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Abstract

The practical applications of mobile robots are widely implemented in various areas,

such as education, industry, environment, and civil applications. The requirements

of robots’ navigation are one of the primary considerations for autonomous oper-

ation. Path planning is essential for the successful application of mobile robots.

Considering all available information, it aims to generate the robot’s optimal path

from the start to the target location. Depending on the operation scenarios, various

factors are counted in the cost function for path planning.

Meeting the flexibility, robustness, and efficiency requirements for real-time mobile

robot path planning implementation is challenging. A review of multi-robot path

planning is published to compare the path planning approaches and decision-making

strategies, listing the challenges. This thesis aims to tackle major challenges by

developing intelligent hybrid approaches, including 1) trapping in local optimal, 2)

slow convergence of path generation, and 3) robots’ fault tolerance. It also provides

the path planning algorithms for single-robot and multi-robot systems in three-

dimensional and two-dimensional space.

For single mobile robot path planning, the bio-inspired approaches have gained more

attention recently with high robustness and flexibility. In contrast, it is highly pos-

sible to trap in a local optimal. The proposed Harmony-particle swarm optimization

algorithm significantly reduces the iterations during planning to solve the aerial path

planning problem in a multi-building environment. Also, a hybrid approach of par-

ticle swarm optimization and simulated annealing is proposed for single-vehicle path

planning in the industrial warehouse scenario. It updates the personal best value to

jump out of the locally optimal. Compared with other evolutionary approaches, it

shows excellent performance.

xiv



Moreover, fast convergence is a significant challenge for multiple robots’ path plan-

ning. A dual-layer Weight-Leader-Vicsek-Model is proposed that generates the path

for the virtual leaders first for each group of robots, and then all the robots will move

by following their leaders. This dual-layer approach can achieve fast convergence,

generating vehicle paths in one calculation step. Fault tolerance is also an essential

issue for the real-time implementation of path planning, but it is lacking in previous

studies. The Cultural-Particle Swarm Optimization algorithm is proposed to offer

a backup plan in case of system failures. It updates the inertial weight to enhance

the search abilities, balancing the global and local search abilities. The experiments

and validated results are presented for each proposed approach.
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Chapter 1

Introduction

1.1 Research Objectives and Scope

The trend of executing mobile robots has been raised dramatically in the past several

years to reduce human repetitive or dangerous work. Robots can carry cameras and

sensors or other light equipment to achieve specific missions with the enhancement

of technology and economy. The various robot applications include surveillance [1],

search and rescue [2], intelligent manufacture [3], agriculture [4], surface inspection

[5], tracking [6], and more. The most popular mobile robots in the application

consist of Unmanned Aerial Vehicle (UAV) and Automated Guided Vehicle (AGV).

Path planning of navigation is essential for implementing the autonomous operations

of robots. Path planning refers to generating a safe and optimal path from the

start to the target location. The generated path uses the problem objectives to

be chosen to achieve the expected target [7]. The connected robot is intended to

provide less computation-constrained and more cost-efficient than the automated

robot. However, it has signal dead zones to reduce the operation area and efficiency

[8]. The trend of automated and programmable robots is intended in this age.

Robots can make simple decisions but cannot carry out sophisticated tasks due to

enormous computational resources, extensive memory and many needed AI-based

algorithms.

Path planning algorithms can be divided into global and local path planning based
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on whether all environment information is accessible [9]. Global path planning

has all information before starting, while environmental information is unknown for

local path planning. The popular algorithms of path planning consist of classical and

metaheuristic algorithms. The classical algorithms include a Rapidly Random Tree

(RRT), Probabilistic Road Map (PRM), Dijkstra’s Algorithm (DA), and Potential

Field (PF). A review paper [7] considers Dijkstra’s Algorithm as the benchmark

solution.

From a survey [9], PSO (particle swarm optimization), GA (genetic algorithm), ACO

(ant colony optimization) and APF (artificial potential field) are the most used tech-

niques for robot path planning. Also, [7] compares several bio-inspired algorithms,

including Particle Swarm Optimization (PSO), Differential Evolution (DE), Genetic

Algorithm (GA), and Cuckoo Search Algorithm (CSA), and the results show the

PSO performs better among these approaches in unknown environments. PSO is

improved as a fuzzy enhanced multi-objective optimization algorithm for robot path

planning in the static and dynamic environment [10].

Moreover, the new algorithms of mobile path planning are AI-based approaches.

Machine learning model-based approaches are the primary stream of AI-based ap-

proaches, which allows the time-efficiency of model scorers while it cannot ensure so-

lution correctness [11]. Deep reinforcement learning includes reinforcement learning

and deep learning for the mobile robot path planning to deal with decision-making

and perception problems [12]. Deep reinforcement learning is firstly modified by

iterative training from the data set to obtain the parameters of network weight and

bias, then applying the trained network to identify and classify the dataset. AI-

based path-planning approaches can be classified as supervised, unsupervised, and

reinforcement learning. Supervised and unsupervised learning requires much prior

knowledge, while reinforcement learning can use feedback [12].

The motivation of this research project is to achieve robustness, flexibility, and

efficiency for path planning. This thesis aims to solve the critical research question

of path planning for mobile robots and concentrates on optimising path planning for

mobile robots, including UAVs and AGVs. It also provides solutions for single-robot

and multiple-robot systems. The theories implemented in this research include the
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mathematical-based and bio-inspired-based approaches.

The specific research objectives are:

1. Plan an optimal path for a single or multiple robot system with minimal cost;

2. Solve the problems of local optima in path planning and slow convergence of

evolutionary algorithms;

3. Provide the framework for robots’ fault tolerance in multiple robot path plan-

ning.

Chapter 2 reviews the related literature for the single-robot and multi-robot sys-

tems to provide an overview of the state-of-the-art solutions to the path planning

problem. The study shows that the bio-inspired optimization framework performs

better than the conventional path planning algorithms, and reliable numerous train-

ing data is not required for the unknown environment. Therefore, the bio-inspired

optimization algorithm is chosen as the key component for enhanced path planning

implementation in different mobile robot applications, as introduced in Chapters

3, 4 and 6. Chapter 5 uses another bio-inspired model to describe the multi-robot

behaviour during path planning to reduce the computation complexity and load.

1.2 Research Overview and Organization

This research aims to provide systematic optimal solutions for mobile robot path

planning. Figure 1.1 describes this thesis’s structure with the relationship between

the chapters, including single-robot and multi-robot path planning approaches. Path

planning algorithms and decision-making strategies were reviewed, and path plan-

ning algorithms were classified as classical approaches, heuristic algorithms, bio-

inspired and AI-based approaches. From the literature, bio-inspired approaches are

popular in this research area.

3



Figure 1.1: Research flow diagram

Figure 1.2 indicates each proposed approach based on the inspiration of natural

behaviour. For a single robot system, UAV path planning focuses on mathematical

solutions for the terrain based and using the optimization algorithms for the multi-

environment building. For the single AGV system, the hybrid intelligent approach

based on PSO and SA is introduced.

Figure 1.2: Thesis contributions

The dual layer in leader-follower formation for a multi-robot system enhances the

biological approach. Also, the improved PSO methodology is inspired by CA and
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SA algorithms; it probabilistically updates the inertia weight to balance global and

local searches. It provides fault tolerance, path re-generation, collision avoidance

and task allocation for online implementation. The contents of each chapter are

summarized as follows.

1.2.1 Chapter 2: Literature Review

Numerous path-planning studies have been conducted in past decades due to the

challenges of obtaining optimal solutions. This chapter reviews single-robot and

multi-robot path-planning approaches and decision-making strategies and presents

the path-planning algorithms for various types of robots, including UAVs and AGVs.

The path-planning approaches have been classified as classical approaches, heuris-

tic algorithms, bio-inspired techniques, and artificial intelligence approaches. Bio-

inspired techniques are the most employed approaches, and artificial intelligence ap-

proaches have gained more attention recently. The decision-making strategies mainly

consist of centralized and decentralized approaches. The trend of the decision-

making system is to move towards a decentralized planner. Finally, the new chal-

lenge in multi-robot path planning is proposed as fault tolerance, which is important

for real-time operations.

1.2.2 Chapter 3: UAV-based Path Planning

This chapter presents two mathematical based path planning algorithms for different

case studies:

1. For the terrain environment: a UAV path planning approach is proposed to

consider flight cost functions. The UAV flight paths are generated using Quin-

tic Hermite interpolation. These paths are constant in speed, and the algo-

rithm generates the paths by iteration to ensure the path segments are smooth.

A Waypoint-Matrix is to store the points of the path. The paths aim to reach

the defined destination by passing the waypoints and avoiding obstacles. This

approach proposes the flight cost functions to evaluate the paths, path length,

flight time, altitude, and collision.

2. For the multi-building environment: Regular inspection of historic buildings is
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essential, while path planning of the building inspection is challenging because

it requires comprehensive coverage at a low cost. Most of the previous research

does not consider the multiple buildings’ environment. In this section, a three-

dimensional path planning approach is proposed to provide the inspection for

multiple buildings. The proposed Helix-HPSO approach generates the helix-

shaped path for each building and uses HPSO for path planning between

buildings. The computational experiment validates the proposed approach.

The helix-shaped path costs less than the traditional back-and-forth path for

building inspection. HPSO is compared with other bio-inspired algorithms for

optimization problems and PSO for path planning.

1.2.3 Chapter 4: Particle Swarm Optimization (PSO)-Simulated

Annealing (SA) Approach

Mobile robots play crucial roles in industry and commerce, and automatic guided

vehicles (AGV) are one of the primary parts of smart manufacturing and intelligent

logistics. Path planning is the core task for the AGV system, and it generates

the path from origin to destination. The motivation of the study is to improve

the scalability, flexibility, adaptability, and performance of the robot path planning

systems. This chapter proposes the hybrid PSO-SA algorithm for the optimization

of AGV path planning. Compared with other heuristic algorithms by benchmark

functions, including HS, FA, ABC and GA, the proposed algorithm shows excellent

performance in dealing with optimization problems. It reduces the possibility of

getting trapped in one local optimum and enhances the efficiency to get the best

global solution with faster convergence and less time consumption. It is evaluated

with multiple cost functions and path planning with simulations and experiments.

The objective of the proposed algorithm is to minimize the path length and produce

a smooth path without collision. The proposed PSO-SA algorithm is compared with

PSO in the path planning application, and the mean runtime and iteration times

are usually significantly lower than PSO.
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1.2.4 Chapter 5: Dual Layer Weight-Leader-Vicsek-Model

(DWLVM)

Multiple automatic guided vehicles are widely involved in industrial intelligence.

Path planning is crucial for their successful application of them. However, achieving

robust and efficient path planning of multiple automatic guided vehicles for real-time

implementation is challenging. In this chapter, a two-layer strategy for multi-vehicle

path planning is proposed. All the vehicles are grouped by the start-destination

matrix, and a dynamic virtual leader is generated for each group. In the first layer,

the hybrid A* algorithm is employed for the path planning of the virtual leaders. The

second layer is named leader-follower; the proposed Weight-Leader-Vicsek-Model is

applied to navigate the vehicles following their virtual leaders. The proposed method

can reduce computational load and achieve real-time navigation by quickly updating

the grouped vehicles’ status. Collision and deadlock avoidance is also conducted in

this model. Vehicles in different groups are treated as dynamic obstacles. MATLAB

validated the method by simulations to verify its path-planning functionality and

conducted the experiment with a localization sensor.

1.2.5 Chapter 6: Hybridization of PSO and Cultural Algo-

rithm

Automatic guided vehicles are widely implemented in modern industrial warehouses.

Path planning of multiple vehicles is challenging to generate the optimal path with-

out collisions, and lacking fault-tolerant consideration is hard for real-time imple-

mentation. This chapter presents a hybrid evolutionary algorithm Cultural-PSO

(C-PSO), inspired by the cultural and particle swarm optimization algorithms. It is

aimed to balance the global and local search abilities and avoid trapping in the local

optima. The proposed algorithm updates the inertia weight with the probability

calculated by the Metropolis rule. More importantly, it provides the fault tolerance

functionality for the multi-AGV system to fill the gap. The proposed Cultural-

PSO approach achieves task allocation, fault tolerance and collision avoidance by

a dual-layer framework. It is validated through computational and path-planning

experiments compared with other bio-inspired algorithms.
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1.2.6 Chapter 7: Conclusion

This chapter summarizes the results and implications of this work and provides

recommended directions for the continuation of this work in the future.

1.3 Contributions and Publications

1.3.1 Main Contributions and Publications

Chapter 2 provides a comprehensive literature review relevant to the overall aim. It

includes the review of path planning algorithms for single and multiple robots, and

it introduces the decision-making strategies for multi-robot systems. The review of

the multi-robot path planning is published as follows.

• S. Lin, A. Liu, J. Wang, and X. Kong, “A Review of Path-Planning Approaches

for Multiple Mobile Robots,” Machines, vol. 10, no. 9, p. 773, 2022. [Online].

Available: https://www.mdpi.com/2075-1702/10/9/773.

Chapter 3 proposes the path planning algorithms for a single UAV, developed under

the cases of terrain and multiple buildings. The terrain case uses mathematical

solutions, and the multiple-building case combines the improved bio-inspired and

helix approaches. The related publications are listed as follows.

• S. Lin, X. Kong, and L. Liu, “Development of an intelligent UAV path planning

approach to minimize the costs in flight distance, time, altitude, and obstacle

collision,” 2019: IEEE, pp. 238-243, DOI: 10.1109/ISCIT.2019.8905119.

• S. Lin, X. Kong, J. Wang, A. Liu, G. Fang, and Y. Han, “Development of

a UAV Path Planning Approach for Multi-building Inspection with Minimal

Cost,” in Parallel and Distributed Computing, Applications and Technologies,

Cham, Y. Zhang, Y. Xu, and H. Tian, Eds., 2021 2021: Springer International

Publishing, pp. 82-93.

• S. Lin, X. Kong, J. Wang, and A. Liu, “Helix-HPSO approach for UAV path

planning in a multi-building environment,” Journal of Reliable Intelligent En-

vironments, 2022/11/24 2022, DOI: 10.1007/s40860-022-00196-z.
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Chapter 4 proposes a hybrid approach combining Particle Swarm Optimization

(PSO) and Simulated Annealing (SA) to overcome the drawback of bio-inspired

approaches and provide the functionality of single robot path planning, with the

contribution as follows.

• S. Lin, A. Liu, J. Wang, and X. Kong, “An intelligence-based hybrid PSO-SA

for mobile robot path planning in warehouse,” Journal of Computational Sci-

ence, vol. 67, p. 101938, 2023/03/01/ 2023, DOI: https://doi.org/10.1016/j.jocs.

2022.101938.

Chapter 5 aims to provide fast convergence with the proposed Dual layer Weight-

Leader-Vicsek-Model (DWLVM) to achieve multi-robot path planning with fast con-

vergence and calculation, reducing the computation load. It resulted in the following

publications.

• S. Lin, A. Liu, X. Kong, and J. Wang, “Development of Swarm Intelligence

Leader-Vicsek-Model for Multi-AGV Path Planning,” in 2021 20th Interna-

tional Symposium on Communications and Information Technologies (ISCIT),

2021-10-19 2021: IEEE, pp. 49-54, DOI: 10.1109/ISCIT52804.2021.9590578.

• S. Lin, A. Liu, J. Wang, and X. Kong, “A Dual-Layer Weight-Leader-Vicsek-

Model for Multi-AGV Path Planning in Warehouse,” Simulation Modelling

Practice and Theory, submitted, 2022.

Chapter 6 proposes a hybrid approach as Cultural-PSO (C-PSO) that improves the

hybrid optimization approach by the inspiration of the Cultural algorithm to balance

the search global and local abilities, providing task allocation and fault tolerance.

• S. Lin, A. Liu, J. Wang, and X. Kong, “An Fault-tolerant Cultural-PSO for

Multi-AGV Path Planning,” Applied Soft Computing Journal, submitted, 2022.

1.3.2 Additional Research Contributions

The additional research focuses on the contributions of a localization sensor as Ultra

Wide Band (UWB). The collaborative experiments were conducted with precise

indoor positioning UWB for the following publications, working as the team member

and co-author. It offers the corrections of localization bias in indoor positioning and
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reduces the costs during the experiment setup.

• A. Liu, S. Lin, X. Kong, J. Wang, G. Fang, and Y. Han, “Development of

Low-Cost Indoor Positioning Using Mobile-UWB-Anchor-Configuration Ap-

proach,” in Parallel Architectures, Algorithms and Programming, Singapore,

L. Ning, V. Chau, and F. Lau, Eds., 2021// 2021: Springer Singapore, pp.

34-46.

• A. Liu, S. Lin, J. Wang, and X. Kong, “A Method for Non-line of Sight

Identification and Delay Correction for UWB Indoor Positioning,” in The 17th

IEEE Conference on Industrial Electronics and Applications (ICIEA 2022),

Chengdu, China, 2022: IEEE.

• A. Liu, S. Lin, J. Wang, and X. Kong, “A Succinct Method for Non-Line-

of-Sight Mitigation for Ultra-Wideband Indoor Positioning System,” Sensors,

vol. 22, no. 21, 2022, DOI: 10.3390/s22218247.
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Chapter 2

Literature Review

2.1 Introduction

Robot applications have been widely implemented in various areas, including in-

dustry [13], agriculture [4], surveillance [14], search and rescue [15], environmental

monitoring [16], and traffic control [17]. A robot is referred to as an artificial intel-

ligence system that integrates microelectronics, communication, computer science,

and optics [18]. Due to the development of robotics technology, mobile robots have

been utilized in different environments, such as Unmanned Aerial Vehicles (UAVs)

for aerospace, Automated Guided Vehicles (AGVs) for production, Unmanned Sur-

face Vessels (USVs) for water space, and Autonomous Underwater Vehicles (AUVs)

for underwater.

To perform tasks, employing a set of vehicles cooperatively and simultaneously has

gained interest due to the increased demand. Multiple robots can execute tasks in

parallel and cover larger areas. The system continues working even with the failure

of one robot [19], and it has the advantages of robustness, flexibility, scalability, and

spatial distribution [20]. Each robot has its coordinates and independent behaviour

for a multi-robot system, and it can model the cooperative behaviour of real-life

situations [21]. For reliable operation of the robot, the robotics system must address

the path/motion planning problem. Path planning aims to find a collision-free path

from the source to the target destination.
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Path planning is an NP-hard problem in optimization, and it involves multiple

objectives, resulting in its solution being polynomial verified [22]. The robots are

aimed to accomplish the tasks in the post-design stage with higher reliability, higher

speed, and lower energy consumption [23]. Task allocation, obstacle avoidance,

collision-free execution, and time windows are considered [24]. Multi-robot path

planning has high computational complexity, which results in a lack of complete

algorithms that offer solution optimality with computational efficiency [25].

Substantial optimality criteria have been considered in path planning, such as the

rendezvous and operation time, path length, velocity smoothness, safety margin,

and heading profiles for generating optimal paths [26]. During missions, the robot

systems have limitations, such as limited communication with the centre or other

robots, stringent nonholonomic mission constraints, and limited mission length be-

cause of weight, size, and fuel constraints [27]. The planned path must be a smooth

curve due to nonholonomic motion constraints and support kinematic constraints

with geometric continuity. Furthermore, the path’s continuity is significant for col-

laborative transport [28].

Path-planning approaches can be divided into offline and real-time implementation.

Offline generation of a multi-robot path cannot exploit the cooperative abilities, as

there is little or no interaction between robots, leading to the multi-robot system

not ensuring that the robots are moving along a predefined path or formation [29].

Real-time systems have been proposed to overcome the problems created by offline

path generation, and these can maximize the efficiency of algorithms. The chart of

offline/real-time implementation included in the literature review is exhibited in the

discussion section.

Decision-making strategies can be classified as centralized and decentralized ap-

proaches. The centralized system has the central decision-maker, and thus the

degree of cooperation is higher than in the decentralized approach. All robots are

treated as one entity in the high-dimensional configuration space [30]. A central

planner assigns tasks and plans schedules for each robot, and the robots start oper-

ation after completion of the planning [31]. The algorithms used in the centralized

structure are without limitation because the centralized system has better global
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support for robots.

However, the decentralized approach is more widely employed in real-time imple-

mentation. Decentralized methods are typical for vehicle autonomy and distributed

computation [32]. These have the robots communicate and interact with each other

and have higher degrees of flexibility, robustness, and scalability, thereby supporting

dynamic changes. The robots execute computations and produce suboptimal solu-

tions [31]. The decentralized approach includes task planning and motion planning,

and it reduces computational complexity with limited shared information [33].

Many surveys have been conducted for the mobile robot path planning strategies

[34]–[36]; however, these papers only focus on single robot navigation without co-

operative planning. This review’s motivation is to introduce the state-of-art path-

planning algorithms of multi-robot systems and provide an analysis of multi-robot

decision-making strategies, considering real-time performance. This chapter inves-

tigates 2D or ground path planning and the 3D environment.

The recent literature is reviewed and classified the path-planning approaches based

on the main principles. The chapter is organized as follows. Section 2.2 discusses

the path planning algorithms. Section 2.3 discusses multi-robot path planning ap-

proaches. Section 2.4 discusses the decision-making strategies.

2.2 Path Planning Algorithms

2.2.1 Path Planning

Path planning has been the most crucial consideration of mobile robot navigation,

which plans the path from the start to the target for mobile robots [37]. Ob-

stacle avoidance functions must be developed to operate AGVs when considering

dynamical limitations and dynamical safety [38], [39]. Motion planning regards

safe collision-free and shortest distance as constraints when generating a path and

converting the path into control variables such as velocity and acceleration [40].

Meta-heuristic-based methods, graph-search-based methods, mathematical optimisation-

based methods, and virtual potential field and navigation-based methods are the
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four categories for navigation algorithms [38]. The classic graph search algorithm

has been widely implemented for AGV path planning, such as the A* and Dijkstra

algorithm [40], [41].

Besides, the A* algorithm is used to establish an optimal path on the cost map for

motion planning, and the AGV equips with a SLAMTEC laser scanner for detect-

ing the dynamic obstacles’ position [40]. Different algorithms can be combined to

enhance performance and adaptability and overcome some drawbacks of each algo-

rithm. For example, the Dijkstra algorithm is for initial static path planning, and

the virtual potential function algorithm is for dynamic path planning [42].

Also, sampling-based methods are significant for single AGV path planning, such as

the Voronoi graph and RRT methods [43]. More algorithms generate the optimal

path in a known map; artificial potential field methods and the probabilistic road

map (PRM) are also proposed for global and local control with real-time operation

and feasibility [40].

Besides, the mathematical optimisation-based approach consists of an open-loop

strategy and a closed-loop strategy [38]. A nonlinear predictive control (MPC)

algorithm has been proposed for large-size AGVs with onboard LIDAR sensors and

a 14-DoF vehicle dynamics model [38]. The cost function of the nonlinear MPC

algorithm is used to evaluate the heading angle, the distance, and the control effort

[38].

Deep reinforcement learning can process high-dimensional environment data, such as

images, and it has intelligent decision-making ability and powerful perception ability

[37]. A neural network structure and Dueling DDQN-PER has been implemented

as AGV path planning for multi-modal sensing environmental information, such as

global positioning system (GPS), cameras, and speed sensors [37].

2.2.2 Mobile Robot Navigation

AGV Navigation

Mobile robots are applied to the industry with the development of intelligent lo-

gistics, industrial intelligence, and intelligent factories [37], [43]. AGVs have many
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commercial and industrial applications, resulting in increasing significance to im-

prove transportation efficiency with fewer transportation costs [38], [43], [44]. AGV

can improve safety and decrease labour costs in a production environment for the

high demands in production [45], [46]. AGV for industry comprises towing vehicles,

unit load vehicles, pallet trucks, and forklifts [47].

AGVs are utilised in flexible production lines of modern manufacturing and inte-

grated into automated intelligent control systems [46]–[48]. They can operate at

high speeds to transfer the products in chaotic situations in warehouses. AGVs

become essential parts of the servo handling system, logistics, and AGVs become

an essential part of the servo handling system, logistics, warehousing system, and

storage industry [46], [49].

AGVs are employed in varying areas, such as distribution, material handling in man-

ufacturing, transportation, and transhipment [3]. Detecting objects in the path and

eliminating the problems automatically with sensors’ help can increase the adapt-

ability and intelligence of AGVs [46].

Sensors for AGVs cover close-range infrared sensors, a global positioning system,

and long-ranged high-frequency radar [39]. The navigation system determines the

sensors equipped for navigation, and the primary sensors for AGVs are the magnetic

guide sensor and the laser scanner [47].

Magnetic sensors receive path information from the magnetic stripe quickly and

accurately [49]. Location can be obtained by calculating of mathematical equation

for a fixed path with a known start position by rotational counters, inclinometers,

and electronic compasses or by an outside system source technology [39].

Additionally, the basic principles for AGV navigation can be divided into a fixed

path and free navigation. The critical technologies based on the principles consist of

the inertial guide, laser guide, vision-based guide, magnetic spot guidance, barcode

guidance, and wired guide [39], [46], [47], [50].

A directed network considers aisle intersections, delivery, and pick-up locations as

nodes in a guide-path layout based on the flow topology [51]. Free-ranging allows

the AGV to deviate significantly from guide-paths and program the preferred tracks
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by software [51].

Single navigation method usually has disadvantages. Inertial navigation system

(INS) has increasing navigation error and slowly varying drift [48], [52]. Simultane-

ous localisation and mapping (SLAM) navigation cannot stitch the map in real-time

[43], [52]. The real-time performance is poor for visual navigation and is constrained

by weather factors [52]. Global Navigation Satellite System (GNSS) has continuous

and real-time precise positioning data, but a slow data update rate and positioning

accuracy would be affected if the AGV is in a container [52], [53].

The costs would increase when the working area expands, more communication

base stations are required for Ultra Wide Band (UWB) wireless positioning and

navigation, and the coverage of reference nodes determines its performance [48],

[52]. The typical navigation methods involve visual image navigation, INS, GNSS,

lidar SLAM navigation, antenna radar-transponder navigation, and UWB wireless

navigation [45], [52].

Indoor localisation methods use infrared, ultrasonic, radio, and magnetic sensors

[54]. Benchmarking low-cost and medium-cost inertial measurement units (IMUs)

are mounted on an AGV and apply SLAM in indoor production sites [45]. Moreover,

artificial landmarks are recognised visually to help AGV obtain rich guide informa-

tion to increase its intelligence and attain easy reconfiguration or high flexibility,

fusing the position information from the camera, and the laser [51].

Web cameras and marker recognition are explored for an efficient, low-cost, guiding

AGV system [54]. Magnet spot guidance is achieved by encoders, counters, and hall-

effect sensors through a dead reckoning with marker recognition [54]. For developing

low-cost guidance systems, RFID and vision sensors are arranged with a topological

map describing the flow-path network [51].

Also, the RFID sensor obtains the site position information for AGVs, making AGVs

execute corresponding instructions and identify the positioning block [49]. LiDAR,

RFID site labels, and ultrasonic sensors are adopted to a navigation system that is

controlled by the PID algorithm [49]. LiDAR and ultrasonic sensors ensure the safe

operation of AGVs [49]. Ultrasonic sensors, light sensors, and cameras are combined

for the fixed path with a programmable robotics kit [46].
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Furthermore, distributed filtering algorithms estimate the AGV’s state vector based

on the measurements coming from onboard sensors through a multi-stage fusion pro-

cedure [52], [55]. Failure-prone sensors provide the measurement which can estimate

the AGV’s Cartesian coordinates, such as wheel encoders [55]. A fault detection and

isolation algorithm through the statistical processing of residuals offers an indication

of the condition of sensors, and possible failures [55].

AGV navigation includes AGV’s attitude and position estimation and correction,

obstacle detection and avoidance, path tracking and control of drive devices, and

attitude estimation consisting of relative and absolute ways [56]. The navigation

combines the analysis with magnetic nails, encoders, acceleration sensors, inertial

guidance, gyros, ultrasonic sensor, and an infrared sensor for multi-sensor fusion

through Kalman filtering [56]. Also, the Kalman filtering algorithm is applied to

the Dead Reckoning (DR) signal and GPS signal to compensate for each other and

gain high-precision positioning data [53].

An interactive multiple model algorithm decreases the impact of positioning in non-

line-of-sight and line-of-sight states when integrating INS and UWB, setting up two

Kalman filters in the states by different distance error characteristics [48]. Extended

Kalman filter and optimal weighted voting fusion and employed for an improved inte-

grated navigation method based on GNSS, single-axis rotating INS, and kinematics

[52]. An enhanced distributed nonlinear Kalman filtering has been proposed as the

derivative-free extended information filter with getting the data from GPS, IMU,

laser, gyrocompasses, and vision sensors [55].

