to display the graphs clearly without unnecessary empty spaces, the

processing time for the first iteration, in which the system is being set up, was excluded

for all algorithms. The details will be discussed further in the results section.

3.2.1 Experiment 1

The first experiment was conducted purely in MATLAB using a ground truth map image of

a Freiburg lab environment of size 1242 x 447, as shown in Figure 3.1, with a preplanned

trajectory for a simulated robot to move through. At each point of the trajectory, a

simulated laser scan was generated and ray-traced into the ground truth image. From

that sensor observation, a local map was constructed to represent the current view of

the simulated robot in the environment. The newly constructed map and information

about the active area of the latest sensor observation (i.e. the bounding box of the latest

scan), if relevant, were then put through each frontier detection algorithm to calculate and

determine the frontier cells grouping.

Figure 3.1: Freiburg lab environment with a preplanned trajectory for Experiment 1.

The main purpose of this experiment is to verify and analyse the performance of each

algorithm in perfect conditions with no delay due to information transmission between

multiple computers and no sensor noise.
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The metrics measured for each algorithm were the average calculation time of each iter-

ation, the total number of cells processed, and the total number of cells evaluated. The

number of cells processed is defined as the number of cells being queried in some way,

while evaluated means each time the algorithm checks whether a cell is a frontier or not.

Additionally, the NäıveAA, WFD-INC, EWFD, FTFD algorithms all use the active area as

part of the frontier detection. Therefore, the relationship between the size of the active area

and the frontier calculation time is also evaluated by changing the maximum measuring

range of the simulated laser scan. This value was increased gradually from 100 pixels to

500 pixels, with other parameters set to be the same for the 5 cases. The computational

time for each case was then recorded and is shown in Figure 3.6.

3.2.2 Experiment 2

The second experiment was conducted in two different environments, as shown in Fig-

ure 3.2. Two different computers were used in the experimental system (Figure 3.3). The

Gazebo simulator with the Turtlebot3 and the SLAM algorithm operated on the first com-

puter. Meanwhile, the other computer subscribed to the data on the first one via a ROS

network and performed frontier detection.

The Turtlebot3 was manually controlled to move around the simulated environment while

the SLAM algorithm was also active. The map constructed by the SLAM algorithm for

this experiment has a size of 20 by 20 meters with a resolution of 0.05 meters. The

first computer synchronised the generated map and the necessary parameters, such as the

current robot pose, active area, and laser scan data. Then it published them through the

ROS network. The second computer then collected the data and implemented them for

each of the frontier detection algorithms in turn. To ensure a repeatable data set over

multiple attempts in this experiment, the data from the first computer was recorded in a

rosbag and then played back to all the frontier detection algorithms.

The main purpose of this simulated experiment is to validate the efficiency of the al-

gorithms in a more realistic scenario where delays caused by the SLAM algorithms and

information transmission between different machines exist, and the sensor data and robot
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(a) (b)

(c) (d)

(e) (f)

Figure 3.2: The two map setups used in Experiment 2. (a) Small map top view. (b)
Large map top view. (c) Small map perspective view. (d) Large map perspective view.

(e) Scanned small map. (f) Scanned large map.
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Figure 3.3: Experiment 2 setup.

movement is similar to reality. This scenario also provides a basis for comparison with

Experiment 3, which will be mentioned in the following section, to validate the relationship

between the simulation and real-world results.

3.2.3 Experiment 3

The third experiment was conducted in the real world using a Neobotix MP-700 [14] mobile

robot shown in Figure 3.4. The robot was driven manually by a human operator around

a large office environment inside UTS as shown in Figure 3.5. Laser scan data from the

SICK-S300 LiDAR was collected and fused with odometry data from wheel encoders to

incrementally build a map of the environment using ROS SLAM packages. Each scan

was sent to the MATLAB ROS node to calculate the exploration frontiers by sequentially

using the suite of detection algorithms. In order to have a consistent movement trajectory

and a repeatable data set, the exploration frontiers calculation of each algorithm was

performed on a previously recorded rosbag containing all the required parameters. The

sensor mounted on the mobile platform has a field of view of 180 degrees and a maximum

range of 30 meters. The map constructed by the SLAM algorithm for this scenario was

limited to 200 by 200 meters with a resolution of 0.05 meters.

3.3 Experimental Results

First, from the Experiment 1 average calculation time shown in Figure 3.6(a), it is clear

that the number of cells processed and evaluated by both Näıve and WFD algorithms are

significantly higher than for the other algorithms. On the other hand, EWFD and FTFD

are both drastically faster as they evaluate fewer cells than the other algorithms. This
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Figure 3.4: Experiment 3 real-world platform: (a) The Neobotix MP-700 mobile robot
[14]; (b) Robot and information diagram.

(a) (b) (c)

Figure 3.5: Experiment 3 setup. (a) Current real-world view of the robot. (b) Updating
the map with the latest sensor observation (robot position indicated by frame annotation).

(c) Newly detected frontiers (in red) in the constructed map.

performance advantage will eventually result in a considerably lower overall processing

time, as shown in the Experiment 2 results for the small map (Figure 3.7) and the large

map (Figure 3.8).

The Experiment 1 comparative plot of the sum of frontier detection time over all steps in

the exploration (Figure 3.6(b)) demonstrates a strong relationship between the size of the

active area and the total processing time for each of the algorithms in which the active area

is considered. However, this relationship effect is smaller for EWFD and FTFD compared

to the NäıveAA and WFD-INC.
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Figure 3.6: Experiment 1 results. (a) The number of cells processed and evaluated by
all algorithms. (b) The calculation time of the algorithms that consider the active area
in relation to the maximum range of the simulated sensor (measured by the number of

map cells).
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Figure 3.7: Experiment 2 results for the small map case. (a) Average calculation
time per iteration. (b) Calculation time as the small map is gradually explored for all

algorithms.

Both Figure 3.7(a) and Figure 3.8(b) indicate that the average calculation time of each

iteration of NäıveAA, WFD-INC, EWFD, and FTFD algorithms is lower than the update

rate of 5Hz used by the simulated SLAM algorithm. It is noted that 5Hz is not the

maximum rate possible, but it is adequate for the robot speed in the experiments and can

be guaranteed in all cases for all experiments. Since this research focuses on the frontier

detection calculation time, the SLAM update and publish rate do not affect the results.



Chapter 3. Frontier Detection Algorithms 47

Average calculation time per iteration
for large map (Experiment 2)

0.0333

0.0252

0.0504

0.0224
0.0194

0.0156

Ti
m

e(
se

co
nd

s)

Map update rate: 0.2 second

0 2000 4000 6000 8000 10000
Steps

0

0.01

0.02

0.03

0.04

0.05

0.06

Ti
m

e(
se

co
nd

s)

Large map algorithms comparison
Experiment 2

(a) (b)

Figure 3.8: Experiment 2 results for the large map case. (a) Average calculation time per
iteration. (b) Calculation time as the large map is gradually explored for all algorithms.
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Figure 3.9: Experiment 3 results. (a) Average calculation time per iteration with
a horizontal line representing the updating rate of the map constructed by the SLAM

algorithm. (b) The calculation time as the map is explored for all algorithms.

The processing time of both Näıve and WFD algorithms are noticeably longer than other

algorithms. Moreover, the novel algorithm, FTFD, produces a better overall result than

the other algorithms in terms of time, processed cells and evaluated cells. Results from

both the small and large maps in Experiment 2 (Figure 3.7(b) and Figure 3.8(b)) suggest

that there is no relationship between the number of explored cells and the calculation time

of each iteration on all algorithms since the calculation time for both map cases remains

relatively stable as more sections of the map are revealed.

Figure 3.9 and Figure 3.7 illustrate the similarity between the results of the second and

third experiments. In both experiments, EWFD and FTFD have the best performance,
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Figure 3.10: Average calculation time in only the first iteration of each algorithm.

with Näıve and WFD being the most time-consuming of all of the algorithms. In the

real-world Experiment 3, as the map size is 200 by 200 meters with a resolution of 0.05

meters, the image of the map reaches 4000 by 4000 pixels, and all algorithms exhibit a

drop in performance compared to the Gazebo simulated Experiment 2, where the maps

are smaller. However, most of the algorithms are significantly faster than the update rate

of the SLAM algorithm, which is 2 Hz (0.5 seconds). The only exception is the Näıve

algorithm, with an average calculation time of more than 1 second, which means it cannot

keep up with the update rate.

Finally, the average calculation time for the first iteration of each algorithm is shown in

Figure 3.10. Comparing with the results from Figure 3.9(a), it is clear that most algorithms

(except Näıve and WFD) required a relatively higher amount of time to set up the initial

variables and, in the case of both EWFD and FTFD, to locate the first set of frontier cells.

3.3.1 Discussion

The results obtained from the different experiments provide insights into the overall per-

formance of the different frontier detection algorithms. Importantly, it is clear that the

results from both simulation Experiments (1 and 2) and real-world Experiment 3 are in

agreement. Therefore, it is appropriate to synthesise these results and comparatively dis-

cuss and highlight the algorithms’ strengths and weaknesses. A summary of properties

and suggestions for each algorithm is shown in Table 3.1. It is noted that while all the
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algorithms can be run in 3D, their relative effectiveness has not been tested on 3D data

within the scope of this work.

Table 3.1: Properties and suggestions for using different frontier detection algorithms.
Yes* is used to indicate where one algorithm performs markedly better than the others

for a particular property.

Properties Näıve NäıveAA WFD WFD-INC EWFD FTFD

Performance stable as
map size grows

No No Yes Yes Yes Yes

Faster when run after no
map change

No No No No Yes Yes

Performance stable as ac-
tive area increases

N/A No N/A No Yes Yes*

Capable of detecting
pockets

Yes Yes Yes Yes No No

Ease of software imple-
mentation

Yes* Yes No No No No

Must run after every scan No No No No No Yes

High update rate No No No No Yes Yes*

Suitable for open-spaced
map

No Not ideal No No Not
ideal

Yes

Suitable for maps with
multiple narrow paths or
corridors

No Not ideal No No Yes Yes

Ideal for maps with low
resolutions

No Yes No Yes Yes Yes

Suitable for maps with
high resolutions

No No No No Yes Yes*

From the simulations and the experimental results, it is observed that there is a close

relationship between the number of cells processed and evaluated and the computational

time. Therefore, as the map either becomes more detailed (i.e. high-resolution maps)

or the sensor covers more area at the same time (i.e. large active area), algorithms that

evaluate the smallest number of cells should be prioritised, such as FTFD or EWFD.

However, Näıve Active Area should be considered in scenarios where the resolution of

the constructed map is relatively low, or the sensor’s maximum range is short. In these

scenarios, Näıve Active Area outperforms both EWFD and FTFD due to its simplicity in

implementation while also being able to yield similar performance compared with EWFD

and FTFD.

Secondly, FTFD outperforms EWFD when the map contains large open areas (e.g. Ex-

periment 2 maps - Figure 3.2) since FTFD only evaluates the perimeter of each laser scan

while EWFD processes the area. However, suppose the map contains multiple corridors or
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Figure 3.11: Scanned map of Experiment 3.

narrow paths (e.g. Experiment 3 map - Figure 3.11). In this case, EWFD is comparatively

similar to FTFD, as the number of cells covered by the scan area and perimeter are now

closer to equal.

Thirdly, there is no significant relationship between frontier detection calculation time

and the expansion of the map (i.e. the discovery of more free space) as shown in Fig-

ure 3.7(b) and Figure 3.8(b). However, in theory, more free cells should mean an increase

in processing time as more cells are to be evaluated.

Finally, the results confirm that Näıve Active Area should be used as a benchmark for

future frontier detection algorithms in 2D static environments. As a benchmark, Näıve

Active Area is simple, robust, and efficient compared to Näıve frontier detection, whose

performance degrades with the size of the map. Furthermore, when it comes to performing

frontier detection after each observation, which is common practice in exploration tasks,

FTFD should be considered, as it functions most effectively after each laser scan and is also

5m
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the algorithm with the highest efficiency among those evaluated. Additionally, as shown

in Figure 3.9, it is reasonable to conclude that the MATLAB ROS Node is suitable for

handling the task of frontier detection. The nodes were able to calculate the frontier cells

within the map update rate of the SLAM algorithm for all algorithms in the experiments

other than Näıve in the largest real-world map. The results also indicate that a MATLAB

ROS Node can be implemented side-by-side with ROS to perform near real-time processes

because the connection delay between the two programs is negligible.

3.4 Conclusion

This chapter reviewed multiple algorithms for the problem of frontier detection while also

providing comparisons between the noteworthy frontier detection algorithms. Simulation

and real-world experiments were conducted to provide insightful conclusions about the

performance of the inspected algorithms. To validate the efficiency of the studied algo-

rithms, three experiments were implemented with relevant data collection for the overall

computational time, the number of cells processed and evaluated, etc. Though the pre-

sented algorithms will work in 3D, it is not immediately obvious how much advantage

EWFD and FTFD would provide compared to other algorithms when used in 3D envi-

ronments. Further experiments using 3D data still need to be performed in future. In the

next chapter, an interactive probabilistic mapping framework for a mobile manipulator

platform that utilises 3D sensor data is presented.
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Active and Interactive Mapping

4.1 Introduction

Exploration is done to gain information regarding the surrounding environment, which are

necessary for robotics applications such as manipulator or mobile base trajectory planning,

estimating the area of coverage and optimising sensor viewpoints. The frontier detection

algorithms presented in Chapter 3 provide multiple approaches to increase the efficiency of

exploration. However, the algorithms utilised 2D sensor data to generate a static 2D map

of the world. These algorithms are limited to mobile bases that navigate on a surface. They

are insufficient when manipulators are involved or when a 3D representation of a dynamic

environment is required. This chapter presents the experimental results of an interactive

probabilistic mapping framework for a mobile manipulator picking objects from a pile

which was first introduced in [15].

