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Abstract

Nowadays, there is a growing interest in applying reliability analysis in geotechnical

design approaches as a method of managing and quantifying geotechnical risks with

respect to uncertain geotechnical input parameters. Since creep settlement occurs in

an extremely long period of time, prediction of creep settlement is a challenging task

for geotechnical engineers to utilize soft grounds. Among several methods to

evaluate the long-term behaviour of soft soils, the elastic visco-plastic model could

be an effective model. However, the difficulties and uncertainties in determining the

model parameters is one of the most important limitation of this method. As a result,

the aim of this study is to investigate the influence of model parameters uncertainties

on predicting the time dependent behaviour of soft soils.

In this research, an elastic visco-plastic creep model was combined with the

Monte-Carlo probabilistic method to investigate the effects of uncertainties in the

elastic visco-plastic model parameters on time-dependent behaviour in soft soils. By

adopting monitoring data from the case study of Väsby test fill, the most appropriate

cross correlation coefficient between an elastic-plastic model parameter ( / ) and

the creep coefficient ( / ) was introduced.

Moreover, the time-dependent behaviour of soft soils was analysed

incorporating spatial variability of elastic visco-plastic model parameters. Standard

Gaussian random fields for the adopted random variables were generated adopting

Karhunen-Loeve expansion method. The probability of failure was calculated

adopting random field (RF) and single random variable (SRV) analysis to determine

the critical spatial correlation length, resulted in a maximum probability of failure.
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In this study, Bayesian updating method of identifying the model parameters

was used to update the elastic visco-plastic model parameters using field and

oedometer test data by applying the transitional Markov Chain Monte Carlo

(TMCMC) method for two case studies. The results confirm that adopting even 20%

of total monitored data has a considerable impact in predicting more realistic post-

construction settlements.

This study provides an insight into selecting the most suitable cross correlation

coefficient and the critical spatial correlation length while adopting elastic visco-

plastic model parameters as random variables. Therefore, the risks in predicting long-

term settlement of soft soils reduces and the reliability of the design in construction

increases. Moreover, adopting field monitoring data at early stages to update model

parameters has significant impact in predicting more realistic long-term settlement

which affects the risks associated with time and cost when adopting low embankment

strategy for design of transport infrastructure.
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1 Introduction

1.1 Overview

At each site the properties of soil and rock vary, depending on the lithological

heterogeneity of the soil and its inherent spatial variability (Elkateb et al. 2003) in

contrast to manufactured materials with controlled properties. To quantify

geotechnical uncertainties, probabilistic or reliability analysis was introduced to

distinguish conditions with high or low uncertainties (Duncan 2000). In recent

decades, reliability analysis has been significantly recognized as a great importance

in various engineering projects.  Moreover, a great deal of research has adopted

probabilistic analysis to manage and control the risks associated with uncertainties in

soil for geotechnical problems such as bearing capacity, settlement of foundations,

slope stability, piling, tunnelling, and seepage. The probabilistic methods can also be

used for back analysis and updating parameters based on the existing data. Some of

these methods include the maximum likelihood method and Bayesian probabilistic

method incorporated for geotechnical engineering problems such as characterization

of sub surface profiles, the model and parameter updating based on measured data.
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Nowadays, by increasing population and developing urban areas, available

space becomes scarce. As a result, development on top of or adjacent to the

waterfront areas alongside lakes, rivers, maritime coasts and even closed landfills is

sometimes inevitable. The prevalent soils in these areas are soft soils or in landfill

areas there are different type of waste materials. Dealing with soft soils in

geotechnical engineering, the long-term behaviour is a considerable challenge. Creep

which is defined as a time dependent viscous behaviour of soil is an important part

of soft soil settlement which can result in large and destructive deformation in long-

term. Moreover, in another definition, creep is considered as destruction or

adjustment of soil structures under a constant effective stress.

The reduction in soil void ratio under vertical loads causes soil settlement,

which may occur in three stages, including:

Immediate settlement: This settlement takes place immediately after

an external load applied with zero volume change in fully saturated

soils and the shape change only occurs.

Primary settlement: In saturated soil with no air among the particles,

the increased in vertical pressure transferred to water which is

incompressible. The water seep out of the soil leading to the dissipation

of excess pore water pressure and transferring the pressure to the soil

skeleton which is defined as primary consolidation.

Secondary settlement: this settlement is determined as a continuation

of volume change following the primary deformation. Mesri (1973)

explained this mechanism as individual or relative movement of

particles due to normal stress or shear displacement at particle contacts

as a result of exceedance of shear stresses to the bond shear resistance

of the contacts.   Since creep is usually defined as settlement under a

constant effective stress, it should be mentioned that creep may also
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occur during the dissipation of excess pore water pressure. As reported

by Bjerrum (1967)  and Taylor (1942), creep compression may lead to

increasing the resistance of the soil structure against further

compression. Creep compression also influences other soil properties

such as preconsolidation pressure. As a result, creep settlement is an

important contributing factor for evaluating time-dependent behaviour

of soft soils.

There are two different approaches to predict time-dependent behaviour of soft

soils. In the first method, which is referred to as Hypothesis A, the creep contribution

is explicitly added to the settlement after complete dissipation of the excess pore

water pressure (i.e. the total settlement is the sum of the primary consolidation and

the secondary compression) and the void ratio of soil at the end of primary

consolidation is unique irrespective of the sample size (Jamiolkowski et al. 1985;

Ladd et al. 1977). The second method, known as Hypothesis B generally adopts a

constitutive model in which creep and excess pore water pressure dissipation occur

simultaneously and the void ratio when only negligible excess pore water pressure is

remaining depends on the sample size and thus is not unique (Aboshi 1973; Barden

1965; Gibson 1961; Olszak and Perzyna 1966a; Perzyna 1963; Taylor and Merchant

1940; Yin and Graham 1989).

Of the various constitutive models that support Hypothesis B, the category of

constitutive models developed by Yin and co-workers is one of the widely accepted

approaches to describe the time-dependent behaviour of soft soils. Initially, Yin

(1990) proposed a model based on elastic visco-plastic (EVP) behaviour that applied

a linear logarithmic function for creep compression to provide an infinite creep

settlement as time approaches infinity. However, it is presumed that creep settlement
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will eventually cease after a very long time when there are no more accessible voids

to be compressed. On this basis, Yin (1999) improved the proposed elastic visco-

plastic (EVP) model by introducing a non-linear creep function with a creep strain

limit, but in order to calculate the creep settlement of soft soil using the EVP model,

the model parameters must be determined in advance, which limits its practicality.

1.2 Problem Statement

Elastic visco-plastic (EVP) model  developed by Yin (1999) is an effective model to

predict time-dependent behaviour of soft soils. Yin (1999) introduced a non-linear

creep function with a strain limit presuming that creep settlement will finally stop

after a long time. In order to calculate the creep settlement of soft soil using the EVP

model, the model parameters must be determined in advance. Since it is not practical

and cost-effective to carry out very long-term creep tests, determining visco-plastic

model parameters and creep limit values is practically challenging, introducing

uncertainties in design. There are several common methods based on curve fitting to

the experimental data to determine the model parameters (Yin 1999; Yin and Graham

1994; Yin et al. 2002). These methods enable the creep parameters to be obtained

based on the data measured in the laboratory after completing the primary

consolidation stage. For multi-stage loading tests, the time required for excess pore

water pressure to dissipate (i.e. end of primary consolidation) varies with the applied

stress causing difficulties and uncertainties in evaluating the elastic visco-plastic

parameters. This procedure may also violate the concept whereby the reference-time

line may include a large viscous strain, particularly for thicker soil samples or

materials with a high creep rate such as organic soils.
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To overcome the limitations of these curve fitting methods, an optimisation

method was proposed based on the trust-region reflective least square method in

which the model parameters are obtained simultaneously based on the test data, while

assuming a reference time parameter as the unit value (Le et al. 2017; Le et al. 2016).

Yin et al. (2017) also adopted an enhanced genetic algorithm to determine the creep

model parameters of soft soils based on an efficient optimisation method. Note that

when the experimental data are limited the curve fitting and optimisation methods

can lead to uncertainties in determining the visco-plastic parameters. Furthermore,

the main concern with determining the parameters in the optimisation methods is

finding the best fit between the predicted and observed experimental data, regardless

of the statistical characteristics, the measurements, and the model uncertainties. In

order to consider uncertainties in determining the model parameters, Zhou et al.

(2018) adopted the Bayesian model class selection approach and the transitional

Markov Chain Monte Carlo (TMCMC) method to select the model and

corresponding model parameters best suited to predict the creep behaviour of soft

soil using laboratory measurements. In the research conducted by Zhou et al. (2018),

the uncertainties of soil parameters were quantified via the posterior probabilistic

distributions that were obtained based on the Bayesian probabilistic method. In this

method, similar to traditional curve fitting and optimisation methods, a limited set of

experimental data was used to determine the creep parameters by introducing

significant uncertainties. Since it is not either practical or cost-effective to carry out

long-term creep tests to capture creep nonlinearities, the method proposed by Zhou

et al. (2018) can be used to determine the optimised creep parameters. Although, this

method can provide a probabilistic evaluation of model predictions based on the

given data, it will not address the uncertainties of model parameters due to the lack
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of sufficient long term test data. Similar to many geotechnical parameters, the elastic

visco-plastic parameters are interdependent parameters in reality which are

characterized by the concept of cross correlation in practice (Zhang et al. 2019).

However, in reliability analysis performed by Liu et al. (2018), the cross correlation

between elastic visco-plastic parameters were not considered. Thus, a more rigorous

research for predicting the time-dependent settlement of soft soils, while addressing

the uncertainties of elastic visco-plastic parameters, particularly the cross correlated

parameters, is deemed necessary.

In addition, another source of uncertainties is due to spatial variability of soil

parameters due to its inherent variability. Random field (RF) analysis  captures the

soil variability in different directions in space. Introduction of correlation length is

essential in RF analysis. Since the in-situ experimental data are often scattered and

limited, establishing a reliable spatial correlation length for a design parameter is a

quite challenging task. Therefore, RF analysis and determining the critical spatial

correlation length, spatial correlation length with maximum risk or probability of

failure, is deemed necessary in the absence of good quality data.

1.3 Objectives

The main objective of this research is to investigate the influence of the elastic-plastic

and creep parameter uncertainties and contribution of each random variable on the

time-dependent deformation of soft soils. Three specific objectives of this research

are as follows:

Investigating the influence of the elastic-plastic ( / ) and initial creep

( / ) model parameter uncertainties, contribution of each random variable,
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and cross correlation coefficients between two selected random variables on

the time-dependent deformation of soft soils.

Investigating the influence of spatial variability of the elastic visco-plastic

model parameters, namely the elastic-plastic parameter ( / ) and the initial

creep coefficient ( / ) affecting the time-dependent behaviour of soft soils

and determining critical spatial correlation length.

Updating the elastic-plastic parameter ( / ) and the initial creep coefficient

( / ) by adopting Bayesian updating method and field monitoring data

1.4 Structure of the Thesis

This thesis comprises 6 chapters as described below:

Chapter 1 presents a brief introduction about the importance of probabilistic

methods and reliability analysis in managing the risks of predicting long-term

behaviour of soft soils.

In Chapter 2, a comprehensive literature review on various probabilistic

methods is presented. This chapter also reviews several existing methods to predict

time-dependent stress-strain behaviour of soft soils. Additionally, this chapter

presents a literature review on several probabilistic methods and reliability analysis

in geotechnical engineering, particularly for long-term settlement of soft soils.

Chapter 3 investigates the influence of the elastic-plastic and initial creep

parameter uncertainties and contribution of each random variable on the time-

dependent deformation of soft soils. It also presents a comprehensive study to

determine how the cross correlation coefficients between two random variables

generated by “Gaussian” copula function, namely the elastic-plastic ( / ) and initial
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creep ( / )  model parameters will affect the Probability Distribution Function

(PDFs) that corresponds to the system response. Additionally, the predicted

settlement and excess pore water pressures are compared with the field measurements

to evaluate the validity of the proposed model. This chapter thus presents a brief

review of the elastic visco-plastic constitutive model and the numerical method used

to predict the settlement and excess pore water pressure. A case based on the Väsby

trial embankment data is then used to obtain the deterministic and probabilistic

parameters. In the final step, the proposed probabilistic analysis and corresponding

numerical results are presented and evaluated against field measurements so that a

suitable cross correlation coefficient between selected random variables can be

recommended.

Chapter 4 investigates the influence of spatial variability of the elastic visco-

plastic model parameters, namely the elastic-plastic parameter ( / ) and the initial

creep coefficient ( / ) affecting the time-dependent behaviour of soft soils. For

this purpose, a finite difference-based model is developed and then combined with

Karhunen-Loeve (K-L) expansion method to generate the random field. Moreover,

the finite difference model is combined with the Monte-Carlo simulation to conduct

the single random variable (SRV) analysis for the sake of comparison with RF

results. Then, by adopting the field measurements of Skå–Edeby trial embankment

and determining the maximum probability of failure, the critical spatial correlation

length is determined, which is required for a reliable design in the absence of

sufficient data for model parameters.

Chapter 5 discusses how applying field monitoring results can reduce risks in

predicting the long-term settlement of low embankments constructed on soft soils.
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For this purpose, monitoring measurements of two case studies of Väsby and Skå-

Edeby test fills are adopted. In this chapter, the elastic-plastic model parameter ( / )

and the initial creep coefficient ( / ) are updated by adopting the Bayesian

updating method and transitional Markov Chain Monte Carlo (TMCMC) algorithm.

Then, the long-term settlement predictions obtained from updated parameters based

on field data are compared with the predictions obtained from updated parameters

based on oedometer test results.

Finally, in Chapter 6, a summary and key findings drawn from the current

research are presented. It also provides a number of recommendations for future

research.
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2 Literature Review

2.1 Introduction

There are high degree of uncertainties in all disciplines of civil engineering; and

among various professional fields, geotechnical engineers significantly rely on

experience and judgment in their designs. The properties of soil and rock vary deeply

in each site whereas in some other disciplines of civil engineering such as structural

engineering, used materials are manufactured materials with reasonable control

properties.

Urban areas and population have been increased unexpectedly in recent years,

leading to land scarcity. Consequently, in some region reconstruction on soft soils is

unavoidable. Construction on soft soils can cause substantial problems, including

long-term settlement which can lead to damages to the superstructures. Although,

research on the long-term settlement of soft soils has been developed during recent

decades, there is not any particular and unified methods predicting long-term

settlement or creep deformation of soft soils resulting in uncertainties in model and

parameter determination. Consequently, presenting settlement distribution and

performing reliability analysis play a vital role in predicting long-term settlement of

soft soils. For this purpose, a brief introduction of various methods of geotechnical

reliability and probabilistic analysis are presented in this chapter.
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Subsequently, it is tried to collect the most important and relevant studies on long-

term settlement of soft soils.

2.2 Introduction to Probability and Reliability Analysis Methods in
Geotechnical Engineering

The main objective of this section is to introduce some basic methods and elements

of reliability analysis applicable in geotechnical engineering. Traditional methods of

geotechnical adequacy are expressed by a safety factor, which is the ratio of capacity

to demand. In contrast to traditional method, probabilistic approach extends the

concept of safety factor incorporating uncertainties in the parameters, which can be

quantified by statistical analysis of existing data or judgment. It should be noted that

even if in judgmentally assigned analysis the results would be more meaningful than

deterministic analysis as result of incorporating uncertainties in judgment.

Reliability analysis in engineering means finding the reliability, R, or the

probability of failure, Pr (f), of a system or structure (US Army Corps Engineers

,1995):

+ ( ) = 1 (2.1)

In the following subsections the basic and the essential definitions and concepts

for performing reliability analysis are presented.

2.2.1 Random Variables

Random variables are parameters with the most significant uncertainties and high

significance in the analysis. Random variables have a range of values in accordance

with probability density function or distribution which quantifies the likelihood that
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a particular value lies in any given interval. In order to model random variables in

Taylor’s series, it is necessary to determine the magnitudes of expected values and

standard deviations, which are the most important moments of several random

variables. For dependent random variables, it is also necessary to assign correlation

coefficients. The brief definitions of essential random variable moments are

presented below according to US Army Corps Engineers (1995).

Mean value: The mean value ( ) of a set of N values for the random variable

X is defined as:

= (2.2)

Expected value: The expected value, [ ], of a random variable is obtained

by multiplying the likelihood of occurrence of random variables by the values of

random values:

[ ] = = ( ) ( ) (2.3)

where, ( ) is the probability density function of X for continuous random

variables, and ( ) is the probability of the value  for discrete random variables.

Median value: The median value of the set of data ( . ) is the value for which

half of the data is less and half is more. In other words, the median is the midpoint of

the data sorted in increasing or decreasing order.

Mode value: The mode value of the set of data is the most common one which

is obvious in theoretical distribution and unstable in sample data as a result of

unexpected behaviour with which data appear.
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Variance: Variance is defined as the expected value of the squared difference

between the variable and its mean.

[ ] = [( ) ] = ( ) ( ) = [( ) ]
(2.4)

N is the size of samples. In order to obtain the unbiased estimate of variance

from finite samples, the N is replaced by N-1:

[ ] = [( ) ]1 (2.5)

Standard deviation: Standard deviation  is obtained as the square root of

the variance which express the scatter of random variables about its expected value

with the same unit of random variable:

= [ ] (2.6)

Coefficient of variation: Coefficient of variation  is calculated by

dividing the standard deviation by the expected value which expresses uncertainty

inherent in a random variable:

= [ ] × 100% (2.7)

In practice, if the existing random variable is not large enough, it is suggested

to assume the correlation of variation from previously measure variable for the same

parameter.
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Correlation: In correlated random variable, the likelihood of occurrence

random variable Y depends on the occurrence of random variable X.  The covariance

is the same as variance but measures how two variables vary together which is

expressed as:

[ , ] = [( )( )] = ( )( ) ( , ) (2.8)

where ( , ) is the joint probability density function of random variables X

and Y. The variance based on the data is calculated from the following equation:

[ , ] = 1 ( )( ) (2.9)

In order to provide a non-dimensional measurement of the correlation between

X and Y, the correlation coefficient ,  is defined as dividing the covariance by the

standard deviation:

, = [ , ]
(2.10)

The correlation coefficient varies between -1 and 1. The value of -1 or 1

expresses the perfect linear correlation between two dependent variables, while the

value of zero indicates no correlation and variables are independent. The positive

value indicates the direct relation, meaning that the variables decrease or increase

together; and the negative values shows that one value increases as the other

decreases.
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2.2.2 Probability Distribution

The term probability distribution and probability density function  or ( ) is a

function that indicates a continuous random variable. A probability density function

has the characteristic that for any X, ( ) describes the likelihood of X. As a result,

the area under the probability density function is unity. The probability that the

random variable X lies between and is obtained by integration of the

probability density function between these two variables:

( < < ) = ( ) (2.11)

The cumulative density function  or ( ) is the probability that random

variable X is less than the certain value x:

( ) = ( ) (2.12)

There are six distributions, which are common in engineering applications,

including Exponential, Gamma, Uniform, Weibull, Rayleigh, Normal, and

Lognormal. Details of mentioned distributions can be found in Fenton and Griffiths

(2008). Normal and Lognormal distributions are the most important distributions in

geotechnical engineering, which are presented below:

Normal Distribution: Normal distribution is probably the most important in

use distribution. The probability distribution of the random variable X following

normal distribution is indicated as:
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( ) = 12 12 (2.13)

According to Figure 2.1(a), normal distribution is symmetric about the mean

and the maximum point, or mode, occurs at mean. Moreover, the inflection points

are at ± .

Special case of normal distribution with = 0 and = 1 is called standard

normal distribution (Figure 2.1(b)). According to Fenton and Griffiths (2008), since

the standard normal distribution is so important, the probability distribution of the

standard normal Z is presented by special symbol ( ):

( ) = 12 12 (2.14)

a) b)

Figure 2.1 Normal and standard normal distribution a) Normal distribution with = 5 and= 2 b) Standard normal distribution (after Fenton and Griffiths, 2008)
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Lognormal Distribution: Since in engineering, material properties and loads

are commonly nonnegative, normal distribution suffers from disadvantages of

modelling negative values. One simple way to solve this problem is introducing

Lognormal distribution. The X random variable is Lognormally distributed random

variable with a mean and standard deviation given by  and , respectively. If X

is Lognormally distributed,  is normally distributed. Probability density function

 or ( ) for a lognormal distribution is given by:

( ) = 1 2 12 (2.15)

The mean and standard deviation of the underlying normal distribution of

is presented by:

= 12 {1 + } = 1 + (2.16.a)

= {1 + } (2.16.b)

= (2.16.c)

Further relationships involving the lognormal distribution includes:

= ( ) (2.17.a)

= ( ) (2.17.b)

Figure 2.2 depicts the location of mean, mode, and median in lognormal

distribution.
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Figure 2.2 Lognormal distribution (after Fenton and Griffiths, 2008)

2.2.3 Reliability Index

Nowadays, the reliability is commonly expressed by reliability index which is related

to the probability of failure. In general, reliability analysis is the relation between the

applied loads ( ) and resistance of a system to those loads ( ). Figure 2.3, shows the

probability distribution of  and .  According to this figure, the margin of safety is

defined by:

= (2.18)

Based on Cornell (1969), reliability index  is expressed as the distance of the

mean margin value from its failure or critical point (  =0) over or in units of standard

deviation:

= =
(2.19)
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As illustrated in Figure 2.4, probability of failure is the area in which the

probability distribution of  is less than 0.0 or the intercept of the cumulative

distribution function with vertical axis at  = 0.

Geotechnical engineers are more interested to work with factor of safety as a

performance function in which failure occurs when F is less than one:

= , = [ ] 1
(2.20)

Figure 2.3 Probability distribution for load (Q) and resistance (R) (after Baecher and
Christian, 2005)

a) b)

Figure 2.4 Probability of failure a) Probability density, b) Cumulative distribution (after
Baecher and Christian, 2005)
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The values of probability of failure for normal and lognormal distribution (with

various coefficients of variation, ) are presented in Table 2.1 and Figure 2.5.

