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Abstract

This thesis aims to evaluate the performance of deep learning artificial neural network (ANN)

(multi-layer perceptron (MLP) and long short-term memory (LSTM)) models and parametric

(Black–Scholes–Merton, Heston, Heston jump diffusion and finite moment log stable) models in

the daily prediction of Standard and Poor’s (S&P) 500 call option prices and delta and optimally

trading ETF pairs. We use multiple specifications of hidden layers and neurons for ANN models

that reflect a more granular level of deep learning, aiming to provide insight into the efficacy of

increasing granularity in improving performance. For comparison, we employ classical option

parametric pricing models widely used in academia and practice to comprehensively assess the

models’ performance based on their practical relevance.

In the first study, an extensive empirical assessment of the forecasting performance of daily

S&P 500 call option prices/moneyness is performed, and we experiment with single, double, and

triple hidden layers specifications of ANN and parametric models. Deep learning ANN models

are trained on lagged and one-trading-day-ahead input variables. The numerical investigations

reveal that the best-performing models for daily forecasts of call option prices and moneyness

are LSTM models (with lagged input variables) and MLP models (with one-trading-day-ahead

input variables) compared to parametric models. Moreover, most triple hidden layer ANN

models outperform single and double hidden layer ANN models. These results have practical

implications for pricing options without look-ahead bias and for network architectures that

empirically demonstrate performance improvement from single to triple hidden layers ANN

models.

In the second study, the empirical performance of triple hidden layer deep learning ANN and

parametric models (with lagged and one-trading-day-ahead input variables) is assessed by pre-

dicting daily S&P500 call option delta and the corresponding replicating portfolio value. The

delta is computed directly and may also be analytically inferred from option prices. We find

that the Black–Scholes–Merton model and the LSTM models typically outperform the other

parametric and ANN models. In particular, the LSTM models outperform when the delta is

analytically inferred from option prices. The results of this chapter have practical relevance for

short-term dynamic hedging applications of options portfolios.

The third study amalgamates the models discussed in the first and second studies by comparing

model averaging predictions of prices, deltas and replicating portfolios from deep learning ANN

and parametric models. It is shown that the average triple hidden layer MLP models tend to



perform the best in forecasting option prices, with the parametric models performing better

in forecasting delta. For the replicating portfolio, the pricing forecasts seem to dominate the

delta forecasts, revealing the superiority of the average triple hidden layer MLP models. These

findings provide empirical evidence of the effectiveness of model averaging techniques for fore-

casting options prices and delta risks, which would be helpful in short-term risk management

and derivatives evaluation.

The fourth study introduces a new methodology for pair trading equity ETFs, which is for-

mulated by effectively applying commonly used technical indicators and machine learning algo-

rithms (decision tree and deep learning MLP models) to the spreads generated by traditional

approaches, thereby generating unique ways to enhance returns. We perform a comparative

analysis based on actual PnL(Profit and Loss), returns, Sharpe ratios, and other performance

indicators. Eight ETF pairs across three rolling windows (30 days, 50 days and 100 days) yield

3,084 pair trading strategies, which are back-tested. We find that there are alternate and prof-

itable ways to trade pairs that provide a practitioner with many profitable opportunities, unlike

traditional approaches in which one is confined to a limited number of opportunities. A pair

of ETFs can be traded irrespective they are cointegrated or correlated, thereby enabling hedge

funds, institutional investors and retail traders to deploy this strategy as a long/short equity

investment tool.
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Chapter 1

Introduction

1.1 Motivation and Literature Review

“The most valuable commodity I know of is information."

- Gordon Gekko, Wall Street (1987)

In this era of big data, surplus computing power, and the recent advanced developments in

GPU(graphics processing unit) computations, deep learning techniques for forecasting asset

prices have been extensively used by practitioners and academicians. Also, it is now econom-

ically possible to address large-scale optimisation problems because of the falling cost of com-

puting power. In recent years, researchers have developed several machine learning algorithms

to predict asset prices and trading strategies around them for short- and long-term investing.

The research presented in this thesis was motivated by a desire to address some of the problems

that practitioners, derivative and retail traders face, particularly issues with pricing and hedg-

ing S&P 500 Index options and optimally trading statistical arbitrage strategies on Exchange

Traded Funds (ETFs).

The landmark Black–Scholes (BS) option pricing model was introduced by the celebrated au-

thors in Black and Scholes (1973). Their so-called BS option pricing formula is still a prominent

conventional model for pricing options and is considered the most crucial achievement in fi-

nancial theory in the last five decades. Empirical research has shown that the formula suffers

from systematic biases compared to options market prices, particularly failing to account for the

so-called volatility smile in observed option price data (see Black and Scholes (1975), Rubinstein
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(1985), Bakshi et al. (1997a) and Andersen et al. (2002)). Several parametric option pricing

models have attempted to generalise the BS assumptions. The Stochastic Volatility (SV) model

introduced by Heston (1993) incorporates a second parametric process to model the underly-

ing volatility. This model seems to provide results more consistent with the volatility smile

of observed market data. The SV model was further extended by Bakshi et al. (1997a), who

concluded that incorporating stochastic volatility and jumps is essential for pricing and internal

consistency and can improve on BS prices. Despite its limitations, the BS model is still fre-

quently used in many practical contexts to price European options despite the many alternative

parametric models that have been proposed, whether they incorporate parametric modelling of

stochastic volatility as in Heston (1993) or a jump-diffusion component, as proposed in Merton

(1976). More complicated models, such as that of Bates (1996), include parametric modelling

of stochastic volatility and add a jump-diffusion component to the underlying asset process,

and modelling stochastic interest rates, as in Bakshi et al. (1997b). However, one criticism of

such approaches is that using the aforementioned parametric models involves complex empirical

modelling. These models often prove challenging to implement for use in “real-world” pricing,

hedging and trading applications.

Various non-parametric models have been introduced in the literature to remedy the perceived

defects of the parametric models and to provide alternative approaches for pricing and hedging

applications. The most important non-parametric models in recent years employ artificial neural

networks (ANN). Such models propose a purely data-driven modelling approach and have been

extensively used in forecasting, pricing and hedging options, bankruptcy prediction, and stock

market prediction. ANNs do not make any distributional assumptions about the stock process,

thereby avoiding imposing a rigid model structure, unlike parametric models. This makes the

ANNs universal function approximators (Hornik et al. (1990)).

The single-layer perceptron neural network, which has an input layer, a hidden layer and an

output layer, is by far the most common and, in many ways, the most basic. The multi-layer

perceptron (MLP) neural network is an extension of the single-layer perceptron neural network

with multiple hidden layers, where nodes in each hidden layer are connected to nodes in the next

hidden layer. Similarly, recurrent neural networks (RNNs) are neural networks that generalise

and extend the MLP model. In the case where we have a Deep ANN model with several network

layers, the RNN variant of an ANN model allows previous outputs in network layers to be used

as inputs to subsequent layers while also allowing hidden states. In contrast to a conventional

MLP deep network where every layer is independent, in an RNN, the previous layer’s output
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is vital in predicting the output from the next layer. In this regard, RNNs introduce memory

into the network model. The architectures employed in the early generations of RNNs displayed

practical implementation issues mainly related to their limited memory capacity, which is less of

an issue with current hardware. However, more serious problems would arise due to pathological

features caused by the vanishing or exploding gradient problem(Hihi and Bengio (1995)).

The long short-term memory (LSTM) Network is a specific form of RNN proposed by Sepp

and Jurgen (1997). The architecture of the LSTM network tries to solve the latter problem

by not imposing any bias towards recent observations but instead keeping the constant error

flowing back through time. The LSTM network avoids long-term dependence problems and is

likely suitable for processing and predicting time-dependent data encountered in financial time

series. The LSTM network can handle long sequences of inputs compared to other RNNs, which

can only deal with short sequences. Outstanding results have been achieved using LSTM and

RNNs as documented in Alex and Jurgen (2008) for unsegmented connected handwriting, for

automatic speech recognition in Alex (2014), for music composition by Douglas E. (2002), and in

the context of grammar learning by Gers and Schmidhuber (2001). Similarly, exceptional results

were achieved in Meire et al. (2017) when LSTM networks were paired with convolutional neural

networks (CNN) to automatically provide annotations for images. In the area of financial time

series prediction, very few studies have applied LSTM networks, and even where they have

been applied, most of the studies have been in the area of stock price prediction. Chen et al.

(2015) proposed an LSTM-based system to predict stock returns on the Chinese stock market

using historical price data of stock and market indexes and found that, as the number of inputs

increased, the LSTMs showed improvements in forecasting accuracy. A stock trading simulation

based on a method using LSTM was demonstrated by Nelson et al. (2017), where the forecast

performance of the LSTM was compared to baseline models, such as the MLP, random forest

(RF), pseudo-random model and results showed that the LSTM-based model was comparatively

more accurate than other machine learning models. Moreover, it also had a lower risk-adjusted

return. Similarly, Bao et al. (2017) used a three-stage process to predict six market index

futures. They initially used a wavelet transformation to reduce high-dimensionality stock data

to low-dimensionality signal data, which was reproduced using a stacked auto-encoder and then

finally used the LSTM network to predict stock prices. They concluded that the forecasting

performance of the LSTM was better than the RNN, LSTM, and Wavelet-LSTM models. In

addition to using time series data with the LSTM network, Jiahong et al. (2017) extracted

investor sentiment from forum posts and fed it to the LSTM network along with historical

market data to predict the next day’s China Securities Index (CSI) 300 open price. They
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concluded that LSTM networks outperformed Support Vector Machines (SVM), and adding

the sentiment as a feature to the LSTM network led to a remarkable improvement in accuracy

(from 78.57% to 87.86%). Along similar lines, Akita et al. (2016) used textual data from the

Nikkei newspaper as input for the LSTM network together with time-series data to predict the

open prices of 10 companies. They concluded that the LSTM model trained with numerical and

textual representations made higher profits (1.67 times higher) than the LSTM model otherwise

trained with only numerical data. Motivated by these findings, this thesis uses MLP and LSTM

networks and compare performance relative to parametric models in a variety of applications

involving S&P 500 Index options, including forecasting option prices and deltas and identifying

optimal trading strategies.

1.1.1 European Options Pricing Using Machine Learning:

The architectures of ANN models applied to forecast S&P 500 Index options prices have typically

been a single hidden layer ANN (Ghaziri et al. (2000) is an exception), as shown in the list of

papers in Table 1.1.

In one strand of literature, the target forecasting variable is the call price or the call price scaled

by the strike price, which reflects the option’s ‘moneyness’ (employing the ‘homogeneity hint’

of Merton (1976)). By using the ‘homogeneity hint’, Hutchinson et al. (1994) showed that the

rate of convergence of non-parametric estimators is accelerated as fewer inputs to the model

are used. Furthermore, Hutchinson et al. (1994) applied three non-parametric models on S&P

500 futures options for both option pricing and hedging. They used the Radial-Basis Function

(RBF) network, the MLP and the Projection Pursuit (PP) networks and showed that all three

networks exhibited superior performance to the BS model. However, these networks were trained

on artificially generated BS option prices rather than traded prices.

Hutchinson et al. (1994), Lajbcygier et al. (1997), Anders et al. (1998), Garcia and Gençay

(1998), and Garcia and Gençay (2000) show that the ‘homogeneity hint’ helps to reduce overfit-

ting. The study by Hutchinson et al. (1994) was extended by Garcia and Gençay (1998, 2000),

who found that an ANN using St/Kt was superior to an ANN using St and Kt separately and

that the ‘homogeneity hint’ consistently reduced the out-of-sample mean squared prediction

error compared with a feed-forward neural network with no hint. Bennell and Sutcliffe (2004)

concluded that for out-the-money (OTM) options, an ANN is superior to BS, whereas, for in-the-

money (ITM) options, the performance of BS is better than that of the ANN. The effectiveness
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of ANN models was further enhanced in Gençay and Qi (2001), who introduced cross-validation,

Bayesian regularisation, early stopping and bagging to mitigate overfitting. They concluded that

bagging is computationally intensive but provides the most accurate pricing and delta-hedging.

As the BS model is known to under-price (over-price) in-the-money (out-of-the-money) options

and this error increases with the extent to which the option is in-the-money (out-of-the-money)

and decreases as time-to-maturity decreases, Gençay and Salih (2003) concluded that for the

deeper out-of-the-money call and put options, an ANN provides more accurate pricing estimates

and performs better during high volatility periods. The homogeneity hint was also applied in

an inverted manner by Carverhill and Cheuk (2003) as K/S on options based on the S&P 500

Index futures using a single hidden layer neural network with two outputs, the delta and the

volatility. They concluded that by inverting the homogeneity hint, an ANN still outperforms

the Cox–Ross–Rubinstein (CRR) model in terms of forecasting performance.

Though most literature is supportive of the use of ANNs and the application of the homogeneity

hint to their inputs, Gradojevic and Kukolj (2011) found contradictory effects. They introduced

a fuzzy rule-based parametric model, known as the Takagi–Sugeno–Kang (TSK) model, that

accounts for the non-normality in S&P 500 Index returns. The TSK model exhibits an option

pricing performance similar to that of non-parametric ANN models, and this holds true despite

providing the ANNs with inputs possessing the homogeneity hint. Furthermore, Hamid and

Habib (2005) studied the pricing of call S&P 500 Index futures options finding that ANNs

display a similar lack of performance when the single hidden layer ANN model is compared to

the Black (1976) model. They also found that, in shorter horizons, the ANNs fail to generate

output close to the market call price. Accordingly, in this thesis, the forecasting performance

of both prices and moneyness is considered while we extend this strand of literature to multiple

layers in order to assess the relative performance of increased granularity in ANN networks.

In another literature strand, ANNs are employed to provide estimates of the parameters of

parametric option pricing models required to implement these models–for example, estimating

volatility as an input to the BS model. Qi and Maddala (1996) extended Hutchinson et al.

(1994)’s study on pricing S&P 500 Index options by training single hidden layer feed-forward

neural networks using input variables from the BS model but excluding volatility and including

open interest instead. They reported a minor improvement of ANNs in pricing S&P 500 call

options compared to the BS model. The usage of open interest was referred to as a crucial factor

in the improvement in pricing, as the usage of open interest is not affected by the variance of

the target variable. Andreou et al. (2002) extended the Lajbcygier and Flitman (1996) model
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for option pricing by training ANNs on the difference between the actual market price and the

BS option price. They concluded that while ANNs are superior to BS models, no input variable

combinations rendered either a specific BS or ANN model superior. As the SV, stochastic

volatility with Jumps (SVJ) and stochastic interest rates (SI) models could not manage to

provide results consistent with the observed market data, and as they were too complex to

implement, Andreou et al. (2004) extended their study to SVJ models with one jump and two

jump components. They also considered the model of Corrado and Su (1997) (CS), which allows

for excess skewness and kurtosis. They found that these advanced parametric option pricing

models (POPMs) perform better in pricing and trading than ANNs, which use parametric

models’ implied parameters.

Andreou et al. (2008) compared the BS, the semi-parametric CS models, with several ANN

configurations in which the target function of the ANNs was the residual between the actual

call market price and the parametric option price estimate. They concluded that, in the pres-

ence of transaction costs, the BS-based hybrid ANN models with contract-specific volatility

are the best-performing ANN models. Dumas et al. (1996) formulated a quadratic form for

estimating per-contract volatility called deterministic volatility regression functions (DVF) to

predict option prices, finding that an interpolative regression approach produces more accurate

option prices than the Crank-Nicholson finite-difference method. This method of pricing was

extended by Andreou et al. (2010), who designed a nonparametric method of enhancing the

parameter values used in parametric option pricing models, thereby creating a semi-parametric

method to price options. They propose a method (that outperforms Dumas et al. (1996)’s DVF

method) for estimating parameters such as volatility, skewness, and kurtosis using the Gener-

alised Parameter Functions (GPF). The semi-parametric/enhanced-parametric option pricing

models (i.e. ePOPMs) are simpler and three times faster to compute than SVJ models. The

parameter enhancement (in ePOPMs) provides volatility to the BS model and skewness or kur-

tosis to the CS model. To estimate the GPFs nonparametrically, they used a single hidden

layer feed-forward ANN. Among parametric models (i.e. non-DVF versions of the BS, CS, SVJ

and SV models), the SVJ model, followed by the SV model, exhibited superior performance in

pricing. During in-sample and out-of-sample performance, the DVF-based CS models provided

better pricing performance than other corresponding DVF-based models, but the parametric

SVJ model outperformed all of them. The ePOPMs have an excellent out-of-sample pricing

performance, where the root mean square error (RMSE) for all the models ranged between 1.50

to 1.75.
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ANN techniques can estimate option prices inductively using historical or implied input variables

and option market data. These nonparametric methods do not make any theoretical assump-

tions about the underlying process or directly involve any financial theory in their approaches.

Kim et al. (2004) observed that the impact of the stationarity on the forecasting power of ANNs

was minuscule and that it was feasible to relax the stationarity condition to non-stationary time

series when using ANNs for forecasting. Since option pricing functions are necessarily multivari-

ate and highly nonlinear, ANNs may be desirable approximators of the empirical option pricing

function. In addition, approaches based on parametric models necessarily describe a stationary

nonlinear relationship between a theoretical option price and the various input variables. It

is well known that market participants may change their option pricing attitudes over time, so

any stationary model may fail to adjust to such changing market behaviour (Rubinstein (1985)).

Frequently re-trained ANNs may also be able to adapt to changing market conditions and correct

for parametric model biases, particularly for the BS model (see Lajbcygier and Flitman (1996),

Garcia and Gençay (2000), andYao et al. (2000)). Since non-parametric pricing methods do

not rely on specific assumptions about the underlying asset price dynamics, they are therefore

robust to specification errors that might adversely affect any parametric pricing model.1

1.1.2 Forecasting volatility using Machine Learning

Regarding applications related to forecasting volatility, initially, Donaldson and Kamstra (1997)

studied the application of ANN to capture the volatility effects overlooked by GARCH, EGARCH

and GJR models for the S&P 500, Toronto Stock Exchange Composite Index, the Nikkei Index,

and the FTSE Index. In-sample comparisons concluded that the GARCH model often fails

to capture the empirical regularity, and the EGARCH model may not be appropriate since

it sometimes produces erratic volatility estimates; the GJR model seems more able to fit the

1The use of ANNs has been extensively extended in several related directions, including
pricing and/or hedging of American and exotic style of options, warrants, etc. For example,
recent contributions include Pires and Marwala (2004, 2005) used an SVM to price American
options; Kohler et al. (2010) employed a modified version of the ANN to price American put
options on several instruments and used the least-squares Monte Carlo algorithm instead of
regressions; Ferguson and Green (2018) applied the Monte Carlo algorithm to price American
call options on a basket of stocks; Ye and Zhang (2019) presented techniques for using a stochastic
process and ANNs to price American options, Jang and Lee (2019) applied generative Bayesian
Neural Networks (BNN) for pricing away out-of-the-money S&P 100 American put options;
Becker et al. (2019) use ANNs to price American and Bermudan max-call, callable multi-barrier
reverse convertibles and estimate optimal values for stopping time problems, a study that was
extended by Fécamp et al. (2019).
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asymmetric heteroskedasticity in the data than either GARCH or EGARCH and thus, the best-

performing model appeared to be the ANN model. Mantri et al. (2014) builds on Donaldson

and Kamstra (1997)’s work by using a similar set of models, which includes an ANN, GARCH,

EGARCH, IGARCH, and GJR-GARCH model, to forecast volatility for the BSE Sensex and

NSE Nifty. But, they found that the volatility forecasts from ANNs are no different than those

from GARCH, EGARCH, IGARCH, and GJR-GARCH models, which was confirmed by an

ANOVA test. A similar set of econometric models was also used by Kumar and Patil (2015)

to forecast volatility for the S&P 500 index for ten years using five types of historical implied

volatility estimating techniques, namely the Close, Garman Klass, Parkinson, Roger, and Yang

methods, as well as the MLP and econometric models, namely the ARIMA, ARFIMA. The

Garman Klass estimation technique and the ARIMA forecasting technique were found to have

the highest forecasting accuracy. Similar performance of the ANNs was also reported by Hamid

and Iqbal (2004), where they forecast volatility for the S&P 500 Index futures options using

ANNs and Barone-Adesi and Whaley options pricing model. They conclude that, while forecasts

from ANNs outperform implied volatility forecasts, but do not differ significantly from realised

volatility. However, a recent study by Cao et al. (2020) has shown to differ in the forecasting

performance of ANNs, where they examined the S&P 500 index option volatility surface using

MLPs, and on a daily basis, and derived a relationship between the expected change in implied

volatility, the return on the index, the option’s moneyness, and the option’s time to expiry. They

conclude that the MLP model outperforms the Hull and White (2017) model by 10.72%, and a

further improvement of 62.12% was possible if the MLP model was given the level of the VIX

index as an additional input. Some of these studies have considered Support Vector Regression

(SVR) to estimate the dynamics of parametric volatility models. For instance, for modelling

the E-mini S&P 500 options implied volatility surface, Zeng and Klabjan (2019) used a variety

of support vector regression models (EKPSVR, BKPSVR, KPSVR, NORMA, and BSGD) and

concluded that the EKPSVR algorithm not only outperforms other algorithms in terms of speed

but also in terms of pricing. Much of the literature also suggests that Support Vector Machines

(SVM) are one of the alternate best regression algorithms for forecasting volatility. Liu (2019)

puts this claim to the test by applying three modelling techniques, the v-SVR, LSTM and the

GARCH model, for forecasting the volatility of the S&P 500 and AAPL. For the S&P 500 and

AAPL, they found that LSTMs were just as good as v-SVR at forecasting volatility and that both

were much better than the GARCHmodel. A similar set of models was also used by Ramos-Pérez

et al. (2019), where they created hybrid models for forecasting S&P 500 volatilities using a set of

machine learning models (Gradient Descent Boosting, Random Forest, Support Vector Machine,
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ANN) based on a combination of GARCH and EGARCH. They conclude that, in a highly volatile

regime period, the Stacked-ANN model generated more accurate volatility forecasts than other

hybrid models (ANN-GARCH or ANN-EGARCH), owing to model flexibility, and that under

and overvalued derivatives could be identified using the Stacked-ANNs volatility forecasts.

Recently, many studies have also considered LSTM models for forecasting the volatility surface.

Given the LSTMs ability to characterise the long memory of financial volatility, Chen et al.

