
Non-IID Learning for
Recommendation, Time Series and Hashing

A thesis submitted in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

by

Qi Zhang

under the supervision of

Prof. Longbing Cao

to

School of Computer Science
Faculty of Engineering and Information Technology

University of Technology Sydney
NSW - 2007, Australia

May 2023



© 2023 by Qi Zhang
All Rights Reserved

https://sites.google.com/view/qizhang-bit-uts/home


CERTIFICATE OF ORIGINAL OWNERSHIP

I , Qi Zhang, declare that this thesis is submitted in fulfilment of the
requirements for the award of Doctor of Philosophy, in the Faculty of
Engineering and Information Technology at the University of Technology

Sydney.

This thesis is wholly my own work unless otherwise referenced or acknowl-
edged. In addition, I certify that all information sources and literature used
are indicated in the thesis.

I certify that the work in this thesis has not previously been submitted for
a degree nor has it been submitted as part of the requirements for a degree
at any other academic institution except as fully acknowledged within the
text. This thesis is the result of a Collaborative Doctoral Research Degree
program with Beijing Institute of Technology.

This research is supported by the Australian Government Research Training
Program.

SIGNATURE:

[Qi Zhang]

DATE: 5th December, 2022

PLACE: Sydney, Australia

i





ABSTRACT

W ith the prevalence of information technology, a huge amount of data emerges
every day from various domains and has been pervasive in our daily living,
studying, working, and entertaining applications. In such a big data era, data

learning playing a major role in transforming the thinking of data science has dominated
research communities and business applications. Meanwhile, the increasing complexities
of real-world data, e.g., heterogeneity and coupling relationships, extremely challenge
the existing data learning methodologies and techniques and may seriously limit their
applicability and feasibility.

For several decades, the independent and identically distributed (short for IID)
assumption has laid the foundation of data learning, simplifying real-world data’s intri-
cate nature for effectively achieving approximate, traceability, and asymptotic problem-
solving. Unfortunately, real-world scenarios generally go beyond the IID assumption and
count on specific knowledge and capability to address practical problems and challenges,
where IID may show significant limitations and gaps. A broad-reaching non-IID thinking
is to explore and exploit the intrinsic heterogeneities and couplings of real-world data,
which has been increasingly attractive and prevalent in data learning research and
applications. However, non-IIDness shows diversified properties with different data
scenarios, for example, heterogeneities in data types, attributes, sources, and couplings
within and between structures, distributions, and variables. It is far from reaching a
unified non-IID learning paradigm for addressing various real-world heterogeneities
and couplings. More importantly, it is also extremely challenging to exhaustively tailor
non-IID data learning methodologies for specified scenarios and applications.

In this thesis, I explore non-IID learning in terms of different applications, specifically
recommender systems, multivariate time series (MTS) analysis, and learning to hash, to
enlighten non-IID methodologies and techniques. The elaborately chosen applications
and scenarios penetrate our daily living, studying, working, and entertaining activities,
and cover various tasks of classification, ranking, representation, and retrieval. Accord-
ingly, the main research objectives include modeling and learning the non-IIDness in
recommender systems, multivariate time series (MTS) analysis, and learning to hash,
respectively, and delivering non-IID models to effectively handle the scenarios with both
IID and non-IID data.

• To build non-IID recommender systems, we make attempts from two aspects: 1)
learning user/item/context feature couplings, and 2) modeling rating distribution
heterogeneity. First, we analyze the user/item/context coupling relationships and

iii



their influence on user actions; and then build a neural time-aware recommenda-
tion model with a specified feature interaction network to factorize the pairwise
couplings between users, items, and temporal context. Second, we analyze the
potential rating generation process which intrinsically determines the rating dis-
tribution heterogeneity. Accordingly, we propose a tripartite collaborative filtering
framework and instantiate a tripartite probabilistic matrix factorization to model
the rating generation and eliminate the distribution bias for debiasing rating
estimation.

• To perform non-IID MTS forecasting, we jointly model inter- and intra-series
coupling relationships and inter-series heterogeneities. Specifically, we first propose
a non-IID MTS forecasting model integrating spectral clustering and Transformer.
The model introduces a spectral clustering network that adaptively learns to
segregate heterogeneous time series and a clusterwise forecasting network with
multi-channel Transformers to model intra- and inter-series couplings. In addition,
we revisit the coupling relationships from the perspective of mutual information
and propose a deep coupling network that introduces a coupling module to explicitly
model variable relationships and a coupling representation module to encode high-
order coupling patterns.

• To model non-IID learning to hash, we aim to 1) preserve the couplings between
inputs and hash codes, and 2) address the high-dimensional and heterogeneous
issues. First, we study the impracticality of conventional code balance constraints
and then introduce probabilistic code constraints to improve hash quality by
guaranteeing the mutual informativeness between inputs and their hash codes.
Second, we apply deep supervised hashing on high-dimensional and heterogeneous
data and propose a deep hashing network to learn similarity-preserving hash
codes for efficient case retrieval and deliver deep-hashing-enabled case-based
reasoning. The network introduces position embedding to represent heterogeneous
features and utilizes a multilinear interaction layer to effectively filtrate zero-
valued features for addressing the sparsity issues and capturing feature couplings.

Thorough empirical evaluations have been conducted on real-world datasets to com-
pare our proposed methods with the state-of-the-art approaches. The results prove that
our non-IID modeling methods effectively address real-world couplings and heterogene-
ity issues in various complex data and significantly benefit the corresponding specific
applications.

iv



DEDICATION

To my family. . .

v





ACKNOWLEDGMENTS

Many thanks to my supervisor Prof. Longbing Cao for his comprehensive guidance
and help in my Ph.D. study and research, and for his rigorousness, patience,
wisdom, and profession. His continuous guidance and assistance helped me

in my doctoral career and taught me research methodology, critical thinking, writing
skills, and scientific knowledge. His advice on both my research and career is priceless
and will help me in my academic career and life. I met Prof. Longbing Cao for the first
time when I was pursuing my Ph.D. at the Beijing Institute of Technology. His strong
knowledge, dedication, and motivation in his research left me with a deep impression
from then. I have always been proud and fortunate to be a member of the Data Science
Lab, University of Technology Sydney and to study with Prof. Longbing Cao.

I would also like to express my gratitude to Prof. Chongyang Shi and Prof. Zhen-
dong Niu for their help when I was pursuing my first Ph.D. at the Beijing Institute of
Technology. Especially during COVID-19, I spent a hard time at the Beijing Institute
of Technology conducting my research and completing my thesis. They also provide me
with useful suggestions about my career and research. Their strong sociability inspires
me and helps me to start my career development.

Special thanks to my family and friends. Nothing can express my gratitude to my
parents for your meticulous care of me and all of the sacrifices that you have made on my
behalf. I know it was a hard time when I studied aboard and was far away from home.
I want to express deep appreciation to you for being my strongest back support all the
time. Moreover, I would like to appreciate my dear friends for accompanying me as my
spiritual partners and for their encouragement and help to me. My thesis would not have
been completed without their warm support and endless love.

Many thanks to my lab mates for their kind support and help. I appreciate the study-
ing time with Liang Hu, Shoujin Wang, Chenzhang Zhu, Prof. Defu Lian, Longxiang
Shi, Shufeng Hao, Guansong Pang, and Ke Liu, and appreciate the impressive research
period I spent with them in Australia. In addition, I would thank my coauthors including
Liang Hu, Shoujin Wang, Chengzhang Zhu, Longxiang Shi, and Xinyu Jiang. I am moti-
vated and impressed by their hardworking, diligence, brilliance, and great motivation. I
learned a lot about research and life from them.

vii





LIST OF PUBLICATIONS

RELATED PUBLICATIONS TO THE THESIS

1. Qi Zhang, Longbing Cao, Chongyang Shi, Zhendong Niu: Neural Time-Aware

Sequential Recommendation by Jointly Modeling Preference Dynamics and Explicit

Feature Couplings. IEEE Trans. Neural Networks Learn. Syst. 33(10): 5125-5137

(2022). (Chapter 4)

2. Qi Zhang, Longbing Cao, Chongyang Shi, Liang Hu: Tripartite Collaborative

Filtering with Observability and Selection for Debiasing Rating Estimation on

Missing-Not-at-Random Data. AAAI 2021: 4671-4678. (Chapter 5)

3. Qi Zhang, Liang Hu, Chongyang Shi, Shoujin Wang, Longbing Cao: Cospectrumer:

Spectral Clustering-enhanced Transformer for Non-IID Multivariate Time Series.

IEEE Trans. Pattern Anal. Mach. Intell. (Submitted, Chapter 6)

4. Deep Coupling Network For Multivariate Time Series Forecasting (ongoing, Chap-
ter 7)

5. Qi Zhang, Liang Hu, Longbing Cao, Chongyang Shi, Shoujin Wang, Dora D. Liu:

A Probabilistic Code Balance Constraint with Compactness and Informativeness

Enhancement for Deep Supervised Hashing. IJCAI 2022: 1651-1657. (Chapter 8)

6. Qi Zhang, Liang Hu, Chongyang Shi, Ke Liu, Longbing Cao: Supervised Deep

Hashing for High-dimensional and Heterogeneous Case-based Reasoning. ACM

Trans. Inf. Syst. (Submitted, Chapter 9)

ix



OTHERS PUBLICATIONS:

7. Qi Zhang, C. Shi, Z. Niu and L. Cao, HCBC: A Hierarchical Case-Based Classifier

Integrated with Conceptual Clustering, IEEE Trans. Knowl. Data Eng., vol. 31, no.

1, pp. 152-165, 1 Jan. 2019.

8. Qi Zhang*, Chengzhang Zhu*, Longbing Cao, Arman Abrahamyan. Mix2Vec:

Unsupervised Mixed Data Representation, DSAA, Sydney, NSW, Australia, 2020,

pp. 118-127.

9. Qi Zhang, Chongyang Shi, Ping Sun, and Zhengdong Niu. Case-based classification

on hierarchical structure of formal concept analysis. ECAI. IOS Press, NLD, 1758-

1759.

10. Liang Hu, Dora Liu, Qi Zhang, Tangwei Ye, Usman Naseem, Zhongyuan Lai. A

Dynamics and Task Decoupled Reinforcement Learning Architecture for High-

efficiency Dynamic Target Intercept, AAAI 2023.

11. Dora Liu, Liang Hu, Qi Zhang, Usman Naseem, Zhongyuan Lai, Self-supervised

Learning Temporal Causalities behind Human Actions for Multilevel Skeleton

Forgery Detection, AAAI 2023.

12. Hui He, Qi Zhang, Simeng Bai, Kun Yi, Zhendong Niu. CATN: Cross Attentive

Tree-Aware Network For Multivariate Time Series Forecasting, AAAI, 2022.

13. Xinyu Jiang*, Qi Zhang*, Chongyang Shi, Kaiying Jiang, Liang Hu, Shoujin

Wang. An Ion-Exchange Mechanism Inspired Story Ending Generator for Different

Characters. ECML-PKDD 2022.

14. Shoujin Wang, Qi Zhang, Liang Hu, Xiuzhen Zhang, Yan Wang, Charu Aggarwal.

Sequential/Session-based Recommendations: Challenges, Approaches, Applications

and Opportunities. SIGIR 2022.

15. Xinyu Jiang, Qi Zhang, Chongyang Shi. Hierarchical Neural Network with Bidi-

rectional Selection Mechanism for Sentiment Analysis. IJCNN, 2022.

16. Chaoqun Feng, Chongyang Shi, Shufeng Hao, Qi Zhang, Xinyu Jiang, Daohua

Yu. Hierarchical Social Similarity-guided Model with Dual-mode Attention for

Session-based Recommendation, Knowl. Based Syst., Volume 176, 2021, 114834,

ISSN 0957-4174.

x



17. Chaoqun Feng, Chongyang Shi, Chuanming Liu, Qi Zhang, Shufeng Hao, Xinyu

Jiang. Context-aware item attraction model for session-based recommendation,

Expert Syst. Appl., Volume 176, 2021, 114834, ISSN 0957-4174.

18. ZhiyongDai, Jianjun Yi, Lei Yan, Qingwen Xu, Liang Hu, Qi Zhang#, Jiahui Li,

Guoqiang Wang. PFEMed: Few-shot medical image classification using prior guided

feature enhancement, Pattern Recognit., Volume 134, February 2023, 109108.

xi





ABBREVIATION

IID - Independent and Identically Distributed
non-IID - non Independent and Identically Distributed
RS - Recommender System
CF - Collaborative Filtering
MF - Matrix Factorization
CNN - Convolutional Neural Network
RNN - Recurrent Neural Networks
GNN - Graph Neural Networks
MNAR - Missing-Not-At-Random
MTS - Multivariate Time Series
TS - Time Series
FFN - Feed-Forward Network
GRU - Gated Recurrent Units
DFT - Discrete Fourier Transform
LSH - Locality Sensitive Hashing
DSH - Deep Supervised Hashing
CBR - Case-based Reasoning
RMSE - Root Mean Square Error
MAE - Mean Absolute Error
AP - Average Precision
MAP - Mean Average Precision
MINE - Mutual Information Neural Estimation
HT - Hit Rate
AUC - Area Under the ROC Curve

xiii





NOTATION

I is the identity matrix.
R is the set of real numbers.
U is the user set.
I is the item set.
XU is the user feature set.
XI is the item feature set.
R is the rating matrix.
O is the observability matrix.
O is the selection matrix/similarity matrix.
X is the multivariate time series input.
X is the input matrix.
x denotes a vector.
Xi,:, Xi, and xi denote the ith row of matrix X.
xi, j is the entry in the i-th row and j-th column of matrix X.
⊗ is the Kronecker product.
⊙ denotes Hadamard product, i.e., the elementwise product.
·∗ denotes Hadamard product.
◦ denotes outer product.
〈·, ·〉 denotes inner product.
(.)⊤ is the transpose operation.

xv





TABLE OF CONTENTS

List of Publications ix

Abbreviation xiii

Nomenclature and Notation xv

List of Figures xxiii

List of Tables xxvii

I Background 1

1 Introduction 3
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.1 Recommender Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.2 Multivariate Time Series Forecasting . . . . . . . . . . . . . . . . . . 6

1.1.3 Learning to Hash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Challenges and Gaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.1 Non-IID Recommender Systems . . . . . . . . . . . . . . . . . . . . . 7

1.2.2 Non-IID Multivariate Time Series Forecasting . . . . . . . . . . . . 8

1.2.3 Non-IID Learning to Hash . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.1 Coupling Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.2 Heterogeneity Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.3 Non-IID Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Literature Survey 17
2.1 Non-IIDness Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

xvii



TABLE OF CONTENTS

2.1.1 Coupling Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.2 Heterogeneity Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.3 High-Dimensionality Modeling . . . . . . . . . . . . . . . . . . . . . . 19

2.1.4 Missingness Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Recommender Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.1 Collaborative Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.2 Neural Recommendation Models . . . . . . . . . . . . . . . . . . . . . 21

2.2.3 Sequential Recommendation Models . . . . . . . . . . . . . . . . . . 23

2.3 Time Series Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.1 Multivariate Time Series Forecasting . . . . . . . . . . . . . . . . . . 24

2.3.2 Time Series Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.3 Spectral Analysis for Time Series Data . . . . . . . . . . . . . . . . . 26

2.4 Learning to Hash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.1 Data-dependent Hashing . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4.2 Traditional Supervised Hashing . . . . . . . . . . . . . . . . . . . . . 27

2.4.3 Deep Supervised Hashing . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5 Case-based Reasoning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5.1 Traditional Case-based Reasoning . . . . . . . . . . . . . . . . . . . . 28

2.5.2 Scalable Case-based Reasoning . . . . . . . . . . . . . . . . . . . . . 30

3 Preliminaries 33
3.1 Latent Factor Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1.1 Factorization Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1.2 Probabilistic Matrix Factorization . . . . . . . . . . . . . . . . . . . . 34

3.2 Deep Learning Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.1 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . . 35

3.2.2 Transformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Data Missing Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4 Discrete Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.5 Mutual Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.6 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.6.1 Rating Estimate Metrics . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.6.2 Ranking Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.6.3 Classification Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.6.4 Informativeness Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 40

xviii



TABLE OF CONTENTS

II Non-IID Recommender Systems 41

4 Sequential Recommendation by Modeling Preference Dynamics and
Feature Couplings 43
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3 Time-aware Recommendation Networks . . . . . . . . . . . . . . . . . . . . . 47

4.3.1 Modeling Temporal Dynamics . . . . . . . . . . . . . . . . . . . . . . 47

4.3.2 Modeling Feature Couplings . . . . . . . . . . . . . . . . . . . . . . . 50

4.3.3 Prediction and Inference . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4 Experiments and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4.1 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.4.2 Ablation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.4.3 Performance Comparison . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4.4 Influence of Sequence Length . . . . . . . . . . . . . . . . . . . . . . . 60

4.4.5 Cold-start Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4.6 Visualization and Interpretability . . . . . . . . . . . . . . . . . . . . 63

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5 Tripartite Collaborative Filtering for Rating Debiasing on Missing-Not-
at-Random Data 69
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.3.1 Tripartite Collaborative Filtering Framework . . . . . . . . . . . . . 72

5.3.2 The TPMF Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.4 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.4.1 E-step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.4.2 M-step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.4.3 Gradients of the Parameters. . . . . . . . . . . . . . . . . . . . . . . . 78

5.4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.5.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.5.2 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.5.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

xix



TABLE OF CONTENTS

III Non-IID MTS Analysis 87

6 Spectral Clustering-Enhanced Transformer for Non-IID Multivariate
Time Series 89
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.3 The Cospectrumer Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.3.1 Spectral Clustering Network . . . . . . . . . . . . . . . . . . . . . . . 92

6.3.2 Clusterwise Forecasting Network . . . . . . . . . . . . . . . . . . . . 95

6.4 Experiments and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.4.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.4.2 Experimental Details . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.4.3 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.4.4 Model Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.4.5 Ablation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.5 Parameter Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.6 Clustering Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7 Deep Coupling Network For Multivariate Time Series Forecasting 117
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.3 Coupling Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7.4 Deep Coupling Network For Multivariate Time Series Forecasting . . . . . 122

7.4.1 Overview Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.4.2 Coupling Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.4.3 Coupled Variable Representation Module . . . . . . . . . . . . . . . 125

7.4.4 Inference Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.5.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.5.2 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.5.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7.5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7.5.5 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

xx



TABLE OF CONTENTS

IV Non-IID Learning to Hash 145

8 Deep Supervised Hashing with Compactness and Informativeness En-
hancement 147
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

8.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

8.3 Probabilistic Code Balance Constraint . . . . . . . . . . . . . . . . . . . . . . 150

8.3.1 Wasserstein Regularization . . . . . . . . . . . . . . . . . . . . . . . . 151

8.3.2 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

8.4 Experiments and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

8.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

8.4.2 Network Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

8.4.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 158

8.4.4 Code Compactness and Informativeness . . . . . . . . . . . . . . . . 162

8.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

9 Deep Supervised Hashing for High-dimensional and Heterogeneous
Case-Based Retrieval and Classification 165
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

9.2 Problem Formulate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

9.3 Deep Hashing Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

9.3.1 Feature Embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

9.3.2 Multiview Feature Interaction . . . . . . . . . . . . . . . . . . . . . . 170

9.3.3 Fully-connected and Hash Layers . . . . . . . . . . . . . . . . . . . . 172

9.3.4 Learning Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

9.4 Hashing-enabled Case-based Reasoning . . . . . . . . . . . . . . . . . . . . . 175

9.4.1 Case Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

9.4.2 Case Retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

9.4.3 Case Reuse and Case Revision . . . . . . . . . . . . . . . . . . . . . . 176

9.4.4 Case Retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

9.4.5 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

9.5 Experiments and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

9.5.1 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

9.5.2 Classification Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 182

9.5.3 Retrieval Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

9.5.4 Hyperparameter Study . . . . . . . . . . . . . . . . . . . . . . . . . . 191

xxi



TABLE OF CONTENTS

9.5.5 Performance Under Adaptive Update . . . . . . . . . . . . . . . . . . 193

9.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

V Summary and Prospect 197

10 Conclusion 199
10.1 Non-IID Recommender Systems . . . . . . . . . . . . . . . . . . . . . . . . . 199

10.1.1 Sequential Recommendation . . . . . . . . . . . . . . . . . . . . . . . 199

10.1.2 Collaborative Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

10.2 Non-IID Multivariate Time Series Forecasting . . . . . . . . . . . . . . . . . 200

10.2.1 Transformer-based Model . . . . . . . . . . . . . . . . . . . . . . . . . 201

10.2.2 Deep Coupling Network . . . . . . . . . . . . . . . . . . . . . . . . . . 201

10.3 Non-IID Learning to Hash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

10.3.1 Hash Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

10.3.2 Case-based Retrieval and Classification . . . . . . . . . . . . . . . . 202

11 Open Challenges and Future Directions 205
11.1 Quantification and Evaluation Methods . . . . . . . . . . . . . . . . . . . . . 205

11.2 Model Complexity and Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . 206

11.3 Temporal Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

11.4 Practical Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

Bibliography 211

xxii



LIST OF FIGURES

FIGURE Page

1.1 Thesis objectives of the non-IID modeling and learning approaches. . . . . . . 10

1.2 Thesis overview of the non-IID learning approaches. . . . . . . . . . . . . . . . 13

4.1 An example to illustrate the motivation of user’s action on movies. . . . . . . . 44

4.2 The TARN architecture for the time-aware modeling of user-item interactions

by involving user action sequences and user/item/temporal feature couplings. 46

4.3 Ablation test performance: HR@10 and MAP of FM, TARN w/o feature cou-

plings and TARN w.r.t. embedding sizes. . . . . . . . . . . . . . . . . . . . . . . . 58

4.4 HR@10 and MAP comparison over different sequence lengths between TARN

and the sequential baselines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.5 Visualization of weight for MovieLens, Tafeng and last.fm. . . . . . . . . . . . 65

4.6 Illustration of the influence of preference dynamics on prediction on the

MovieLens dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.1 The influence of item observability and user selection on the rating generation. 70

5.2 Graphical representation of TPMF. . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3 Evaluation on dataset DDC with varying global observability and rating density. 84

6.1 An illustration of the normalization and relevance effect on MTS forecasting

on weather data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.2 The architecture of Cospectrumer, illustrated with k = 3 in the K-means

objective. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.3 The heterogeneous embedding module. . . . . . . . . . . . . . . . . . . . . . . . 96

6.4 Performance comparison of different input lengths L ∈ {48,96,144,240,480}

with D = 24 and L token = 48. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.5 Impact analysis of the number of clusters. . . . . . . . . . . . . . . . . . . . . . 111

xxiii



LIST OF FIGURES

6.6 Performance comparison of Transformer-based methods with different embed-

ding dimensions on Electricity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.7 (a) MAE comparison under different initial temperatures T0 ∈ {1,2,4,8,16};

(b) training convergence curves of Cospectrumer under T0 = 1 and T0 = 16. . . 112

6.8 Clustering visualization using t-SNE on Electricity and Traffic. . . . . . . . . 113

6.9 Sensitivity analysis on the weight for K-means loss. . . . . . . . . . . . . . . . 114

6.10 Visualization of the change of the clustering indicator matrix on Weather. . . 115

7.1 Illustration about different models for modeling the intra- and inter-series

correlations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.2 The overview framework of DeepCN. . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.3 Multi-order couplings diagram in the deep coupling network. . . . . . . . . . . 124

7.4 Coupling-based model for relationships between variables. . . . . . . . . . . . 125

7.5 Multi-step forecasting error result analysis (MAE and RMSE) of DeepCN and

five baseline models on ECG dataset under different prediction lengths (3, 6,

9, 12). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.6 Multi-step forecasting error result analysis (MAE and RMSE) of DeepCN and

four baseline models on Traffic dataset under different prediction lengths (3,

6, 9, 12). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7.7 The predictions (steps=12) of DeepCN and Informer on ECG dataset. . . . . . 136

7.8 Study of coupling mechanism on ECG dataset. . . . . . . . . . . . . . . . . . . . 138

7.9 Study of coupling mechanism on Traffic dataset. . . . . . . . . . . . . . . . . . . 139

7.10 Parameter sensitivity analysis about input length. . . . . . . . . . . . . . . . . 141

7.11 Parameter sensitivity analysis about the embedding size. . . . . . . . . . . . . 142

8.1 Visualization illustration using T-SNE. . . . . . . . . . . . . . . . . . . . . . . . 148

8.2 Neural network architecture used in the experiments. . . . . . . . . . . . . . . 154

8.3 MAP evaluation of the WR-enabled variants with different β on CIFAR-10

(a-c) and NUS-WIDE (d-f). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

8.4 Visualization of the hash codes of the testing set on CIFAR-10. . . . . . . . . . 159

8.5 Visualization of the hash codes of the testing set on NUS-WIDE. . . . . . . . . 160

9.1 The problem-solving process of case-based reasoning with adaptive hashing. . 169

9.2 The architecture of deep hashing network. . . . . . . . . . . . . . . . . . . . . . 170

9.3 Accuracy comparison of interaction and different variants under various code

dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

xxiv



LIST OF FIGURES

9.4 Comparison of retrieval performance in terms of mean average precision with

different numbers of retrieved cases (MAP@N). . . . . . . . . . . . . . . . . . . 189

9.5 Comparison of retrieval performance in terms of precision with different

numbers of retrieved cases N (Precision@N). . . . . . . . . . . . . . . . . . . . . 190

9.6 Accuracy and efficiency of comparison with state-of-the-art case-based classifi-

cation methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

9.7 Accuracy comparison of HeCBR and its variant w/o update under different

training sample rates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

xxv





LIST OF TABLES

TABLE Page

4.1 Statistics of three recommendation data. . . . . . . . . . . . . . . . . . . . . . . 54

4.2 TARN recommendation performance comparison with baselines on MovieLens,

Tafeng and Last.fm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3 Cold-start test of TARN over the sequential baselines in terms of HR@1. . . . 63

5.1 Performance of TPMF compared against PMF and its variants on the five

synthetic datasets (po = 0.5 and dr = 0.1). . . . . . . . . . . . . . . . . . . . . . . 83

5.2 Performance of TPMF compared against its variants and the state-of-the-art

baselines on four real-world datasets. . . . . . . . . . . . . . . . . . . . . . . . . 85

6.1 Statistics of four multivariate time series data. . . . . . . . . . . . . . . . . . . 101

6.2 Quantitative results in terms of MAE and RMSE with prediction lengths

D ∈ {24,48,96,240,720}, L = 96, and L token = 48. . . . . . . . . . . . . . . . . . . 104

6.3 Statistics of model complexity in terms of training/test time costs and model

parameter volume. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.4 Ablation study of Cospectrumer in terms of its different input lengths L ∈
{48,96,144}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.1 Summary of Experimental Datasets . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.2 Single step forecasting error results (MAE and RMSE) of DeepCN and other

baseline models on five datasets with the prediction length being 12. . . . . . 131

7.3 Multi-step forecasting error comparison (MAE and RMSE) of DeepCN with

six baseline models on ECG dataset with the prediction length in {3,6,9,12}. 132

7.4 Multi-step forecasting error comparison (MAE and RMSE) of DeepCN and

seven baseline models on Traffic dataset with the prediction length in {3,6,9,12}.132

7.5 Multi-step forecasting error comparison (MAE and RMSE) of DeepCN with

five baseline models on Wiki dataset with the prediction length in {3,6,9,12}. 133

xxvii



LIST OF TABLES

7.6 Error results (MAE and RMSE) under different orders of couplings . . . . . . 137

7.7 Results of efficiency analysis on Wiki dataset (variables=1000, samples=803)

and Traffic dataset (variables=962, samples=10560). . . . . . . . . . . . . . . . 140

8.1 MAP evaluation of the six baselines and their WR-enabled variants on two

public datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

8.2 Average training time cost (seconds per epoch) over six baselines with K = 48

on CIFAR in terms of different batch sizes. . . . . . . . . . . . . . . . . . . . . . 161

8.3 MAP evaluation of WR-enabled six baselines with K = 32 on CIFAR. The best

results on each method are shown in bold. . . . . . . . . . . . . . . . . . . . . . 162

8.4 Informativeness evaluation of the baselines and their WR-enabled variants.

Better results are marked in bold. . . . . . . . . . . . . . . . . . . . . . . . . . . 163

9.1 Data characteristics of eight high-dimensional sparse datasets. . . . . . . . . . 179

9.2 Comparison of classification performance in terms of accuracy and the area

under the ROC curve (AUC). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

9.3 Average accuracy comparison of HeCBR under different values of the weight

parameter λ and scaling parameter α respectively. . . . . . . . . . . . . . . . . 191

9.4 Average accuracy comparison of HeCBR under different values of the view

dimension kv and embedding dimension kw respectively. . . . . . . . . . . . . . 194

xxviii



Part I

Background

1





C
H

A
P

T
E

R

1
INTRODUCTION

W ith the rapid development of information technology, a huge amount of data

emerge every day in our daily life from various domains. For example, E-

commerce platforms such as Taobao1, Amazon2, and JD3 generate millions

of transaction records per second from customers. Online social websites/applications

like Twitter4, Meta5, and WeChat6 connect hundreds of millions of users for social

or business purposes and generate billions of posts and messages per second. Search

service providers such as Google7, Baidu8, and Bing9 index millions of newly-coming

news, events, and terms and provide public search services for millions of users every

second. Real-world big data is pervasive in our daily living, studying, working, and

entertainment, and has a huge impact on the world [21].

The world’s data records human behavior and embodies the laws of all trades and pro-

fessions, benefiting us in better understanding the world [19]. Accumulated E-commerce

records help online shopping platforms analyze customers’ preferences and promote

personalized shopping services [95]. Massive historical financial data attracts a large

number of people to engage in quantitative investment [20]. Data has brought great
1https://www.taobao.com/
2https://www.amazon.com/
3https://www.jd.com/
4https://twitter.com
5https://www.meta.com/
6https://www.wechat.com/
7https://www.google.com/
8https://www.baidu.com/
9https://www.bing.com/

3



CHAPTER 1. INTRODUCTION

opportunities to the world, attracting lots of businesses to spend more than hundred

of millions per year on data analysis. In such a big data era, data learning has also

blossomed and dominated research communities. Plenty of global funds and efforts have

been unprecedentedly devoted to data learning research and are playing major scientific

roles in promoting the innovation of data learning and transforming the thinking of data

science to practical applications.

1.1 Background

With the increasing attention to valuable data, more and more business organizations

and research communities record, collect, sort out, and clean data from various domains

with great efforts, for future business or research purposes. Data from different domains,

applications, and sources are correlated to obtain broad knowledge for wide applica-

tions/research and have been sought after by data learning practitioners/researchers

to deliver/study universal applications or general artificial intelligence [34, 294]. In

addition, multi-modality/category/timestamp data has been generated and collected to

achieve the enhanced performance of various tasks, e.g., fashion recommendation [175],

autonomous driving [15], dialogue systems [280] etc., assuming there are sharing knowl-

edge or close relationships among different modality/category/timestamp data. With the

increase of data volume, data categories, modalities and dimensions also keep increasing.

It is attractive but challenging for both businesses and research communities to develop

comprehensive and powerful data learning methodologies and paradigms to meet to the

complexity of modern real-world data.

However, the independent and identically distributed (i.e., IID for abbreviation) as-

sumption has laid the foundation of data learning technology and engineering for several

decades. IIDness simplifies real-world data’s intricate nature for effectively achieving

approximate, traceability, and asymptotic problem-solving [21]. An illustrative example

is that a k-nearest neighborhood (k-NN) algorithm generally assumes samples are inde-

pendent and identically distributed per the IID assumption and thus generates an IID

learning objective and a corresponding IID learning system. Hereby, the comprehensive

aspects and properties of non-IIDness, i.e., heterogeneities and couplings, of real-world

samples may be over-simplified, -normalized, or -abstracted [20].

The debate on the limitations of IID assumptions has lasted for over half a century.

People are struggling with whether to build IID models with high generalization and easy

solutions or to specify non-IID models with high performance but complex modelings

4



1.1. BACKGROUND

and solutions. The demand for new paradigms of data learning has increased and

expanded from statistics to informatics, computing, and other disciplines [22]. With

the rapid development of data learning technology and methodology, especially deep

learning techniques, more powerful models (e.g., neural networks) are devised to cater

for more complicated data and application scenarios. More and more businesses and

researchers focus on the complexity of real-world data and approach its non-IIDness

nature, including data heterogeneity and couplings [22]. This motivates us to rethink the

nature of real-world big data to satisfy its increasing amount and varying complexity.

However, non-IIDness shows diversified properties with different data scenarios, for

example, heterogeneity in types, attributes, sources, and couplings within and between

structures, distributions, and variables. It is extremely challenging to specify non-IID

data learning methodologies for various scenarios and applications, and it is also far

from reaching a unified non-IID learning paradigm for addressing various real-world

non-IIDness, i.e., heterogeneity and coupling. To this end, I attempt to explore non-IID

learning approaches in different specific tasks, i.e., recommender systems, multivariate

time series forecasting, and learning to hash, to enlighten non-IID methodologies and

techniques in this thesis. The elaborately chosen applications and scenarios penetrate

our daily life living, studying, working, and entertaining, and cover various tasks of

classification, ranking, representation, and retrieval. In addition, the three applications

involve various non-IIDness in terms of different granularity, e.g., feature-level and label-

level non-IIDness in recommender systems, variable-level and temporal non-IIDness in

MTS forecasting, and instance-level non-IIDness in learning to hash. Via investigating

the three applications, we accordingly deliver a comprehensive study on the non-IIDness

modeling. Next, we briefly introduce the three tasks.

1.1.1 Recommender Systems

Recommender systems play increasingly important roles in various domains in the age

of information explosion, e.g., e-commerce and social media, by suggesting products and

services (called items in general) that match people’s interests. In general, recommenda-

tions are predicted based on the analysis of existing user actions on items such as user

clicks and purchases of items and user ratings, which is called user-item interactions and

reflects user preferences for items. The user-item interactions can be characterized in

terms of observable (explicit) user/item features, contextual factors and their couplings,

and user sequential actions on items over time [1, 139, 276]. One major challenge is to

precisely estimate missing interactions (e.g., ratings) where a large proportion of ratings

5



CHAPTER 1. INTRODUCTION

were missing [137, 233, 279] and it leads the heterogeneous interaction distributions

for users and items. In addition, during the interactions, users not only maintain their

stationary preferences within a certain context (e.g., in browsing a movie website, artists

may prefer musical movies while children may be more excited about newly released

animation) but also adapt their preferences to new or other items over time or contextual

change (such as the successive release of new movies or circumstances change). It results

in another important and prevalent task, e.g., the sequential recommendation, which

takes a sequence of user-item interactions and tries to predict the subsequent users’

actions that may happen in the near future.

1.1.2 Multivariate Time Series Forecasting

Time series (TS) forecasting has been used for many diverse real-world applications,

such as economics and finance [20, 208], weather forecasting [216, 286], epidemic spread

analysis [11, 186], and energy consumption planning [148, 176]. Going beyond univariate

TS forecasting [113, 198], multivariate time series (MTS) forecasting characterizes the

trend of multiple TS that interact, couple, and influence each other over time [20, 24]. A

typical example is a cross-market analysis [24, 253], where multiple financial indicators

such as the S&P 500 index, the USD exchange rate, and the FTSE 100 index couple

and co-evolve. Recently, jointly modeling susceptible, infectious, and recovered COVID-

19 cases coupled with external factors has emerged as a new challenge [23]. Such

real-life MTS is challenging due to their complex data characteristics across MTS over

variable, time, and frequency spaces. In particular, MTS is non-IID. They involve complex

non-IIDnesses, including explicit-implicit, time-frequency, and short-long intra- and

inter-TS coupling relationships and inter-TS heterogeneities of variable scales and

distributions [3, 21, 139, 293]. Increasingly prevailing forecasting methods model intra-

and inter-TS correlations simultaneously, including MTS regressions, Markovian models,

the copula method, and deep neural networks (DNNs) [86, 181, 252, 253, 271]. However,

such methods often universally neutralize the complexities of MTS data with partial-to-

no mechanisms capturing the MTS non-IIDness. They may result in an incomplete to

incorrect understanding of the nature and characteristics of MTS.

1.1.3 Learning to Hash

Due to the explosive growth of high-dimensional and large-scale data in real-world

scenarios, hashing has attracted significant attention and has been widely utilized for

6



1.2. CHALLENGES AND GAPS

fast information search and retrieval tasks in recent years. Intending to improve storage

and search efficiency, hashing encodes high-dimensional data into compact binary codes

which preserve the similarities of original data. Parallel to traditional data-independent

hashing, e.g., locality sensitive hashing (LSH) [44] applying random projections as hash

functions, this thesis focuses on data-dependent hashing (specifically supervised hashing).

It aims to learn task-specific hash functions to guarantee the similarities in hash coding

space as close as those in the original space and is roughly categorized into supervised

and unsupervised hashing [221, 222].

1.2 Challenges and Gaps

The complexity of real-world data extremely challenges the existing data learning

methodologies and techniques and may seriously constrain their applicability and feasi-

bility in practical scenarios. It is necessary and promising to consider the non-IIDness

of real-world data and devise non-IID modeling and applications. However, different

real-world application scenarios often bring new challenges and difficulties in non-IID

modeling. This section will discuss the corresponding challenges and gaps in the non-IID

modeling (i.e., coupling modeling and heterogeneity modeling) of specific applications.

1.2.1 Non-IID Recommender Systems

Complex real-world recommendation data brings great challenges and opportunities for

RS communities. There are several typical challenges necessarily addressed to improve

recommendation performance.

• Heterogeneity: In recommendation, items and users are usually associated with

different features, which cannot be modeled with the same feature specification or

distribution. Due to their feature differences, items and users show different item

attractions and user behaviors, resulting in heterogeneous user-item interactions,

e.g., explicit ratings and implicit clicks. Most current RSs are modeled under an

identical distribution assumption over user/item features or user-item interac-

tions. This often leads to poor personalized recommendation performance due to

underrepresented user/item embeddings and user-item interactions. In addition,

heterogeneous user-item interactions result in serious data biases, e.g., users are

more likely to select and rate preferred items instead of disliked items. Recom-

mendation models trained on biased data are more inclined to generate biased

7



CHAPTER 1. INTRODUCTION

recommendation performance, for example, generating relatively low/high rating

scores or suggesting repeated/similar items. Hence, one critical challenge in non-
IID RSs is how to represent heterogeneous user/item/context features to enhance
recommendation performance and model the heterogeneous user-item interactions
to avoid recommendation biases.

• Couplings: To construct more advanced RSs, multiple types of information from

multiple data aspects have recently been incorporated to obtain more comprehen-

sive knowledge. Increasing prevalent recommendation models focus on user-item

interactions (e.g., factorization-based models), user-user interactions (e.g., social

recommendation), and item-item interactions (e.g, sequential recommendation).

However, those models seriously suffer from sparsity and cold-start issues. Re-

cently, it has been proven effective to consider feature-level coupling relationships

when modeling the aforementioned interactions. It brings new challenges on how

to model the feature couplings among users and items where the features may be

heterogeneous. In addition, it is also crucial to incorporate contextual information

into the recommendation process under certain circumstances. This implies pre-

cisely modeling the coupling relationships between user features, item features,

and contextual information, which has rarely been explored in previous recommen-

dation models. Hence, another critical challenge in non-IID recommender systems
is how to well model and capture user/item/context feature couplings to enhance
recommendation performance.

1.2.2 Non-IID Multivariate Time Series Forecasting

While multivariate time series (MTS) has been studied intensively in classic TS modeling,

the recent prevailing foci are on modeling MTS with intra- and inter-TS correlations

simultaneously, typically by deep sequential neural networks. Real-life MTS are non-

IID, which brings challenges to current MTS forecasting models due to their complex

data characteristics across MTS over variable, time, and frequency spaces. They often

involve explicit-implicit, time-frequency, and short-long intra- and inter-TS coupling

relationships (e.g., observational correlations and hidden dependencies) and inter-TS

heterogeneities (such as heterogeneous variable scales and distributions). Such non-

IIDnesses with couplings and heterogeneities cannot be universally neutralized by

existing methods. This motivates us to carefully devise novel MTS models to address

intra- and inter-TS couplings and handle the heterogeneous time series variables. Hence,

8



1.2. CHALLENGES AND GAPS

the main challenge is how to address variable heterogeneity and model intra- and inter-TS
couplings to enhance MTS forecasting.

In addition, recent models, e.g., matrix factorization models and GNN-based models,

can attend to both the intra- and inter-TS dependencies while sequential models mainly

handle the intra-series dependencies. Compared with GNN-based models, matrix fac-

torization methods can not model the complex dependencies among time series [119].

However, GNN-based models exploit the relationships through point-wise and pair-wise

interactions which can not fully express the complex relationships among time series.

It is challenging but necessary to revisit the relationships among time series (including
intra- and inter-TS dependencies) from the perspective of mutual information and capture
high-order and high-level coupling relationships.

1.2.3 Non-IID Learning to Hash

To learn hash function on real-world data, there are two challenging issues necessary to

consider to guarantee high-quality hash codes.

• Code Balance: code balance, including bit balance and bit uncorrelation, is es-

sential to guarantee high-quality hash codes and avoid learning collapse in code

generations. However, conventional code balance constraints imposed on avoiding

overfitting and improving hash code quality are unsuitable for deep supervised

hashing owing to their inefficiency and impracticality of simultaneously learning

deep data representations and hash functions. In addition, previous data-dependent

hashing models generally build objectives based on preserving the similarity rela-

tionships among the hash codes. Few studies focus on the relationship between the
original inputs and hash codes, which is necessary to improve the informativeness
of hash codes.

• Similarity metric: It is crucial to consider the heterogeneity embodied in complex

data in similarity measurement. In heterogeneous data, attributes may follow

different distributions and show different significance. Intuitively, this may lead to

the inaccuracy of most handcrafted similarity measures, which adopt consistent

attribute similarity or linear (e.g., average) aggregation functions [154]. To tackle

the heterogeneity, previous studies optimize similarity measures by linear or non-

linear aggregation functions in a data-independent manner, which cannot depict the

complex attribute coupling relationships and heterogeneity among attributes [139].

9



CHAPTER 1. INTRODUCTION

Non-IID 
Learning

Heterogeneity 
Modeling

Coupling 
Modeling

Non-IID 
Recommender 

Systems

• How can we represent heterogeneous 
features in recommender systems?

• How can we accurately capture feature 
couplings in recommender systems?

• How can we address heterogeneity 
issues in MTS forecasting?

• How can we model variable couplings 
in MTS forecasting?

• How can we model heterogeneous and 
couplings in supervised hash?

• Explicit/Implicit feature heterogeneity

• User/item/context feature couplings

• Interaction heterogeneity

• Variable scale and distribution 
heterogeneity

• Inter-TS (spatial) and intra-TS 
(temporal) couplings

• Heterogeneous features and their 
couplings

Non-IID MTS 
Forecasting

Non-IID 
Supervised 

Hash

Figure 1.1: Thesis objectives of the non-IID modeling and learning approaches.

Hence, another critical challenge is how to model heterogeneous features and their
couplings in learning accurate similarity metric.

1.3 Research Objectives

This thesis is mainly devoted to non-IID data learning specified to real-world applica-

tions, including studying how to deal with the aforementioned critical problems and

challenges in modeling real-world non-IIDness and how to design/build specific non-IID

algorithms/models to copy with non-IID applications. This thesis not only promotes the

non-IID thinking of real-world complex data but also inspires data learning researchers

and practitioners with advanced non-IID modeling and learning techniques in various

practical applications.

As shown Figure 1.1, this thesis focuses on studying the non-IIDness from multiple

aspects of modeling and applications, including coupling modeling and heterogeneity

modeling, and non-IID approaches for real-world applications, i.e., recommender systems,

multivariate time series forecasting, and learning to hash.

1.3.1 Coupling Modeling

Couplings refer to the relationships or interactions of two or more aspects between inputs

or between inputs and outputs [22]. Modeling couplings is an important approach to

capturing complex relationships in different granularity and has been empirically proven

to be effective to improve model capacity. In the thesis, we aim to model explicit/implicit

and inter/intra couplings and leverage coupling modeling to enhance data learning.

• Explicit/Implicit couplings: Explicit couplings refer to the relationships calculated

by the surface values via various distance/similarity metrics, while implicit cou-

10



1.3. RESEARCH OBJECTIVES

plings refer to the relationships calculated in the latent space or the indirect

relationships obtained based on mediate variables. Both explicit and implicit cou-

plings play important roles in data learning and reflect the direct and latent

relationships respectively. It is challenging but significant to the data learning

community to combine explicit coupling and implicit coupling modeling in a single

model. This also has the potential to improve the model performance and model

interpretability.

• Inter-/Intra- couplings: In addition to explicit/implicit couplings, inter/intra-couplings

are also significant and necessary to explore complex relationships embodied in

real-world data. Inter-couplings focus on the relationships of different aspects,

e.g., variables and samples, while intra-couplings focus on the correlations of

different internal aspects, e.g., variables or features in each sample. Inter- and

intra-couplings complement each other and depict relationships from different

granularity. The complementarity benefits of obtaining comprehensive relation

information to enhance model performance.

1.3.2 Heterogeneity Modeling

Coupling modeling is a critical step to depict the explicit/implicit, inter/intra relation-

ships and capture comprehensive correlations to enhance data learning. In addition,

heterogeneity is built into various aspects to capture data characteristics and complexi-

ties: attribute level, variable level, and sample level. The following list explores research

targets of different levels of heterogeneity in different data learning scenarios.

• Attribute level: different attributes have different categories, different scales, and

different distributions. Simply treating all attributes as identically distributed

easily causes failures in capturing the meaning of the attributes and modeling the

fusion of the attributes. It is necessary to learn to model or embed heterogeneous

attributes in a unified space or manifold allowing for attribute distance/similarity

computations.

• Variable Level: generally, variables vary with each other due to their various

attributes. In addition, a univariable may have different values varying over time.

Treating different variables or non-static variables to follow identical or static

distributions fails to capture the non-stationary manner of the variables.

11



CHAPTER 1. INTRODUCTION

• Interaction level: In addition to attribute heterogeneity and variable heterogeneity,

different interactions, e.g., user’s ratings and clicks on preferred or retrieved items,

have large distribution differences due to the differences in the data collection.

Addressing the distribution differences of interactions is necessary to learn/approx-

imate accurate data distributions and is even beneficial to developing trustworthy

data learning models.

1.3.3 Non-IID Approaches

To verify the effectiveness of our coupling modeling and heterogeneity modeling, we

tailor non-IID models for various real-world applications based on the coupling and

heterogeneity modelings and investigate how they can improve the performance of the

model. Three representative applications are nominated for evaluation: recommender

systems, multivariate time series forecasting, and learning to hash.

• Recommender systems: Recommendation is one of the most widely used data

learning applications. Currently, recommender systems (RSs) seriously suffer from

serious cold start, data sparsity, and data biases. Non-IID recommendation aiming

to modeling the non-IID recommendation data is a potential and promising method-

ology and will be the key to the next-generation recommendation. To this end, we

investigate and verify the effectiveness of non-IIDness modeling on recommen-

dation performance, including exploring user-user couplings, user-item couplings

and item-item couplings, and rating generation heterogeneity in Part II Non-IID
Recommender Systems.

• Multivariate time series forecasting: Real-life MTS are non-IID, where they often

involve explicit-implicit, time-frequency, and short-long intra- and inter-TS cou-

pling relationships (e.g., observational correlations and hidden dependencies) and

inter-TS heterogeneities (such as heterogeneous variable scales and distributions).

It is necessary and recently prevailing to model MTS by capturing intra- and inter-

TS correlations simultaneously. We aim to effectively capture both target-relevant

intra- and inter-TS couplings and inter-TS heterogeneities in the variable, time,

and frequency spaces to improve MTS forecasting performance in Part III Non-IID
Multivariate Time Series Forecasting.

• Learning to hash: we aim to learn accurate hash functions to preserve the original

similarity measures in hash codes. Considering the beneficial relationships between

12



1.3. RESEARCH OBJECTIVES

Methodology

Non-
IIDness

Heterogeneity

Coupling

Feature 
Heterogeneity

Variable 
Heterogeneity

Interaction
Heterogeneity

Explicit/Implicit 
Coupling

Inter/Intra
Coupling

User/Item/Context
Heterogeneity

User/Item/Context
Feature Coupling

Rating Distribution 
Heterogeneity

Chapter 4

Chapter 5

Input-Code 
Coupling

Case Feature 
Coupling

Case Feature 
Heterogeneity

Chapter 8

Chapter 9

Time Series 
Heterogeneity

Inter-TS Coupling

Intra-TS Coupling

Chapter 6

Chapter 7

Neural 
Models

Latent 
Factor 
Model

Probabilistic
Model

Attention 
Mechanism

Non-IID 
Learning 
Approach

Non-IID MTS Forecasting

Non-IID Recommender Systems

Non-IID Learning to Hash

Figure 1.2: Thesis overview of the non-IID learning approaches.

the original inputs and hash codes, it is necessary to leverage the relationships to

enhance the quality of hash codes. In addition, real-world high-dimensional and

heterogeneous data brings great challenges and computational costs to learn an

accurate hash function. We not only need to address the high-dimensionality and

heterogeneity issues and also pay attention to complex inter-/intra data couplings

to devise comprehensive similarity measurements in Part IV Non-IID Learning to
Hash.

In summary, we focus on real-world non-IID data and aim to explore novel and com-

prehensive non-IID learning approaches for practical applications. To achieve this goal,

we emphasize the necessity of modeling data heterogeneity and coupling relationships

and deliver specific non-IID learning approaches for three practical tasks, i.e., recom-

mender systems, multivariate time series forecasting, and learning to hash, respectively,

as outlined in Figure 1.2. Each task has two chapters corresponding to enlighten non-IID

modeling and learning approaches in which we introduce various existing methodolo-

gies, including neural network, probabilistic model, latent factor model, and attention

mechanism, to achieve non-IID learning.

13



CHAPTER 1. INTRODUCTION

1.4 Thesis Organization

In this section, we briefly introduce the five parts of this thesis:

• Part I: This part presents the background, literature survey, and preliminaries of

this thesis, and includes the following three chapters.

– Chapter 1: This chapter introduces the research background, challenges and

gaps, and research objectives.

– Chapter 2: This chapter presents a literature review of the existing models of

non-IIDness and the non-IID application scenarios and tasks. Those are most

relevant to the studies in this thesis to elucidate the efficient non-IID data

learning

– Chapter 3: This chapter introduces the preliminary knowledge and relevant

data learning techniques theories, including latent factor models, deep learn-

ing models, missing theory, discrete Fourier transform, supervised hashing,

and evaluation metrics.

• Part II: This part studies the non-IID recommendation data and presents two

non-IID learning models for recommender systems:

– Chapter 4: This chapter provides a novel sequential recommendation model

incorporating user preference dynamics and feature couplings. A neural time-

aware recommendation network is designed based on the convolutional net-

works and attention mechanism to jointly learn user/item/context feature

couplings and temporal heterogeneous preference, i.e., preference dynamics.

– Chapter 5: This chapter provides a novel tripartite collaborative filtering

model to debias rating estimate on the missing-not-at-random data. Specif-

ically, we model the correlations among observability, selection, and rating

during users’ rating process and thereby build a probabilistic graphic model

to eliminate the selection bias in rating estimates.

• Part III: This part studies the non-IIDness in multivariate time series analysis

and delivers a novel cluster-enhanced neural model and a deep coupling network

for non-IID multivariate time series forecasting:

– Chapter 6: This chapter builds a cluster-enhanced Transformer model for

non-IID multivariate time series analysis. We introduce spectral-clustering to

14



1.4. THESIS ORGANIZATION

segregate multivariate time series and multi-channel Transformers to capture

explicit-implicit, time-frequency, and short-long intra- and inter-TS coupling

relationships and inter-TS heterogeneities.

– Chapter 6: This chapter revisits the relationships from the perspective of

mutual information and accordingly builds a comprehensive coupling model

for relationships between variables. Then, we propose a novel deep coupling

network for MTS forecasting, named DeepCN, which consists of a coupling

mechanism to explicitly explore the relationships between variables, a coupled

variable representation module to encode the different variable patterns, and

an inference module to make predictions by one forward step.

• Part IV: This part addresses the non-IIDness in learning to hash algorithms,

especially deep supervised hashing, and presents a novel learning to hash algorithm

to improve hash code quality and enhance practical real-world case-based retrieval

and classification, respectively:

– Chapter 8: This chapter provides probabilistic code balance constraints on

deep supervised hashing to force each hash code to conform to a discrete uni-

form distribution. Theoretical analyses reveal that the proposed constraints

form a general deep hashing framework for both bit balance and bit uncorre-

lation and maximize the mutual information between data input and their

corresponding hash codes.

– Chapter 9: This chapter provides a novel deep hashing network to learn

similarity-preserving compact hash codes for efficient case retrieval and pro-

poses a deep-hashing-enabled CBR model HeCBR. In the network, we propose

an efficient feature representation module to tackle heterogeneity and high-

dimensionality issues.

• Part V: We briefly summarize this thesis and provide its contributions in this part.

In addition, we discuss open challenge and provide future directions.

– Chapter 10: This chapter provide a brief summary of contributions in this

thesis.

– Chapter 11: This chapter discuss several open challenges in non-IID learning

approaches and the promising future directions for improving existing non-IID

learning accordingly.

15





C
H

A
P

T
E

R

2
LITERATURE SURVEY

To better understand the non-IID learning data, this chapter extensively review the

existing literature in terms of models and algorithms in non-IIDness modeling, i.e.,

heterogeneities and couplings, the corresponding non-IID application scenarios and

tasks in terms of recommendation, time-series forecasting, and learning to hash models

and algorithms for improving the efficiency

2.1 Non-IIDness Modeling

In this section, we briefly review the techniques for handling non-IIDness and other data

characteristics issues, e.g., high-dimensionality and data missingness. All the discussed

data issues are related to the thesis.

2.1.1 Coupling Modeling

Compared with dependence, correlation, and association, coupling is a richer concept

and has been widely explored and exploited in various applications [293]. It includes

explicit/implicit, qualitative/quantitative, descriptive/deep, and specific/comprehensive

modeling to satisfy different data characteristics and application scenarios. Zhu et al.

propose an unsupervised learning model for categorical representation to jointly consider

heterogeneity and coupling [293]. Zhang et al. propose time-aware neural recommen-

dation via modeling explicit feature couplings among users/items/context to capture

17



CHAPTER 2. LITERATURE SURVEY

stationary user preference, where the authors introduce an efficient and effective inter-

action network capable to learn the couplings of heterogeneous features, e.g., numerical,

categorical, and time features [275]. In addition to representation learning and recom-

mendation, many researchers introduce coupling modeling into multivariate time series

analysis recently. For example, Huang et al. introduce traffic couplings via multirational

graph attention networks for traffic prediction [83]. Zhang et al. construct a tree to ex-

tract hierarchical and group variable couplings and then adopt a cross attention network

to jointly capture inter-series and intra-series couplings [72]. Although extensive studies

verify the benefits of modeling coupling, we necessarily consider novel benchmark learn-

ing paradigms for coupling modeling, which benefits for the data analysis community to

model data couplings and deliver powerful models for different complex scenarios.

In addition, feature couplings have been the key to the success of many prediction

models [227] and are common in many domains, such as Click-Through-Rate (CTR),

genetics studies, and environmental effects [124]. In addition to the linear effects, high-

order feature couplings are also important for many complex applications [124]. Although

deep neural networks (DNNs) can learn both low- and high-order feature couplings,

it learns implicitly and at bit-wise level [121, 288]. There are three main categories

for feature couplings, including aggregation based method, graph based method, and

combination based method [288]. Compared with the other two methods, the combination

method generates feature couplings explicitly. Wide&Deep [35] uses a wide component

to generate cross features and takes them as input of deep neural network. DCN [227]

leverages a cross network to encode feature couplings explicitly and a neural network

to encode implicitly. xDeepFM [121] uses a Compressed Interaction Network (CIN) to

generate feature couplings explicitly. In this section, motivated by the combination

method, we model the relationships among time series explicitly via a Cartesian Product

model [288].

2.1.2 Heterogeneity Modeling

Another common problem is heterogeneous data, with the underlying generation process

changing across data sets or domains [273]. Wang et al. proposes a flexible information-

based framework specializing the maximum entropy principle and the least effort princi-

ple to a principled multimodality information fusion formalism [218]. Liu et al. introduces

transfer learning techniques to the heterogeneity between source and target domains

and propose an evidence-based heterogeneous transfer classification model [138]. Zhu et

al. proposes the HELIC model to capture both value-to-attribute and attribute-to-class

18



2.1. NON-IIDNESS MODELING

hierarchical couplings to reveal the intrinsic heterogeneity in data. In addition, a growing

amount of research pays attention to heterogeneous information network where both

attributes (or datapoints) and their relation may be heterogeneous [79, 82, 293]. Those

methods model data heterogeneity and couplings and achieve significant performance

improvement, proving the rationality and practicality of capturing heterogeneity.

Generally, real file high-dimensional data displays heterogeneity due to either het-

eroscedastic variance or other forms of non-location-scale covariate effect [223], indi-

cating the necessity of addressing the issues of heterogeneity and high dimensionality

simultaneously. Hao et al. combine the high-dimensional version of Expectation Condi-

tional Maximization algorithm and graphical lasso penalty to jointly estimate multiple

graphical models on heterogeneous and high-dimensional observations [70]. Lan et al.

introduces quantile regression to model heterogeneous data and regularize quantile

regression with a non-convex penalty function to deal with ultra-high dimension. Pang

et al. [160] introduce a heterogeneous univariate outlier ensemble framework which

ensembles a set of heterogeneous univariate outlier detectors optimized to capture differ-

ent distribution of each individual feature. Inspired by the success of these methods, we

tailor the proposed network to flexibly capture complex data characteristics and improve

the practicality of CBR systems in real-life applications.

2.1.3 High-Dimensionality Modeling

The most common technique for handling the high-dimensionality is dimensionality

reduction [53, 159], which roughly includes manifold learning [204, 299], feature selec-

tion/extraction [209, 302], and the encoder-decoder framework [106, 110, 162]. Those

methods often project high-dimensional data into low-dimensional representation and

expect that the representation preserves certain patterns, e.g., neighbors, distances or

clusters, or maintains the maximum mutual information with the original data. Re-

garding the incidental sparsity issues, some recent studies [107, 245] further attempt to

tackle the underfitting incurred by data sparsity. In addition, He et al. borrows the idea

of factorization machine and integrates it with neural networks to handle sparsity [249].

Inspired by them, we extend the idea of factorization machine and build a multilinear

interaction layer to handle the high dimensionality and sparsity. Note that a vast litera-

ture focusing on high-dimensionality is not mentioned here, please refer to [53, 159] for

more details.

19



CHAPTER 2. LITERATURE SURVEY

2.1.4 Missingness Modeling

As this subsequent explores the impact of item observability and user selection on the

rating formation and the bias in estimating missing ratings in recommendation [185],

below we review the related work on modeling item observability and user selection in

recommendation area.

Recently, some researchers believe missing ratings reflect both non-preferred (neg-

ative) missing ratings and unobserved missing ratings [122]. They introduce a user
exposure variable indicating whether an item was exposed to a user to joint probabilistic

models and infer the exposure from user selection by the iterative estimation of user

selection and the exposure [122, 136, 224, 225]. These methods distribute a confidence of

being truly negative to each missing entry and then down-weight the unobserved items

to avoid simply treating them as negative that are accordingly not recommended. These

methods outperform the state-of-the-art CF methods for the missing-not-at-random

(MNAR) data, but they only model the dependency between user selection and item

observability and are tailored for recommendation with implicit feedback.