Table 2.1 Probability of failure for Normal and Lognormal Distributions (after Baecher and

Christian, 2005)

Reliability index

Probability of failure

Normal distribution
Lognormal distribution= 0.05 = 0.10 = 0.15

0.0 5.000 ×10-1 5.100 ×10-1 5.199 ×10-1 5.297 ×10-1

0.5 3.085×10-1 3.150×10-1 3.212×10-1 3.272×10-1

1.0 1.586×10-1 1.583×10-1 1.571×10-1 1.551×10-1

1.5 6.681×10-2 6.236×10-2 5.713×10-2 5.111×10-2

2.0 2.275×10-2 1.860×10-2 1.437×10-2 1.026×10-2

2.5 6.210×10-3 4.057×10-3 2.298×10-3 1.048×10-3

3.0 1.350×10-3 6.246×10-4 2.111×10-4 4.190×10-5

3.5 2.326×10-4 6.542×10-5 9.831×10-6 4.415×10-7

4.0 3.167×10-5 4.484×10-6 1.977×10-7 6.469×10-10

4.5 3.398×10-6 1.927×10-7 1.396×10-9 4.319×10-14

5.0 2.867×10-7 4.955×10-9 2.621×10-12

Figure 2.5 Probability of failure versus reliability index for Normal and Lognormal
Distributions (after Baecher and Christian, 2005)
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2.2.4 Reliability Analysis Methods

The main purpose of any reliability analysis is to estimate the probability of failure

( ). In this regard, it is beneficial to set out the steps suggested by Baecher and

Christian (2005):

Establishing an analytical model to define the performance function in

the form of margin of safety or factor of safety.

Estimation statistical description of the parameters including mean,

standard deviation, covariance, and the form of the distributions of the

parameters.

Calculation of the statistical moments of performance function such as

mean and standard deviation

Calculating the reliability index

Estimating the probability of failure based on the obtained reliability

index

There are various methods available in order to performing reliability analysis.

Among them the most widely used are:

First Order Second Moment (FOSM) method

Point Estimate Method (PEM)

First Order Reliability Method (FORM)

Monte-Carlo simulation

Random Field (RF) method

Bayesian analysis

Among the above-mentioned methods, the Monte-Carlo simulation, RF

method and Bayesian analysis have been applied in this research; and they are
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described briefly in the following sections. The details of other methods (FOSM,

PEM, and FORM) can be found in the literature (Baecher and Christian 2005; Fenton

and Griffiths 2008).

2.2.4.1 Monte-Carlo simulation

Monte-Carlo methods are one of the most popular computational algorithms that rely

on repeated random sampling to evaluate uncertainties and risks in quantitative

decision making. In this method, a wide range of possible outcomes is obtained and

consequently the probabilities of their occurrence can be calculated. For this purpose,

models of possible results are built by substituting a range of random values (a

probability distribution) for any variable. The outputs are calculated several times by

applying a different set of random variables from the probability functions for each

time. In this method, random variables are obtained randomly from the input

probability distributions, and the outcomes are recorded and the probability

distribution of possible outcome is provided. As a result, Monte-Carlo simulation

gives a comprehensive perception of what may happen.

The required number of simulations runs depend on the extent of uncertainties

and the ranges, specified for the variables, which leads to creating distributions of

possible outcomes. It is obvious that a considerably long running time is required for

a significant number of iterations, which is the greatest drawback of Monte-Carlo

simulation. This issue can be solved by having access to modern computers and using

special software packages. This method has been implemented in different

geotechnical engineering problems. As an example, a probabilistic slope stability

method, applying a spreadsheet computational approach in Microsoft Excel coupled

with the software @Risk performed by El-Ramly et al. (2002).
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2.2.4.2 Random Field method

Many features and phenomena in the worlds are random in time and space. The

concept of random field is derived from capturing this variability into the model. As

a result, a random field ( , ) is a continuous function in space which is consist of

finite elements associating with random variables, where  is a parameter capturing

the random nature of ( , ) and  is a vector containing random variables. In order

to introduce different methods for generation of random fields, it is necessary to

become familiar with some basic concepts in random fields including, covariance

function, correlation length and ergodicity.

Correlation function: Since it is common in reality that two points close to

each other have approximately the same values or points with large distance are not

correlated, the concept of correlation function is introduced describing the covariance

between two points (  and ) with certain distance to each other:

( , ) = [ , ] = [ ] [ ] [ ] (2.21)

where, ( , ) is covariance function, = ( ) and = ( ). Then,

the correlation function is defined as:

( , ) = ( , )( ) ( ) (2.22)

There are different correlation functions in literature (Li and Der Kiureghian

1993), the most commonly used ones are: (Note: the below equations are presented

for one dimensional random field)
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( , )
= | | (2.23.a)

( , ) =
( ) (2.24.b)

( , ) = . ( ). ( ) (2.25.c)

where,  is correlation length explained in the next section.

Correlation length: The correlation length or scale of fluctuation indicates the

distance within which the probabilistic variables have a relatively strong correlation

and has unit of the length. As defined by Vanmarcke (2010), the correlation length

can be written in the form of:

= ( , ) = 2 ( , ) (2.26)

where x is the relative distance between two points  and .

Ergodicity: Random field could be considered as ergodic respecting any

statistical properties. In order to illustrate the ergodicity feature, a simple example

has been adopted to defined two different mean values in random field. The mean

value for the single random field with domain of  is determined by:
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= 1 ( ) (2.27)

Moreover, sample mean value for a certain position ( ) can be defined as:

= 1 ( )
(2.28)

where, N is the number of random field simulations. In the case that  is equal

to , random field has ergodicity feature with respect to mean. As a consequence of

ergodicity feature, all data related to joint PDF of a random field could be acquired

by a single random field realization.

Generation of random field:

The following steps have to be taken to generate a random field:

Figure 2.6 Steps of random field generation (after Van der Have, 2015)

Random field generators:

There are various methods in literature to generate random fields. As can be seen in

Table 2.2, Van der Have (2015) classified random field generators into two main

classes.

Determining
statistical

properties of a
parameter

Defining
random

field mesh

Generating
random

field

Checking the properties
of generated random

field
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Table 2.2 Various methods of random field generators (after Van der Have, 2015)

Random Field Generators

Class 1 Class 2

Generators of spatial correlated
variables Series expansion methods

Covariance Matrix Decomposition
(CMD)

Karhunen Loève expansion (K-L)

Moving Average (MA) Orthogonal Series Expansion (OSE)

Discrete Fourier Transform (DFT) Expansion Optimal Linear Estimation method
(EOLE)

Fast Fourier Transform (FFT) Nyström method

Turning Bands Method (TBM) Galerking based methods (FEM & FCM)

Local Average Subdivision method
(LAS)

Polynomial Chaos expansion (PC)

Class 1 generators:

In class 1 generators, a random field is generated for every node which is correlated

to the other nodes in the random field mesh. In order to allocate these spatially

correlated random variables to an element in finite element or finite difference model,

different discretization methods can be adopted. These discretization methods are

classified into three groups. The firs group is the point discretization method causing

a separated constant random field. The second group is also the point discretization

method, but resulting in a continuous random field. The third group is the average

discretization method. It should be mentioned that it is not possible to have all

combinations between all methods of class 1 generators and discretization methods
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which can be considered as one of the drawbacks of class 1 generators. Different

methods in class 1 generators are explained briefly in Van der Have (2015).

Class 2 generators:

In class 2 generators, the random field is expressed by a continuous function for the

entire domain instead of describing the random field as a combination of discretized

sections. Similar to other series representation methods such as Fourier series

expansions, a continuous function is made through multiplying a constant by a set of

deterministic functions. In the case of random field generation, these constants are

random variables ( ) with their own variance according to the basis function ( )

contribution to series expansion (Van der Have 2015).

( , ) = ( ) ( ) (2.29)

To approximate a continuous random field ( , ), the summation of truncated

set of basis function is employed as:

( , ) = ( ) ( ) (2.30)

It is highly recommended to sort the constants and basis functions in a way that

the first terms have the largest contribution to the expansion (Sudret and Der

Kiureghian 2000).

As illustrated in Table 2.2, there are various methods for generation of random

field based on series expansion methods, including:
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Karhunen-Loeve expansion method: This method is based on the

spectral decomposition of its correlation function.

Orthogonal Series Expansion (OSE): In this method, there is an

arbitrarily selection for the basis functions of series expansion.

Expansion Optimal Linear Estimation (EOLE): In this method, the

eigenvalues and eigenfunctions of correlation function are chosen to

approximate the corresponding values for the K-L expansion.

Nystrom method: The method is based on numerical integration. As

stated by Betz et al. (2014) if specific parameters are adopted, this

method is equivalent to EOLE method.

Galerking base method: This method includes Finite Element (FEM)

and Finite Cell method (FCM) and is efficient for complex geometry

(Betz et al. 2014).

The details of methods mentioned above can be found in Betz et al. (2014). In

order to select to most suitable and accurate expansion method, the used correlation

function and geometry of random field domain are crucial factors. Among the

mentioned methods, Karhunen-Loeve expansion method (K-L) and EOLE method

are commonly used methods particularly for simple geometry of random field

(Sudret and Der Kiureghian 2000). In this research, Karhunen-Loeve expansion

method (K-L) is used and will be explained in Chapter 4.

2.2.4.3 Bayesian analysis

Bayesian analysis is a conditional reliability analysis which addresses the question

(Christian 2004), “If I have before me a set of data, what is now the probability that

my view of the subject is true?”.  Bayesian method begins with prior probability and

analyst must first evaluate the state of the nature before getting the new data.
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In order to explain Bayesian procedure more easily, a simple example of

determining a liquefiable zone is presented. The following questions are considered

to be answered based on the results of either standard penetration test or cone

penetration tests (it should be mentioned that the design earthquake has been

determined in advance):

What is the probability of the liquefiable zone existence?

How does the result of successive borings affect the probability?

Referring to Christian (2004), to answer the above questions, the following

procedure should be adopted:

If the liquefiable zone exists, consider the probability of finding it 0.3 for any

one boring. Therefore, the probability of not finding it is 0.7. The probability of false

positive is assumed 0.05 which implies that the probability of not finding it if it does

not exist is 0.95. F shows that the liquefiable zone is found and E indicates that the

zone exists, and a complement is shown by the superimposed bar, hence the

conventional probability is:

[ | ] = 0.3, = 0.7, [ | ] = 0.05, = 0.95
According to the basic of Bayes’ theory, if there is some prior probability that

the liquefiable zone exists, P [E], the posterior probability that it exists if the zone is

found in one boring is P [ | ]:
[ | ] = [ | ] [ ][ | ] [ ] + [ | ] [ ] (2.31)
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The posterior probability that the liquefiable zone exists if the zone is not found

in one boring is P [ | ]:
[ | ] = [ | ] [ ][ | ] [ ] + [ | ] [ ] (2.32)

It is assumed that there are two equals of minds whether or not the zone exists:

[ ] = [ ] = 0.5
Hence:

[ | ] = (0.3)(0.5)(0.3)(0.5) + (0.05)(0.5) = 0.86
The obtained result shows a sharp increase in the assumption that the zone

exists. Furthermore, if the boring did not find the liquefiable zone:

[ | ] = (0.7)(0.5)(0.7)(0.5) + (0.95)(0.5) = 0.42
Indicating the decrease in the degree of belief that the existence of liquefiable

zone exists. Figure 2.7 illustrates the all possible results from additional borings in

the case that the initial prior probability of existence is 0.5.
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Figure 2.7 Posterior probability of existence of liquefiable zone by Bayesian method based
on three borings when initial prior probability is 0.5. (after Christian 2004)

(Note: upper branch corresponds to ‘Find’ and lower to ‘not Find’)

2.3 Literature Review on Long-term Settlement of Soft Soils

Based on laboratory results and filed measurements, settlement of soft soils occurs

during and after the dissipation of excess pore water pressure. There are two

components of settlements including “primary settlement” which is the settlement

due to flowing out water from voids and transferring loads from pore water to soil

particles and “secondary compression” due to the constant effective loads which is

also called creep. Since settlement may occur during the dissipation of excess pore

water pressure, the creep should be considered different from settlement under

constant effective stress.

There are two main hypothesis predicting time dependent of soft soils,

including:
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Hypothesis A: The void ratio at the end of primary consolidation

( ) is unique for thin and thick samples (Mesri 2003; Mesri et al.

1994). In this hypothesis settlement is divided into two parts: during the

dissipation of excess pore water pressure (primary settlement) followed

by creep settlement in which the excess pore water pressure is

significantly small.

Hypothesis B: Since the primary consolidation includes creep,  is

not unique for thin and thick samples (Yin and Graham 1996). In this

hypothesis the soil settlement is calculated based on a constitutive

model considering dissipation of excess pore water pressure and creep

simultaneously. Therefore, in thick samples (longer duration of primary

consolidation) the difference between hypothesis A and B is more

considerable (Figure 2.8).

Figure 2.8 Effect of sample thickness on the behaviour of time-dependent settlement of
normally consolidated clay (after Ladd et al. 1977)



33

In this section the mechanism of creep is presented and a summary of previous

studies on long-term settlement based on Hypothesis B is reviewed briefly. Then, the

elastic visco-plastic model with non-linear creep function (Yin, 1999) model is

described in detail applied in this study as a model coupled with consolidation theory

aim to performing reliability analysis on long-term settlement of soft soils.

2.3.2 Mechanism of Creep Deformation

As stated by Taylor and Merchant (1940) and Terzaghi (1941), compression

settlement of soft soils is defined based on the transferring the stress and adjusting

soil structure. There are various studied relevant to creep mechanism in soft soils and

the most important of them is explained briefly as follows.

The breakdown of interparticle bonds: There are a variety of factors

contributing to the breakdown of interparticle bonds, including relative movement of

particles induced by shear displacement or variation of particle spacing (Mesri 1973).

This breakdown may cause soil structure rearrangement and further settlement.

Jumping of molecules bonds: Creep settlement may be due to the movement

of atoms and molecules to reach a new equilibrium under constant effective stress.

As explained by Mitchell et al. (1968), the activation energy required to overcome

the berries resists the movement of atoms and molecules depends on deviatoric stress

and elapsed time of creep.

Sliding between particles: Kuhn and Mitchell (1993) pointed out creep

settlement may be due to the sliding movement between the particles. The sliding

movement is due to the tangential component of the contact forces between soil

particles because of the nature of viscous friction. The movement of particles is
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caused by the relationship between the sliding force, the sliding velocity, and the

friction ratio between tangential and normal forces.

Double porosity: De Jong and Verruijt (1965) proposed creep deformation as

a result of transferring pore waters from micropores to macropores. This flow of

water can impose compression inside clay clusters as a result of decreasing spaces

between clay minerals or relative movement of clay particles.

Structural viscosity: This school of thought is based on the opinion that

viscosity has a considerable effect on soil creep. Viscosity is explained as the

resistance of the fluid to flow or deformation under applied stress. As suggested by

Yin (2003) creep is mainly due to the combination of two process, including:

a) Viscous flow of adsorbed double layer water on clay particles

b) Viscous rearrangement of clay particles to reach a new equilibrium

under applied effective stresses.

As a result, creep continues as long as the effective stress exists and creep is

not due to the free pore water flow which is caused by hydraulic gradient.

2.3.3 Creep Deformation Based on Hypothesis A

As mentioned before, although there is a creep deformation during primary

consolidation in Hypothesis A, the void ratio at the end of primary consolidation is

assumed constant and not related to the thickness of the sample. One of the significant

methods for calculating soft soil settlement based on Hypothesis A is the concept of

creep ratio, in which soil settlement is divided into the primary settlement followed

by the secondary settlement.
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Mesri and Choi (1985) proposed the following equation as a principle equation

for predicting the primary consolidation:

( ) = (2.33)

where, ( )  is void ratio changes during primary consolidation,  is void

ratio,  vertical effective stress,  elapsed time,  is time needed for primary

consolidation, stands for compressibility of the soil at time t, and  stands

for compressibility of the soil at .

Moreover, as reported by Mesri and Choi (1985), the secondary compression

is estimated as follows:

( ) = (2.34)

where, ( )  stands for the void ratio changes during the secondary

compression, e is the void ratio,  denotes the vertical effective stress,  is the

elapsed time, and  is the time needed for the primary consolidation.

Based on the experimental results, Mesri (2003) suggested the secondary

compression can be predicted by the creep ratio as follows:

( ) = 1 + + 1 + (2.35)
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where, ( )  is the total vertical strain,  is the initial void ratio, t denotes the

elapsed time for secondary compression,  is the time needed for primary

consolidation,  is the secondary compression index indicates the slope of ,

 is the primary compression index represents for the slope of , and

stands for the secant compression index which is defined as the slope of the lines

between point P to different point on the compression curve (Figure 2.9). As can be

seen in Figure 2.9, point P is defined by the recompression line from point ( , )

with the slope  at the preconsolidation pressure ( ).

Azari (2015) pointed out that the values of  varies between 0.025 and 0.1

based on the data collected by Mesri and Godlewski (1977a) for some natural soil

deposits.

Figure 2.9 Definition of , , and   (after Mesri et al. 1994)



37

2.3.4 Creep Deformation Based on Hypothesis B

Based on Hypothesis B, the void ratio at the end of primary consolidation is not the

same for the thick and thin samples. This hypothesis comes from the assumption that

creep occurs during primary consolidation. Leroueil (1996) conducted extensive

laboratory and in-situ observations showing that the stress-strain curve followed by

a soil element during primary consolidation depends on drainage conditions, strain

rate and temperature. The analysis undertaken by Leroueil (1996) confirmed the

validity of Hypothesis B.

There are a diversity number of constitutive model for supporting hypothesis

B categorized into: empirical models, rheological models, and general stress-strain-

time model. These models are explained briefly in this section. Among the existing

models, since Yin’s model originally proposed by Yin and Graham (1989) in

category of empirical models is a simple and reliable model, it is applied for

reliability analysis of soft soils in this research. Yin’s model is the elastic visco-

plastic (EVP) model with the non-linear creep function which is described in detail

in Chapter 3.

2.3.4.1 Empirical models

Empirical models are generally based on fitting creep experimental results, stress

relaxation, and constant rate of strain tests. As a result, they are mostly proposed by

closed form solutions or differential equations. Moreover, by applying boundary

condition in laboratory experiments, the empirical solutions would be more practical.

In order to include creep deformation to Terzaghi’s consolidation theory,

Taylor and Merchant (1940) suggested a method to contain a time dependent
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effective stress model. Moreover, Suklje (1957) proposed a model relied on a system

of void ratio-effective stress lines at constant stress rate, named isotaches. In this

study, a graphical consolidation curves were presented merging into the same linear

 and compared with the results obtained by Terzaghi’s theory of

consolidation.

In another model in empirical models named Bjerrum’s model, the clay

settlement by including secondary compression were formulated by Buisman (1936).

In this study, settlement and logarithm of time were correlated linearly based on the

results of oedometer tests on clay and peat after about one day and one minute,

respectively. Bjerrum (1967) proposed a theory of time dependent settlement based

on two main concepts: 1) parallel time lines or curves in a system of vertical effective

stress. 2) a constant relationship between vertical effective stress, void ratio, and

time. A family of curves called “time lines” first introduced by Taylor (1942) for the

one-dimensional consolidation of clay. In order to define the time lines, the effective

stress versus void ratio graph in logarithm scale was used in which each time line is

related to a given duration of loading. Figure 2.10 illustrates a sample of time line

system. Based on the time lines, Garlanger (1972) presented a formulation expressing

void ratio changes as a result of loading from  to :

= + + +
(2.36)

where,  is the reference time line assigned to the instant compression

(Garlanger 1972),  is the time from applying the load,  stands for the critical

pressure, and  is the final vertical effective stress.
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Figure 2.10 Time-line system (after Bjerrum, 1967)

Kabbaj (1985) used the theory of time lines in order to evaluate the effect of

the strain rate on the value of the preconsolidation pressure. In Kabbaj’s study, the

linear relationship between the logarithm of preconsolidation pressure and the

logarithm of plastic strain rate, and also a linear relationship between the logarithm

of effective stress and the plastic strain were assumed resulting in proposing a model

equation to obtain the plastic strain rate. In addition, an elastic visco-plastic empirical

model based on equivalent time line concept called Yin’s model were proposed first

by Yin and Graham (1989) which is explained in detail in Chapter 3.

2.3.4.2 Rheological models

In rheological models, in order to simulate the soil behavior, an appropriate

combination of springs, dashpots, and sliders is used. This model is developed by

some researchers aim to evaluate the time dependent behavior of soils which are

briefly explained.
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Gibson and Lo (1961) simulated the compressibility of the soil with the Kelvin

element of linear spring and modified Terzaghi’s (1923) consolidation theory in

order to calculate secondary compression. In this model, the primary compressibility

is defined by the instantaneous compression generated by linear springs while the

response of Kelvin elements corresponds to the secondary compression.

Wahls (1962) reported that the secondary compression may be calculated by

the rate of void ratio change per logarithm of the time (C = ) concluded by

the results of oedometer tests on the samples of calcareous organic silt. Based on the

obtained results, Wahls (1962) pointed out that C  is independet of the load

increment and load increment ratio, and the required time for starting the secondary

compression is defined by the required time for the completion of primary

consolidation. Wahls (1962) modelled the primary consolidation by applying infinite

series of Kelvin elements, while creep settlement was simulated by infinite series of

nonlinear dashpots. Wahls (1962) used analytical solution of Terzaghi’s

consolidation theories as a reference in his model.

In another research, Barden (1965) addressed three facts not considered in

Terzaghi’s (1923) consolidation theory, including (i) the rate of pore water

dissipation in the early stages of oedometer test is more than predicted value based

on consolidation coefficient, (ii) secondary compression occurs during primary

consolidation, (iii) loading condition is the influential factor on the total settlement.

As a result, Barden (1965) proposed a rheological model with non-linear springs and

dashpots simplified then by adopting linear springs and Kelvin’s elements (Figure
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2.11).  It should be mentioned that in this model the relation between the secondary

compression and the logarithm of the time is non-linear.

a) Barden’s proposed method b) Model solved by Barden

Figure 2.11 Rheological models proposed by Barden (after Barden, 1965) (Note: N and L
stands for Non-linear and Linear, respectively)

Aboshi (1973), carried out a set of oedometer tests on sample of different sizes

in order to evaluate the similarity between field and laboratory deformation on soft

soils. The most significance outcomes of Aboshi’s (1973) investigations are that the

consolidation coefficient (c ), and the amount of deformation at the end of primary

consolidation are dependent to sample thicknesses, while the creep strain rate is

independent of sample thickness and it decreases with time to a minimum constant

value. As illustrated in Figure 2.12, although the deformation curves become parallel

by increasing the time, but they do not reach to a single line. In addition to, Aboshi

stated that the primary deformation is dependent to the effective stress loading in

time, whereas the secondary compression rate depends on the loading history.
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Figure 2.12 Variation of vertical strain with drainage Path (after Aboshi, 1973)

In another rheological model proposed by Rajot (1993), the time dependent

constitutive relationship is formulated by a combination of two springs, a dashpot

and a slider which is presented in Figure 2.13. In this proposed model, the yield stress

and creep are related and the slider properties are a function of the creep value and

creep rate.
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Figure 2.13 Rajot’s rheological mechanical (after Aboshi, 1973)

Leroueil et al. (1985) carried out various types of oedometer tests on different

samples of Champlain sea clays and proposed a simple rheological clay model which

was a particular case of isotache model proposed by Suklje (1957). The model

showed the clay behaviour under one-dimensional compression is controlled by a

unique effective stress-strain-strain rate.