The framework was designed to perform active exploration and mapping activity while

simultaneously updating the map as the mobile manipulator interacts with the environ-

ment. The framework being implemented utilises a novel dynamic Gaussian Probabilistic

Implicit Surfaces (GPIS) method to continuously create and update the map, reflecting

the dynamic environment. In addition, the framework is able to actively choose the Next

Best View (NBV). The NBV selection scheme balances a few factors: the reachability of

picking objects and the IG for fidelity and coverage of the exploration process. To ensure
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the framework prioritised bounding segments over unknown regions, the IG formulation

includes an uncertainty gradient-based frontier score by exploiting the GP kernel deriva-

tive. This addition results in a strategy that can efficiently address the conflict between the

requirement of unknown environment exploration and object-picking exploitation, given a

limited execution horizon. The contribution of this chapter is an experimental evaluation

that demonstrates the effectiveness of the implemented framework in both simulated and

real-world scenarios.

4.1.1 Active and Interactive Mapping Problem

Autonomous mobile manipulation applications have seen significant advancement in recent

years. Examples of existing applications include pick and place for construction sites [17],

logistics, and warehousing [123]. These applications demand interactive robotic systems

that can perform exploration and mapping while also interacting, navigating and updating

the changing environment.

Scene exploration approaches often adopt an information-theoretic strategy that aims to

choose the next action to maximise the IG in an active mapping framework [71, 124–126].

However, the performance of mobile manipulator tasks can be enhanced by combining

mapping and manipulation activities into one phase. Thus, the task becomes an active

and interactive mapping problem, i.e. to select and pick the “best” objects with mapping

aiding the selection, and where the next movement expands the knowledge of the scene.

This chapter implements and conducts experiments on an environment mapping framework

for a mobile manipulator designed for bin-picking applications, as shown in Figure 4.1. The

framework aims to address the problems of dynamic scene mapping, exploiting the map’s

frontier and checking manipulability to select the next best view for efficient mobile base

placement and manipulator motion planning. Within this work, dynamic mapping refers to

the accurate capture of environment changes as objects are discovered (scene exploration)

and later removed from the scene (object picking) by a mobile manipulator.

The proposed mapping framework is based on GPIS [61], which offers a probabilistic yet

accurate map representation of the world in continuous form. GPIS is exploited to check
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(a) Initial map and NBV (b) Move to NBV and update map

(c) Remove object (d) Update map and NBV

Figure 4.1: The Active and Interactive Mapping cycle. The projection of GPIS mesh on
the ground (red line) defines potential exploration segments, and the green bars indicate
segments’ information utilities. The NBV is a red bar + arrow. Dark green dots are GPIS

training points from the removed object [15].

if a mapped object is in the robot’s workspace. Also, the probabilistic formulation makes

the framework amenable to active mapping based on IG to analytically search for the NBV

and optimal motion.

4.2 Methodology

4.2.1 System Overview

This section presents a brief overview of the framework originally introduced in [15]. As

illustrated in Figure 4.2, the implemented framework consists of a GP-based dynamic

mapping component that maps and updates the environment and a NBV selection module

that spawns recommendations based on the map information. The mobile manipulator

relies on this framework to perform trajectory planning for both its arm and mobile base

and to modify the environment.
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Figure 4.2: Active and interactive mapping framework overview.

Figure 4.1 shows a robot’s exploration and interactivity cycle. First, an initial map con-

taining a pile of multiple objects is built, and the NBV to obtain the most map information

is computed. Consequently, the mobile base navigates to the recommended NBV, and the

map is updated. Then, an object is picked up, and the map is updated again to reflect the

changing environment. Based on the most recent map, a new NBV is computed, and the

mobile manipulator moves towards it. The inspection cycle is repeated when the mobile

base arrives at the new NBV.

The implemented framework’s dynamic mapping representation is based on the online

GPIS fusion introduced in [16]. In a similar way, the mapping module of the framework

consists of two GP phases. A GPIS accumulated from multiple scans, and a frame-level

2.5D−1 map as a detector for points removed from the scene. It also exploits independent

overlapped clusters [127] to store GPIS training points for parallel processing. The main

difference between the framework being implemented with [16] is the handling of dynamic

scenes and the introduction of a virtual wall, as described in detail in [15].

To determine the NBV, a set of candidate poses are identified, and then the set’s utility

function (see Figure 4.3) is computed. Afterwards, various GPIS-based metrics, including

gradient frontier and manipulability, are incorporated into the selection scheme.
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(a) Complete utility (b) Manipulability factor

c) Interact order factor (d) Travel distance factor

(e) Uncertainty factor (f ) Frontier factor

Figure 4.3: An illustration of full formulation and single factor utilities. First, identify
pile segments (red contour) and compute the utilities (green bars). Max utility gives
NBV (red bar+arrow). (b) Shows samples (blue dots) from the manipulability annulus.
(c) Shows heights (orange bars). Grey bars on the ground indicate the uncertainty for

imaginary segments.

4.2.2 Experimental Setup

Extensive simulated and real-world experiments were conducted to evaluate the perfor-

mance of the implemented framework 1. The mobile manipulator utilised in the exper-

iments consists of a Neobotix MP700 [14] as the mobile base, and a UR5e [128] as the

manipulator. An RGB-D camera is mounted at the front of the mobile base, under the

manipulator. The framework was implemented in ROS and operated on a 6-core laptop.

1A video demonstrating the experimental results can be found at https://youtu.be/DYbNH5Z6zsk.

https://youtu.be/DYbNH5Z6zsk
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The test environment comprises multiple piles of bricks located on flat ground. Each pile

of bricks is roughly 4 m2 in size with ∼50 segments considered in the optimisation, which

is trivially performed by finding the maximum amongst all candidate utility scores. The

bricks have AR tags labelling for easy pose detection and are picked up through magnetic

grasping with a magnetic contact end-effector attached to the UR5e.

4.2.3 Simulated Experiment

A simulated Gazebo environment containing brick piles on flat terrain was created, as

shown in Figure 4.4. Gazebo models of the base and arm were also designed with accurate

mechanical properties to mimic the real-life system. An ablation study and benchmark

tests were conducted in the simulated environment.

(a) Simulation case 1 (b) Simulation case 2 (c) Simulation case 3

Figure 4.4: Three Gazebo simulation scenarios.

4.2.3.1 Ablation Study

The importance of each factor in the NBV selection scheme was analysed. For each trial,

a factor is removed from the framework. The performance of the updated framework is

then recorded and shown in Table 4.1. Each variant is run in a fixed time interval, and

the average number of picked bricks, map coverage percentage, number of objects which

fell, and collisions between robot and environment were collected.
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4.2.3.2 Benchmark Test

Benchmark testing was performed by comparing task throughput and map coverage be-

tween the implemented framework and two other frameworks. Three test scenarios were

created, as shown in Figure 4.4. For each scenario, the framework and two other frame-

works are executed five times each. The other frameworks are: (1) Octomap + [17] (dy-

namic) + [73] (discrete gradient frontier), and (2) Octomap + [17] (dynamic) + random

(RDM) strategy.

4.2.4 Real-life Experiment

In the real-life experiment, two tests were performed to evaluate the accuracy of the

dynamic GPIS mapping component and the effectiveness of NBV selection in the imple-

mented framework.

4.3 Experimental Result

4.3.1 Simulated Experiment

4.3.1.1 Ablation Study

Table 4.1 shows the result of the ablation study. The “Pick Order” is important for

maintaining a balanced pile shape. When this factor is removed from the framework,

the brick pile is more likely to collapse, as seen in the high collapse count in the “Falls”

column. The “Travel Distance” and “Frontier” are two factors related to the number

of collisions when the mobile manipulator operates in the environment. The “Frontier”

factor also affects the map coverage. Without it, the time required to achieve 100% map

coverage is extended. The “Failure Penalty” factor prevents the mobile base from being

stuck indefinitely. From Table 4.1, it is concluded that the complete utility function results

in the best performance in all test categories.



Chapter 4. Active and Interactive Mapping 59

Table 4.1: Ablation analysis on Utility factors.

Part removed Output
Bricks # Map % Falls # Collision ?

NONE 17 100 1 N

Manipulability 14.5 100 2 N

Pick order 13 100 6 N

Travel distance 11 80 3 Y

Uncertainty 15 100 1 N

Frontier 16 90 4 Y

Failure penalty 7 60 1 N

4.3.1.2 Benchmark Test

Table 4.2 shows the results of the experiment, including the percentage of bricks picked and

map coverage. The results indicate that the framework being implemented outperforms

(1) and (2) in terms of task completion rate. It is observed in (1) and (2) that the

robot frequently arrives at locations that have no pickable objects. This is explained

by the GPIS-based manipulability factor being used in the framework, resulting in more

promising locations for picking being chosen. Table 4.2 also shows that (1) has the best

map coverage. However, (1) can occasionally navigate the mobile base into obstacle zones.

On the other hand, since (2) tends to stay in explored areas, it has the lowest map coverage.

The execution progress of the three frameworks for test case 2 is illustrated in Figure 4.5.

The implemented framework’s approach has the best performance for the object picking

task and equivalent performance for map coverage, compared to Octomap+[17]+[73], but

with smaller variations over the different runs.

Table 4.2: Benchmark Test

Simulation Implemented Framework [15] (1) Octomap+[17]+[73] (2) Octomap+[17]+RDM
case Bricks% Map% Bricks% Map% Bricks% Map%

#1 95±5.0 100±10 63±17 100±5.0 45±12 90±10

#2 100±6.0 82±8.5 72±8.0 85±9.0 61±12 71±19

#3 100±3.0 61±3.5 66±13 70±16 57±6.8 57±12
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(a) Objects picked (b) Map coverage %

Figure 4.5: Comparison of task and map coverage for simulation case 2.

4.3.2 Real-life Experiment

4.3.2.1 Dynamic GPIS Accuracy

A real-life scene Figure 4.6(a) is set up to evaluate the accuracy of dynamic GPIS by

comparing with the methods of [16] and [17]. A map is initially generated using the

Dynamic GPIS with a 2-step process: initialise using the original scene (b), then update

after a brick is removed (c). For comparison purposes, a map is generated by feeding

the depth image in step 2 directly to [16]. The signed distance values in the two maps

are compared using CloudCompare 2 (d), and the error was found to be insignificant (e).

Further, the same procedure is applied for the Octomap variant [17], and results from the

implemented framework are shown to be superior (e). For the fairness of comparison, the

leaf size of Octomap is chosen to be 0.03m, which most resembles the configuration of the

Octree in this Dynamic GPIS.

4.3.2.2 Next Best View Test

In the real-world test scene 2 (Figure 4.7(a)), the effectiveness of the NBV selection is

evaluated. The scene is set to have two rows of bricks with the top two lying side by

2CloudCompare project official website: https://https://www.cloudcompare.org/.

https://https://www.cloudcompare.org/
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(a) Scene set up (b) Initial GPIS

(c) Remove brick, delete GPIS samples (green)

(d) Dynamic GPIS map vs [16],
(note the smooth surface),
obtain distance errors:
µdist = 0.005 cm, σdist = 0.012

(e) Apply [17], obtain before
and after Octomaps, (note the
artifacts), obtain distance errors:
µdist = 0.033 cm, σdist = 0.015

Figure 4.6: Real-life experiment: comparing map accuracy between ours, [16] and [17].

side. The robot’s starting position is set to face the top two bricks (b). The robot then

proceeded to detect and pick the top left brick and update the map. The NBV marker is
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(a) Test scene 2

(b) Initial map

(d) Moved to NBV

(c) Picked one brick

(e) Picked another brick

Figure 4.7: Real-life experiment, active and interactive mapping cycle.

calculated based on the updated map and shifts towards the high brick on the right (c).

The robot then moved to the NBV position (d ). Finally, the right brick is picked up from

the wall (e). This shows the NBV strategy presented in [15] behaved in the desired order.

4.4 Conclusion

This chapter presents the experimental evaluation conducted and the experimental results

of implementing an interactive and active mapping framework based on dynamic GPIS

for a mobile manipulator platform. Due to the framework’s probabilistic nature, the map

could update immediately to reflect the dynamically changing environment. The experi-

mental results have shown that the NBV selection scheme of the framework balances the

needs of information gain in visited regions, frontier-driven map expansion, and object
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manipulability. The results also demonstrate the framework’s ability to simultaneously

navigate and modify the environment with the generated dense map. Both simulations

and real-world experiments show that the framework introduced in [15] outperforms other

frameworks, and can efficiently explore and interact with different objects in an environ-

ment. The framework utilised 3D sensor data to generate and update the map for a mobile

manipulator robot that performs pick-and-place tasks. For practical reasons, computer vi-

sion can be used to obtain useful information to facilitate human interactions in complex

environments. In the following chapter, two systems are presented for object identification

using 3D sensor data in both simulated and real-world environments.