Existing models dealing with the MNAR data follow the theory of missing data

in [126], which introduces a parametric joint probability distribution on the ratings and

selection indicator. For example, CPT-v and Logitvd [146, 147] use a Mixture of Multi-

nomials (MM) to generate user rating values and model user selection based on these

values. More recently, RAPMF [125], MF-MNAR [77] and SPMF-MNAR [29] leverage

the powerful probabilistic matrix factorization (PMF) to model user ratings and selection,

and SPMF-MNAR further applies social influence rather than just the rating to generate

user selection. However, these models neglect the influence of item observability on user

selection and treat that all missing entries equally as unselected. This treatment may

introduce bias as the missing values actually contain both non-preferred and unobserved

entries. Furthermore, these models only consider the dependency of user selection on

rating values but fail to reveal the intrinsic multifaceted correlation embodied between

user ratings and selection.

In addition, some methods address the MNAR problem by computing an estimated

error of the prediction error of imputed values on missing entries [200, 213, 233]. These

methods often have a large bias due to imputation inaccuracy, which is then propagated

into training and degrade the performance. Some other recent methods [94, 177, 185, 202,

260] leverage causal inference to handle the MNAR problem. These methods leverage the

inverse propensity score (IPS) for each observed entry to propose an unbiased estimator

for model training and evaluation. They are suitable for recommendation of either explicit

20



2.2. RECOMMENDER SYSTEMS

or implicit feedback and have been theoretically and are empirically demonstrated

effective and robust. However, IPS-based methods, different from our method and the

aforementioned missing theory-based methods, often suffer from the high variance of the

propensities [207] and extra metadata may be necessary for estimating the propensity.

To the best of our knowledge, no deep learning models are available for MNAR rating

estimation, thus deep models are not considered in the experiments despite of these

outstanding performance in rating estimation.

2.2 Recommender Systems

In this section, we briefly review related recommendation models, including collaborative

filtering, neural recommendation models and sequential recommendation models.

2.2.1 Collaborative Filtering

Matrix factorization (MF) [265] models, in particular, have obtained dominance in the rec-

ommendation community and have shown their superiority by winning the Netflix Prize

competition. Basically, MF methods factorize the user-item rating matrix using low-rank

approximations and use user/item latent factors for prediction. So far, various matrix

factorization methods have been proposed, for example probabilistic matrix factorization

(PMF) [179] and maximum-margin matrix factorization [199]. Apart from the MF ap-

proach, other models have also achieved success in recommendation. With the prevalence

of Deep Learning techniques, Restricted Boltzmann Machines have been successfully

adopted in collaborative filtering [60] and have achieved desirable performance to in the

Netflix Prize competition [180]. Recently, various neural networks have been adopted to

enhance the capacity collaborative filtering, such as neural collaborative filtering [76],

deep matrix factorization [254], neural graph collaborative filtering [232] etc. Those

neural collaborative filtering models explore the integration of neural networks with

collaborative filtering and achieve state-of-the-art recommendation performance.

2.2.2 Neural Recommendation Models

Due to the powerful capability of data fitting of deep neural networks, current state-

of-the-art recommendation approaches are mainly based on neural networks, such as

Recurrent Neural Networks (RNN) [240], Convolutional Neural Networks (CNN) [205],

Graph Neural Networks [246], memory networks [32], attention networks [300] etc.

21



CHAPTER 2. LITERATURE SURVEY

These deep neural networks have been applied into various recommendation tasks, such

group recommendation, session-based recommendation, sequential recommendation,

and cross-domain recommendation. Next, we introduce the related work on CNN and

attention networks which are close relevant to the modeling in the thesis.

Different from RNN, Convolutional neural networks (CNN) first put all the embed-

dings of these interactions into a matrix, and then treats such a matrix as an ‚Äúimage‚Äù

in the time and latent spaces. Therefore, the CNNs can learn sequential patterns as local

features of the image using convolutional filters for the subsequent recommendations.

CNN-based models such as Caser [205], NextItNet [267], and [251] successfully design a

CNN-based networks and achieve state-of-the-art performance in various recommenda-

tion tasks including next-item prediction, session prediction and next-basket prediction.

The promising results are attributable to the fact that a CNN does not have strong order

assumptions over the interactions in a sequence, and they learn more complex sequential

patterns, such as skip patterns and union patterns.

The models most relevant to our work are Recurrent Recommendation Networks

(RRN) [240], ConvolutionAl Sequence Embedding Recommendation Model (Caser) [205]

and Sequential Temporal context-Aware Recommendation (STAR) [169]. RRN models

both item changes and user preference changes by two separative LSTM auto-regressive

models in addition to a low-rank factorization model upon user/item variables to capture

stationary preferences. Caser captures sequential patterns by a convolutional network

and combines a user latent vector to model user stationary preferences. Both RRN and

Caser do not consider the influence of temporal context on user preference dynamics.

SITAR based on STAR involves (temporal) context in stacked RNNs for sequential

recommendation and captures the dynamics of contexts and temporal gaps. Furthermore,

these three models neglect the interactions between explicit users, items and temporal

context and suffer from modeling user stationary preferences and alleviating cold-start

issues. Different from the above models, our proposed TARN models user stationary

preferences by capturing the interactions between explicit user/item/temporal features

and involving temporal context into convolutional networks to model user preference

dynamics, which improves model comprehensibility and recommendation performance.

Considering that CNNs are used to capture multi-fold sequential patterns in TARN, we

also investigate the recent CNN-based methods for fashion recommendation [30, 95, 175,

231], hashtag recommendation [62], and news and document recommendation [101, 206].

These methods apply CNNs to process images and text, which is quite different from our

work utilizing CNNs to model user action sequences.

22



2.2. RECOMMENDER SYSTEMS

2.2.3 Sequential Recommendation Models

With extra user/item/context features becoming available, it has been increasingly rec-

ognized that involving such features is critical for understanding the nature and chal-

lenges of recommendation. The user/item/context features and their coupling relation-

ships [276, 292, 293] has been increasingly considered in recommendation research since

they embodied user/item appearances and context influences, which is contributive to

the challenges of recommendation [1]. Previous work such as factorization machines

(FM) [215] captures latent factors in a low-dimensional space and factorize both first-

and second-order feature couplings via the inner product of feature embedding vectors.

Recent work such as NFM [75], DeepFM [67] and DCN [227] further feeds latent feature

embeddings into deep networks to capture higher-order and nonlinear feature couplings.

Such neural models capture latent relations between ratings and latent features and

outperform the aforementioned shallow recommenders. Due to their effectiveness and ef-

ficiency in highly sparse case, these models are successfully adopted for recommendation

and prediction. However, these shallow and neural models only learn stationary user

preferences but ignore user preference dynamics over time, thus they are impractical for

real-life applications.

There have been an increasing number of models incorporating temporal dynam-

ics into user preference modeling, which can be roughly categorized into two basic

approaches: temporal modeling [175, 203, 263] and sequential modeling [96, 205, 219,

240, 251] which is also our focus in this work. Typical sequential modeling methods

include Markov chain-based methods such as [74, 172] which factorize the transition

matrix of user successive actions to capture the transitional patterns of user action,

which are not suitable for capturing high-order sequential patterns and the long-term

dependency between user actions. The recent neural network-based models such as RNN-

based [84, 219, 240] and CNN-based [205, 251] models prevail over the early sequential

models and achieve excellent results in sequential recommendation. Their success relies

on the strong representation capability of deep neural networks and their sequential

modeling through capturing precise action transition patterns to properly represent

user preferences and dynamics. With the great success of the attention mechanism

in modeling global dependencies between input and output [116, 210, 300], attention

neural networks have been introduced into sequential recommendation and achieve

state-of-the-art performance and good interpretability.

However, the above models either ignore user stationary preferences or only model

stationary preferences by factorizing latent user-item interactions without utilizing

23



CHAPTER 2. LITERATURE SURVEY

explicit user/item/context features. Models which do not capture feature couplings cannot

characterize the intrinsic cause of interactions between users and items and may greatly

suffer from cold-start problems. In addition, recent advanced deep neural models such

as graph neural networks (GNNs) [168, 244], memory networks [32, 291] and deep

reinforcement learning [226] have been introduced into SRSs and achieve great success

due to their strength for modeling and capturing the comprehensive relations within

user action sequences [230]. As these models take different mechanisms and designs

from our proposed TARN, we will not compare them with TARN in the experiments.

2.3 Time Series Analysis

Existing methods for time series analysis can be grouped into two categories: univariate
methods [158, 274] and multivariate methods [18, 188]. Instead of focusing on univariate

methods for single TS without considering their correlations, we focus on MTS and those

multivariate methods which use deep learning techniques.

2.3.1 Multivariate Time Series Forecasting

Traditional MTS models such as vector autoregression (VAR) [237], matrix factoriza-

tion [266], and probabilistic models [31, 187] involve appealing interpretability and

theoretical guarantees. They, however, may fall short in capturing nonlinear MTS rela-

tions and are not able to adapt to large-scale multivariate data [37, 49].

Specifically, some previous work apply matrix factorization methods to factorize

the relationships between time series into a low rank matrix, and then perform the

forecasting in the low-dimensional latent space. TRMF [266] incorporates temporal

regularization into matrix factorization formulation. DeepGLO [188] introduces TCN

as a regularization to add non-linear based on TRMF. TLAE [155] advances the global

factorization approaches and offers an efficient combination between flexible nonlinear

autoencoder mapping and inherent latent temporal dynamics. However, these matrix

factorization methods fall short of exploiting the structural dependencies among time

series [119].

Recent deep learning models have gained popularity in MTS forecasting. A long- and

short-term network (LSTNet) [111] leverages CNNs to discover local dependency patterns

among multiple series and LSTMs to capture their complex temporal dependencies. A

multilevel construal neural network (MLCNN) [37] derived from the construal level

24



2.3. TIME SERIES ANALYSIS

theory leverages CNNs to generate multilevel feature abstraction over MTS and employs

LSTM for multiple predictive tasks. Spatio-temporal graph convolutional networks (ST-

GCNs) [264] integrate graph convolution and gated temporal convolution through spatio-

temporal convolutional blocks for traffic prediction. Spadon et al. [198] further propose

a recurrent graph evolution neural network (ReGENN) to infer multiple multivariate

relations between co-occurring time series.

More impressively, MTS have embraced GNN [6, 247, 248, 264] because of their best

capability of modeling inter-dependencies among time series. DCRNN [120] leverages

bidirectional graph random walk to capture the inter-dependencies among variables.

STGCN [264] integrates graph convolution and gated temporal convolution for traffic

forecasting. GraphWaveNet [248] captures spatial-temporal dependencies efficiently and

effectively by combining graph convolution with dilated casual convolution. AGCRN

[6] proposes a data-adaptive graph generation module and a node adaptive parameter

learning module to enhance graph convolutional network. MTGNN [247] presents an

effective learning method to exploit the inherent dependencies among variables.

Further, the attention mechanism aligns temporal sequences and extracts long-range

dependence [72, 167]. For example, CATN [72] adopts a cross attention mechanism based

on a tree structure to learn hierarchical temporal correlations. The most related and

representative work is Transformer-based MTS models which apply vanilla Transformer

to capture intra-TS temporal correlations [196, 271]. Recently, sparse self-attention has

been used to reduce the computational cost of Transformer and tackle the challenge

of long time series forecasting [104, 118, 243, 289]. Informer [289] introduces a novel

ProbSparse mechanism and a distilling operation for time- and memory-efficient self-

attention calculation. Autoformer [243] proposes an efficient auto-correlation mechanism

with a decomposition architecture to progressively aggregate long-term trends for pre-

diction. FEDformer [290] subsequently introduces a novel attention mechanism with

low-rank approximation in frequency. The above models have achieved great success

in MTS forecasting due to their stronger capability in capturing temporal relations

between multiple variables. However, they neglect the heterogeneity of variables and

rarely capture complex inter-TS couplings over time and frequency.

2.3.2 Time Series Clustering

Time series classification and clustering are essential tasks across many domains and

applications [4, 189]. In contrast to classification relying on the supervision of labels, time

series clustering learns time series relevance without supervision, which is applicable

25



CHAPTER 2. LITERATURE SURVEY

to MTS forecasting. It segregates time series variables such that relevant variables

are clustered while irrelevant variables are apart [115]. Existing algorithms for time

series clustering can be generally categorized into two families: raw-data-based and

feature-based methods [145, 214]. Raw-data-based methods adjust the distance function

to capture sequential characteristics, which are vulnerable to noise and insensitive to

temporal information [163, 259]. Feature-based methods extract feature representations

of time series and learn to cluster based on extracted features, which effectively alleviates

the influence of noise and outliers [145]. Feature-based methods include two categories:

1) two-stage approaches that cluster after extracting features [66, 270]. These approaches

usually introduce prior knowledge to pre-processing raw data to enhance feature quality;

2) one-stage approaches that jointly learn feature representation and clustering [143,

145]. The approaches are capable of extracting nonlinear high-level features. Taking

the advantages of both kinds of feature-based methods, we propose a hybrid clustering

method that first utilizes DFT to obtain features in the frequency domain and then

applies neural networks guided by the K-means objective to learn high-level features.

2.3.3 Spectral Analysis for Time Series Data

Spectral analysis has been widely used in TS analysis. It has advantages in decom-

posing TS into multiple independent variables and capturing periodic patterns within

sequential data [105, 113]. Recently, spectral analysis has been incorporated into neural

networks for time series analysis. StemGNN [18] first incorporates DFT with graph

neural networks and models inter-TS correlations and temporal patterns jointly in the

spectral domain. STCN [144] employs spectral analysis to constrain similar features to

obtain the same pseudo-class labels. Autoformer [243] and FEDformer [290] utilize a

fast Fourier transform to calculate the correlations between TS. In this work, we use a

Fourier transform to extract spectral features and then correlate and cluster MTS based

on the extracted features to enhance forecasting performance.

2.4 Learning to Hash

In this section, we briefly introduce related work on learning to hash (i.e., data-dependent

hashing) and then review recent models for traditional supervised hashing and deep

supervised hashing.

26



2.4. LEARNING TO HASH

2.4.1 Data-dependent Hashing

Parallel to the data-independent hash, this thesis mainly discusses data-dependent

hashing from the perspective of non-deep hashing and deep hashing.

Data-dependent hashing achieves superior performance and learns the similarity-

preserving hash functions from data by minimizing the gap between the similarity in the

original space and that in the hash code space. Early studies present various approaches

focusing on non-deep hashing, which relies on handcraft features to learn hash codes

and hash functions. According to hash functions, those methods are roughly categorized

into linear hash functions, kernel hash functions, and eigenfunction hash functions [222].

For example, spectral hashing [238] and hashing with graphs [135] are representative

algorithms with eigenfunction hash functions. ICA hashing [73] and LDA hashing [197]

are linear hashing methods. Non-deep hashing often introduces code balance constraints

to avoid learning collapse and facilitate the generation of compact hash codes, achieving

desirable performance in similarity retrieval.

With rapid progress made in deep representation learning, deep hashing has achieved

significantly better performance than non-deep hashing and has thus been widely ap-

plied. Deep hashing methods build neural hash functions to obtain robust and powerful

feature representations for complex data and learn neural hash functions and hash

codes simultaneously [130]. The earliest work in deep hashing, semantic hashing [178],

utilizes a deep generative model to handle text data. Subsequently, extensive studies,

e.g., [26, 257, 297], introduce successive CNN-based networks to capture high-level

features from images and customize learning objectives to preserve similarity. Inspired

by these deep hashing methods, we build a specific neural network to learn feature

representations from high-dimensional and heterogeneous data and utilize a pairwise

loss function to learn neural hash functions and hash codes.

Data-dependent hashing methods are roughly categorized into supervised and un-

supervised hashing. The former as our research focus in the thesis is discussed in this

section.

2.4.2 Traditional Supervised Hashing

Supervised hashing aims to learn similarity-preserving hash functions via the given/-

computed similarity relation in the original space [222]. With the emergence of early

supervised hashing methods, e.g., spectral hashing [238], graph hashing [133] and kernel

hashing [134], which learn hash projection vectors rather than random projections in the

27



CHAPTER 2. LITERATURE SURVEY

data-independent hash, supervised hashing has attracted an increasing amount of re-

search interest and achieved significantly better performance than the data-independent

hash [192]. To improve hash quality, the non-deep supervised hashing adopts code bal-

ance constraints – bit balance and bit uncorrelation – to avoid learning collapse and

facilitate generating compact hash codes [142].

2.4.3 Deep Supervised Hashing

Recently, deep supervised hashing leveraging the capability of deep learning in repre-

sentation learning, outperform non-deep hashing methods and has thus been widely

applied [50, 242]. Most DSH methods focus on refining or customizing objective functions,

e.g., quantization loss [58, 297], weighted pairwise loss [26] and triple loss [127], for

preserving similarity. A couple of works, e.g. pointwise methods [92, 201], further intro-

duce label supervision to capture global position relationship, which is influenced by the

quality of classification results. Recently, some works introduce class centers as proxies of

classes to ensure continuous semantic similarity, which improves the discriminability of

hash codes [228, 268]. Although these methods can achieve excellent performance, code

balance constraints, which are beneficial to improving hash quality, are generally ignored

in the DSH context. Quite a few previous methods such as [33] consider code balance

to improve hash quality. However, those methods often utilize discrete optimization

algorithms to solve the objective functions and act on the whole data population, which

thus is inefficient under large-scale data and unsuitable for DSH. To tackle these issues,

this work proposes a probabilistic code balance suitable for DSH to facilitate the learning

of compact and informative hash codes.

2.5 Case-based Reasoning

Case-based reasoning can be categorized into attributed-based and structure-based

approaches in terms of case representation methods. Next, we will introduce related

work about the two kinds of approaches.

2.5.1 Traditional Case-based Reasoning

Attributed-based approaches avoid complicated computation in building representation

structures, but they also require more elaborate techniques for optimizing similarity

measures. In [174], a compound distance approach measures the similarity on mixed data

28



2.5. CASE-BASED REASONING

in CBC. Their method computes the distances and weights for categorical and numeric

features by different means and achieves reasonable interpretability and accuracy on

mixed datasets without data transformation. In [13], an artificial neural network (ANN)

allocates attribute weights. It first trains the neural network and then treats connection

weights as the corresponding attribute weights in CBC. It has such shortcomings that

an enormous amount of training data is needed and the network structure cannot be

transferred to different problems.

Heuristic methods, such as simulated annealing (SA) [150] and genetic algorithm

(GA) [80], are applied to optimize weight allocations. These methods utilize evolutionary

control optimization of classification hits on training data to iteratively update attribute

weights. Subject to initial settings, however, these two methods cannot guarantee a global

optimum. To improve the rationality of weight distribution, a membrane computing-

based approach, named MCCBR [255], first iteratively optimizes weight allocation

according to predefined evolution and communication rules, and a regional sub-algorithm

based on SA is then applied to optimize the weight allocation. Our literature review

shows that all these methods barely consider CBM and retrieval efficiency issues and

conduct experiments with only other CBC methods but not typical classification methods,

e.g., SVM and kNN. Besides, it also shows that attribute vectors-only approaches may

lead to restrictive optimization of similarity measures.

Structure-based approaches organize cases and build case indexes, which have shown

effective in improving the performance and retrieval efficiency of CBR systems. For

example, the CBR system Déjá Vu [194] organizes software-design cases by hierarchi-

cally storing the outlines and details of the solution in different layers. The system

achieves desirable performance, but relies on experts for its construction and leads to low

generability. An effective and efficient Z indexing approach [129] indexes and retrieves

cases and divides the case base into small sets in a tree to narrow down the search range.

A growing hierarchical self-organizing map (GHSOM) [68, 296] categorizes similar cases

into the same clusters and indexes the clusters. GHSOM improves the CBR efficiency

and accuracy, but the system was not compared with typical classifiers for accuracy.

The aforementioned methods neglect the case relations embodied in the representa-

tion structure. The structural information often promotes similarity measures and the

performance of CBR systems [141]. However, limited research is on the advantages of

the structural correlations between cases in the representation structure. Accordingly,

the Least-Common Subsumer (LCS) trees [183] organize plan cases and define refine-

ment operators to compute similarity based on the structural information in LCS trees.

29



CHAPTER 2. LITERATURE SURVEY

It achieves good accuracy and efficiency in plan retrieval and shows the potential of

structural information to improve the similarity measure.

2.5.2 Scalable Case-based Reasoning

Our work aims to improve the efficiency and scalability of CBR systems with high-

dimensional and heterogeneous data by leveraging supervised deep hashing. We there-

fore first discuss the state-of-the-art methods aiming to improve the efficiency and

scalability of CBR systems. Then, we provide a brief review of the current studies on

handling the high-dimensionality and heterogeneity-related issues. In addition, we also

present the recent progress on the data-dependent hashing.

Due to the increase of case number in case base during retaining the newly solved

cases, the efficiency and scalability of CBR systems have always been crucial hindering

the CBR systems from being exploited in applying large-scale and complex cases. Early

studies pay attention to the strategies of case retention which expect to reduce redundant

cases and maintain informative cases only [46, 193, 277]. Those methods leverage

similarity-threshold filters to prune redundant cases or perform structure reduction

to refine the structure of the case base, which alleviates the rapid growth of the case

base to some extent. However, they highly rely on domain experience or expertise to

calculate the similarity and set threshold and degrade the applicability of CBR systems

on large-scale real life data.

A more promising approach to handle the efficiency and scalability issues is to build

well-organized structures to index cases. For example, the typical CBR system [195] orga-

nizes software-design cases by hierarchically storing case description and the solutions

in different layers and achieves desirable performance and efficiency. Liu et al. [128]

introduce an effective and efficient Z indexing approach to index cases and divide the

case base into small sets in a tree. Ruiz et al. [182] propose Least-Common Subsumer

(LCS) trees to organize plan cases. Those methods leverage a hierarchical tree structure

to index cases and narrow down the search space for the goal of efficiency improvement.

In addition, many researchers adopt clustering techniques to accelerate case retrieval.

A growing hierarchical self-organizing map (GHSMO) [69, 295] is introduced to catego-

rize similar cases into same clusters and then index the clusters. Muangprathub et al.

and Zhang et al. further introduce a complete concept lattice for conceptual clustering

to structurally organize and index cases. Like the structure-based CBR models, the

clustering-based models improve the efficiency and accuracy of CBR systems, however

all those models cost a large amount of time to construct and update the organizational

30



2.5. CASE-BASED REASONING

structure and index and often require extra storage to maintain the structure and index,

leading to low applicability in the real world.

Hashing techniques as a special indexing approach has also been applied into

CBR systems. Hashing methods, e.g., LSH [87, 281] and E2LSH [44], project (high-

dimensional) cases into low-dimensional binary vectors (hash codes) and maintain the

similarity information from the original space. The methods not only provide an efficient

index of cases also enable approximate nearest neighbor search in the hash space and

substantial data compression for the case base. Most previous studies introduce only

LSH (data-independent hashing) as the underlying hash-based nearest neighbor search

algorithm for large-scale cases. For example, Jalali et al. presents a case study using

Map Reduce and LSH to make the ensembles of adaptation of regression (EAR) in CBR

feasible for large case bases and subsequently develops foundational scale-up methods

using LSH for fast approximate nearest neighbor search of both cases and adaption rules

for industrial scale prediction [88]. Woodbridge et al. introduce LSH as an alternative to

improve biomedical signal search results and accelerate search speed. Those methods

prove the effectiveness of hashing methods in fast similarity search in CBR systems

and also benefit performance improvement. However, data-independent hashing has

its intuitive drawbacks that it often needs longer hash bits and cannot capture data

characteristics. Recently, Jiang et al. design a supervised hashing method based on

linearly combined kernel functions associated with individual features from images

for scalable histopathological image analysis in a CBR system [91] to handle image

data with efficiency improvement. Nevertheless, there exist quite few studies adopting

advanced data-dependent hashing techniques in CBR systems.

31





C
H

A
P

T
E

R

3
PRELIMINARIES

This thesis aims to explore practical Non-IID data learning approaches, we first introduce

some preliminaries of the data learning models and then present some relevant theories

and techniques. All those models, theories, and techniques are relevant to the learning

approaches in the following chapters. Specifically, this chapter introduces latent factor

models, deep neural models, missing theory, discrete Fourier transform, supervised

hashing, and evaluation metrics for different learning tasks.

3.1 Latent Factor Models

In this section, we introduce basic notions and methodology of two typical latent factor

models, i.e., probabilistic matrix factorization and factorization machine.

3.1.1 Factorization Machine

Factorization Machine (FM) is proposed by Steffen Rendle [215] and is one of generic su-

pervised learning models. It maps arbitrary real-valued features into a low-dimensional

latent factor space and can be applied naturally to a wide variety of prediction tasks

including regression, classification, and ranking. Intuitively, it is capable to handle

complex data with heterogeneous features, e.g., both categorical and numeric features.

Empirically and theoretically, FMs can estimate model parameters accurately under

very sparse data and train with linear complexity, allowing them to scale to very large

33



CHAPTER 3. PRELIMINARIES

datasets. The aforementioned characteristics lead FMs an ideal alternative for real-world

applications, e.g., recommendation [215] and clickthrough rate prediction [75].

Specifically, given input data x ∈Rn, a factorization machine of degree d = 2 is defined

as:

(3.1) ŷ(x)= w0 +
n∑

i=1
wixi +

n∑
i=1

n∑
j=i+1

〈vi,v j〉xix j

where w0 ∈ R, w ∈ Rn and V ∈ Rn×k are model parameters, and k is the dimension of

latent factors. And 〈·, ·〉 is the dot product of two vectors of size k:

(3.2) 〈vi,v j〉 =
k∑

f=1
vi, f ·v j, f

where vi ∈V is the i-th row in V corresponding to the i-th variable with k factors.

3.1.2 Probabilistic Matrix Factorization

Probabilistic matrix factorization (PMF) [179] is a probabilistic model to illustrate the

matrix factorization approach. Given a matrix Y ∈RN×M with N users and M items, we

can assume the distributions with the d-dimensional latent factors Ui ∈Rd of users and

V j ∈Rd of items:

(3.3) P(Ui)=N (Ui|0,σ2
UI) P(Vi)=N (V j|0,σ2

V I)

(3.4) P(Yi j|Ui,V j)=N (Yi j|U⊤
i V j,σ2)

(3.5) P(U,V|Y)∝ P(Y,U,V)=∏
i, j

P(Yi j|Ui,V j)
∏

i
P(Ui)

∏
j

P(V j)

where U= [U1, · · · ,UN ] denotes the user factors; V= [V1, · · · ,VM] denotes the item factors;

and σ2
U ,σ2

V ,σ2 are the variance parameters of the Gaussian distributions. Accordingly,

we have the posterior P(U,V|Y)∝ P(Y,U,V) given in Equation 3.5. Then the objective

function can be obtained by minimizing the negative log-posterior:

(3.6) J = argmin
U,V

1
2

[∑
i, j

(Yi j −U⊤
i V j)2 +λ(∥Ui∥2

2 +∥V j
2
2)∥

]

where σ2 = 1 and denote λ=σ−2
U =σ−2

V . To solve this objective function, we can adopt the

alternating least squares (ALS). When fixing U, it yields:

(3.7) V j ←−
(
λI+∑

i
UiU⊤

i

)−1 ∑
i

Yi jUi

34



3.2. DEEP LEARNING MODELS

Similarly, when fixing V, we can obtain:

(3.8) U j ←−
(
λI+∑

j
V jV⊤

j

)−1 ∑
j

Yi jV j

3.2 Deep Learning Models

In this section, we briefly introduce convolutional neural networks and Transformer that

are closely related to the models in the thesis.

3.2.1 Convolutional Neural Networks

In deep learning, a convolutional neural network (CNN) is a classical neural network,

most commonly applied to computer vision. CNNs are also known as shift/space invariant

neural networks and adopt shared weights of the convolution kernels or filters that

slide along inputs and provide translation-equivalent feature maps. Considering the

dimensionality of inputs, there exists 1D-, 2D, and 3D-convolutional filters in the widely-

used CNNs.

Specifically, given input X ∈Rn×d, the j-th convolution feature by the 1D wide convo-

lution1 is given by:

(3.9) c j
i =φ(fi ·X j: j+h−1 +b), , s.t. j ∈ {1,2, · · · ,n}

where each fi ∈Rh×d is h-width and d-length filter and with l different filters {f1, · · · ,fl}.

Here, operator · computes the inner-product, b is a bias term, and φ is a non-linear

activation function (e.g., ReLU). X is extended to X ∈ R(n+h−1)×d with 0 padding for

wide convolution. Each filter f i slides along the input X to produce a feature map:

Ci = [c1
i ,c2

i , · · · ,cn
i ] for the i-th filter. Generally, convolutional networks may include local

and/or global pooling layers along with convolutional layers. Pooling layers reduce the

dimensions of feature maps and effectively activate/capture informative feature for the

next layer.

3.2.2 Transformer

A transformer is a deep learning model that adopts the mechanism of self-attention.

It have been used primarily in the fields of natural language processing and computer
1Wide convolution guarantees the same heights of convolutional input and output and retains more

feature combinations near the end of the sequence of filter.

35



CHAPTER 3. PRELIMINARIES

vision. The self-attention used in Transformer is the scaled dot-product attention defined

on the tuple input (queries Q, keys K, values V) [210], where queries and keys have

dk dimensions and values have dv dimensions. The dot-product of queries with keys is

scaled by 1p
dk

and normalized to obtain the weights using softmax functions. Then, the

outputs of self-attention are calculated by attending to values referring to the weights,

formulated as follows:

(3.10) A (Q,K,V)= softmax(
QKT√

dk
)V

Under the multihead settings, dm-dimensional queries, keys and values are projected

to dk, dk, and dv dimensions for h times by different linear projections respectively.

Multihead attentions are then performed on these tuple inputs in parallel and yield

dv∗h dimensional output values, generally holding dv = dk = dm/h. Then, the multihead

attention is formulated as follows: Given input Q, K and V,

(3.11)
MultiHead(Q,K,V)=Stack(head1, · · · ,headh)

head j =A (QWQ
j ,KWK

j ,VWV
j )

where WQ ∈ Rdm×dk , WK ∈ Rdm×dk , and WV ∈ Rdm×dv are projection parameters, and

head j denotes the j-th single head attention. The operator of Stack stacks the attention

outputs of each head. For multi-layer attentions, the output is then fed to feed-forward

networks followed by layer normalization [5] and residual connections. The calculation

is formulated as:

(3.12) Z l =LayerNorm(Z l−1 +MultiHead(Z l−1))

where Z l denotes the inputs of the l-th attention layer. Then Z l is fed into the feed-

forward networks with two linear transformations by a ReLU activation in between:

(3.13) Z l =FFN(Z l)=ReLU(Z l ×T Wl
1 +bl

1)×T Wl
2 +bl

2

where W1 ∈Rdm×d f f and W2 ∈Rd f f ×dm .

3.3 Data Missing Theory

The main principles of the theory of missing data developed in [126] have been widely

studied in the context of rating data. We first formalize the theory of missing data and

then introduce its application in debiasing recommendation models.

36



3.4. DISCRETE FOURIER TRANSFORM

Given rating matrix R where r i, j ∈R denotes the rating provided by user i on item

j. In practice, we collect the rating R= {Ro,R¬o}, where Ro and R¬o} denote the sets of

observed and missing entries in R respectively. For each r i, j, there defines a Bernoulli

random variable xi, j that indicates where r i, j is observed (xi, j = 1) or not (xi, j = 1), and X
denotes all the xi, j corresponding to the r i, j. In the missing theory, it is assumed that R
is generated by a complete data model (CDM) with parameters Σ, and is generated by a

missing data model (MDM) with parameters Ω. Both models may share a set of latent

variables Z. Given Σ and Ω, the corresponding joint distribution for R,X,Z is given:

(3.14) p(R,X,Z|Σ,Ω)= p(X|R,Z,Ω)p(R,Z|Σ)

Most machine learning focuses on the estimation of the CDM given by p(R,Z|Σ),

which MDM formalized by p(X|R,Z,Ω) is normally ignored. In mechanisms for missing

data are usually divided into three classes: missing completely at random (MCAR),

missing at random (MAR) and missing not at random (MNAR). MCAR is the most

restrictive assumption, where the probability of observing a rating is independent of

the value of any rating or latent variable generated by the CDM, that is, p(X|R,Z,Ω)=
p(X|,Ω). In MAR data the observation probability depends only upon the value of the

observed data and the MDM parameters, i.e., p(X|R,Z,Ω)= p(X|Ro,Ω). MAR is popular

in machine learning where the MDM is ignored without introducing any bias. However,

in the general case of MNAR data, X is not independent of R or Z where MDM model

cannot be ignored since the binary matrix X has dependence with Ro or Z as well.

The above theory of missing data has been introduced into recommendation models to

address the data biases caused by data missingness (data imbalance). RAPMF [125] first

introduces the missing data theory to build the explicit response models and unify the

response models with PMF to establish the response aware probabilistic matrix factor-

ization framework. Subsequently, MF-MNAR [77] is proposed based on the missing data

theory and probabilistic matrix factorization for MNAR data. Inspired by MF-MNAR,

SPMF-MNAR [29] further incorporates social information to model social influence on se-

lection biases. These models achieve desirable performance in debiasing recommendation

models and verify the effectiveness of the missing data theory to MNAR modeling.

3.4 Discrete Fourier Transform

Discrete Fourier transform (DFT) is essential in digital signal processing and widely

used in signal processing applications [98]. In this paper, we only consider the 1D DFT

37



CHAPTER 3. PRELIMINARIES

that plays a crucial role in our FGCF. Given a sequence of N numbers {xn}N−1
n=0 , the 1D

DFT converts the sequence into the frequency domain by:

(3.15) Xk =
N−1∑
n=0

xne−i(2π/N)kn, k = 0,1, · · · , N −1

where i is the imaginary unit. DFT generates a new N-length representation each of

which Xk denotes the spectrum of the sequence {xn}N−1
n=0 in the frequency domain. In

addition, DFT is an one-to-one transformation. Accordingly, we can recover the original

sequence {xn}N−1
n=0 from its spectrum {Xk}N−1

k=0 by the reverse DFT (IDFT):

(3.16) xn = 1
N

N−1∑
n=0

Xkei(2π/N)kn.

Considering the symmetry and periodicity properties of e−i(2π/N), the fast Fourier trans-
form (FFT) [56] is developed to compute the DFT and reduces the complexity of DFT

from O(N2) to O(NlogN). Similarly, IDFT can also be computed efficiently via the in-

verse fast Fourier transform (IFFT). Using FFT and IFFT, one can efficiently perform

convolutions over sequences in the time space according to the convolution theory for

discrete sequences: considering two sequences {g[n]} and {h[n]}:

(3.17) F {g∗h}( f )= (F {g}◦F {h})( f ), f ∈R

where (g∗h)[n]=∑+∞
m=−∞ g[m]h[n−m] denotes the convolution of g and h, F denotes the

FFT, ◦ is the pointwise product and f is the frequency. The convolution theorem states

that the Fourier transform of a convolution of two sequences equals to the pointwise

product of their Fourier transforms.

3.5 Mutual Information

The mutual information is used to describe the general correlation between variables

[166], and the definition is as follows:

(3.18) I(X ;Y )=
∫

X

∫
Y

P(X ,Y )log
P(X ,Y )

P(X )P(Y )
where X ,Y are two variables and P(X ),P(Y ),P(X ,Y ) are probability distribution and

joint probability distribution respectively. According to the chain rule of information, the

multivariate mutual information can be defined as follows:

I(X1:N ; Z)= ∑
s⊆S

I({s∪Z}), |s| ≥ 1(3.19)

where S = {X1, X2, ..., XN}, s is the subset of S and Z is the target variable.

38



3.6. EVALUATION METRICS

3.6 Evaluation Metrics

In this section, we introduce all metrics adopted in the experimental evaluation of this

thesis, including the metrics for rating estimate, ranking, classification, and informative-

ness.

3.6.1 Rating Estimate Metrics

To measure the accuracy of rating prediction and time series forecasting, we utilized

the most widely used evaluation metrics, namely Mean Absolute Error (MAE) and Root

Mean Square Error (RMSE):

(3.20) RMSE =
√

1
n

n∑
i=1

(yi − ŷi)2

(3.21) MAE = 1
n

n∑
i=1

|yi − ŷi|

where n denotes the number of samples in the testing set, ŷi and yi denote the prediction

and ground truth respectively.

3.6.2 Ranking Metrics

The most common way to assess the recommendation/retrieval performance is to measure

whether relevant items are placed in the top positions of a recommendation or retrieval

list. Intuitively, ranking metrics are suitable for such application scenarios and have

been widely employed to evaluate the recommendation/retrieval performance.

Specifically, given a top-N ranked item set R̂N and the target ground-truth item set

R, Prec@N is calculated as follows:

(3.22) Prec@N = |R∩ R̂N |
N

.

HR@K is calculated as:

(3.23) HR@K = |R∩ R̂N |
|R| .

MAP@N is calculated via the mean of the average precision (AP@N) on all cases, and

AP@N is defined by:

(3.24) AP@N =
∑N

i=1 Prec@i× rel(i)
min(|R|, N)

,

where rel(i) equals 1 if i ∈ R, otherwise 0.

39



CHAPTER 3. PRELIMINARIES

3.6.3 Classification Metrics

In classification tasks, we not only evaluate the accuracy of a classifier also investigate its

robustness to unbalanced label data. Therefore, the metrics, i.e., accuracy and AUC (area

under the ROC curve), are employed to evaluate classification performance. Specifically,

the accuracy is calculated as follows:

(3.25) ACC = TP +TN
TP +FP +TN +FN

where TP, FP, TN, and FN denote the number of true positive, false positive, true

negative, and false negative respective.

AUC measures the probability that the rank of relevant movies M+ is higher than

irrelevant movies M− w.r.t. a group, and it is estimated as follows:

(3.26) AUC =
∑

i∈M+
∑

k∈M− δ [rank (i)< rank (k)]
|M+| • |M−|

where δ(.) returns 1 if rank(i)< rank(k) and 0 otherwise.

For multi-class problems, AUC is calculated as below:

(3.27) AUC = 2
|L|× (|L|−1)

∑
i< j

A i j + A ji

2

where |L| denotes the number of class labels, and A i j and A ji are the AUC values

calculated by considering only cases from classes i and j.

3.6.4 Informativeness Metrics

Mutual Information Neural Estimation (MINE) [10] is proposed to evaluate the infor-

mativeness of the learned representation. MINE achieves the estimation of mutual

information between high dimensional continuous random variables by gradient descent

over neural networks. Specifically, we can design a Mutual Information Neural Estimator

(MINE) that is linearly scalable in dimensionality as well as in sample size, trainable

through back-prop, and strongly consistent, and then adopt the estimator to calculate the

mutual information between learned representation and original data, i.e., evaluating

the the informativeness of the learned representation.

40



Part II

Non-IID Recommender Systems

41





C
H

A
P

T
E

R

4
SEQUENTIAL RECOMMENDATION BY MODELING

PREFERENCE DYNAMICS AND FEATURE COUPLINGS

4.1 Introduction

Sequential recommender systems (SRSs) should cater for both stationary and dynamic

user preferences. Figure 4.1 illustrates the sequential recommendation of movies by

considering the couplings among the user’s age, movie genres and current date and the

relations between movie series. In Figure 4.1, a user under 18 years old watched a series

of movies (labeled by movie genres). Lower green arrows denote the time points when the

movies were watched, and the upper lines indicate the couplings between user feature

‘Under 18 years old’ and movie genres where the thickness of lines refers to the strength

of user/item feature couplings. At the current time (the last one in the figure), the film

Home Alone 3 may be highly recommended to the user after its release since (1) the user

likely prefers children’s and comedy movies, and (2) there is a sequential evolution from

Home Alone 1 to Home Alone 3.

When explicit user/item features are available, modeling their feature couplings

[139] may disclose their driving roles on user preferences on items and improve rec-

ommendation effectiveness and comprehensibility [276]. Existing approaches such as

factorization machines [215], statistical recommendation learning [51] and DeepFM [67]

embed explicit features into a low-rank latent space and factorize user-item interactions

(e.g., ratings and clicks) and feature couplings in terms of the pairwise inner product of

43



CHAPTER 4. SEQUENTIAL RECOMMENDATION BY MODELING PREFERENCE
DYNAMICS AND FEATURE COUPLINGS

Children's&ComedyComedy Drama

Timeline Release 
Date

Children's&ComedyChildren's&Comedy

Under 18Under 18
User

Figure 4.1: An example to illustrate the motivation of user’s action on movies.

the embedded latent vectors or latent variable relation modeling. Involving more features

(especially categorical features which are converted to one-hot representations) often

makes input feature vectors highly sparse [75] and the computation costly especially on

recommendation data that is usually sparse and ‘long-tailed’ as new items or users are

continually introduced [51]. It is extremely challenging to model user-item interactions

and feature couplings on large, sparse and evolving data [51, 203].

While modeling explicit feature couplings is helpful for disclosing some factors driving

user-item interactions and user stationary preferences on items, SRSs have to also

consider the time influence [40, 240] on user preferences and contextual change. In

reality, recommendation data such as user’s clicks, check-ins or e-commerce transactions

are stamped with their occurrence timeframes. Such time information reflects user action

sequencing and preference dynamics [153, 203, 229, 236], which should be combined with

the above user stationary preferences modeling for a more comprehensive understanding

and interpretability of user preference formation and evolution [57] and informing

recommendation transition.

Incorporating time dynamics into typical temporal and sequential models is reflected

in recent work such as Markov chain-based models [74, 172], recurrent neural networks

(RNNs) [219, 240], convolutional neural networks (CNNs) [205, 251], and attention

networks [96, 269]. While these models capture transitional patterns of user action

sequences and achieve state-of-the-art performance in user preference modeling, there

are still several issues in user action sequences worthy of further exploration. First,

44



4.2. PROBLEM FORMULATION

time-specific information may not be involved in the modeling, instead they rely on

temporal order. Second, multi-fold sequential patterns such as union-level and skip-

behavior patterns [205] may exist in sequential user actions, where Markov chain-based

and RNN-based models are not suitable. Further, user sequential actions take place in

their corresponding temporal context which influence future actions [262, 282]. Lastly,

explicit user/item feature couplings not only disclose driving factors of user stationary

preferences [1, 276] they also supplement sequential modeling e.g. in alleviating the

cold-start issues.

Accordingly, neural Time-aware Recommendation Networks (TARN) are introduced

to jointly consider user stationary preferences and preference dynamics for sequential

recommendation by involving time-specific information, explicit feature couplings, and

user action sequences. Specifically, we utilize a feature interaction network to represent

user stationary preferences by factorizing the pairwise couplings between the non-

zero features of users, items and context through the inner product of their feature

embeddings, which can alleviate the data sparsity issues. By assuming user preference

dynamics is attributed to the temporal dynamics within a user’s sequential actions and

is strongly related to the user’s recent action sequence, we introduce a convolutional

layer with multiple filter widths to capture multi-fold sequential patterns by taking the

advantage of CNNs in extracting multi-granular local features [59, 102]. We further

propose a temporal action embedding to represent user actions, which combines the

embeddings of items and temporal context as the input of the convolutional network to

make the network aware of the temporal context.

4.2 Problem Formulation

Here, we introduce the TARN design which incorporates a convolutional network to

learn the temporal dynamics of user preferences and a feature factor model to capture

user stationary preferences. As shown in Figure 4.2, TARN consists of four components:

embedding layers, convolutional network, feature interaction layers, and output layers.

The N-size action sequence S t
u,1:N of user u before time t is fed into the embedding

layers and then the convolutional layers to generate the representation of temporal

dynamics. The feature vector Xt
u,i containing user features Xu, item features Xi and

temporal context Ct is fed to the feature interaction network to represent the interactions

of user/item/temporal features. These two aspects of representations are combined in

the output layers to predict the action at time t. The right two sub components show the

45



CHAPTER 4. SEQUENTIAL RECOMMENDATION BY MODELING PREFERENCE
DYNAMICS AND FEATURE COUPLINGS

Embedding Layers Temporal Action EmbeddingOutput Layers

Feature Interaction Network

Convolutional Network

F 1: 1×d

Conv-1Conv-1

Conv-hConv-h

F h: h×d

CFh: N×nh

o1

oh

AAP

Copy

E1:N: N×d

X uX u

Su,1:N
tSu,1:N
t

ŷu,i
tŷu,i
t

......i1, t1

i2, t2

iN-1, tN-1

...

iN, tN

Δt1

Δt2

...

i|I|, t|I|

...

ΔtN

......

......

......

......

...
...

...... ......

...

......... ...

...

...

...... ......

...

......... ...

...

...

......

AAP ......

......

x1

0

xq

xp

0

xM

...
...

...

x1

xq

...

xp

...
...

xM

......

X u,i
tX u,i
t

X iX i

C tC t

......

......

......

CF1: N×n1

M×d

...
...

...

v 1v 1

v qv q

v pv p

v Mv M

......

......

......

......

......

......

v1v1

v2v2

v1v1

v3v3

vM-1vM-1

vMvM

Pair

......

...

Zu,i
tZu,i
t

O u
tO u
t

O u,i
tO u,i
t

......
......

Inner
Product

i t Δt ...

...... ...... ......

...

+

......

*

......

v v τ1τ1 Δτ1Δτ1

1 1 11 1 1...1 1 1...

Attentive Average Pooling

...... ......

...

......... ...

...

...

+

c1c1 c2c2 cNcN

a1a1 a2a2 aNaN

......

oo

CF

a(c)

Figure 4.2: The TARN architecture for the time-aware modeling of user-item interactions
by involving user action sequences and user/item/temporal feature couplings.

action embedding method and the pooling strategy used in the embedding layers and

convolutional network respectively. TARN models the collaborative effect of user/item

features, sequential actions, and the temporal context on user actions on items by fusing

the three aspects of information to generate sequential recommendations.

Formally, let I be the set of items, U be the set of users, and XI and XU are the

corresponding explicit item feature matrix and user feature matrix, respectively. Each

user is associated with a sequence of historical actions:

(4.1) Su = {(i1, t1), (i2, t2), · · · , (i|Su|, t|Su|)},

where each action (i, t) indicates that item i ∈I is addressed at timestamp t. Assuming

that a user’s action at a time is influenced by his/her prior actions, we apply a N-sized

window sliding over the user’s action sequence to construct a clipped action sequence set.

We generate the clipped sequence set for a user u as follows:

(4.2) {S N+1
u,1:N ,S N+2

u,1:N , · · · ,S |Su|
u,1:N}.

S
p

u,1:N = {(i p−N , tp−N), (i p−N+1, tp−N+1), · · · , (i p−1, tp−1)} is the clipped sequence denoting

the N successive actions of user u before time step p. Given the item feature matrix XI ,

46



4.3. TIME-AWARE RECOMMENDATION NETWORKS

the feature vector Xu ∈XU , and the clipped sequence S t
u,1:N of user u, the recommenda-

tion problem is to suggest new items to user u ∈U at time step t with those items that

are not in Su but are likely to be favored by the user.

4.3 Time-aware Recommendation Networks

4.3.1 Modeling Temporal Dynamics

Leveraging the advantages of CNNs in capturing local features and relations [59, 97],

our method applies a convolutional layer with multi-width filters to discover multi-fold

sequential patterns of user actions on items. First, we introduce the proposed temporal

action embedding.

4.3.1.1 Temporal Action Embedding

To make the convolutional network sensitive to a temporal context, we introduce a

temporal action embedding method to represent user actions. It embeds item variables,

the time of the current action, and the time interval between the current action and the

previous action in the same low-dimensional space and combines these embeddings as

the representation of user sequential actions, i.e., the input of the convolutional layer in

TARN.

First, we utilize time encoding schemes to transform a standard timestamp to a

unique time id for embedding. Specifically, the schemes are customized per application

scenarios to extract time factors, e.g., hour, day and weekday types, from a timestamp.

To choose a proper time encoding scheme, we analyze the relationships between user

actions with different time factors and try different schemes to test their performance1.

Since the schemes cannot extract all the time factors and do not completely depict

the temporal shift between successive actions, we further consider the time interval

between successive actions which can be interpreted as the period of user absence from

the recommender system. The time interval is calculated as follows, where t j is the

timestamp at j-th action:

(4.3) ∆t j = ⌊log(t j − t j−1 +1)⌋.

Here, ∆t j reflects how long a user has been absent from the recommender system at

the j-th action (∆t1 = max j ∆t j). Assuming that the influence of the time interval ∆t j
1We extract hour for MovieLens and Last.fm and day types (weekend and weekday) for Tafeng in the

experiments after trying different schemes.

47



CHAPTER 4. SEQUENTIAL RECOMMENDATION BY MODELING PREFERENCE
DYNAMICS AND FEATURE COUPLINGS

becomes small with the time interval being larger, we use the logarithmic function to

rescale the time interval and adopt floor function (⌊·⌋) to convert a scaled time interval

to a positive integer for embedding. Note that the converted integers have an upper

bound and are enumerable since timestamp t j is bounded by the max timestamp in each

application.

After encoding the timestamps and transferring time intervals into integers, we

embed these two aspects of time information and combine their resultant embeddings

with item embeddings to obtain temporal action representation as shown in the Temporal

Action Embedding in Figure 4.2. Specifically, given any N-action sequence clipped at time

step t of user u, i.e., S t
u,1:N = {(i1, t1), (i2, t2), · · · , (iN , tN)}, the sequence is represented by

the following embedding matrix (for concision, we omit subscript u and time step t in

the following):

(4.4)
E1:N = {e1,e2, · · · ,eN}T ∈RN×d,

s.t.e j = ν j ∗ (τ j +∆τ j +1), j ∈ {1,2, · · · , N},

where e j denotes the embedding vector for j-th action. ν j,τ j,∆τ j ∈Rd×1 are the embed-

ding vectors for item i j, timestamp t j and time interval ∆t j respectively, and ∗ denotes

the element-wise product. Inspired by the idea of initializing context embeddings in [12],

we initialize τ and ∆τ by 0-mean Gaussian and thus treat the context term (τ j +∆τ j +1)

as a mask over item embedding. Note that the proposed temporal action embedding

can easily be extended to integrate other contextual information such as location by

summing all context embeddings in the multiplicative item in Equation (4.4).

4.3.1.2 Multi-width Convolutional Network

By assuming that a user’s action at time t is influenced by his/her recent actions,

we represent the previous action sequence to model the temporal dynamics of user

preferences. Specifically, we feed N ×d embedding matrix E1:N of the N-action sequence

into the convolutional layers. Herein, we utilize d-height convolutional filters to slide over

the embedding matrix to capture the action-level local feature combinations. Considering

the existence of multi-fold sequential patterns, we leverage a convolutional layer with

multiple filter widths which is formulated as follows (shown in the convolutional network

in Figure 4.2):

(4.5)
F =F 1 ∪F 2 ∪·· ·∪F H ,

F h = { f l ∈Rh×d|l ∈ {1, · · · ,nh}},h ∈ {1, · · · ,H}

48



4.3. TIME-AWARE RECOMMENDATION NETWORKS

where H is the maximum filter width, h is the width of a filter and nh denotes the

number of filters with a width h. Intuitively, F h denotes the set of h width filters, and its

l-th filter f l treats the embedding vector of each action as a whole and covers h actions

each step during convolutional calculation. Thus, given the embedding E1:N , the j-th
convolution feature by the wide convolution2 of filter f l ∈F h is given by:

(4.6) ch,l
j =φa( f l ·E j: j+h−1 +bc), s.t. j ∈ {1,2 · · · ,nh}.

Here, operator · computes the inner-product, bc is a bias term, and φa is a non-linear

activation function (ReLU in TARN). E1:N is extended to E1:N+h−1 with 0 padding

for wide convolution when calculating ch,l
j . The filter f l slides along the embedding

matrix E1:N to produce a feature map: Ch,l = [ch,l
1 ch,l

2 · · · ch,l
N ] for the l-th filter in F h. To

differentiate different granular features, we stack the convolutional outputs extracted by

filters with the same width h, i.e., F h:

(4.7) CF h =


Ch,1

Ch,2

...

Ch,nh


T

=


ch,1

1 ch,2
1 · · · ch,nh

1

ch,1
2 ch,2

2 · · · ch,nh
2

...

ch,1
N ch,2

N · · · ch,nh
N

 .

Consequently, for all the filters in F , the convolutional output over the embedding

matrix E1:N is,

(4.8) CF =
[
CF 1

CF 2 · · ·CF H
]

.

4.3.1.3 Attentive Average Pooling

We introduce an Attentive Average Pooling (AAP) over each stacked convolutional

output, i.e., CF h
, to capture the large-span feature combinations shown in Figure 4.2.

Additionally, the attentive pooling learns to distribute high weights to useful features,

facilitating effective information passing to high-level networks.

Specifically, we denote CF h = [c1c2 · · ·cN]T for concision where c j ∈Rnh×1 represents

the j-th row in matrix CF h
. Obviously, c j consists of the convolutional outputs of all

filters f ∈ F h at j-th position (action). The weight of each position j ∈ {1,2 · · · , N} is

formulated as follows:

(4.9) ah j =
exp(LTReLU(Wac j +ba)∑

c j∈Ch exp(LTReLU(Wac j +ba))
,

2Wide convolution guarantees the same heights of convolutional input and output and retains more
feature combinations near the end of the sequence.

49



CHAPTER 4. SEQUENTIAL RECOMMENDATION BY MODELING PREFERENCE
DYNAMICS AND FEATURE COUPLINGS

where Wa ∈ Rda×nh , L ∈ Rda×1 and ba ∈ Rda×1 are identical for each CF h
for simplicity

and convenience for training, meaning that all convolutional outputs share attention

parameters. The attentive average pooling over Ch is built upon the weighted sum of c j:

(4.10) oh =
N∑

j=1
ah jcT

j , s.t.
N∑

j=1
ah j = 1, oh ∈Rnh×1.

For any CF h ⊂ CF , we obtain a corresponding new representation oh by the attentive

average pooling. We then concatenate the series of oh and feed them into a fully-connected

neural network to further extract high-level features:

(4.11) O=σo(Wo


o1

o2
...

oH

+bo),

where Wo ∈Rd×(H∗nh) is a weight matrix, bo ∈Rd×1 is the corresponding bias term and

σo is the activation function (specifically, ReLU is used in experiments). O as the final

output of the convolutional layers stands for the sequence representation reflecting user

preference dynamics. Correspondingly, we denote the sequence representations of S t
u,1:N

with Ot
u which reflects the preference dynamics of user u at time step t. The vector

representing the temporal dynamics of user preferences is fed into a concatenation layer

along with the feature coupling vector, the details of which are discussed in Section 4.3.3.

4.3.2 Modeling Feature Couplings

Recent studies demonstrate that feed-forward neural networks are inefficient in cap-

turing feature couplings [12]. Inspired by obtaining the second-order couplings in FM,

we calculate the feature couplings between explicit features by the inner-product of the

corresponding feature embedding vectors as shown in the feature interaction network

in Figure 4.2. Since the feature vector is highly sparse, we only consider the pairwise

couplings between non-zero feature vectors. In addition, contextual information also

interacts with user/item features, which finally influences user actions. For this reason,

we combine the embedded user, item and context features into a vector and model their

coupling relationships.

Given a user u and an item i at time step t, Xt
u,i = [x1, · · · ,0, xq, · · · , xp,0, · · · , xM]

denotes the concatenated feature vectors of user u (Xu ∈ XU ), item i (Xi ∈ XI), and

temporal context at timestamp t (t,∆t ∈Ct), shown in Figure 4.2. Note that the feature

50



4.3. TIME-AWARE RECOMMENDATION NETWORKS

interaction network is flexible so other context features such as location are easily

incorporated in the network by concatenating the feature vectors of other contexts with

Xt
u,i. In Xt

u,i, categorical features are converted to binary features by one-hot encoding

while numerical features remain unchanged. Furthermore, M denotes the number of

original categorical and numerical features. We then calculate the pairwise non-zero

feature couplings as follows:

(4.12)
Zt

u,i = [z1,2, z1,3, · · · , zM−1,M]T ,

s.t. zp,q = xpxqvp ·vq, p < q, xp, xq ∈Xt
u,i,

where vp,vq ∈ V denotes the d-dimension position embedding vectors of the p-th and

q-th feature within Xt
u,i, and V ∈ R

|Xt
u,i |×d denotes the position embedding matrix. In-

tuitively, value zp,q measures the correlations between the p-th feature and the q-th

feature, and Zt
u,i captures the correlations between the user, item and context features in

the granularity of their pairwise (second-order) couplings. Both the inputs of the convo-

lutional network and feature interaction network (i.e., S t
u,1:N and Xt

u,i) involve the same

temporal information. We thus use shared embeddings for the temporal information.

Different from common FM-based models such as DeepFM, NFM and Deep&Wide [36]

which involve both first-order and second-order (pairwise) feature couplings, we are only

interested in pairwise feature relations, which is demonstrated to be adequate and

effective as shown in Section 4.4.6.1. Additionally, the high-order feature relations

adopted in recent models like NFM and DCN [227] can model more complex feature

relations to improve model performance to some extent. However, introducing high-order

feature couplings incurs a high computational burden or makes it difficult to interpret

the couplings between features. To this end, we simplify the whole model and only adopt

the second-order feature couplings.

In addition, not all feature couplings are equally constructive, and useless couplings

may introduce noise and degrade the performance. It is crucial to flexibly distribute

weights for different feature couplings. Instead of using the attention mechanism as in

AFM [250], we copy the feature coupling vector Zt
u,i to the output layer in the integration

with the convolutional output in Equation (4.13) and learn the weights directly, which

makes our model more flexible than the aforementioned FM-based methods.

4.3.3 Prediction and Inference

We combine the sequence representation and feature couplings for prediction. Before

feeding the combined vector into the output layers as shown in Figure 4.2, we multiply

51



CHAPTER 4. SEQUENTIAL RECOMMENDATION BY MODELING PREFERENCE
DYNAMICS AND FEATURE COUPLINGS

Ot
u with an item-related vector to specify the sequence representation for each particular

item and then stack the resultant vector with the feature coupling vector, which is

formulated as:

(4.13) ŷt
u,i =σ(wT

[
Ot

ui

Zt
ui

]
+b)=σ(wT

[
Ot

u ◦ ṽi

Zt
ui

]
+b),

where ṽi ∈ Ṽ ∈ R|I |×d is a transformation vector specified for item i, w ∈ R(d+|Zui |)×1

and b ∈ R are the output weight vector and bias respectively. Operator ◦ denotes the

element-wise product and σ(·) is the Sigmoid function. ŷt
u,i predicts the probability of

a target item i for user u at time step t based on the sequence representation Ot
u and

feature coupling vector Zt
ui. Thus, we denote:

(4.14) p(i|S t
u,1:N ,XU ,XI)= ŷt

u,i

To train the model, an N-width window slides over the action sequence of each user u
(padding 0 is performed if the length is smaller than N) to generate a training sequence

set, i.e., the clipped sequence set {S 1
u,1:N ,S 2

u,1:N , · · · ,S T
u,1:N }, and the corresponding next

predictive action (precisely item) set of each clipped sequence S t
u,1:N is treated as I u

t .

We denote the collection of time steps to predict T u = {1,2, · · · ,T} for each user u. The

likelihood of all the sequences in the training set is given by:

(4.15) p(S |Θ,Ω)= ∏
u∈U

∏
t∈Tu

∏
i∈I u

t

ŷt
u,i

∏
ī∉I u

t

(1− ŷt
u, ī).