2.3.4.3 General stress-strain-time models

General stress-strain-time models consider both viscous effect and the rate behavior

of soils under various loading conditions. Elastic visco-plastic approach combines

the rate dependent elastic and time-dependent plastic behavior of soft soils. As

reported by Liingaard et al. (2004), there are three categories of elastic visco-plastic

models, including overstress theory, non-stationary flow surface theory, and others.

Based on the Perzyna (1963) visco-plastic overstress theory, the elastic visco-

plastic approach applied in one dimensional visco-plastic models for multi-

dimensional stress space. As depicted in Figure 2.14, there can be visco-plastic

strains when the stress state reaches the yield surface. Otherwise, while visco-plastic



44

strains are below the yield surface, they can be ignored. It should be mentioned that

in Perzyna’s (1963) theory, aging effects are not considered. As a result, the yield

surface does not change when the visco-plastic strains are unchanged. Furthermore,

in the condition of zero over-stress, the visco-plastic strain rate is also zero.

Figure 2.14 Perzyana’s (1963) visco-plastic theory (after Perrone, 1998)

In order to modify Perzyna’s (1963) theory, Olszak and Perzyna (1966b)

proposed a visco-elastic theory named a non-stationary flow surface theory in which

the concept of changing the yield surface with time is considered. As can be seen in

Figure 2.15, the yield surface is time dependent and represents a specific visco-plastic

strain rate.
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Figure 2.15 Olszak and Perzyna (1963) visco-plastic theory (after Perrone, 1998)

2.4 Literature Review on Probabilistic Analysis in Geotechnical
Engineering

At each site the properties of soil and rock vary depending on the lithological

heterogeneity of the soil and its inherent spatial variability (Elkateb et al. 2003) in

contrast to manufactured materials with controlled properties. Morgenstern (1995)

classified geotechnical uncertainties as either parameters, models, or human

uncertainties (Zhao and Deng 2019). To quantify these uncertainties, probabilistic or

reliability analysis was introduced to distinguish conditions with high or low

uncertainties (Duncan 2000).

In recent decades, reliability analysis has been significantly recognized as a

great importance in various engineering projects such as nuclear plant (Tosoni et al.

2019; Zheng and Deng 2018) and structural engineering (Coccon et al. 2017; Feng

and Zhang 2020; Kim and Song 2019; Ni et al. 2020; Zhou, Li, et al. 2018).

Moreover, a great deal of research has adopted probabilistic analysis to manage and

control the risks associated with uncertainties in soil for geotechnical problems such
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as bearing capacity (Fenton et al. 2008; Griffiths and Fenton 2000; Malhotra et al.

2020; Pramanik et al. 2020), settlement of foundations (Bungenstab and Bicalho

2016), slope stability (Christian et al. 1994; Goh et al. 2019; Jiang et al. 2018), piling

(Huang et al. 2016) tunnelling (Feng and Zhang 2020), and seepage (Griffiths and

Fenton 1994). The probabilistic methods can also be used for back analysis and

updating parameters based on the existing data. Some of these methods include the

maximum likelihood method and Bayesian probabilistic method incorporated for

geotechnical engineering problems such as characterization of sub surface profiles

(Wang 2020; Wang 2016), the model and parameter updating based on measured

data with or without considering spatial variability of soil parameters (Jung et al.

2009; Lo and Leung 2019; Zhou, Tan, et al. 2018; Zhou, Li, et al. 2018), as well as

the determination of generic transformation and site specific correlation models

(Ching et al. 2018; Ching and Phoon 2020a, 2020b).

In addition, there is an array of research studies which consider the

uncertainties of soil parameters in probabilistic analysis concerning soil

consolidation and settlement (Bari and Shahin 2014; Bari and Shahin 2015; Bari et

al. 2013; Bari et al. 2016; Houmadi et al. 2012; Huang et al. 2010). For instance,

Huang et al. (2010) combined the coupled Biot (1941) consolidation theory with the

random finite element method to investigate how the spatial variability of the

coefficient of volume compressibility ( ) and soil permeability ( ) would affect the

prediction of settlement and degree of consolidation in one dimensional and two

dimensional spaces. In another study, Houmadi et al. (2012) used the Collocation-

based Stochastic Response Surface Method (CSRSM) for the probabilistic analysis

of a one-dimensional soil consolidation problem by considering Young’s modulus
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( ), Poisson’s ratio ( ), the hydraulic conductivity ( ) and uniform surcharge

loading ( ) as random variables. The responses of the probabilistic system considered

in the study by Houmadi et al. (2012) were surface settlement and consolidation time.

Moreover, Bong et al. (2014) analysed the consolidation of soil by considering the

spatial variability of vertical and horizontal coefficients of consolidation while using

the Stochastic Response Surface Method (SRSM).

In another study, the effects of spatial varability of soil permeability and

coefficient of cosolidation on soil consolidation by prefabricated vertical drains

(PVDs) were investigated stocahtically and the uncertainites accosciated with degree

of consildation were analysed (Bari and Shahin 2014; Bari et al. 2013). In addition,

Bari and Shahin (2015) integrated the local average subdivision of random field

method with Monte Carlo simulation to investigate the impact of spatial variability

of soil permability and volume compressibility in the smear zone on soil

consolidation by PVDs compered with the corresponding impact in the undisturbed

zone. The results indicated that the spactial variabitiy of soil permeability in the

smear zone has a siginifcant impact on soil consolidation over that on the undisturbed

zone. Bari et al. (2016) extended the undrtetaken probabilistic analyses by Bari and

Shahin (2015) to soil consolidation by prifabricated vertical drain for single-drain

and multi drain systems. Note that while these research studies addressed the time-

dependent consolidation deformation of soft soil, they omitted the uncertainties in

creep parameters. Liu et al. (2018) reported a probabilistic analysis for predicting the

time-dependent settlement and horizontal displacement and pore water pressure of

the Ballina test embankment in New South Wales, Australia. In this case study, the

probabilistic predictions were combined with the finite element program PLAXIS



48

2D, adopting Soft Soil Creep Model (SSCM) to simulate the behaviour of the

estuarine clay.

It is evident that soil is a heterogeneous material with spatial variable properties

stemmed from different factors such as environmental, geological, and physical-

chemical processes during soil formation or deposition (Li et al. 2016; Li et al. 2017;

Wang et al. 2016). In the random field (RF) method, the soil variability in different

directions in space is captured (Ahmed and Soubra 2012; Bari and Shahin 2014; Bari

and Shahin 2015; Bari et al. 2013; Bari et al. 2016; Bong et al. 2014; Cassidy et al.

2013; Fenton and Griffiths 2005; Huang et al. 2010; Kasama and Whittle 2016; Van

der Have 2015; Wang et al. 2020). Wang et al. (2020) investigated the probability of

failure for multi-stage slopes by assuming cohesion and friction angle as spatially

random variables. According to the results reported by Wang et al. (2020), the

deterministic analysis at the mean values of the strength parameters can result in a

non-conservative prediction of factor of safety indicating the significance of

performing random field analysis.

One of the inherent essentials in random field analysis (RF) is the introduction

of correlation length. In natural soil deposits, two points close to each other may

possess approximately the same values, while points widely spaced apart most likely

remain uncorrelated. Thus, the concept of spatial correlation length or scale of

fluctuation ( ) is deemed necessary to describe the distance within which the random

variables are correlated. A larger correlation length indicates that soil properties vary

more smoothly within the layer, while a smaller correlation length implies ragged

fluctuation of soil properties in the layer and thus soil is more heterogeneous (Van

der Have 2015). Since the in-situ experimental data are often scattered and limited,
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establishing a reliable spatial correlation length for a design parameter is a quite

challenging task. Consequently, it is highly recommended to perform parametric

study to determine the spatial correlation length with maximum risk or probability of

failure, referred to as the critical spatial correlation length. For example, referring to

the slope stability analysis results, reported in the literature (Allahverdizadeh et al.

2015; Li et al. 2017), the critical spatial correlation length was determined to be 0.5H

to 1H, where H is the height of slope. Moreover, in the other research studies reported

in the literature, the critical spatial correlation length for the block compression

problem was reported to be 0.1B to 2B, where B in the square block dimension

(Allahverdizadeh et al. 2016), and for shallow foundation bearing capacity, the

critical spatial correlation length was estimated to be between 2B and 10B, where B

is the width of the strip footing (Allahverdizadeh Sheykhloo 2015).

2.5 Summary and Gap Identification

In infrastructure projects constructed on top of soft soils, predicting the time-

dependent behaviour of soft soils is one of the most important challenges. There are

two schools of thought on predicting the time dependent settlement of soft soil,

namely Hypotheses A and B. Hypothesis A divides settlement into primary

settlement that occurs as excess pore water pressure dissipates, followed by

secondary compression settlement (explicitly related to creep) after the excess pore

water pressure has dissipated (Mesri 2003; Mesri et al. 1994). According to Yin and

Graham (1996), in Hypothesis B however, soil settlement is calculated based on a

constitutive model where primary consolidation and creep are considered

simultaneously.
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There are various constitutive models that support Hypothesis B for predicting

the time-dependent behaviour of soft soils classified into empirical models (Bjerrum

1967; Garlanger 1972; Kabbaj 1985; Suklje 1957; Taylor and Merchant 1940; Yin

and Graham 1989), rheological models (Aboshi 1973; Barden 1965; Gibson 1961;

Gibson and Lo 1961; Leroueil et al. 1985; Rajot 1993; Wahls 1962), and general

stress-strain models (Olszak and Perzyna 1966b; Perzyna 1963).

Among the existing models, the category of constitutive models developed by

Yin and co-workers is one of the widely accepted approaches to describe the time-

dependent behaviour of soft soils. Initially, Yin (1990) proposed a model based on

elastic visco-plastic (EVP) behaviour that applied a linear logarithmic function for

creep compression to provide an infinite creep settlement as time approaches infinity.

However, it is presumed that creep settlement will eventually cease after a very long

time when there are no more accessible voids to be compressed. On this basis, Yin

(1999) improved the proposed elastic visco-plastic (EVP) model by introducing a

non-linear creep function with a creep strain limit, but in order to calculate the creep

settlement of soft soil using the EVP model, the model parameters must be

determined in advance, which limits its practicality. There are several common

methods based on curve fitting to the experimental data to determine the model

parameters (Yin 1999; Yin and Graham 1994; Yin et al. 2002). These methods enable

the creep parameters to be obtained based on the data measured in the laboratory after

completing the primary consolidation stage. For multi-stage loading tests, the time

required for excess pore water pressure to dissipate (i.e. end of primary

consolidation) varies with the applied stress causing difficulties and uncertainties in

evaluating the visco-plastic parameters. This procedure may also violate the concept
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whereby the reference-time line may include a large viscous strain, particularly for

thicker soil samples or materials with a high creep rate such as organic soils.

To overcome the limitations of these curve fitting methods, an optimisation

method was proposed based on the trust-region reflective least square method in

which the model parameters are obtained simultaneously based on the test data, while

assuming a reference time parameter as the unit value (Le et al. 2017; Le et al. 2016).

Yin et al. (2017) also adopted an enhanced genetic algorithm to determine the creep

model parameters of soft soils based on an efficient optimisation method. Note that

when the experimental data are limited the curve fitting and optimisation methods

can lead to uncertainties in determining the visco-plastic parameters. Furthermore,

the main concern with determining the parameters in the optimisation methods is

finding the best fit between the predicted and observed experimental data, regardless

of the statistical characteristics, the measurements, and the model uncertainties. In

order to consider uncertainties in determining the model parameters, Zhou, Tan, et

al. (2018) adopted the Bayesian model class selection approach and the transitional

Markov Chain Monte Carlo (TMCMC) method to select the model and

corresponding model parameters best suited to predict the creep behaviour of soft

soil using laboratory measurements. In the research conducted by Zhou, Tan, et al.

(2018), the uncertainties of soil parameters were quantified via the posterior

probabilistic distributions that were obtained based on the Bayesian probabilistic

method. In this method, similar to traditional curve fitting and optimisation methods,

a limited set of experimental data was used to determine the creep parameters by

introducing significant uncertainties. Since it is not practical and cost-effective to

carry out long term creep tests to capture creep nonlinearities, the method proposed
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by Zhou, Tan, et al. (2018) can be used to determine the optimised creep parameters,

but while it will provide a probabilistic evaluation of model predictions based on the

given data, it will not address the uncertainties of model parameters due to the lack

of sufficient long term test data.

Furthermore, there are another source of uncertainties due to spatial variability

of soil parameters due to its inherent variability. Among the existing probabilistic

methods, random field analysis (RF) quantifies spatial variability of soil parameters.

In random field analysis (RF), introduction of a stablished spatial correlation length

is a quite challenging task due to the scattered and limited experimental data. Cho

(2007) and Javankhoshdel and Bathurst (2014) claimed that since the highest

probability of failure (PF) corresponds to an infinite spatial correlation length ( =
), it is not essential to perform random field analysis. In other words, they claimed

that the single random variable (SRV) method is adequate for conservative analysis,

in which soil properties are fully correlated and uniform across the site with randomly

selected values.  In contrast, recent studies undertaken by Li et al. (2017),

Allahverdizadeh et al. (2015), Jha and Ching (2013), and Griffiths et al. (2009)

confirmed that SRV method can result in over or under estimation of the probability

of failure. Therefore, RF analysis and determining the critical spatial correlation

length is deemed necessary in the absence of good quality data.

In this research, an elastic visco-plastic creep model is combined with the

Monte-Carlo probabilistic method to investigate the effects of uncertainties in the

elastic visco-plastic model parameters on time-dependent settlement and the

distribution of excess pore water pressure in soft soils under applied loads. The

impacts of spatially variable elastic visco-plastic model parameters on long-term
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settlement predictions are evaluated through random field analysis (RF) with

different spatial correlation lengths to determine the critical spatial correlation length.

The Bayesian updating method and transitional Markov Chain Monte Carlo

(TMCMC) algorithm are also adopted to update the visco-plastic model parameter

based on field monitoring data.
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3 Reliability Assessment for Time-Dependent
Behaviour of Soft Soils Considering Cross
Correlation between Elastic Visco-Plastic Model
Parameters

3.1 Introduction

This chapter presents an elastic visco-plastic creep model combined with the Monte-

Carlo probabilistic method. The proposed model incorporates multivariate copula

and nonlinear analysis to investigate the effects of uncertainties in the elastic visco-

plastic model parameters on one-dimensional (1D) time-dependent settlement and

the distribution of excess pore water pressure in soft soils under applied loads. It is

not practical and cost-effective to carry out long term creep tests to capture creep

nonlinearities and determine creep parameters. As a result, the elastic-plastic model

parameter ( / ) and creep coefficient ( / ) are considered as random variables

with lognormal distribution, while considering the cross correlation between these

two random variables. A case study based on the Väsby test data (a trial embankment

in Sweden) is used to obtain the deterministic and probabilistic parameters. The

proposed probabilistic analysis and corresponding numerical results are presented

and evaluated against field measurements so that a suitable cross correlation

coefficient between selected random variables can be recommended.
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This chapter also provides a practical insight into selecting the most suitable cross

correlation coefficient between elastic visco-plastic model parameters, while

adopting reliability-based design approach that captures the time-dependent

deformation of embankments and structures built on soft soils.

3.2 Adopted Elastic Visco-plastic Model

Yin (1999) applied the time-line concept proposed by Bjerrum (1967); it consists of

an instant time line, a reference time line, a limit time line, and a system of parallel

time lines to develop an elastic visco-plastic model for soils, as shown in Figure 3.1.

The vertical strain , at the effective stress , is generally calculated using

Equation (3.1):

= + + = +
(3.1)

where,  is the reference strain at the vertical effective stress , and =
+ ,  and  are the model parameters,  denotes the equivalent

time,  is the creep strain limit, /  is the elastic-plastic model parameter, /
is the initial creep parameter, and  is the specific volume. In this research, as Yin et

al. (2002) pointed out, the creep strain limit was assumed to be =  (where

is the initial void ratio); this corresponds to a condition where there are no more voids

left to compress and soil compression would cease.
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Figure 3.1 The time-line system including instant time line, reference time line, equivalent
time lines, and limit time line (data taken from Yin and Graham, 1996)

As Terzaghi (1941) recommended, the continuity equation for saturated soil

should be satisfied by aiming to obtain the coupled governing equations for vertical

strain and excess pore water pressure:

= (3.2)

where,  is the coefficient of hydraulic conductivity,  is the water unit

weight,  is the pore water pressure equal to sum of the excess pore water pressure

( ) and the initial equilibrium water pressure ( ),  is the depth,  is the vertical

strain, and  is the elapsed time. Referring to Yin and Graham (1996), by substituting

Equation (3.1) into Equation (3.2) and assuming is constant during consolidation

(i.e. = ), the following equations can be obtained:

For any ( , ) point below the limit time-line:
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= (3.3.a)

For any ( , ) point above the limit time-line:

=

+ 1 + 1 1 +
(3.3.b)

where, /  is the elastic model parameter, and  is the model parameter that

expresses the time value corresponding to the adopted reference time line. The

coefficient of volume compressibility = , and the consolidation coefficient= /( ), are depth and time dependent. Substituting Equation (3.3) into

Equation (3.2) and incorporating =  and = /( ) leads to the

following coupled partial differential equations:

= 1 ( , ) (3.4.a)

= + ( , ) (3.4.b)
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where

( , ) = 1 + 1 1 +
Similar to Yin and Graham (1996) and Le et al. (2017), the Crank-Nicolson

method is used to solve the partial differential equations so that the variations of

strains and excess pore water pressures with time and depth could be obtained. The

Crank-Nicolson method is based on the central difference and trapezoidal

approximation in space and time, respectively; this method is fully implicit and stable

without any need for a selected time step (Crank and Nicolson 1947). The following

equations illustrate the finite difference form of the above mentioned differential

equations for two-way drainage system; they are coded in MATLAB software in this

research:

0.5 ( , ) ( , ) + 1 + ( , ) ( , ) 0.5 ( , ) ( , ) =0.5 ( , ) ( , ) + 1 ( , ) ( , ) +  0.5 ( , ) ( , ) + ( , ) (3.5.a)

with ( , ) = ( )( , ) , ( , ) = ( )( , ) ( , ) , + ( ) ( )
( , ) = ( , ) + ( )( , ) ( , ) ( , ) ( , ) ( , ) +( , ) , (3.5.b)
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where  and  are time and depth increments, respectively. As Figure 3.2

shows, the subscript = 2, 3, … ,  indicates the variation in depth, and the subscript= 1, 2, … ,  describes the variation of time. The boundary conditions used in this

study are pervious at the top and bottom layers, as shown in Figure 3.2. By applying

a two-way drainage boundary condition, the tridiagonal matrix can be obtained to

solve Equation (3.5):

+ . .. + . .. + .. . . . . .. + .. . + .
=

. .. . .. .. . . . . .. .. . . + .
(3.6)

In order to obtain the ground surface settlement at time  by adopting the

vertical strain, the following equation is applied:

= ( ) (3.7)

where,  is the total depth of the soil layer.
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Figure 3.2 Adopted grid and boundary conditions of the Crank-Nicolson finite difference

3.3 Probabilistic Analysis

3.3.1 Adopted Probabilistic Method

It is common to adopt approximate reliability methods including, first order methods,

first order second moment reliability methods, responses surface methods and

Monte-Carlo simulation in engineering practice. As reported by Wang et al. (2019),

among different reliability analysis methods, Monte-Carlo simulation is

straightforward to use, and suitable for nonlinear and complex functions. The Monte-

Carlo simulation is a powerful technique that simulates uncertainties and stochastic

properties, using random values for each uncertain parameter in a model, and then

quantifies its probability density function. In this study, a series of probabilistic

analyses are carried out using the Monte-Carlo approach incorporating multivariate

data and nonlinear analysis relying on repeated random sampling to evaluate

uncertainties and risks in quantitative decision making.  The random variables

considered in this research are the elastic-plastic parameter ( ) and the initial creep

coefficient ( ), which are comparable to the conventional values of primary

compression ( ) and secondary compression coefficient ( ).
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The statistical characteristics of lognormally distributed random variables of/  and /  are the mean ( / , / ) and standard deviation ( / , / ). In

order to indicate the mean and standard deviation in terms of a dimensionless

parameter, the coefficients of the variations of selected random variables are

determined as follows (Baecher and Christian 2005):

= , ( = , ) (3.8)

The coefficient of variation ( ) indicates that the confidence level related

to uncertainties with input parameters, such that a high  expresses the low

confidence level of soil parameters and vice versa.

Since the selected random variables are non-negative, the elastic-plastic

parameter ( / ) and initial creep coefficient ( /  ) are assumed to be characterised

statistically by lognormal distribution having a simple relationship with normal

distribution, as recommended by Fenton and Griffiths (2002) and Liu et al. (2018).

The mean ( ) and the standard deviation ( ) of the transformed Gaussian

(normal) random variables /  and /   can be obtained as:

= {1 + ( ) } = ( ) , ( = / , / ) (3.9)

= {1 + ( ) }, ( = / , / ) (3.10)
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When the selected random variables /  and /  are correlated, it is implied

that the likelihood of the random variable /  occurring depends on the occurrence

of random variable / , hence establishing the joint cumulative density function

(CDF) of these two random variables is not straightforward. Referring to Feng and

Zhang (2020), the Gaussian copula function in the series of elliptical copulas were

adopted to generate correlated random variables. It is essential to determine the cross

correlation coefficient between two random variables in the Gaussian copula model.

For this purpose, two methods namely the Pearson and Kendall’s rank correlation

methods are adopted in this study to measure the selected random variables

dependency and the cross correlation coefficient. Referring to Nelsen (2007), the

covariance [ / , / ] and the Pearson cross correlation coefficient ( / , / )

can be introduced as follows:

[ / , / ] = 1 / / / / (3.11)

/ , / = [ / , / ]/ / (3.12)

where  is the number of samples.

The Kendall’s rank correlation coefficient is also adopted to measure/  and /  dependency. According to this method, the Kendall’s rank correlation

coefficient ( ) can be obtained as follows (Feng and Zhang 2020; Nelsen 2007):
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= ( ) , = 1, 2, … , (3.13.a)

=
1 / / / / > 01 / / / / < 0 (3.13.b)

The Kendall’s rank cross correlation coefficient ( / , / ) are derived from

 as expressed in Equation (3.14):

= 2 / , / (3.14)

In order to generate cross correlated random variables based on Gaussian

copula method, the probability density function ( , , ) of the  dimensional

multivariate normal distribution can be used, as recommended by Genz and Bretz

(2002):

( , , ) = 1| |(2 ) exp 12 ( ) ( )
(3.15)

where  is the number of random variables,  is the 1 ×  vectors of random

variables,  is the mean value, and  is a ×  symmetric positive definite matrix

of covariance. The diagonal elements of  consist of the variances for variables,

while the off-diagonal elements of  include the covariance between variables. In the
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next step, the generated random variables should be converted to the cumulative

density function with standard normal distribution ( . . = 0, = 1) as:

( ) = 1
(3.16)

where Z is a 1 ×  vector of correlated random variables with zero mean and

one standard deviation.