(2019) applies an LSTM model with an attention mechanism to the S&P 500 options implied

volatility surface, which enhances the ability of LSTM networks to select input features. They

conclude that the LSTM forecasted implied volatility surface is more accurate than other pre-

dicting systems. Using this surface, they price options and back-test two trading strategies:

time spread and butterfly spread. These two strategies constructed using the predicted implied

volatility surfaces had higher returns and Sharpe ratios. A similar study based on LSTMs was

done to forecast the realised volatility surface for the S&P 500, 10-year Treasury note future

and 1-month Treasury bond future by Bucci (2020), who employs an Elman, Jordan, Nonlinear

Autoregressive Exogenous Neural Network models, LSTM model, and Cholesky decomposition.

They point out that as the number of hidden layers, hidden nodes, and inputs in these ANN

models grew, the risk of missing the local minimum grew as well. The out-of-sample tests reveal

that the Elman and Jordan Neural Network models could not strongly outperform the tradi-

tional econometric methods, like GARCH, and the Nonlinear Autoregressive Exogenous Neural

Network and the LSTM were the best forecasting models. Similarly, to forecast volatility for

the S&P 500, NASDAQ, German DAX, Korean KOSPI200, and Mexico IPC Index, Kyoung-

Sook and Hongjoong (2019) use technical indicators like Moving Average, Exponential Moving

Average, Momentum, and hybrid Momentum as inputs to an LSTM model. They conclude that

combining hybrid Momentums with traditional Momentums improves forecasting.

1.1.3 Hedging Options using Machine Learning

MLP ANN techniques have been used extensively to study empirical hedge ratios (specifically

delta). These ANN techniques involve inferring delta from ANN option prices or training an

ANN directly on the empirically observed hedge ratios or delta. Some studies inferring the delta

from call prices involve taking the partial derivative of the ANN call prices with respect to the

underlying index/futures price. For a representative list of such works, see Table 1.2. All of

these studies except Carverhill and Cheuk (2003) and Chen and Sutcliffe (2012) derived the

hedge ratios analytically from an ANN fitted to option prices. In Hutchinson et al. (1994), the
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hedging performance of three ANN models (RBF network, the MLP network, and PP network)

on the S&P 500 futures options is shown to be superior to the BS model. Herrmann and Narr

(1997) followed Hutchinson et al. (1994) approach to training an ANN model on German stock

index (DAX) options and found that the delta derived from ANN call option prices performs

slightly better (approximately 1%) than the BS delta. As systematic biases in BS implied

volatilities (BS implied volatilities tend to vary across moneyness and times to maturity) are

documented by Bates (1996) and Dumas et al. (1996), Lajbcygier and Flitman (1996) stated

that these biases could be reduced using a novel combination of bootstrap and bagging methods.

This approach was applied to a hybrid ANN option pricing model, which predicts the residuals

between the conventional parametric model option price (the modified-Black model) and the

actual transaction price. Through a delta trading strategy, the hybrid delta captures most of

the trading opportunities. Hutchinson et al. (1994)’s study was extended by Ormoneit (1999)

to implement an ANN regularised network weights using an Iterative Extended Kalman Filter

(IKEF) as the learning rule on DAX options. They find that training the ANN using IEKF

leads to more accurate option price predictions and superior hedging performance than that of

the BS model.

The Mixture Density Network (MDN) method is an alternative hybrid approach using both

parametric and non-parametric estimation. MDNs were first proposed by Schittenkopf and

Dorffner (2001) as an alternative method to estimate the risk-neutral density of assets using a

mixture of Gaussian distributions and thus overcome the shortcomings of the systematic errors

of the term structure of volatility or volatility smile in the BS model. The idea is to use MLPs

to determine the parameters of the mixtures as a non-linear function of the information set.

These authors found that the MDN model displayed higher pricing accuracy than the basic and

adjusted BS models. However, it did not necessarily display better hedging performance.

Using the ‘homogeneity hint’, Hutchinson et al. (1994) non-parametric models had fewer inputs,

leading to a faster convergence rate of the non-parametric estimators and superior outperfor-

mance. This method was later extended by Garcia and Gençay (2000), who found that using

an ANN model with the homogeneity hint (call prices scaled by the strike price) provides more

stable average delta hedging errors than ANN networks without it. Both have smaller delta-

hedging errors relative to the BS model. Similarly, Gençay and Qi (2001) concluded that an

ANN with Bayesian regularisation could effectively reduce overfitting and generate significantly

smaller pricing and delta-hedging errors than the BS model or an ANN model without Bayesian

regularisation. Amilon (2003) also extended Hutchinson et al. (1994)’s study by using additional
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inputs on two sets of MLP models (one set of MLP models using lagged historical variables and

the other using lagged implied parameters). With the help of bootstrap techniques, they showed

that hedging using both (BS and MLP) models result in losses, with loss in the MLP models

being considerably less than that in the BS model. At the bootstrapped 95% confidence in-

tervals, the MLP model (using lagged historical variables) performed significantly better than

the BS model (with implied volatility estimates). Carverhill and Cheuk (2003)’s study is an

extension of Hutchinson et al. (1994), which investigates if an MLP model could produce better

hedging parameters than the standard Cox-Ross-Rubinstein option pricing model. They found

that training MLP models on observed option prices and subsequently deriving the hedge ra-

tios from the resulting pricing equation is not the best strategy. It is better to train an MLP

model directly on delta and vega (inferred from observed option price changes). Moreover, they

mentioned that the hedging performance of the MLP model trained on option prices is always

inferior to that of the MLP model trained on delta/vega and performs worse than the Cox-Ross-

Rubinstein model. Similarly, Chen and Sutcliffe (2012) extended both Hutchinson et al. (1994)

and Carverhill and Cheuk (2003), as they derived hedge ratios (delta) for hedging short sterling

options positions using short sterling futures analytically from ANN option prices and also by

training ANNs directly on the empirical hedge ratios. They concluded that the performance

of hedge ratios from ANNs directly trained on empirical hedge ratios is significantly superior

to those based on a pricing model or the parametric modified Black model. A similar exercise

of comparing the delta-hedging error of MLP models to that of the BS model was carried out

by Ko (2009). It was concluded that the derived average absolute delta-hedging error of the

ANN model is tenfold times smaller than that of the BS model, and the ANN model achieved

a 66.94% winning rate over the BS model, compared to Hutchinson et al. (1994)’s winning rate

of 38% over the BS model.

To improve on the ANNs ability to hedge out-of-sample options by learning the BS implied

volatility, Mostafa and Dillon (2008) compared the Generalised Autoregressive Conditional Het-

eroskedasticity Option Pricing Model (GOPM) to two types of MLP models. The first type of

MLP model followed the standard approach of using the option price as the target output of the

network, and in the second method, the MLP was directly trained on the BS implied volatility.

It then used the BS formula to derive the theoretical option price and subsequently derive the

delta analytically from the option price. They concluded that GOPM performs the worst, with

the BS model, on average, outperforming the others, except for the ITM options.

Reinforcement Learning (RL) involves the procedure of training machine learning models to

13



make a series of decisions, which are to be made in a dynamic environment. The use of RL

for hedging options has been gaining prominence, and recently, Buehler et al. (2019) used the

Heston and modern deep RL methods to hedge a portfolio of derivatives in the presence of

market frictions such as transaction costs, liquidity constraints and risk limits. According to

them, parametric models are only a rough approximation of machine learning models, which

could produce more precise results using convex risk measures. They hedged a portfolio of

over-the-counter (OTC) derivatives by training the machine learning models with simulated

data. Based on synthetic data, the simulations used to train these RL models took into account

transaction costs and other market frictions to produce optimal hedge ratios. This study was

further expanded by Carbonneau and Godin (2021), where the authors applied deep reinforce-

ment learning models to hedge exotic options to implement an equal risk pricing and hedging

framework that relies on convex risk measures. Developed using the methodology introduced by

Buehler et al. (2019), this framework tries to optimally hedge the residual risk exposure asso-

ciated with the long and short positions in a contingent claim. Hence, this method could price

and hedge various types of contingent claims and underlying assets with different dynamics,

such as regime-switching, stochastic volatility, and stochastic volatility with jumps. Similarly,

Cao et al. (2021) also applied RL to optimally hedge a short position in an S&P 500 Index call

option while accounting for transaction costs. The RL uses an objective function based on the

first and second non-central moments of the probability distribution of the cost of hedging and

produces an optimal hedge when a stochastic process is used. The authors concluded that by

combining a simple pricing model with more complex asset-pricing processes, effective hedging

strategies could be developed. This method may also be useful for pricing exotic options, which

are difficult to hedge using Greeks. The use of an ANN to hedge options by replicating the

entire volatility surface of the rough Bergomi volatility model was also demonstrated recently

by Horvath et al. (2021). The ANN model used by the authors can calibrate an entire im-

plied volatility surface in a matter of milliseconds. This method could be used with a variety

of second-generation stochastic and rough volatility models, and it eliminates the bottleneck

caused by slow derivative contract pricing and hedging.

Zhang and Huang (2021) extended Buehler et al. (2019)’s study by introducing a hedging strat-

egy using the LSTM-RNN networks, which incorporates market frictions such as transaction

costs, liquidity constraints, trading limits and costs of funds for the 50 ETF options, Hang Seng

Index (HSI), Nikkei, S&P 500 and Financial Times stock exchange (FTSE) 100 Index Options.

The LSTM-RNN networks were benchmarked with the Leland (1985), Boyle and Vorst (1992),

and Wilmott et al. (1994) using simulated market data generated by geometric Brownian mo-
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tion (GBM) and real market data. They found that the LSTM-RNN model outperformed other

models for OTM moneyness when volatility is low or medium, and there is less than 80% risk

level in the models that use the simulated market data. Using real market data, for the 50 ETF

options, the LSTM-RNN model outperforms the benchmark for ATM options with low-risk lev-

els. For the HSI Index options, the LSTM-RNN model outperforms benchmark models when

transaction costs are smaller than 1.5%. For Nikkei and S&P 500 Index options, the LSTM-

RNN model always outperforms benchmark models, and finally, for the FTSE Index options,

the LSTM-RNN model outperforms benchmark models when moneyness is not too deeply ITM.

Accordingly, we also employ LSTM models in this thesis.

Although ANNs have been widely used for hedging options, the use of linear regressions has

not been investigated, and Ruf and Wang (2021) compared linear regressions with their newly

designed neural network, known as ‘HedgeNet’, which incorporates the homogeneity hint by

training in two parts. They initially controlled for moneyness and then for time to maturity,

a procedure partially inspired by Garcia and Gençay (1998). The HedgeNet was designed for

the hedging of options and trained to minimise the hedging error instead of the pricing error.

The performance of HedgeNet was tested on several different datasets: (a) data simulated from

the standard BS stochastic integral equation, (b) data simulated from Heston’s model, and (c)

daily end-of-day mid-prices obtained from OptionMetrics (applied to end-of-day and tick prices

of S&P 500 and Euro Stoxx 50 options, respectively). The goal is to determine the hedging ratio

by minimising the variance over one period of the hedged portfolio. In doing so, they reduced

the mean squared hedging error of the BS benchmark significantly; however, similar results

were also obtained using simple linear regressions. They concluded that ANNs could not find

additional non-linear features, and option greeks–in particular, delta, vega, and vanna–combined

with a simple linear regression model are superior in hedging performance. The linear regression

models improvement over the hedging performance (without considering transaction costs) of

the BS model is about 15-20% for a daily re-balancing, but for the two-day re-balancing, all

regressions outperform the BS–Delta, where relative to the BS-Delta, the regressions are about

2% to 3% better.

1.1.4 Model Averaging Approach to ANN

Researchers have attempted to make predictive models robust, reduce model uncertainty and

increase the predictive power of parametric and non-parametric models. One such method,

called bagging, was introduced by Breiman (1996), where it involved taking an aggregate value
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of the predictions from multiple versions of a model through bootstrapping. The process of

bagging is computationally intensive, and Gençay and Qi (2001) noted that it provides the most

accurate pricing and delta hedging. To improve generalisation as per Gençay and Qi (2001),

multiple versions of the ANN were generated using a random seed, and the outputs of these

networks are aggregated to get an average predicted call price. As shown in Figure 2.4, in the

bagging process, iteration 1 would be performed multiple times to arrive at an average call price

or the average delta. The division of training, validation and test set data across the multiple

neural networks would randomly vary. Gençay and Qi (2001) also showed that using this bagging

approach, the standard deviation of the mean squared prediction errors (MSPEs) is significantly

smaller than that of forecasts of individual baseline models, while such regularisation methods

are effective on models implementing the homogeneity hint. Another drawback of large neural

networks is overfitting, especially when applied to small datasets, which can be managed by

employing bagging or boosting to combine several different models. Considering that this is a

computationally expensive exercise, Opitz et al. (2017) proposed a maximisation of individual

networks via the DivLoss loss function that avoids the training of expensive ANN models.

With a particular focus on financial series applications, such as stock indices and interest rate

yields, Ravazzolo et al. (2007b,a) used model averaging techniques and found that the benefits

of model averaging benefits in terms of parameter and model uncertainty improve the power to

forecast financial time series. Guo et al. (2021) demonstrated the capacity for model averaging to

significantly improve the performance of Apache Spark, a well-known slow engine for executing

data engineering. Motivated by this literature, we use the model averaging approach to assess

performance in pricing and hedging predictability of S&P 500 options.

1.1.5 Pairs Trading using Machine Learning

Since 1980, professional traders, institutional investors and hedge fund managers have been using

pairs trading (PT) as one of the most popular statistical arbitrage techniques (Vidyamurthy

(2004), Dunis et al. (2010), Gatev et al. (2006), Hogan et al. (2004)).

PT is a statistical arbitrage method that invests in the spread between two equities whose

prices have historically moved in unison (Gatev et al. (2006)). A long position is taken in one

stock, and a short position is taken in the other simultaneously. Trading signals are based on

deviations from the long-term equilibrium spread, and the spread between the two stocks creates

a stationary process. We act and profit from the momentary inconsistency if the spread deviates

from its historical equilibrium, believing it will revert shortly. PT is a market-neutral strategy
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(a crucial principle of PT) because it generates returns regardless of whether the market rises or

falls (see (Vidyamurthy (2004)) and (Krauss (2017)) for a comprehensive review). According to

Huck (2015), these strategies mitigate specific market risks by taking offsetting long and short

positions on instruments that are actually related.

Machine learning approaches are somewhat uncharted in the subject of PT, as most relevant pub-

lications only apply them to a few select securities, but they offer a promising avenue for future

research (Krauss (2017)). The MLP and the LSTM-based neural networks are two methodologies

that are pertinent to this study. Both methods are widely utilised and have been demonstrated

to be reliable when it comes to forecasting stationary time series. These methods have also been

applied to PT by Dunis et al. (2006, 2015) and Sarmento and Horta (2020).

The distance measure can be used to quantify the similarity of price series and was first intro-

duced by Gatev et al. (1999) for pairs selection. In this approach, each price series is paired

with the price series that has the minimum sum of the squared differences between the two

normalised stock price series. This approach could have a disadvantage, as minimising the sum

of the squared difference between two normalised prices series will also minimise the variance

of the spread (Van der Have et al. (2017)).2 This distance method may also not be statistically

sound since the spread between two price series can theoretically have a small sum of squared

differences but still be non-mean reverting (Krauss (2017)). By back-testing the distance-based

PT strategy on US equities from 1967 to 1997, Gatev et al. (1999) generated an 11% excess re-

turn, which was unaffected by transaction costs. The same study was repeated in 2006, but this

time with a five-year data period, and the results were still positive. Broussard and Vaihekoski

(2012) looked into the practicalities of putting Gatev et al. (1999)’s self-financing pairs portfolio

trading approach into practice, and their annualised returns were as high as 12.5% on average.

The distance approach, proposed by Gatev et al. (2006), is the most well-known and widely used

method and dominates empirical work on PT (Krauss (2017)). This method entails starting the

price series at one and then normalising it. The purpose is to locate pairs with the lowest

possible sum of squared deviations or pairs with a small gap between the normalised price series

by subtracting one series from the other. In contrast to the distance approach, Alexander and

Dimitriu (2002), Vidyamurthy (2004), Lin et al. (2006), and Miao (2014) have emphasised that

only the cointegration-based approach can reliably estimate the size of a pricing differential that

deviates from the long-run equilibrium.

2The spread must have some variance to have more trade entry opportunities to profit.
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Nath (2003) used another distance measure to find potential pairs in the US Treasury securities

market. Instead of constructing a cumulative total return index (as proposed by Gatev et al.

(1999)), Nath (2003) normalised the prices by subtracting the sample mean and then dividing

by the sample standard deviation over a 40-day period. For each pair in the trading universe,

an empirical distribution of price differences (distance) is recorded, and trading signals are

triggered by the observed distance exceeding the 15th percentile (rather than in units of standard

deviations) during the subsequent 40-day trading period. The positions are unwound if the

distance narrows and crosses the empirical distribution’s median, the spread widens even more

to reach a stop loss trigger (to the 5th percentile) or if the trading period is complete.

Do et al. (2006) pointed out that Gatev et al. (1999)’s approach is model-free and is immune to

model misspecifications and misestimations. Moreover, it is simple to set up, resistant to data

snooping and generates statistically significant risk-adjusted excess returns. However, the use

of the Euclidean squared distance as a selection metric is analytically sub-optimal. According

to Krauss (2017), the distance method is one of the most studied PT frameworks because of its

simplicity, transparency and non-parametric nature, which make it relatively easy to implement

in practice. However, the distance method has a few major flaws (Krauss (2017)). Gatev

et al. (1999) may not have paired stocks from the proper asset universe, and thus it is likely

that trading with this pair will result in a loss. Second, minimising the variance of the spread

results in fewer deviations from the mean and, thus, fewer potential opportunities to trade and

profit. Finally, the methodology of pairing stocks was not based on any statistical criteria;

hence, the chosen pairs might not have a long-run mean-reverting relationship. The mean-

reverting behaviours of pairs were also assessed by Huck and Afawubo (2015), who showed that

pairs chosen based on the cointegration method are more likely than pairs chosen using the

distance method to exhibit mean-reverting behaviour, even though the pairs do not converge

until the end of the trading period. This increases the risk of divergence leading to less profitable

trades with pairs whose spreads do not converge back to the mean. Krauss (2017) also used

Gatev et al. (1999)’s methodology and found that 32% of pairs chosen by distance diverged.

Due to these flaws, using the distance method to select pairs may be a poor choice, and a

statistical relationship-based pair selection method should be used. On a similar note, Huck

(2013) also highlighted that the returns of the distance-based PT method are very sensitive to

key parameters such as the length of the formation period and the trigger used to open trades.

In our study, the distance method serves as a benchmark for our proposed strategies because it

is still the most commonly used trading strategy.
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Papadakis and Wysocki (2007) used Gatev et al. (1999)’s rules for pair selection and trading

on a subset of stocks from the US equity market to investigate the impact of accounting events

on PT profitability. They discovered that trades opened during periods of accounting events

are significantly less profitable than trades opened during periods of non-accounting events.

Gatev et al. (1999)’s methodology was replicated by Do and Faff (2010, 2012) on the same

stock universe with a longer sample period up to 2009. They found a decline in profitability

owing to an increase in the number of non-converging pairs. Moreover, using Gatev et al.

(1999)’s methodology is unprofitable when trading costs are factored in. Gatev et al. (1999)’s

selection criteria were further refined in Do and Faff (2010, 2012) by limiting the matching of

securities within the 48 Fama–French industries and pairs with a high number of zero-crossings.

The additional criterion of zero-crossings was used as a proxy to account for mean reversions.

Although these restrictions resulted in fewer spurious correlations and more meaningful pairs,

the result was only slightly more profitable than that of Gatev et al. (1999) after including

transaction costs. In addition, with 29 different combinations of selection algorithms, Do and

Faff (2012)’s methodology is more vulnerable to data snooping. Nonetheless, Do and Faff (2010),

in agreement with Gatev et al. (2006), claimed that PT performs particularly well during times

of financial crisis. Using the distance-based pairs trading methodology, Muslumov et al. (2009)

evaluated pairs on the Istanbul Stock Exchange (ISE) using the distance approach and found

that the top 20 best PT portfolios generated an average excess return of 5.4%. The distance-

based approach was also applied to a 60-minute-interval-based FTSE 100 stocks from January

2007 to December 2009 by Bowen et al. (2010), who discovered that the strategy’s returns were

affected by both transaction costs and execution speed. Chen et al. (2019) also extended Gatev

et al. (1999)’s study by using the same dataset and time frame, but for pair selection, they used

the Pearson correlation coefficient based on pair returns. They opted for the correlation-based

framework because return divergences could successfully be captured. The monthly pairwise

return correlations for all stocks were calculated over a five-year formation period. They reported

a 1.70% average monthly raw return, which was almost twice that of Gatev et al. (1999).

The concept of cointegration was introduced by Engle and Granger (1987) and applied in the

practical context of pairs selection by Vidyamurthy (2011). Cointegration is a statistical rela-

tionship in which two time series of the same order, i.e. I(1), are combined to produce stationary

time series. The Engle and Granger (1987) or Johansen (1991) tests are the most commonly

used cointegration tests. The two-step approach to TP using cointegration involves first per-

forming a linear regression on the two-time series to determine the hedge ratio and estimate

the residual time series and then using the Augmented Dicker-Fuller test to determine the esti-
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mated residual’s stationarity. Although Vidyamurthy (2011) formulates an explanation of why

it might work, the author did not provide empirical results for the cointegration method but a

framework that can be used as a foundation for cointegration-based PT research. Caldeira and

Moura (2013) used the cointegration-based method to select pairs on the Brazilian stock index

and found excess returns of more than 16% per year. The cointegration method outperforms

the distance method in terms of pair selection, according to Huck and Afawubo (2015).

Cointegration tests were also used by Schmidt (2009) to identify pairs of stocks in the Australian

Stock Market. Schmidt (2009) used the Vector Error Correction Model (VECM) to model resid-

uals, but he did not intend to backtest the trading strategy with the VECM, instead opting for

Johansen’s cointegration method. He found that PT is profitable if the residuals have a high

rate of zero-crossing and large deviations around the mean. Using the cointegration technique,

Puspaningrum et al. (2010) identified the optimal preset boundaries for the PT strategy. The

goal was to estimate the average trade duration, average inter-trade interval, and the average

number of trades and then find the best-preset boundaries for maximising the minimum total

profit for cointegration error in an AR(1) process. Bogomolov (2011) used three estimation tech-

niques–the distance, cointegration, and stochastic spread methods–to compare the profitability

of these PT strategies on the Australian stock market (ASX). Before transaction costs, all ap-

proaches showed statistically significant monthly excess returns. Transaction costs, however,

have a negative impact on all three strategies, particularly the stochastic spread method.