Taking the negative logarithm of the likelihood, we have the objective function w.r.t. the

cross entropy loss:

(4.16) LΘ,Ω = ∑
u∈U

∑
t∈T u

∑
i∈I u

t

−log( ŷt
u,i)+

∑
ī∉I u

t

−log(1− ŷt
u, ī),

where ī is a sampled negative item (in the experiment we adopt the commonly-used

random sampling for efficient training) and Θ= {V,ν,τ,∆τ,Wa,Wo,w,L,Ṽ,ba,bo,b} are

model parameters learned by minimizing the objective function. Furthermore, the hyper-

parameters Ω= {d, N,H,nh,da} are selected via empirical experiments and grid search.

After all the parameters are learned, Equation (4.13) is used to calculate the probability

for all items, and the items with the top-K highest probability are recommended to users.

Equation (4.13) shows that the prediction is made on top of two aspects of information:

the previous action sequence and the user, item and context-combined features. Actually,

52



4.4. EXPERIMENTS AND EVALUATION

by treating the convolutional output as a ‘temporal bias‘ (preference dynamics), user

actions are reflected in the stationary feature couplings. Let us rewrite Equation (4.13):

(4.17) yu,t
i =σ(

[
wT

o wT
Z

][
O◦ ṽi

Zui

]
+b)=σ(

[
eT wT

Z

][
O◦ ṽi

Zui

]
+b),

where Wo and WZ reflect the significance of the two aspects in prediction and e denotes

a unit vector. Equation (4.17) is obtained since we have wT
o (O◦ ṽi) = eT(O◦ ṽi ◦wo) =

eT(O◦ ṽi) and parameter wo can be absorbed in ṽi. By leaving the ‘temporal bias’ apart,

wZ is helpful to investigate and interpret the feature-based couplings between users,

items and context.

Complexity analysis. To make a recommendation for each user u at time step t, the

proposed model calculates ŷt
u,i for all items i ∉Su and recommends the items with the

top-k highest predictive probabilities. Hence, the complexity for making recommendation

for all users is O(|U ||I |P + k|U ||I |), where U is the user set, I is the item set, k is

the number of recommended items, and P denotes the time complexity of calculating

ŷt
u,i. Since a user’s previous action sequence for a given time step is fixed, the output of

the convolutional network can be calculated once and used to calculate ŷt
u,i on all items,

which means that the complexity of convolutional operations can be ignored relative

to the calculation of feature couplings. The complexity of calculating pairwise feature

couplings is O(Md) for each item [215] where M denotes the number of features and

d is the dimension of latent factors. Accordingly, for all users, the total complexity of

recommending top-k items is:

O(|U ||I |P +k|U ||I |)=O(|U ||I |Md+k|U ||I |).

Practically, recommendation is made based on a candidate item set (denoted as C ) rather

than all items U to save time while the corresponding time complexity is O(|U ||C |Md+
k|U ||C |) and |C | ≪ |I |. Similar to other neural recommenders, TARN can be trained

offline, thus we do not investigate its training efficiency in these experiments.

4.4 Experiments and Evaluation

We perform extensive experiments on three public datasets to investigate the following

research problems:

Q1 What is the effect of integrating feature couplings and preference dynamics on

TARN-enabled recommendation?

53



CHAPTER 4. SEQUENTIAL RECOMMENDATION BY MODELING PREFERENCE
DYNAMICS AND FEATURE COUPLINGS

Table 4.1: Statistics of three recommendation data.

Dataset Item# User# Interaction# Feature#

MovieLens 3,706 6,040 1,000,209 10,089

Tafeng 23,071 12,889 657,211 38,004

Last.fm 174,903 983 14,248,823 217,321

Q2 How does TARN perform in comparison with the state-of-the-art recommendation

methods?

Q3 How effective is TARN in capturing user preference dynamics compared with the

state-of-the-art methods?

Q4 Does modeling explicit feature couplings enable TARN to handle the cold-start

issue?

4.4.1 Experimental Settings

4.4.1.1 Datasets

The effect of our method in capturing user preference dynamics and feature couplings is

tested on three publicly available datasets. Table 4.1 summarizes the statistics of the

datasets after pre-processing them.

MovieLens3. This dataset collects the ratings from users who joined MovieLens in

2000. As this work concerns feature couplings, user demographics (i.e., gender, age and

occupation) and item information (i.e., genre) are selected to train the models. We then

convert each rating application (i.e., a pair of user ID and movie ID) along with user/item

side information and temporal context into multi-hot representations, resulting in 10,089

features in total. All the ratings in MovieLens are scaled from {1,2,3,4,5} to a target

value 1 to indicate a user has rated a movie.

Tafeng4. This dataset contains Chinese grocery store transactional data from Novem-

ber 2000 to February 2001. Customer demographics (i.e., customer ID, age and pin code)

and item attributes (i.e., original ID, sub class, amount, asset and price) are used in the

experiments. Numeric attributes (e.g., amount, asset and price) are discretized, and each

transaction (i.e., a pair of customer ID and original ID) along with customer and item

3https://grouplens.org/datasets/movielens/
4https://www.kaggle.com/chiranjivdas09/ta-feng-grocery-dataset

54



4.4. EXPERIMENTS AND EVALUATION

information and temporal context is converted to a feature vector, resulting in 38,004

features in total.

Last.fm5. This dataset records the music listening habits of nearly 1,000 users till

May, 5th 2009. User information (i.e., user ID, gender, age and country) and music

information (i.e., track ID and artist ID) are used as features. Regarding all the above

categorical features, each record is converted to a 217,321-sized feature vector for model

training.

Since all the datasets contain only positive instances, to ensure model generalization

in such one-class settings, for each positive instance of a user, we randomly sample two

negative instances that have no interactions (i.e. no ratings or no purchase) with the

user. All the negative samples are assigned with a target value of 0.

4.4.1.2 Evaluation Metrics

To evaluate the performance in the sequence settings, we employ the widely used leave-

one out protocol. Specifically, we hold the latest item (action) in each user’s item sequence

in the test set and the remaining items in the training set. After a model is trained, we

generate, for each user, a personalized ranking of items that have no interaction with the

user in the training set, and we evaluate the performance on the recommended ranking

in terms of two ranking-based metrics [205, 283]: HR@K and mean average precision

(MAP).

4.4.1.3 Baselines

To investigate the design effectiveness of TARN, our model is customized into the

following versions:

• T-MP: This replaces the attentive average pooling in TARN with Max Pooling in

order to investigate the effectiveness of the attentive average pooling. Max pooling

is performed over the convolutional output of each filter, i.e., each column of CF h
.

• T-IF: This models user preference dynamics over user action sequences by a

convolutional network with an Identical-width Filter in contrast to the multi-filter

design in TARN. In the experiments, we fix the width h = 4.

5https://www.dtic.upf.edu/ ocelma/MusicRecommendationDataset/

55



CHAPTER 4. SEQUENTIAL RECOMMENDATION BY MODELING PREFERENCE
DYNAMICS AND FEATURE COUPLINGS

• T-NT: This does Not involve any Temporal context information in modeling user

preference dynamics, which verifies the contribution made by the temporal action

embedding.

To make a fair comparison, our experiments use the same settings on other para-

meters of the variants of TARN. Furthermore, we compare TARN with the following

baselines:

• POP: This ranks items based on their popularity determined by the number of

user interactions on them in the training set. It is a non-personalized baseline.

• FM [171]: This learns both first- and second-order feature relations in the latent

feature space.

• NFM [75]: This combines the linearity of FM and the non-linearity of neural

networks to jointly model low-order and high-order feature relations and achieves

state-of-the-art performance in sparse prediction.

• RRN [240]: This is the state-of-the-art rating prediction method with sequential

settings by introducing LSTM and a traditional low-rank factorization to capture

user preference dynamics and user-item interactions.

• Caser [205]: This is a CNN-based model for sequential recommendation by lever-

aging a CNN with multiple horizontal convolutional filters and one vertical convo-

lutional filter to capture sequential patterns and combining user embeddings to

capture user global preferences.

• SASRec [96]: A state-of-the-art self-attention-based recommendation model uses

an attention mechanism to capture the long-term semantics of action prediction.

• SITAR [169]: This is the latest context-aware sequential recommendation model

by involving the temporal context into stacked RNNs to capture user preference

dynamics that vary with contextual dynamics and temporal gaps.

• RCNN [251]: This is the latest RNN- and CNN-based model with RNN to cap-

ture complex long-term dependencies and CNN to extract short-term sequential

patterns on the recurrent hidden states.

These state-of-the-art methods are deliberately chosen for the following considera-

tions: FM and NFM verify the contributions of capturing the dynamics of user prefer-

ences; RRN and SITAR are RNN-based methods; and Caser and RCNN are CNN-based

56



4.4. EXPERIMENTS AND EVALUATION

methods. These methods are selected to justify the effectiveness of incorporating feature

couplings and to compare RNNs and CNNs in capturing temporal dynamics. Further-

more, SASRec is selected to compare with the typical attention-based method. Markov

chain-based methods such as in [74, 172] are not compared since the latest deep neural

network-based methods outperform these methods [205].

4.4.1.4 Implementation and Parameter Settings

We implement TARN, its variants, RRN and CRNN in TensorFlow. FM is based on

LibFM [215]. NFM, Caser, SASRec and SITAR are derived from their GitHub versions

released by their authors. Furthermore, we perform a grid search of the learning rate

over {1e−4,1e−3, . . . ,1e−1} and L2 regularization rate over {1e−6,1e−5, . . . ,1e−1} to select

the best performance for FM and NFM and obtain the parameter settings for RRN, Caser,

SASRec, SITAR and RCNN according to their source codes and recommended settings.

To tune the hyperparameters in TARN, we leave out the penultimate actions in each

user’s sequence for validation. Finally, we set 1) the embedding size: 64; 2) convolutional

layer: nh = 16 and H = 4, meaning for each h ∈ [1,4], we have 16 filters; 3) attentive

average pooling: da = 32; 4) optimizer: Adam [103]; (5) batch size: 256; and (6) learning

rate: 1e−3. For a fair comparison and efficiency, all methods are set with an embedding

size of 64 if not specified, although a larger embedding size may perform better.

4.4.2 Ablation Study

To analyze the effectiveness of integrating feature couplings with preference dynamics,

we report the ablation test of TARN under embedding sizes of {8,16,32,64,128,256,512}.

Specifically, we discard the feature interaction network in Figure 4.2 to test the contribu-

tion of modeling feature couplings and compare this with FM to test the performance

gain derived by capturing user preference dynamics.

We test HR@10 and MAP of these methods w.r.t. different embedding sizes. The

results are shown in Figure 4.3 where “TARN w/o FI” denotes TARN without the feature

interaction network. Obviously, TARN outperforms the other two methods, indicating

that both feature couplings and user preference dynamics contribute to the prediction.

The two comparative methods have advantages in different datasets. Specifically, TARN

w/o FI achieves significant performance improvement with an increase of embedding size

and outperforms FM on MovieLens and Last.fm, but it achieves a small improvement on

Tafeng. In contrast, FM performs better when embedding size increases and outperforms

57



CHAPTER 4. SEQUENTIAL RECOMMENDATION BY MODELING PREFERENCE
DYNAMICS AND FEATURE COUPLINGS

0.01

0.03

0.05

0.07

0.09

0.11

0.13

0.15

8 16 32 64 128 256 512

M
A

P

Embedding Size

MovieLens

FM
TARN w/o FI
TARN

0

0.05

0.1

0.15

0.2

0.25

0.3

8 16 32 64 128 256 512

H
R

@
10

Embedding Size

MovieLens

FM
TARN w/o FI
TARN

(a) MovieLens

0.01

0.02

0.03

0.04

0.05

8 61 23 64 128 256 512

M
A

P

Embedding Size

Tafeng

FM
TARN w/o FI
TARN

0.02

0.03

0.04

0.05

0.06

0.07

8 61 23 64 128 256 512

H
R

@
10

Embedding Size

Tafeng

FM
TARN w/o FI
TARN

(b) Tafeng

0.01

0.03

0.05

0.07

0.09

0.11

0.13

8 61 23 64 128 256 512

M
A

P

Embedding Size

Last.fm

FM
TARN w/o FI
TARN

0.01

0.05

0.09

0.13

0.17

0.21

8 16 32 64 128 256 512

H
R

@
10

Embedding Size

Last.fm

FM
TARN w/o FI
TARN

(c) Last.fm

Figure 4.3: Ablation test performance: HR@10 and MAP of FM, TARN w/o feature
couplings and TARN w.r.t. embedding sizes.

TARN w/o FI on Tafeng. The results confirm the fact that user preferences for media (e.g.,

movies and music) are dynamic and subject to the current context, while users in Tafeng

have stable actions and preferences for grocery. This shows that simultaneously modeling

user preference dynamics and feature couplings is necessary to deeply understand the

58



4.4. EXPERIMENTS AND EVALUATION

Table 4.2: TARN recommendation performance comparison with baselines on MovieLens,
Tafeng and Last.fm.

Dataset Metric POP FM NFM RRN Caser SASRec SITAR CRNN

MovieLens
MAP 0.0201 0.0727 0.1028 0.1138 0.1231 0.1283 0.1198 0.1275
HR@10 0.0363 0.1379 0.1889 0.2402 0.2627 0.2692 0.2531 0.2689

Tafeng
MAP 0.0284 0.0421 0.0435 0.0334 0.0326 0.0391 0.0407 0.0389
HR@10 0.0427 0.0629 0.0647 0.0461 0.0472 0.0566 0.0582 0.0554

Last.fm
MAP 0.0044 0.0533 0.0672 0.0952 0.0989 0.1029 0.0973 0.1037
HR@10 0.0051 0.0899 0.1139 0.1782 0.1818 0.1907 0.1791 0.1911

Dataset Metric T-MP T-IF T-NT TARN Imp.

MovieLens
MAP 0.1269 0.1119 0.126 0.1315 2.5%
HR@10 0.2695 0.2397 0.2664 0.2738 1.7%

Tafeng
MAP 0.0484 0.0437 0.0463 0.0471 8.3%
HR@10 0.0694 0.0651 0.0687 0.0697 7.7%

Last.fm
MAP 0.1052 0.0991 0.1058 0.1109 6.9%
HR@10 0.1948 0.185 0.1951 0.1997 4.5%

intrinsic relations between the user, item and context features and the user action

sequential patterns to enable powerful recommendations.

With an increasing embedding size, TARN achieves a more stable performance than

the other two methods, and it outperforms the other two methods consistently. The

results indicate that 1) a larger embedding size is beneficial to improve performance due

to the increased modeling capability; 2) intrinsically, feature couplings and preference

dynamics can work collaboratively and complement each other; 3) the design of TARN

effectively captures and integrates the two aspects for the prediction. Furthermore, the

performance worsens when the embedding size becomes large, which is attributed to the

fact that complex models easily overfit training data.

4.4.3 Performance Comparison

We investigate the recommendation performance of TARN against the state-of-the-art

baselines w.r.t. HR@10 and MAP. The results are summarized in Table 4.2, where the

best result in each row is highlighted in bold and the best baseline results are underlined

for each dataset. Table 4.2 enables the following key observations.

First, Table 4.2 shows that TARN achieves the best results. Specifically, TARN

59



CHAPTER 4. SEQUENTIAL RECOMMENDATION BY MODELING PREFERENCE
DYNAMICS AND FEATURE COUPLINGS

achieves an improvement of 1.7% and 2.5% in terms of HR@10 and MAP over SASRec on

MovieLens where SASRec has the best performance among the state-of-the-art methods,

and it also performs better than the baselines on Tafeng; it especially outperforms NFM,

the best baseline on Tafeng, by up to 7.7% and 8.3% in terms of HR@10 and MAP.

Furthermore, on Last.fm, TARN respectively exhibits an improvement of 4.5% and 6.9%

in terms of HR@10 and MAP over the state-of-the-art CRNN. The results indicate that

TARN achieves state-of-the-art performance.

Second, the aforementioned result verifies the effectiveness of integrating feature

couplings and user preference dynamics. Methods like FM, NFM, SASRec and CRNN

which only involve either of the two aspects cannot fully capture user preferences and

degrade the recommendation performance. Similarly, RRN and Caser fail to exploit

the available explicit features and do not work well on a dataset with strong feature

couplings, e.g., Tafeng. SITAR performs well on Tafeng but obtains bad results on the

other two, indicating our design of interaction layers and convolutional layers is more

effective to capture context influence and sequential patterns.

Further, compared to RNN- and CNN-based methods, the variants of TARN, i.e., T-IF,

T-MP and T-NT, also achieve desirable and even better performance. This improvement is

attributed to modeling the coupling relationships between explicit features. The results

confirm that explicit features may be coupled to drive user preferences and action on an

item[1].

Lastly, Table 4.2 shows that TARN works better than T-NT, T-IF and T-MP as

expected, indicating that the proposed temporal action embedding, the setting of multi-

width filters, and the attentive average pooling contribute to improving recommendation

performance. Specifically, the multi-width filter design facilitates the extraction of differ-

ent granularities of features and is suitable for capturing multi-fold sequential patterns.

The attentive average pooling is beneficial to extract more information and learn a more

effective aggregation (i.e., weighted average) in the setting of pooling over the sequence.

T-NT achieves the best performance among the three variants, indicating temporal

context information contributes to model user-item interactions but it is not the most

important fact compared with user/item features and sequential patterns.

4.4.4 Influence of Sequence Length

To further verify TARN’s capability in modeling user preference dynamics, we compare

RRN, Caser, SASRec, SITAR, CRNN and TARN under different clipped sequence lengths

60



4.4. EXPERIMENTS AND EVALUATION

0.09

0.1

0.11

0.12

0.13

0.14

M
A
P

MovieLens

4 8 12 16 20
RRN Caser SASRec SITAR CRNN TARN

0.2

0.22

0.24

0.26

0.28

0.3

H
R
@
10

MovieLens

4 8 12 16 20
RRN Caser SASRec SITAR CRNN TARN

(a) MovieLens

0.03

0.04

0.05

0.06

0.07

0.08

H
R
@
10

Tafeng

4 8 12 16 20
RRN Caser SASRec SITAR CRNN TARN

0.01

0.02

0.03

0.04

0.05

0.06
M
A
P

Tafeng

4 8 12 16 20
RRN Caser SASRec SITAR CRNN TARN

(b) Tafeng

0.12

0.14

0.16

0.18

0.2

0.22

H
R
@
10

Last.fm

4 8 12 16 20
RRN Caser SASRec SITAR CRNN TARN

0.07

0.08

0.09

0.1

0.11

0.12

M
A
P

Last.fm

4 8 12 16 20
RRN Caser SASRec SITAR CRNN TARN

(c) Last.fm

Figure 4.4: HR@10 and MAP comparison over different sequence lengths between TARN
and the sequential baselines.

N. The comparison provides a comprehensive observation of sequential recommendation

using these methods. The results in terms of MAP and HR@10 are shown in Figure 4.4.

61



CHAPTER 4. SEQUENTIAL RECOMMENDATION BY MODELING PREFERENCE
DYNAMICS AND FEATURE COUPLINGS

Figure 4.4 reports that TARN achieves higher MAP than the baselines over different

sequence lengths. This result is partially attributable to the contribution of capturing

feature couplings and demonstrates the positive effect of integrating feature couplings

and preference dynamics. Except on Tafeng where user preference dynamics are not

obvious, the performance of the other methods is strongly influenced by sequence length.

Specifically, the best sequence length for the methods are 12 and 20 on MovieLens

and Last.fm respectively (note that RRN is less influenced by sequence length since

RRN embeds all previous actions at each step for input to capture global information

and is more stable). The results show that the comparative methods achieve their best

performance under different sequence lengths on two datasets, which is intuitively

reasonable listening to music may occur more frequently than watching movies and

there exist stronger long-term dependencies within music sequence data. It is worth

noting that TARN works much better and more stably than Caser, which demonstrates

again that attentive average pooling is effective and more useful to ‘summarize’ the

convolutional output. Furthermore, we observe that all methods perform worse on

MovieLens when the sequence length becomes larger than 12. This may be because noise

(irrelevant actions) is introduced with an increase in sequence length.

4.4.5 Cold-start Test

To investigate the way TARN handles cold-start users, we compare TARN to the se-

quential baselines RRN, Caser, SASRec, SITAR and CRNN on users with few training

samples. The results are shown in Table 4.3 which reports the average HR@1 over

ten experiments and the intervals ([a,b]) in the table header denote those users with

the number of training samples in [a,b]. Tafeng is not included since RRN and Caser

perform badly on Tafeng. From Table 4.3, we can make the following observations: 1)

TARN achieves obviously higher hit rates (highlighted in bold) over the baselines even

for users who have few training samples. 2) SITAR performs slightly better than the

other baselines. 3) Caser and RRN are comparable with SASRec and CRNN on users

with quite a few samples, and SASRec and CRNN perform worst. This is because both

TARN and SITAR involve context features into the preference modeling, but TARN

considers the explicit features such as user profile and item features and captures the

couplings between user, item and context features. However, Caser and RRN model user

stationary preferences by factorizing only user-item interactions in a latent space as

matrix factorization does but do not consider explicit features, and SASRec and CRNN do

not even consider user stationary preferences but strongly rely on user action sequences.

62



4.4. EXPERIMENTS AND EVALUATION

Table 4.3: Cold-start test of TARN over the sequential baselines in terms of HR@1.

Dataset Method [1,5] [6,10] [11,20]

MovieLens

RRN
0.0313 0.0464 0.0481
±0.0039 ±0.003 ±0.0032

Caser
0.0342 0.0497 0.0536
±0.0032 ±0.0028 ±0.0029

SASRec
0.0288 0.0414 0.0485
±0.0021 ±0.0029 ±0.0035

SITAR
0.0352 0.0514 0.0561
±0.003 ±0.0033 ±0.0035

CRNN
0.0282 0.0397 0.0476
±0.0031 ±0.0023 ±0.0025

TARN
0.0408 0.0574 0.0615
±0.0038 ±0.0039 ±0.0045

Last.fm

RRN
0.0287 0.0453 0.0454
±0.0024 ±0.0032 ±0.0027

Caser
0.0302 0.0449 0.0461
±0.0026 ±0.0029 ±0.0033

SASRec
0.0264 0.0418 0.0443
±0.0026 ±0.0031 ±0.0032

SITAR
0.0311 0.0464 0.0491
±0.0032 ±0.0029 ±0.0034

CRNN
0.0252 0.0437 0.0456
±0.0031 ±0.0024 ±0.0029

TARN
0.0408 0.0574 0.0615
±0.0038 ±0.0039 ±0.0045

The results indicate that TARN achieves better performance than the state-of-the-art

methods in the cold-start settings and demonstrates that modeling explicit feature

couplings is beneficial to capture user stationary preferences in predicting user actions.

4.4.6 Visualization and Interpretability

In this section, we explore the rationale and interpretability of our model and discuss

interesting findings from the model. Due to space limitations, we only analyse the

visualization on MovieLens as an example and the results on Tafeng and Last.fm show

the same findings.

63



CHAPTER 4. SEQUENTIAL RECOMMENDATION BY MODELING PREFERENCE
DYNAMICS AND FEATURE COUPLINGS

4.4.6.1 Explicit Feature Couplings

To investigate the predictive effects of couplings between user, item and context features,

we design the following experiment: following FM in capturing both first-order and

second-order feature couplings as DeepFM [67], NFM [75] and AFM [250], we involve

the first-order information into the feature interaction network by modifying Equation

(4.12) as follows:

(4.18)
Zt

u,i = [z0,1, z0,2, · · · , zM−1,M]T ,

s.t. zp,q = xpxqvp ·vq, p < q, xp, xq ∈ X̃t
u,i.

Here, X̃t
u,i = [x0, x1, · · · ,0, xq, · · · , xp,0, · · · , xM] denotes the extended feature vector from

Xt
u,i where the additional feature x0 = 1 is a constant and the corresponding embedding

vector v0 = e is a unit vector. Such a model is trained till convergence on the same

parameter settings as TARN, and we visualize the well-trained output weights on the

feature coupling vector, i.e., WZ in Equation (4.17), to reveal the contribution of first-

order and second-order feature couplings in the setting of our model. The absolute values

of the resultant weights are high, meaning the corresponding feature couplings have an

effect on the prediction.

The weight visualization on MovieLens is shown in Figure 4.5 where the y-axis

denotes the weight values and the x-axis denotes the coupling pair indices calculated by

a mapping function Φ : zp,q 7→R and Φ(zp,q)= p+ q where zp,q ∈Zt
u,i. In Figure 4.5, we

use MovieLens as an example and number the first-order feature couplings from 1 to 8

and the second-order feature couplings larger than 8. There are a total of 36 couplings

resulting from the 8 features in MovieLens. Figure 4.5 shows that the learned weights

for all the first-order couplings are around 0 and most of the weights for the second-order

couplings are positive. This observation indicates that the first-order couplings adopted

in methods like NFM and DeepFM do not contribute to the prediction of user actions in

our case. In other words, there is no need to consider the first-order features, and the

pairwise feature couplings are suitable and sufficient to capture the coupling relations

between user, item and context features and model user stationary preferences.

In addition, we select six feature pairs (highlighted by the red nodes) whose weights

are higher than those of the other pairs. Here, we denote u for user ID, i for item ID, g
for genre of items, t for timestamp, g′ for gender, a for age and o for occupation. The six

feature pairs are : (user ID, item ID), (user ID, genre), (user ID, time), (gender, item ID),

(age, item ID), and (occupation, item ID), which represent inter-feature couplings [293]

between users, items and time context features. In contrast, the intra-feature couplings

64



4.4. EXPERIMENTS AND EVALUATION

(c) Last.fm

Figure 4.5: Visualization of weight for MovieLens, Tafeng and last.fm.

[293] within user features, item features and context features have relatively small

weights. These findings indicate that inter-feature couplings between users, items and

context are more productive to the prediction.

In the observation, the coupling pair (user ID,item ID) has the largest weight, which

is equivalent to factorizing user-item interactions as MF does. This is reasonable because

user ID and item ID are representative and informative. Furthermore, user/item features

65

(u,i)

(u,g)

(u,t) (g',i) (a,i) (o,i)

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1 6 11 16 21 26 31 36

W
ei

gh
ts

Coupling Pair Index

First-order

(a) MovieLens

-12

-10

-8

-6

-4

-2

0

2

4

1 5 9 13 17 21 25 29 33 37 41 45

W
ei

gh
ts

Coupling Pair Index

First-order

(b) Tafeng

-1

-0.5

0

0.5

1

1.5

2

2.5

1 6 11 16 21 26 31 36

W
ei

gh
ts

Coupling Pair Index

First-order



CHAPTER 4. SEQUENTIAL RECOMMENDATION BY MODELING PREFERENCE
DYNAMICS AND FEATURE COUPLINGS

are often partially available and cannot reflect the comprehensive relations between

users and items. In addition, the pairs (user ID, genre) and (user ID and time) have higher

weights, indicating that the genre of a movie and the temporal context are influential to

user actions as expected. Similarly, the other red nodes reflect that the corresponding

feature pairs have an impact on the prediction.

4.4.6.2 Preference Dynamics

To further investigate the intuition of modeling user preference dynamics, Figure 4.6

illustrates the influence of previous items on prediction for four users. In the figure,

the histograms show the statistics of attention weights on the latest 20 movies of each

selected user. The three highest weighted movies (left of the red arrow) and the target

movie (right of the red arrow) are listed below which are labelled with their genres. The

figure shows the collected attention weights (y-axis) on each position (corresponding

to the x-axis, denoting the position of items in a user’s action sequence) collected from

TARN with H = 1 and nh = 32 on the MovieLens dataset. Note that a higher attention

weight on an item reflects the item is more influential to the prediction of the target item.

We then present the three highest weighted items and the target item and investigate

the influence of user preference dynamics in terms of explicit item feature movie genres.

From Figure 4.6, we observe that previous movies are assigned different weights ac-

cording to the attention mechanism, which is acceptable since user actions are differently

influenced by previous actions, e.g., watching series movies. In addition, we observe that

the most influential (highest weighted) movies are of similar/same genre as the target

movies. The results demonstrate that the learned attention weights are meaningful and

explainable and show that users prefer similar movies (e.g., movies of the same genre) in

the short term. The 4-th selected case is exceptional which is explainable since the user

action on movies ’Drama’ and ’Thriller’ are determined by user stationary preferences for

’Drama’ or ’Thriller’ although the previous action sequence presents an obvious pattern

of choosing ‘Action’ and ‘Adventure’ movies.

4.5 Conclusions

In this chapter, we aim to understand how the explicit features of users, items and

context influence user preferences and how user preference dynamics influence user

actions over time. Specifically, our main contributions include:

66



4.5. CONCLUSIONS

DrDraammaa
RRomomaancncee

CrCriimmee
DrDraammaa DrDraammaa DrDraammaa AAdvedventntururee

ChChhiiillldddrrreenn
AcActtiioonn

AAdvedventntururee
AAdvedventntururee
ChChiillddrreenn

AAdvedventntururee
RRomomaancncee

PPoossiitiotionn

WW
eeii
gh
t

gh
t

0

0.04

0.08

0.12

0.16

0.2

0 5 10 15 20
0

0.04

0.08

0.12

0.16

0.2

0 5 10 15 20

(a)

CrCrCrCriiiimmmmeeee
TTTThhhhhhrhrhrrrrrriiiiiiiillllllllllellellellerrrr

CrCrCrCriiiimmmmeeee
TTTThhhhrrrriiiillellellellerrrr

AcAcAcActtttiiiioooonnnn
AAAAdvedvedvedventntntnturururureeee

CrCrCrCriiiimmmmeeee
TTTThhhhrrrriiiillellellellerrrr

AAAAdvedvedvedventntntnturururureeee
AcAcAcAcAcAcAcActtttttttiiiiiiiioooooooonnnn

AcAcAcActtttiiiioooonnnn
AAAAdvedvedvedventntntnturururureeee

AcAcAcActtttiiiioooonnnn
AAAAdvedvedvedventntntnturururureeee

DrDrDrDraaaammmmaaaa
TTTThhhhrrrriiiillellellellerrrr

0

0.03

0.06

0.09

0.12

0 5 10 15 20
0

0.05

0.1

0.15

0.2

0 5 10 15 20

(b)

Figure 4.6: Illustration of the influence of preference dynamics on prediction on the
MovieLens dataset.

• The proposed TARN jointly models user stationary preferences and preference

dynamics for sequential recommendation. Specifically, TARN has a feature fac-

tor network to factorize user/item/context feature couplings and a convolutional

network fed by user action sequences to model the temporal dynamics of user

67



CHAPTER 4. SEQUENTIAL RECOMMENDATION BY MODELING PREFERENCE
DYNAMICS AND FEATURE COUPLINGS

preferences.

• To make the convolutional network sensitive to a temporal context, a novel temporal

action embedding is proposed to embed items and the temporal context into the

same space and represent user actions by combining their embeddings as the

inputs of the convolutional network.

• An attentive average pooling is introduced upon the convolutional outputs to obtain

significant features and large-span feature combinations, facilitating effective

information passing to higher layers.

• We provide visualization to interpret the rationale and the interesting findings of

the model.

The empirical results on three real-world datasets show that (1) the proposed mech-

anisms in TARN for modeling feature couplings and user preference dynamics are

effective; (2) TARN outperforms the state-of-the-art methods in terms of various verifi-

cation aspects; and (3) both the temporal action representation and attentive average

pooling have a positive impact on improving recommendation performance.

68



C
H

A
P

T
E

R

5
TRIPARTITE COLLABORATIVE FILTERING FOR RATING

DEBIASING ON MISSING-NOT-AT-RANDOM DATA

5.1 Introduction

Generally, rating data in recommendations is missing-not-at-random, that is that the

distributions of observed ratings and all ratings are not identical (i.e., heterogenity).

Some recent studies further explore the MNAR rating issue [185, 233, 258] to debias the

rating estimation. For example, a classic debiasing approach [126] to the MNAR data

is the probabilistic theory of missing data. Such methods [29, 77, 125, 146] treat the

problem as missing data imputation based on the joint likelihood of the missing rating

model and the complete rating model, where the missed ratings (i.e., non-selections) are

dependent on the rating values. The intuition behind these methods is that all ratings

are firstly generated by the complete rating model and the missing rating model then

estimates which entries to be selected (or missed) according to their rating values.

Beyond the dependency on rating values, we argue that the generation process of

ratings may be actually more complicated with the MNAR ratings. Revisiting movie

recommendation, movie recommenders often suggest those movies that they believe

interesting to users, e.g., popular movies, but rarely suggest movies potentially less

interesting. Meanwhile, users cannot select and rate those movies unobservable to them.

The observability of movies to users influences the user selection of movies. The MNAR

perspective indicates the item observability to users and the user selection of items may

69



5 3
4 5

5
4 2

4 3

1 0 0 1 0
0 1 1 0 0
0 0 0 0 1
0 1 0 1 0
1 0 0 0 1

1 1
1 1

1
1 1

1 1
RatingObservability Selection

Select Rate

5

4

Observe

: Item : Observable Item : Unselected Item : Selected Item

Figure 5.1: The influence of item observability and user selection on the rating generation.

jointly influence the rating generation [8, 149, 261], as shown in Figure 5.1. The figure

reflects that the missing ratings contain both preferred yet unobserved entries caused

by poor item observability and non-preferred (also called negative) entries. The above

debiasing methods neglect the impact of item observability but unreasonably treat all

missing entries as non-preferred, which may not conform to the generation process of

ratings and lead to a biased modeling of actual user selection and missing ratings.

We argue to simultaneously model item observability and user selection ti debiase

rating estimation, which however is challenging especially when only on the rating data

as these aspects are often coupled and co-influence each other [1, 157]. Such modeling

needs to properly infer the relationships between the triple aspects while excessively

complex modeling may render overfitting. To tackle these challenges, we take two new

perspectives: (1) ratings are influenced by factors describing user selection; and (2) item

observability depicts the scope of user selection and could correct the probability of the

missing entries being negative. New CF models built on the two aspects have potential

to address the MNAR nature of rating data and avoid modeling to be biased and skewed

to the available ratings.

The above aspects motivate us to develop a tripartite collaborative filtering (TCF)

framework by incorporating both item observability and user selection into rating esti-

mation to cater for the MNAR rating data and to tackle the rating estimation bias. We

further instantiate the framework by Probabilistic Matrix Factorization (PMF) [179] and

propose a Tripartite Probabilistic Matrix Factorization model (TPMF) to infer the three

70

CHAPTER 5. TRIPARTITE COLLABORATIVE FILTERING FOR RATING DEBIASING 
ON MISSING-NOT-AT-RANDOM DATA



5.2. PROBLEM FORMULATION

corresponding variables in three sub-models: (1) a complete rating model to factorize the

ratings with multifaceted factors and model the dependency of ratings on user selection

by factorizing the two aspects into shared subspaces simultaneously; (2) a complete
observability model to introduce a Bernoulli distribution to model the item observability,

which determines whether an item is observable to a user and assigns each missing entry

a confidence of being truly negative; and (3) a user selection model to treat user selection

by following a Gaussian distribution whose mean is a function of the corresponding

rating value and determining which observable items will be selected by the user.

5.2 Problem Formulation

We are given a rating dataset D = {r i j|1 ≤ i ≤ n,1 ≤ j ≤ m, r i, j ∈ {1,2, · · · ,L}, (i, j) ∈A } of

discrete ratings by n users on m items, where A denotes the set of user-item pairs on

which a rating is available. The goal of recommender systems is to estimate ratings for

those missing entries, i.e., user-item pair (i, j) ∉A , denoted ¯A .

From D we can obtain triple aspects of rating data: rating R ∈ Rn×m, observability

O ∈ {0,1}n×m, and selection S ∈ {0,1}n×m as shown in Figure 5.1. Specifically, R is the

rating matrix where RA denotes the available ratings. The observability matrix O is

binary and partly available where oi j = 1 if the j-th item is observable to the i-th user

and oi j = 0 otherwise. S is a binary selection matrix where element si j = 1 denotes that

the i-th user has selected the j-th item and si j = 0 denotes the opposite. Naturally, we

obtain that: 1) an item is rated (or unrated) by a user if and only if the item is selected

(or unselected) by the user, i.e., si j ∈ SA ↔ si j = 1 and si j ∈ S ¯A ↔ si j = 0; 2) an item

selected by a user must be observable to the user first, i.e., p(oi j = 1|si j = 1) = 1 and

oi j ∈OA ↔ oi j = 1; and 3) an item unobservable to a user cannot be selected by the user,

i.e., p(si j = 0|oi j = 0)= 1. Our objective is to build a debiasing model for rating estimation

on the MNAR rating data by jointly inferring the above triple aspects.

5.3 Methodology

In this section, we first introduce the problem definition and our proposed tripartite

collaborative filtering (TCF) framework for the MNAR data. We then instantiate the

TCF into a tripartite probabilistic matrix factorization model (TPMF).

71



CHAPTER 5. TRIPARTITE COLLABORATIVE FILTERING FOR RATING DEBIASING
ON MISSING-NOT-AT-RANDOM DATA

5.3.1 Tripartite Collaborative Filtering Framework

Inspired by the work in [126], we propose a novel tripartite collaborative filtering (TCF)

framework for the MNAR rating data by inferring the triple aspects of rating data (e.g.,

R,O,S). In the TCF framework, we propose three sub-models for the triple aspects:

1) a complete rating model (CRM) to predict R with parameters Ωr; 2) a complete

observability model (COM) to generate O with parameters Ωo, and 3) a user selection

model (USM) to infer S with parameters Ωs. The joint distribution for R, O and S, given

Ωr, Ωs and Ωo, is below:

(5.1) p(R,O,S|Ω)= p(R|Ωr)p(O|Ωo)p(S|R,O,Ωs),

where Ω= {Ωr,Ωo,Ωs}, and Ωr and Ωs share a part of parameters. The intuition behind

the joint distribution shows: CRM (i.e., p(R|Ωr)) first generates ratings for all user-item

pairs, and unobservable user-item pairs are then filtered by COM (i.e., p(O|Ωo)), finally

USM (i.e., p(S|R,O,Ωs)) determines which observable pairs will be available (i.e., which

item is selected by the user). The generation process assumes that all ratings and item

observability are foreknown and user’s subsequent selection of an item relates to his/her

rating value on the item and the item observability to the user. In addition, CRM and

USM share a set of parameters to model the multifaceted correlation between user

selection and ratings.

This tripartite framework explores the complex dependencies between item observ-

ability, user selection, and ratings. The framework is flexible in that we can specify

different distributions for each sub-model to satisfy the needs of various real cases, and

it is easy to incorporate with metadata via modeling the correlation between the triple

aspects of rating data with specific metadata. The constraint is that the dependencies

among three sub-models are fixed to guarantee the TCF effectiveness, and CRM and

USM should share some parameters to learn the influence of user selection on ratings.

5.3.2 The TPMF Model

Next, we instantiate the TCF framework in terms of probabilistic matrix factorization

and propose a Tripartite Probabilistic Matrix Factorization model (TPMF) to infer the

triple aspects of rating data by the three sub-models: Complete Observability Model

(COM), User Selection Model (USM), and Complete Rating Model (CRM), as shown in

Figure 5.2. It contains three sub-models USM, CRM and COM. si j in dark shade is fully

available, r i j and oi j are in light shade where part of the r i j and oi j values are available.

72



𝜇𝑖𝑗𝛼

𝑜𝑖𝑗

𝑟𝑖𝑗

𝑠𝑖𝑗 𝜁𝑗𝑙
𝑐𝑜𝑙 𝜎𝑐𝑜𝑙𝜁𝑖𝑙

𝑟𝑜𝑤𝜎𝑟𝑜𝑤

ℎ𝑗𝑘 𝜎ℎ𝑔𝑖𝑘𝜎𝑔

𝑣𝑗𝑘 𝜎𝑣𝑢𝑖𝑘𝜎𝑢

𝛽

𝜎𝑠

𝜎

j=1,…,mi=1,…,n

k=1,…,d k=1,…,d

l=1,…,L l=1,…,L

Figure 5.2: Graphical representation of TPMF.

Complete Observability Model (COM). Similar to [122], we assume that the

binary O follows a Bernoulli distribution whose mean is drawn from a Beta distribution.

Specifically, we have:

(5.2) p(O|µ)=
n∏

i=1

m∏
j=1

B(oi j|µi j),

where µ ∈Rn×m and µi j ∈µ denotes the prior probability that item j is observable to user

i. For simplicity and avoiding overfitting, we assume the item observability is dependent

on item popularity: µi j = µ j ∼ Beta(α,β). If extra metadata (e.g., user demographic or

item features) is available, it can be used to infer item observability and differentiate

item observability for different users.

User Selection Model. We adopt matrix factorization to factorize variable S and

model the variable as a function of R and O, see Figure 5.2. Specifically, we treat si j|oi j =
0 following constant distribution (denoted by ρ0) since we have p(si j = 0|oi j = 0) = 1,

and we further model si j|oi j = 1 with a Gaussian distribution (note that the Bernoulli

73

5.3. METHODOLOGY



CHAPTER 5. TRIPARTITE COLLABORATIVE FILTERING FOR RATING DEBIASING
ON MISSING-NOT-AT-RANDOM DATA

distribution is also suitable but brings difficulty in inference). Then, we have:

(5.3) p(S|R,O,Ωs)=
n∏

i=1

m∏
j=1

N (si j|ŝi j,σ2
s )oi jρ

1−oi j
0 ,

(5.4) ŝi j =GT
i H j +

L∑
l=1

(ζrow
il +ζcol

jl )I[r i j = l]+bs,

where I(·) denotes the indicator function, bs is a bias term and Ωs denotes G, H, ζrow,

ζcol and bs. Two matrices G ∈ (0,1)d×n and H ∈ (0,1)d×m with d <min(n,m) are used to

factorize S and follow truncated Gaussian distributions. ζr ∈Rn×L and ζc ∈Rm×L follow

zero-mean spherical Gaussian. ζrow
il and ζcol

jl reflect the influence of rating value r i j on

si j. Intuitively, a larger value of (ζrow
il +ζcol

jl ) when r i j = l implies a higher probability

that si j = 1.

Complete Rating Model (CRM). We further factorize R by the inner product of two

low-rank latent matrices U ∈Rd×n and V ∈Rd×m, representing latent user preferences

and item attraction respectively. Specifically, we assume Gaussian noise on the ratings

below:

(5.5) p(R|U,V,σ)=
n∏

i=1

m∏
j=1

N (r i j|UT
i V j,σ2),

where U and V follow a zero-mean spherical Gaussian distribution. However, in addition

to the influence of rating values on user selection, it is worthy noting how a user selection

affects the user rating. We expect that user ratings are also influenced by the factors

describing user selection. To model the factor correlation, we regularize the factorization

of R:

(5.6) p(R|U,V,G,H,σ)=
n∏

i=1

m∏
j=1

N (r i j|r̂ i j,σ2),

where the estimated rating r̂ i j =UT
i Γi jV j and we have:

(5.7) Γi j =
d

[
diag(Gi ◦H j)+εI

]
GT

i H j +dε
,

where d is the latent dimension, operator ◦ calculates the element-wise product and

diag(·) denotes a function constructing a diagonal matrix with a vector. 0≤ ε≤ 1 is an

adjustment factor that large ε reduces the influence of Gi and H j on r̂ i j and avoids the

denominator being zero.

74



5.3. METHODOLOGY

Let Γkk
i j be the k-th (k ∈ [1,d]) diagonal element, we have dε

d−1+ε
< Γkk

i j < d+dε
1+dε

and

Ek(Γkk
i j )= Ek( dg ikh jk+dε

GT
i H j+dε

)= 1. Hence, we can treat Γi j as a mask over the d multiplicative

factors in calculating UT
i V j, and Equation (5.6) is equivalent to PMF when Γi j equals an

identity matrix. A larger value of g ikh jk contributes more to user selection, and it also

upweights uikv jk in the estimation of user ratings. The above settings constrain that

user preference and item feature show consistency to some extent on the estimation of

user selection and rating.

Joint Model. Based on the three sub-models, we obtain the following log joint

probability according to Equation (5.1):

(5.8)

log(R,O,S|Ωo,Ωs,Ωr)

=
n∑

i=1

m∑
j=1

oi j logN (si j|ŝi j,σ2
s )+ logN (r i j|r̂ i j,σ2)

+ logB(oi j|µi j)+ (1− oi j)logI(si j = 0)+C

where C denotes a constant independent of parameters.

Prior Distribution of the Parameters: In USM, the two matrices G ∈ (0,1)d×n and

H ∈ (0,1)d×m follow truncated Gaussian distributions:

(5.9) p(G|σg)=
n∏

i=1

N (Gi|0,σ2
gI)∫1

0 N (x|0,σ2
g)dx

,

(5.10) p(H|σh)=
m∏

j=1

N (H j|0,σ2
hI)∫1

0 N (x|0,σ2
h)dx

,

where Gi and H j are column vectors, and I is an identity matrix. Let denote ϕg =∫1
0 N (x|0,σ2

g)dx and ϕh = ∫1
0 N (x|0,σ2

h)dx. And ζr ∈ Rn×L and ζc ∈ Rm×L follow zero-

mean spherical Gaussian:

(5.11) p(ζr|σ2
r )=

n∏
i=1

N (ζr
i |0,σ2

rI),

(5.12) p(ζc|σ2
c)=

m∏
j=1

N (ζc
j |0,σ2

cI),

where ζr
i and ζc

j are column vectors.

In CRM, U and V follow zero-mean spherical Gaussian distribution:

(5.13) p(U|σ2
u)=

n∏
i=1

N (Ui|0,σ2
uI),

75



CHAPTER 5. TRIPARTITE COLLABORATIVE FILTERING FOR RATING DEBIASING
ON MISSING-NOT-AT-RANDOM DATA

(5.14) p(V|σ2
v)=

m∏
j=1

N (V j|0,σ2
vI),

where Ui and V j are column vectors.

5.4 Optimization

We use Expectation-Maximization (EM) [47], for convenience, to find the maximum a

posterior estimates of the parameters of TPMF.

5.4.1 E-step

Both the rating matrix R and the item observability matrix O are partly available, we

thus calculate the expectation of the ratings and item observability for missing entries,

i.e., the entries with si j = 0. Note that we put rating expectation in the M-step via

marginalizing R ¯A for conveniently updating the latent factors.

Since the estimated rating values (i.e., r̂ i j) for missing entries are continuous, we

adopt a step function to scatter the values to {1,2, · · · ,L} for the calculation of Equa-

tion (5.4). For simplicity, we partition R into L contiguous intervals with boundaries

b0,b1, · · · ,bL where b0 =−∞,b1 = 1, · · · ,bL−1 = L−1,bL =∞. r i j is obtained according to

the interval which the estimated rating belongs to: for example r i j = l, if bl−1 < r̂ i j ≤ bl .

Since r i j follows N (r̂ i j,σ), we define:

(5.15) p(r i j = l|r̂ i j)=Φ

(bl − r̂ i j

σ

)
−Φ

(bl−1 − r̂ i j

σ

)
,

where we denote φ(i, j, l)= p(r i j = l|r̂ i j), and Φ is the cumulative distribution function

for the standard Gaussian distribution:

(5.16) Φ(z)= Pr(N (0,1)≤ z)= 1p
2π

∫z

−∞
e−t2/2dt.

Then, we obtain the expectation of oi j below:

(5.17)

E(oi j|r̂ i j, ŝi j,µi j, si j = 0)

= µi j
∑L

l=1φ(i, j, l)N (0|ŝi j,σ2
s )

µi j
∑L

l=1φ(i, j, l)N (0|ŝi j,σ2
s )+ (1−µi j)

.

76



5.4. OPTIMIZATION

5.4.2 M-step

With respect to µ j following the Beta distribution, we update µi j by finding the mode of

the complete conditional Beta(α+∑
i oi j,β+n−∑

i oi j) as below:

(5.18) µi j ←
α+∑

i oi j −1
α+β+n−2

.

To update the latent factors, we calculate the posterior probability given the estimated

O, i.e., p(RA ,S,Ω|O,Θ), and separate the data into the available and missing parts to

marginalize R ¯A . Accordingly, we can obtain the posterior probability given the estimated

O in E-step by separating the data into available and missing part:

(5.19)

p(RA ,S,Ω|O,Θ)

=p(RA |Ωr)p(SA |RA ,OA ,Ωs)p(Ωr,Ωs|Θ)∫
R ¯A

p(R ¯A |Ωr)p(S ¯A |R ¯A ,O ¯A ,Ωs)dR ¯A

= ∏
(i, j)∈A

N (r i j|r̂ i j,σ)
[
N (si j|ŝi j,σ2

s )oi jρ
1−oi j
0

]
∏

(i, j)∈ ¯A

[
L∑

l=1
φ(i, j, l)N (si j|ŝi j,σ2

s )

]oi j

ρ
1−oi j
0

n∏
i=1

1
ϕg

N (Gi|0,σ2
gI)N (ζr

i |0,σ2
rI)N (Ui|0,σ2

uI)

m∏
j=1

1
ϕg

N (Hi|0,σ2
hI)N (ζc

i |0,σ2
cI)N (Vi|0,σ2

vI),

where we have (i, j) ∈ A → si j = 1, oi j = 1 and (i, j) ∈ ¯A → si j = 0. Then we obtain the

log-likelihood of the posterior probability is given as below:

(5.20)

log p(RA ,S,Ω|O,Θ)

= ∑
(i, j)∈A

− 1
2σ2 (r̂ i j − r i j)2 − 1

2σ2
s
(ŝi j −1)2

+ ∑
(i, j)∈ ¯A

oi j log(C ¯Ai j
)− ||U||F

2σ2
u

− ||V||F
2σ2

v
− ||G||F

2σ2
g

−||H||F
2σ2

h

− 1
2σ2

r
||ζr||F − 1

2σ2
c
||ζc||F +C ,

where C ¯Ai j
=∑L

l=1φ(i, j, l)N (0|ŝi j,σ2
s ) and C is a constant independent of parameters.

Since
∑L

l=1φ(i, j, l)= 1 and the logarithm function (log) is concave, based on the property

77



CHAPTER 5. TRIPARTITE COLLABORATIVE FILTERING FOR RATING DEBIASING
ON MISSING-NOT-AT-RANDOM DATA

of concave functions, we have:

(5.21) log
L∑

l=1
φ(i, j, l)N (0|ŝi j,σ2

s )≥
L∑

l=1
φ(i, j, l) logN (0|ŝi j,σ2

s )

Therefore, our objective to maximize log p(RA ,S,Ω|O,Θ) is equal to maximize its infi-

mum:

(5.22)

L (Ω,Θ)= ∑
(i, j)∈A

− 1
2σ2 (r̂ i j − r i j)2 − 1

2σ2
s
(ŝi j −1)2

+ ∑
(i, j)∈ ¯A

oi j

L∑
l=1

φ(i, j, l)(
ŝ2

i j

2σ2
s
+ρ)− ||U||F

2σ2
u

− ||V||F
2σ2

v

− ||G||F
2σ2

g
− ||H||F

2σ2
h

− 1
2σ2

r
||ζr||F − 1

2σ2
c
||ζc||F +C .

where ρ = log 1p
2πσ2

s
is independent to Ω.

Then, we calculate the log-likelihood of the probability and obtain the objective

function.

(5.23)

L (Ω,Θ)= ∑
(i, j)∈A

− 1
2σ2 (r̂ i j − r i j)2 − 1

2σ2
s
(ŝi j −1)2

+ ∑
(i, j)∈ ¯A

oi j

L∑
l=1

φ(i, j, l)(
ŝ2

i j

2σ2
s
+ρ)− ||U||F

2σ2
u

− ||V||F
2σ2

v

− ||G||F
2σ2

g
− ||H||F

2σ2
h

− ||ζrow||F
2σ2

r
− ||ζcol ||F

2σ2
c

+C .

where ρ = log 1p
2πσ2

s
is independent of Ω and C is a constant. Our objective is to maximize

L (Ω,Θ) to learn an optimal of Ω= {U,V,G,H,ζrow,ζcol ,bs} under the hyperparameter

Θ. Since L (Ω,Θ) has no analytical solution, we take batch gradient ascent to update Ω

following Yang et al. [258].

The resulting optimization algorithm shown in Algorithm 1 belongs to the class

of generalized EM algorithms guaranteed to converge to a (local) optimum of the log-

likelihood [63, 241].

5.4.3 Gradients of the Parameters.

To calculate the gradients, we provide the following denotation for convenience:

(5.24) δ(i, j, l)=
exp(− (bl−r̂ i j)2

2σ2 )− exp(− (bl−r̂ i j)2

2σ2 )
p

2πσ
,

78



5.4. OPTIMIZATION

Algorithm 1 Generalized EM for TPMF
1: Input: Rating dataset D

2: Obtain triple aspects of D: rating matrix R, item observability matrix O, and user
selection matrix S

3: Initialize Ω= {U,V,G,H,ζrow,ζcol ,bs}, µ
4: while stopping criteria is not satisfied do
5: Compute the expected item observability for missing entries, i.e., O ¯A , by Equation

(5.17)
6: Update Ω by batch gradient ascent along the gradient ∇ΩL (Ω,Θ)
7: Update µ by Equation (5.18)
8: end while

(5.25) Λi j =
diag(Ui ◦V j)d

GT
i H j +dε

,

(5.26) sρ

i j =
ŝ2

i j

2σ2
s
+ρ.

Then, the gradients for parameters U,V,G,H,ζr,ζc,bs are listed below:

(5.27)

∂L

∂Ui
= ∑

j,(i, j)∈A

− 1
σ2 (UT

i Γi jV j − r i j)Γi jV j

− ∑
j,(i, j)∈ ¯A

oi j

L∑
l=1

δ(i, j, l)sρ

i jΓi jV j − 1
σ2

u
Ui

(5.28)

∂L

∂V j
= ∑

i,(i, j)∈A

− 1
σ2 (UT

i Γi jV j − r i j)ΓT
i jUi

− ∑
i,(i, j)∈ ¯A

oi j

L∑
l=1

δ(i, j, l)sρ

i jΓ
T
i jUi − 1

σ2
u

V j

(5.29)

∂L

∂Gi
= ∑

j,(i, j)∈A
− 1

σ2 (UT
i Γi jV j − r i j)Λi jH j − 1

σ2
s
(ŝi j −1)H j

− ∑
j,(i, j)∈ ¯A

oi j

L∑
l=1

δ(i, j, l)sρ

i jΛi jH j +φ(i, j, l)
ŝi j

σ2
s

H j − 1
σ2

g
Gi

(5.30)

∂L

∂H j
= ∑

i,(i, j)∈A
− 1

σ2 (UT
i Γi jV j − r i j)ΛT

i jGi − 1
σ2

s
(ŝi j −1)Gi

− ∑
i,(i, j)∈ ¯A

oi j

L∑
l=1

δ(i, j, l)sρ

i jΛ
T
i jGi +φ(i, j, l)

ŝi j

σ2
s

Gi − 1
σ2

h

H j

79



CHAPTER 5. TRIPARTITE COLLABORATIVE FILTERING FOR RATING DEBIASING
ON MISSING-NOT-AT-RANDOM DATA

(5.31)

∂L

∂ζr
il
= ∑

j,(i, j)∈A

1
σ2

s
I(r i j = l)(ŝi j −1)

− ∑
j,(i, j)∈ ¯A

oi jφ(i, j, l)
ŝi j

σ2
s
− 1

σ2
r
ζr

il

(5.32)

∂L

∂ζc
jl
= ∑

i,(i, j)∈A

1
σ2

s
I(r i j = l)(ŝi j −1)

− ∑
i,(i, j)∈ ¯A

oi jφ(i, j, l)
ŝi j

σ2
s
− 1

σ2
c
ζc

jl

(5.33)

∂L

∂bc
= ∑

(i, j)∈A

1
σ2

s
(r i j = l)(ŝi j −1)

− ∑
(i, j)∈ ¯A

oi j

L∑
l=1

φ(i, j, l)
ŝi j

σ2
s

5.4.4 Discussion

Let us calculate the likelihood probability of an entry being missing (unselected), i.e.,

si j = 0 by marginalizing r i j and oi j:

(5.34)

p(si j = 0|µi j,Ω,Θ)

=
∫

oi j

∫
r i j

p(si j = 0, oi j, r i j|µi j,Ω,Θ)dr i jdoi j

=(1−µi j)+µi j

L∑
l=1

φ(i, j, l)N (0|ŝi j,σ2
s )

with regarding to maximizing the likelihood, we find that µi j downweights the probability

of the missing entries being negative (i.e., ŝi j = 0), and the smaller µi j corresponds to the

higher probability of ŝ not being 0.

Since the missing entries are partly attributed to the other entries being unobservable

(i.e., oi j = 0), when we set µi j = 1 for all entries, the TPMF model degrades to the classic

MNAR models (e.g., Logitvd and MF-MNAR) which treat all missing entries as negative

ones, which is intuitively not the real case.

5.5 Experiments

Since it is difficult to obtain unavailable ratings for testing, we first generate synthetic

data to mimic different types of MNAR data and conduct experiments to investigate

80



5.5. EXPERIMENTS

the effectiveness and robustness of TPMF in handling MNAR ratings. We then compare

TPMF against several state-of-the-art methods on four real-world datasets.

5.5.1 Datasets

To investigate the effective of TPMF in handling MNAR data and explore how different

observation and selection schemes affect the rating prediction of TPMF, we construct

six synthetic datasets to experimentally control the selection biases and also evaluate

the performance of TPMF on four real-world rating datasets. Synthetic Datasets. The

synthetic datasets are generated by a matrix factorization model. First, we set n = m =
1,000, d = 10 and L = 5 and generate the matrices U, V, ζr and ζc from the standard

Gaussian and G and H from a uniform distribution within [0,1]. Then, we generate

the integer ratings by r i j = ⌈L×ψ(UiΓi jVT
j )⌉ and draw oi j from Bernoulli(µ j) where

µ j is drawn from Beta(2,β0). Accordingly, we assign the selection variable si j = 1 with

a probability of ρsδ
(
GiHT

j +
∑L

l=1 zlI[r i j = l]−2
)
/Z when oi j = 1, and si j = 0 otherwise.

Here, δ is a logistic function and (z1, · · · , z5) = (−2,−2,−2,2,2) reflects items with high

ratings are more likely to be selected and Z is used to normalize the probability. The

ratings with si j = 1 are selected to construct the dataset. Here, β0 and ρs are used to

control the global observability (i.e., #observable items per nm, denoted po ∈ (0,1]) and

rating density (i.e., #ratings per nm, denoted dr ∈ (0,1)). Roughly, we have β0 = 2/po −2

and ρs = dr/po. We denote this synthetic data as DDC which indicates the combination

of item-dependent observability scheme, rating-dependent selection scheme, and factor-
correlated rating scheme.

To investigate how different observability, selection and rating schemes affect the

prediction performance of TPMF, we change scheme combination based on DDC and

generate another three datasets: 1) RDC - using random observability scheme, i.e., oi j ∼
Bernoulli(po); 2) DDU - changed to factor-uncorrelated rating scheme, i.e., r i j = ⌈L×
ψ(UiVT

j )⌉; 3) DRU - using random selection scheme, i.e., si j|oi j = 1∼ Bernoulli(dr/po),

and the factor-uncorrelated rating scheme; and 4) RRU - using random observability

and selection schemes and factor-uncorrelated rating scheme. During the generation, we

tune β0 and ps to keep the global observability po and rating density dr nearly the same.