The following function is then applied to convert the generated cumulative

density function of cross correlated random variables with a standard normal

distribution to a lognormal distribution:

= ( ( )| , ) =
( ( ) ) ( = / , / ) (3.17)

where,  is the 1 × 2  vector of correlated random variables /   and / ,

 and  are the mean and the standard deviation of underlying normal distribution;

indeed they are obtained using Equation (3.9) and Equation (3.10).

Figure 3.3 summarises an adopted probabilistic method by a flowchart.

3.3.2 Adopted Case Study

Long term consolidation settlements beneath several test fills were monitored at

Väsby, Sweden (Chang 1981a). The Väsby study area is located near Uplands Väsby
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village, 30 km north of Stockholm on the east coast of Sweden. As Chang (1981a)

reported, these three test fills, including one with vertical drains and two without

vertical drains, were built in the Väsby area to study the long term behaviour of

Swedish clays by evaluating the suitability of the site for airport construction. The

first undrained test fill of gravel with a density of 1700 kg/m3, a height of 2.5 m, and

bottom dimensions of 30m×30m and slope of 1(V): 1.5 (H) was constructed in 1947

over 25 days. In this study, only the first 2.5 m high test fill, constructed with no

vertical drains, is investigated and discussed. The stress applied at the ground surface

due to the fill weight was 40.6 kPa and the mean water level was 0.8m below the

ground surface, with minor seasonal variations (Larsson and Mattsson 2003). Figure

3.4 shows that the 14 m deep subsoils in layers I, II, and III consist of post glacial

clays, while layer IV consists of glacial clay.
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Figure 3.3 Flowchart for probabilistic analysis of time-dependent behaviour of soft soils
based on EVP model



67

Figure 3.4 Subsoil layer for Väsby test fill (Data taken from Chang, 1981)

The properties of this soil, including the void ratio, the permeability, the water

content, the soil compressibility indices, the soil unit weight, and Atterberg limits,

are obtained by carrying out a series of laboratory investigations Chang (1981a).

Figure 3.5 shows the soil parameters, used for the numerical simulation, are based

on the laboratory test results, and included the void ratio, the soil unit weight, the soil

permeability, and the over consolidated ratio (OCR). To determine elastic visco-

plastic model parameters, the curve fitting methods are used (Le 2015; Yin 1999; Yin

and Graham 1994; Yin et al. 2002). As Figure 3.6 shows, model parameters such as

the initial creep coefficient ( / ) and the time independent elastic-plastic

parameters ( / , , and / ), are obtained using the results of the oedometer test

continuing after almost complete dissipation of excess pore water pressure (i.e. end

of primary consolidation).
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Figure 3.5 Deterministic adopted soil properties of Väsby test fill for numerical modelling
for Väsby test fill (a) initial void ratio (b) total unit weight (c) over-consolidated

ratio (d) permeability
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Figure 3.6 Oedometer test results of Väsby test (a) vertical strain versus time and (b)
vertical strain versus vertical effective stress (Data taken from Chang, 1981)
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probabilistic values. As Yin et al. (2002) proposed, the creep strain limit ( ) is

determined based on the initial void ratio, to be equal to .

To obtain the initial creep coefficient ( /  ) and also cover uncertainties

stemming from the methods of interpretation, a method based on the conventional

approach proposed by Yin (1999) is adopted. The procedure for determining the

initial creep coefficient ( /  ) and the creep strain limit ( ) begins with selecting

the Yin model parameter . In this study,  is the time when the excess pore water

pressure in the small laboratory sample has almost completely dissipated, so any

further strain beyond this time would be due to creep only. To determine the creep

parameters, Equation (3.1) is rearranged to obtain Equation (3.18), and this yielded

a linear function, where = + , in which  is the inverted values of the initial

creep coefficient ( / ), and  and  are equal to  and ,

respectively.

= 1 + 1 +
(3.18)

where,  is the creep time determined by subtracting the loading time from

the end of primary compression time ( ) for the small laboratory sample.

By referring to the values reported in Table 3.2, the mean and coefficient of

variation for the initial creep coefficient ( / ) are determined to be 0.0135 and 0.3,

respectively.
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Two methods are used to determine the elastic-plastic parameter ( / ) and the

elastic-visco plastic model parameter ( ).  In the first method, referring to Yin

(1999), the slope of vertical strain versus vertical effective stress (semi-logarthmic

scale) is used as the slope of the reference time-line (i.e. / ). In the second method,

to define the reference time line parameters, Equation (3.1) is used by assuming that

the reference point equals the point where the excess pore water pressure has almost

completely dissipated. Referring to Yin and Graham (1994), it is convenient to select

a point where =  and = 0, so the elastic-plastic parameter ( / ) could be

defined Equation (3.19):

= + (3.19)

where,  and  are the vertical strain and effective stress at the reference

point known and obtained from the oedometer test results, respectively.

Another loading stage is then selected in the normally consolidated range and

called point 2. The vertical strain at point 2 due to the effective stress at this stage

( ) is defined based on Equation. (3.20):

= + 1 + +
(3.20)
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where,  denotes the equivalent time at stage 2,  is the initial creep

coefficient determined at stage 2, and the creep strain limit ( ) is constant and equal

to .

In Equation (3.20), the equivalent time at stage 2 ( ), the elastic-plastic

parameter ( / ), and the elastic-visco plastic model parameter ( ) are unknown

parameters. By defining the equivalent time at stage 2 ( ), the elastic-plastic

parameter ( / ) and the elastic-visco plastic model parameter ( ) can be obtained

using Equation (3.19) and (3.20). Referring to Le et al. (2017), the equivalent time at

stage 2 ( ) can be defined via an intermediate and instant elastic point under the

effective stress increments from stage 1 to stage 2. This point is called point 2  and

the vertical strain at this point can be obtained based on Equation (3.21):

= + = +
(3.21)

By rearranging Equation (3.21), the value of  is computed as follows:

= +
1 + (3.22)

The total loading time required for stress increment is from point 2  to point 2

because the stress increment from point 1 to point 2  is time-independent.
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Consequently, the equivalent time at stage 2 ( ) is calculated based on Equation

(3.23):

= +
= +

1 + + (3.23)

where,  is the loading time at stage 2.

Substituting Equation (3.23) into Equation (3.20) forms an equation with two

unknowns ( /  and ); this equation can then be combined with Equation (3.19)

to yield a system of two equations and two unknowns.

A set of data for the elastic-plastic parameter ( / ) and the elastic-visco plastic

model parameter ( ) is obtained by adopting the above-mentioned methods. Note

that since the reference time line parameters ( and / ) are interdependent, a

relationship between the elastic-plastic parameter ( / ) and the elastic-visco plastic

model parameter ( ) must be found so that by generating random values for the

elastic-plastic parameter ( / ) the corresponding elastic-visco plastic model

parameter ( ) could be determined. This is why the regression analysis to find the

best fit curve with minimum error is adopted. As can be seen in Table 3.2, the

logarithmic regression can be considered as the most appropriate curve fitting

between the elastic-plastic parameter ( / ) and the elastic-visco plastic model

parameter ( ). Furthermore, to have a larger range of data for the elastic-plastic
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parameter ( / ), a set of data such as the compression index ( = 10), as

calculated by Perrone (1998) from 24-hour oedometer tests, is adopted; these values

are summarised in Table 3.1.

Table 3.1 Adopted values for  and /  based on oedometer test results

Layer Number
Disturbed Sample Undisturbed Sample

Notes/ /
I 0.4 0.17 0.51-0.74 0.22-0.32

Data taken from

Perrone (1998)

II 0.4-0.6 0.17-0.26 0.36-0.74 0.16-0.32

III 0.6 0.26 0.36-0.74 0.16-0.32

IV 0.55 0.24 0.36 0.16

Random variables and corresponding statistical properties such as the mean

and standard deviation, and the cross correlation coefficient generated by existing

data, are presented graphically in Figure 3.7. The deterministic and random model

parameters, and the corresponding statistical properties, are summarized in Table 3.2.

Table 3.2 reveals that the calculated ratio of /  is 0.06, which is similar to the

corresponding ratio of = 0.06 for the undisturbed Väsby clay reported by Mesri

and Choi (1985). Mesri (2003) further pointed out that the secondary compression

can be predicted by adopting the creep ratio , which is a constant ratio for each

soil. This ratio varies with the type of soil between 0.025 and 0.1 based on the data

collected by Mesri and Godlewski (1977b) for some natural soil deposits. Therefore,

the elastic-plastic parameter ( / ) and the initial creep coefficient ( / ) should be

considered as correlated random variables. The cross correlation coefficient between/  and /  are determined by adopting both Pearson and Kendall’s rank method
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as discussed in Section 3.3.1. Figure 3.7 shows that based on the existing data, the

calculated cross correlation coefficient between the elastic-plastic parameter ( / )

and the initial creep coefficient ( / ) is 0.5; however, since the existing number of

oedometer test results might not be sufficient to generate a more precise cross

correlation coefficient, a parametric study is carried out to investigate the most

suitable cross correlation coefficient by comparing the predicted results with the

measured field data.

Figure 3.7 Generated random variables of elastic-plastic parameter ( / ) and initial creep

coefficient ( / )

Table 3.2 Adopted deterministic and probabilistic model parameters for Väsby test fill

Model

parameter
Type Mean ( )

Coefficient of

Variation ( )
Distribution

/ random 0.22 0.25 Lognormal/ random 0.0135 0.3 Lognormal( ) deterministic = 33 ln( / ) + 85 - -/ deterministic 0.0177 - -( ) deterministic 12000 - -
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3.4 Results and Discussion

Time-dependent settlement is usually a key concern when constructing on top of soft

soils due to the risks associated with excessive post-construction settlement and

instability. Therefore, the uncertainties related to model parameters in predicting

time-dependent deformation must be quantified by a simple and understandable

procedure. The first step in this study is to carry out an array of probabilistic analysis

with the elastic-plastic and creep model parameters ( /   , / ) as random

variables to obtain a range of possible time-dependent settlements for the Väsby test

fill built on soft soil. Then the influence of the cross correlation coefficient between

the elastic-plastic parameter ( / ) and the initial creep coefficient ( / ) are

evaluated by considering these parameters as random variables correlated with

different degrees, then the settlement and excess pore water pressure are compared

with the field measurements.

3.4.1 Influence of Uncertainties in /  and /  on Predicted Time-dependent
Deformations

A set of predicted ground surface settlement of Väsby test fill at different time stages

are obtained from Monte-Carlo simulations by capturing uncertainties in the elastic-

plastic model parameter ( / ). To ensure that the proposed probabilistic method

would be efficient and reliable, the sensitivity of the results to the number of Monte-

Carlo simulations must be evaluated. For this purpose, the optimal number of Monte-

Carlo simulations is presumed to be the minimum number of simulations that will

result in convergence in the standard deviation of the ground surface settlement.

Figure 3.8 shows the standard deviation of ground surface settlement versus the

number of Monte-Carlo simulations that correspond to the various consolidation
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times such as PCY5, PCY10, PCY20, PCY40, and PCY56 (Note: PCY means post

construction time in years). It can be concluded from the above mentioned

convergence curves that standard deviation remains almost unchanged when there

are more than 1000 simulations. Based on the simulation results, the probability

density function of ground surface settlement at different times is shown in Figure

3.9, when / = 0.22 and / = 25% is considered. As Figure 3.9 depicts, by

increasing the time, the mean value and the standard deviation of time-dependent

ground surface settlement increase. These results indicate that the probability density

function of ground surface settlement becomes more scattered over time because the

uncertainties in the predicted time-dependent ground surface settlement gradually

accumulate with time.

Figure 3.10 shows the variation of the mean and the standard deviation, and the

coefficient of variation for predicted ground surface settlement with time. Figure 3.10

also indicates that the mean value and standard deviation of ground surface

settlement gradually increase over time. The effect of uncertainties in elastic-plastic

model parameter ( / ) over time are evaluated using the coefficient of variation

(COV).  Figure 3.10 shows how the coefficient of variation decreases over time from

0.19 to 0.10, thus indicating that as consolidation progresses the uncertainties in the

elastic-plastic model parameter ( / ) have less impact on the uncertainties in the

predicted time-dependent ground surface settlement. This observation is due to the

fact that the elastic-plastic model parameter ( / ) is the model parameter for

predicting the elastic-plastic strain, which occurs at initial stages of consolidation. As

a result, the contribution of ( / ) to the predicted long-term settlement decreases

with time.
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Figure 3.8 Convergence of the number of simulations for the surface settlement considering
the elastic-plastic parameter ( / ) as random variable

Figure 3.9 Probability distribution of surface settlement at different post construction years
(PCY) considering the elastic-plastic parameter ( / ) as a random variable

0 500 1000 1500 2000
0.00

0.05

0.10

0.15

0.20

0.25

COV V)=25%
V)=0.22

St
an

dr
ad

 D
ev

ia
tio

n 
of

 S
ur

fa
ce

 S
et

tle
m

en
t (

m
)

Number of Simulations

 PCY=5 yrs
 PCY=10 yrs
 PCY=20 yrs
 PCY=40 yrs
 PCY=56 yrs

0.5 1.0 1.5 2.0 2.5 3.0 3.5
0

1

2

3

4

5

Pr
ob

ab
ili

ty
 D

en
si

ty
 F

un
ct

io
n 

(P
D

F)

Surface Settlement (m)

 PCY= 5 yrs
 PCY= 10 yrs
 PCY= 20 yrs
 PCY= 40 yrs
 PCY= 56 yrs

COV V)=25%
V)=0.22



79

Figure 3.10 Statistical dispersions of surface settlement versus post construction time
considering the elastic-plastic parameter ( / ) as random variable (a) mean, (b)

standard deviation and (c) coefficient of variation
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To evaluate the influence of uncertainties that the initial creep coefficient

( / ) has on time-dependent deformation, the optimal number of Monte-Carlo

simulations should be established while considering the initial creep coefficient

( / ) as a random variable.  Figure 3.11 shows the standard deviation curves of

ground surface settlement for various consolidation periods, predicted with respect

to the number of simulations. In this instance, the standard deviation remains

approximately constant after 1000 Monte-Carlo simulations, so 2000 Monte-Carlo

simulations are used in the follow up analyses for the sake of computational

efficiency and accuracy. A probability analysis is also carried out to obtain a set of

predicted time-dependent ground surface settlements, while capturing any

uncertainties related to determining the initial creep coefficient ( / ). Figure 3.12

shows the probability density function of time-dependent ground surface settlement

at different time stages by adopting / = 0.0135 and / = 30%. This shows

that the mean and standard deviation of predicted surface deformations gradually

increase with time. Figure 3.13 (c) shows that the level of confidence for ground

surface settlement decreases with time, which indicates that uncertainties in the time-

dependent ground surface settlement increase over time when the initial creep

coefficient ( / ) is considered as a random variable. Since the initial creep

coefficient ( / ) is the main model parameter contributing to the creep settlement,

it can be concluded that, the uncertainties in predicting long-term settlement of soft

soils increase with time. Moreover, comparing Figure 3.10 (c) with Figure 3.13 (c)

shows that as consolidation progresses, the level of confidence for the predicted

ground surface settlement depends more on uncertainties in the initial creep

coefficient ( / ), unlike the corresponding feature for the elastic-plastic model
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parameter ( / ); this indicates a higher contribution of /  uncertainties in

predicting settlement over the long term.

Figure 3.11 Convergence of the number of simulations for the surface settlement considering
the initial creep coefficient ( / ) as random variable

Figure 3.12 Probability distribution of surface settlement at different post construction years

(PCY) considering the initial creep coefficient ( / ) as random variable
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Figure 3.13 Statistical dispersions of surface settlement versus post construction time
considering the initial creep coefficient ( / ) as random variable (a) mean, (b)

standard deviation and (c) coefficient of variation
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3.4.2 Influence of the Cross Correlation Coefficient between /  and /  on
PDFs of Time-dependent Settlement

Figure 3.14 shows how the cross correlation coefficient between the elastic-plastic

model parameter ( / ) and the initial creep coefficient ( / ) impacted on the

probability density function (PDFs) of the predicted ground surface settlement at

PCY5, PCY10, PCY20, PCY40, and PCY56. Figure 3.14 also indicates that the cross

correlation coefficient between the initial creep coefficient ( / ) and the elastic-

plastic model parameter ( / ) has a significant effect on the time-dependent ground

surface deformation of soft soil in the Väsby test fill. Table 3.3 provides the statistical

properties of ground surface settlement at different time steps for various cross

correlation coefficients. Note here that when the elastic-plastic model parameter

( / ) and the initial creep coefficient ( / ) are fully correlated (i.e. = 1), the

standard deviation and the coefficient of variation of surface settlement exceeds the

corresponding values for uncorrected random variables (i.e. = 0). As a

consequence, the uncertainties in predicting settlement increase as the cross

correlation coefficient between /  and /  increased, thus reducing the level of

risk. Moreover, by comparing the interval between the maximum and minimum

values (range) of soil surface settlement, it can be concluded that when the cross

correlation coefficient increased, the range is wider. This observation indicates that

time-dependent ground surface settlement would be more scattered and the

maximum predicted settlement would slightly over predict settlements when = 1
is adopted.
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Figure 3.14 Influence of cross correlation coefficient between the elastic-plastic parameter
(�/�) and the initial creep coefficient (�0/�) for various time stages (a) PCY5,

(b) PCY10, (c) PCY20, (d) PCY40 and (e) PCY56
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Table 3.3 Statistical properties of surface settlement at different time steps for various cross

correlation coefficients between the elastic-plastic parameter ( / ) and the initial creep

coefficient ( / )

PCY
(years)

( , ) Mean

(m)

Standard

deviation

(m)

Coefficient

of variation

(%)

Minimum

Settlement,

Smin (m)

Maximum

Settlement,

Smax (m)

Range

 (Smax - Smin)

 (m)

56

0 2.34 0.32 0.14 1.51 3.71 2.2

0.5 2.34 0.39 0.17 1.25 4.35 3.1

1 2.33 0.45 0.19 1.12 5.33 4.22

40

0 2.10 0.29 0.14 1.32 3.40 2.08

0.5 2.10 0.35 0.17 1.13 4.02 2.89

1 2.09 0.40 0.19 0.99 4.92 3.93

20

0 1.58 0.22 0.14 0.91 2.74 1.83

0.5 1.58 0.27 0.17 0.84 3.29 2.45

1 1.58 0.31 0.20 0.72 4.03 3.31

10

0 1.12 0.17 0.15 0.61 2.09 1.48

0.5 1.11 0.21 0.19 0.57 2.56 1.99

1 1.11 0.23 0.21 0.49 3.17 2.67

5

0 0.76 0.13 0.17 0.41 1.55 1.15

0.5 0.76 0.15 0.20 0.38 1.93 1.57

1 0.76 0.17 0.22 0.33 2.40 2.07

The statistical dispersion of surface settlement for various cross correlation

coefficients between the elastic-plastic model parameter ( / ) and the initial creep

coefficient ( / ) are shown in Figure 3.15. As expected, the mean value of

predicted surface settlement is almost constant for the different cross correlation

coefficients adopted in this study. Indeed, the slight differences observed in the
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predicted mean could be due to a computational approximation in generating random

numbers. Moreover, in the case of non-correlated random variables (i.e. = 0), the

standard deviation of surface settlement at PCY56 is about 0.26 m, while the

corresponding value for fully correlated random variables (i.e. = 1) is about 0.37

m, which shows the difference in the dispersion of the predicted ground surface

settlement.  Furthermore, the coefficient of variation for predicted surface settlement

for fully correlated random variables (i.e. = 1) is 0.185 which is higher than the

corresponding 0.13 for non-correlated (i.e. = 0) or 0.16 for partially correlated

random variables (i.e. = 0.5). This result indicates higher uncertainties in

settlement prediction when the random variables are fully correlated. In Figure 3.15

(c), the results confirm that when the adopted random variables /  and /  are

fully correlated (i.e. = 1), the confidence level of settlement prediction is rather

low ( = 0.19 at PCY56 as shown in Table 3). However, when the random

variables are assumed fully correlated (i.e. = 1), the predicted settlements captured

a wider range, thus leading to a more reliable design and a more conservative

assumption in the absence of adequate input data.
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Figure 3.15 Statistical dispersions of surface settlement versus post construction time
considering various cross correlation coefficients ( ) between the elastic-plastic
parameter ( / ) and the initial creep coefficient ( / ) (a) mean, (b) standard

deviation and (c) coefficient of variation
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3.4.3 Comparison of Settlement Predictions with Field Measurements

In order to address the potential measurement of uncertainties, a wide range of field

measurements at different depths and the field measurements of excess pore water

pressures (EPWP) at PCY21 and PCY30 are adopted and compared with predictions.

Two different settlement plates were installed in the Väsby test fill to monitor ground

surface and sub-ground settlement. As described by Chang (1981a), settlement plates

consisted of square steel plates with a perpendicular welded rod to measure ground

surface settlements and installed directly below the embankment fill. Screw type

settlement markers with a vertical steel rod were used to monitor sub-ground

settlement at depths of 2.5 m, 5.0 m, and 7.5 m. A flexible sleeve was used to protect

the steel rod from soil hanging during settlement. Perrone (1998) reported that field

measurements were made regularly from 1947 until the mid-1950’s. Note here that

the settlement markers in sub-ground layer malfunctioned over time so the

distribution of settlement with depth was calculated from changes in the water

content from 1967 to 2002 (Chang 1981a; Perrone 1998).

The values of the characteristics in the probabilistic analysis should be labelled

as ‘lower bound’ (LB), ‘most probable’ (MP), and ‘upper bound’ (UB); which is why

the mean of the calculated settlements was considered to be the most probable value

(MP). To define the upper and lower bounds, boundaries with a 95% confidence

interval (CI) were used, as recommended by Zhou, et al. (2018) and Muhammed et

al. (2020); these upper and lowers boundaries for lognormal distribution correspond

to approximately ± 1.96  (where  is the mean and  is the standard deviation

of predicted settlement, respectively). Figure 3.16 to Figure 3.19 show a comparison

between data for settlement measured at different depths in the field with the mean
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value, and the boundaries of 95% CI. This took place while investigating the impact

made by the cross correlation coefficient on the elastic-plastic model parameter

( / ) and the initial creep coefficient ( / ). According to Figure 3.16 to Figure

3.19, all the field settlements are located between the lower bounds (i.e. 1.96 )

and upper bounds (i.e. + 1.96 ) of predicted settlement for all the cross

correlation coefficients between the elastic-plastic model parameter ( / ) and the

initial creep coefficient ( / ); thus confirming the reliability of the predictions.