The performance of the distance and cointegration methods was also compared to Liu et al.

(2017)’s method, which provides a unique way of modelling spreads to search for temporary

market mispricing inefficiencies in a more dynamic way. They mainly focused on pairs of oil

companies listed on the New York Stock Exchange. Data were collected at 5-minute intervals

in 2008 and then at 10-minute intervals from June 2013 to April 2015, with the back-testing

in 2008 yielding overwhelmingly positive results. Their findings backed up previous research

(Gatev et al. (2006), Kim (2011), Do and Faff (2010) and Rad et al. (2016)) that found PT to

be profitable in bear markets. Similarly, Mikkelsen and Kjærland (2018) used a small sample

of Oslo Børs All Share Index (OSE)-listed seafood companies to test the performance of both

the distance and cointegration approaches. The study compared the use of high-frequency data

to that of daily data and discovered that neither the distance nor the cointegration methods

produced significant profits. Relevant studies have found ambiguous results when it comes to

the profitability of PT. Gatev et al. (2006), Do and Faff (2010, 2012), Jacobs and Weber (2015),

Engelberg et al. (2009), and Krauss (2017) have all claimed that profits have fallen in recent
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years and that the profitability of PT is negatively correlated with market liquidity. Using 1-

minute-interval data for the constituents of the S&P 500 from January 1998 to December 2015,

Stübinger and Bredthauer (2017) performed a pair selection using the distance and correlation

and Liu et al. (2017)’s approach. They tested these methods on three different thresholds: a

static and two dynamic threshold approaches, one of which used a running mean and standard

deviation and the other of which used Bollinger (1992)’s reverting thresholds approach. They

discovered that combining the distance approach with a dynamic threshold yielded a 50% annual

return, while the static method yielded only 21.5%. They also found that the returns for PT

have declined over time. This research was extended in Stübinger and Endres (2018), who

modelled the spreads using a mean-reverting jump-diffusion model on 1-minute-interval data for

oil and gas companies listed on the S&P 500 from January to December of 1998, reporting an

annual return of 60% and a Sharpe ratio of 5.3 after accounting for transaction costs.

Dunis et al. (2010) also examined daily and high-frequency data, i.e. 10-, 20-, 30-, and 60-min

data on the constituents of the EuroStoxx 50 Index using the cointegration method. They limited

the formation of pairs to 10 industry groups, resulting in 176 possible pairs that may or may

not have been cointegrated. Time-varying parameters were estimated using the Kalman filter,

and the spreads of all pairs were later standardised and traded according to a simple standard

deviation logic similar to that of Gatev et al. (1999). They discovered that the cointegration

method is profitable by using the top five pairs with the most appealing in-sample indicators.

Kim et al. (2006) also used the cointegration approach with the Kalman filter to estimate the

time-varying coefficients for equities listed on the Korea composite stock price index (KOSPI)

100 Index and fund positive excess returns after transaction costs were factored in. The authors

also affirmed that during a financial crisis, such a strategy performs better. In a similar way,

Dunis et al. (2010) and Kim (2011) also used the Kalman filter to estimate the adaptive hedge

ratio. The change in the hedge ratio was modelled as a random walk, and the spread is modelled

as Gaussian white noise in the state space equations from the Kalman filter model. Vidyamurthy

(2011) also used the Kalman filter in PT but did not go into detail on how to use it for parameter

estimation (i.e. estimating the hedge ratio). Rad et al. (2016) applied the cointegration approach

to the US centre for research in security prices (CRSP) data from 1962 to 2014. Initially,

stock pairs with the lowest sum of square differences (SSD) are identified over a 12-month

formation period, and by using the Engle–Granger cointegration approach, they chose the top

20 cointegrated stocks from the SSD rankings. Later, they used Gatev et al. (1999)’s threshold

rule to generate trading signals, where one USD was invested in the long leg of each pair and

the dollar amount in the short leg. Prior to transaction costs, the cointegration approach had a
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monthly excess return of 0.83%, whereas a similar trading approach using the distance method

had a return of 0.88%. According to Rad et al. (2016), the underperformance of the cointegration

approach may be due to the selection bias introduced by limiting cointegration to the subset of

pairs with the lowest SSDs.

According to Baur (2003), the correlation or cointegration technique can be used to measure the

co-movement of two assets, and the correlation technique has been suggested as an alternative to

the cointegration and distance methods. The methodology for trading pairs using the correlation

technique is fairly straightforward and is inherently a short-run measure, which means that a

correlation strategy would perform better with a lower-frequency trading strategy. Cointegration

and correlation are related but distinct concepts that refer to price changes rather than returns.

Cointegrated pairs can either be correlated or not. The correlation method, along with fuzzy

genetic algorithms, was proposed by Cao et al. (2006) as a method for mining stock pairs on

the Australian Stock Exchange. They used the correlation coefficient to find highly correlated

stocks, which led to the discovery of unexpected pairs of stocks from different sectors. Miao

(2014) used 15-minute interval data for 177 oil and gas stocks from the US market in a study

from May 2012 onwards to choose pairs using a two-stage approach based on the correlation and

cointegration methods. According to Miao (2014), the strategy generated a cumulative return

of 56.58% over a 12-month period.

The most cited article on principal component analysis (PCA) in PT was written by Avellaneda

and Lee (2010), who devised a statistical arbitrage strategy based on PCA and ETFs for US

stocks exceeding USD 1 billion in market capitalisation between 1997 and 2007. The results

of back-testing revealed that, after transaction costs were taken into account, the PCA-based

strategies had an average annual Sharpe ratio of 1.44, whereas the ratio was 1.1 for ETF-based

strategies. PCA filters out idiosyncratic noise by decomposing and extracting risk components.

On the other hand, the performance of PCA-based strategies declined after 2002. From 2003

to 2007, the average annualised Sharpe ratio of PCA-based strategies was only 0.9, and it was

1.1 for ETF-based strategies. They also found that from 2003 to 2007, the Sharpe ratio of ETF

strategies that use volume information increased to 1.51.

Neural networks have been shown to be a very good approximation to almost all nonlinear

functions, according to Franses et al. (2000). Given the nonlinear nature of time series data

and without specifying any nonlinear relationship beforehand, neural networks can detect non-

linearities in data. Hence, Franses et al. (2000) suggested that neural networks may be a better

choice for predicting and modelling stock prices than a traditional linear framework. Further-
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more, according to Lam (2004), a neural network can incorporate new data without having to

reprocess old data, which is a significant benefit over more traditional methods, where the old

data need to be processed again.

In the past, classification techniques using neural networks, random forests, and gradient-boosted

trees have been widely used to predict whether a stock will rise or fall the next trading day.

They have also been widely used to identify stocks with the potential to outperform the market.

Sarmento and Horta (2020) used clustering to find the number of possible pair combinations

using density-based spatial clustering of applications with noise (DBSCAN) and ordering points

to identify the clustering structure (OPTICS). The classification algorithms were used to find

pairs that could generate the highest average portfolio Sharpe ratio of 3.79, compared to 3.58

when no clustering was done and 2.59 when grouping by category. Applying classification

algorithms to clustering pairs showed more consistency in terms of the percentage of profitable

pairs in the portfolio, with an average of 86% profitable pairs in the portfolio, compared to 80%

when grouping by category and 79% when doing no clustering at all. Finally, more consistent

portfolio drawdowns were achieved, thereby keeping the maximum drawdown (MDD) values

within an acceptable range. Our study also looks into using these algorithms but to determine

whether to buy or sell a pair instead of clustering them.

ANNs consisting of the feedforward neural networks (FNN) and RNNs were used by Dunis et al.

(2006) to model the spreads of gasoline and corn/ethanol. They showed that ANNs could be a

relatively simple and profitable trading strategy. Their RNNs could generate returns of up to

19%, while their FNNs could generate returns of up to 41% (excluding transaction costs). Only

Dunis et al. (2006, 2015) applied neural networks directly to PT, and their motivation stemmed

from the neural network’s superior abilities to detect nonlinearities in time series data. Due

to the profitability of these methods in specific applications, it would be interesting to see how

these neural networks would perform in the ETF equity markets. As a result, based on Dunis

et al. (2006, 2015) approach, we use the advanced versions of the FNNs, such as the MLP, and

LSTM models, instead of RNNs in this study. Fallahpour et al. (2016) also conducted a study

on high-frequency PT for stocks based on the S&P 500 from June 2015 to January 2016, and

they concluded that reinforcement learning outperformed other methods in obtaining the best

parameters for carrying out cointegration-based high-frequency PT strategies.
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1.2 Thesis Contributions

This thesis consists of four studies investigating the applications of machine learning techniques

in pricing and hedging options and optimally trading ETF pairs. A summary of the contributions

of the thesis per chapter is provided below.

• Daily Forecasting of S&P 500 Index Option Prices using Deep Learning Models

(Chapter 2)

– This chapter uses two Deep Learning ANN models, MLP and LSTM networks, along

with four popular parametric models used in the industry, namely Black–Scholes–Merton,

Heston, Heston Jump Diffusion, and the Finite Moment Log Stable.

– The ANN networks are trained on lagged and one-trading-day-ahead input variables.

– The impact of the granularity of the networks is assessed. The effects of the single,

double and triple hidden layers are investigated.

– The empirical forecasting performance of S&P 500 call option prices and moneyness

is assessed from September 2012 to December 2017.

– LSTM models (with lagged input variables) have the best forecasting performance

of daily call option prices and moneyness, while MLP models (with one-trading-day-

ahead input variables) outperformed the forecasting for the daily option prices.

– Typically, three hidden layer ANN models outperform single and double hidden layer

ANN models in terms of pricing performance.

• Daily Forecasting of Delta for S&P 500 Index Options using Deep Learning

Models (Chapter 3)

– Two deep learning ANN models are used, the triple hidden layer MLP and LSTM

networks, along with four popular parametric models used in the industry, namely

the Black–Scholes–Merton, Heston, Heston Jump Diffusion, and the Finite Moment

Log Stable.

– The ANN networks are trained on lagged and one-trading-day-ahead input variables.

– The empirical forecasting performance of S&P 500 call option delta is assessed from

September 2012 to December 2017.

– The delta is predicted in two ways: directly from the network and analytically from

forecasted option prices.
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– The economic significance of the forecasts is evaluated by assessing the forecasting

performance of corresponding replicating portfolios.

– When predicting delta directly, the Black–Scholes–Merton model outperforms the

other parametric and deep learning ANN models. When the delta is computed ana-

lytically from option prices, the LSTM models outperform all other models.

• Can Model Averaging Improve Forecasting Performance? (Chapter 4)

– The model averaging techniques of deep learning ANN models, namely the triple

hidden layer MLP and LSTM networks with four popular parametric models used

in the industry, namely the Black–Scholes–Merton, Heston, Heston Jump Diffusion,

and the Finite Moment Log Stable. The ANN networks are trained on lagged and

one-trading-day-ahead input variables.

– The empirical forecasting performance of S&P 500 call option prices, moneyness and

delta is assessed from September 2012 to December 2017. The delta is predicted

directly from the network and analytically from forecasted option prices.

– The economic significance of the forecasts is evaluated by assessing the forecasting

performance of corresponding replicating portfolios.

– Model averaging tends to provide improved forecasts for prices and deltas.

• Optimal pairs trading - An Alternate Way of Trading Equity ETF Pairs Using

Deep Learning Models (Chapter 5)

– Nine different methods are used to obtain the spread, including five different versions

of the distance method, the cointegration method (using the Johansen and Engle-

Granger tests), the Kalman Filter, and the ratio methods.

– Several technical indicators, such as the Exponential Moving Averages (EMA), Rel-

ative Strength Index (RSI), Moving Average Convergence Divergence (MACD), and

Bollinger Bands (BB), are used to find an alternate way to trade the spread.

– Use Decision Trees (DT) and deep learning ANN models based on the MLP network

architecture to find alternate ways to trade the spread.

– A total of 3,084 trading strategies using the nine different methods for obtaining the

spread across the 30-, 50- and 100-day rolling windows (i.e. 381 strategies across

all three rolling windows for each ETF pair) are deployed and back-tested from 01

January 2019 to 31 January 2022.
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– The empirical forecasting performance of eight ETF pairs is assessed, of which four

ETF pairs, ITOT.N/IXUS.N, IWF.N/XLE.N, SCHB.N/SCHF.N, and

SCHF.N/VO.N, that are cointegrated/correlated, and four ETF pairs,

QQQ.N/XLE.N, USMV.N/XLE.N, VO.N/VXUS.N, and VWO.N/XLE.N that are

not cointegrated/uncorrelated as of 01 January 2019.

– Forecasting performance is assessed using a comparative analysis based on actual PnL

($ value), returns, Sharpe ratios, max drawdown and other performance indicators.

– The impact of the profitability of these tradings strategies is gauged across the 30-,

50- and 100-day rolling windows.

– The back-test/forecasting performance of the 3,084 trading strategies across the 30-

, 50-, and 100-day rolling windows demonstrates that the modified strategies can

provide significant returns compared to traditional strategies.

– Machine learning-based trading strategies tend to have more predictive power than

traditional strategies.

– The modified set of strategies can be applied regardless of whether the pairs are

cointegrated or correlated. These strategies are designed to have a dynamic stop-loss

barrier rather than the fixed stop-loss barriers that traditional strategies have. Thus,

traders can hold the trade for a long duration.

1.3 Thesis Structure

This thesis consists of four studies investigating the applications of machine learning techniques

in pricing and hedging options and optimally trading ETF pairs. The list of the chapters in this

thesis is as follows:

• Chapter 2: Daily Forecasting of S&P 500 Index Option Prices using Deep Learning Models

• Chapter 3: Daily Forecasting of Delta for S&P 500 Index Options using Deep Learning

Models

• Chapter 4: Model Averaging–Can Averaging Forecasts from Pricing and Hedging models

Improve Pricing/Hedging performance?

• Chapter 5: Optimal Pairs Trading–An Alternate Way of Trading Equity ETF Pairs Using

Deep Learning Models
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Chapter 6 concludes the thesis and suggests avenues for future research.
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Table 1.1: Non-parametric models used for pricing S&P 500 Index options

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX)
No. Author(s) Data

period
Data
fre-
quency

Input
variables

Target
variable

Algorithm Forecasting
horizon

Evaluation
measure

1 Garcia and
Gençay
(2000)

January
1987–
October 1994

Daily S/K, T C/K Single
Hidden
Layer
ANN

6 months training,
3 months
validation, 3
months test

MSPE

2 Ghaziri et al.
(2000)

January
1997–
February
1997

Daily S, K , rf ,
TTM , σ60,
open interest

C Multilayered
ANN (2
hidden
Layers)

Indexed
observations are
split into varying
sizes of training,
validation and
test set

RMSE

3 Gençay and
Qi (2001)

January
1988–
December
1993

Daily S/K, T C/K Modular
ANN

6 months training,
3 months
validation, 3
months test

MSPE, DM
test

4 Dugas et al.
(2001)

January
1988–
December
1993

Daily S/K, T C/K Single
Hidden
Layer
ANN

6 months training,
3 months
validation, 64
months test

MSE

5 Ghosn and
Bengio
(2002)

January
1987–
December
1993

Daily S/K, T C/K Single
Hidden
Layer
ANN

3, 6, 12 and 24
months of
training, 3 months
of validation,
followed by 12 of
test

Genearlised
MSE

6 Andreou
et al. (2002)

May 1998–
December
2000

Daily Se−δT /K, rf ,
T365, σ60, σ30,
and σV IX

C/K and
(C/K −
CBS/K)

Single
Hidden
Layer
ANN

6 months training,
6 months test

MSE, MAE

7 Gençay and
Salih (2003)

January
1988–
December
1993

Daily S/K, 1, σ20,
rf , T

C/K Single
Hidden
Layer
ANN

Indexed
observations are
split into varying
sizes of training,
validation and
test set

MSPE, DM
test

8 Andreou
et al. (2004)

January
1998– August
2001

Daily Se−δT /K, rf ,
T365, σBSimp

√
T

(C/K −
CBS/K),
(C/K −
CCS/K),
(C/K − CIJ ),
(C/K − C2J ,
(C/K − CSV ),
(C/K − CSV J )

Single
Hidden
Layer
ANN

10 different
overlapping
training and
validation sets,
separate and
non-overlapping
testing set

RMSE,
MAE,
RMeSE

9 Gençay and
Gibson
(2007)

January
1989–
December
1991

Daily S, K, T ,
σGARCH(1,1),
rf

C Single
Hidden
Layer
ANN

Indexed
observations are
split into varying
sizes of training,
validation and
test set

Average
absolute
(AAE),
Average
squared
errors (ASE)

10 Andreou
et al. (2006)

April 1998–
August 2001

Daily Se−δT /K, rf ,
T365, σBSimp

√
T

C/K and
(C/K −
CBS/K)

Single
Hidden
Layer
ANN

9 different
overlapping
training and
validation sets,
separate and
non-overlapping
testing set

RMSE, MAE

11 Thomaidis
et al. (2006b)

08/05/2002
and
19/07/2002

Daily S, K, δ , rf ,
σ45, T

C Single
Hidden
Layer
ANN

08/05/2002 :
train and and
19/07/2002: test

MAE

12 Andreou
et al. (2008)

January
1998– August
2001

Daily Se−δT /K , rf ,
T365, σBSimp

√
T

(C/K −
CBS/K)

Single
Hidden
Layer
ANN

10 different
overlapping
training and
validation sets,
separate and
non-overlapping
testing set

RMSE,
MAE, MeAE

13 Gradojevic
et al. (2009)

January
1987–
December
1994

Daily S/K, T C/K Modular
ANN

Indexed
observations are
split into varying
sizes of training,
validation and
test set

MAPE, DM
test

14 Andreou
et al. (2010)

January
2002– August
2004

Daily Se−δT /K, T ,
σBSav , σCSav

(C/K −
CBS/K),
(C/K −
CCS/K),
(C/K −
CSV J/K)

Single
Hidden
Layer
ANN

12 months
training, 2 months
validation, 1
month test

RMSE,
MAE, MeAE
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Table 1.2: Non-parametric models used for hedging European Index options

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X)
No. Author(s) Asset Class Data

period
Data
fre-
quency

Input
variables

Target
vari-
able

Algorithm Forecasting
horizon

Method of
inferring
Delta

1 Hutchinson
et al. (1994)

S&P Future
500 Options

January 1987
– December
1991

Daily S/K, T − t C/K Single
Hidden Layer
ANN

10 different
non-overlapping
train and test set

Derived from
the ANN
option price

2 Herrmann
and Narr
(1997)

DAX Index January 1995
– December
1995

Daily S, K, rf ,
T , σ

C Single
Hidden Layer
ANN

Unknow Derived from
the ANN
option price

3 Lajbcygier
and Connor
(1997)

SPI Futures
Option

January 1993
– December
1993

Daily F/K,
T − t, σ

C/K Single
Hidden Layer
ANN

6 months train, 6
months test set

Derived from
the ANN
option price

4 Ormoneit
(1999)

DAX Index March 1997 Daily S/K C/K Single
Hidden Layer
ANN

Unknown Derived from
the ANN
option price

5 Garcia and
Gençay
(2000)

S&P 500
Index

January 1987
– October
1994

Daily S/K, T C/K Single
Hidden Layer
ANN

6 months train, 3
months validation,
3 months test

Derived from
the ANN
option price

6 Gençay and
Qi (2001)

S&P 500
Index

January 1988
– October
1994

Daily S/K, T C/K Single
Hidden Layer
ANN

6 months train, 3
months validation,
3 months test set

Derived from
the ANN
option price

7 Schittenkopf
and Dorffner
(2001)

FTSE 100
Index

January 1993
– October
1997

Daily T α, µ
and σ

Three Single
Hidden Layer
ANN’s

10 days training,
10 days test set

The three
target
variables α,
µ and σ are
later used in
the
risk-neutral
density to
infer the call
price

8 Amilon
(2003)

Swedish
OMX Index

June 1997 -–
March 1999

Daily LaggedSt/K,
rf , T365,
T , σhist30 ,
σhist10 ,
Lagged
Cbidt /K,
Lagged
Caskt /K

C/K Single
Hidden Layer
ANN

4 months train
(which in later
iterations
transforms into an
expanding set), 2
months validation
set, 1 month test
set

Derived from
the ANN
option price

9 Carverhill
and Cheuk
(2003)

S&P Futures
Option

January 1990
– December
2000

Daily S/K, rf ,
T , σ

C, δ, ν Single
Hidden Layer
ANN

Derived from
the ANN
option price
and also from
ANN models
trained on
deltas

10 Andreou
et al. (2008)

S&P 500
Index

January 1998
– August
2001

Daily Se−δT /K ,
rf , T365,
σBSimp

√
T

(C/K−
CBS/K)

Single
Hidden Layer
ANN

10 different
overlapping
training and
validation sets,
separate and
nonoverlapping
testing set

Derived from
the ANN
option price

11 Mostafa and
Dillon (2008)

FTSE 100
Index

January 2000
– December
2001

Daily S/K, T
and σhist

C and
σBSimp

Single
Hidden Layer
ANN

1. For ANN
model having
C/K as target -
ATM/ITM
Options: 168 days
train, 84 days
validation, 1 day
test set and OTM
Options: 64 days
train, 20 days
validation, 1 day
test. 2. For ANN
model having
σBSimp as target -
168 days training,
84 days
validation, 1 day
test

1. Derived
from the
ANN option
price.
2. Derived
from the C
price after
plugging in
the ANN
predicted
σBSimp into the
BS formula.