For all synthetic datasets, we randomly sample two test sets: a standard set sampled

from the available ratings r i j with si j = 1 and a special set sampled from the missing

rating r i j with si j = 0, and treat the rest of the available ratings as the training set. For

all synthetic datasets, we tune β0 and ps to keep the global observability po and rating

density dr nearly the same. Meanwhile, we randomly select 10% missing ratings as the

81



CHAPTER 5. TRIPARTITE COLLABORATIVE FILTERING FOR RATING DEBIASING
ON MISSING-NOT-AT-RANDOM DATA

MAR testing data for each combination.

Real-world Datasets. The evaluation of debiasing rating estimation should be

verified on MAR ratings. four real-world rating datasets with MAR ratings are considered:

1) Yahoo R3 (denoted Yahoo)1 collects 311,704 MNAR ratings and 45,000 MAR ratings

from 15,400 users on 1,000 songs. 2) The Coat (Coat)2 has 6,960 MNAR ratings and

4,640 ratings of 290 users to 300 coats. And we collect another two real-world datasets

that only have MNAR ratings: 3) MovieLens-1M (ML1M)3 contains about 1M MNAR

ratings from 6,040 users and 3,706 movies. 4) The Movie Tweetings (MTweet)4 collects

106,337 MNAR ratings by 3,972 users on 2,043 movies from Twitter, where we rescale

the original ratings from [0; 10] to the interval [1; 5]. We use MNAR ratings for training

and MAR ratings for testing on Yahoo and Coat, while we randomly split the dataset

into training/test sets with 80/20 proportions on ML1M and MTWeet. Since there are

no MAR ratings in ML1M and MTWeet, we set aside 5% of the MNAR ratings and use

Naive Bayes to learn propensities.

5.5.2 Experimental Settings

Baseline Methods. We compare TPMF with one basic approach and four state-of-the-

art debiasing approaches, including: 1) PMF [179] which is based on MAR assumption;

2) MF-MNAR [77] which deals with the MNAR nature of rating data based on jointly

learning the missing data model and the complete rating model; 3) MF-IPS [185]

which develops an unbiased estimator for the MNAR rating data based on the Inverse-

Propensity-Scoring (IPS); 4) MF-JL; and 5) MF-DR-JL [233] which propose a more

robust unbiased estimator by integrating IPS and estimated imputed errors for the

MNAR rating data. Besides, we introduce two variants of the proposed model: T-FO
treating all items being fully observed, i.e., oi j = 1, and T-NF neglecting the factor

correlation between ratings and selection, i.e., prediction ratings by r̂ i j =UT
i V j.

Parameter Settings. We utilize the mean absolute error (MAE) and root mean

squared error (RMSE) to evaluate the experimental results. For a fair comparison, we

tune the hyperparameters on validation sets by grid search and obtain the best for

testing. Specifically, we choose the latent dimension d in {10,20,30,40}, learning rate

in {0.01,0.05,0.1,1}, and L2 regularization rate in {0.01,0.1,1} (if required) and keep

1https://webscope.sandbox.yahoo.com/
2https://www.cs.cornell.edu/ schnabts/mnar/
3https://grouplens.org/datasets/movielens/
4http://github.com/sidooms/MovieTweetings

82



5.5. EXPERIMENTS

Table 5.1: Performance of TPMF compared against PMF and its variants on the five
synthetic datasets (po = 0.5 and dr = 0.1).

Dataset Metric
Special Test Set Standard Test Set

PMF T-FO T-NF TPMF PMF T-FO T-NF TPMF

RRU
MAE 0.2779 0.2677 0.2651 0.2696 0.2792 0.2685 0.2651 0.2707
RMSE 0.3357 0.32 0.3158 0.3229 0.3359 0.3207 0.3157 0.3239

DRU
MAE 0.2758 0.2667 0.2628 0.2649 0.2856 0.2723 0.2664 0.2703
RMSE 0.33 0.3169 0.3114 0.3144 0.349 0.3271 0.3184 0.3243

DDU
MAE 0.2765 0.2614 0.2598 0.2573 0.2897 0.2773 0.2769 0.2758
RMSE 0.3325 0.311 0.3102 0.3088 0.3504 0.3326 0.3324 0.3299

RDC
MAE 0.2873 0.2718 0.273 0.2699 0.289 0.2737 0.2745 0.2723
RMSE 0.3461 0.3251 0.3254 0.3241 0.3527 0.3307 0.3319 0.3281

DDC
MAE 0.2901 0.2751 0.2742 0.2719 0.2949 0.2828 0.2822 0.2821
RMSE 0.3498 0.3294 0.3288 0.3274 0.3591 0.3421 0.3414 0.3404

other hyperparameters recommended from the source codes of the baselines. Regarding

TPMF, we fix α=β= 1 and ε= 0.5 for simplicity. Beside, we tune λs =σ2/σ2
s , λv =σ2/σ2

v,

λu = σ2/σ2
u, λg = σ2/σ2

g, λh = σ2/σ2
h, λr = σ2/σ2

r and λc = σ2/σ2
c over {0.01,0.1,1,10}, the

learning rate over {0.005,0.01,0.05,0.1}, and L2 regularization rate over {0.1,0.5,1}. To

guarantee a fast convergence and avoid overfitting, we further initialize U and V from a

pretrained PMF model and initialize µ with item frequency.

5.5.3 Experimental Results

Synthetic Experiments. To analyze the effectiveness of TPMF, we evaluate TPMF

and its two variants on the five synthetic datasets. Results reporting MAE and RMSE

on the special test data and standard test data are provided in Table 5.1. The results

show that the proposed TPMF and its variants outperform the biased method PMF.

Considering the characteristics of the datasets, we notice that TPMF performs the best

under both metrics except on RRU and DRU. This is reasonable because: 1) TPMF

models item observability and factor correlation to handle both simple (i.e., RDC) and

complex (i.e., DDC and DDU) item observability schemes and are suitable for the cases

with existence (i.e., DDC and RDC) and nonexistence (i.e., DDU) of factor correlation.

2) Relative to the other datasets, both DRU and RRU are simple and randomly select

ratings without adding factor correlation. In this case, TPMF may overfit these two

datasets and degrade the prediction performance. Comparing the two tables, we see that

83



CHAPTER 5. TRIPARTITE COLLABORATIVE FILTERING FOR RATING DEBIASING
ON MISSING-NOT-AT-RANDOM DATA

0.325

0.33

0.335

0.34

0.345

0.35

0.1 0.3 0.5 0.7 0.9

R
M

SE

Global Observability (po)

TPMF
T-NF
T-FO
PMF

0.3
0.32
0.34
0.36
0.38

0.4

0.05 0.1 0.15 0.2 0.25 0.3

R
M

SE

Rating Density (dr)

TPMF
T-NF
T-FO
PMF

Figure 5.3: Evaluation on dataset DDC with varying global observability and rating
density.

all models perform better on standard test data than on special test data except on RRU

which is an MAR dataset, confirming that the MNAR issues degrade the generalization

of the model trained on the biased data to random data. Overall, the results indicate

that TPMF can effectively model item observability, user selection and ratings, and infer

the relationships between the triple aspects.

Robustness Study. We further investigate the performance of the proposed methods

on DDC with varying global observability rates (i.e., po ∈ {0.1,0.2, · · · ,1.0}) and rating

density levels (i.e., den ∈ {0.05,0.1, · · · ,0.25,0.03}). Results reporting RMSE on special

test sets are provided in Figure 5.3, where we observe that the proposed methods achieve

higher prediction accuracy than PMF. In terms of item observability, higher po improves

higher prediction accuracy for the proposed methods, which is attributed to the fact

that higher item observability simplifies the dataset (note that PMF is not sensitive to

the simplicity) and benefits the inference of the two sub-models USM and CRM (see

the discussion in Inference). And T-FO performs worse than T-NF when the global

observability po is small and catches up and exceeds T-NF when po > 0.4, which confirms

that capturing factor correlation plays more important roles with item observability

increasing. In addition, all methods obtain obvious improvement with the increase of

rating density, which is attributable since more ratings intuitively facilitate the inference

of rating generation.

Performance Comparison. To further investigate the effectiveness of TPMF, we

report the performance of TPMF and baseline methods on real-world datasets in Table

5.2, where the best performance on each dataset is marked in bold. Imp reports the

performance improvement of TPMF over the best baseline. Our TPMF outperforms the

state-of-art methods under both metrics on all datasets. Note that MF-IPS performs

84



5.6. CONCLUSIONS

Table 5.2: Performance of TPMF compared against its variants and the state-of-the-art
baselines on four real-world datasets.

Dataset Metric PMF MF-MNAR MF-IPS MF-JL MF-DR-JL T-FO T-NF TPFM Imp.(%)

Coat
MAE 0.736 0.704 0.735 0.69 0.701 0.697 0.679 0.67 2.99
RMSE 0.934 0.899 0.927 0.883 0.897 0.893 0.869 0.857 3.03

Yahoo
MAE 0.973 0.956 0.918 0.903 0.804 0.907 0.821 0.771 4.28
RMSE 1.223 1.196 1.215 1.182 1.177 1.186 1.172 1.165 3.23

ML1M
MAE 0.701 0.691 0.702 0.671 0.68 0.684 0.671 0.662 1.36
RMSE 0.886 0.878 0.89 0.857 0.865 0.869 0.856 0.845 1.42

MTWeet
MAE 0.556 0.519 0.53 0.511 0.502 0.521 0.492 0.493 3.65
RMSE 0.741 0.692 0.701 0.685 0.661 0.695 0.651 0.652 5.22

worse than other debiasing methods and even PMF on the MovieLens dataset while

MF-MNAR, MF-JL and MF-DR-JL achieve desirable performance on all the datasets.

The results are well explainable. IPS-based methods debias rating estimates by inducing

the knowledge of the selection bias and guarantee no bias (if the propensities are correct)

but high variance. Meanwhile, the imputation-base methods, i.e., MF-MNAR, rely on

modeling the entire generation process of rating to counterfactually estimate ratings,

which gives non-zero bias but very low/zero variance. MF-JL and MF-DR-JL get the best

of both the worlds i.e. no bias when either of the models is unbiased and lower variance

than IPS. Hence, one might expect that a method like MF-DR-JL using TPMF instead of

the MF-MNAR would lead to better results.

In addition, TPMF shows clear advantages over the comparative methods on Coat

and Yahoo (two MAR test sets) relative to its performance on ML1M and MTWeet. Deep

insight behind the superior results lays that jointly considering item observability, user

selection and ratings facilitates debiasing the rating estimation on MNAR data, and,

more importantly, TPMF effectively models the triple aspects. Table 5.2 also reports T-NF

performs better than T-FO, indicating that item observability plays a more important

role than factor correlation in debiasing rating estimation. This may be caused by the

fact that a large number of items are unobservable to users in practical recommendation

data.

5.6 Conclusions

In this chapter, we aim to address the rating distribution heterogeneity issues to debias

rating estimate. Specifically, we model the rating generation process with a tripartite

collaborative filtering model for jointly inferring triple aspects: item observability, user

85



CHAPTER 5. TRIPARTITE COLLABORATIVE FILTERING FOR RATING DEBIASING
ON MISSING-NOT-AT-RANDOM DATA

selection and ratings.

To the best of our knowledge, this work represents the first attempt to address the

missing-not-at-random ratings by exploring the complex dependencies between item

observability, user selection, and ratings. Extensive empirical results show that modeling

item observability and user selection is essential and can effectively debias rating

estimation in the MNAR data, and our model outperforms the existing state-of-the-art

methods for the MNAR data.

86



Part III

Non-IID MTS Analysis

87





C
H

A
P

T
E

R

6
SPECTRAL CLUSTERING-ENHANCED TRANSFORMER

FOR NON-IID MULTIVARIATE TIME SERIES

6.1 Introduction

Modeling non-IID MTS is challenging, requiring inter-TS couplings to be characterized

with heterogeneous variable scales and distributions [21, 293]. Existing models often

neutralize heterogeneity by explicitly (in observations) or implicitly (in hidden feature

space) modeling MTS under the IID assumption. They normalize heterogeneous MTS

and transform MTS inputs to a similar scale, which are then fed into subsequent

DNNs such as long short-term memory (LSTM) [111] and convolutional neural networks

(CNNs) [37, 289]. The normalization neutralizing different variable scales alleviates

the influence of dominant time series variables and facilitates fast model training

and convergence. However, it neglects the impact of heterogeneous variable scales

and distributions on inter-TS couplings in scale and distribution-varying MTS, leading

to possibly inferior MTS modeling. As illustrated in Figure 6.1(a), the raw TS are

deformed after normalization. The deformation during normalization distorts the inter-

TS couplings in scale and distribution, which conceals the inter-TS heterogeneity in the

subsequent modeling of inter-TS relations.

In addition, not all MTS may be relevant to forecasting target time series. For ex-

ample, some may be independent, redundant, or noisy. In Figure 6.1(b), the forecasting

performance of Informer [289] and StemGNN [18] on two related TS Tdew and Tlog is

89



CHAPTER 6. SPECTRAL CLUSTERING-ENHANCED TRANSFORMER FOR NON-IID
MULTIVARIATE TIME SERIES

better than those based on all three TS Tdew, rh and Tlog. Intuitively, irrelevant time

series variables may not contribute to or even harm the forecasting on each other. This

further inspires us to differentiate target-irrelevant and -relevant TS during learning

MTS couplings and heterogeneities for forecasting. However, most neural MTS models

uniformly concatenate all time series variables at every time step to a one-strand vector

and then feed the multi-step vectors into networks. They usually ignore or weaken the

time series relevance/irrelevance and the aforementioned complex couplings and hetero-

geneities in modeling non-IID MTS. Despite capably downweighting non-informative

features and obtaining effective features, they hardly learn optimal variable correlations

without specific and explicit objectives for the non-IIDness and relevance across MTS.

Motivated by the aforementioned MTS non-IIDness and relevance, this work models

non-IID MTS capturing heterogeneous time series couplings for MTS forecasting: a) ef-

fectively modeling inter-TS heterogeneities, and b) accurately segregating MTS to obtain

target-relevant MTS for forecasting. The related work addresses variable heterogeneity

by embedding time series variables into a unified space. Then, variable embeddings are

multiplied with the variable values to represent the heterogeneous MTS input [171]. In

addition, time series clustering emerges in learning inter-TS similarity [71, 115, 145] by

separating dissimilar TS from similar ones. This effectively avoids irrelevant variables

and facilitates variable heterogeneities in each cluster (similar to the divide-and-conquer

approach). However, existing time series clustering methods rarely cooperate with MTS

forecasting models. They cannot jointly characterize MTS couplings, heterogeneities, or

target relevance. This inspires our efforts to leverage time series clustering in enhancing

MTS forecasting.

Accordingly, a novel non-IID MTS forecaster Cospectrumer is proposed to effectively

capture both target-relevant inter- and intra-TS couplings and variable heterogeneities

in MTS. Cospectrumer integrates spectral clustering and Transformer. A spectral clus-

tering network segregates MTS, and a clusterwise forecasting network performs MTS

forecasting. The clustering network adopts discrete Fourier transform (DFT) to extract

the frequency-domain features, a convolutional layer to downsample the frequency fea-

tures, and fully connected layers to extract high-level features. This design theoretically

guarantees the Lipschitz continuity [211] for better model generalization and inter-

pretability. Then, the spectral relaxation of the K-means objective is utilized to learn

a cluster indicator matrix and generate clusterwise inputs accordingly. On the other

hand, the forecasting network adopts the encoder-decoder architecture and introduces

k-channel Transformers corresponding to k clusters to model intra- and inter-TS cou-

90



6.1. INTRODUCTION

-1.5

-0.5

0.5

1.5

0 250 500

Tdew (OBS)
rh (OBS)
Tlog (OBS)
Tlog (PRED 1)
Tlog (PRED 2)

-1.5

-0.5

0.5

1.5

0 250 500

Tdew (OBS)
rh (OBS)
Tlog (OBS)
Tlog (PRED 1)
Tlog (PRED 2)

500 750 1000

500 750 1000

Figure 6.1: An illustration of the normalization and relevance effect on MTS forecasting
on weather data.

It contains three time series variables: Tdew, rh, and Tlog. Tdew records the tempera-
tures of dewpoints, rh records the relative humidity, and Tlog records the temperatures
of loggers. X-axis and Y-axis denote time steps and scales, respectively. (a) Data analysis:
the raw values and normalized values of the variables are visualized on the top and
bottom respectively; (b) Prediction analysis: the observed values (OBS) of the previous
800 steps are utilized to predict the values of the successive 200 steps of variable Tlog by
Informer (on the top) and StemGNN (at the bottom). We perform the predictions of Tlog
based on the observations of all three variables and only the related variables Tdew and
Tlog respectively, corresponding to Tlog (PRED 1) and Tlog (PRED 2).

plings. The network includes a heterogeneous embedding module to represent the mixed

inputs of variables, timestamps, and positional information and learn second-order TS

couplings using the outer product. In Transformers, a cluster-aware multi-head atten-

tion mechanism guarantees information isolation between clusters and allocates the

co-attention between different clusterwise inputs. Finally, we obtain clusterwise decoder

outputs and feed them to fully connected prediction layers for clusterwise forecasting. In

a closed form, Cospectrumer jointly learns the two modules for an effective time series

clustering to improve MTS forecasting.

91

0

25

50

75

100

0 250 500 750 1000

Tdew
rh
Tlog

-1.5

-0.5

0.5

1.5

0 250 500 750 1000

Tdew
rh
Tlog

(a) Data Analysis

-1.5

-0.5

0.5

1.5

0 250 500 750 1000

InformerTdew (OBS)
rh (OBS)
Tlog (OBS)
Tlog (PRED 1)
Tlog (PRED 2)

800

-1.5

-0.5

0.5

1.5

0 250 500 750 1000

StemGNNTdew (OBS)
rh (OBS)
Tlog (OBS)
Tlog (PRED 1)
Tlog (PRED 2)

800

(b) Prediction Analysis



CHAPTER 6. SPECTRAL CLUSTERING-ENHANCED TRANSFORMER FOR NON-IID
MULTIVARIATE TIME SERIES

6.2 Problem Formulation

Let xt ∈ RN be the multivariate variables of N dimension at time step t and XT =
{x0,x1, · · · ,xT} ∈RN×T be the total observations with T time steps. Under the rolling fore-

casting settings, given a sequence of historical L-steps of observations on the variables at

time step t, Xt
L = {xt−L+1,xt−L+2, · · · ,xt} ∈RN×L, our goal is to predict the following D-step

values on the variables, i.e., Yt = {xt+1,xt+2, · · · ,xt+D} ∈RN×D . To address this problem,

Cospectrumer combines a spectral clustering network and a clusterwise forecasting

network, as shown in Figure 6.2. We introduce those below.

6.3 The Cospectrumer Model

6.3.1 Spectral Clustering Network

We propose a novel and concise hybrid clustering method, a spectral clustering network

shown in Figure 6.2, to segregate time series variables. On each univariate TS, DFT

is first applied to obtain its frequency spectrum. A convolutional layer further obtains

mixed spectral features, which also captures the correlations between different frequency

bands. Given the raw time series XT , the corresponding process is formulated as follows:

(6.1) F=CONV(FDFT(XT)/T)

where FDFT and CONV denote the operators of DFT and convolution respectively.

For long MTS, the output spectrum of DFT grows large in magnitude, easily pushing

subsequent activation functions into regions where it has extremely small gradients.

To counteract this effect, we scale the output of DFT by 1
T with T being the time series

length. In addition, F ∈RN×Ld denotes the mixed frequency spectral features, where we

adopt the convolutional layer to downsample Ld frequency points from the output of

DFT to avoid overlong features. Note that we perform DFT and convolution on each time

series separately. We then feed the spectral features of N TS into ℓ fully connected layers

to obtain high-level nonlinear features.

(6.2) Fℓ =σℓ((· · ·σ1(F ·W1 +b1) · · · )Wℓ+bℓ)

where {σi}ℓi=1, {Wi}ℓi=1 and {bi}ℓi=1 denote the activation functions (precisely tanH used in

Cospectrumer), weights, and biases of the multiple fully connected layers, respectively.

To learn the time series clustering, we guide the clustering network using the K-means

objective. Following the spectral relaxation conversion of the K-means objective [272], we

92



6.3. THE COSPECTRUMER MODEL

Spectral Clustering 
Network

Clusterwise Forecasting Network

Time

Frequency

DFT

ClusterCluster

TX

F

FC

Conv

C

HeteEmb

1
EnX 2

EnX 3
EnX

1Z 2Z 3Z

Encoder

Cluster-Aware Multi-Head 
Attention

Cluster-Aware Multi-Head 
Attention

Clusterwise Stacked Feature Map

HeteEmb

1
DeX 2

DeX
3
DeX

'
1Z

'
2Z

'
3Z

Decoder

Masked Cluster-Aware 
Multi-Head Attention

Cluster-Aware Multi-Head 
Attention

Clusterwise Fully Connected 
Prediction Layer

e 

d 

=En LX X 0= +De TokenX X X

Encoder Inputs Decoder Inputs

Clusterwise Outputs

Figure 6.2: The architecture of Cospectrumer, illustrated with k = 3 in the K-means
objective.

It comprises two components: a spectral clustering network, and a clusterwise fore-
casting network. FC and CONV denote fully connected layers and convolutional layers,
respectively. The orange box denotes the pipeline of add&normalization&feed-forward
layers. The binary cluster indicator matrix C is denoted by black (1) and blank (0) boxes.
The blank rectangles denote the truncation of time series, while the shadowed rectangles
denote masking the time series with placeholders.

formulate the K-means objective as a minimization problem associated with the Gram

matrix FℓFT
ℓ

as follows:

(6.3)
LK M = min

C,W,b
(Tr(FℓFT

ℓ )−Tr(CTFℓFT
ℓ C)),

s.t. CTC= Ik.

where Tr(·) denotes the track function, and C ∈ {0,1}N×k is the cluster indicator matrix

of k clusters whose element ci j = 1 denotes that the i-th time series belongs to the

j-th cluster, otherwise not. Ik is a diagonal matrix of diag(s1, · · · ,sk), where si denotes

the number of variables in the i-cluster. To learn the clustering network, we relax

the indicator matrix by squashing C into (0,1). Specifically, we obtain the indicator

matrix of C from Fℓ, i.e., C = σc(FℓWc +bc). We use the temperature softmax [78] as

93



CHAPTER 6. SPECTRAL CLUSTERING-ENHANCED TRANSFORMER FOR NON-IID
MULTIVARIATE TIME SERIES

the activation functions, i.e., σc(zi)= exp(zi /Ta)∑
j exp(z j /Ta) and reduce the temperature gradually.

When Ta becomes smaller, the matrix C likely approximates {0,1}. In the experiments,

we adopt a Gaussian decay function of Ta = T0 max( 1
T0

, exp(− e2 log(T0)
64 )), where T0 is

the initial temperature and e denotes the number of epochs. The decay function is in

a sigmoid-like shape which guarantees a low decay rate to avoid sharp fluctuations

at the beginning and the end of the training. This treatment alleviates the training

instability caused by the fluctuation of the learned cluster structures, accelerating

training convergence. We further introduce an element-wise threshold function to filtrate

low values in C, formulated as Filter(C) = 1+sgn(C−θ)
2 C, where θ = 1/(

p
2 k), and sgn

denotes the sign function. The threshold function results in a sparse relaxed matrix C
that helps approximate the indicator matrix {0,1}N×k.

Let us denote the spectral clustering network as Ω, which includes DFT, the convo-

lutional layer, and the fully connected layers. Theoretically, the Lipschitz continuity is

proved on DFT in Corollary 6.1 and is also guaranteed on the convolutional and fully

connected layers using spectral normalization [151]. Thus, we can easily prove the clus-

tering network satisfying K-Lipschitz continuity, i.e., ∥Ω(x1)−Ω(x2)∥ ≤ K∥x1 − x2∥ with

K > 0. Here, Lipschitz continuity theoretically restricts the variation of variable scales,

preserving the distances/similarities between time series variables in the clustering

network (from X to C). It guarantees that relevant variables with similar scales are clus-

tered while irrelevant variables with different scales are apart in the clustering results.

This facilitates the improvement of model generalization and network interpretability

and alleviates the difficulty of modeling variable heterogeneity in a divide-and-conquer

manner.

Corollary 6.1. Given two time series x1,x2 ∈RN , then exist K > 0 satisfying ∥DFT(x1)−
DFT(x2)∥ ≤ K∥x1 −x2∥.

Proof. Let us define DFT on univariate time series x= {xn}N−1
n=0 below:

(6.4) X=DFT(x)= {Xk}N−1
k=0

where Xk =∑N−1
n=0 xne−

i2π
N kn.

Now, given X1 =DFT(x1) and X2 =DFT(x2), let y= x1 −x2 and Y=X1 −X2, we have

(6.5) ∥y∥ = ∥x1 −x2∥ =
√√√√N−1∑

k=0
y2

k

94



6.3. THE COSPECTRUMER MODEL

(6.6) ∥Y∥ = ∥X1 −X2∥ =
√√√√N−1∑

k=0
|Yk|2

According to Parseval’s theorem [164], we can obtain ∥y∥ = 1
N ∥Y∥, thus we have

∥x1 −x2∥ = 1
N

∥X1 −X2∥ ≥ 1
K
∥DFT(x1)−DFT(x2)∥

where K ≥ N. Proved. ■

6.3.2 Clusterwise Forecasting Network

Building on the excellent performance of Transformer in modeling long-term dependen-

cies for sequential data [104, 289], we propose a clusterwise forecasting network (shown

on the right in Figure 6.2). It adopts the encoder-decoder architecture and Transformer

to model intra-TS temporal correlations and inter-TS coupling relations. The network

includes a heterogeneous embedding (HeteEmb) module, k-channel Transformers with

cluster-aware multi-head attention (CMA), and clusterwise prediction layers.

6.3.2.1 Encoder-Decoder Architecture

We adopt the encoder-decoder architecture to represent the clusterwise time series inputs

and generate clusterwise outputs for forecasting. Specifically, according to each cluster

indicator vector ci ∈RN×1 in C, we distribute the L-step normalized time series XL into

k clusters and generate the clusterwise inputs, i.e., {Xi
L = ci ⊙XL ∈ Rni×L}k

i=1. Here, ⊙
denotes performing elementwise product and then selecting non-zero columns, and ni

denotes the number of time series variables in the i-th cluster where
∑k

i=1 ni = N. The

clusterwise inputs are fed into the HeteEmb module to generate the embeddings for each

clusterwise input, followed by the encoder of the k-channel Transformers to generate a

clusterwise feature map. Paired with the L-step inputs XL, we generate a concatenated

input as follows:

(6.7) Xde =Concat(Xtoken,X0) ∈RN×(L token+D)

where X0 ∈ RN×D is a placeholder for the target D-step values Y and only contains

the target timestamp and position information. Xtoken ∈ RN×L token denotes the start

token, where L token ≤ L and Xtoken ⊆XL. It is a common and efficient technique in the

Transformer-based models [48]. In parallel to the encoder, we obtain the clusterwise

inputs of Xde, embed the inputs by the HeteEmb module, and feed the embeddings to the

95



CHAPTER 6. SPECTRAL CLUSTERING-ENHANCED TRANSFORMER FOR NON-IID
MULTIVARIATE TIME SERIES

Figure 6.3: The heterogeneous embedding module.

We illustrate the temporal embedding with global timestamps of month (m), week (k),
day (d), and hour (h) and the local position embedding, i.e., position (o) in the sequence.

masked CMA in the encoder of the k-channel Transformers. Following the masked CMA,

another CMA module is introduced with the clusterwise feature map acting as its keys

and values, and the outputs from the masked CMA as its queries. Note that the masked

CMA is applied to prevent leftward information flow to avoid auto-regression [210].

Finally, we feed the decoder output to the clusterwise fully connected prediction layer

and predict the target N-variable D-step values Y by one forward procedure instead of

step by step.

6.3.2.2 Heterogeneous Embedding

We incorporate the hierarchical timestamps (week, month, and year) and position infor-

mation with clusterwise MTS inputs. Considering the heterogeneity of the mixed inputs,

e.g., the numeric time series, and categorical timestamps, it is unsuitable to concatenate

the multivariate variables as a one-strand vector for calculating input representations.

Inspired by [275] which considers the variable correlations, we propose a heterogeneous

embedding module (HeteEmb) as shown in Figure 6.3 to perform variable embedding and

96

Feature Embedding

Temporal Embedding

Position Embedding

Outer 
Product

1

0.6

0

1

0

...

0.3

1.5

m

w

d

h

o

Summation

susummStacked 
Embedding



6.3. THE COSPECTRUMER MODEL

calculate the variable relations (within each cluster). Specifically, a variable embedding

matrix We = {we
i }

N ′
i=1 ∈RN ′×dm is introduced to embed the mixed input, where N ′ > N is

the number of variables after transformation since it includes the temporal and position

variables and the categorical variables are binarized. Given the mixed input xi
t ∈Xi

L and

xi
t ∈Rni at time step t in the i-th cluster, we have xi

t j ∈xi
t denoting the j-th value in the

ni variables, then:

(6.8)
ei

t j = xi
t jw

e
j

vi
t j =

ni∑
p=1

ni∑
q=p+1

[
Ei

t, j·⊗Ei
t, j·

]∣∣∣
pq

where Ei
t = {ei

t j}
ni
j=1 ∈ Rni×dm denotes the stacked embeddings for xi

t and Ei
t, j· ∈ Rdm

denotes its j-th row, and ⊗ denotes the outer product. Here, vi
t j calculates the variable

relations and results in an embedding vector vi
t = {vi

t j}
dm
j=1 ∈ Rdm for the i-th cluster at

time step t. Note that the variable coupling relation calculation is time-efficient with the

time complexity of O (Ndm), referring to Factorization Machine [171]. The calculation

is pairwise and proved more efficient than feed-forward neural networks to capture

the second-order correlations between time series variables, timestamps, and position

information [12].

In addition, we sum over Ei
t to generate a first-order correlation, i.e., ui

t =
∑ni

i=1 Ei
t, and

concatenate the second-order and first-order correlations to generate the final embedding

zi
t =Concat(vi

t,u
i
t) for xi

t. Accordingly, we obtain the clusterwise embeddings Z = {Zi}k
i=1

for k clusters, with Zi = Stack
(
{zi

t}
L
t=1

)
of L-step time series for the encoder. We obtain

the clusterwise embeddings for the inputs of the decoder in a similar manner. Intuitively,

the first-order calculation can be considered as one fully connected layer that has weights

We and acts on the mixed input xi
t. The HeteEmb module projects the clusterwise

inputs with different numbers of variables into dm-sized embeddings respectively, subtly

shielding the difference in the number of variables in different clusters, i.e., {ni}k
i=1. The

combination of first-order and second-order correlations facilitates capturing the variable

heterogeneity and sufficient information.

6.3.2.3 Cluster-aware Multihead Attention

The self-attention used in Transformer is the scaled dot-product attention defined on

the tuple input (queries Q, keys K, values V) [210], where queries and keys have dk

dimensions and values have dv dimensions. The dot-product of queries with keys is

scaled by 1p
dk

and normalized to obtain the weights using softmax functions. Then, the

97



CHAPTER 6. SPECTRAL CLUSTERING-ENHANCED TRANSFORMER FOR NON-IID
MULTIVARIATE TIME SERIES

outputs of self-attention are calculated by attending to values referring to the weights,

formulated as follows:

(6.9) A (Q,K,V)= softmax(
QKT√

dk
)V

Under the multihead settings, dm-dimensional queries, keys and values are projected

to dk, dk, and dv dimensions for h times by different linear projections respectively.

Multihead attentions are then performed on these tuple inputs in parallel and yield

dv ∗h dimensional output values, generally holding dv = dk = dm/h.

In addition to the standard Transformer, we can apply other efficient and low-storage

self-attention mechanisms, such as LogTrans [118], Reformer [104], Informer [289], for

fast computation, especially on long time series. Specifically, we adopt efficient locality-

sensitive hashing (same as Reformer) and ProbSparse attention (same as Informer)

to replace dot-product attention in Cospectrumer in the experiments. For simplicity,

we introduce our cluster-aware multihead attention based on vanilla self-attention

(i.e., Equation 6.9) in the following which can be easily extended to efficient attention

mechanisms via updating the queries (refer to Equation 6.10).

In the k-channel Transformers, we introduce cluster-aware attention to learn cluster-

wise correlations to promote forecasting performance. For the i-th cluster, we treat

the information from other clusters as the context of the i-th cluster, denoted as

Z ī = Z − {Zi}. The context Z ī is flattened to the size of L× (k−1)dm along the clus-

ter dimension and aligned to Zi according to time steps. It is utilized to enhance the

queries in the attention calculation. Given the clusterwise embeddings of L-step time

series, Z = {Z1,Z2, · · · ,Zk|Zi ∈RL×dm}, we have

(6.10)

CMA(Z )=Stack(channel1, · · · ,channelk)×T WO

channeli =Concat(head1
i , · · · ,headh

i )

head j
i =A (ZiWQ

j +Z īW
C
j ,ZiWK

j ,ZiWV
j )

where WQ
i ∈Rdm×dk , WC

i ∈R(k−1)dm×dk , WK
i ∈Rdm×dk , WV

i ∈Rdm×dv and WO ∈Rk×dv×dm are

projection parameters, and head j
i denotes the j-th single head attention in the i-th cluster.

The operator ×T denotes the tensor multiplication. We feed each clusterwise input into

one channel for separate attention calculation and supplement the context information

upon queries to achieve context-aware (cluster-aware) attention weights. Subsequently,

we apply the operator of Stack to stack the attention outputs of each channel and

parallel feed cluster-aware attention outputs to feed-forward networks followed by

98



6.4. EXPERIMENTS AND EVALUATION

layer normalization [5] and residual connections channel-by-channel, guaranteeing the

information isolation between the channels. The calculation is formulated as:

(6.11) Z l =LayerNorm(Z l−1 +CMA(Z l−1))

where Z l denotes the inputs of the l-th attention layer, and Z 0 = Z . Then Z l is fed

into the feed-forward networks with two linear transformations by a ReLU activation in

between:

(6.12) Z l =FFN(Z l)=ReLU(Z l ×T Wl
1 +bl

1)×T Wl
2 +bl

2

where W1 ∈ Rk×dm×d f f and W2 ∈ Rk×d f f ×dm . Thus, we obtain the clusterwise feature

map Z ℓe ∈ RL×k×dm from an ℓe-layer encoder and the clusterwise output Z ℓd = {Zℓd
i ∈

R(L token+D)×dm}k
i=1 from an ℓd-layer decoder.

6.3.2.4 Prediction Layers and Loss Function

The outputs of the decoder are projected to the predictions, denoted by Ŷ, by clusterwise

fully connected prediction layers in a clusterwise manner. In other words, the outputs of

the i-th channel of the decoder are projected to predict the variables located in the i-th
cluster. Given Z ℓd , we have:

Ŷ=Concat({Ŷi}k
i=1), s.t., Ŷi =Zℓd

i (ci ⊙Wo)T +bi

where Wo ∈ RN×dm and bi ∈ R1×ni denote the weights and bias of the prediction layer,

and Ŷi ∈R(L token+D)×ni .

We adopt the mean square error loss function (denoted by MSE) to calculate the differ-

ence between prediction Ŷ and the target values Y, i.e., LMSE =MSE(Y,Ŷ). Combining

the K-means objective in Equation (6.3), the final loss function is given as:

(6.13) L (Ω,Θ)=LMSE(Φ)+λLK M(Θ)

where Ω and Θ denote the parameters of the clustering network and the forecasting

network respectively. λ denotes the weight for the K-means loss. Since the update of Ω

may dramatically influence the learning of Θ, we perform layer normalization on FℓFT
ℓ

and fix the value of FℓFT
ℓ

in calculating gradients in Equation (6.3).

6.4 Experiments and Evaluation

We conduct extensive experiments to investigate the performance of Cospectrumer in

terms of the five questions:

99



CHAPTER 6. SPECTRAL CLUSTERING-ENHANCED TRANSFORMER FOR NON-IID
MULTIVARIATE TIME SERIES

Q1. How accurate is Cospectrumer compared with the SOTA deep neural MTS base-

lines?

Q2. What is the model complexity of Cospectrumer?

Q3. To what extent does the design of Cospectrumer, e.g., the clustering network, the

CMA module, and the HeteEmb module, improve the performance?

Q4. How does the hyperparameter, e.g., the number of clusters, affect the performance

of Cospectrumer?

Q5. What is the impact of TS clustering on forecasting?

6.4.1 Datasets

We evaluate the proposed Cospectrumer on four real-world benchmark datasets covering

different mainstream MTS forecasting applications: electricity, weather, energy, and

traffic. (1) Electricity1: this dataset is a collection of electricity consumption data of 370

clients from 2011 to 2015. Considering the missing data, we select the consumption

data of 315 clients from 2012 to 2015 and convert the data into hourly consumption.

(2) Weather2: we select three-year data from 2018 to 2020 from WS Beutenberg which

was recorded every 10 minutes and contains 21 meteorological indicators, such as

air temperature, and humidity. (3) Solar3: this dataset is a collection of solar power

production records in 2006, which was sampled every 10 minutes from 137 PV plants in

Alabama, USA. (4) traffic4: this dataset is a collection of hourly data from the California

Department of Transportation and contains the occupancy rate of 862 lanes on a San

Francisco highway from January in 2015. The dataset details are summarised in Table

6.1. Following a common protocol [289], we split the datasets into training, validation,

and test sets in a chronological order using the ratio of 7:1:2. In addition, we adopt the

raw input for the clustering network and perform zero-mean normalization (standard

normalization) on the input of the forecasting network for all datasets.

1https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
2https://www.bgc-jena.mpg.de/wetter/
3https://www.nrel.gov/grid/solar-power-data.html
4http://pems.dot.ca.gov

100



6.4. EXPERIMENTS AND EVALUATION

Table 6.1: Statistics of four multivariate time series data.

Datasets #Samples #Variates Granularity Start time

Electricity 26304 315 1hour 1/1/2012
Weather 157773 21 10min 1/1/2018
Solar 52560 137 10min 1/1/2006
Traffic 17533 862 1hour 1/1/2015

6.4.2 Experimental Details

Below, we introduce the baselines and detail their experimental settings against our

model.

Baselines. We compare Cospectrumer with eight SOTA MTS forecasting models and

Transformer-based models:

• LSTNet [111]: A SOTA RNN-based MTS forecasting framework capturing the

hidden long- and short-term dependencies of time series using LSTM.

• MLCNN [37]: A SOTA CNN-based MTS forecasting model applying CNN to extract

multilevel features and employing LSTMs to capture hidden temporal correlations

for multiple predictive tasks.

• StemGNN [18]: A spectral- and GCN-based method introducing graph Fourier

transform and DFT to jointly capture inter-series correlations and temporal depen-

dencies.

• Reformer [104]: A memory-efficient and fast Transformer variant for long sequence

prediction replacing dot-product attention by the one using locality-sensitive hash-

ing and using reversible residual layers instead of standard residuals.

• LogTrans [118]: A Transformer variant introducing causal convolution to perceive

local context into an attention mechanism and involving a LogSparse self-attention

to reduce memory usage.

• Informer [289]: The latest Transformer-based model introducing a ProbSparse

mechanism and a distilling operation for time- and memory-efficient self-attention

calculation to predict long sequence time series at one forward operation.

• Autoformer [243]: A SOTA Transformer-based model proposing a decomposition

architecture with an efficient and accurate auto-correlation mechanism for long-

term MTS forecasting.

101



CHAPTER 6. SPECTRAL CLUSTERING-ENHANCED TRANSFORMER FOR NON-IID
MULTIVARIATE TIME SERIES

• FEDformer [290]: A SOTA Transformer-based model based on Autoformer intro-

ducing an attention mechanism with low-rank approximation in the frequency

domain and a mixture of experts decomposition to control the distribution shifting.

These SOTA MTS forecasting baselines are chosen carefully for purposeful com-

parisons: LSTM-, CNN-, and GNN-based methods are compared to investigate the

superiority of Transformer-based methods; Transformer- and spectral-based (StemGNN)

methods are selected to investigate the effectiveness of Cospectrumer w.r.t. its clus-

tering and forecasting networks. Traditional MTS methods are not considered in the

experiments since recent deep learning studies demonstrate their excellent prospects

and performance for MTS and Cospectrumer belongs to this neural family. In addition,

since this is the first attempt to adaptively learn time series clustering to improve MTS

forecasting, there is no similar clustering-based method for comparison.

Cospectrumer variants. For the ablation study, we explore the performance of the

spectral clustering network and Transformers by creating four variants of Cospectrumer:

1) an efficient variant CospectrumerP employing the ProbSparse self-attention mecha-

nism; 2) a fixed cluster scheme variant Cospectrumer†, i.e., the Cospectrumer with the

fixed cluster indicator matrix C obtained from K-means clustering in advance; 3) a decou-

pled variant Cospectrumer‡ without considering the cluster-aware attention mechanism,

i.e., without Z īWC
j in Equation (6.10); 4) a plain embedding Cospectrumer♯ without the

heterogeneous embedding module; 5) a variant CospectrumerS with normalized MTS

inputs in the clustering network.

Experiment Settings. 1) parameter settings: Our proposed model is trained using

the ADAM optimizer [212] with an initial learning rating of 10−4 and a batch size

of 64. Each training process is stopped early with a total of 10 epochs. We tune the

hyperparameters on the validation set by grid searching the number of clusters k
over {2,4,6,8,10}, the length of embeddings dm over {32,64,128,256} and the weight

λ ∈ {0.1,0.3,0.5,0.7,0.9}. We set dm = 256 and λ= 0.1 for all datasets where Cospectrumer

achieves the best performance on the validation set. In addition, we adopt the efficient

locality-sensitive hashing for long-term forecasting (e.g., L ≥ 96 or D ≥ 48) and set:

i) the downsampling size Ld = 1000 and the number of fully connected layers ℓ = 1

in the spectral clustering network; ii) the initial temperature T0 = 16; iii) ℓe = 2 and

ℓd = 1; iv) the number of attention heads h = 8 and the dimension d f f = 1024 in the

feedforward layers. 2) baselines settings: To guarantee a fair comparison, we set the

comparison methods with author-recommended settings and use the same network

parameters for the Transformer-based methods. The best parameters for all comparative

102



6.4. EXPERIMENTS AND EVALUATION

models are chosen by carefully tuning the author-recommended parameter ranges on

the validation set. In addition, we choose the length of inputs L = 96, the length of the

start token L token = 48, and the length of prediction D = 24 for all comparative methods

if not specified. 3) evaluation: We use two evaluation metrics, i.e., RMSE and MAE. We

repeat all experiments twice and report the average evaluation results. 4) platform: All

experiments were implemented in PyTorch and were conducted on two NVIDIA 1080

12G GPUs.

103



C
H

A
P

T
E

R
6.

S
P

E
C

T
R

A
L

C
L

U
S

T
E

R
IN

G
-E

N
H

A
N

C
E

D
T

R
A

N
S

F
O

R
M

E
R

F
O

R
N

O
N

-I
ID

M
U

L
T

IV
A

R
IA

T
E

T
IM

E
S

E
R

IE
S

Table 6.2: Quantitative results in terms of MAE and RMSE with prediction lengths D ∈ {24,48,96,240,720}, L = 96, and
L token = 48.

Datasets LSTNet MLCNN StemGNN Reformer LogTrans Informer Autoformer FEDformer Cospectrumer
Imp. (%)Metrics MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

E
le

ct
ri

ci
ty

24 0.642 0.783 0.750 1.006 0.233 0.344 0.542 0.731 0.351 0.485 0.354 0.493 0.290 0.411 0.285 0.404 0.235 0.336 - - 2.38*
48 0.660 0.811 0.981 1.271 0.256 0.378 0.612 0.812 0.357 0.507 0.368 0.519 0.305 0.434 0.297 0.428 0.250 0.399 2.40* - -
96 0.674 0.836 1.027 1.209 0.278 0.409 0.693 0.897 0.361 0.511 0.371 0.521 0.310 0.442 0.308 0.443 0.262 0.406 6.11* 0.74*
240 0.687 0.864 1.045 1.322 NA NA 0.829 1.018 0.368 0.517 0.386 0.541 0.403 0.564 0.332 0.468 0.271 0.441 22.5* 6.12*
720 0.823 1.026 1.124 1.521 NA NA 0.853 1.061 0.402 0.637 0.392 0.584 0.612 0.830 0.360 0.508 0.298 0.462 20.8* 9.96*

W
ea

th
er

24 0.538 0.734 0.262 0.737 0.238 0.598 0.226 0.573 0.248 0.583 0.204 0.569 0.219 0.573 0.193 0.546 0.187 0.531 3.21* 2.82*
48 0.552 0.743 0.385 0.876 0.275 0.641 0.471 0.809 0.312 0.610 0.256 0.623 0.257 0.619 0.254 0.617 0.245 0.596 3.67* 2.35*
96 0.574 0.766 0.660 1.216 0.333 0.700 0.476 0.817 0.412 0.665 0.309 0.692 0.313 0.704 0.305 0.686 0.281 0.639 8.54* 4.07*
240 0.561 0.751 1.125 1.672 NA NA 0.591 0.952 0.526 0.771 0.390 0.766 0.386 0.763 0.384 0.760 0.357 0.734 7.56* 3.54*
720 0.621 0.837 1.655 2.561 NA NA 0.607 0.963 0.672 0.917 0.461 0.832 0.459 0.823 0.454 0.820 0.421 0.782 7.84* 4.86*

So
la

r

24 0.248 0.489 0.309 0.808 0.168 0.309 0.233 0.362 0.267 0.510 0.181 0.332 0.185 0.338 0.176 0.311 0.167 0.311 0.60 - -
48 .0.314 0.607 0.784 1.485 0.221 0.419 0.341 0.535 0.311 0.579 0.257 0.446 0.243 0.433 0.238 0.426 0.232 0.407 - - 2.95*
96 0.401 0.673 1.168 2.013 0.274 0.470 0.413 0.632 0.385 0.641 0.251 0.450 0.254 0.496 0.247 0.457 0.227 0.424 8.81* 6.13*
240 0.442 0.711 1.129 2.168 NA NA 0.447 0.683 0.431 0.703 0.263 0.472 0.264 0.474 0.261 0.470 0.242 0.457 7.85* 2.84*
720 0.623 0.875 1.442 2.426 NA NA 0.534 0.761 0.562 0.810 0.273 0.501 0.273 0.501 0.274 0.497 0.253 0.477 7.91* 4.19*

T
ra

ffi
c

24 0.572 0.756 0.874 1.353 0.292 0.709 0.700 1.076 0.371 0.783 0.387 0.824 0.374 0.758 0.360 0.743 0.278 0.703 5.04* 0.85*
48 0.602 0.821 0.966 1.428 0.297 0.717 0.832 1.195 0.377 0.802 0.409 0.855 0.389 0.779 0.365 0.754 0.293 0.744 1.37* - -
96 0.641 0.897 1.010 1.459 0.317 0.741 0.829 1.231 0.384 0.827 0.379 0.824 0.416 0.820 0.369 0.770 0.284 0.721 11.6* 2.77*
240 0.692 0.976 1.066 1.504 NA NA 0.825 1.232 0.418 0.872 0.411 0.864 0.437 0.836 0.373 0.804 0.313 0.778 21.1* 3.34*
720 0.811 1.243 1.103 1.527 NA NA 0.821 1.235 0.442 0.906 0.476 0.948 0.478 0.880 0.386 0.813 0.325 0.787 18.8* 3.30*

10
4



6.4. EXPERIMENTS AND EVALUATION

6.4.3 Performance Evaluation

We evaluate Cospectrumer against the baselines under different prediction lengths on

four datasets in Table 6.2. The best results are highlighted in bold, and the best baseline

results are underlined. NA denotes that results are not available due to running out

of memory. Imp. shows the performance improvement of Cospectrumer over the best

baseline in terms of MAE and RMSE respectively. Herein, - - denotes negative improve-

ment and ∗ indicates statistically significant improvement using the two-sided t-test

with p < 0.05. As shown in Table 6.2, Cospectrumer achieves the SOTA performance

compared with the baselines especially on long-term forecasting. Specifically, Cospec-

trumer outperforms all the baselines and achieves 6.11%−22.5% MAE improvement and

0.74%−9.96% RMSE improvement over the baselines on all datasets for the prediction

length D ∈ {96,240,720}. When D ∈ {24,48}, Cospectrumer also achieves competitive

forecasting performance and surpasses all the baselines except for StemGNN. Especially

on the Weather dataset, Cospectrumer outperforms all the baselines for all prediction

lengths and makes a 3.21% MAE improvement and a 2.35% RMSE improvement at

least. Table 6.2 shows that Cospectrumer is much better than the RNN- and CNN-based

methods, demonstrating the benefit of Transformers in capturing the long-term depen-

dencies in sequential data. Compared to RNN and CNN, Transformer-based networks do

not impose a strong sequential or spatial hypothesis on MTS and perform much better

and more flexibly in capturing inter-/intra-TS dependencies. The GNN-based StemGNN

achieves desirable performance on Electricity, Solar and Traffic although it is unsuitable

for long-term prediction. This is because StemGNN introduces graph Fourier transform

and DFT to model inter-TS correlations and temporal dependencies respectively and

facilitates the extraction of periodic spectral representation. In addition, Cospectrumer

achieves better performance over the Transformer-based methods (including the SOTA

Informer, Autoformer and FEDformer) on all datasets and at all prediction lengths. The

results verify the benefits of time series clustering for MTS forecasting and indicate

the efficacy of the spectral clustering network and clusterwise forecasting network in

Cospectrumer for capturing intra-TS temporal patterns and inter-TS couplings.

We further investigate the forecasting performance of the comparative methods at

different input lengths, with the results shown in Figure 6.4. Cospectrumer performs

stably over different input lengths, especially for long inputs, which can be attributed to

adopting Transformer as the backbone to model intra-TS temporal patterns. In addition,

Cospectrumer achieves better accuracy and more stable performance over the baselines,

which confirms the results in Table 6.2 that the architecture of Cospectrumer helps

105



CHAPTER 6. SPECTRAL CLUSTERING-ENHANCED TRANSFORMER FOR NON-IID
MULTIVARIATE TIME SERIES

48 96 144 240 480
L

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
AE

LSTNet
MLCNN
Reformer
LogTrans
Informer
Autoformer
FEDformer
Cospectrumer

(a) Electricity

48 96 144 240 480
L

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

M
AE

LSTNet
MLCNN
Reformer
LogTrans
Informer
Autoformer
FEDformer
Cospectrumer

(b) Weather

48 96 144 240 480
L

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
AE

LSTNet
MLCNN
Reformer
LogTrans
Informer
Autoformer
FEDformer
Cospectrumer

(c) Solar

48 96 144 240 480
L

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

M
AE

LSTNet
MLCNN
Reformer
LogTrans
Informer
Autoformer
FEDformer
Cospectrumer

(d) Traffic

Figure 6.4: Performance comparison of different input lengths L ∈ {48,96,144,240,480}
with D = 24 and L token = 48.

improve the forecasting performance on MTS.

106



6.4. EXPERIMENTS AND EVALUATION

Table 6.3: Statistics of model complexity in terms of training/test time costs and model
parameter volume.

Method Parameter Volume (M) Time (Second/Epoch) Time (Second)

LSTNet 0.22 2.75 0.55
MLCNN 0.25 13.12 0.73
StemGNN 69.88 559.45 56.32
Reformer 17.53 49.59 4.65
LogTrans 17.29 96.34 7.31
Informer 14.4 18.91 3.33
Autoformer 14.94 30.92 4.69
FEDFormer 18.82 61.41 6.16
Cospectrumer 19.73 115.1 8.57
CospectrumerP 17.36 63.88 6.22

6.4.4 Model Complexity

To investigate the model complexity of Cospectrumer, we verify the impact of its param-

eter volume and time cost. Specifically, we compare Cospectrumer (k = 8) with other

Transformer-based methods on Traffic (with the highest dimension) under the same

parameter settings as follows: L = 96, D = 24, L token = 48, dm = 512, d f f = 2048, ℓ= 2

and ℓd = 1. In addition, we adopt the recommended settings for LSTNet, MLCNN, and

StemGNN.

The statistics of the time costs and parameter volumes are shown in Table 6.3. We

investigate 1) all the comparative baselines; 2) Cospectrumer using locality-sensitive

hashing to replace dot-product attention (same as Reformer); 3) the efficient variant

CospectrumerP using the ProbSparse self-attention mechanism (same as Informer).

From the experimental results, we observe 1) the parameter volumes of Cospectrumer are

larger than the Transformer-based methods, while CospectrumerP using the ProbSparse

mechanism achieves a comparable parameter volume relative to Reformer, LogTrans,

and FEDformer; 2) the time costs of Cospectrumer are larger than the Transformer-

based methods, while CospectrumerP with the ProbSparse mechanism saves a lot of

training/test time cost and is competitive compared to LogTrans and FEDformer in terms

of time efficiency; 3) StemGNN needs a much larger parameter volume and higher time

costs than the SOTA Transformer-based methods despite its competitive forecasting

performance; 4) compared to LSTM- and CNN-based methods, the Transformer-based

methods and StemGNN have a much higher model complexity but achieve much better

forecasting performance.

107



CHAPTER 6. SPECTRAL CLUSTERING-ENHANCED TRANSFORMER FOR NON-IID
MULTIVARIATE TIME SERIES

Table 6.4: Ablation study of Cospectrumer in terms of its different input lengths L ∈
{48,96,144}.

Datasets Metrics
Electricity Weather

48 96 144 48 96 144

Cospectrumer
MAE 0.237 0.235 0.247 0.193 0.187 0.198

RMSE 0.341 0.336 0.366 0.542 0.531 0.554

CospectrumerP
MAE 0.240 0.236 0.249 0.195 0.187 0.199

RMSE 0.344 0.338 0.368 0.543 0.530 0.554

Cospectrumer†
MAE 0.254 0.249 0.258 0.197 0.188 0.203

RMSE 0.367 0.358 0.379 0.549 0.533 0.561

Cospectrumer‡
MAE 0.247 0.241 0.252 0.208 0.195 0.214

RMSE 0.359 0.344 0.373 0.563 0.541 0.569

Cospectrumer♯
MAE 0.248 0.243 0.257 0.214 0.204 0.220

RMSE 0.362 0.347 0.375 0.573 0.557 0.579

CospectrumerS
MAE 0.246 0.238 0.252 0.203 0.194 0.205

RMSE 0.353 0.342 0.374 0.552 0.540 0.563

Datasets Metrics
Solar Traffic

48 96 144 48 96 144

Cospectrumer
MAE 0.172 0.167 0.143 0.268 0.278 0.273

RMSE 0.323 0.311 0.295 0.702 0.703 0.711

CospectrumerP
MAE 0.179 0.168 0.145 0.271 0.278 0.272

RMSE 0.332 0.313 0.296 0.703 0.704 0.709

Cospectrumer†
MAE 0.182 0.173 0.152 0.285 0.297 0.291

RMSE 0.338 0.321 0.306 0.742 0.765 0.757

Cospectrumer‡
MAE 0.181 0.173 0.155 0.277 0.286 0.282

RMSE 0.340 0.322 0.309 0.711 0.734 0.739

Cospectrumer♯
MAE 0.187 0.177 0.161 0.273 0.283 0.278

RMSE 0.348 0.330 0.314 0.708 0.716 0.712

CospectrumerS
MAE 0.180 0.172 0.151 0.276 0.284 0.281

RMSE 0.334 0.321 0.303 0.716 0.719 0.722

Naturally, the clustering network and the multi-channel (cluster) computation bring

extra parameters and time costs to Cospectrumer. Fortunately, Cospectrumer improves

MTS forecasting and provides a new perspective of interpretability, while its parameter

volume and time complexity are not greatly expanded. This is attributed to our following

designs: (1) adopting an offline DFT to obtain frequency features; (2) using convolutional

layers to downsample frequency features to avoid an overlong feature map; (3) sharing

parameters between different clusters; (4) making a clusterwise prediction using the

clusterwise fully connected prediction layers; and (5) employing the efficient self-attention

mechanism for long sequence prediction.

108



6.4. EXPERIMENTS AND EVALUATION

6.4.5 Ablation Study

To investigate the effectiveness of the constitutional modules of Cospectrumer, we com-

pare Cospectrumer with its three variants introduced in Section 6.4.2 under different

input lengths. We choose the number of clusters k = 4 for Weather and k = 8 for Electric-

ity, Solar, and Traffic, and set D = 24 and L token = 48 for all datasets. The comparative

results are shown in Table 6.4 where the best results are highlighted in bold, and the

best results for different input lengths are underlined. Cospectrumer outperforms its

variants on all datasets under different input lengths, demonstrating the applicability of

Cospectrumer and the effectiveness of the components, i.e., the clustering network, CMA

mechanism, and HeteEmb module, in achieving the SOTA results for Cospectrumer.

We adopt the ProbSparse self-attention mechanism in CospectrumerP and eval-

uate its performance for all input lengths L ∈ {48,96,144}. Table 6.2 shows the fol-

lowing: 1) Cospectrumer outperforms CospectrumerP on L = 48 for all datasets. This

shows that ProbSparse self-attention gains efficiency with a slight performance loss;

2) CospectrumerP achieves desirable and even better performance relative to Cospec-

trumer, indicating ProbSparse self-attention is effective and competitive compared with

the efficient attention with locality-sensitive hashing; 3) CospectrumerP shows superior

performance compared with the baselines (refer to Table 6.2), confirming the effective-

ness of the clustering network for promoting the forecasting performance. The results

demonstrate the applicability of the architecture of Cospectrumer to state-of-the-art

attention mechanisms.

In addition, we pre-compute the indicator matrix by K-means on the DFT output

in Cospectrumer†. First, the superiority of Cospectrumer† over the baselines in Table

6.2 indicates the contribution of time series clustering to MTS forecasting. Then, we

observe that adaptively learning to cluster (Cospectrumer) is better than pre-computed

clustering (Cospectrumer†), especially on the high-dimensional time series in Electricity

and Traffic. This is because: 1) it is difficult to perform clustering on high-dimensional

data; 2) Cospectrumer learns proper clustering to promote MTS forecasting. The results

indicate that the forecasting objective is potentially beneficial to improving time series

clustering, inspiring us to introduce forecasting objectives into time series clustering

tasks.

In Cospectrumer‡, we directly calculate the multi-head attention for each cluster

separately without considering the cluster information as context. The improvement

of Cospectrumer over Cospectrumer‡ shows that the CMA module effectively captures

inter-cluster time series correlations to improve the prediction. Intuitively, the intra-

109



CHAPTER 6. SPECTRAL CLUSTERING-ENHANCED TRANSFORMER FOR NON-IID
MULTIVARIATE TIME SERIES

cluster time series correlation is much closer than the inter-cluster one, which, however,

still plays a positive role in prediction. This is because Cospectrumer extracts clusterwise

embeddings using HeteEmb to learn cluster-aware representation by CMA for future fore-

casting. In addition, Cospectrumer‡ performs slightly better than Cospectrumer†, indicat-

ing that time series clustering is able to divide and correlate target-irrelevant/relevant

series, thus achieving better MTS forecasting than aimlessly modeling inter-TS correla-

tions.