UAV Navigation

Besides the 2D navigation, 3D navigation for UAVs is also reviewed. Creating

a collision-free and safe path is critical for UAV navigation [57]. The challenges

of creating paths include awareness of the surroundings and navigational ability

[58]. More precisely, to apply the navigation algorithms, the environment or terrain

information is required to be transferred by methods.

The perception of the environment is achieved by sensors, such as laser scanners,

LiDARs, cameras, and sonars [58]. Defining obstacles can be achieved by p-norms,
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Dubins curves, polygonal shapes and sampling-based planning [58]. The discreti-

sation of airspace by network and edges’ costs can be used for UAV path planning

[59].

Determining the optimal path is mainly based on the discretisation of the envi-

ronment data [60]. 3D path planning can be transferred to the constraint optimal

control problem, considering dynamic and kinematic equations of UAV flight [61].

The flight time, the technical properties of UAVs, the path length, and the path’s

straightness are taken into account to determine the optimal path [59]. The path

must be smooth to follow UAVs’ kinematic and dynamic properties [62].

Some graph search algorithms and optimisation methods are applied for UAV nav-

igation. The improved sparse A* algorithm is proposed for UAVs in the marine

environment [63]. A Sparse bidirectional A* search algorithm is developed and has

the robustness and better path planning performance than the Sparse A* algorithm

[64].

The continuous optimisation method is proposed as the fast-marching solution, and

it can produce smoothed and continuous trajectory [60]. Mixed integer linear pro-

grams, the Dijkstra algorithm, D* algorithm, Theta* algorithm, and some graph

search algorithms are also solutions [65]. A* algorithm performs better than Bell-

man Ford’s, Dijkstra, and Floyd-Warshall’s algorithms because of heuristic search

and optimal path guarantee [66].

Additionally, there are some frameworks and developed algorithms. Bio-inspired

optimisation framework can be applied to UAV path planning, such as ant colony

optimisation [60]. For real-time path planning, particle swarm optimisation and

genetic algorithms can be applied [67]. The anytime algorithm improves the par-

ticle swarm optimisation algorithm to generate feasible paths in an obstacle-rich

environment [68].

Splines, Bezier curves, polynomials, and semi-analytical methods are for quadrotor

UAVs [69]. The adaptive vortex search algorithm is used for path planning [2].

Speed-up robust features algorithm is used in visual navigation [70]. The spline-

RRT* algorithm is based on the RRT* algorithm and is the asymptotically optimal

path planner for following the terrain [71].
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Some algorithms consider the shortest path the best, but the best path is not always

the shortest one but with minimal costs. Therefore, cost functions are developed

to consider the complex characteristics and evaluate the generated paths. If a nav-

igation algorithm can reach the near-optimal point quickly, the number of needed

flight tasks will reduce [72]. The definition of the best path has been changed to

the path with minimal costs of travelled distance, fuel consumption, and average

altitude [67].

There are many cost functions that focus on the algorithms. The cost function of

the collaborative search path planning algorithm concerns the distances, the search

area boundaries, the number of discrete points, and the turn angle [73]. For the

sparse bidirectional A* search algorithm, the cost function is related to the length

of the specific edge, the threat cost, and the A* search cost [64].

Routing protocols imply metrics to evaluate the path, and a metric can be related

to time used to communicate with the neighbours, path bandwidth, the distance

between neighbours, and sensor capabilities [66]. The cost of the spline-RRT* algo-

rithm is reduced if the number of vertices increases [71].

Moreover, the cost functions consider the properties of UAVs and paths. The energy

of cruise steady, relative position change, airborne equipment, charging path, and

mission energy are involved in a UAV energy model as the cost function [74]. The

vertical climb and descent of the path segment are considered with the length of the

path segment, and the climb phase spends more fuel while the descent phase spends

less fuel [68].

The sum of the deviation of the corners and the height deviations are summed up

for the cost function of the adaptive vortex search algorithm [2]. The developed cost

function penalises the cost of longer paths, more power, more fuel, collision with the

terrain, danger zones, higher average altitude, and unsmoothed paths [67].

More factors should be considered for generating the optimal path. For those UAVs

that have missions, finding a path to achieve the required mission is the goal for UAV

navigation. The critical points of minimising the cost can be linked to minimising

the path length, flight time, fuel consumption, or risk of destruction [75].
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For multiple UAVs, the path should be flyable and avoid threats so that the costs can

be threat cost and fuel consumption based on UAV speed and path length [76]. The

survivability of the UAV is measured by a single cost function related to the threat

cost [76]. Path regulation, terrain threats, un-flyable zones and altitude constraints

are defined as environmental factors to be calculated in the cost function [60].

Furthermore, there are many articles that support UAV navigation under GPS out-

ages or in GPS-denied environments. The network-based method can be used for

path planning for UAVs with obstacle avoidance with long-term GPS outages and

uses landmark-based navigation [62]. The software framework and the instanta-

neous task specification using constraints methodology are developed to combine

with shared control, object tracking and obstacle avoidance. It can be applied in

uncertain dynamic environments [58].

Motion capture system/INS integrated navigation system is proposed for indoor

UAV navigation with Kalman filter [77]. The RGB-D SLAM algorithm is proposed

to improve the SLAM algorithm for indoor navigation [78]. The navigation problem

is transferred to a Partially-observable Markov decision process for UAV uncertainty-

based navigation [79].

Vision sensors are popular because the limited payload capability of small UAVs

motivates to use the of vision sensors, which are lightweight, cheaper, and more

flexible [80]. The guidance strategy with a forward-facing camera is proposed for

UAV navigation, which considers computed optical flow [80].

Speed-up robust features algorithm is used in visual navigation [70]. The new self-

adaptive methodology for UAV autonomous navigation is proposed based on com-

puter vision [81]. This approach can change configuration based on the different

environments, and a Bayesian network and a Multiplayer Perceptron were trained

to classify the images.

The novel vision-aided navigation architecture is proposed for accurate UAV local-

ization by aiding the inertial navigation system (INS) and referring to geographic

information system (GIS) data [82]. For orchard-like environments, vision and alti-

tude sensors are utilised in the flight system for vision-based UAV navigation [83].

Sensor-based odometry can be generated from the RGB camera for UAV navigation
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to local the UAV, then plan the path by desired waypoints [84].

Synthetic Aperture Rader can aid UAV navigation, and the attitude and the position

can be inferred by inspecting both phase and amplitude of Synthetic Aperture Rader

images [85]. The object-oriented landmark recognition system is proposed for UAV

navigation, and the keys to swift adaption are clear object-oriented coding on the

landmarks, their properties, and constraints [86].

An optimal flow-based algorithm is designed as an artificial bee colony-based block-

matching algorithm combined with an extended Kalman filter as a low-cost solution

[87]. The aerodynamic model/INS/GPS, failure-tolerant navigation with Federated

Kalman filter, is proposed for multirotor UAVs [88]. The primary navigation sensors

are IMU and GPS for the current UAV system [89].

The new particle filter (PF) model is designed for real-time residual estimation,

and the novel fuzzy inference system-based anomaly decision algorithm is used for

prediction and precision. The Wireless Local Positioning System (WLPS) is a recent

technology for measuring the position, and a Weighted Measurement Fusion Kalmen

Filter is proposed, and each measurement of the process fusion process is weighted

according to the signal travelling distance [90].

Additionally, the algorithms for radar-odometry with ultralight radar sensor has

been provided with IMU data for sensor fusion for mini- and micro-UAV [91]. For

UAV navigation in indoor corridor environments, the monocular vision-aided ap-

proach is proposed with vanishing points, scale-invariant vital points, and a Kalman

filter [92]. Finding motion elements can be based on a UAV navigation approach

with the optical flow to provide an additional way of navigation [93].

There are some other approaches for UAV navigation. A chaotic UWB-MIMO

waveform design can be implemented to identify and avoid potential collision threats

with a Dirichlet-process-mixture-model-based Bayesian clustering approach and a

change-point detection algorithm [94]. GPS and IMU can collaborate with the Air

Data system to raise the accuracy of UAV navigation, and the modified two-step

adaptive Kalman filter is involved in solving navigation parameters [95].
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2.2.3 Discussion of Path Planning Algorithms

The optimal path is considered the shortest path, so many graph search algorithms

were applied as solutions, such as the A* algorithm, RRT searching, Dijkstra algo-

rithm, and Bellman Ford’s algorithm. Many papers propose improvements to the

A* algorithm. Optimization frameworks also act as the solutions, such as genetic

algorithms, ant colony optimization, and particle swarm optimization. Robots can

be operated in several environments, including air and indoor, even in GPS-denied

environments. There are many path-planning solutions, and most of the solutions

implement the Kalman filter in the literature.

However, the shortest path is not the optimal path in many cases, so the costs

of the paths are considered, and cost functions are developed to evaluate paths.

Cost functions are proposed with specific algorithms or methods. Cost functions

are usually based on the length of the path, the consumption of power and fuel, the

threat and forbid zones, the collisions, and the properties of robots. From these cost

functions, it can be concluded that the path’s costs should not only consider the

length of the path, and the best path should be the path with minimal costs.

2.3 Multi-robot Path Planning

Figure 2.1 presents the classification of multi-robot path-planning algorithms, and

it is divided into four categories: classical approaches, heuristic algorithms, artificial

intelligence (AI)-based and bio-inspired approaches. The subcategories are linked to

the primary categories and only display the significant subcategories. The classical

approaches include the Artificial potential field, sampling-based, and graph-based

approaches. The heuristic algorithms mainly consist of A* and D* search algorithms.

The AI-based approaches are the most common algorithms for multi-robot systems,

and the bio-inspired approaches take most of the attention. Metaheuristic has been

applied to most of the research, and the famous algorithms are PSO and GA. From

[9], GA and PSO are the most commonly used approaches.
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Figure 2.1: Classification of multi-robot path planning approaches.

2.3.1 Classical Approaches

Artificial Potential Field (APF)

The APF uses its control force for path planning, and the control force sums up

the attractive and the repulsive potential field. The illustration of APF is shown in

Figure 2.2; the blue force indicates the attractive field and the yellow force represents

the repulsive field. The APF establishes path-planning optimization and dynamic

particle models, and the additional control force updates the APF for multi-robot

formation in a realistic and known environment [96]. Another APF-based approach

is presented for a multi-robot system in a warehouse.

It uses the priority strategy and solves the drawbacks of traffic jams, local minima,

collisions, and non-reachable targets [97]. An innovative APF algorithm is proposed

to find all possible paths under a discrete girded environment. It implements a time-

efficient deterministic scheme to obtain the initial path and then uses enhanced GA

to improve it [98]. A potential field-based controller in [99] supports robots to follow

the designed path, avoid collision with nearby robots, and distribute the robots

stochastically across different paths in topologically distinct classes.

An improved APF is proposed to overcome the traditional APF’s shortcomings,

including target unreachable and a local minimum in [100] for real-time performance
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Figure 2.2: Illustration of the APF algorithm.

with dynamic obstacles for realizing local path planning. A collision avoidance

strategy and risk assessment are proposed based on the improved APF and the

fuzzy inference system for multi-robot path planning under a completely unknown

environment [101].

APF is applied in the approximate cost function in [102], and integral reinforcement

learning is developed for the minimum time-energy strategy in an unknown environ-

ment, converting the finite horizon problem with constraints to an infinite horizon

optimal control problem. APF is introduced for the reward functions and inte-

grates Deep Deterministic Policy Gradient and Model Predictive Control to address

uncertain scenes [103].

Sampling-based

The rapidly exploring random tree (RRT) searches high-dimensional and nonconvex

space by using a space-filling tree randomly, and the tree is built incrementally from

samples to grow towards unreached areas. The sampling-based approach’s outline

is demonstrated in Figure 2.3, and the generated path is highlighted in green. For a

multi-robot centralized approach, multi-robot path-planning RRT performs better

in optimizing the solution and exploring search space in an urban environment than

push and rotate, push and swap, and the Bibox algorithm [103]. The discrete-

RRT extends the celebrated RRT algorithm in the discrete graph with a speedy

exploration of the high-dimensional space of implicit roadmaps [104].
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Figure 2.3: Demonstration of the RRT algorithm.

Other Classical Approaches

Tabu search keeps searching for the solutions in the neighbourhood and records

the solutions in the Tabu list. The classic Tabu search is integrated with particle

swarm optimization (PSO) to enhance optimization ability in [105], and it is aimed

at the decision-making of routing and scheduling. It is based on the PSO and Tabu

search algorithm with a “minimum ring” for obtaining the dynamic path planning

for adapting the online requirements for a dynamic environment.

A polygon area decomposition strategy is applied to explore a target area with lo-

cated waypoints. It analyzes the effect of the partition of the area, and the number

of robots [106]. Planar graphs are used to solve optimal multi-robot path plan-

ning problems with computational complexity and establish the intractability of the

problems on the graphs to reduce the sharing of paths in opposite directions [107].

The grid pattern map decomposition is developed for coverage path planning and

employing multiple UAVs for collecting the images and creating a response map to

obtain helpful information [108].

For remote sensing and area coverage with multi-robot, graph-based task modelling

is proposed with mixed-integer linear programming to route the multiple robots

[109]. A mixed-integer linear programming model is presented based on the hexago-

nal grid-based decomposition method [110]. It can be applied for multi-UAV cover-

age path planning in rescue and emergency operations. The biconnected graph, user

input, and small critical benchmark are controlled by a path planner as presented in

[111] to solve the multi-AGV path planning problems of AGV planetary exploration,

automatic packages, and robotics mining.

A multi-robot informative path-planning approach transforms the continuous region
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Figure 2.4: Simple example of the A* algorithm.

into Voronoi components, and the robots are allocated free regions [112]. The multi-

robot navigation strategy with path priority is presented in [113]; a generalized

Voronoi diagram divides the map according to the robot’s path-priority order and

finds the path-priority order for each robot.

For the cited papers, the classical approaches consist of APF and sampling-based

algorithms. The classical algorithms usually involve a predefined graph, requiring

high computational space. The trend of implementing the classical algorithms is

combined with other state-of-art algorithms. The heuristic algorithms are proposed

for complete and fast path planning.

2.3.2 Heuristic Algorithms

A* search

The A* search algorithm is one of the most common heuristic algorithms in path

planning. Figure 2.4 shows the simple example of the gird-based A* algorithm, and

the path is highlighted in green. It uses the heuristic cost to determine the optimal

path on the map. The relaxed-A* is used to provide an optimal initial path and fast

computation, and Bezier-splines are used for continuous path planning to optimize

and control the curvature of the path and restrict the acceleration and velocity [28].

A two-level adaptive variable neighbourhood search algorithm is designed to be inte-

grated with the A* search algorithm for the coupled mission planning framework. It

models the path planning problem and the integrated sensor allocation to minimize

travel costs and maximize the task profit [114]. For the multi-AGV routing problem,
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the improved A* algorithm plans the global path and uses a dynamic RRT algo-

rithm to obtain a passable local path with kinematic constraints, avoiding collisions

in the grid map [43].

Additionally, [115] utilized the A* algorithm for the predicted path and generated

a flyable path by cubic B-spline in real-time for guidance with triple-stage predic-

tion. With the computational efficiency of cluster algorithms and A*, the proposed

planning strategy supports online implementation. An optimal multi-robot path-

planning approach is proposed with EA* algorithm with assignment techniques and

fault-detection algorithm for the unknown environment based on the circle parti-

tioning concept in [116]. A proposed navigation system integrates a modified A*

algorithm, auction algorithm, and insertion heuristics to calculate the paths for mul-

tiple responders. It supports connection with a geo-database, information collection,

path generation in dynamic environments, and spatiotemporal data analysis [117].

The D* algorithm is employed for multi-robot symbiotic navigation in a knowledge-

sharing mechanism with sensors [19]. It allows robots to inform other robots about

environmental changes, such as new static obstacles and path blockage, and it can

be extended for real-time mobile applications. Additionally, D* Lite is applied with

artificial untraversable vertex to avoid deadlocks and collisions for real-time robot

applications, and D* Lite has fast re-planning abilities [20].

A cloud approach is developed with D* Lite and multi-criteria decision marking to

offer powerful processing capabilities and shift computation load to the cloud from

robots in the multi-robot system with a high level of autonomy [118]. An integrated

framework is proposed based on D* Lite, A*, and uniform cost search, and it is used

for multi-robot dynamic path-planning algorithms with concurrent and real-time

movement [119].

Other Heuristic Algorithms

A constructive heuristic approach is presented to perceive multiple regions of inter-

est. It aims to find the robot’s path with minimal cost and cover target regions

with heterogeneous multi-robot settings [17]. Conflict-Based Search is proposed

for multi-agent path planning problems in the train routing problem for schedul-
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ing multiple vehicles and setting paths in [120]. For multi-robot transportation, a

primal-dual-based heuristic is designed to solve the path planning problem as the

multiple heterogeneous asymmetric Hamiltonian path problem, solving in a short

time [121]. The linear temporal logic formula is applied to solve the multi-robot path

planning by satisfying a high-level mission specification with Dijkstra’s algorithm in

[122].

A modified Dijkstra’s algorithm is introduced for robot global path planning without

intersections, using a quasi-Newton interior point solver to smooth local paths in

tight spaces [123]. Moreover, cognitive adaptive optimization is developed with

transformed optimization criteria for adaptively offering the accurate approximation

of paths in the proposed real-time reactive system; it takes into account the unknown

operation area and nonlinear characteristics of sensors [29].

The Grid Blocking Degree (GBD) is integrated with priority rules for multi-AGV

path planning, and it can generate a conflict-free path for AGV to handle tasks

and update the path based on real-time traffic congestion to overcome the problems

caused by most multi-AGV path planning offline scheduling [124]. Heuristic algo-

rithms, minimization techniques, and linear sum assignment are used in [125] for

multi-UAV coverage path and task planning with RGB and thermal cameras. [126]

designed the extended Angular-Rate-Constrained-Theta* for a multi-agent path-

planning approach to maintaining the formation in a leader-follower formation.

Figure 2.5 displays the overview of the mentioned heuristic algorithms. The heuristic

algorithms are widely used in path planning, and the heuristic cost functions are

developed to evaluate the paths. The algorithms can provide the complete path

in a grid-like map. However, for the requirement of flexibility and robustness, bio-

inspired algorithms are proposed.

2.3.3 Bio-Inspired Techniques

Particle Swarm Optimization (PSO)

PSO is one of the most common metaheuristic algorithms in multi-robot path plan-

ning problems and formation. The flowchart of PSO is shown in Figure 2.6. It

is a stochastic optimization algorithm based on the social behaviour of animals,
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Figure 2.5: Search algorithms.

and it obtains global and local search abilities by maintaining a balance between

exploitation and exploration [127]. [128] presents an interval multi-objective PSO

using an ingenious interval update law for updating the global best position and

the crowding distance of risk degree interval for the particle’s local best position.

PSO is employed for multiple vehicle path planning to minimize the mission time,

and the path planning problem is formulated as a multi-constrained optimization

problem [129], while the approach has low scalability and execution ability.

An improved PSO is developed with differentially perturbed velocity, focusing on

minimizing the maximum path length and arrival time with a multi-objective opti-

mization problem [130]. The time stamp segmentation model handles the coordina-

tion cost. Improved PSO is combined with modified symbiotic organisms searching

for multi-UAV path planning, using a B-spline curve to smooth the path in [131].

For a non-stationary environment, improved PSO and invasive weed optimization

are hybrids for planning a path for each robot in the multi-robot system, balancing

diversification and intensification, and avoiding local minima [132].

PSO is adapted for a leader-follower strategy in multi-UAV path planning with ob-

stacle avoidance [127]. A distributed cooperative PSO is proposed for obtaining

a safe and flyable path for a multi-UAV system, and it is combined with an elite

keeping strategy and the Pythagorean hodograph curve to satisfy the kinematic

constraints [133]. The enhanced PSO is improved by greedy strategy and demo-

cratic rule in human society inspired by sine and cosine algorithms. The projected

algorithm can generate a deadlock-free path with preserving a balance between in-

tensification and diversification [134].

For the multi-robot path planning issue, a coevolution-based PSO is proposed to ad-
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Figure 2.6: Flowchart of the PSO algorithm.

just the local and goal search abilities and solve the stagnation problem of PSO with

evolutionary game theory [135]. An improved gravitational search algorithm is inte-

grated with the improved PSO for a new methodology for multi-robot path planning

in the clutter environment, and it updates the particle positions and gravitational

search algorithm acceleration with PSO velocity simultaneously [136].

A hybrid algorithm of democratic robotics PSO and improved Q-learning is proposed

to balance exploitation and exploration, and it is fast and available for a real-time

environment. However, it cannot guarantee the completeness of the path, and it is

hard to achieve robot cooperation [137]. PSO-based and a B-Spline data frame solver

engine is developed for uninterrupted collision-free path planning. It is robust to

deal with current disturbances and irregular operations and provides quick obstacle

avoidance for real-time implementation [26].

A wireless sensor network is presented for locating obstacles and robots in a dy-

namic environment. It combines a jumping mechanism PSO algorithm and a safety

gap obstacle avoidance algorithm for multi-robot path planning [18]. The jumping

mechanism PSO estimates the inertia weight based on fitness value and updates

the particles. The safety gap obstacle avoidance algorithm focuses on robots struck

when avoiding obstacles. [138] designed the hybrid GA and PSO with fuzzy logic

controller for multi-AGV conflict-free path planning with rail-mounted gantry and

quay cranes; however, it is inapplicable to real-time scheduling.
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Figure 2.7: Flowchart of the GA algorithm.

Genetic Algorithm (GA)

GA is widely utilized for solving optimization problems as an adaptive search tech-

nique, and it is based on a genetic reproduction mechanism, and natural selection

[139]. The flowchart of GA is indicated in Figure 2.7. [140] uses GA and reinforce-

ment learning techniques for multi-UAV path planning, considers the number of

vehicles and a response time, and a heuristic allocation algorithm for ground vehi-

cles. GA solves the Multiple Traveling Sales Person problems with the stop criterion

and the cost function of Euclidean distance, and Dubins curves achieve geometric

continuity while the proposed algorithm cannot avoid the inter-robot collision or

support online implementation [27].

A 3D sensing model and a cube-based environment model are involved in describing

a complex environment, and non-dominated sorting GA is modified to improve the

convergence speed for the Pareto solution by building a voyage cost map by the

R-Dijkstra algorithm in [141] as an omnidirectional perception model for multi-

robot path planning. [142] applies the sensors in the area to obtain a minimal cost

and solves the travelling salesman, and GA is adapted for persistent cooperative

coverage.

Efficient genetic operators are developed to generate valid solutions on a closed met-

ric graph in a reasonable time and are designed for multi-objective GA for multi-

agent systems [143]. GA assigns the regions to each robot, sets the visiting orders,
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and uses simultaneous localization and mapping to create the global map in [144]

for coverage path planning. [145] presents GA to optimize the integration of motion

patterns that represent the priority of the neighbour cell and divide the target envi-

ronment into cell areas, and then use a double-layer strategy to guarantee complete

coverage.

A domain knowledge-based operator is proposed to improve GA by obtaining the

elite set of chromosomes, and the proposed algorithm can support robots with mul-

tiple targets [146]. For intelligent production systems, the improved GA is aimed at

complicated multi-AGV path planning and maneuvering scheduling decisions with

time-dependent and time-independent variables. It first addresses AGV resource

allocation and transportation tasks and then solves the transportation scheduling

problem [147].

An improved GA was presented with three-exchange crossover heuristic operators

than the traditional two-exchange operators, which consider double-path constraints

for multi-AGV path planning [148]. [139] proposed a boundary node method with

a GA for finding the shortest collision-free path for a 2D multi-robot system and

using a path enhancement method to reduce the initial path length. Due to the

short computational time, it can be used for real-time navigation, while it can only

be implemented in a known environment without dynamic obstacles.

A high degree of GA is employed for optimal path planning under a static environ-

ment at offline scheduling, and online scheduling is aimed to solve conflicts between

AGVs for the two-stage multi-AGV system [149]. The evolution algorithm is used for

planning a real-time path for multi-robot cooperative path planning with a unique

chromosome coding method, redefining mutation and crossover operator in [150].

Ant Colony Optimization (ACO)

Ants will move along the paths and avoid obstacles, marking available paths with

pheromones, and the ACO treats the path with higher pheromones as the optimal

path. The principle of ACO is demonstrated in Figure 2.8, and the path with a

higher pheromone is defined as the optimal path marked by green. For collision-

free routing and job-shop scheduling problems, an improved ant colony algorithm is
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Figure 2.8: Changes of the ACO algorithm with different timeslots.

enhanced by multi-objective programming for a multi-AGV system [151].

For multi-UGVs, a continuous ACO-based path planner focuses on coordination

and path planning. It is integrated with an adaptive waypoint-repair method and

a probability-based random-walk strategy to balance exploration and exploitation

and improve the algorithm’s performance, resolving the coordination with a velocity-

shifting optimization algorithm [152].

K-degree smoothing and the improved ACO are integrated as a coordinated path

planning strategy for the multi-UAV control and precise coordination strategy in

[153]. Voronoi models the environment by considering various threats, and the

improved ACO’s pheromone update method and heuristic information are redefined

for path planning, then using a k-degree smoothing method for the path smoothing

problem. For precision agriculture and agricultural processes, ACO, Bellman-Held-

Karp, Christofides, and Nearest Neighbor based on K-means clustering are used for

the optimization path of multi-UAV [154].

Pigeon-Inspired Optimization (PIO)

Pigeon navigation tools inspired PIO, and it uses two operators for evaluating the

solutions. Social-class PIO is proposed to improve the performances and convergence

capabilities of standard PIO with inspiring by the inherent social-class character of

pigeons [155], and it is combined with time stamp segmentation for multi-UAV path

planning. [156] analyzing and comparing the changing trend of fitness value of local
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and global optimum positions to improve the PIO algorithm as Cauchy mutant PIO

method, and the plateau topography and wind field, control constraints of UAVs

are modelled for cooperative strategy and better robustness.

Grey Wolf Optimizer (GWO)

GWO is inspired by the hunting behaviour and leadership of grey wolves, and it ob-

tains the solutions by searching, encircling, and attacking prey. An improved grey

wolf optimizer is employed for the multi-constraint objective optimization model

for multi-UAV collaboration under the confrontation environment. It considers fuel

consumption, space, and time [157]. The improvements of the grey wolf optimizer

are individual position updating, population initialization, and decay factor updat-

ing. An improved hybrid grey wolf optimizer is proposed with a whale optimizer

algorithm in a leader-follower formation and fuses a dynamic window approach to

avoid dynamic obstacles [158].

The leader-follower formation controls the followers to track their virtual robots

based on the leader’s position and considers the maximum angular and linear speed

of robots. [159] proposed a hybrid discrete GWO to overcome the weakness of

traditional GWO, and it updates the grey wolf position vector to gain solution

diversity with faster convergence in discrete domains for multi-UAV path planning,

using greedy algorithms and the integer coding to convert between discrete problem

space and the grey wolf space.

Other Bio-Inspired Techniques

The fruit fly optimization approach usually solves the nonlinear optimization prob-

lem. The multiple swarm fruit optimization algorithm is presented for the coordi-

nated path planning for multi-UAVs, and it improves the global convergence speed

and reduces the possibilities of local optimum [160].

An improved gravitational search algorithm is proposed for multi-robot path plan-

ning under the dynamic environment based on a cognitive factor, social, and memory

information of PSO, and deciding the population for the next generation based on

greedy strategy [161].
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The simulated annealing is integrated with the Dijkstra algorithm for calculating

the optimal path based on the Boolean formula and the global map for a high-level

specification for multi-robot path planning [24]. The hybrid algorithm of sine-cosine

and kidney-inspired is developed for multi-robot in a complex environment. It selects

the optimal positions for each robot to avoid conflicts with teammates and dynamic

obstacles [162].

The hybridization of invasive weed optimization and firefly algorithm is employed

to adjust the movement property of the firefly algorithm and spatial dispersion

property of invasive weed optimization for exploration and exploitation [163]. The

Differential Evolution algorithm tunes the differential weight, population size, gen-

eration number, and crossover for multi-UAV path planning in [164]. It defines the

minimum generation’s weighting required between the computational and the path

cost.

Physarum is a bio-inspired method for path planning, and it can take a quick re-

sponse to external change. [23] proposed a Physarum-based algorithm for multi-

AGV for model-based mission planning in dynamic environments with an adaptive

surrogate modelling method. A novel swarm intelligence algorithm is developed as

an Anas platyrhynchos optimizer for multi-UAV cooperative path planning.