12 Ko (2009) Taiwan Stock
Exchange
Capitaliza-
tion
Weighted
Stock Index

January 2005
– December
2006

Daily S, K, T ,
rf , σhist

C Two Hidden
Layer ANN

80% train, 20%
test

Derived from
the ANN
option price

13 Martel et al.
(2009)

IBEX 35
Index

January 2006
– February
2008

Daily S/K, T252,
T365, σ30,
rf

C/K Single
Hidden Layer
ANN

Expanding test
set of 10 months,
6 months
validation and 2
months test set

Derived from
the ANN
option price

14 Andreou
et al. (2010)

S&P 500
Index

January 2002
– August
2004

Daily Se−δT /K,
T , σBSav ,
σCSav

(C/K−
CBS/K),
(C/K−
CCS/K),
(C/K−
CSV J/K)

Single
Hidden Layer
ANN

12 months
training, 2 months
validation, 1
month test

Derived from
the ANN
option price

15 Chen and
Sutcliffe
(2012)

Short sterling
fu-
tures(NYSE
LIFFE)

January 2005
– December
2006

Daily S, T , S/K C/K Single
Hidden Layer

Expanding
window where
indexed obs. are
split into varying
sizes of training
and test set

Derived from
the ANN
option price,
the bias
between the
parametric
model and
the ANN
model, and
from ANN
models
trained on
deltas.
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Table 1.3: Machine Learning based models used in Pairs Trading/Selection

No. Author(s) Asset Class Data
period

Data
frequency

Input
variables

Target
variables

Algorithm Forecasting
horizon

1 Dunis et al. (2006) Gasoline
crack spread

1995–2005 Daily Percentage
returns of
WTI, and
NYMEX
Unleaded
Gasoline

Percentage
change in
spread

RNN, MLP One-day

2 Thomaidis et al. (2006a) 10 semicon-
ductor stocks
listed on
Taiwan Stock
Exchange

2003-2012 Daily Unknown Unknown GA,
Bollinger
Bands

Quarterly

3 Dunis et al. (2009) Soybean/oil
crush spread

1995–2005 Daily Percentage
change in
spread

Percentage
change in
spread

GARCH,
ARMA,
RNN, MLP

One-day

4 Dunis et al. (2015) Corn/eth.
crush spread

2005-2010 Daily Percentage
change in
spread

Percentage
change in
spread

Naive,
ARMA,
MLP,
HONN, GPA

One-day

5 Huck (2009) U.S S&P 100 1992–2006 Weekly Direction,
Excess
Returns

Pair selection ELECTRE
III

Weekly

6 Huck (2010) U.S S&P 100 1993–2006 Weekly Lagged
returns

Pair selection ELECTRE
III

Weekly

7 Sarmento and Horta
(2020)

Commodity
linked ETF’s

2009-2018 Daily Lagged
percentage
change in
spread

Percentage
change in
spread

DBSCAN,
Optics, MLP,
LSTM

Daily
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Chapter 2

Daily Forecasting of S&P 500 Index

Option Prices Using

Deep Learning Models

2.1 Introduction

The Black–Scholes(BS) option pricing model introduced by Black and Scholes (1973) is a promi-

nent conventional model for pricing options, but it assumes constant volatility, thereby failing

to account for the volatility smile in observed option price data. This drawback was rectified

by the Stochastic Volatility (SV) model of Heston (1993), which incorporated a second para-

metric process to model the underlying volatility. Doing so provided results consistent with the

volatility smile of observed market data. Bakshi et al. (1997a) extended the models of Heston

(1993) and Black and Scholes (1973) by incorporating stochastic volatility and jumps. These

models capture more realistic features of the price dynamics, and there is empirical evidence that

incorporating jumps improves pricing performance (Eberlein and Raible (1999)). Despite many

alternative parametric models and the limitations in Black and Scholes (1973), the BS model

is still frequently used in price European options because of its simplicity in implementing and

achieving a closed-form pricing solution. However, these approaches involve complex empirical

modelling, which often proves challenging to implement in real trading situations. Artificial Neu-

ral Networks (ANNs) are considered an alternative to the standard parametric option models,

where the forecast of S&P 500 index option prices has typically performed using a single hidden

layer ANN (see Andreou et al. (2002, 2004, 2006, 2008, 2010), Dugas et al. (2001), Garcia and
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Gençay (2000), Gençay and Salih (2003), Ghosn and Bengio (2002), Thomaidis et al. (2006a)).

This chapter offers a comprehensive assessment of daily forecasting of European-style index op-

tions using parametric models, which practitioners commonly use compared to non-parametric

models. The non-parametric models used in this study are Deep Learning ANN models, includ-

ing the Multilayer Perceptron (MLP) and the Long Short-Term Memory (LSTM) networks 1.

MLPs are likely to perform best for high-frequency financial data for optimal results in pricing

and hedging of options (Hutchinson et al. (1994), Gençay and Qi (2001), Garcia and Gençay

(2000), Andreou et al. (2008), Thomaidis et al. (2006a)). Furthermore, LSTM addresses the

issue of the vanishing or exploding gradient with the first RNNs and has provided improved

time series forecasting (Masini et al. (2021), Lim and Zohren (2021), Figueiredo and Sapor-

ito (2022)). Thus, this study aims to empirically investigate the relative performance of deep

learning models compared to parametric models. To this end, an extensive data set of daily

data on S&P 500 index option prices from September 2012 to December 2017 is used to fore-

cast one-trading-day-ahead call option prices and moneyness. We investigate the forecasting

performance of single, double and triple hidden layer Deep Learning ANN models using MLP

and LSTM networks along with four parametric models (Black–Scholes–Merton, Heston, Heston

Jump Diffusion, and the Finite Moment Log Stable(FMLS)). These MLP and LSTM networks

with single, double, and triple hidden layers are trained on various lagged and one-trading-day-

ahead input variables. More specifically, we forecast one-trading-day-ahead call option prices

and corresponding moneyness by comparing 72 MLP and 72 LSTM models, with 8 parametric

models having lagged input variables, 18 triple hidden layer MLP, and 18 triple hidden layer

1ANNs, technically speaking, can be called parametric since it has a fixed number of param-
eters, i.e. one for each weight that is tuned during training; as the number of weights generally
stays constant, they technically have fixed degrees of freedom. However, most ANNs have so
many parameters that they could be interpreted as non-parametric; it has been proven that in
the limit of infinite width, a deep neural network can be seen as a Gaussian process, which is
a non-parametric model(Lee et al. (2017)) (the Gaussian processes here uses each observation
as a new weight and as the number of points goes to infinity so do the number of weights).
Nevertheless, ANNs would not be considered parametric as parametric models are defined as
models which are based on an a priori assumption about the distributions that generate the data,
which tends to be a hallmark of non-parametric models. ANNs do not make assumptions about
the data-generating process; rather, they use large amounts of data to learn a function that
maps inputs to outputs. Alternatively, parametric models force the data to fit into the assumed
distribution, whether correct or not. In past literature the following studies have considered
MLPs: Lee et al. (2017), Umeorah et al. (2023), Hutchinson et al. (1994), Ince (2006), Ivas,cu
(2021), Hajizadeh (2020), Bloch (2019), and Khaldi et al. (2019), and LSTMs: Lee et al. (2017),
Gupta et al. (2020), Ouyang et al. (2018), Gautam and Singh (2020), and Gu et al. (2021) to
be non-parametric because they can represent such a wide range of input-output mappings that
they effectively do not share the distributional assumptions. Hence, ANN models can be termed
as non-parametric by reasonable definition.
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LSTM models with 8 parametric models having one-trading-day-ahead input variables.

These different input variable specifications would allow comparing forecasting performance

based on the selection of input variables. Furthermore, we perform robustness tests based on

bounds assessments and DM tests to assess the significance of pairwise comparisons between the

corresponding ANN and parametric models. This study focus on (only) one-trading-day-ahead

forecasts aiming to provide an assessment suitable for short-term trading and risk-management

applications. These methodologies can be extended to longer forecast windows, but it is beyond

the purpose of this thesis. The purpose of only using one-trading-day-ahead forecast is to tackle

look-ahead bias, and more importantly, forecasting on a short-term window enables traders to

quickly adjust their positions to changing market conditions.

We find that forecasting one-trading-day-ahead call option prices and moneyness with various

inputs provide considerable improvement in the out-of-sample forecasting performance of these

networks. Even though the comparison between a large number of models was not conclusive,

regarding the forecasting performance of (one-trading-day-ahead) call option prices or money-

ness, the overall best-performing models are the LSTM models using lagged input variables and

the MLP models using one-trading-day-ahead input variables. When the comparison is con-

fined only to parametric models, the Heston Jump Diffusion model has the lowest RMSEs than

other parametric models (when using lagged or one-trading-day-ahead input variables). We also

demonstrate that when we re-scaled the moneyness of models that use lagged input variables

to forecast the call option price, these re-scaled models perform poorly to the models that di-

rectly forecast the call option price using lagged input variables, with again the LSTM models

outperforming the other models. The results remain the same based on a bound assessment of

performance, while the DM tests showed that out of the 3768 model pairs, only 1.69% of the

pairs had insignificant forecasting power.

Compared to previous literature,2 this study makes the following key contributions: a) It pro-

vides daily forecasts of S&P 500 option prices, while most of the literature is based on longer

forecasting windows; thus, this study has relevance to short-term trading and investment appli-

cations. b) It considers a wider range of explanatory variables and network sizes,3 e.g. employing

triple hidden layers networks. c) It introduces lagged input variables to tackle look-ahead bias

while using a test set for the parametric, MLP and LSTM models. We benchmarked our model

performance against the performance achieved by Andreou et al. (2010) (Andreou et al. (2010)

2Refer to the list of papers in Table 1.1
3Refer to Tables A.1.1, A.1.2, A.1.3, A.1.4
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extended the models of Andreou et al. (2004), Andreou et al. (2006) and Andreou et al. (2008)),

as they studied pricing S&P 500 index options from January 2002–August 2004 and compared

an SV and SVJ with an ANN. They partitioned their data set into 18 different training/es-

timation validation sets, each followed by a separate and non-overlapping test set. Although

Andreou et al. (2010) had a test set, which was non-overlapping and distinct from other data

sets (train and validation) and termed as an out-of-sample set, this method did not use lagged

variables in the test set, resulting in a look-ahead bias. Consequently, their SV model displayed

an out-performance compared to the best-performing ANN models used in their study. Andreou

et al. (2010) (and much of the associated literature) used input variables, for example, the end-

of-day index close prices belonging to the test set to forecast the end-of-day call option prices

or moneyness, where the index price was only available at the close of that trading day, thus

inducing look-ahead bias. Similarly, Ghaziri et al. (2000) used the BSM model and the MLP

model for pricing S&P 500 index call options (excluding deep ITM options) and found that the

ANN models outperformed the BSM model. Most other similar studies2 have presented their

results in an evaluation measure other than RMSE. However, as our study assessed the daily

forecast of call option prices and moneyness, and we used RMSE as a measure. The RMSEs

were reported on a daily basis for 1,328 days, unlike, for example, Andreou et al. (2010), who

had eighteen tests set forecasts. Thus, if we calculate the overall RMSE (from the respective

models’ daily RMSEs for a window spanning from September 2012 to December 2017) of all

that use one-trading-day-ahead input variables for forecasting call option prices and moneyness,

we can see at par forecasting performance.

This chapter is organised into six sections. Section 2.2 provides the theoretical aspects of the

parametric and non-parametric ANN pricing models used in the study, namely, MLP and LSTM

models. Section 2.3 describes the data and methodology, including the calibration procedures

used in the parametric models and the network parameters, the division of the data set, and the

optimisation and generalisation procedures to improve the accuracy of ANN models. Section 2.4

presents the findings of comparing the forecasting performance of the parametric models with

the MLP and LSTM models and the robustness tests performed on these models. The chapter

concludes with Section 2.5.

34



2.2 Pricing Models

In this section, we discuss the theoretical aspects of the parametric (Black–Scholes–Merton

(BSM), Heston, Bates Model (Heston Jump Diffusion (HJD)), and Finite Moment Log Stable

(FMLS)) and non-parametric models (Multilayer Perceptron and Long Short Term Memory

Network) used for forecasting call option prices.

2.2.1 Black–Scholes–Merton Model

The simplest parametric model we consider is the so-called Black–Scholes–Merton model of

option pricing, proposed in the seminal papers of Black and Scholes (1973) and Merton (1973).

This model proposes that the underlying (index spot price) St is a random process modelled

by the stochastic dynamics of geometric Brownian motion, given by the stochastic differential

equation:

dSt
St

= µdt+ σdWt, (2.1)

where Wt is a standard Wiener process. The parameter µ is referred to as the instantaneous

expected total return of the index, and the parameter σ is referred to as the instantaneous

standard deviation of index price returns. The choice µ = r − q is required under so-called

risk-neutral dynamics for risk-free rate r and continuous dividend yield rate q. The prices of

European call options on a continuous dividend-paying stock/index are well known and are given

by:

Ct = Ste
−q(T−t)N (d1)−Ke−r(T−t)N (d2) , (2.2)

where, K is the strike price, T is the time to expiration and N(·) is the cumulative normal

distribution, and d1 and d2 are given by

d1 = ln (St/K) +
(
r − q + σ2/2

)
(T − t)

σ
√

(T − t)
, (2.3)

d2 = ln (St/K) +
(
r − q − σ2/2

)
(T − t)

σ
√

(T − t)
. (2.4)
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We used the approach of using characteristic functions for contingent claims pricing to have

a consistent approach across all the parametric models discussed in this chapter. The use of

characteristic functions was proposed by Martin (2006), and Bakshi and Madan (2000). They

showed how Fourier transformed state price densities or Arrow–Debreu securities could be used

to reduce the valuation problem of Black and Scholes (1973) by using appropriately modified

equivalent probability measures. Thus, the call option formula reduces to

Ct = 1
2

(
St − e−rTK

)
+ 1

π

∫∞
0 S0<

[
eiukφT (u−i)

iu

]
− e−rTK<

[
eiukφT (u)

iu

]
du (2.5)

where, < is the real part of the complex-valued integrand, k = ln(K), and the characteristic

function has the form,

φT (u) = E
[
eiuXT

]
= exp

[
iωuT − σ2u2

2 T

]
(2.6)

where, u is an arbitrary real number, ω = −1
2σ

2, XT = ln(ST ), i =
√
−1 is the imaginary unit.

2.2.2 Heston Model

Heston (1993) proposed a model that extended the model of Black and Scholes (1973) and

considered the non-lognormality of asset returns, the leverage effect, and the mean-reverting

property of volatility. The model is defined by a coupled set of stochastic differential equations:

dSt
St

= µdt+
√
VtdW1,t (2.7)

dVt = κ(θ − Vt)dt+ σ
√
VtdW2,t (2.8)

where the Wiener processes (W1,t,W2,t) are correlated with a quadratic variation given by

dW1,tdW2,t = ρdt (2.9)

where Vt is the variance, κ > 0 is the mean reversion speed for the variance, θ > 0 is the mean

reversion level for the variance, σ > 0 is the volatility of the variance, V0 > is0 the initial (time

zero) level of the variance, ρ ∈ [−1, 1] is the correlation between the two Brownian motions W1,t

and W2,t (see Rouah (2013)). According to Rouah (2013), at time t, the price Ct, of a European

call on a dividend-paying index with spot price St, when the strike price is K and the time to

maturity is T is
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Ct (St,K, Vt, T ) = E[ex]P1 −Ke−rτP2 , (2.10)

where the time maturity τ = T−t, x = xt = lnSt, and P1 and P2 are the conditional risk-neutral

probability/in-the-money probabilities that can be derived from the characteristic function using

the Gil-Pelaez (1951) inversion theorem, when the characteristic functions f(φ;x, v) are known

as below,

P1 = E
[
exI{ex>K}

]
/E [ex] = 1

2 + 1
π

∫ ∞
0
<
[

e−iφ lnKf(φ− i;x, v)
iφf(−i;x, v)

]
dφ, (2.11)

P2 = Pr (lnST > lnK) = 1
2 + 1

π

∫ ∞
0
<
[
e−iφ lnKf(φ;x, v)

iφ

]
dφ, (2.12)

where the characteristic functions, f (φ;xt, vt) for the logarithm of the terminal stock price

xT = lnST have the form,

f (φ;xt, vt) = E
[
eiφxT

]
= exp (C(τ, φ) +D(τ, φ)vt + iφxt) , (2.13)

where, C(τ, φ) and D(τ, φ) are defined as:

C(τ, φ) = riφτ + a

σ2

[
(bi − ρσiφ+ d) τ − 2 ln

(
1− gedτ

1− g

)]
, (2.14)

D(τ, φ) = b− ρσiφ+ d

σ2

(
1− edτ
1− gedτ

)
, (2.15)

where, a = κθ, and

g = b− ρσiφ+ d

b− ρσiφ− d
, (2.16)

d =
√

(ρσiφ− b)2 − σ2 (2uiφ− φ2) , (2.17)

b = κ+ λ− ρσ , (2.18)

φ = −0.5 . (2.19)

2.2.3 Bates Model (Heston Jump Diffusion (HJD))

The Bates (1996) option pricing model was designed to capture the conditional volatility, which

evolves in a stochastic but mean-reverting fashion, and the presence of occasional substantial

37



outliers in asset returns. The Stochastic Differential Equations (SDEs) for the asset follow

a geometric jump diffusion with the instantaneous conditional variance (Vt) following a mean

reverting square root process, which are given by,

dSt
St

= (µ− λk̄)dt+
√
VtdW1,t + kdq (2.20)

dVt = (α− βVt)dt+ σ
√
VtdW2,t (2.21)

where, λ is the annual frequency of jumps and k is the random percentage jump conditional on

a jump occurring, with the Brownian motions correlated as in Eq.2.9 and the Poisson process

(dq) given by,

dq =

 0 with probability 1− λdt

1 with probability λdt

According to Martin (2006), the value of a European call option evaluated using Bates (2006)’s

approach of using a characteristic function is,

C (S0, T,K) = S0 − e−rTK

1
2 + 1

π

∫ ∞
0
<

e−iu ln K
S0 φT (u)

iu(1− iu)

 du

 , (2.22)

where the characteristic function φT is the expected value of the complex exponential of the

logarithmic price x = lnST and is defined as

φT (u) = E
[
eiux

]
=
∫ ∞
−∞

eiuxqT (x)dx , (2.23)

and qT is the risk-neutral density of x relative to the martingale measure Q,

q (ST ) = 1
STσ
√

2πT
e−
{lnST−(lnS0+(r− 2σ

2)T)}2

2σ2T . (2.24)

2.2.4 Finite Moment Log Stable (FMLS) Model

Carr and Wu (2003) addresses the volatility skew for S&P 500 index options, which does not

flatten as the time to maturity increases. According to Martin (2006), Carr and Wu (2003)

defines the characteristic function as follows:

φT (u) = E
[
eiuXT

]
= exp

[
iuωT − (iuσ)αT sec πα2

]
, (2.25)
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where the convexity adjustment term is introduced to maintain the martingale property as,

ω = σα sec πα2 , (2.26)

and the tail index α ∈ (1, 2] controls the tail behaviour and σ controls the width of the risk neutral

density. When α = 2, the FMLS model coincides with the Black–Scholes–Merton model, and

the Black–Scholes–Merton volatility (σBSM ) relates to risk-neutral on measure (σFMLS) where

σBS = σFMLS

√
2.

2.2.5 Deep Learning Neural Networks

Ruf and Wang (2021) cite that ANNs have been used as a non-parametric method for partial

differential equations, option pricing and hedging, and model calibration since they do not

assume an underlying stochastic model, and they eliminate unrealistic assumptions present in

pricing methods based on modelling the movement of underlying assets. They are also capable

of learning the pricing function directly from data, and this method of pricing European options

is known as the nonparametric pricing approach. Even though training ANNs takes time, they

have a significant computational advantage over more conventional numerical pricing techniques

like Monte Carlo and partial differential equations.

2.2.5.1 Multilayer Perceptron (MLP)

The multilayer perceptron network model belongs to the class of feedforward artificial neural

networks (ANN). The MLP network has multiple inputs, which are connected to hidden layers

having multiple neurons and to the output layer. An ANN consists of a set of input variables

(Xi), i = 1, ..., N , to an output variable y, and uses functions to transform the Xi using one

or more hidden layers. This hidden layer approach is an efficient way to model non-linear

statistical processes. The architecture of an ANN consisting of a single hidden layer and j

number of neurons can be represented as:

y = γ0 +
J∑
j=1

γjfj

(
βj,0 +

K∑
k=1

βj,kXk

)
(2.27)

The linear regression model can also be stated as a variant of the feedforward ANN, in which

the hidden layer consists of a single neuron using a linear function (having a weight of one) that

connects to the output layer or target variable. In Eq.(2.27), the parameters γ0 and βj,0, for

j = 1, .., J , are called biases, while the parameters γj and βj,k, for j = 1, .., J and k = 1, ..,K,
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are known as the weights. These parameters are generally estimated by specialised non-linear

optimisation methods known as back-propagation algorithms, which are implemented in many

software packages.

Many of the networks used in past literature in modelling S&P 500 Index options were single-

layer artificial neural networks. Table 1.1 provides a summary of a representative selection of

these studies, with details of the data period, the data frequency, the input and target variables,

the prediction or forecasting horizon, and as the architecture of the study’s network.

According to Heaton (2008), an ANN with a single hidden layer can approximate any function

that contains a continuous mapping from one finite space to another, whereas a network with two

hidden layers can represent functions of any shape. The recommended rule-of-thumb method of

Heaton (2008) for determining the number of neurons to use in the hidden layers is to have the

total number of neurons in the hidden layers between the size or dimension of the input layer

and the size or dimension of the output layer. As a result, Heaton (2008) preferred having the

total number of hidden neurons to be two-thirds the size of the inputs used in the input layer

plus the size of the output layer, thereby ensuring that the total number of neurons in the hidden

layer be less than twice the size of the input layer. Though these rules for selecting the number

of hidden neurons are based on modelling experience, ultimately, in any application, selecting

an architecture of the ANN will come down to trial and error. Thus, in this study, we follow

Heaton (2008) and also try to simplify the process of selecting the total number of neurons by

comparing three network architectures: a single, double and triple hidden layer network having

the total number of neurons in each hidden layer equal to the number of inputs. For the purpose

of pictorially illustrating an ANN having the total number of neurons in each hidden layer equal

to the number of inputs, we depict the network architecture of the three hidden layer MLP model

in Figure 2.1, which has an input layer with 10 input variables, three hidden layers, each having

10 neurons, and a single neuron output layer. Each neuron is connected with all neurons in the

previous layer and in the forward layer. Each layer has one or more neurons, and the output

of each layer passes through a transfer function. In the MLP models used in this study, the

transfer function employed is the hyperbolic tangent sigmoid (tansig) function, as Hahn (2013)

used the tansig function in their MLP models and also because, after comparing a number of

transfer functions, we concluded the tansig function to be the best at forecasting. The number of

neurons across each hidden layer uses the same type of activation function, whereas we employ

a simple linear activation function for the output neuron.
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Figure 2.1: Deep Learning Network: A three hidden layer network and a single neuron output
layer. The hidden layers use the tansig activation function and the output layer a simple linear
activation function.