However, Figure 3.16 shows that the settlement measured at surface is located

between the predicted mean values and lower bound. Evidently, by performing

deterministic analysis and only considering the mean value of input data, the

predicted surface settlement would be more than what actually occurred in the field,

thus leading to overestimated predictions. It is therefore recommended that a

probabilistic analysis which includes uncertainties and engineering judgment should

be carried out when a more economical prediction of time dependent settlement is

required. Figure 3.17 shows that at a depth of 2.5 m, the data measured earlier (before

15 years) are between the mean value and upper bound values, whereas at later stages

the predictions are between the mean and lower bound values (i.e. + 1.96 ).

Figure 3.18 shows that at a depth of 5.0 m, settlement measured after 5 years is

between the mean and upper bounds (i.e. + 1.96 ) for all adopted cross

correlation coefficients; this is closer to the case where random input variables are

not correlated (i.e. = 0). Note here that the reported field monitoring is not smooth

and consistent due to seasonal and environmental effects. Figure 3.19 shows that at

lower depths (i.e. 7.5 m deep), the field measurements agree with the mean values

and are between the mean values and upper bound. Therefore, at lower depths, the
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field measurements are generally located between the mean value and upper bounds

(i.e. + 1.96 ), while at the surface the opposite trend is observed and the field

measurements are between the mean values and lower bounds (i.e. 1.96 ) of

predicted settlement for all the cross correlation coefficients.

Figure 3.16 Comparison of measured and predicted settlement with 95% confidence interval
considering various cross correlation coefficients ( ) between the elastic-plastic

parameter ( / ) and the initial creep coefficient ( / ) at ground surface

Figure 3.17 Comparison of measured and predicted settlement with 95% confidence interval
considering various cross correlation coefficients ( ) between the elastic-plastic

parameter ( / ) and the initial creep coefficient ( / ) at depth of 2.5 m
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Figure 3.18 Comparison of measured and predicted settlement with 95% confidence interval
considering various cross correlation coefficients ( ) between the elastic-plastic

parameter ( / ) and the initial creep coefficient ( / ) at depth of 5.0 m

Figure 3.19 Comparison of measured and predicted settlement with 95% confidence interval
considering various cross correlation coefficients ( ) between the elastic-plastic

parameter ( / ) and the initial creep coefficient ( / ) at depth of 7.5 m
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3.4.4 Discrepancy Evaluation

Various factors contribute to uncertainties in settlement and deviations from the field

measurements. Obviously, uncertainties in random input variables lead to

uncertainties in predicting settlement (output), and discrepancies between settlement

predictions and measurements can also be attributed to the model uncertainties used

to predict settlement. To evaluate the performance of the cross correlation coefficient

between selected random variables (i.e. /  and / ), a quantitative comparison

must be made between the predictions and field measurements. This is why the three

indicators that are commonly used to evaluate discrepancy, namely the root mean

square error ( ) index, the mean absolute error ( ), and the coefficient of

determination ( ), are adopted in this study.

= (3.24)

= (3.25)

= ( ) ( ) (3.26)

where,  and  are the measured and predicted values, respectively and

stands for the number of available data. Indeed, lower values of  and  or

higher  values indicate better compliance and agreement between the numerical

predictions and field measurements.

As discussed earlier and as shown in Figure 3.16 to Figure 3.19, the mean value

of the predicted settlement is almost the same for all the cross correlation coefficients

adopted, and the field measured settlements are positioned between the upper and
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lower bounds (i.e. ± 1.96 ). Therefore, to evaluate any errors in the values of

predicted settlement for different cross correlation coefficients, the mean, upper

bound, and lower bound values are utilised. Table 3.4 summarises the corresponding

indicators to compare the most probable (i.e. MP) upper bound (i.e. UB) and lower

bound (i.e. LB) settlement predictions with the measured data for various cross

correlation coefficients.  According to the indices presented in Table 3.4, the mean

values of the error indicators  and  for adopted 95% confidence interval

at different depths (i.e.  and ) are lower for the non-correlated random

variables (i.e. = 0), and thus confirm a better agreement with the field

observations. Therefore, by referring to the common statistical measures to calculate

error, it is evident that the predicted settlements better conform to data measured in

the field when the selected random variables (i.e. /  and / ) are assumed to be

non-correlated (i.e. = 0). Moreover, the error indicators at depth were less than the

surface values for all adopted cross correlation coefficients, because the surface

settlement is an accumulation of settlement of all the sub-layers below, where the

errors also accumulated. To further discuss this increase in error from the depth to

the surface, the variations of mean, standard deviation and the coefficient of variation

with depth at PCY56 and PCY20 are plotted for the different cross correlation

coefficients as shown in Figure 3.20. As expected, the mean predicted settlements

increase from depth of 14 m to the surface, but they are rather independent of the

cross correlation coefficients. Moreover, the standard deviation of the predicted

settlement decreases with depth for all the cross correlation coefficients adopted, thus

confirming that at the surface the uncertainties of settlement prediction is an

accumulation of the uncertainties in the sub-layers. Figure 3.21 (c) however shows
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that the coefficient of variation (i.e. COV) only changes slightly with rather minor

variations between PCY56 and PCY20. However, the highest confidence level of

settlement prediction (i.e. the minimum value of COV) occurs around the middle of

soil layer because the maximum strains occur near the drainage boundaries, which

results in more uncertainties in settlement prediction at the upper and lower depths

and less uncertainties in the middle layers (i.e. furthest away from the drainage

boundaries) due to least excess pore water pressure dissipation rate. As explained

earlier, by adopting fully correlated random variables (i.e. = 1 between /  and/ ), the standard deviation and coefficient of variation (i.e. COV) are the largest,

irrespective of the depth or the consolidation time.

It is important to mention that while evaluating errors using , , and

, the absolute distance between the predicted and measured data can be

determined, but since an underestimated settlement prediction can lead to an unsafe

analysis, a criterion is needed to evaluate whether all the predicted settlements are

equal to or more than the measured settlements. For this purpose, a prediction bias

or settlement error can be represented by the settlement ratio ( ), which is defined

as the ratio of predicted settlement to measured settlement:

=
(3.27)

where  and  are the predicted and measured settlement values at

depth . In fact, an  value of more than unity (i.e. > 1) indicates a

conservative and thus overestimated prediction, otherwise they are underestimated.

Figure 3.21 to Figure 3.24 show the settlement ratio versus time for predicted

settlements at different depths and for various cross correlation coefficients. It is
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worth mentioning that since the 1.96  (i.e. LB) values of predicted settlement

were less than the measured data, this comparison is made between  (i.e. MP) and+ 1.96  (i.e. UB).

At the ground surface (Figure 3.21), the settlement ratio vs time ( )

curve is above 1 for the mean and upper bound settlement predictions for all the cross

correlation coefficients adopted. It should be noted that an ideal value for the

settlement ratio is 1, where the predicted and measured settlements match the ideal

conditions but without any uncertainties in data gathered during field monitoring, or

input parameters and modelling procedures. Hence, by referring to Muhammed et al.

(2020) and Liu et al. (2018), in the presence of uncertainties, it is better to adopt a

settlement ratio more than one. However, when the settlement ratio is more than one,

the predicted settlement is more conservative but less economical. Figure 3.21 shows

that although the settlement ratio for the upper bounds of predicted settlement is more

than one for various cross correlation coefficients, the ground surface settlement ratio

 for the case where the random variables are not correlated (i.e. = 0), is less

than the corresponding values for partially (i.e. = 0.5) and fully correlated (i.e. =1) input random variables. In other words, when the elastic-plastic model parameter

( / ) and the initial creep coefficient ( / ) are fully correlated (i.e. = 1), the

predicted settlement is on conservative side. Figure 3.22 to Figure 3.24 indicate that

the settlement ratios at  depths of 2.5 m, 5.0m and 7.5m (i.e. . , . , and . ),

are close to but less than one for the mean values of predicted settlement, which is

considered to be aggressive in the presence of uncertainties. However, for all adopted

cross correlation coefficients, . , . , and .  for the upper bound predictions

are more than one; thus indicating conservative and rather reliable predictions.
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Therefore Figure 3.21 to Figure 3.24 show that as the cross correlation coefficients

between the random variables /  and / increase, the settlement ratio increases,

resulting in more conservative and thus safer predictions.
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Table 3.4 Summary of settlement indicators for all adopted cross correlation coefficients ( )

between the elastic-plastic parameter ( / ) and the initial creep coefficient ( / )

Cross
Correlation
Coefficient

Indicator Boundaries at Surface at 2.5 m
depth

at 5.0 m
depth

at 7.5 m
depth

=

1.96 0.29 0.3 0.25 0.25
0.17 0.08 0.06 0.03+ 1.96 0.61 0.41 0.15 0.15

Mean of RMSE 0.36 0.26 0.16 0.161.96 0.27 0.27 0.2 0.240.15 0.07 0.05 0.03+ 1.96 0.57 0.36 0.13 0.19
Mean of MAE 0.33 0.25 0.13 0.151.96 0.95 0.93 0.97 0.920.99 0.99 0.99 0.99+ 1.96 0.82 0.88 0.91 0.95

Mean of R2 0.92 0.93 0.96 0.95

= .

1.96 0.39 0.37 0.30 0.290.17 0.08 0.07 0.03+ 1.96 0.71 0.48 0.19 0.23
Mean of RMSE 0.42 0.31 0.19 0.191.96 0.36 0.34 0.23 0.280.15 0.07 0.05 0.03+ 1.96 0.65 0.42 0.17 0.23
Mean of MAE 0.39 0.30 0.15 0.181.96 0.93 0.90 0.87 0.880.99 0.99 0.99 0.99+ 1.96 0.76 0.83 0.94 0.92

Mean of R2 0.89 0.91 0.94 0.93

=

1.96 0.47 0.42 0.33 0.330.17 0.08 0.07 0.04+ 1.96 0.79 0.53 0.23 0.27
Mean of RMSE 0.48 0.34 0.21 0.211.96 0.43 0.38 0.26 0.320.15 0.07 0.05 0.03+ 1.96 0.73 0.47 0.19 0.26
Mean of MAE 0.44 0.33 0.17 0.211.96 0.89 0.87 0.84 0.850.99 0.99 0.99 0.99+ 1.96 0.70 0.79 0.92 0.90

Mean of R2 0.86 0.87 0.92 0.92
Note:  is the root mean square error,  denotes the mean absolute error, and  is
the coefficient of determination.
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Figure 3.20 Statistical dispersions of settlement versus depth at PCY56 and PCY20
considering various cross correlation coefficients ( ) between the elastic-plastic
parameter ( / ) and the initial creep coefficient ( / ) (a) mean, (b) standard

deviation and (c) coefficient of variation
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Figure 3.21 Settlement ratio versus time at ground surface for various cross correlation
coefficients ( ) between the elastic-plastic parameter ( / ) and the initial creep

coefficient ( / )

Figure 3.22 Settlement ratio versus time at depth of 2.5 m for various cross correlation
coefficients ( ) between the elastic-plastic parameter ( / ) and the initial creep

coefficient ( / )
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Figure 3.23 Settlement ratio versus time at depth of 5.0 m for various cross correlation
coefficients ( ) between the elastic-plastic parameter ( / ) and the initial creep

coefficient ( / )

Figure 3.24 Settlement ratio versus time at depth of 7.5 m for various cross correlation
coefficients ( ) between the elastic-plastic parameter ( / ) and the initial creep

coefficient ( / )
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Table 3.5 shows the risk associated with unsatisfactory settlement prediction

while considering /  and /  as random variables. The risk can be assessed by

determining the probability that the field measurements exceed the design values. In

this risk analysis, the cost of repair or maintenance is assumed $10M. As can be

concluded from Table 3.5, when /  and /  are considered fully correlated (i.e.= 1), the risk of unsatisfactory prediction is the lowest at all different post-

construction times which resulted in safer design.

Table 3.5 Risks associated with unsatisfactory prediction for all adopted cross correlation

coefficients ( ) between the elastic-plastic parameter ( / ) and the initial creep

coefficient ( / )

PCY5 PCY10 PCY20 PYC40 PCY56

Probability of

Exceedance

= 0.53 0.55 0.73 0.77 0.81= . 0.5 0.53 0.69 0.71 0.75= 0.48 0.5 0.66 0.69 0.72

Risk ($M)

= 5.3 5.5 7.3 7.5 8.1= . 5.0 5.3 6.9 7.1 7.5= 4.8 5.0 6.6 6.9 7.2

3.4.5 Assessment of Excess Pore Water Pressure

As well as predicting settlement, predicting excess pore water pressure plays an

important role in investigating the long-term behaviour of soft soils because it affects

the stress, stiffness, and shear strength of soil.  Therefore, the field measurements of

excess pore water pressures (EPWP) at PCY21 and PCY30 are compared with

predictions in Figure 3.25. The Figure shows the predicted upper and lower bounds

of excess pore water pressures ± 1.96  (boundaries for 95% confidence
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interval) which are obtained while considering different cross correlation coefficients

between /V and / . Figure 3.25 shows that 21 years and 30 years post

construction of the embankment on Väsby clay, the mean values of predicted EPWP

for all cross correlation coefficients indicate discrepancies from measured data, but

when the probabilistic approach is adopted and a reliability analysis is carried out the

predicted excess pore water pressures are between the upper bound (i.e. +1.96 ) and lower bound (i.e. 1.96 ). This observation highlights the

significance of carrying out a probabilistic analysis while predicting the excess pore

water pressure profile.

Figure 3.25 shows that unlike the settlement prediction, the dispersion of

excess pore water pressure when the elastic-plastic model parameter ( / ) and the

initial creep coefficient ( / ) are non-correlated random variables (i.e. = 0), is

much higher than the corresponding observations for fully-correlated random

variables (i.e. = 1); this is due to the fact that the remaining excess pore water

decreases as settlement increases. Hence, with non-correlated random variables (i.e.= 0), the excess pore water pressure covers a wider range, and envelopes all the

data measured at PCY21 and most of the data measured at PCY52. Figure 3.26 shows

the statistical properties of predicted excess pore water pressure at PCY21 and

PCY30 for different cross correlation coefficients between /  and / . As

expected, the mean predicted EPWP for different adopted cross correlation

coefficients is almost the same, but the standard deviation and coefficient of variation

of predicted EPWP are higher for the non-correlated random variables (i.e. = 0),

followed by partially correlated (i.e. = 0.5) and then fully correlated (i.e. = 1)

cases. This indicates that non-correlated random variables (i.e. = 0) could result in
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more uncertainties in the predicted excess pore water pressure predictions. In Figure

3.26 (c ), the coefficient of variation (COV) for the predicted EPWP decreases with

depth and achieves a minimum value at the mid-depth because the rate of excess pore

water pressure variations is least in the mid-depth (for two-way drained condition)

and there are more strains closer to the drainage boundaries resulting in more

uncertainties in strain predictions. Since excess pore water pressure and strain are

inter-related variables, higher uncertainties in EPWP prediction can lead to higher

uncertainties in predicted strain. As a result the uncertainties in EPWP prediction is

much higher (COV is higher) closer to the drainage boundaries than the mid-depth

layers. Figure 3.27 shows the statistical dispersions of predicted EPWP over time for

different adopted cross correlation coefficients between the selected random

variables (i.e. /  and / ). Here the coefficient of variation (COV) for the

predicted excess pore water pressure increases with time, which confirmed that errors

and uncertainties in predicting excess pore water pressure accumulate as soil

consolidates. Moreover, during consolidation the uncertainties in predicting excess

pore water increase as the cross correlation coefficient, decreases, which indicates a

lower confidence level in predicting EPWP when the selected random variables are

not correlated (i.e. = 0) (Note: time in horizontal axis is construction years (CY) and

post construction years (PCY)).
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Figure 3.25 Comparison of measured and predicted excess pore water pressures with 95%
confidence of interval considering various correlation coefficients between /V

and /  at (a) at CPY21, (b) at CPY30
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Figure 3.26 Statistical dispersions of excess pore water pressure with depth considering
various cross correlation coefficients between the elastic-plastic parameter ( / )
and the initial creep coefficient ( / ) (a) mean, (b) standard deviation and (c)

coefficient of variation
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Figure 3.27 Statistical dispersions of excess pore water pressure with time considering
various cross correlation coefficients between the elastic-plastic parameter ( / )
and the initial creep coefficient ( / ) (a) mean, (b) standard deviation and (c)

coefficient of variation
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3.5 Summary

This chapter describes how a reliability-based analysis is used to evaluate the impact

of uncertainties of the elastic-plastic model parameter ( / ) and initial creep

coefficient ( / ), and their cross correlation on the predicted settlement and excess

pore water pressure of soft soils. A case study of the Väsby test fill embankment

constructed on top of soft soil, with the results of more than 50 years of field

monitoring, was used to verify the accuracy and application of the proposed method.

For this purpose, a Monte-Carlo simulation is combined with the Gaussian copula

analysis and finite difference numerical modelling capturing elastic visco-plastic

behaviour of soft soil. The Crank-Nicolson method is adopted to solve the governing

equations and a multivariate normal distribution is used to create the correlated

random variables. The following conclusions could be drawn from this study:

The elastic-plastic model parameter ( / ) and the initial creep coefficient

( / ) are important factors in predicting the time-dependent settlement of

soft soil considering uncertainties associated with determining these two

parameters. When /  and /  were used as random variables, the

standard deviation of time-dependent settlement gradually increased with

time as uncertainties accumulated.

Different correlation coefficients were used to evaluate the effect of cross

correlation coefficients between the random variables /  and / . When

the predictions were compared to the measured data in the Vasby test fill,

the settlements measured at different depths were between the upper and

lower boundaries of predicted settlements with a 95% confidence interval
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for all adopted cross correlation coefficients. However, by increasing the

cross correlation coefficient, the standard deviation and also the coefficient

of variation (COV) of the predicted settlements increased approximately

40%, resulting in more conservative design and predictions.

The common methods used to evaluate errors were not efficient enough to

quantify the most proper cross correlation coefficient between the elastic-

plastic model parameter ( / ) and the initial creep coefficient ( / ), so

the settlement ratio was used to estimate the efficiency and suitability of

selected cross correlation coefficients. Based on the obtained results, it is

strongly recommended to consider /  and /  as correlated random

variables in probabilistic analysis. When random variables /  and /
were considered fully correlated (i.e. = 1), the settlement ratio was at

most 10% more than the corresponding values for non-correlated random

variables (i.e. = 0). Although fully correlated random variables (i.e. =1) resulted in more conservative time-dependent settlement predictions,

adopting the actual measured cross correlation coefficient (i.e. = 0.5 in

this study for Väsby clay) may result in a more realistic and cost effective

design. Therefore, to optimise a design in terms of reliability and cost, the

cross correlation coefficient between the elastic-plastic model parameter

( / ) and the initial creep coefficient ( / ) based on the existing field and

laboratory test results should be determined and applied in probabilistic

analysis. However, in the absence of enough data to determine the exact

value of cross correlation between /  and / , it is highly recommended

to assume these two random variables fully-correlated (i.e. = 1).
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4 Random Field Reliability Analysis for Time-
Dependent Behaviour of Soft Soils Considering
Spatial Variability of Elastic Visco-Plastic
Parameters in Low Embankments

4.1 Introduction

Low embankment strategy is one of the effective methods to control time-dependent

settlement of soft soils in infrastructure construction projects. Spatial variability of

soil characteristics is a crucial factor, affecting the reliability of predictions of the

long-term settlement in soft soils. In this chapter, one-dimensional (1D) time-

dependent behaviour of soft soils is analysed incorporating spatial variability of

elastic visco-plastic model parameters. Standard Gaussian random fields for

correlated elastic-plastic model parameter ( / ) and the initial creep coefficient

( / ) are generated adopting Karhunen-Loeve expansion method based on the

spectral decomposition of correlation function into eigenvalues and eigenfunctions.

Then the generated random fields are incorporated in the proposed non-linear elastic

visco-plastic (EVP) creep model. The impacts of spatially variable elastic visco-

plastic model parameters (i.e. /  and / ) on long-term settlement predictions

are evaluated through random field analysis (RF) with different spatial correlation

lengths, and results are then compared to a single random variable (SRV) analysis.

Then, by adopting the field measurements of Skå–Edeby trial embankment and
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determining the maximum probability of failure, the critical spatial correlation length

is determined, which is required for a reliable design in the absence of sufficient data

for model parameters.

4.2 Methodology

In order to conduct random field (RF) and single random variable (SRV) analyses,

the finite difference solutions with two-way drainage boundary conditions are

encoded in MATLAB to provide the predicted average vertical strains for RF and

SRV analyses. An elastic visco-plastic model adopting the time line concept with

non-linear creep function is adopted in this study to determine the time-dependent

settlement of soft soil. Fundamental of adopted elastic-visco plastic model was

outlined in Section 3.2 of Chapter 3. The adopted probabilistic analysis and

computational procedure are explained in the following section.

4.2.1 Karhunen-Loeve Expansion Method

The Karhunen-Loeve (K-L) expansion of a random field is based on the spectral

decomposition of correlation function ( , ), which can be expressed as:

( , ) ( ) = ( )
(4.1)

where,  and  are spatial coordinates in space of ,  and  are the

eigenfunctions and eigenvalues of correlation function ( , ), respectively.

In principle, the eigenvalues and eigenfunctions reported in Equation (4.1) can

be solved analytically or numerically. Referring to Van Trees (2004), when the
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correlation function is exponential, the analytical solution for Equation (4.1) for a

one-dimensional random field can be presented as:

( ) = ( ) ( ) for even( ) =  ( ) ( )                   for odd (4.2)

= for even=                                       for odd (4.3)

tan( ) = 0 for even+ ( ) = 0 for odd (4.4)

where, = /2, = 1/  and  is the dimension of the field,  and  are

angular frequencies for even and odd counter numbers , respectively. In this study,

the closed form solution for Equation (4.1)  as presented by Zhang and Lu (2004) is

adopted, which can be written as follows:

( , ) = + ( ) ( ), (4.5)

where,  is the mean and  is the standard deviation of the random field

variables, ( ) is a vector of uncorrelated standard normal variables, and  is

number of truncated terms.