The Anas platyrhynchos optimizer simulates the swarm’s moving process and warn-

ing behaviour [165]. It proposes low-communication cooperation and heterogeneous

strategies for online path planning based on differential evolution-based path plan-

ners [166]. It summarizes local measurements with the sparse variation Gaussian

process, sharing information even in a weak communication environment. [167] de-

veloped a multi-task multi-robot framework for challenging industrial problems. It

proposes Large Neighbor Search as a new coupled method to make task assignment

choices by actual delivery costs.

The artificial immune network algorithm is improved with the position tracking

control method for providing the abilities of diversity and self-recognition for multi-

robot formation path planning with leader robots, and it overcomes the shortcomings

of immature convergence and local minima [168]. Differential evolution algorithm is

improved in [169] for calculating collision-free optimal path with multiple dynamic
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obstacle constraints in a 2D map. An efficient artificial bee colony algorithm is

proposed for online path planning, selecting the appropriate objective function for

collision avoidance, target, and obstacles [170].

Bio-inspired techniques mainly include PSO, GA, ACO, PIO, and GWO. They are

inspired by animals’ natural behaviours and employ particles for path generation. As

for computational efficiency and powerful implementation, they are popular in multi-

robot path planning. AI-based approaches are proposed due to the development of

intelligent systems and the requirements of adapting to changing environments.

2.3.4 Artificial Intelligence

Fuzzy Logic

Fuzzy logic uses the principle of ”degree of truth” for computing the solutions. It

can be applied for controlling the robot without the mathematical model but cannot

predict the stochastic uncertainty in advance. As a result, a probabilistic neuro-

fuzzy model is proposed with two fuzzy level controllers and an adaptive neuro-

fuzzy inference system for multi-robot path planning and eliminating the stochastic

uncertainties with leader-follower coordination [171]. The fuzzy C-means or the K-

means methods filter and sort the camera location points, then use A* as a path

optimization process for the multi-UAV travelling salesman problem in [16].

For collision avoidance and autonomous mobile robot navigation, Fuzzy-wind-driven

optimization and a singleton type-1 fuzzy logic system controller are hybrids in the

unknown environment [172]. The wind-driven optimization algorithm optimizes

the function parameters for the fuzzy controller, and the controller controls the

motion velocity of the robot by sensory data interpretation. [173] proposed a reverse

auction-based method and a fuzzy-based optimum path planning for multi-robot

task allocation with the lowest path cost.

Machine Learning

Machine learning simulates the learning behaviour to obtain the solutions. It is

used for path planning, embracing mobile computing, hyperspectral sensing, and

rapid telecommunication for the rapid agent-based robust system [174]. Kernel
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smooth techniques, reinforcement learning, and the neural network are integrated

for greedy actions for multi-agent path planning in an unknown environment [21]

to overcome the shortcomings of traditional reinforcement learning, such as high

time consumption, slow learning speed, and disabilities of learning in an unknown

environment.

The self-organizing neural network has self-learning abilities and competitive charac-

teristics for the multi-robot system’s path planning and task assignment. [175] com-

bined it with Glasius Bio-inspired neural network for obstacle avoidance and speed

jump while the environment changes have not been considered in this approach.

The biological-inspired self-organizing map is combined with a velocity synthesis

algorithm for multi-robot path planning and task assignment. The self-organizing

neural network supports a set of robots to reach multiple target locations and avoid

obstacles autonomously for each robot with updating weights of the winner by the

neurodynamic model [176].

Convolution Neural networks analyze image information to find the exact situation

in the environment, and Deep q learning achieves robot navigation in a noble multi-

robot path-planning algorithm [177]. This algorithm learns the mutual influence of

robots to compensate for the drawback of conventional path-planning algorithms.

In an unknown environment, a bio-inspired neural network is developed with the

negotiation method, and each neuron has a one-to-one correspondence with the po-

sition of the grid map [178]. A biologically inspired neural network map is presented

for task assignment and path planning, and it is used to calculate the activity values

of robots in the maps of each target and select the winner with the highest activity

value, then perform path planning [179]. The simple neural network diagram is

exhibited in the following Figure 2.9.

Moreover, a multi-agent path-planning algorithm based on deep reinforcement learn-

ing is proposed, providing high efficiency [180]. Another multi-agent reinforcement

learning is developed in [181], and it constructs a node network and establishes an

integer programming model to extract the shortest path. The improved Q-learning

plans the collision-free path for a single robot in a static environment and then uses

the algorithm to achieve collision-free motion among robots based on prior knowl-
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Figure 2.9: Diagram of a three-layer neural network.

edge [182]. The reinforcement learning framework is applied to optimize the quality

of service and path planning, describe the users’ requirements, and consider geomet-

ric distance and risk by reinforcement learning reward matrix with a sigmoid-like

function [183].

An attention neural network is used for generating the multimachine collaborative

path planning as attention reinforcement learning, and it can meet high real-time

requirements [184]. A deep Q-network is implemented with a Q-learning algorithm

in a deep reinforcement learning algorithm for a productive neural network to handle

multi-robot path planning with faster convergence [185]. The meta-reinforcement

learning is designed based on transfer learning [186], and it improves proximal policy

optimization by covariance matrix adaptation evolutionary strategies to avoid static

and dynamic obstacles.

Multi-agent reinforcement learning is improved by an iterative single-head attention

mechanism for multi-UAV path planning, and it calculates robot interactions for

each UAV’s control decision-making [187]. Fuzzy reinforcement learning is proposed

for the continuous-time path-planning algorithm, combining a modified Wolf-PH

and fuzzy Q-iteration algorithm for cooperative tasks [188].
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2.3.5 Others

The algorithms based on mathematical principles or other unclassified systems are

listed in this session. These algorithms are not typically classified into classical,

heuristic, bio-inspired, and AI-based approaches.

A multi-robot path planning system is developed with Polynomial-Time for solutions

with optimality constant-factor [25], and it provides efficient implementations and

adapted routing subroutines. A multi-robot path-planning algorithm for industrial

robots is presented based on the first low polynomial-time algorithm on grids [189].

An innovative method based on Fast Marching Square is proposed in [190] for simple

priority-based speed control, the planning phase, and conflict resolution in 3D urban

environments. The fast Marching Square algorithm is also used in a triangular

deformable leader-follower formation for multi-UAV coverage path planning [191].

[192] combined polynomial time with Push and spin algorithm for multi-robot path-

planning algorithm and enhances the performance of choosing the best path. A first

low-polynomial running time algorithm is proposed for multi-robot path planning

in grid-like environments and solves average overall problem instances by constant

factors make-span optimal solutions [193]. For optimal multi-robot coverage path

planning, spanning tree coverage is proposed, and it divides the surface into many

equal areas for each robot to guarantee minimum coverage path, complete coverage,

and a non-backtracking solution [194].

For multi-UAV coverage path planning, a metric Cartesian system is proposed, and

it transforms the coordinates into Cartesian and splits the field to assign to each

robot, then forms the path with minimizing the time [4]. Probability Hypothesis

Density representation is used to optimize the number of observed objects in multi-

agent informed path planning, and it can represent unseen objects [195]. An iterative

min–max improvement algorithm is designed to make span-minimized multi-agent

path planning to solve the constrained optimization problem using a local search

approach in discrete space [196].

The new route-based optimization model is presented for multi-UAV coverage path

planning with column generation, and it can generate feasible paths and trace energy

required for mission phases [197]. A multi-agent collaborative path-planning algo-
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rithm is provided in [198] to guarantee complete area coverage and exploration and

use a staying alive policy to consider battery charge level limitation in the indoor

environment.

Integer linear programming models the path planning problem for three objectives

with the task due times, including minimizing total unit penalties, tardiness, and

maximum lateness [99]. Integer linear programming solves the multi-robot asso-

ciation path planning problem for optimizing the path and robots’ access points

associations in industrial scenarios [199]. For finding the optimal path for robots to

perform tasks, the optimal problem is transformed into integer linear programming

with the Petri net model in [200]. One-way multi-robot path planning is proposed

for the warehouse-like environment, and it is based on Integer programming to re-

duce the robots’ configuration costs [201]. A mixed-integer linear programming

formulation is designed for multi-robot discrete path planning, and it extends the

single-robot decision model to multi-robot settings with anticipated feedback data

[15]. It supports real-time action based on modelling extension.

For multi-agent navigation, the reciprocal velocity obstacles (RVO) model is used for

collision detection and prevention and uses an agent-based high-level path planner

[202]. A cooperative cloud robotics architecture is developed as a cooperative data

fusion system to gather data from various sensing sources and renew the global view

to extend the field of view for each AGV in the industrial environment and uses

flexible global and local path planning to avoid unexpected obstacles, and congestion

zones [13].

The hybrid approach is presented in [6] based on the improved Interfered Fluid Dy-

namical System and the Lyapunov Guidance Vector Field for multi-UAV cooperative

path planning. It introduces a vertical component for target tracking and uses the

improved Interfered Fluid Dynamical System to resolve local minimum problems

and avoid obstacles. Cooperative sensing and path planning for multi-vehicle is

transformed as a partially observable decision-making problem, and it uses Markov

decision processes as a decision policy and deploys a multi-vehicle communication

framework [203].
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2.3.6 Discussion of Multi-robot Path Planning Classifica-

tion

The classical approaches include APF and sampling-based algorithms, such as RRT.

The classical techniques usually require more computational time and space, espe-

cially for the sampling-based methods. Furthermore, the classical techniques cannot

ensure completeness or capability, and it requires a predefined graph and is difficult

for them to re-plan the path during implementation.

A* and dynamic A* (D*) algorithms are standard applications for heuristic algo-

rithms. The heuristic algorithms primarily consist of the graph search algorithm,

and they are easy to apply for path planning problems and evaluate the path by

the developed cost function. The heuristic algorithms can successfully provide the

globally optimal path with lower required runtime and space than the classical ap-

proaches in a graph.

The bio-inspired approaches have been widely researched in recent years as the pri-

mary algorithms used in multi-robot path planning, especially metaheuristic algo-

rithms. This chapter discusses PSO, GA, ACO, PIO, and GWO. They are inspired

by nature, such as the social behaviour of animals. The bio-inspired approaches use

various particles to generate the optimal solution for the defined problem.

The AI-based approaches based on fuzzy logic or machine learning have gained more

attention recently. They have fast computation abilities, and the models are usually

adapted for online path planning. The AI-based strategies learn from the previous

data to train the models. The neural network is the primary application of machine

learning for multi-robot path planning, which consists of multiple layers for learning.

The detailed analysis refers to Section 2.5.2.

Path planning is part of the multi-robot system’s consideration, and the structure of

the multi-robot system can be classified as centralized or decentralized based on the

planner. The multi-robot system is centralized if the system has supervisory control

or a central planner. For robots making their decisions, the system is decentralized.

The details of the decision-making of the multi-robot system refer to Section 2.4.
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(a) Structure of a centralized framework

(b) Structure of a decentralized frame-

work

Figure 2.10: Structure of decision-making framework

2.4 Decision-making

A Multi-robot system can be a centralized or decentralized structure. A centralized

system is controlled by the central decision-maker, while a decentralized multi-robot

system has no supervisory control. Figure 2.10 exhibits a centralized framework that

has more vital fault-tolerant ability while poor global ability and a decentralized

framework in which robots use the neighbours’ information.

2.4.1 Centralized

A centralized framework for an industrial robot is proposed in [204], which combines

GA and A* algorithms for 2D multi-robot path planning. GA is utilized for task

allocation, and the A* algorithm is for path planning, and this approach addresses

collision avoidance. A two-stage centralized framework solves multi-agent pickup

and delivery problems, and it achieves path and action planning with orientation

under non-uniform environments by heuristic algorithms, detecting and resolving

conflicts by a synchronized block of information [205].

A practical centralized framework is developed based on an integer linear program-

ming model, and it operates time expansion in the discrete roadmap to obtain the

space-time model with dived and conquer heuristic and reachability analysis [30].
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In grid graphs, a centralized and decoupled algorithm is proposed for multi-robot

path planning in automated and on-demand warehouse-like settings, and it explores

optimal sub-problem solutions and path diversification databases for resolving local

path conflicts [206]. It uses a decoupling-based planner with two heuristic attack

phases and goal configuration adjustments.

[207] uses a centralized controller for multi-target multi-sensor tracking for environ-

mental data acquisition for path planning and feedback control for sending the path

to the system. The optimal bid valuation is proposed with the Dijkstra algorithm to

find the shortest path, and the proposed centralized model supports an alternative

sampling-based method to reduce the computation time with achieving optimality

[31].

A self-organizing map is used for data collection tasks and active perception for

online multi-robot path planning, and it jointly picks and allocates nodes and finds

sequences of sensing positions [208]. A mixed-integer programming formulation is

adapted for a discrete centralized multi-agent path planning problem, and a two-

phase fuzzy programming technique gains the Pareto optimal solution in [209].

The centralized simultaneous inform and connect (SIC) strategy is applied for multi-

objective path planning by GA, and it uses SIC to optimize search, communicate

and find the best path, and monitor tasks with quality of service [210]. A developed

synthesized A* algorithm is used for path planning through a centralized meta-

planner based on Bag of Tasks, and it runs on distributed computing platforms to

avoid dynamic obstacles [211].

A wireless network is proposed for commutation among the robots in APF links, and

it uses the Software Defined Network technique to update the network architecture

and employ the topology and APF to establish a network control model [212]. A

centralized architecture has a high degree of coordination, while dynamic and real-

time actions are weak [213]. The decentralized structure is proposed to overcome the

drawback of the centralized structure, thereby, providing a higher level of flexibility.
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2.4.2 Decentralized

Task assignment for multi-robot is essential during path planning. The decentralized

heuristic path-planning algorithm is proposed as Space utilization optimization for

multi-robot structures, and it reduces computation time and the number of conflicts

to gain the solution for one-shot and life-long problems [214]. An offline time-

independent approach is developed with deadlock-based search and conflict-based

search to assign the path to each robot when agents cannot share information [215].

The distributed multi-UAV system utilizes an insertion-based waypoint for path

planning and its reconfiguration in [216]. The roadmap algorithm receives near-

optimal paths in a decentralized coordination strategy to maximize connectivity

and redundancy, while the global path planning utilizes shared information for the

proposed two-layer control architecture [217].

The coordinated locomotion of a multi-robot system is divided into sub-problems,

such as homogenous prioritized multi-robot path planning and task planning, and

it uses prioritized reinforcement learning for these problems [33]. For a swarm of

UAVs, PSO is adapted as a planner for distributed full coverage path planning in a

dynamic and stochastic environment, minimizing the cost function and maximizing

the fitness function [14].

The enhanced A* algorithm referred to as the MAPP algorithm, is delivered in [218]

as the decentralized planner for task assignment and cooperative path planning for

multi-UAV in urban environments. Free-ranging motion scheme is implemented in

autonomous multi-AGV path planning and motion coordination. It considers non-

holonomic vehicle constraints for path planning and reliable detection and resolution

of conflicts for motion coordination based on a priority scheme [219].

A sampling-based motion planning paradigm is developed for decentralized multi-

robot belief space planning in an unknown environment for high-dimensional state

spaces in [32], and it calculates the utility of each path based on incremental smooth-

ing of efficient inference and insights from the factor graph. A fully completed dis-

tributed algorithm is developed for considering plan restructuring, individual path

planning, and priority decision-making for a distributed multi-agent system in [220].
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Graph search algorithm and APF are mixed for multi-robot delivery service in dif-

ferent environments, and it uses a strongly connected digraph to simplify the path

planning problem and use APF to prove flexibly [221]. A cluster-based decentralized

task assignment is proposed for real-time missions [115]. It generates a path, assigns

tasks for each robot in the initial planning stage, and adds the popup tasks to the

task list to be considered in the next planning stage. A novel smooth hypocycloidal

path is developed for multi-robot motion planning with local communication, and

it maintains safe clearances with obstacles [222].

A multi-agent distributed framework formulates the path planning problem as a

centralized linear program and then uses a framework for each agent while only

communicating with its neighbours as the distributed algorithms [223]. The pro-

posed model in [224] integrates decision-making policies and local communication

for multi-robot navigation in constrained workspaces, and it uses a convolutional

neural network to extract features from observations with a graph neural network

to achieve robot communication.

A localized path planning and a task allocation module are combined into a de-

centralized task and path planning framework, and it models each task as a mixed

observed Markov Decision Process or Markov Decision Process, using the max-

sum algorithm for task allocation and the localized forward dynamic programming

scheme for conflict resolution [225]. A Graph Neural Network is utilized to combine

with a key-query-like mechanism to evaluate the relative importance of messages

and learn communication policies in a decentralized multi-robot system [226].

The path planning problem is formulated as a decentralized partially observable

Markov decision process in [227], and the multi-agent reinforcement learning ap-

proach is proposed for multi-robot path planning to harvest data from distributed

end devices. It can support non-communicating, cooperative, and homogenous

UAVs, and the control policy can be used for challenging urban environments with-

out prior knowledge.

A genetic programming approach is proposed in a decentralized framework, and

the robots conduct the learning program to determine the following action in real-

time until they reach their respective destinations [228]. A decentralized multi-
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robot altruistic coordination is improved for cooperative path planning and resolves

deadlock situations [229]. APF is adapted in a proposed decentralized space-based

potential field algorithm for a group of robots to explore an area quickly and connect

with the team by dispersion strategy, using a monotonic coverage factor for a map

exchange protocol, avoiding minima and realistic sensor bounds [230].

Another study [231] proposed APF with the notion of priority, the neighbourhood

system, and the non-minimum speed algorithm to resolve the intersection of robots

and minimum local problems for the multi-robot system. The multi-agent Rapidly

Exploring Pseudo-random Tree is developed for real-time multi-robot motion plan-

ning and control based on the classical Probabilistic Road Map (PRM) algorithm. It

extends PRM as a deterministic planner with probabilistic completeness, simplicity,

and fast convergence [232].

2.4.3 Discussion of Decision-making Strategies

The centralized framework has higher control abilities for robots, and the actions

are directly sent from the centre controller to the robots, making decisions for each

robot. It provides better support and task assignment scheduling, and the algo-

rithms applied in the centralized framework have no restrictions. The cited papers

use the classical approaches, the heuristic algorithms, bio-inspired, and AI-based

techniques for the centralized framework, in particular, the heuristic algorithms.

However, centralized frameworks are weak in dynamic applications. The decentral-

ized structure is proposed to overcome the drawbacks of the centralized frameworks,

and it makes robots communicate with others and share information. The algo-

rithms used in the decentralized structure involve heuristic algorithms, optimization

metaheuristic algorithms, neural networks, APF, sampling-based approaches, and

AI-based algorithms. In this thesis, the combination of centralized and decentralized

frameworks as a dual-layer model is proposed to provide flexibility for the multi-

robot system. It enhances the robot’s communication with others and the central

controller for decision-making. For more discussion of decision-making strategies,

refer to Section 2.5.3.
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2.5 Discussion and Conclusions

2.5.1 Path Planning Algorithms

Robot path planning is essential because it provides the optimal and safe path for

autonomous navigation. The environment, the navigation ability, the obstacles, and

the properties of robots and paths are considered during path planning. There-

fore, it is a complicated research problem. The environment data is discretized into

meaningful data for processing path planning to generate the paths. Graph search

algorithms and improved bio-inspired frameworks can be applied for path plan-

ning because graph search algorithms guarantee path optimality, and bio-inspired

frameworks provide fast calculation. The cost functions are developed with these

algorithms to evaluate the path with minimal costs to determine the optimal path.

Table 2.1 compares navigation methodologies.

Table 2.1: Comparison of navigation methodologies

Papers Methodologies Sensors

[57], [63], [66] A* search

[63], [64] Sparse A* search algorithm

[59], [62] The network-based method

[65], [66] Mixed integer linear programs

and graph search algorithm

[67], [68], [233] Bio-inspired optimization frame-

work

[2] The adaptive vortex search algo-

rithm

[70] Speed-up robust features algo-

rithm

[71] The spline-RRT* algorithm

[87], [88] Kalman filter

[87] Artificial bee colony-based block-

matching algorithm

47



[56] Kalman filter The encoder, gyro, accel-

eration sensor, ultrasonic

sensor and infrared sen-

sor

[40] A* SLAMTEC Laser Scan-

ner

[53] Kalman filter, Dead Reckoning GPS

[55] The Derivative-free Extended In-

formation Filter (DEIF)

IMU, GPS, gyrocom-

passes, laser

[37] Deep Reinforcement Learning Cameras, GPS, speed

sensors

[49] PID Ultrasonic, Lidar, RFID

[45] SLAM IMU, laser scan

[52] Extended Kalman filter filters,

optimal weighted voting fusion

method

Rotating INS, GNSS

[44] A* and Optimized Strategy Odometry, an RGB-D

sensor

[51] Topological map Vision, RFID

[234] The Prioritized Coordination

(PC) algorithm

[38] Nonlinear model predictive con-

trol formulation

LiDAR

[3] A*, Fuzzy-based genetic algo-

rithm

[48] Interactive multiple model (IMM)

algorithm and Kalman filter

INS, UWB

[148] Genetic algorithm

[43] The dynamic RRT algorithm

The classical approaches are widely implemented for single robot path planning,

especially the A* algorithm. Bio-inspired and mathematical-based techniques are
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also employed. For gaining data from the environment, sensors are utilized. Sensor

fusion is typical for overcoming the drawbacks of one sensor, and the Kalman filter

is the classical solution for sensor fusion [52], [56]. INS and vision-based sensors

are popular during operation because they can operate in the GPS-denied area [37],

[48]. The future directions of the single robot path planning research should regard

real-time planning and develop the cost functions, which can be generally applied

to many algorithms or methods. The concerns of real-time path planning consider

dynamic environments, path re-planning and computational efficiency.

2.5.2 Multi-robot Path Planning

From the literature, the multi-robot path-planning approaches are classified into four

primary categories: classical approaches, heuristic approaches, bio-inspired tech-

niques, and artificial intelligence-based approaches. Table 2.2 summarizes the main

algorithms used in the categories, focusing on real-time implementation. The offline

executions occupy 62% of the multi-robot path-planning approaches, and real-time

operation reaches 38%.

The classical approach requires huge computational space to save the predefined map

and generated nodes, and thus they are mainly implemented in offline strategies. In

the mentioned papers, only 36.36% of the classical approaches can be employed for

online performance. The hybridization of the classical approach is adapted to solve

the mentioned problem and achieve real-time implementation by other algorithms

with developed algorithms or functions. 72.73% of papers are improved as hybrid

algorithms to overcome the drawbacks of the classical approaches.

The heuristic algorithms require less computation space than the classical approaches

and can produce complete solutions. It is typical for the heuristic algorithms to

be integrated with other algorithms, and the percentage of the hybrid approaches

reaches 88.89%. Furthermore, 66.67% of the papers indicate they can be applied

for online path planning and are achieved by computational efficiency. The power

heuristic algorithms or the approaches involved in interactive robots can be used for

online processing but with poor convergence performance.

Bio-inspired techniques are proposed for simple but powerful and robust solutions.
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They can consider multiple constraints during path planning, even for a complex or

dynamic environment. From the cited literature, PSO and GA are mainly involved in

path optimization. High computational efficiency and fast convergence ensure real-

time performance in dealing with dynamic obstacles, and 19.44% of metaheuristic

algorithms demonstrate real-time abilities. Hybrid coevolutionary algorithms are

usually proposed to overcome the drawbacks of a single evolutionary algorithm,

such as trapping in local optima and uncertain scenes. The percentage of the hybrid

approaches reaches 66.67%.

The AI-based approaches are developed to satisfy the dynamic environmental changes,

especially with machine learning. Machine learning for multi-robot path planning

mainly includes neural networks and reinforcement learning. They can usually

achieve dynamic operation according to the environmental changes with the de-

signed model or sensors, reaching 75% cited in AI-based papers. 60% of AI-based

algorithms are combined with other approaches to improve learning abilities and

reduce the consumed time.
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Table 2.2: Comparison of multi-robot path planning algorithms

Category Approach Paper Real-

Time

How to Achieve Real-

Time Implementation

Experiment Hybrid

Classical

APF

[96] N N N

[97] N N N

[98] N N Y

[99] N Y Y

[100] Y Repulsion function N N

[101] Y Priority-based algorithm N Y

[102] Y APF N Y

Sampling-based

[103] N N Y

[43] N N Y

[104] N N N

Heuristic A*

[28] N N Y

[114] N N Y

[115] Y Computational efficiency N Y

[116] Y Robot N N

[117] Y Computational efficiency N Y
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D*

[19] Y Sharing mechanism for

robots

Y Y

[20] Y Algorithm N Y

[118] N N Y

[119] Y Algorithm N Y

Bio-inspired PSO

[127] N N N

[128] N N N

[129] N N N

[130] N Y Y

[131] N N Y

[132] N Y Y

[133] N N N

[134] N N Y

[135] N N N

[136] N Y Y

[137] N Y Y

[26] Y Computational efficiency N Y

[18] Y Computational efficiency N Y

[138] N N Y
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GA

[139] Y Computational efficiency Y Y

[140] N N Y

[27] N N Y

[141] N N Y

[142] N N Y

[143] N N Y

[144] N N Y

[145] N N Y

[146] N N N

[147] Y Simplify the model N N

[148] N N N

[149] Y Two-stage strategies N N

[150] Y Computational efficiency N Y

ACO

[151] N N Y

[152] N N N

[153] N Y Y

[154] N N Y

PIO
[155] N N Y

[156] N N N
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GWO

[157] N N N

[158] N N Y

[159] Y Computational efficiency N Y

AI-based

Fuzzy logic

[171] N N Y

[16] N N Y

[172] Y Model Y Y

[173] Y Computational efficiency N N

Machine Learning

[174] Y Sensor N N

[21] Y Algorithm Y Y

[180] N N Y

[181] N N Y

[182] N N N

[183] Y Model N N

[184] Y Model N N

[185] Y Algorithm N N

[186] Y Model N Y

[187] Y Model N Y

[188] Y Model Y Y

[175] Y Model N Y

54



[176] Y Algorithm N Y

[177] N N Y

[178] N N N

[179] Y Algorithm N N

Where N stands for No, and Y stands for Yes.
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2.5.3 Decision-making

Additionally, the decision-making strategies can be divided into centralised and

decentralised categories. Table 2.3 compares the decision-making approaches for

algorithms, real-time applications, and hybrid techniques. The percentage of real-

time performance reaches 56%, and the portion of the offline techniques is 44%.

The real-time implementation has a higher rate due to the cited literature on the

decentralized framework.

For the centralized framework, the implemented algorithms include classical, bio-

inspired, heuristic, and AI-based approaches. It is general for an algorithm to com-

bine with other algorithms for improvement, and 72.73% of the cited centralized

papers propose hybrid strategies. The heuristic techniques or the classical methods

are integrated with the bio-inspired algorithms or network communications. The

rate of real-time operation in the centralized framework reaches 54.55%.

The centralized framework achieves real-time implementation by an online net-

work/system, the algorithm with fast speed, or data generation from the sensors.

The decentralized framework has more real-time applications than the centralized

framework. The robots gain information from the neighbours’ robots to determine

the next step and immediately operate the local communication system. A total of

57.14% of the decentralized approaches support online operations. The algorithms

with fast convergence, simplicity, excellent robustness or little computational time

and space are widely implemented in the structure. Only 23.81% of the cited de-

centralized papers involve the hybrid approaches.

Moreover, the hybrid structure has been developed recently to combine the ad-

vantages of centralized and decentralized approaches. It uses centralized problem

formation while the robots make decisions during task operations. Robots can gain

information from other robots or accomplish tasks under the distributed structure.