Chapter 5

Perception and Estimation

5.1 Introduction

The interactive probabilistic mapping framework for a mobile manipulator conducting a

pick-and-place task presented in Chapter 4 did not fully utilise the 3D sensor data available.

The sensor data obtained from the RGB-D camera was used mainly to generate the 3D

occupancy map. However, various processes can be included in the framework to analyse

the scene and provide meaningful information. This chapter introduces two systems that

use the point cloud data provided by RGB-D cameras to perform object detection, pose

estimation and scene overlay annotation. The first system detects and estimates the poses

of rectangular surfaces. The second system extends on the first, detecting all objects above

the ground surface. The systems presented in this chapter are closely based on the author’s

published work [129][130][131].

The first system (System 1) [129] focuses on solving the rectangular-shaped object pose

estimation in the robotic bin-picking problem, using data from a single RGB-D camera

collecting point cloud data from a fixed position. The key benefit of this system is its ability

to accurately and robustly locate an object’s position and orientation, which allows for

high-precision robotic grasping and placing of such objects. Firstly, the intelligent grasping

surface selection is performed, then PCA is used for pose estimation, and finally, rotation

averaging is integrated to significantly reduce the data noise. Comparisons between the

64
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resulting poses and ones estimated by integrating the traditional ICP algorithm have

demonstrated the system’s advantages for pose estimation tasks.

The second system (System 2) aims to detect multiple objects above the ground level and

highlight them within the VR environment [130]. Similar to the first system, the noise

in the raw data is minimised through preliminary processing. Then RANSAC [132] is

implemented to remove all points in the background, including the ground plane. Af-

terwards, points are grouped based on their Euclidean distance to create clusters. Since

each cluster represents an individual object, bounding boxes are generated for all distinct

clusters. The boxes are defined by eight corners and are presented to the user in a VR

environment. Simulated experiments have been conducted to validate the accuracy of the

bounding boxes generated by System 2. Additionally, experiments were conducted to ver-

ify the applications of the background removal and clustering processes in the system in

simulated and real-world scenarios.

5.1.1 Rectangular-shaped Object Pose Estimation

Recent years have seen increased interest in autonomous field operation, aided by high-

precision perception capabilities [126] [37] [133]. This system was initially motivated by

the 2020 Mohamed Bin Zayed International Robotics Challenge (MBZIRC). An objective

in MBZIRC is to utilise an Unmanned Ground Vehicle (UGV) to autonomously build a

pre-designed structure in a short time frame, which requires demonstrating robust and

precise robotic pick-and-place capabilities.

This point cloud processing system (Figure 5.1) solves a key perception challenge for a

UGV to accurately estimate an object’s position for grasping and releasing from a single

viewing perspective. The system proposed involves identifying the surface of a single

rectangular prism-shaped brick within a pile of unorganised bricks of predefined colour

and size and performing highly accurate pose estimation and noise reduction by exploiting

a novel series of algorithms.

Due to the wall-building objective of the MBZIRC robot, the brick’s estimated pose must

match the brick’s centre and natural orientation for accurate picking. Knowledge of this
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Preliminary
Processing

Region Growing
Segmentation

Surface selection

PCA

Pose Averaging

Enough frames?

True

False

(a) (b)

Figure 5.1: System 1 overview and its demonstration. (a) System 1 overview. (b)
Simulation of an arm-equipped robot detecting the best brick for picking from a pile.

Chosen brick is labelled with RGB-axes.

pose can help plan a firm and robust grasping approach. Consequently, precise object

placement for building construction becomes more straightforward. The added benefit

of accurate pose estimation is that it allows for a less-constrained mechanical gripper

design. On the other hand, data obtained from depth sensors typically contain large

amounts of noise, which may hinder the system’s performance. For outdoor applications,

especially in places where sunlight is particularly strong, sensor noise may appear especially

pronounced. The reason is that sunlight has a strong infrared (IR) light component that

can severely interfere with a camera’s IR stereo system. The orientation of the brick’s

surface generated by PCA will thus exhibit non-negligible variation from frame to frame.

To limit the fluctuations of the estimated pose due to noise, multiple depth data sets

can be collected over a short period of time, with pose estimation being performed for

each time frame. By applying a novel averaging method, it is possible to achieve the best

estimate of face orientation. Rotation averaging is thus a key component of the presented

high-precision pose estimation system.
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For each cluster:

RGB-D Camera Data Filtering

RANSACClustering

Coordinate system conversion

PCA Determine min-max

Figure 5.2: System 2 overview.

5.1.2 Overlay Bounding Box Annotation

The point cloud processing system, shown in Figure 5.2, combines multiple algorithms

to produce bounding boxes that highlight objects above the scene’s ground surface [130].

The system builds upon the author’s published work [129], described in detail in 5.2.2,

in combination with additional algorithms from PCL [2]. The system utilises the point

cloud that is generated by multiple RGB-D cameras and can be received directly without

additional processing steps. Concurrently, the point cloud rendered in the VR environment

is generated by fusing colour and depth images. This system forms a core part of the second

user study that will be presented in Chapter 6. Assumptions that were made about the

scene in the FOV from the cameras are listed below:

• The multiple cameras must be extrinsically calibrated, and an overlap between the

cameras’ FOV must exist to implement the point cloud processing system

• The surface on which the objects to be detected are placed must comprise a large

portion of the combined FOV of the cameras.
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5.2 Methodology

The first system processes point cloud data received from an RGB-D camera to estimate

the pose of a rectangular-shaped object robustly. The collected point cloud is first sim-

plified with a voxel grid filter [134]. Then, it is filtered by distance, colour and number

of points. The filtered cloud is segmented into clusters of different surfaces, and PCA is

applied to each surface for object recognition and pose estimation. Finally, rotation aver-

aging is applied to the PCA outputs collected over multiple frames for result stabilisation

and noise reduction. The second system extends on the first to detect all objects above

the ground surface by initially preprocessing the raw point cloud from the RGB-D camera

using down-sampling and distance filtering to obtain a filtered point cloud. This filtered

point cloud is then used to identify surfaces and generate bounding boxes for individual

objects using PCA.

5.2.1 Core Background Fundamentals

5.2.1.1 Region Growing Segmentation

Region growing is a class of algorithms that is best known for its “split and merge tech-

nique” [135]. Region growing can be used on point cloud data to extract clusters of surface

regions [136].

Given a point cloud, P , the point, pi has a normal vector, ~ni and a curvature value, ci.

All normal vectors are stored in the point normal set, N and curvature values in the point

curvature set, C.

Let R be the set of all regions extracted from the point cloud and A be the remaining

points. Initially, R = ∅ and A = P \ R.

As long as A 6= ∅, region growing will choose the starting point, pc with the minimum

curvature value in A to start the expanding process to determine the local region of that

point.
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The chosen point, pc will then be added to the local region set, Rl and removed from A.

Rl = Rl ∪ {pc} (5.1)

A = A \ {pc} (5.2)

Let N be the set of neighbours around pc. Each point, pn ∈ N, is checked to see if it

satisfies a specific angle threshold, θth and curvature threshold, cth. A qualifying point

set, Q will be added to Rl and removed from A.

Q = {pn ∈ N | θth ≥ acos(~nn.~nc), cth ≥ cn − cc} (5.3)

Rl = Rl ∪Q (5.4)

A = A \Q (5.5)

where ~nn and cn, ~nc and cc are the normal vector and curvature values of points pn and

pc, respectively.

After all neighbours of pc have been considered, Rl will be added to R. Then the system

will choose another point in A and start the expanding process again until A = ∅.

R = R ∪ Rl (5.6)

5.2.1.2 Principal Component Analysis

PCA is a multivariate technique with the goal being to extract and present important data

as principal components [137]. Initially, PCA was designed for digital image processing

but was later extended to be implemented for point cloud data [138].
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In a point cloud, P with N points, each point, pi is presented as [xi, yi, zi]
T in the three-

dimensional coordinate system. P can be represented as a N columns matrix:

P = [ p1, p2, ..., pi, ..., pN ] ∈ R3×N

pi = [xi, yi, zi ]T ∈ R3×1,

i ∈ Z, N ≥ i ≥ 0

(5.7)

The empirical mean, m̄ = [xm, ym, zm]T of P can be calculated as,

m̄ =
1

N

N∑
i=1

[xi, yi, zi]
T (5.8)

It is then possible to obtain a zero-centred deviation matrix, D ∈ R3×N by subtracting m̄

from every point in P,

D = P− m̄ I3×N (5.9)

The co-variance matrix, C ∈ R3×3 can then be calculated as,

C =
1

N − 1
DDT (5.10)

C is now symmetrical, and by applying eigendecomposition, the eigenvalues and eigenvec-

tors of C are calculated,

C = VΛVT ,

Λ = diag(λ1, λ2, λ3 ), λ1 > λ2 > λ3,

V VT = I3×3

(5.11)

where Λ is a diagonal matrix of dimension 3 × 3, with the eigenvalues along the diagonal

sorted in descending order, and V is a unitary matrix whose columns are the eigenvectors

corresponding to the eigenvalues.
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This operation is similar to performing Singular Value Decomposition (SVD) on D as,

D = UΛ
1
2 VT ,

Λ
1
2 = diag(λ

1
2
1 , λ

1
2
2 , λ

1
2
3 )

(5.12)

Figure 5.3: PCA reveals the natural distribution of normally distributed data [18].
Here eigenvectors are labeled as u1 and u2. The data mean is located at the centre of

the surface. Standard deviations along each axis are the singular values λ
1
2
1 and λ

1
2
2 . The

ratio of length-to-height is λ
1
2
1 : λ

1
2
2 .

The singular vectors and eigenvectors from both operations are the same. The difference

is that the singular values from SVD are square roots of the corresponding eigenvalues.

This is because the eigenvectors represent the underlying orthogonal axis of uncorrelated

data distribution. For a symmetrical geometrical shape, the eigenvectors give the right

choice of shape axis, and the empirical mean coincides with the shape’s centroid. In a

cloud patch, the PCA axis should be aligned with the rectangle’s natural shape axis, and

the PCA mean is at the rectangle’s centre. This concept is illustrated in Figure 5.3.

Moreover, the singular values are the standard deviation of data distributions along each

latent axis. The singular value ratios should indicate the length-to-height ratio of the

rectangular brick surface, with each class of brick having a unique length-to-height ratio

(see Table 5.4 for details). Therefore, it is possible to classify the brick type by computing

this singular value ratio, or eigenvalue ratio. Performing eigendecomposition on a sym-

metric matrix is less computationally expensive than SVD. Thus, PCA is selected instead

of direct SVD.



Chapter 5. Perception and Estimation 72

5.2.1.3 Rotation Averaging

To address the challenge of orientation robustness, earlier works have proposed rotation

averaging least square methods [139], rotation averaging for DNA helix [140], and large-

scale rotation averaging [141]. [142] provided a thorough review of rotation averaging

methods.

The methods can be categorised by the representation domain they operate on. Rotations

can be represented in the angle-axis form in the Euclidean domain,

r = φu, φ ∈ R, u ∈ R3, u · uT = 1 (5.13)

where vector, r is a rotation of angle, φ about an axis in u. The definition is illustrated

in Figure 5.4 [19]. Averaging in this context essentially means finding the algebraic mean

for v. Rotations can also be represented in the Manifold domain of SO(3) (the group of

all 3D rotations), expressed as 3 × 3 rotation matrix R or unit quaternion, q. The unit

quaternion is defined as,

q = ( cos(θ),u sin(θ) ), θ =
1

2
φ (5.14)

The set of all unit quaternions forms a unit sphere, S3 in R4. Figure 5.5 [19] illustrates

rotation in the unit-quaternion form. Averaging can be done as a Chordal L2-mean in the

SO(3) domain.

Figure 5.4: Rotation of a vector, x about the axis, u by an angle, φ [19].
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Figure 5.5: In unit 3-sphere manifold, quaternion q defines an angle, θ = 1
2φ with a

unit quaternion, q1 [19].

The angle-axis rotation representation is inherently error-prone as it allows representation

ambiguity. Multiple angle-axis values can all represent the same orientation. For exam-

ple, the aforementioned angle-axis, r can also be written as (2π − φ)(−u). As another

example, a random angle, φ with a zero mean, may show a small magnitude due to noise:

0 < φ < ε. Similarly, with a small perturbation, it can swing in the opposite direction and

approach the maximum angle, φ→ 2π. Averaging over such values will generally lead to

a meaningless orientation. For this reason, the SO(3) form, due to its unique represen-

tation, has been chosen. In the implementation, the unit quaternion is used for rotation

parameterisation in SO(3) and performs averaging by minimising the chordal error.