Generally, there are more than one random variable in soils such as elastic

visco-plastic model parameters in this research ( / , / ), while these model
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parameters are frequently reported to be correlated in real practice (Mesri 2003;

Mesri and Choi 1985; Mesri and Godlewski 1977b). In probabilistic analysis, the

cross correlation coefficient ( ) is available to capture the degree of dependency of

generated random variables on each other. By applying cross correlated effects into

Equation (4.5), Gaussian random field can be introduced as follows:

( , ) = + ( ) , ( ), ( = , ) (4.6)

where, ,  is the correlated random vector whose  th column, , is given by:

= , = , . , + 1 , (4.7)

where,  (  = , ) is a vector of uncorrelated standard normal variables used

to discretise the random fields, and ,  is the cross correlation coefficient between

/  and / . As the elastic visco-plastic parameters (i.e. / , / ) are always

positive, the Gaussian (normal) random field is not applicable and thus /  and/  were assumed to be log-normally distributed random variables in this study

which can be obtained from Equation (4.8) below:

( , ) = + ( ) , ( ) ( = , ) (4.8)

where,  and  are the mean and standard deviation of the Gaussian

random variables ln ( ) , respectively which are defined as:
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= , = (1 + ( ) ) ( = , ) (4.9)

where,  is the coefficients of the variation of selected random variables

indicating the mean and standard deviation in terms of a dimensionless parameter

and = / . It should be noted that low values of  indicates the high

confidence level in soil parameters and vice versa. The flowchart of adopted

methodology is shown in Figure 4.1.

In order to evaluate the accuracy of generated random variables, it is suggested

by Spanos and Ghanem (1989) to determine the relative error between the target

correlation function and the generated correlation function, established via K-L

expansion method which is adopted in this study, as follows:

( , ). ( , ) = 1 ( , )| | (4.10)

where ( , )  is covariance function developed by K-L expansion

method and can be expressed as:

( , ) = ( ) ( )
(4.11)
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Figure 4.1 Flowchart of adopted random field methodology
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4.3 Adopted Case Study

The Skå–Edeby test embankment is chosen as a case study to conduct the random

field reliability analysis and verify the results. The Skå–Edeby area was located 25km

west of Stockholm, which was considered a possible site for constructing an airfield.

In order to evaluate the suitability of site and study the long-term behaviour of

Swedish clays, three test fills with vertical drains and one without vertical drains

were constructed on top of the Skå–Edeby soft soil (Larsson and Mattsson 2003).  In

this study, the test fill without vertical drain is used as a case study. The adopted test

fill with 35 m diameter, a height of 1.5 m, the slope of 1(V): 1.5 (H), and gravel fill

with an average unit weight of 17.56 kN/m3 was constructed over 70 days. As

reported by Larsson and Mattsson (2003), the total applied load induced by test fill

was estimated to be 27 kPa at the ground surface and the ground water table was

approximately 1m below the ground surface with seasonal fluctuation of ±0.5 m. As

shown in Figure 4.2, the subsoil profile at the Skå–Edeby site consisted of a 12 m

recent, post glacial and glacial clays overlying a rock with a 0.5m crust at the top

(Holtz and Lindskog 1972). Figure 4.3 illustrates the soil properties used for

numerical simulation, including the soil unit weight, the soil permeability, the over

consolidated ratio (OCR), and the void ratio which were determined based on

laboratory test results (Hansbo 1960; Larsson and Mattsson 2003). Referring to

Hansbo (1960), these properties were obtained by carrying out a series of laboratory

tests. In order to determine the elastic visco-plastic model parameters including the

initial creep coefficient ( /  ) and the time independent elastic-plastic parameters

( / , , and / ), the curve fitting method as reported in the literature  (Le et al.

2015; Le et al. 2017; Yin 1999; Yin and Graham 1994; Yin et al. 2002) is used based
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on three oedometer tests (samples A, B, and C) reported by Hansbo (1960) and

presented in Figure 4.4. By comparing the properties of sample with the soil

condition, it can be assumed that sample A was taken at depth 2 m, while samples B

and C were obtained from deeper depth of 8 m and 9 m, respectively.

Figure 4.2 Subsoil layers for Skå–Edeby test fill (Data taken from Larsson and Mattson
2003)

4.3.1 Generating Statistical Parameters of Probabilistic Variables

In this study, the initial creep coefficient ( /  ) and elastic-plastic parameter ( / )

are considered as probabilistic variables due to the lack of long-term creep tests. A

common curve fitting method proposed by Yin (1999) is used to obtain the initial

creep coefficient ( / ).

By adopting existing oedometer test results and utilising the curve fitting

approaches outlined in Section 3.2.2, a set of data for the elastic-plastic parameters

( /  and ) are determined. It should be noted that /  and are

interdependent parameters, so it was essential to find a relationship between /  and

 so that by generating random values for / , the corresponding values for

could be generated simultaneously. For this purpose, the regression analysis is
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adopted to find the best fit curve between /  and  . As shown in Table 4.1, the

exponential regression could be considered as the best fitted curve for relationship

between /  and .

Figure 4.3 Adopted soil properties of Skå–Edeby test fill for numerical modelling (a)
permeability (b) initial void ratio (c) total unit weight and (d) over-consolidated

ratio
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Figure 4.4 Oedometer test results of Skå–Edeby test fill (a), (b), (c) vertical strain versus
time for samples A, B, and C, respectively (d), (e), (f) vertical strain versus

vertical effective stress for samples A, B, and C, respectively
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The generated random variables of the initial creep coefficient ( / ) and the

elastic-plastic model parameters ( / ) and their corresponding statistical properties

based on existing oedometer test are shown graphically in Figure 4.5. The cross

correlation coefficient between /  and /  is calculated to be / , / = 0.6
(Feng and Zhang 2021; Genz and Bretz 2002; Zhang et al. 2019). Moreover, Table

4.1 summarises the adopted probabilistic and deterministic model parameters

adopted in this study to predict the long-term settlement of the Skå–Edeby test fill

and compare to the field measurements.

Table 4.1 Adopted deterministic and probabilistic model parameters for Skå–Edeby test fill

Model parameter Type Mean ( ) Coefficient of Variation ( ) Distribution

/ random 0.11 0.3 Lognormal/ random 0.01 0.3 Lognormal/ deterministic 0.04 - -( ) deterministic 370 - -

Note: ( )= 6 /

Figure 4.5 Generated random variables of the elastic-plastic parameter ( / ) and the initial
creep coefficient ( / ) based on existing oedometer test data
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4.3.2 Implementation of K-L Expansion Method

In order to generate spatially correlated random variables for the elastic-plastic and

the initial creep model parameters ( /   , / ), K-L expansion method, explained

in the previous section, is adopted by considering statistical properties reported in

Table 4.1. As shown in Equations (4.10) and (4.11), in order to generate random

fields based on K-L expansion method, number of truncated terms ( ) and spatial

correlation length ( ) are two key factors to evaluate the accuracy of generated

random variables. It should be noted that for the sake of generality, the correlation

length ( ) is presented in dimensionless form as normalised spatial correlation length

( = / ). Referring to Equation (4.6), the maximum number of truncated terms

( ) in K-L expansion method must be equal to the maximum number of elements

in finite difference code. Therefore, in this study, the maximum number of elements

is considered equal to the number of finite difference nodes ( ). In the developed

finite difference code for the Skå–Edeby clay with 12 m depth and 0.1 m node

interval, the maximum number of truncated terms is calculated to be = 121.

Moreover, Siripatana et al. (2020) introduced 90% of spatially averaged variability

as a criterion to determine the minimum number of truncated terms ( ). This

criterion ensures that the reference eigenbasis encapsulates 90% of the information

in assumed correlation function and the error obtained from Equation (4.10) is less

than 10%. According to this requirement,  increases from = 1
corresponding to = 0.01 to = 90 corresponding to = 100 which means

that the adopted = 121 was suitable.

Figure 4.6 shows the variation of eigenvalues versus number of truncated terms

for different normalised spatial correlation lengths. It is evident that the smaller
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correlation length results in the reduced number of truncated terms needed for a given

accuracy. Moreover, Figure 4.7 illustrates an example of the comparison between

target and approximated correlation functions for the case of = 1, and = 121.

It can be seen that the maximum error is 1%, which fulfills the criteria for the

maximum acceptable error of 10%, recommended by Siripatana et al. (2020). Figure

4.8 shows samples of generated random field based on K-L expansion method for

various normalised spatial correlation lengths. It can be seen that when > 1, the

generated random variables are more uniform along the model dimension.

Figure 4.6 Variation of eigenvalues versus number of truncated terms for different
normalised spatial correlation length
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Figure 4.7 Comparison of target and approximated correlation function (a) target correlation
function, (b) approximated correlation function, (c) relative error surface
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Figure 4.8 Generated random field for various normalised spatial correlation lengths (a)
initial creep coefficient ( ), (b) elastic-plastic model parameter ( )
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4.4 Results and Discussion

There are a variety of concerns contributing to risks and considerations associated

with construction on top of soft soils. Predicting time-dependent behaviour of soft

soils is a crucial element in reducing risks and instabilities. As a result, it is essential

to evaluate the uncertainties related to model parameters in predicting time-

dependent behaviour quantitatively. In this study, the effect of spatial correlation

length is evaluated adopting the elastic visco-plastic model parameters ( /   , / )

as random variables to obtain a range of possible time-dependent settlement and

excess pore water pressure (EPWP) distribution for the Skå–Edeby test fill. Then, in

order to verify the undertaken probabilistic analysis, results are compared with the

field measurements. In the last step, a parametric study is performed to identify the

critical spatial correlation length ( ) with the maximum probability of failure to

substantiate the importance of random field (RF) analysis in comparison with the

single random variable (SRV) analysis.

4.4.1 Comparison between Random Field (RF) and Single Random Variable
(SRV) Analyses for Prediction of Time-dependent Settlement and EPWP

A set of predicted ground surface settlement of the Skå–Edeby fill at different time

stages are obtained from random field analysis (RF) for various spatial correlation

lengths in addition to single random variable (SRV) analysis. As mentioned earlier,

the elastic-plastic model parameter ( / ) and the initial creep coefficient ( / ) are

considered as random variables. In the first step, it is essential to ensure that the

assumed number of Monte-Carlo simulations is efficient and reliable enough. For

this purpose, the optimal number of Monte-Carlo simulations is considered to be the

minimum number of simulations in which the standard deviation of the outputs
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converged. Figure 4.9 illustrates the standard deviation of the surface settlement

versus the number of Monte-Carlo simulations at various post construction times in

years (PCY) while considering the normalised spatial correlation length to be equal

to one (i.e. = 1). It is concluded that the standard deviation of the ground surface

settlement stayed almost constant when the number of Monte-Carlo simulations is

more than 1000. Therefore, 2000 Monte-Carlo simulations are used in the follow up

analyses to provide the required accuracy and efficiency.

Figure 4.9 Convergence of the number of simulations for the surface settlement at different
time stages

 Figure 4.10 exhibits the probability density function of the ground surface

settlement at different PCY for RF analysis with various spatial correlations length

and SRV analysis adopting /  and /  as random variables. It can be observed

that when spatial correlation length increases in RF analysis, standard deviation and
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spatial correlation length is more than 1 (i.e. > 1), the results of RF analysis are

close to those obtained by SRV analysis. Figure 4.11 compares statistical dispersions

of the ground surface settlement obtained from RF analysis with different spatial

correlation length and SRV analysis. As expected, the mean value of predicted

ground surface settlement is almost constant for all adopted analysis with slight

differences due to computational approximation in generating random numbers.

Moreover, Figure 4.11b and Figure 4.11c show that in RF analysis, by increasing

spatial correlation length, the standard deviation and coefficient of variation ( )

of the ground surface settlement increase. A Similar trend is observed by Wang et al.

(2021), where standard deviation of creep deformation after 30 years increased from

0.045 to 0.13, when correlation length of creep coefficient increased from 4 m to 20

m, respectively. However, when normalised spatial correlation length is more than 1

(i.e. > 1), standard deviation and coefficient of variation ( ) are higher than the

corresponding values in SRV analysis. This observation indicates that by increasing

correlation length, uncertainties in settlement predictions are higher than the

corresponding predictions obtained from SRV analysis resulting in lower confidence

level of predictions. Figure 4.11c also shows that for both RF and SRV analyses, the

 of the ground surface settlement becomes rather constant as time progresses,

indicating that the uncertainties in settlement prediction are higher at early stages of

construction on top of soft soils and then approach an asymptote over time.
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Figure 4.10 Influence of RF analysis with different normalised spatial correlation lengths and
SRV analysis on the surface settlement of the Skå–Edeby test fill at various time

stages (a) PCY5, (b) PCY10, (c) PCY20, (d) PCY30 and (e) PCY45
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Figure 4.11 Statistical dispersions of ground surface settlement versus time adopting RF
analysis with various normalised spatial correlation lengths and SRV analysis (a)

mean, (b) standard deviation and (c) coefficient of variation
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For further discussion, the variation of statistic dispersions of settlement with

depth at PCY45 (i.e. 45 years post construction) are plotted in Figure 4.12. As

expected, the mean value of soil settlement is approximately constant for all adopted

analyses and increase from depth of 12 m to the surface. Figure 4.12b shows that the

standard deviation of the predicted settlement decreases with depth and it is

independent of the analysis type (i.e. RF or SRV analysis).  This is due to the fact

that the uncertainties of settlement prediction in the sub-layers are accumulated at the

surface. Moreover, Figure 4.12c illustrates that when normalised spatial correlation

length is less than unity in RF analysis (i.e. < 1), the coefficient of variation ( )

increases sharply with depth, because the uncertainties in generated parameters is

higher at lower depths. However, for SRV analysis and for RF analysis with

normalised spatial correlation length more than unity (i.e. > 1),  of the

settlement prediction changes slightly with depth indicating that uncertainties in

settlement prediction does not change much with depth. Figure 4.12c also confirms

that by increasing normalised spatial correlation length, the uncertainties in

settlement prediction increases as presented earlier in Figure 4.11c, and when the

normalised spatial correlation length is more than unity (i.e. > 1), RF analysis is

more conservative than SRV analysis.
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Figure 4.12 Statistical dispersions of settlement versus depth at PCY45 adopting RF analysis
with various normalised spatial correlation lengths and SRV analysis (a) mean,

(b) standard deviation and (c) coefficient of variation
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In addition to evaluating soil settlement when evaluating the time-dependent

behaviour of soft soils, investigating excess pore water pressure (EPWP) is also a

key factor because it has an impact on the stress, stiffness, and shear strength of the

soil.  Therefore, in order to evaluate the variation of EPWP in RF and SRV analyses,

the statistical dispersions of predicted excess pore water pressure over time are

plotted in Figure 4.13. Since the horizontal axis captures the time from the beginning

of construction, Figure 4.13a shows that the mean value of EPWP for all adopted

analysis increases sharply during the first 70 days (i.e. during the embankment

construction) and then gradually decreases over time. Similar to predicted settlement

(Figure 4.11), Figure 4.13b and Figure 4.13c show that in RF analysis, the

uncertainties in predicting EPWP increase as the normalised spatial correlation

length increases, and when the normalised spatial correlation length is more than

unity (i.e. > 1), RF analysis indicates a lower confidence level in predicting EPWP

compared to SRV analysis. Furthermore, Figure 4.14 shows the statistical properties

of predicted excess pore water pressure at PCY45 for all adopted analyses. As evident

in Figure 4.14a and Figure 4.14b, the maximum mean and standard deviation occurs

at the mid-depth due to the fact that in two-way drainage system, the maximum

EPWP occurs around the mid-depth of the soil deposit. Figure 4.14c illustrates that

the coefficient of variation ( ) for the predicted EPWP increases gradually with

depth and the maximum uncertainties occurred at lower depths since soil experienced

higher rate of excess pore water pressure dissipation due to the larger strains and

being in the vicinity of the drainage boundary. By referring to Figure 4.14c, it can be

also concluded that the uncertainties in EPWP prediction increase as spatial

correlation length increases, and SRV analysis is less uncertain in comparison to RF

analysis with > 1.
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Figure 4.13 Statistical dispersions of excess pore water pressure at mid-depth layer with time
adopting RF analysis with various normalised spatial correlation lengths and
SRV analysis (a) mean, (b) standard deviation and (c) coefficient of variation

(Note: time in horizontal axis is construction years (CY) plus post construction
years (PCY)).
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Figure 4.14 Statistical dispersions of excess pore water pressure with depth at PCY45
adopting RF analysis with various normalised spatial correlation lengths and
SRV analysis (a) mean, (b) standard deviation and (c) coefficient of variation
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4.4.2 Comparison with Field Measurements

Figure 4.15 to Figure 4.18 present a comparison between field settlement

measurements at different depths reported by Larsson and Mattsson (2003) and the

obtained results with 95% confidence interval (CI). As reported by Zhou, Tan, et al.

(2018), ± 1.96  approximates the upper boundary (UB) and the lower boundary

(LB) with 95% CI for lognormal distribution (where  is the mean and  is the

standard deviation of predicted settlement, respectively). It should be noted that the

most probable (MP) characteristic corresponds to the average of all obtained results

at each time step. As can be seen in Figure 4.15 to Figure 3.19, by adopting RF

analysis with > 1 or SRV analysis, the field measurements at different depths are

located between the upper and lower boundaries of predicted settlements with 95%

CI. Figure 4.15 shows that at the surface, the measured settlements are close to the

predicted mean values (MP) till PCY 20, whereas at later stages the measured data

are located between the mean and lower bound values. As shown in Figure 4.18, at

lower depths (e.g. depth of 7.5 m), the field measurements are close to LB of

predicted settlement till PCY 10, and then gradually approach to the predicted mean

values. Since the mean value of the predicted settlements can be used as an

approximation for deterministic analysis predictions, it can be observed that the

deterministic analysis could lead to underestimated or overestimated predictions of

the actual behaviour. As a result, conducting a reliability analysis is essential to have

a better understanding of predictions and risks involved. Moreover, among different

adopted methods in this study (i.e. RF and SRV), it is necessary to make a

quantitative comparison between field and predicted settlements to have a better

insight about suitability of each method. For this purpose, two error indicators were
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employed, namely the root mean square error ( ) and the mean absolute error

( ). Table 4.2 summarises the calculated  and  for RF and SRV

analyses. It can be seen that when spatial correlation length decreases in RF analysis,

the predicted settlement has better agreement with field measurements. Moreover,

the error indicators for SRV analysis are close to the corresponding values for RF

analysis with > 1. As expected, the error indicators at the surface are more than

the errors at depths due to the fact that the settlement accumulates from the depth to

the surface, which is also leading to the error accumulation.

Figure 4.15 Comparison of measured and predicted settlement with 95% CI adopting RF
analysis with various normalised spatial correlation lengths and SRV analysis at

ground surface
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Figure 4.16 Comparison of measured and predicted settlement with 95% CI adopting RF
analysis with various normalised spatial correlation lengths and SRV analysis at

depth of 2.5m

Figure 4.17 Comparison of measured and predicted settlement with 95% CI adopting RF
analysis with various normalised spatial correlation lengths and SRV analysis at

depth of 5.0m
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Figure 4.18 Comparison of measured and predicted settlement with 95% CI adopting RF
analysis with various normalised spatial correlation lengths and SRV analysis at

depth of 7.5m

Table 4.2 Settlement error indicators for all adopted analysis

Method

RF

SRV= . = . = = =
at Surface

RMSE 0.09 0.11 0.2 0.25 0.25 0.22

MAE 0.06 0.09 0.17 0.22 0.22 0.19

at 2.5 m depth
RMSE 0.07 0.09 0.16 0.2 0.2 0.18

MAE 0.06 0.09 0.15 0.19 0.19 0.17

at 5 m depth
RMSE 0.05 0.07 0.12 0.15 0.15 0.13

MAE 0.05 0.07 0.11 0.14 0.14 0.12

at 7.5 m depth
RMSE 0.07 0.09 0.11 0.12 0.12 0.11

MAE 0.07 0.08 0.1 0.11 0.11 0.1

Note:  and  denote the root mean square error and the mean
absolute error, respectively.
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Figure 4.19 and Figure 4.20 show the comparison between excess pore water

pressure (EPWP) and the field measurements at PCY14 and PCY45, respectively. It

is evident that all predicted values with 95% confidence interval (CI) overestimate

the field measurements at PCY 14. As reported by Larsson and Mattsson (2003), the

differences between measured and predicted EPWP could be due to many factors

including the accuracy of the measurement devices, seasonal variations of the ground

water and temperature. Figure 4.20 shows that at PCY 45, the agreement between the

measured and the predicted EPWP is improved as the measured data are closer to the

lower boundary of predicted EPWP, obtained from RF analysis with > 1 and SRV

analysis.

Figure 4.19 Comparison of measured and predicted excess pore water pressures with 95% CI
adopting RF analysis with various normalised spatial correlation lengths and

SRV analysis at CPY14
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Figure 4.20 Comparison of measured and predicted excess pore water pressures with 95% CI
adopting RF analysis with various normalised spatial correlation lengths and

SRV analysis at CPY45

4.4.3 Probability of Exceedance/Failure

It should be noted that in the common system of error evaluation, the absolute

distance between measured and predicted settlement is calculated, which does not

identify whether the predicted settlement is underestimated or overestimated, and the

minimum error does not mean that the predicted results are acceptable or reliable.

For construction of road and railway embankments adopting low embankment

strategy, it is essential to introduce a criterion called probability of exceedance/failure

(PF) to fulfill the requirements for reliable prediction of long-term settlement. In this

study, a probability of exceedance/failure ( ) based on Monte-Carlo simulation

results corresponds to the situation in which the predicted settlement ( ) exceeds

the allowable surface settlement ( ):
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= [ > ] (4.12)

By considering the allowable design surface settlement at PCY5 equal to 500

mm ( = 500 ) for a low embankment, the variations of  at

different time steps for RF and SRV analyses are plotted in Figure 4.21. It is evident

that the predicted probability of failure ( ) significantly depends on the adopted

value of the spatial correlation length. By increasing the spatial correlation length,

 increases, and the maximum  occurs when 10 and this normalised

spatial correlation length is called the critical normalised spatial correlation length

(calculated to be = 10 in this study ). The reported results in the literature also

show that adopting SRV method can lead to underestimation of probability of failure

(Allahverdizadeh et al. 2016; Griffiths et al. 2009; Jha and Ching 2013; Li et al.

2017). For example, referring to the slope stability analysis results, reported in the

literature (Allahverdizadeh et al. 2016; Li et al. 2017), the critical spatial correlation

length was determined to be 0.5H to 1H, where H is the height of slope. Moreover,

in the other research studies reported in the literature, the critical spatial correlation

length for the block compression problem was reported to be 0.1B to 2B, where B in

the square block dimension (Allahverdizadeh et al. 2016), and for shallow foundation

bearing capacity, the critical spatial correlation length was estimated to be between

2B and 10B, where B is the width of the strip footing (Allahverdizadeh Sheykhloo

2015). It can be observed that while critical spatial correlation lengths are observed,

the values significantly depended on the geotechnical problem to be addressed, and

thus this study attempt to give indication of the critical spatial correlation length for

long term settlement prediction of clay deposits. It should be noted that in the absence
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of adequate data to determine the applicable spatial correlation length, it is essential

to determine the critical spatial correlation length via a proper parametric study.