The employed techniques have no restrictions because the hybrid method combines

the benefits of centralized and decentralized methods as [206], [223], [235].
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Table 2.3: Comparison of decision-making approaches

Category Approach Paper Real-

Time

How to Achieve Real-

Time Implementation

Experiment Hybrid

Centralized

GA and A* [204] N N Y

Dijkstra and A* [205] N N Y

Integer linear pro-

gramming

[30] N N N

Feedback loop [207] Y Multi-sensor N N

Bid valuation and

sampling-based ap-

proach

[31] Y Computational efficiency N Y

Self-organizing map [208] Y Computational efficiency N N

Fuzzy programming [209] N N Y

Simultaneous inform

and connect

[210] Y Computational efficiency N Y

A* and cloud comput-

ing

[211] Y Computational efficiency N Y

Software Defined Net-

work and APF

[212] Y Wireless network N Y
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Decentralized

Space Utilization Op-

timization

[214] N N N

Conflict based search [215] N N N

Insertion [216] N N N

Roadmap [217] N N Y

Prioritized reinforce-

ment learning

[33] N N N

PSO [14] N N N

Free-ranging motion [219] N N N

A* [220] N N N

APF [221] Y Computational efficiency N Y

Hypocycloid

geometry
[222] Y Local communication Y N

Linear program [223] Y Computational efficiency N N

Graph neural network [224] Y Communications among

robots

N Y

Graph Neural Net-

work

[226] Y A key-query-like mechanism

to communicate

N Y
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Multi-agent reinforce-

ment learning

[227] Y Computational efficiency N N

Genetic Programming [228] Y Computational efficiency N N

Altruistic coordina-

tion

[229] Y Computational efficiency N N

Potential field [230] Y Robot communications N N

APF [231] Y Computational efficiency N N

RRT and PRM [232] Y Algorithms N Y

Hybrid

Path diversification

heuristic

[206] N N Y

A* [218] N N N

Markov Decision

Process
[225] Y Computational efficiency N N

Where N stands for No, and Y stands for Yes.
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2.5.4 Challenge

From the review of multi-robot path planning and decision-making strategies, the

traditional challenges involved in multi-robot path planning can be considered lo-

cal optima, ungranted completeness, and slow convergence. Many papers aim to

solve these problems by integrating the different algorithms or using a developed

controller. Nevertheless, this paper discovered a new challenge, as the multi-robot

path-planning approaches have not considered fault tolerance. The proposed papers

mention real-time implementation; however, most articles mainly focus on com-

putational efficiency or model simplicity to provide faster convergence for online

computation.

However, in real-time performance, updating the robots’ status and backing up

the robots’ failures are essential. The robots can send positions or motions to the

controller or the neighbours to update their status immediately rather than entirely

relying on the predefined path, which can be achieved by localization or vision

sensors. The multi-robot system’s fault tolerance is aimed to support the system

operating as expected, even if a robot fails.

For actual applications, a multi-robot system should detect the failure immediately

and broadcast the information to avoid collisions with other robots or path con-

gestion. Communications between the controller and robots and among robots are

important during failure tolerance. The other robots should adjust their defined

task plans or paths in real-time to achieve the tasks. The factors of communication

overheads would include energy consumption, bandwidth, latency, communication

network, and quality of service. It has no limitations of the system framework for

fault tolerance because the centralized framework can inform all robots quickly, and

the decentralized framework can send the fault signs to the neighbour robots.
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Chapter 3

The Mathematical-based Path

Planning algorithms for UAV

This chapter presents two mathematical-based path planning algorithms for differ-

ent case studies, one is for the terrain environment based on the Quintic Hermite

interpolation in Section 3.1, and the other one proposes Helix-HPSO for the multi-

building environment in Section 3.2.

3.1 Quintic Hermite Interpolation

3.1.1 Introduction

Path planning and obstacle avoidance are major processes in Unmanned Aerial Ve-

hicle (UAV) navigation. Path planning is to find a path between one position and

one destination position. UAV navigation can be operated in several environments,

such as indoor areas, air, and underwater. UAVs can carry cameras, sensors, urgent

suppliers, or communications equipment, and they can be controlled remotely or op-

erate autonomously [59]. UAVs can perform civilian applications, containing aerial

photography, video shoots, aerial mapping, inspection, reconnaissance and surveil-

lance, wildfire suppression, 3D modelling, agricultural services, traffic monitoring,

intelligence, environmental monitoring, and search-and-rescue [58], [69], [79], [236].

To achieve the missions of UAVs, terrain following flight is involved in protecting

61



UAVs from collisions. The terrain following is to find a path that is close to the

ground [59]. Goal assignment, team composition, path optimization, and resource

allocation are contained to support multiple UAVs coordination [237]. Mostly, solv-

ing the best path planning is related to deterministic search algorithms. But there

was a trend of using non-deterministic algorithms, such as the particle swarm opti-

mization algorithm and the genetic algorithm [67].

Also, Dijkstra’s algorithm, Bellman-Ford algorithm, Floyd-Warshall’s algorithm, the

vortex search algorithm, and A* can be used for finding the shortest path [2], [66]. A

discretization of the airspace is meaningful for applying the path planning algorithms

[67], [75]. From previous research, Quintic Hermite interpolation can also be used

to calculate path segments with simplified calculation and implementation [59], [62].

Cost functions are utilized to evaluate the optimal path to ensure the path has a

minimal cost compared to other paths. Costs can be calculated based on the actual

costs or estimated costs. UAVs’ cost functions usually include the consideration of

path length, flight altitude, danger zones, energy consumption, threats, flight time,

and path segments [2], [63], [64], [67], [233], [238].

This section solves the problem of finding the optimal path to the destination for

UAVs. The section is organized as follows. Sections 3.1.2 and 3.1.3 present the path

planning algorithm considering cost functions. Section 3.1.4 presents the simulation

results to validate the approach. It is concluded in Section 3.1.5.

3.1.2 Description of The Algorithm

For applying the planning algorithm, the airspace will be discretised to meaningful

representations for the algorithm. Waypoints are defined in the specified order. Each

waypoint is represented as (x, y, z) for 3D navigation. The matrix with n waypoints

is described as Equation (3.1):

Waypoints =


x1 y1 z1

x2 y2 z2
...

...
...

xn yn zn

 (3.1)
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Based on the literature, determining the flight path segment can be achieved by

Quintic Hermite interpolation [62]. Using (x(t), y(t), z(t)) to locate the position of

the UAV at the specific time t. The definition of tmax is the longest flight time from

Point 1 to Point 2. For the path segment between Point 1 and Point 2, polynomials

x(t), y(t), z(t) are as follows.

x(0) = x1 (3.2)

x(tmax) = x2 (3.3)

x
′
(0) = v1x (3.4)

x
′
(tmax) = v2x (3.5)

x
′′
(0) = 0 (3.6)

x
′′
(tmax) = 0 (3.7)

y(0) = y1 (3.8)

y(tmax) = y2 (3.9)

y
′
(0) = y1x (3.10)

y
′
(tmax) = y2x (3.11)

y
′′
(0) = 0 (3.12)

y
′′
(tmax) = 0 (3.13)

z(0) = z1 (3.14)

z(tmax) = z2 (3.15)

z
′
(0) = z1x (3.16)

z
′
(tmax) = z2x (3.17)

z
′′
(0) = 0 (3.18)

z
′′
(tmax) = 0 (3.19)

63



Based on Quintic Hermite interpolation, the equation of x(t) is:

x(t) = a5t
5 + a4t

4 + a3t
3 + a2t

2 + a1t + a0 (3.20)

y(t) and z(t) is calculated by the same formula as Equation (3.20). The coeffi-

cients can be calculated by calculating the six conditions for polynomial x(t) with

the equation of x(t), and the linear system (3.21) is the equations for solving the

coefficients for x(t), y(t), z(t).


t3max t4max t5max

3t2max 4t3max 5t4max

6tmax 12t2max 20t3max

 ∗

a3

a4

a5

 =


x2 − x1 − v1xtmax

v2x − v1x

0

 (3.21)

The tmax of Point 1 and Point 2 is calculated by:

Distance =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 (3.22)

tmax =
Distance

v
(3.23)

Where (x1, y1, z1) is the coordinate of the start point P1, (x2, y2, z2) is coordinate of

the destination point P2. v is the constant speed.

With autonomous navigation and defined waypoints, UAVs can perform aerial pho-

tography and environmental monitoring of specified locations by equipping the cam-

era.

3.1.3 Implementation of The Algorithm

The algorithm is implemented using the following process. The waypoints are

recorded in the Waypoint-Matrix. The algorithm uses iterations to calculate the

path to get a smooth path curve. The Euclidean distance of the waypoints is cal-

culated to calculate the flight time, then using distance to get tmax. For a more

precise trajectory, t is set from 0 to tmax with a line space of 0.01s. t is being input

to find the value of


a3

a4

a5

, and with the value of the coefficients, the path segment
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can be created. The points of the path are represented in the same way as the

Waypoint-Matrix.

Algorithm 1 shows the algorithm for generating the path, and the matrix imports

the waypoints. M is getting the size of the matrix, then sets the values of X1, Y 1,

Z1, X2, Y 2, and Z2 by locating the value within the matrix. Call the GetT ime

function to calculate each path segment’s tmax. The GetT ime function calls the

GetPathSegments function to get the positions. Using an empty matrix to store

the positions of each path segment. The algorithm involves iterations to get path

segments of every two waypoints.

Algorithm 2 presents the algorithm for getting time. The values of X1, Y 1, Z1,

X2, Y 2, Z2 are passed by the parameters, and the constant speed V is input as

18. Calculate the Euclidean distance between two waypoints, then calculate tmax

by using the distance to divide the speed for generating the path segments. Then

get the max value of t, and set the line space as 0.01. Call the GetPathSegments

function to get the positions of the path segment between every two waypoints.

Algorithm 3 presents the algorithm for getting path segments. The parameters pass

the values of X1, Y 1, Z1, X2, Y 2, Z2, and V 1X, V 2X, V 1Y, V 2Y, V 1Z, V 2Z are in-

put as 18 m/s, which is within the regular cruising speed for civilian UAV. Calculate

the coefficients between two waypoints, then calculate the points of the path segment

by the coefficients. Then storing the positions of the path segment in a matrix.
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Algorithm 1: GenerationOfPath

Input: matrix

Output: Path, KeyPoints

1 M ← size(matrix, 1)

2 KeyPoints← []

3 if M > 1 then

4 for i← 1 : M − 1 do

5 X1← matrix(i, 1)

6 Y 1← matrix(i, 2)

7 Z1← matrix(i, 3)

8 X2← matrix(i + 1, 1)

9 Y 2← matrix(i + 1, 2)

10 Z2← matrix(i + 1, 3)

11 Points←

GetT ime(X1, Y 1, Z1, X2, Y 2, Z2, V 1X, V 2X, V 1Y, V 2Y, V 1Z, V 2Z)

12 SizeOfPoints← size(Points, 1)

13 end

14 if i < 2 then

15 KeyPoints← [Keypoints;Points]

16 else

17 if SizeOfPoints = 2 then

18 Points← Points(2, :)

19 KeyPoints← [Keypoints;Points]

20 else

21 Points← Points(2 : SizeOfPoints, :)

22 KeyPoints← [Keypoints;Points]

23 end

24 end

25 end
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Algorithm 2: GetTime

Input: X1, Y 1, Z1, X2, Y 2, Z2, V 1X, V 2X, V 1Y, V 2Y, V 1Z, V 2Z

1 Equ← (X2−X1)2 + (Y 2− Y 1)2 + (Z2− Z1)2

2 Distance← sqrt(Equ)

3 tmax← Dis/V

4 t← 0 : 0.01 : ceil(tmax)

5 PathSegments← GetPathSegments(t,X1, Y 1, Z1, X2, Y 2, Z2,

6 V 1X, V 2X, V 1Y, V 2Y, V 1Z, V 2Z)

Algorithm 3: GetPathSegments

Input: t,X1, Y 1, Z1, X2, Y 2, Z2, V 1X, V 2X, V 1Y, V 2Y, V 1Z, V 2Z

Output: Points

1 A← [t(end)3 t(end)4 t(end)5;

2 3 ∗ t(end)2 4 ∗ t(end)3 5 ∗ t(end)4;

3 6 ∗ t(end) 12 ∗ t(end)2 20 ∗ t(end)3];

4 XB ← [X2−X1− (V 1X. ∗ t(end));V 2X − V 1X; 0];

5 x← A\XB

6 Xpoints← x(3, 1) ∗ t5 + x(2, 1) ∗ t4 + x(1, 1) ∗ t3 + V 1 ∗ t + X1

7 Y B ← [y2− y1− (V 1Y. ∗ t(end));V 2Y − V 1Y ; 0];

8 y ← A\Y B

9 Y points← y(3, 1) ∗ t5 + y(2, 1) ∗ t4 + y(1, 1) ∗ t3 + V 1 ∗ t + Y 1

10 ZB ← [z2− z1− (V 1Z. ∗ t(end));V 2Z − V 1Z; 0];

11 z ← A\ZB

12 Zpoints← z(3, 1) ∗ t5 + z(2, 1) ∗ t4 + z(1, 1) ∗ t3 + V 1 ∗ t + Z1

13 Points← []

14 for i← 0 : size(t, 2)− 1 do

15 Points← [points;Xpoints(i + 1)Y points(i + 1)Zpoints(i + 1)]

16 end

Cost Functions

The cost function evaluates a generated path, and it is optimal with minimal costs.

Each cost function value can be defined within [0, 1] by a fraction. The total costs

add all values to compare the paths.
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The costs function fcost is defined as:

fcost = flength + ftime + faltitude + fcollision (3.24)

Where flength is the cost function of the path length, ftime is the cost function of

flight time, faltitude is the cost function of mean altitude, fcollision is the cost function

of a collision.

Path Length The cost function flength for path length is developed as follows:

flength =

√
(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2

n∑
i=1

√
(xi+1 − xi)2 + (yi+1 − yi)2 + (zi+1 − zi)2

(3.25)

Where (x1, y1, z1) is the start point, (x2, y2, z2) is the destination point, and n is the

number of the points of the path segment.
n∑

i=1

√
(xi+1 − xi)2 + (yi+1 − yi)2 + (zi+1 − zi)2

is the actual cost of path length.
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 is the length

of the straight line between Point 1 and Point 2.

Flight Time The cost function ftime for flight time is developed as follows:

ActualT =

n∑
i=1

√
(xi+1 − xi)2 + (yi+1 − yi)2 + (zi+1 − zi)2

Vavg

(3.26)

Time =

√
(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2

v0
(3.27)

ftime = 1− Time

ActualT
(3.28)

Where ActualT is the actual cost of time when going through the path, and vavg is

the average velocity during the flight. Time is the estimated cost of going through

the straight line between Point 1 and Point 2, and v0 is the initial velocity.

Altitude The cost function faltitude is proposed as:

faltitude = 1−
√

(z2 − z1)2

n∑
i=1

√
(zi+1 − zi)2

(3.29)
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Where zi is the altitude of the point located in the path.
√

(z2 − z1)2 is the altitude

difference between Point 1 and 2, and
n∑

i=1

√
(zi+1 − zi)2 is the sum of the altitude

difference between pairs of points in the path.

Collision The cost function fcollision for collision is as:

fcollision =

cn∑
c=1

√
(xc+1 − xc)2 + (yc+1 − yc)2 + (zc+1 − zc)2

n∑
i=1

√
(xi+1 − xi)2 + (yi+1 − yi)2 + (zi+1 − zi)2

(3.30)

Where cn is the number of points that have collisions with the terrain or objects,

and
cn∑
c=1

√
(xc+1 − xc)2 + (yc+1 − yc)2 + (zc+1 − zc)2 is the sum of the path segments

which hit the terrain.

3.1.4 Simulation Results

We use simulation to compute UAV paths and calculate cost functions for different

path designs to validate our approach. Simulation of the algorithm was implemented

with MATLAB. The constant flight speed is set to 18 m/s. Because the safety margin

for UAVs is 50 m above the ground, the path should be close to the altitude. Figure

3.1a integrated the paths with the terrain, using different colours to indicate the

different paths. It presents the paths from a three-dimensional view.

Figure 3.1b shows the path generated by the RRT* algorithm with obstacle avoid-

ance. It is used to make a comparison with the Quintic Hermite interpolation

approach. The path is marked red. When generating the path, it is more time-

consuming than the Quintic Hermite interpolation approach. The costs function

evaluates the paths, as shown in Table 3.1. From the comparisons of cost values

among the four paths, the path with minimal cost is the Blue Path. The minimal

cost is 2.4239.

3.1.5 Conclusion of Path Planning for The Terrain Case

The 3D path planning algorithm considers the terrain and protects the paths from

collisions. The algorithm implements Quintic Hermite interpolation for planning

the path. To generate the path segments, iterations and matrixes are involved.
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(a) The generated paths from the side viewpoint

(b) The RRT* generated path from the side viewpoint

Figure 3.1: The generated paths

Table 3.1: Simulated paths for the robot

Costs Blue Path Red Path Green Path RRT* Path

flength 0.4726 0.5218 0.6452 0.6272

ftime 0.9986 0.9989 0.9994 0.9184

faltitude 0.9526 0.9549 0.9667 0.9075

fcollision 0 0 0 0

fcost 2.4239 2.4755 2.6113 2.4531
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The waypoints are used to improve the possibility of successful navigation and are

defined in a specific order. The paths are required to pass these waypoints to reach

the destination. The cost function is proposed in this section, and each cost is

limited to the range of [0, 1], then sum the costs up to get the total cost. The

cost function considers path length, time, altitude and collision. This section can

be used for UAV 3D path planning. Future work should recognize UAVs’ dynamic

and kinematic behaviours and automatically generate the waypoints.

3.2 Helix-HPSO Approach

3.2.1 Introduction

Unmanned Aerial Vehicles (UAVs) can provide remote inspections and obtain differ-

ent digital imagery by sensors or cameras, such as thermal, ultrasonic, laser scanners,

high-resolution, and near-infrared [239], [240]. Computer vision and other technolo-

gies can process the collected data to detect surface defects of infrastructure, includ-

ing distortion, spalling, cracking, excessive movements, rusting, and misalignment

[240]. An informative and efficient path is required to perform UAV-based path

planning inspection with data from different views [240].

This research was conducted because of an accident in Notre Dame de Paris, which

attracted attention to protect the historical buildings and collect the building data in

case of an accident. Historic buildings have historical value as symbols of specific eras

and can exhibit the architect’s aesthetic and past people’s lives. Monitoring historic

buildings’ condition and regular inspections of historic buildings are essential.

The Helix-HPSO approach is proposed as UAV-based path planning for building

inspection of multiple historical buildings. It uses the helix-shaped path for in-

specting each building, which is a smooth path at a low cost and suitable for UAV

constraints. Also, the Helix path is compared with the traditional inspection path.

The proposed HPSO algorithm generates the path for flying to another building,

considering the distance and collision avoidance. The HPSO has been compared

with other bio-inspired algorithms through benchmark functions and with PSO for

path planning. The contributions of this section include the following:
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• Improve PSO with the inspiration from the Harmony search algorithm as a

new algorithm, HPSO.

• A novel 3D path planning approach based on the helix-shaped path and pro-

posed HPSO for a smooth and safe path.

• Provide the generic building inspection approach in the multi-building envi-

ronment.

This section proposes a UAV-based path planning for a building inspection as the

Helix-HPSO approach, organized as follows. Section 3.2.2 reviews the UAV path

planning algorithms and building inspection approaches. Section 3.2.3 describes the

problem formulation, and Section 3.2.4 proposes the Helix-HPSO approach. The

result of the computational experiment is in Section 3.2.5. This section is concluded

in Section 3.2.6.

3.2.2 Related Work

The path planning algorithms can be classified as node-based [241], sampling-based

[242], mathematical mode [243], multi-fusion-based [239] and bio-inspired algorithms

[240]. A* and DWA is integrated for global path optimization for UAV path planning

to improve safety and efficiency [241]. A genetic algorithm and A* algorithm are

integrated to solve the travelling salesman problem for LiDAR-equipped UAV path

planning [244]. An improved A* is combined with a gravitational search algorithm

for the optimal path with several optimization objectives, such as the return point

and the heading angle [245].

Moreover, for UAV path planning, a biased sampling potentially guided intelligent

bidirectional RRT* algorithm is proposed to overcome the slow convergence rate of

exploration [242]. UAV path planning can be transformed into a nonlinear optimal

control problem, and sequential convex programming is proposed to solve it by

approximating the non-convex parts [243]. An improved Artificial Potential field

(APF) is proposed for UAV path planning with additional control force, and it

avoids local minima [246]. The chaotic bat algorithm is combined with an improved

APF for faster position update and adaptive inertia weight [247].
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An odd-even layered genetic algorithm (GA) is proposed for cooperative inspection

path planning in [248]. Particle swarm optimization (PSO) and the mutation opera-

tor of GA are combined to improve the central force optimization algorithm and aim

for complicated path optimization [249]. In a proposed random chemical reaction

optimization algorithm [250], PSO and elitist selections are combined to act as the

subsets of the set of molecules. It is used for UAV inspection path planning.

Additionally, a heuristic evolutionary algorithm in [251] implements mutation, sub-

stitution, crossover, smoothness and length operations to build the path for UAV.

The reinforcement learning is improved based on the grey wolf optimizer algorithm

to control the switch operations for individuals during UAV path planning [252].

The differential evolution algorithm is modified with symbiotic organism search for

impressive local and global search ability [201]. A modified Mayfly algorithm is

proposed in [253] with an enhanced crossover operator, adaptive Cauchy mutation

and an exponent decreasing inertia weight to search the configuration space and get

the path with the lowest cost for UAV path planning.

UAVs offer excellent flexibility in many fields with the development of technologies

and remote photogrammetry, including security, rural environment monitoring, ur-

ban planning, and, recently, infrastructure inspection [254]–[256]. UAV applications

in construction include site surveying, safety inspection, building inspection, dam-

age assessment, urban monitoring, road assessment, geo-hazard investigations, and

progress monitoring [257], [258].

UAV infrastructure inspections can be classified into five categories: bridges, power

lines, buildings and facades, railways and sewers, and geographical inspections [254].

A regular building inspection is necessary to ensure their condition is safe. Mainte-

nance and detection of building façade anomalies require periodic safety inspections

and examinations [259]. They are more critical to the historical buildings as heritage

[256].

Detailed three-dimensional heritage reconstruction is important for interpretation,

analysis, and physical reconstruction [260]. Heritage documentation includes post-

catastrophe damage assessment and modelling facades, monuments or entire build-

ings [260]. Inspectors usually take photos directly of every element in general prac-
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tice to record damage or dilapidation, which is time-consuming and expensive [239],

[256]. UAV technology overcomes risky, time-consuming, and costly inspection prac-

tices for monitoring and inspecting infrastructure [261].

Additionally, the research of building inspection is for evaluating the condition of a

building and checking the appearance of a building. The UAV survey aims to model

the structure and recognize the state [262]. UAV-based photogrammetry evaluates

the condition of facilities and allows complete documentation of buildings with fewer

human resources and time, particularly for the areas difficult to access [240], [256],

[263]. A UAV-based project’s geometric result relies on the UAV manufacturing

quality and the onboard sensor system, materials, shutter modes, and digital sensor

types [260].

The autonomous navigation of UAVs relies on local information in the GNSS-denied

zones, and an RGB-D Kinect camera or visual information can obtain such local

information to compute an analytical path [264]. Distance measuring units can

also calculate the angle and the range between the structure and the UAV during

the inspection [265]. The pre-processing algorithm processes the local information

obtained from the point cloud and then uses the path planning algorithm to generate

the path for the indoor environment [264].

Range-based and image-based techniques are employed widely in the three-dimensional

documentation of buildings, and UAVs have advantages for image-based techniques

with aerial views [260]. UAVs follow a programmed flight path to record and survey

historical buildings, obtaining survey data for unreachable areas with a terrestrial

platform [240], [255], [266]. UAVs are equipped with sensors for navigation, 3D data

acquisition, and obstacle avoidance [239], [240], [255]. It achieves higher flexibility

with low cost [267]. Survey data can vary from sensors such as Forward-Looking

Infrared technology, images, separate strips, multi-attributed point cloud, 3D point

cloud, and laser scanners [239], [256], [267], [268]. UAV-derived point clouds can

extract the surface after image processing [269]. The building information model

and the UAV inspection workflow are integrated for an augmented reality solution

with aerial video [270], [271].

Laser scanning data, close-range photogrammetric images, or a combination of both
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are generally applied for building inspection documentation [240], [263]. Close-range

facade images are employed to inspect and document facade anomalies, such as cor-

rosion and cracks [259]. 2D photographs generated by UAVs enable the creation of

a precise model of buildings with proper path planning and using dedicated software

to identify the defects [263]. Close-range high-resolution inspections can achieve 3D

modelling of a historical building [266]. Documentation of heritage buildings with

3D reconstruction and photogrammetry is based on motion with a dense matching

algorithm and optical sensors [260]. LiDAR, stereo camera, IMU, and wide-angle

camera are implemented for the UAV-UGV system for indoor and cluttered scenes

[272].

Moreover, a GIS-based two-step procedure supports building facade inspection by

processing the management of UAV-collected images [259] in the inspection, mea-

suring the geometry of buildings and requiring documentation in the form of pho-

togrammetric images [255], [273]. Advanced photogrammetric techniques and deep

learning algorithms are applied to record building damages autonomously by a true-

orthophoto [273]. A Convolutional Neural Network is fine-tuned to detect damage

and surface cracks [274], [275]. Ultrasonic Beacon system replaces GPS for au-

tonomous flight, and a geotagging method can locate damages [274].

For buildings with planar surfaces, particle swarm optimization is adapted as en-

hancing discrete particle swarm optimization to plan the path for UAV [239]. The

most common path planning method for a building inspection is back-and-forth

paths. The inspection of the Perak Museum used back-and-forth paths; the UAV

flew from the bottom of the building, then moved to the top, and flew to the right

side, then reached the ground [256].

From the literature, the popular algorithms used in UAV path planning are based on

bio-inspired algorithms. The bio-inspired algorithms provide fast path generation

with optimal solutions. For the building inspection, the related work lacks the

consideration of multiple buildings. This section proposes the Helix-HPSO approach

to address the problem of the multi-building environment, generating the path for

each building and between the buildings.
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3.2.3 Problem Formulation

The basic components of UAV path planning include the start, the goal and the en-

vironment. The shape of most buildings can be modelled as rectangular or cylinder.

The building inspection requires broad coverage with a short path. For proceeding

between buildings, collision avoidance and flight distance should be considered. It

is aimed at generating a safe and optimal path. The developed cost functions to

evaluate the paths are as below.

Cost Functions for Building Inspection

The cost function is defined as Equation (3.31), and it is to evaluate the inspection

paths.

fcost = w1 ∗ fdistance + w2 ∗ ftime + w3 ∗ faltitude (3.31)

Where w1, w2 and w3 are the weights of the cost functions of distance, flight time,

and the change of altitude. The cost functions are listed as Equations (3.32) – (3.34).

The sum of the weights is 1.

fdistance =
n∑

k=1

√
(xk+1 − xk)2 + (yk+1 − yk)2 + (zk+1 − zk)2 (3.32)

Where n is the size of the path points, and xk is the current path point.

faltitude =
n∑

k=1

√
(zk+1 − zk)2 (3.33)

Where
√

(zk+1 − zk)2 is the change of altitude.

ftime =
n∑

k=1

√
(xk+1 − xk)2 + (yk+1 − yk)2 + (zk+1 − zk)2

v
(3.34)

Where v is the current velocity.

Cost Functions for Path Planning

The cost functions are developed to evaluate the optimal path during path planning,

considering the distance and collision avoidance. The best solution would be the
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generated path for flying to another building.

fpath cost = w4 ∗ flength + w5 ∗ fcollision (3.35)

Where w4 and w5 are the weights of the length and collision cost functions. The

cost functions are listed as Equations (3.36) – (3.39). The sum of the weights is 1.

flength =
n∑

k=1

√
(xk+1 − xk)2 + (yk+1 − yk)2 + (zk+1 − zk)2 (3.36)

Where n is the number of path points, and xk is the current path point.

dk =
√

(xk − xc)2 + (yk − yc)2 + (zk − zc)2 (3.37)

Where dk is the distance from the current path point to the centre of an obstacle.

ck =
cn∑
c=1

rc − dk (3.38)

Where cn is the number of obstacles. The collision occurs if rc−dk <0, which means

that the current path point overlaps with an obstacle c.

fcollision =
n∑

k=1

ck (3.39)

Where fcollision sums up the violation value for collisions between each path point

and obstacle.

3.2.4 Helix-HPSO Approach

Overview

The helix-HPSO approach generates the helix path for each building, defining the

points where info is collected with reasonable time slots. After inspecting one build-

ing, the UAV proceeds to another building with an optimal path based on a visited

vector and a cost matrix, as shown in Figure 3.2a. Cost functions evaluate sev-

eral factors, including distance, time, and altitude. The helix-HPSO approach is

demonstrated in Figure 3.2b. The steps of the proposed algorithm are as follows.
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1. Build the model for the multi-building environment.

2. Generate the inspection path and the points where info is collected for each

building.

3. Proceed to another building after inspecting one building.

(a) The flow chart of the Helix-HPSO approach

(b) The principle of the Helix-HPSO approach

Figure 3.2: The Helix-HPSO

Path planning for Each Building: Helix Path

Helix Path The helix path [276] for inspecting each building is generated through

Equations (3.40) – (3.42). The position of the UAV is denoted as (x(t), y(t), z(t))

at the specific time t. The time slot is set to 0.01 for t. Recording current t as tmax

and terminating the iteration once z(t) reaches the determined height based on the

inspection type.

x(t) = r ∗ sin(
vt

2πr
) + xg (3.40)
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y(t) = r ∗ cos( vt

2πr
) + yg (3.41)

z(t) = (
vh

2πr
) ∗ t + zg + 1 (3.42)

Where v is the UAV flight speed, (xg, yg, zg)represents the centre of the ground floor

of a building, r is the radius of the helix path, and h is the height of each floor.