Alternatively, rotation averaging can also be viewed from the perspective of the optimi-

sation method in use. Some SO(3) based methods may take an iterative form to search

where many steps are required to achieve solution convergence. There are also more el-

egant methods that exploit simple linear algebra techniques if a closed-form solution is

theoretically guaranteed. For simplicity and accuracy, this system incorporates the simple

“Chordal L2-Mean method”[142].
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5.2.2 System 1: Rectangular-shaped Object Pose Estimation

5.2.2.1 Filtering Strategies to Improve Object Detection in Noisy RGB-D

Point Cloud Data

Firstly, consider a fixed RGB-D camera, a robotic arm and the relative location of the

camera in the robot’s frame. Data collected from the camera is a colour point cloud, and

all objects in the field of view are immobile. Let the robotic arm’s base be the global

frame, the camera’s position and orientation be represented by a 3× 1 translation vector,

t, and a 3× 3 rotation matrix, R:

t =


xc

yc

zc

,R = Rz(γ)Ry(β)Rx(α) (5.15)

where Rx, Ry, Rz are the rotation matrices about axes x, y, z for roll, pitch, yaw angles

α, β, γ, respectively.

Note that the point cloud data, Pc coming directly from the RGB-D camera, is noisy

and contains much information to be processed. In this system, a few layers of filters are

implemented to improve the quality of the received point clouds. Initially, the data from

the camera is run through a voxel grid filter to reduce the number of points to a preferred

resolution. Voxel grid filtering also guarantees points in the cloud are evenly distributed.

The down-sampled point cloud, Pd is then filtered by the Z-axis value of each point. Since

noisy data cannot be processed and points far away from the camera are generally noisier,

all pi that exceed a distance limit, zlimit will be removed. Then,

Pdf = {Pd \ pi | pi ∈ Pd, zi ≥ zlimit} , (5.16)

where Pdf is the point cloud after filtering by distance. This point cloud is further filtered

by the colour of the object of interest. This filter layer’s purpose is not to recognise the

object but to limit the range of data to be considered for later steps. Therefore, the colour

range does not have to be strict. The resulting cloud, Pc
f can be defined as,
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Pcf = {Pdf \ pi | pi ∈ Pdf , hlowlim ≥ hi ≥ hhilim} (5.17)

where the point colour under consideration is described in the Hue Saturation Value (HSV)

colour space and hhilim and hlowlim are the high limit and low limit of the “Hue” value of

the point.

5.2.2.2 Region Growing Segmentation using Normal Vectors

Region growing segmentation is then implemented on Pcf . Region growing segmentation

requires each point in Pcf to have a corresponding normal vector. These normal vectors

are computed for each point by computing the covariance matrix of the query point and

its neighbours. The C of pi can be obtained using the following equation,

C =
1

k

k∑
i=1

(pi − p̄)(pi − p̄)T , C~vj = λj~vj , j ∈ {0, 1, 2} (5.18)

where k is the number of neighbor points considered of pi, p̄ is the centroid of pi and its

neighbours, and λj and ~vj are the j-th eigenvalue and eigenvector of C.

5.2.2.3 Rectangular Object Recognition and Pose Estimation using PCA

Region growing segmentation results in a set of clusters, Crg. Each element in the cluster is

a point considered to be on the same surface. The result from region growing segmentation

is further filtered by the number of points, Nth in clusters. This step is designed to remove

clusters that do not have enough points to produce an accurate final result.

Cfrg = Crg \ Cuq, (5.19)

where Cfrg is the set of qualified clusters and Cuq is a set of clusters with less than Nth

points. For surface, Si from Cfrg, PCA is applied to obtain the principal axes X, Y and Z

and the centroid.
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It is necessary that the unit vector of the Z-axis, ~uzi of the obtained cloud on Si, points away

from the camera’s viewpoint. This requirement is checked by calculating the dot product,

di of ~uzi and the unit vector of the Z-axis of the camera, ~uzcam. Since all calculations so

far are in the camera frame, ~uzcam = (0, 0, 1). If di ≥ 0, then ~uzi is pointing away from the

camera. However, if 0 ≥ di then ~uzi is pointing towards the camera and the coordinate

system obtained from PCA will be turned by π around the X-axis.

The geometric attributes of Si are considered in the rectangular object recognition task.

A comparison between the known model edges length with surface Si edges is executed

to determine if Si is a surface of the targeted rectangular prism-shaped object. The edge

length calculations of Si are based on the maximum distance, dmaxx and dmaxy from any

point on Si to the X and Y axes at the centroid of that surface.

The width, w and height, h of the surface will be twice the value of dmaxx and dmaxy . If

the calculated values are similar to the model, Si is a surface on the targeted rectangular

object.

w = 2× dmaxx , h = 2× dmaxy (5.20)

5.2.2.4 Best Surface Selection for Rectangular Prism-Shaped Objects using

Sigmoid Scores

If Si is a surface of the targeted rectangular prism-shaped object, it will then be stored in

a set, Sr for the best surface selection process.

Sr = Sr ∪ {Si} (5.21)

Each surface Si of Sr contains a centroid point, ci and the unit vectors of that surface’s

coordinate system. For best surface selection, the following parameters are considered: the

distance of the centroid to the global frame or the robotic arm’s base, dgi , the angle between

Si and the global frame, θgi , and the number of points, Ni belonging to the surface. Each

parameter is calculated and used as a metric in surface candidate selection. To combine

all tests fairly with equal voting power, each raw value is mapped to the same score range
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[0..1] using the sigmoid function [143] as,

sdi =
2

1 + exp 6(0.3−d)
3

− 1

sθi =
2

1 + exp 6(0.0−a)
1.0

− 1

sNi =
2

1 + exp 6(1000−ptc)
20000

− 1

(5.22)

where sdi , s
θ
i , and sNi are the scores for distance, angle, and number of points in the region,

respectively. And d, a, and ptc are the distance, the angle and the number of points,

respectively. The final score, sfi is the product of all three scores,

sfi = sdi ∗ sθi ∗ sNi (5.23)

The product rule here is to ensure the candidate with a poor score in either criterion will

receive the highest penalty. The surface with the highest score will be the best surface

with well-balanced attributes. This surface is selected as the final output for subsequent

processing.

5.2.2.5 Rotation Averaging for Surface Pose Estimation

The robot is stationary while capturing depth data from the camera. The best surface

that is selected will always be the same for multiple runs, [1..NT ] in this time interval. To

further improve the result, an averaging calculation is applied over the calculated poses.

The results of each run will be collected in ST . The average calculation will be executed

for all elements of ST .

There are two components needed to be averaged: the centroid position and the orien-

tation. Each surface, St ∈ ST has a centroid, ct and its orientation presented by the

coordinate system with unit vectors: ~uxt , ~uyt , and ~uzt . The averaged centroid position cavg

will be calculated as,

cavg =
1

NT

NT∑
t=1

ct (5.24)

where NT is the number of elements in the set ST .
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The best orientation, Ravg from all results is achieved by solving the single rotation av-

eraging problem as described in [142]. During single rotation averaging, several rotation

estimates of a still target are computed over time and then averaged to give the best result

[142], thereby reducing the output pose noise. To compute the optimal rotation, a rotation

difference metric is defined according to [142]

Let dchord(p, q) = ‖p · q−1 − e‖

where, p · q−1 ∈ R4×1, e = (1, 0, 0, 0),

define p · q−1 = ( cos(ψ), sin(ψ)u )

therefore: ‖p · q−1 − e‖ = 2 sin(ψ/2).

(5.25)

This derivation suggests the distance between two unit 4-vectors, also known as the chordal

distance, is directly related to their separation angle, ψ. [142] then uses the chordal

distance as the error metric to define a cost function, C(Ravg) under L2 chordal distance

as,

C(Ravg) =

NT∑
t=1

dchord(Ri, Ravg)
2

=

NT∑
t=1

dchord(qi, qavg)
2

(5.26)

where Rt is a rotation of a surface, St ∈ ST and qt is Rt’s SO(3) equivalent in unit

quaternion form.

The rotation averaging problem is then to find Ravg such that C(R) is minimised. To

this end, the rotation matrix, Rt ∈ R3×3 is converted to the unit quaternion form: qt =

[qw, qx, qy, qz]
T ∈ R4×1 and ‖qt‖ = 1.

qw =
√

1 + R00 + R11 + R22 / 2

qx = (R21 − R12) / (4 qw)

qy = (R02 − R20) / (4 qw)

qz = (R10 − R01) / (4 qw)

(5.27)
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In the next step, the matrix, A ∈ R4×4 is constructed as the sum of the dyadic product of

qtq
T
t over time.

A =

NT∑
t=1

qtqt
T (5.28)

Hartley et al., [142] provided proof that the eigenvector, smax of the matrix, A corre-

sponding to its largest eigenvalue minimises the cost function in (5.26). Thus, smax is the

averaged rotation in the optimal sense.

5.2.3 System 2: Overlay Bounding Box Annotation

The raw point cloud, Pr received directly from the RGB-D camera contains millions of

points with noise that proportionally increases with the distance between objects and the

camera lens. Due to the overwhelming amount of information and noise in Pr, preliminary

processes need to be applied. Consequently, Pr is down-sampled with the voxel grid filter

from PCL and additionally, a distance threshold is applied to filter points that are outside

of the required bounds. The distance filter aims to remove noisy data recorded from

distanced objects [129].

After filtering, the point cloud, Pf remains from Pr. Due to the assumptions listed above,

the surface where objects are located will be the surface determined by RANSAC [132].

The list of points that belong to this surface will be denoted as PR.

Before the clustering step, all the points that reside on and below SR relative to the

camera position, c must be removed. The algorithm implemented to determine the point’s

relative position to a surface is shown in Algorithm 1. Let Ptemp be the point cloud, Pf

after removing PR. The projection point of c onto SR is denoted as pj . The vector from

the projected point to c is ~vpc. For every point, pi in the Ptemp vector, ~vpp is the mapping

from pi to pj . The relative position of point, pi to a surface, SR and c is determined based

on the dot product dp of ~vpc and ~vpp. If dp < 0, pi and c are on the same side relative to

SR, or are on opposite sides if dp > 0. All points pi that satisfy dp < 0 are stored in the

point cloud, Pss.

The Euclidean distance algorithm [144] is applied to Pss to obtain a set that contains

clusters of points. Each cluster, Ci represents an individual object on the surface, SR.
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Algorithm 1: Two points relative position to a surface

Ptemp = Pf \ PR for pi ∈ Ptemp do
dp = ~vpc • ~vpp if dp < 0 then

pi and c are on the same side relative to SR pi → Pss

if dp > 0 then
pi and c are not on the same side relative to SR

To generate a bounding box that encompasses each of the objects, a three-step process is

implemented. The three steps involve the application of PCA, extracting the minimum

and maximum values of the axes generated by PCA and converting the corners of the

bounding box from the PCA coordinate frame to the camera’s coordinate frame.

PCA is a multivariate statistical technique that extracts important information from an

existing data set and represents the set accordingly. This results in a set of new orthogonal

variables labelled principal components [145]. For each cluster, Ci, a three-dimensional

coordinate system, Oi, can be derived from the eigenvectors obtained from the PCA tech-

nique. Each Cartesian point, pWj ∈ Ci is converted from the camera coordinates, Oc,

to point, pOj of coordinate Oi. The minimum and maximum values on each of the axes,

[xmin, xmax, ymin, ymax, zmin, zmax] among all points, pOj are utilized to define the set of

corners of the bounding box, BO
i , wrapping the cluster, Ci. The corner points are then

converted from PCA coordinates, Oi, to the camera frame, Oc, for visualisation. The set

of corner points in Oc coordinate system is denoted as BW
i .

5.3 Experimental Result

5.3.1 System 1: Rectangular-shaped Object Pose Estimation

Two experiments were conducted to display the results of System 1. The first compared

the pose estimation algorithm from System 1 with the well-known ICP algorithm [146].

The results are evaluated based on the ground truth data. The second experiment tested

the ratio between eigenvalues and the size of multiple rectangular objects with different

dimensions.
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All experiments were conducted in the Gazebo simulation environment on a machine with

an Intel Core i7-7700HQ CPU, 16 GB RAM, and Geforce GTX 1050 GPU.

5.3.1.1 Comparative Study: System 1 and ICP-integrated System

The simulation consists of a mobile base with a simulated model of the Realsense D435

attached. The mobile base will be placed in front of a pile of green bricks, which are a class

of bricks with the same dimensions: 0.6× 0.2× 0.2 meters. Point cloud data is obtained

directly from the camera’s point cloud topic. Figure 5.6 shows five different scenarios

of the experiment. For each scenario, System 1 will be implemented to obtain the best

surface for the picking task. ICP will then try to fit this surface into a generated model.

This model is a cloud of a surface with the same colour and size as the brick. The model

contains points evenly distributed, similar to the result after the voxel grid filter process.

The results from the ICP-integrated system and System 1 are compared to the ground

truth value. Figure 5.7 shows the segmented point cloud in each scenario. The bricks on

which the selected surfaces belong can be observed. Then, the ground truth value of the

surface can be determined from the Gazebo world model.

The result of each system is evaluated by the distance error and angular error. The distance

error, ed is calculated by the distance between the result’s centroid and the ground truth,

as,

ed = ||ct − cg|| (5.29)

where ct is the centroid point position from either of the two systems, and cg is the ground

truth value.

