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ABSTRACT

Wireless Interference Mitigation for Emerging Applications and Systems

by

Linh Manh Hoang

Wireless jamming is one of the critical threats to emerging wireless applica-

tions, e.g., Ultra-reliable low-latency communication (URLLC). The problem be-

comes even more challenging when the jamming signals come simultaneously from

multiple sources. This thesis aims to investigate and mitigate such a problem by

leveraging signal beam-forming and machine learning (ML) techniques. To that

end, the impact of the nonzero and varying correlation coefficients between trans-

mitted jamming signals from multiple sources was first studied. It is observed that

by varying the correlation coefficients, jammers can “virtually change” the jamming

channels hence their nullspace even when these channels do not physically change.

That makes most conventional interference suppression techniques that rely on the

beam-forming matrix derived from the nullspace no longer applicable. To tackle

the problem, we propose techniques to monitor the jamming residual and effectively

update the beam-forming matrix.

However, such a jamming residual monitoring process incurs additional system

overhead, thus significantly reducing the spectral efficiency. This gives rise to a more

challenging problem in optimizing the duration of the nullspace estimation and the

data transmission phases. However, even ignoring the unknown strategy of the jam-

mers and the challenging nullspace estimation process, the resulting problem is an

integer programming problem, hence intractable to obtain its optimal solution. To

deal with such uncertainty and incomplete information, as well as to circumvent the

intractability of the above optimization problem, we reformulate it using a partially

observable semi-Markov decision process (POSMDP). We then design a deep duel-



ing Q-learning-based technique to quickly obtain the optimal policy for legitimate

devices. Simulation results show that the resulting spectral efficiency is much higher

than that of other methods and close to that of the perfect jamming nullification

case (for moderate jamming power).

Next, we study the methods to deal with jamming signals in the joint radar and

communication (JRC) systems. Specifically, novel modulation and demodulation

schemes were proposed for a frequency-hopping (FH) JRC system with robustness

against jamming. In these schemes, both sub-pulse frequencies and durations are

used for information modulation, leading to higher communication data rates. For

information demodulation, a novel scheme was proposed by using the time-frequency

analysis (TFA) technique and a ‘you only look once’ (YOLO)-based detection sys-

tem. As such, the proposed system does not require channel estimation, simplifying

the transmission signal frame design. Simulation results demonstrate the effective-

ness of the proposed scheme. Moreover, by using the FH signal, the JRC system is

robust against the jammers that cannot implement wideband jamming due to power

limitations.

Finally, we study jamming mitigation in joint communication and radar (JCR)

systems. Specifically, we study how to optimize the durations of the jamming

nullspace estimation, the preamble, and the data transmission phases. First, in

the jamming nullspace estimation phase, the beam-forming matrix used to miti-

gate the jamming signal is estimated. Then, the preamble is used to estimate the

legitimate channel and also for the radar function. Finally, the data transmission

is performed in the data transmission phase. As such, increasing the duration of

the nullspace estimation and the preamble phases can increase the radar’s perfor-

mance. However, such an increase also reduces the effective spectral efficiency of the

communication function, because the data transmission phase fraction is decreased.

The surrounding radio environments of the JRC systems are typically dynamic with

high uncertainties due to their high mobility, making the duration optimization

problem even more challenging. To deal with such uncertainty, we reformulate the

problem using a Markov decision process (MDP). Then, we design a deep dueling



v

Q-learning-based technique to quickly obtain the optimal policy.
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1

Chapter 1

Introduction and Literature Review

This section describes the threats to a wireless communication system posed by

jamming devices, which are the motivation behind the thesis. Then, state-of-the-art

solutions to the problems are comprehensively reviewed. Finally, the main contri-

butions and structure of the thesis are provided.

1.1 Motivations

The recent development in wireless communications has enabled various emerg-

ing applications, e.g., intelligent transportation systems, industry automation (in-

dustry 4.0), smart city, etc. These applications require enhanced mobile broadband

(eMBB) and ultra-reliable low latency communication (URLLC), which are made

available by using state-of-the-art technologies, such as mmWave, massive multi-

ple input multiple output (MIMO), small cell, software-defined networking (SDN),

network function virtualization (NFV), etc.

However, modern wireless telecommunications networks remain susceptible to

(both deliberate and inadvertent) jamming attacks due to the exposed nature of

wireless links. These jamming attacks can lead to reduced throughput or even com-

plete disruption of communications links between legitimate devices. In addition,

recent studies show that jamming is very simple to implement using the software-

defined radio (SDR) concept. Specifically, according to [8], a $20 USB dongle with

a transmitting power of 100 mW can be used to jam 20 MHz bandwidth, enough to

terminate a home or office Wifi service. Therefore, mitigating the jammer is critical
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to ensure the operation of wireless networks.

Compared to intra-cell or inter-cell interferences, jamming signals have different

characteristics that make them more challenging to be mitigated. This is because

legitimate devices have information about interference signals, which is not the case

for jamming signals (both deliberate and inadvertent). Moreover, for deliberate

jammers, jamming strategies are constantly being improved to overcome existing

anti-jamming measures. Therefore, anti-jamming techniques must be constantly

updated to ensure adequate protection of communication systems.

Given the above, this thesis aims to propose new anti-interference techniques to

deal with jamming strategies that are capable of bypassing existing anti-interference

measures. Existing studies are thoroughly analyzed, and new techniques based on

the most advanced tools, including machine learning techniques, are proposed to

ensure effectiveness against the most advanced jamming strategies.

1.2 Literature Review and Contributions

This section provides a comprehensive review of the existing techniques for the

mentioned problem, including their advantages and limitations. Then, the thesis’s

main contributions are highlighted. Specifically, the first study analyzes the impact

of the time-varying correlation between transmitted jamming signals and then pro-

poses a heuristic approach to deal with the impact. However, this heuristic approach

creates additional network overhead, reducing the system’s spectral efficiency. This

limitation leads to the second study, which proposes a deep dueling Q-learning

technique capable of dealing with the time-varying correlation and improving the

system’s spectral efficiency. Then, in the third and fourth studies, jamming mitiga-

tion techniques are extended to dual-function radar and communications (DFRC)

systems.
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1.2.1 Suppression of Multiple Spatially Correlated Jammers

1.2.1.1 Literature Review

One conventional approach for suppressing jamming is nullifying jamming sig-

nals using the angle of arrival (AoA) based beam-forming technique. It is realized

by steering the nulls in the receiving beam towards the AoAs of jamming signals,

which are obtained by AoA estimation techniques [9]. Popular examples of such an

approach are multiple signal classification (MUSIC) [10], estimation of signal param-

eters via rotational invariance techniques (ESPRIT) [11], and the matrix pencil [12].

However, for these techniques, the receiver has to ”sacrifice” at least one antenna

to nullify each arriving jamming signal [13]. This makes the approach not suitable

when the number of jammers is large, or when the signal from each jammer reaches

the receiver through a large number of propagation paths (e.g., in urban areas).

This is because the receiver does not want to ”lose” too many antennas for jamming

suppression, as a lower number of remaining antennas generally results in lower or

even zero throughput between legitimate devices [14].

Spread spectrum communication is another approach to deal with jamming sig-

nals. Specifically, in the frequency-hopping spread spectrum (FHSS) technique

[15–18], the legitimate devices try to avoid the jamming signals by first detecting

the jamming frequency range and then switching their operating frequency to an-

other channel (within their operating frequency band). The direct sequence spread

spectrum (DSSS) technique [15,19,20], on the other hand, uses pseudo-random noise

(PRN) codes to encode and spread the legitimate data signal to a much larger band-

width, hence avoiding narrow-band jamming. Moreover, using the DSSS technique,

the encoded data signals become noise-like and have low average power, making it

challenging for the jammer to detect and interfere. However, when the operating

frequency band of the legitimate devices is known to the jammers, they can perform
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wide-band jamming (i.e., given sufficient jamming power) to void the functionality

of the spread spectrum techniques.

Alternatively, jamming suppression can be realized by estimating the projec-

tion of jamming channels [21–23], the ratios between jamming channels [24], or

the nullspace of the jamming channels [25–29], and then designing filters to nullify

the jamming signals. These methods require only one receiver’s antennas to nul-

lify each spatial stream of a jammer, which is more effective than the AoA-based

beam-forming technique mentioned above.

However, the techniques in [21–30] do not consider the impact of the correlations

between transmitted jamming signals on the jamming nullification performance.

Note that the correlation between the jamming channels does not affect the esti-

mation of the jamming channels’ nullspace. On the other hand, the correlations

between transmitted jamming signals, as later demonstrated in this chapter, cause

a ”virtual change” in the jamming channels, making the estimated nullspace inca-

pable of nullifying the jamming signals. In [31] and [32], the authors show that, by

choosing a suitable correlation, the jammers can maximize the jamming impact to

communications between legitimate devices. Therefore, to ensure the effectiveness

of jamming suppression techniques, it is important to consider the correlations be-

tween transmitted jamming signals. Nonetheless, the main objective of [31] and [32]

is to analyze the impact of the correlation on the jamming outcome. The two pa-

pers neither propose any suppression technique for correlated jamming nor discuss

the impact of the correlation on the performance of such a jamming nullification

method, especially under time-varying channels. Another unanswered question is

the impact of varying the non-zero correlation coefficient, if any, on the jamming

suppression process.

Instead of ”dodging” (i.e., by DSSS) or ”escaping” (i.e., by FHSS), legitimate
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devices can also leverage jamming signals for data transmission. In [33], using

backscattering and energy harvesting, the legitimate transmitter can choose to either

adapt its transmission rate, backscatter the jamming signals, harvest energy (from

the jamming signals), or stay idle. In this way, the legitimate transmitter can

mitigate the impact of the jamming signals and even utilize jamming energy for its

communication. However, this approach requires additional hardware component,

which is not always available, especially in mobile devices. Moreover, backscattering

communication is limited in its transmission range and throughput.

It is worth noting that the AoA-based beam-forming technique mentioned above

performs pretty well against the time-varying correlations, except for the weakness of

”sacrificing” too many degree-of-freedoms for jamming suppression. Specifically, the

spatial smoothing technique [20] can decorrelate the received jamming signals before

the AoAs of the jamming signal streams are estimated. However, spatial smoothing

can only be applied directly on arrays with Vandermonde-structure steering vectors,

such as the uniform linear array (ULA). For other array structures, such as the

uniform circular array (UCA), the phase mode excitation (PME) technique is needed

to transform the steering vector into the Vandermonde structure, which degrades

the AoA estimation performance because of PME approximation. To overcome

the limitation of the spatial smoothing technique, the compressive sensing-based

AoA estimation technique is developed [34], which shows an acceptable performance

against the correlations for all types of the array structure. After the AoAs of

the spatial streams are estimated, the jamming signals can be nullified by steering

receiving beam nulls toward the estimated AoAs. However, as discussed above, the

AoA-based beam-forming technique is not suitable when the environment is rich

scattering, because an excessive number of degree-of-freedoms is needed only for

jamming suppression.

The jamming suppression has some analogies to interference avoidance in cog-
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nitive radio. The secondary user (SU) tries to avoid interfering the primary user

(PU) by transmitting signals that lie in the nullspace of the channel between the

SU transmitter and PU receiver. In [35–38], the authors propose blind nullspace

learning and tracking techniques to estimate the nullspace of the channel between

the SU transmitter and the PU receiver, without requiring any SU-PU interaction.

This is realized by having the SU continuously adjust the transmitted signal’s spatial

direction and monitor the impact of the adjustment on the interference output on

the PU’s receiver (by observing the transmitted power from the corresponding PU

transmitter). However, this approach cannot be applied in the jamming suppression

scenario, because we do not have control over the transmitted signals from malicious

jammers.

1.2.1.2 Contributions

Given the above, in Chapter 3, we study the impact of the non-zero and vary-

ing correlations between transmitted jamming signals on the jamming suppres-

sion/nullification in multi-user multiple-input multiple-output (MU-MIMO) and

joint communications and sensing systems. Although some existing works already

exploit channel variations to improve frequency diversity [39] and delay diversity [40],

this work uniquely aims to combat the artificial channel variation caused by varying

correlation of jamming signals. The work starts with the jamming suppression for

uncorrelated jamming signals yet under time-varying channels. Then, the effect of

non-zero and varying correlations on the jamming suppression process is proved to

be similar to that under the time-varying channels. This finding then leads to the

development of jamming nullification techniques that effectively track the jamming

nullspace and correspondingly update receiving beams under all correlation levels.

The proposed techniques cost only a single degree-of-freedom of receiving anten-

nas to nullify each jammer’s spatial stream. Monte Carlo simulations are provided,
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showing that the proposed techniques are capable of suppressing the jamming sig-

nals for all considered scenarios with non-zero and varying correlations (between

transmitted jamming signals). The contributions of this chapter can be summarized

as follows.

• Study the impact of the non-zero correlations between transmitted jamming

signals on the jamming suppression/nullification process.

• Reveal that by varying the correlation coefficients, jammers can effectively

”change” the jamming channels even when these channels do not physically

change.

• Characterize the impact of the non-zero and varying correlations on the jam-

ming suppression/nullification process.

• Develop novel jamming suppression algorithms that effectively update the

beam-forming matrix to suppress the jamming signals for all considered sce-

narios with non-zero and varying correlations.

• Propose jamming nullification techniques that cost only one receiver’s degree-

of-freedom to suppress each spatial stream of the jamming signals, so that

the remaining antennas can be used for communication between legitimate

devices.

1.2.2 Multiple Correlated Jammers Nullification Using LSTM-based Deep

Dueling Neural Network

1.2.2.1 Literature Review

As described in subsection 1.2.1, by deliberately varying the correlations among

jamming signals, attackers can create an impact on the nullspace estimation of the

jamming channel, similar to having a ”virtual change” in the jamming channel, even
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when the physical channels remain unchanged. The ”virtual change” makes the es-

timated beam-forming matrix outdated/incapable of nullifying the jamming signals.

To deal with this ”virtual change” in the jamming channels, one can continuously

monitor the residual jamming signals and then heuristically adjust the estimated

beam-forming matrix. However, such a jamming residual monitoring process incurs

additional system overhead, thus significantly reducing the spectral efficiency. This

creates a more challenging problem in optimizing the duration of the nullspace esti-

mation and the data transmission phases. A longer nullspace estimation phase may

result in a lower jamming residual but then a shorter data transmission phase.

1.2.2.2 Contributions

Given the above, in Chapter 4, we propose a solution to nullify multiple cor-

related jammers whose correlation is unknown and time-varying. To this end, the

optimization problem of the nullspace estimation and data transmission phases is

systematically formulated. Even ignoring the unknown strategy of the jammers and

the challenging nullspace estimation process, the resulting problem is an integer

programming problem, hence intractable to obtain its optimal solution. In practice,

as aforementioned, the jammers can deliberately vary the correlation range, making

jamming nullification even more challenging. To deal with such uncertainty and

incomplete information, and to circumvent the intractability of the above conven-

tional optimization problem, the problem is reformulated using a partially observ-

able semi-Markov decision process (POSMDP). Then, a deep dueling Q-learning

based technique [41, 42] is designed, which improves the training process by using

two streams of fully connected hidden layers to concurrently train the Q-learning

algorithm, thereby quickly obtaining the optimal policy for the legitimate devices.

The proposed technique does not require legitimate devices to constantly monitor

the residual jamming signals, and only costs a single degree-of-freedom to nullify
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each jammer, even with an unknown and time-varying correlated jamming strategy.

Unlike the strategy obtained by the game-theoretic approach, which may not be

optimal, by leveraging the latest advances in deep reinforcement learning, this work

aims to design an algorithm that converges to the optimal strategy by observing and

learning from jammers’ strategy. Simulation results show that the resulting spectral

efficiency is much higher than that of other methods and close to that of the perfect

jamming nullification case. The major contributions of the chapter are as follows.

• We demonstrate that using an incorrectly estimated beam-forming matrix

(i.e., caused by the time-varying correlations) can lose the receiver’s degree-of-

freedoms. This loss corresponds to the lower-bound spectral efficiency that is

even less than the spectral efficiency of the system when jamming nullification

is not employed.

• We formulate the nullspace estimation and data transmission phase optimiza-

tion problem. The objective is to efficiently and accurately estimate the beam-

forming matrix to nullify the jamming channel, and hence maximizing the

spectral efficiency and minimizing the outage probability. The resulting inte-

ger programming problem is challenging even with complete information about

the jammer’s strategy and no uncertainty about the legitimate and jamming

channels (that is not the case in reality).

• To address the above problem, we propose a POSMDP framework to capture

the dynamics, uncertainty, and unobservability of the jamming strategy.

• To cope with the large space dimension of the POSMDP, we design a deep

dueling-based Q-learning technique to obtain the optimal solution for the du-

ration of the nullspace estimation and data transmission phases.

• We carry out extensive simulations to validate the performance of the proposed
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framework and compare it with state-of-the-art jamming suppression methods

and the upper bound where the jamming is perfectly nullified.

1.2.3 Frequency Hopping Joint Radar and Communications with Hy-

brid Sub-pulse Frequency and Duration Modulation

In the previous sections, jamming mitigation techniques for communication sys-

tems were studied. In the following sections, we extend the study to dual-function

radar and communications (DFRC), including joint radar and communication (JRC)

and joint communication and radar (JCR) systems.

1.2.3.1 Literature Review

The DFRC systems [43–49] have received significant attention due to their poten-

tial to improve spectrum efficiency and reduce device size, cost, and power consump-

tion. According to their primary function, the DFRC systems can be categorized into

(communication-centric) joint communication and radar (JCR) and (radar-centric)

joint radar and communication (JRC). The JCR systems prioritize their communi-

cation performance, hence are most applicable in civil applications that require high

transmission rates, such as vehicular networks or perceptive mobile networks [50].

On the other hand, the JRC systems focus on radar sensing performance, and are

more prevalent in military applications, such as airborne, shipborne, and ground-

based combat systems.

For JRC systems, the primary research topic is the data embedding scheme on the

radar signal. The first approach requires modifications to the radar signal waveform,

including spatial, code, and frequency domain embedding techniques. In the spatial

domain [43], the data bits are embedded by controlling the phase or amplitude of the

transmitted signal in the beampattern’s sidelobes. This technique, however, restricts

communication to the sidelobe direction only, while the communication receiver
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can reside in the main lobe. The code-domain embedding technique, on the other

hand, uses binary or poly-phase modulation for communication signals and avoids

interference between the communication and radar signals by using different types of

spread spectrum sequences [50]. However, this technique may lead to leakage outside

the permitted bandwidth due to its alteration in the signal spectrum. Finally, the

frequency-domain embedding technique uses the upward and downward frequency

chirp in a frequency-modulated continuous waveform (FMCW) signal frequency to

represent 1’s and 0’s bits, respectively. Nevertheless, this embedding technique limits

its communication rate to the radar signal’s pulse repetition frequency (PRF).

The frequency-hopping (FH) JRC systems [43, 50–54] have become more and

more prevalent in both military and civil applications, e.g., airborne, shipborne,

ground-based combat systems, the connected autonomous vehicle (CAV). This is

made possible thanks to the powerful anti-jamming properties of the frequency hop-

ping signal, which spreads the signal spectrum over a large bandwidth. The most

popular FH JRC systems include multiple-input multiple-output orthogonal fre-

quency division multiplexing (MIMO-OFDM), multi-Carrier AgilE phaSed Array

Radar (CAESAR), and FH-MIMO [50].

Similar to other JRC systems, a key challenge in FH JRC is to embed/modulate

data (onto frequency sub-pulses) at the transceiver and demodulate the signal at

the receiver. For data embedding, the most dominant technique is index modu-

lation (IM), which utilizes frequency selection/combination and/or antenna selec-

tion/permutation for data representation. Specifically, the data bits are embedded

by selecting different sets of sub-pulse frequencies (i.e., frequency combination) and

allocating them to different antennas (i.e., antennas permutation). For data demod-

ulation, the optimal demodulator can be based on the maximum likelihood princi-

ple [51], while sub-optimal methods, which require lower computation complexities,

are based on compressive sensing (CS) or discrete Fourier transform (DFT) [50].
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However, these methods’ performance depends on the channel estimation’s accuracy.

Unfortunately, a long training sequence necessary for accurate channel estimation

is not always feasible. This is because a long training sequence reduces the commu-

nication fraction over the whole time frame, thus decreasing the data bit rate. In

particular, the data embedding schemes using both sub-pulse frequency combina-

tions and antenna permutations require complex demodulation techniques that are

prone to demodulation error. On the other hand, the data embedding scheme using

only the sub-pulse frequency combination has a limited data transmission rate.

1.2.3.2 Contributions

In Chapter 5, we propose novel techniques to embed and demodulate data in an

FH JRC system to increase the data rate and reduce the demodulation error. For

data embedding, both sub-pulse frequency and duration are used, increasing the

data transmission rate compared to only using the sub-pulse frequency. For data

demodulation, a novel scheme based on the signal’s time-frequency image (TFI) and

a ‘You Only Look Once’ (YOLO)-based detection system is proposed. Instead of

requiring a channel estimation, this demodulation scheme only requires the estima-

tion of the channel delay spread, thus less prone to estimation error. Moreover,

the proposed demodulation technique is more robust to the Doppler shift and the

timing offset between the transceiver and the communication receiver than the ex-

isting ones. Additionally, the proposed data embedding and demodulating schemes

are spatially flexible and not limited to the sidelobe of the transmit beampattern.