2.2.5.2 Long Short-Term Memory (LSTM) Network

The fundamental characteristic of a Recurrent Neural Network (RNN) is that it has at least one

feedback connection, which means that the hidden layer (layer A in Figure 2.2) forms a loop

and this looping makes the RNNs memorise the previous state. A simple unfolded RNN with

multiple loops is shown in Figure 2.2, which illustrates unrolling at times 0 to t.

Figure 2.2: The structural diagram of a folded /unfolded Recurrent Neural Network.

The RNN can be described using the following equations:

ht = ft (wixt + wtht−1)

yt = fo (woht)

where xt is the input, ht is the memory of the RNN, wi is the weight matrix between the input

and the hidden layer, wt is the weight matrix between the delayed hidden layer and current
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hidden layer, ft is the hidden layer activation function, yt is the final output from the RNN (as

shown in the unfolded RNN, Figure 2.2), fo is the output hidden unit activation function, and

wo is the weight matrix between the output hidden layer and final output.

LSTMs are a variation of RNN, which are composed of long short-term memory blocks. The

LSTMs help the error to be back-propagated through time and layers, which allows the network

to learn over multiple time steps. Although the LSTM model has been explained in the past

literature, we use the notations and explanations provided by Hou and Edara (2018), and Zhang

et al. (2019). The LSTM network has two states: cell state and hidden state, as well as three

gates: input gate, forget gate, and output gate. The forget and input gates are based on sigmoid

functions. The procedures during a single pass are as follows:

Figure 2.3: The structural diagram of a single LSTM node.

1. The forget gate (Ft) selectively adds or removes information to the memory cell state.

The network initially commences by deciding the amount of information that needs to be

discarded, for which the information is initially funnelled through the forget gate (sigmoid

function) and along with that it also uses the output from the previous LSTM cell (Ht−1),

also known as the hidden state. The output from the forget gate is as below (wF is the

weight and bF is the bias matrix associated with the forget gate layer):

Ft = σ (wF · [Ht−1, Xt] + bF )

2. Later, the new information that needs to be added and stored to the previous cell state

(Ct−1) happens in two steps. The input gate (It) (which is a sigmoid function) first

determines which values ought to be updated, and the output is as follows (wI is the
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weight and bI is the bias matrix associated with the information gate layer):

It = σ (wI · [Ht−1, Xt] + bI)

3. The output from the tanh function creates a set of candidate values (C̃t), which updates

the previous cell state (Ct−1), as follows (wC̃ is the weight and bC̃ is the bias matrix

associated with the candidate gate layer):

C̃t = tanh
(
wC̃ · [Ht−1, Xt] + bC̃

)
4. This creates the new memory cell state (Ct), which is passed onto the next LSTM cell as

follows:

Ct = Ft ∗ Ct−1 + It ∗ C̃t

5. Finally, using the new memory cell state and the information from Ot, we get the outcome

from the output gate as (wO is the weight and bO is the bias matrix associated with the

output gate layer),

Ot = σ (wO [Ht−1, Xt] + bO)

Ht = Ot ∗ tanh (Ct)

where the activation function tanh is the hyperbolic tangent function, which squeezes the

value between -1 and 1.

σ(x) = 1
1 + e−x

tanh(x) = ex − e−x

ex + e−x

2.3 Data and Methodology

2.3.1 Optionmetrics

The S&P 500 Index is widely regarded as the best gauge of the US large capitalisation equity

market. The Chicago Board Options Exchange offers a suite of highly liquid S&P option prod-

ucts on this index. This chapter focuses on the traditional SPX options that are AM-settled

on the third Friday of every month. These are European-style options with a large contract

size and with a cash settlement. It is a highly liquid market, with the average daily volume ex-

ceeding a million contracts since 2016. The data source is end-of-day data from OptionMetrics,
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which compiles option data and the corresponding spot S&P 500 index level at 3:59 pm each

day (which avoids any non-synchronicity issues). The options data period is from September

2012 to December 2017. 4 The call prices used for this study are defined as the mid-point price

calculated from the best bid and best offer prices. Another advantage of this data source is

that data and methodology to obtain daily interest rate curves are provided as well as the daily

S&P 500 Index dividend yield. The variables and their field descriptions from the OptionMetrics

database are listed in Appendix A.1.1.

2.3.2 Data Filtering

The study focuses on SPX call options. The data period is from September 9, 2012, through

December 31, 2017, and the database has a total of 1,669,494 observations on SPX call options.

The following filters have been applied:

• All trades having a bid price equal to zero are deleted (75,746 observations).

• The maturity of the options is limited to the range of 7 days to 365 days inclusive. This

is a common restriction in the literature and is usually justified by the illiquidity of the

options excluded (53,739 observations).

• As the trading volume tends to concentrate on options close to being at-the-money, we

delete 55,647 options with a moneyness (i.e. St/Kt) less than 0.8 (55,647 observations)

and greater than 1.2 (832,892 observations).

• As the previous trading day’s call price is used as an input to the neural networks, we

remove those observations having no previous day option price (16,393 observations).

4The options data were obtained from OptionMetrics via Wharton Research Data Services
(WRDS), which is the most clean and reliable historical data provider. OptionMetrics provides
the best bid and ask quotes for each strike and expiration, underlying prices, implied volatility
and greeks for each option, CUSIP and ticker information for each option, and the daily index
dividend yield for S&P 500 Index options. Also, OptionMetrics provides the daily zero curves
which are crucial for interpolating interest rates. Users of WRDS could access S&P 500 Index
options data through OptionMetrics only as of September 2012. This is a representative pe-
riod for the study to investigate the performance of such models. Under more volatile market
conditions, such as the 2008 global financial crisis (GFC), more advanced models may be more
suitable (e.g. incorporating stochastic volatility features). We also do not expect results to
change significantly, as the thesis considers a wide range of model specifications.
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Thus, the total number of observations on call options used in this study is 560,526. For each

option on each trading day, N , we have available the call price CN , the call price on the previous

trading day CN−1, the index price SN , the exercise price KN , the time to maturity TN , the risk-

free rate of interest matching that time to maturity RN , and, the S&P 500 Index dividend yield

QN .

2.3.3 Summary Statistics

Table A.1.17 provides the summary statistics for the call option prices used in this chapter. The

monthly summary statistics show that the total number of daily option prices each month varies

from 2, 005 to 10, 956, with the number of transactions growing from about 6, 500 in 2012 to

about 10, 000 in 2017. The monthly average call price varies from $67.11 to $156.71, so we see

that these average prices have more than doubled from 2012 to 2017. In contrast, the average

bid-ask spread, which varies from $0.81 (in December 2012) to $1.84 (in November 2017), has

increased by a smaller percentage. The CBOE reports that the annual average daily volume has

increased from 698, 000 SPX contracts in 2012 to 1, 163, 000 SPX contracts in 2017.

2.3.4 Forecasting Errors

Consider the situation of modelling or forecasting call prices (CN+1) on day N + 1 based on

information sets FN+1, XN+1, or XN , where F represents all available information and X is

a subset of F . If there is a true model relating the call prices to the information set, then we

represent this functional form as:

CN+1 = g (FN+1; θN+1) + urN+1 (2.28)

for some function g(.), and parameter vector θN+1, where urN+1 is a random error caused by

market frictions such as the bid-ask spread. Let any model be represented as:

ĈN+1 = h (XN+1;φN+1) (2.29)

for some function h(.), where XN+1 is the con-current information set and φN+1 a parameter

vector. All of the parametric and non-parametric models could be represented in this manner.

By considering various decompositions of Eq. (2.28) we can carefully describe a number of types

45



of forecast errors. First, consider:

CN+1 = h (XN+1;φN+1) + [g (FN+1; θN+1)− h (XN+1;φN+1)] + urN+1 (2.30)

CN+1 = h (XN+1;φN+1) + ugN+1 + urN+1 (2.31)

where ugN+1 can be considered an error in not using the unknown true model. Second, consider:

CN+1 = h
(
XN+1; φ̂N+1

)
+
[
h (XN+1;φN+1)− h

(
XN+1; φ̂N+1

)]
+ ugN+1 + urN+1 (2.32)

CN+1 = h
(
XN+1; φ̂N+1

)
+ uφN+1 + ugN+1 + urN+1 (2.33)

where uφN+1 can be considered the error made in using the estimated or calibrated parameters

rather than the true parameter values. Third, consider:

CN+1 = h
(
XN ; φ̂N+1

)
+
[
h
(
XN+1; φ̂N+1

)
− h

(
XN ; φ̂N+1

)]
+ uφN+1 + ugN+1 + urN+1 (2.34)

CN+1 = h
(
XN ; φ̂N+1

)
+ uXN+1 + uφN+1 + ugN+1 + urN+1 (2.35)

CN+1 = h
(
XN ; φ̂N+1

)
+ εN+1 (2.36)

where uXN+1 is the error caused by usingXN rather thanXN+1, which is interpreted as forecasting

using observations from the previous trading day rather than the trading day that the call

option is observed. The decomposition of the out-of-sample forecast errors demonstrates that

there are four components (see Eq. (2.35)). It may be that the error caused by having to

forecast the inputs (that is, using XN as the input variables rather than XN+1) is the dominant

source of error. If the forecast errors are computed using (the unobserved) actual values of the

input variables (that is, using XN+1 as the input variables), then these errors have only three

components (see equation (2.33)). In the analysis presented in Sections 2.4.1, and 2.4.2, we

consider the forecast errors as defined by εN+1 so that the forecasts are made for the trading

day N + 1 based on information available at the end of the trading day N . Similarly, in the

above-mentioned sections, we also consider the forecast errors as defined by εN+1, so that the

forecasts are made for the trading day N + 1 based on information available at the end of the

trading day N + 1. The definition of this forecasting error shows that there are a number of

potential sources of forecasting errors, only one of which is due to the choice of model type —
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that is parametric or non-parametric. By applying these techniques, we can get some insight into

whether the global approximation property of Deep Learning ANN models is able to produce

some advantage over parametric models in forecasting, along with considering the performance

of other parametric models. This question is the focus of current research.

2.3.5 Information Sets for Models

The focus of this chapter is the forecasting performance of parametric option pricing models

relative to Deep Learning ANN (MLP and LSTM) models. The calibration of parametric models

is performed under two different specifications: use option prices as input variables, called the C-

Models, and use option prices scaled by the strike price as input variables called the CK-Models.

Thus we have parametric and non-parametric models that fall under two categories, C-Models

and CK-Models. In this section, we discuss the information sets employed for calibration and

parameter estimation of each type of these models and for subsequently forecasting the one-

trading-day-ahead option price CN+1 or CN+1/KN+1.

2.3.5.1 Information Sets for C-Models

We define the information sets required for each model for calibration or estimation of parameters

and for forecasting the call option price (CN+1). We implement a single forecasting horizon,

that is one-trading-day-ahead forecasts, so we use the information available on day t = N to

forecast option prices for day t = N + 1. The parametric models are calibrated daily, based

only on the data available for day N . In contrast, the MLP models use an expanding window,

the LSTM models use a fixed window, and both the MLP and LSTM use data for t = 1, ..., N

for estimation and forecast for day t = N + 1. Thus the parametric models follow the usual

convention of daily calibrations, whereas the expanding (for the MLP) and fixed-sliding (for the

LSTM) window allows the ANNs to cover a wide range of values for its input variables. We use

φ to represent a generic parameter scalar or vector for each model.

2.3.5.1.1 C-Models: Parametric Models (Black–Scholes–Merton, Heston, Heston

Jump Diffusion, and Finite Moment Log Stable Model)

For the parametric models that fall under the C-Models category, on day N the information

used to calibrate the model parameters for each option (CN , SN ,KN , TN ,
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RN , QN ;φModel
N ), and we define the in-sample pricing error, εModelN

N for each option under each

model as:

εModelN
N = CN − fModel

(
SN ,KN , TN , RN , QN ;φModel

N

)
(2.37)

where φModel
N and fModel for each model are as follows:

• Black–Scholes–Merton model: φModel
N = φBSM

C

N = (σCALIBCN ), and fModel(.) is the

Black–Scholes–Merton with the characteristic function (see Eq. (2.6)).

• Heston model: φModel
N = (σCALIBC

2

N ; φHC

N ), where σCALIBC
2

N is the square of σCALIBCN

which is used as the initial value for the long-term variance parameter and φH
C

N =

HParamsCN = (κHC

N , σH
C

N , θH
C

N , ρH
C

N , V HC

0,N ), and fModel(.) is the Heston with the char-

acteristic function (see Eq. (2.13)).

• Heston Jump Diffusion model: φModel
N = (σCALIBC

2

N ; φHJDCN ), where φHJDCN =HJDParamsCN

= (κHJDCN , σHJD
C

N , θHJD
C

N , ρHJD
C

N , V HJDC
0,N , σHJD

C

N , µHJD
C

N ,

λHJD
C

N ), and fModel(.) is the Heston Jump Diffusion with the characteristic function (see

Eq. (2.22)).

• Finite Moment Log Stable model: φModel
N = φFMLSC

N = (αFMLSC
N , σFMLSC

N ), and fModel(.)

is the Finite Moment Log Stable with the characteristic function (see Eq. (2.25)).

We calibrate each model for each day (over historical empirical call option prices) by choosing

φModel
N to minimise the mean square error. In this case, we retain the fitted option prices and

the calibrated parameters for each respective model are as follows:

• σCALIB
C

N for the Black–Scholes–Merton model,

• HParamsCN for the Heston model,

• HJDParamsCN for the Heston Jump Diffusion model,

• αFMLSC
N , and σFMLSC

N for the Finite Moment Log Stable model,

We compute the one-trading-day-ahead forecast errors, εModelN
N+1 , for each of the respective model

as:

εModelN
N+1 = CN+1 − fModel

(
SN ,KN , TN , RN , QN ;φModel

N

)
(2.38)
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where fModel is a pricing function under a generic model. We evaluate the option price at

the index value on the previous trading day and use the known exercise price and time to

maturity, as well as the previous day’s interest rate, dividend yield and respective calibrated

parameters for each of the respective models. Finally, for the parametric models that fall under

the C-Models category that use one-trading-day-ahead input variables for forecasting the one-

trading-day CN+1, we compute the one-trading-day-ahead forecast errors as:

ε
ModelN+1
N+1 = CN+1 − fModel

(
SN+1,KN+1, TN+1, RN+1, QN+1;φModel

N

)
. (2.39)

We report the root mean square error of these forecast errors.

2.3.5.1.2 C-Models: Deep Learning Neural Network Models

A total of 72 MLPs and LSTMs are estimated and reported under the C-Models category.

In this section, we list the 72 ANN models (36 MLPs and 36 LSTMs), which were trained on

empirical call option prices of the S&P 500 Index (CN ). These models forecast the call option

prices of the S&P 500 Index for the next trading day. Amongst the 36 MLPs and 36 LSTMs,

we analysed the performance of:

• Using the information available on day t = N to forecast one-day-ahead option prices CN+1

with nine single hidden layer MLPM1CN -Models (M1C1N toM1C9N ), nine single hidden

layer LSTM L1CN -Models (L1C1N to L1C9N ), nine double hidden layer MLP M2CN -

Models (M2C1N to M2C9N ), nine double hidden layer LSTM L2CN -Models (L2C1N to

L2C9N ), nine triple hidden layer MLP M3CN -Models (M3C1N to M3C9N ), and nine

triple hidden layer LSTM L3CN -Models (L3C1N to L3C9N ). (3 × 9 = 27 MLPs and

3× 9 = 27 LSTMs)

• Use the information available (except for calibrated model parameters) on day t = N+1 to

forecast one-day-ahead option prices CN+1 with nine triple hidden layer MLP M3CN+1-

Models (M3C1N+1 to M3C9N+1) and nine triple hidden layer LSTM L3CN+1-Models

(L3C1N+1 to L3C9N+1). (9 MLPs and 9 LSTMs)

The nine MLP and nine LSTM models under each of the categories above are differentiated by

choice of input variables and the network architecture. As in the parametric models, each model

here has a set of input variables and a set of parameters, φ, called biases and weights. The

input variables for the MLP models (M1CN -Models, M2CN -Models, and M3CN -Models) and
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the LSTM models (L1CN -Models, L2CN -Models, and L3CN -Models) that use the information

available on day t = N to forecast the call option price for day t = N + 1 are mentioned

in Table A.1.1. Similarly, the input variables for the MLP models (M3CN+1-Models) and the

LSTM models (L3CN+1-Models) that use the information available (except for calibrated model

parameters) on day t = N+1 to forecast the call option price for day t = N+1 are mentioned in

Table A.1.2. We compute the one-trading-day-ahead forecast errors under the respective models

as follows:

1. MLP MnCN -Models (MnC1N to MnC9N):

εMnCN -Models
N+1 = CN+1 − f

(
XN ;φMnCN -Models

)
, (2.40)

where n = 1,2,3

2. LSTM LnCN -Models (LnC1N to LnC9N):

εLnCN -Models
N+1 = CN+1 − f

(
XN ;φLnCN -Models

)
, (2.41)

where n = 1,2,3

3. MLP M3CN+1-Models (M3C1N+1 to M3C9N+1):

ε
M3CN+1-Models
N+1 = CN+1 − f

(
XN+1;φM3CN+1-Models

)
, (2.42)

4. LSTM L3CN+1-Models (L3C1N+1 to L3C9N+1):

ε
L3CN+1-Models
N+1 = CN+1 − f

(
XN+1;φL3CN+1-Models

)
, (2.43)

where f(.) represents a Deep Learning MLP model in Eqs. (2.40) and (2.42), and f(.) represents

a Deep Learning LSTM model in Eqs. (2.41) and (2.43). We estimate these models each day

(over historical empirical call option prices) by choosing their respective φ to minimise the

mean square error. We report the root mean square error of these forecast errors. Thus, the

above models are defined by identifying the inputs of each model (XN ) for the MLP (M1CN -

Models, M2CN -Models, and M3CN -Models) and LSTM (L1CN -Models, L2CN -Models, and

L3CN -Models) models. Similarly, models that have defined by having XN+1 as their inputs are

the MLP (M3CN+1-Models) and LSTM (L3CN+1-Models) models.

Unlike the parametric models, the MLPmodels (M1CN -Models,M2CN -Models,M3CN -Models,

and M3CN+1-Models) are estimated with an expanding window of observations, whereas, the
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LSTM models (L1CN -Models, L2CN -Models, L3CN -Models, and L3CN+1-Models) are esti-

mated with a fixed-sliding window of observations. However, the forecast horizon remains one

trading day for all the models, so we compute the one-trading-day-ahead forecasts and re-

port the root mean square error of the forecast errors. We have hierarchically classified the

non-parametric MLP models (M1CN -Models, M2CN -Models, M3CN -Models, and M3CN+1-

Models) and LSTM models (L1CN -Models, L2CN -Models, L3CN -Models, and L3CN+1-Models)

into the following nine series:

1. Series 1: MnC1N , M3C1N+1, LnC1N , and L3C1N+1 models, where n = 1, 2, 3.

2. Series 2: MnC2N , M3C2N+1, LnC2N , and L3C2N+1 models, where n = 1, 2, 3.

3. Series 3: MnC3N , M3C3N+1, LnC3N , and L3C3N+1 models, where n = 1, 2, 3.

4. Series 4: MnC4N , M3C4N+1, LnC4N , and L3C4N+1 models, where n = 1, 2, 3.

5. Series 5: MnC5N , M3C5N+1, LnC5N , and L3C5N+1 models, where n = 1, 2, 3.

6. Series 6: MnC6N , M3C6N+1, LnC6N , and L3C6N+1 models, where n = 1, 2, 3.

7. Series 7: MnC7N , M3C7N+1, LnC7N , and L3C7N+1 models, where n = 1, 2, 3.

8. Series 8: MnC8N , M3C8N+1, LnC8N , and L3C8N+1 models, where n = 1, 2, 3.

9. Series 9: MnC9N , M3C9N+1, LnC9N , and L3C9N+1 models, where n = 1, 2, 3.

The Series 1 set of models uses the inputs required to calibrate the Black–Scholes–Merton

model. The input variables are extended further by the Series 2 set of models by adding the

lagged call option price of the S&P 500 Index. The Series 3 set of models extends the input

variables of Series 2 models by adding the lagged Black–Scholes–Merton greeks. The Series

4 set of models extends the input variables of Series 3 models by adding the lagged calibrated

Heston model parameters. The Series 5 set of models extends the input variables of Series 4

models by adding the lagged in-sample Heston model call option price. From Series 6 onwards,

apart from the standard information/input vector (SN ,KN+1, TN+1, RN , QN ), we provide input

parameters to the ANN models that are specific to a particular parametric model. Thus, in

addition to the standard input vector, Series 6 would be provided with the lagged calibrated

Heston model parameters and the lagged in-sample Heston model call option price. Series 7

models replicate the Black–Scholes–Merton model, and hence along with the standard input

vector, they would be provided with the lagged Black–Scholes–Merton greeks and the lagged
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in-sample Black–Scholes–Merton model call option price. Similarly, Series 8 models would

replicate the information set available to the Heston Jump Diffusion model, whereby, along with

the standard input vector, they would be provided the lagged calibrated Heston Jump Diffusion

model parameters and the lagged in-sample Heston Jump Diffusion model call option price.

Finally, the Series 9 models would replicate the information set available to the Finite Moment

Log Stable model, whereby, along with the standard input vector, they would be provided the

lagged calibrated Finite Moment Log Stable model parameters, and the lagged in-sample Finite

Moment Log Stable model call option price.

2.3.5.2 Information Sets for CK-Models

Next, we define the information sets required for each model for calibration or estimation of

parameters and for forecasting the call option price scaled by the strike price (CN/KN ). We

implement a single forecasting horizon, that is one-trading-day-ahead forecasts, so we use the

information available on day t = N to forecast option prices for day t = N + 1. The parametric

models are calibrated daily, based only on the data available for day N . In contrast, the MLP

models use an expanding window, the LSTM models use a fixed window, and both the MLP

and LSTM use data for t = 1, ..., N for estimation and forecast for day t = N + 1. Thus the

parametric models follow the usual convention of daily calibrations, whereas the expanding (for

the MLP) and fixed (for the LSTM) window allows the ANNs to cover a wide range of values for

its input variables. In what follows we use φ to represent a generic parameter scalar or vector

for each model.