The angular error, eth is calculated by the difference between the Z-axis obtained from

the result and the ground truth Z-axis.

eth = cos−1(~uzr · ~uzg) (5.30)

where ~uzr and ~uzg are the unit vectors of the Z axes obtained from the roll, pitch and yaw

values from the systems and the ground truth data. The unit vector of the Z-axis can be
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Scenario 1 Scenario 2

Scenario 3 Scenario 4

Scenario 5

Figure 5.6: The five Experiment 1 scenarios.

calculated as,

~uz =


cosα sinβ cos γ + sinα sin γ

sinα sinβ cos γ − cosα sin γ

cosβ cos γ

 (5.31)

The comparative centroid estimation results are recorded in Table 5.1. Table 5.2 contains

the estimated orientation and the calculated orientation error. Table 5.3 displays the

execution time of each system in milliseconds and the ratio between the two systems’

execution times.
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Scenario 1 Scenario 2

Scenario 3 Scenario 4

Scenario 5

Figure 5.7: Segmented point cloud results from Experiment 1.

5.3.1.2 Ratio Between Eigenvalue and Object Dimensions

This experiment evaluates the relationship between the eigenvalue ratios and the dimension

ratio for each type of brick. The simulation environment for this experiment is similar to

the previous experiment, with two extra piles of blue and orange bricks added. The newly

added blue bricks and orange bricks, where the dimensions are 1.2 × 0.2 × 0.2 meters

and 1.8 × 0.2 × 0.2 meters, respectively. The mobile base is placed at multiple points

of view for each pile. PCA is then executed on the point cloud that is recorded from

each perspective. The two larger eigenvalues, corresponding to the length and height of a

surface, are considered. Each brick colour has a different length-to-height ratio. Therefore,
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Table 5.1: A comparison of the centroid estimation accuracy between the ICP-integrated
system and System 1.

Ground Truth
Centroid (m)

Output Centroid (m) Error (m)
ICP Proposed

ICP Proposed
x y z x y z x y z

-5.3 5.5 0.1 -5.4 5.5 0.1 -5.4 5.5 0.1 0.05 0.05

-5.7 4.9 0.1 -5.9 4.6 0.1 -5.7 4.9 0.1 0.31 0.01

-5.2 4.3 0.1 -5.7 4.5 0.1 -5.2 4.3 0.1 0.31 0.04

-4.6 4.2 0.1 -4.5 4.3 0.1 -4.5 4.2 0.1 0.13 0.06

-4.6 4.8 0.1 -4.5 4.7 0.1 -4.6 4.8 0.1 0.08 0.06

Average -5.2 4.72 0.1 -5.08 4.74 0.1 0.176 0.044

Standard Error 0.297 0.206 0 0.231 0.233 0 0.056 0.009

Root Mean Square Error 0.253 0.173 0 0.077 0 0 N/A N/A

Table 5.2: A comparison of the orientation estimation accuracy between the ICP-
integrated system and System 1.

Ground Truth
Orientation (radian)

Output Centroid (radian) Error (radian)
ICP Proposed

ICP Proposed
x y z x y z x y z

1.6 0 0.5 -1.6 0 -2.7 1.6 0 0.5 0.06 0

0 0 1.7 -1.6 0 -1.7 1.6 0 1.5 0.16 0.02

-1.6 0 2.8 -1.6 0 -0.3 -1.6 0 -0.3 0.06 0.06

0 0 0.6 -1.6 0 -2.6 -1.6 0 0.6 0.06 0.01

3.1 0 -1.5 -1.6 0 1.7 -1.6 0 1.7 0.06 0.06

Average -1.6 0 -1.12 -0.32 0 0.8 0.08 0.03

Standard Error 0 0 0.826 0.784 0 0.363 0.02 0.013

Root Mean Square Error 2.737 0 3.221 2.333 0 1.994 N/A N/A

Table 5.3: A comparison of execution time (in seconds) between the ICP-integrated
system and System 1.

ICP Proposed Ratio
33 496 15.03
48 485 10.10
41 434 10.59
53 338 6.38
33 365 11.07

the ratio of the two larger eigenvalues obtained from PCA is expected to change between

different bricks exponentially.
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The experiment data are recorded in Table 5.4.

Table 5.4: A comparison of the brick’s PCA ratio with size ratio. ( L
H )2 refers to the

length-to-height ratio squared, and λi refers to the i’th eigenvalue from PCA.

Brick
colour

Expected
dimension

Expected
( L
H

)2

Test(1): λ1/λ2

Test(2): λ1/λ2

Test(3): λ1/λ2

= λ
(1)
ratio

= λ
(2)
ratio

= λ
(3)
ratio

green length: 0.6 155.8 / 16.4 = 9.5
-brick width: 0.2 9 : 1 84.3 / 8.86 = 9.5

height: 0.2 103.5 / 12.2 = 8.5

blue length: 1.2 1223.7 / 31.8 = 38.5
-brick width: 0.2 36 : 1 1042.6 /30.7 = 34.0

height: 0.2 1215.6/ 32.1 = 37.8

orange length: 1.8 4033.6 / 47.9 = 84.2
-brick width: 0.2 81 : 1 4016.8 / 47.8 = 84.0

height: 0.2 1637.6 / 20.2 = 80.9

5.3.1.3 Discussion

The first experiment demonstrated the ability of System 1 to precisely estimate the pose

of a single rectangular surface within a pile of objects with similar colours and dimensions.

Compared with using ICP for pose estimation, the results from System 1 are superior for

both locating the centroid point and estimating the surface’s orientation.

Table 5.1 shows the distance error between the ground truth value and the centroid points

calculated by both the ICP-integrated system and System 1. The results showed that

System 1 can be up to 30 times better regarding distance error in certain scenarios. Fur-

thermore, the distance errors produced from System 1 are less than 0.1 meters, while

those of the ICP-integrated system have a higher chance (60%) to exceed 0.1 meters. The

suggested system surpasses the ICP-integrated system because it considers the effect of

noise on point cloud data, while the ICP-integrated system does not.

Table 5.2 shows the rotation error between the normal vectors of the ground truth plane

and the Z-axis produced by both the ICP-integrated system and System 1. The rotations

estimated by both systems have high precision. However, implementing ICP on a single

surface results in multiple solutions. ICP can find more than one possible solution since

there are no conditions set for the rotation obtained by ICP. Therefore, the ICP-integrated
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(a) (b)

(c) (d)

Figure 5.8: Bounding boxes from the simulated experiments: (a), (b) individual objects
experiment; (c), (d) multiple objects experiment with different cameras viewpoints.

system’s results are inconsistent. Due to this inconsistency, rotation averaging cannot

be applied. During experiments, there is one scenario where the result from the ICP-

integrated system is offset by π, which violates the requirement of the Chordal L2-Mean,

i.e., the difference between two input rotations must not exceed π/4.

The second experiment displays the relationship between the calculated eigenvalues ratio

of PCA and the length-to-height ratio of the surface. Table 5.4 shows the ratio of the

calculated eigenvalues within 10% of the expected value over nine tests on three different

models.

Table 5.3 demonstrates the trade-off between accuracy and processing time. Despite the

high accuracy and robustness of System 1, as discussed above, it requires significantly

more time to execute compared to the ICP-integrated system.

5.3.2 System 2: Overlay Bounding Box Annotation

5.3.2.1 Simulated Experiments

A simulated Gazebo environment was created containing multiple simple-shaped objects

and a system of two calibrated cameras. The experiment includes seven unique trials, and
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for each trial, the cameras are placed facing the objects from multiple viewpoints. The

environment used for the first three trials contains one object, as shown in the first row

of Figure 5.8. The object’s shape and location vary between trials. For the latter trials,

multiple objects were placed within the camera’s view and remained stationary between

trials, as seen in the second row of Figure 5.8.

Figure 5.8 shows the bounding box generated by the system in RViz. The system is

evaluated by comparing the centre of the generated bounding box and the centre of the

object in the simulated environment. The objects’ centres are ground truth values obtained

directly from the simulation. The error is calculated as the Euclidean distance between

the bounding box centre and the objects’ centre. The bounding boxes’ centre and error

values are shown in Table 5.5.

Table 5.5: Bounding boxes centre and error values

Exp Bounding Box Centre (m) Error (m)

1 Box 0.000,-0.402,2.836 0.002

2 Sphere 0.263,-0.395,4.494 0.0086

3 Cylinder -0.124,-0.403,4.198 0.0059

4
Box 0.003,-0.401,3.836 0.0032

Sphere -1.499,-0.394,5.120 0.041
Cylinder 1.400,-0.401,4.797 0.0221

5
Box 0.001,-0.237,3.956 0.0033

Sphere -1.761,-0.685,5.159 0.07
Cylinder 1.770,-0.540,4.864 0.0319

6
Box 0.000,-0.825,3.689 0

Sphere -1.756,-1.902,4.393 0.0778
Cylinder 1.761,-1.611,4.236 0.0437

7
Box 0.000,-0.827,3.684 0.0054

Sphere -1.748,-1.903,4.358 0.1094
Cylinder 1.753,-1.606,4.230 0.0526

5.3.3 System 2: Background Removal and Clustering Process

To evaluate the performance of the ground removal and clustering processes implemented

in the second system presented in this chapter, experiments in both simulated and real-

world scenarios were conducted.
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5.3.3.1 Simulated Experiment

A simulated Gazebo environment was created to test the background removal and cluster-

ing processes of the second system introduced. The environment consists of a 3D model of

a rough surface and three simple-shaped objects which are distinctively above the ground

level (Figure 5.9). The RGB-D camera is also simulated as part of the environment and

was placed at coordinate (0, 0, 0.3) in the global frame, and rotated by 30 degrees on the

Y-axis. Figure 5.10 shows the point cloud obtained from the simulated environment. The

results stage-by-stage when implementing System 2 are demonstrated in Figure 5.11

Figure 5.9: System 2: Background removal and clustering process Gazebo simulated
environment

Figure 5.10: System 2: Background removal and clustering process simulated environ-
ment view in RViz.

In the experiment, ideally, RANSAC would obtain three clusters of points. However, due

to the roughness of the 3D model, there are multiple smaller clusters of points besides

the three that represent the objects expected (Figure 5.11a). Two approaches that can

eliminate these unwanted small clusters are proposed as follows. The first approach is
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(a)

(b)

(c)

Figure 5.11: Results of the implemented ground removal and clustering processes. (a)
The point cloud after ground plane removal through RANSAC. (b) The point cloud after
the removal of clusters below ground level and small clusters. (c) The position of clusters

in (b) in the original point cloud.
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to increase the “inlier” threshold of RANSAC. This was implemented in the simulated

experiments conducted. Figure 5.11b shows that only the three expected clusters remain

after increasing the threshold value and removing clusters below the ground plane. How-

ever, due to the increased threshold, approximately a third of the objects’ point cloud

representation is missing after RANSAC, as shown in Figure 5.11c. The second approach

utilises a threshold value in the clustering process to remove the small clusters created by

the rough surface. The threshold value defines the minimum number of points required in

a group to be considered a cluster; any group of points smaller than the threshold will be

removed during the clustering process. The second approach is implemented in real-world

experiments.

5.3.3.2 Real-world Experiments

Multiple data sets with different lighting conditions and surface roughness were collected

for real-world experiments. The data sets are stored as rosbags. Each rosbag contains

colour, depth images and point cloud data obtained from a Lidar Camera Realsense L515

and the camera’s intrinsic and extrinsic settings. Figure 5.12 shows the data sets that

were utilised during the experiments. The first two data sets recorded a wall with minor

roughness at nighttime (Dataset 1) and daytime on a cloudy day (Dataset 2). The latter

two data sets recorded a beach with rock piles located randomly. These data sets were

recorded in the daytime when the camera was exposed to direct sunlight.

The experiment results for the data sets are displayed in Figure 5.13. Figure 5.13(a) shows

the point cloud from Dataset 2 after the removal of the RANSAC inliners (ground plane)

and all points below ground level. Figure 5.13(b) shows the point cloud after the clustering

stage, all small groups of points were removed, and points that belong to the same cluster

are represented with a similar colour. Figure 5.13(c) and (d) show results of a similar

process in 5.13(a) and (b) respectively, but with Dataset 4 as the input point cloud.

The experimental result displayed in Figure 5.13(a) and (b) was obtained by applying a

threshold value during the clustering stage. By limiting the minimum number of points

in each cluster, System 2 was able to remove small fragments of the point cloud after

the removal of the ground plane. Compared to the RANSAC threshold expand approach
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(a) (b)

(c) (d)

Figure 5.12: System 2: Background removal and clustering process real-world experi-
ments data set. (a) Dataset 1; (b) Dataset 2; (c) Dataset 3; (d) Dataset 4.

(a) (b)

(c) (d)

Figure 5.13: System 2: Background removal and clustering process real-world experi-
ments result. (a)(b) Wall with minor roughness. (c)(d) Beach rock under sunlight.
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utilised in the simulated environment experiments, the minimum limitation set during the

clustering process does not cause losses in the data of the interesting objects. Additionally,

since the small fragments of the point cloud are removed during the clustering stage,

RANSAC’s settings can have a strict error threshold, providing a precise approximation

of the ground plane.