We adopt the uniform input representation method in Informer [289] to replace the

HeteEmb module in Cospectrumer♯. From Table 6.4, the results show that Cospectrumer♯

performs worse than Cospectrumer, especially on Weather. This is attributed to the

heterogeneous embedding module in capturing the heterogeneity of MTS by variable

embeddings and learning second-order variable correlations. This treatment can learn

a more informative representation for MTS and is more effective than the multilayer

perceptron [275]. In addition, we investigate the performance of Cospectrumer with nor-

malized inputs in the clustering network (i.e., CospectrumerS ). Cospectrumer achieves

better performance than CospectrumerS , indicating variable scales and distributions

facilitate effective time series clustering and accordingly have a positive impact on

capturing inter-/intra-TS couplings and addressing the heterogeneity issue.

6.5 Parameter Sensitivity

We further perform experiments to investigate the parameter sensitivity of Cospectrumer.

Four experiments investigate the impact of the number of clusters k, the embedding

dimension dm, the temperature T0, and the learning weight λ, respectively. All the

experiments are conducted under the settings: k = 8 (except for the experiment on k),

L = 96, D = 24, and L token = 48.

As shown in Figure 6.5(a), we first evaluate Cospectrumer and Cospectrumer‡ under

k ∈ {1,2,4,6,8,10,16,32} on Electricity. The results show that: 1) Cospectrumer outper-

forms Cospectrumer‡ under different numbers of clusters; 2) Cospectrumer degenerates

into Cospectrumer‡ at k = 1 such that the two models achieve equal performance. We

further investigate the impact of the number of clusters on Cospectrumer. The MAEs of

Cospectrumer on different datasets are reported in Figure 6.5(b) where the best result

on each dataset is highlighted with a solid mark. From the results, we can observe that:

1) the best number of clusters (denoted k∗) varies across different datasets. Specifically,

k∗ is set to 4 on Weather, 6 on Traffic, and 8 on Solar and Electricity, respectively; 2)

110



6.5. PARAMETER SENSITIVITY

0.235

0.242

0.249

0.256

0.263

0.27

1 2 4 6 8 10 16 32

M
AE

Cospectrumer
Cospectrumer ‡

(a) Cospectrumer and Cospectrumer‡ on Electricity

0.16

0.19

0.22

0.25

0.28

0.31

1 2 4 6 8 10 16 32

M
AE

Electricity
Weather
Solar
Traffic

(b) Cospectrumer on four different datasets

Figure 6.5: Impact analysis of the number of clusters.

the performance of Cospectrumer is improved when the number of clusters k increases

(from 1 to k∗), indicating the clustering network is effective in promoting the forecasting

performance; 3) the performance will not degrade significantly when k > k∗ and k keeps

increasing. This may be because the spectral clustering network can adaptively learn the

number of clusters to guarantee effective time series clustering (refer to Section 6.6 for a

more detailed explanation). The results indicate that a relatively larger number of clus-

ters (e.g., 4< k < 16) may result in more desirable performance. As k increases further,

it brings more training parameters and costs to the clustering network, subsequently

leading to the inferior performance of Cospectrumer.

The experiment results of the six comparative methods under different embedding

dimensions are shown in Figure 6.6. Cospectrumer and its variant Cospectrumer†

perform stably and achieve consistently better MAE than the baselines. This confirms

that the proposed clustering network and heterogeneous embedding components are

beneficial to improving forecasting performance. With the increase of dm, Cospectrumer

and its variants are equipped with a more powerful representation and fitting capability

111



CHAPTER 6. SPECTRAL CLUSTERING-ENHANCED TRANSFORMER FOR NON-IID
MULTIVARIATE TIME SERIES

0.2

0.25

0.3

0.35

0.4

0.45

16 32 64 128 256 512

M
AE

LogTrans
Informer
Autoformer
FEDformer
Cospectrumer
Cospectrumer †

Figure 6.6: Performance comparison of Transformer-based methods with different em-
bedding dimensions on Electricity.

and achieve better performance. When dm is larger than 256, the performance of the

comparative methods degrades, which may result in the overfitting issues.

0.23

0.24

0.25

1 2 4 8 16

M
AE

Temperature (T0)
(a) MAE comparison

0.24

0.26

0.28

0.3

0.32

0.2

0.3

0.4

0.5

0.6

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Lo
ss

Epoch

Cospectrumer (T0=16)

Cospectrumer (T0=1) 

(b) Training convergence

Figure 6.7: (a) MAE comparison under different initial temperatures T0 ∈ {1,2,4,8,16};
(b) training convergence curves of Cospectrumer under T0 = 1 and T0 = 16.

We investigate the impact of temperature softmax on Cospectrumer on Electricity.

Specifically, we first compare Cospectrumer under different initial temperatures and

report ten-round MAE results using a box plot, as shown in Figure 6.7(a). The results

show that, as T0 increases from 1 to 16, Cospectrumer achieves better performance and

is more robust, indicating the necessity and effectiveness of the temperature softmax.

Note that we also investigate higher initial temperatures, i.e., T0 > 16, which slows down

the convergence and degrades the forecasting performance due to the longer temperature

112



6.5. PARAMETER SENSITIVITY

(a) Electricity (initial) (b) Electricity (termination)

(c) Traffic (initial) (d) Traffic (termination)

Figure 6.8: Clustering visualization using t-SNE on Electricity and Traffic.

decay periods. In addition, we compare the training convergence of Cospectrumer under

temperature T0 = 16 and T0 = 1. Figure 6.7(b) shows the curves of the training loss under

30 training epochs. It shows that Cospectrumer with T0 = 16 has a fast convergence

speed and converges to a lower MSE loss than that under T0 = 1. The results show that

utilizing the temperature softmax to flatten the output of the clustering network can

guarantee the stable update of parameters in the forecasting network and benefit the

model training. Cospectrumer with T0 = 16 shows a more smooth convergence curve,

which benefits from the Gaussian decay function to guarantee a steady update of the

temperature. Overall, the results demonstrate that the temperature softmax avoids

drastic changes to the forecasting network, and the Gaussian decay function further

ensures a stable temperature cooling process.

Finally, we investigate the robustness of Cospectrumer under different learning

weights λ on Electricity. Intuitively, since the indicator matrix C is generated according

to the Lipschitz continuity, it guarantees the K-means objective, i.e., Equation (6.3), to

a certain extent. The K-means objective can be simplified to impose a constraint on C,

precisely CTC = Ik, which can be easily achieved by the softmax activation function.

113



CHAPTER 6. SPECTRAL CLUSTERING-ENHANCED TRANSFORMER FOR NON-IID
MULTIVARIATE TIME SERIES

0 0.1 0.3 0.5 0.7 0.9
0.22

0.24

0.26

0.28

0.3

0.32

M
AE

Cospectrumer
Cospectrumer

Figure 6.9: Sensitivity analysis on the weight for K-means loss.

Figure 6.9 shows that Cospectrumer and its variants Cospectrumer‡ achieve better

performance when λ is relatively small at λ= 0.1. The results confirm the above analysis

that it is not necessary to assign a high value to λ, and a relatively smaller value for

λ not only guarantees the K-means objective, it also avoids early convergence of the

clustering network.

6.6 Clustering Visualization

To analyze the clustering results and explore the impact of clustering on forecasting, we

conduct experiments for L = 96, D = 24 and L token = 48 and visualize their clustering

indicator matrix C.

Figure 6.8 shows the clustering visualization of the initial training stage and termi-

nation training stage using t-SNE on Electricity and Traffic with the number of clusters

k = 8. Comparing the two pair figures, their outlines of point distribution are similar,

and MTS variables clearly gather into different clusters after the model converges, in-

dicating that the proposed clustering network is able to effectively cluster time series

and preserve the distances between time series. In addition, we find five clusters and six

clusters shown in Figure 6.8(a) and (b) respectively. The results confirm our claim that

the proposed clustering network is able to learn a proper number of clusters when the

value k is relatively larger (k is the maximum number of clusters).

Figure 6.10 visualizes how the clustering indicator matrix changes along with the

training convergence on Weather using a heatmap. In each matrix, orange and green de-

note values approximating 1 and 0 respectively. We observe that the matrix approaches a

binary matrix when the forecasting network converges, indicating the spectral clustering

network also converges to a proper status optimal for the forecasting objective. The result

114



6.7. CONCLUSIONS

0.18

0.23

0.28

0.33

0.38

1 3 5 7 9

M
AE

Epoch

Figure 6.10: Visualization of the change of the clustering indicator matrix on Weather.

shows that the clustering and forecasting networks help each other to synergistically

reach convergence, which demonstrates that Cospectrumer effectively captures the com-

mon and intrinsic information shared by the two tasks. The results inspire us to utilize

the forecasting objective to enhance time series clustering.

6.7 Conclusions

In this chapter, we aim to model inter-/intra-TS couplings and inter-TS heterogeneity to

enhance MTS forecasting performance. The main contributions are summarized below:

• A novel clustering-enhanced MTS forecasting model Cospectrumer makes the first

attempt to adaptively learn time series clustering for improved MTS forecasting. It

achieves this by integrating spectral analysis with Transformer.

• A spectral clustering network effectively learns to segregate target-irrelevant

and -relevant heterogeneous TS, which has theoretical guarantees of Lipschitz

continuity.

• We propose k-channel Transformers with a cluster-aware attention mechanism to

co-attentively learn intra- and inter-TS couplings.

• A heterogeneous embedding module effectively represents the mixed inputs of

time series variables, timestamp, and position and captures their second-order

couplings.

The extensive experiments on four distinct real-world MTS datasets demonstrate the

effectiveness and superiority of Cospectrumer against the state-of-the-art (SOTA) MTS

115



CHAPTER 6. SPECTRAL CLUSTERING-ENHANCED TRANSFORMER FOR NON-IID
MULTIVARIATE TIME SERIES

forecasting baselines. Further, we conduct an ablation study and clustering visualization.

They demonstrate the contribution of time series clustering to MTS forecasting and

the effectiveness of the proposed network architecture in learning the couplings and

heterogeneities of non-IID MTS.

116



C
H

A
P

T
E

R

7
DEEP COUPLING NETWORK FOR MULTIVARIATE TIME

SERIES FORECASTING

7.1 Introduction

Previous work on MTS forecasting can be divided into two main approaches: sequential

models and GNN-based models. Sequential models, including recurrent neural network

(RNN) [55, 170], convolutional neural network (CNN) [14], temporal convolutional net-

work (TCN) [7] and attention mechanisms [54], have been introduced to tackle MTS

problems and achieved good performance, which is attributed to their capability of ex-

tracting nonlinear intra-series correlations in MTS. However, these models fall short

in capturing the inter-series relationships. Recently, GNN-based models [17, 247] have

demonstrated promising performance on MTS forecasting with their essential capability

to capture the complex inter-series relationships between variables. They mainly adopt

a graph neural network to extract the inter-series dependencies and a temporal network

to capture the intra-series dependencies.

Unfortunately, the above methods still have some limitations for modeling intra- and

inter-dependencies among time series. In Figure 7.1, we show (a) RNN-based models

connect two adjacent time step values and ignore the inter-series dependencies. (b)

Attention-based models connect different time step values of the variable directly but

they also ignore the inter-series dependencies. (c) GNN-based models construct a graph

to model the inter-dependencies at each timestamp and then connect the adjacent time

117



CHAPTER 7. DEEP COUPLING NETWORK FOR MULTIVARIATE TIME SERIES
FORECASTING

Figure 7.1: Illustration about different models for modeling the intra- and inter-series
correlations.

step values for each variable. (d) Our model DeepCN proposes a comprehensive model

for intra- and inter-series dependencies which is based on the multi-order couplings of

different time lag. The maximum length of the signal traversing path of RNN-based

models is O (L), thus making them difficult to learn intra-series dependencies between

distant positions [132]. Attention-based models [104, 243, 289] shorten the maximum

path to be O (1) but they ignore the inter-series dependencies. Although most existing

state-of-the-art GNN-based models [6, 247, 248, 264] for MTS forecasting construct a

graph to model the inter-series dependencies, they rely on LSTM or GRU to capture

the intra-series dependencies which encounter the same limitations as the RNN-based

models in modeling the intra-series dependencies. Besides, they can not directly connect

the different variables at different timestamps, which leads them to not obtain the

abundant inter-series dependencies.

Moreover, in practice the multivariate relationships between time series exhibit vari-

ous dependencies [235]. Accordingly, how to model the complex intra- and inter-series

dependencies calls for a comprehensive analysis. Couplings [139], referring to any rela-

tionship or interaction which connects two or more variables, include diverse correlations,

118



7.2. PROBLEM FORMULATION

dependency, interactions and hierarchy. Learning such couplings [139] can explore more

comprehensive and stronger representations by revealing and embedding various cou-

plings on complex data [293], and has achieved good results in many domains, including

recommendation [90, 276], image source identification [85] and financial market analysis

[25]. Motivated by this, we capture the complex intra- and inter-series dependencies by

exploring the multi-order couplings as shown in Figure 7.1(d).

In light of the above discussion, in this section, we theoretically analyze the relation-

ship modeling among time series and propose a novel deep coupling network (named

DeepCN) for multivariate time series forecasting. Concretely, first we revisit the re-

lationships among time series from the perspective of mutual information, and then

based on the analysis, we propose a coupling mechanism to comprehensively model

the intra- and inter-series correlations among time series explicitly via exploring the

diverse and hierarchical couplings on MTS data. Subsequently, we leverage a coupled

variable representation module to encode the variable relationship representations since

different variables exhibit different patterns. Finally, we use an inference module to

make predictions by one forward step which can avoid error accumulation. We compare

the proposed DeepCN with state-of-the-art baselines on five real world datasets, where

experimental results show the superiority of DeepCN and demonstrate the effectiveness

of the proposed neural architecture and coupling mechanism in DeepCN.

7.2 Problem Formulation

We are given a multivariate time series input X ∈RN×T where N is the number of time

series and T is the length of timestamps. If Z ∈ R1×T belongs to X and is the target

variable, given the historical T observations X , we predict the next τ timestamps Ẑ ,

and the deterministic forecasting task can be formulated as follows:

(7.1) ẐT+1:T+τ = F
(
Z1:T , X1:T ;Θ

)

where F is the prediction model and Θ is the parameters of F. For multivariate time

series forecasting, it is important to exploit the intra-series relationship between Z1:T

and the inter-series relationship between Z1:T and X1:T .

119



CHAPTER 7. DEEP COUPLING NETWORK FOR MULTIVARIATE TIME SERIES
FORECASTING

7.3 Coupling Analysis

As aforementioned introduction, the intra- and inter-dependencies among time series

are complex. In this section, we revisit the relationships among time series from the

perspective of mutual information.

According to Equation 3.19, we enumerate the subset of S and the right side of the

equation can be expanded as follows:

∑
s⊆S

I({s∪Z})=
N∑

i=1
I(X i; Z)+

N∑
i=1

N∑
j=i+1

I({X i, X j, Z})

+
N∑

i=1

N∑
j=i+1

N∑
k= j+1

I({X i, X j, Xk, Z})+ ...

(7.2)

where I(X i; Z) represents the relationships between X i and Z, I({X i, X j, Z}) represents

the relationships between Z and {X i, X j}, and I({X i, X j, Xk, Z}) represents the relation-

ships between Z and {X i, X j, Xk}. The Equation 7.2 demonstrates that the relationships

between Z and X1:N are the summation of mutual information between different combi-

nation of X1:N and Z. We denote this relationship as multi-order couplings.

Furthermore, the time lag effect between time-series variables is a common phe-

nomenon in real-world MTS scenarios, for example, the time lag influence between two

financial assets (e.g. dollar and gold) of a portfolio. In other words, X t may be influenced

by X t−1, X t−2, ..., X t−T . Due to time delay in time series data, the relationship between

variables are more complicated. Accordingly, to model the relationship between X1 and

X2 at time t, we not only need to consider data relation at time t but also at time

t−1, ..., t−T.

Combined with the above introduction (i.e., multi-order couplings and time lag

effect), the relationship between variable Z and X1:N not only needs to consider their

relationship at time t, but also consider their time lag effect at time t−1, ..., t−T.

120



7.3. COUPLING ANALYSIS

Accordingly, we redefine the relationship as follows:

I(Z; X1, X2, ..., XN)= I(Z; X t
1, X t−1

1 , ..., X t−T
1 , X t

2, X t−1
2 , ..., X t−T

2 , ..., X t
N , X t−1

N , ..., X t−T
N )

=
N∑

i=1
I(X t

i ; Z)+
N∑

i=1
I(X t−1

i ; Z)+ ...+
N∑

i=1
I(X t−T

i ; Z)︸ ︷︷ ︸
f irst−order coupling

+
N∑

i=1

N∑
j=i+1

T∑
l=0

T∑
m=0

I({X t−l
i , X t−m

j , Z})︸ ︷︷ ︸
second−order coupling

+
N∑

i=1

N∑
j=i+1

N∑
k= j+1

T∑
l=0

T∑
m=0

T∑
n=0

I({X t−l
i , X t−m

j , X t−n
k , Z})︸ ︷︷ ︸

third−order coupling

+...

(7.3)

where T is the delay time step. Similar to Equation 7.2, the right part of the Equation

7.3 is expanded as the summation of mutual information between different combinations

of X and Z. From Equation 7.3, we can conclude that the relationship between Z and

X can be modeled through multi-order couplings between different time lag of X and

Z. When the target variable Z is one of X1:N , Equation 7.3 contains both intra-series

(e.g., I(X t
i ;X

t
i ) when Z=X i) and inter-series relationship. Therefore, from the mutual

information perspective, the intra- and inter-dependencies among time series can be

modeled by multi-order couplings of different time lag of X .

As shown in Figure 7.1, RNN-based models and Attention-based models mainly

account for intra-series relationship. Corresponding to Equation 7.3, they can not capture

the couplings between X i and X j (i ̸= j). Besides, RNN-based models can not explicitly

attend to time lag effect while Attention-based models can do because they can connect

directly between different time lags. That is to say, Attention-based models can directly

capture the couplings between X t−l
i and X t−m

i (l ̸= m±1) while RNN-based models can

not. And this is the reason that Attention-based models perform better than RNN-based

models in most cases. GNN-based models can model both intra-series and inter-series

relationship. However, they also can not explicitly attend to time lag effect of both

intra- and inter-series. In other words, GNN-based models can not directly account

for the couplings between X t−l
i and X t−m

j (l ̸= m±1, i ̸= j). This limits the capability of

GNN for MTS forecasting and sometimes lead them to achieve worse accuracy than

Attention-based models. Accordingly, in this section, based on the Equation 7.3, we

design a comprehensive model for intra- and inter-series relationships among time series

explicitly by exploring the diverse and hierarchical couplings in 7.4.2.

121



CHAPTER 7. DEEP COUPLING NETWORK FOR MULTIVARIATE TIME SERIES
FORECASTING

Figure 7.2: The overview framework of DeepCN.

In the experimental part, we verify that the relationship between variables has the

time lag effect through the parameter sensitivity test about input length. Meanwhile, we

analyze the multi-order coupling characteristics of relationships through the coupling

mechanism study. The details are introduced in section 7.5.5.

7.4 Deep Coupling Network For Multivariate Time
Series Forecasting

In this section, we introduce a novel deep coupling network named DeepCN for MTS

forecasting, which comprehensively models the intra- and inter-dependencies among

time series according to the analysis in Section 7.3.

7.4.1 Overview Framework

The overall framework of DeepCN is illustrated in Figure 7.2. Given a multivariate

time series input X ∈RN×T where N is the number of variables and T is the length of

timestamps, first we conduct a reshape operator to transform the input X ∈RN×T to a

vector V ∈R1×NT . Next, V serves as input to the coupling mechanism which is designed

to comprehensively explore the complicated intra- and inter-dependencies among time

series according to the analysis in Section 7.3. It applies explicit variable crossing of

different time lags and outputs the couplings C ∈ R(L−1)×NT where L is the number of

122



7.4. DEEP COUPLING NETWORK FOR MULTIVARIATE TIME SERIES
FORECASTING

orders (details see in Subsection 7.4.2). Then we stack C with V and get the multi-order

couplings among time series C′ ∈RL×NT .

After that, C′ is fed to a fully-connected neural network and output the dense rep-

resentation h ∈ RL×d where d is the dimension size. Since different variables exhibit

different patterns, we initialize a variable embedding matrix W ∈RN×d to embed the vari-

able and perform a multiplication h×WT to represent variable relationships O ∈RN×L×d.

Finally, we utilize the FFN composed of feed forward networks and activation function

to predict the next τ timestamps X̂ ∈ RN×τ by one forward step. The above content is

explained in detail below.

7.4.2 Coupling Mechanism

One key component in our proposed model is the coupling mechanism which explicitly

explores diverse and hierarchical couplings to capture the complicated intra- and inter-

dependencies among time series. In Section 7.3, we have analyzed the characteristics of

relationships between variables. In this subsection, we design a coupling mechanism to

represent relationships based on those characteristics (i.e., multi-order couplings and

time lag effect).

According to Equation 7.3, the relationships among time series can be expressed

through the couplings between different combinations of time lags of time series. Intu-

itively, the multi-order couplings can be modeled by cross feature [227]. In light of the

content introduced in Subsection 2.1.1, we understand that combinatorial features are

essential in commercial models [121]. Cartesian Product model, as a state-of-the-art

instance of combinatorial based model [288], is an explicit model. Motivated by this, to

explore the L-order couplings between Z and X1:N , we leverage the Cartesian product to

illustrate how to calculate it. The Cartesian product CartL can be defined as follows:

CartL = {(xi, x j, ..., xl︸ ︷︷ ︸
L

)|xi, j,...,l ∈ X1:T
i ,∀i, j, ..., l = 1,2, ..., N}(7.4)

where T is the length of timestamps. To illustrate this definition more intuitively, we

use second-order couplings, five-time delay steps, and four variables as an example in

Figure 7.3. In the figure, we take four variables, five time lags and second-order as

an example. From the figure, there are various combinations from cross-variable and

cross-time, and several of them are marked with dotted lines on the figure. Moreover,

the combinations include both intra-series (e.g., {X t−2
1 X t−3

1 }, {X t−1
1 X t−3

1 }) and inter-series

(e.g., {X t
1X t

3}, {X t−2
2 X t−1

4 }) information. In the example, there are various combinations

123



CHAPTER 7. DEEP COUPLING NETWORK FOR MULTIVARIATE TIME SERIES
FORECASTING

Figure 7.3: Multi-order couplings diagram in the deep coupling network.

from cross variable and cross time, and several of them are marked with dotted lines in

the figure.

From Equation 7.4, we can learn that CartL takes on all possible combinations

of values from 1 to T. In addition, the combinations contain both intra-series (e.g.,

X t
1X t−1

1 ...X t−T
1 ) and inter-series (e.g., X t

1X t
2...X t

L) relationships. Inspired by the cross

network [227] which has linear complexity, we express these combinations explicitly

via efficiently learning all types of cross features. First, we convert the input matrix

X ∈ RN×T to a vector V ∈ RNT by a reshape operation. Then we adopt the method of

feature interactions to model the relationships, and we can get the L-order couplings as

follows:

CL =V (CL−1)
T

WL−1 +bL−1,L > 1

C1 =V ,L = 1
(7.5)

where WL−1 ∈RNT ,bL−1 ∈RNT are weight parameters and bias parameters, respectively.

It should be noted that the first-order coupling, namely C1, is the input V itself. Detailed

calculation process is shown in Figure 7.4 and the algorithm is described in Algorithm 2.

In the figure, we first transform the input matrix X =RN×T to an input vector V =RNT

by a reshape operation where N is the number of variables and T is the length of

timestamps. Then we calculate the different order couplings respectively. V T is the

first-order. According to Equation 7.5, we can find that it can fully explore all types of

combinations of X . Different values of L corresponds to different order couplings. For

example, when L = 2, CL corresponds to second-order couplings.

Then we can express the hierarchical couplings C which are composed of various

order couplings as follows:

(7.6) C = (C1,C2, ...,CL)

124



7.4. DEEP COUPLING NETWORK FOR MULTIVARIATE TIME SERIES
FORECASTING

Figure 7.4: Coupling-based model for relationships between variables.

where L is the total number of orders.

Complexity Analysis. Let L denotes the total number of orders, N denotes the num-

ber of variables, and T denotes time delay steps. Then the total number of parameters,

namely W and b in Equation 7.5, is

(7.7) L×N ×T ×2.

From formula 7.7, we can conclude that the complexity of the coupling mechanism is

linear and is linearly proportional to the orders L, the number of variables N, and the

time delay steps T. In general, T is much smaller than N.

7.4.3 Coupled Variable Representation Module

The output C of coupling mechanism represents comprehensive intra- and inter-dependencies

among time series (i.e., first-order coupling, second-order coupling, and so on). Since dif-

ferent variables exhibit different patterns, we leverage a coupled variable representation

module to learn the variable relationship representation.

First, the output C ∈RL×NT of coupling mechanism is fed to a fully-connected network

and output the dense representation h ∈RL×d where d is the dimension size. Then we

initialize a variable embedding weight matrix W ∈ RN×d, and perform multiplication

with the dense representation h and output O ∈RN×L×d. The calculation can be described

125



CHAPTER 7. DEEP COUPLING NETWORK FOR MULTIVARIATE TIME SERIES
FORECASTING

Algorithm 2 Coupling Mechanism
Input: multivariate time series X ∈RN×T

Output: the multi-order couplings C ∈RL×NT

1: Given the multivariate time series input X ∈RN×T

2: Reshape X into a vector V ∈RNT×1

3: Initialize the couplings C
4: V0 =V
5: C[0]=V
6: for l = 1, ...,L do
7: Initialize weight matrix W ∈RNT×NT

8: Initialize bias vector b ∈RNT×1

9: Vw =Vl−1 ×W
10: Vl =Vw ×V0 + b
11: C[l]=Vl
12: end for
13: return C

as follows:

h = CWh +bh

O =W ×hT
(7.8)

where Wh ∈RNT×d and bh ∈RL×d is the weight matrix and bias matrix, respectively.

7.4.4 Inference Module

The inference module, composed of ReLU and the fully-connected network, is used to

make predictions according to the output of coupled variable representation O. To avoid

accumulations of errors, we output all predicted results by one forward step which

turns out to be more efficient and stable than step-by-step prediction in Section 7.5. The

inference module is formulated as follows:

(7.9) X̂ =σ(OW1 +b1)W2 +b2

where O ∈ RN×L×d is the output of coupled variable representation module, σ is the

activation function, W1 ∈R(L∗d)×dh ,W2 ∈Rdh×τ are the weights, and b1 ∈Rdh , b2 ∈Rτ are

the biases, and dh is the inner-layer dimension size.

The final loss can be formulated as follows:

(7.10) L (X̂ , X ;Θ)=∑
t

∥∥X̂ t+1:t+τ− X t+1:t+τ
∥∥2

2

where τ is the predicted length, Θ is the learnable parameters, X̂ is the prediction values

and X is the ground truth.

126



7.5. EXPERIMENTS

7.5 Experiments

In this section, we perform extensive experiments to evaluate the prediction accuracy

and efficiency of our proposed model DeepCN, and provide analyses about DeepCN,

including the study of coupling mechanism, ablation study, and parameter analysis.

7.5.1 Datasets

We empirically perform experiments on five real-world datasets, including traffic, energy,

web traffic, electrocardiogram, and COVID-19. These datasets are summarized in Table

7.1. All datasets are normalized using the min-max normalization. Except the COVID-19

dataset, we split the other datasets into training, validation, and test sets with the ratio

of 7:2:1 in a chronological order. For the COVID-19 dataset, the ratio is 6:2:2.

Solar1: This data set is about solar power collected by NREL (National Renewable

Energy Laboratory). We use the usage of a state as the data set which contains 593

points. The data has been collected from 2006/01/01 to 2016/12/31 with the sampling

interval of every 1 hour.

Wiki2: The data set contains a number of daily views of different Wikipedia articles

which have been collected from 2015/7/1 to 2016/12/31. It consists of approximately

145k time series and we choose 2k of them as our experimental data set due to limited

computing resources.

Traffic3: The data set contains a number of hourly traffic data of 963 San Francisco

freeway car lanes which are collected from 2015/01/01 with the sampling interval of

every 1 hour.

ECG4: The data set is about Electrocardiogram(ECG) from the UCR time-series

classification archive [45]. It contains 140 nodes and each node has a length of 5000.

COVID-195: The dataset is about COVID-19 hospitalization in the U.S. state of

California (CA) from 01/02/2020 to 31/12/2020 provided by the Johns Hopkins University

with the sampling interval of every day.

1https://www.nrel.gov/grid/solar-power-data.html
2https://www.kaggle.com/c/web-traffic-time-series-forecasting/data
3https://archive.ics.uci.edu/ml/datasets/PEMS-SF
4http://www.timeseriesclassification.com/description.php?Dataset=ECG5000
5https://github.com/CSSEGISandData/COVID-19

127

https://www.nrel.gov/grid/solar-power-data.html
https://www.kaggle.com/c/web-traffic-time-series-forecasting/data
https://archive.ics.uci.edu/ml/datasets/PEMS-SF
http://www.timeseriesclassification.com/description.php?Dataset=ECG5000
https://github.com/CSSEGISandData/COVID-19


CHAPTER 7. DEEP COUPLING NETWORK FOR MULTIVARIATE TIME SERIES
FORECASTING

Table 7.1: Summary of Experimental Datasets

Datasets Solar Wiki Traffic ECG COVID-19

Samples 3650 803 10560 5000 335
Variables 592 5000 963 140 55
Granularity 1hour 1day 1hour - 1day
Start time 01/01/2006 01/07/2015 01/01/2015 - 01/02/2020

7.5.2 Baselines

We compare our proposed model with the following representative and SOTA models,

including the classic model VAR [237], DNN-based models, matrix factorization models,

GNN-based models, and Transformer-based models.

Classic Model.

• VAR6: VAR [237] is a classic linear autoregressive model. We use Statsmodels

library which is a python package that provides statistical computations to realize

the VAR.

DNN-based models.

• LSTNet7: LSTNet [111] uses a CNN to capture inter-variable relationships and

an RNN to discover long-term patterns. In our experiment, we use the settings

where the number of CNN hidden units is 100, the kernel size of the CNN layers

is 4, the dropout is 0.2, the RNN hidden units is 100, the number of RNN hidden

layers is 1, the learning rate is 0.001 and the optimizer is Adam.

• TCN8: TCN [7] is a causal convolution model for regression prediction. We utilize

the same configuration as the polyphonic music task exampled in the open source

code where the dropout is 0.25, the kernel size is 5, the hidden units is 150, the

number of levels is 4 and the optimizer is Adam.

• SFM9: On the basis of the LSTM model, SFM [274] introduces a series of different

frequency components in the cell states. We use the default settings as the authors

recommended where the learning rate is 0.01, the frequency dimension is 10, the

hidden dimension is 10 and the optimizer is RMSProp.

6https://www.statsmodels.org
7https://github.com/laiguokun/LSTNet
8https://github.com/locuslab/TCN
9https://github.com/z331565360/State-Frequency-Memory-stock-prediction

128

https://www.statsmodels.org
https://github.com/laiguokun/LSTNet
https://github.com/locuslab/TCN
https://github.com/z331565360/State-Frequency-Memory-stock-prediction


7.5. EXPERIMENTS

Matrix factorization models.

• DeepGLO10: DeepGLO [188] models the relationships among variables by matrix

factorization and employs a temporal convolution neural network to introduce non-

linear relationships. We use the default setting as our experimental settings for

wiki, electricity and traffic datasets. For covid datasets, the vertical and horizontal

batch size is set to 64, the rank of the global model is set to 64, the number of

channels is set to [32, 32, 32, 1], and the period is set to 7.

GNN-based models.

• StemGNN11: StemGNN [17] leverages GFT and DFT to capture dependencies

among variables in the frequency domain. We use the default setting of stemGNN

as our experiment setting where the optimizer is RMSProp, the learning rate is

0.0001, the stacked layers is 5, and the dropout rate is 0.5.

• MTGNN12: MTGNN [247] proposes an effective method to exploit the inherent de-

pendency relationships among multiple time series. We download the source code

from: https://github.com/nnzhan/MTGNN. Because the experimental datasets

have no static features, we set the parameter load_static_feature to false. We con-

struct the graph by the adaptive adjacency matrix and add the graph convolution

layer. Regarding other parameters, we adopt the default settings.

• GraphWaveNet13: GraphWaveNet [248] introduces an adaptive dependency ma-

trix learning to capture the hidden spatial dependency. Since our datasets have no

prior defined graph structures, we use only adaptive adjacent matrix. We add a

graph convolutional layer and randomly initialize the adjacent matrix. We adopt

the default setting as our experimental settings where the learning rate is 0.001,

the dropout is 0.3, the number of epoch is 50, and the optimizer is Adam.

• AGCRN14: AGCRN [6] proposes a data-adaptive graph generation module for

discovering spatial correlations from data. We use the default settings as our

experimental settings where the embedding dimension is 10, learning rate is 0.003,

and the optimizer is Adam.

10https://github.com/rajatsen91/deepglo
11https://github.com/microsoft/StemGNN
12https://github.com/nnzhan/MTGNN
13https://github.com/nnzhan/Graph-WaveNet
14https://github.com/LeiBAI/AGCRN

129

https://github.com/nnzhan/MTGNN
https://github.com/rajatsen91/deepglo
https://github.com/microsoft/StemGNN
https://github.com/nnzhan/MTGNN
https://github.com/nnzhan/Graph-WaveNet
https://github.com/LeiBAI/AGCRN


CHAPTER 7. DEEP COUPLING NETWORK FOR MULTIVARIATE TIME SERIES
FORECASTING

Transformer-based models.

• Informer15: Informer [289] leverages an efficient self-attention mechanism to

encode the dependencies among variables. We use the default settings as our

experimental settings where the dropout is 0.05, the number of encoder layers is 2,

the number of decoder layers is 1, the learning rate is 0.0001, and the optimizer is

Adam.

• Reformer16: Reformer [104] combines the modeling capacity of a Transformer

with an architecture that can be executed efficiently on long sequences and with

small memory use. We use the recommended settings as the experimental settings.

• Autoformer17: Autoformer [243] proposes a decomposition architecture by embed-

ding the series decomposition block as an inner operator, which can progressively

aggregate the long-term trend part from intermediate prediction. We use the recom-

mended settings as our experimental settings with 2 encoder layers and 1 decoder

layer.

7.5.3 Experimental Setup

We perform our experiments with the hardware environment of one NVIDIA RTX 3080

card. Our code is implemented by Python 3.6 with PyTorch 1.9. Our model is optimized

with RMSprop optimizer and the learning rate is 0.00001. We normalize the input by

the min-max way. For all datasets, batch size is set to 32. The number of epoch is 50.

For traffic and COVID-19 datasets, the dimension size d is set to 512. For Wiki, Solar

and ECG datasets, the dimension size d is set to 1024. For COVID-19 and ECG datasets,

the number of orders L is set to 2. For Traffic and Wiki dataset, L is set to 4. For Solar

dataset, L is set to 3. In the inference module, the hidden size is 1024 and the activation

function is ReLU . We use MAE and RMSE as metrics.

7.5.4 Results

Single-step forecasting. We compare our model DeepCN with the other twelve models

on five different datasets with the input length being 12 and the prediction length being

12. The results are summarized in Table 7.2. As can be seen from the result table,
15https://github.com/zhouhaoyi/Informer2020
16https://github.com/thuml/Autoformer
17https://github.com/thuml/Autoformer

130

https://github.com/zhouhaoyi/Informer2020
https://github.com/thuml/Autoformer
https://github.com/thuml/Autoformer


7.5. EXPERIMENTS

Dataset Solar Wiki Traffic ECG COVID-19
Metrics MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

VAR 0.184 0.234 0.057 0.094 0.535 1.133 0.120 0.170 0.226 0.326
SFM 0.161 0.283 0.081 0.156 0.029 0.044 0.095 0.135 0.205 0.308
LSTNet 0.148 0.200 0.054 0.090 0.026 0.057 0.079 0.115 0.248 0.305
TCN 0.176 0.222 0.094 0.142 0.052 0.067 0.078 0.107 0.317 0.354
DeepGLO 0.178 0.400 0.110 0.113 0.025 0.037 0.110 0.163 0.191 0.253
Reformer 0.234 0.292 0.047 0.083 0.029 0.042 0.062 0.090 0.182 0.249
Informer 0.151 0.199 0.051 0.086 0.020 0.033 0.056 0.085 0.200 0.259
Autoformer 0.150 0.193 0.069 0.103 0.029 0.043 0.055 0.081 0.189 0.241
GraphWaveNet 0.183 0.238 0.061 0.105 0.013 0.034 0.093 0.142 0.201 0.255
StemGNN 0.176 0.222 0.190 0.255 0.080 0.135 0.100 0.130 0.421 0.508
MTGNN 0.151 0.207 0.101 0.140 0.013 0.030 0.096 0.145 0.394 0.488
AGCRN 0.143 0.214 0.044 0.079 0.084 0.166 0.055 0.080 0.254 0.309

DeepCN (ours) 0.132 0.172 0.042 0.078 0.011 0.022 0.051 0.076 0.170 0.232
Improvement 10.8% 10.9% 4.5% 1.3% 15.4% 26.7% 7.3% 8.4% 6.6% 3.7%

Table 7.2: Single step forecasting error results (MAE and RMSE) of DeepCN and other
baseline models on five datasets with the prediction length being 12.

DeepCN achieves good performances on all datasets. On the Solar dataset, DeepCN

improves 10.8% on MAE and 10.9% on RMSE. On the Wiki dataset, it improves 4.5%

on MAE and 1.3% on RMSE. On the ECG dataset, it improves 7.3% on MAE and 8.4%

on RMSE. On the COVID-19 dataset, it improves 6.6% on MAE and 3.7% on RMSE.

Especially, on the traffic dataset, DeepCN improves 15.4% on MAE and 26.7% on RMSE

compared with the best baseline. The reason why DeepCN performs exceptionally well

on the traffic data set is because of the strong coupling in the traffic dataset. For example,

adjacent nodes affect each other and adjacent areas also affect each other. If a road is

jammed, it inevitably affects other roads. We conduct more experiments on the couplings

of the traffic dataset and the result is shown in Figure 7.9(a). From the figure, we

conclude that there is a multi-order couplings in the traffic dataset. This also explains

why DeepCN is more accurate. It is because the multi-order couplings is within our

consideration.

Among these baseline models, transformer-based models and GNN-based models

have achieved more competitive performances than other DNN-models. As shown in

Figure 7.1, DNN-based models can not attend to time lag effect directly and ignore the

inter-series dependencies. The two inherent defects affect their ability to capture the

dependencies among time series. Moreover, GNN-based models perform well on Solar,

Wiki, Traffic and ECG datasets while transformer-based models achieve good results

only on COVID-19 and ECG datasets. This is because that compared with transformer-

based models, GNN-based models consider the inter-series dependencies. This also

demonstrates that inter-series dependencies are valuable for MTS forecasting especially

for the tight coupling scenarios such as traffic forecasting.

131



CHAPTER 7. DEEP COUPLING NETWORK FOR MULTIVARIATE TIME SERIES
FORECASTING

Horizon 3 6 9 12
Metrics MAE RMSE MAE RMSE MAE RMSE MAE RMSE

LSTNet 0.085 0.178 0.128 0.202 0.128 0.202 0.128 0.203
DeepGLO 0.083 0.142 0.093 0.161 0.107 0.157 0.110 0.163
Informer 0.055 0.083 0.055 0.084 0.057 0.086 0.056 0.085
GraphWaveNet 0.090 0.139 0.092 0.141 0.095 0.145 0.097 0.149
StemGNN 0.090 0.130 0.100 0.130 0.090 0.129 0.100 0.130
MTGNN 0.092 0.140 0.094 0.140 0.095 0.144 0.096 0.145

DeepCN (ours) 0.050 0.076 0.050 0.076 0.051 0.076 0.051 0.076
Improvement 9.1% 8.4% 9.1% 9.5% 10.5% 11.6% 8.9% 10.6%

Table 7.3: Multi-step forecasting error comparison (MAE and RMSE) of DeepCN with six
baseline models on ECG dataset with the prediction length in {3,6,9,12}.

Horizon 3 6 9 12
Metrics MAE RMSE MAE RMSE MAE RMSE MAE RMSE

VAR 0.047 0.076 0.095 0.150 0.182 0.319 0.535 1.133
LSTNet 0.016 0.038 0.019 0.045 0.023 0.051 0.026 0.057
DeepGLO 0.020 0.036 0.022 0.036 0.024 0.038 0.025 0.037
Informer 0.019 0.031 0.020 0.032 0.020 0.032 0.020 0.033
GraphWaveNet 0.011 0.027 0.013 0.031 0.013 0.030 0.013 0.034
StemGNN 0.050 0.093 0.070 0.121 0.090 0.144 0.080 0.135
MTGNN 0.011 0.026 0.012 0.027 0.012 0.028 0.013 0.030

DeepCN (ours) 0.009 0.020 0.010 0.021 0.011 0.021 0.011 0.022
Improvement 18.2% 23.1% 16.7% 22.2% 8.3% 25.0% 15.4% 26.7%

Table 7.4: Multi-step forecasting error comparison (MAE and RMSE) of DeepCN and
seven baseline models on Traffic dataset with the prediction length in {3,6,9,12}.

Multi-step forecasting. In order to further evaluate the accuracy of DeepCN under

different prediction lengths, we conduct more experiments on multi-step forecasting,

including 3, 6, 9, and 12 steps. We perform experiments on ECG, traffic and Wiki

datasets, respectively. For the ECG dataset, the input length of all models is set to

12. The coupling number L of DeepCN is set to 2. As you can see from the results in

Table 7.3, DeepCN achieves good performances in multi-step forecasting tasks as it

improves an average of 9.4% on MAE and 10% on RMSE. Among the baselines, Informer

performs better than others since it can model the intra-series dependencies directly.

For the traffic dataset, the input length of all models is also set to 12. The coupling

number L of DeepCN is set to 4. The results are shown in Table 7.4 and we can find

132



7.5. EXPERIMENTS

Length 3 6 9 12
Metrics MAE RMSE MAE RMSE MAE RMSE MAE RMSE

GraphWaveNet 0.061 0.105 0.061 0.105 0.061 0.105 0.061 0.104
StemGNN 0.157 0.236 0.159 0.233 0.232 0.311 0.220 0.306
AGCRN 0.043 0.077 0.044 0.078 0.045 0.079 0.044 0.079
MTGNN 0.102 0.141 0.091 0.133 0.074 0.120 0.101 0.140
Informer 0.053 0.089 0.054 0.090 0.059 0.095 0.059 0.095

DeepCN (ours) 0.041 0.076 0.042 0.076 0.042 0.077 0.042 0.078
Improvement 4.7% 1.3% 4.5% 2.6% 6.7% 2.5% 4.5% 1.3%

Table 7.5: Multi-step forecasting error comparison (MAE and RMSE) of DeepCN with
five baseline models on Wiki dataset with the prediction length in {3,6,9,12}.

that DeepCN improves an average of 14.7% on MAE and 24.3% on RMSE. Among the

baselines, MTGNN shows good performances because it has good capability to capture

the inter-series dependencies. For the Wiki dataset, we choose GNN-based models and

transformer-based model Informer as the baseline models, the input length is set to 12

and the number of orders L is set to 4. The results in Table 7.5 demonstrate that our

proposed model improves an average of 5.1% on MAE and 1.9% on RMSE. Among the

baselines, AGCRN achieves competitive results since it constructs the graph structure

(i.e., the inter-series dependencies) adaptively from time series data.

Moreover, Figure 7.5 and Figure 7.6 exhibit the changing curve of the accuracy under

different steps on the ECG dataset and traffic dataset, respectively. From Figure 7.5, we

can find that as the steps increase, the accuracy rate of a classic model (VAR) decreases.

It also shows that the accuracy of Informer is closer to ours, but LSTNet’s performance

is not quite ideal on the ECG dataset. Figure 7.6 shows that the accuracy of GNN-based

models is closer to ours, whereas StemGNN presents poor accuracy on the traffic dataset.

In addition, from Figure 7.5 and Figure 7.6, we can observe that the accuracy of our

proposed model DeepCN is stable when prediction length increases because DeepCN

utilizes one forward step to make a prediction which can avoid error accumulations.

Informer also makes predictions by one forward step and its accuracy shows stable while

StemGNN adopting a rolling strategy has fluctuations in performance.

In Figure 7.7, the three different color curves stand for slices of the ground truth,

Informer, and DeepCN, respectively. Four nodes were randomly selected from 140 in the

dataset as observation variables to compare the ground truth with prediction values of

Informer and DeepCN. The above four subgraphs correspond to a node, respectively. It

133



CHAPTER 7. DEEP COUPLING NETWORK FOR MULTIVARIATE TIME SERIES
FORECASTING

(a) Analysis on MAE

(b) Analysis on RMSE

Figure 7.5: Multi-step forecasting error result analysis (MAE and RMSE) of DeepCN
and five baseline models on ECG dataset under different prediction lengths (3, 6, 9, 12).

shows the comparison of our proposed model and Informer between the predicted values

and ground truth when the prediction length is 12. We choose Informer as comparison

because it performs better compared with other models (as shown in Table 7.3). We

randomly select four variables from the ECG dataset. Each subgraph corresponds to

one variable. The x-coordinate represents the prediction time step and the y-coordinate

represents the value. As shown in Figure 7.7, the prediction performance of DeepCN is

better than that of Informer and it is able to fit the curve of ground truth except for some

sudden changes.

134



7.5. EXPERIMENTS

(a) Analysis on MAE

(b) Analysis on RMSE

Figure 7.6: Multi-step forecasting error result analysis (MAE and RMSE) of DeepCN and
four baseline models on Traffic dataset under different prediction lengths (3, 6, 9, 12).

7.5.5 Analysis

Study of the Coupling Mechanism. This part mainly addresses how the coupling

mechanism affects the accuracy and efficiency of our proposed model. We conduct ex-

periments by imposing a different number of couplings orders L (e.g., second-order

coupling, third-order coupling, fourth-order coupling, and so on) on the Traffic and ECG

datasets, respectively. We separately analyze the relationship between training time and

the number of coupling orders, and the relationship between error results (MAE and

RMSE) and the number of coupling orders. The result on ECG dataset is shown in Figure

7.8 and the result on Traffic data is shown in Figure 7.9. In Figure 7.8, we analyze the

accuracy, the efficiency, and the training loss of our model on ECG dataset under different

135



CHAPTER 7. DEEP COUPLING NETWORK FOR MULTIVARIATE TIME SERIES
FORECASTING

Figure 7.7: The predictions (steps=12) of DeepCN and Informer on ECG dataset.

orders, respectively. (a) The error result (MAE and RMSE) under different orders. (b)

The average epoch traing time under different orders. (c) The training loss in different

epoch under different orders. Accordingly, we can see that: 1) As the number of orders L
increases, the training time becomes longer, but it has little effect on the convergence

speed of training. 2) When the order is greater than 2, the accuracy is almost unchanged

because the data on ECG dataset has weak correlations among time series. Namely, the

data on ECG dataset does not exhibit high-order couplings characteristics. In Figure

7.9, we analyze the accuracy, the efficiency, and the training loss of our model on Traffic

dataset under different orders, respectively. (a) The error result (MAE and RMSE) under

different orders. (b) The average epoch training time under different orders. (c) The

training loss in different epoch under different orders. Accordingly, we can find that:

1) With the number of orders L increasing, the training time becomes longer and the

convergence rate of training does not change much. 2) The accuracy rate increases first

which shows that a higher-order relationship exists in the traffic dataset. Then with L
increasing, the performance worsens since higher order leads to overfitting. From Figure

7.8(a) and Figure 7.9(a), we can conclude that for the strong inter-series correlation time

136



7.5. EXPERIMENTS

Dataset Metrics DeepCN w/o coupling w/o 1st w/o 2st w/o 3st w/o 4st

Traffic MAE 0.011 0.013 0.012 0.012 0.012 0.012
RMSE 0.022 0.024 0.024 0.023 0.023 0.022

ECG MAE 0.050 0.051 0.055 0.051 0.051 0.051
RMSE 0.076 0.077 0.081 0.077 0.077 0.077

Table 7.6: Error results (MAE and RMSE) under different orders of couplings

series dataset (e.g., traffic dataset), it is necessary to model the high-order couplings,

while for the weak inter-series correlation dataset (e.g., ECG dataset), modeling for the

high-order couplings does not bring improvements in effectiveness. This also explains

that sequential models achieve generally better results than GNN-based models on ECG

dataset, while on Traffic dataset, GNN-based models perform better than other models.

Ablation Study. To further analyze the different order of couplings, we conduct

more experiments on the Traffic dataset and ECG dataset to evaluate the effectiveness

of different orders. We set the input length and prediction length to 12, and the number

of orders L is set to 4. Other experimental settings is the same as introduced in Section

7.5.3. We evaluate the effectiveness of different order of coupling through masking

corresponding order. The results are shown in Table 7.6. In the table, w/o coupling
means that the model is without the coupling mechanism. Namely, the model is only

composed of the first order coupling and the fully-connected network. w/o 1st represents

the coupling mechanism without the first order coupling and we mask the first order

coupling from the relationships C. In the similar fashion, w/o 2st, w/o 3st and w/o 4st
represents the coupling mechanism without the second order, third order and fourth

order couplings, respectively. From the table, we can find that: 1) For traffic dataset, each

order of coupling is indispensable. 2) For ECG dataset, compared with other order of

couplings, the first order coupling is more important. It shows as well the high-order

couplings should be considered in the strong correlation data while the low-order coupling

is enough for the relationship modeling in the weak correlation data.

Efficiency Analysis. To evaluate the efficiency of DeepCN, we compare the training

time and parameter counts of our proposed model with GNN-based models (StemGNN,

AGCRN and MTGNN) and Transformer-based models (Autoformer and Informer) on

Wiki and Traffic datasets, respectively. We use the same input length (T = 12) and

prediction length (τ= 12) for the analysis in the five methods and the results are shown

in Table 7.7. From the table, we can find that: 1) the Transformer-based models require

137



CHAPTER 7. DEEP COUPLING NETWORK FOR MULTIVARIATE TIME SERIES
FORECASTING

(a) accuracy analysis

(b) efficiency analysis

(c) train loss analysis

Figure 7.8: Study of coupling mechanism on ECG dataset.

less training time than GNN-based models and our model since they only model the

intra-series dependencies while GNN-based models and our model consider both intra-

138



7.5. EXPERIMENTS

(a) accuracy analysis

(b) efficiency analysis

(c) train loss analysis

Figure 7.9: Study of coupling mechanism on Traffic dataset.

and inter-series dependencies. 2) Compared with the GNN-based models, our proposed

model performs more efficiently because the complexity of our model is O (N×T) while the

139



CHAPTER 7. DEEP COUPLING NETWORK FOR MULTIVARIATE TIME SERIES
FORECASTING

Training time (s/epoch)
DeepCN StemGNN AGCRN MTGNN Autoformer Informer

Wiki 9.61 92.59 22.48 27.76 2.39 2.64
Traffic 62.52 201.69 166.61 169.34 14.48 12.99

Parameters
DeepCN StemGNN AGCRN MTGNN Autoformer Informer

Wiki 7.91M 4.10M 0.76M 1.53M 15.6M 14.9M
Traffic 8.74M 3.88M 0.75M 1.48M 15.4M 14.8M

Table 7.7: Results of efficiency analysis on Wiki dataset (variables=1000, samples=803)
and Traffic dataset (variables=962, samples=10560).

AGCRN and MTGNN are O (N2) and StemGNN is O (N3). 3) Transformer-based models

consume more parameters than GNN-based models since the self-attention mechanism

needs high memory usage. 4) The parameter counts of our model is larger than GNN-

based models because our model encode not only timestamp-wise and variable-wise

interactions, but also the multi-order couplings. Moreover, our model simultaneously

models the intra- and inter-series dependencies while GNN-based models separately

model them.

Parameter Sensitivity. We perform parameter sensitivity tests of input length

T and embedding size d on Traffic and ECG datasets. All parameters of our model

under study are held constant except the input length and the embedding size. (1)

Input length. The input length reflects the time lag effects and affects the final accuracy.

We turn over it with the value {3,6,9,12,15,18} for Traffic and ECG datasets, and

the result is shown in Figure 7.10 where we compare error results (MAE and RMSE)

under different input lengths on Traffic and ECG datasets, respectively.. Figure 7.10(a)

shows that with the input length increasing, the accuracy becomes better since the long

input length can bring more information and this also demonstrates the relationships

between variables have time lag effects which are introduced in Section 7.3. Figure

7.10(b) shows that with the input length increasing, the performance first improves and

then decreases due to data redundancy or overfitting. (2) Embedding size. The embedding

size affects the representation ability and we choose the embedding size over the set

{128,256,512,768,1024,1280} for Traffic dataset and {128,256,512,1024,2048} for ECG

dataset. We choose different value set for the two datasets because of the memory limit.

In Figure 7.11, we compare error results (MAE and RMSE) under different embedding

sizes on Traffic and ECG datasets, respectively. Figure 7.11(a) demonstrates that the

140



7.5. EXPERIMENTS

(a) Traffic dataset

(b) ECG dataset

Figure 7.10: Parameter sensitivity analysis about input length.

performance becomes better with the increase of embedding size while Figure 7.11(b)

shows that the performance first improves and then keeps almost unchanged. Unlike the

data on ECG dataset, the data on Traffic dataset exhibits strong couplings between the

data. Then compared with ECG dataset, the data on Traffic dataset has stronger time

lag effects (comparing Figure 7.10(a) with Figure 7.10(b)), and needs bigger embedding

size to represent the complicated relationships (comparing Figure 7.11(a) with Figure

7.11(b)).

141



CHAPTER 7. DEEP COUPLING NETWORK FOR MULTIVARIATE TIME SERIES
FORECASTING

(a) Traffic dataset

(b) ECG dataset

Figure 7.11: Parameter sensitivity analysis about the embedding size.

7.6 Conclusions

In this chapter, we aim to capture inter-/intra-series couplings to improve the MTS

forecasting accuracy. The main contributions are summarized as follows:

• Compared with previous models, we theoretically revisit the relationships among

time series, and construct our model based on the couplings which can bring more

comprehensive information to enhance the representations of the relationships

among time series.

• We design a coupling mechanism to explicitly explore the complicated intra- and

inter-series correlations among time series by learning various couplings. The

142



7.6. CONCLUSIONS

coupling mechanism explores the diverse and hierarchical couplings between

different combinations of time lags of time series with linear complexity.

• We propose a DeepCN model for MTS forecasting which captures complex multi-

variate relationships based on the coupling mechanism to address the relationships

modeling issues on MTS data.

• Extensive experimental results on five real-world datasets show our DeepCN im-

proves an average of 8.9% on MAE and 10.2% on RMSE than the baselines. In

addition, more analysis about the coupling mechanism further reveals that why

different models perform differently on different datasets which give us enlighten-

ment for handling different types of MTS data.

143





Part IV

Non-IID Learning to Hash

145





C
H

A
P

T
E

R

8
DEEP SUPERVISED HASHING WITH COMPACTNESS AND

INFORMATIVENESS ENHANCEMENT

8.1 Introduction

Benefiting from the advances of deep neural models in nonlinear end-to-end represen-

tation learning, deep hashing has enjoyed wide attention in similarity retrieval [234].

Especially, deep supervised hashing (DSH) methods jointly learn deep representation

and hash codes through given similarity/label supervision, achieving state-of-the-art

retrieval performance [242]. Recent DSH methods focus primarily on refining or customiz-

ing objective functions for preserving similarity, e.g., reducing quantization loss caused

by continuous relaxation [58], weighting training pairs to tackle the label imbalance

issue [26] and introducing class-wise learning objective [228]. However, these methods

hardly involve code balance constraints to improve hash quality, e.g., compactness and

informativeness of hash codes. In fact, a large number of works have demonstrated

that code balance can effectively avoid learning collapse, i.e., generating the same hash

codes for all similar datapoints, and facilitate generating compact and informative hash

codes [33, 238]. Figure 8.1 illustrates an example of random 5,000 images from the

CIFAR-10 dataset. Figures (a) and (d) are the visualization of original images and CNN

features extracted via a pre-trained AlexNet [108]. Figures (b) and (c) visualize the

hash codes generated by DHN [297] and DCH [26] respectively, while figures (e) and

(f) visualize the hash codes from DHN and DCH considering code balance constraint

147



CHAPTER 8. DEEP SUPERVISED HASHING WITH COMPACTNESS AND
INFORMATIVENESS ENHANCEMENT

(a) Original Images (b) DHN (c) DCH

(d) CNN Features (e) DHN+CB (f) DCH+CB

Figure 8.1: Visualization illustration using T-SNE.

[222] (suffixed "+CB"). We can observe: figure (b) is overly intensive and figure (c) shows

excessive dispersion and intra-cluster overlaps (fewer points in figure), and both two

figures show massive inter-cluster overlaps. In contrast, figures (e) and (f) show bet-

ter performance due to preserving both inter-cluster and intra-cluster discriminability,

indicating that code balance promotes code compactness and informativeness.

Unfortunately, traditional code balance constraints, such as bit balance and bit uncor-

relation, imposed on whole data population [238], are unsuitable for DSH methods due

to three key issues: 1) finding the zero-mean-thresholded hash functions that achieve bit

balance is difficult, especially when building deep hash functions [220]; 2) obtaining the

hash codes for all datapoints once is both inefficient and impractical when simultane-

ously learning deep data representation and hash functions; 3) traditional code balance

constraints are unsuitable for the conventional batch training in deep models, since

guaranteeing code balance across the entire data population hardly hold same balance

conditions in each data batch. Due to the above issues, DSH methods rarely consider the

benefits obtainable from code balance, which leads to low quality and representability of

148



8.2. PROBLEM FORMULATION

hash codes.

To tackle the above issues, we propose a novel probabilistic code balance constraint

suitable for DSH scenarios. Specifically, we force each hash code to independently satisfy

a discrete uniform distribution on {−1,1}K , i.e., Uni({−1,1}K ). Our theoretical analy-

sis indicates that it not only covers the traditional bit balance and bit uncorrelation

constraints but maximizes the mutual information between the original data and the cor-

responding hash codes. The deep insights reveal that the constraint introduces random

noise to uniformly scatter datapoints into hash space and to improve hash robustness

and avoid overfitting. In addition, we propose a Wasserstein regularization that utilizes

the Wasserstein-1 distance to measure the distance between the hash code distribution

and the target discrete uniform distribution and minimize the regularization to achieve

the constraint.

8.2 Problem Formulation

We first outline the general supervised hashing settings used to achieve similarity-

preserving hash codes. Let X ⊂ RD and Y ⊂ {−1,1}K be the input domain and binary

hash domain respectively, where d and k denote their respective dimensions. We have

pairwise supervision of similarity information S ∈ {0,1}n×n for n datapoints where si j = 1

if datapoints xi and x j in X are semantically similar and si j = 0 otherwise. Supervised

hashing aims to learn a mapping function Hφ := X → Y with parameters φ (e.g., a

neural network) by minimizing the gap between the similarities S in the input domain

X and those calculated in the hash domain Y . We then introduce the two traditional

code balance constraints.

Code Balance. To avoid severe overfitting and guarantee high-quality hash codes [221,

222], bit balance and bit uncorrelation are usually considered from the information-

theoretic perspective. Let X := {xi ∈X }n
i=1 and Y := {yi = HΦ(xi),yi ∈Y }n

i=1.

• Bit Balance: To generate compacted hash codes, it is desirable to maximize

the information contained in each hash bit. According to the maximum entropy

principle, hash bits that provide balanced partitioning of X, i.e.,
∑n

i=1 yi = 0, have

maximum information.