This is because the data is not embedded by utilizing the phase or amplitude of the

beampattern sidelobe.

The contributions of the proposed technique are summarized as follows.

• A novel data modulation technique is proposed by using both sub-pulse fre-

quency and duration, thereby increasing the data transmission rate compared
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to only using the sub-pulse frequency.

• A novel data demodulation technique is proposed based on the signal’s TFI

and a YOLO-based detection system. This demodulation technique is less

prone to channel estimation error and is more robust to the Doppler shift

and the timing offset between the transceiver and the communication receiver

compared to the existing ones.

• The proposed modulation and demodulation techniques are spatially flexible

and not limited to the sidelobe of the transmitted beam-pattern, because the

data is not modulated by using the beam-pattern sidelobe.

• Extensive simulations were carried out to demonstrate the performance of the

proposed technique compared to the existing ones.

1.2.4 Jamming Mitigation in Joint Communication and Radar Systems:

A Deep Dueling Q-learning Approach

1.2.4.1 Literature Review

In this subsection, we study the optimization of the durations of the jamming

nullspace estimation, preamble, and data transmission phases in a JCR system. This

is an extension of the study described in Subsection 1.2.2, where the durations of

the nullspace estimation and data transmission phases are optimized. Specifically,

the beam-forming matrix, used to mitigate the jamming signal, is estimated during

the jamming nullspace estimation phase. On the other hand, the preamble is used

for the radar function as well as to estimate the legitimate channel. Therefore,

by increasing the duration of the nullspace estimation and the preamble phases

the radar function performance can be improved. However, such an increase also

reduces the effective spectral efficiency of the communication function, because the

data transmission phase fraction is decreased.
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There have been multiple studies on the optimization of the signal waveforms to

achieve a better joint radar and communication performance [55–59]. Specifically,

[56] proposes using the single carrier physical layer (SC-PHY) frame’s preamble

for the radar function. However, even though the detection and range estimation

performances are acceptable, the velocity estimation is poor due to the limited length

of the preamble. To address this limitation, [59] use the preamble of the control

physical layer (C-PHY) frames that is longer than that of the SC-PHY. To further

improve the velocity estimation performance, the multi-frame technique [60–62] is

proposed by using the signal from multiple frames for the radar function. However,

the studies in [55–59] do not consider the impact of the jamming signal on the JCR

performances. More importantly, the dynamic and uncertainty of the surrounding

environment can also significantly degrade the performance of the JRC system.

1.2.4.2 Contributions

Given the above, in Chapter 6, we study how to optimize the durations of the

jamming nullspace estimation, the preamble, and the data transmission phases in

a dynamic environment. To deal with the uncertainty in the environment, we re-

formulate the problem using a Markov decision process (MDP). Then, we design a

deep dueling Q-learning-based technique to quickly obtain the optimal policy. The

contributions of the proposed technique are summarized as follows.

• We formulate the nullspace estimation, preamble, and data transmission phase

optimization problem. The objective is to maximize the joint radar and com-

munication metric.

• We demonstrate that the dynamics and uncertainty of the surrounding envi-

ronment make it even more challenging to achieve an optimized solution.

• To address the above problem, we propose a semi-MDP (SMDP) framework
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to capture the dynamics, uncertainty, and unobservability of the jamming

strategy.

• To cope with the large space dimension of the SMDP, we design a deep dueling-

based Q-learning technique to obtain the optimal solution for the duration of

the nullspace estimation and data transmission phases.

1.3 Thesis Organization

The rest of this thesis is organized as follows.

• Chapter 2: This chapter provides the fundamental background of reinforce-

ment learning, deep learning, deep reinforcement learning, and the ”You Only

Look Once” object detection system. Specifically, Section 2.1 describes the

fundamentals of reinforcement learning, including the Markov decision pro-

cess (MDP), semi-MDP (SMDP), and the Q-learning technique. Section 2.3

describes the deep reinforcement technique, which combines the advantages of

DL and Q-learning. Finally, Section 2.4 describes the YOLO detection system

used for the demodulation technique in the JRC system.

• Chapter 3: This chapter presents a heuristic solution to the non-zero and vary-

ing correlations between transmitted jamming signals. Specifically, Section 3.1

formulates the problem. Section 3.3 analyzes the impact of the correlations

between transmitted jamming signals on the system performance. Section 3.4

and Section 3.5 describe jamming nullification when the correlations are zero

and non-zero, respectively. Section 3.6 provide simulation results. Finally,

Section 3.7 concludes the Chapter.

• Chapter 4: This chapter studies the technique to avoid the additional system

overhead required by the heuristic solution proposed in Chapter 3 and, es-

pecially, to deal with the dynamics, uncertainty and incomplete information
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of the system. Specifically, Section 4.1 formulates the problem being inves-

tigated. The deep dueling Q-learning technique to solve the stated problem

is presented in Section 4.2. The simulation results are given in Section 4.3.

Finally, the conclusions are drawn in Section 4.4.

• Chapter 5: This chapter studies jamming mitigation in a JRC system. In

particular, Section 5.1 describes the system model. Section 5.2 and Section

5.3 describe the data embedding technique and the sensing function at the

radar transceiver. The demodulation technique used to retrieve the embedded

data is explained in Section 5.4. The simulation results are given in Section

5.5. Finally, the conclusions are drawn in Section 5.6.

• Chapter 6: This chapter studies jamming mitigation in a JCR system. In

particular,

• Chapter 7: This chapter concludes the thesis and provides future research

directions.
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Chapter 2

Background

This thesis aims to exploit the current advances in AI, including reinforcement

learning, deep reinforcement learning, and object detection systems, to mitigate

interference and jamming signals in future communication systems. In the following,

the fundamentals of reinforcement learning and deep reinforcement learning are first

provided. Then, ‘You Only Look Once’, an object detection system, is discussed in

detail.

2.1 Reinforcement Learning

Reinforcement learning is a type of machine learning that enables the system to

learn iteratively from interacting with the environment. Specifically, given a state

of the environment, the system takes action and observes the immediate reward and

the next state of the environment, as shown in Fig. 2.1. In this way, the system

can achieve the optimal policy that defines the rule to choose the action given an

environment state. Moreover, by continuously learning from interacting with the

environment, reinforcement learning helps the system to deal with the environment’s

dynamics and uncertainties. In the following, we introduce the Markov Decision

Process (MDP), Q-learning, deep Q-learning, and deep dueling Q-learning, which

are the key concepts in RL.

2.1.1 Markov Decision Process (MDP)

MDP is a mathematical decision-making framework used to deal with the dy-

namic and uncertainty of the system. An MDP is defined by a tuple (S,A, r),
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Agent

Environment

state
s[n]

immediate reward
r[n]

action
a[n]

r[n+1]

s[n+1]

Figure 2.1 : Reinforcement Learning.

where S, A, and r denote the state space, action space, and the reward function,

respectively. A semi-MDP (SMDP), an extension of the MDP, retains the three

components mentioned above and adds an additional component, that is, the nth

decision epoch length, denoted by t[n]. In an MDP, the state transition occurs

at regular time steps (and hence the decision epoch length t[n] is excluded). On

the other hand, the SMDP allows the state transition to occur at irregular time

steps (i.e., different t[n] for different epochs). Hence, the SMDP is more suitable for

real-time systems because of irregular event occurrences. Details on the MDP and

SMDP can be found in [63].

2.1.2 Q-learning Technique

This subsection introduces Q-learning [64], a model-free reinforcement learning

technique used to acquire the optimal policy for the decision-making system. Let

π : Ŝ → A denote a policy which is a mapping function from the states to the

actions taken by the system. The purpose of Q-learning is to find the optimal value

of π, denoted by π∗, that maximizes the average long-term reward of the system. As

demonstrated in Fig. 2.2, the Q-learning technique contains a Q-table to store all

the state-action values, which is used to select the action based on the current state.



Agent

Environment

state
s[n+1]

immediate reward
r[n]
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a[n]

r[n+1]
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Figure 2.2 : Q-Learning.

After performing the selected action, the system observes the immediate reward and

the next state to update the corresponding state-action value in the Q-table. In this

way, Q-learning learns iteratively from its interaction with the environment.

Let V(s), Q(s, a), and G(s, a) denote the state value function, the state-action

value function, and the (state-dependent) action advantages function, respectively.

The state value function V(s) is the expected cumulative reward of the system

starting from the state s, illustrating “how good” it is for the system to be in the

state s. On the other hand, the state-action value function Q(s, a) demonstrates the

expected discounted reward of the system in state s selecting an action a. Finally,

G(s, a) subtracts the state value function V(s) from the state-action value function

Q(s, a) to acquire the importance of each action. Specifically, V(s) and Q(s, a) can

2.1 Reinforcement Learning 19
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be expressed by [65, Ch. 3],

V(s) =∆ E
{ ∞∑

i=0

γir[n+ i+ 1]
∣∣s[n] = s

}
, (2.1)

Q(s, a) =∆ E
{ ∞∑

i=0

γir[n+ i+ 1]
∣∣s[n] = s, a[n] = a

}
, (2.2)

G(s, a) =∆ Q(s, a)− V(s). (2.3)

where γ ∈ [0, 1) is the discount factor, illustrating the importance of the long-term

reward over the immediate reward. Specifically, a larger value of γ[i] means the

system is more interested in the long-term reward and vice versa. The objective

of the Q-learning is to find the optimal value of the state-action value function

Q(s, a), denoted by Q∗(s, a), for all state-action pairs. Then, the optimal policy π∗

is obtained by π∗ = argmaxa Q
∗(s, a), meaning at each state, the system selects the

action that maximizes the expected discounted reward. The optimal state-action

value function Q∗(s, a) can be achieved in an iterative manner as follows. First,

the state-action value function Q(s, a) is arbitrarily initialized (e.g., by setting all

elements to zero). Then, at each ith iteration, given system state s[i], the Q-learning

technique executes an action a[i] and observes the immediate reward r[i] and the

next state s[i+1]. A set of values {s[i], a[i], r[i], s[i+1]} is referred to as a transition.

By using the current transition {s[i], a[i], r[i], s[i+1]}, the system iteratively updates

the state-action value function Q(s, a) using the formula

Q(s[i], a[i]) = (1− α[i])Q(s[i], a[i])

+ α[i]
{
r[i] + γ[i] max

a[i+1]
Q(s[i+ 1], a[i+ 1])

}
, (2.4)

where α[i] is the learning rate at the ith iteration that defines the importance of the

current transition {s[i], a[i], r[i], s[i + 1]} compared to the prior ones. Specifically,

increasing the value of α[i] enhances the importance of the current transition and vice

versa. Note that, for the Q-learning technique, to guarantee that Q(s, a) converges
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to Q∗(s, a), the learning rate α[i] should satisfies the conditions [33,64]

α[i] ∈ [0, 1),
∞∑
i=1

α[i] =∞, and
∞∑
i=1

(α[i])2 <∞. (2.5)

By using the updating rule in Eq. (2.4), the system can learn from the experiences

(i.e., the sets of transitions {s[i], a[i], r[i], s[i+ 1]}) to iteratively derive the optimal

state-action value function Q∗(s, a), which corresponds to the optimal policy π∗.

However, when the state dimension is large, the Q-learning algorithm converges

slowly, which leads to the development of the deep Q-learning technique discussed

below.

2.2 Deep Learning

Deep learning (DL), also referred to as deep neural networks, is a subset of

machine learning that uses multiple hidden layers in the neural network to learn

the patterns within the input data, as demonstrated in Fig. 2.3. By mimicking the

human brain, DL algorithms map the new input to already learned data to propose

an accurate output. DL has several advantages that make it superior to conventional

ML methods, as described in the following.

• Automatic feature generation: In traditional ML techniques, the features need

to be manually designed by an ML expert. On the other hand, with DL,

the features are automatically generated based on the set of training data,

enabling its capability to handle large and complex datasets.

• Supports parallel and distributed algorithms: this property is beneficial for

large datasets. Specifically, instead of spending a huge amount of time training

the model, one can train it on multiple machines to leverage higher computing

power and speed up the training process.
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Input 

Figure 2.3 : Deep learning neural network.

• Transfer learning: this concept refers to the capability to retrain a pre-trained

network to use in the new recognition task, thereby significantly reducing the

training time.

2.3 Deep Reinforcement Learning

This section introduces deep reinforcement learning (DRL), which combines RL

and DL’s advantages to quickly achieve the system’s optimal policy. Specifically,

deep Q-learning and deep dueling Q-learning, two of the most important DRL tech-

niques, are presented.

2.3.1 Deep Q-learning Technique

The deep Q-learning technique is used to resolve the slow-convergence problem

of the Q-learning technique described above, especially when the state dimension is

large. In the Q-learning approach, Q∗(s, a) is iteratively obtained and stored in a

Q-table. However, in the deep Q-learning technique, a neural network, referred to

as the Q-network and denoted by Q, is used as a nonlinear function approximator

to estimate Q∗(s, a). The input to the Q-network Q is the approximate state s, and
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the output from Q is the optimal state-action value function Q∗(s, a).

Let θ denote the parameters of the Q-network Q; the problem of finding Q∗(s, a)

becomes the problem of finding θ∗, which are the optimal values of θ. Accordingly,

θ is included in the state value function, the state-action value function, and the

action advantages function notations. For example, the state-action value func-

tion is now denoted by Q(s, a; θ), and its optimum is denoted by Q∗(s, a; θ∗). The

deep Q-learning technique is based on the one in [66], and formed by the following

techniques.

• ϵ-greedy action selection policy: At each training iteration, the system im-

plements exploration (i.e., by selecting a random action) with a probability

of ϵ, or exploitation (i.e., by choosing the action that maximizes the current

state-action value Q(s, a; θ)) with a probability of 1− ϵ. The value of ϵ is large

(e.g., ϵ = 1) at the starting iteration, and decays over the iterations as θ gets

closer to the optimal value θ∗.

• Experience replay: Instead of using instant transition at each iteration, the

system stores the transitions in a memory pool M of size M using the first-

in-first-out (FIFO) protocol. This technique allows the previous transitions to

be used more than once, hence improving the training data’s efficiency. More

importantly, by randomly selecting the training data from M, the algorithm

can remove the correlation between the consecutive training data.

• Target Q-network: This technique uses a separate network to generate the

target Q-values y[j]. The separate network with parameter θ̂ is named the

target Q-network, and denoted by Q̂. Instead of updating at every iteration,

the target Q-network Q̂ is only renewed every C steps. As such, the primary

Q-network is slowly updated, which helps to reduce the correlations between

the estimated and target Q-values, hence improving the stability of the deep
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Figure 2.4 : Deep dueling neural network architecture.

Q-learning technique.

• Mini-batch gradient descent (MGD) [67]: At each training iteration of the deep

Q-learning technique, the system randomly samples a mini-batch with Nmb

samples from M, and then performs mini-batch gradient descent on the mini-

batch. By setting Nmb ≪ D, the training time can be reduced dramatically

[67].

2.3.2 Deep Dueling Q-learning Technique

As illustrated in [41], due to the overestimation of the optimizer, the convergence

rate of the deep Q-learning algorithm is still limited. Therefore, in [41], the author

proposed a novel dueling structure for the Q-network, as illustrated in Fig. 2.4. As

can be seen, the deep neural network is divided into two streams of fully connected

layers to estimate the advantages function G(s, a) and the state value function V(s)

separately. Then, these two are combined at the output layer to calculate the state-

action value function Q(ŝ, a; θ) as [41]

Q(ŝ, a; θ) = V(ŝ; θ) +
(
G(ŝ, a; θ)− 1

|A|
∑
a

G(ŝ, a; θ)
)
, (2.6)
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where |A| denotes the dimension of the action space A. A detailed description of

the deep dueling Q-learning algorithm is given in [41]. The deep dueling Q-learning

algorithm is given in Alg. 2.1.

2.4 ‘You Only Look Once’ (YOLO) Object Detection System

This section introduces the YOLO [7], one of the object detection systems achiev-

ing the highest mean average precision (mAP). Unlike conventional convolutional

neural networks (CNN), which only classify the whole image, object detection sys-

tems can determine the object type and its location in the image. State-of-the-art

object detection systems, besides YOLO, include region-based CNN (R-CNN [68]),

fast R-CNN [69], faster R-CNN [70], and Single Shot Multi-Box Detector (SSD) [71].

Among these object detection systems, YOLO is well-known for its real-time detec-

tion speed, which is critical in tactical applications, such as military JRC systems.

The real-time detection speed is achieved by splitting the input image into a grid

of cells and predicting an object and its bounding box on each cell, instead of per-

forming region proposal as in other object detection systems. Details of the YOLO

detection system can be found in Fig. 2.5 and [7].
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Figure 2.5 : YOLO network contains 24 convolutional layers followed by two fully

connected layers [7].
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Algorithm 2.1 Deep Dueling Q-learning Algorithm.

1: Initialize a memory M with capacity M , initialize a value for the learning rate

α and the discount factor γ.

2: Initialize Q and Q̂ with random weights θ.

3: for iteration i = 1 to I do

4: Select action

a[i] =


random action, with probability ϵ

argmaxa Q(ŝ[i], a; θ), otherwise.

(2.7)

5: Perform a[i], observe reward r[i] and the next approximate state ŝ[i+ 1].

6: Store the transition {ŝ[i], a[i], r[i], ŝ[i+ 1]} in M.

7: Randomly sample a mini-batch of Nmb transitions {s[j], a[j], r[j], s[j + 1]}

from M.

8: Set

Q(ŝ[j], a[j]; θ) = V(ŝ[j]; θ) +
(
G(ŝ[j], a[j]; θ)− 1

|A|
∑
a[j]

G(ŝ[j], a[j]; θ)
)

(2.8)

9: Set y[j] = r[j] + γ[i] maxa[j+1] Q̂(ŝ[j + 1], a[j + 1]; θ̂)

10: Perform MGD [67] with a learning rate α[i] on {y[j]−Q(ŝ[j], a[j]; θ)}2 with

respect to θ.

11: Set Q̂ = Q every C iterations.

12: end for
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Chapter 3

Suppression of Multiple Spatially Correlated

Jammers

This chapter studies the impact of the non-zero and varying correlations between

transmitted jamming signals on the jamming suppression/nullification in a multi-

user multiple-input multiple-output (MU-MIMO) system. Although some existing

works already exploit channel variations to improve frequency diversity [39] and

delay diversity [40], this work uniquely aims to combat the artificial channel variation

caused by varying correlation of jamming signals. The jamming suppression for

uncorrelated jamming signals yet under time-varying channels was studied first.

Then, it is proved that the effect of non-zero and varying correlations on the jamming

suppression process is similar to that under the time-varying channels. This finding

then leads to the development of jamming nullification techniques that effectively

track the jamming nullspace and correspondingly update receiving beams under all

correlation levels. The proposed techniques cost only a single degree-of-freedom of

receiving antennas to nullify each jammers’ spatial stream. Monte Carlo simulations

are provided, showing that the proposed techniques are capable of suppressing the

jamming signals for all considered scenarios with non-zero and varying correlations

(between transmitted jamming signals).
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Figure 3.1 : MU-MIMO system with proactive jammers.

3.1 System Model

3.1.1 Network Model

A multi-user multiple-input multiple-output (MU-MIMO) downlink system is

considered with one BS and K user equipment (UEs), as demonstrated in Fig. 3.1.

The BS and each kth UE have uniform linear array (ULA) structures with NT and

Nk antennas, respectively. For each kth UE, Mk independent streams are trans-

mitted from the BS. The BS-UEs communication system is jammed/interfered with

by NJ single-antenna proactive jammers. Note that the techniques and results ob-

tained in this chapter also capture the case with multi-antenna jammers that can be

considered as multiple single-antenna jammers. For either case, it is assumed that

the total number of jamming antennas is NJ.

3.1 System Model 29
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The received signal at the kth UE is given by

yk =
√

PTHkPkxk +
√

PTHk

K∑
l ̸=k

Plxl + ZkxJ +w, (3.1)

where PT is the transmitted power from the BS, Hk ∈ CNk×NT denotes the BS-kth

UE channel, Pk ∈ CNT×Mk is the precoder applied at the BS for the kth UE, Mk

is the number of independent streams for the kth UE, xk ∈ CMk×1 denotes the

signal transmitted from the BS to the kth UE, xJ = [xJ1;xJ2; ...xJNJ
] ∈ CNJ×1 is the

transmitted jamming signal, Zk ∈ CNk×NJ is the jammers-kth UE channel, and w ∈

CNk×1 is complex noise. The elements of w are assumed to be zero-mean circularly-

symmetric complex Gaussian random variables (i.e., w ∼ CN (0, σ2
wINk

), where INk

denotes the identity matrix of size Nk, and σ2
w is the noise variance). Likewise,

it is assumed that xk ∼ CN (0, IMk
). The columns of the precoding matrix Pk are

selected from these of the Walsh–Hadamard matrix [72], and are normalized to meet

the power constraint, such that ||Pk||F = 1, where ||.||F denotes the Frobenius norm

of a matrix. It is assumed that the jammers, if more than one, can coordinate to

control the correlation between the transmitted jamming signals.