However, Figure 5.13(c) and (d) demonstrated a significant difference in System 2 perfor-

mance while operating under sunlight exposure conditions. Due to the decrease in data

reliability and precision, the radius, R has to be changed to ensure a connection between

points in a cluster. This results in scenarios where small fragments sometimes cannot be

easily removed. Although they should not be considered clusters due to the minimum

number of points threshold, they have a “bridge” connection to other clusters and thus

satisfy the threshold requirements.

5.4 Conclusion

This chapter has detailed two systems that use the point cloud data from RGB-D cameras

to perform object detection, pose estimation and scene overlay annotation. System 1 solves

the problem of rectangular prism-shaped object recognition and precise pose estimation.

Experiments conducted have shown that this system is successful in obtaining the pose

of a single object within a set of multiple similar objects. Experiments also proved that

System 1 is more accurate and consistent than the ICP-integrated system. System 2

highlights objects on a surface by creating bounding boxes and displaying them as an

overlay over the raw data. The system initially estimates a “ground” surface and removes

the “ground” and all components below it. Afterwards, point cloud clustering algorithms

are implemented to group the points, and bounding boxes are generated for each cluster

of points. A possible metric to evaluate the accuracy of the bounding box is Intersection

Over Union (IoU) of boxes [147]. Evaluating the system accuracy using IoU is outside the

scope of this thesis but is considered to be future work. This system forms a core part

of the VR-based collaboration framework [130][131] presented in the next chapter, which

enables human supervisors to visualise the sensor data in real-time while interacting with

the robotic system.



Chapter 6

Using Virtual Reality for

Collaborative Autonomy

6.1 Introduction

In recent years, hardware and software development for Virtual Reality (VR) has enabled

researchers to leverage representations of the real world in a virtual environment. With

the help of depth cameras, the geometry and state of objects in an environment can be

captured in real-time, and VR can strategically render this data. This presents several

research challenges: what data to show users; how to effectively represent and transfer

information-rich and dense data sets to a VR environment in real-time; and what influence

data limitations have on a user’s ability to perform manipulation tasks.

This chapter introduces a VR-ROS framework for collaborative autonomy and experimen-

tal results from implementing this framework for a remote robotic control system. The

original framework has an RGB-D camera streaming colour and depth images in real-time.

In addition, VR is utilised to visualise this sensor data for the user. A user study was

performed on this framework to determine the optimal settings to visualise the data for

the human operator. Based on the finding of the first study, the original framework was

improved to prepare for the second study that was conducted to validate the practicality

93
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of the implementation of the point cloud processing algorithms to annotate the scene,

highlighting important information to assist the user during a task.

6.1.1 User Study 1: The Influence of Sensor Data Visualisation Config-

uration on Users’ Performance

The first user study investigates the effect of various data visualisation configurations

on users in a VR environment manipulating objects using streamed sensor data, such as

point clouds and images [148]. Other visualisation modalities that exist, such as meshes,

are not considered within the scope of this study since a fair equivalent implementation

remains unrealised. An RGB-D camera was used to capture colour and depth images, and

visualisation of this real-time sensor data is done in VR. The study was conducted, and

data from 12 participants performing the task 95 times in total were collected. Relevant

measurements of participants’ performance under various settings were recorded, including

their completion time and subjective cognitive workload when performing the task.

6.1.2 User Study 2: An Investigation of User Performance in Virtual

Reality-based Annotation-assisted Remote Robot Control

The second user study investigates the use of point cloud processing algorithms to pro-

vide annotations for robotic manipulation tasks completed remotely via VR [130][131]. A

VR-based system has been developed that receives and visualises the processed data from

real-time RGB-D camera feeds. A real-world robot model has also been developed to vi-

sualise the robot’s joint state and user control feedback. The targets and the robot model

are reconstructed in a VR environment and presented to users in different modalities.

The modalities and available information are varied between experimental settings, and

the associated task performance is recorded and analysed. The results accumulated from

288 experiments completed by 12 participants showed that point cloud data is sufficient

for completing the task. Additional information, neither image stream nor preliminary

processes presented as annotations, was found to have a significant impact on the comple-

tion time. However, the combination of image stream and coloured point cloud data was
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found to greatly enhance a user’s performance accuracy, with the number of target centres

missed being reduced by 25%.

6.2 Methodology

6.2.1 The VR-ROS Framework For Collaboration Autonomy

6.2.1.1 Hardware and High-level Overview

A multi-computer setup was devised to acquire, process, transmit and render real-time

RGB-D sensor data in a VR environment. Chapter 5 described how the point cloud data

is processed in this implementation.

Two machines are connected via Gigabit Ethernet to minimise latency. One machine

(Linux PC: Intel Core i7-7700HQ CPU, 4GB RAM) obtains data from an RGB-D (Re-

alSense D435) camera via ROS. The raw depth and colour images from the camera are

compressed before being sent through the network. The second machine (Windows PC:

AMD Ryzen 5 1600 CPU, 16GB RAM, GTX 1070 8GB GPU) receives and constructs a

point cloud from the image data, then renders it in VR.

6.2.1.2 Real-time Point Cloud Transmission for VR Rendering using Com-

pressed Depth Images

To achieve real-time point cloud transmission between multiple machines, the data is

transferred using compressed images. However, depth images are encoded in a 16-bit

format, which is unconventional for general image compression. Consequently, two images

are constructed; an upper and a lower 8-bit image. The single colour and the two depth

images are then compressed using JPEG, with the highest compression quality, to minimise

data loss. The image manipulation is achieved using the image transport package [149].

The VR machine’s software was created using the Unity development platform. The

software communicates with the ROS machine using a native .NET package [150], which

enables TCP/IP connections via a network socket interface. After successful transmission,
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Figure 6.1: Operator interacting with a remote robot in VR with the visual aid of
processed point cloud data that is transmitted from RGB-D cameras.

the software decompresses the images, and, when required, reconstructs and renders the

point cloud in the VR environment.

6.2.1.3 Point Cloud Reconstruction

Point cloud reconstruction is achieved by implementing the pinhole camera model to con-

struct 3D points from individual camera pixels. A mono-coloured point cloud, PCm is

obtained by processing the raw depth image. Pixel, Pi
d at row, ui and column, vi of the
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Figure 6.2: A flowchart of the lossless colour and depth image data compression and
transmission process.

depth image has its 3D position in the camera coordinate system calculated by:

Xi =
vi − cdx
fdx

× Zi

Yi =
ui − cdy
fdy

× Zi

Zi = zi

(6.1)

where (cdx, c
d
y) is the principal point of the depth image, fdx and fdy are the focal lengths of

the depth camera, zi is the depth value of pixel, P di .

Each pixel, PDi , forms a 3D point, pmi (Xi, Yi, Zi) which is added into PCm. The final

mono-coloured point cloud PCm consists of all the 3D points generated by the pixels in

the raw depth image with a fixed colour value.

The RGB image is then used to obtain the colour point cloud PCc, where every point, pmi

of PCm, is associated with a corresponding pixel in the colour image, P ci using:

vc = f cx ×
Xp

Zp
+ ccx

uc = f cy ×
Yp
Zp

+ ccy

(6.2)

where (uc, vc) is the row and column index of PC , (cCx , c
C
y ) is the principal point of the
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(a)

(b)

Figure 6.3: Point cloud reconstruction experimental results. (a) Raw point cloud data
view in RViz. (b) Comparison of the reconstructed point cloud (white) and original point

cloud (red).

colour image, and f cx and f cy are the focal lengths of the colour camera. The colour point

cloud, PCc will consist of all the points, pmi of PCm, where the colour value of pmi is set

to the colour values of the corresponding pixel, P ci (uc, vc).

Experiments were conducted on previously acquired data sets to perform experiments in

Chapter 5 (Figure 5.12). Figure 6.3(b) presents a point cloud reconstructed from the depth

image obtained from data set 4, shown in Figure 5.12(d).

It can be observed from Figure 6.3(b) that there’s a difference in the FOV between the

reconstructed and the original point cloud. The difference was caused by the camera’s

depth and colour image coverage disparity. The colour image’s FOV (69◦× 42◦) is smaller

in comparison to the depth image’s FOV (85◦ × 58◦) as shown in Figure 6.4. Since the

original point cloud from the camera’s ROS topic message is a coloured point cloud, the

colour image’s FOV limits the directly obtained point cloud’s FOV. On the other hand,
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Figure 6.4: Field of view comparison between depth and colour images.

Participants
Scene
Setups

VR
Configurations

Repetitions
per Participants

Total
Repetitions

User Study 1 12 9 9 9 95

User Study 2 12 6 4 24 288

Table 6.1: Summary of experimental design information for the two user studies.

since the reconstructed point cloud in Figure 6.3(b) is a non-colour point cloud, the depth

image limits the FOV of the reconstructed point cloud. Therefore, the white point cloud

representing the reconstructed point cloud is larger than the original point cloud.

6.2.2 User Study 1: Experiment Setup

An experiment was designed to investigate the effect of visualisation parameters on the

participants’ performance and VR experience. Summarised information concerning this

experiment design can be found in Table 6.1. The user study conducted involved the

assembly of a puzzle consisting of five parts whilst immersed in a VR environment. The

variations of interest for the assembly task include the visualisation modality, sensor reso-

lution, and frame rate. The criteria for assessing participant performance is based on the

completion time and subjective cognitive workload.

Twelve healthy participants with no neuromuscular or debilitating visual impairments

volunteered to partake in the study. Prior to completing the study, participants provided
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(a) (b)

(c) (d)

Figure 6.5: Participant view in VR: (a) Participant view: colour point cloud (C-PC);
(b) Participant view: mono-coloured point cloud (MC-PC); (c-d) Participant view: colour

and depth image stream (C-D).

informed consent approved by an ethics committee (UTS, Australia, approval number

ETH21-5929, as detailed in Appendix A). The participants were also asked to provide

feedback regarding their experience after each trial.

Table 6.2: Experimental trial visualisation settings.

Settings Description FPS Quality Resolution

1 C-D 30 80 640x480

2 C-D 5 80 640x480

3 C-D 30 5 640x480

4 MC-PC 5 100 100%

5 MC-PC 15 100 50%

6 MC-PC 25 100 33%

7 C-PC 5 100 100%

8 C-PC 15 100 50%

9 C-PC 25 100 33%
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VR Headset

Puzzle pieces

RGB-D Camera

Unassembled Puzzle Assembled Puzzle

Figure 6.6: A participant assembling a puzzle while visualising it via RGB-D camera
stream in a VR headset. Inset: The puzzle used in the experiment (left): Unassembled

start configuration, (right) Successfully completed assembly.

6.2.2.1 Experiment Procedure

Participants were given a set of written instructions and shown how to fit and adjust the

VR headset. Participants were asked to remain seated with the VR headset on during

the experiment for their health and safety. The task involved assembling the pieces of

a puzzle. It was chosen to be straightforward to minimise the advantage from personal

experience. Figure 6.6 (inset left) is an example of the initial setting of the unassembled

puzzle pieces, and Figure 6.6 (inset right) is the puzzle assembled. The pieces of the

puzzle are stationary on a static surface. Both the camera and the VR headset position

are localised based on the puzzle’s position. Participants had 30 seconds before wearing

the VR headset to familiarise themselves with the puzzle.

Each participant performed the assembly task 9 times using a random sequence of unassem-

bled puzzle positions with an independently randomised trial visualisation setting. Ta-

ble 6.2 lists the settings in the 9 experiments, which are selected such that visual differ-

ences between settings are obvious when presented to a user. “Quality” is the compression

level of depth and RGB images, where 0 is the highest compression rate with the lowest
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quality and 100 indicates 100% quality compression with negligible loss. “Description” is

the type of data displayed to the user in VR: “C-PC” indicates a coloured point cloud

(Figure 6.5a) that fuses the RGB camera’s colour data with the depth data; “MC-PC” is

a mono-coloured point cloud (Figure 6.5b), “C-D” represents colour image (Figure 6.5c)

and depth image (Figure 6.5d) streams, respectively. “FPS” (Frames Per Second) refers

to the update frequency of the sensor data. “Resolution” indicates the quality of images

and point clouds in VR. For images, “Resolution” is the width × height in pixels, and for

point clouds, it is the percentage of points shown, which is equivalent to the point cloud

density.

Participants were not informed of the initial unassembled puzzle arrangements, and the VR

data visualisation was disabled while the visualisation parameters were prepared. During

this time, the puzzle pieces were arranged in one of the predefined layouts. Then, the

VR data visualisation was made available and the participant was instructed to begin.

The participant verbally indicated when they were satisfied that they had completed the

assembly task. Participants had a 2-minute time limit to complete each task.

6.2.2.2 Experimental Measurement 1: Objective Task Completion Time

The task completion time is the time between when the VR data visualisation is shown

and when the participant verbally indicates that the task is completed. The participant

completion rate for each setting is measured by the number of pieces they successfully

connected out of the puzzle’s total number of pieces.