Algorithm 4 presents the algorithm for generating the interior and exterior inspection

paths. The exterior and interior inspection paths are connected through the door,

inspecting the entrance hall.

Algorithm 4: Generation Of Inspection Path

Input: xg, yg, zg, f loorNum, radiusOfBuilding,

heightOfEachF loor, heightOfRoof, inspectionType

Output: Helix Path

1 if inspectionType == ”interior” then

2 h← heightOfEachF loorForInterior

3 r ← radiusOfBuildingForInterior

4 tMax← getTmaxForInterior()

5 else

6 h← heightOfEachF loorForExterior

7 r ← radiusOfBuildingForExterior

8 tMax← getTmaxForExterior()

9 end

10 for time← 0 : 0.01 : tMax do

11 xt← r ∗ sin(v ∗ time/2 ∗ pi ∗ r) + xg

12 yt← r ∗ cos(v ∗ time/2 ∗ pi ∗ r) + yg

13 zt← (v ∗ h)/(2 ∗ pi ∗ r) ∗ time + zg + 1

14 points← [points;xt, yt, zt]

15 end

The time required for an n-floor building inspection is defined by Equation (3.43),

with a flight speed v.

79



Ts =
2πrn

v
(3.43)

The points of the path are stored as Equation (3.44).

Points =


x1 y1 z1

x2 y2 z2
...

...
...

xn yn zn

 (3.44)

Path Planning Between Buildings: HPSO

Cost Matrix After completing the inspection of one building, the UAV proceeds

to another building for inspection. Each building is marked with numbers, and

the cost matrix evaluates the order of inspecting buildings as Equation (3.45). If a

building has been visited, update the visited vector and the related costs as infinity.

Cost =


infinity cost(1, 2) ... cost(1,m)

cost(2, 1) infinity ... cost(2,m)
...

...
...

...

cost(m, 1) cost(m, 2) ... infinity

 (3.45)

where m stands for the number of buildings in the environment.

Preliminary Knowledge

Particle Swarm Optimization (PSO) Particle swarm optimization (PSO) is

proposed by [277] and is inspired by the social behaviour of fish schooling or bird

flocking. It uses the global and local-oriented values to track each particle’s coordi-

nates in hyperspace. PSO uses initial random solutions and updates the velocity and

position for each particle as Equations (3.46) – (3.47) to seek the optimal solutions

in the configuration space. Algorithm 5 shows the principle of PSO.

vt+1
i = ωvti + c1r1(pbest

t
i − xt

i) + c2r2(gbest
t − xt

i) (3.46)
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xt+1
i = xt

i + vt+1
i (3.47)

Where v stands for particle velocity and ω is the inertial weight. t+ 1 is the current

timeslot, and i is the current particle. pbest is the best local-oriented value, and

gbest is the best global-oriented value. x is the position of the particle.

Harmony Search (HS) Harmony search (HS) is proposed by mimicking the

improvisation of music players [278]. It aims to get better solutions but with fewer

iterations than other heuristic algorithms. Music harmony consists of several sound

waves with different frequencies, and performances seek the best state. HS initializes

a harmony memory (HM). Set the harmony memory considering rate (HMCR),

harmony memory size (HMS), and pitching adjusting rate (PAR). Then, improvise

a new harmony from HM as Equations (3.48) – (3.50). Add the better harmony

in HM and exclude the old harmony. Keep seeking harmony with the minimum

harmony until satisfying the stopping criterion. HS is described by Algorithm 6.

x
′

i =

x
′

i ∈
{
x1
i , x

2
i , ..., x

HMS
i

}
, with probability HMCR

x
′

i ∈ Xi, with probability (1-HMCR)
(3.48)

Where HMCR is the probability of getting one historic value in the HM

Pitch adjusting decision of x
′

i =

Y ES, with probability PAR

NO, with probability (1-PAR)
(3.49)

If a value is from the HM, the pitching process happens. If the decision is YES,

then updating x
′
i as Equation (3.50).

x
′

i = x
′

i + α (3.50)

Where α can be the result of the arbitrary distance bandwidth multiplying a uniform

distribution in [-1,1] or the arbitrary distance bandwidth multiplying the standard

normal distribution.
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Algorithm 5: PSO algorithm

Input: x,v

Output: PSO

1 Initialization

2 for t← 1 : tMax do

3 for i← 1 : numberOfParticle do

4 Update Velocity

5 Update Position

6 Evaluation

7 if cost(particleti) ≤ particlei.pbest then

8 particlei.pbest← particleti

9 end

10 if cost(particleti) ≤ gbest then

11 gbest← particlei

12 end

13 end

14 end

82



Algorithm 6: HS algorithm

Input: VarMin, VarMax, VarSize

Output: HS

1 Initialization

2 for it← 1 : itMax do

3 for k ← 1 : nNew do

4 xnew
i ← unifrnd(V arMin, V arMax, V arSize)

5 for j ← 1 : nV ar do

6 if rand<HMCR then

7 xnew
i ← xfromHM

i

8 if rand<PAR then

9 xnew
i ← xfromHM

i + α

10 end

11 end

12 end

13 Evaluation

14 Merge HM

15 Update Best Solution

16 end

17 end

Harmony Particle Swarm Optimization (HPSO)

From Section 3.2.2, the bio-inspired algorithms are widely used in UAV path plan-

ning, especially PSO and GA. Due to the requirement of fast computation, PSO is

chosen to be improved for UAV path planning between buildings. HS is proposed

for better solutions with fewer iterations, inspiring the improvement of the PSO

approach. Thus, a hybrid HPSO is proposed for fast convergence and fewer itera-

tions. The inertial weight in HPSO is adjusted based on Equations (3.51) – (3.53).

Algorithm 7 demonstrates the proposed HPSO algorithm.
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Algorithm 7: HPSO algorithm

Input: v,x,damping,PAR,BW

Output: HPSO

1 Initialization

2 for t← 1 : tMax do

3 for i← 1 : N do

4 Update Velocity

5 Update Position

6 Evaluation

7 if cost(particleti) ≤ particlei.pbest then

8 particlei.pbest← particleti

9 else

10 Alpha← BW ∗ randn()

11 if rand ≤ PAR then

12 w ← w + Alpha

13 end

14 end

15 if cost(particleti) ≤ gbest then

16 gbest← particlei

17 end

18 end

19 w ← w ∗ damping

20 BW ← BW ∗ damping

21 end

α = BW + randn() (3.51)

Where BW is the arbitrary distance bandwidth inspired by the principle of HS and

randn() generates a Gaussian distribution.

ω = ω + α (3.52)

Where ω is the inertial weight of HPSO, the adjustment processing only occurs when

the current cost is larger than the personal best value, and the probability is less
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than PAR.

ω = ω ∗ damping ratio (3.53)

Where damping ratio is the ratio of updating the inertial weight.

The algorithm initializes the velocities and positions of the particles. Then update

the positions and velocities with Equations (3.46) – (3.47) and evaluate the solution

by the cost function. If the current cost is less than the personal best value, it

becomes the local best-oriented value. Otherwise, adjusting inertial weight for the

algorithm based on the probability of PAR and α is calculated by the bandwidth

multiplying the standard normal distribution. The proposed algorithm allows better

solutions with fewer iterations and adjusts the inertial weight randomly for better

search abilities to avoid getting trapped in local optima. The global best value keeps

updating until the termination criteria reach.

3.2.5 Computational Experiment

Performance Measurements

The proposed HPSO was compared with other bio-inspired methods, such as PSO,

HS, GA [279] and Firefly algorithm (FA) [280]. The test functions are listed in Table

3.2 to compare the performance of the proposed algorithm with other bio-inspired

algorithms. Each test function is a typical benchmark function with different char-

acteristics. Ackley function has many local minima. The shapes of Rosenbrock and

Sphere functions are like valley and bowl, respectively. The shape of Michalewicz

function is a steep ridge. The number of the maximum iteration was 200.

Table 3.2: Test functions

Name Type Test function

Ackley Many Local Minima f1(x) = −a exp

(
−b

√
1
d

d∑
i=1

x2
i

)
− exp

(√
1
d

d∑
i=1

cos(cxi)

)
+ a + exp(1)

Rosenbrock Valley-Shaped f2(x) =
d−1∑
i=1

[100(xi+1 − x2
i )

2 + (xi − 1)2]

Sphere Bowl-Shaped f3(x) =
d∑

i=1

x2
i

Michalewicz Steep Ridges/Drops f4(x) = −
d∑

i=1

sin(xi)sin
2m(

ix2
i

π
)
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Table 3.3 lists the mean iteration times when getting the optimal solution, the

runtime of each algorithm, and fitness values for each benchmark function with

different algorithms. Each algorithm has been run 20 times. The best value is

highlighted in bold. The proposed HPSO had the best performance for Ackley, which

has many local minima. HPSO had minimal iteration times for the remaining test

functions, while PSO had minimal runtime. Nevertheless, the difference between

the runtime of PSO and HPSO was insignificant. It can be concluded that HPSO

has great performance compared with other algorithms, especially for problems with

many local minima. Getting rid of local optima and fast convergence are important

for path planning, so HPSO is suitable for UAV path planning.

Table 3.3: Performance of test functions

Function HPSO PSO HS GA FA

Ackley

Iterations 127.6 177.25 179.35 199.6 191.25

Runtime (s) 0.007485 0.008081 0.106657 0.275348 1.008479

Fitness value 0.00 0.00 0.01 0.00 0.00

Rosenbrock
Iterations 1 1 190.15 199.1 197.5

Runtime (s) 0.005447 0.003763 0.107351 0.329114 0.970046

Fitness value 0.00 0.00 4.05 7.86 0.40

Sphere

Iterations 102.8 192.4 174.6 199.1 187.45

Runtime (s) 0.0057645 0.0045109 0.103878 0.2901371 0.9958323

Fitness value 0.00 0.00 0.00 0.00 0.00

Michalewicz

Iterations 1 1 174.3 192.75 188.55

Runtime (s) 0.005332 0.003449 0.115909 0.335478 1.070354

Fitness value -0.86 -0.84 -4.87 -9.31 -4.41

Figure 3.3 presents the test functions’ mean fitness value’s convergence curve. Fig-

ure 3.3 and Table 3.3 show that the proposed HPSO converges faster than other

bio-inspired algorithms. It has much fewer iteration times to get the optimization

solutions, which is useful for path planning.

Scenario: Fujian Tulou

Modelling A Tulou is an enclosed, large and fortified earthen building, most

commonly circular or rectangular in configuration. It has thick, load-bearing, and
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Figure 3.3: Convergence curve of HPSO

rammed earthen walls, housing up to 800 people. It represents the living style from

Song and Yuan Dynasty, around C.E. 960 to C.E. 1368. Figure 3.4a displays the

photo of the Tianluokeng Tulou cluster comprising five main buildings. Figure 3.4b

presents the model with the marked number of each building.

Simulation Results MATLAB validates the simulation of the path planning.

The radius and the centre coordinate are inputted to generate the inspection path.

The assumptions are as below:

• The speed is 18 m/s, the speed of ascent is 6 m/s, and the descent speed is 4

m/s.

• The UAV hovers when the UAV reaches the point of generating inspection

data.

• UAV has been charged fully and operates in excellent condition.

Figure 3.5 demonstrates the flight path of each building, with the points where info

is collected marked by “*”. The interior and exterior inspection paths are connected

through the hall, and it provides the possibility to check the condition of the entrance

hall.

The start building is Building 1. From the visited vector and the cost matrix, the

order of inspecting the buildings is 1 2 5 4 3, which is determined by Dijkstra’s

algorithm. The start is the exterior path of Building 1, which is close to the top.
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(a) The Tianluokeng Tulou cluster

(b) Model of the cluster

Figure 3.4: The Fujian Tulou

Figure 3.5: The flight path for each building
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Figure 3.6: The Helix-HPSO path

The Helix-HPSO approach integrates the flight path; the entire flight path is shown

in Figure 3.6 and Figure 3.8a. The Helix-HPSO path starts from the exterior inspec-

tion path of Building 1, following the interior path inspection path. After reaching

the end of the interior path, the UAV flies to the next building defined in the order.

After getting to Building 2, the UAV inspects the exterior and interior areas. The

loops of inspection keep until the UAV reaches the last building. Table 3.4 lists the

details for the generated path.

Table 3.4: Details of the Helix-HPSO path

Steps Description Path Start Destination

1 1 (From exterior to interior) Building 1 inspection (-29.97,-7.932,12.48) (0.196,27,15)

2 From 1 (interior) to 2 (exterior) Proceed to Building 2 (0.196,27,15) (44.74,-56.73,17.5)

3 2 (From exterior to interior) Building 2 inspection (44.74,-56.73,17.5) (75.2,-23,20)

4 From 2 (interior) to 5 (exterior) Proceed to Building 5 (75.2,-23,20) (46.07,50.23,15.5)

6 5 (From exterior to interior) Building 5 inspection (46.07,50.23,15.5) (89.66,87,17.99)

7 From 5 (interior) to 4 (exterior) Proceed to Building 4 (89.66,87,17.99) (65.29,190.4,10.48)

8 4 (From exterior to interior) Building 4 inspection (65.29,190.4,10.48) (100.2,232,13)

9 From 4 (interior) to 3 (exterior) Proceed to Building 3 (100.2,232,13) (173.2,141.8,11.46)

10 3 (From exterior to interior) Building 3 inspection (173.2,141.8,11.46) (200.2,174,14)

Comparison of Path Planning for Each Building The back-and-forth path

is widely implemented for a building inspection to get the inspection data. It is

programmed to compare with the Helix-HPSO approach. The distance between a

UAV and a building is less than 2m. The path length of the vertical flight is 1m.

The back-and-forth path is only for the exterior inspection without considering the
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(a) The exterior inspection paths by Helix-HPSO

(b) The back-and-forth for each building

Figure 3.7: The exterior inspection paths

costs of taking inspection photos, as shown in Figure 3.7b. Figure 3.7a displays the

exterior inspection path by defining the data generation points through the proposed

Helix-HPSO approach.

The proposed approach implements the helix-shaped path for coverage inspection.

Table 3.5 compares the costs of the exterior inspection of each building for different

paths. The cost only considers the exterior inspection path, and they are calcu-

lated by Equation (3.31), considering the distance, altitude, and time. For getting

complete documentation of the building, coverage path planning is required to get

complete documentation of the building. If comprehensive interior and exterior

coverage are required, traditional back-and-forth paths’ costs rise rapidly.
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Table 3.5: Costs of the exterior paths

Path Building 1 Building 2 Building 3 Building 4 Building 5

The Helix-HPSO path 236.8405 236.8405 209.1750 280.4919 299.7959

The back-and-forth path 600.1694 600.1694 542.8375 695.7231 600.1694

Comparison of Path Planning Between the Buildings PSO is compared

with the proposed HPSO for path planning between the buildings. Figure 3.8 com-

pares the path generated by PSO and HPSO. The HPSO path is marked orange,

and the PSO path is marked blue.

Table 3.6 compares the performance of PSO and HPSO for path planning. If the

algorithm gets the best solution ten times, the algorithm terminates. For the path

between Buildings 1 and 2, Buildings 2 and 5, and Buildings 4 and 3, PSO and

HPSO have the same performance. While for the path between 5 and 4, HPSO

has fewer iteration times and costs than PSO. HPSO reduces by around 53.62%

iteration times to get the optimal path.

Table 3.6: Comparison of PSO and HPSO paths

Path From 1 to 2 From 2 to 5 From 5 to 4 From 4 to 3

The HPSO path
Iteration times 11 11 32 11

Best cost 47.4371 39.4697 53.5707 58.0246

The PSO path
Iteration times 11 11 69 11

Best cost 47.4371 39.4697 53.5756 58.0246

3.2.6 Conclusion of Path Planning for The Multi-building

Case

The Helix-HPSO path planning approach is developed for UAV multi-building in-

spection, considering the paths travelling between buildings. Usually, the building

inspection algorithm is designed for one building, while our approach is for a multi-

building environment. The proposed method can be used for interior inspection,

extending the traditional inspection area. The proposed helix path provides broader

coverage and smooth turn angles at lower costs than traditional inspection paths.
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(a) The path generated by HPSO

(b) The path generated by PSO

Figure 3.8: The generated paths by HPSO and PSO
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Cost function factors include time, distance, and altitude, as altitude change affects

energy consumption and speed.

A visited vector and a cost matrix are implemented to determine the order of pro-

ceeding inspections for travelling between buildings. The inspiration of HS improves

the PSO algorithm, which enhances the search abilities by updating the inertial

weight, and the improved global search prevents trapping on the local optima. The

proposed HPSO exhibits outstanding performance when dealing with many local

optima in the benchmark functions compared to other bio-inspired algorithms. For

UAV path planning, the cost functions consider the distance and achieve collision

avoidance. The HPSO provides faster convergence than PSO during UAV path

planning, so it is used in the path planning between buildings.
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Chapter 4

An Intelligence-based Hybrid

PSO-SA for Mobile Robot Path

Planning in Warehouse

4.1 Introduction

Mobile robots have various applications, such as entertainment, cleaning, surveil-

lance, and object delivery [19]. The requirements of the AGV navigation system in

flexible manufacturing systems include versatility, flexibility, no human interaction,

scalability, performance, adaptability, and robustness [281], [282]. Path planning,

real-time monitoring, task scheduling, and traffic coordination are the primary con-

sideration for AGV operations [283]. The requirements of AGV path planning for

enterprises are feasibility and practicability, which consists of no line or rail navi-

gation, low latency and cost, remotely controllable, and precise positioning [282],

[284].

The path planning approaches can be categorized into geometric, grid-based, reward-

based, random incremental, and Next Best View [285]. Robot path planning algo-

rithms can also be classified as evolutionary and non-evolutionary algorithms [18].

The commonly used robot path planning algorithms consist of the artificial poten-

tial field [101], the random search ant colony algorithm, the genetic algorithm [286],

grid maps [19], the search algorithms [118], particle swarms [135], and reinforcement
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learning and neural network [177].

Multi-criteria decision-making is proposed in [118] for crowd-based path planning in

the unknown environment, using the full consistency method and implementing the

D* Lite algorithm. D* algorithm extends the A* algorithm, an incremental graph

search algorithm, and D* Lite is algorithmically simpler and different from D* for

a partially known environment [118]. EA* is used in path planning, then imple-

menting assignment techniques to inform the robots and fault-detection algorithms

to handle robots that fail path planning [116]. Symbiotic navigation for multiple

robots is proposed in [19], which enables a knowledge-sharing mechanism with the

D* algorithm, and for minimum communication, the map is represented by nodes. A

linear temporal logic formula and a weighted transition system for high-level mission

specification are presented for automatic path planning for multi-robot [287].

Additionally, machine learning is a technology for implementing human learning

abilities, and reinforced learning can make a sequence of decisions for robots to

achieve goals in complex and uncertain environments. Model-free approaches are

implemented in robot motion planning problems, requiring much training data [186].

Convolution Neural Network is combined with Deep q learning for strengthening

the learning algorithm to analyse the situations and information in the images with

reward function [177]. In reinforcement learning, the Q-learning algorithm can es-

tablish interactive relationships and build a dynamic environment without prior

knowledge of the environment. An empirical playback mechanism is combined with

a Q-learning algorithm in a Deep Q-network for multi-robot path planning. It solves

the problems of excessive randomness and slow convergence [185]. Reinforcement

learning can be integrated with meta-learning to enhance the generalization ability,

and transfer learning is involved in the testing process [186].

The complete coverage and path planning (CCPP) techniques can be classified as

online and offline approaches. The online method generates the information from the

environment, while the offline algorithms are designed for the known environment.

Advanced techniques such as cellular decomposition, grid-based, and topological

coverage are introduced [142]. [288] proposes a collaborative CCPP approach for

unknown environments with maximizing incremental coverage. The Voronoi di-
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agram generates various points as the cores to separate a flat space into multiple

areas for robot path planning. The Voronoi diagram is extended to multi-robot path

planning and sets a path-priority order for each robot, using the Dijkstra algorithm

to generate all navigation points [113].

Evolutionary algorithms are one of the well-researched path-planning approaches.

They are inspired by the laws of biological survival and natural phenomena and orig-

inated from physics and mathematics [18]. Artificial intelligent algorithms convert

the path search problem to functional optimization by realizing the path planning of

robots with self-renewal and self-learning abilities [18]. Multi-robot path planning re-

quires addressing the validity issues of non-holonomic constants, dynamic changes in

the robotic plan, and memory and execution time complexity [286]. Meta-heuristic

and heuristic algorithms achieve efficient local and global search by balancing in-

tensification and diversification [130]. A jumping mechanism particle swarm opti-

mization (PSO) is proposed with a safety gap obstacle avoidance algorithm. This

approach uses a fitness function to measure the convergence and then control the

update of velocity [18]. The fuzzy inference system and the artificial potential field

(APF) are implemented for collision avoidance strategy [101]. A genetic algorithm

is modified to handle partitioning and routing sensor-based coverage path planning

[289].

The optimization of the evolutionary algorithms has a significant chance of being

struck with local optima and getting slow when the dimensionality rises, but the

cooperative evolutionary algorithm divides the problem into more minor issues with

smaller dimensionality [286]. Evolutionary operators and the improved version of

PSO are combined to compute the optimal path for multi-robot [290]. Modified

genetic algorithms and improved cooperatively coevolving PSO are introduced in

a cooperative path planning approach to address multi-robot persistent coverage

[142]. Co-evolutionary grammar-based genetic programming is developed with a

maze-like map in [286], and a master evolutionary algorithm achieves overall path

optimality. A coevolution-based PSO is presented with evolutionary game theory

for a self-adaptive approach, which improves optimization efficiency and guarantees

convergence, addressing the stagnation issues and adjusting local and global search

abilities [135].
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In a continuous environment, the APF generates feasible paths based on a time-

efficient deterministic scheme and uses an enhanced genetic algorithm to modify

the positions for multi-objective multi-robot path planning [98]. The proposed hy-

bridization of kidney-inspired and sine-cosine algorithm chooses subsequent optimal

positions for robots, avoiding collisions with other robots and dynamic obstacles

[162]. The genetic algorithm is introduced to optimize the goal points, and the

boundary node method and path enhancement method are combined to get an opti-

mal collision-free path [139]. An improved PSO is integrated with the gravitational

search algorithm inspired by nature, and the proposed co-evolutionary algorithms

maintain the balance between exploitation and exploration [136]. A hybridization of

improved PSO and differentially perturbed velocity algorithm is proposed in [130],

aiming to minimize the maximum path length and arrival time.

From the literature, path planning algorithms consist of grid-based, reward-based,

geometric-based, and evolutionary-based approaches. The grid-based and geometric-

based method usually implements graph search or evolutionary algorithms while it

wastes the available zones for path planning. The reward-based approach makes

a sequence of robot decisions, but it requires enormous computation space, time,

and reliable train data. Evolutionary algorithms have robust and straightforward

implementations, but they will likely be trapped in local optima or require huge

computation space and time for optimization. The co-evolutionary approach can

overcome the shortness of each evolutionary algorithm.

This chapter proposes a new hybrid meta-heuristic algorithm for AGV path plan-

ning to explore the optimal global solution with enhanced search abilities. It aims

to provide an approach for robot path planning and ensure flexibility, scalability,

adaptability, performance, and practicability for AGV path planning. It is aimed

to reduce the computation space and runtime for generating the path with faster

convergence and not getting trapped in the local optima. It also uses coordinators

to produce more available zones during path planning. Compared with other well-

known evolutionary algorithms, it shows excellent performance in optimization. The

approach provides faster convergence and high flexibility in the challenging static

environment with the developed cost function for path planning. The proposed

approach requires less computation time and iterations to get the optimal global so-
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lution in the simulation and experiment. The chapter’s main contributions include

• proposing a novel hybrid heuristic algorithm that can obtain globally opti-

mal solutions with great performance and compared with other heuristic al-

gorithms.

• applying the proposed hybrid PSO-SA algorithm for a path planning applica-

tion, which has faster convergence and less runtime.

• developing cost functions that consider path length, smoothness, and collision

avoidance for AGV path planning to provide flexibility, scalability, adaptabil-

ity, performance, and practicability.

The chapter provides a robot path-planning approach based on the hybrid intel-

ligence algorithm. The chapter is organized as follows. Section 4.2 explains the

hybrid PSO-SA algorithm. The simulation and experiment results are provided in

Section 4.3 and concluded in Section 4.4.

4.2 Hybrid PSO-SA

4.2.1 Preliminary Knowledge

Particle Swarm Optimization (PSO)

The social behaviour inspires particle swarm optimization (PSO), which is the

population-based stochastic optimization approach. As a meta-heuristic optimiza-

tion approach, it can gain global or near-global optimum solutions [277]. Each

particle is treated as a potential solution for PSO, exploring an optimum within

the searching space. PSO has various applications, such as optimization problems

[291]–[294], robot path planning and navigation [130], [295]–[300], and network ap-

plications [301].

PSO is a robust optimization algorithm with fast convergence, but it may get

trapped in a local optimal in multi-modal problems. The hybrid meta-heuristic

approach is introduced to overcome the trapping issue; combining it with another

algorithm can enhance searching and exploring abilities to obtain the global opti-

mum solutions. The velocity and position for particles of PSO are updated in each
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iteration as Equations (4.1) and (4.2). PSO algorithm is demonstrated in Algorithm

8. The flowchart of the PSO algorithm is shown in Figure 4.1.

vt+1
i = ωvti + c1r1(pbest

t
i − xt

i) + c2r2(gbest
t − xt

i) (4.1)

xt+1
i = xt

i + vt+1
i (4.2)

Where vt+1
i denotes the velocity for ith particle in the t + 1 timeslot, and xt+1

i is the

position. Consider ω as the weighting factor, r1 and r2 are random numbers, and

c1 and c2 are cognitive and social parameters. pbestti is the particle’s best position,

and gbest is the global best position for all particles.

Algorithm 8: PSO algorithm

1 Initialization

2 for iteration = 1 : iterationmax do

3 for particle = 1 : particlemax do

4 Update velocity and velocity bounds

5 Update position

6 Evaluation by the cost function

7 if pcostti < pbestti then

8 Update Personal Best

9 if pbestti < gbestt then

10 Update Global Best

11 end

12 end

13 end

14 Update Global Best Cost

15 end

Simulated Annealing (SA)

Simulated Annealing (SA) algorithm is proposed to reduce the possibility of getting

trapped in one local minimum and accepting other solutions. SA is inspired by

the annealing process of crystals, which can reach the minimum energy, and if the
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Figure 4.1: The flowchart of PSO algorithm

temperature reduces slower, the energy state will reach lower [116]. SA algorithm is

shown in Algorithm 9, and the flowchart of the SA algorithm is indicated in Figure

4.2. The probability of accepting a new solution is as Equation (4.3).

Algorithm 9: SA algorithm

1 Initialization

2 while t > tmin do

3 for particle = 1 : particlemax do

4 Generate a new solution

5 delta← costnew − cost

6 if delta <= 0 then

7 particle← particlenew

8 else

9 p← exp(−delta/kt)

10 if p > rand then

11 particle← particlenew

12 end

13 end

14 end

15 t← t ∗ alpha

16 end

ρ =

 1, newcost ≤ cost

e
newcost−cost

t newcost > cost
(4.3)
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Where newcost is the cost of the new state, and t is the temperature in the SA. ρ

indicates p in Algorithm 9 and Figure 4.2. The result of newcost− cost is delta.

Figure 4.2: The flowchart of SA algorithm

4.2.2 Hybrid PSO-SA

Description

Hybrid PSO-SA is proposed for optimization problems, and the application of path

planning is developed. The algorithm of the proposed hybrid PSO-SA is in Al-

gorithm 10. The cost function is designed to evaluate the results; initialization is

involved. The generated particles have the initial status, then updating velocities

and positions for particles based on Equations (4.1) and (4.2). The cost is estimated

by the cost function for each particle and compared with its personal best. Then

the swarm gets the best solutions from the particles as the global best. Gaining the

statuses of particles and updating the local-oriented and global-oriented best values

are inspired by the PSO algorithm.

PSO only accepts the lower-cost solution, which will likely get trapped on local op-

tima. SA usually reaches the maximum iteration times to get the solution. However,

the proposed PSO-SA may take the new solution even with a higher cost, and it

overcomes the shortness of each algorithm. SA algorithm inspires accepting the new

solution, while it updates the local best-oriented value in the proposed algorithm

rather than accepting the new solution. The PSO-SA will calculate the probability

based on Equations (4.4) and (4.5). The new solution is accepted if the probability

is larger than a random number between 0 and 1. It allows getting rid of one local

optimum to find the global optimization result.
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δ =
pcostti − pbestti

pbestti
(4.4)

ρ = e−
δ
kt (4.5)

Where pcostti is the current cost of particle i in the t timeslot, and pbestti is the

personal best value. δ in Equation (4.5) is calculated by Equation (4.4). delta is

calculated by δ, and p is calculated by ρ in Algorithm 10.