3.1.2 Jamming Signal Model

The received jamming signal at the kth UE is given by

yJk = ZkxJ +w, (3.2)

It is assumed that xJ ∼ CP(µJ,ΣJ), where P denotes a distribution function, µJ and

ΣJ are the mean and covariance matrix of xJ. Note that the jamming strategy, P , µJ

and ΣJ are unknown to the BS and the UEs. Note also that we consider persistent

jammers due to their popularity [73] in wireless networks and the existence of several

papers dealing with smart jammers that intermittently transmit the jamming signals

[33,74].
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Let ρij be the complex Pearson correlation between the transmitted jamming

signals from the ith and the jth jammer. The value of ρij can be expressed by [75,

Ch. 4]

ρij =
E(XJiX

H
Jj)

σJiσJj

, (3.3)

where XJj denotes a sample set of xJj, and σ2
Jj

is the variance of the jth transmitted

jamming signal. The covariance matrix ΣJ can be expressed by

ΣJ =



σ2
J1

ρ12σJ1σ2 ... ρ1NJ
σJ1σJNJ

ρ∗12σJ1σJ2 σ2
J2

... ρ2NJ
σJ2σJNJ

... ... ... ...

ρ∗1NJ
σJ1σJNJ

ρ∗2NJ
σJ2σJNJ

... σ2
JNJ


. (3.4)

As mentioned in the introduction and will be described in more detail in Section

3.5, the time-varying correlations between transmitted jamming signals create a

“virtual change” in the jamming channel, even when the physical channels stay

unchanged. Based on the behavior of the “virtual change” in the jamming channel,

the jammers can disable the functionality of the conventional jamming suppression

techniques by deliberately varying the correlations. Formally, the correlations are

controlled by the jammers using the formula

ρij(t) = J (i, j, t), ∀i ̸= j ∈ (1, 2, ..., NJ), (3.5)

where J is a function unknown to the UEs and the BS.

3.1.3 Channel Model

The BS-kth UE channel can be given by

Hk =
1
√
ηk

Np
k∑

p=1

αk,pa(ϕ
a
k,p)a(ϕ

d
k,p)

T , (3.6)

where ηk denotes the large-scale path-loss of the BS-kth UE channel, αk,p is the

complex path gain, Np
k is the total number of propagation paths, ϕa

k,p and ϕd
k,p are
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the AoA and angle of departure (AoD) of the pth path for the kth UE, respectively,

and a(ϕa
k,p) and a(ϕd

k,p) are the steering vectors corresponding to ϕa
k,p and ϕd

k,p,

respectively. The steering vectors can be expressed by [9, Ch. 3]

a(ϕa
k,p) =

[
1, e−j

2πdk
λ

sin(ϕa
k,p), ..., e−j

2πdk
λ

(Nk−1) sin(ϕa
k,p)

]T
,

a(ϕd
k,p) =

[
1, e−j

2πdT
λ

sin(ϕd
k,p), ..., e−j

2πdT
λ

(NT−1) sin(ϕd
k,p)

]T
,

where dk and dT are the antenna element spacing at the kth UE and the BS, respec-

tively, and λ is the carrier’s wavelength. The AoA ϕa
k,p is assumed to be uniformly

distributed over [0, 2π] [76]. It is further assumed that Np
k is sufficiently large (e.g.,

Np
k ≥8), such that the elements of Hk are zero-mean circularly-symmetric complex

Gaussian random variables (i.e., Hk ∼ CN (0, 1/
√
ηk)).

Similarly, the jth jammer-kth UE channel is given as

Zk,j =
1
√
ηk,j

Np
k,j∑

p=1

αk,j,pa(ϕ
a
k,j,p), (3.7)

with ηk,j, N
p
k,j, αk,j,p, ϕ

a
k,j,p, and a(ϕa

k,j,p) defined in the same way to ηk, N
p
k , αk,p,

ϕa
k,p, and a(ϕa

k,p) in Eq. (3.6), respectively. The COST 231 Hata model [77, Ch. 4] is

used to model the large-scale path-losses ηk and ηk,j. For the multipath fadings (i.e.,

expressed by the summations in Eq. (3.6) and Eq. (3.7)), without loss of generality,

the flat fast fading Rician model in [78] is adopted. The values of related parameters

are specified in Section 3.6.

For reference purposes, important notations and symbols are given in Table 5.1.

The superscripts “e” and “d” are employed to denote symbols in the nullspace

estimation and data transmission phases, respectively. For example, Σe
J and Σd

J

represent ΣJ values in the nullspace estimation and data transmission phases, re-

spectively. On the other hand, (̂.) denotes the estimated value. For example, the

estimated value of Ge
k (introduced in Section 3.2) is denoted by Ĝe

k.
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Table 3.1 : Notation and Symbols.

Notation Description Notation Description

F̂e
k

Estimated beam-forming matrix for the

kth UE.
|.|

Modulus of complex number or

dimension of space.

Ne,

Nd

Number of samples in the nullspace

estimation and data transmission

phases, respectively.

N e,

Nd

Sets of candidates for Ne and Nd,

respectively.

δk,m,

δ̂k,m,

δ̄k,

δmin

Post-equalization

signal-to-interference-plus-noise ratio

(SINR) of the mth stream for the kth

UE, estimate of δk,m, average of δ̂k,m,

and minimum required

post-equalization SINR, respectively.

S,

Ŝ,

A,

r

State space, approximate state space,

action space, and immediate reward,

respectively.

Λk,l

Λ̄l

The lth largest singular value of Re
Jk

and the average of Λk,l, respectively.

Q,

Q̂

Q-network and target Q-network,

respectively.

s[n],

ŝ[n]

a[n],

r[n]

State, approximate state, action, and

immediate reward at the nth epoch,

respectively.

(.)−1,

(.)∗,

(.)T ,

(.)H

The inverse, transpose, conjugate, and

Hermitian transpose matrix operations,

respectively.

V(s),

Q(s, a)

G(s, a)

Value function, state-action value

function, and action advantages

function, respectively.

Var(.)

Cov(.)

The variance and covariance,

respectively.

3.2 Problem Formulation

First, the communication protocol and the estimated beam-forming matrix em-

ployed to suppress the jamming signals are described. Then the impacts of the

time-varying correlations among jamming signals on the jamming suppression pro-

cess (using the estimated beam-forming matrix) is briefly analyzed. Next, the upper

and lower bounds for the spectral efficiency of each BS-UE communication link that

employs the estimated beam-forming matrix to suppress the jamming signals are

derived. Finally, the problem is mathematically stated. To highlight the impact of

the time-varying correlations on designing the estimated beam-forming matrix, it is
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Figure 3.2 : Communication protocol for jamming suppression.

assumed that the BS-UEs and the jamming channels follow a block-fading model

with coherence time [37] T c, corresponding to N c samples. It is further assumed

that the nullspace estimation, preamble, and data transmission phases of the com-

munication protocol (described below) are performed within the interval T c, such

that N e + Np + Nd < N c, where N e, Np, Nd are the number of samples of the

nullspace estimation, preamble, and data transmission phase, respectively.

To guarantee BS-UE communication, both interference signals from other UEs

and the jamming signals must be suppressed. There exist various techniques for

suppressing the interference signals, including orthogonal signal design, precoder,

and linear minimum mean square error (LMMSE) equalization. Therefore, in this

chapter, the concentration is on techniques for suppressing the jamming signals.

In particular, in the subspace-based approach, this is achieved by multiplying the

received signal with a beam-forming matrix derived from the left nullspace [79,

p. 181] of the received jamming signals.

3.2.1 Communication Protocol

Fig. 3.2 illustrates the communication protocol for the jamming/interference nul-

lification purpose [30]. As shown, each frame is comprised of three phases: nullspace

estimation, preamble, and data transmission.

3.2 Problem Formulation 34
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• During the nullspace estimation phase, which lasts for N e samples, the beam-

forming matrix that is used to suppress the jamming signals, is estimated. Let

F̂e
k denote the estimated beam-forming matrix. Let xe

J and ye
Jk

denote the

values of xJ and yJk during the nullspace estimation phase, respectively. Let

Ye
Jk

and Re
Jk

be a sample set of N e samples and the corresponding covariance

of ye
Jk
. We have,

ye
Jk

= Zkx
e
J +w, Re

Jk
=

1

N e
Ye

Jk
(Ye

Jk
)H . (3.8)

Let Ge
k ∈ C(Nk−NJ)×Nk be a matrix whose rows form an orthonormal basis

for the left nullspace [80, Ch. 2] of Ye
Jk
, and let Ĝe

k denote the estimated

value of Ge
k. The estimated beam-forming matrix F̂e

k is designed by choosing

its rows from the rows of Ĝe
k. Let Bk be the row number of F̂e

k, one has

Bk ≤ (Nk − NJ). To leverage all (Nk − NJ) remaining degree-of-freedoms

(after jamming suppression) for BS-UE signal multiplexing, we set F̂e
k = Ĝe

k

by letting Bk = (Nk − NJ). Note that NJ can be estimated by using the

minimum description length (MDL) technique [81]. For the kth UE receiver

being able to suppress NJ jammers then demodulateMk spatial signal streams,

we assume that Nk ≥ NJ + Mk (i.e., Bk ≥ Mk). This is because at least

one degree-of-freedom is needed to suppress each jammer or demodulate each

stream. Such a limitation on the antenna number does not come from our

framework but from the inherent degree-of-freedom constraint in any MIMO

system. Similar to [25], Ĝe
k can be calculated by letting Ĝe

k = (Ue
w)

H , where

Ue
w is extracted from the singular value decomposition (SVD) of Re

Jk
as

Re
Jk

= [Us U
e
w]

Λs 0

0 Λw


 (Us)

H

(Ue
w)

H

 . (3.9)
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The received signal after nullification can be represented as [82],

pk = F̂e
k(
√

PTHkPkxk +
√

PTHk

K∑
l ̸=k

Plxl + ZkxJ +w). (3.10)

• During the preamble phase, which lasts for Np samples, the jamming signals

are nullified by multiplying Eq. (3.1) with F̂e
k, and the BS-UE equivalent

channel H̃k (i.e., H̃k = F̂e
kHkPk) is estimated. The estimation of H̃k can be

performed using pilot signals and a channel estimator, such as the minimum

mean-square error (MMSE) or least-square (LS) technique.

• During the data transmission phase, which lasts for Nd samples, the BS sends

data to UEs.

3.2.2 Problem Formulation

In fact, the effectiveness of the jamming nullification depends on how close Ĝe
k is

to Gd
k, where Gd

k denotes the matrix whose rows form an orthonormal basis for the

left nullspace of the received jamming signals at the kth UE in the data transmission

phase. The closer Ĝe
k to Gd

k results in the better jamming nullification. The first

factor that affects the similarity between Ĝe
k and Gd

k is how relatively frequently

Ĝe
k is updated. In practice, a more frequent update of Ĝe

k makes it closer to Gd
k,

and certainly leads to less residual jamming after the jamming nullification process.

On the other hand, the more frequent update of Ĝe
k also increases the system’s

overhead, because the BS-UE channel estimation and synchronization have to be

performed at the beginning of each frame. Therefore, less time is available for BS-

UE communication. The second factor that affects the similarity between Ĝe
k and

Gd
k, as will be demonstrated in this chapter, is how fast the correlations between

transmitted jamming signals change. Because of the second factor, the jammers can

intentionally vary the correlations to make jamming nullification more challenging.
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Given the above relationship between Ĝe
k and Gd

k. The problems to be solved

are as follows.

• Characterize the impact of the correlations between transmitted jamming sig-

nals on the estimation of Ĝe
k.

• Characterize the impact of the time-varying correlations on jamming nullifi-

cation.

• Design jamming nullification techniques for different scenarios of the correla-

tions.

The content of the following sections is as follows. Section 3.3 describes the

impact of the correlations on the estimation of Ĝe
k. Then, in Section 3.4 and Section

3.5, the jamming nullification techniques for different scenarios of the correlations

are proposed.

3.3 Impact of the Correlations between Transmitted Jam-

ming Signals

In this section, the impact of the correlations between transmitted jamming

signals on the relationship between Ĝe
k andGd

k is described. Note that, to emphasize

the impact of the correlations on the estimation of Ĝe
k, it is assumed that the

jamming channels are under a slow block fading with coherence time T c ≫ T b.

Therefore, the jamming channels are considered unchanged over each frame, such

that Ze
k = Zd

k = Zk. For brevity, in this section, only Zk is used to represent the

jamming channels. Correspondingly, only Gk is used to denote the matrix whose

rows form an orthonormal basis of the left nullspace of Zk, instead of Ge
k and Gd

k.

The section is started by an introduction on the algorithm for estimating Ĝe
k from
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the received jamming signals ye
Jk
. Then, the relationship between Ĝe

k and Gd
k is

illustrated by comparing them with Gk.

3.3.1 Impact of Correlations between Transmitted Jamming Signals

To illustrate the impact of the correlations between transmitted jamming signals

on the relationship between Ĝe
k and Gd

k, the impact of the correlations on the rela-

tionship between Ĝe
k and Gk is first illustrated. It is done by analyzing the matrix

Ĝe
kZk in relation to the correlations between transmitted jamming signals.

Note that, from Eq. (3.8), Re
Jk

is a Hermitian matrix. Therefore, the SVD shown

in (3.9) is equivalent to an eigen-decomposition (EVD) of Re
Jk
. Consequently, the

columns ofUs andUe
w are the eigenvectors ofRe

Jk
with the corresponding eigenvalues

in the diagonals of Λs and Λw in Eq. (3.9), respectively,

Re
Jk
ue
wi

= Λwii
ue
wi

Re
Jk
Ue

w = Λe. (3.11)

where ue
wi

is the ith column of Ue
w, Λwii

is the ith diagonal element of Λw, and

Λe ∈ CNk×(Nk−NJ ) denotes a matrix with the ith column equal to Λwii
ue
wi
.

Theorem 3.1. Re
Jk

converges in probability [83, p. 175] to (ZkΣ
e
JZ

H
k + σ2

wINk
).

Proof: The proof is given in Appendix A.1. ■

Assuming N e is sufficiently large such that the law of large number is applicable,

from (3.11),

(ZkΣ
e
JZ

H
k + σ2

wINk
)Ue

w = Λe

ZkΣ
e
JZ

H
k U

e
w = Λe − σ2

wU
e
w

Ĝe
kZkΣ

e
JZ

H
k = (Λe − σ2

wU
e
w)

H

Ĝe
kZk =

(Σe
Jf)

T

det(Σe
J)
(Λe − σ2

wU
e
w)

HZk(Z
H
k Zk)

−1, (3.12)
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where Σe
Jf denotes the cofactor matrix [79, p. 275] of Σe

J. The matrix Σe
J can be

expressed by the variances of the transmitted jamming signals and the correlations

between them,

Σe
J =



σ2
1 ρe12σ1σ2 ... ρe1NJ

σ1σNJ

(ρe12)
∗σ1σ2 σ2

2 ... ρe2NJ
σ2σNJ

... ... ... ...

(ρe1NJ
)∗σ1σNJ

(ρe2NJ
)∗σ2σNJ

... σ2
NJ


, (3.13)

where σ2
j is the variance of the jth transmitted jamming signal, and ρeij is the complex

correlation coefficient between the ith and jth transmitted jamming signals in the

inter-frame silent period, with i, j ∈ {1, 2, ...NJ}. The complex correlation coefficient

ρeij can be calculated as [75, p. 87]

ρeij =
E(Xe

Ji(X
e
Jj)

H)

σiσj

. (3.14)

The correlation matrix [83, p. 139] of the transmitted jamming signals can be ex-

pressed as

Ce =



1 ρe12 ... ρe1NJ

(ρe12)
∗ 1 ... ρe2NJ

... ... ... ...

(ρe1NJ
)∗ (ρe2NJ

)∗ ... 1


(3.15)

and can be calculated from Σe
J by

Ce = D−1Σe
JD

−1, (3.16)

where D is a NJ × NJ diagonal matrix with the jth diagonal element being

σj, and is referred to as the standard deviation matrix of the transmitted jamming

signals.
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Observation on the elements of Ĝe
kZk: from (3.12), it can be seen that the

elements of Ĝe
kZk increase or decrease without bound when |ρeij| → 1, where |.|

denotes the modulus of a complex number. It is because when |ρeij| → 1, the

correlation matrix Ce becomes singular. Therefore, from (3.16), Σe
J becomes a

singular matrix. As a result, det(Σe
J) → 0. This makes the elements of Ĝe

kZk

increase or decrease without bound.

This observation is demonstrated in Fig. 3.3 which shows the normalized residual

value, rc = ||Ĝe
kZk||2/||Zk||2, as a function of |ρe12| using different distribution func-

tions for the transmitted jamming signals, including the Gaussian, uniform, and

Chi-square (with two degrees-of-freedoms) distribution functions. The number of

jammer is NJ = 2, the UE antennas is Nk = 8, and ||.|| denotes matrix’s Frobe-

nius norm. As can be seen, without noise, rc = 0 for any value of |ρe12| except for

|ρe12| = 1. It is because when σ2
w = 0, all the diagonal elements of Λe

w are zero, and

(3.12) becomes

Ĝe
kZk =

(Σe
Jf)

T

det(Σe
J)
0(Nk−NJ ,Nk)Zk(Z

H
k Zk)

−1,

where 0(Nk−NJ ,Nk) ∈ C(Nk−NJ )×Nk denotes a null matrix. On the other hand, in the

presence of noise with a received signal-to-noise ratio (SNR) of 14 dB, rc is small

and stable for small values of |ρe12|. However, rc increases dramatically when |ρe12|

approaches 1, meaning the transmitted jamming signals are highly correlated.

Therefore, when the jamming signals are uncorrelated, the elements of Ĝe
kZk are

small, meaning Ĝe
k is close to Gk. Similarly, Gd

k is close to Gk when the jamming

signals are uncorrelated. Therefore, Ĝe
k is close to Gd

k and can be used to nullify

yd
Jk
. However, when the correlations between transmitted jamming signals are large,

there are large values in the elements of Ĝe
kZk, meaning Ĝe

k is not close to Gk.

Therefore, Ĝe
k may not be close to Gd

k and using F̂e
k derived from Ĝe

k may not

guarantee jamming nullification.
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Figure 3.3 : rc values for different |ρe12|.

Accordingly, different techniques to suppress the jamming signals for different

correlations between transmitted jamming signals are needed. In the next section,

the case of uncorrelated jamming signals (i.e., the correlations are zero) is considered,

which is the assumption in most existing studies [25–29]. Then, in Section 3.5,

different scenarios of non-zero correlations are analyzed.

3.4 Jamming Nullification with Uncorrelated Transmitted

Jamming Signals and Time-varying Channels

This section describes jamming nullification when the jamming signals are un-

correlated, which is an assumption in most of the existing jamming suppression

techniques [25–29]. The technique in this section is developed to deal with time-

varying channels.

3.4.1 Protocol for Time-varying Channels

The baseline protocol in Fig. 3.2 is revised into that in Fig. 3.4 and Alg. 3.1

to deal with time-varying BS-UE and jamming channels. Similar to the protocol

in Fig. 3.2, the protocol in Fig. 3.4 also consists of an initial silent period for the

3.4 Jamming Nullification with Uncorrelated Transmitted Jamming Signals and
Time-varying Channels 41
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Figure 3.4 : Protocol for time-varying channels.

acquisition of Ĝe
k, and inter-frame silent periods between frames to update Ĝe

k. Each

frame starts with a preamble which contains a short training sequence (STS) and a

long training sequence (LTS). The STS is used for frame detection and fine timing,

and carrier frequency offset (CFO) estimation. The LTS is used for BS-UE channel

estimation. However, different from the baseline protocol in Fig. 3.2, each frame

in Fig. 3.4 is divided into N sf sub-frames, each of length T s = T b/N sf . Each sub-

frame consists of data payload and pilot samples xm
k , which is used for updating

equalization coefficients Kk by the adaptive equalizer described below.

3.4.2 Adaptive Equalization

To deal with time-varying UE channels, it is suggested to use one of several op-

tional adaptive equalizers, whose equalization coefficients can be adapted to channel

variations. There have been a few types of adaptive filters being reported in the

literature, such as the modified complex gradient-projection-II (MCG-P-II) [84] and

the adaptive decision feedback equalizer (DFE) for V-BLAST systems [85]. Based

on the DFE, an adaptive equalizer is also developed with the recursive least square

(RLS) principle, without using decision/pilot-based feedback. This is realized by

removing the feed-backward filter but only keeping the feed-forward filter in the

3.4 Jamming Nullification with Uncorrelated Transmitted Jamming Signals and
Time-varying Channels 42
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Algorithm 3.1 Protocol for time-varying channels.

1: Acquire Ĝe
k during the initial silent period or update Ĝe

k during inter-frame silent periods.

2: Design F̂e
k from Ĝe

k.

3: Estimate H̃k using the preamble.

4: Calculate equalization coefficients Kk.

5: Perform BS-UE data transmission.

6: nsf ← 1

7: while nsf ≤ N sf − 1 do

8: Update Kk using xm
k .

9: Perform BS-UE data transmission.

10: nsf ← nsf + 1

11: end while

12: Repeat from 1.

DFE as described in [85]. It is called RLS-FFE. Compared to DFE, the RLS-FFE

has lower computational complexity, and is shown to work well using simulation.