Figure 4.21 Variation of probability of failure with different spatial correlation lengths in RF
analysis and comparison with SRV analysis at different time steps

There is another alternative to determine probability of failure ( )

recommended by several design and construction guidelines such as U.S. Army

Corps of Engineers (1995), which correlates probability of failure to reliability index

( ) as below:

= 1 ( ) (4.13)

= ( )  ( ) ( ) (4.14.a)

( ) = (4.14.b)
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where  denotes standard normal cumulative density function of predicted

settlements,  ( ) and  ( ) denote mean and standard deviation of underlying

normal distribution of log-normally distributed of predicted settlement, respectively.

It should be noted that probability of failure ( ) determined from Equations (4.13)

- (4.14) are based on the assumption that the log-normal distribution applies to the

predicted settlements. The determined probability of failure based on Monte-Carlo

simulation ( ) and reliability index ( ) for different adopted analyses (i.e. RF

and SRV) are summarised in Table 4.3. The results show considerable disparities

between the probability of failure estimated based on the reliability index ( ) and

corresponding value based on the Monte-Carlo simulation ( ) which adopted the

actual predictions without a need to assume a perfect log normal distribution for the

predicted settlement. For critical normalised spatial correlation length ( = 10), the

maximum difference between  and  is 60% at PCY5 (  is overestimated

comparing to ). As a result, determining probability of failure estimated based

on the reliability index ( ) can lead to overconservative and cost inefficient design.

Therefore, for a reliable risk assessment, it is essential to adopt to actual Monte-Carlo

simulation results to determine the probability of failure as a result of excessive

settlement.

For large spatial correlation lengths (e.g. 100), the distribution of random

parameters in each Monte-Carlo simulation is rather uniform, but different from other

simulations. Therefore, the predictions for RF analysis with large correlation length

is expected to be comparable to the results obtained from a simple Monte-Carlo

simulation with a single random variable approach (i.e. SRV method). As mentioned

earlier, it was reported in some studies that the SRV analysis is the more conservative
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analysis than the RF analysis with large correlation length (Cho 2007; Javankhoshdel

and Bathurst 2014) while Figure 4.21 and Table 4.3 clearly illustrate that PF obtained

from SRV method is not the safest for the design. In other words, SRV method can

lead to underestimation of probability of the failure and thus provide incorrect

evaluation of PF. In order to quantify the difference between predictions from SRV

and RF analysis methods, the percentage of error in predicted PF (i.e. ( ))
is introduced as below:

( ) = × 100 (4.15)

where  and  are the probability of failure (i.e. predicted settlement

exceeding the allowable design settlement) obtained from RF and SRV analyses,

respectively. The positive value of the error indicates that the SRV underpredicts the

probability of failure/exceedance in comparison to RF approach. Figure 4.22 shows

the calculated ( ) for a range of spatial correlation lengths in RF analysis

and at different time steps (PCY5, PCY10, PCY20, PCY30, PCY40, and PCY45).

As shown in Figure 4.22, at PCY5, SRV analysis is more conservative than RF

analysis with < 1, while at PCY45, the corresponding feature for correlation length

decreases to < 0.1. In contrast, by increasing spatial correlation length beyond the

above-mentioned ones (i.e., < 1 at PCY5 and < 0.1 at PCY45), the RF

predictions are more conservative compared to SRV predictions. The calculated

values of ( ) are summarised in Table 4.4. According to Table 4.4, the

maximum error in PF is 49% obtained from RF analysis with 10, 100 at PCY5,

which indicates a significant difference in reliability of predicted settlement obtained
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from RF and SRV analyses. Thus, it is evident that conducting RF analysis is

essential to reduce risk and increase reliability when designing low embankments for

transport infrastructure.

Table 4.3 Probability of failure determined from Monte-Carlo simulation and reliability index

Method PCY5 PCY10 PCY20 PCY30 PYC40 PCY45

Probability of

Failure based on

Monte-Carlo

Simulation,

RF

= 0.01 0.00 0.00 0.00 0.00 0.00 0.02

= 0.1 0.01 0.01 0.01 0.05 0.13 0.22

= 1 0.06 0.08 0.10 0.16 0.23 0.29

= 10 0.08 0.10 0.11 0.17 0.25 0.31

= 100 0.08 0.10 0.11 0.16 0.23 0.29

SRV 0.05 0.07 0.08 0.13 0.19 0.24

Probability of

Failure based on

Reliability Index,

RF

= 0.01 0.00 0.00 0.00 0.00 0.00 0.02

= 0.1 0.00 0.00 0.00 0.04 0.13 0.23

= 1 0.10 0.12 0.13 0.19 0.27 0.32

= 10 0.19 0.19 0.18 0.23 0.29 0.33

= 100 0.18 0.20 0.19 0.24 0.28 0.32

SRV 0.12 0.14 0.13 0.19 0.23 0.28
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Figure 4.22 Error estimation of probability of failure for adopted RF and SRV analysis

Table 4.4  Calculated difference between predicted probability of failure predictions from SRV

and RF analysis methods for different adopted normalised spatial correlation lengths at

various time steps (note: positive error percentage means >  and vice versa)

Normalised Spatial

Correlation length
PCY5 PCY10 PCY20 PCY30 PYC40 PCY45

( )
(%)

= 0.01 -100 -100 -100 -100 -100 -91

= 0.1 -89 -86 -83 -58 -30 -10

= 1 2 7 18 23 20 19

= 10 49 34 33 32 33 25

= 100 49 36 32 25 22 21

The critical and acceptable value of probability of failure in low embankment

strategy is associated with the risk taken by clients or owners of the infrastructure.

Indeed, the risk is related to the periodic maintenance cost as a part of the design.
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Figure 4.23 shows the risk associated with the assessment of post-construction

settlement, while considering  and  as spatially random variables. The risk

is assessed by determining the probability that the predicted settlement exceeds the

allowable values. For the sake of simple representation of risk in this study, the

maintenance cost is considered to be $10M. As can be concluded from Figure 4-23,

for critical normalised spatial correlation length ( = 10), the risk of settlement

prediction is the highest at all post-construction times, resulting in the most expensive

and critical maintenance program.

Figure 4.23 Risk associated with assessment of post-construction settlement for adopted RF
and SRV analysis
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4.5 Summary

This chapter has presented the effect of spatially variable elastic visco-plastic model

parameters, including the elastic-plastic model parameter ( / ) and the initial creep

coefficient ( / ), on the long-term behaviour of low embankments constructed on

top of soft soils incorporating random field (RF) and single random variable (SRV)

analyses. For SRV method, a simple Monte-Carlo simulation is combined with

Crank-Nicolson finite difference numerical model developed based on nonlinear

elastic visco-plastic (EVP) model. However, for RF analysis, the Karhunen-Loeve

(K-L) expansion method expressed by spectral decomposition of correlation function

into eigenvalues and eigenfunctions is adopted to generate random field with

different spatial correlation lengths. The generated random variables are then

combined with developed finite difference numerical code to predict settlement and

excess pore water pressure and the associated reliability indices. Field measurements

of the Skå–Edeby test fill for about 45 years are used to assess and verify the accuracy

of the proposed methods.  Moreover, the effect of spatial correlation length is

evaluated in order to determine the critical spatial correlation length. The key

findings of this study are summarised below:

Normalised spatial correlation length ( ) plays an important role in

predicting the time-dependent settlement of soft soils considering the elastic

visco-plastic parameters ( /  and / ) as spatial random variables. By

increasing the normalised spatial correlation length in RF analysis, the

probability density function (PDF) becomes wider indicating more

uncertainties in post construction settlement prediction. Moreover, when

normalised spatial correlation length exceeds unity (i.e. > 1), the RF
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settlement prediction converges with those obtained from rather simple

SRV analysis. The coefficient of variation ( ) of settlement increases at

early stages of loading for all adopted analyses and then approaches an

asymptote after about 5 years post construction (i.e. PCY5) indicating that

the uncertainties in settlement prediction are higher at early stages of

loading. Furthermore, the uncertainties in settlement prediction increases

significantly with depth when < 1, while  of settlement predictions

are almost constant in RF analysis with normalised spatial correlation length

exceeding unity (i.e. > 1) as well as SRV analysis.

Comparing the predicted settlement with the field measurements in the Skå–

Edeby test fill, it is evident that the measured settlements at different depths

are in good agreement with the predicted settlement with 95% confidence

interval, obtained from RF analysis with > 1 and SRV analysis.

The effect of the spatial correlation length on the probability of

failure/exceedance (PF) is investigated and results are compared with SRV

analysis predictions. The results indicate that a critical spatial correlation

length existed for predicting time-dependent settlement of soft soils

resulting in the maximum PF while adopting random field reliability

analysis. In this study, the critical spatial correlation length is determined to

be in the order of 10 , where  is the soft soil thickness. As a result, in the

absence of adequate data to determine exact spatial correlation length,

conducting SRV analysis is deemed unsafe/unreliable. Thus, it is deemed

necessary to perform random field reliability analysis considering the

critical spatial correlation length following a parametric study to determine
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this critical value. Indeed, since comprehensive, time consuming and costly

laboratory test are required to estimate the soil spatial variability and

correlation length, findings of this study can be used as guidelines by

practicing engineers, designing structures on soft soils, particularly when

adopting low embankment strategy for design of transport infrastructure.
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5 Back Analysis of Long-term Settlement of Low
Embankment on Soft Soils using Bayesian Updating

5.1 Introduction

Chapter 4 has provided a method to manage the risks in low embankment strategy

by adopting random field reliability analysis and introducing critical spatial

correlation length. Predicting time-dependent settlement of low embankment is

commonly the most critical design and construction aspect affecting the maintenance

plan and cost, pavement design and drainage requirements, public awareness about

periodic maintenance, and instrumentation and monitoring programs. Periodic

monitoring data can be used for updating the elastic visco-plastic model parameters

to predict a more realistic long-term settlement. Therefore, Chapter 5 provides two

case studies of Väsby and Skå-Edeby test fills to confirm how model updating can

reduce the risks of one-dimensional (1D) long-term settlement predictions.  In this

chapter, the elastic-plastic model parameter ( / ) and the initial creep coefficient

( / ) are updated by adopting the Bayesian updating method and transitional

Markov Chain Monte Carlo (TMCMC) algorithm. Then, the long-term settlement

predictions obtained from updated parameters based on field data are compared with

the predictions obtained from updated parmeters based on oedometer test results.

This chapter focuses on how applying field monitoring results can reduce risks in

predicting the long-term settlement of low embankments constructed on soft soils.
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5.2 Bayesian Theory

In the Bayesian framework, the uncertainties of model parameters are quantified

based on measurement data. The relationship between the predicted settlement ( )

and measured data ( ) is:

= + (5.1)

where,  is the settlement prediction error.

Field monitoring data and oedometer test results can be used to find the most

optimised model parameters. In this study, the elastic-plastic model parameters are

assumed as uncertain model parameters denoted as = , . Observations are

used to update the prior probability density function (PDF) of model parameters,( ). The prior PDF of model parameters represents the user’s adjustment before

observing measured data. Based on Bayesian theory (Yuen 2010), the posterior PDF

of = , , ( | ), can be obtained:

( | ) = ( ). ( ) (5.2)

where, ( ) is the evidence of measured settlement, and ( | ) is the

likelihood function representing the probability of observing measured settlement

( ) given a set of model parameters ( = , ), which is given as:
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( | ) = (2 ) ( )2 (5.3)

where,  is the standard deviation of the error between predicted and measured

settlement, and  is the number of measured data. The posterior PDF, ( | ),

represents the updated model parameters after observing measured data. The optimal

model parameter vector = , , are calculated by maximising the posterior PDF,( | ), or equivalently ( ). ( | ). Considering the non-linearity of the

numerical model for long-term settlement of soft soils based on the elastic visco-

plastic (EVP) model (Yin 1999), there is not any analytical form of ( | ). As a

result, the transitional Markov Chain Monte Carlo (TMCMC) (Ching and Chen

2007) method is applied to quantify uncertainties of the visco-plastic model

parameters.

5.3 Transitional Markov Chain Monte Carlo Algorithm

The TMCMC method is based on the idea proposed by Beck and Au (2002) which

includes constructing a series of intermediate PDFs. One of the advantages of the

TMCMC method is that it is not required to perform Kernel density estimation.

Moreover, the intermediate PDFs can be selected automatically. Since the TMCMC

algorithm is based on a series of resampling stages which is more robust to

dimension, it can be used for higher-dimensional problems. In addition, the TMCMC

method can update the parameters without solving any integral problem (Zhou et al.

2018).
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The constructed series of intermediate PDFs will converge to the target PDF,( | ), from the prior PDF, ( ), as defined by Ching and Chen (2007):

( ) ( | ) ( )
 ( = 0, … ,  0 = < < < = 1) (5.4)

where, the index  denotes the stage number and  is the total number of

stages. At the initial stage with = 0, the intermediate PDF is proportional to the

prior PDF (i.e. ( ) = ( )) and ends with the posterior PDF (i.e. ( ) =( | )). Since the geometry change from ( ) to ( | ) is significantly large,

it can cause difficulties in parameter updating. But the change between two adjacent

intermediate PDFs is small and can enable a good means of transitioning and

efficiently obtaining samples from ( ) based on ( ). The following steps can

be applied for parameter updating based on TMCMC algorithm (Zhou et al. 2018):

1. At the initial stage ( = 0), obtain samples , : = 1, 2, … ,   from the

prior PDF ( );

2. Define a prescribed threshold, and select  so that the Coefficient of

Variation (COV) of , : = 1, 2, … ,  equals to the

prescribed threshold.

3. Calculate the plausibility weight according to the following equation:
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, = , = 1, 2, … ,
= , / (5.5)

where,  is a factor to compute the evidence ( ), and ,  denotes the

sample belonging to level .

4. Generate the samples , : = 1, 2, … , from ( ) by applying

Metropolice-Hastings (MH) algorithm (Beck and Au 2002). The

probability of selecting the  initial sample ,  is equal to , /
, . The Marco chain sample in the  chain with ,  as the

leader is generated from a Gaussian proposal PDF.  is the covariance

matrix of the Gaussian proposal PDF to the scaled version of the estimated

covariance matrix of ( ) and can be estimated based on the following

equation:

= , , , , ,
× , , , ,

(5.6)
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where,  is the prescribed scaling factor and should be selected to avoid the

rejection rate and large MCMC jumps, simultaneously. It is suggested by

Ching and Chen (2007) that = 0.2 is the reasonable choice.

5. Generate the candidate sample  of  sample from , ,  and set

, =  and , =  with probability equals to ( )/ , ,

otherwise , = .

6. Repeat steps (2) to (5) till = 1. At the end of the algorithm, samples

, : = 1, 2, … ,  are asymptotically distributed as ( | ), and

=  is asymptotically unbiased estimation of the evidence ( ).

The flowchart in Figure 5.1 summarizes the TMCMC algorithm incorporating

the Bayesian updating method.
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Figure 5.1 Flowchart for Transitional Markov Chain Monte Carlo (TMCMC) algorithm
(Ching and Chen 2007)

5.4 Case Study

Two case studies of Väsby and the Skå-Edeby test fills are selected for back analysis

of long-term settlement using Bayesian updating method. To predict long-term

behavior of soft soils, the non-linear elastic visco-plastic (EVP) creep model

proposed by Yin (1999) is adopted. Methodology for developing the numerical code

to predict long-term behaviour of soft soils was described in Section 3.2. Bayesian

updating method is respectively performed using the oedometer test data and field

data.
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5.4.1 Väsby Test Fill

In this study, 2.5m high test fill without any vertical drain located near upland Väsby

village in Sweden is selected. Subsoil profile, soil and embankment properties, and

stress applied at the ground surface due to the fill weight were presented in Section

3.3.2. Oedometer test results (Figure 3.6) were used to determine elastic visco-palstic

model parameters as shown in Table 3.2.

5.4.1.1 Settlement prediction using observation of oedometer test results for

Väsby soft soil

Black clay sample with the dimension of 0.02 m height and 0.05 mm diameter was

taken at 5 m depth below ground level. As reported by Le (2015), soil permeability

for the sample was calculated from the coefficient of consolidation ( ) and

coefficient of volume change ( ) and it is equal to = 1.9 × 10 / . Initial

void ratio ( ) and coefficient of permeability change index ( ) are equal to 3.04

and 0.543, respectively (Le 2015). As shown in Figure 3.6, the last four stages within

the normally consolidated range are used to determine elastic visco-palstic model

parameters based on Bayesian updating method. Table 5.1 shows the initial stress-

strain data employed for Bayesian updating method based on oedometer test results

for Väsby soft soil.

Bayesian updating method is applied to update elastic visco-plastic model

parameters ( , ) by adopting initial stress-strain data (Table 5.1) and the soil

permeability properties. Prior and posterior statistics of elastic visco-plastic model

parameters are presented in 0. Figure 5.2 shows the comparison between predicted

strain adopting updated model parameters and oedometer test results.
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Table 5.1 Initial stress-strain data employed for Bayesian updating method based on oedometer

test results for Väsby soft soil

Loading Stage
(kPa)

Initial
Thickness (m)

Initial Stress
(kPa)

Final Stress
(kPa)

Initial
Strain (%)

Time
(min)

30-45 0.02 30 45 3.8 1440

45-67.5 0.02 45 67.5 8.8 1440

67.5-105 0.02 67.5 105 17.8 1440

105-160 0.02 105 160 26.0 1440

Table 5.2 Prior and posterior statistics of elastic visco-plastic model parameters ( / , / )
based on oedometer test results applying Bayesian updating method for Väsby soft soil

Model Parameter Mean ( ) Coefficient of Variation
( )

/
Prior 0.22 0.25

Posterior
Loading

Stage

30-45 kPa 0.24 0.02

45-67.5 kPa 0.18 0.002

67.5-105 kPa 0.17 0.05

105- 160 kPa 0.2 0.04

/
Prior 0.0135 0.3

Posterior
Loading

Stage

30-45 kPa 0.029 0.08

45-67.5 kPa 0.022 0.006

67.5-105 kPa 0.029 0.04

105- 160 kPa 0.023 0.03
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Figure 5.2 Predicted strain adopting Bayesian updating method comparing with oedometer
test results for Väsby soft soil

To evaluate discrepancy between predicted strains prior and after updating

parameters, three indicators namely the root mean square error ( ) index, the

mean absolute error ( ), and the coefficient of determination ( ) are calculated

and presented in Table 5.3.  In order to quantify the difference between predictions

based on prior and posterior (updated) model parameters, the error in indicators

RMSE and MAE is introduced as below:

( ) = × 100 ( = , )
(5.7)

As can be observed in Table 5.3, the difference between predicted strain and

measured strain can be reduced by 90% when Bayesian updating method is applied.

The quantitative comparison shown in Table 5.3 indicates a significant improve in
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predicting strains when elastic visco-plastic model parameters are updated by

adopting Bayesian updating method.

Table 5.3 Summary of strain indicators for all adopted loading stages of oedometer test by using

prior and posterior elastic visco-plastic model parameters ( / , / ) for Väsby soft

soil

Loading Stage (kPa) ERMSE (prior-posterior)

(%)
EMAE (prior-posterior)

(%)

30-45
Prior  0.0044 0.003 0.99

45 30
Posterior 0.0025 0.002 0.99

45-67.5
Prior  0.0208 0.015 0.99

90 90
Posterior 0.0013 0.015 0.97

67.5-105
Prior  0.0224 0.016 0.99

80 80
Posterior 0.0042 0.003 0.98

105-160
Prior  0.0101 0.007 0.99

60 60
Posterior 0.0041 0.003 0.99

5.4.1.2 Prediction using observation of field measurements for Väsby test fill

Based on the mean values of the posterior distribution of  elastic visco-plastic model

parameters obtained from oedometer test results (0), settlement of embankment at

different depths are calculated adopting the numerical model based on Yin’s elastic

viso-plastic model (Yin 1999) (Note: the details of all soil and embankment

properties were presented in Chapter 3, Section 3.3).

Figure 5.3 shows the comparison between field measurement and predicted

settlement based on updated parameters from oedometer test results. It can be seen

from Figure 5.3, when the elastic visco-plastic model parameters are updated based

on oedometer test results, the predicted settlement deviates a lot from the field
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(observed) measurements. Since the surface settlement is an accumulation of

settlement of all the sub-layers below, the disparities between predicted and

measured settlement are higher at the ground surface (Note: the measured data at

depth of 7.5m is not available at the first 20 PCY).

Figure 5.3 Comparison of measured and predicted settlement using updated parameters
based on oedometer test results for Väsby test fill

One of the main design and construction considerations in low embankment

strategy is implementing a detailed instrumentation and monitoring program.

Therefore, an observational approach can be adopted to review and modify the design

if required. In this study, Bayesian updating approach is applied on monitoring data

to predict post-construction settlement so that the maintenance program and whole-

of-life costing can be planned. Since the surface settlement is the influential factor

for periodic maintenance cost and plan, monitoring data at ground surface are used
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settlement from MD10 to MD100 and the Bayesian updating method, the TMCMC

samples are generated (Note: MDxx indicates xx% of the total design life are

monitored and the data are used to update parameters). Posterior statistics of elastic

visco-plastic model parameters (i.e. / , 0/ ) updated based on various MDxx

(monitored data) are presented in Table 5.4. As shown in Figure 5.4, the settlements

at the ground surface are calculated based on the mean values of the posterior samples

and are compared with predicted settlement obtained from updated parameters based

on oedometer test results. The comparison shows that by using 20% of design life

monitored data, disparities between predicted and measured ground surface

settlements decrease considerably in comparison with using updated parameters

based on oedometer test results. To evaluate the performance of using monitored data

for back calculating settlement, a quantitative comparison is made between the

prediction and field measurements using monitored data and oedometer test results.

Table 5.5 summarises error indicators to compare predicted with measured data using

updated parameters based on various monitored data and oedometer test results.

Moreover, to evaluate the efficiency of using monitored data comparing to oedometer

test data in predicting more realistic long-term settlements, the error in determining

indicators RMSE and MAE is calculated as below:

( ) = × 100 ( = , )
(5.8)

As can be seen in Table 5.5, when 10% of total design life is monitored and

parameters are updated by the use of these monitored data (i.e. MD10), the error

between predicted and measured settlement decreased about 45% comparing to using

updated parameters based on oedometer test results. The corresponding value is
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approximately 77% when 20% of total design life is monitored and the elastic visco-

plastic model parameters are updated using MD20 which substantiates significance

of using monitored data to predict long-term settlement of low embankment

compared to just applying oedometer test data.