2.3.5.2.1 CK-Models: Parametric Models (Black–Scholes–Merton, Heston, Heston

Jump Diffusion, and Finite Moment Log Stable Model)

For the parametric models that fall under the CK-Models category, on day N the informa-

tion used to calibrate the model parameters for each option is (CN/KN , SN/KN , TN ,

RN , QN ;φModel
N ), and we define the in-sample pricing error, εModelN

N for each option under each

model as:

εModelN
N = CN/KN − (fModel

(
SN/KN , TN , RN , QN ;φModel

N

)
/KN ) (2.44)

where φModel
N and fModel are for each model as follows:
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• Black–Scholes–Merton model: φModel
N = φBSM

CK

N = (σCALIBCKN ), and fModel(.) is the

Black–Scholes–Merton with the characteristic function (see Eq. (2.6)).

• Heston model: φModel
N = (σCALIBCK

2

N ; φHCK

N ), where σCALIBCK
2

N is the square of σCALIBCKN

which is used as the initial value for the long-term variance parameter and φH
CK

N =

HParamsCKN = (κHCK

N , σH
CK

N , θH
CK

N , ρH
CK

N , V HCK

0,N ), and fModel(.) is the Heston with the

characteristic function (see Eq. (2.13)).

• Heston Jump Diffusion model: φModel
N = (σCALIBCK

2

N ; φHJDCKN ), where φHJD
CK

N =

HJDParamsCKN = (κHJDCKN , σHJD
CK

N , θHJD
CK

N , ρHJD
CK

N , V HJDCK
0,N , σHJD

CK

N ,

µHJD
CK

N , λHJD
CK

N ), and fModel(.) is the Heston Jump Diffusion with the characteristic

function (see Eq. (2.22)).

• Finite Moment Log Stable model: φModel
N = φFMLSCK

N = (αFMLSCK
N , σFMLSCK

N ), and

fModel(.) is the Finite Moment Log Stable with the characteristic function (see Eq. (2.25)).

We calibrate each model for each day (over historical empirical call option prices) by choosing

φModel
N to minimise the mean square error. In this case, we retain the fitted option prices, and

the calibrated parameters for each respective model are as follows:

• σCALIB
CK

N for the Black–Scholes–Merton model

• HParamsCKN for the Heston model

• HJDParamsCKN for the Heston Jump Diffusion model

• αFMLSCK
N , and σFMLSCK

N for the Finite Moment Log Stable model

We compute the one-trading-day-ahead forecast errors, εModelN
N+1 , for each of the respective model

as:

εModelN
N+1 = CN+1/KN+1 − (fModel

(
SN/KN , TN , RN , QN ;φModel

N

)
/KN ) (2.45)

Here we evaluate the option price at the index value on the previous trading day and use the

known exercise price and time to maturity, as well as the previous day’s interest rate, dividend

yield, and respective calibrated parameters for each of the respective model. Finally, for the

parametric models that fall under the CK-Models category that use one-trading-day-ahead
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input variables for forecasting the one-trading-day CN+1/KN+1, we compute the one-trading-

day-ahead forecast errors for these models as:

ε
ModelN+1
N+1 = CN+1/KN+1 − (fModel(SN+1/KN+1, TN+1, RN+1,

QN+1;φModel
N )/KN ) (2.46)

where fModel is a pricing function under a generic model. We report the root mean square error

of these forecast errors.

2.3.5.2.2 Deep Learning Neural Network Models

In this section, we analyse the performance of models that use the homogeneity hint of Merton

(1973), i.e. the call price scaled by its strike price (CN/KN ) as the target (yN ) variable. 72

ANN models (36 MLPs and 36 LSTMs) are trained on empirical call option prices scaled by the

strike price of the S&P 500 Index scaled by their respective strike price (CN/KN ) and forecast

the (CN+1/KN+1) for the next trading day. Amongst the 36 MLPs and 36 LSTMs, we analysed

the performance of:

• Using the information available on day t = N to forecast one-day-ahead moneyness

(CN+1/KN+1) with nine single hidden layer MLPM1CKN -Models (M1CK1N toM1CK9N ),

nine single hidden layer LSTM L1CKN -Models (L1CK1N to L1CK9N ), nine double

hidden layer MLP M2CKN -Models (M2CK1N to M2CK9N ), nine double hidden layer

LSTM L2CKN -Models (L2CK1N to L2CK9N ), nine triple hidden layer MLP M3CKN -

Models (M3CK1N to M3CK9N ), and nine triple hidden layer LSTM L3CKN -Models

(L3CK1N to L3CK9N ). (3× 9 = 27 MLPs and 3× 9 = 27 LSTMs)

• Using the information available (except for calibrated model parameters) on day t = N+1

to forecast one-day-ahead moneyness (CN+1/KN+1) with nine triple hidden layer MLP

M3CKN+1-Models (M3CK1N+1 to M3CK9N+1) and nine triple hidden layer LSTM

L3CKN+1-Models (L3CK1N+1 to L3CK9N+1). (9 MLPs and 9 LSTMs)

The nine MLP and nine LSTM models under each of the categories above are differentiated by

the choice of input variables and the network architecture. As in the parametric models, each

model here has a set of input variables and a set of parameters, φ, called biases and weights.

The input variables for the MLP models (M1CKN -Models, M2CKN -Models, and M3CKN -

Models) and the LSTM models (L1CKN -Models, L2CKN -Models, and L3CKN -Models) use
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the information available on day t = N to forecast the CN+1/KN+1 for day t = N + 1 are

mentioned in Table A.1.3. Similarly, the input variables for the MLP models (M3CKN+1-

Models) and the LSTM models (L3CKN+1-Models) that use the information available (except

for calibrated model parameters) on day t = N+1 to forecast the CN+1/KN+1 for day t = N+1

are mentioned in Table A.1.4. We compute the one-trading-day-ahead forecast errors under the

respective models as follows:

1. MLP MnCKN -Models (MnCK1N to MnCK9N):

εMnCKN -Models
N+1 = CN+1/KN+1 − f

(
XN ;φMnCKN -Models

)
, (2.47)

where n = 1,2,3

2. LSTM LnCKN -Models (LnCK1N to LnCK9N):

εLnCKN -Models
N+1 = CN+1/KN+1 − f

(
XN ;φLnCKN -Models

)
, (2.48)

where n = 1,2,3

3. MLP M3CKN+1-Models (M3CK1N+1 to M3CK9N+1):

ε
M3CKN+1-Models
N+1 = CN+1/KN+1 − f

(
XN+1;φM3CKN+1-Models

)
, (2.49)

4. LSTM L3CKN+1-Models (L3CK1N+1 to L3CK9N+1):

ε
L3CKN+1-Models
N+1 = CN+1/KN+1 − f

(
XN+1;φL3CKN+1-Models

)
, (2.50)

where f(.) represents a Deep Learning MLP model in Eqs. (2.47) and (2.49), and f(.) represents

a Deep Learning LSTM model in Eqs. (2.48), and (2.50). We estimate these models each

day (over historical empirical call option prices scaled by the strike prices) by choosing their

respective φ to minimise the mean square error. We report the root mean square error of these

forecast errors. Thus, the above models are defined by identifying the inputs of each model (XN )

for the MLP (M1CKN -Models, M2CKN -Models, and M3CKN -Models) and LSTM (L1CKN -

Models, L2CKN -Models, and L3CKN -Models) models. Similarly, models that have been defined

by having XN+1 as their inputs are the MLP (M3CKN+1-Models) and LSTM (L3CKN+1-

Models) models.

Unlike the parametric models, the MLP models (M1CKN -Models, M2CKN -Models, M3CKN -

Models, and M3CKN+1-Models) are estimated with an expanding window of observations,
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whereas, the LSTMmodels (L1CKN -Models, L2CKN -Models, L3CKN -Models, and L3CKN+1-

Models) are estimated with a fixed-sliding window of observations, but the forecast horizon

remains one trading day for all the models, so we compute the one-trading-day-ahead forecasts

and report the root mean square error of the forecast errors. We have hierarchically classified

the non-parametric MLP models (M1CKN -Models, M2CKN -Models, M3CKN -Models, and

M3CKN+1-Models) and the LSTMmodels (L1CKN -Models, L2CKN -Models, L3CKN -Models,

and L3CKN+1-Models) into nine categories:

1. Series 1: MnCK1N , M3CK1N+1, LnCK1N , and L3CK1N+1 models, where n = 1, 2, 3.

2. Series 2: MnCK2N , M3CK2N+1, LnCK2N , and L3CK2N+1 models, where n = 1, 2, 3.

3. Series 3: MnCK3N , M3CK3N+1, LnCK3N , and L3CK3N+1 models, where n = 1, 2, 3.

4. Series 4: MnCK4N , M3CK4N+1, LnCK4N , and L3CK4N+1 models, where n = 1, 2, 3.

5. Series 5: MnCK5N , M3CK5N+1, LnCK5N , and L3CK5N+1 models, where n = 1, 2, 3.

6. Series 6: MnCK6N , M3CK6N+1, LnCK6N , and L3CK6N+1 models, where n = 1, 2, 3.

7. Series 7: MnCK7N , M3CK7N+1, LnCK7N , and L3CK7N+1 models, where n = 1, 2, 3.

8. Series 8: MnCK8N , M3CK8N+1, LnCK8N , and L3CK8N+1 models, where n = 1, 2, 3.

9. Series 9: MnCK9N , M3CK9N+1, LnCK9N , and L3CK9N+1 models, where n = 1, 2, 3.

The Series 1 set of models uses the inputs required to calibrate the Black–Scholes–Merton

model (except that the index price is scaled by the strike price, i.e. SN/KN , TN+1,

RN , QN ). The input variables are extended further by the Series 2 set of models by adding the

lagged call option price of the S&P 500 Index scaled by the strike price. The Series 3 set of mod-

els extends the input variables of Series 2 models by adding the lagged Black–Scholes–Merton

greeks. The Series 4 set of models extends the input variables of Series 3 models by adding the

lagged calibrated Heston model parameters. The Series 5 set of models extends the input vari-

ables of Series 4 models by adding the lagged in-sample Heston model call option price scaled by

the strike price. From Series 6 onwards, apart from the standard information/input vector, we

provide input parameters to the ANN models that are specific to a particular parametric model.

Thus, in addition to the standard input vector, Series 6 would be provided with the lagged

calibrated Heston model parameters and lagged in-sample Heston model call option price scaled

by the strike price. Series 7 models replicate the Black–Scholes–Merton model, and hence along

56



with the standard input vector, they would be provided with the lagged Black–Scholes–Merton

greeks, and the lagged in-sample Black–Scholes–Merton model call option price scaled by the

strike price. Similarly, Series 8 models would replicate the information set available to the

Heston Jump Diffusion model, whereby, along with the standard input vector, they would be

provided the lagged calibrated Heston Jump Diffusion model parameters, and the lagged in-

sample Heston Jump Diffusion model call option price scaled by the strike price. Finally, the

Series 9 models would replicate the information set available to the Finite Moment Log Stable

model, whereby, along with the standard input vector, they would be provided the lagged cali-

brated Finite Moment Log Stable model parameters, and the lagged in-sample Finite Moment

Log Stable model call option price scaled by the strike price.

2.3.6 Random Walk Models

It is generally accepted that the time series realisations of many asset price processes are well-

modelled by a simple random walk process. In these models, the minimum means square error

forecast of the next period price is simply the current period price. We introduce two random

walk models to benchmark forecast models for our parametric and non-parametric models. With

two definitions of the target variable, we have two models: the δC-Model and the δCK-Model.

We compute the one trading day ahead forecast errors as,

δCN -Model : εδCNN+1 = CN+1 − CN (2.51)

δCKN -Model : εδCKN
N+1 = CN+1/KN+1 − CN/KN . (2.52)

We report the root mean square error of the forecast errors from these two models.

2.3.7 Model Calibration and Performance Criteria

2.3.7.1 Performance Criterion

The forecasting performance of each model is measured using Root Mean Square Error (RMSE)

in the test sample, that is, in out-of-sample prediction. For each day, as we cycle through the

observations, we retain the pricing errors for each model. Below, we use these errors to compute

the RMSE on a daily, monthly, and annual basis.5 Defining the pricing errors as εi = yi − ŷi,

5In the Electronic Appendix, the RMSEs of the C−Models that use lagged input variables to
forecast the CN+1 for the next trading day on a monthly, yearly, and overall basis can be found
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where yi is the target value and ŷi is its predicted value, then the RMSE for a series of N pricing

errors is calculated by

RMSE =

√√√√ 1
N

N∑
i=1

ε2i . (2.53)

We should choose the model with the lowest out-of-sample RMSE. Diebold and Mariano (1995)

have provided a test procedure to determine if the out-of-sample fit of one model is significantly

worse than the out-of-sample fit of another model. The Diebold-Mariano (DM ) test statistic is

distributed as a standard normal distribution under the null hypothesis of no difference in the

predictive accuracy of the two models.

To compute the DM statistic from the errors of two competing models, we calculate di =

h (εi,1) − h (εi,2), where h(·) can be any loss function. The DM test statistic null hypothesis is

H0 : E (di) = 0. The DM test statistic is computed as

DM = d√
2πf̂d(0)/T

, (2.54)

(2.55)

where d = ∑N
i=1 (h (εi,1)− h (εi,2)) /N and fd(·) is the spectral density of {di}.

2.3.7.2 Calibration of Parametric Option Pricing Models

The parametric option pricing models have unknown parameters. To implement the models

for in-sample and out-of-sample prediction, values are required for these parameters. These

values are calibrated for each day of the sample by choosing the parameter values to minimise

the mean squared error of the in-sample pricing errors. This non-linear optimisation exer-

cise is implemented differently and separately for parametric models under the C − Models

(BSMCN , HCN , HJDCN , and FMLSCN models) and for each model under CK −Models

(BSMCKN , HCKN , HJDCKN , and FMLSCKN models) using the Matlab Optimization

Toolbox function lsqnonlin. Similarly, To impose inequality restrictions on the parameters,

in Tables 1, 5, and 9, respectively. The RMSEs of the C −Models that use one-trading-day-
ahead input variables to forecast the CN+1 for the next trading day on a monthly, yearly, and
overall basis can be found in Tables 2, 6, and 10, respectively. The RMSEs of the CK−Models
that use one-trading-day-ahead input variables to forecast the CN+1/KN+1 for the next trading
day on a monthly, yearly, and overall basis can be found in Tables 3, 7, and 11, respectively.
The RMSEs of the CK−Models that use one-trading-day-ahead input variables to forecast the
CN+1/KN+1 for the next trading day on a monthly, yearly, and overall basis can be found in
Tables 4, 8, and 12, respectively.
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the trustregion option is employed. For the Black–Scholes–Merton, the calibrated parameter

σCALIB
C

N (used by the BSMCN and BSMCN+1 model) and the calibrated parameter σCALIBCKN

(used by the BSMCKN and the BSMCKN+1 model) for day N are retained for use in comput-

ing the greeks, and as an input to other parametric and various ANN models. For the Heston

model, calibrated parameters HParamsCN (used by the HCN and the HCN+1 model) and the

calibrated parameters HParamsCKN (used by the HCKN and the HCKN+1 model) for day N

are retained as inputs for some ANN models. For the Heston Jump Diffusion model, calibrated

parameters HJDParamsCN (used by the HJDCN and the HJDCN+1 model) and the calibrated

parameters HJDParamsCKN (used by the HJDCKN and the HJDCKN+1 model) for day N

are retained as inputs for some ANN models. Similarly, for the Finite Moment Log Stable

model, calibrated parameters FMLSParamsCN (used by the FMLSCN and the FMLSCN+1

model) and the calibrated parameters FMLSParamsCKN (used by the FMLSCKN and the

FMLSCKN+1 model) for day N are retained as inputs for some ANN models. The parametric

models under the C −Models category (having target variable CN ) are calibrated separately

to the CK −Models (having target variable CN/KN ) for each of the 1,328 trading days in the

sample.

2.3.7.3 Estimating Deep Learning Neural Network Models

2.3.7.3.1 Network Parameters This study seeks to compare various networks by varying

the number of neurons in each layer, as well as the number of hidden layers, to find the optimal

network architecture size that outperforms the out-of-sample prediction of option prices and

option price scaled by the strike price. The various network configurations are listed in Table

A.1.1 for models that use the information available on day t = N to forecast the call option

price for day t = N + 1, in Table A.1.2 for models that use the information available (except

for calibrated model parameters) on day t = N + 1 to forecast the call option price for day

t = N + 1, in Table A.1.3 for models that use the information available on day t = N to forecast

the CN+1/KN+1 for day t = N + 1, and in Table A.1.4 for models that use the information

available (except for calibrated model parameters) on day t = N+1 to forecast the CN+1/KN+1

for day t = N+1. Root mean squared error is the performance evaluation criteria for all the ANN

(MLP and LSTM) models. In the MLP models (M1CN −Models, M2CN −Models, M3CN −

Models, M3CN+1−Models, M1CKN −Models, M2CKN −Models, M3CKN −Models, and

M3CKN+1−Models) the layer biases and weights of the various network are estimated following

using Bayesian Regularisation (see Mackay (1992) and Forsee F.D. (1997)), whereas, for the
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LSTM models (L1CN−Models, L2CN−Models, L3CN−Models, L3CN+1−Models, L1CKN−

Models, L2CKN−Models, L3CKN−Models, and the L3CKN+1−Models), Adaptive Moment

Estimator (ADAM) (see Kingma and Ba (2005)) has been used. Finally, as Klimasauskas (1991)

and Baughman and Liu (1995) state that the hyperbolic tangent function (also called “tanh”

function) performs better in ANN forecasting problems, the hyperbolic tangent function is used

in our study for the hidden layer squashing functions for all the MLP models. 6 Since the LSTM

models were implemented in Python (using TensorFlow), the hyperbolic tangent function is not

available. Xavier et al. (2011) showed that the tanh function does not have necessary and

desirable properties; moreover, it often does not deactivate, and it is shown both biologically

and in deep nets that deactivation (or activation sparsity) is necessary, where L1 regularisation

helps with this and rectified linear unit (ReLUs) have it built in. Thus, for the LSTM models

the ReLU was used as the squashing function. 7 The output layer for the MLP and LSTM

models uses a simple linear transfer function that returns the forecast variable.

2.3.7.3.2 Data Division As mentioned earlier, the data set covers the period from Septem-

ber 2012 to December 2017 and includes 1,328 trading days. The ANN (MLP and LSTM)

methodology requires data for a training set, a validation set and a test set. The training set is

used to estimate the parameters, the validation set is used to evaluate under-fitting and over-

fitting, and the test set is used for out-of-sample prediction. In this study for the MLPs, we

utilise an expanding window (in terms of the number of days) for the training and validation sets

and a fixed size (of one-trading-day) for the test set, whereas for the LSTMs, we utilise a fixed-

6The MLP models designed in Matlab that use the in-built activation functions do not sup-
port having the ReLU function for time series forecasting. Only until recently, Nguyen et al.
(2022) has implemented custom-built ReLU as the activation function in Matlab in conjunc-
tion with Recurrent Neural Networks. The documentation states that the ReLU function in
Matlab is used for image classification purposes. The available transfer/activation functions
compatible with the MLP networks designed using the Matlab Neural Network Toolbox are
the Log-Sigmoid Transfer function(logsig), Tan-Sigmoid Transfer Function(tansig), and Linear
Transfer Function(purelin) (refer to the following link). The “tanh” activation function is equiv-
alent to the “tansig” function (refer to the following link). The following studies have used a
“tanh” activation function with their MLP networks: Andreevna (2022), Liang et al. (2009a),
Liang et al. (2009b), Vejendla and Enke (2013), Liang et al. (2006), Shin and Ryu (2012), Ab-
hishek et al. (2012), and Wang et al. (2012). De Ryck et al. (2021) cites that tanh networks
with two hidden layers are at least as expressive as deeper ReLU networks and has improved
convergence rate for neural network approximation of analytic functions.

7The following studies that have used a “ReLU” activation function with their LSTM net-
works are: Liu and Zhang (2023), Paredes and Kadry (2022), Chang (2022), Ke and Yang (2019),
Zhao et al. (2022), Kavinnilaa et al. (2021), Pathan et al. (2020), Karakoyun and Cibikdiken
(2018), and Liang and Cai (2022).
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Figure 2.4: MLP Data Division: The data set covering from September 2012 to December
2017 is divided into a training set, a validation set, and a test set. The training set is used to
estimate the parameters, the validation set is used to evaluate under- and over-fitting, and the
test set is used for out-of-sample prediction. The MLP M1CN -Models (M1C1N to M1C9N ),
MLP M2CN -Models (M2C1N to M2C9N ), MLP M3CN -Models (M3C1N to M3C9N ), and
the MLP M3CN+1-Models (M3C1N+1 to M3C9N+1) utilise an expanding window (in terms of
the number of days) for the training and fixed size (of one trading day) for the validation and
test sets. For example, in the first iteration of the expanding window, the observations in 11
days (1 to 10 days as training set and 1 day as validation set) are randomly split into 80%:20%
as the training set, and the validation set and the test set is fixed at one trading day. This
format of data division is based on Andreou et al. (2008).

sliding window (in terms of the number of days, 10 trading days) for the training and validation

sets and a fixed size (of one-trading-day) for the test set. Due to computational limitations, it

was not feasible to have an expanding window for the LSTM models. Thus, the training and

validation sets comprise trading days (1 to N) and the test set trading days (N + 1). This is

repeated for the trading days N = 11, 12,..., 1,327. At each iteration, the observations in days

1 to N are randomly split into 80%:20% as the training and validation sets. The expanding

window method for the MLPs is chosen over a fixed number of trading days for the training

and validation sets so that the MLPs are exposed to a large variable and parameter space. The

pictorial representation of the MLPs data division is presented in Figure 2.4. For the LSTM

models, for each iteration, the combined set of training and validation of observations, which

consists of trading days from 1 to N , stays fixed, and this fixed window (number of days) keeps

sliding on each iteration and is not randomly split, which is the case with MLPs. The test

set for the MLPs and the LSTMs is fixed at one trading day as the focus of this study is on

one-trading-day-ahead prediction. The pictorial representation of the LSTMs data division is

presented in Figure 2.5.
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Figure 2.5: LSTM Data Division: The data set covering from September 2012 to December
2017 is divided into a training set, a validation set and a test set. The training set is used
to estimate the parameters, the validation set is used to evaluate under- and over-fitting, and
the test set is used for out-of-sample prediction. The LSTM L1CN -Models (L1C1N to L1C9N ),
LSTM L2CN -Models (L2C1N to L2C9N ), LSTM L3CN -Models (L3C1N to L3C9N ), and LSTM
L3CN+1-Models (L3C1N+1 to L3C9N+1) utilise a fixed window (in terms of the number of days)
for the training, validation, and test sets. For example, in the first iteration of the fixed window,
the observations in 10 days are considered as the training set, 1 day as the validation set, and
the test set is fixed at 1 trading day. This procedure is repeated over the entire data set. This
format of data division is based on Andreou et al. (2008).