In summary, when the transmitted jamming signals are uncorrelated, the com-

munication protocol represented in Fig. 3.4 and Algorithm 3.1 is used to nullify the

jamming signals and perform BS-UE data transmission. In the next section, the

case with non-zero correlations between transmitted jamming signals is considered.

3.5 Jamming Nullification with Correlated Transmitted Jam-

ming Signals

In this section, jamming nullification when the transmitted jamming signals are

correlated is investigated. Similar to Section 3.3, to emphasize the impact of the

correlations, it is assumed that the jamming channels are unchanged over each frame,

and only Zk is used to denote the jamming channels. First, it is demonstrated that

the change in the correlations between transmitted jamming signals causes a “virtual

change” in the jamming channels. Therefore, even though Zk is unchanged, using
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F̂e
k deriving from Ĝe

k may not guarantee jamming nullification performance. Then,

jamming nullification is analyzed for two schemes of non-zero correlations between

transmitted jamming signals.

Theorem 3.2. Let

Σe
J = VeSe(Ve)H and Σd

J = VdSd(Vd)H

be the SVD of Σe
J and Σd

J, respectively. Let D be the “virtual change” factor given

by

D = Vd
√

Sd(Se)−1(Ve)H . (3.17)

Then, the change over time from Σe
J to Σd

J causes a “virtual change” in the jamming

channels from Zk to (ZkD).

Proof: The proof is given in Appendix A.2. ■

Examining the behavior of D provides us interesting insights about the impact of

the change in the correlations between transmitted jamming signals on the “virtual

change” in the jamming channels. The first observation is for the case of unchanged

(i.e., over each frame) correlations, such that Cd = Ce. In this case, Σd
J = Σe

J,

Vd = Ve,Sd = Se, and D = I. Therefore, ZkD = Zk, and there is no “virtual

change” in the jamming channels. The case of unchanged correlations between

transmitted jamming signals will be considered in more detail in Subsection 3.5.1.

The second observation is for the case of time-varying correlations, and is described

by the following corollary.

Corollary 2.1: When |ρeij| → 1 and ρdij ̸= ρeij, the elements of the “virtual

change” factor D increase or decrease without bound.

Proof: when |ρeij| → 1, Σe
J is a singular matrix. Therefore, there is one diagonal

element sejj ∈ Se approaches 0 [86, p. 261]. From (3.17), when sejj ∈ Se approach 0
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while sdjj ∈ Sd is not equal to sejj, the elements of D increase or decrease without

bound. ■

Therefore, there is a “virtual change” in the jamming channels observed by the

receiver when the correlations between transmitted jamming signals vary over time.

The “virtual change” is significant when |ρeij| → 1 for i ̸= j. It implies that, from

the receiver’s observation, the estimated left nullspace becomes ineffective when the

correlation is high and largely changed. Therefore, using Ĝe
k to generate F̂e

k may

not guarantee jamming nullification in the data transmission phase. The case of

time-varying correlations between transmitted jamming signals will be considered

in more detail in Subsection 3.5.2.

3.5.1 Jamming Nullification with Unchanged Non-zero Correlations

In this subsection, the case with T ρ ≥ T b is considered, where T ρ denotes the

correlation coherence time, over which the change in the correlations is negligible,

and T b is the time interval of one frame as illustrated in Fig. 3.4.

As described in the first observation on the behavior of D, when Cd = Ce,

we have Σd
J = Σe

J, V
d = Ve,Sd = Se, and D = I. Therefore, there is no “virtual

change” in the jamming channels. As a result, the beam-forming matrix F̂e
k, which is

derived from Ĝe
k, can be used to nullify yd

Jk
, regardless of the value of the correlations

between transmitted jamming signals.

Therefore, jamming signals with non-zero and unchanged correlations can be

suppressed in the same manner as the uncorrelated jamming signals in Section 3.4.

In these cases, only the time-varying channels have to be handled, but not the time-

varying correlations between transmitted jamming signals. Hence, the protocol in

Fig. 3.4 and Algorithm 3.1 can be used to nullify the jamming signals and perform

BS-UE communication. In the following sub-section, the case with time-varying

non-zero correlations is investigated.
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3.5.2 Jamming Nullification with Time-varying Non-zero Correlations

In this sub-section, the case with T ρ < T b is considered, meaning the correlations

between transmitted jamming signals vary rapidly enough, such that during the

frame interval T b, the change in the correlations is not negligible. As stated in

Theorem 2, the change in the correlations causes a “virtual change” in the jamming

channels, characterized by the “virtual change” factor

D = Vd
√

Sd(Se)−1(Ve)H .

Moreover, from Corollary 2.1, when Cd ̸= Ce and the absolute value of one or more

off-diagonal element of Ce approach 1, there is a significant “virtual change” in the

jamming channels. The significant “virtual change” in the jamming channels (now

ZkD) make it unable to use F̂e
k, which derived from Ĝe

k, to nullify the jamming

signals in the data transmission phase yd
Jk
.

A potential solution to the change in the correlations is to decrease the frame

time interval to T b ≤ T ρ. However, more frequent tracking of Ĝe
k means less BS-UE

data transmission time. A suitable value of T b should be based on two factors:

the jamming channels’ coherence time T c and the correlation coherence time T ρ.

For example, the longer T c or the longer T ρ, the longer T b should be. While the

first factor depends on the nature of the jamming channels environment, and its

value can be predicted based on field measurement, we cannot control or predict the

second factor.

Given the above, a communication protocol capable of dealing with the change

of the correlations between transmitted jamming signals is developed, as shown in

Fig. 3.5 and Algorithm 3.2. This protocol has two differences compared to that

in Fig. 3.4 and Alg. 3.1. First, the pilot signal xm
k , demonstrated by the white

color in Fig. 3.5, in addition to the first use to update equalization coefficient Kk,

is also used to measure the jamming residual. Second, when the measured jamming
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Preamble

Data Pilot

Initial silent 
period

Inter-frame 
silent periodFrame

Tb

Ts

Sub-frame time

Intra-frame zero pilot

Figure 3.5 : Protocol for time-varying correlations and time-varying channels.

residual is higher than a predefined value, intra-frame zero pilots are used to update

the beam-forming matrix F̂e
k, as described below. By using the pilot signal xm

k , the

jamming residual can be measured by

rk = pk − F̂e
k(
√

PTHkPkx
m
k +

√
PTHk

K∑
l ̸=k

Plxl) = F̂e
k(ZkxJ +w).

When the normalized residual value γJ = ||rk||2/||pk||2 exceeds a pre-defined thresh-

old γr, the BS starts sending intra-frame zero pilots, and Ĝi
k is estimated using the

SVD as described in Section 3.3. As shown in Table 5.1, Ĝi
k denotes a matrix whose

rows form an orthonormal basis for the left nullspace of the received signal at the kth

UE in the intra-frame silent period. The new beam-forming matrix F̂i
k is obtained

from Ĝi
k, which is the estimated value of Ĝi

k. Note that a smaller value of γr results

in better jamming nullification, and, therefore, less error in the BS-UE data trans-

mission. However, reducing the normalized residual threshold also results in more

intra-frame zero pilot activation, and less time for BS-UE communication. Note

also that starting the intra-frame zero pilots only reduces the spectral efficiency of

the UEs that do not request it. However, the communication between the UE that

needs intra-frame zero pilots and the BS will be completely lost if the intra-frame

zero pilots are not activated. Therefore, the BS starts the intra-frame zero pilots
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Algorithm 3.2 Protocol for time-varying correlations and time-varying channels.

1: Acquire Ĝe
k during the initial silent period or update Ĝe

k during inter-frame silent periods.

2: Design F̂e
k from Ĝe

k.

3: Estimate H̃k using the preamble.

4: Calculate equalization coefficients Kk.

5: Perform BS-UE data transmission.

6: nsf ← 1

7: while nsf ≤ N sf − 1 do

8: Update Kk using xm
k .

9: Measure γJ = ||rk||2/||pk||2 using xm
k .

10: if γJ ≥ γr then

11: Start intra-frame zero pilots.

12: Estimate Ĝi
k during intra-frame zero pilot.

13: Design F̂i
k from Ĝi

k.

14: Update equivalent channel H̃k ← F̂i
k(F̂

e
k)

HH̃k.

15: Update beam-forming matrix F̂e
k ← F̂i

k.

16: end if

17: Perform BS-UE data transmission.

18: nsf ← nsf + 1

19: end while

20: Repeat from 1.

whenever requested by one or more UE.

To reduce the system’s overhead, the equivalent channel is only estimated using

a training signal and an MMSE or LS estimator once per frame. For each sub-frame,

when intra-frame zero pilot is used, H̃k is replaced by H̃i
k given by

H̃i
k = F̂i

kHkPk = F̂i
k(F̂

e
k)

HF̂e
kHkPk = F̂i

k(F̂
e
k)

HH̃k.

By using the pilots signal xm
k and intra-frame zero pilots, each frame with a time

interval T b is divided into N sf sub-frames with a time interval T s. This division

significantly reduces the change in the correlations between transmitted jamming
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signals and reduces the elements of the “virtual change” factor D. Therefore, jam-

ming nullification performance can be significantly improved.

It is worth noting that an inter-frame silent period can be started as soon as

γJ exceeds γr. However, starting a new inter-frame silent period requires the BS-

UE synchronization and H̃k estimation to be performed again. Therefore, valuable

BS-UE communication time is reduced dramatically when Tρ decreases. Therefore,

using the intra-frame zero pilot as in Fig. 3.5 and Algorithm 3.2 to combat the

change in the correlations between transmitted jamming signals is a more suitable

approach to reduce the overhead of the system and increase BS-UE communication

time.

3.6 Simulation result

This section presents the simulation results to validate the proposed schemes.

The performance metrics include the normalized residual value rJ =
||Ĝe

ky
d
Jk

||2

||yd
Jk

||2 and

the bit error rate (BER). The simulation parameters are as follows unless otherwise

stated. A single carrier narrowband MIMO system is considered with a bandwidth

of 200 kHz and a center frequency of 447 MHz. The symbol duration is 5 µs.

Note that as reported in [87], the typical root mean square (RMS) delay spread

value in an urban area is 0.73 µs, corresponding to a coherence bandwidth of about

685 kHz [72, p. 45]. The RMS delay spreads in the suburban and combined areas

are smaller than in the urban area, corresponding to larger coherence bandwidths.

A 16 Quadrature Amplitude Modulation (QAM) with no forward error correction

(FEC) coding is used. Note that we do not use FEC to eliminate its impact on the

system’s performance. Both BS-UE and jammers-UE channels are modeled using a

flat fast-fading Rician model from [78] with a Doppler frequency of fd = 24.83 Hz

(i.e., corresponding to BS-UE and jammers-UE relative speeds of about 60 km/h),

and a Rician factor of 5. The number of propagation paths for each signal is 5.
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The path losses over the BS-UE channel and jammer-UE channel are both modeled

using the COST 231 Hata model [77, p. 135] with hBS = hJ = 50m, hUE = 10m,

and dBS = dJ = 1km, where hBS, hJ, hUE, dBS, and dJ denote the BS height, jammer

height, UE height, BS-UE distance, and the distance from each jammer to the UE,

respectively. The ratio of transmitted jamming power to BS transmitted power is

3. The BS and UE have a uniform linear array (ULA) with 12 and 8 antennas,

respectively. The BS is communicating with K = 4 UEs. The number of samples

in the initial silent periods, inter-frame zero pilots, intra-frame zero pilots, and xm
k

are 64, 5, 5 and 5, respectively. Note that in order to obtain a fair comparison of

the efficiency of the adaptive equalizer and the beam-forming matrix in jamming

nullification, the same number of samples for inter-frame zero pilot, intra-frame zero

pilots, and xm
k are used. All the simulation results are obtained by averaging over

500 independent trials.

3.6.1 Uncorrelated Jamming Signals

In this sub-section, simulation results for the case of uncorrelated transmitted

jamming signals is provided. As demonstrated in Section 3.4, the inter-frame silent

period is used to update the beam-forming matrix and one of four equalizers (i.e., ZF,

MCG-P-II, DFE, and RLS-FFE equalizers) to update the equalizer coefficient Kk.

To demonstrate the effectiveness in suppressing the jamming signals of the beam-

forming matrix and the adaptive equalizer, the following scenarios are simulated.

• No jammer : There is no jammer in the system;

• Ideal : Beam-forming matrix is derived directly from the known jamming chan-

nels;

• Inter-frame: Beam-forming matrix is acquired during the initial silent period

and updated using inter-frame zero pilots;



3.6 Simulation result 51

Table 3.2 : BER performance for various equalizers.

Scenarios ZF MCG-P-II RLS-FFE DFE

No jammer 0.0026 0.0028 0.0029 0.0021

Ideal 0.0230 0.0234 0.0256 0.0286

Inter-frame 0.0610 0.0586 0.0499 0.0497

Initial 0.3168 0.1074 0.0811 0.0834

No jammer

Figure 3.6 : BER performance of MCG-P-II.

• Initial : Beam-forming matrix is acquired during the initial silent period, with-

out updating.

Table 3.2 shows the performance of different equalizers for different beam-forming

matrix updating scenarios. The SNR used for simulation is 25 dB. As can be seen,

in the presence of jammers, the adaptive equalizers (i.e., MCG-P-II, RLS-FFE, and

DFE) all achieve better performance than the ZF equalizer for all of the beam-

forming matrix updating scenarios. Moreover, the adaptive equalizers using the ini-

tial beam-forming matrix updating scenario achieve a higher BER compared to that



BER
Normalized overheadB

ER

N
or

m
al

iz
ed

 o
ve

rh
ea

d

𝑇𝑏[× 1

25𝐹𝑑
]

Figure 3.7 : BER and overhead trade-off for different values of T b.

of the ZF equalizer using the inter-frame beam-forming matrix updating scenario.

It means the beam-forming matrix is more efficient than the adaptive equalizer in

dealing with jamming signals. It is because varied jamming nullspace mainly causes

increased jamming, similar to noise, while adaptive equalizers are developed based

on structured signal models. Among the adaptive equalizers, MCG-P-II achieves

only slightly higher BER compared to the other ones. On the other hand, while

MCG-P-II has a computational complexity of O((Nk − NJ)
2) [84], both DFE and

RLS-FFE have O((Nk −NJ)
3) [85]. Therefore, MCG-P-II achieves a better balance

between performance and complexity, and is regarded as the best option. Accord-

ingly, from Fig. 3.6 onwards, the MCG-P-II equalized is used to generate simulation

results.

Fig. 3.6 illustrates the MCG-P-II’s BER performance with different beam-forming

matrix updating scenarios and different SNR values. As can be seen, the inter-frame

beam-forming matrix updating scenario can successfully nullify the jamming signals,

resulting in system performance of only about 3 dB performance degradation com-

pared to that of the system with ideal knowledge about the jamming channels. Note
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that there is a high gap between the Ideal and No jammer scenario because even

though a perfect jamming nullification can remove the jamming signal, it also costs

NJ degree-of-freedoms.

Fig. 3.7 illustrates the BER performance and the normalized overhead of the

system as functions of T b, which quantifies how frequently the beam-forming matrix

is updated. For comparison purposes, the overhead is normalized such that the

normalized overhead when T b = 1
25fd

is 1. As can be seen, there is a trade-off

between the BER and the overhead of the system. When T b increases, the BER of

the system increases, whereas the overhead of the system decrease, and vice versa.

3.6.2 Unchanged Non-Zero Correlations

In this sub-section, the simulation results are presented for the case of non-zero

correlations between transmitted jamming signals, and with T ρ ≥ T b, such that the

correlations are considered constant over each frame. As discussed in Subsection

3.5.1, when the correlations between the transmitted jamming signals are non-zero

and constant, there is no ”virtual change” in the jamming channels. Therefore, the

protocol in Fig. 3.4 and Alg. 3.1 can be used to nullify jamming signals and perform

BS-UE communication.

Fig. 3.8 illustrates the values of rJ as a function of the jamming signals’ SNR for

different values of ρe12 = ρd12 = ρ12. As can be seen, rJ has similar values for different

|ρ12| values, meaning the value of |ρ12| has little impact on the jamming nullification

performance. As a result, the system achieves similar BER performance for different

values of |ρ12|, as illustrated in Fig. 3.9.

3.6.3 Time-varying Correlations

In this sub-section, the simulation result for the case of time-varying correlations

with T ρ < T b is presented. As discussed in Subsection 3.5.2, we have to deal with



N
or

m
al

iz
ed

 re
si

du
al

 v
al

ue

SNR [dB]

|𝜌12| = 1
|𝜌12| = 0.8
|𝜌12| = 0.6
|𝜌12| = 0.4
|𝜌12| = 0.2

Figure 3.8 : rJ values when |ρ12| is unchanged.

both the time-varying channel and the “virtually change” in the jamming channels

due to the change over time of the correlations between transmitted jamming signals.

To deal with those issues, the protocol illustrated in Fig. 3.5 and Algorithm 3.2 is

used with N sf = 5, and γr = 0.05. Note that in this simulation, the correlation

between transmitted jamming signals is assumed to change linearly. Therefore, the

changes from |ρe12| into |ρd12| over one frame is equally divided into N sf = 5 changes

over each sub-frame.

Fig. 3.10 illustrates the values of rJ for different scenarios of the time-varying

correlations between transmitted jamming signals. As can be seen, there are large

jamming residual values for the system using the protocol in Alg. 3.1 and Fig. 3.4.

It means the above protocol is unable to catch “virtually change” in the jamming

channels, caused by the change in the correlations between transmitted jamming

signals. Another phenomenon is that the jamming residual becomes larger with the

larger difference between |ρe12| and |ρd12|. That is because a larger difference between

|ρe12| and |ρd12| results in larger elements of the ”virtual change” factor D. On the

other hand, the system using the protocol in Alg. 3.2 and Fig. 3.5 has successfully
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Figure 3.9 : BER performance when |ρ12| is unchanged.

caught up with the “virtually change” in the jamming channels, resulting in a much

smaller jamming residual.

Fig. 3.11 compares the BER performance of the system using protocol in Alg.

3.1 and Fig. 3.4 to that of the protocol in Alg. 3.2 and Fig. 3.5 for different scenarios

of the time-varying correlations mentioned above. As can be seen, the system using

the protocol in Alg. 3.1 and Fig. 3.4 has high BER values, because the jamming

signals are not effectively nullified. On the other hand, the system using the protocol

in Alg. 3.2 and Fig. 3.5 successfully nullifies the jamming signals, resulting in an

improvement of 3 dB.

3.7 Conclusion and Future Work

This chapter investigated the impact of non-zero and time-varying correlations

between transmitted jamming signals on the jamming channels’ left nullspace es-

timation and received jamming signals nullification. The technique to effectively

suppress the received jamming signals for different levels of correlations between

transmitted jamming signals was proposed. Monte Carlo simulation results show
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Figure 3.10 : rJ values for different values of |ρe12| and |ρd12|.

that the proposed techniques can nullify the jamming signals for different values of

the correlations. It is worth noting that the techniques proposed in this thesis can

be extended to a wideband OFDM system with frequency-selective multipath chan-

nels by applying the technique to, e.g., each sub-carrier of the OFDM system. The

future research problem is to design the parameters of the communication protocol

analytically.
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Figure 3.11 : BER for different values of |ρe12| and |ρd12|.
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Chapter 4

Multiple Correlated Jammers Nullification Using

LSTM-based Deep Dueling Neural Network

To deal with the “virtual change” in the jamming channels, as shown in Chapter

3, one can continuously monitor the residual jamming signals and then heuristi-

cally adjust the estimated beam-forming matrix. However, such a jamming residual

monitoring process incurs additional system overhead, thus significantly reducing

the spectral efficiency. This gives rise to a more challenging problem in optimizing

the duration of the nullspace estimation and the data transmission phases. A longer

nullspace estimation phase may result in a lower jamming residual but then a shorter

data transmission phase. Therefore, this chapter proposes a solution to nullify mul-

tiple correlated jammers whose correlation is unknown and time-varying, without

requiring monitoring the jamming residual and then updating the estimated beam-

forming matrix. To this end, the optimization problem of the nullspace estimation

and data transmission phases is first systematically formulated. Even ignoring the

unknown strategy of the jammers and the challenging nullspace estimation pro-

cess, the resulting problem is an integer programming problem, hence intractable

to obtain its optimal solution. In practice, as aforementioned, the jammers can

deliberately vary the correlation range, making jamming nullification even more

challenging. To deal with such uncertainty and incomplete information, as well as

to circumvent the intractability of the above conventional optimization problem,

the problem was reformulated using a partially observable semi-Markov decision

process (POSMDP). Then, a deep dueling Q-learning-based technique [41,42] is de-

signed, which improves the training process by using two streams of fully connected
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hidden layers to concurrently train the Q-learning algorithm, thereby quickly ob-

taining the optimal policy for the legitimate devices. The proposed technique does

not require legitimate devices to constantly monitor the residual jamming signals,

and only costs a single degree-of-freedom to nullify each jammer, even with an un-

known and time-varying correlated jamming strategy. Unlike the strategy obtained

by the game-theoretic approach [74, 88, 89], which may not be optimal, by lever-

aging the latest advances in deep reinforcement learning, this work aims to design

an algorithm that converges to the optimal strategy by observing and learning from

jammers’ strategy. Simulation results show that the resulting spectral efficiency

is about 4 dB higher than that of other methods and close to that of the perfect

jamming nullification case.