Table 5.4 Posterior statistics of elastic visco-plastic model parameters ( / , / ) updated based

on monitored data applying Bayesian updating method for Väsby soft soil

Model Parameter Monitored Data Mean ( ) Coefficient of Variation
( )

/
MD10 0.18 0.10

MD20 0.16 0.08

MD40 0.15 0.06

MD60 0.16 0.05

MD80 0.18 0.04

MD100 0.21 0.02

/
MD10 0.02 0.14

MD20 0.016 0.10

MD40 0.017 0.06

MD60 0.015 0.04

MD80 0.013 0.04

MD100 0.011 0.03
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Figure 5.4 Comparison of measured and predicted settlement using updated parameters
based on monitored data (MD) and oedometer test results for Väsby test fill

Table 5.5 Summary of surface settlement error indicators using updated model parameters

( / , / ) based on monitored data at different time stages and oedometer test results

for Väsby soft soil

Monitored Data (%) ERMSE (Oed-MD)

(%)
EMAE (Oed-MD)

(%)

MD10 0.24 0.20 0.971 43 45

MD20 0.10 0.09 0.995 77 76

MD40 0.09 0.08 0.996 80 79

MD60 0.09 0.08 0.996 80 79

MD80 0.07 0.06 0.997 83 83

MD100 0.06 0.04 0.998 85 88

Oedometer Test
Results 0.42 0.37 0.911 - -
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5.4.1.3 Risk analysis for Väsby test fill

In low embankment strategy, the risk taken by the client is not related to the failure

of the low embankment and safety. The risk is mostly associated with the periodic

maintenance cost and program. If the predicted settlements are more than the field

measurements, settlement prediction is unsatisfactory which overestimates planning

the maintenance cost and program. Therefore, the risk can be evaluated by

calculating the prediction bias or settlement bias, which is defined as the ratio of

predicted settlements ( ) to field measurements ( ) as presented in Equation

(3.27). In this risk assessment, the maintenance cost is assumed to be $10M. Figure

5.5 shows the risk associated with over-predicted settlement which can cause an

expensive and long-term maintenance program and increases the risk related to the

prediction of reasonable and realistic periodic maintenance cost and program.

As can be observed in Figure 5.5, when updated parameters based on

oedometer test results are used to predict post-construction settlement, the risk related

to overpredicted maintenance cost is considerably high and equals to $13.5M. When

10% of total design life is monitored (i.e.MD10) and settlements are back analysed

using updated parameters based on MD10, the risk decreases around 15% and is

equal to $12.0M. By using 20% of total design life monitored data (i.e. MD20), the

corresponding risk decreases to $11.0M which is 25% less than the risk assessment

by using updated parameters based on oedometer test data. It can be concluded that,

adopting monitored data has significant effect in predicting more realistic post-

construction settlements and managing risk associated with maintenance cost and

time.
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Figure 5.5 Risk associated with overpredicted post-construction settlement using updated
elastic visco-elastic parameters ( / , / ) based on oedometer test results and

monitored data (MD) for Väsby test fill

5.4.2 Skå-Edeby Test Fill

Skå-Edeby test embankment without vertical drain is adopted as the second case

study. The height of Skå-Edeby embankment was 1.5m and was located 25m west

Stockholm. Subsoil profile, soil and embankment properties, and stress applied at the

ground surface due to the fill weight were presented in Section 4.3. As presented in

Figure 4.4, oedometer test results of the samples taken at depth 2 m, 8 m, and 9 m

depths were used to determine elastic visco-palstic model parameters. Adopted

model parameters for Skå-Edeby test were presented in Table 4.1.
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Skå-Edeby soft soil
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sample A, the height of sample is 0.015m and the drainage condition is one way

drainage from the top surface. As reported by Le (2015), the soil permeability for the

sample was selected based on optimised model parameters and it is equal to =1.7 × 10 / . Initial void ratio ( ) and coefficient of permeability change

index ( ) are equal to 2.68 and 0.737, respectively (Le 2015). As shown in Figure

4.4.a, the last three stages within the normally consolidated range are used to

determine elastic visco-palstic model parameters for Bayesian updating method. The

height of sample B is 0.0125m and the drainage condition is one way drainage from

the bottom surface. For sample B, Le (2015) reported the optimised permeability ( )

equals to 2.9 × 10 / , and corresponding value of  and  are equal to 2.02

and 1.32, respectively. Table 5.6 shows the initial stress-strain data employed for

Bayesian updating method based on oedometer test results for samples A and B.

Elastic-plastic model parameter ( / ) and the initial creep coefficient ( / )

are updated by applying Bayesian method and adopting initial stress-strain data

(Table 5.6) and the soil permeability properties. Table 5.7 shows prior and posterior

statistics of elastic visco-plastic model parameters. Figure 5.6 illustrates the

comparison between predicted strain adopting updated elastic visco-plastic model

parameter based on Bayesian updating method with oedometer test results. To

evaluate discrepancy between predicted strains prior and after updating parameters,

three indicators, including  index, , and  are calculated and presented

in Table 5.8. The difference between predicted strain based on prior and posterior

(updated) model parameters is evaluated quantitatively by determining the error in

indicators as presented in Equation (5.7).
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As can be seen in Table 5.8, by applying Bayesian updating method, the

difference between predicted and measured strains can be reduced by 80%. The

quantitative comparison shown in Table 5.8 indicates a significant improve in

predicting strains when elastic visco-plastic model parameters are updated by

adopting Bayesian updating method.

Table 5.6 Initial stress-strain data employed for Bayesian updating method based on oedometer

test results for Skå-Edeby soft soil

Sample Loading
Stage (kPa)

Initial
Thickness

(m)

Initial
Stress
(kPa)

Final
Stress
(kPa)

Initial
Strain (%)

Time
(min)

A

42-82 0.015 42 82 7.7 1440

82-170 0.015 82 170 18.8 1440

170-345 0.015 170 345 26.8 1440

B

42-82 0.0125 42 82 5.7 1440

82-162 0.0125 82 162 10.0 1440

162-267 0.0125 162 267 16.6 1440
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Table 5.7 Prior and posterior statistics of elastic visco-plastic model parameters ( / , / )
based on oedometer test results applying Bayesian updating method for Skå-Edeby soft

soil

Model Parameter Mean ( )
Coefficient of

Variation ( )

/
Prior 0.11 0.3

Posterior

Sample A

42-82 kPa 0.17 0.05

82-170 kPa 0.14 0.04

170-345 kPa 0.13 0.003

Sample B

42-82 kPa 0.15 0.04

82-162 kPa 0.13 0.04

162-267 kPa 0.18 0.005

/
Prior 0.01 0.3

Posterior

Sample A

42-82 kPa 0.009 0.04

82-170 kPa 0.013 0.04

170-345 kPa 0.018 0.005

Sample B

42-82 kPa 0.012 0.03

82-162 kPa 0.009 0.04

162-267 kPa 0.015 0.03
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Figure 5.6 Predicted strain adopting updated elastic visco-plastic model parameters
( / , / ) comparing with oedometer test results for Skå-Edeby soft soil (a)

Sample A, (b) Sample B
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Table 5.8 Summary of strain indicators for all adopted loading stages of oedometer test by using

prior and posterior elastic visco-plastic model parameters ( / , / ) for Skå-Edeby

soft soil

Sample Loading Stage (kPa)
ERMSE (prior-posterior)

(%)
EMAE (prior-posterior)

(%)

A

42-82
Prior  0.0119 0.012 0.99

80 80
Posterior 0.0023 0.002 0.99

82-170
Prior  0.0179 0.018 0.99

60 60
Posterior 0.0072 0.007 0.99

170-345
Prior  0.0081 0.008 0.99

45 50
Posterior 0.0046 0.004 0.98

B

42-82
Prior 0.006 0.006 0.99

60 65
Posterior 0.0023 0.002 0.99

82-162
Prior  0.0061 0.005 0.99

75 75
Posterior 0.0016 0.001 0.99

162-267
Prior  0.0062 0.006 0.99

55 60
Posterior 0.0027 0.0025 0.99

5.4.2.2 Prediction using observation of field measurements for Skå-Edeby test
fill

Settlement of Skå-Edeby test fill at different depths are calculated using the mean

values of the posterior distribution of elastic visco-plastic model parameters obtained

from oedometer test results as presented in Table 5.7 (Note: the details of all soil and

embankment properties were presented in Chapter 4, Section 4.3).

Figure 5.7 compares field measurement and predicted settlement based on

updated parameters from oedometer test results. As shown in Figure 5.7, there is a

considerable difference between field (observed) measurements and predicted

settlement when the elastic visco-plastic model parameters are updated based on the
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oedometer test results. The deviation between observed and calculated settlement is

higher at the ground surface due to the fact that strain at the surface is an

accumulation of all sub-layer’s strains.

Figure 5.7 Comparison of measured and predicted settlement using updated parameters
based on oedometer test results for Skå-Edeby test fill

As can be seen in Figure 5.7, adopting elastic visco-plastic model parameters

( / , / ) updated based on oedometer test data can lead to over predicted

settlement which can affect periodic maintenance cost and program in projects with

low embankment strategy. In order to have more realistic settlement predictions in

low embankments, periodic monitoring data can be used to update parameters.

Similar to Väsby test fill case study, measured settlement at ground surface are used

to update elastic visco-plastic model parameters. Table 5.9 summarizes posterior

statistics of elastic visco-plastic model parameters updated based on different MDxx

(MD10 to MD100). Thereafter, post-construction ground surface settlements in Skå-
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Edeby embankment are calculated adopting the mean values of the posterior samples.

Figure 5.8 compares settlements at ground surface with measured data when elastic

visco-plastic model parameters are updated based on oedometer test data and

monitored data. The comparison shows a significant decrease in disparities between

predicted and measured ground surface settlements when 20% of design life

monitored data are used to update the parameters in comparison with applying the

updated parameters obtained based on oedometer test results.

Table 5.9 Posterior statistics of elastic visco-plastic model parameters ( / , / ) updated based

on monitored data applying Bayesian updating method for Skå-Edeby soft soil

Model Parameter Monitored Data Mean ( ) Coefficient of Variation
( )

/
MD10 0.14 0.01

MD20 0.16 0.003

MD40 0.17 0.004

MD60 0.06 0.002

MD80 0.06 0.002

MD100 0.05 0.01

/
MD10 0.010 0.02

MD20 0.007 0.01

MD40 0.005 0.02

MD60 0.007 0.001

MD80 0.007 0.001

MD100 0.007 0.005
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Figure 5.8 Comparison of measured and predicted settlement using updated parameters
based on monitored data (MD) and oedometer test results for Skå-Edeby test fill

To quantify the effect and significance of using monitored data for back

calculating settlement, a comparison is made between the prediction and field

measurements using monitored data and oedometer test results. Table 5.10 presents

error indicators to make a comparison between predicted settlement using updated

parameters and field measurements. The error in determining indicators RMSE and

MAE is calculated according to Equation (5.8). Table 5.10 shows using 10% of total

monitored data (i.e. MD10) decrease the error between predicted and measured

settlement about 35% to 55% comparing to using updated parameters based on

oedometer test results. The corresponding value is approximately 60% to 70% when

model parameters are updated based on 20% of total design life monitored data (i.e.

MD20). These results confirm the effectiveness and efficiency of using monitored

data to predict long-term settlement of low embankment compared to just applying

oedometer test data.
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Table 5.10 Summary of surface settlement error indicators using updated model parameters

( / , / ) based on monitored data at different time stages and oedometer test results

for Skå-Edeby soft soil

Monitored Data (%) ERMSE (Oed-MD)

(%)
EMAE (Oed-MD)

(%)

MD10 0.091 0.059 0.983 35 55

MD20 0.054 0.035 0.995 60 72

MD40 0.011 0.008 0.996 92 94

MD60 0.011 0.008 0.996 92 94

MD80 0.010 0.007 0.997 93 94

MD100 0.007 0.006 0.998 95 95

Oedometer Test
Results 0.144 0.126 0.911 - -

5.4.2.3 Risk analysis for Skå-Edeby test fill

The risk is calculated based on the prediction bias or settlement bias, which is defined

as the ratio of predicted settlements ( ) to field measurements ( ) as presented in

Equation (3-27). In this risk assessment, the maintenance cost is assumed to be $10M.

Figure 5.9 presents the risk associated with over-predicted settlement which can

affect the periodic maintenance cost and program. Higher risk is related to prediction

of expensive and long-term maintenance program.

Figure 5.9 shows that when updated parameters based on oedometer test results

are used to predict post-construction settlement, the risk related to overpredicted

maintenance cost is significantly high and equals to $13.4M. When settlements are

back analysed using updated parameters based on MD10, the risk decreases to

$12.0M which is 15% less than the risk assessed using oedometer test data.  By using
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MD20, the corresponding risk decreases around 20% and is equal to $11.0M. To

summarize, Figure 5.9 illustrates that adopting monitored data has considerable

effect in predicting more realistic post-construction settlements and managing risk

associated with maintenance cost and time.

Figure 5.9 Risk associated with overpredicted pos-construction settlement using updated
vico-elastic parameters based on oedometer test results and monitored data (MD)

for Skå-Edeby test fill

5.5 Summary

In this chapter, Bayesian updating method of identifying the model parameters has

been used to predict the long-term settlement of low embankments constructed on

soft soils. The numerical solution for the coupled Yin’s elastic visco-plastic (EVP)

model and consolidation theory is applied to predict the long-term behavior of soft

soils. In this study, the elastic-plastic model parameter ( / ) and the initial creep

coefficient ( / ) have been updated using field and oedometer test data by applying

0 10 20 30 40
8

10

12

14

16

18

Using updated parameters
based on:

Post Construction Time in Years (PCY)

R
is

k 
($

M
)

 Oedometer test data
 MD10
 MD20
 MD40
 MD60
 MD80
 MD100



177

the TMCMC method. Two in-situ case studies of test fills at Väsby and Skå-Edeby

in Sweden have been selected to verify the effectiveness of Bayesian updating

method to update the model parameters. In both case studies, when the elastic visco-

plastic model parameters are updated based on oedometer test data, long-term

settlements are over-predicted. The predictions by using 10% of monitored data

results in a considerable decrease in discrepancies between predicted and measured

settlements. Moreover, when 20% of total design life is used to update elastic visco-

plastic model parameters, the prediction is in good agreement with field

measurements and the difference between predicted and measured settlements

decreases significantly.

The risk assessment has been undertaken by determining the prediction bias or

settlement bias. Since in low embankment strategy, the risk is mostly associated with

the periodic maintenance cost and schedule, adopting at least 20% of total monitored

data for updating model parameters has a considerable impact in predicting more

realistic post-construction settlements and consequently more reasonable and

economical maintenance cost and time. It should be noted that the findings of this

chapter are based on two case studies of Väsby and Skå-Edeby test fill. To generalize

the findings, more case studies are required, which is suggested for further studies.
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6 Conclusions and Recommendations

6.1 Summary

Chapters 1 and 2 have provided an introduction and a comprehensive literature

review about various probabilistic methods and several existing methods to predict

time-dependent stress-strain behaviour of soft soils. Chapter 2 has also presented

several probabilistic methods and reliability analysis in geotechnical engineering,

particularly in long-term settlement of soft soils.

In Chapter 3, the influence of the elastic-plastic and creep parameter

uncertainties and contribution of each random variable on the time-dependent

deformation of soft soils has been presented. Since the elastic-visco plastic materials

are interdependent parameters, the effect of cross correlation coefficients between

two random variables, namely the elastic-plastic ( / ) and initial creep ( / )

model parameters on the system response has been investigated. Väsby trial

embankment data was adopted to obtain the deterministic and probabilistic

parameters and validate the proposed model. A suitable cross correlation coefficient

between selected random variables has been recommended by evaluating the

proposed probabilistic analysis against field measurements.
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Chapter 4 has investigated the influence of spatial variability of the elastic

visco-plastic model parameters affecting the time-dependent behaviour of soft soils.

To generate the random field, Karhunen-Loeve (K-L) expansion method has been

adopted and then combined with the developed finite difference-based model. To

determine the critical spatial correlation length, the maximum probability of failure

has been calculated by adopting the field measurements of Skå–Edeby trial

embankment.

Chapter 5 has provided monitoring measurements of two case studies of Väsby

and Skå-Edeby test fills to investigate how applying field monitoring results can

reduce risks in predicting the long-term settlement of low embankments constructed

on soft soils.  The elastic visco-plastic model parameters have been updated by

adopting the Bayesian updating method and transitional Markov Chain Monte Carlo

(TMCMC) algorithm. Then, the results were compared with updated parameters

obtained from oedometer test results.

6.2 Conclusions

Due to the rapid development of civil infrastructure and scarcity of land in urban

areas, there is a growing demand to construct on top of weak ground with soft soil.

The challenge then for geotechnical engineers is to predict the time-dependent

behaviour of soft soil that has low strength and stiffness. Elastic visco-plastic model

(EVP) developed by Yin (1999) is an effective model to predict time-dependent

behaviour of soft soils. It is neither practical nor cost-effective to carry out very long-

term creep tests to determine elastic visco-plastic model parameters and creep limit

values, introducing uncertainties in design. Moreover, at each site the properties of
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soil and rock vary depending on the lithological heterogeneity of the soil and its

inherent spatial variability introducing another source of uncertainties in design. As

a result, this research investigated the influence of the elastic-plastic and creep

parameter uncertainties in predicting long-term behaviour of soft soils.

It is concluded that the elastic-plastic model parameter ( / ) and the initial

creep coefficient ( / ) are important factors in predicting the time-dependent

settlement of soft soil considering uncertainties associated with determining these

two parameters. The standard deviation of time-dependent settlement gradually

increased with time as uncertainties accumulated.  Moreover, the effect of cross

correlation coefficients between the random variables /  and /  was evaluated

by comparing the predictions with the measured data in the Väsby test fill. It was

concluded that by increasing the cross correlation coefficient, the standard deviation

and also the coefficient of variation (COV) of the predicted settlements increased

approximately 40%, resulting in more conservative design and predictions.

Furthermore, the settlement ratio is more accurate and reliable method to

estimate the efficiency and suitability of selected cross correlation coefficients as the

common methods used to evaluate errors were not efficient enough to quantify the

most proper cross correlation coefficient between the elastic-plastic model parameter

( / ) and the initial creep coefficient ( / ). It was concluded that to optimise a

design in terms of reliability and cost, the cross correlation coefficient between the

elastic-plastic model parameter ( / ) and the initial creep coefficient ( / ) based

on the existing field and laboratory test results should be determined and applied in

probabilistic analysis. However, in the absence of enough data to determine the exact
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value of cross correlation between /  and / , it is highly recommended to

assume these two random variables fully-correlated (i.e. = 1).

Moreover, the effect of spatially variable elastic visco-plastic model

parameters on the long-term behaviour of low embankments constructed on top of

soft soils was investigated incorporating random field (RF) and single random

variable (SRV) analyses. The key findings of this study showed that normalised

spatial correlation length ( ) plays an important role in predicting the time-dependent

settlement of soft soils considering the elastic visco-plastic parameters ( /  and/ ) as spatial random variables. By increasing the normalised spatial correlation

length in RF analysis, the probability density function (PDF) becomes wider

indicating more uncertainties in post construction settlement prediction. In addition

to, when normalised spatial correlation length exceeds unity (i.e. > 1), the RF

settlement prediction converges with those obtained from rather simple SRV

analysis.

On the other hand, it is concluded that a critical spatial correlation length

existed for predicting time-dependent settlement of soft soils resulting in the

maximum PF while adopting random field reliability analysis. In this study, the

critical spatial correlation length is determined to be in the order of 10 , where  is

the soft soil thickness. As a result, in the absence of adequate data to determine exact

spatial correlation length, conducting SRV analysis is deemed unsafe/unreliable. It

can be noted that comprehensive, time consuming and costly laboratory tests are

required to estimate the soil spatial variability and correlation length. Therefore, the

findings of this study can be used as guidelines by practicing engineers, designing
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structures on soft soils, particularly when adopting low embankment strategy for

design of transport infrastructure.

In this study, the elastic-plastic model parameter ( / ) and the initial creep

coefficient ( / ) were updated using field and oedometer test data by applying the

TMCMC method. Two in-situ case studies of test fills at Väsby and Skå-Edeby in

Sweden were selected to verify the effectiveness of Bayesian updating method to

update the model parameters. In both case studies, when the elastic visco-plastic

model parameters are updated based on oedometer test data, long-term settlements

are over-predicted. The predictions by using 10% of monitored data results in a

considerable decrease in discrepancies between predicted and measured settlements.

Moreover, when 20% of total design life is used to update elastic visco-plastic model

parameters, the prediction is in good agreement with field measurements.

This study can be employed by design engineers while adopting reliability-

based design approach to predict long-term settlement of soft soils. The main findings

of this study provide a practical insight into selecting the most suitable cross

correlation coefficient between elastic visco-plastic model parameters and the critical

spatial correlation length for safe design in the absence of adequate data. It is also

recommended that even adopting 20% of total monitored data for updating model

parameters has a considerable impact in predicting more realistic post-construction

settlements and consequently reducing the risks associated with unsatisfactory

settlement prediction.
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6.3 Recommendations for Future Research

This research may be extended by conducting the following directions and

ideas:

In this study, the reliability analysis and probabilistic method has been

applied for predicting soft soils one dimensional settlement without

vertical drains. It is more popular to improve soft soil performance

employing the pre-loading system combined with the installation of

vertical drains. Accordingly, the proposed reliability analysis and

probabilistic method can be extended based to the case studies with

vertical drains in 2D and 3D consolidation conditions.

One of the applications of constructing embankment without vertical

drains are ground improvement of landfills. It is recommended to

evaluate the application of proposed reliability analysis combined with

non-linear elastic visco-plastic model to predict long-term settlement of

landfills by adopting settlement measurements of a landfill case study.

More case studies can be analysed to validate the critical spatial

correlation length proposed in this research to predict time dependent

settlement of soft soils in RF analysis.

In this study, findings of updating elastic visco-plastic model

parameters adopting Bayesian updating method and field monitoring

data are based on two case studies of Väsby and Skå-Edeby test fill. As

a result, to generalize the findings, it is suggested to analysis more case

studies.
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Bayesian updating method and transitional Markov Chain Monte Carlo

(TMCMC) algorithm can be extended to incorporate spatial variability

of elastic visco-plastic model parameters. Therefore, the model will be

more versatile to address uncertainties due to the model parameters

determination methods and spatial variability of parameters.

In this study, the reliability analysis and probabilistic method has been

applied for predicting soft soils settlement incorporating uncertainties

and spatial variability of elastic visco-plastic model parameters. It is

suggested to extend the study considering uncertainties and spatial

variability associated with more than two probabilistic parameters such

as permeability.
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