6.2.2.3 Experimental Measurement 2: Subjective Cognitive Workload

The participant’s subjective cognitive workload is evaluated with a 3-item questionnaire

that utilises the Likert scale [151]. The questionnaire is derived from the NASA-TLX, only

selecting relevant questions and rephrasing them to complement the study. Statement (1),

“I relied more on perceptual than tactile feedback during the task”, aimed to determine

what type of feedback was relied upon during the task. An answer of 1 indicated that
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the participant was strongly dependent on tactile feedback, and 5 indicated that the par-

ticipant was strongly dependent on visual feedback. Statement (2), “I felt stressed and

annoyed during the task”, assessed their stress and annoyance levels during the task. A

response of 1 refers to no stress and annoyance experienced, and 5 refers to extreme stress

and annoyance . Statement (3), “I felt like I needed to work hard to complete the task”,

examined the participant’s perceived cognitive load for completing the task. A response of

1 indicated a reduced cognitive workload and 5 indicated that a higher perceived cognitive

workload was required to complete the task.

6.2.3 User Study 2: Experimental Setup

In order to evaluate if the annotations computed from point clouds, or additional infor-

mation such as image streams would have a significant impact on user performance, a

VR-based user study was conducted. Table 6.1 presents summarised information about

the conducted user study design. Twelve healthy participants with no neuromuscular or

debilitating visual impairments volunteered to partake in the study. Prior to completing

the study, participants provided informed consent approved by an ethics committee (UTS,

Australia, approval number ETH21-5929). The participants were asked to perform the

experiments pertaining to 4 sets of six repetitions.

6.2.3.1 Hardware and High-level Overview

Onboard
PC
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RGBD Camera

RGBD Camera
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Robot
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Figure 6.7: Hardware block diagram showing data passed from a robotic arm with
cameras to a remote operator controlling the system via a VR rig that displays the virtual

robot and the transmitted perception data.
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The system (Figure 6.7) consists of a custom-built robotic arm with remote joystick control

and a calibrated camera system. The camera system includes two static Intel Realsense

D435 RGB-D cameras with different viewpoints and partially overlapping fields of view.

The cameras were mounted such that they achieved a high visual coverage and limited

the data loss from occlusions caused by the arm during motion. Both colour and depth

images are captured and utilised to generate point clouds in real-time within the VR envi-

ronment. Object detection and bounding box creation are performed using the combined

data from the cameras. The bounding boxes are then transmitted to the VR environment

for visualisation.

6.2.3.2 Custom Robotic Manipulator

The manipulator is a 5-DOF robotic arm with a prismatic rail as the first joint and four

revolute joints. The last three revolute joints are actuated by linear motors; the linear-to-

angular control and feedback conversions are done automatically by the onboard controller.

The end-effector is chisel-shaped with a small contact area and can be moved to various

locations in a one-meter-squared work volume in front of the robot.

A kinematic and dynamic model was constructed from the CAD model and fed into a

kinematic solver that utilises the MoveIt Motion Planning Framework [152]. The robot

is equipped with joystick control allowing the user to send control commands via ROS,

in either the joint space or the end-effector Cartesian space. All target locations in the

experiment are within the robot’s reachable volume, and no joint states exhibited by the

robot are near singularities or joint limits. The robot’s joint state is displayed in real-time

as the model reflects the robot’s real state in the virtual environment. To ensure that the

point cloud of the robot arm is accurately superimposed on the model of the arm in VR,

the cameras are extrinsically calibrated with respect to the robot arm.

6.2.3.3 Data Transmission and Point Cloud Rendering

The pipeline used to transmit point cloud data from the sensors via a ROS network and

render it within the VR environment is based on Section 6.2.1. In our original work, [148],
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(a) Setting 1 (b) Setting 2

(c) Setting 3 (d) Setting 4

Figure 6.8: Participant’s view in VR with differing settings: (a) Setting 1 - Point cloud
only; (b) Setting 2 - Point cloud and two image streams; (c) Setting 3 - Point cloud and

annotations; (d) Setting 4 - Point cloud, two image streams, and annotations.

the point cloud frame rate and resolution were variables that were altered to obtain their

effect on user performance as a trade-off exists between the frame rate and resolution.

The pipeline implemented for this user study overcomes the original limitation and can

transmit and render point clouds at the maximum resolution and frame rate to the VR

environment.

6.2.3.4 Experimental Procedure

Table 6.3: Experimental visualisation settings (i.e., images, coloured point cloud (PC)
and bounding box annotations) indicating which information is available “A” or not

available “N/A” to participants.

Setting
Available Information

coloured PC Images Bounding Box

1 A N/A N/A

2 A A N/A

3 A N/A A

4 A A A
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Figure 6.9: A participant manipulating the end-effector to the green area of the target
while in VR.

Participants were given a set of written instructions and shown how to fit and adjust the

VR headset. Participants were asked to remain seated with the VR headset on during the

experiment for their health and safety.

The experiment required participants to perform a series of remote manipulation tasks.

The task designed for the study involves using a joystick controller to manipulate a robotic

arm whilst wearing a VR headset. Within the VR environment, camera data ascertained

from the 2 RGB-D cameras is rendered as a point cloud. Depending on the task configu-

ration, the bounding boxes and colour image streams may be presented.

Each participant is required to perform the manipulation task 24 times in four sets of

six. The scene layout was varied after each repetition. Six different scene layouts were

designed and presented to the participants in a randomised sequence. The four different

settings shown in Figure 6.8, which visualise the environment with a combination of data

modalities, are detailed in Table 6.3. For each repetition of the experiment, one target is

in the sensors’ fields of view. The participant’s aim is to move the robot’s end-effector to

the centre of the targets, indicated by the green area, as quickly as possible (Figure 6.9).

The additional colours are shown as supplemental information available to the participant.

Before putting on the VR headset, participants were given three minutes to perform the

manipulation task while looking at the real-world experiment setup. This is to aid par-

ticipants in familiarising themselves with the task, thus reducing the effect of the learning
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component. The layout used for this practice is a unique scene layout and is not one of

the six scene layouts used for the study.

The participants are placed in a VR waiting room after the VR headset is put on. They

are asked to refrain from moving the robotic arm while waiting. When the scene layout

is prepared, the administrator begins the VR simulation, and the scene is revealed to the

participants in VR. During the experiment, the participants must verbally indicate when

they believe the arm has touched the target based on their own judgment. After the

participants have indicated that the task is complete or two minutes have elapsed, the

VR simulation is terminated, and the participants are returned to the VR waiting room.

The administrator then configures the scene for the next task and returns the arm to its

predefined home position. After a set of tasks, the participants remove the VR headset

and rest for 3 minutes before continuing the next set of repetitions. This minimises the

effect of fatigue on the participants’ performance.

6.3 Experimental Result

6.3.1 User Study 1 Results

6.3.1.1 Objective Task Completion Time

A one-way ANOVA test was conducted with the null hypothesis being that there is no sig-

nificant difference between the mean completion time of the various settings implemented

during the study. An F-statistic value of 1.9 and a p-value of 0.0702 were obtained from

the analysis, showing no statistical significance.

The completion time for Setting 1 in Table 6.2 is lower than that of the remaining settings

(median = 26 s). Variations of MC-PC (Settings 4, 5, and 6) were tested, and in multiple

trials, participants failed to assemble the puzzle, resulting in a “completion time” equal to

the time limit being recorded. Figure 6.10a shows that the completion time of the MC-PC

experiments are higher than in other settings.
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Figure 6.10: Experimental results: (a) Completion time; (b)-(d) for statements 1 to 3
the participants’ responses on the Likert scale.

The C-PC trials (Settings 7, 8, and 9) also contained instances where participants failed

to complete the task within the time limit. However, the median completion time is lower

than the MC-PC trials. The participants’ completion rate indicates that Setting 1 from

Table 6.2 is the only one where no participants failed to complete the task. Settings 2,

7, and 9 each have 1 case where a participant was unable to complete the puzzle. For

Settings 3, 4, 5 and 8, the average completion rate is below 90%.

6.3.1.2 Subjective User Experience Results

Figure 6.10b shows participants are more likely to agree that they were dependent on visual

feedback when C-D image streams or the C-PC is presented, with 48.13% and 31.23% of

responses agreeing with statement (1), respectively. For Settings 4, 5, and 6, when the

visualisation was limited to the MC-PC, 84.85% of responses disagreed with the statement,

implying that participants relied on tactile feedback.
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Figure 6.10c demonstrates a general disagreement (58.33% of responses) to a high level

of stress and annoyance experienced in the experiments. Participants indicated they were

least stressed and annoyed when working with the image streams, with 74.19% of responses

disagreeing with statement (2), followed by C-PC at 65.63% and MC-PC at 36.67%.

When participants were shown C-D image streams, most reported a relatively low cognitive

workload, with 77.42% of responses disagreeing with statement (3). On the contrary,

participants expressed higher cognitive workload with the MC-PC and C-PC settings,

with 54.55% and 28.13% of responses agreeing to the statement, respectively.

6.3.1.3 Discussion

The experimental results indicate that RGB and depth image streams are the preferred

data visualisation modalities. However, several factors may confound the findings of the

experiment. Since only one camera was used during the experiment, the reconstructed

point cloud could easily be occluded by the participant’s hand and surrounding objects.

Additionally, the straightforward assembly task could have meant that the supplementary

information provided by a point cloud was redundant. Furthermore, the image stream

can be obtained at a higher frame rate and resolution than the point cloud data. In

this particular user study, the point cloud reconstruction rate has been limited to 5Hz.

Thus, a dependence existed between the point cloud data frame rate and resolution. The

hypothesis for this work stated that the inclusion of point cloud data would enhance

the user’s perception of the environment and thus improve the participants’ performance.

However, objective completion time results did not reflect this.

The results indicate that for settings where participants were shown the colour image

stream, their performance and VR experience improved. This indicates that they were

assisted by their visual perception when performing the task. In contrast, when the point

cloud data was shown, tactile feedback was relied on. The participants’ responses about

their reliance on visual and tactile feedback suggest that coloured point cloud data enabled

them to incorporate visual perception to help complete the task. Generally, participants

reported the highest dependence on visual feedback when image streams were available.

An aspect that has not been explored is the participant’s inclination to favour tactile
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feedback if the visual feedback is poor. This learning component means a participant

could eventually complete the task using only tactile feedback.

The majority of participants reported disagreement or a neutral response, to both the

use of tactile feedback and a “heavy cognitive workload”, when working with an RGB

and depth image stream or a coloured point cloud. This suggests that a framework in-

corporating sensor data collection and VR for data visualisation is viable for real-time

applications. Coloured point clouds representing an environment in VR seem to enhance

a user’s performance if the point cloud is presented at a high frame rate and density.

Furthermore, the user study reported negative feedback from participants when working

with mono-coloured point clouds, even at high frame rates and density, meaning the colour

information is essential.

This work showed depth and colour images being compressed and transmitted with min-

imal latency and a visually imperceptible loss of quality. Other visualisation modalities

exist, such as triangular meshes, visual hulls and annotations. In our preliminary inves-

tigations, the added step to triangulate the extracted point clouds caused unacceptable

latency, and slight VR sickness since the refresh rate we achieved did not keep up with

movements. However, it is anticipated that research into improved filters, compression and

GPU processing techniques, will enable new modalities, such as meshes, to be compared

alongside the current ones.

6.3.2 User Study 2 Results

Experimental results collected from 12 participants performing a total of 288 repetitions

of the task are shown in Figure 6.11.

6.3.2.1 Objective Task Completion Time

The task completion time is determined as the time from when the participant starts ma-

nipulating the robotic arm to when they verbally indicate that the task is completed. A

one-way ANOVA test was conducted with the null hypothesis being that there is no sig-

nificant difference between the mean completion time of the various settings implemented
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Figure 6.11: Experimental results for each setting: (a) Completion time; (b) Precision
quantified score; (c) Histogram of repetitions where participants missed the green target

area.

during the study. An F-statistic value of 1.71 and a p-value of 0.1644 were obtained from

the analysis, showing no statistical significance.

6.3.2.2 Objective Task Precision

To quantify the participant’s accuracy during the experiment, the participants receive a

point score based on whether the end-effector touches the target. The participants are

given 5 points if the end-effector touches the green area on the target surface when they

indicate they have completed the task. Similarly, if the end-effector stops when touching

the yellow area, the participants receive 3 points, and 1 point is allocated for touching the

red area. If the end-effector is not touching the target surface, the participant is not given

any points.

Similar to Section 6.3.2.1, a one-way ANOVA test was also conducted, with the null

hypothesis being that there is no significant difference between the mean accuracy of

the above-mentioned settings. An F-statistic value of 2.37 and a p-value of 0.0705 were

reported, supporting the previous statement.

6.3.2.3 Discussion

The experimental results indicate that the availability of the information presented through

various mediums, namely 2D images, and bounding box annotations, did not significantly

impact the objective task completion time, as seen in Figure 6.11a. The median completion
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time of the participants collectively for all settings is similar, despite the varied fluctuation

range. Figure 6.11b shows that among the four settings investigated, participants are able

to manipulate the end-effector to the target’s centre in most trials. However, Figure 6.11c

demonstrates a difference in the resulting score when images are available. In settings

where images are available (Setting 2 and 4), participants failed to hit the target’s centre

14 times in total. Within the 14 misses, there were 12 occurrences (85.7%) where the

end-effector touched the edge of the green target area, resulting in a score of 4. On the

other hand, in other settings, participants missed the centre 23 times. The participants

only scored 4 a total of 15 times (65%). Amongst all the investigated settings, partici-

pant performance improved with Setting 4, as indicated by the low number of times the

participants missed the green area.