• Bit Uncorrelation: A general method of obtaining informative hash codes is to

maximize the informativeness in hash codes by forcing the different hash bits to

149



CHAPTER 8. DEEP SUPERVISED HASHING WITH COMPACTNESS AND
INFORMATIVENESS ENHANCEMENT

be uncorrelated (mutually orthogonal), i.e.,
∑n

i=1 yiyT
i = nI (where I is an identity

matrix of size n).

8.3 Probabilistic Code Balance Constraint

We propose a novel code balance constraint that suits DSH scenarios. More specifically, we

force each generated hash code independently to satisfy a discrete uniform distribution

on {−1,1}K , e.g., y∼Uni({−1,1}K ), where we can prove that the constraint over Y covers

the aforementioned bit balance and bit uncorrelation constraint:

Theorem 8.1 (Coverage of Bit Balance and Bit Uncorrelation). For any yi ∈Y, if yi ∼
Uni({−1,1}K ), it satisfies E(

∑n
i=1 yi)= 0 and E(

∑n
i=1 yiyT

i )= nI.

Proof. From yi ∼ Uni({−1,1}K ), we get ∀yi j ∈ yi, yi j ∼ Uni({−1,1}). Then, we have

E(yi j)= 0, E(y2
i j)= 1 and E(yik yjk)= 0, where i ̸= k. Accordingly, we get:

(8.1) E(
n∑

i=1
yi)=

n∑
i=1

E(yi)= 0.

Let yi· ∈ {−1,1}n denotes the i-th column of Y. When calculating YTY, we have diagonal

elements:

(8.2) E(yT
i·yi·)=

n∑
j=1

E(y2
i j)= n,

and for non-diagonal elements,

(8.3) E(yT
i·y j·)=

n∑
k=1

E(yik yjk)= 0, s.t., i ̸= j

Therefore, E(YTY)= nI, i.e., E(
∑n

i=1 yiyT
i )= nI. ■

Theorem 8.1 indicates that y ∼ Uni({−1,1}K ) can achieve both effects of the above

two code balance constraints. Unlike the two constraints performing summation over

the hash codes of all datapoints in a symmetrical manner, our proposed asymmetrical

constraint forces the hash codes to satisfy the independent discrete uniform distribution

and has no need to obtain the hash codes for all datapoints beforehand. It can effectively

avoid the difficulty in achieving the zero-mean threshold in the bit balance.

Theorem 8.2 (Mutual Information Maximization). Given X and Y where Y is a deter-
ministic function of X, if PY is a uniform distribution on the space of Y; then mutual
information between X and Y, i.e., I(X,Y), is the maximum.

150



8.3. PROBABILISTIC CODE BALANCE CONSTRAINT

Proof. Since Y is a deterministic function of X, the conditional entropy H(Y|X) is con-

stantly zero. Accordingly, I(X,Y)=H(Y )−H(Y |X )=H(Y ). Since entropy H(Y) is always

upper bounded by the entropy of the uniform distribution on the space of Y, I(X,Y)

reaches the maximum when P (Y) confirms a uniform distribution. ■

The key insight underpinning the probabilistic code balance constraint is that of max-

imizing the mutual information between the original data and the corresponding hash

codes. The obtained hash codes, therefore, preserve not only the similarity relationships

but also more information from the original data. Intuitively, the constraint uniformly

scatters datapoints into hash space via introducing random noises, which facilitates

avoiding overfitting training data and improves the generalization robustness of hash

functions. In addition, we can easily find that our proposed constraint is irrelevant to the

scale of data since the proposed constraint is imposed on every single bit. It is therefore

consistent to impose the constraint on data batches and the whole data population, indi-

cating that the constraint is suitable for batch training. In summary, the proposed code

balance tackles the three key issues in adopting the traditional code balance constraints

and is suitable for DSH. Next, we minimize the distance between the distribution of

the generated hash codes and the target discrete uniform distribution to achieve the

proposed constraint.

8.3.1 Wasserstein Regularization

We propose a Wasserstein regularization to estimate the distance between the distri-

bution of generated hash codes and the target discrete uniform distribution, thereby

achieving the proposed probabilistic code balance constraint via minimizing the esti-

mated distance. We here denote the discrete uniform distribution as P r : Uni({−1,1}K ),

and the distribution of hash codes as Pφ, i.e., yi ∼Pφ, which is generated by the specific

deep hash function Hφ. To achieve yi ∼Uni({−1,1}K ), we minimize the distance between

the two distributions P r and Pφ. Accordingly, we introduce the Wasserstein-1 distance

(a.k.a. Earth-Mover distance), which is a distance function between probability distribu-

tions defined on the same metric space Ω, i.e., P r and Pφ defined on space Ω= {−1,1}K

in our case:

(8.4) W(P r,Pφ)= inf
γ∈Γ(P r ,Pφ)

E(y,y′)∼γ∥y−y′∥,

where Γ(P r,Pφ) denotes the set of all joint distributions γ(y,y′), the marginal distribu-

tions of which are P r and Pφ respectively. Intuitively, we can understand the definition

151



CHAPTER 8. DEEP SUPERVISED HASHING WITH COMPACTNESS AND
INFORMATIVENESS ENHANCEMENT

via considering the optimal transport problem: in the given space Ω, the Wasserstein-1

distance reflects the minimal cost of transporting mass from P r to Pφ in order to trans-

form the distribution P r to the distribution Pφ. Analogously, we propose an empirical

estimate of the Wasserstein-1 distance in a way that makes it unnecessary to directly

estimate the distribution of hash codes. More specifically, given input data X ∈Rn×D , we

first randomly sample n binary target vectors denoted by A, the elements of which follow

P r:

(8.5) A ∈ {−1,1}n×K , s.t. a ∈ {−1,1}K ,a ∈A,a∼P r.

We then optimally pair the hash code of each datapoint with each target vector respec-

tively such that the sum of the distances between all pairs is minimal. To obtain the

optimal pairing matrix P ∈ {0,1}n×n, we first define a set of constraints (denoted P) for all

possible pairing matrices:

(8.6) Pn = {P ∈ {0,1}n×n|P1n = 1n,PT1n = 1n},

where 1n denotes a n-sized vector with all 1s. Given hash codes Y of X, we then optimize

the following objective:

(8.7) min
P∈Pn

1
2
||Y−PA||2F = min

P∈Pn
−tr(PAYT),

where we use a squared ℓ2 distance, and tr(·) denotes the trace function. Once an optimal

pairing matrix P is found, the above distance can be regarded as an estimate of the

Wasserstein-1 distance between P r and Pφ, that is:

(8.8) inf
γ∈Γ(P r ,Pφ)

E(y,y′)∼γ∥y−y′∥ ≈ min
P∈Pn

−tr(PAYT).

Accordingly, the learning objective of DSH equipped with Wasserstein Regularization

(WR) contains two components: the similarity loss used to preserve the similarity S in

the original space, and the Wasserstein Regularization which enhances the compactness

and informativeness of hash codes:

(8.9) J (φ)=min
φ

ℓ(S,YYT)+βmin
φ

min
P∈Pn

−tr(PAYT),

where Y = Hφ(X), and β > 0 denotes a balance weight adjusting the importance of

Wasserstein Regularization. The similarity loss is calculated via the loss function ℓ and

can be specified to the similarity loss of a certain DSH method.

152



8.4. EXPERIMENTS AND EVALUATION

Algorithm 3 Alternating Optimization
1: Input: Given input data S.
2: Initiate the neural network φ and set batch size b
3: while stopping criteria is not satisfied do
4: Fixing φ, randomly sample b input samples Xb and calculate Ỹb.
5: Randomly sample Ab from the distribution P r.
6: Solve Pb using Hungarian algorithm.
7: Update φ using batch gradient descent according to the gradients ∇φJ ′(φ).
8: end while

8.3.2 Optimization

Following the common continuous relaxation treatment [26, 117], we approximate the

sgn function with a squashing function (e.g., tanh), the output Ỹ of which is within (−1,1).

We thus obtain a differentiable neural function H′
φ := X → Ỹ and the corresponding

learning objective J ′(φ) updated as below, of which the parameters can be solved using

gradient-based back propagation algorithm.

(8.10) J ′(φ)=min
φ

ℓ(S,ỸỸT)−βmin
φ

min
P∈Pn

tr(PAỸT).

Apart from A which is randomly sampled from the distribution P r, we further need to

obtain the optimal pairing matrix P. Obtaining P is a linear assignment problem, which

can be solved exactly via Hungarian algorithm [109]. Under the batch gradient updates,

the algorithm can efficiently perform under the restriction of one batch, significantly

reducing the time complexity from O(n3) to O(nb2), where b is the number of samples in

one batch.

Accordingly, we apply an alternating optimization to solve Equation 8.10. First, when

fixing Ỹ, we sample b training samples Xb and calculate its corresponding intermediate

matrix Ỹb. We then randomly sample b target vectors, denoted by Ab from the discrete

uniform distribution and solve Pb ∈Pb with the Hungarian algorithm to optimally pair

Ỹb and Ab. Finally, when fixing Ab and Pb, we update the parameters φ via batch

gradient descent. The corresponding algorithm is presented in Algorithm 3.

8.4 Experiments and Evaluation

To verify the effectiveness of the proposed probabilistic code balance in promoting

retrieval performance and improving hash code quality, we select six state-of-the-art

153



CHAPTER 8. DEEP SUPERVISED HASHING WITH COMPACTNESS AND
INFORMATIVENESS ENHANCEMENT

deep hashing baselines and compare the baselines with their variants equipped with

WR on two public image datasets.

8.4.1 Experimental Setup

Datasets. We adopt two public image datasets for evaluation. 1) CIFAR-101: the

dataset consists of 60,000 32×32 images in 10 classes, where each class has 6,000

images. Two images will be treated as a ground-truth similar pair if they share common

label. 2) NUS-WIDE2: it contains a total of 269,648 images. Similar to [130, 297], we

use its subset of 195,834 images associated with the 21 most frequently concepts, where

each concept consists of at least 5000 images, and define two images as a groundtruth

similar pair if they share at least one common label.

 input Conv1 - 5 F6 - 8 Hash Codes 

sgn 

S 

A 

Similarity 
Loss 

Wasserstein  

Regularization 

Figure 8.2: Neural network architecture used in the experiments.

8.4.2 Network Structure

To facilitate fair comparison, we adopt the CNN architecture, AlexNet [108], for all base-

lines and their WR-enabled variants. Specifically following the architecture of AlexNet,

we utilize five convolutional layers (Conv1-5) and three fully connected layers F6-8, and

apply signature function, i.e., sgn, to generate the binary hash codes based the output

of the layer F8, as shown in Figure 8.2. We then utilize the hash codes to calculate the

similarity loss (precisely the loss used in the baselines) and Wasserstein regularization.

1http://www.cs.toronto.edu/kriz/cifar.html
2http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm

154



8.4. EXPERIMENTS AND EVALUATION

In the training phase, we initialize the network with pretrained parameters from Ima-

geNet and apply the continuous relaxation treatment and approximate the sgn function

with a squashing function (e.g., tanh).

155



C
H

A
P

T
E

R
8.

D
E

E
P

S
U

P
E

R
V

IS
E

D
H

A
S

H
IN

G
W

IT
H

C
O

M
P

A
C

T
N

E
S

S
A

N
D

IN
F

O
R

M
A

T
IV

E
N

E
S

S
E

N
H

A
N

C
E

M
E

N
T

Table 8.1: MAP evaluation of the six baselines and their WR-enabled variants on two public datasets.

The better results between baselines with (+) and without (/) WR are shown in bold where ∗ indicates the statistically
significant improvement (i.e., two-sided t-test with p < 0.05). ∆ denotes the average improvement of each WR-enabled variant
over its baseline.

Method WR
CIFAR-10 NUS-WIDE

16 bits 32 bits 48 bits 64 bits ∆ 16 bits 32 bits 48 bits 64 bits ∆

DSDH
/ 0.7407 0.7523 0.7478 0.7486

2.52
0.7038 0.721 0.7208 0.7215

1.37+ 0.7493* 0.7737* 0.7704* 0.7713* 0.7127* 0.7315* 0.7301* 0.7321*

HashNet
/ 0.6628 0.691 0.6903 0.6853

2.29
0.7017 0.7323 0.7418 0.7378

1.75+ 0.6771* 0.7045* 0.7083* 0.7021* 0.7115* 0.7467* 0.7539* 0.7526*

DCH
/ 0.7451 0.7484 0.7491 0.7253

1.77
0.7182 0.7555 0.7593 0.7413

3.08+ 0.7515* 0.7626* 0.7587* 0.7477* 0.7291* 0.7718* 0.7887* 0.7763*

ADSH
/ 0.6438 0.7612 0.764 0.761

3.67
0.7007 0.7102 0.7182 0.7022

2.61
+ 0.6702* 0.7869* 0.7911* 0.7893* 0.7144* 0.7273* 0.7358* 0.7278*

CSQ
/ 0.7436 0.7691 - 0.755

2.05
0.76 0.7761 - 0.7812

1.93+ 0.7587* 0.7871* - 0.7685* 0.7721* 0.7896* - 0.8003*

DPAH
/ 0.7129 0.7217 0.7347 0.7329

2.33
0.7567 0.7832 0.7912 0.7819

2.11+ 0.7287* 0.7381* 0.7521* 0.751* 0.7691* 0.7978* 0.8097* 0.802*

15
6



8.4. EXPERIMENTS AND EVALUATION

0 0.1 0.3 0.5 0.7 0.9

0.4

0.5

0.6

0.7

0.8

M
A
P

DSDH
HashNet
DCH
ADSH
CSQ
DPAH

(a) 16 bits

0 0.1 0.3 0.5 0.7 0.9

0.65

0.7

0.75

0.8

M
A
P

DSDH
HashNet
DCH
ADSH
CSQ
DPAH

(b) 32 bits

0 0.1 0.3 0.5 0.7 0.9
0.65

0.7

0.75

0.8

M
A
P

DSDH
HashNet
DCH
ADSH
CSQ
DPAH

(c) 64 bits

0 0.1 0.3 0.5 0.7 0.9

0.65

0.7

0.75

M
A
P

DSDH
HashNet
DCH
ADSH
CSQ
DPAH

(d) 16 bits

0 0.1 0.3 0.5 0.7 0.9
0.7

0.72

0.74

0.76

0.78

0.8

M
A
P

DSDH
HashNet
DCH
ADSH
CSQ
DPAH

(e) 32 bits

0 0.1 0.3 0.5 0.7 0.9
0.7

0.72

0.74

0.76

0.78

0.8

0.82

M
A
P

DSDH
HashNet
DCH
ADSH
CSQ
DPAH

(f) 64 bits

Figure 8.3: MAP evaluation of the WR-enabled variants with different β on CIFAR-10
(a-c) and NUS-WIDE (d-f).

Baselines. We select different types of SotA DSH methods, including pointwise, pair-

wise and class-wise methods, for evaluation in our experiments: 1) DSDH [117] jointly

learns a linear classifier based on pointwise groundtruth labels along with the hash

functions; 2) HashNet [27] tackle the data balance issue by weighting training pairs;

3) DCH [26] further introduces a Cauchy cross-entropy loss to measure pairwise simi-

larity; 4) ADSH [93] directly learns hash codes for all database points asymmetrically

and efficiently. 5) CSQ [268], the latest class-wise method, proposes a global similarity

metric referring to hash centers. 6) DPAH [228] introduces learnable class centers as the

global proxies to capture global similarity. Note that non-deep hashing methods are not

included in our experiments due to the focus on DSH. To evaluate the effectiveness of

our proposed probabilistic code constraint, we construct a WR-enabled variant for each

baseline, i.e., adding the Wasserstein regularization to its objective function.

157



CHAPTER 8. DEEP SUPERVISED HASHING WITH COMPACTNESS AND
INFORMATIVENESS ENHANCEMENT

Evaluation Protocol. We follow the experimental settings recommended in [117, 297].

In CIFAR-10 and NUS-WIDE, we randomly sample 100 images per class to form the

testing set, with the remaining images used as the database, then randomly sample

100 images and 500 images per class from the database to act as the validation set

and training set respectively (we adopt the whole database for training in ADSH for

consistency.). To facilitate fair comparison, we adopt the same network as shown in

Table 8.2, fix batch size to 256 for all baselines, and evaluate the comparative methods

over code length K ∈ {16,32,48,64}. We tune the baselines on validation sets to find

their optimal configuration. For their WR-enabled variants, we further tune the balance

hyperparameter β within the range of 0.1 to 1.0 with step 0.1 to obtain the best results.

All experiments have been run five times, and the average results are reported. In

the experiments, we report the Mean Average Precision (MAP) to evaluate similarity

retrieval performance, while Mutual Information Neural Estimation (MINE) [10] is used

to evaluate the informativeness of hash codes.

8.4.3 Results and Discussion

Retrieval Performance. The MAP results of each baseline and its corresponding

WR-enabled variant are reported in Table 8.1. As we can observe from the table, the

WR-enabled variants outperform their corresponding baselines. More specifically, the

WR-enabled variants perform much better on longer code lengths, i.e., 32 bits and 48 bits,

where the MAP improvement of each WR-enabled variant over its baseline is over 1.74%

and can reach 3.87%. This is intuitively attributable to the fact that the learning of the

similarity-preserving objective is more easily distorted, and more vulnerable to the noise

introduced by WR, as smaller code lengths. Moreover, we find that the improvement

on ADSH, CSQ, and DPAH is larger than that on the others. This is attributable that

WR-enabled ADSH trained on the database points improves the quality of the hash

codes on these points, while the Wasserstein regularization can further improve the

discriminability of the hash codes (especially for similar datapoints) generated from

the class-wise methods, i.e, CSQ and DPAH. The above results are impressive since

the Wasserstein regularization promotes the retrieval performance on different kinds

of DSH methods, including point-wise (label-based), pairwise and class-based methods.

In addition, we investigate the approximation quality of Wasserstein-1 distance (i.e.,

Equation 8.8) and observe that the WR-enabled variants get better performance with

the increase of batch size and the best MAP when batch size b = 512 (see Appendix D).

These results demonstrate that Wasserstein regularization introducing random noises is

158



8.4. EXPERIMENTS AND EVALUATION

(a) Original Images (b) DSDH (c) HashNet (d) DCH

(e) ADSH (f) CSQ (g) DPAH

(h) CNN Features (i) DSDH+WR (j) HashNet+WR (k) DCH+WR

(l) ADSH+WR (m) CSQ+WR (n) DPAH+WR

Figure 8.4: Visualization of the hash codes of the testing set on CIFAR-10.

We report one pair visualization for each baseline, where each pair corresponds to a
baseline and its WR-enabled variant with the same code length.

beneficial to improving the robustness of hash functions and avoiding overfitting training

data.

159



CHAPTER 8. DEEP SUPERVISED HASHING WITH COMPACTNESS AND
INFORMATIVENESS ENHANCEMENT

(a) Original Images (b) DSDH (c) HashNet (d) DCH

(e) ADSH (f) CSQ (g) DPAH

(h) CNN Features (i) DSDH+WR (j) HashNet+WR (k) DCH+WR

(l) ADSH+WR (m) CSQ+WR (n) DPAH+WR

Figure 8.5: Visualization of the hash codes of the testing set on NUS-WIDE.

Training Complexity. We ran the baselines and their WR-enabled variants using

a single GTX-1080 GPU. The average training time costs on different training batch

sizes are reported in Table 8.2; ∆ denotes the percentage of additional training time cost

160



8.4. EXPERIMENTS AND EVALUATION

WR 16 32 64 128 256 512

/ 5.9 4.14 3.23 2.77 2.57 2.47
+ 6.1 4.29 3.43 2.95 2.89 2.96

∆ 3.39 3.62 6.19 6.5 12.45 19.84

Table 8.2: Average training time cost (seconds per epoch) over six baselines with K = 48
on CIFAR in terms of different batch sizes.

required by WR-enabled variants over their corresponding baselines. The results show

that the time cost for computing Wasserstein regularization increases as the batch size

increases. This is because the bulk of the time cost associated with WR computation is

linked with predicting hash codes for batch data, i.e., O(bTh) where Th denotes the time

complexity for a single datapoint, as well as that for applying the Hungarian algorithm,

i.e., O(nb2). In addition, the percentage is less than 13% when the batch size b <= 256,

indicating that the additional time cost is affordable and worthwhile considering the

benefits of WR.

Performance Varying with β. We also investigate the retrieval performance of WR-

enabled variants under varying values of β on the two datasets. Note that results on

K = 48 are not reported due to space limitations. Comparing the figures of different bits,

we find that the WR-enabled variants perform better on longer code lengths and worse

on shorter code lengths, confirming the results in Table 8.1. In addition, the performance

of most WR-enabled variants decreases as the values of β increase from 0.3 to 0.9,

especially on K = 16 and K = 32. This is reasonable because Wasserstein regularization

– i.e., the probabilistic code balance – improves hash quality by introducing random

noise and avoiding DSH overfitting from arising during the supervision of similarity in

training data. However, when β increases, a larger weight is allocated to Wasserstein

regularization; this may result in the hash function being highly biased to noises and

greatly degrade the retrieval performance.

Performance Varying with Batch Size The MAP results of the WR-enabled variants

with code length K = 36 over different batch sizes are shown in Table 8.3. The variants

get better performance with the increase of batch size and achieve the best MAP when

batch size b = 512. Comparing the results in Section Retrieval Performance and those

in Table 8.3, we find that the WR-enabled baselines outperform the baselines when

b >= 128 and perform bad when b <= 64. Since we apply the Hungarian algorithm in

161



CHAPTER 8. DEEP SUPERVISED HASHING WITH COMPACTNESS AND
INFORMATIVENESS ENHANCEMENT

the batch training to empirically estimate the Wasserstein-1 distance on training data,

a larger batch size results in a more accurate estimate and is beneficial to learn hash

codes conforming to the probabilistic code balance constraint. The above results confirm

that the code balance effectively improves the performance of similarity retrieval. Note

that as the batch size increases, the similarity retrieval performance improves, and

training cost increases as well. Therefore, the balance between retrieval performance

and training efficiency should be considered when selecting the batch size.

Table 8.3: MAP evaluation of WR-enabled six baselines with K = 32 on CIFAR. The best
results on each method are shown in bold.

method
Enabled by WR

32 64 128 256 512

DSDH+ 0.757 0.764 0.77 0.774 0.781
HashNet+ 0.688 0.695 0.698 0.705 0.71
DCH+ 0.754 0.759 0.762 0.763 0.766
ADSH+ 0.763 0.77 0.778 0.787 0.795
CSQ+ 0.769 0.772 0.779 0.787 0.791
DPAH+ 0.713 0.717 0.721 0.738 0.747

8.4.4 Code Compactness and Informativeness

In this section, we evaluate the compactness and informativeness of the hash codes

generated in the first experiment. We first calculate the mutual information between the

original data (images) and the corresponding hash codes via MINE by a 100−100−1 sized

three-layer fully-connected neural network, as in Table 8.4. The results show that WR

enables large amounts of mutual information between each original data and its hash

codes, which indicates that the Wasserstein regularization improves the informativeness

of the generated hash codes. We further visualize the hash codes via T-SNE, as shown in

Figure 8.4 and Figure 8.5. We find that WR-enabled variants achieve good performance,

and even outperform their baselines, in terms of similarity preservation. In addition,

when comparing WR-enabled variants with their baselines, we easily observe that

hash codes generated by WR-enabled variants are scattered and exhibit less overlap,

indicating the higher compactness and informativeness of the hash codes. These results

demonstrate the effectiveness of the probabilistic code balance and reveal that WR,

with its introduction of random noise to scatter hash codes, improves the compactness

162



8.5. CONCLUSIONS

Method WR
CIFAR-10 NUS-WIDE

16 bits 48 bits 16 bits 48 bits

DSDH
/ 0.0652 0.2421 0.3988 0.4351
+ 0.2589 0.8625 0.4855 0.5774

HashNet
/ 0.3265 -0.1598 0.4032 0.3284
+ 0.4158 0.8124 0.6889 0.4302

DCH
/ -0.4109 -1.3194 0.2854 0.1212
+ 2.3706 -0.8522 0.6512 0.3622

ADSH
/ -0.9106 -0.1058 0.3681 -0.0159
+ 0.463 0.1225 0.7014 0.0249

CSQ
/ -0.2578 -0.2235 0.1481 0.2545
+ 0.273 0.3131 0.687 0.5318

DPAH
/ -0.8566 -0.5169 0.2171 0.0711
+ 0.1669 0.643 0.9378 0.321

Table 8.4: Informativeness evaluation of the baselines and their WR-enabled variants.
Better results are marked in bold.

and informativeness of hash codes and provides benefits for model generalization, i.e.,

avoiding training data overfitting.

8.5 Conclusions

To improve the quality of hash codes in deep supervised hashing, we propose a novel

probabilistic code balance constraint, which forces each hash bit to independently satisfy

a discrete uniform distribution on {−1,1}K (K is hash code length). We prove and analyze

the effectiveness and insights of the proposed constraint, and further incorporate the

Wasserstein regularization to implement the constraint. Extensive experiments by

comparing six DSH baselines and their WR-enabled variants on two image benchmark

datasets demonstrate the probabilistic code balance can effectively promote retrieval

performance and improve the compactness and informativeness of hash codes.

In this chapter, we consider the coupling of original inputs and hash codes to en-

hance the quality of hash codes, specifically code compactness and informativeness. The

contributions can be summarized as follows:

• We propose a novel probabilistic code balance constraint suitable for DSH and

163



CHAPTER 8. DEEP SUPERVISED HASHING WITH COMPACTNESS AND
INFORMATIVENESS ENHANCEMENT

theoretically analyze the effectiveness and insights of the constraint for the first

time.

• We introduce Wasserstein regularization to achieve the constraint via Wasserstein-

1 distance and propose an empirical estimate of the Wasserstein regularization.

• We conduct extensive experiments using different types of SotA DSH baselines on

two benchmark datasets in terms of metrics on retrieval performance and informa-

tiveness. The results show the constraint not only enhances code compactness for

promoting retrieval performance but improves the informativeness of hash codes.

164



C
H

A
P

T
E

R

9
DEEP SUPERVISED HASHING FOR HIGH-DIMENSIONAL

AND HETEROGENEOUS CASE-BASED RETRIEVAL AND

CLASSIFICATION

9.1 Introduction

Case-based reasoning (CBR) is an incremental learning methodology of analogy solution

making, inspired by cognitive science that humans handle new problems by referring

to past analogous experiences (cases) [277]. Generally, a complete CBR system includes

four key steps: case retrieval, case reuse, case revision, and case retention. Case retrieval

assesses the similarity between a target case and past cases and obtains the most similar

past cases. Case reuse suggests a solution for the target case according to the solutions

of past cases. Case revision verifies the correctness of the suggested solution and revises

the solution if necessary. Case retention maintains the solved cases into a case base

for future problem-solving. Due to its good interpretability and practicability, CBR has

been applied successfully to classification [277], diagnosis [9], decision support [64],

fault detection [256], and various fields, e.g., finance [39, 184], industry [28, 100, 114],

manufacturing [99, 123], and medicine [112, 152].

Similarity measures play a decisive role in obtaining similar cases and thus largely af-

fect the performance of CBR systems. Appropriate similarity measures should maximize

the model fitness to data characteristics and explore the inherent data characteristics for

handling the underlying problems [140]. However, enormous complex data, specifically

165



CHAPTER 9. DEEP SUPERVISED HASHING FOR HIGH-DIMENSIONAL AND
HETEROGENEOUS CASE-BASED RETRIEVAL AND CLASSIFICATION

high-dimensional and heterogeneous data, has penetrated every corner of our lives,

bringing significant challenges to quantifying data characteristics and building accurate

similarity measures. In addition, the increasing amount of cases retained during the

incremental learning of CBR often leads to a huge knowledge base (case base) with

enormous cases and bring a huge computation burden of similarity calculation and rank-

ing in case retrieval. The aforementioned issues usually degrade the performance and

efficiency of CBR systems. Intuitively, it is crucial to probe the intrinsic characteristics

of high-dimensional and heterogeneous data and build efficient data-aware similarity

measures, where approaches such as approximate nearest neighbor search (e.g., hashing

techniques studied in this work) are promising to improve the retrieval efficiency.

Measuring the similarity of large amounts of high-dimensional data is critical for data

mining and machine learning tasks and applications, e.g., information retrieval [287],

clustering [42], and hashing [191]. The volume and complexity of such data usually

entails prohibitively large storage and time consumption. Handcrafting an accurate

similarity measure is challenging since it is usually the case that only partial unknown

features are relevant to the task at hand [131]. Therefore, many traditional similarity

measures, e.g., Euclidean distance, cosine similarity, and Jaccard coefficient, perform

poorly or even work out of action under high dimensionality. To address these issues,

existing research usually projects high-dimensional data into a low-dimensional space

by dimensionality reduction like manifold learning [52] or principal component anal-

ysis [301] and then learns an approximate similarity measure in the reduced space.

However, high-dimensional data is often accompanied by the issue of sparsity where

many useful features are rarely observed, and datapoints are scattered in multiple lower

dimensional manifolds. It brings new challenges that these dimensionality reduction

techniques may be inapplicable and parameters for the reduction easily lead to severe

overfitting to the data.

In addition to the high-dimensionality issue, it is also crucial to consider the het-

erogeneity embodied in complex cases in similarity assessment. In heterogeneous data,

attributes may follow different distributions and show different significance. Intuitively,

this may lead to the inaccuracy of most handcrafted similarity measures, which adopt con-

sistent attribute similarity or linear (e.g., average) aggregation functions [154]. To tackle

the heterogeneity of case data in the real world, recent studies usually utilize different

similarity measures on different types of attributes, e.g., using the Euclidean distance

for numerical attributes and the Hamming distance for categorical attributes [173], and

then optimize the allocation of attribute weights and aggregation functions for similar-

166



9.1. INTRODUCTION

ity assessment [2, 277, 278]. Those methods optimize similarity measures by linear or

non-linear aggregation functions in a data-independent manner, which cannot depict

the complex attribute coupling relationships and heterogeneity among attributes [139].

Accordingly, a more promising but challenging approach is to capture the heterogeneity

of attributes [41, 81, 285] and learn data-aware similarity metrics [156, 217] to capture

feature couplings [38, 161, 293].

The CBR problem-solving process mainly includes the successive execution of case

retrieval and case reuse since case revision and retention are usually performed offline.

Case retrieval is the most time-consuming step which usually consists of traversing all

cases for similarity calculation and ranking the cases according to their similarity scores.

With the increasing number of cases maintained in the case base, the retrieval efficiency

and storage burden of CBR become increasingly critical and affect the applicability of

CBR systems. To improve the efficiency, recent studies focus on reducing the search

space by building indices to structurally organize the case base [128, 182] or partition

and index cases by clustering [277] and mapping [69, 295]. However, these methods

usually rely on domain expertise and similarity measures to partition and index the case

base and need additional time costs to update the case base and maintain its indexing

structure. This may greatly degrade the performance and efficiency of CBR systems on

high-dimensional and heterogeneous data where domain expertise can hardly penetrate.

Another promising way to accelerate similarity retrieval is approximate nearest

neighbor search such as locality-sensitive hashing (LSH) [87, 281]. LSH maps similar

datapoints (cases) into same ‘buckets’ (encoded with low-dimensional binary codes) with

high probability, which preserves the similarity relationships between datapoints and

can be regarded as a way of dimensionality reduction on high-dimensional data [44].

Several studies introduce LSH into CBR systems to approximate the nearest neighbor

search process and scale traditional CBR systems to large-scale data [88, 89, 239]. The

studies show CBR systems equipped with hashing techniques can greatly improve

retrieval efficiency and achieve desirable performance with expected loss in accuracy.

Recently, a tremendous amount of research shows that data-dependent hashing (a.k.a.,

learn to hash) methods perform significantly better than data-independent hashing (e.g.,

LSH) [190, 222, 298]. Data-dependent hashing learns similarity-preserving compact hash

codes from data with/without (supervised/unsupervised) given similarity information by

various flexible hash functions, e.g., PCA [220], kernel functions [190], and deep neural

networks [242]. Naturally, data-dependent hashing facilitates to capture complex data

characteristics and potentially improves the performance of hashing-based CBR systems,

167



CHAPTER 9. DEEP SUPERVISED HASHING FOR HIGH-DIMENSIONAL AND
HETEROGENEOUS CASE-BASED RETRIEVAL AND CLASSIFICATION

which, however, has not yet been introduced into CBR.

To address the above challenges and gaps, we introduce supervised deep hashing

in CBR systems and propose a hash function with an adaptive hashing network to

build a Hashing-enabled CBR system (short for HeCBR). Specifically, each feature is

represented by the multiplication of its ‘amplitude’ (position embedding for the feature)

and ‘frequency’ (the feature value). Subsequently, a multilinear interaction layer is

introduced to aggregate the feature embeddings to capture multiview feature couplings

and obtain case embeddings. The above two embedding layers filter out zero-valued

features and calculate the case embeddings in multilinear time complexity to efficiently

handle the high-dimensionality and heterogeneity issues. Then, the case embeddings are

fed into fully-connected layers and a hash layer to generate the binary hash codes. To

learn the hashing network, we construct the similarity groundtruth from the solutions

of cases (precisely two cases being similar if they have same/similar solutions, e.g.,

classification label, dissimilar otherwise). We then optimize the learning objectives of

minimizing the loss between the similarity groundtruth and case similarity in the hash

space and constrain the loss with a quantization regularizer. Considering the nature of

incremental learning in CBR, we further propose a mechanism of incremental learning

combining an adaptive learning objective and an update strategy to update the hash

function and hash codes respectively for retaining solved cases. Accordingly, we construct

a hashing-enabled CBR model to integrate the adaptive hashing network to index the

case base and accelerate the similarity retrieval speed. The overview problem-solving

process of HeCBR is shown in Figure 9.1.

9.2 Problem Formulate

Supervised learning has been prevalent and successful in achieving high-quality seman-

tic hash codes. Below, we outline the general settings in supervised hashing. Assume

X ⊂ Rd and Y ⊂ {−1,1}r refer to the input (original) space and binary hash space

respectively, where d and r denote their respective dimensions. Let us denote the given/-

calculated pairwise supervision of similarity information S ∈ {0,1}n×n for n data points

where si j = 1 if data points xi and x j in X are semantically similar, and si j = 0 other-

wise. The aim of supervised hashing is to learn a mapping function Hφ :=X →Y with

parameters φ (e.g., a neural network) by minimizing the gaps between the similarity in

the input space and that in the hash space.

168



9.3. DEEP HASHING NETWORK

Retrieve

R
et
ai
n

Revise

R
euse

Retrieved Cases

Suggested SolutionsSolved Cases

New 
Cases

Hashing 
Function

Case 
Base

Learn

Index

Figure 9.1: The problem-solving process of case-based reasoning with adaptive hashing.

9.3 Deep Hashing Network

Taking advantage of recent advances in deep hashing, we introduce a deep hashing

network tailored for high-dimensional and heterogeneous data. The network architecture

is shown in Figure 9.2 which contains four components: feature embedding, multiview

feature interaction, fully-connected layers, and a hashing layer. Next, we introduce the

components in detail.

9.3.1 Feature Embedding

Due to the high dimensionality and heterogeneity of case data, it is challenging to

directly feed the feature vector of each case into neural networks. Inspired by the

idea of performing feature embedding in [275], we introduce position embedding to

represent heterogeneous features in a unified distributional space to tackle the above

issues. Specifically, assume X := {xi ∈ X }n
i=1 as the input data of n cases, and let xi =

[xi1, xi2 · · · , xid]T ∈Rd×1 denote the feature vector of the i-th case, i.e., xi ∈X. Note that

all categorical features in the raw feature vector are converted to binary features by

one-hot encoding. Given the j-th feature in the i-th case, i.e., xi j ∈xi where i ∈ {1, · · · ,n}

and j ∈ {1, · · · ,d}, we have:

(9.1) ei j =
0, xi j = 0

xi jw
p
j , xi j ̸= 0

169



CHAPTER 9. DEEP SUPERVISED HASHING FOR HIGH-DIMENSIONAL AND
HETEROGENEOUS CASE-BASED RETRIEVAL AND CLASSIFICATION

Embedding Matrix Multiview Correlation Tensor

View Matrix

sum

Embedding 
Layer

Multiview Feature 
Interaction

xi yi

Ei C

1

0.6

0

0

1

0

...
...

0

1

0

0

0.3

1.5

1

0.6

0

0

1

0

...
...

0

1

0

0

0.3

1.5

zi
ΦE

Fully Connected 
and Hash Layers

ΦF sgn

Figure 9.2: The architecture of deep hashing network.

where ei j denotes the embedding vector for the feature xi j, and wp
j ∈Rkw×1 denote the

embedding vector for the j-th position and kw denotes the embedding dimension. Here,

we introduce a position embedding matrix Wp = {wp
1 ,wp

2 , · · · ,wp
d} ∈ Rkw×d to represent

each feature position, where w j corresponds to the j-th position in each feature vector.

Accordingly, we have Ei = {ei1, · · · ,eid} ∈Rkw×d as the feature embedding matrix for case

xi.

According to Equation (9.1), the embedding vector of each feature is the multiplica-

tion between its feature value and position embedding vector. Intuitively, the position

embedding projects heterogeneous features onto the unified space Rkw where it captures

the heterogeneous feature couplings. In addition, since the embeddings of zero-valued

(binary or numerical) features are constantly 0 ∈Rkw×1, the resultant large proportion

of all-zero vectors in each feature embedding matrix E facilitates to filtrate zero-valued

features and to alleviate the sparsity in high-dimensional cases (see more analysis in

Section 9.3.2).

9.3.2 Multiview Feature Interaction

To obtain the representation for each case, we propose a multiview feature interaction

module to aggregate feature embeddings. Specifically, we introduce a view matrix V ∈

170



9.3. DEEP HASHING NETWORK

Rkw×kv (kv to denote the view dimension) and then resort to CANDECOMP/PARAFAC

(CP) factorization to calculate the case representation below. Given case xi, we have:

(9.2) zi =
d∑

p=1

d∑
q=p+1

[
kw∑
j=1

Ei, j· ◦Ei, j· ◦V j·

]∣∣∣∣∣
pq·

where Ei, j· ∈Rd×1 denotes the j-th row in the feature embedding matrix Ei, V j· ∈Rkv×1

is the j-th row in the view matrix V and ◦ denotes the outer product. In Equation (9.2),

we calculate the multiview correlations (a tensor) among all features in xi, i.e., the CP

term in the brackets denoted as C ∈ Rd×d×kv , and we then sum over the correlation

matrix to each view1, i.e., the first two dimensions of the tensor C , to generate the

representation vector zi ∈Rkv×1 for case xi. For convenience, we denote the projection

process of feature embedding and multiview feature interaction as ΦE : X 7→ Z, where

Z= {z1,z2, · · · ,zn} ∈Rkv×n.

Let us expand Equation (9.2) and probe the computation of each element in the

resultant zi for the case xi:

(9.3)

zik =
d∑

p=1

d∑
q=p+1

[
kw∑
j=1

v jkEi, j· ◦Ei, j·

]∣∣∣∣∣
pq

=
d∑

p=1

d∑
q=p+1

〈Ei,·p,Ei,·q∗V·k〉 =
d∑

p=1

d∑
q=p+1

〈eip,eiq∗V·k〉.

where Ei,·p ∈Rkw×1 and V·k ∈Rkw×1 are the p-th column (i.e., the embedding vector of the

p-th feature eip) and k-th column V respectively, and 〈·, ·〉 denotes the inner product and

∗ denotes the element-wise product.

From Equation (9.3), we easily find that all-zero vectors (i.e., the embeddings of

zero-valued features) are absorbed in the summation and do not count in calculating the

embedding vector zi for the case xi. This treatment efficiently extracts informative fea-

tures from high-dimensional sparse cases. In addition, the multiview feature interaction

module calculates the pairwise (second-order) interaction between any two features by

inner product and introduces a view matrix to diversify the calculation of feature interac-

tions. Intuitively, the module captures inter-feature couplings between (heterogeneous)

features from multiple views referring to the learned view matrix V, accordingly learning

diversified feature couplings for high-level layers. In addition, the interaction module

can capture first-order interactions by manipulating the feature vector of each case x,

specifically concatenating a constant value of 1 with x and obtaining an extended feature

vector [1,x]. In summary, Feature Multiview Interaction module has three advantages:
1Since the tensor C is symmetric, the summation is performed upon the upper-right elements of the

correlation matrix of each view.

171



CHAPTER 9. DEEP SUPERVISED HASHING FOR HIGH-DIMENSIONAL AND
HETEROGENEOUS CASE-BASED RETRIEVAL AND CLASSIFICATION

• It learns feature interactions from multiple views to capture diverse inter-feature

couplings between heterogeneous features, which is more effective than feed-

forward neural networks in capturing intrinsic feature correlations [12, 275].

• It effectively filtrates zero-valued features and generates informative representa-

tion for each case, shielding the influence of the high dimensionality and unpre-

dictable sparsity.

• It does not introduce extra parameters except for the view matrix and efficiently

performs the calculation with time complexity of O(dkwkv). We provide detailed

analysis in Section 9.4.5.

9.3.3 Fully-connected and Hash Layers

After obtaining the dense representation vectors for all cases, we feed case representation

into full-connected layers and subsequently a hash layer, which learn high-level semantic

representations and generate binary hash codes respectively. Specifically, we feed the

representation zi of any case xi into l fully connected layers. Each layer learns a nonlinear

mapping:

(9.4) zℓ
i =σℓ(Wℓzℓ−1

i +bℓ)

where Wℓ and bℓ are the weight and bias parameters of the ℓ-th layer, σℓ is the cor-

responding activation function, and zℓ
i denotes the ℓ-th layer hidden representation of

case xi (note that z0
i = zi). For convenience, let us denote the l fully connected layers as

ΦF : Z 7→Zl , where Zl = {zl
1,zl

2, · · · ,zl
n} ∈Rr×n and r denotes the dimension of hash codes.

We then obtain the hash code by feeding l-layer output zl
i into the hash layer which

contains a sign function. Formally, we have the hash code for the case xi: yi = sgn(zl
i)

and Y= {y1, · · · ,yn} ∈ {−1,1}r×n. Accordingly, the hash mapping function, i.e., Hφ : X→Y,

is defined below:

(9.5) Hφ(X)= sgn(ΦF (ΦE(X)))=Y

where Hφ is the hashing network shown in Figure 9.2, φ= {V,Wp,W1, · · · ,Wl ,b1, · · · ,bl}

denotes the network parameters and sgn(·) denotes the elementwise sign function, which

results in -1 if its input is negative, otherwise 1.

172



9.3. DEEP HASHING NETWORK

9.3.4 Learning Objectives

Generally, the Hamming distance dH(·, ·) is utilized to measure the distance between hash

codes, which can be achieved by inner product 〈·, ·〉, i.e., dH(·, ·)= 1
2 (r−〈·, ·〉). Accordingly,

we apply the inner product to define the following likelihood function: given a pair of

cases xi,x j and their hash codes yi,y j, to estimate the similarity si j of them, we have

(9.6) P(si j|ŝi j)=
 σ(αŝi j), si j = 1

1−σ(αŝi j), si j = 0

where ŝi j = 〈yi,y j〉 denotes the estimated similarity between hash codes, σ is a Sigmoid

function to scale the inner product into a distribution, and α ∈ (0,1] is a scaling hyperpa-

rameter to control the bandwidth of Sigmoid function. Smaller α gives rise to a smaller

saturation zone, where the Sigmoid function has zero gradient. In addition, the larger ŝi j

is, the larger P(si j = 1|ŝi j) will be, i.e., a larger similarity between hash codes yi and y j

implies a higher probability of two cases xi and x j being similar. Accordingly, to achieve

the objective of preserving the similarity between cases in the hash space, we maximize

the likelihood of all pairs of cases (in the training set):

(9.7)
∏

si j∈S
P(si j|ŝi j)=

∏
si j∈S

σ(αŝi j)si j (1−αŝi j)1−si j

Taking the negative logarithm of the likelihood, we have the objective function w.r.t. the

cross entropy loss:

(9.8)

min
Hφ

L (Y,S)=min
H

− ∑
si j∈S

logP(si j|ŝi j)

=min
Hφ

− ∑
si j∈S

(αsi j ŝi j − log(1+ eαŝi j ))

=min
Hφ

−αS∗ (YTY)+ log(1+ eαYTY)

where ŝi j = 〈yi,y j〉 = 〈Hφ(xi),Hφ(x j)〉.
Due to the binary constraints in Equation (9.5), we relax the hash code to the final

output of the fully-connected layers, i.e., yi ≈ zl
i, to approximate the non-differentiable sgn

function. Therefore, we have the approximate mapping function: H̄φ(X)=Zl =ΦF (ΦE(X)).

To squash the l layer representation Zl within [−1,1], we encourage Zl to be binary

by utilizing the Sigmoid-like function: σl(x) = 2/(1+ ex)−1. However, the continuous

relaxation will cause two important issues: 1) introducing uncontrollable quantization

error when binarizing H̄φ(X) to Y, and 2) raising approximation error by performing

173



CHAPTER 9. DEEP SUPERVISED HASHING FOR HIGH-DIMENSIONAL AND
HETEROGENEOUS CASE-BASED RETRIEVAL AND CLASSIFICATION

inner product on H̄φ(X) as the surrogate of Y [297]. To control the quantization error and

approximation error, we introduce a quantization regularizer to minimize the difference

between the hash codes and their relaxation surrogate shown below:

(9.9) R = ∥Zl −Y∥2 = ∥H̄φ(X)−Hφ(X)∥2.

Theorem 9.1 (Regularizer Upper Bound). The quantization regularizer on Hφ is upper
bounded by nd− tr(H̄φ(X)T H̄φ(X)), i.e.,

(9.10) ∥H̄φ(X)−Hφ(X)∥2 ≤ nd− tr(H̄φ(X)T H̄φ(X)).

Proof. Since we have Hφ(X)= sgn(H̄φ(X)), H(X) and H̄φ(X) have the same sign, yielding

that

(9.11)

∥H̄φ(X)−Hφ(X)∥2 = ∥|H̄φ(X)|− |Hφ(X)|∥2

=
n∑

i=1
∥|H̄φ(Xi)|−1∥2

≤
n∑

i=1
∥H̄φ(Xi)T H̄φ(Xi)−d∥1

= nd− tr(H̄φ(X)T H̄φ(X))

where tr is the trace function. Proved. ■

Accordingly, we approximate hash codes Y with H̄φ(X) in Equation (9.8) and combine

the loss function with the upper bound of the quantization regularizer, achieving the

final learning objective for the proposed hashing network below:

(9.12) min
H̄φ

−αS∗ΨH̄φ
+ log(1+ e

αΨH̄φ )−λtr(ΨH̄φ
)

where ΨH̄φ
= H̄φ(X)T H̄φ(X), λ ∈ (0,1) is a hyperparameter to balance the weights of

similarity loss L and the quantization regularizer R. By minimizing the learning

objective in Equation (9.12), we can learn the model parameters of the proposed hashing

network, i.e., H̄ = {Wp,W1, · · · ,Wl ,b1, · · · ,bl}. Besides, hyperparameters {kw,kv, l,α,λ}

are selected per empirical experiments and grid search. After the hashing network is well

trained, we next introduce the network into case-based reasoning for effective storage

and efficient case retrieval. In the stage of case retention, the network is adaptively

updated during retaining new data (cases). For a better understanding of the CBR

process, we place the detailed introduction to the adaptive update mechanisms in Section

9.4.4.

174



9.4. HASHING-ENABLED CASE-BASED REASONING

9.4 Hashing-enabled Case-based Reasoning

Leveraging the proposed hashing network, we propose a Hashing-enabled Case-Based

Reasoning (HeCBR) model, in which the hash network is introduced to transform high-

dimensional and heterogeneous cases into low-rank binary hash codes. The hash codes

are similarity-preserving compact representations for cases, which provides effective and

efficient similarity retrieval. As shown in Figure 9.1, next, we introduce each phase of

the problem-solving process of HeCBR in detail.

9.4.1 Case Representation

A good case representation not only provides organization and indexing of cases for

efficient case retrieval but also facilitates accurate similarity measurement. To achieve

this, we adopt our proposed hash network to transform cases into compact hash codes.

Based on hash codes, we construct a hash table (a form of an inverted index) to organize

and index all cases. The hash table consists of buckets with each bucket indexed by a

hash code. For example, if the dimension of hash code r is 8, then there are up to 28

buckets with each bucket indexed by an 8 bits hash code. Each case xi is then placed

into a bucket Hφ(xi). Due to the learned hash codes being similarity-preserving, the

hash approach, different from the conventional hashing algorithm avoiding mapping two

samples into the same bucket, essentially aims to maximize the probability of collision

between similar cases and meanwhile minimize the probability of collision between

dissimilar cases. Before constructing the hash table, we need to train the proposed

hashing network Hφ based on the cases in the case base, where the input feature vectors

of cases are given or extracted from the descriptions of the cases and the required

similarity relations S are provided or calculated based on the solutions (labels) of the

cases.

9.4.2 Case Retrieval

When a new case comes, we need to retrieve the most similar cases to the new case and

leverage the solutions of the retrieved cases to solve the new case. Specifically, to search

for the most similar cases to a new case xc, we first generate the hash code yc for the

case, i.e., yc = H(xc). Then we retrieve the cases lying in the bucket indexed by hash code

yc and treat the cases as the candidates of the most similar cases to xc. Usually, this is

followed by a reranking step: reranking the retrieved candidates according to the true

175



CHAPTER 9. DEEP SUPERVISED HASHING FOR HIGH-DIMENSIONAL AND
HETEROGENEOUS CASE-BASED RETRIEVAL AND CLASSIFICATION

distances computed using the original features of cases and attaining top-N most similar

cases. Note that if no cases exist in bucket yc, we can retrieve the cases in the nearest

buckets (for example those within 2-hamming distance) with bucket yc instead, and the

indices of the nearest buckets can be obtained by modifying each bit in the hash code bc

into its alternative value in turn. Since case representation and case retention can be

performed offline, case retrieval becomes the most time-consuming phase of CBR and is

important to the applicability of CBR methods. Due to the benefits of hash table lookup,

similar case candidates can be attained with time complexity of O(1). The remaining

time-consuming steps are to generate the hash code for the new case and rerank the

candidate cases, which can also be completed in a short time period. We discuss the time

complexity in detail in Section 9.4.5.

9.4.3 Case Reuse and Case Revision

During the phase of case reuse, we utilize the retrieved top-N most similar cases to

suggest solutions for new cases. A general approach is to design a voting function and

suggest the solution with the most votes for each new case. For convenience, we adopt a

simple majority voting function where each case denotes one vote and thus the solution

supported by most cases will be the optimal one. After suggesting solutions for new cases,

we check the actual solutions for the new cases and revise the suggestion if the suggested

solutions are different from the actual solutions. Next, the solved cases will be retained

in the case base for future problem-solving.

9.4.4 Case Retention

In the phase of case retention, all solved cases will be retained and used to update the

hash function (network) and the corresponding hash codes. During the update of the

hash function Hphi, we need to consider whether or not to update the hash function at

all. Accordingly, we decide how to correct the hash function. Inspired by [16], we adopt

the hinge loss function to define an offset function:

(9.13) O =
max(0, rβ− ŝi j), si j = 1

max(0, rβ+ ŝi j), si j = 0

where β ∈ [0,1] is a hyperparameter designating the extent to which the hash function

may produce a loss. From Equation (9.13), we can see the larger β is, the larger the loss

l i j is, indicating that more rigid similarity is preserved and more information is retained

176



9.4. HASHING-ENABLED CASE-BASED REASONING

from the training pair. Imposing the offset function on the similarity loss function, we

then obtain the learning objective l i j for adaptive update as follows:

(9.14) l i j =
max(0, rβ− ŝi j) log(1+ e−αŝi j ), si j = 1

max(0, rβ+ ŝi j) log(1+ eαŝi j ), si j = 0

where we do not consider the quantization regularizer for simplicity since higher β acts

as an alternative to the quantization regularizer. When l i j = 0, we do not perform any

update, which effectively cuts invalid update that has small gradients. In addition, since

updating the hash codes (table) is usually time-consuming, we perform the update every

nu = 100 new cases to avoid frequently update the hash function and hash codes. The

treatment also avoids the update overfitting to certain new cases. The update process

can be done offline to improve efficiency.

9.4.5 Complexity Analysis

9.4.5.1 Time Complexity of Multiview Feature Interactions

Recalling Equation (9.3), we reformulate the calculate for each element in zi for i-th
case. For convenience, we omit the subscript i in the following.

zk =
d∑

p=1

d∑
q=p+1

〈ep,eq ∗V·k〉

= 1
2

d∑
p=1

d∑
q=1

〈ep,eq ∗V·k〉−
1
2

d∑
p=1

〈ep,ep ∗V·k〉

= 1
2

(
d∑

p=1

d∑
q=1

kw∑
m=1

empemqvmk −
d∑

p=1

kw∑
m=1

e2
mpvmk

)

= 1
2

kw∑
m=1

((
d∑

p=1
emp

)2

vmk −
d∑

p=1
e2

mpvmk

)
From the above equations, we know the computation complexity of zk is in O(dkw), and

the complexity of calculating the embedding vector z for each case is O(dkwkv). Besides,

since only non-zero features kick in, we only need to sum over all non-zero features

during the calculation. Thus, the complexity for calculating z is reduced to O(dnkwkv)

where dn ≪ d denotes the number of non-zero features.

9.4.5.2 Time Complexity of HeCBR

The time complexity of HeCBR mainly comes from the phase of case retrieval in practical

applications, since the other two time-consuming phases, i.e., case representation and

177



CHAPTER 9. DEEP SUPERVISED HASHING FOR HIGH-DIMENSIONAL AND
HETEROGENEOUS CASE-BASED RETRIEVAL AND CLASSIFICATION

case retention, can be done offline. In case retrieval, the time complexity consists of

two parts: generating the hash code for each new case and reranking all the retrieved

candidate cases, since the similar case candidates can be obtained with a time com-

plexity of O(1) in the hash table. The approximate time for generating hash code is

O(dnkw + dnkwkv + lk2
v + r) in which the four parts correspond to the time need for

feature embedding, multiview feature interaction, fully-connect layers and the hash

layer in the hash network respectively. Assume we obtain nr candidate cases, the time

for reranking the candidates consists of O(nrd) for calculating the distances using the

original features of cases and O(nr lognr) for ranking the distances if using the quick

sort algorithm. Compared to the step of reranking, we can generate the hash codes

for a batch of cases in parallel and even accelerate the calculation by a GPU processor.

Thus, the time for generating hash codes can be ignored. Accordingly, the approximate

time complexity of HeCBR is as follows: O(nrd+nr lognr). Since we have nr ≪ n which

is usually the case and the average number of cases in each bucket is n/2r(≈ nr), the

complexity of HeCBR is far less than those CBR methods which traverse the case base,

i.e., nrd+nr lognr ≪ nd+n logn. In addition, comparing to other clustering-based CBR

methods, HeCBR obtains the candidate cases by hash table lookup with a time complexity

O(1) and also improves the retrieval efficiency.

9.5 Experiments and Evaluation

In this section, we conduct extensive experiments to investigate the following research

problems:

Q1 How does HeCBR perform in terms of classification?

Q2 How does HeCBR perform in terms of the similarity retrieval task?

Q3 How robustly does HeCBR perform with different hyperparameters?

Q4 How does the adaptive update in case retention affect the performance of HeCBR?

9.5.1 Experimental Settings

9.5.1.1 Datasets

We verify the effectiveness of our proposed HeCBR on eight real-world high-dimensional

heterogeneous datasets, which contains binary classification and multiclass classification

178



9.5. EXPERIMENTS AND EVALUATION

Table 9.1: Data characteristics of eight high-dimensional sparse datasets.

Dataset Abbr. #instances #dimension #class sparsity

Internet Advertisements ADV 3279 1557 2 0.01
Protein PT 17766 357 3 0.29
Adult ADT 45222 118 2 0.35
Dota2 Dota 102944 172 2 0.08
Character Font Images Font 391651 896 142 0.25
Movie Tweetings MT 773442 90191 10 5.00E-05
Criteo CT 1000000 199 2 0.2
MovieLen-1M ML1M 1000209 9794 5 7.00E-04

problems and covers various domains such as transaction classification, movie rating pre-

diction, font image classification, and protein classification: (1) Internet Advertisements

(short for ADV) collects a set of possible advertisements on Internet pages, and the task

is to classify an image into an advertisement or not2. (2) Protein (PT), a multiclass clas-

sification dataset, contains protein information for studying the structure of proteins3.

(3) Adult (ADT) collects 45,222 census records extracted from 1994 Census database,

which contains both categorical and numeric attribute for classification task4. (4) Dota2

(Dota) collects the battle formation from a popular computer game Data2 with two teams

of 5 players, and the task is to predict which team wins. The above three datasets are

collected from the UCI machine learning repository5. (5) Character Font Images (Font)

consist of images from 153 character fonts and record a variety of font description, we

select 142 of 153 character fonts in the experiments6. (6) Movie Tweetsing (MT) is a

dataset consisting of ratings on movies that were contained in well-structured tweets

on Twitter7. (7) Criteo (CT) includes 45 million user click records and contains both

continous and categorical features8. Considering the computation burden, we randomly

select 1 million records from the Criteo dataset for evaluation in the experiments. (8)

MovieLen-1m (ML1M) collects about 1 million anonymous ratings of approximately

3,900 movies made by 6,040 MovieLens users9.

The detailed characteristics of the eight datasets are reported in Table 9.1. The

2https://archive.ics.uci.edu/ml/datasets/Internet+Advertisements
3https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/
4https://archive.ics.uci.edu/ml/datasets/Adult
5https://archive.ics.uci.edu/ml/index.php
6https://archive.ics.uci.edu/ml/datasets/Character+Font+Images
7http://github.com/sidooms/MovieTweetings
8https://www.kaggle.com/c/criteo-display-ad-challenge
9https://grouplens.org/datasets/movielens/

179



CHAPTER 9. DEEP SUPERVISED HASHING FOR HIGH-DIMENSIONAL AND
HETEROGENEOUS CASE-BASED RETRIEVAL AND CLASSIFICATION

table shows the numbers of instances, features, classes and sparsity of each dataset

where sparsity reflects the proportion of non-zero features. Note that we convert the

categorical features into binary features via one-hot encoding in each dataset. Table 9.1

reports the data characteristics of converted datasets.

9.5.1.2 Baselines

To investigate the performance of HeCBR, we first compare HeCBR with hashing-based

methods including four state-of-the-art LSH-based CBR methods and four dimension

reduction and representation methods as follows.

• LSH: It incorporates the original locality-sensitive hash algorithm [87] to map the

cases into binary hash codes for efficient case retrieval.

• WTAH: It introduces WTAHash, a sparse embedding method, to CBR that trans-

forms the input into binary codes guaranteeing Hamming distance in the resultant

space closely correlated with rank similarity measures.

• FlyH: It applies FlyHash [43], a hash algorithm inspired by fruit flies’ olfactory

circuits, to improve the performance of case retrieval on high-dimensional data.

• PMH: It uses PM-LSH [284], a latest fast and accurate LSH framework based on

a simple yet effective PM-tree, to improve the performance of computing c-ANN

queries on high-dimensional data.

• ITQ: The method utilizes ITQ [61], which adopts PCA for dimension reduction and

quantization, to generate binary representation for case retrieval.