4.1 Problem Formulation

In this section, the communication protocol and the estimated beam-forming

matrix employed to suppress the jamming signals are described first. Then, the

impacts of the time-varying correlations among jamming signals on the jamming

suppression process (using the estimated beam-forming matrix) is briefly analyzed.

Next, the upper and lower bounds for the spectral efficiency of each BS-UE com-

munication link that employs the estimated beam-forming matrix to suppress the

jamming signals are derived. Finally, the problem is mathematically stated. To

highlight the impact of time-varying correlations on the estimated beam-forming

matrix, it is assumed that the BS-UEs and the jamming channels follow a block-

fading model with coherence time [37] T c, corresponding to N c samples. It is further

assumed that the nullspace estimation, preamble, and data transmission phases of

the communication protocol (described below) are performed within the interval T c,

such that N e +Np +Nd < N c, where N e, Np, Nd are the number of samples of the

nullspace estimation, preamble, and data transmission phase, respectively.



estimation preamble data
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Figure 4.1 : Communication protocol for jamming suppression.

4.1.1 Communication Protocol

Fig. 4.1 illustrates the communication protocol for the jamming/interference

nullification purpose. As mentioned in Section 3.2, each frame is comprised of three

phases: nullspace estimation, preamble, and data transmission. During the data

transmission phase, which lasts for Nd samples, the BS sends data to UEs. Let

δk,m[n] denotes the post-equalization SINR of the mth stream for the kth UE during

the data transmission phase of the nth frame. As will be demonstrated in Appendix

B, δk,m can be given by

δk,m =
PT

E{[AZF
k (δFkZkxJ + F̂e

kw)]2m}
. (4.1)

where AZF
k denotes the zero-forcing equalizer, (.)m denotes the mth elements of a

vector, δFk = (F̂e
k − Gd

k) is the nullspace estimation error, where Gd
k denotes a

matrix whose rows form an orthonormal basis for the left nullspace of Yd
Jk
.

Let Ck,m[n], and Ceff
k,m[n] denote the corresponding spectral efficiency and effective

spectral efficiency [55], respectively. We have

Ck,m[n] = log2{1 + δk,m[n]}, Ceff
k,m[n] = µ[n]Ck,m[n], (4.2)

where

µ[n] =
Nd[n]

N e[n] +Np[n] +Nd[n]
(4.3)

is the data transmission phase fraction over the whole frame.

4.1 Problem Formulation 60
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4.1.2 Impact of the Time-varying Correlations on Jamming Suppression

The estimated beam-forming matrix F̂e
k described in the previous subsection is

derived from Ĝe
k, whose rows form an orthonormal basis for the left nullspace of

Ye
Jk
. Therefore, F̂e

k should be capable of nullifying Yd
Jk

when the left nullspace of

Ye
Jk

is the same to that of Zk. However, when |ρeij| → 1, the nullspace of Ye
Jk

is not

the same to that of Zk, making the rows of Ĝe
k do not span the nullspace of Zk [1].

In this case, F̂e
k, which is derived from Ĝe

k, may not be capable to nullify Yd
Jk
.

In fact, when the correlations are high but not time-varying (i.e., ρeij = ρdij =

ρij → 1), the estimated beam-forming matrix F̂e
k, despite of not being an accurate

estimation of the nullspace of Zk, can still be used to nullify Yd
Jk
. This is because

unchanged correlation values lead to the same values of Σe
J and Σd

J, and hence the

same values of Re
Jk

and Rd
Jk
. Therefore, the rows of Ĝe

k still span the nullspace of

Rd
Jk
, even though they do not span the nullspace of Zk. Accordingly, F̂e

k, derived

from Ĝe
k, can be used to nullify Yd

Jk
.

However, when the correlations are time-varying, (i.e., ρdij ̸= ρeij and |ρeij| →

1), the rows of Ĝe
k do not span the nullspace of Zk, and the covariance matrix

of the received signal varies over time (i.e., Rd
Jk
̸= Re

Jk
). In this case, the rows

of Ĝe
k do not span the nullspace of Yd

Jk
. Therefore, the time-varying correlation

degrades the jamming nullification capability of F̂e
k. We consider this impact as if the

correlations produced a “virtual change” in the jamming channel. Hence, when the

correlations are time-varying, using F̂e
k to suppress Yd

Jk
leads to significant jamming

residual and correspondingly a low post-equalization SINR at the receiver in the

data transmission phase. Theorem 1 below formally states the effectiveness of F̂e
k in

nullifying the jamming signals by examining the lower and upper spectral efficiency

bounds of each BS-UE communication link. Here, for illustration purposes, we use

the zero-forcing equalization at the UE receiver. Moreover, to focus on the impact
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of jamming residual after the nullification process on the system performance, we

assume that the BS-UE channel can be estimated perfectly. This is because the

impact of the BS-UE channel estimation error on system performance has been

well-studied [90,91].

Theorem 4.1. The spectral efficiency of the mth stream for the kth UE is bounded

by

C lb
k,m ≤ Ck,m ≤ Cub

k,m, (4.4)

where C lb
k,m and Cub

k,m are the lower and upper bounds of Ck,m

C lb
k,m = log2

[
1 +

PT(Nk −NJ −Mk)

ηk(σ2
w +

∑NJ

j=1 ηk,jσ
2
Jj
)

]
, (4.5)

Cub
k,m = log2

[
1 +

PT(Nk −NJ −Mk)

ηkσ2
w

]
. (4.6)

Proof: The proof is given in Appendix B.1. ■

Without nullifying/suppressing the jamming signals (or without beam-forming),

the corresponding spectral efficiency, referred to as Cwbf
k,m, is

Cwbf
k,m = log2

[
1 +

PT(Nk −Mk)

ηk(σ2
w +

∑NJ

j=1 ηk,jσ
2
Jj
)

]
. (4.7)

As can be seen, the use of the estimated beam-forming matrix F̂e
k does not always

guarantee better spectral efficiency than not using it, i.e., Cwbf
k,m > C lb

k,m. It is because

when using F̂e
k, the UE receiver has to “sacrifice” NJ degree-of-freedoms, as demon-

strated by comparing the numerators of Eq. (4.5) and Eq. (4.6) to that of Eq. (4.7).

Especially, when the estimated beam-forming matrix F̂e
k is not accurate, its use can

lead to the worst case with the lower-bound spectral efficiency. In this case, the

UE receiver lost NJ degree-of-freedoms without achieving any jamming nullification

effect, leaving the denominator of Eq. (4.5) unchanged compared to that of Eq.

(4.7). On the other hand, when F̂e
k is estimated perfectly (i.e., F̂e

k = Gd
k), the UE
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receiver can completely nullify the jamming signals, leaving only the noise in the

denominator of Eq. (4.6), thereby achieving the upper-bound spectral efficiency. In

the sequel, the target is to accurately estimate the beam-forming matrix F̂e
k, even

when the correlations are time-varying; thereby achieving the perfect beam-forming,

with the spectral efficiency of each stream close to the upper bound given in Eq.

(4.6).

4.1.3 Problem Formulation

Given the above, one can maximize the spectral efficiency by continuously adapt-

ing the length of the nullspace estimation and data transmission phases (i.e., N e and

Nd, respectively). Specifically, N e and Nd can be tuned based on the following prin-

ciples.

• First, N e and Nd are jointly optimized to guarantee that the estimation F̂e
k

can be obtained when none of |ρeij| is close to 1. As presented in Corollary 1.1,

when |ρeij| → 1, the elements of D approach infinity, making the estimated

beam-forming matrix F̂e
k unable to suppress the jamming signals, and hence

resulting in a lower spectral efficiency.

• Second, by saving the time spent on monitoring the residual jamming signals as

in Chapter 3 to update the estimated beam-forming matrix, the effective spec-

tral efficiency of the system can be significantly improved, as demonstrated in

Eq. (4.2). In fact, only when necessary, the system may increase the nullspace

estimation time (by increasing N e) to average the correlations between trans-

mitted jamming signals and avoid |ρeij| being close to 1.

• Third, by adjusting Nd, the communication system can adapt to the change in

the BS-UE channel condition. For example, when the channel coherence time

decreases, the value of Nd should be decreased to maintain an acceptable post-



4.1 Problem Formulation 64

equalization SINR level (e.g., above the required minimum post-equalization

SINR, below which the UE is considered to be an outage). On the other hand,

when the coherence time increases, the system can increase Nd to improve

the communication phase fraction over the whole frame, hence increasing the

effective spectral efficiency.

The optimization of the durations of the nullspace estimation and data transmission

phases can be formally stated as follows:

max
Ne,Nd

lim
N→∞

{ 1

N

N∑
n=1

K∑
k=1

Mk∑
m=1

µ[n] log2{1 + δk,m[n]}
}

(4.8)

s.t. µ[n] =
Nd[n]

N e[n] +Np[n] +Nd[n]
as in (4.3),

δk,m[n] =
PT

Var{[AZF
k (δFkZkxJ + F̂e

kw)]m[n]}
as in (4.1),

δFk = F̂e
k −Gd

k, AZF
k = (H̃H

k H̃k)
−1H̃H

k ,

H̃k = F̂e
kHkPk, δk,m[n] ≥ δmin,

where N is the number of frames and δmin is the required minimum post-equalization

SINR, below which the UE is considered to be an outage.

There are analogies between the estimation error of F̂e
k and that of the BS-UE

channel in MIMO communications (e.g., [90, 91]), because both errors lead to un-

wanted interference to the legitimate signals, thus reducing the post-equalization

SINR and consequently the spectral efficiency. However, unlike [90,91] in which the

training signals and the channel estimator can be designed to quantify the mean

and variance of the channel estimation error, the jamming signals in this scenario

are controlled by the jammers (i.e., described by Eq. (3.5)). Therefore, the BS and

UE do not have knowledge of the mean and variance of δFk. More importantly,

to make jamming suppression even more challenging, the jammers can deliberately

adjust the correlations controlling function J , making the previous measurements
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no longer representative of the current jamming strategy. To deal with such incom-

plete information and uncertainty, in the next section, the deep dueling Q-learning

technique is used to solve the problem stated in Eq. (4.8).

4.2 Deep Dueling Q-Learning Technique for Jamming Sup-

pression

This section reformulates the problem (4.8) using a POSMDP. A deep dueling

Q-learning-based framework is then designed to tune the durations of the nullspace

estimation and data transmission phases by obtaining the optimal policy for the

underlying POSMDP process.

4.2.1 POSMDP

A conventional MDP is defined by a tuple (S ,A, r), where S, A, and r denote the

state space, action space, and the reward function, respectively. An SMDP, on the

other hand, retains the three components mentioned above and adds an additional

component, that is the nth decision epoch length, denoted by t[n]. In an MDP, the

state transition occurs at regular time steps (and hence the decision epoch length

t[n] is excluded). On the other hand, the SMDP allows the state transition to

occur at irregular time steps (i.e., different t[n] for different epochs), facilitating the

selections of N e and Nd at irregular state transition times. Note that the notification

from the BS to the UE about N e and Nd values only causes a negligible overhead

to the system.. A POSMDP combines the observations of the SMDP to generate

the approximate state, and is used when the state is only partially observable, as

explained below.
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4.2.1.1 State Space

There are several essential factors to consider for maximizing the effective spec-

tral efficiency of the system while avoiding outages. The first factor is the post-

equalization SINR at the UEs during the previous data transmission phase. This is

because the post-equalization SINR implicitly captures the BS-UE channel condition

that affects the selection of Nd. Specifically, when the post-equalization SINR in the

previous data transmission phase is poor (e.g., below or close to δmin), N
d value can

be decreased to improve the post-equalization SINR. Hence, the system can avoid

outages and increase spectral efficiency during the data transmission phase. How-

ever, Nd should not be incautiously decreased, as that reduces the fraction of the

data transmission phase over the whole frame and thus reduces the effective spectral

efficiency of the system. The second factor, as demonstrated in the previous sec-

tion by Corollary 1, is the correlation between transmitted jamming signals in the

nullspace estimation phase. This is because the correlations ρeij affect the magnitude

of the “virtual change” factor D in the jamming channel, which directly affects the

jamming nullification capability of F̂e
k. Therefore, the system’s state space can be

defined as

S =∆
{
(δk,m, |ρeij|) :∀k ∈ (1, 2, ..., K),

∀m ∈ (1, 2, ...,Mk),∀i ̸= j; i, j ∈ (1, 2, ..., NJ)
}
. (4.9)

4.2.1.2 Observation

Out of the two components of the state space, only the post-equalization SINR

can be estimated at the UEs. The correlation coefficients, on the other hand, are

controlled by the jammers (i.e., by Eq. (3.5)), and are neither known nor directly

observable by the UEs or the BS. Therefore, the problem is formulated as a POS-

MDP [65], where the state S in Eq. (4.9) is replaced by the approximate state [65,66]
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Ŝ derived from the observation. The observation space of the system is defined as,

O =∆
{
(δ̄k, Λ̄l) :∀k ∈ (1, 2, ..., K),

∀m ∈ (1, 2, ...,Mk),∀l ∈ (1, 2, ..., NJ)
}
, (4.10)

where δ̄k = (1/Mk)
∑Mk

m=1 δ̂k,m is the average estimated post-equalization SINR, δ̂k,m

is the estimated value of δk,m, Λk,l is the lth largest singular value of Re
Jk
, and

Λ̄l = (1/K)
∑K

k=1 Λk,l. As can be seen, K values of δ̄k are used instead of K ×Mk

values of δ̂k,m to reduce the observation size (i.e., and consequently the approximate

state size). On the other hand, NJ values of Λ̄l are used to represent |ρeij|, which is

the second component of the state space. Specifically, small |ρeij| results in relatively

equal Λ̄l values, while large |ρeij| results in massive differences between the Λ̄l values.

While Λ̄l can be calculated from Λk,l values, which are readily available using

the SVD of Re
Jk
, the value of δ̂k,m can be estimated by [92]

δ̂k,m[n] = 10 log10

∑Nd[n]
i=1 (I2k,m,i +Q2

k,m,i)∑Nd[n]
i=1 (δI2k,m,i + δQ2

k,m,i)
, (4.11)

where δIk,m,i and δQk,m,i are the in-phase and quadrature absolute differences be-

tween the ith observed constellation point and its maximum likelihood estimation

(MLE), respectively. On the other hand, Ik,m,i and Qk,m,i are the in-phase and

quadrature components of the MLE of the ith constellation point, respectively.

These terms are demonstrated in more detail in Fig. 4.2. For each ith actual

constellation point, the δIk,m,i and δQk,m,i values are calculated by subtracting Ik,m,i

and Qk,m,i from the in-phase and quadrature components of the actual constellation

point, respectively. Then, δ̂k,m can be calculated using Eq. (4.11). Note that, sim-

ilar to the state S mentioned above, the observation O is composed of δ̄k and Λ̄l

values in the most recent frame, such that

o[n] =∆
[
δ̄k[n− 1], Λ̄l[n− 1]

]
. (4.12)
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Figure 4.2 : Estimation of the post-equalization SINR.

4.2.1.3 Approximate State [65,66]

As described above, the state S is replaced by the approximate state Ŝ derived

from the observations. Similar to [65, 66], the last H observations and actions are

used as the approximate state, i.e., ŝ[n] =∆
[
o[n], a[n − 1], o[n − 1], ..., a[n − H]

]
,

where H denotes the history length. This formalism, referred to as the Hth-order

history approach, generates a large but finite POSMDP, in which each sequence

is a distinct approximate state. As a result, we can apply standard reinforcement

learning techniques used in MDPs or SMDPs to find the optimal action given the

current approximate state.

4.2.1.4 Action

At the end of each frame, an action is taken to determine which are the next

N e and Nd values, given the current approximate state. Let N e =∆ (N e
1 , N

e
2 , ..., N

e
Le)

and N d =∆ (Nd
1 , N

d
2 , ..., N

d
Ld) be the sets of Le and Ld candidates for N e and Nd,
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respectively. The action space is defined as A =∆ {a : a ∈ (1, 2, ..., Le × Ld)}, and

a =



1, N e = N e
1 and Nd = Nd

1 ,

2, N e = N e
2 and Nd = Nd

1 ,

...

Le × Ld, N e = N e
Le and Nd = Nd

Ld .

4.2.1.5 Immediate Reward

The immediate reward is defined as the amount of data transmitted during the

data transmission phase, and zero if one (or more) post-equalization SINR value

during the data transmission phase is smaller than the minimum required post-

equalization SINR. Specifically,

r[n] =



∑K
k=1

∑Mk

m=1 N
d[n] log2(1 + δ̂k,m[n]), when δ̂k,m[n] ≥ δmin,

∀k ∈ (1, 2, ..., K), ∀m ∈ (1, 2, ...,Mk),

0, otherwise. (4.13)

4.2.1.6 Optimization Formulation

Let π : Ŝ → A denote a policy which is a mapping function from the approximate

states to the actions taken by the system. The purpose is to find the optimal value

of π, denoted by π∗, that maximizes the average long-term reward [42] of the BS-UE

communication system. The optimization problem in Eq. (4.8) is then converted

into the optimization problem of π∗, expressed by

max
π

R(π) = lim
N→∞

1

N

N∑
n=1

E{r[n]} = lim
N→∞

1

N

N∑
n=1

E{r{ŝ[n], π{ŝ[n]}}}, (4.14)

where R(π) denotes the average long-term reward of the system with the policy π.

Note that, while the convergence of the Q-learning algorithm is guaranteed when

the learning rate follows specific criteria [64], there is no such guarantee for the deep
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dueling Q-learning technique. Let TJ and TQ denote the time after that the jammers

change their strategy and the convergence time of the proposed technique. When

TJ ≥ TQ, the proposed technique converges to the optimal policy. On the other hand,

when TJ < TQ, the system does not have enough time to obtain the optimal policy,

and hence the system performance is worse than the optimal one. However, because

the system performance is improved over the training period (i.e., as demonstrated

in the simulation result), the achieved performance is still better than that of the

system without the proposed technique. In other words, the proposed technique still

effectively improves the system’s performance even without obtaining the optimal

one.

It is also worth noting that when TJ < TQ for random jammers in general, the

strategic interaction (attack and defense strategies) can be formulated as a non-

cooperative game between the jammers and the legitimate devices, which has been

well-investigated with a rich literature, e.g., [74,88,89,93,94]. Under such a model,

there often exists a Nash equilibrium (NE). By sticking with the Nash equilibrium

strategy, the legitimate devices can ensure that the jammers cannot cause further

“damage” by unilaterally deviating from their strategy. In this case, the NE defense

strategy of the legitimate nodes (at the NE) is not necessarily their optimal strategy

corresponding to a specific jamming strategy of jammers (referred to as a “pure”

strategy in game theory), which can be achieved by using the proposed technique).

4.2.2 Network Structure and Complexity Analysis

In this subsection, the Long Short-Term Memory (LSTM) [95]-based deep du-

eling Q-network used in the deep dueling Q-learning technique is introduced. The

network is illustrated in Fig. 4.3. Unlike conventional recurrent neural networks

(RNN) that have difficulty learning the long-term dependencies of the inputs [96],

the LSTM is capable of learning those dependencies. That is because the LSTM
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Figure 4.3 : Nullspace estimation and data transmission phases tuning using an

LSTM-based deep dueling Q-network.

is designed to avoid the “vanishing gradient” and “exploding gradient”, which are

the main problems in the training process of the RNN. Therefore, the LSTM is ca-

pable of solving sequential processing tasks not solvable by the RNN. On the other

hand, the deep dueling network structure, as mentioned in Chapter 2, is developed

to improve the convergence rate of the deep Q-learning technique, thanks to its in-

novative network structure. Specifically, the dueling structure contains two streams

that separately estimate the state value and the advantages of actions. As such, the

advantage streams of the network can concentrate on learning from only the relevant

input (i.e., approximate state), hence improving the convergence rate. The input-

output flow of the LSTM-based deep dueling Q-network in Fig. 4.3 is illustrated in

Algorithm 2.1 and explained below.

First, the approximate state ŝ is fed into the LSTM layer as the input. The

LSTM captures the time-varying characteristic of the correlations between trans-

mitted jamming signals (i.e., by observing the average singular values Λ̄l) and the

change in channels condition (i.e., by monitoring the average post-equalization SINR

values δ̄k). The output from the LSTM is then processed by two separated streams
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of fully-connected hidden layers to calculate the state value function V(ŝ; θ) and the

advantages of actions G(ŝ, a; θ). The state-action value function Q(ŝ, a; θ) is then

calculated from V(ŝ; θ) and G(ŝ, a; θ) by [41]

Q(ŝ, a; θ) = V(ŝ; θ) +
(
G(ŝ, a; θ)− 1

|A|
∑
a

G(ŝ, a; θ)
)
, (4.15)

where |A| denotes the dimension of the action space A (i.e., |A| = Le × Ld).