Algorithm 10: Hybrid PSO-SA algorithm

1 Initialization

2 for iteration = 1 : iterationmax do

3 for particle = 1 : particlemax do

4 Update velocity and velocity bounds

5 Update position

6 Evaluation by the cost function

7 if pcostti < pbestti then

8 Update Personal Best

9 if pbestti < gbestt then

10 Update Global Best

11 end

12 else

13 delta← (pcostti − pbestti)/pbest
t
i

14 p← exp(−delta/kt)

15 if p > rand then

16 pbestti.cost← pcostti.cost

17 end

18 end

19 end

20 Update Global Best Cost

21 Update inertia weight

22 t← t ∗ alpha

23 end
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Path Planning

The proposed PSO-SA is aimed at path planning, and path planning is formulated

as the optimization problem. For the mobile robots’ navigation, path planning is

the crucial part. We develop the cost function that evaluates path length, collision,

and path smoothness.

The path length is one of the primary considerations during path planning in our

scenario. The position of one particle is (x, y), and the next position is (xk+1, yk+1).

The path consists of n particles, and the cost function of path length is as Equation

(4.6).

flength =
n∑

k=1

√
(xk+1 − xk)2 + (yk+1 − yk)2 (4.6)

Where n is the number of particles, k is the current particle, and k+1 is the following

particle.

For robots’ operation, a smoother path is easier to follow and consumes less energy.

The smoothness of the path is calculated by the slopes from particles. The cost

function of smoothness is calculated by Equations (4.7) and (4.8).

sk =

 0, if xk+1 − xk = 0∣∣∣ yk+1−yk
xk+1−xk

∣∣∣ else
(4.7)

fsmoothness =
n∑

k=1

sk (4.8)

Where sk is the smoothness of the kth particle.

The cost function of collision is evaluated by Equations (4.9) and (4.10). The particle

k has the collision cost represented by ck.

ck =

j∑
c=1

rc − dc, if dc<rc (4.9)

fcollision =
n∑

k=1

ck (4.10)
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Where rc is the influence radius of the obstacle, and dc is the distance from the

particle to the centre of the obstacle for calculating ck. j is the number of obstacles.

The cost function calculates every collided obstacle with the current particle and

then sums it up as ck.

The cost function considers each factor as Equation (4.11).

fcost = w1 · flength + w2 · fsmoothness + w3 · fcollision (4.11)

Where w1, w2, w3 are the weight factors for each cost function, and their sum is 1.

The scenario is AGV path planning in the warehouse. The flowchart of PSO-SA

path planning is shown in Figure 4.3. Using a warehouse map to generate the

path, then developing the cost function and initialization for the parameters and

the swarm, updating the particles’ states, and evaluating the path based on the cost

function. The initialization of parameters includes setting the maximum iterations,

initial temperature, population size, inertia weight and damping ratio, temperature

reduction rate, learning coefficients, and bounds. The complexity of the application

determines the weights and parameters, depending on the considered factors.

If the new cost is more minor, the personal best of the current particle is updated;

otherwise, the probability is involved. If the cost is less than the global best, the

cost becomes the global best solution. The optimal global path is determined if the

global best cost occurs ten times continuously. The iterations can be terminated in

advance once the globally optimal path is determined.

4.3 Experiment

4.3.1 Simulation with Test Functions

The proposed PSO-SA is validated through tests with MATLAB and compared

with various optimization algorithms, including PSO, SA, Harmony Search (HS)

[302], Firefly Algorithm (FA) [280], Artificial Bee Colony (ABC) [303], and Genetic

Algorithm (GA) [279]. The benchmark test functions are the standard optimization

problems to test the performance of meta-heuristic algorithms. The test functions
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Figure 4.3: The flowchart of path planning by Hybrid PSO-SA

are listed in Table 4.1, and the characters of each function are listed. The graph

of valley-shaped, bowl-shaped, plate-shaped, and Steep Ridges/Drops functions are

like the valley, bowl, plate, and steep ridges/drops, respectively. The many local

minima functions have many local optima. The number of iterations is 200, and

each algorithm runs 20 times.

Table 4.2 compares the mean iteration times for each test function when the algo-

rithms get the best global solution and list the final fitness value for the algorithms.

The best mean value for each test function is highlighted. The results show that

PSO-SA uses the least mean iteration times to get the best answer in most test

functions. For Rosenbrock f1(x) and Michalewicz function f7(x), PSO-SA and PSO

can easily find the optimal solution.

Table 4.3 compares the run time for the algorithms, with the minimum one high-

lighted. It can draw that the proposed PSO-SA usually has less mean run time for

most functions, except the functions f4(x) and f6(x), where PSO has a bit less run

time than PSO-SA. The algorithm HS, FA, ABC and GA are very slow compared to

PSO, SA and PSO-SA. As mobile robot path planning in real-time, the algorithm’s

speed is critical for practical application.

Figure 4.4 presents the mean fitness value’s convergence curve for each test function

in 200 iterations. PSO-SA can get the optimal global solution in most cases. The

runtime and iteration numbers are also considered. It can conclude that the proposed
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Table 4.1: Test functions

Function Type Name Test function

f1(x) Valley-Shaped Rosenbrock f1(x) =
d−1∑
i=1

[100(xi+1 − x2
i )

2 + (xi − 1)2]

f2(x) Many Local Minima Ackley f2(x) = −a exp

(
−b

√
1
d

d∑
i=1

x2
i

)

−exp

(√
1
d

d∑
i=1

cos(cxi)

)
+ a + exp(1)

f3(x) Many Local Minima Levy f3(x) = sin2(πw1)

+
d−1∑
i=1

(wi − 1)2[1 + 10sin2(πωi + 1)]

+(wd − 1)2[1 + sin2(2πωd)]

where wi = 1 + xi−1
4

, for all i = 1, ..., d

f4(x) Bowl-Shaped Sphere f4(x) =
d∑

i=1

x2
i

f5(x) Bowl-Shaped Sum squares f5(x) =
d∑

i=1

ix2
i

f6(x) Plate-Shaped Zakharov f6(x) =
d∑

i=1

x2
i + (

d∑
i=1

0.5ix2
i )

2

+ (
d∑

i=1

0.5ix2
i )

4

f7(x) Steep Ridges/Drops Michalewicz f7(x) = −
d∑

i=1

sin(xi)sin
2m(

ix2
i

π
)

PSO-SA has an excellent performance in most optimization problems with faster

convergence and less consumed time.

4.3.2 Path Planning

Simulation

The environment is generated from an existing warehouse, as shown in Figure 4.5,

and walls and pillars are exhibited. The AGVs depart from Area G to different stor-

age rooms for operation and return to Area G from storage rooms after completing

the tasks. Black dots indicate the pillars, and the walls are annotated with black.

The maximum number of iterations is 150, and the population size is 150. The

population size should be within [100, 200] for the path planning problem. For

simulation, we tested the population size for the path from Area G to E as the

size is 100, 150, and 200. When the population size is 150, PSO-SA has the best

performance, with the least runtime for each iteration and fewer iteration times.
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Table 4.2: Mean iteration times and fitness value

Function PSO-SA PSO SA HS FA ABC GA

f1(x)
Iterations 1.00 1.00 200.00 184.75 197.55 131.95 199.10

Value 0.00 0.00 -0.21 1.98 0.40 0.77 6.97

f2(x)
Iterations 181.20 187.60 193.20 179.35 183.25 196.10 199.30

Value 0.18 0.00 0.05 0.01 0.00 0.00 0.00

f3(x)
Iterations 60.75 48.60 199.90 181.35 193.50 196.00 199.40

Value 0.02 0.00 0.83 0.00 0.00 0.00 0.00

f4(x)
Iterations 173.25 188.50 199.85 185.05 186.95 197.60 199.45

Value 0.00 0.00 0.03 0.00 0.00 0.00 0.00

f5(x)
Iterations 180.10 188.00 199.80 186.20 189.70 197.15 199.45

Value 0.00 0.00 0.06 0.00 0.00 0.00 0.00

f6(x)
Iterations 178.15 187.20 199.80 193.85 189.95 182.15 198.85

Value 0.00 0.00 0.05 0.02 0.00 0.00 0.14

f7(x)
Iterations 1.05 1.00 1.30 185.60 192.70 114.70 190.70

Value -0.89 -0.99 2.19 -4.88 -4.45 -3.47 -9.24

The simulation generates the paths from Area G to Area E and Area F and the path

from Area D to Area G by PSO and PSO-SA. The start and target position, the

best costs, the mean runtime for each iteration, and the iteration times for the paths

are shown in Table 4.4. The cost functions (4.6) – (4.11) are defined to evaluate the

path length, collision, and smoothness. Because the path length and collision are

the primary considerations, w1 is set as 0.5, w2 is set as 0.4, and w3 is set as 0.1.

Table 4.4 shows that PSO-SA performs better in path planning than PSO. Paths

for PSO and PSO-SA are shown in Figure 4.6, and the convergence curve of PSO-

SA is shown in Figure 4.7. The areas, the source and target positions, and the

directions for the paths are marked. It can draw that the proposed algorithm can

get the optimal way with an outstanding performance by Table 4.4 and Figure

4.6. The algorithm terminates when it gets the best cost ten times and records

the convergence curve. For the paths, the proposed PSO-SA has less runtime than

30.50%, 51.68%, and 34.43%, respectively. It also achieves path planning with fewer
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Table 4.3: Runtime of each algorithm

Runtime (ms) PSO-SA PSO SA HS FA ABC GA

f1(x)
Mean 3.25 4.29 4.88 115.15 933.90 641.93 500.12

Std. dev 3.05 3.52 1.67 21.43 28.60 78.29 104.81

f2(x)
Mean 4.31 7.61 14.24 116.18 944.02 660.24 465.68

Std. dev 2.65 2.79 12.75 18.03 64.44 39.11 56.01

f3(x)
Mean 3.99 6.41 30.08 149.02 1183.89 853.02 603.02

Std. dev 2.01 3.04 4.57 24.94 47.26 45.79 49.97

f4(x)
Mean 4.18 4.16 8.43 125.35 925.05 675.87 479.10

Std. dev 2.59 2.55 5.79 21.81 45.72 43.05 51.24

f5(x)
Mean 4.03 4.17 6.86 119.92 947.17 652.37 471.05

Std. dev 2.72 2.57 5.79 17.87 50.20 51.32 38.50

f6(x)
Mean 4.57 4.12 10.34 115.60 901.46 638.35 478.45

Std. dev 0.59 0.35 1.30 14.09 41.23 21.30 20.71

f7(x)
Mean 7.08 11.79 12.33 127.69 981.54 686.64 528.40

Std. dev 2.94 3.42 3.32 22.96 35.61 52.84 52.18

iteration times and better costs than PSO in most situations.

Experiment

The test scenario is shown in Figure 4.8. The AGVs are operating at Area A for

moving goods to and from the gate of other areas. The three-dimensional storage

system is assumed to be utilized in Area B to Area F. The AGVs depart from Area

A and return to Area A for parking once they finish the tasks.

The experiment employed a robot with a Decawave Ultra-Wide Band (UWB) sensor

and Raspberry Pi, as shown in Figure 4.9. UWB is the positioning sensor that can

provide centimetre-level accuracy for the indoor environment. The robot follows the

defined path for collecting position data, and the arrow of each path indicates the

direction. The robot departs from Area A to the storage room for inbound delivery

and moves to Area A for outbound delivery.

There are some obstacles in the simulation to create a more challenging path-
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Figure 4.4: Convergence curve for PSO-SA

Figure 4.5: The scenario of a warehouse

planning environment. Table 4.5 lists the start and target positions and the best

cost for each path. The maximum number of iterations is set as 150. Figure 4.10

exhibits the path and the experiment data in the map, and the simulated path is

blue, while the UWB positions are marked yellow. The start position is highlighted

in orange, and the target is highlighted in blue. The UWB positions have mea-

surement bias at the centimetre level, and the bias correction would be the future

work.

The proposed PSO-SA evaluates the cost for the path in each iteration and reduces

the global best to get the optimal path. If the exact best cost of the optimal path
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(a) From D to G

(b) From G to E

(c) From G to F

Figure 4.6: The paths for PSO and PSO-SA
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Table 4.4: Performance measurements of the simulated paths

Path Start position End position Algorithm Mean runtime (s) Iteration times Best Cost

From D to G (800,440) (100,430)
PSO-SA 1.0915 69 400.1210

PSO 1.5704 129 398.9587

From G to E (100,450) (850,230)
PSO-SA 1.0301 74 406.4598

PSO 2.1319 99 407.4978

From G to F (80,430) (800,150)
PSO-SA 1.0922 82 415.2469

PSO 1.6658 97 415.4940

Figure 4.7: The convergence curve of PSO-SA path planning

occurs ten times continuously, the algorithm will treat the solution as the best

solution and then terminate the iterations. The termination threshold is selected

based on the simulation results of the optimization problem. If a solution occurs

continuously, acting as the optimal solution is highly possible. In this simulation,

the maximum iteration number is around 70, and the minimum iteration number is

about 60.

4.4 Conclusion

The hybrid PSO-SA algorithm improves the PSO algorithm by jumping out of the

local optimum to get the best global solution with inspiration from the SA algorithm.
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Figure 4.8: The scenario of the test side

Figure 4.9: Robot with UWB

It achieves enhanced performance by updating the particles’ personal best variable

probabilistically. It is compared with well-known evolutionary algorithms, including

HS, GA, FA, and ABC, by benchmark functions. The proposed PSO-SA algorithm

has less 3%, 35%, 40%, 42%, 36%, 44% mean iterations times than PSO, SA, HS,

FA, ABC, and GA algorithms, respectively. For the runtime of each algorithm,

the proposed PSO-SA algorithm has less 26%, 64%, 96%, 100%, 99% and 99%

mean values than PSO, SA, HS, FA, ABC, and GA algorithms respectively. The

result indicates that it has faster convergence, high accuracy, and less runtime and

iterations to get the best solution.

The evolutionary-based approach is the primary path-planning approach, providing
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Table 4.5: Simulated paths

Path Start Target Best Cost

From A to E (73,450) (460,494) 196.9564

From A to F (100,400) (450,350) 179.3558

From F to A (450,380) (100,400) 178.5797

From E to A (450,470) (120,480) 167.2975

(a) From A to E and from E to A

(b) From A to F and from F to A

Figure 4.10: The paths for UWB
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flexibility and scalability. The proposed hybrid PSO-SA approach is used for AGV

path planning. Collision avoidance, smoothness, and path length are considered the

cost function for the optimal path. The approach has been compared with the PSO

for path planning. The model is validated through the storage/warehouse scenario

with simulation and experiment, and it can obtain the best path with improved

convergence performance. The proposed algorithm can be adapted to different envi-

ronments with the developed cost function and can be applied to more robots easily

with robustness. The approach will be modified to adapt to the dynamic environ-

ment with moving obstacles as the future work. Distance sensors or visual sensors

may be employed to detect obstacles. Implementing multiple robots’ collaboration

could also be a further consideration with real-time implementation.
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Chapter 5

A Dual-Layer

Weight-Leader-Vicsek-Model for

Path Planning of Multiple

Automatic Guided Vehicles in

Warehouse

5.1 Introduction

With the development of robotic technologies, mobile robots are implemented in

commerce and industry. Automated Guided Vehicles (AGVs) enhance transporta-

tion efficiency with less cost [38], [43]. They are utilized in the industry as a part of

industrial intelligence, intelligent logistics, and intelligent factories [37], [43]. AGVs

comprise the industry’s unit load vehicles, towing vehicles, forklifts, and pallet trucks

[47]. AGVs are applied to diminish labour costs and improve safety for the high de-

mands in a production environment [45], [46]. Servo handling systems, warehousing

systems, logistics, and storage industries employ AGVs in various areas [46], [49],

including transportation, transhipment, distribution, and material handing in man-

ufacturing [3].
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AGVs can transfer products at high speeds in a chaotic situation. They are im-

plemented in production lines with flexible development in modern manufacturing,

incorporating automated intelligent control systems [46]–[48]. With sensors’ help,

detecting obstacles and automatically eliminating problems ensure the intelligence

and adaptability of AGVs [46]. AGV navigation in the industrial environment usu-

ally implements the fixed line or the coupled approach, which adapts the single-robot

navigation methods. It lacks the flexibility and the possibility of real-time imple-

mentation. It has highly demanded that AGV can have a quick and flexible route

setting and adapt to the dynamic environment. The motivation of this study is to

provide fast computed path planning with flexibility and scalability for multi-AGV

systems, addressing most situations.

This chapter introduces a new algorithm for this purpose. Its main contribution is

as below:

• A novel path planning approach for multi-AGV systems based on the improved

Vicsek model with a leader-follower structure. The bio-inspired approaches are

widely used in multi-robot path planning. The Vicsek model is adapted for

this case because the AGVs aim to move as a swarm operation and provide

quick computation for the entire system.

• Offering the fast path setting for multiple AGVs in one calculation step, which

differs from the other path planning algorithms that repeat the algorithms for

every robot.

• For real-time implementation, it provides faster computation and adaption to

the environment.

A set of virtual leaders are introduced in the AGV swarms to navigate all the AGVs,

which combines search and intelligent algorithm advantages. Biological patterns and

the leader’s principle are the main concepts in this model, and it integrates the cou-

pled and decoupled approach. The hybrid centralized decentralized is proposed for

determining the leaders’ path, providing flexibility for AGVs. Each AGV follower

collects data from its neighbours and is led by the virtual leaders without the re-

striction of the current group. One of the significant advantages of the proposed

multi-AGV path planning system is that it requires less computational load for
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real-time implementation.

Leader-Vicsek-Model was published in [235], and this chapter is an extension. The

published paper introduces the concept of the novel Weight-Leader-Vicsek-Model,

but it uses simple, straightforward path planning for the leader and traditional Vic-

sek update equations for followers. Nevertheless, this chapter improves the model as

an enhanced Weight-Leader-Vicsek-Model (WLVM) with a dual layer. It generates

the dynamic virtual leader by the hybrid A* algorithm and uses a start-destination

matrix to determine the swarms’ integration, and collision avoidance is achieved by

priority. Also, the followers’ position and angle updates are improved by adding

the weight for the average angle and considering the current leader’s angle. The

simulations are conducted in a warehouse scenario, and WLVM is compared with

the RRT* algorithm.

This chapter offers a multi-AGV path planning approach for optimizing automatic

transportation in commercial or industrial warehouses. The paper is organized as

follows. Section 5.2 introduces the problem statement. Section 5.3 reviews path

planning algorithms and the multi-AGV navigation approaches. Weight-Leader-

Vicsek-Model is proposed in Section 5.4 for multi-AGV path planning and naviga-

tion. Experiment results are demonstrated in Section 5.5 to validate the approach,

and the conclusion is in Section 5.6.

5.2 Problem Statement

The basic components of AGV path planning include the start, the target, and the

environment. Path planning aims to generate the path from the start to the target

without collisions. Figure 5.1 indicates an example of AGV path planning. As the

occupancy map, the map uses the binary number to represent the locations in a 2D

space. It can be transformed into a grid map or nodes for performing the heuristic or

other path-planning algorithms. The obstacles or the walls are annotated in black.

The AGV is supposed to move from the start to the target, and green points demon-

strate the path points. The obstacles or walls are treated as static obstacles, and

the generated path should not be overlapped with the static obstacles. The path
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Figure 5.1: Path planning in the map

points are represented by rk1 , r
k
2 , . . . , r

k
n. r is the position of the current iteration k

for nth AGV, and rkn is (xk
n, y

k
n).

Collision and deadlock avoidance is necessary for the multi-AGV system. Each AGV

is assumed to communicate with other AGVs treated as dynamic obstacles. The

deadlock of AGVs should be avoided for great system performance, and the adjusting

progress is based on priority. The adjusted position of AGV n is represented by

rn−new.

5.3 Related Work

The Automatic Guided Vehicle (AGV) plays a crucial role in the intelligent trans-

portation system. AGV is the primary automated equipment that carries materials

and processes unmanned distribution and sorting in an unmanned storage environ-

ment [304]. Path planning has been the most crucial consideration of mobile robot

navigation, which plans the path from the start to the target for mobile robots [37].

Obstacle avoidance functions must be developed to operate AGVs when considering

dynamical limitations and dynamical safety [38], [39]. Meta-heuristic-based meth-

ods [305], graph-search-based methods [43], [44], mathematical optimization-based
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methods [38], and potential field and navigation-based methods [40] are the four

main categories for navigation algorithms.

Additionally, adapting the classic graph search algorithm is implemented widely

for AGV path planning, such as the A* and Dijkstra [306]. Different types of

algorithms can be combined, for example, the Dijkstra algorithm is for initial static

path planning, and the virtual potential function algorithm is for dynamic path

planning [42]. Sampling-based methods are also significant for single AGV path

planning, such as the Voronoi graph and rapidly exploring random trees (RRT)

methods [307].

The mathematical optimization-based approach consists of open-loop and closed-

loop strategies [38]. A nonlinear model predictive control (MPC) algorithm has

been proposed for large-size AGVs with onboard LIDAR sensors and a 14 DoF

vehicle dynamics model [38]. Artificial potential field (APF) methods [308] and

the probabilistic road map [309] are also proposed for planning. The AGV path

planning algorithms introduced above are mainly focused on individual AGVs. For

the venues with multi AGVs operated simultaneously, the dynamic environment due

to other AGVs and people needs to be handled safely and efficiently.

Multi-AGV systems have become more popular because of their powerful task-

solving complexity, continuous operation, reduced maintenance and operational

costs, broad convergence, flexibility, and versatility [219], [310]. Multi-AGV op-

timization scheduling can improve the logistics transportation system structure and

system operation efficiency and reduce transportation costs [311], [312].

Finding the best path quickly with avoiding collision is worth studying in AGV

operation [313]. AGVs obtain the paths from the multi-AGV scheduling system, and

they sense the surroundings independently and communicate with others by sending

poses [314]. Routing, scheduling, and layout are the main factors to be considered

for designing and controlling the AGV system [312]. AGVs are usually guided by

optical, electromagnetic, and laser navigation technologies or combinations of them,

following the arranged path and avoiding collisions [315]. The research on multi-

AGV routing can be classified as semi-dynamic, fully-dynamic, and static routing

[316].
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Vehicle dispatching, positioning, vehicle routing, scheduling, and collision and dead-

lock avoidance are considered for designing vehicle transportation systems [317].

Current multi-AGV systems commonly implement the centralized control architec-

ture to perform tasks, such as motion coordination, mission allocation, and path

planning [318]. The centralized control system is referred to as the warehouse man-

agement system (WMS) [13]. However, each AGV plans its path for the distributed

approaches and resolves deadlocks or collisions by communicating with its neigh-

bours. Vehicle autonomy and distributed computation are characteristics of decen-

tralized methods [219].

Moreover, a decentralized approach for determining the shortest paths and motion

coordination based on nonholonomic vehicle constraints is presented in [219]. A re-

gional control model is introduced for distributed control for the multi-AGV system

in [319] to minimize the complexity of scheduling issues. An ant-agent optimized by

a repulsive potential field is developed to combine centralized and decentralized con-

trol and avoid path conflicts with stability and efficiency [316]. A multi-AGV path

planning method improves ant colony algorithms according to prioritized planning,

considering battery management in [320] as a decentralized algorithm.

The metaheuristic algorithms are widely used for optimization problems for AGV

systems, such as task allocation [312] and path planning [321]. Multi-agent path

planning algorithms can be divided into rule-based, search-based, and learning-based

[322]. Rule-based algorithms use mature solutions for path planning by transferring

the problem to other problems; search-based algorithms implement heuristic search

algorithms and are classified as decoupled search, and coupled search algorithms

[138], and learning-based algorithms get optimal solutions from suboptimal solutions

[322].

Additionally, a multi-AGV probabilistic time-constrained based path planning al-

gorithm is based on the A* heuristic algorithm with dynamic stochastic network

theory in [310]. An improved A* path planning algorithm is introduced for a grid-

shaped network, ensuring locating and execution of motion commands [313]. The

unidirectional directed graph method combined with the A* algorithm for AGV

path planning in a multi-AGV scheduling system is presented [323].
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Heuristic information and elastic time window are considered in the improved ant

colony algorithm [324], and the conflict resolution strategies are based on the priority

of AGV task scheduling. A hybrid genetic algorithm-particle swarm optimization is

proposed for multi-AGV path planning with a fuzzy logic controller in [138], com-

bining scheduling and path planning. A genetic algorithm is improved to consider

the highest charging utilization rate and the shortest path to plan the optimal path

for multi-AGV [304].

Deadlock avoidance is the primary consideration during multi-AGV path planning.

Nodes describe the physical locations, while the grids are independent spaces in the

environment [311]. The node-based coordination strategies strictly avoid the AGVs

occupying a common node. [311] proposes the deadlock strategies by a combination

of nodes and grids. A structural online control policy is proposed for multi-AGV

deadlock resolution based on analysing the system as discrete events [325]. The

topological graph and roadmap work for the AGVs’ subsequent coordination by

local negotiation and shared resources as a holistic approach in industrial warehouses

[217].

However, the multi-agent algorithms plan the path independently and lack consider-

ation of moving obstacles and real-time implementation. Most evolution-based and

swarm-based algorithms are bio-inspiration, and the biological pattern is considered

when developing the new algorithm. This paper proposes a Weight-Leader-Vicsek-

Model algorithm, which incorporates the advantages of decentralized and centralized

approaches. Each AGV collects data from relevant AGVs, determines its path, and

achieves collision avoidance. At the same time, a central decision-maker assigns the

multi-AGV groups and virtual leaders for the defined groups. AGV control variables

can be gained with faster computational speed and less complexity. This model pro-

vides path planning functionality simultaneously for grouped AGVs and treats each

group as different swarms.
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5.4 WLVM with Virtual Leaders and Weight

5.4.1 Preliminary Knowledge: Vicsek Model

The Vicsek model is introduced for particles with biologically motivated interaction

with self-ordered motion and purpose in [326]. The Vicsek model can be expressed

by Equations (5.1) – (5.2), and the algorithm is shown in Algorithm 11. Biological

subjects spin in the same direction and move as their neighbourhood for interaction

in an L ∗ L square region [326], [327]. For a multi-agent system, the Vicsek model

has been improved by taking a fixed number of neighbours and a percentage of

neighbours into account as the remote neighbours’ strategy [328]. The hierarchical

Weighting Vicsek model is proposed for flocking navigation, and it assigns different

layers for the drones with weights to enhance the convergence speed, analyzing the

involved parameters [329].

Algorithm 11: Vicsek model

1 Initialize parameters

2 for time← 1 to timemax do

3 Calculate averageTheta

4 x← x + vel ∗ cos(theta) ∗ dt

5 y ← y + vel ∗ sin(theta) ∗ dt

6 theta← averageTheta + noise

7 end

8

xi(t + 1) = xi(t) + vi(t)∆t (5.1)

θi(t + 1) = ⟨θ(t)⟩r + ∆θ (5.2)

Where xi(t+1) is the location of the particle i, and the velocity vi is gained through

an absolute velocity and the angle θi(t + 1). ⟨θ(t)⟩r represents the average angle

of the neighbouring particles within a circle with radius r. ∆θ denotes a random

number from [−η
2
, η
2
] as noise.
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5.4.2 Algorithm Description

Overview

Weight-Leader-Vicsek-Model is proposed for a multi-AGV path planning algorithm

to improve the Vicsek model as the Vicsek model cannot achieve practical path

planning in the industry. WLVM assigns the virtual leaders to collaborate with

the grouped AGVs and guide the followers to reach their destinations, considering

collision avoidance.

Figure 5.2 describes the process of WLVM. According to a real industrial environ-

ment, the storage map is generated. Points represent the map; 0 for the space

allowed to move, while 1 for the wall or the collision-free area. The number of

AGVs, velocities, angles and locations are set for model initialization. The AGVs

are divided into swarms based on their locations and destinations with assigned vir-

tual leaders. The positions and angles of virtual leaders are computed by the hybrid

A* algorithm. The follower-AGVs use the status of the leader in the current group

to get the average angle within the defined path for WLVM. The AGVs implement

a segment delay function to be separated by a certain distance for optimal arrange-

ments. The AGVs avoid vehicle congestion and deadlock. [235] presents the design

of the model for the AGV system.