2.3.7.3.3 Training the Neural Network Models A problem that occurs during neural

network training is called overfitting. The performance or loss function on the training set is

driven to a minimal value, but when test set data is presented to the trained network, the loss

function gets large. The network has identified the training examples, but it does not generalise

to new data. Early stopping is a method for improving generalisation. The available data is

divided into three subsets (i.e. training, validation and test sets). The training set is used for

updating the network weights and biases. The validation set is monitored during the training

process, and its loss function normally decreases during the initial phase of training, but when

the network begins to overfit the data, its loss function typically begins to rise (as illustrated in

Figure 2.6). When the validation loss function increases for a specified number of iterations, the

training is stopped, and the weights and biases at the minimum of the validation loss function are

used to evaluate the loss function in the test data. Another method for improving generalisation

is called regularisation. This involves modifying the loss function, which is normally chosen to

be the mean square error of the training set. To improve generalisation, the mean square error

loss function is modified by adding a term that consists of the mean of the sum of squares of

the network weights and biases (ωk).
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Figure 2.6: Early Stopping Method: Training reduces the loss function on the training set with
an increase in the number of epochs, while the validation set loss function normally decreases
during the initial phase of training. The problem of over-fitting comes into play when the
loss function on the validation set begins to rise. In this study, training is stopped when the
validation loss function increases consecutively for 100 epochs. The weights and biases at the
minimum point of the validation loss function are used for predicting the call option prices in
the test set.

MSE = γ × 1
J

J∑
j=1

ε2j + (1− γ)× 1
K

K∑
k=1

ω2
k. (2.56)

where γ is called the performance ratio (refer to Beale et al. (2010)). Using this loss function

causes the network to have smaller weights and biases, with the result that the network is less

likely to overfit. The problem with the method is the difficulty in determining the optimum value

for the performance ratio parameter. One solution is the Bayesian framework of Mackay (1992).

The detail of this Bayesian regularisation method is beyond the scope of this paper, but it has

been implemented in MATLAB in the function trainbr and has been employed in training the

MLP models reported in this paper, whereas for the LSTM models, we use the adam function

in Python(as the Bayesian regularisation optimiser was not available in Tensorflow), which is

an extended version of stochastic gradient descent. Based on several experiments, we set the

learning rate to 10−3, and batch size to 10, we train each ANN for 500 epochs, and we set early

stopping to 250 epochs.
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2.4 Empirical Results

We evaluate the forecasting performance of the various parametric and ANN models and the

impact of ANN architecture on the forecasting performance of the network models in predicting

one-trading-day-ahead call option prices and moneyness. The out-of-sample forecasting perfor-

mance of C-Models and CK-Models are discussed, together with several robustness tests.

2.4.1 C-Models: Results

All of the studies listed in Table 1.1 and recent studies such as Ruf and Wang (2021) have a

look-ahead bias; even though they use a test set, they fail to provide lagged input variables to

their models to forecast option prices. Our study tackled this by proposing the following set of

C-Models that use lagged input variables for forecasting one-trading-day-ahead option prices

CN+1.

• C-Models using lagged input variables

– Parametric models:

∗ Black–Scholes–Merton (BSMCN ) model

∗ Heston (HCN ) model

∗ Heston Jump Diffusion (HJDCN ) model

∗ Finite Moment Log Stable (FMLSCN ) model

– MLP models:

∗ Single hidden layer MLP M1CN -Models (M1C1N to M1C9N )

∗ Double hidden layer MLP M2CN -Models (M2C1N to M2C9N )

∗ Triple hidden layer MLP M3CN -Models (M3C1N to M3C9N )

– LSTM models:

∗ Single hidden layer LSTM L1CN -Models (L1C1N to L1C9N )

∗ Double hidden layer LSTM L2CN -Models (L2C1N to L2C9N )

∗ Triple hidden layer LSTM L3CN -Models (L3C1N to L3C9N )

Following previous literature and for comparison purposes, we also perform the exercise of using

one-trading-day-ahead input variables for forecasting the one-trading-day-ahead call option price
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CN+1. For this exercise, we only consider triple hidden layer C-Models, as the triple hidden

layer models have shown to largely out-perform the single and double layer C-Models, that use

lagged input variables (see extended results in Appendix A.2). Also, most of the traditional

literature8 focuses on single hidden layer MLP models, aside from Ghaziri et al. (2000), where

they studied the double hidden layer MLP models; thus, this analysis provides insights into the

performance of higher dimensional ANN models.

• C-Models using one-trading-day-ahead input values

– Parametric models:

∗ Black–Scholes–Merton (BSMCN+1) model

∗ Heston (HCN+1) model

∗ Heston Jump Diffusion (HJDCN+1) model

∗ Finite Moment Log Stable (FMLSCN+1) model

– MLP models:

∗ Triple hidden layer MLP M3CN+1-Models (M3C1N+1 to M3C9N+1)

– LSTM models:

∗ Triple hidden layer LSTM L3CN+1-Models (L3C1N+1 to L3C9N+1)

2.4.1.1 Forecasting Performance of C-Models Using Lagged Input Variables

Table 2.1 presents the relative out-of-sample forecasting performance amongst all parametric

and ANN models9 that use lagged input variables to forecast the one-trading-day-ahead call

option prices. The performance metric is the RMSE of the one-trading-day-ahead forecast

errors of CN+1, which is computed for each model utilising all of the errors in each day or each

month. Amongst all of the models, columns V and VI record the number of months and days,

respectively, that each model has the lowest RMSE when including the random walk model

8See examples in Table 1.1.
9As explained in Section 2.4.1, the models using lagged input variables to forecast the call op-

tion price are the random walk model (δCN ), the parametric models (BSMCN , HCN , HJDCN ,
and FMLSCN ), the single hidden layer MLP models (M1CN -Models), the single hidden layer
LSTM models (L1CN -Models), the double hidden layer MLP models (M2CN -Models), the dou-
ble hidden layer LSTM models (L2CN -Models), the triple hidden layer MLP models (M3CN -
Models), and the triple hidden layer LSTM models (L3CN -Models).
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(δCN )), while columns VII and VIII record the number of months and days that each model

has the lowest RMSE when excluding the δCN model.

There are three key findings from these out-of-sample forecasting performance comparisons.

Firstly, the triple hidden layer LSTM models typically outperform all the other models, and

in particular, the L3C9N model out-perform all the other models with the lowest RMSE for

122 days. Secondly, collectively out of 1326 forecasting days, the LSTM models outperform for

863 days (65%), the MLP models for 356 days (27%), while the parametric models only for 109

days (8%). Also, from the monthly RMSE from daily forecasts, we find similar out-performance

of the LSTM models, where the L3C8N model outperforms. The daily RMSEs have been the

focus of this study since we forecast daily. Note that when comparing results from daily and

monthly RMSEs, we do not always obtain consistent results, which highlights the importance of

using daily measures when assessing daily forecast. Thirdly, the best performing LSTM model

outperforms the random walk model (δCN ) (refer to column V in Table 2.1). However, in various

other such comparisons discussed in the Appendix A.2, the random walk model outperforms all

the C-Models - except for the L2C9N , L3C9N and the FMLSCN models.

We have also performed a more comprehensive analysis by exclusively comparing the parametric

models to the single layer ANN (MLP and LSTM) models, the parametric models to the double

layer ANN models, and the parametric models to the triple layer ANN models. The associated

tables are presented in Appendix A.2 for the sake of brevity. In particular, we consider the

following nine comparisons. Firstly, we compare the parametric models with the single hidden

layer MLP and LSTM models (in Table A.2.1), the parametric models with the double hidden

layer MLP and LSTM models (in Table A.2.4), and the parametric models with the triple hidden

layer MLP and LSTM models (in Table A.2.7). We find the LSTM models consistently outper-

form all other models regardless of the number of layers used by the models. More specifically,

the best outperforming LSTM models include the one-layer L1C8N belonging to the Series 8

set of models that uses an input information set replicating the HJD model, while the other two

out-performing LSTM models are the two-layer L2C9N and the three-layer L3C9N belonging to

Series 9 set of models, which use an input information set replicating the FMLS model.10 Fur-

thermore, we observe an improvement in forecasting performance of the outperforming LSTM

models from a single hidden layer (L1C8N model) to a double hidden layer (L2C9N model) by

an additional 19.2% and from a double hidden layer to a triple hidden layer (L3C9N model)

by an additional 5%. The LSTM models also outperform on the basis of monthly RMSEs in

10See Section 2.3.5.1.2 for the details of each series.
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the above-mentioned set of comparisons.11 The Series 8 set of LSTM models has consistently

outperformed when we gauge models based on monthly RMSEs. Thus to summarise, the LSTM

models typically outperform other models across various layers with triple layer providing the

best performance, and mainly the LSTM models belonging to the Series 8 and Series 9 set of

models.

The outperformance of LSTM models (single, double, and triple hidden layers) is also evident

when we consider the three combinations of comparing the parametric models with the single

hidden layer LSTM models only, the double hidden layer LSTM models only, and the triple

hidden layer LSTM models only; see Tables A.2.3, A.2.6, and A.2.9, respectively. We find

again that the Series 8 and Series 9 sets of LSTM models outperform the parametric models.12

However, we lastly compare the MLP models (single, double, and triple hidden layers) with the

parametric models; the MLP’s show poor performance, as they fail to outperform the parametric

models in Tables A.2.2, A.2.5, and A.2.8, respectively. In these tables, the FMLSCN model

has consistently outperformed other parametric and MLP models.13

2.4.1.2 Forecasting Performance of C-Models Using One-trading-day-ahead Input

Variables

Table 2.2 shows the relative out-of-sample forecasting performance (in RMSE) amongst all

parametric and triple layer ANN models14 that use one-trading-day-ahead input variables to

forecast the one-trading-day day ahead call option prices. For this analysis, along with the

parametric models, we only experiment with triple layer ANN (MLP and LSTM) models because

the triple hidden layer LSTM (L3C9N model) outperforms the single and double hidden layers

models, as demonstrated in Section 2.4.1.1. Similarly, columns V and VI record the number

11The L1C8N model outperforms for 11 months (Table A.2.1), L2C8N for 12 months (Ta-
ble A.2.4), and L3C8N for 13 months (Table A.2.7) out of 64 months.

12The single hidden layer L1C8N , the double hidden layer L2C9N and the triple hidden
layer L3C9N models outperformed all the other models, see Tables A.2.3, A.2.6, and A.2.9,
respectively.

13The FMLSCN outperforms the single hidden layer MLP models by 229 days, other para-
metric models and the double hidden layer MLP models by 230 days, and other parametric
models and the triple hidden layer MLP models by 229 days.

14As explained in Section 2.4.1, the models using one-trading-day-ahead input variables
to forecast the call option price are the random walk model (δCN ), the parametric models
(BSMCN+1, HCN+1, HJDCN+1, and FMLSCN+1), the triple hidden layer MLP models
(M3CN+1-Models), and the triple hidden layer LSTM models (L3CN+1-Models).
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of months and days, respectively, that each model has the lowest RMSE when including the

random walk model (δCN )), while columns VII and VIII record the number of months and

days that each model has the lowest RMSE when excluding the δCN model (amongst all the

models).

This analysis reveals different results. When comparing the parametric models with the triple

hidden layer MLP and LSTM models, the MLP model, M3C4N+1 has the lowest RMSE for

232 days and outperforms all other models. The out-performance is not just limited to the

M3C4N+1 model but can be seen across other MLP models (i.e. across M3CN+1-Models,

which consists of models M3C1N+1 to M3C9N+1) too.

We perform further investigations to compare the use of one-trading-day-ahead input variables

with the use of lagged input variables. From Table 2.2, all the nine triple hidden layer MLP

models with one-trading-day-ahead input variables significantly outperform all the corresponding

nine triple hidden layer MLP models with lagged input variables in Table A.2.7 (this table

presents the comparison between the parametric, triple hidden layer MLP and LSTM models

that use lagged input variables), with the improvement reaching up to 419% for MLP Series

9 models.15 Thus, a substantial improvement in forecasting performance can be noticed by

using one-trading-day-ahead input variables compared with the use of lagged input variables to

forecast CN+1. We also observe an out-performance of the M3CN+1-Models when considering

monthly RMSEs. The parametric and the LSTM L3CN+1-Models from Table 2.2 have fared

poorly compared to their counterparts in Table A.2.7.

Tables A.2.16 and Table A.2.17 consider the comparison between the parametric and triple

hidden layer MLP only and between the parametric and triple hidden layer LSTM models only,

respectively. We find that the MLP M3C4N+1 model again has the lowest RMSE for 240 days.

The LSTM L3CN+1-Models fail to out-perform in any of the comparisons mentioned above

and also fail when they are compared to the parametric models, where the HJDCN+1 model

has the lowest RMSE for 878 days, and none of the LSTM L3CN+1-Models has shown any

out-performance.

15Indeed, the forecasting performance of the MLP models can be summarised as follows:
M3C1N+1 has an improvement of 74% over the M3C1N , M3C2N+1 has an improvement of
300% over M3C2N , M3C3N+1 has an improvement of 274% over M3C3N , M3C4N+1 has an
improvement of 362% over M3C4N , M3C5N+1 has an improvement of 300% over M3C5N ,
M3C6N+1 has an improvement of 314% over M3C6N , M3C7N+1, however, has a decrease of
3% in forecasting performance compared to M3C7N , M3C8N+1 has an improvement of 138%
over M3C8N , and M3C9N+1 has an improvement of 419% over M3C9N .
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The improvement seen in the MLP models that use one-trading-day-ahead input variables rather

than lagged input variables may explain why previous studies find MLP models to outperform

other parametric models (Andreou et al. (2002), Andreou et al. (2004), Andreou et al. (2008),

Ghaziri et al. (2000), Gençay and Gibson (2007), Thomaidis et al. (2006a), and Ghaziri et al.

(2000)).16

16We discuss in depth the relative out-of-sample forecasting performance amongst the models
that lagged variables and one-trading-day-ahead input variables to forecast the one-trading-day-
ahead CN+1 in sections A.2.1 and A.2.2, respectively. The RMSEs for the C-Models that use
lagged input variables to forecast the CN+1 for the next trading day on a monthly, yearly, and
overall basis can be found in Tables 1, 5, and 9, respectively and for the C-Models that use one-
trading-day-ahead input variables to forecast the CN+1 for the next trading day on a monthly,
yearly, and overall basis can be found in Tables 2, 6, and 10, respectively, of the Electronic
Appendix.
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Table 2.1: This table presents the forecasting performance comparison using both daily and monthly statistics amongst C-Models that use lagged input variables to forecast
the one-trading-day-ahead call option price (CN+1). The one-day-ahead forecast errors of CN+1 are used to compute the Root Mean Square Error (RMSE). Column I identifies
the models, and columns II, III, and IV describe the network architecture of the MLP and LSTM models. Forecasts are made for 1,326 trading days, and there are 64 months
covered in the sample using the monthly data. When comparing all models simultaneously (i.e. including the random walk model (δCN )), column V reports the number of
months out of the 64 months that each model has the smallest RMSE, while column VI reports the number of days out of the 1,326 days each model has the smallest RMSE.
Similarly, when the δCN model was excluded in the comparison, column VII reports the number of months out of the 64 months that each model has the smallest RMSE, while
column VIII reports the number of days out of the 1,326 days each model has the smallest RMSE.

Incl. random walk Excl. random walk

(I) (II) (III) (IV) (V) (VI) (VII) (VIII)

Model No.
of
hidden
layers

No. of
hidden
nodes
per layer

Network
architecture

Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

δCN - - - 6 106 - -

BSMCN - - - 0 53 0 53

HCN - - - 1 40 1 40

HJDCN - - - 0 1 0 9

FMLSCN - - - 0 7 0 7

M1C1N 1 6 6 0 6 0 6

M1C2N 1 7 7 1 8 1 8

M1C3N 1 12 12 1 19 1 24

M1C4N 1 17 17 0 20 0 26

M1C5N 1 18 18 2 5 2 6

M1C6N 1 11 11 2 4 3 5

M1C7N 1 12 12 2 14 2 15

M1C8N 1 14 14 0 3 0 6

M1C9N 1 8 8 0 5 0 6

M2C1N 2 6 6 X 6 0 1 0 1

M2C2N 2 7 7 X 7 0 17 0 17

M2C3N 2 12 12 X 12 0 13 0 13

M2C4N 2 17 17 X 17 0 28 0 28

M2C5N 2 18 18 X 18 4 32 4 32

M2C6N 2 11 11 X 11 0 14 0 14

M2C7N 2 12 12 X 12 2 26 3 27

M2C8N 2 14 14 X 14 1 21 1 22

M2C9N 2 8 8 X 8 0 4 0 4

M3C1N 3 6 6 X 6 X 6 0 11 0 11

M3C2N 3 7 7 X 7 X 7 0 13 0 14

M3C3N 3 12 12 X 12 X 12 3 17 3 21

M3C4N 3 17 17 X 17 X 17 1 18 1 24

M3C5N 3 18 18 X 18 X 18 0 2 0 4

M3C6N 3 11 11 X 11 X 11 1 3 2 6

M3C7N 3 12 12 X 12 X 12 1 4 1 8

M3C8N 3 14 14 X 14 X 14 0 1 0 2

M3C9N 3 8 8 X 8 X 8 0 4 0 6

L1C1N 1 6 6 0 3 0 3

L1C2N 1 7 7 0 45 0 45

L1C3N 1 12 12 0 27 0 27

L1C4N 1 17 17 0 28 0 28

L1C5N 1 18 18 1 29 1 33

L1C6N 1 11 11 2 11 2 13

L1C7N 1 12 12 3 21 3 22

L1C8N 1 14 14 2 25 3 27

L1C9N 1 8 8 0 33 0 34

L2C1N 2 6 6 X 6 0 8 0 11

L2C2N 2 7 7 X 7 1 21 1 23

L2C3N 2 12 12 X 12 4 32 4 37

L2C4N 2 17 17 X 17 2 17 2 23

L2C5N 2 18 18 X 18 0 2 0 5

L2C6N 2 11 11 X 11 0 2 0 5

L2C7N 2 12 12 X 12 4 8 4 16

L2C8N 2 14 14 X 14 1 2 2 8

L2C9N 2 8 8 X 8 0 7 1 13

L3C1N 3 6 6 X 6 X 6 0 34 0 34

L3C2N 3 7 7 X 7 X 7 0 86 0 86

L3C3N 3 12 12 X 12 X 12 0 38 0 38

L3C4N 3 17 17 X 17 X 17 0 73 0 73

L3C5N 3 18 18 X 18 X 18 1 39 1 40

L3C6N 3 11 11 X 11 X 11 1 22 1 22

L3C7N 3 12 12 X 12 X 12 5 24 5 25

L3C8N 3 14 14 X 14 X 14 9 49 9 50

L3C9N 3 8 8 X 8 X 8 0 122 0 122
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Table 2.2: This table presents the forecasting performance comparison using both daily and monthly statistics amongst C-Models that use one-trading-day-ahead input variables
to forecast the one-trading-day-ahead call option price (CN+1). The one-day-ahead forecast errors of CN+1 are used to compute the Root Mean Square Error (RMSE). Column
I identifies the models, and columns II, III, and IV describe the network architecture of the MLP and the LSTM model. Forecasts are made for 1,326 trading days, and there
are 64 months covered in the sample using the monthly data. When comparing all models simultaneously (i.e. including the random walk model (δCN )), column V reports
the number of months out of the 64 months that each model has the smallest RMSE, while column VI reports the number of days out of the 1,326 days each model has the
smallest RMSE. Similarly, when the δCN model was excluded in the comparison, column VII reports the number of months out of the 64 months that each model has the
smallest RMSE, while column VIII reports the number of days out of the 1,326 days each model has the smallest RMSE.

Incl. random walk Excl. random walk

(I) (II) (III) (IV) (V) (VI) (VII) (VIII)

Model No.
of
hidden
layers

No. of
hidden
nodes
per layer

Network
architecture

Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

δCN - - - 0 89 - -

BSMCN+1 - - - 0 0 0 0

HCN+1 - - - 0 9 0 9

HJDCN+1 - - - 4 56 4 57

FMLSCN+1 - - - 0 0 0 0

M3C1N+1 3 6 6 X 6 X 6 3 87 3 87

M3C2N+1 3 7 7 X 7 X 7 24 210 24 212

M3C3N+1 3 12 12 X 12 X 12 8 228 8 232

M3C4N+1 3 17 17 X 17 X 17 16 232 16 245

M3C5N+1 3 18 18 X 18 X 18 4 112 4 124

M3C6N+1 3 11 11 X 11 X 11 0 76 0 87

M3C7N+1 3 12 12 X 12 X 12 0 21 0 35

M3C8N+1 3 14 14 X 14 X 14 0 17 0 38

M3C9N+1 3 8 8 X 8 X 8 5 162 5 166

L3C1N+1 3 6 6 X 6 X 6 0 0 0 0

L3C2N+1 3 7 7 X 7 X 7 0 4 0 4

L3C3N+1 3 12 12 X 12 X 12 0 3 0 4

L3C4N+1 3 17 17 X 17 X 17 0 5 0 5

L3C5N+1 3 18 18 X 18 X 18 0 8 0 9

L3C6N+1 3 11 11 X 11 X 11 0 4 0 6

L3C7N+1 3 12 12 X 12 X 12 0 2 0 4

L3C8N+1 3 14 14 X 14 X 14 0 2 0 3

L3C9N+1 3 8 8 X 8 X 8 0 1 0 1
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2.4.2 CK-Models: Results

We continue with the evaluation of the forecasting performance of the following set of CK-

Models, that use lagged and one-trading-day-ahead input variables to forecast one-trading-day-

ahead call option prices scaled by the strike price CN+1/KN+1.