The training process of the proposed technique has a computational complexity

of O(Wθ), where Wθ denotes the total number of the Q-network’s parameters; Wθ

is given by [97]

Wθ =(4NiNc + 4N2
c +NcNol + 3Nc) + (NolNθ1 +NolNθ2 +Nθ2 |A|+Nθ1), (4.16)

where Ni is the number of input features, which is equal to the size of the 1st-order

history observation (i.e., Ni = K+NJ+1), Nc = H is the number of memory cells of

the LSTM, Nol is the output size of the LSTM layer, and Nθ1 and Nθ2 are the neuron

number of the upper and lower separated fully-connected hidden layers in Fig. 4.3,

respectively. The summation in the first parentheses in Eq. (4.16) shows LSTM’s

total number of parameters, while the total number of parameters from after the

LSTM to the end of the LSTM-based deep dueling Q-network is given in the second

parentheses. Note that the training process is performed by the BS, which has more

computational power than the UEs. Moreover, when necessary, the training process

can be offloaded to a cloud server connected to the BS through a backhaul link.

4.3 Performance Evaluation

4.3.1 Parameter Setting

A 200 kHz bandwidth (i.e., corresponding to a symbol duration of 5 µs) MIMO

system is considered, containing a BS and K = 4 UEs, each receiving Mk = 3 signal

streams from the BS. The BS and all the UEs have ULA array structures with 12



4.3 Performance Evaluation 73

Table 4.1 : Parameters for the Deep Dueling Q-learning.

Parameter Value Parameter Value

LSTM’s input feature size Ni 7 LSTM’s number of memory

cell Nc

6

LSTM’s output size Nol 128 Fully connected layers size

Nθ1 , Nθ2

(16, 16)

Mini-batch size Nmb 32 Memory size M 10,000

Exploration rate ϵ range [0.10

1.00]

Exploration decay rate 0.99

Target network updating

steps C

1,000 Learning rate α 0.01

Discount factor γ 0.90

and 8 antennas, respectively (i.e., NT = 12 and Nk = 8, ∀k ∈ (1, 2, 3, 4)). The

carrier frequency is 447 MHz and the transmitted power is PT = 44 dBm. The

received signals at the receivers are sampled with a sampling rate of 400 kHz. The

legitimate signals are modulated using the 16-Quadrature Amplitude Modulation

(QAM) technique. To evaluate the system’s performance more directly, no forward

error correction (FEC) coding is used. For small-scale fading, as presented in Section

3.6, a flat fast fading Rician model in [78] is used to simulate the jammers-UEs and

BS-UEs channels. The jammers-UE and BS-UE relative velocities are assumed to

be around 20 km/h, corresponding to a Doppler frequency of Fd = 8.28 Hz. The

number of propagation paths for each BS-UE link is Np
k = 8, ∀k ∈ (1, 2, 3, 4). For

the large-scale path-losses ηk and ηk,j, the COST 231 Hata model [77, Ch. 4] is

used, and hT = 50 m, hJ = hUE = 2 m, and dJ = dT = 100 m are assumed, where

hT, hJ, hUE, dJ, and dT denote BS’s height, jammers’ height, UEs’ height, the initial
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distance from each jammer to the UEs, and initial BS-UE distance, respectively.

There are NJ = 2 jammers with intentionally time-varying correlations between

their transmitted signals. Even though the proposed technique can learn and adapt

to any jamming strategy, for demonstration, a sawtooth function is used to describe

the correlations between transmitted jamming signals. Specifically, the correlation

ρ12 between the two jammers is assumed to repeatedly and linearly decrease from 1

to 0.8 over 5000 samples as

ρ12(p) = J (p) = 1− 0.2(p− 5000× ⌊p/5000⌋), (4.17)

where ⌊.⌋ denotes the floor function, determining the closest smaller integer. The

candidate sets for N e and Nd are N e = (10, 20, 30, 40) and N d = (200, 250, 300, 350)

samples (i.e., corresponding to (100, 125, 150, 175) symbols per each data transmis-

sion phase), respectively. The selections for N e and Nd follow the ETSI standard

for Terrestrial Trunked Radio (TETRA) [98]. Note that the TETRA standard is

used since it allows us to use flexible parameters, suitable for both civil and tactical

applications. Note also that, since F̂e
k is estimated from Ye

Jk
, it is required that

N e ≥ NJ, because this is a necessary condition for the nullspace of Ye
Jk

to be the

same to that of Zk. The parameters of the LSTM-based deep dueling Q-network and

its training parameters are given in Table 4.1, which are similar to those in [33,66].

To illustrate the advantage of the proposed technique, the following schemes are

compared:

• Upper bound : The system is assumed to perfectly nullify the jamming signals

by using the estimated beam-forming matrix. For illustration purposes, the

beam-forming matrix is directly estimated using the jamming signal in the

data transmission phase (which is, in reality, unknown to the system).

• Fixed action: The system uses a fixed pair of values for N e and Nd. The
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performance metrics are calculated by averaging the performance of (Le×Ld)

action choices;

• Heuristic approach: The system uses the jamming nullification technique in

Chapter 3, in which the residual jamming signals are measured, and the esti-

mated beam-forming matrix is updated whenever the residual exceeds a pre-

defined value;

• Proposed technique: The values of N e and Nd are determined by the optimal

policy obtained using the proposed deep dueling Q-learning technique.

4.3.2 Simulation Result

For a fair comparison, the effective spectral efficiency and the outage probability

are averaged over N = 5000 frames and the K UEs, and denote them by Ceff
av and

potav, respectively. We have

Ceff
av =

1

NKMk

N∑
n=1

K∑
k=1

Mk∑
m=1

Ceff
k,m[n],

potav =
1

NKMk

N∑
n=1

K∑
k=1

Mk∑
i=1

1δ̂k,m[n]<δmin
,

where

1δ̂k,m[n]<δmin
=


1, δ̂k,m[n] < δmin,

0, otherwise,

and δmin = 11.8 dB is the minimum required SINR.

4.3.2.1 Effective Spectral Efficiency Analysis

Fig. 4.4 shows the average effective spectral efficiency Ceff
av of each BS-UE com-

munication link for different jamming nullification techniques and different jamming

power PJ. Note that the jamming power is calculated by the variance sum of all the
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Figure 4.4 : Effective spectral efficiency for different techniques and jamming powers.

jammers (i.e., PJ =
∑NJ

j=1 σ
2
Jj
). As can be seen, the proposed deep dueling Q-learning

technique achieves the highest average effective spectral efficiency for all values of

the jamming power, thanks to its ability to efficiently adjust the N e and Nd values

according to the change in the correlations and channel conditions. On the other

hand, the other two techniques have several limitations. The technique in Chap-

ter 3 spends an excessive amount of time monitoring the residual jamming signals

and estimating the beam-forming matrix, thus reducing the data transmission time.

Meanwhile, the fixed action technique cannot adapt to the change in the channel

conditions, and more importantly, the change in the correlations between transmit-

ted jamming signals, resulting in an ineffective estimated beam-forming matrix F̂e
k.

These limitations of Chapter 3 and fixed action result in lower spectral efficiencies of

the communication system. Note that there is a gap between the spectral efficiency

of the proposed technique and that of the upper bound. This is because, in the upper

bound case, the jamming signal is completely canceled out without needing to adjust
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performance

Figure 4.5 : Outage probability for different techniques and jamming powers.

the values of N e and Nd. Meanwhile, for the proposed technique, N e may have to

be increased to improve the estimation accuracy of F̂e
k, hence reducing the effective

spectral efficiency.

4.3.2.2 Outage Probability Analysis

Fig. 4.5 illustrates the outage probability of the systems using the three men-

tioned techniques and different values of the jamming power. As can be seen, the

proposed deep dueling Q-learning technique and the techniques in Chapter 3 have

very similar outage probabilities, and are much lower than that of the fixed action

technique. This is because the fixed action technique cannot adapt to the change

of the correlations between transmitted jamming signals and channels condition, re-

sulting in many outage frames because of excessive jamming residuals. On the other

hand, both heuristic approach and the proposed technique effectively nullify the jam-

ming signals. However, as mentioned above, the heuristic approach in Chapter 3
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Figure 4.6 : Spectral efficiency convergence rate for different history lengths.

spends an excessive amount of time monitoring the residual jamming signals and

estimating the beam-forming matrix, resulting in a much lower spectral efficiency.

Note that there is a difference in the outage probability between the proposed tech-

nique and the upper bound, because the jamming signal, in fact, cannot be entirely

canceled out as in the upper bound case.

4.3.2.3 Impact of History Length H

Fig. 4.6 and Fig. 4.7 illustrate the impact of the history length H on the

convergence of the proposed deep dueling Q-learning technique. The jamming power

used to generate these figures is 30 dBm. As can be seen, the deep dueling Q-learning

technique converges after around 2 × 104 iterations, corresponding to a minimum

TQ value of Tmin
Q = 2 × 104 × (10 + 200) × 1/(4 × 105) = 10.5 seconds to Tmin

Q =

2×104×(40+350)×1/(4×105) = 19.5 seconds. Note that, however, TQ also depends

on the system’s hardware computational capability and the system’s bandwidth.
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Figure 4.7 : Outage probability convergence rate for different history lengths.

Specifically, the interval of each iteration is the maximum value between the frame

interval and the amount of time it takes for the system to perform each training

iteration. Additionally, for a system with a higher bandwidth (and correspondingly

a higher sampling rate), it would require a much shorter period of time to obtain

sufficient training data set. For example, with a sampling rate of 30 MHz (e.g.,

LTE system), the value range for TQ can be significantly reduced (i.e., given enough

system hardware’s computational capability). Note also that a longer history length

H results in a higher effective spectral efficiency and a lower outage probability. This

is because a longer historyH allows the system to better observe the impact of action

selection on the system reward. Therefore, the system is able to select better actions

that result in better system performance. However, increasing the value of H also

increases the computational complexity of the deep dueling Q-learning technique,

as demonstrated by Eq. (4.16). In the simulations setting, H = 6 is selected, which

has similar performance and a lower computational complexity compared to H = 8.
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Figure 4.8 : Adaptability to the change in the jamming strategy.

4.3.2.4 Adaptability to the Change in Jamming Strategy

Fig. 4.8 and Fig. 4.9 illustrate the capability of the deep dueling Q-learning

technique to adapt the optimal anti-jamming policy when the jamming strategy is

changed. Specifically, from the (8× 105)th iterations, instead of linearly decreasing

as in Eq. (4.17), the correlation is linearly increased from 0.8 to 1 as

ρ12(p) = J ′(p) = 0.8 + 0.2[(p− 8× 105)− 5000�(p− 8× 105)/5000�].

As can be seen, the change in the jamming strategy causes a sudden drop in the

system performance. When such a drop is observed, the exploration rate is reset to

1 to increase the system’s convergence rate. As shown, the deep dueling Q-learning

technique can adapt to the change in the jamming strategy by quickly re-obtain

the convergence for both effective spectral efficiency and outage probability. In

particular, the re-establishment of the convergence status (i.e., from the (8× 105)th

iteration where the jamming strategy changes) is even slightly faster than the first
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Figure 4.9 : Adaptability to the change in the jamming strategy.

convergence (i.e., from the first iteration). This is because the Q-network at the

(8 × 105)th iteration is “initialized” by the network parameters obtained from the

previous training process. Therefore, this “initialization” performs better than the

random initialization at the first iteration when the training process begins.

4.3.2.5 Convergence Rate Analysis:

Fig. 4.10 illustrates the convergence rates of different Q-learning techniques. As

can be seen, the conventional Q-learning technique has not converged after 8× 105

iteration, which is much larger than 2× 104 iterations required for the convergence

of the proposed deep dueling Q-learning technique. Therefore, the deep dueling

Q-learning technique has significantly improved the convergence rate of the system.
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Figure 4.10 : Convergence rate of different Q-learning techniques.

4.3.2.6 Impact of the Number of Jamming Antennas:

Fig. 4.11 illustrates the impact of the number of jamming antennas on the

achieved spectral efficiency of the system trained by the proposed deep dueling Q-

learning technique. As can be seen, the spectral efficiency decreases dramatically

as the number of jamming antennas increases from 2 to 4. This is because when

NJ = 4, the kthe UE receiver has only 4 remaining degree-of-freedoms to demodulate

Mk = 3 spatial streams, resulting in a much lower SINR, and hence a much lower

spectral efficiency.

4.4 Conclusions

The impact of time-varying correlations between transmitted jamming signals on

jamming nullification has been examined. It has been demonstrated that using an

incorrectly estimated beam-forming matrix can lose the receiver’s degree-of-freedoms
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Figure 4.11 : Spectral efficiency for different numbers of jamming antennas.

without achieving effective jamming suppression. The deep dueling Q-learning tech-

nique was proposed to effectively estimate the beam-forming matrix and nullify the

jamming signals designed to aggravate the jamming impact. The dueling network

architecture allows the proposed technique to quickly obtain the optimal solution

against the jammers, therefore effectively dealing with unknown and time-varying

jamming strategies. The simulation results demonstrate that the proposed deep du-

eling Q-learning technique achieves a higher effective spectral efficiency and a lower

outage probability than the existing techniques.
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Chapter 5

Frequency Hopping Joint Radar and

Communications with Hybrid Sub-pulse

Frequency and Duration Modulation

In the previous sections, jamming mitigation techniques for communication systems

were studied. This chapter extends jamming suppression techniques to joint radar

and communication (JRC) systems. Specifically, this chapter designs a frequency

hopping (FH) signal, which possesses robustness against jamming, for a JRC sys-

tem. In particular, novel techniques to embed and demodulate data to increase

the data rate and reduce the demodulation error are also investigated. For data

embedding, both sub-pulse frequency and duration are used, therefore increasing

the data transmission rate compared to only using the sub-pulse frequency. For

data demodulation, a novel scheme is proposed based on the signal’s time-frequency

image (TFI) and a ‘You Only Look Once’ (YOLO)-based detection system. This

demodulation scheme, instead of requiring a channel estimation, only requires the

estimation of the channel delay spread, thus less prone to estimation error. More-

over, the proposed demodulation technique is more robust to the Doppler shift and

the timing offset between the transceiver and the communication receiver compared

to the existing ones. Additionally, the proposed data embedding and demodulation

schemes are spatially flexible and not limited to the sidelobe of the transmit beam-

pattern, since the data is not embedded by utilizing the phase or amplitude of the

beampattern sidelobe.
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Figure 5.1 : FH joint radar and communication system.

5.1 System and Signals

5.1.1 System Overview

A ground-to-air JRC system is considered, where the JRC transceiver is located

on the ground, and the communication receiver is mounted on an aircraft or a

high-altitude platform (HAP), as illustrated in Fig. 5.1. For sensing, the JRC

transceiver transmits the radio frequency (RF) signal and processes the reflected

RF signal to determine the target’s position and velocity. For data transmission,

the communication receiver obtains the RF signal from the JRC transceiver and

demodulates the embedded data. At the transceiver or communication receiver, the

received RF signal is down-converted into the intermediate frequency (IF) signal

and sampled at sampling frequency fs to generate a discrete-time signal as

r[k] = h[k] ∗ s[k] + w[k]. (5.1)

Here, k is the sample index which increases every Ts = 1/fs, s[k] and r[k] are

the transmitted and received signal samples, respectively, h[k] denotes a Rician

channel model [78], and w[k] is the complex additive white Gaussian noise (AWGN).

The JRC system uses a pulse wave (PW) waveform [99] with a duty cycle D =
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△tw/△tr, D ≪ 1, where △tw and △tr are the pulse width and pulse repetition

intervals, respectively. The received signal at the communication receiver is then

used to generate the Choi–Williams distribution time-frequency image (CWD–TFI).

Next, the CWD–TFI is preprocessed in the Preprocessing block to generate the

training and testing data for the YOLO detection system. The training process of

the YOLO detection system is demonstrated by the dashed line in Fig. 5.1. The

trained YOLO detection system and the testing CWD–TFIs are used to generate

the annotated CWD–TFIs, which are used to demodulate the embedded data.

5.1.2 Signal Model

The JRC system uses FH signals, with each signal pulse being divided into Nf

sub-pulses (i.e., hops) with different frequencies and durations. Let F = (f1, f2, ..., fNf
)

denote the FH sequence and T = (△t1,△t2, ...,△tNf
) denote the sub-pulse duration

sequence. The JRC signal in each pulse is represented by

s[k] =

Nf∑
n=1

Aej2πfnkTsrect
[kTs −

∑n−1
i=0 △ti

△tn

]
, (5.2)

where

rect[k] =∆


1, 0 ≤ k ≤ 1,

0, otherwise,

and

△t0 =
∆ 0.

5.2 Data Embedding Schemes

In this work, the Costas arrays are used to generate the FH sequence of each

signal pulse in one of the data embedding schemes. Using the Costas array, an FH

signal possesses a narrow peak at the origin of its ambiguity function (AF) and
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low sidelobes elsewhere, which is desirable for radar measurement (i.e., range and

speed) accuracy. Specifically, the pulse compression ratio (PCR) of a Costas signal

is N2
f . Details of the Costas arrays, their construction, and their characteristics can

be found in [100, Ch. 5].

Two data embedding techniques are proposed, namely Random and Costas-

based schemes. Unlike existing studies that only utilize sub-pulse frequencies to

convey data, both sub-pulse frequencies and durations are used in the proposed

schemes. First, the codebooks S and SC of the Random and Costas-based schemes,

respectively, are designed. Then, for each embedding scheme, data bits are em-

bedded by mapping each element of the corresponding codebook to a symbol. Let

F =∆ [(1, 2, ..., Nf) × ff ] be the selection set of the sub-pulse frequency, where ff is

the fundamental frequency. Let D =∆ (△1,△2, ...,△NT
) be the selection set of the

sub-pulse duration, where NT is the number of sub-pulse duration selections. The

codebooks S and SC are designed as follows.

• Random scheme: S is designed by selecting each sub-pulse frequency from the

frequency set F , and selecting each sub-pulse duration from the duration set

D as

fi ∈ F ,△ti ∈ D, ∀i ∈ (1, 2, ..., Nf), (5.3)

fi ̸= fi+1, ∀i ∈ (1, 2, ..., Nf − 1). (5.4)

Here, condition (5.4) means every two consecutive sub-pulse frequencies are

not equal, which is necessary for the data demodulation technique that will

be presented in Section 5.4.

• Costas-based scheme: Unlike the Random scheme, for designing SC, each sub-

pulse frequency is not individually selected. Instead, the whole FH sequence

of each signal pulse is selected from the Costas-based FH sequence defined as

follows.
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Let AC =∆ (A1,A2, ...,ANC
) be the set of Costas array of length Nf , where

Ai, ∀i ∈ (1, 2, ..., NC) is an NNf×1 Costas array, and NC is the number of Costas

sequence with length of Nf . Then, let FC =∆ [(A1,A2, ...,ANC
) × ff ] be the

selection set of the Costas-based FH sequence. Then, the FH sequence of each

signal pulse is selected from FC. On the other hand, similar to the Random

scheme, each sub-pulse duration is selected from the sub-pulse duration set D

as

F ∈ FC,△ti ∈ D, ∀i ∈ (1, 2, ..., Nf). (5.5)

Note that for the Costas-based scheme, because the FH sequence is generated using

the Costas array, condition (5.4) is satisfied. The dimensions of S and SC are given

by

|S| = NNf
T︸︷︷︸

sub-pulse duration selections

× Nf(Nf − 1)(Nf−1)︸ ︷︷ ︸
sub-pulse frequency selections

, (5.6)

|SC| = NNf
T︸︷︷︸

sub-pulse duration selections

× NC︸︷︷︸
sub-pulse frequency selections

. (5.7)

As shown in (5.6), the number of selections of sub-pulse frequencies is Nf(Nf −

1)(Nf−1) instead of NNf
f due to the requirement in (5.4).

It follows from (5.6) and (5.7) that the maximum number of bits C and CC that

can be embedded in each pulse of the two schemes are given by

C =⌊log2(|S|)⌋ = ⌊log2(N
Nf
T Nf(Nf − 1)(Nf−1))⌋,

CC =⌊log2(|SC|)⌋ = ⌊log2(N
Nf
T NC)⌋, (5.8)

where ⌊.⌋ denotes the floor function, determining the closest smaller integer. As can

be seen, the Random scheme achieves a higher transmission rate than the Costas-

based scheme.
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5.3 Sensing at the JRC Transceiver

This section describes the matched filtering technique used at the JRC transceiver

to detect the reflected radar signal. It is also demonstrated that by using the sub-

pulse frequencies and durations for data embedding, as presented in the previous

section, the detection probability of the sensing function is not affected.

Let PD and PFA denote the detection and false alarm probabilities of the JRC

transceiver, respectively. Let Ep be the signal energy per each pulse of the JRC

signal and σ2
w be the noise variance. The energy-to-noise ratio (ENR) of the JRC

signal is given by

ENR = 10 log10(
Ep

σ2
w

). (5.9)

To detect the transmitted signal s[k] buried in the reflected RF signal r[k], the JRC

transceiver performs the matched filtering. Let Rs denote the output of the matched

filter. Based on the Neyman-Pearson criterion, the transceiver decides a detection

if Rs exceeds a threshold γ

Rs =

Np−1∑
k=0

r[k]s[k] > γ, (5.10)

where Np is the number of signal sample per pulse,

γ =
√

σ2
wEpQ

−1(PFA), (5.11)

Q(x) =

∫ ∞

x

1√
2π

exp(−1

2
t2) dt (5.12)

is the complement of the cumulative distribution function (CDF) of the standard

Gaussian distribution, and Q−1(x) denotes the inverse function of Q(x). The char-

acteristic of PD is given in Theorem 1 below.