The experimental results suggest that the non-annotated visualisation, the presented

coloured point cloud alone, was sufficient for this remote-controlled manipulation task.

However, this may be due to the controlled and ideal indoor setup where the depth sensors

are not exposed to excessive infrared noise, such as from the sun. Furthermore, bounding

box annotations did not impact the overall performance as the target could be easily iden-

tified in the scene. In other scenarios, where the target cannot be distinguished through

colour or if the colour information is unavailable, the target becomes less recognisable, and

annotations may better assist a user.

6.4 Conclusion

This chapter presents a framework to transmit and visualise sensor data collected by a

mobile manipulator system in VR. The first user study was conducted to investigate the ef-

fect of variances in real-time VR-based sensor data visualisation on user performance when

an assembly task was conducted. The sensor data variations are visualisation modality,

sensor resolution, data compression, and frame rate. In addition to RGB and depth image

streams, the VR-based system was shown to transfer colour point clouds in real-time. Ex-

periments were conducted where the visualisation parameters were varied between trials

of the assembly task. In the first user study of the framework, the point cloud data cannot

achieve the highest resolution and frame rate simultaneously. This was addressed in the
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second study, where multiple cameras were combined, and data could be visualised at

the highest resolution while maintaining a high frame rate. An improved framework was

utilised for the second study to examine the practicality and effectiveness of implementing

computer vision algorithms to enhance user performance via annotating and highlighting

important information.



Chapter 7

Conclusions

This thesis has presented the implementation of multiple frontier detection algorithms for

2D exploration while also comparing their performance with each other. Experiments were

conducted in both simulations and the real world to provide insightful conclusions about

the performance and possible applications of the algorithms. Additionally, a 3D interactive

and active mapping framework for a mobile manipulator platform based on dynamic GPIS

was implemented to validate its efficiency while mapping, exploring and interacting with

the environment simultaneously. The results showed that the framework can perform

immediate map updates for a dynamically changing environment due to its probabilistic

nature. Two perception systems that employ the point cloud data in the framework are

presented to perform object detection, pose estimation and scene overlay annotation. The

first system is a novel solution for rectangular-shaped object pose estimation in the robotic

bin-picking problem. The second system aims to detect objects above ground level and

generate a bounding box that wraps the objects. The second system is implemented as

part of a user study utilising a VR-ROS framework. Lastly, a VR-ROS framework for

sensor data visualisation in VR environments is presented. User studies were conducted

to determine the optimal configuration for user performance and the effects of annotation

information created by the object detection algorithm on human operators.
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7.1 Summary Of Contributions

7.1.1 Efficiency Evaluation of Frontier Detection Algorithms for Map

Exploration

Six frontier detection algorithms were implemented in simulated and real-world scenarios

to evaluate their efficiency. Discussions and conclusions are drawn from the experimental

results. Three different experiments were implemented to gather relevant data, including

the overall computational time, and the number of cells processed and evaluated. The

conclusions drawn from the results can be summed up as follows. The frontier detection

algorithm should first be chosen depending on the characteristics of the map and whether

the speed is an important consideration for the application. Table 3.1 was generated to

summarise the recommended algorithms for specific scenarios, taking into account the

unique characteristics and behaviours of each algorithm. For all algorithms, the results

did not clearly demonstrate a connection between computation time and map exploration.

In other words, the calculation time for the Näıve, NäıveAA algorithms does not propor-

tionally grow with increasing open space. Due to its speed, robustness, and efficiency over

Näıve frontier detection, NäıveAA should be taken into consideration as a new benchmark

for evaluating future frontier detection algorithms. On the other hand, FTFD is best

suited for applications in which the implementation of frontier detection is required after

each observation.

7.1.2 Validation of an Active and Interactive 3D Mapping Framework

for Mobile Manipulator Platforms

A 3D interactive and active mapping framework for a mobile manipulator platform based

on dynamic GPIS was implemented in simulations and real-life environments to validate

its efficiency. The validation process included comparisons of the investigated framework

with other off-the-shelf available frameworks in the number of bricks picked up and the

map completion. The results demonstrated that the active and interactive framework

could perform immediate mapping updates for a dynamically changing environment. The
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results also show that the framework’s NBV scheme can balance the needs of information

gain in visited regions, frontier-driven map expansion and object manipulability.

7.1.3 Development of Perception Systems for Object Detection and Pose

Estimation using Point Cloud Data

Two perception systems that employ point cloud data to perform object detection, pose

estimation and scene overlay annotation are presented. The first system was developed to

perform object detection and pose estimation with one static RGB-D camera. The system

minimises the effect of sensor noise by pre-processing the raw point cloud data. The region

growing algorithm is then implemented to determine individual surfaces before PCA is

applied to estimate the pose of detected surfaces. At the final stage, a rotation averaging

method is performed on the estimated pose, enhancing its precision. The second system

aims to detect multiple objects above ground level and highlight them for visualisation in

a VR environment. Similar to the first system, the noise in the raw data is minimised

through preliminary processing. Then RANSAC is implemented to remove all points in

the background, including the ground plane. Afterwards, points are grouped based on

their Euclidean distance to create clusters. Since each cluster represents an individual

object, bounding boxes are generated for all distinct clusters. The boxes are transmitted

and presented in VR as an overlay over the raw data.

7.1.4 Enhancing Perception for Collaborative Autonomy: A Framework

and User Studies for Sensor Data Visualisation in VR Environ-

ments

A framework and two user studies for sensor data visualisation in VR environments have

been presented. The framework is a multi-computer setup devised to acquire, transmit

and render real-time 3D sensor data in a VR environment. Experiments were conducted

on this framework to determine the optimal configuration for user performance. The data

was presented to participants in various ways to investigate the effect of data modalities,

frame rate, colour information, and resolution on the participants’ completion time and
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subjective cognitive workload. For the second user study, the original framework is im-

proved and optimised to remove the limitations of the previous version regarding point

cloud resolution and frame rate. The improved framework also involved annotation by

implementing the perception algorithms presented in this thesis. The second user study

was conducted to determine the practicality and effectiveness of implementing point cloud

processing algorithms to annotate the VR environment.

7.2 Discussion of Limitations

Implementing active perception and estimation frameworks in semi-autonomous mobile

manipulators is an ongoing research challenge. On the other hand, integrating VR for col-

laborative autonomy is a relatively new research topic with increasing popularity due to

improved VR technologies. This thesis has implemented previous works in active percep-

tion and estimation on mobile manipulators to automate low-level processes while utilising

VR approaches to visualise sensor data and allow human supervisors to collaborate with

a robot and make high-level decisions.

Though the frontier detection algorithms implemented in Chapter 3 will work in 3D, it

is not obvious how much advantage these algorithms would provide when applied to 3D

applications compared to other algorithms developed for 3D exploration. Additionally, the

algorithms were not implemented or experimented with in any 3D environment, whether

simulations or real-world scenarios. Therefore, these algorithms are strictly limited to 2D

applications until further experiments using 3D data are performed and analysed.

The implemented framework in Chapter 4 utilised 3D sensor data to generate and up-

date the map for a mobile manipulator robot that aims to perform pick-and-place tasks.

However, the framework did not fully utilise the 3D sensor data available. The sensor

data obtained from the RGB-D camera was used solely to generate the 3D occupancy

map. However, many perception and estimation methods utilising 3D sensor data can be

implemented to obtain helpful information to optimise automated processes and improve

human interaction and data visualisation. Therefore, Chapter 5 addresses this limitation

by introducing the two separate point cloud processing systems.
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The systems presented in Chapter 5 have demonstrated some limitations. The first system

relies on the region-growing algorithm to detect individual surfaces. Therefore, it suffers

from a similar drawback to the region-growing algorithm: the possibility of multiple sur-

faces connected through curved edges. Furthermore, the desirable surfaces are defined

based on the size and ratio generated by PCA. This introduces special scenarios where

non-rectangular-shaped surfaces can be considered desirable results as long as they can be

wrapped inside a rectangle with a specified size. The second system heavily depends on

the completeness of the object available in the point cloud. In scenarios where the object is

partially represented in the point cloud, the bounding box will be generated based on the

partially completed object, resulting in an undesirable outcome. Another possible scenario

where the system fails is when an object is presented with two distinct clusters of points

instead of one due to the disruption in its point cloud representation. In addition, both

systems were developed based on assumptions, limiting their applications.

The framework utilising VR for collaborative autonomy is presented in Chapter 6 and

is limited to the quality of the raw point cloud received from the sensors. Since the

point cloud in VR is reconstructed from RGB and depth images, no preliminary processes

were implemented to filter or minimise noise data before presenting it to the user. In

addition, the point cloud from multiple sensors was displayed on top of each other without

performing a point cloud fusion algorithm. This leads to the quality of the overlapped point

cloud solely relying on the precision of the sensors’ calibration processes. A limitation also

exists in both user studies presented in Chapter 6. In both studies, the experimental results

are affected by the learning factor. The learning factor is the ability of a participant to

familiarise themselves with the task, which significantly affects their performance during

the experiments. Unfortunately, this factor can only be minimised by including a long

practice duration before the experiments to practice the task, which was impossible in this

research.

7.3 Future Work

This thesis has shown the implementation and experimental results of exploration ap-

proaches on mobile manipulators. In addition, systems and frameworks are introduced to
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utilise VR for collaborative autonomy with mobile manipulators. However, limitations of

the current work have been outlined, showing that further research is still required. These

works are beyond the scope of this thesis, but it is hoped that these topics will inspire

future work related to the topics presented.

The second system in Chapter 5 contributes a core component to the second framework

presented in Chapter 6, and the major limitation of the system can be improved by increas-

ing the completeness of the point cloud’s presentation of the targets. Since the framework

involves multiple sensors, future work should optimise the sensors’ viewpoints selection

while reducing the number of required sensors and still achieving a high level of coverage.

By improving the coverage, leading to a more thorough and complete point cloud, it is

hypothesised that both the user’s performance and the precision of the object detection

and estimation systems will be improved.

Future work should also investigate the implementation of point cloud processing algo-

rithms and the utilisation of other data modalities, such as meshes and voxels, in the VR

environment. Raw point cloud data contains a large amount of inaccurate information.

This is frequently addressed by including layers of filters and noise-reducing algorithms

in the raw data. However, since the VR simulation uses a completely different program-

ming language than the existing libraries that process point clouds, the raw point cloud

data cannot be processed before it is presented to the user. In addition, other modalities

could have certain advantages over a point cloud in terms of immersiveness and usefulness.

Therefore, user studies that investigate the application of other data modalities in VR are

also required.
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[137] Hervé Abdi and Lynne J Williams. Principal component analysis. Wiley interdisci-

plinary reviews: computational statistics, 2(4):433–459, 2010. doi: 10.1002/wics.101.

[138] Rocco Furferi, Lapo Governi, Matteo Palai, and Yary Volpe. From unordered point

cloud to weighted b-spline-a novel pca-based method. In Applications of Mathe-

matics and Computer Engineering-American Conference on Applied Mathematics,

AMERICAN-MATH, volume 11, pages 146–151, 2011.

[139] Sahan S Hiniduma Udugama Gamage and Joan Lasenby. New least squares solutions

for estimating the average centre of rotation and the axis of rotation. Journal of

biomechanics, 35(1):87–93, 2002. doi: 10.1016/S0021-9290(01)00160-9.

[140] James C Wang. Variation of the average rotation angle of the dna helix and the

superhelical turns of covalently closed cyclic λ dna. Journal of molecular biology, 43

(1):25–39, 1969. doi: 10.1016/0022-2836(69)90076-X.

[141] Avishek Chatterjee and Venu Madhav Govindu. Efficient and robust large-scale

rotation averaging. In IEEE International Conference on Computer Vision, pages

521–528, 2013.

[142] Richard Hartley, Jochen Trumpf, Yuchao Dai, and Hongdong Li. Rotation averaging.

International journal of computer vision, 103(3):267–305, 2013. doi: 10.1007/s11263-

012-0601-0.

http://dx.doi.org/10.1109/VISUAL.1995.485142
http://dx.doi.org/10.1109/34.295913
http://dx.doi.org/10.1016/j.isprsjprs.2015.01.011
http://dx.doi.org/10.1002/wics.101
http://dx.doi.org/10.1016/S0021-9290(01)00160-9
http://dx.doi.org/10.1016/0022-2836(69)90076-X
http://dx.doi.org/10.1007/s11263-012-0601-0
http://dx.doi.org/10.1007/s11263-012-0601-0


Bibliography 139

[143] John F Kros, Mike Lin, and Marvin L Brown. Effects of the neural network s-sigmoid

function on kdd in the presence of imprecise data. Computers & operations research,

33(11):3136–3149, 2006. doi: 10.1016/j.cor.2005.01.024.

[144] Alexander JB Trevor, Suat Gedikli, Radu B Rusu, and Henrik I Christensen. Ef-

ficient organized point cloud segmentation with connected components. Semantic

Perception Mapping and Exploration (SPME), 2013.
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