• NFM: The method involves NFM [249], a deep neural factorization machine method

employing feature embedding for handling high-dimensionality and sparsity, to

extract case representation.

• SVAE: The method adopts SVAE [107], a sparse variational autoencoder specified

to address high-dimensional and sparse data, to represent cases.

• M2V: The method introduce Mix2Vec [294], a state-of-the-art unsupervised mixed

data representation based on mixed feature embedding, to obtain high-dimensional

and heterogeneous case representation.

180



9.5. EXPERIMENTS AND EVALUATION

Note that NFM, SVAE, and M2V generate dense low-dimensional data represen-

tation rather than hash codes. To guarantee a fair comparison, we binarize the dense

data representation to generate hash codes, where we add a new similarity-preserving

objective under a joint-training manner for unsupervised representation methods, i.e.,

SVAE and M2V. Obviously, LSH, WTAH, FlyH, and PMH denotes the CBR baseline

enabled by data-independent hash methods, while the other four denote competitors

equipped with data-dependent (deep) hash methods. In addition, we compare HeCBR

with the state-of-the-art CBR methods to investigate CBR performance in terms of

retrieval efficiency.

• SNCBR [165]: It utilizes a heuristic simulated annealing algorithm to optimize the

weight allocations in similarity calculation.

• GACBR [65]: The method adopts a genetic algorithm to optimize the feature

weights to improve similarity calculation.

• MCCBR [2]: The method obtains more rational weight allocations by the predefined

evolution and communication rules and a regional sub-algorithm based on SA.

• ANNCBR [13]: It trains a neural network by predicting classification labels and

treats connection weights as the corresponding attribute weights.

• HCBR [277]: A state-of-the-art CBR model introduces conceptual clustering to cap-

ture structural relations among cases and incorporates the relations for calculating

structural similarity.

These state-of-the-art methods are deliberately chosen for the following considera-

tions: 1) we introduce state-of-the-art LSH into CBR methods since prior hash-based

CBR models generally adopt LSH to improve retrieval efficiency; 2) we compare HeCBR

with dimension reduction and representation methods to verify the superiority of HeCBR

in addressing high-dimensionality and heterogeneity issues; 3) we choose the state-of-

the-art CBR methods to investigate the retrieval efficiency and CBR performance of

HeCBR over traditional CBR methods. To our best knowledge, few deep models are

incorporated to improve the performance of CBR, let alone deep hash models. Therefore,

we do not compare HeCBR with the state-of-the-art deep hashing methods.

181



CHAPTER 9. DEEP SUPERVISED HASHING FOR HIGH-DIMENSIONAL AND
HETEROGENEOUS CASE-BASED RETRIEVAL AND CLASSIFICATION

9.5.1.3 Evaluation Measures

In the experiments, we perform 5-fold cross-validation and report the average evaluation

results in the experiments. Specifically, we employ accuracy and AUC (area under the

ROC curve) to evaluate classification performance. To evaluate the retrieval performance,

we also adopt mean average precision (MAP) and precision@K (Prec@K).

We perform a grid search of the number of hashtables over {4,8,16,32,64} and the

bucket width over {5,10,15,20,25} on validation sets to find the optimal configuration for

the four LSH-based CBR baselines. In addition, we adopt the parameter settings recom-

mended by the authors for the other comparative baselines. For our proposed HeCBR, we

tune the embedding dimension kw and view dimension kv over {15,32,64,126,256} by a

grid search and adopt kw = 64, kv = 64, r = 36 and l = 3 for the fully-connected layers ΦF ,

i.e., the shape of dimension in ΦF is fixed as 64−128−128−r if not specified. In addition,

we perform a grid search over α ∈ {0.2,0.4,0.6,0.8} and λ ∈ {0,0.2,0.4,0.6,0.8} with a step

of 0.2, to obtain the best results, and fixed β= 0.5. To facilitate fair comparison, we adopt

the same parameter settings for the variants of HeCBR. In addition, for all comparative

methods, we select N = 10 most similar cases to suggest class labels and report the best

results if not specified.

9.5.2 Classification Evaluation

In this section, we investigate the performance of HeCBR in terms of case-based classifica-

tion to verify the advance of HeCBR in handling high-dimensionality and heterogeneity.

182



9.5. EXPERIMENTS AND EVALUATION

Ta
bl

e
9.

2:
C

om
pa

ri
so

n
of

c l
as

si
fic

at
io

n
pe

rf
or

m
an

ce
in

te
rm

s
of

ac
cu

ra
cy

an
d

th
e

ar
ea

un
de

r
th

e
R

O
C

cu
rv

e
(A

U
C

).

A
cc

ur
ac

y

D
at

as
et

L
SH

W
A

T
H

F
ly

H
P

M
H

IT
Q

N
F

M
SV

A
E

M
2V

H
eC

B
R

†
H

eC
B

R

A
D

V
0.

79
75

0.
79

96
0.

79
66

0.
82

61
0.

92
58

0.
85

89
0.

87
66

0.
85

22
0.

94
84

0.
96

7
P

T
0.

38
5

0.
38

75
0.

39
16

0.
41

36
0.

50
54

0.
41

89
0.

44
08

0.
41

82
0.

48
07

0.
50

5
A

D
T

0.
71

02
0.

67
93

0.
72

23
0.

74
67

0.
75

73
0.

76
21

0.
76

31
0.

76
41

0.
80

04
0.

81
29

D
ot

a
0.

48
13

0.
49

56
0.

49
27

0.
50

11
0.

50
15

0.
49

93
0.

50
45

0.
51

32
0.

53
15

0.
54

46
Fo

nt
0.

42
03

0.
41

71
0.

42
07

0.
42

34
0.

50
83

0.
45

98
0.

47
21

0.
48

07
0.

49
41

0.
50

47
M

T
0.

20
05

0.
18

58
0.

19
07

0.
20

31
0.

19
17

0.
20

38
0.

20
87

0.
20

26
0.

21
28

0.
21

72
C

T
0.

72
33

0.
71

92
0.

72
74

0.
73

42
0.

73
52

0.
72

92
0.

73
56

0.
73

84
0.

74
13

0.
74

45
M

L
1M

0.
27

68
0.

28
22

0.
27

85
0.

28
21

0.
29

03
0.

29
1

0.
29

33
0.

29
82

0.
30

89
0.

31
68

A
vg

.R
8.

75
8.

87
5

8.
5

6.
62

5
4.

25
5.

5
4.

62
5

4.
37

5
2.

25
1.

25
A

U
C

D
at

as
et

L
SH

W
A

T
H

F
ly

H
P

M
H

IT
Q

N
F

M
SV

A
E

M
2V

H
eC

B
R

†
H

eC
B

R

A
D

V
0.

57
8

0.
58

32
0.

57
24

0.
60

32
0.

88
06

0.
62

88
0.

70
13

0.
68

77
0.

90
7

0.
91

62
P

T
0.

50
22

0.
51

67
0.

51
53

0.
52

33
0.

65
12

0.
52

75
0.

53
82

0.
52

76
0.

63
28

0.
64

65
A

D
T

0.
64

27
0.

61
98

0.
68

32
0.

68
53

0.
69

94
0.

72
13

0.
74

12
0.

74
47

0.
82

73
0.

83
47

D
ot

a
0.

50
04

0.
50

61
0.

50
33

0.
51

26
0.

50
87

0.
50

16
0.

50
41

0.
50

7
0.

54
44

0.
55

5
Fo

nt
0.

51
77

0.
50

9
0.

51
1

0.
51

44
0.

61
26

0.
53

91
0.

54
02

0.
56

52
0.

60
17

0.
61

63
M

T
0.

50
23

0.
50

11
0.

50
17

0.
50

33
0.

50
31

0.
51

15
0.

51
86

0.
51

63
0.

52
15

0.
53

71
C

T
0.

52
48

0.
52

48
0.

52
48

0.
52

48
0.

52
48

0.
55

15
0.

54
92

0.
53

68
0.

57
63

0.
59

08
M

L
1M

0.
50

03
0.

50
05

0.
50

03
0.

51
03

0.
51

32
0.

51
89

0.
51

47
0.

52
19

0.
55

46
0.

56
79

A
vg

.R
8.

68
75

8.
37

5
8.

68
75

6.
65

4.
37

5
5.

5
4.

5
4.

87
5

2.
25

1.
12

5

183



CHAPTER 9. DEEP SUPERVISED HASHING FOR HIGH-DIMENSIONAL AND
HETEROGENEOUS CASE-BASED RETRIEVAL AND CLASSIFICATION

9.5.2.1 Classification Performance

To verify the effectiveness of HeCBR, we compare it with several state-of-the-art LSH-

based CBR methods and representation learning methods in terms of the case-based

classification task10. The performance of all methods in terms of accuracy and AUC are

reported in Table 9.2 where the best results in each row are highlighted in bold and

the best baseline method is underlined for each dataset. The results are obtained with

36-bit binary codes and top-10 most similar cases. Avg.R denotes the average rank of

each method over all the datasets, and HeCBR† denotes the variant of HeCBC which

does not retain solved cases to update hash functions and hash codes. Table 9.2 enables

the following key observations.

• First, compared with the baselines, HeCBR† and HeCBR achieve the best classifica-

tion performance and rank top-2 in terms of the average rank of accuracy and AUC

on all datasets. Especially, HeCBR† and HeCBR significantly improve accuracy by

about 3.6%−6.4% and AUC by more than 6.2% over the best baselines on Dota,

ML1M, and ADT and obtain a desirable improvement of classification performance

on the other datasets except for datasets PT and Font. All the results report that

HeCBR† and HeCBR outperform the baselines in terms of the classification task.

• Second, LSH-enabled baselines perform much worse than the other comparative

methods on most datasets, which verifies the superiority of data-dependent hashing

methods over the data-independent ones in capturing data-specific features and

addressing complex data issues, e.g., data heterogeneity. In addition, we observe

the average accuracy and ACU of HeCBR† and HeCBR improve respectively by

more than 9% and 17% over the LSH-enabled baselines. The results show that

HeCBR outperforms state-of-the-art hash-enabled CBR methods which generally

adopt hash methods from the LSH family to improve case retrieval efficiency.

• Third, comparing HeCBR† with the state-of-the-art data-dependent hash baselines,

HeCBR† achieves higher average accuracy and AUC ranks on all datasets, indicat-

ing much better and more robust classification performance. Specifically, HeCBR†

improves accuracy by more than 3.5% and AUC by more than 6.3% over the base-

lines on Dota, ML1M, and ADT. The results indicate that our proposed adaptive

hashing network, especially the proposed Multiview Feature Interaction, is more
10Case-based classification is a common task in CBR and is convenient to evaluate the performance

of CBR. To address a classification task, we adopt the majority voting to suggest the class label with the
most votes (i.e., the label with the most number of supported cases) in top-N most similar ones.

184



9.5. EXPERIMENTS AND EVALUATION

effective than the baselines in handling high-dimensionality and heterogeneity

and representing complex cases.

• Fourth, HeCBR† performs worse than ITQ on datasets PT and Font, which is

attributable that high-dimensional datasets, i.e., PT and Font (image), have a

large proportion of numeric features where PCA performs better than the feature

representation methods (NFM, M2V and HeCBR) and reconstruction-based repre-

sentation method (SVAE) to obtain effective and concise case representation under

the high-dimensionality setting.

•

• Finally, HeCBR consistently performs better than HeCBR† and achieves obvious

better accuracy and AUC than HeCBR† on all datasets. The results reflect that

the incrementally retained solved cases to update hash functions is beneficial

to retaining new knowledge for future problem-solving and our proposed update

mechanism is effective in adaptively updating hash functions and hash codes.

9.5.2.2 Ablation Study

To investigate the effectiveness of the proposed feature embedding and multiview feature

interaction, we introduce three variants (denoted as max, concat and plain) of HeCBR

for ablation study which replaces the proposed feature embedding or multiview feature

interaction in HeCBR with specific designs:

• max: The variant performs the max pooling upon the feature embedding matrix E,

i.e., max : E→ {max(E1·), · · · ,max(Ekw·)} ∈Rkw×1.

• concat: The variant simply concatenates all feature embedding vectors, i.e., concat :

E→ concat({ei, · · · ,ed}) ∈Rkw×d.

• plain: The variant adopts a fully-connected layer to transform an original case

vector (i.e., x) to a kw-sized vector, i.e., plain : x→wx+b ∈Rkw×1.

Let’s denote HeCBR as interaction to indicate that HeCBR calculates the multiview

feature interactions based on the feature embeddings. The experimental results com-

paring the above four methods on the eight datasets are shown in Figure 9.3, where

we perform the comparative methods with kw = 64 and different hash code dimensions

r ∈ {12,24,36,48} and show the corresponding hyperparmater settings on λ and α. From

the results, we obtain the following observations:

185



CHAPTER 9. DEEP SUPERVISED HASHING FOR HIGH-DIMENSIONAL AND
HETEROGENEOUS CASE-BASED RETRIEVAL AND CLASSIFICATION

0.94

0.95

0.96

0.97

0.98

12 24 36 48

A
cc

ur
ac

y

Code Dimension

max concat plain interaction

(a) ADV (λ= 0.2,α= 0.6)

0.37

0.41

0.45

0.49

0.53

12 24 36 48

A
cc

ur
ac

y

Code Dimension

max concat plain interaction

(b) PT (λ= 0.1,α= 0.6)

0.76

0.78

0.8

0.82

0.84

12 24 36 48

A
cc

ur
ac

y

Code Dimension

max concat plain interaction

(c) ADT (λ= 0.2,α= 0.6)

0.51

0.52

0.53

0.54

0.55

12 24 36 48

A
cc

ur
ac

y

Code Dimension

max concat plain interaction

(d) Dota (λ= 0.0,α= 0.8)

0.3

0.36

0.42

0.48

0.54

12 24 36 48

A
cc

ur
ac

y

Code Dimension

max concat plain interaction

(e) Font (λ= 0.2,α= 0.8)
 

0.17

0.19

0.21

0.23

0.25

12 24 36 48

A
cc

ur
ac

y

Code Dimension

max concat plain interaction

(f) MT (λ= 0.4,α= 0.6)

0.71

0.72

0.73

0.74

0.75

12 24 36 48

A
cc

ur
ac

y

Code Dimension

max concat plain interaction

(g) CT (λ= 0.2,α= 0.6)

0.27

0.28

0.29

0.3

0.31

12 24 36 48

A
cc

ur
ac

y

Code Dimension

max concat plain interaction

(h) ML1M (λ= 0.2,α= 0.6)

Figure 9.3: Accuracy comparison of interaction and different variants under various code
dimensions.

• Compared with the variants, interaction achieves better performance in terms

of accuracy, especially on ADV, PT, Dota, Font, and MT, and catches up with the

186



9.5. EXPERIMENTS AND EVALUATION

variants as the code dimension increases on ADT, CT and ML1M. The results show

the better superiority and stability of interaction, i.e., HeCBR, under different data

characteristics.

• Specifically, interaction outperforms the variants max and concat on all datasets

except for ADT and CT, which demonstrates the effectiveness of the proposed

multiview feature interaction in capturing feature couplings. The variant max
downsamples sharpest features, while concat retains all features. Their superiority

on ADT and CT is attributed that they are suitable for dense data.

• Also, plain performs worse than interaction on most of the datasets, which further

indicates the contribution of the proposed feature embedding for learning hetero-

geneity. In addition, plain shows competitive and even better performance than

max and concat on ADV, PT, Font and MT. This is reasonable since plain performs

direct transformation on raw features and learns effective representations from

datasets with more numeric attributes, e.g., ADV, PT and Font.

In summary, interaction achieves much better performance, and the accuracy of

variants varies largely with different datasets. The results demonstrate the effectiveness

of our proposed feature embedding and multiview feature interaction in handling high-

dimensionality and heterogeneity issues.

9.5.3 Retrieval Evaluation

In this section, we investigate the retrieval performance of HeCBR to verify the contribu-

tions of HeCBR to improving retrieval performance.

9.5.3.1 Retrieval Accuracy

We compare HeCBR with the state-of-the-art baselines in terms of retrieval performance.

Specifically, we report the evaluation results of mean average precision (MAP) and

precision on the retrieved top-N most similar cases, as shown in Figures 9.4 and 9.5

respectively. Six representative baselines are compared with HeCBR under 36-bit binary

codes. From the results, we observe the following findings:

• HeCBR establishes a new state-of-the-art on all datasets except for PT, and it

outperforms the baselines in terms of MAP and precision under different numbers

of retrieved cases, especially on ADV, ADT, Dota and ML1M. The results show the

187



CHAPTER 9. DEEP SUPERVISED HASHING FOR HIGH-DIMENSIONAL AND
HETEROGENEOUS CASE-BASED RETRIEVAL AND CLASSIFICATION

superiority of HeCBR over the baselines in retrieving similar cases, confirming

the better classification accuracy of HeCBR over the baselines in the evaluation of

classification performance.

• Compared with the baselines, HeCBR shows less fluctuation and a smooth trend in

MAP and has a more stable precision along with the increasing case numbers. The

results reflect that the introduction of feature embeddings and feature interactions

in HeCBR is effective to capture the intrinsic heterogeneity in (high-dimensional)

cases and improve the robustness of HeCBR on data of different scales and types.

• In addition, data-independent methods, i.e., the LSH-based methods and ITQ, are

more vulnerable to the number of retrieved case numbers and generally perform

worse than data-dependent hashing methods, for example ITQ and PMH on ADT,

FlyH on Dota, and LSH and PMH on MT. The results are attributed that data-

independent methods rely on specific distance measurement or transformation

(PCA) and hardly learn data specific features to address complex data issues, e.g.,

heterogeneity and high dimensionality.

From the above results, we conclude that HeCBR effectively captures feature hetero-

geneity and interactions to improve case representation and performs more accurate

similar case retrieval.

9.5.3.2 Retrieval Efficiency

Since HeCBR and the comparative LSH-based CBR and representation methods perform

the same two-step retrieval process, i.e., retrieving candidates from hash tables and

reranking the candidates for top-N similar cases, we compare HeCBR with five state-

of-the-art case-based methods to further investigate the retrieval efficiency of HeCBR.

Note that HCBR proposes an efficient retrieval algorithm, while the other four baselines

adopt the same linear nearest neighbor search (NNS) algorithm. Therefore, we report

the time cost of HeCBR, HCBR and ANNCBR in the retrieval efficiency comparison,

where ANNCBR is representative for the four NNS-based baselines.

The efficiency comparison is reported in Figure 9.6 along with the classification

accuracy comparison. Classification accuracy results and retrieval time costs (seconds/per

10 retrievals) are reported on the right and left of each figure respectively. From the

figures, we observe that HeCBR performs worse than the CBR baselines in terms of

accuracy, while it achieves much higher efficiency than the baselines. Specifically, HCBR

188



9.5. EXPERIMENTS AND EVALUATION

0.65

0.7

0.75

0.8

0.85

0.9

0.95

10 20 30 40 50 60 70 80 90 100

M
ap

# Retrieved Cases (N)

LSH
FlyH
PMH
ITQ
SVAE
M2V
HeCBR

(a) ADV

0.15

0.2

0.25

0.3

10 20 30 40 50 60 70 80 90 100

M
ap

# Retrieved Cases (N)

LSH
FlyH
PMH
ITQ
SVAE
M2V
HeCBR

(b) PT

0.45

0.51

0.57

0.63

0.69

10 20 30 40 50 60 70 80 90 100

M
ap

# Retrieved Cases (N)

LSH
FlyH
PMH
ITQ
SVAE
M2V
HeCBR

(c) ADT

0.25

0.27

0.29

0.31

0.33

0.35

10 20 30 40 50 60 70 80 90 100

M
ap

# Retrieved Cases (N)

LSH
FlyH
PMH
ITQ
SVAE
M2V
HeCBR

(d) Dota

0.06

0.12

0.18

0.24

10 20 30 40 50 60 70 80 90 100

M
ap

# Retrieved Cases (N)

LSH
FlyH
PMH
ITQ
SVAE
M2V
HeCBR

(e) Font

0.035

0.045

0.055

0.065

0.075

0.085

10 20 30 40 50 60 70 80 90 100

M
ap

# Retrieved Cases (N)

LSH
FlyH
PMH
ITQ
SVAE
M2V
HeCBR

(f) MT

0.43

0.45

0.47

0.49

0.51

10 20 30 40 50 60 70 80 90 100

M
ap

# Retrieved Cases (N)

LSH
FlyH
PMH
ITQ
SVAE
M2V
HeCBR

(g) CT

0.08

0.1

0.12

0.14

10 20 30 40 50 60 70 80 90 100

M
ap

# Retrieved Cases (N)

LSH
FlyH
PMH
ITQ
SVAE
M2V
HeCBR

(h) ML1M

Figure 9.4: Comparison of retrieval performance in terms of mean average precision with
different numbers of retrieved cases (MAP@N).

has the highest accuracy on all datasets, which is reasonable since HCBR leverages

the structural information among cases to effectively optimize case similarity measures.

HeCBR achieves comparable and even better accuracy compared with the other baselines

189



CHAPTER 9. DEEP SUPERVISED HASHING FOR HIGH-DIMENSIONAL AND
HETEROGENEOUS CASE-BASED RETRIEVAL AND CLASSIFICATION

0.75

0.8

0.85

0.9

0.95

10 20 30 40 50 60 70 80 90 100

Pr
ec

is
io

n

# Retrieved Cases (N)

LSH
FlyH
PMH
ITQ
SVAE
M2V
HeCBR

(a) ADV

0.34

0.37

0.4

0.43

0.46

10 20 30 40 50 60 70 80 90 100

Pr
ec

is
io

n

# Retrieved Cases (N)

LSH
FlyH
PMH
ITQ
SVAE
M2V
HeCBR

(b) PT

0.6

0.64

0.68

0.72

0.76

0.8

10 20 30 40 50 60 70 80 90 100

Pr
ec

is
io

n

# Retrieved Cases (N)

LSH
FlyH
PMH
ITQ
SVAE
M2V
HeCBR

(c) ADT

0.48

0.49

0.5

0.51

0.52

0.53

10 20 30 40 50 60 70 80 90 100

Pr
ec

is
io

n

# Retrieved Cases (N)

LSH
FlyH
PMH
ITQ
SVAE
M2V
HeCBR

(d) Dota

0.3

0.34

0.38

0.42

0.46

0.5

0.54

0.58

10 20 30 40 50 60 70 80 90 100

Pr
ec

is
io

n

# Retrieved Cases (N)

LSH
FlyH
PMH
ITQ
SVAE
M2V
HeCBR

(e) Font

0.155

0.165

0.175

0.185

10 20 30 40 50 60 70 80 90 100

Pr
ec

is
io

n

# Retrieved Cases (N)

LSH
FlyH
PMH
ITQ
SVAE
M2V
HeCBR

(f) MT

0.6

0.61

0.62

0.63

0.64

10 20 30 40 50 60 70 80 90 100

Pr
ec

is
io

n

# Retrieved Cases (N)

LSH
FlyH
PMH
ITQ
SVAE
M2V
HeCBR

(g) CT

0.24

0.25

0.26

0.27

0.28

10 20 30 40 50 60 70 80 90 100

Pr
ec

is
io

n

# Retrieved Cases (N)

LSH
FlyH
PMH
ITQ
SVAE
M2V
HeCBR

(h) ML1M

Figure 9.5: Comparison of retrieval performance in terms of precision with different
numbers of retrieved cases N (Precision@N).

on most of the datasets, especially on ADT and Dota. Although HeCBR loses accuracy

during learning the discrete hash codes, it enhances case representation to compensate

for the loss by introducing heterogeneous embedding and capturing feature interaction.

190



9.5. EXPERIMENTS AND EVALUATION

Table 9.3: Average accuracy comparison of HeCBR under different values of the weight
parameter λ and scaling parameter α respectively.

Dataset
Weight Parameter (λ) Scaling Parameter (α)

0 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

ADV 0.9661 0.9585 0.9508 0.9261 0.9102 0.9655 0.9661 0.967 0.9652
PT 0.433 0.4677 0.4461 0.4544 0.4469 0.4718 0.5046 0.4785 0.4866
ADT 0.8097 0.7869 0.7808 0.7562 0.7586 0.7972 0.8063 0.7991 0.8033
Dota 0.5378 0.503 0.5044 0.502 0.4934 0.5464 0.5391 0.5429 0.5334
Font 0.5031 0.5047 0.4963 0.4834 0.4692 0.4872 0.4934 0.505 0.5013
MT 0.2172 0.2048 0.1964 0.2005 0.1889 0.1976 0.1948 0.2041 0.1889
CT 0.7383 0.7403 0.7436 0.7436 0.7445 0.7433 0.7273 0.7346 0.7308
ML1M 0.3145 0.2903 0.2817 0.2825 0.2855 0.2885 0.2898 0.2916 0.2867

In addition, HeCBR greatly improves the retrieval efficiency on all datasets such that it

reduces 41%∼ 78% retrieval time costs over ANNCBR and up to 62%∼ 84% retrieval time

costs over HCBR as shown on the right of each subfigure in Figure 9.6. As known, the time

complexity of the NNS algorithm is proportional to the cardinality of the retrieval set, i.e.,

the number of cases, HeCBR thus performs increasingly efficiently over ANNCBR with

the increase of the number of instances (cases) from ADV to ML1M. Regarding HCBR,

it achieves desirable efficiency on MT, CT and ML1M, which is attributed that HCBR

structurally organizes all cases and performs large-scale pruning, suitable for large-scale

and sparse datasets. From the results, we conclude that HeCBR achieves desirable

retrieval accuracy over the CBR-based based, but it greatly reduces retrieval costs. The

slight sacrifice of retrieval accuracy for large efficiency improvement is considerably

acceptable, especially for the online or real-time scenarios with high demands of retrieval

efficiency.

9.5.4 Hyperparameter Study

To investigate the parameter sensitivity of HeCBR, we further evaluate the classification

accuracy of HeCBR in terms of the weight parameter λ, the scaling parameter α, the

view dimension kv, and the embedding dimension kw. All the experiments are conducted

under the settings: λ= 0.2, α= 0.6, kv = 64 and kw = 64 if not specified.

9.5.4.1 Evaluating HeCBR w.r.t. Different α and λ

As shown in Table 9.3, we perform a grid search on λ over {0,0.2,0.4,0.6,0.8} and α

over {0.2,0.4,0.6,0.8} and report the average accuracy under each value of λ and α

191



CHAPTER 9. DEEP SUPERVISED HASHING FOR HIGH-DIMENSIONAL AND
HETEROGENEOUS CASE-BASED RETRIEVAL AND CLASSIFICATION

0.8

0.85

0.9

0.95

1

Accuracy

GACBR
SNCBR
MCCBR
ANNCBR
HCBR
HeCBR

0

0.02

0.04

0.06

0.08

Time Cost

(a) ADV

0.4

0.44

0.48

0.52

0.56

Accuracy
0

0.25

0.5

0.75

1

Time Cost

(b) PT

0.7

0.74

0.78

0.82

0.86

Accuracy
0

0.4

0.8

1.2

1.6

Time Cost

(c) ADT

0.4

0.45

0.5

0.55

0.6

Accuracy
0

1.5

3

4.5

6

Time Cost

(d) Dota

0.4

0.5

0.6

0.7

0.8

Accuracy

GACBR
SNCBR
MCCBR
ANNCBR
HCBR
HeCBR

0

15

30

45

60

Time Cost

(e) Font

0.1

0.15

0.2

0.25

0.3

Accuracy
0

30

60

90

120

Time Cost

(f) MT

0.7

0.72

0.74

0.76

0.78

Accuracy
0

60

120

180

240

Time Cost

(g) CT

0.2

0.25

0.3

0.35

0.4

Accuracy
0

75

150

225

300

Time Cost

(h) ML1M

Figure 9.6: Accuracy and efficiency of comparison with state-of-the-art case-based classi-
fication methods.

respectively. The lowest average accuracy values among λ and α on each dataset are

underlined respectively, and the highest average accuracy value on each dataset is

highlighted in bold. From the table, we observe that: 1) HeCBR obtains relatively higher

192



9.5. EXPERIMENTS AND EVALUATION

performance at λ = 0.2 and α = 0.6 respectively since HeCBR does not hit the lowest

accuracy at λ= 0.2 or α= 0.6 and achieves much better accuracy compared with other

settings. 2) In contrast to α, HeCBR has larger but more desirable accuracy fluctuation

on λ, indicating the necessity of a more careful selection of λ than that of α. This is

reasonable because the weight parameter λ largely influences the learning objective

while α mainly scales the similarities to guarantee higher gradients from the Sigmoid

function during backpropagation. 3) In addition, with the increase of λ, HeCBR may have

an increase of accuracy but then has a great decrease when λ reaches larger values, e.g.,

0.8, which indicates large λ may mislead the learning objective and suggests a relatively

small value of λ. On the contrary, HeCBR achieves better performance at α = 0.4 or

α= 0.6, suggesting a moderate value of α. The results show that large α may not work

as a scaling parameter while small α may excessively erase the similarity difference.

9.5.4.2 Evaluating HeCBR w.r.t. Different View Dimension kv and Embedding
Dimension kw

We perform a grid search on kv over {16,32,64,128,256} and kw over {16,32,64,128,256}

and report the average accuracy under each value of kv and kw respectively in Table 9.4.

The lowest average accuracy values between kv and kw on each dataset are underlined

respectively, and the highest average accuracy value on each dataset is highlighted in

bold. From the results, we observe that: 1) HeCBR achieves slightly better performance

when kv and kw take more moderate values, e.g., kv,kv ∈ {32,64,128}, while smaller or

larger embedding dimensions may lead to more inferior performance possibly due to

underfitting and overfitting respectively; 2) overall, HeCBR achieves stable and desirable

performance, e.g., without terribly poor accuracy, on all the datasets over the grid search.

9.5.5 Performance Under Adaptive Update

To investigate the stability of HeCBR under different training sample rates, we gradually

increase the proportion of training samples on each dataset in Table 9.1 from 10% to

90% in the experiments. We compare HeCBR with its variant (denoted as w/o update)

that does not apply the adaptive update strategy to retain newly-solved cases in terms

of classification accuracy, and the results are shown in Figure 9.7, which indicate three

observations:

• HeCBR outperforms its variant w/o update nearly under all sampling rates on all

datasets, indicating that the update strategy effectively retains beneficial cases to

193



CHAPTER 9. DEEP SUPERVISED HASHING FOR HIGH-DIMENSIONAL AND
HETEROGENEOUS CASE-BASED RETRIEVAL AND CLASSIFICATION

Table 9.4: Average accuracy comparison of HeCBR under different values of the view
dimension kv and embedding dimension kw respectively.

Dataset
View Dimension Embedding Dimension

16 32 64 128 256 16 32 64 128 256

ADV 0.9685 0.9673 0.9664 0.9698 0.9682 0.9658 0.967 0.9658 0.9634 0.9652
PT 0.433 0.492 0.446 0.454 0.447 0.472 0.505 0.492 0.487 0.485
ADT 0.7972 0.8049 0.8102 0.8114 0.8079 0.7891 0.7937 0.7963 0.7998 0.8003
Dota 0.5308 0.5353 0.5458 0.5341 0.5421 0.5375 0.5446 0.5413 0.5396 0.5313
Font 0.5023 0.5047 0.4976 0.4821 0.4687 0.4867 0.4953 0.5049 0.5041 0.4943
MT 0.2037 0.1955 0.1951 0.1971 0.1839 0.2005 0.2061 0.1996 0.2006 0.1969
CT 0.7346 0.7375 0.7339 0.7326 0.7308 0.7352 0.7386 0.7393 0.7364 0.7361
ML1M 0.3253 0.2945 0.2969 0.2936 0.2919 0.2855 0.294 0.2938 0.2768 0.287

update the case base and hash function for improving future classification.

• With the increase of training sample rates, HeCBR shows less fluctuation and

increase than the variant w/o update, demonstrating the robustness of HeCBR in

relation to different proportions of training samples. The large accuracy increase

of w/o update is attributed to the fact that more samples generally benefit the

performance even for non-incremental methods.

• When the training sample rates reach 80% 90%, the variant w/o update gets

comparable or slightly better accuracy than HeCBR. This is because HeCBR may

lose its superiority or even introduce noises with the update strategy when the

training samples are sufficient. Notably, the proposed adaptive strategy effectively

avoids invalid updates and alleviates the inferior performance to a great extent.

9.6 Conclusions

In this chapter, we focus on the practicality of learning to hash approaches on real-world,

especially high-dimensional and heterogeneous case data. In summary, the contributions

of this work mainly include:

• We propose an adaptive hashing network to build a hashing-enabled CBR system.

The proposed hashing network learns similarity-preserving compact hash codes

of the cases and the corresponding hash function simultaneously. It is beneficial

to map the high-dimensional cases into the low-dimensional hash space to reduce

storage cost and approximate the nearest neighbor search in the hash space to

improve similarity retrieval efficiency.

194



9.6. CONCLUSIONS

0.88

0.92

0.96

1

10% 20% 30% 40% 50% 60% 70% 80% 90%

Pr
ec

is
io

n

Training Percentage

w/o update

HeCBR

(a) ADV

0.42

0.44

0.46

0.48

0.5

10% 20% 30% 40% 50% 60% 70% 80% 90%

Pr
ec

is
io

n

Training Percentage

w/o update

HeCBR

(b) PT

0.6

0.66

0.72

0.78

0.84

10% 20% 30% 40% 50% 60% 70% 80% 90%

Pr
ec

is
io

n

Training Percentage

w/o update

HeCBR

(c) ADT

0.5

0.52

0.54

0.56

10% 20% 30% 40% 50% 60% 70% 80% 90%

Pr
ec

is
io

n

Training Percentage

w/o update

HeCBR

(d) Dota

0.36
0.38

0.4
0.42
0.44
0.46
0.48

0.5
0.52

10% 20% 30% 40% 50% 60% 70% 80% 90%

Pr
ec

is
io

n

Training Percentage

w/o update

HeCBR

(e) Font

0.18

0.19

0.2

0.21

0.22

0.23

10% 20% 30% 40% 50% 60% 70% 80% 90%

Pr
ec

is
io

n

Training Percentage

w/o update

HeCBR

(f) MT

0.7

0.71

0.72

0.73

0.74

0.75

10% 20% 30% 40% 50% 60% 70% 80% 90%

Pr
ec

is
io

n

Training Percentage

w/o update

HeCBR

(g) CT

0.28

0.29

0.3

0.31

0.32

10% 20% 30% 40% 50% 60% 70% 80% 90%

Pr
ec

is
io

n

Training Percentage

w/o update

HeCBR

(h) ML1M

Figure 9.7: Accuracy comparison of HeCBR and its variant w/o update under different
training sample rates.

• To tackle the challenges and gaps of high-dimensional heterogeneous case data,

we introduce position embedding to perform feature embedding and propose a

195



CHAPTER 9. DEEP SUPERVISED HASHING FOR HIGH-DIMENSIONAL AND
HETEROGENEOUS CASE-BASED RETRIEVAL AND CLASSIFICATION

multilinear interaction layer to represent complex cases. The network design

filters out all zero-valued features and captures the feature couplings, assisting

in efficiently handling high-dimensionality and heterogeneity while preserving

similarity relationships.

• We further introduce an incremental learning mechanism to retain the solved cases.

Specifically, we propose an adaptive learning objective to update the hash function

and an updating strategy to efficiently update the hash codes of all cases.

We perform a collection of experiments on eight real-world datasets of different

applications and make comparisons with other state-of-the-art hashing-enabled CBR

models and several typical CBR models to investigate the effectiveness of our proposed

HeCBR. All experimental results demonstrate that our HeCBR significantly outperforms

the hashing-enabled methods in terms of classification tasks and achieves desirable

performance compared with typical CBR methods. Theoretical and empirical analysis

show that HeCBR can greatly reduce storage cost and significantly improve efficiency in

relation to typical CBR models.

196



Part V

Summary and Prospect

197





C
H

A
P

T
E

R

10
CONCLUSION

In this thesis, we analyzed the issues and challenges in modeling non-IIDness and in

non-IID applications. We conclude the necessity and benefits of building non-IID data

learning models that consider heterogeneities and coupling relationships in various real-

world data and different application scenarios. Subsequently, we presented the design of

six non-IID modelings in terms of different real-world applications, i.e., recommender

systems, multivariate time series forecasting, and learning to hash. In this chapter, we

conclude the contributions of this thesis.

10.1 Non-IID Recommender Systems

In Part II, we focus on designing non-IID recommender systems via modeling the

user/item/context feature heterogeneity and capturing their underlying coupling re-

lationships and also study to debias rating estimate via exploring the rating generation

process to address the different rating distributions. We build two non-IID modelings of

two typical RSs: sequential RSs and collaborative filtering.

10.1.1 Sequential Recommendation

In Chapter 4, to understand how the explicit features of users, items and context influence

user preferences and how user preference dynamics influence user actions over time,

we propose a time-aware recommendation neural network, TARN. TARN learns the

199



CHAPTER 10. CONCLUSION

couplings between explicit user features, item features, and time-related contextual

information by a feature interaction network and models the temporal dynamics of user

preferences by a convolutional network. To enhance the model’s capability of preference

modeling, we further propose a temporal action embedding and attentive average pooling.

Extensive experiments verify the advantages of TARN and the effectiveness of inte-

grating feature couplings and preference dynamics in capturing intrinsic driving factors

of recommendation. Significantly, TARN provides a way to explain user stationary

preferences in terms of explicit feature couplings. The visualization results support the

rationale of our design and show interesting findings that inter-feature couplings between

users, items and context are more highly contributive than the intra-feature couplings

(i.e., first-order couplings within user features, item features or context features).

10.1.2 Collaborative Filtering

In Chapter 5, we propose a new framework TCF to model the missing-not-at-random

rating generation and estimate the MNAR ratings by deeply exploring the relations

between rating missingness, item observability, and user selection. The proposed frame-

work includes three sub-models for jointly inferring triple aspects: item observability,

user selection and ratings. The newly-added latent variable observability distributes a

confidence of being truly negative to each missing entry. We also instantiate the frame-

work to a probabilistic model TPMF, which further introduces the factor dependency

between user selection and ratings to model their multifaceted factor correlation. Exten-

sive experiments on the synthetic datasets show that TPMF effectively model the triple

aspects simultaneously and infer their relationships.

Results on real-world datasets show that both item observability and factor depen-

dency are critical to MNAR rating estimation and TPMF outperforms the state-of-the-art

debiasing methods in rating prediction with respect to RMSE and MAE. Further work

includes introducing extra metadata into modeling item observability, which may im-

prove the estimate accuracy of item observability and alleviate overfitting issues and

even cold-start issues.

10.2 Non-IID Multivariate Time Series Forecasting

In Part III, we focus on studying the non-IIDness in multivariate time series data and

explore the inter-/intra-series couplings and the heterogeneity of time series variables. We

200



10.2. NON-IID MULTIVARIATE TIME SERIES FORECASTING

deliver two neural models based on Transformers and deep cross network to successful

address the non-IIDness in multivariate time series.

10.2.1 Transformer-based Model

In Chapter 5, we propose a novel spectral clustering-enhanced neural sequential MTS

forecasting model Cospectrumer. The model takes advantage of a spectral clustering

network and a clusterwise forecasting network. The spectral network combines discrete

Fourier transform and neural networks and adopts the spectral relaxation of K-means

objective to learn a cluster indicator matrix and generate clusterwise MTS inputs.

The forecasting network introduces a heterogeneous embedding module to capture the

heterogeneity of mixed inputs in MTS and adopts Transformers as the backbone and

the encoder-decoder architecture to model MTS sequences. The network stacks multiple

Transformers and proposes a cluster-aware multi-head attention mechanism to capture

information attention among different clusterwise inputs. Overall, the clustering network

divides and correlates heterogeneous time series in order to model inter-series couplings,

while the forecasting network aims to capture both intra-series temporal patterns and

inter-series correlations to improve the accuracy of MTS forecasting.

Extensive experiments on four datasets verify that Cospectrumer outperforms the

SOTA baselines and achieves better MTS forecasting performance. Cospectrumer has

relatively high model complexity compared with other SOTA Transformer-based models

and relies on existing efficient self-attention mechanisms to improve its efficiency.

10.2.2 Deep Coupling Network

In Chapter 7, to address the relationship modeling issues for MTS forecasting, we propose

a novel model DeepCN for multivariate time series forecasting, including single-step

forward prediction and multi-step forward prediction. Compared with the previous work,

in this section we build our model based on the couplings which can bring more com-

prehensive information to enhance representations of relationships among time series.

Specifically, first we revisit the relationships among time series from the perspective of

mutual information. Then based on the analysis, we design a coupling mechanism to

learn the hierarchical and diverse couplings to represent the relationships which can

comprehensively exploit the intra- and inter-series dependencies. The coupling mech-

anism can model multi-order couplings and account for time lag effect explicitly. After

that, since different variables exhibit different patterns, we leverage a coupled variable

201



CHAPTER 10. CONCLUSION

representation module to learn the variable relationship representation. Finally, we

make predictions by one forward step which can avoid error accumulation. The one

forward step method makes our model more efficient and stable in the multi-step forward

prediction.

We conduct extensive experiments on five real-world datasets and compare our

model with other state-of-the-art baselines. The experimental results show that our

model achieves superior performances. Furthermore, more analysis about our model

demonstrates that different order couplings impose different effects on different datasets

which give us enlightenment for handling different types of MTS data.

10.3 Non-IID Learning to Hash

In Part IX, we focus on the influence of non-IIDness, precisely the couplings between

inputs and hash codes and data heterogeneity, to learning to hash modeling and applica-

tions. Specifically, we first introduce the coupling model to enhance the informativeness

and compactness of hash codes and then investigate its effectiveness on real-world

heterogeneous case-based retrieval and classification.

10.3.1 Hash Quality

In Chapter 8, to improve the quality of hash codes in deep supervised hashing, we propose

a novel probabilistic code balance constraint, which forces each hash bit to independently

satisfy a discrete uniform distribution on {−1,1}K (K is hash code length). We prove and

analyze the effectiveness and insights of the proposed constraint, and further incorporate

the Wasserstein regularization to implement the constraint.

Extensive experiments by comparing six DSH baselines and their WR-enabled vari-

ants on two image benchmark datasets demonstrate the probabilistic code balance can

effectively promote retrieval performance and improve the compactness and informative-

ness of hash codes.

10.3.2 Case-based Retrieval and Classification

In Chapter 9, we propose a novel deep hashing network to enhance case-based reasoning.

Specifically, the proposed network introduces multiview feature interactions to represent

high-dimensional and heterogeneous cases and generates binary hash codes with a

quantization regularizer to control the quantization loss. We further propose an adaptive

202



10.3. NON-IID LEARNING TO HASH

learning loss to strategically update the hash function in the phase of case retraining.

Extensive experimental results on public datasets show the superiority of HeCBR over

the state-of-the-art hash-based CBR methods in terms of classification and retrieval

performance and demonstrate the higher efficiency of HeCBR than the state-of-the-art

CBR methods.

203





C
H

A
P

T
E

R

11
OPEN CHALLENGES AND FUTURE DIRECTIONS

At the current stage, research on practical non-IID learning approaches still encoun-

ters numerous challenges. Although some typical issues and problems have not been

addressed and solved, there are multiple open issues necessary to be considered to make

current non-IID approaches better to qualify real-world complex scenarios.

11.1 Quantification and Evaluation Methods

Open Challenges

• How can we well quantify the non-IIDness of real-world data?

• How can we properly evaluate the non-IIDness modeling in non-IID learning

approaches?

Although there are various evaluation methods and metrics for different data learning

tasks, e.g., AUC and accuracy for classification, RMSE and MAR for forecasting, and

MAP, recall and precision for recommendation and information retrieval. There are

few researchers focusing on measuring the heterogeneity and coupling relationship to

quantify the non-IIDness of real-world data. It is also necessary and meaningful to

evaluate how well non-IID approaches capture the non-IIDness, i.e., heterogeneity and

couplings.

205



CHAPTER 11. OPEN CHALLENGES AND FUTURE DIRECTIONS

Future Directions

• Heterogeneity Quantification

Heterogeneity must be quantified to better indicate the characteristics or complex-

ity of real-world data, which would help the development of non-IID modeling,

framework, and approaches. Although there are a few studies characterizing hetero-

geneity quantification, it lacks formal or widely adopted formulations to quantify

heterogeneity, especially considering complex properties, aspects, and subjects

associated with heterogeneity [22]. It is promising and contributive to study the

quantification of heterogeneity to promote non-IID learning.

• Coupling Quantification

Similarly, the coupling relationship must be characterized and quantified. Previous

work has attempted to define and formulate related concepts, e.g., dependency

and correlation. Since coupling is a much richer concept than dependency and

correlation, quantifying coupling is more challenging but significant to the data

learning community. We need to clarify the granularity of couplings, understand

coupling taxonomy, and acquire their domain knowledge for specific practical

scenarios.

• Evaluation metrics for Non-IIDness Modeling

Based on the quantification of non-IIDness, i.e., heterogeneity and coupling, we can

devise metrics to evaluate how well a non-IID approach captures the non-IIDness

of real-world data. This may facilitate comprehensively measuring model capacity

and provide interpretability of data learning models in a non-IIDness modeling

perspective.

11.2 Model Complexity and Efficiency

Open Challenges

• How can non-IID learning approaches reduce model complexity and improve more

efficiency?

• How can non-IID learning approaches infer efficiently model parameters?

Current non-IID learning approaches may seriously suffer from high model complexity

and low model efficiency since those approaches include extra heterogeneity modeling or

206



11.3. TEMPORAL DYNAMICS

coupling modeling which are usually time-consuming and complicated. Besides, non-IID

learning approaches generally have complex and inefficient model inference. It is a

great challenge that we propose lightweight and efficient non-IID learning models with

efficient more inference.

Future Directions

• Efficient Non-IID Learning/Inference Paradigm

Both traditional data statistics and current deep neural networks may be unsuit-

able to develop high-efficient non-IID learning models due to their complicated data

modeling or large parameter volumes. We may borrow computation paradigms from

other disciplines, e.g., adopting discrete Fourier transform in signal processing to

represent sequences, or devise a new efficient non-IID learning/inference paradigm.

This is critical to avoid research to consider the effect-efficiency balance, which

may lead to overlooking the non-IIDness of real-world data.

• Non-IID model Compression

Model compression is a hot topic to reduce model complexity, especially parameter

volumes while preserving model capacity. It may be a good alternative to address

the complexity and efficiency issues of non-IID learning models. It is promising

to introduce model compression methodology into non-IID modeling and also

challenging to maintain non-IIDness modeling along with model pruning.

11.3 Temporal Dynamics

Open Challenges

• How to model heterogeneity dynamics over time?

• How to model the dynamics of coupling relationship over time?

Real-world data is changing over time where its characteristic, e.g., distribution and

scales, varies with time. Accordingly, the non-IIDness of real-world data is changing

over time. This brings challenges to previous non-IID models that are built on static

data and performs worse over time. How to capture dynamic non-IIDness, i.e., dynamic

heterogeneity and dynamic couplings, and build continual non-IID learning approaches

is significant and promising for the non-IIDness learning community.

207



CHAPTER 11. OPEN CHALLENGES AND FUTURE DIRECTIONS

Future Directions

• Dynamic Non-IIDness Modeling

We can build time-aware non-IID learning models to cater for the dynamic char-

acteristics of real-world data. For example, we can consider the temporal contex-

t/environment associated with real-world data to enhance non-IID learning models.

Hereby, we can introduce time-wrap models, e.g., neural networks and kernel

functions, to achieve non-IID modeling.

• Continual Non-IIDness Modeling

Besides, we can also build continual non-IID learning models to continuously

capture and learn the non-IIDness of real-world data. Under continual learning,

non-IID models are continuously updated based on new data, e.g., the latest data,

which facilities the models to capture the data dynamics (including dynamic no-

IIDness) and guarantees the models are competent for future problem-solving.

11.4 Practical Scenarios

Open Challenges

• How can non-IID learning approaches be applied to other practical scenarios?

In this thesis, we study non-IID learning approaches in terms of three practical appli-

cations: recommender systems, multivariate time series forecasting, and learning to

hash. For other complex scenarios, non-IIDness is urgent to be addressed to approach

the nature of real-world data, and different scenarios possess different kinds of data that

has different non-IIDness. How to apply existing non-IID learning approaches to new

practical scenarios and how to tailor specific non-IID modeling for the new scenarios are

attractive and valuable research problems. Here, we list two exemplary directions for

trustworthy learning.

Future Directions

• Non-IID Federated Learning Federated learning has been an effective learning

paradigm to address data security issues. It allows models trained based on dis-

tributed data, where it usually encounters data heterogeneity issues. Non-IID

federated learning necessarily considers the non-IIDnesses within and between

208



11.4. PRACTICAL SCENARIOS

local sources and within and between local and global sources. This facilitates to

devising practical and superior federated learning models.

• Non-IID Privacy computing Another important branch of trustworthy learning/-

model is privacy computing. Privacy computing protects data from disclosure by

encrypting data or adding random noise. For non-IID data, it needs to consider non-

IIDness to enhance privacy computing approaches, avoiding encryption or random

noise distorting the inter-relationships or heterogeneity properties of real-world

data.

209





BIBLIOGRAPHY

[1] LONGBING CAO, Non-iid recommender systems: A review and framework of recom-
mendation paradigm shifting, Engineering, 2 (2016), pp. 212–224.

[2] AIJUN YAN AND HONGSHAN SHAO AND ZHEN GUO, Weight optimization for case-
based reasoning using membrane computing, Inf. Sci., 287 (2014), pp. 109–120.

[3] M. APTE, S. VAISHAMPAYAN, AND G. K. PALSHIKAR, Detection of causally anoma-
lous time-series, Int. J. Data Sci. Anal., 11 (2021), pp. 141–153.

[4] S. ARORA, M. SHARMA, AND P. ANAND, A novel chaotic interior search algorithm
for global optimization and feature selection, Applied Artificial Intelligence, 34

(2020), pp. 292–328.

[5] L. J. BA, J. R. KIROS, AND G. E. HINTON, Layer normalization, CoRR,

abs/1607.06450 (2016).

[6] L. BAI, L. YAO, C. LI, X. WANG, AND C. WANG, Adaptive graph convolutional
recurrent network for traffic forecasting, in NeurIPS, 2020.

[7] S. BAI, J. Z. KOLTER, AND V. KOLTUN, An empirical evaluation of generic convo-
lutional and recurrent networks for sequence modeling, CoRR, abs/1803.01271

(2018).

[8] E. BEAUXIS-AUSSALET AND L. HARDMAN, Extended methods to handle classifica-
tion biases, in DSAA’2017, 2017, pp. 765–774.

[9] S. BEGUM, M. U. AHMED, P. FUNK, N. XIONG, AND M. FOLKE, Case-based
reasoning systems in the health sciences: A survey of recent trends and de-
velopments, IEEE Trans. Systems, Man, and Cybernetics, Part C, 41 (2011),

pp. 421–434.

211



BIBLIOGRAPHY

[10] M. I. BELGHAZI, A. BARATIN, S. RAJESWAR, S. OZAIR, Y. BENGIO, R. D. HJELM,

AND A. C. COURVILLE, Mutual information neural estimation, in ICML, vol. 80,

2018, pp. 530–539.

[11] A. L. BERTOZZI, E. FRANCO, G. MOHLER, M. B. SHORT, AND D. SLEDGE, The
challenges of modeling and forecasting the spread of covid-19, Proceedings of

the National Academy of Sciences, 117 (2020), pp. 16732–16738.

[12] A. BEUTEL, P. COVINGTON, S. JAIN, C. XU, J. LI, V. GATTO, AND E. H. CHI,

Latent cross: Making use of context in recurrent recommender systems, in

WSDM, 2018, pp. 46–54.

[13] S. K. BISWAS, N. SINHA, B. PURAKAYASTHA, AND L. MARBANIANG, Hybrid
expert system using case based reasoning and neural network for classification,

Biol. Inspir. Cogn. Arc., 9 (2014), pp. 57–70.

[14] A. BOROVYKH, S. BOHTE, AND C. W. OOSTERLEE, Conditional time series fore-
casting with convolutional neural networks, arXiv, (2017).

[15] H. CAESAR, V. BANKITI, A. H. LANG, S. VORA, V. E. LIONG, Q. XU, A. KRISHNAN,

Y. PAN, G. BALDAN, AND O. BEIJBOM, nuscenes: A multimodal dataset for
autonomous driving, in CVPR, Computer Vision Foundation / IEEE, 2020,

pp. 11618–11628.

[16] F. ÇAKIR AND S. SCLAROFF, Adaptive hashing for fast similarity search, in ICCV,

2015, pp. 1044–1052.

[17] D. CAO, Y. WANG, J. DUAN, C. ZHANG, X. ZHU, C. HUANG, Y. TONG, B. XU,

J. BAI, J. TONG, AND Q. ZHANG, Spectral temporal graph neural network for
multivariate time-series forecasting, in NeurIPS, 2020.

[18] D. CAO, Y. WANG, J. DUAN, C. ZHANG, X. ZHU, C. HUANG, Y. TONG, B. XU, AND

ET AL., Spectral temporal graph neural network for multivariate time-series
forecasting, in NeurIPS, 2020.

[19] L. CAO, Non-iidness learning in behavioral and social data, Comput. J., 57 (2014),

pp. 1358–1370.

[20] L. CAO, AI in finance: Challenges, techniques, and opportunities, ACM Comput.

Surv., 55 (2022).

212



BIBLIOGRAPHY

[21] L. CAO, Beyond i.i.d.: Non-iid thinking, informatics, and learning, IEEE Intelligent

Systems, 37 (2022), pp. 5–17.

[22] L. CAO, Beyond i.i.d.: Non-iid thinking, informatics, and learning, IEEE Intell.

Syst., 37 (2022), pp. 5–17.

[23] L. CAO AND Q. LIU, COVID-19 modeling: A review, medRxiv, (2021), pp. 1–103.

[24] L. CAO, Q. YANG, AND P. S. YU, Data science and AI in fintech: an overview, Int.

J. Data Sci. Anal., 12 (2021), pp. 81–99.

[25] W. CAO, L. HU, AND L. CAO, Deep modeling complex couplings within financial
markets, in AAAI, AAAI Press, 2015, pp. 2518–2524.

[26] Y. CAO, M. LONG, B. LIU, AND J. WANG, Deep cauchy hashing for hamming space
retrieval, in CVPR, 2018, pp. 1229–1237.

[27] Z. CAO, M. LONG, J. WANG, AND P. S. YU, Hashnet: Deep learning to hash by
continuation, in ICCV, 2017, pp. 5609–5618.

[28] F. T. S. CHAN, Application of a hybrid case-based reasoning approach in electro-
plating industry, Expert Syst. Appl., 29 (2005), pp. 121–130.

[29] J. CHEN, C. WANG, M. ESTER, Q. SHI, Y. FENG, AND C. CHEN, Social recommen-
dation with missing not at random data, in IEEE ICDM, 2018, pp. 29–38.

[30] X. CHEN, H. CHEN, H. XU, Y. ZHANG, Y. CAO, Z. QIN, AND H. ZHA, Personalized
fashion recommendation with visual explanations based on multimodal atten-
tion network: Towards visually explainable recommendation, in SIGIR, ACM,

2019, pp. 765–774.

[31] X. CHEN AND L. SUN, Bayesian temporal factorization for multidimensional time
series prediction, IEEE Trans. Pattern Anal. Mach. Intell., (2021), pp. 1–1.

[32] X. CHEN, H. XU, Y. ZHANG, J. TANG, Y. CAO, Z. QIN, AND H. ZHA, Sequential
recommendation with user memory networks, in WSDM, ACM, 2018, pp. 108–

116.

[33] Y. CHEN, Z. LAI, Y. DING, K. LIN, AND W. K. WONG, Deep supervised hashing
with anchor graph, in ICCV, 2019, pp. 9795–9803.

213



BIBLIOGRAPHY

[34] Y. CHEN, L. LI, L. YU, A. E. KHOLY, F. AHMED, Z. GAN, Y. CHENG, AND

J. LIU, UNITER: universal image-text representation learning, in ECCV (30),

vol. 12375, 2020, pp. 104–120.

[35] H. CHENG, L. KOC, J. HARMSEN, T. SHAKED, T. CHANDRA, H. ARADHYE, G. AN-

DERSON, G. CORRADO, W. CHAI, M. ISPIR, R. ANIL, Z. HAQUE, L. HONG,

V. JAIN, X. LIU, AND H. SHAH, Wide & deep learning for recommender systems,

in Proc. DLRS@RecSys, 2016, pp. 7–10.

[36] H.-T. CHENG, L. KOC, J. HARMSEN, T. SHAKED, T. CHANDRA, H. ARADHYE,

G. ANDERSON, G. CORRADO, W. CHAI, M. ISPIR, R. ANIL, Z. HAQUE,

L. HONG, V. JAIN, X. LIU, AND H. SHAH, Wide & deep learning for rec-
ommender systems, in Proc. 1st Workshop on Deep Learning for Recommender

Systems, DLRS 2016, 2016, pp. 7–10.

[37] J. CHENG, K. HUANG, AND Z. ZHENG, Towards better forecasting by fusing near
and distant future visions, in AAAI, 2020, pp. 3593–3600.

[38] X. CHENG, D. MIAO, C. WANG, AND L. CAO, Coupled term-term relation analysis
for document clustering, in IJCNN’2013, 2013, pp. 1–8.

[39] C. CHUANG, Application of hybrid case-based reasoning for enhanced performance
in bankruptcy prediction, Inf. Sci., 236 (2013), pp. 174–185.

[40] Q. CUI, S. WU, Q. LIU, W. ZHONG, AND L. WANG, Mv-rnn: A multi-view recurrent
neural network for sequential recommendation, IEEE Trans. Knowl. Data Eng.,

(2018), pp. 1–1.

[41] K. DALLEAU, M. COUCEIRO, AND M. SMAÏL-TABBONE, Unsupervised extra trees:
a stochastic approach to compute similarities in heterogeneous data, Int. J. Data

Sci. Anal., 9 (2020), pp. 447–459.

[42] Z. DANG, C. DENG, X. YANG, AND H. HUANG, Multi-scale fusion subspace cluster-
ing using similarity constraint, in CVPR, 2020, pp. 6657–6666.

[43] S. DASGUPTA, C. F. STEVENS, AND S. NAVLAKHA, A neural algorithm for a
fundamental computing problem, Science, 358 (2017), pp. 793–796.

[44] M. DATAR, N. IMMORLICA, P. INDYK, AND V. S. MIRROKNI, Locality-sensitive
hashing scheme based on p-stable distributions, in Symposium on Computa-

tional Geometry, ACM, 2004, pp. 253–262.

214



BIBLIOGRAPHY

[45] H. A. DAU, A. J. BAGNALL, K. KAMGAR, C. M. YEH, Y. ZHU, S. GHARGHABI,

C. A. RATANAMAHATANA, AND E. J. KEOGH, The UCR time series archive,

IEEE CAA J. Autom. Sinica, 6 (2019), pp. 1293–1305.

[46] R. L. DE MÁNTARAS, D. MCSHERRY, D. G. BRIDGE, D. B. LEAKE, B. SMYTH,

S. CRAW, B. FALTINGS, M. L. MAHER, M. T. COX, K. D. FORBUS, M. T.

KEANE, A. AAMODT, AND I. D. WATSON, Retrieval, reuse, revision and reten-
tion in case-based reasoning, Knowl. Eng. Rev., 20 (2005), pp. 215–240.