Theorem 5.1: The value of PD is independent from the JRC signal waveform

and only depends on PFA and ENR.
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Proof: From [101, Ch. 4], PD can be expressed by PFA and ENR as

PD = Q
[
Q−1(PFA)−

√
10ENR/10

]
. (5.13)

Accordingly, PD only depends on PFA and ENR, and is independent of the JRC

signal waveform. ■

Therefore, varying the sub-pulse frequencies and durations does not affect the

detection performance of the sensing function, as long as the signal energy per each

pulse is fixed. Note that, however, varying the sub-pulse durations may cause some

increase in the peak-to-average power ratio (PAPR), which reduces the efficiency

of the power amplifier at the front end of the JRC transceiver and communication

receiver. Therefore, the sub-pulse selection set D should be carefully designed to

avoid an excessive PAPR value.

5.4 Demodulation at the Communication Receiver

This section presents the detailed procedure of the proposed data demodulation

schemes. First, the CWD is used to generate the received signal’s CWD–TFI, which

illustrates the sub-pulse frequency and duration of the signal by the signal objects.

Then, the ‘You Only Look Once’ (YOLO) detection system is used to recognize the

signal objects on the CWD–TFI. By using the coordinates of the bounding box of the

signal objects, the sub-pulse frequencies and durations can be determined. Finally,

the embedded symbols are demodulated by comparing the sub-pulse frequencies and

durations to the codebook.

There have been multiple linear time-frequency analysis (TFA) techniques that

can be used to represent the signal’s time-frequency characteristic, such as the short-

time Fourier transform (STFT) and the wavelet transform (WT). However, these

linear TFA techniques are susceptible to noise, and hence not suitable for processing

the (typically) low-SNR radar signals. On the other hand, the bilinear TFA tech-
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Figure 5.2 : CWD–TFIs of a Costas signal with F = [(4, 2, 5, 1, 3) × ff ], T =

(5, 2, 4, 2, 3)× 80/(fs), ff = fs/16, and a starting point of 322.

niques are robust against noise, thanks to the autocorrelation operation in their for-

mulas. Among the bilinear TFA techniques, the most basic form, which also provides

the best time-frequency resolution, is the Wigner-Ville distribution (WVD) [102].

However, the WVD has the drawback of the cross-term effect, i.e., the cross-term

can obscure essential features of the signal. Therefore, the CWD is developed to ad-

dress the main limitation of the WVD by using an exponential kernel function in the

general time-frequency distribution class introduced by Cohen [103]. In this work,

the CWD is used to generate the CWD–TFI, which represents the time-frequency
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characteristic of the signal. Specifically, the CWD is mathematically given by [104]

CW[k, n]=2
∞∑

τ=−∞
WN (τ)e−j2πnτ/N

[ ∞∑
µ=−∞

WM (µ)
1√

4πτ2/σ
e
− µ2

4τ2/σ

× y[k + µ+ τ ]y∗[k + µ− τ ]

]
, (5.14)

where k and n are the time index and frequency index, respectively, WN(τ) is a

symmetrical window function with non-zero values for the range of −N/2 ≤ τ ≤

N/2, while WM(µ) is a rectangular window function with a value of 1 for the range

of −M/2 ≤ µ ≤ M/2, and σ is the scaling factor. In this chapter, similar to [105],

rectangular windows are used for both WN(τ) and WM(µ). Furthermore, σ = 1 is

used to achieve a balance between frequency resolution and the cross-terms reduction

in the CWD.

5.4.1 CWD–TFI Preprocessing

To generate the CWD–TFI, similar to [99,105,106], Ns = 2048 consecutive signal

samples are captured, and these Ns samples are assumed to contain a complete signal

pulse, and the signal pulse starts from an arbitrary point within the Ns samples.

Fig. 5.2a and Fig. 5.2b illustrate the CWD–TFIs of a Costas signal travels through

an AWGN and a Rician fading channel, respectively. The parameters of the signal

includes a hopping sequence of F = [(4, 2, 5, 1, 3)×ff ], a sub-pulse duration sequence

of T = (5, 2, 4, 2, 3)×80/(fs), a fundamental frequency of ff = fs/16, and a starting

point of 322. As can be seen in Fig. 5.2a, for the AWGN channel, the ending point

of one sub-pulse is the starting point of the next sub-pulse. On the other hand, in

Fig. 5.2b, due to the non-line-of-sight (nLoS) paths, each sub-pulse signal object is

lengthened by τd, the delay spread of the channel h. The procedure to estimate and

compensate for this length offset is described in Subsection 5.4.2.

Fig. 5.3 shows the CWD–TFI processing procedure used to generate the input
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Figure 5.3 : CWD–TFI preprocessing procedure for the Costas signal in Fig. 5.2a.

to the YOLO detection system. First, using the nearest neighbor interpolation,

the CWD–TFI of Ns × Ns pixels is resized to L × L pixels, which is the input size

of the YOLO detection system, where L = 500 pixels is the width of the resized

CWD–TFIs. Then, the signal sub-pulse locations in the CWD–TFI are specified

by the bounding boxes (i.e., white-color rectangles in Fig. 5.3), as a requirement

for the training of the YOLO. Note that the localization of the bounding boxes is

not needed in the CWD–TFI processing procedure in the testing phase, because the

bounding boxes are parts of the output of the trained YOLO detection system.

5.4.2 Data Demodulation Technique

Fig. 5.4 shows the YOLO’s output for the CWD–TFI of a Costas signal with

an FH sequence of F = [(4, 2, 5, 1, 3) × ff ], a sub-pulse duration sequence of T =

(4, 3, 5, 4, 2)×80/(fs), a fundamental frequency of ff = fs/16, and a starting point of

259. As can be seen, the output contains not only the signal type (i.e., “Costas”) but

also the locations of the signal objects (i.e., the white-color rectangular bounding

boxes) and the probabilities of the detection. The bounding boxes determine the

position, horizontal, and vertical width of the signal objects in the CWD–TFI. The
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Figure 5.4 : YOLO’s output for a Costas signal with F = [(4, 2, 5, 1, 3) × ff ], T =

(4, 3, 5, 4, 2)× 80/(fs), ff = fs/16, and a starting point of 259.

ith left-most bounding box, corresponds to the ith sub-pulse, is localized by a tuple

of (xmin
i , xmax

i , ymin
i , ymax

i ). Recall that for the CWD–TFI, L pixels in the vertical

axis correspond to a frequency range from 0 to fs/2, while L pixels in the horizontal

axis correspond to a time duration of Ns × (1/fs), the frequency and duration of

the ith sub-pulse can be calculated by

fi =
fs(y

min
i + ymax

i )

4L

△ti =
Ns(x

max
i − xmin

i )

Lfs
− τd, (5.15)

where τd is the channel’s delay spread. To estimate τd, a training process is per-

formed, where a signal pulse with known FH sequence F and sub-pulse duration T

is transmitted by the JRC transceiver and captured by the communication receiver.

Then, τd can be determined by

τd =
1

Nf

Nf∑
1

(△ti − △̂ti), (5.16)

where △̂ti is the ith sub-pulse duration demonstrated on the CWD–TFI of the train-

ing signal. By comparing the combination of fi and △ti values with the selections in
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Table 5.1 : Parameters values.

Parameter Description Value

Nf Number of sub-pulses per pulse 5

NC Number of Costas array 40

D Sub-pulse duration selection set (1, 1.5, 2, 2.5, 3)× 80/(fs)

ff Fundamental frequency fs/16

L Resized CWD–TFI width (pixels) 500

τd Delay spread of the Rician channel 40/fs

the codebook S or SC, the embedded symbol in each signal pulse can be determined.

It is worth noting that because the proposed data demodulation technique is

based on the CWD–TFI, its performance is not affected by the Doppler shift or

timing offset between the transceiver and the communication receiver, as long as

the signal pulse is fully captured by the Ns = 2048 consecutive samples. This is

because the Doppler shift or timing offset merely creates vertical or horizontal shifts

of the whole set of lines, respectively. On the other hand, the shapes of the lines in

the CWD–TFI remain unchanged.

5.5 Performance Evaluation

Table. 5.1 shows the parameter values used to produce the simulation results. All

available Costas sequences (i.e., NC = 40 for Nf = 5) are used for data modulation.

The list of available Costas arrays and their construction can be found in [100, Ch. 5].

To train the YOLO detection system, for each data embedding scheme, 2, 700 signals

are generated with SNR ranging from −6 dB to 10 dB and a step size of 2 dB. The

2, 700 signals are divided into a training set of 2, 160 signals (80% of the total) and

a validation set of 540 signals (20% of the total). For the testing data, we generate
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Figure 5.5 : Detection probability of the JRC sensing function for different signal

waveforms, PFA, and ENR values.

3, 300 signals for each embedding scheme, with SNR ranging from −10 dB to 10 dB

and a step size of 2 dB.

Fig. 5.5 shows the detection probability of the JRC sensing function for different

signal waveforms (i.e., Random scheme, Costas-based scheme, and fixed sub-pulse

length), PFA, and ENR values. The results are obtained by averaging 10, 000 inde-

pendent trials. As can be seen, for each PFA value, the three curves almost overlap,

meaning the detection probability only depends on PFA and ENR but not the signal

waveform. Therefore, varying the sub-pulse durations does not affect the detection

capability of the sensing function of the FH RJC system, as long as the signal energy

per each pulse is fixed. Fig. 5.6 demonstrates the maximum number of bits that can

be transmitted over a signal pulse of the two proposed embedding schemes and those

in [51, 53]. As can be seen, the Random scheme can embed a significantly higher

amount of data than the Costas-based scheme, while the Costas-based scheme can

convey a slightly higher number of data bits than the scheme in [51, 53]. That is

because the schemes in this chapter use both sub-pulse durations and frequencies to

embed signals. On the other hand, the technique in [51] focuses on using antenna
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[43, 45]

Figure 5.6 : Maximum number of bits per pulse for different data embedding

schemes.

permutations for data embedding. Therefore, the proposed techniques are more

suitable when the number of antennas is limited, while the technique in [51, 53] is

suitable when an extensive number of antennas is available.

Fig. 5.7 illustrates the symbol error rate (SER) of the two proposed schemes

and those of the techniques in [53] as functions of the signal-to-noise ratio (SNR).

As can be seen, the two proposed schemes have lower SERs compared to those of

the techniques in [53] for all SNRs. Distinctively, at low SNRs (i.e., ≤ −2 dB), the

two proposed schemes have similar SERs, and are about 4 dB and 10 dB better

than those of the FH and BPSK techniques in [53], respectively. This is because the

proposed techniques use the CWD, which contains the auto-correlation operation,

to generate CWD–TFIs of the signals. As such, the proposed techniques are more

robust against noise compared to the other techniques in [53].
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[44]

[44]

Figure 5.7 : Symbol error rate (SER) of different embedding and demodulation

schemes.

5.6 Conclusions

In this chapter, novel approaches for embedding and demodulating data bits in

FH JRC systems were proposed. For data embedding, both sub-pulse durations

and frequencies are used to increase the data transmission rate. For data demodula-

tion, to reduce the error rate, a CWD–TFI and YOLO-based demodulation scheme

that does not require channel estimation and is robust against Doppler shift and

timing offset between the JRC transceiver and communication receiver is proposed.

Simulation results have shown that the proposed techniques achieve higher data

transmission and lower symbol error rates than the existing ones.
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Chapter 6

Jamming Mitigation in Joint Communication and

Radar Systems: A Deep Dueling Q-learning

Approach

This chapter studies the optimization of the durations of the jamming nullspace esti-

mation, the preamble, and the data transmission phases in a dynamic environment.

To deal with the uncertainty in the environment, we reformulate the problem using

a Markov decision process (MDP). Then, we design a deep dueling Q-learning-based

technique to quickly obtain the optimal policy. The contributions of the proposed

technique are summarized as follows.

6.1 Problem Formulation

In this section, we first describe the JCR protocol. Then, the signal models and

the performance metrics of the JCR system are presented. Finally, we formulate the

optimization problem.

6.1.1 Joint Communication and Radar Protocol

Fig. 6.1 illustrates the protocol of the JCR system in the presence of a proac-

tive jammer. As shown, each frame contains three phases: nullspace estimation,

preamble, and data transmission.

• During the nullspace estimation phase, which lasts for N e samples, the beam-

forming matrices are estimated. Let F̂e
BS and F̂e

UE denote the beam-forming

matrix used to suppress the received jamming signals at the BS and the UE,

respectively. The beam-forming matrices F̂e
BS and F̂e

UE are estimated using the
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Figure 6.1 : JCR system with proactive jammers.

SVD of the received jamming signals’ covariance matrices, using the process

similar to that described in Chapter 3.

• During the preamble phase, which lasts for Np samples, the jamming signals

that arrive at the UE are nullified by using the beam-forming matrix. Then,

the BS-UE equivalent channel is estimated.

• During the data transmission phase, which lasts for Nd samples, the BS sends

data to UEs. Concurrently, the BS receives the reflected preamble and per-

forms the radar function.

6.1.2 Signal Model

When the optimal beam-forming [107] is applied at the BS for jamming sup-

pression, the radar signal received at the BS after the optimal beam-forming and

matched filtering can be represented as

ŷr[n] = Grx[n− 2dfs/c]e
j4πvt/λ + ErσJxJ[n] + w[n], (6.1)

where n is the sample index, x[n] denotes the reflected preamble, Gr is the (two-

way) radar channel gain, d is the distance between the BS and the target, fs is

6.1 Problem Formulation 100
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the sampling frequency, c denotes the speed of light, λ is the signal wavelength of

the preamble, Er is the reduction ratio of the optimal beam-forming based jamming

suppression [107] at the BS, σJ is the standard deviation of the jamming signal, and

w is the AWGN. On the other hand, the received signal at the UE after the optimal

beam-forming and time synchronization can be represented as

ŷc[n] = Gcx[n] + EcσJxJ[n] + w[n], (6.2)

where Gc denotes the (one-way) communication channel gain, and Ec is the reduction

ratio of the optimal beam-forming based jamming suppression at the UE.

It is worth noting that optimal beam-forming requires knowledge of both legit-

imate and jamming signals. However, in our case, such knowledge is unavailable,

and hence the beam-forming matrix is estimated using the orthogonal projection

method [107], which design the beam-forming matrix from the SVD of the received

jamming signals as demonstrated in Chapter 3. Accordingly, the radar signal and

the communication signal are represented as [107],

yr[n] = Grx

[
n− 2d

c
fs

]
ej4πvt/λ +

N e +NJ

N e

{
ErσJxJ[n] + w[n]

}
, (6.3)

yc[n] = Gcx[n] +
N e +NJ

N e

{
EcσJxJ[n] + w[n]

}
. (6.4)

where N e and NJ are the number of samples in the nullspace estimation phase and

the number of jammers, respectively.

6.1.3 Performance Metrics

In this section, we present the performance metrics for the radar function and

communication functions.

6.1.3.1 Radar Function

For the radar function, the Cramer-Rao lower bounds (CRB) [108] of the range

and velocity estimations are adopted. Specifically, the CRB for the range and ve-
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locity estimations are given by [108]

CRBd =
3λ2

8π2NpSINRr

, (6.5)

CRBv =
3λ2B2

8π2(Np)3SINRr

, (6.6)

where

SINRr =
N e

N e +NJ

Gr√
σ2
J + σ2

w

(6.7)

is the SINR of the received radar signal at the BS using the beam-forming matrix,

and σ2
w is the noise variance. As can be seen, by increasing the preamble samples,

the CRB for the range and velocity estimation decreases dramatically, especially for

the velocity estimation. Similarly, when the number of samples in the estimation

phase increase, the received radar signal’s SINRr is enlarged, resulting in a better

radar performance (i.e., for both range and velocity estimations).

6.1.3.2 Communication Function

For the communication function, similar to [57,60], we adopt the effective mini-

mum mean square error (MMSE) metric as

MMSEeff =
1

(1 + SINRc)α
, (6.8)

where

α =
Nd

N e +Np +Nd
, (6.9)

SINRc =
N e

N e +NJ

Gc√
σ2
J + σ2

w

(6.10)

is the SINR of the received communication signal at the UE using the beam-forming

matrix. As can be seen, increasing the data transmission samples enlarge the value

of SINRc, hence improving the communication performance.
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6.1.4 Problem Formulation

In this section, we develop an optimization function to decide the optimal value

for the number of samples in the nullspace estimation, preamble, and data trans-

mission phases. Similar to [55, 58], we use a weighted sum of the MMSE metric

of the communication function and the CRB of the radar function as the objective

function. Specifically, the optimization of the durations of the nullspace estimation,

preamble and data transmission phases can be formally stated as

max
Ne,Np,Nd

ωd log(CRBd) + ωv log(CRBv) + ωc log(MMSEeff) (6.11)

s.t. CRBd =
3λ2

8π2NpSINRr

,

CRBv =
3λ2B2

8π2(Np)3SINRr

,

MMSEeff =
1

(1 + SINRc)α
, ,

SINRr =
N e

N e +NJ

Gr√
σ2
J + σ2

w

α =
Nd

N e +Np +Nd
,

SINRc =
N e

N e +NJ

Gc√
σ2
J + σ2

w

where the weighting factor ωd, ωv, and ωc are used to determine the importance of

the range estimation, velocity estimation, and communication function, respectively.

Therefore, the JCR system needs to obtain an optimal policy that optimizes

the duration of each sub-phase to achieve the desired JCR performance. However,

the JCR’s surrounding environment often varies significantly over time, making op-

timizing the sub-phase duration an intractable problem. In the following section,

we describe our proposed MDP framework for the JCR that enables the JCR to

quickly and effectively learn the optimal policy without requiring complete infor-

mation from the surrounding environment, thereby achieving optimal performance

compared with traditional solutions.
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6.2 Deep Dueling Q-Learning Technique for Jamming Sup-

pression

In this section, we reformulate the problem in (6.11) using an SMDP. A deep

dueling Q-learning-based framework is then designed to tune the durations of the

nullspace estimation, preamble, and data transmission phases by obtaining the op-

timal policy for the underlying SMDP process.

6.2.1 SMDP

We use the SMDP [109] to maximize the objective function in Eq. (6.11) while

accounting for the changes in the values of N e, Np and Nd. A conventional MDP

is defined by a tuple (S,A, r), where S, A, and r denote the state space, action

space, and the reward function, respectively. An SMDP, on the other hand, retains

the three components mentioned above and adds an additional component, that is,

the nth decision epoch length, denoted by t[n]. In an MDP, the state transition

occurs at regular time steps (and hence the decision epoch length t[n] is excluded).

On the other hand, the SMDP allows the state transition to occur at irregular time

steps (i.e., different t[n] for different epochs). Therefore, the SMDP is suitable to

formulate the problem of optimizing the selections of N e, Np, and Nd at irregular

state transition times.

6.2.2 State Space

There are two essential factors to consider for maximizing the objective function

in Eq. 6.11. The first factor is the SINR at the UE during the previous data

transmission phase. This is because SINRc implicitly captures the BS-UE channel

condition that affects the selection ofNd. Specifically, when the SINR in the previous

data transmission phase is poor, Nd value can be decreased to improve the value

of SINRc. However, Nd should not be incautiously decreased, as that reduces the
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fraction of the data transmission phase over the whole frame and thus reduces the

effective spectral efficiency of the system. The second factor is the SINR of the

reflected signal at the BS. This is because SINRr affect the CRB of both range

estimation and velocity estimation, as demonstrated in Eq. (6.5) and Eq. (6.6),

respectively. Therefore, the system’s state space can be defined as

S =∆
{
(SINRc, SINRr)}. (6.12)

The method to calculate SINRc is described in Chapter 4. On the other hand, the

process to determine SINRr can be found in [108].

6.2.3 Action

An action is taken at the end of each frame to determine which are the next

N e, Np, and Nd values, given the current state. Considering a fixed number of

samples for each frame (i.e., N e + Np + N e + Np = constant), the problem of

determining N e, Np, and Nd becomes the problem of determining N e and Np.

Let N e =∆ (N e
1 , N

e
2 , ..., N

e
Le) and N p =∆ (Np

1 , N
p
2 , ..., N

p
Lp) be the sets of Le and Lp

candidates for N e and Np, respectively. The action space is defined as A =∆ {a : a ∈

(1, 2, ..., Le × Lp)}, and

a =



1, N e = N e
1 and Np = Np

1 ,

2, N e = N e
2 and Np = Np

1 ,

...

Le × Lp, N e = N e
Le and Np = Np

Lp .

6.2.4 Immediate Reward

The immediate reward is defined as the weighted sum of the SINRs of the signal

at the UE and the reflected signal at the BS. Specifically,

r[n] = ωrSINRr[n] + ωcSINRc[n] (6.13)(6.14)
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6.2.5 Optimization Formulation

Similar to chapter 4, let π : Ŝ → A denotes a policy which is a mapping function

from the approximate states to the actions taken by the system. Our purpose is to

find the optimal value of π, denoted by π∗, that maximizes the average long-term

reward [42] of the BS-UE communication system. The optimization problem in Eq.

(4.8) is then converted into the optimization problem of π∗, expressed by

max
π

R(π) = lim
N→∞

1

N

N∑
n=1

E{r[n]}, (6.15)

where R(π) denotes the average long-term reward of the system with the policy π.