Figure 5.2: WLVM process

Table 5.1 saves the positions and angles of each swarm during the path planning

process. N stands for the number of the AGVs, and V irtual Leader represents the

leader in the group. WLVM saves the positions and angles for follower-AGVs, and
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Table 5.1: AGV navigation data in the same group

Iteration AGV 1 AGV 2 · · · AGV n Virtual Leader

1


x1
1

y11

θ11



x1
2

y12

θ12

 · · ·


x1
n

y1n

θ1n



x1
L

y1L

θ1L



2


x2
1

y21

θ21



x2
2

y22

θ22

 · · ·


x2
n

y2n

θ2n



x2
L

y2L

θ2L


...

...
...

...
...

...

k


xk
1

yk1

θk1



xk
2

yk2

θk2

 · · ·


xk
n

ykn

θkn



xk
L

ykL

θkL



virtual leaders in each iteration and is used for further updating.

Dynamic Virtual Leader

Dynamic virtual leaders are implemented in Weight-Leader-Vicsek-Model for shorter

paths, faster convergence, and more accurate direction for planning the path to

arrive at the destination. Each multi-AGV group has one virtual leader. Figure 5.3

demonstrates the principle of the dynamic virtual leader. When a new AGV joins

the current group, the AGVs of the multi-AGV group will treat it as part of the

current group, and the group dynamically generates the virtual leader. The virtual

leaders are generated in a static environment based on the start and target location.

When the AGVs aim for different areas, the start-destination matrix makes the

separation, which refers to the Section ”Start-destination”.

The positions for each AGV are calculated by Equation (5.3). The equations for

calculating the angles for follower AGVs are as Equation (5.4).

xk+1
i

yk+1
i

 =

xk
i

yki

+ v∆t ·

cosθki

sinθki

 (5.3)
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Figure 5.3: Principle of Weight-Leader-Vicsek-Model

θk+1
i = ω1 · arctan

〈
sin(θki )

〉
p〈

cos(θki )
〉
p

+ ω2 · θk+1
l + ηki (5.4)

Where the average direction arctan
⟨sin(θki )⟩p
⟨cos(θki )⟩p

is estimated along the path p, and the

travel distance is represented by v∆t. ηki denotes the noise. w1 is a random number

in (0, 1), and the sum of w1 and w2 is 1. The swarm only considers the AGVs in

the defined path in the same direction. The hybrid A* algorithm is integrated to

calculate the position and angles for virtual leaders, and θk+1
l denotes the angle of

the leader in the current iteration. It is adapted for multi-task implementation for

virtual leaders.

When an AGV enters a new group, the virtual leader of the group changes if the

AGV’s destination is the same as the group. Otherwise, the group remains. The

leaders are predefined, while the followers keep gaining statuses from the neigh-

bourhoods and then updating their status. It provides the possibility of real-time

implementation.

For virtual leaders, angles and positions are generated by the hybrid A* algorithm,

and the pseudo-code is indicated in Algorithm 12. The hybrid A* algorithm is pro-

posed in [330], which guarantees kinematic feasibility and continuous nature [331].

The heuristics are the maximum non-holonomic-without-obstacles and obstacle map,

ignoring the nonholonomic nature [330]. The MATLAB navigation toolbox has the

function for the hybrid A* algorithm.

125



Algorithm 12: Hybrid A*

1 Initialization of openset, closeset

2 openset.push(start)

3 while openset is not empty do

4 xcurrent ← openset.popMinCostNode

5 if exists RS path then

6 return the path

7 end

8 for xnext calculated by kinematic equation do

9 Collision avoidance

10 if xnext not exists in closeset then

11 g ← g(xcurrent) + l(xcurrent, xnext)

12 if xnext not exists in openset or g < g(xnext) then

13 g(xnext) ← g

14 h(xnext) ← Heuristic(xnext, xgoal)

15 Pred(xnext) ← xcurrent

16 if xnext not exists in openset then

17 openset.push(xnext)

18 else

19 openset.update(next node)

20 end

21 end

22 end

23 end

24 end

The combination of the hybrid A* and WLVM is shown in Figure 5.4, and the

proposed WLVM is in Algorithm 13. The leaders are generated for each swarm,

and they are unique. For generated path for followers, the path needs to be smooth

by the Spline curve for AGVs to operate. The leaders will be regenerated if the

environment or group formation changes. The statuses of AGVs are defined as

Equation (5.5). The statuses of AGVs are dynamically assigned based on their roles

in the current swarm. Once the AGV arrives at the destination, the status is set as
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-1.

Algorithm 13: Weight-Leader-Vicsek-Model(WLVM)

Data: x, y, leaderStart, leaderTarget

1 Initialize parameters

// n - the number of particles

2 n← size(x, 2) + 1

3 dt← 1

4 x←
[
x leaderStartx

]
5 y ←

[
y leaderStarty

]
6 theta← zeros(1, n)

7 for i← 1 to n do

8 theta(z)← leaderStarttheta

9 end

10 for each swarm do

// getting the positions and angles for the virtual leader

11 [LeaderPos, LeaderAngle]← HybridAstar

12 for iter ← 1 to k do

13 Calculate averageTheta

14 x← x + vel ∗ cos(theta) ∗ dt

15 y ← y + vel ∗ sin(theta) ∗ dt

16 theta← w1 ∗ averageTheta + w2 ∗ leaderAngle(k) + noise

17 Smoothen path

18 Deadlock and collision avoidance

19 end

20 Segment delay

21 end

status =


1, if leader

0, if follower

− 1, if arrives

(5.5)
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Figure 5.4: Dual layer of Weight-Leader-Vicsek-Model

Figure 5.5: Groups with a different direction

Start-destination

Weight-Leader-Vicsek-Model can handle the multi-agent motion directed to differ-

ent areas, as shown in Figure 5.5. The start-destination matrix is saved in Table

5.2. It assigns the multi-AGV groups, determines each group’s destination, treats

them as other swarms, and does not integrate them. M Stands for the number of

leader-AGVs, which is much less than the number of follower-AGVs. Start and

Destination represent each leader’s origin and destination locations.

Keep updating positions and directions within the defined group based on the des-

tination flag. When AGVs are in operation, they only consider the AGVs along the

path in the same direction. Even if the other path with a different direction is closer,

the AGVs would not be generated. It only concerns the AGVs on the current path.

Table 5.2: Start-destination matrix

Virtual leaders

Location Leader1 Leader2 · · · LeaderM

Start Start1 Start2 · · · StartM

Destination End1 End2 · · · EndM
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Figure 5.6: The positions after setting segment delay as 2 segments

Segment Delay

The proposed Weight-Leader-Vicsek-Model enables AGVs to travel as a swarm and

reach the target, which results in inefficiency for loading and unloading, so segment

delay is introduced to solve this problem. Figure 5.6 indicates the operation of

segment delay, and it sets segment delay as 2 segments. Each AGV follows the

defined path while having a different segment delay for departure in each swarm.

The segment delay is set as 5 segments in the computational experiments to provide

the buffer area among AGVs.

Collision Avoidance

Obstacle Avoidance Collision avoidance is necessary during the updating itera-

tions to keep AGVs safe. There usually are some obstacles on the map in the prac-

tical implementation, so collision avoidance with the obstacles should be achieved.

Collision avoidance of the virtual leaders is achieved by the hybrid A* algorithm.

The follower-AGV utilizes the leader angle in the next iteration to determine the

direction of the movement.

Figure 5.7 demonstrates the movement of the AGV. Each obstacle or wall sets the

buffer area as 1m. The leader angle θ indicates the movement of the path, and AGV

is represented by i. If a path point represented by ri(xi, yi) overlaps with the buffer

area or the restricted area as the obstacles, it requires adjusting positions. The steps

for achieving obstacle avoidance are as below.

First, comparing θ with 0. If θ ≥ 0, it means the path is aimed to move upper/-
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Figure 5.7: The AGV’s new position after Collision avoidance

Figure 5.8: The AGV’s new position after Deadlock avoidance

forward, then yi = yi + vy∆t. While θ<0, which means the path is moving lower,

then yi = yi − vy∆t. The AGVs follow the dotted line to change the Y locations.

Second, comparing θ with π
2

or −π
2
. If θ ≥ π

2
, it means the path is aimed to move

left, then xi = xi − vx∆t. While θ ≥ −π
2
, which means the path is moving right,

then xi = xi + vx∆t. The AGVs follow the dotted line to change the X locations.

Deadlock Avoidance The other AGVs in the predictable path or the moving

obstacles are treated as dynamic obstacles. Vehicle congestion must be avoided, as

shown in Figure 5.8. The target location reserves only one vehicle in each iteration

to avoid deadlock. The strategies to deal with the moving obstacles, except for other

AGVs, refer to the previous section.

Deadlock avoidance involves priorities for AGVs, and high priority is assigned when

AGVs carry goods close to the destination or have urgent tasks. The AGV with

higher priority remains following the predicted path, while the other AGV moves

to an available position. The priority is calculated based on Equation (5.6), and
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the new position is gained by Equation (5.7). The new position is updated in the

robot’s path after ensuring it is available.

priorityi = ω1 · prioritytask + ω2 · distance (5.6)

rk+1
i−new = rk+1

i + rand (5.7)

Where i stands for the current robot, and distance is the distance from the current

position to the destination. prioritytask represents the priority of each assigned task,

and if the task is more urgent than others, prioritytask is higher. w1 and w2 are the

weight of each factor, the sum of w1 and w2 is 1. ri−new stands for a new position

of the robot i.

5.4.3 Comparison

The proposed WLVM implements dynamic swarms and virtual leaders to ensure

accurate direction and faster convergence, considering collision avoidance, the start-

destination matrix to distinguish the destinations of swarms and the applications of

multi-objective algorithms in the industrial environment. Figure 5.9 shows the ad-

vanced functionality of the Weight-Leader-Vicsek-Model (WLVM). It also provides

flexibility because of the dynamic swarms involved, and the follower-AGV can join

or disconnect from the current group. The AGVs are assumed to exchange infor-

mation during operations; if one AGV enters another area, it becomes a member of

the new group.

The WLVM is novel for multi-AGV navigation, and it adapts the biological pattern

because it achieves the path planning of several AGVs in one step. The traditional

Vicsek model can describe the multi-agent movement, which is enhanced to improve

WLVM. Following the biological pattern, AGVs move automatically as their neigh-

bours in the same direction if operating the same task. It is typical to involve several

AGVs for one task, the improved WLVM achieves fast multi-AGV path planning by

updating the positions and angles. It only requires calculation for the virtual leaders

in the leader layer and one calculation step in the follower layer. Even though the

number of AGVs is large, it obtains the path with a quick calculation.
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Figure 5.9: Comparison of Vicsek Model and Weight-Leader-Vicsek-Model

5.5 Computational Experiments

5.5.1 Experiment Settings

Figure 5.10 generates the warehouse map and denotes the initial locations of AGVs;

different colours indicate the different swarms. Weight-Leader-Vicsek-Model is vali-

dated through MATLAB. The start-destination matrix separates the swarms. Each

delivery group is operating in Area A.

The multi-AGV system is engaged for deliveries from Area A because the three-

dimensional storage system is implemented in the primary storage rooms: Area

B to Area F. The materials are placed on the platform to transfer to the defined

location by the pallet in the three-dimensional storage system.

Assumptions in the simulation are as follows:

• 7 AGVs departure from Area A to different storage areas for processing tasks,

and 4 AGVs move to Area A for parking;

• Set segment delay for 5 segments in each swarm;

• AGVs with an absolute velocity of 1m/s;

• Each AGV is equipped with a board that can operate WLVM and under good

conditions;

• Each AGV has onboard sensors for localization and obstacle detection;
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(a) After t = 0 (1st group change)

(b) After t = 8 (2nd group change)

Figure 5.10: The path for virtual leaders
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Table 5.3: Group settings

Group no. Group Priority Number of AGVs Color

1 Area A to E 1 4 Blue

2 Area A to F 2 3 Orange

3 Area B to A 2 2 Purple

4 Area C to A 3 2 Green

• Each AGV communicates with other AGVs, sending its positions, angles and

statuses.

The groups’ settings are listed in Table 5.3.

5.5.2 Results

Simulation

Figure 5.10 displays the path for the virtual leaders generated by the hybrid A*

algorithm after the group changes. The directions are indicated along with the

path. It also outlines the path area for each swarm. The blue path is from Area A

to Area E, and the orange path is from Area A to Area F. The purple path is from

Area B to Area A, and the green path is from Area C to Area A. Groups 1 and 2

from Area A are separated into two groups based on the simulation’s destination.

Groups 3 and 4 are merged into one group when they are close to each other and

aim for the same destination.

Figure 5.11 shows the AGVs’ path. When two delivery groups pass the same area,

collision avoidance ensures that AGVs operate safely. The Start-destination matrix

has played a role in distinguishing the multi-AGV group. The groups of inbound

delivery are aimed at different main storage rooms with different virtual leaders.

When the group arrives at the destination, the group reminds of the current state

and the moving AGVs achieve collision avoidance based on the priorities.

The performance measurements are listed in Table 5.4. The distance is the travelling

distance for each AGV in the group, and the time is the completion time of each

task.
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(a) t = 25

(b) t = 49

Figure 5.11: AGV positions during the path planning process and the grey areas

indicate the packing areas
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Table 5.4: Performance measurements

Group no. Group Time Distance Group changes

1 Area A to E 49s 34.84, 36.46, 35.84, 34.02 Separated to Group 1

2 Area A to F 44s 36.13, 37.36, 35.97 and 2 when t = 0

3 Area B to A 37s 33.00, 34.21 Group 3 and 4 merged

4 Area C to A 35s 30.82, 30.86 when t = 8

Experiment

The results of the simulation section are validated by the experiment with the

Raspberry Pi robot and Ultra-Wide Band (UWB) for positioning. UWB provides

centimetre-level positioning and high positioning accuracy in the indoor environ-

ment. The robot follows the designed path gained by the simulation.

The experiment used the AGVs from Group 1, the inbound delivery group from Area

A to Area E, with 4 AGVs. They followed the defined paths and gained positioning

data from the positioning sensor. The positioning results were collected from the

Decawave UWB sensors, and the robot carries the target for getting locations. The

iterations of the results shown in Figure 5.12 are t = 0, t = 25, and t = 49. The start

positions are indicated as t = 0, and the destinations are shown when t = 49. The

locations have some bias due to the sensor accuracy, which can be fixed by sensor

fusion in future work. The other collaborative sensors could be Inertial Measurement

Unit (IMU), Lidar, or cameras. Then implement the Particle Filter or Extended

Kalman Filter for a nonlinear system to eliminate the sensor errors.

5.5.3 Comparison with Another Algorithm

The proposed WLVM is compared with the RRT* algorithm [332] for path planning

for four AGVs in Group 1, with a segment delay of 5 segments. The comparison

of the runtime is listed in Table 5.5. The RRT* algorithm needs to repeat the

calculation for each AGV, while WLVM calculates the path for all AGVs at one

step. WLVM provides fast path planning due to the computational speed. Figure

5.13 shows the AGV positions generated by the RRT* algorithm for t = 25 marked
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Figure 5.12: UWB Positions following the generated path

by different colours and the last positions when t = 64 marked by blue. If the

number of AGVs dramatically rises, the computation time for the RRT* algorithm

will rise rapidly, while it would affect WLVM.

Table 5.5: Runtimes for the RRT* and WLVM algorithm

Algorithm Runtime Total Runtime

WLVM
Leader: 0.0757s

0.0813s
AGV 1-4: 0.0056s

RRT*

AGV 1: 1.5522s

5.0382s
AGV 2: 1.1777s

AGV 3: 1.1550s

AGV 4: 1.1533s
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Figure 5.13: AGV positions generated by the RRT* algorithm

5.6 Conclusion and discussion

5.6.1 Discussion

Weight-Leader-Vicsek-Model is proposed to provide scalability and flexibility for

multi-AGV systems with fast and flexible path settings. The path planning problem

is formulated as a 2D space with the start and target locations and avoids static

and dynamic obstacles. From the literature, most path-planning approaches plan

the path independently.

However, the proposed algorithm can offer the path settings in one calculation step.

Weight-Leader-Vicsek-Model implements the virtual leader to navigate the follower-

AGV in each multi-AGV group. The leader’s positions and angles are generated

by the hybrid A* algorithm. Unlike the traditional Vicsek model, the proposed

approach updates the statutes of AGVs with iterations, and the angles of AGVs

consider the neighbour and the leader.

For swarm integration or separation, the start-destination matrix plays a role. It
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determines whether the multi-AGV group is aimed at the same destination and

makes changes in the decentralized follower layer. Segment delay is implemented

for optimal arrangement between AGVs for loading. Also, collision avoidance is

introduced with obstacle and deadlock avoidance.

The proposed Weight-Leader-Vicsek-Model has the following benefits: accurate di-

rection, dynamic swarms, fast convergence, and collision avoidance. It can achieve

real-time implementation due to its computational speed and robust implementa-

tion. Four groups with different settings demonstrate swarm separation and integra-

tion for the computational experiment. The proposed algorithm is compared with

the RRT* algorithm for path planning in the simulation, Weight-Leader-Vicsek-

Model saves 98.39% computational time.

The limitation of the proposed approach is that it does not consider the cost value

during the path planning as the heuristic methodologies. Therefore, the generated

path cannot be measured or estimated with the specific costs to determine whether

the path is globally optimal. Also, the avoidance of dynamic obstacles could be

improved with sensor fusion algorithms in future studies.

5.6.2 Conclusion

The traditional Vicsek model is unsuitable for path planning because of its random

direction and ignoring obstacle avoidance with the environment. Weight-Leader-

Vicsek-Model is proposed to improve the Vicsek model, and it develops dynamic

virtual leaders and a start-destination matrix, considering the leaders’ direction

with weight. It makes the model possible to reach the destination based on the map

and considers obstacle avoidance. It has much less computational load and more

flexibility than graph search and sampling-based algorithms with faster convergence.

The relevant sensors and programmable robots can directly apply the results.

Model and system initialization and multi-AGV group formation are completed

through a centralized method, while Weight-Leader-Vicsek-Model achieves the dy-

namic decentralized approach for each AGV. One virtual leader leads each multi-

AGV group directly or closes to the destination. Path planning of leaders is achieved

by the hybrid A* algorithm, and for the followers is achieved by the improved updat-
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ing equation. It computes the follower-AGVs’ path with a quick computation, even

though the number of AGVs is large. Unnecessary turning costs and path segments

are avoided in this model. Each AGV only considers its neighbours in the path, and

it is tended to move as its neighbours. When an AGV enters a new group, if the

destination matches, it will follow a newly generated virtual leader like the other

group particles.

The proposed Weight-Leader-Vicsek-Model is robust and simple for implementation

during the AGVs’ or robots’ operation. The proposed algorithm can be applied to

various scenarios involving the system of multiple robots, such as warehouses, lo-

gistics systems, ports, and airports. For future work, Weight-Leader-Vicsek-Model

would be more practical in the industrial environment with the following consider-

ations. The convergence of the particles should be considered in the application.

Mission planning and task allocation can be included in the further improvement

of this model. The multi-AGV system would be more practical if it involves fault

tolerance during implementation. The combination of sensors and the sensor-fusion

algorithm could be considered in the further real experiment to estimate the angle

and the position.

140



Chapter 6

An Fault-tolerant Cultural-PSO

for Multi-AGV Path Planning

6.1 Introduction

AGVs have played a significant role in modern manufacturing systems due to safety

and efficiency, providing low transportation and operation costs. Designing an AGV

system needs to consider routing, scheduling, and layout [312]. The transport control

can be treated as a single objective or multi-optimization problem, considering the

time required, total movement costs, vehicle travel times and expected waiting times

etc. [318]. Multi-AGV systems have been more common in warehouses, compared

with the single-AGV counterparts, achieving efficiency and robustness of operations

[325].

For the multi-AGV system, path planning is the primary consideration for robot

navigation. Ensuring that AGVs can operate safely and meet the tasks’ requirements

during online operation is challenging. Efficient multi-AGV path planning needs to

manage the collisions and total consumed time and costs. Also, lacking consideration

of fault tolerance has been the gap in path planning in the manufacturing system,

as mentioned in Chapter 2. This chapter aims to provide solutions for multi-AGV

path planning, considering task allocation and fault tolerance for better practice.

Its main contributions are as below:
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• A novel hybrid bio-inspired technique is proposed based on improving the

particle swarm optimization algorithm with the inspiration of the cultural

algorithm and simulated annealing approach.

• The proposed algorithm implements a probabilistic approach to adjust the

inertia weight to balance the local and global search abilities.

• It considers task allocation and fault tolerance during the path planning for

the multi-AGV system, which achieves practical operation.

This paper describes a multi-AGV path planning based on the hybrid metaheuris-

tic algorithm to enhance search abilities and performance. It is organized as fol-

lows. Section 6.2 describes the problem formulation with cost functions. Section

6.3 reviews the related work. Section 6.4 introduces the cultural algorithm, particle

swarm optimization algorithm and metropolis rule. Section 6.5 proposes C-PSO

with a dual-layer framework, and the experiment results are in Section 6.6. It is

concluded in Section 6.7.

6.2 Problem Formulation

The path planning problem of the multi-AGV system consists of multiple starts

and destinations for the involved AGVs and the two-dimensional environment. It

is required that path planning cannot occur collisions or deadlocks. A binary map

indicates the two-dimensional environment: zero is allowed to move, while one stands

for the wall or obstacle marked by black.

Figure 6.1 indicates the warehouse scenario, and each AGV has one start and target

in each task. The generated path cannot be overlapped with the obstacle or have

collisions with other AGVs in the same timeslot during operation. The cost functions

of path planning consider the path length and collision as Equations (6.1) – (6.4).

The best solution is treated as the globally optimal path with minimal costs. Each

position rti is represented by (xt
i, y

t
i). The particle is indicated by i, and the iteration

is indicated by t. The total number of particles is n.
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f t
length =

n∑
i=1

√
(xt

i − xt
i+1)

2 + (yti − yti+1)
2 (6.1)

Where the current particle is i, and the next particle is i + 1.

The violation cost of collision is evaluated by Equations (6.3) and (6.4).

dti =
√

(xt
i − xc)2 + (yti − yc)2 (6.2)

cti =
z∑

c=1

rc − dti, if dti<rc (6.3)

f t
collision =

n∑
i=1

cti (6.4)

Where (xc, yc) is the central coordination of an obstacle, the total number of ob-

stacles is z, and cti is the collision cost for the particle i, which sums up the total

collision cost of the current particle. Then summing all collision costs of all particles

as the collision cost.

Figure 6.1: The scenario of problem formulation
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6.3 Related Work

The deadlock resolution methods consist of zone control, time windows, and Petri-

net according to traffic control strategies [318]. The time window is one of the

most popular deadlock resolution methods, which refers interval of time when an

operation occurs. For the multi-AGV system in intelligent warehousing, the time

window is used for task assignment, and the A* algorithm finds the path in [333].

A dynamic routing method is applied for multi-AGVs for supervisory control, and

it evaluates paths by appropriate time windows and window overlapping tests [334].

A conflict graph is introduced to solve the task assignment problem to deal with

deadlocks [335].

Correlation research has been converted into the travelling salesman, an NP-hard

problem for combinational optimization, and the Tabu search algorithm is proposed

based on neighbourhoods [315]. The hybrid algorithm of Dijkstra and Floyd-warshall

is presented with time windows in [317]. Conflict resolution and path extension are

executed in an alternate iterative conflict-based search algorithm, and the algorithm

can be used on a topology map and a raster map with reduced time costs [322]. Grid

blocking degree is proposed for multi-AGV path planning to minimize the handling

completion time with a conflict-free path [124].

Moreover, an improved A* path planning algorithm based on coded marks and a

grid-shaped network is proposed to guarantee the location and execution of multi-

AGV [336]. Probabilistic time constraints and queuing mechanisms are combined

with an A* algorithm based on a dynamic random network in a warehouse multi-

AGV system [310]. A parallel algorithm is proposed by improving the A* algorithm

with a penalty item, and it is composed of task assignment, path planning, and

navigation [337]. The time-enhanced A* algorithm provides path planning in real-

time with temporal estimation and a supervision system [338].

Three-exchange crossover heuristic operators are implemented in an improved ge-

netic algorithm with double-path constraints to minimize the distance for multi-

AGV path planning [339]. Ant colony algorithm is enhanced with prioritized plan-

ning for path coordination and optimization, considering the remaining battery

charge and the fitness value [320]. The genetic algorithm is improved for multi-

144



AGV scheduling planning based on the operation of power evaluation and change

of mutation operators, considering power consumption [340]. Spinning drawing

frames improve the genetic algorithm for multi-AGV path planning and maneu-

vering scheduling decisions [341]. A particle swarm optimization algorithm is used

for AGV scheduling with a path time window [342].

Two-staged scheduling is introduced to handle collision for multi-AGV systems.

In [149], the offline scheduling stage uses the genetic algorithm for optimal path

planning in the static environment. It solves opposite, node, and pursuit conflicts for

AGV during the online scheduling stage. The other study of two-staged scheduling

is based on a genetic algorithm [343], and the genetic algorithm is processed with

constraints to get a stable path in the online stage. [344] presents a two-stage

algorithm for multi-AGV path planning, the path of each AGV is generated by

the A* algorithm with directional search and implements a time window to check

conflicts and uses a conflict-based search algorithm to redesign the path.

For supporting deadlock and time-efficient collision resolution, the spare zone-based

hierarchical motion coordination algorithm is introduced by adjusting the AGVs’

path in a decentralized manner [318]. [314] proposes a multi-AGV scheduling sys-

tem with extended Kalman filtering, global vision, and an oriented bounding box to

estimate the heading angles and coordinates of AGVs. A cloud robotics architecture

is presented in [13] for supporting local path planning and a flexible and cooperative

route assignment with knowledge extension. The particle swarm optimization algo-

rithm is improved to reduce congestion and provide efficiency for multi-AGV path

optimization [321].

Deep reinforcement learning can process high-dimensional environment data, such as

images, and it has intelligent decision-making ability and powerful perception ability

[37], [345]. A neural network structure and Dueling DDQN-PER has been imple-

mented as AGV path planning for multi-modal sensing environments information,

such as GPS, cameras, and speed sensors [37]. For large-scale space, a reinforce-

ment learning algorithm combines with a deep q-network in a complex environment

[345]. Multi-agent reinforcement learning is proposed as a deep deterministic pol-

icy gradient for anti-conflict multi-AGV path planning in [346], considering conflict
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situations as an integer programming model.

The literature shows that graph-based search approaches, bio-inspired, and AI-based

approaches are widely used. A*, GA, PSO and deep learning are the popular algo-

rithms in the cited literature. Some papers use a two-stage framework for a multi-

AGV scheduling and path planning system. However, from [347], fault tolerance is

barely considered during multi-AGV real-time path planning. This chapter proposes

a fault-tolerant multi-AGV path planning algorithm based on the hybridization of

cultural algorithm and particle swarm optimization.

6.4 Preliminary Knowledge

6.4.1 Cultural Algorithm (CA)

A cultural algorithm (CA) is proposed in [62] as an evolutionary algorithm by gaining

solutions through normative knowledge and situational knowledge. The principle of

CA is illustrated in Figure 6.2 and Algorithm 14. It consists of belief space and

population space and uses evolutionary knowledge to determine the solutions.

Algorithm 14: Cultural algorithm

1 Initialization of population and belief space

2 for iteration = 1 : iterationmax do

3 for i = 1 : N do

4 Influence()

5 Evaluation

6 Sort Population

7 Update() by Selected Population

8 end

9 end

CA uses the influence function to get the new population as Equation (6.5). The ac-

cept function usually selects n individuals with better solutions from the population.

The update function implements Equations (6.6) – (6.9) to update the positions and

fitness values.
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(a) The principle of CA

(b) The flowchart of CA

Figure 6.2: The principle of CA

147



xt+1
i,j =

xt
i,j + |(ut

j − ltj) · rand|, if xt
i,j < ltj

xt
i,j − |(ut

j − ltj) · rand|, if xt
i,j > ltj

(6.5)

Where xt
i,j is the position, t is the iteration number, i indicates the individual, and j

means the jth value of i. ut
j is the maximum position limit, while ltj is the minimum

limit. rand is a random number between 0 and 1.