[47] A. P. DEMPSTER, N. M. LAIRD, AND D. B. RUBIN, Maximum likelihood from
incomplete data via the em algorithm, Journal of the Royal Statistical Society,

39 (1977), pp. 1–38.

[48] J. DEVLIN, M. CHANG, K. LEE, AND K. TOUTANOVA, BERT: pre-training of deep
bidirectional transformers for language understanding, in NAACL-HLT (1),

2019, pp. 4171–4186.

[49] M. D. DILMI, L. BARTHES, C. MALLET, AND A. CHAZOTTES, Iterative multiscale
dynamic time warping (ims-dtw): a tool for rainfall time series comparison, Int.

J. Data Sci. Anal., 10 (2020), pp. 65–79.

[50] K. G. DIZAJI, F. ZHENG, N. SADOUGHI, Y. YANG, C. DENG, AND H. HUANG,

Unsupervised deep generative adversarial hashing network, in CVPR, 2018,

pp. 3664–3673.

[51] T. D. T. DO AND L. CAO, Metadata-dependent infinite poisson factorization for
efficiently modelling sparse and large matrices in recommendation, in Proc.

Twenty-Seventh Int. Joint Conf. Artif. Intell., 2018, pp. 5010–5016.

[52] K. ECHIHABI, High-dimensional vector similarity search: From time series to deep
network embeddings, in SIGMOD, 2020, pp. 2829–2832.

[53] M. ESPADOTO, R. M. MARTINS, A. KERREN, N. S. T. HIRATA, AND A. C. TELEA,

Toward a quantitative survey of dimension reduction techniques, IEEE Trans.

Vis. Comput. Graph., 27 (2021), pp. 2153–2173.

[54] C. FAN, Y. ZHANG, Y. PAN, X. LI, C. ZHANG, R. YUAN, D. WU, W. WANG, J. PEI,

AND H. HUANG, Multi-horizon time series forecasting with temporal attention
learning, in KDD, ACM, 2019, pp. 2527–2535.

215



BIBLIOGRAPHY

[55] V. FLUNKERT, D. SALINAS, AND J. GASTHAUS, Deepar: Probabilistic forecasting
with autoregressive recurrent networks, CoRR, abs/1704.04110 (2017).

[56] M. FRIGO AND S. G. JOHNSON, The design and implementation of FFTW3, Proc.

IEEE, 93 (2005), pp. 216–231.

[57] N. GARCIA-PEDRAJAS, C. HERVAS-MARTINEZ, AND D. ORTIZ-BOYER, Coopera-
tive coevolution of artificial neural network ensembles for pattern classification,

IEEE Trans. Evol. Comput., 9 (2005), pp. 271–302.

[58] V. GATTUPALLI, Y. ZHUO, AND B. LI, Weakly supervised deep image hashing
through tag embeddings, in CVPR, 2019, pp. 10375–10384.

[59] J. GEHRING, M. AULI, D. GRANGIER, D. YARATS, AND Y. N. DAUPHIN, Convolu-
tional sequence to sequence learning, in Pro. 34th Int. Conf. Machine Learning,

2017, pp. 1243–1252.

[60] K. GEORGIEV AND P. NAKOV, A non-iid framework for collaborative filtering with
restricted boltzmann machines, in ICML (3), vol. 28 of JMLR Workshop and

Conference Proceedings, JMLR.org, 2013, pp. 1148–1156.

[61] Y. GONG, S. LAZEBNIK, A. GORDO, AND F. PERRONNIN, Iterative quantization: A
procrustean approach to learning binary codes for large-scale image retrieval,
IEEE Trans. Pattern Anal. Mach. Intell., 35 (2013), pp. 2916–2929.

[62] Y. GONG AND Q. ZHANG, Hashtag recommendation using attention-based convolu-
tional neural network, in Proc. Twenty-Fifth Int. Joint Conf. Artif. Intell., 2016,

pp. 2782–2788.

[63] K. GREFF, S. VAN STEENKISTE, AND J. SCHMIDHUBER, Neural expectation maxi-
mization, in NIPS, 2017, pp. 6691–6701.

[64] D. GU, C. LIANG, I. BICHINDARITZ, C. ZUO, AND J. WANG, A case-based knowl-
edge system for safety evaluation decision making of thermal power plants,

Knowl.-Based Syst., 26 (2012), pp. 185–195.

[65] D. GU, C. LIANG, AND H. ZHAO, A case-based reasoning system based on weighted
heterogeneous value distance metric for breast cancer diagnosis, Artif. Intell.

Medicine, 77 (2017), pp. 31–47.

216



BIBLIOGRAPHY

[66] C. GUO, H. JIA, AND N. ZHANG, Time series clustering based on ica for stock data
analysis, in WiMob, 2008, pp. 1–4.

[67] H. GUO, R. TANG, Y. YE, Z. LI, AND X. HE, Deepfm: A factorization-machine
based neural network for CTR prediction, in Proc. Twenty-Sixth Int. Joint Conf.

Artif. Intell., 2017, pp. 1725–1731.

[68] Y. GUO, J. HU, AND Y. PENG, Research of new strategies for improving CBR system,

Artif. Intell. Rev., 42 (2014), pp. 1–20.

[69] Y. GUO, J. HU, AND Y. PENG, Research of new strategies for improving CBR system,

Artif. Intell. Rev., 42 (2014), pp. 1–20.

[70] B. HAO, W. W. SUN, Y. LIU, AND G. CHENG, Simultaneous clustering and es-
timation of heterogeneous graphical models, J. Mach. Learn. Res., 18 (2017),

pp. 217:1–217:58.

[71] G. HE, H. WANG, S. LIU, AND B. ZHANG, CSMVC: A multiview method for
multivariate time-series clustering, IEEE Trans. Cybern., (2021), pp. 1–13.

[72] H. HE, Q. ZHANG, S. BAI, K. YI, AND Z. NIU, CATN: cross attentive tree-aware
network for multivariate time series forecasting, in AAAI, 2022, pp. 4030–4038.

[73] J. HE, S. CHANG, R. RADHAKRISHNAN, AND C. BAUER, Compact hashing with
joint optimization of search accuracy and time, in CVPR, 2011, pp. 753–760.

[74] R. HE AND J. MCAULEY, Fusing similarity models with markov chains for sparse
sequential recommendation, in Proc. IEEE 16th Int. Conf. Data Mining, 2016,

pp. 191–200.

[75] X. HE AND T. CHUA, Neural factorization machines for sparse predictive analytics,

in Proc. 40th Int. ACM SIGIR Conf. Res. Develop. in Inf. Retrieval, 2017,

pp. 355–364.

[76] X. HE, L. LIAO, H. ZHANG, L. NIE, X. HU, AND T. CHUA, Neural collaborative
filtering, in WWW, ACM, 2017, pp. 173–182.

[77] J. M. HERNÁNDEZ-LOBATO, N. HOULSBY, Z. GHAHRAMANI, AND , Probabilistic
matrix factorization with non-random missing data, in ICML, 2014, pp. 1512–

1520.

217



BIBLIOGRAPHY

[78] G. E. HINTON, O. VINYALS, AND J. DEAN, Distilling the knowledge in a neural
network, CoRR, abs/1503.02531 (2015).

[79] H. HONG, Y. LIN, X. YANG, Z. LI, K. FU, Z. WANG, X. QIE, AND J. YE, Heteta:
Heterogeneous information network embedding for estimating time of arrival,
in KDD, 2020, pp. 2444–2454.

[80] K.-H. HSU, A case-based classifier for hypertension detection, Knowl.-Based Syst.,

24 (2011), pp. 33 – 39.

[81] L. HU, L. CAO, J. CAO, Z. GU, G. XU, AND D. YANG, Learning informative priors
from heterogeneous domains to improve recommendation in cold-start user
domains, ACM Trans. Inf. Syst., 35 (2016), pp. 13:1–13:37.

[82] L. HU, S. JIAN, L. CAO, Z. GU, Q. CHEN, AND A. AMIRBEKYAN, HERS: model-
ing influential contexts with heterogeneous relations for sparse and cold-start
recommendation, in AAAI, 2019, pp. 3830–3837.

[83] J. HUANG, K. LUO, L. CAO, Y. WEN, AND S. ZHONG, Learning multiaspect traffic
couplings by multirelational graph attention networks for traffic prediction,

IEEE Trans. Intell. Transp. Syst., 23 (2022), pp. 20681–20695.

[84] J. HUANG, Z. REN, W. X. ZHAO, G. HE, J. WEN, AND D. DONG, Taxonomy-aware
multi-hop reasoning networks for sequential recommendation, in Proc. Twelfth

ACM Int. Conf. Web Search and Data Mining, 2019, pp. 573–581.

[85] Y. HUANG, L. CAO, J. ZHANG, L. PAN, AND Y. LIU, Exploring feature coupling
and model coupling for image source identification, IEEE Trans. Inf. Forensics

Secur., 13 (2018), pp. 3108–3121.

[86] F. ILHAN, O. KARAAHMETOGLU, I. BALABAN, AND S. S. KOZAT, Markovian
rnn: An adaptive time series prediction network with hmm-based switching
for nonstationary environments, IEEE Trans. Neural Networks Learn. Syst.,

(2021), pp. 1–14.

[87] P. INDYK AND R. MOTWANI, Approximate nearest neighbors: Towards removing
the curse of dimensionality, in STOC, 1998, pp. 604–613.

[88] V. JALALI AND D. LEAKE, Harnessing hundreds of millions of cases: Case-based
prediction at industrial scale, in ICCBR, vol. 11156, 2018, pp. 153–169.

218



BIBLIOGRAPHY

[89] V. JALALI AND D. B. LEAKE, CBR meets big data: A case study of large-scale
adaptation rule generation, in ICCBR, vol. 9343, 2015, pp. 181–196.

[90] S. JIAN, G. PANG, L. CAO, K. LU, AND H. GAO, CURE: flexible categorical data
representation by hierarchical coupling learning, IEEE Trans. Knowl. Data

Eng., 31 (2019), pp. 853–866.

[91] M. JIANG, S. ZHANG, J. HUANG, L. YANG, AND D. N. METAXAS, Scalable
histopathological image analysis via supervised hashing with multiple fea-
tures, Medical Image Anal., 34 (2016), pp. 3–12.

[92] Q. JIANG, X. CUI, AND W. LI, Deep discrete supervised hashing, IEEE Trans.

Image Process., 27 (2018), pp. 5996–6009.

[93] Q. JIANG AND W. LI, Asymmetric deep supervised hashing, in AAAI, 2018,

pp. 3342–3349.

[94] T. JOACHIMS, A. SWAMINATHAN, AND T. SCHNABEL, Unbiased learning-to-rank
with biased feedback, in WSDM, 2017, pp. 781–789.

[95] W. KANG, C. FANG, Z. WANG, AND J. J. MCAULEY, Visually-aware fashion
recommendation and design with generative image models, in ICDM, IEEE

Computer Society, 2017, pp. 207–216.

[96] W. KANG AND J. J. MCAULEY, Self-attentive sequential recommendation, in ICDM,

IEEE Computer Society, 2018, pp. 197–206.

[97] A. KARPATHY, G. TODERICI, S. SHETTY, T. LEUNG, R. SUKTHANKAR, AND F. LI,

Large-scale video classification with convolutional neural networks, in Proc.

IEEE Conf. Computer Vision and Pattern Recognition, 2014, pp. 1725–1732.

[98] Y. KATZNELSON, An introduction to harmonic analysis, Cambridge University

Press„ (1970).

[99] M. R. KHOSRAVANI AND S. NASIRI, Injection molding manufacturing process:
review of case-based reasoning applications, J. Intell. Manuf., 31 (2020), pp. 847–

864.

[100] M. R. KHOSRAVANI, S. NASIRI, AND K. WEINBERG, Application of case-based
reasoning in a fault detection system on production of drippers, Appl. Soft

Comput., 75 (2019), pp. 227–232.

219



BIBLIOGRAPHY

[101] D. H. KIM, C. PARK, J. OH, S. LEE, AND H. YU, Convolutional matrix factor-
ization for document context-aware recommendation, in Proc. 10th ACM Conf.

Recommender Systems, 2016, pp. 233–240.

[102] Y. KIM, Convolutional neural networks for sentence classification, in Proc. 2014

Conf. Empirical Methods Natural Language Processing, 2014, pp. 1746–1751.

[103] D. P. KINGMA AND J. BA, Adam: A method for stochastic optimization, in ICLR

(Poster), 2015.

[104] N. KITAEV, L. KAISER, AND A. LEVSKAYA, Reformer: The efficient transformer, in

ICLR, 2020.

[105] L. H. KOOPMANS, The spectral analysis of time series, Elsevier, 1995.

[106] A. R. KOSIOREK, S. SABOUR, Y. W. TEH, AND G. E. HINTON, Stacked capsule
autoencoders, in NeurIPS, 2019, pp. 15486–15496.

[107] R. G. KRISHNAN, D. LIANG, AND M. D. HOFFMAN, On the challenges of learning
with inference networks on sparse, high-dimensional data, in AISTATS, vol. 84,

2018, pp. 143–151.

[108] A. KRIZHEVSKY, I. SUTSKEVER, AND G. E. HINTON, Imagenet classification with
deep convolutional neural networks, in NIPS, 2012, pp. 1106–1114.

[109] H. W. KUHN, The hungarian method for the assignment problem, Naval research

logistics quarterly, 2 (1955), pp. 83–97.

[110] M. J. KUSNER, B. PAIGE, AND J. M. HERNÁNDEZ-LOBATO, Grammar variational
autoencoder, in ICML, vol. 70 of Proceedings of Machine Learning Research,

2017, pp. 1945–1954.

[111] G. LAI, W. CHANG, Y. YANG, AND H. LIU, Modeling long- and short-term temporal
patterns with deep neural networks, in SIGIR, 2018, pp. 95–104.

[112] J. LAMY, B. D. SEKAR, G. GUÉZENNEC, J. BOUAUD, AND B. SÉROUSSI, Ex-
plainable artificial intelligence for breast cancer: A visual case-based reasoning
approach, Artif. Intell. Medicine, 94 (2019), pp. 42–53.

[113] H. LANGE, S. L. BRUNTON, AND J. N. KUTZ, From fourier to koopman: Spectral
methods for long-term time series prediction, J. Mach. Learn. Res., 22 (2021),

pp. 41:1–41:38.

220



BIBLIOGRAPHY

[114] S. I. LAO, K. L. CHOY, G. T. S. HO, R. C. M. YAM, Y. C. TSIM, AND T. C. POON,

Achieving quality assurance functionality in the food industry using a hybrid
case-based reasoning and fuzzy logic approach, Expert Syst. Appl., 39 (2012),

pp. 5251–5261.

[115] J. LI, H. IZAKIAN, W. PEDRYCZ, AND I. JAMAL, Clustering-based anomaly detec-
tion in multivariate time series data, Appl. Soft Comput., 100 (2021), p. 106919.

[116] J. LI, P. REN, Z. CHEN, Z. REN, T. LIAN, AND J. MA, Neural attentive session-
based recommendation, in CIKM, ACM, 2017, pp. 1419–1428.

[117] Q. LI, Z. SUN, R. HE, AND T. TAN, Deep supervised discrete hashing, in NIPS,

2017, pp. 2482–2491.

[118] S. LI, X. JIN, Y. XUAN, X. ZHOU, W. CHEN, Y. WANG, AND X. YAN, Enhancing
the locality and breaking the memory bottleneck of transformer on time series
forecasting, in NeurIPS, 2019, pp. 5244–5254.

[119] S. LI, X. JIN, Y. XUAN, X. ZHOU, W. CHEN, Y.-X. WANG, AND X. YAN, Enhancing
the locality and breaking the memory bottleneck of transformer on time series
forecasting, Advances in neural information processing systems, 32 (2019).

[120] Y. LI, R. YU, C. SHAHABI, AND Y. LIU, Diffusion convolutional recurrent neural
network: Data-driven traffic forecasting, in ICLR (Poster), 2018.

[121] J. LIAN, X. ZHOU, F. ZHANG, Z. CHEN, X. XIE, AND G. SUN, xdeepfm: Combining
explicit and implicit feature interactions for recommender systems, in KDD,

ACM, 2018, pp. 1754–1763.

[122] D. LIANG, L. CHARLIN, J. MCINERNEY, AND D. M. BLEI, Modeling user exposure
in recommendation, in WWW, 2016, pp. 951–961.

[123] J. LIM, M.-J. CHAE, Y. YANG, I.-B. PARK, J. LEE, AND J. PARK, Fast scheduling
of semiconductor manufacturing facilities using case-based reasoning, IEEE

Trans. Semiconduct M., 29 (2015), pp. 22–32.

[124] K. LIN, J. XU, I. M. BAYTAS, S. JI, AND J. ZHOU, Multi-task feature interaction
learning, in KDD, ACM, 2016, pp. 1735–1744.

[125] G. LING, H. YANG, M. R. LYU, AND I. KING, Response aware model-based collab-
orative filtering, in UAI, 2012, pp. 501–510.

221



BIBLIOGRAPHY

[126] R. J. A. LITTLE AND D. B. RUBIN, Statistical Analysis with Missing Data, John

Wiley & Sons, Inc., New York, NY, USA, 1986.

[127] B. LIU, Y. CAO, M. LONG, J. WANG, AND J. WANG, Deep triplet quantization, in

ACM Multimedia, 2018, pp. 755–763.

[128] C. LIU AND H. CHEN, A novel CBR system for numeric prediction, Inf. Sci., 185

(2012), pp. 178–190.

[129] C.-H. LIU AND H.-C. CHEN, A novel CBR system for numeric prediction, Inform.

Sciences, 185 (2012), pp. 178 – 190.

[130] H. LIU, R. WANG, S. SHAN, AND X. CHEN, Deep supervised hashing for fast image
retrieval, Int. J. Comput. Vis., 127 (2019), pp. 1217–1234.

[131] K. LIU, A. BELLET, AND F. SHA, Similarity learning for high-dimensional sparse
data, in AISTATS, vol. 38, 2015.

[132] S. LIU, H. YU, C. LIAO, J. LI, W. LIN, A. X. LIU, AND S. DUSTDAR, Pyraformer:
Low-complexity pyramidal attention for long-range time series modeling and
forecasting, in ICLR, OpenReview.net, 2022.

[133] W. LIU, C. MU, S. KUMAR, AND S. CHANG, Discrete graph hashing, in NIPS, 2014,

pp. 3419–3427.

[134] W. LIU, J. WANG, R. JI, Y. JIANG, AND S. CHANG, Supervised hashing with
kernels, in CVPR, 2012, pp. 2074–2081.

[135] W. LIU, J. WANG, S. KUMAR, AND S. CHANG, Hashing with graphs, in ICML,

2011, pp. 1–8.

[136] Y. LIU, Y. XIAO, Q. WU, C. MIAO, J. ZHANG, B. ZHAO, AND H. TANG, Diversified
interactive recommendation with implicit feedback, in AAAI, 2020.

[137] Y. LIU, P. ZHAO, X. LIU, M. WU, L. DUAN, AND X.-L. LI, Learning user depen-
dencies for recommendation, in IJCAI, 2017, pp. 2379–2385.

[138] Z. LIU, G. QIU, G. MERCIER, AND Q. PAN, A transfer classification method for
heterogeneous data based on evidence theory, IEEE Transactions on Systems,

Man, and Cybernetics: Systems, (2019), pp. 1–13.

222



BIBLIOGRAPHY

[139] LONGBING CAO, Coupling learning of complex interactions, Inf. Process. Manage.,

51 (2015), pp. 167–186.

[140] , Data Science Thinking: The Next Scientific, Technological and Economic
Revolution, Data Analytics, Springer International Publishing, 2018.

[141] R. LOPEZ DE MANTARAS, Retrieval, reuse, revision and retention in case-based
reasoning, Knowl. Eng. Rev., 20 (2005), pp. 215–240.

[142] X. LUO, C. CHEN, H. ZHONG, H. ZHANG, M. DENG, J. HUANG, AND X. HUA, A
survey on deep hashing methods, CoRR, abs/2003.03369 (2020).

[143] Q. MA, C. CHEN, S. LI, AND G. W. COTTRELL, Learning representations for
incomplete time series clustering, in AAAI, 2021, pp. 8837–8846.

[144] Q. MA, S. LI, W. ZHUANG, S. LI, J. WANG, AND D. ZENG, Self-supervised time
series clustering with model-based dynamics, IEEE Trans. Neural Networks

Learn. Syst., 32 (2021), pp. 3942–3955.

[145] Q. MA, J. ZHENG, S. LI, AND G. W. COTTRELL, Learning representations for time
series clustering, in NeurIPS, 2019, pp. 3776–3786.

[146] B. M. MARLIN AND R. S. ZEMEL, Collaborative prediction and ranking with
non-random missing data, in ACM RecSys, 2009, pp. 5–12.

[147] B. M. MARLIN, R. S. ZEMEL, S. ROWEIS, AND M. SLANEY, Collaborative filtering
and the missing at random assumption, in UAI, 2007, pp. 267–275.

[148] F. MARTÍNEZ-ÁLVAREZ, A. T. LORA, J. C. RIQUELME, AND J. S. AGUILAR-RUIZ,

Energy time series forecasting based on pattern sequence similarity, IEEE Trans.

Knowl. Data Eng., 23 (2011), pp. 1230–1243.

[149] M. MELUCCI, Impact of query sample selection bias on information retrieval system
ranking, in DSAA’2016, 2016, pp. 341–350.

[150] N. MISHRA, S. PETROVIC, AND S. SUNDAR, A self-adaptive case-based reasoning
system for dose planning in prostate cancer radiotherapy, Med. Phys., 38 (2011),

pp. 6528–6538.

[151] T. MIYATO, T. KATAOKA, M. KOYAMA, AND Y. YOSHIDA, Spectral normalization
for generative adversarial networks, in ICLR, 2018.

223



BIBLIOGRAPHY

[152] S. MONTANI, How to use contextual knowledge in medical case-based reasoning
systems: A survey on very recent trends, Artif. Intell. Medicine, 51 (2011),

pp. 125–131.

[153] J. L. MOORE, S. CHEN, D. TURNBULL, AND T. JOACHIMS, Taste over time: The
temporal dynamics of user preferences, in Proc. 14th Int. Soc. Music Information

Retrieval Conf., 2013, pp. 401–406.

[154] J. MUANGPRATHUB, V. BOONJING, AND P. PATTARAINTAKORN, A new case-based
classification using incremental concept lattice knowledge, Data Knowl. Eng.,

83 (2013), pp. 39–53.

[155] N. NGUYEN AND B. QUANZ, Temporal latent auto-encoder: A method for probabilis-
tic multivariate time series forecasting, in AAAI, AAAI Press, 2021, pp. 9117–

9125.

[156] P. NGUYEN, J. WANG, M. HILARIO, AND A. KALOUSIS, Learning heterogeneous
similarity measures for hybrid-recommendations in meta-mining, in ICDM,

2012, pp. 1026–1031.

[157] S. OHSAWA, Y. OBARA, AND T. OSOGAMI, Gated probabilistic matrix factorization:
Learning users’ attention from missing values, in IJCAI, 2016, pp. 1888–1894.

[158] B. N. ORESHKIN, D. CARPOV, N. CHAPADOS, AND Y. BENGIO, N-BEATS: neural
basis expansion analysis for interpretable time series forecasting, in ICLR, 2020.

[159] D. PANDOVE, S. GOEL, AND R. RANI, Systematic review of clustering high-
dimensional and large datasets, ACM Trans. Knowl. Discov. Data, 12 (2018),

pp. 16:1–16:68.

[160] G. PANG AND L. CAO, Heterogeneous univariate outlier ensembles in multidimen-
sional data, ACM Trans. Knowl. Discov. Data, 14 (2020), pp. 68:1–68:27.

[161] G. PANG, L. CAO, AND L. CHEN, Outlier detection in complex categorical data
by modeling the feature value couplings, in Proceedings of the Twenty-Fifth

International Joint Conference on Artificial Intelligence, IJCAI 2016, New

York, NY, USA, 9-15 July 2016, 2016, pp. 1902–1908.

[162] G. PANG, L. CAO, L. CHEN, AND H. LIU, Learning representations of ultrahigh-
dimensional data for random distance-based outlier detection, in KDD, 2018,

pp. 2041–2050.

224



BIBLIOGRAPHY

[163] J. PAPARRIZOS AND L. GRAVANO, k-shape: Efficient and accurate clustering of
time series, in SIGMOD, 2015, pp. 1855–1870.

[164] M.-A. PARSEVAL, Mémoire sur les séries et sur l‚Äôintégration complète d‚Äôune
équation aux différences partielles linéaires du second ordre, à coefficients
constants, Mém. prés. par divers savants, Acad. des Sciences, Paris,(1), 1 (1806),

pp. 638–648.

[165] S. PETROVIC, N. MISHRA, AND S. SUNDAR, A novel case based reasoning approach
to radiotherapy planning, Expert Syst. Appl., 38 (2011), pp. 10759–10769.

[166] W. QIANG, S. YI, AND Q. Z. JIAN, A nonlinear correlation measure for multivari-
able data set, Physica D Nonlinear Phenomena, 200 (2005), pp. 287–295.

[167] Y. QIN, D. SONG, H. CHEN, W. CHENG, G. JIANG, AND G. W. COTTRELL, A
dual-stage attention-based recurrent neural network for time series prediction,

in IJCAI, 2017, pp. 2627–2633.

[168] R. QIU, Z. HUANG, J. LI, AND H. YIN, Exploiting cross-session information for
session-based recommendation with graph neural networks, ACM Trans. Inf.

Syst., 38 (2020), pp. 22:1–22:23.

[169] L. RAKKAPPAN AND V. RAJAN, Context-aware sequential recommendations with-
stacked recurrent neural networks, in WWW, ACM, 2019, pp. 3172–3178.

[170] S. S. RANGAPURAM, M. W. SEEGER, J. GASTHAUS, L. STELLA, Y. WANG, AND

T. JANUSCHOWSKI, Deep state space models for time series forecasting, in

NeurIPS, 2018, pp. 7796–7805.

[171] S. RENDLE, Factorization machines, in Proc. 10th IEEE Int. Conf. Data Mining,

2010, pp. 995–1000.

[172] S. RENDLE, C. FREUDENTHALER, AND L. SCHMIDT-THIEME, Factorizing person-
alized markov chains for next-basket recommendation, in Proc. 19th Int. Conf.

WWW, 2010, pp. 811–820.

[173] M. T. REZVAN, A. Z. HAMADANI, AND A. SHALBAFZADEH, Case-based reasoning
for classification in the mixed data sets employing the compound distance
methods, Eng. Appl. Artif. Intell., 26 (2013), pp. 2001–2009.

225



BIBLIOGRAPHY

[174] M. T. REZVAN, A. ZEINAL HAMADANI, AND A. SHALBAFZADEH, Case-based
reasoning for classification in the mixed data sets employing the compound
distance methods, Eng. Appl. Artif. Intell., 26 (2013), pp. 2001–2009.

[175] RUINING HE AND JULIAN MCAULEY, Ups and downs: Modeling the visual evolu-
tion of fashion trends with one-class collaborative filtering, in Proc. 25th Int.

Conf. WWW, 2016, pp. 507–517.

[176] L. G. B. RUIZ, M. DEL CARMEN PEGALAJAR JIMÉNEZ, R. ARCUCCI, AND

M. MOLINA-SOLANA, A time-series clustering methodology for knowledge ex-
traction in energy consumption data, Expert Syst. Appl., 160 (2020), p. 113731.

[177] Y. SAITO, Asymmetric tri-training for debiasing missing-not-at-random explicit
feedback, in SIGIR, ACM, 2020, pp. 309–318.

[178] R. SALAKHUTDINOV AND G. E. HINTON, Semantic hashing, Int. J. Approx. Rea-

son., 50 (2009), pp. 969–978.

[179] R. SALAKHUTDINOV AND A. MNIH, Probabilistic matrix factorization, in NIPS,

2007, pp. 1257–1264.

[180] R. SALAKHUTDINOV, A. MNIH, AND G. E. HINTON, Restricted boltzmann ma-
chines for collaborative filtering, in ICML, vol. 227 of ACM International

Conference Proceeding Series, ACM, 2007, pp. 791–798.

[181] D. SALINAS, M. BOHLKE-SCHNEIDER, L. CALLOT, R. MEDICO, AND

J. GASTHAUS, High-dimensional multivariate forecasting with low-rank gaus-
sian copula processes, in NeurIPS, 2019, pp. 6824–6834.

[182] A. A. SÁNCHEZ-RUIZ AND S. ONTAÑÓN, Least common subsumer trees for plan
retrieval, in Proc. ICCBR, vol. 8765, 2014, pp. 405–419.

[183] SÁNCHEZ-RUIZ, ANTONIO A. AND ONTAÑÓN, SANTIAGO, Least common subsumer
trees for plan retrieval, in Proc. ICCBR, Cork, Ireland, 2014, pp. 405–419.

[184] F. SARTORI, A. MAZZUCCHELLI, AND A. D. GREGORIO, Bankruptcy forecasting
using case-based reasoning: The creperie approach, Expert Syst. Appl., 64

(2016), pp. 400–411.

226



BIBLIOGRAPHY

[185] T. SCHNABEL, A. SWAMINATHAN, A. SINGH, N. CHANDAK, AND T. JOACHIMS,

Recommendations as treatments: Debiasing learning and evaluation, in ICML,

2016, pp. 1670–1679.

[186] A. SCHWABE, J. PERSSON, AND S. FEUERRIEGEL, Predicting COVID-19 spread
from large-scale mobility data, in KDD, ACM, 2021, pp. 3531–3539.

[187] M. W. SEEGER, D. SALINAS, AND V. FLUNKERT, Bayesian intermittent demand
forecasting for large inventories, in NIPS, 2016, pp. 4646–4654.

[188] R. SEN, H. YU, AND I. S. DHILLON, Think globally, act locally: A deep neural
network approach to high-dimensional time series forecasting, in NeurIPS,

2019, pp. 4838–4847.

[189] M. SHARMA, Design of brain-computer interface-based classification model for
mining mental state of covid-19 afflicted mariner’s., VM Media SP. zo.o VM

Group SK, (2020).

[190] F. SHEN, C. SHEN, W. LIU, AND H. T. SHEN, Supervised discrete hashing, in

CVPR, 2015, pp. 37–45.

[191] S. SHI, W. MA, M. ZHANG, Y. ZHANG, X. YU, H. SHAN, Y. LIU, AND S. MA,

Beyond user embedding matrix: Learning to hash for modeling large-scale users
in recommendation, in SIGIR, 2020, pp. 319–328.

[192] X. SHI, F. XING, K. XU, M. SAPKOTA, AND L. YANG, Asymmetric discrete graph
hashing, in AAAI, 2017, pp. 2541–2547.

[193] S. C. K. SHIU AND S. K. PAL, Case-based reasoning: Concepts, features and soft
computing, Appl. Intell., 21 (2004), pp. 233–238.

[194] B. SMYTH, M. T. KEANE, AND P. CUNNINGHAM, Hierarchical case-based rea-
soning integrating case-based and decompositional problem-solving techniques
for plant-control software design, IEEE Trans. Knowl. Data Eng., 13 (2001),

pp. 793–812.

[195] B. SMYTH, M. T. KEANE, AND P. CUNNINGHAM, Hierarchical case-based rea-
soning integrating case-based and decompositional problem-solving techniques
for plant-control software design, IEEE Trans. Knowl. Data Eng., 13 (2001),

pp. 793–812.

227



BIBLIOGRAPHY

[196] H. SONG, D. RAJAN, J. J. THIAGARAJAN, AND A. SPANIAS, Attend and diagnose:
Clinical time series analysis using attention models, in AAAI, 2018, pp. 4091–

4098.

[197] J. SONG, Y. YANG, Y. YANG, Z. HUANG, AND H. T. SHEN, Inter-media hashing
for large-scale retrieval from heterogeneous data sources, in SIGMOD, 2013,

pp. 785–796.

[198] G. SPADON, S. HONG, B. BRANDOLI, S. MATWIN, J. F. RODRIGUES-JR, AND

J. SUN, Pay attention to evolution: Time series forecasting with deep graph-
evolution learning, IEEE Trans. Pattern Anal. Mach. Intell., (2021), pp. 1–1.

[199] N. SREBRO, J. D. M. RENNIE, AND T. S. JAAKKOLA, Maximum-margin matrix
factorization, in NIPS, 2004, pp. 1329–1336.

[200] H. STECK, Item popularity and recommendation accuracy, in ACM RecSys, 2011,

pp. 125–132.

[201] S. SU, C. ZHANG, K. HAN, AND Y. TIAN, Greedy hash: Towards fast optimization
for accurate hash coding in CNN, in NeurIPS, 2018, pp. 806–815.

[202] A. SWAMINATHAN AND T. JOACHIMS, The self-normalized estimator for counter-
factual learning, in NIPS, 2015, pp. 3231–3239.

[203] T. D. T. DO AND L. CAO, Gamma-poisson dynamic matrix factorization embedded
with metadata influence, in Proc. Thirty-second: Ann. Conf. Neural Information

Processing Systems, 2018, pp. 5829–5840.

[204] F. TANG, M. FAN, AND P. TIÑO, Generalized learning riemannian space quan-
tization: A case study on riemannian manifold of SPD matrices, IEEE Trans.

Neural Networks Learn. Syst., 32 (2021), pp. 281–292.

[205] J. TANG AND K. WANG, Personalized top-n sequential recommendation via convo-
lutional sequence embedding, in Proc. Eleventh ACM Int. Conf. Web Search

Data Mining, 2018, pp. 565–573.

[206] Y. TAY, A. T. LUU, AND S. C. HUI, Multi-pointer co-attention networks for recom-
mendation, in Proc. 24th ACM SIGKDD Int. Conf. Knowledge Discovery Data

Mining, 2018, pp. 2309–2318.

228



BIBLIOGRAPHY

[207] P. S. THOMAS AND E. BRUNSKILL, Data-efficient off-policy policy evaluation for
reinforcement learning, in ICML, 2016, pp. 2139–2148.

[208] D. T. TRAN, A. IOSIFIDIS, J. KANNIAINEN, AND M. GABBOUJ, Temporal attention-
augmented bilinear network for financial time-series data analysis, IEEE Trans.

Neural Networks Learn. Syst., 30 (2019), pp. 1407–1418.

[209] I. TSAMARDINOS, G. BORBOUDAKIS, P. KATSOGRIDAKIS, P. PRATIKAKIS, AND

V. CHRISTOPHIDES, A greedy feature selection algorithm for big data of high
dimensionality, Mach. Learn., 108 (2019), pp. 149–202.

[210] A. VASWANI, N. SHAZEER, N. PARMAR, J. USZKOREIT, L. JONES, A. N. GOMEZ,

L. KAISER, AND I. POLOSUKHIN, Attention is all you need, in NIPS, 2017,

pp. 5998–6008.

[211] A. VIRMAUX AND K. SCAMAN, Lipschitz regularity of deep neural networks: analy-
sis and efficient estimation, in NeurIPS, 2018, pp. 3839–3848.

[212] DIEDERIK P. KINGMA AND J. BA, Adam: A method for stochastic optimization, in

ICLR (Poster), 2015.

[213] HARALD STECK, Evaluation of recommendations: rating-prediction and ranking,

in ACM RecSys, 2013, pp. 213–220.

[214] JOHN PAPARRIZOS AND L. GRAVANO, Fast and accurate time-series clustering,

ACM Trans. Database Syst., 42 (2017), pp. 8:1–8:49.

[215] STEFFEN RENDLE, Factorization machines with libfm, ACM TIST, 3 (2012),

pp. 57:1–57:22.

[216] B. WANG, J. LU, Z. YAN, H. LUO, T. LI, Y. ZHENG, AND G. ZHANG, Deep uncer-
tainty quantification: A machine learning approach for weather forecasting, in

KDD, ACM, 2019, pp. 2087–2095.

[217] C. WANG, Z. SHE, AND L. CAO, Coupled attribute analysis on numerical data, in

IJCAI’2013, 2013, pp. 1736–1742.

[218] H. WANG, E. SKAU, H. KRIM, AND G. CERVONE, Fusing heterogeneous data: A
case for remote sensing and social media, IEEE Trans. Geosci. Remote. Sens.,

56 (2018), pp. 6956–6968.

229



BIBLIOGRAPHY

[219] J. WANG AND J. CAVERLEE, Recurrent recommendation with local coherence, in

WSDM, ACM, 2019, pp. 564–572.

[220] J. WANG, S. KUMAR, AND S. CHANG, Semi-supervised hashing for large-scale
search, IEEE Trans. Pattern Anal. Mach. Intell., 34 (2012), pp. 2393–2406.

[221] J. WANG, W. LIU, S. KUMAR, AND S. CHANG, Learning to hash for indexing big
data - A survey, Proceedings of the IEEE, 104 (2016), pp. 34–57.

[222] J. WANG, T. ZHANG, J. SONG, N. SEBE, AND H. T. SHEN, A survey on learning to
hash, IEEE Trans. Pattern Anal. Mach. Intell., 40 (2018), pp. 769–790.

[223] L. WANG, Y. WU, AND R. LI, Quantile regression for analyzing heterogeneity in
ultra-high dimension, J. AM. STAT. ASSOC., 107 (2012), pp. 214–222.

[224] M. WANG, M. GONG, X. ZHENG, AND K. ZHANG, Modeling dynamic missingness
of implicit feedback for recommendation, in NIPS, 2018, pp. 6670–6679.

[225] M. WANG, X. ZHENG, Y. YANG, AND K. ZHANG, Collaborative filtering with
social exposure: A modular approach to social recommendation, in AAAI, 2018,

pp. 2516–2523.

[226] P. WANG, Y. FAN, L. XIA, W. X. ZHAO, S. NIU, AND J. HUANG, KERL: A
knowledge-guided reinforcement learning model for sequential recommendation,

in SIGIR, ACM, 2020, pp. 209–218.

[227] R. WANG, B. FU, G. FU, AND M. WANG, Deep & cross network for ad click
predictions, in ADKDD@KDD, ACM, 2017, pp. 12:1–12:7.

[228] R. WANG, R. WANG, S. QIAO, S. SHAN, AND X. CHEN, Deep position-aware
hashing for semantic continuous image retrieval, in WACV, 2020, pp. 2482–

2491.

[229] S. WANG, L. HU, L. CAO, X. HUANG, D. LIAN, AND W. LIU, Attention-based
transactional context embedding for next-item recommendation, in Proc. Thirty-

Second AAAI Conf. Artif. Intell., 2018.

[230] S. WANG, L. HU, Y. WANG, L. CAO, Q. Z. SHENG, AND M. A. ORGUN, Sequential
recommender systems: Challenges, progress and prospects, in IJCAI, ijcai.org,

2019, pp. 6332–6338.

230



BIBLIOGRAPHY

[231] W. WANG, Y. XU, J. SHEN, AND S. ZHU, Attentive fashion grammar network for
fashion landmark detection and clothing category classification, in Proc. IEEE

Conf. Computer Vision Pattern Recognition, 2018, pp. 4271–4280.

[232] X. WANG, X. HE, M. WANG, F. FENG, AND T. CHUA, Neural graph collaborative
filtering, in SIGIR, ACM, 2019, pp. 165–174.

[233] X. WANG, R. ZHANG, Y. SUN, AND J. QI, Doubly robust joint learning for recom-
mendation on data missing not at random, in ICML, 2019, pp. 6638–6647.

[234] X. WANG, Z. ZHANG, B. WU, F. SHEN, AND G. LU, Prototype-supervised adver-
sarial network for targeted attack of deep hashing, in CVPR, 2021, pp. 16357–

16366.

[235] Y. WANG, A. SMOLA, D. C. MADDIX, J. GASTHAUS, D. FOSTER, AND

T. JANUSCHOWSKI, Deep factors for forecasting, in ICML, vol. 97 of Proceedings

of Machine Learning Research, PMLR, 2019, pp. 6607–6617.

[236] R. WARLOP, A. LAZARIC, AND J. MARY, Fighting boredom in recommender systems
with linear reinforcement learning, in Proc. NIPS, 2018, pp. 1764–1773.

[237] M. W. WATSON, Vector autoregressions and cointegration, Working Paper Series,

Macroeconomic Issues, 4 (1993).

[238] Y. WEISS, A. TORRALBA, AND R. FERGUS, Spectral hashing, in NIPS, 2008,

pp. 1753–1760.

[239] J. WOODBRIDGE, B. MORTAZAVI, A. A. T. BUI, AND M. SARRAFZADEH, Improving
biomedical signal search results in big data case-based reasoning environments,

Pervasive Mob. Comput., 28 (2016), pp. 69–80.

[240] C. WU, A. AHMED, A. BEUTEL, A. J. SMOLA, AND H. JING, Recurrent recom-
mender networks, in Proc. Tenth ACM Int. Conf. Web Search and Data Mining,

2017, pp. 495–503.

[241] C. F. J. WU, On the convergence properties of the em algorithm, The Annals of

Statistics, 11 (1983), pp. 95–103.

[242] D. WU, Q. DAI, J. LIU, B. LI, AND W. WANG, Deep incremental hashing network
for efficient image retrieval, in CVPR, 2019, pp. 9069–9077.

231



BIBLIOGRAPHY

[243] H. WU, J. XU, J. WANG, AND M. LONG, Autoformer: Decomposition transform-
ers with auto-correlation for long-term series forecasting, in NeurIPS, 2021,

pp. 22419–22430.

[244] S. WU, Y. TANG, Y. ZHU, L. WANG, X. XIE, AND T. TAN, Session-based recommen-
dation with graph neural networks, in AAAI, AAAI Press, 2019, pp. 346–353.

[245] Y. WU, S. C. H. HOI, T. MEI, AND N. YU, Large-scale online feature selection
for ultra-high dimensional sparse data, ACM Trans. Knowl. Discov. Data, 11

(2017), pp. 48:1–48:22.

[246] Z. WU, S. PAN, F. CHEN, G. LONG, C. ZHANG, AND P. S. YU, A comprehensive
survey on graph neural networks, IEEE Trans. Neural Networks Learn. Syst.,

32 (2021), pp. 4–24.

[247] Z. WU, S. PAN, G. LONG, J. JIANG, X. CHANG, AND C. ZHANG, Connecting the
dots: Multivariate time series forecasting with graph neural networks, in KDD,

2020, pp. 753–763.

[248] Z. WU, S. PAN, G. LONG, J. JIANG, AND C. ZHANG, Graph wavenet for deep
spatial-temporal graph modeling, in IJCAI, 2019, pp. 1907–1913.

[249] XIANGNAN HE AND TAT-SENG CHUA, Neural factorization machines for sparse
predictive analytics, in SIGIR, 2017, pp. 355–364.

[250] J. XIAO, H. YE, X. HE, H. ZHANG, F. WU, AND T. CHUA, Attentional factorization
machines: Learning the weight of feature interactions via attention networks, in

Proc. 26th Int. J. Conf. Artif. Intell. IJCAI, 2017, pp. 3119–3125.

[251] C. XU, P. ZHAO, Y. LIU, J. XU, V. S. SHENG, Z. CUI, X. ZHOU, AND H. XIONG,

Recurrent convolutional neural network for sequential recommendation, in

WWW, ACM, 2019, pp. 3398–3404.

[252] J. XU AND L. CAO, High-dimensional cross-market dependence modeling and
portfolio forecasting by copula variational LSTM, SSRN, (2021), pp. 1–44.

[253] J. XU, W. WEI, AND L. CAO, Copula-based high dimensional cross-market depen-
dence modeling, in DSAA, 2017, pp. 734–743.

[254] H. XUE, X. DAI, J. ZHANG, S. HUANG, AND J. CHEN, Deep matrix factorization
models for recommender systems, in IJCAI, ijcai.org, 2017, pp. 3203–3209.

232



BIBLIOGRAPHY

[255] A. YAN, H. SHAO, AND Z. GUO, Weight optimization for case-based reasoning
using membrane computing, Inform. Sciences, 287 (2014), pp. 109 – 120.

[256] A. YAN, W. WANG, C. ZHANG, AND H. ZHAO, A fault prediction method that uses
improved case-based reasoning to continuously predict the status of a shaft
furnace, Inf. Sci., 259 (2014), pp. 269–281.

[257] H. YANG, K. LIN, AND C. CHEN, Supervised learning of semantics-preserving
hash via deep convolutional neural networks, IEEE Trans. Pattern Anal. Mach.

Intell., 40 (2018), pp. 437–451.

[258] H. YANG, G. LING, Y. SU, M. R. LYU, AND I. KING, Boosting response aware
model-based collaborative filtering, IEEE Trans. Knowl. Data Eng., 27 (2015),

pp. 2064–2077.

[259] J. YANG AND J. LESKOVEC, Patterns of temporal variation in online media, in

WSDM, 2011, pp. 177–186.

[260] L. YANG, Y. CUI, Y. XUAN, C. WANG, S. J. BELONGIE, AND D. ESTRIN, Unbiased
offline recommender evaluation for missing-not-at-random implicit feedback, in

ACM RecSys, 2018, pp. 279–287.

[261] T. YANG, R. YAO, Q. YIN, AND O. WU, Mitigating sentimental bias via a polar
attention mechanism, Int J Data Sci Anal, (2020).

[262] W. YE, S. WANG, X. CHEN, X. WANG, Z. QIN, AND D. YIN, Time matters: Sequen-
tial recommendation with complex temporal information, in SIGIR, ACM, 2020,

pp. 1459–1468.

[263] YEHUDA KOREN, Collaborative filtering with temporal dynamics, in Proc. 15th

ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining, 2009, pp. 447–

456.

[264] B. YU, H. YIN, AND Z. ZHU, Spatio-temporal graph convolutional networks: A
deep learning framework for traffic forecasting, in IJCAI, 2018, pp. 3634–3640.

[265] H. YU, C. HSIEH, S. SI, AND I. S. DHILLON, Scalable coordinate descent ap-
proaches to parallel matrix factorization for recommender systems, in Proc.

12th IEEE Int. Conf. Data Mining, 2012, pp. 765–774.

233



BIBLIOGRAPHY

[266] H. YU, N. RAO, AND I. S. DHILLON, Temporal regularized matrix factorization for
high-dimensional time series prediction, in NIPS, 2016, pp. 847–855.

[267] F. YUAN, A. KARATZOGLOU, I. ARAPAKIS, J. M. JOSE, AND X. HE, A simple
convolutional generative network for next item recommendation, in WSDM,

ACM, 2019, pp. 582–590.

[268] L. YUAN, T. WANG, X. ZHANG, F. E. H. TAY, Z. JIE, W. LIU, AND J. FENG, Central
similarity quantization for efficient image and video retrieval, in CVPR, 2020,

pp. 3080–3089.

[269] W. YUAN, H. WANG, X. YU, N. LIU, AND Z. LI, Attention-based context-aware
sequential recommendation model, Inf. Sci., 510 (2020), pp. 122–134.

[270] J. ZAKARIA, A. MUEEN, AND E. J. KEOGH, Clustering time series using
unsupervised-shapelets, in ICDM, 2012, pp. 785–794.

[271] G. ZERVEAS, S. JAYARAMAN, D. PATEL, A. BHAMIDIPATY, AND C. EICKHOFF,

A transformer-based framework for multivariate time series representation
learning, in KDD, 2021, pp. 2114–2124.

[272] H. ZHA, X. HE, C. H. Q. DING, M. GU, AND H. D. SIMON, Spectral relaxation for
k-means clustering, in NIPS, 2001, pp. 1057–1064.

[273] K. ZHANG, B. HUANG, J. ZHANG, C. GLYMOUR, AND B. SCHÖLKOPF, Causal
discovery from nonstationary/heterogeneous data: Skeleton estimation and
orientation determination, in IJCAI, 2017, pp. 1347–1353.

[274] L. ZHANG, C. C. AGGARWAL, AND G. QI, Stock price prediction via discovering
multi-frequency trading patterns, in KDD, 2017, pp. 2141–2149.

[275] Q. ZHANG, L. CAO, C. SHI, AND Z. NIU, Neural time-aware sequential recommen-
dation by jointly modeling preference dynamics and explicit feature couplings,

IEEE Trans. Neural Networks Learn. Syst., (2021), pp. 1–13.

[276] Q. ZHANG, L. CAO, C. ZHU, Z. LI, AND J. SUN, Coupledcf: Learning explicit and
implicit user-item couplings in recommendation for deep collaborative filtering,

in Proc. 23rd Int. Joint Conf. Artif. Intell., 2018, pp. 3662–3668.

234



BIBLIOGRAPHY

[277] Q. ZHANG, C. SHI, Z. NIU, AND L. CAO, HCBC: A hierarchical case-based classifier
integrated with conceptual clustering, IEEE Trans. Knowl. Data Eng., 31 (2019),

pp. 152–165.

[278] Q. ZHANG, C. SHI, P. SUN, AND Z. NIU, Case-based classification on hierarchical
structure of formal concept analysis, in ECAI, vol. 285, 2016, pp. 1758–1759.

[279] S. ZHANG, L. YAO, A. SUN, AND Y. TAY, Deep learning based recommender system:
A survey and new perspectives, ACM Comput. Surv., 52 (2019), pp. 5:1–5:38.

[280] Z. ZHANG, L. LIAO, M. HUANG, X. ZHU, AND T. CHUA, Neural multimodal belief
tracker with adaptive attention for dialogue systems, in WWW, ACM, 2019,

pp. 2401–2412.

[281] G. ZHAO, Y. XIONG, L. CAO, D. LUO, X. SU, AND Y. ZHU, A cost-effective lsh filter
for fast pairwise mining, in ICDM’2009, 2009, pp. 1088–1093.

[282] Q. ZHAO, P. N. BENNETT, A. FOURNEY, A. L. THOMPSON, S. WILLIAMS, A. D.

TROY, AND S. T. DUMAIS, Calendar-aware proactive email recommendation, in

Proc. 41st Int ACM SIGIR Conf. Res. Develop. Inf. Retrieval, 2018, pp. 655–664.

[283] S. ZHAO, T. ZHAO, H. YANG, M. R. LYU, AND I. KING, STELLAR: spatial-temporal
latent ranking for successive point-of-interest recommendation, in Proc. Thirti-

eth AAAI Conf. Artif. Intell., 2016, pp. 315–322.

[284] B. ZHENG, X. ZHAO, L. WENG, N. Q. V. HUNG, H. LIU, AND C. S. JENSEN, PM-
LSH: A fast and accurate LSH framework for high-dimensional approximate
NN search, Proc. VLDB Endow., 13 (2020), pp. 643–655.

[285] J. ZHENG, J. LIU, C. SHI, F. ZHUANG, J. LI, AND B. WU, Recommendation in
heterogeneous information network via dual similarity regularization, Int. J.

Data Sci. Anal., 3 (2017), pp. 35–48.

[286] Y. ZHENG, X. YI, M. LI, R. LI, Z. SHAN, E. CHANG, AND T. LI, Forecasting
fine-grained air quality based on big data, in KDD, 2015, pp. 2267–2276.

[287] W. ZHONG, S. ROHATGI, J. WU, C. L. GILES, AND R. ZANIBBI, Accelerating
substructure similarity search for formula retrieval, in ECIR (1), vol. 12035,

2020, pp. 714–727.

235



BIBLIOGRAPHY

[288] G. ZHOU, W. BIAN, K. WU, L. REN, Q. PI, Y. ZHANG, C. XIAO, X. SHENG,

N. MOU, X. LUO, C. ZHANG, X. QIAO, S. XIANG, K. GAI, X. ZHU, AND

J. XU, CAN: revisiting feature co-action for click-through rate prediction, CoRR,

abs/2011.05625 (2020).

[289] H. ZHOU, S. ZHANG, J. PENG, S. ZHANG, J. LI, H. XIONG, AND W. ZHANG,

Informer: Beyond efficient transformer for long sequence time-series forecasting,

in AAAI, 2021, pp. 11106–11115.

[290] T. ZHOU, Z. MA, Q. WEN, X. WANG, L. SUN, AND R. JIN, Fedformer: Frequency
enhanced decomposed transformer for long-term series forecasting, in ICML,

vol. 162 of Proceedings of Machine Learning Research, PMLR, 2022, pp. 27268–

27286.

[291] X. ZHOU, C. MASCOLO, AND Z. ZHAO, Topic-enhanced memory networks for
personalised point-of-interest recommendation, in KDD, ACM, 2019, pp. 3018–

3028.

[292] C. ZHU, L. CAO, Q. LIU, J. YIN, AND V. KUMAR, Heterogeneous metric learning of
categorical data with hierarchical couplings, IEEE Transactions on Knowledge

and Data Engineering, 30 (2018), pp. 1254–1267.

[293] C. ZHU, L. CAO, AND J. YIN, Unsupervised heterogeneous coupling learning for
categorical representation, IEEE Trans. Pattern Anal. Mach. Intell., 44 (2022),

pp. 533–549.

[294] C. ZHU, Q. ZHANG, L. CAO, AND A. ABRAHAMYAN, Mix2vec: Unsupervised mixed
data representation, in 7th IEEE International Conference on Data Science

and Advanced Analytics, DSAA 2020, Sydney, Australia, October 6-9, 2020,

IEEE, 2020, pp. 118–127.

[295] G. ZHU, J. HU, J. QI, J. MA, AND Y. PENG, An integrated feature selection and
cluster analysis techniques for case-based reasoning, Eng. Appl. Artif. Intel., 39

(2015), pp. 14–22.

[296] G.-N. ZHU, J. HU, J. QI, J. MA, AND Y.-H. PENG, An integrated feature selection
and cluster analysis techniques for case-based reasoning, Eng. Appl. Artif.

Intell., 39 (2015), pp. 14 – 22.

236



BIBLIOGRAPHY

[297] H. ZHU, M. LONG, J. WANG, AND Y. CAO, Deep hashing network for efficient
similarity retrieval, in AAAI, 2016, pp. 2415–2421.

[298] L. ZHU, X. LU, Z. CHENG, J. LI, AND H. ZHANG, Flexible multi-modal hashing
for scalable multimedia retrieval, ACM Trans. Intell. Syst. Technol., 11 (2020),

pp. 14:1–14:20.

[299] P. ZHU, H. CHENG, Q. HU, Q. WANG, AND C. ZHANG, Towards generalized and
efficient metric learning on riemannian manifold, in IJCAI, 2018, pp. 3235–

3241.

[300] Q. ZHU, X. ZHOU, Z. SONG, J. TAN, AND L. GUO, DAN: deep attention neural
network for news recommendation, in AAAI, AAAI Press, 2019, pp. 5973–5980.

[301] X. ZHU, X. LI, S. ZHANG, Z. XU, L. YU, AND C. WANG, Graph PCA hashing for
similarity search, IEEE Trans. Multim., 19 (2017), pp. 2033–2044.

[302] Y. ZHU, X. ZHANG, R. WANG, W. ZHENG, AND Y. ZHU, Self-representation and
PCA embedding for unsupervised feature selection, World Wide Web, 21 (2018),

pp. 1675–1688.

237




	List of Publications
	Abbreviation
	Nomenclature and Notation
	List of Figures
	List of Tables
	 Background
	Introduction
	Background
	Recommender Systems
	Multivariate Time Series Forecasting
	Learning to Hash

	Challenges and Gaps
	Non-IID Recommender Systems
	Non-IID Multivariate Time Series Forecasting
	Non-IID Learning to Hash

	Research Objectives
	Coupling Modeling
	Heterogeneity Modeling
	Non-IID Approaches

	Thesis Organization

	Literature Survey
	Non-IIDness Modeling
	Coupling Modeling
	Heterogeneity Modeling
	High-Dimensionality Modeling
	Missingness Modeling

	Recommender Systems
	Collaborative Filtering
	Neural Recommendation Models
	Sequential Recommendation Models

	Time Series Analysis
	Multivariate Time Series Forecasting
	Time Series Clustering
	Spectral Analysis for Time Series Data

	Learning to Hash
	Data-dependent Hashing
	Traditional Supervised Hashing
	Deep Supervised Hashing

	Case-based Reasoning
	Traditional Case-based Reasoning
	Scalable Case-based Reasoning


	Preliminaries
	Latent Factor Models
	Factorization Machine
	Probabilistic Matrix Factorization

	Deep Learning Models
	Convolutional Neural Networks
	Transformer

	Data Missing Theory
	Discrete Fourier Transform
	Mutual Information
	Evaluation Metrics
	Rating Estimate Metrics
	Ranking Metrics
	Classification Metrics
	Informativeness Metrics



	 Non-IID Recommender Systems
	Sequential Recommendation by Modeling Preference Dynamics and Feature Couplings
	Introduction
	Problem Formulation
	Time-aware Recommendation Networks
	Modeling Temporal Dynamics
	Modeling Feature Couplings
	Prediction and Inference

	Experiments and Evaluation
	Experimental Settings
	Ablation Study
	Performance Comparison
	Influence of Sequence Length
	Cold-start Test
	Visualization and Interpretability

	Conclusions

	Tripartite Collaborative Filtering for Rating Debiasing on Missing-Not-at-Random Data
	Introduction
	Problem Formulation
	Methodology
	Tripartite Collaborative Filtering Framework
	The TPMF Model

	Optimization
	E-step
	M-step
	Gradients of the Parameters.
	Discussion

	Experiments
	Datasets
	Experimental Settings
	Experimental Results

	Conclusions


	 Non-IID MTS Analysis
	Spectral Clustering-Enhanced Transformer for Non-IID Multivariate Time Series
	Introduction
	Problem Formulation
	The Cospectrumer Model
	Spectral Clustering Network
	Clusterwise Forecasting Network

	Experiments and Evaluation
	Datasets
	Experimental Details
	Performance Evaluation
	Model Complexity
	Ablation Study

	Parameter Sensitivity
	Clustering Visualization
	Conclusions

	Deep Coupling Network For Multivariate Time Series Forecasting
	Introduction
	Problem Formulation
	Coupling Analysis
	Deep Coupling Network For Multivariate Time Series Forecasting
	Overview Framework
	Coupling Mechanism
	Coupled Variable Representation Module
	Inference Module

	Experiments
	Datasets
	Baselines
	Experimental Setup
	Results
	Analysis

	Conclusions


	 Non-IID Learning to Hash
	Deep Supervised Hashing with Compactness and Informativeness Enhancement
	Introduction
	Problem Formulation
	Probabilistic Code Balance Constraint
	Wasserstein Regularization
	Optimization

	Experiments and Evaluation
	Experimental Setup
	Network Structure
	Results and Discussion
	Code Compactness and Informativeness

	Conclusions

	Deep Supervised Hashing for High-dimensional and Heterogeneous Case-Based Retrieval and Classification
	Introduction
	Problem Formulate
	Deep Hashing Network
	Feature Embedding
	Multiview Feature Interaction
	Fully-connected and Hash Layers
	Learning Objectives

	Hashing-enabled Case-based Reasoning
	Case Representation
	Case Retrieval
	Case Reuse and Case Revision
	Case Retention
	Complexity Analysis

	Experiments and Evaluation
	Experimental Settings
	Classification Evaluation
	Retrieval Evaluation
	Hyperparameter Study
	Performance Under Adaptive Update

	Conclusions


	 Summary and Prospect
	Conclusion
	Non-IID Recommender Systems
	Sequential Recommendation
	Collaborative Filtering

	Non-IID Multivariate Time Series Forecasting
	Transformer-based Model
	Deep Coupling Network

	Non-IID Learning to Hash
	Hash Quality
	Case-based Retrieval and Classification


	Open Challenges and Future Directions
	Quantification and Evaluation Methods
	Model Complexity and Efficiency
	Temporal Dynamics
	Practical Scenarios


	Bibliography