In fact, unlike the Q-learning algorithm that guarantees its convergence, such a guar-

antee is not possible for works that apply deep reinforcement learning techniques.

However, because the state, action and reward are carefully designed, we anticipate

that the proposed technique can converge to the optimal policy, as demonstrated in

Chapter 4.
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Chapter 7

Conclusions and Future Work

7.1 Conclusion

This thesis designed novel methods to deal with multiple jammers by leveraging

signal beam-forming and ML techniques. We have found that by varying the cor-

relation coefficients between transmitted jamming signals, jammers can “virtually

change” the jamming channels hence their nullspace even when these channels do

not physically change. That makes most conventional interference suppression tech-

niques that rely on the beam-forming matrix derived from the nullspace no longer

applicable. To tackle the problem, the techniques to monitor the jamming residual

and effectively update the beam-forming matrix were developed.

In Chapter 4, it was found that a jamming residual monitoring process proposed

in Chapter 3 increases the system overhead, thus significantly reducing the spectral

efficiency. To solve the problem and to deal with the uncertainty and incomplete

information, the problem was reformulated using a partially observable semi-Markov

decision process (POSMDP). Then, a deep dueling Q-learning-based technique was

designed to quickly obtain the optimal policy for legitimate devices. Simulation re-

sults showed that the proposed technique achieved a much higher spectral efficiency

than that of other methods, close to that of the perfect jamming nullification case.

Next, in Chapter 5, the jamming mitigation study was extended to the joint

radar and communication (JRC) systems. Specifically, a frequency hopping (FH)

signal was designed, which possesses robustness against jamming, for a JRC system.

In particular, novel techniques to embed and demodulate data to increase the data
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rate and reduce the demodulation error are also investigated. Specifically, both sub-

pulse frequencies and durations are used for data modulation, resulting in higher

communication data rates. A novel scheme for data demodulation was also proposed

by using the time-frequency analysis (TFA) technique and a ‘You Only Look Once’

(YOLO)-based detection system. Simulation results have shown that the proposed

techniques achieve higher data rates and lower demodulation errors compared to the

existing ones.

Finally, in Chapter 6, we study the optimization of the durations of the jamming

nullspace estimation, the preamble, and the data transmission phases. Specifically,

in the jamming nullspace estimation phase, the beam-forming matrix used to miti-

gate the jamming signal is estimated. On the other hand, the preamble is used to

estimate the legitimate channel and also for the radar function. As such, increasing

the duration of the nullspace estimation and the preamble phases can increase the

radar’s performance. However, such an increase also reduces the effective spectral

efficiency of the communication function, because the data transmission phase frac-

tion is decreased. Moreover, the surrounding radio environments of the JRC systems

are typically dynamic with high uncertainties due to their high mobility, making the

durations optimization problem even more challenging. To deal with such uncer-

tainty, we reformulate the problem using a Markov decision process (MDP). Then,

we design a deep dueling Q-learning-based technique to quickly obtain the optimal

policy.

7.2 Future Works

ML in general and RL in particular possess great potential in dealing with prob-

lems that are difficult to be handled with conventional techniques. Therefore, ML

and RL have a lot of potential to solve a number of outstanding problems, including

those outlined below.
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• RL for power allocation in JCR system: There have been many studies on

power allocation in MIMO communication systems. However, optimization

for the JCR system will be much more complicated, because the optimization

objective is not only communication performance but also the radar function

(e.g., detection, range and velocity estimation). The application of RL can

assist the system in quickly obtaining the optimal solution.

• ML for signal detection in JRC system: One challenge in the JCR system is to

differentiate the reflected signal from the target (for the radar function) and

the up-link signal from the user under interference from other BS and noise.

Supervised ML can be a potential candidate to classify the received signal at

the BS, thereby detecting the reflected signal for radar function.

• ML against eavesdropping in JRC system: By sharing the spectrum with the

communication function, the radar function may unintentionally leak sensi-

tive information to the commercial communication system, or even worse, to

the eavesdroppers. ML can be effective in dealing with eavesdroppers, hence

securing sensitive data.
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Appendix A

Proofs in Chapter 3

A.1 The proof of Theorem 3.1

Because xe
J ∼ CF(µe

J,Σ
e
J), we have E(Xe

J) = µe
J and E(Xe

J(X
e
J)

H) = N eΣe
J.

Then, recalling that Zk is deterministic, we have

E(Re
Jk
) = E

[
1

N e
Ye

Jk
(Ye

Jk
)H

]
=

1

N e
E
[
(ZkX

e
J +W)(ZkX

e
J +W)H

]
=

1

N e
E
[
ZkX

e
J(X

e
J)

HZH
k +W(Xe

J)
HZH

k + ZkX
e
JW

H +WWH
]

=
1

N e
E
[
ZkX

e
J(X

e
J)

HZH
k

]
+

1

N e
E
[
W(Xe

J)
HZH

k

]
+

1

N e
E(ZkX

e
JW

H)

+
1

N e
E(WWH)

= ZkΣ
e
JZ

H
k + σ2

wINk
. (A.1)

Therefore, by the law of large number, the covariance matrix Re
Jk

converges in

probability [R12, p. 175] to (ZkΣ
e
JZ

H
k + σ2

wINk
) i.e., Re

Jk

p→ (ZkΣ
e
JZ

H
k + σ2

wINk
).

A.2 The proof of Theorem 3.2

Because the nullspace Ĝk is calculated from the singular value decomposition

(SVD) of RJk as described in Section 3.2, the change of RJk from Re
Jk

to Rd
Jk

due
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to the change of ΣJ from Σe
J to Σd

J are examined as follows.

Rd
Jk

p→ (ZkΣ
d
JZ

H
k + σ2

wINk
)

= ZkV
dSd(Vd)HZH

k + σ2
wINk

= ZkV
d
√
Sd(Se)−1Se

√
Sd(Se)−1(Vd)HZH

k + σ2
wINk

= ZkV
d
√

Sd(Se)−1(Ve)HVeSe(Ve)HVe
√

Sd(Se)−1(Vd)HZH
k + σ2

wINk

= (ZkD)VeSe(Ve)H(ZkD)H + σ2
wINk

= (ZkD)Σe
J(ZkD)H + σ2

wINk
, (A.2)

where Σd
J = VdSd(Vd)H and Σe

J = VeSe(Ve)H are the SVD of Σd
J and Σe

J, respec-

tively, and D = Vd
√

Sd(Se)−1(Ve)H . Therefore, the change of ΣJ from Σe
J to Σd

J

causes an impact to the nullspace estimation, similar to the jamming channel has

been “virtually changed” from Zk to (ZkD).
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Appendix B

Proofs in Chapter 4

B.1 The proof of Theorem 4.1

The received signal at the kth UE after zero-forcing equalization can be expressed

by

yZF
k = (H̃H

k H̃k)
−1H̃H

k (
√

PTH̃kxk + Z̃kxJ + w̃) =
√

PTxk +AZF
k (Z̃kxJ + w̃), (B.1)

where AZF
k =∆ (H̃H

k H̃k)
−1H̃H

k is the zero-forcing equalizer, H̃k, Z̃k, and w̃ are the

BS-kth UE equivalent channel, jammer-kth UE equivalent channel, and equivalent

noise, respectively. The values of H̃k, Z̃k, and w̃ can be expressed by

H̃k = H̃wbf
k = HkPk, Z̃k = Zk, w̃ = w, without beam-forming,

H̃k = H̃bf
k = F̂e

kHkPk, Z̃k = F̂e
kZk, w̃ = F̂e

kw, with beam-forming.

First, considering the case without beam-forming, from Eq. (B.1), the post-equalization

SINR of the mth stream for the kth UE can be expressed by

δwbf
k,m =

PTVar(xk,m)

Var{[AZF
k (ZkxJ +w)]m}

=
PT

Var[(AZF
k w′)m]

=
PT

Var[(AZF
k )mw′]

, (B.2)

where (.)m denotes the mth row of a matrix or the mth element of a vector, and

w′ =∆ (ZkxJ +w) ∈ CNk×1. (B.3)

Using the law of total variance [110], we have

Var[(AZF
k )mw

′] = E{Var[(AZF
k )mw

′|w′]}+Var{E[(AZF
k )mw

′|w′]}, (B.4)
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where (.|.) denotes the conditional operation.

For the first term in the right-hand side (RHS) of Eq. (B.4),

E{Var[(AZF
k )mw

′|w′]} = σ2
w′E{[AZF

k (AZF
k )H ]mm}, (B.5)

that is because w′ is given and considered constant, and the zero-forcing equalizer

AZF
k and w′ are independent. Moreover,

E
{
AZF

k (AZF
k )H

}
= E{[(H̃wbf

k )HH̃wbf
k ]−1(H̃wbf

k )HH̃wbf
k [(H̃wbf

k )HH̃wbf
k ]−1}

= E{[(H̃wbf
k )HH̃wbf

k ]−1} (a)
=

ηkIMk

Nk −Mk

, (B.6)

where (a) follows because H̃wbf
k ∈ CNk×Mk ∼ CN (0, 1/

√
ηk) and hence [(H̃wbf

k )HH̃wbf
k ]

has a complex Wishart distribution with E{[(H̃wbf
k )HH̃wbf

k ]−1} = ηkIMk
/(Nk −Mk)

[42]. Note that, H̃wbf
k = HkPk ∼ CN (0, 1/

√
ηk) because the columns of Pk are

selected from these of the Walsh–Hadamard matrix, and hence multiplying the le-

gitimate channel Hk with Pk does not change the channel distribution.

Furthermore, from Eq. (B.3), the elements of w′ have the same variance σ2
w′ =

σ2
w +

∑NJ

j=1 ηk,jσ
2
Jj
. Therefore, from Eq. (B.5) and Eq. (B.6), the first term in the

RHS of Eq. (B.4) equal to

E{Var[(AZF
k )mw

′|w′]} =
ηk(σ

2
w +

∑NJ

j=1 ηk,jσ
2
Jj
)

Nk −Mk

. (B.7)

For the second term in the right-hand side of (B.4),

Var{E[(AZF
k )mw

′|w′]} = σ2
w′(E{E[(AZF

k )m]
2} − E{E[(AZF

k )m]}2) = 0. (B.8)

The ergodic spectral efficiency of the mth stream for the kth UE is therefore ex-

pressed by

Cwbf
k,m = log2

[
1 +

PT(Nk −Mk)

ηk(σ2
w +

∑NJ

j=1 ηk,jσ
2
Jj
)

]
. (B.9)
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When the estimated beam-forming matrix is applied, the post-equalization SINR

of the mth stream for the kth UE is

δk,m =
PT

Var{[AZF
k F̂e

k(ZkxJ +w)]m}
(B.10)

=
PT

Var{[AZF
k (δFkZkxJ + F̂e

kw)]m}
, (B.11)

where δFk = F̂e
k −Gd

k is the nullspace estimation error. Note that for simplicity,

the zero-forcing equalizer is still denoted by AZF
k , even though by the use of F̂e

k, the

dimension of AZF
k is now changed to (Nk −NJ)×Mk from Nk ×Mk (i.e., when F̂e

k

is not applied).

When the estimated beam-forming matrix is estimated perfectly (i.e., δFk = 0),

the jamming signals are cancelled totally, Eq. (B.11) becomes

δubk,m =
PT

Var[(AZF
k F̂e

kw)m]
=

PT

Var[(AZF
k w̃)m]

, (B.12)

where w̃ =∆ F̂e
kw.

Note that, because F̂e
k is estimated using the SVD, all its rows are unit vectors

and orthogonal to each other, and hence the elements of w̃ are independent and

identically distributed (i.i.d) with the same variance σ2
w̃ = σ2

w. Following the deriva-

tion in Eqs. (B.4)–(B.9), and remembering that multiplying with the unitary matrix

F̂e
k only reduces the dimension of the equivalent channel from H̃wbf

k ∈ CNk×Mk into

H̃bf
k ∈ C(Nk−NJ)×Mk , but does not change the distribution of the equivalent channel,

the spectral efficiency when the beam-forming is estimated perfectly is

Cub
k,m = log2

[
1 +

PT(Nk −NJ −Mk)

ηkσ2
w

]
. (B.13)

For the spectral efficiency lower bound, considering Eq. (B.10) in the worst case

when F̂e
k is independent of (ZkxJ + w). Let w̃′ =∆ F̂e

k(ZkxJ + w). Because F̂e
k is a

unitary matrix, multiplying with F̂e
k does not change the distribution of (ZkxJ+w).
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Therefore, similar to w′, the elements of w̃′ have the same variance σ2
w̃′ = σ2

w′ =

σ2
w +

∑NJ

j=1 ηk,jσ
2
Jj
. From Eq. (B.10),

δlbk,m =
PT

Var{[AZF
k F̂e

k(ZkxJ +w)]m}
=

PT

Var[(AZF
k w̃′)m]

. (B.14)

Following the derivation in Eqs. (B.4)–(B.9), and remembering the equivalent chan-

nel is now H̃bf
k ∈ C(Nk−NJ)×Mk , the lower bound of the spectral efficiency is

C lb
k,m = log2

[
1 +

PT(Nk −NJ −Mk)

ηk(σ2
w +

∑NJ

j=1 ηk,jσ
2
Jj
)

]
. (B.15)
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[30] Y. Léost, M. Abdi, R. Richter, and M. Jeschke, “Interference rejection com-

bining in LTE networks,” Bell Labs Tech. J., vol. 17, no. 1, pp. 25–49, 2012.

[31] M. H. Brady, M. Mohseni, and J. M. Cioffi, “Spatially-correlated jamming in

gaussian multiple access and broadcast channels,” in Proc. CISS, Princeton,

NY, USA, Mar. 2006, pp. 1635–1639.

[32] J. Gao, S. A. Vorobyov, H. Jiang, and H. V. Poor, “Worst-case jamming on

MIMO Gaussian channels,” IEEE Trans. Signal Process., vol. 63, no. 21, pp.

5821–5836, 2015.

[33] N. Van Huynh, D. N. Nguyen, D. T. Hoang, and E. Dutkiewicz, ““Jam me

if you can:” Defeating jammer with deep dueling neural network architecture

and ambient backscattering augmented communications,” IEEE J. Sel. Areas

Commun., vol. 37, no. 11, pp. 2603–2620, 2019.



BIBLIOGRAPHY 120

[34] J. Yin and T. Chen, “Direction-of-arrival estimation using a sparse representa-

tion of array covariance vectors,” IEEE Trans. Signal Process., vol. 59, no. 9,

pp. 4489–4493, 2011.

[35] Y. Noam and A. J. Goldsmith, “Blind null-space learning for MIMO under-

lay cognitive radio with primary user interference adaptation,” IEEE Trans.

Wireless Commun., vol. 12, no. 4, pp. 1722–1734, 2013.

[36] ——, “Blind null-space learning for spatial coexistence in MIMO cognitive

radios,” in Proc. IEEE Int. Conf. Commun. (ICC). IEEE, Jun. 2012, pp.

1726–1731.

[37] A. Manolakos, Y. Noam, K. Dimou, and A. J. Goldsmith, “Blind null-space

tracking for MIMO underlay cognitive radio networks,” in Proc. Global Com-

mun. Conf., 2012, pp. 1223–1229.

[38] A. Manolakos, Y. Noam, and A. J. Goldsmith, “Null space learning in

cooperative MIMO cellular networks using interference feedback,” IEEE

Trans.Wireless Commun., vol. 14, no. 7, pp. 3961–3977, Oct 2014.

[39] W. Su, Z. Safar, M. Olfat, and K. R. Liu, “Obtaining full-diversity space-

frequency codes from space-time codes via mapping,” IEEE Trans. Signal

Process., vol. 51, no. 11, pp. 2905–2916, 2003.

[40] A. Wittneben, “A new bandwidth efficient transmit antenna modulation diver-

sity scheme for linear digital modulation,” in Proc. IEEE Int. Conf. Commun.

(ICC), May 1993, pp. 1630–1634.

[41] Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and N. Freitas,

“Dueling network architectures for deep reinforcement learning,” Nov 2015.

[Online]. Available: https://arxiv.org/abs/1511.06581

https://arxiv.org/abs/1511.06581


BIBLIOGRAPHY 121

[42] N. Van Huynh, D. T. Hoang, D. N. Nguyen, and E. Dutkiewicz, “Optimal

and fast real-time resource slicing with deep dueling neural networks,” IEEE

J. Sel. Areas Commun., vol. 37, no. 6, pp. 1455–1470, 2019.

[43] A. Hassanien, M. G. Amin, E. Aboutanios, and B. Himed, “Dual-function

radar communication systems: A solution to the spectrum congestion prob-

lem,” IEEE Signal Process. Mag., vol. 36, no. 5, pp. 115–126, Sep 2019.

[44] J. Qian, M. Lops, L. Zheng, X. Wang, and Z. He, “Joint system design for

coexistence of MIMO radar and MIMO communication,” IEEE Trans. Signal

Process., vol. 66, no. 13, pp. 3504–3519, Jul. 2018.

[45] A. Hassanien, M. G. Amin, Y. D. Zhang, and F. Ahmad, “Signaling strategies

for dual-function radar communications: An overview,” IEEE Aerospace and

Electron. Syst. Mag., vol. 31, no. 10, pp. 36–45, Oct. 2016.

[46] M. Nowak, M. Wicks, Z. Zhang, and Z. Wu, “Co-designed radar-

communication using linear frequency modulation waveform,” IEEE Aerospace

and Electron. Syst. Mag., vol. 31, no. 10, pp. 28–35, Oct. 2016.

[47] A. Hassanien, M. G. Amin, Y. D. Zhang, and F. Ahmad, “Dual-function radar-

communications: Information embedding using sidelobe control and waveform

diversity,” IEEE Trans. Signal Process., vol. 64, no. 8, pp. 2168–2181, Apr.

2015.

[48] F. Liu, L. Zhou, C. Masouros, A. Li, W. Luo, and A. Petropulu, “Toward dual-

functional radar-communication systems: Optimal waveform design,” IEEE

Trans. Signal Process., vol. 66, no. 16, pp. 4264–4279, Aug 2018.

[49] S. D. Blunt, P. Yatham, and J. Stiles, “Intrapulse radar-embedded communi-

cations,” IEEE Trans. Aerosp. Electron. Syst., vol. 46, no. 3, pp. 1185–1200,

Jul 2010.



BIBLIOGRAPHY 122

[50] J. A. Zhang, F. Liu, C. Masouros, R. W. Heath, Z. Feng, L. Zheng, and

A. Petropulu, “An overview of signal processing techniques for joint commu-

nication and radar sensing,” IEEE J. Sel. Topics Signal Process., vol. 69, no. 2,

pp. 1295–1315, Nov 2021.

[51] T. Huang, N. Shlezinger, X. Xu, Y. Liu, and Y. C. Eldar, “MAJoRCom: A

dual-function radar communication system using index modulation,” IEEE

Trans. Signal Process, vol. 68, pp. 3423–3438, May 2020.

[52] K. Wu, J. A. Zhang, X. Huang, Y. J. Guo, and R. W. Heath, “Waveform

design and accurate channel estimation for frequency-hopping MIMO radar-

based communications,” IEEE Trans. on Commun., vol. 69, no. 2, pp. 1244–

1258, Oct 2020.

[53] W. Baxter, E. Aboutanios, and A. Hassanien, “Dual-function MIMO radar-

communications via frequency-hopping code selection,” in Proc. Asilomar

Conf. Signals, Syst., Comput. IEEE, 2018, pp. 1126–1130.

[54] J. A. Zhang, M. L. Rahman, K. Wu, X. Huang, Y. J. Guo, S. Chen, and

J. Yuan, “Enabling joint communication and radar sensing in mobile net-

works—a survey,” IEEE Commun. Surveys Tuts., vol. 24, no. 1, pp. 306–345,

1st Quart. 2021.

[55] P. Kumari, S. A. Vorobyov, and R. W. Heath, “Adaptive virtual waveform

design for millimeter-wave joint communication–radar,” IEEE Trans. Signal

Process., vol. 68, pp. 715–730, Apr. 2020.

[56] P. Kumari, N. Gonzalez-Prelcic, and R. W. Heath, “Investigating the IEEE

802.11 ad standard for millimeter wave automotive radar,” in Proc. Veh. Tech-

nol. Conf. (VTC-Fall). IEEE, Sep. 2015, pp. 1–5.



BIBLIOGRAPHY 123

[57] P. Kumari, R. W. Heath, and S. A. Vorobyov, “Virtual pulse design for

ieee 802.11 ad-based joint communication-radar,” in Proc. IEEE Int. Conf.

Acoust., Speech Signal Process., (ICASSP). IEEE, 2018, pp. 3315–3319.

[58] P. Kumari, D. H. Nguyen, and R. W. Heath, “Performance trade-off in an

adaptive IEEE 802.11 ad waveform design for a joint automotive radar and

communication system,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Pro-

cess., (ICASSP). IEEE, 2017, pp. 4281–4285.

[59] E. Grossi, M. Lops, L. Venturino, and A. Zappone, “Opportunistic radar in

IEEE 802.11 ad networks,” IEEE Trans. Signal Process., vol. 66, no. 9, pp.

2441–2454, Mar. 2018.
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