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Abstract

This thesis aims to evaluate the performance of deep learning artificial neural network (ANN)

(multi-layer perceptron (MLP) and long short-term memory (LSTM)) models and parametric

(Black–Scholes–Merton, Heston, Heston jump diffusion and finite moment log stable) models in

the daily prediction of Standard and Poor’s (S&P) 500 call option prices and delta and optimally

trading ETF pairs. We use multiple specifications of hidden layers and neurons for ANN models

that reflect a more granular level of deep learning, aiming to provide insight into the efficacy of

increasing granularity in improving performance. For comparison, we employ classical option

parametric pricing models widely used in academia and practice to comprehensively assess the

models’ performance based on their practical relevance.

In the first study, an extensive empirical assessment of the forecasting performance of daily

S&P 500 call option prices/moneyness is performed, and we experiment with single, double, and

triple hidden layers specifications of ANN and parametric models. Deep learning ANN models

are trained on lagged and one-trading-day-ahead input variables. The numerical investigations

reveal that the best-performing models for daily forecasts of call option prices and moneyness

are LSTM models (with lagged input variables) and MLP models (with one-trading-day-ahead

input variables) compared to parametric models. Moreover, most triple hidden layer ANN

models outperform single and double hidden layer ANN models. These results have practical

implications for pricing options without look-ahead bias and for network architectures that

empirically demonstrate performance improvement from single to triple hidden layers ANN

models.

In the second study, the empirical performance of triple hidden layer deep learning ANN and

parametric models (with lagged and one-trading-day-ahead input variables) is assessed by pre-

dicting daily S&P500 call option delta and the corresponding replicating portfolio value. The

delta is computed directly and may also be analytically inferred from option prices. We find

that the Black–Scholes–Merton model and the LSTM models typically outperform the other

parametric and ANN models. In particular, the LSTM models outperform when the delta is

analytically inferred from option prices. The results of this chapter have practical relevance for

short-term dynamic hedging applications of options portfolios.

The third study amalgamates the models discussed in the first and second studies by comparing

model averaging predictions of prices, deltas and replicating portfolios from deep learning ANN

and parametric models. It is shown that the average triple hidden layer MLP models tend to



perform the best in forecasting option prices, with the parametric models performing better

in forecasting delta. For the replicating portfolio, the pricing forecasts seem to dominate the

delta forecasts, revealing the superiority of the average triple hidden layer MLP models. These

findings provide empirical evidence of the effectiveness of model averaging techniques for fore-

casting options prices and delta risks, which would be helpful in short-term risk management

and derivatives evaluation.

The fourth study introduces a new methodology for pair trading equity ETFs, which is for-

mulated by effectively applying commonly used technical indicators and machine learning algo-

rithms (decision tree and deep learning MLP models) to the spreads generated by traditional

approaches, thereby generating unique ways to enhance returns. We perform a comparative

analysis based on actual PnL(Profit and Loss), returns, Sharpe ratios, and other performance

indicators. Eight ETF pairs across three rolling windows (30 days, 50 days and 100 days) yield

3,084 pair trading strategies, which are back-tested. We find that there are alternate and prof-

itable ways to trade pairs that provide a practitioner with many profitable opportunities, unlike

traditional approaches in which one is confined to a limited number of opportunities. A pair

of ETFs can be traded irrespective they are cointegrated or correlated, thereby enabling hedge

funds, institutional investors and retail traders to deploy this strategy as a long/short equity

investment tool.
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