The accept function usually selects n individuals with better solutions from the

population. The update function implements (6.6) – (6.9) to update the positions

and fitness values.

lt+1
j =

xt
i,j, if x

t
i,j ≤ ltj or fcost(x

t
i) < Lt

j

ltj, otherwise
(6.6)

Lt+1
j =

fcost(x
t
i), if x

t
i,j ≤ ltj or fcost(x

t
i) < Lt

j

Lt
j, otherwise

(6.7)

Where fcost is the objective function to evaluate the fitness value. lt+1
j denotes lower

bound for the jth value of individual i at iteration t + 1. Lt+1
j presents the fitness

value of the lower bound. The lower bound updates when the fitness value is lower

than Lt
j or xt

i,j is less than ltj.

ut+1
j =

xt
i,
′
j
, if xt

i,
′
j
≥ ut

j or fcost(x
t
i′

) < Lt
j

ut
j, otherwise

(6.8)

U t+1
j =

fcost(x
t
i
′ ), if xt

i,j ≥ ut
j or fcost(x

t
i
′ ) < Lt

j

Lt
j, otherwise

(6.9)

Where individual i
′

impacts the upper bound. ut+1
j is upper bound for the jth value

of individual i
′

at iteration t + 1. U t+1
j is the maximum fitness value in the t + 1

iteration for jth value.

6.4.2 Particle Swarm Optimization (PSO)

Particle Swarm Optimization (PSO) [277] is widely implemented in optimization,

especially for robot path planning. The particles explore the searching space to get
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the solutions for the optimization problems. Algorithm 15 demonstrates the PSO

algorithm. The equations of velocity and position of the particles are updated as

Equations (6.10) - (6.11). The personal best of a particle and the global best is

updated as Equations (6.12) - (6.13).

vt+1
i = ωvti + c1r1(pbest

t
i − xt

i) + c2r2(gbest
t − xt

i) (6.10)

xt+1
i = xt

i + vt+1
i (6.11)

Where ω is the inertia weight, and vt+1
i denotes the velocity of the particle in iteration

t + 1. c1 and c2 are cognitive and social parameters. r1 and r2 are random number.

pbestti is the personal best for particle i in iteration t. gbest stands for the global

best value. xt+1
i represents the position of particle i in iteration t + 1.

pbestt+1
i =

pbestti, if fcost(x
t+1
i ) ≥ fcost(pbest

t
i)

xt+1
i , otherwise

(6.12)

fcost(gbest
t) = min(fcost(x

t
1)), fcost(x

t
2)), ..., fcost(x

t
i))) (6.13)

Where pbesti is the personal best of particle i, when dealing with minimal optimiza-

tion, if the fitness value of the current particle is less than the personal best, the

personal best gets the current particle. gbest indicates the global best, and it gets

the minimal fitness value of the particle as the best solution.

6.4.3 Metropolis Rule

The Metropolis rule is proposed in Simulated Annealing (SA) [348]. The proba-

bilistic of the Metropolis rule is as (6.14). SA reduces “temperature” to get a lower

energy state for reaching the solutions to the optimization problem.

ρ =


1, if fcost(x

t+1
i ) ≤ fcost(x

t
i)

e
fcost(x

t+1
i

)−fcost(x
t
i)

T , otherwise

(6.14)

Where fcost(x
t+1
i ) is the cost of the new state xi in the iteration t + 1, and T is the

temperature in the SA.
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Algorithm 15: PSO algorithm

1 Initialization

2 for iteration = 1 : iterationmax do

3 for particle = 1 : particlemax do

4 Update Velocity

5 Update Position

6 Evaluation

7 if pcostti < pbestti then

8 Update Personal Best

9 if pbestti < gbestt then

10 Update Global Best

11 end

12 end

13 end

14 end

6.5 Cultural-PSO (C-PSO) with Metropolis Rule

6.5.1 Overview

The proposed C-PSO consists of centralized and decentralized layers, as shown in

Figure 6.3. The centralized layer processes map generation and task allocation for

the near-optimal path. Task allocation evaluates the path cost and task cost for

each AGV. Assign the available AGV with minimal cost, and set it as unavailable

in the current stage. The decentralized layer achieves information sharing, path

re-planning, collision avoidance and fault tolerance within a time window. For the

decentralized layer, AGVs follow the defined path and communicate with each other

for positions and statuses in real-time. If the collision occurs or there is an AGV

turned down, path re-planning and fault tolerance are achieved.

6.5.2 C-PSO

Inspired by CA and the proposed PSO-SA in Chapter 4, Cultural-PSO (C-PSO)

is proposed. It combines the characteristics of CA to update the inertia weight
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Figure 6.3: Dual-layer of the C-PSO algorithm

for PSO. The inertia weight has fluence for the global and local search abilities.

When inertia weight is larger, PSO emphasizes diversification, enabling global space

exploration. While it is smaller, PSO focuses on intensification, performing local

searching. C-PSO uses the probability from PSO-SA to update the inertia weight

and combines PSO and CA as Algorithm 16. Compared to DWLVM in Chapter 5,

C-PSO guarantees path optimality, while DWLVM provides a one-step calculation

for all robots.

The probability is calculated by Equations (6.15) - (6.16) and compared with a

generated random number. If the average cost of the personal best solutions is

higher than the current particle cost, and the probability is larger than or equal to

the generated random number, the inertia weight changes as Equation (6.17). If

the average cost exceeds the current particle cost, the swarm should search for the

global space to get a more accurate solution and avoid trapping on the local optima.

δ =
fcost(it)− fbest(it)

fbest(it)
(6.15)

ρ = e−
δ
T (6.16)

Where ρ is the calculated probability, and δ is calculated by Equation (6.15). fcost(it)

is the cost of the particle i in the current iteration t, and fbest(it) is the personal

best value. T is the temperature.
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Algorithm 16: C-PSO algorithm

1 Initialization

2 for iteration = 1 : iterationmax do

3 for particle = 1 : particlemax do

4 Update Velocity

5 Update Position

6 Evaluation

7 if pcostti < pbestti then

8 Update Personal Best

9 if pbestti < gbestt then

10 Update Global Best

11 end

12 else

13 delta← (pcostti − pbestti)/pbest
t
i

14 p← exp(−delta/T )

15 if p > rand then

16 if pcostti < avgcost then

17 w ← w + abs(pcostti − pbestti)

18 else

19 w ← wmin

20 end

21 end

22 end

23 end

24 Update Global Best Cost

25 w ← w ∗ wdamp

26 T ← alpha ∗ T

27 end

ω =

ω + |(fcost(it)− fbestCost(it))|, if fcost(it) < fcost(avgt)

ωmin, if fcost(it) ≥ fcost(avgt)
(6.17)

Where ω is the inertia weight for PSO. ω is the current value for the inertia weight,
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(a) When one AGV fails

(b) When one AGV is not operated as expected

Figure 6.4: The scenario of fault tolerance

and ωmin is the minimum value. fcost(avgt) is the average cost of all personal best

in iteration t. it is the particle i. When ω is larger, the global search ability is

enhanced.

6.5.3 Fault Tolerance

Fault tolerance plays an important role in the real-time implementation of the multi-

AGV system. The proposed approach has the benefit of handling the fault indepen-

dently without affecting the other AGVs. Also, it is achieved in the decentralized

layer, which would not lead to changes in the centralized layer. The AGVs update

the information in real-time to ensure their operation performance; when the signal

of an AGV is lost or the AGV is slower/faster than expected operation, the system

is notified. The expected operations of AGVs are to follow the defined path safely

and perform the assigned tasks with regular communication with robots.

The situations and solutions for fault tolerance are as Figure 6.4 and follows.

1. When one AGV fails

153



Figure 6.5: The flow of task allocation

• The failed AGV sent the last information to the system and shut down

the failed AGV;

• Other AGVs treat the failed AGV’s last position as the static obstacle;

• If an AGV is available, send the AGV to finish its tasks;

• If there is no available AGV, after the closest AGV finishes its task, add

the tasks to its task table.

2. When one AGV is not operated as expected

• Update the locations in real-time;

• Path re-planning for the affected AGV, such as AGV in the neighbour-

hood.

6.5.4 Task Allocation

Task allocation is essential for the multiple robot system, as demonstrated in Figure

6.5. It considers the task priority, path costs and the time of completing the previous

task as Equations (6.18) – (6.19).

fpathCost = w1 ∗ flength + w2 ∗ fcollision (6.18)

Where fpathCost is the path’s cost function, considering the path’s length and colli-

sion. The definitions of flength and fcollision refer to Section 6.2. The weight factors

are w1 and w2 of each cost, and their sum is 1 and set as 0.5 and 0.5, respectively,

because the path length and collision avoidance is the same important factors for

path planning.
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ftaskCost = w3 ∗ fpathCost + w4 ∗ ftaskPriority + w5 ∗ ftimeOfPreviousTask (6.19)

Where the task objective value is ftaskCost, it calculates the path objective value

fpath and time of the previous task ftimeOfPreviousTask, considering the task priority

ftaskPriority. The time of the previous task includes the time of following the previous

path and packing the goods. The sum of w3, w4 and w5 is 1. The objective value of

the path is the most significant factor that affects task completion, so w3 is set as 0.8.

The task priority and the time of the previous task are considered less important

factors in the objective function, so w4 and w5 are set as 0.1 and 0.1.

For assigning tasks for AGVs, the proposed approach has a routing table to record

the status of AGVs, as shown in Table 6.1. The status of occupied and available is

indicated by 0 or 1. For the occupied status, “0” means it can be assigned tasks;

and “1” stands for operating tasks. For the available status, “0” means the robot

shuts down, and “1” means the robot can operate tasks.

Table 6.1: A example of AGV routing table

A1 A2 A3 ... An

Occupied 0 0 0 ... 1

Available 1 1 1 ... 1

Previous task T1 ... T2

Table 6.2 is the task table, and it lists the task number and priority, starts and target

locations, and the packing time for each task. The task table is for the centralized

task allocation and the individual robot’s record. The task is urgent if the priority

is low.

The steps of task allocation include the following:

1. Calculate the task cost for available AGVs

2. Start assigning the tasks based on the urgency

3. Assign the task to the AGV with minimal cost based on the task costs, and

the cost is refreshed after a robot or a task is assigned
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Table 6.2: A example of Task table

Task Area Start Target Priority Packing time (s)

T1 From . . . to . . . (x1, y1) (x2, y2) 1 PackingT ime1

T2 From . . . to . . . (x3, y3) (x4, y4) 2 PackingT ime2

... From . . . to . . . ... ... ... ...

Tn From . . . to . . . (xn, yn) (xn, yn) 2 PackingT imen

4. Set the robot as occupied in the current stage and add the task to the robot’s

task list. If a robot is occupied, the cost of the next task starts by calculating

the time of the current task for the robot

5. Start the next stage of the task allocation for the remaining tasks until all

tasks are assigned

Table 6.3 indicates the staging table. It records the task for each robot in the

current stage. Time calculates the time to follow the path and the packing time for

the current task. Start and target record the locations of the source and destination.

Table 6.3: A example of Staging table

AGV Task in Stage N Time (s) Start Target

A1 T1 Time1 (x1, y1) (x2, y2)

A2 T2 Time2 (x3, y3) (x4, y4)

... ... ... ... ...

An Tn Timen (xn, yn) (xn+1, yn+1)

6.5.5 Collision Avoidance

Collision avoidance should be achieved during the path planning and the online

stage to ensure the AGVs operate safely. The flow charts for avoiding the other

AGVs and the dynamic obstacles are displayed in Figure 6.6.

If an AGV occurs in a collision or deadlock with another AGV, AGVs get the priority

information to determine which AGV is required to change the generated path. The
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(a) Collision resolution for AGVs

(b) Collision resolution for dynamic obstacles

Figure 6.6: Flowcharts of collision resolution

priority of an AGV is higher when it is closer to or arrives at the destination, operates

tasks or is occupied, or has a more urgent task. For the AGV with lower priority,

the path is re-generated by the C-PSO and treated as the other AGV as the obstacle

during planning until the collision or deadlock is resolved.

When an AGV detects dynamic obstacles by the equipped sensors, the system de-

termines whether it would affect the AGV’s operation. If the collision is highly

possible, the AGV must re-generate the path by the C-PSO. It treats the dynamic

obstacles as static obstacles in each iteration during operation until the resolution

is accomplished.

6.6 Computation Experiments

6.6.1 Performance Measurements

The proposed C-PSO has been compared with other bio-inspired algorithms, includ-

ing PSO, CA, Harmony Search (HS) [302], and Artificial Bee Colony (ABC) [303].

The test functions include Rosenbrock, Sphere, and Michalewicz, as listed in Table

6.4. The maximum iteration is set as 200, and each algorithm runs 20 times with a

population size of 50. For the HS algorithm, the harmony memory size is set as 50.

Table 6.5 analyses each benchmark function’s iteration times, runtime, and fitness
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values with different algorithms. The best value is highlighted in bold. The iteration

times are recorded when it equals the best solution. The runtime is calculated by

the mean runtime of each main loop when getting the best solutions.

Table 6.4: Test functions

Name Type Test function

Ackley Many Local Minima f1(x) = −a exp

(
−b

√
1
d

d∑
i=1

x2
i

)
− exp

(√
1
d

d∑
i=1

cos(cxi)

)
+ a + exp(1)

Levy Many Local Minima f2(x) = sin2(πw1) +
d−1∑
i=1

(wi − 1)2[1 + 10sin2(πωi + 1)]

+(wd − 1)2[1 + sin2(2πωd)], where wi = 1 + xi−1
4

, for all i = 1, ..., d

Sum squares Bowl-Shaped f3(x) =
d∑

i=1

ix2
i

Sphere Bowl-Shaped f4(x) =
d∑

i=1

x2
i

Zakharov Plate-Shaped f5(x) =
d∑

i=1

x2
i + (

d∑
i=1

0.5ix2
i )

2

+ (
d∑

i=1

0.5ix2
i )

4

C-PSO has significantly fewer iterations when generating the best solution with the

best fitness value for each benchmark function than other metaheuristic algorithms,

proving the proposed C-PSO has great optimization performance. Also, when C-

PSO gets the best solution, the average consumed runtime is the least. In most

optimization functions, C-PSO is a steady algorithm to perform the searching ability.

Therefore, it is suitable for the optimization problem. Figure 6.7 presents each

test function’s fitness value. From Figure 6.7 and Table 6.5, it can draw that the

proposed C-PSO has faster convergence than PSO. It has much fewer iteration times

to get the optimization solutions, and it is useful for online path planning due to its

computational speed.

6.6.2 Experiment of Path Planning

Experiment Settings

The AGVs are initially located in the loading area. The pillars are annotated with

grey, and the AGVs are marked with different colours. Table 6.6 lists the tasks for

the multi-robot system. The locations of the AGVs are shown in Table 6.7.

The assumptions of the simulation are listed below:

• AGVs have the map, and the speed is 0.25 m/s;
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Figure 6.7: Convergence curve of C-PSO

• AGVs have onboard sensors to detect other AGVs and obstacles;

• AGVs can communicate with the other AGVs for position and direction infor-

mation;

• The proposed algorithm is implemented in the AGVs’ board;

• AGVs can transform the good automatically;

• For testing the fault tolerance performance, AGV 1 is broken; AGV 2 will shut

down after 5s; AGV 4 will move slower with 1s’ delay after 10s.

Results

For assigning the tasks, the system arranges the most urgent task in the first based

on the task priority; if the task priority is the same, the system compares the task

costs to determine the order of operation. Task 1 is the most urgent, so it would

be assigned the first robot during the planning. Table 6.8 compares the task cost of

robots for each task. Task 1 was assigned to AGV 5 based on the combination of

task priority and cost considerations, adding to the staging table. Then the system

searched for the second lowest task priority, and Tasks 2 and 4 were recorded. Task

2 was assigned to AGV 4 according to the costs. From the costs, AGV 1 has the

minimal cost of Task 3, but AGV 1 is broken, so AGV 2, with the second minimal

cost, is chosen for Task 3.

For Task 4, the minimal cost is with AGV 5, but AGV 5 is assigned to Task 1 in
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the first stage of operation. The second minimal cost is AGV 4. Even though the

priority of Tasks 2 and 4 is the same, but the cost of AGV 4 to operate Task 2 is

lower than Task 4, so AGV 4 is assigned to Task 2 in the first stage. Therefore, the

path cost of AGVs 4 and 5 are updated based on the new location and the time of

completing the previous task. AGV 3 is available, and it has two options: one is to

operate the failed AGV 2’s task, and the other one is to perform Task 4. AGV 3

requires 32s to perform Task 4, but it only needs 9s to reach AGV 2’s location to

perform Task 3. Therefore, AGV 3 is assigned to Task 3 to resume AGV 2’s task

list, and Task 4 is assigned to AGV 5 in the second stage from the updated cost.

Table 6.9 lists the expected completion time for each task. The stages of the tasks

are as follows.

1. Stage 1:

• Task 1: AGV 5 (Yellow path)

• Task 2: AGV 4 (Green path)

• Task 3: AGV 2 (Orange path) → AGV 3 (Purple path)

2. Stage 2:

• Task 4: AGV 5 (Yellow path)

AGV 2 shut down when t = 5. The system checks whether there is an available or

unoccupied AGV. As AGV 1 is broken and AGVs 4 and 5 are occupied, AGV 2’s

task table and the last location is transferred to AGV 3. AGV 3 reaches AGV 2

last location and performs the remaining tasks. Figure 6.8 shows the entire AGVs’

path and AGVs’ locations highlighted by dots when t = 0, t = 5, t = 10, t = 20 and

t = 150. The initial positions of AGVs are denoted when t = 0. The stage number

is annotated below the time slots. In stage 1, AGV 5 performs Task 1, AGV 4

performs Task 2, and AGV 2 performs Task 3. But AGV 2 shuts down, then AGV 3

promotes fault-tolerance to perform the reminding task of AGV 2. In stage 2, AGV

5 performs Task 4. When AGV 2 shuts down, AGV 3 reaches AGV 2’s last location

and then moves to the destination of Task 3, and the orange path is the path of

AGV2, and the purple path is the path of AGV 3.
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Figure 6.8: AGVs’ locations of different timeslot. The paths of AGV 1, AGV 2,

AGV 3, AGV 4 and AGV 5 are marked by blue, orange, purple, green and yellow,

respectively.
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6.7 Conclusion

This chapter presents the Cultural-PSO algorithm for improving the PSO algo-

rithm. It is aimed to provide a solution to the multi-AGV path planning problem.

The proposed C-PSO uses adaptive inertia weight to balance the global and local

search abilities to overcome the drawback of the evolutionary algorithm. It updates

the inertia weight with the probability gained by the improved Metropolis rule. It

enhances the search abilities for the hybrid evolutionary algorithm without being

trapped in the local optima. When the average fitness value of the swarm is larger

than the current particle, it is possible to set the inertia weight larger to search

for more space. It can also avoid local optima without slowing down the conver-

gence speed. The proposed C-PSO has fewer 74%, 47%, 80%, 53% iterations than

PSO, CA, HS, and ABC, respectively. C-PSO has fewer 69%, 59%, 34%, 57% con-

sumed runtime than the mentioned algorithms with the best solution for different

benchmark functions.

Additionally, it fills the gap of fault tolerance for the multi-robot system. It provides

task allocation and fault tolerance considerations with centralized and decentralized

layers. The centralized layer is utilized to process initial task allocation and path

planning. The decentralized layer is aimed at performing real-time actions accord-

ing to the changes in the AGV groups and environment. An AGV is intended to

communicate with other AGVs to transfer information about positions and angles

in the decentralized layer. If collisions or deadlocks occur, the proposed approach

regenerates the path. When an AGV is not operated as expected, the proposed

system addresses the fault.
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Table 6.5: Iterations, runtime, and fitness value

Function C-PSO PSO CA HS ABC

Ackley
Iterations

Average 25.5500 94.9000 49.6500 193.2500 117.5000

Std. dev 1.9358 2.9182 3.3604 1.9358 7.2684

Runtime (s)
Average 0.0341 0.1067 0.0876 0.1080 0.2550

Std. dev 0.0039 0.0138 0.0075 0.0156 0.1056

Fitness value
Average 0.0000 0.0000 0.0000 0.0162 0.0000

Std. dev 0.0000 0.0000 0.0000 0.0058 0.0000

Levy
Iterations

Average 13.5000 60.3000 27.4500 165.1500 50.6500

Std. dev 1.3572 3.7290 2.4165 23.5803 2.6213

Runtime (s)
Average 0.0214 0.0816 0.0535 0.1026 0.1251

Std. dev 0.0026 0.0081 0.0046 0.0258 0.0076

Fitness value
Average 0.0000 0.0000 0.0000 0.0000 0.0000

Std. dev 0.0000 0.0000 0.0000 0.0000 0.0000

Sum squares
Iterations

Average 15.4000 67.0500 28.7000 179.2000 50.3500

Std. dev 2.0876 2.4597 2.0287 13.9608 3.1834

Runtime (s)
Average 0.0228 0.0739 0.0512 0.0883 0.0960

Std. dev 0.0044 0.0076 0.0049 0.0073 0.0244

Fitness value
Average 0.0000 0.0000 0.0000 0.0002 0.0000

Std. dev 0.0000 0.0000 0.0000 0.0001 0.0000

Sphere
Iterations

Average 15.2000 63.6000 26.0500 170.2000 47.1000

Std. dev 3.1556 3.0848 1.8489 21.8743 2.8266

Runtime (s)
Average 0.0203 0.0717 0.0466 0.0862 0.0879

Std. dev 0.0050 0.0076 0.0034 0.0170 0.0078

Fitness value
Average 0.0000 0.0000 0.0000 0.0001 0.0000

Std. dev 0.0000 0.0000 0.0000 0.0001 0.0000

Zakharov
Iterations

Average 24.0000 71.0000 47.6000 193.7500 170.3000

Std. dev 6.1044 4.1422 4.7143 5.6835 16.2095

Runtime (s)
Average 0.0318 0.0798 0.0862 0.1004 0.3100

Std. dev 0.0076 0.0056 0.0084 0.0118 0.0408

Fitness value
Average 0.0000 0.0000 0.0000 0.2549 0.0002

Std. dev 0.0000 0.0000 0.0000 0.3936 0.0002
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Table 6.6: Task list in the simulation

Task Area Start Target Priority Packing time (s)

T1 From G to A Loading zone (60,50) 1 120

T2 From G to B Loading zone (55,38) 2 100

T3 From G to C Loading zone (30,20) 3 120

T4 From A to G (50,50) (12,33) 2 110

Table 6.7: AGVs’ initial location

AGV Area Position Color

AGV1 Loading zone (12,35) Blue

AGV2 Loading zone (12,40) Orange

AGV3 Loading zone (12,45) Purple

AGV4 Loading zone (15,38) Green

AGV5 Loading zone (15,42) Yellow

Table 6.8: Path costs of robots for each task

Tasks AGV1 AGV2 AGV3 AGV4 AGV5

T1 20.2167 19.7153 19.4039 18.7290 18.3822

T2 17.4489 17.4186 17.6356 16.2000 16.2798

T3 13.5524 15.2965 17.2452 15.2677 → 40.1142 16.5331 → 45.6910

T4 37.3578 36.7339 36.3474 35.8184 → 44.9468 35.3924 → 38.8986

Table 6.9: Schedule of tasks

Tasks T1 T2 T3 T4

AGV AGV5 AGV4 AGV2 → AGV3 AGV5

Time 18 16 → 17 14 → 20 20

Packing time 120 100 120 110

Total 138 116 → 117 134 → 140 130
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Chapter 7

Conclusions and Future Work

Mobile robots have been increasingly implemented in civil areas recently, and their

safe and efficient automatic operation drew the researchers’ attention. The widely

utilized mobile robots include UAVs and AGVs. The navigation system is an es-

sential part of the autonomous system, and path planning is the basis of robot

navigation. This thesis reviews the previous studies, proposes the path planning al-

gorithms for a single UAV/AGV, and then the multi-robot path planning approach.

7.1 Single Mobile Robot Path Planning

Chapter 3 presents the mathematical-based UAV path planning. As the UAV is

widely applied for aerial photography or environmental monitoring, the research

consists of two case studies, one for the terrain and the other one for the multiple

building environment. Section 3.1 uses the Quintic Hermite interpolation with the

developed cost function to generate the path through waypoints, comparing with

the RRT* algorithm.

In previous path-planning research, the popular approaches include classical ap-

proaches, heuristic algorithms, bio-inspired methods, and AI-based approaches. The

most popular algorithm is PSO and GA based on a survey [9]. From the comparison

by the benchmark functions, PSO is chosen as the primary optimization algorithm

in this research, but PSO has the weakness of trapping in local optima as other

metaheuristic algorithms.
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Section 3.2 proposes the Helix-HPSO approach for the multi-building environment

for building inspection. It is a new application of building inspection, as most

previous studies focus on a single building. The path planning between buildings

uses the improved PSO algorithm with HS. It uses the update ratio from HS to

update the inertial weight to perform faster computation with fewer iterations when

compared to other algorithms. For the single-building inspection, a helix-based path

is generated.

Additionally, for industrial applications, PSO-SA is proposed for AGV path plan-

ning. It is an intelligent evolutionary algorithm inspired by PSO and SA in Chapter

4. The proposed approach is aimed at avoiding the local optima. It is inspired by the

principle of SA with the Metropolis rule to accept new solutions with probabilistic.

PSO usually accept better solutions, but the proposed approach allows it to update

the personal best by the Metropolis rule. It would not slow down the convergence

speed of the algorithm. The proposed approach is compared with other evolution-

ary algorithms by the benchmark functions and with PSO for path planning. The

proposed PSO-SA algorithm has less 80.67% mean runtime than other algorithms.

7.2 Multi-robot Path Planning

The multi-robot system is required in the current industry for operating collabo-

rative robots. Path planning algorithms consist of classical, heuristic algorithms,

bio-inspired and AI-based approaches, as concluded in Chapter 2. From the recent

surveys in [9], [12], [35], [36], meta-heuristic approaches perform much better than

classical methods, regardless of the extension of the search space or the computa-

tion complexity. Therefore, the metaheuristic/bio-inspired methods recently became

popular in optimising path planning areas. This thesis provides the solution for a

multi-robot system based on Chapters 5 and 6.

For the multi-AGV system, another bio-inspired model, the dual layer Weight-

Leader-Vicsek-Model (DWLVM), is proposed in Chapter 5. It consists of two layers:

centralized and decentralized. For the centralized layer, the approach generates the

path for virtual leaders. For the decentralized layer, the AGVs perform deadlock

and collision avoidance. Also, the follower-AGVs update their locations and angles
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based on the swarm’s average angle and the virtual leader’s status in the current

group. The segment delay function is developed for practical application to sepa-

rate the specific distance between AGVs. Weight-Leader-Vicsek-Model saves 98.39%

computational time than the RRT* algorithm during the computational experiment.

Additionally, from the review of previous studies in Chapter 2, one significant gap is

lacking fault tolerance of the multi-robot system. Cultural-PSO is proposed for the

multi-AGV system in Chapter 6, considering task allocation, path planning, fault

tolerance and collision avoidance. It improves the proposed PSO-SA algorithm with

the cultural algorithm to change the inertia weight. The C-PSO updates inertia

weight with probabilistic calculated by the Metropolis rule. The proposed algorithm

has fewer 63.50% mean iterations than other bio-inspired algorithms. It proposes

some rules for task allocation and fault tolerance. When an AGV is turned down,

if there is an available AGV, the available AGV gets the remaining task; otherwise,

the closest AGV will take it in place after completing the current task list. If an

AGV is not operated as expected, the neighbouring AGVs will re-generating the

paths.

7.3 Future Work

Most studies only consider single robotics systems [349], so the recommended future

work should be focused on the multi-robot system. The requirements of the multi-

robot system are not only about functionality, such as collaboration and safety,

but also the quality of path planning. The quality of path planning should further

achieve completeness, robustness and flexibility by producing an optimal path with

a fast and complete algorithm, which can be suitable for most situations.

From the previous Chapter 2, it can be concluded that lacking consideration of

real-time implementation is the future work of the path planning algorithms for

mobile robots. Most studies achieve online implementation by computational speed

or robust algorithms. It should consider the situation that occurred in the practical

applications. AI-based approaches require much prior data from the environment,

but it still attracts great attention [12], [350].
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Moreover, the generic problem formation could be developed for planning the path,

including more than path length and collision violations. The cost functions could

further consider the energy consumption or kinetics of the robots during operations.

Also, the dynamic environment or obstacles could be modelled to achieve more

flexible planning.

The future work is not limited to providing more practical algorithms but is also

more able to deal with the unknown or dynamic environment. Machine learning

approaches can classify or detect changes in the environment or obstacles. Therefore,

AI-based approaches such as deep learning or neural networks could be combined

with bio-inspired approaches for deterministic strategies.

For further improving experimental performance, the information from robot posi-

tioning and perception sensors can be integrated with the proposed path-planning

algorithms for more reliable and efficient implementations. Multiple sensors should

be employed during the experiment to produce more accurate positions. The non-

linear sensor-fusion algorithm should be used, such as the Extended Kalman Filter

or the Unscented Kalman Filter.
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