• CK-Models using lagged input variables

– Parametric models:

∗ Black–Scholes–Merton (BSMCKN ) model

∗ Heston (HCKN ) model

∗ Heston Jump Diffusion (HJDCKN ) model

∗ Finite Moment Log Stable (FMLSCKN ) model

– MLP models:

∗ Single hidden layer MLP M1CKN -Models (M1C1KN to M1C9KN )

∗ Double hidden layer MLP M2CKN -Models (M2C1KN to M2C9KN )

∗ Triple hidden layer MLP M3CKN -Models (M3C1KN to M3C9KN )

– LSTM models:

∗ Single hidden layer LSTM L1CKN -Models (L1C1KN to L1C9KN )

∗ Double hidden layer LSTM L2CKN -Models (L2C1KN to L2C9KN )

∗ Triple hidden layer LSTM L3CKN -Models (L3C1KN to L3C9KN )

• CK-Models using one-trading-day-ahead input values

– Parametric models:

∗ Black–Scholes–Merton (BSMCKN+1) model

∗ Heston (HCKN+1) model

∗ Heston Jump Diffusion (HJDCKN+1) model

∗ Finite Moment Log Stable (FMLSCKN+1) model

– MLP models:

∗ Triple hidden layer MLP M3CKN+1-Models (M3C1KN+1 to M3C9KN+1)
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– LSTM models:

∗ Triple hidden layer LSTM L3CKN+1-Models (L3C1KN+1 to L3C9KN+1)

In this section, we also discuss the forecasting performance of the rescaled CK-Models that

involves multiplying the strike price (KN+1) to the forecasted CN+1/KN+1 from the CK-Models

considered above. These models, thereby, provide an evaluation of forecasting one-trading-day-

ahead option prices CN+1, which are inferred from the forecasting of CN+1/KN+1 prices. The

rescaled CK-Models makes the forecasts comparable to that of the C-Models.

• Rescaled CK-Models using lagged input variables

– MLP models:

∗ Single hidden layer MLP M1CKN -Models-Rescaled (M1C1KN -Rescaled to

M1C9KN -Rescaled)

∗ Double hidden layer MLP M2CKN -Models-Rescaled (M2C1KN -Rescaled to

M2C9KN -Rescaled)

∗ Triple hidden layer MLP M3CKN -Models-Rescaled (M3C1KN -Rescaled to

M3C9KN -Rescaled)

– LSTM models:

∗ Single hidden layer LSTM L1CKN -Models-Rescaled (L1C1KN -Rescaled to L1C9KN -

Rescaled)

∗ Double hidden layer LSTM L2CKN -Models-Rescaled (L2C1KN -Rescaled to

L2C9KN -Rescaled)

∗ Triple hidden layer LSTM L3CKN -Models-Rescaled (L3C1KN -Rescaled to L3C9KN -

Rescaled)

The benefits of scaling, such as convergence and faster training of ANN models, have been dis-

cussed in the literature17 that forecasts call option prices scaled by the strike price (CN+1/KN+1),

but none of these studies have compared the performance of directly forecasting option prices

with the re-scaling of the forecasts of CN+1/KN+1.

17Examples include Dugas et al. (2001), Andreou et al. (2002), Gençay and Salih (2003),
Andreou et al. (2008), Gradojevic et al. (2009), and Andreou et al. (2010).
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2.4.2.1 Forecast Performance of CK-Models Using Lagged Input Variables

Table 2.3 summarises the relative out-of-sample forecasting performance amongst the models

that use lagged input variables to forecast the one-trading-day-ahead call option prices scaled

by the strike price (CN+1/KN+1).18 The performance metric is the RMSE of the one-trading-

day-ahead forecast errors of CN+1/KN+1, which is computed for each model utilising all of the

errors in each day or each month. Amongst all of the models, including the random walk model

(δCKN )), columns V and VI record the number of months and days, respectively, that each

model has the lowest RMSE and while excluding the δCKN model amongst the comparison,

columns VII and VIII record the number of months and days that each model has the lowest

RMSE.

From these comparisons, there are two key findings. Firstly, we notice the forecasting out-

performance of the double hidden layer LSTM models, and in particular, the L2CK2N model

outperforms all the models and has the lowest RMSE for 96 days out of 1326. When monthly

RMSE are used from daily forecasts, we find similar outperformance of the LSTM models, yet,

the double hidden layer LSTM model, L2CK6 outperforms. Secondly, the LSTM models based

on CK-Models perform similarly to LSTM models based on C-Models. Out of 1326 forecasting

days, the LSTM models collectively outperform for 778 days (59%) compared to the parametric

models, where they collectively outperform for only 2 days (0%). The MLP models also collec-

tively outperform for 549 days (41%). However, unlike the C-Models, none of the CK-Models

could outperform the random walk model.

As we did a comprehensive analysis for C-Models, we perform a similar analysis for CK-

Models, where we consider the following nine comparisons of CK-Models. The associated

tables are presented in the Appendix A.2 for the sake of brevity. We start with comparing

the parametric models to the single hidden layer MLP and LSTM models (in Table A.2.19),

double hidden layer MLP and LSTM models (in Table A.2.22), and triple hidden layer MLP

and LSTM models (in Table A.2.25) in order to understand the forecasting performance across

different layers of the ANN. We find a similar outperformance of all LSTM models compared to

18As explained in Section 2.4.2, the models using lagged input variables to forecast
CN+1/KN+1 are the random walk model (δCKN ), the parametric models (BSMCKN , HCKN ,
HJDCKN , and FMLSCKN ), the single hidden layer MLP models (M1CKN -Models), the
single hidden layer LSTM models (L1CKN -Models), the double hidden layer MLP models
(M2CKN -Models), the double hidden layer LSTM models (L2CKN -Models), the triple hid-
den layer MLP models (M3CKN -Models), and the triple hidden layer LSTM models (L3CKN -
Models).
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other models, regardless of the number of hidden layers used in the models. More specifically,

the single hidden layer LSTM model, L1CK2N model outperforms all other models and has the

lowest RMSE for 218 days (daily bootstrap winning percentage from 14% to 18%), the double

hidden layer LSTM model, L2CK2N model outperforms all other models and has the lowest

RMSE for 201 days (daily bootstrap winning percentage from 13% to 17%), and the triple

hidden layer LSTM model, L3CK2N outperforms all other models and has the lowest RMSE

for 203 days (daily bootstrap winning percentage from 13% to 17%). These three LSTM models

belong to the Series 2 set of models, which uses the lagged call option price of the S&P 500

Index scaled by the strike price as an input along with inputs that replicate the BSM model

(refer to Section 2.3.5.2.2).

We also confirm the forecasting performance of the Series 2 set of LSTM models when we

compare them exclusively with all the parametric models. Tables A.2.21, A.2.24, and A.2.27

for the single, double and triple hidden layer LSTM models, respectively, show that the single

hidden layer L1CK2N model outperforms the parametric models for 439 days, the two-layer

L2CK2N model outperforms for 408 days, and the three-layer L3CK2N model outperforms

for 410 days. The performance of the parametric models is also compared with MLP models

exclusively in Tables A.2.20, A.2.23, and A.2.26 for single, double, and triple hidden layer MLP

models, respectively. We find that the single hidden layerM1CK3N model outperforms all other

models and has the lowest RMSE for 216 days; the two-layer M2CK3N model outperforms

all other models and has the lowest RMSE for 179 days, and finally, the triple hidden layer

M3CK3N model outperforms all other models and has the lowest RMSE for 164 days. Thus,

the CK-Models-based MLP models (single, double and triple hidden layers) have consistently

out-performed the CK-Models-based parametric models, and moreover, the parametric models

have fared poorly in comparison to the CK-Models-based LSTM models (as discussed above in

this section).

2.4.2.2 Forecast Performance of CK-Models Using One-trading-day-ahead Input

Variables

Following the exercise of assessing the forecasting performance of one-trading-day-ahead money-

ness (CN + 1/KN+1) by using lagged variables above, we now asses its forecasting performance

by using one-trading-day-ahead input variables, and only for the triple layer ANN (MLP and

LSTM) models in order to make results comparable. Table 2.4 presents the relative out-of-

sample forecasting performance (in RMSE) amongst the models using one-trading-day-ahead
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input variables.19 Similarly with the results obtained for the C-Models in Section 2.4.1.1 and

Table 2.2, the CK-Models-based MLP models outperform, with the M3CK2N+1 model having

the lowest RMSE for 308 days and outperforming all other models.

Furthermore, a substantial improvement of up to 199% (for MLP Series 2 models) in forecasting

performance is evident for the models using one-trading-day-ahead input variables in the triple

hidden layer MLP M3CKN+1-Models compared to the M3CKN -Models that use lagged input

variables (mentioned in Table A.2.25 presenting the comparison between the parametric, and

the triple hidden layer MLP and LSTM models using lagged input variables).20 These results

are in line with Garcia and Gençay (2000), Gençay and Qi (2001), Gençay and Salih (2003),

Ghosn and Bengio (2002), and Gradojevic et al. (2009) who find that the MLP models typically

outperform parametric models.

Next, we consider the comparison between the parametric and triple hidden layer MLP only

and between the parametric and triple hidden layer LSTM models only, respectively. We find

similar outperformance of the triple hidden layer MLP M3CKN+1-Models when we compare

them to parametric models in Table A.2.34, where the M3CK2N+1 model again has the lowest

RMSE for 313 days. Furthermore, the triple hidden layer LSTM L3CKN+1-Models outperform

the parametric models when they are compared in Table A.2.35, where the L3CK2N+1 model

outperforms all the parametric models.

2.4.2.3 Forecast Performance of Rescaled CK-Models Using Lagged Input Variables

Furthermore, when we compare the out-of-sample performance of the random walk model, the

class of models that use lagged input variables, which are the unscaled C-Models (from Section

2.4.1.1) and the rescaled CK-Models (called CK −Models − Rescaled in Section 2.4.2), in

Table 2.5, we observe that after rescaling the forecast variable, CN+1/KN+1, of the CK-Models

19Recall that the models using one-trading-day-ahead input variables to forecast the mon-
eyness are the random walk model(δCKN ), the parametric models (BSMCKN+1, HCKN+1,
HJDCKN+1, and FMLSCKN+1), the triple hidden layer MLP models (M3CKN+1-Models),
and the triple hidden layer LSTM models (L3CKN+1-Models).

20For example, the forecasting performance of the M3CK1N+1 has an improvement of 58%
over M3CK1N , M3CK2N+1 has an improvement of 199% over M3CK2N , M3CK3N+1 has an
improvement of 107% overM3CK3N ,M3CK4N+1 has an improvement of 29% overM3CK4N ,
M3CK5N+1, however, has shown a decrease of 20% in forecasting performance compared to
M3CK5N , M3CK6N+1 has an improvement of 5% over M3CK6N , M3CK7N+1 has a decre-
ment of 56% in forecasting performance compared to M3CK7N , M3CK8N+1 has an improve-
ment of 106% over M3CK8N , and M3CK9N+1 has an improvement of 82% over M3CK9N .
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to CN+1, all of CK−Models−Rescaled fail to out-perform the C-Models. The L3C9N model,

which belongs to the category of C-Models, outperforms all other models and has the lowest

RMSE for 97 days. The L3C9N is also the out-performing model amongst all the models in

Section 2.4.1.1. As a result, we have demonstrated that training and forecasting call option

prices using ANN models with the homogeneity hint are inferior to models without it. 21

To make the results comparable with previous studies that estimate an overall RMSE over their

corresponding sample periods,22 we provide an evaluation of the overall RMSE (for the period

from September 2012 to December 2017) of C-Models in Table A.1.6, and for CK-Models in

Table A.1.8. We compare only the models that use one-trading-day-ahead input variables to

forecast option prices/moneyness since past literature does not use lagged variables in the test

set. Andreou et al. (2010) forecast S&P 500 index option prices from January 2002 to August

2004 using an SV and SVJ with an ANN and found that their SV model (has a RMSE of 1.498)

outperforms by 2.21% over their best performing ANN enhanced model, namely the CS ePOMP

model (has a RMSE of 1.532), and by 1.46% over their best performing ANN enhanced model,

namely the BS ePOMP model (RMSE of 1.754). Our best performing ANN model based on

overall RMSE for a window spanning from September 2012 to December 2017 is the C-Models-

based triple hidden layer MLP M3C2N+1 model, which has a RMSE of 2.1 (in Table A.1.6),

and the CK-Models-based triple hidden layer MLP M3CK4N+1 model, which has a RMSE of

0.148 (in Table A.1.8).

21We also discuss in depth the relative out-of-sample forecasting performance amongst the
models that use lagged variables and one-trading-day-ahead input variables to forecast the one-
trading-day-ahead CN+1/KN+1 in Sections A.2.3 and A.2.4, respectively. The RMSEs for the
CK-Models that use lagged input variables to forecast the CN+1/KN+1 for the next trading
day on a monthly, yearly, and overall basis can be found in Tables 3, 7, and 11, respectively and
for the CK-Models that use one-trading-day-ahead input variables to forecast the CN+1/KN+1
for the next trading day on a monthly, yearly, and overall basis can be found in Tables 4, 8, and
12, respectively of the Electronic Appendix.

22See, for example, Andreou et al. (2010), Andreou et al. (2010) extended the models of
Andreou et al. (2004), Andreou et al. (2006), and Andreou et al. (2008).
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Table 2.3: This table presents the forecasting performance comparison using both daily and monthly statistics amongst CK-Models that use lagged input variables to forecast
the one-trading-day-ahead call option price scaled by the strike price(CN+1/KN+1). The one-day-ahead forecast errors of CN+1/KN+1 are used to compute the Root Mean
Square Error (RMSE). Column I identifies the models, and columns II, III, and IV describe the network architecture of the MLP and LSTM models. Forecasts are made for
1,326 trading days, and there are 64 months covered in the sample using the monthly data. When comparing all models simultaneously (i.e. including the random walk model
(δCKN )), column V reports the number of months out of the 64 months that each model has the smallest RMSE, while column VI reports the number of days out of the 1,326
days each model has the smallest RMSE. Similarly, when the δCKN model was excluded in the comparison, column VII reports the number of months out of the 64 months
that each model has the smallest RMSE, while column VIII reports the number of days out of the 1,326 days each model has the smallest RMSE.

Incl. random walk Excl. random walk

(I) (II) (III) (IV) (V) (VI) (VII) (VIII)

Model No.
of
hidden
layers

No. of
hidden
nodes
per layer

Network
architecture

Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

δCKN - - - 18 202 - -

BSMCKN - - - 0 1 0 1

HCKN - - - 0 0 0 0

HJDCKN - - - 0 1 0 1

FMLSCKN - - - 0 0 0 0

M1CK1N 1 5 5 0 13 0 14

M1CK2N 1 6 6 0 6 1 6

M1CK3N 1 11 11 0 23 0 26

M1CK4N 1 16 16 3 15 3 16

M1CK5N 1 17 17 2 15 2 23

M1CK6N 1 10 10 0 14 1 14

M1CK7N 1 11 11 0 19 0 19

M1CK8N 1 13 13 0 18 0 19

M1CK9N 1 7 7 0 16 0 16

M2CK1N 2 5 5 X 5 0 1 0 1

M2CK2N 2 6 6 X 6 0 89 0 89

M2CK3N 2 11 11 X 11 0 4 0 4

M2CK4N 2 16 16 X 16 0 19 0 20

M2CK5N 2 17 17 X 17 0 16 0 16

M2CK6N 2 10 10 X 10 0 10 0 10

M2CK7N 2 11 11 X 11 1 14 1 14

M2CK8N 2 13 13 X 13 0 0 0 0

M2CK9N 2 7 7 X 7 0 2 0 2

M3CK1N 3 5 5 X 5 X 5 0 25 0 26

M3CK2N 3 6 6 X 6 X 6 0 36 0 40

M3CK3N 3 11 11 X 11 X 11 2 32 3 41

M3CK4N 3 16 16 X 16 X 16 1 20 1 25

M3CK5N 3 17 17 X 17 X 17 0 15 0 17

M3CK6N 3 10 10 X 10 X 10 4 12 5 15

M3CK7N 3 11 11 X 11 X 11 1 21 1 27

M3CK8N 3 13 13 X 13 X 13 2 21 2 27

M3CK9N 3 7 7 X 7 X 7 0 16 0 22

L1CK1N 1 5 5 0 6 0 6

L1CK2N 1 6 6 0 92 0 96

L1CK3N 1 11 11 0 8 0 8

L1CK4N 1 16 16 0 18 0 19

L1CK5N 1 17 17 0 28 0 31

L1CK6N 1 10 10 0 15 0 15

L1CK7N 1 11 11 0 17 0 18

L1CK8N 1 13 13 0 0 0 0

L1CK9N 1 7 7 0 10 0 10

L2CK1N 2 5 5 X 5 2 25 2 26

L2CK2N 2 6 6 X 6 2 29 4 40

L2CK3N 2 11 11 X 11 6 41 6 52

L2CK4N 2 16 16 X 16 5 39 7 63

L2CK5N 2 17 17 X 17 3 22 7 55

L2CK6N 2 10 10 X 10 3 30 8 52

L2CK7N 2 11 11 X 11 3 24 3 32

L2CK8N 2 13 13 X 13 4 24 4 35

L2CK9N 2 7 7 X 7 1 18 2 28

L3CK1N 3 5 5 X 5 X 5 0 7 0 7

L3CK2N 3 6 6 X 6 X 6 0 76 0 78

L3CK3N 3 11 11 X 11 X 11 1 12 1 12

L3CK4N 3 16 16 X 16 X 16 0 25 0 26

L3CK5N 3 17 17 X 17 X 17 0 25 0 26

L3CK6N 3 10 10 X 10 X 10 0 14 0 14

L3CK7N 3 11 11 X 11 X 11 0 15 0 16

L3CK8N 3 13 13 X 13 X 13 0 0 0 0

L3CK9N 3 7 7 X 7 X 7 0 13 0 13
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Table 2.4: This table presents the forecasting performance comparison using both daily and monthly statistics amongst the CK-Models that use one-trading-day-ahead input
variables to forecast the one-trading-day-ahead call option price scaled by the strike price(CN+1/KN+1). The one-day-ahead forecast errors of CN+1/KN+1 are used to compute
the Root Mean Square Error (RMSE). Column I identifies the models, and columns II, III, and IV describe the network architecture of the MLP and the LSTM models.
Forecasts are made for 1,326 trading days, and there are 64 months covered in the sample using the monthly data. When comparing all models simultaneously (i.e. including
the random walk model (δCKN )), column V reports the number of months out of the 64 months that each model has the smallest RMSE, while column VI reports the number
of days out of the 1,326 days each model has the smallest RMSE. Similarly, when the δCKN model was excluded in the comparison, column VII reports the number of months
out of the 64 months that each model has the smallest RMSE, while column VIII reports the number of days out of the 1,326 days each model has the smallest RMSE.

Incl. random walk Excl. random walk

(I) (II) (III) (IV) (V) (VI) (VII) (VIII)

Model No.
of
hidden
layers

No. of
hidden
nodes
per layer

Network
architecture

Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

δCKN - - - 0 183 - -

BSMCKN+1 - - - 0 0 0 0

HCKN+1 - - - 0 2 0 2

HJDCKN+1 - - - 0 0 0 0

FMLSCKN+1 - - - 0 0 0 0

M3CK1N+1 3 5 5 X 5 X 5 0 117 0 120

M3CK2N+1 3 6 6 X 6 X 6 27 291 27 308

M3CK3N+1 3 11 11 X 11 X 11 12 181 12 203

M3CK4N+1 3 16 16 X 16 X 16 18 120 18 143

M3CK5N+1 3 17 17 X 17 X 17 0 49 0 71

M3CK6N+1 3 10 10 X 10 X 10 3 79 3 106

M3CK7N+1 3 11 11 X 11 X 11 0 25 0 52

M3CK8N+1 3 13 13 X 13 X 13 2 140 2 165

M3CK9N+1 3 7 7 X 7 X 7 2 131 2 140

L3CK1N+1 3 5 5 X 5 X 5 0 0 0 0

L3CK2N+1 3 6 6 X 6 X 6 0 5 0 10

L3CK3N+1 3 11 11 X 11 X 11 0 1 0 2

L3CK4N+1 3 16 16 X 16 X 16 0 1 0 2

L3CK5N+1 3 17 17 X 17 X 17 0 2 0 2

L3CK6N+1 3 10 10 X 10 X 10 0 0 0 0

L3CK7N+1 3 11 11 X 11 X 11 0 1 0 2

L3CK8N+1 3 13 13 X 13 X 13 0 0 0 0

L3CK9N+1 3 7 7 X 7 X 7 0 0 0 0
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Table 2.5: This table presents the forecasting performance comparison using both daily and monthly statistics amongst the parametric (BSMCN , HCN , HJDCN , and
FMLSCN ) models, MLP M1CN -Models, LSTM L1CN -Models, MLP M2CN -Models, LSTM L2CN -Models, MLP M3CN -Models, and the LSTM L3CN -Models, MLP
M1CKN −Models−Rescaled, MLP M2CKN −Models−Rescaled, MLP M3CKN −Models−Rescaled, LSTM L1CKN −Models−Rescaled, LSTM L2CKN −Models−
Rescaled, and the LSTM L3CKN −Models − Rescaled. The forecast variable for all the models is the one-day-ahead call option price (CN+1). The models denoted by the
N subscript use lagged input variables for forecasting CN+1. The one-day-ahead forecast errors of CN+1 are used to compute the Root Mean Square Error (RMSE). Column I
identifies the models, and column II identifies whether the forecast variable of the model has been re-scaled to CN+1. Forecasts are made for 1,326 trading days, and there are
64 months covered in the sample using the monthly data. When comparing all models simultaneously (i.e. including the random walk model (δCN ), column III reports the
number of months out of the 64 months that each model has the smallest RMSE, while column IV reports the number of days out of the 1,326 days each model has the smallest
RMSE. Similarly, when the δCN model was excluded in the comparison, column V reports the number of months out of the 64 months that each model has the smallest RMSE,
while column VI reports the number of days out of the 1,326 days each model has the smallest RMSE.

Incl. random walk Excl. random walk

(I) (II) (III) (IV) (V) (VI)

Model Forecast
variable
re-scaled
to call
price

Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

δCN - 6 100 - -

BSMCN - 0 17 0 17

HCN - 1 9 1 9

HJDCN - 0 0 0 6

FMLSCN - 0 0 0 0

M1C1N - 0 0 0 0

M1C2N - 1 1 1 1

M1C3N - 1 13 1 17

M1C4N - 0 13 0 19

M1C5N - 2 4 2 5

M1C6N - 1 2 2 3

M1C7N - 1 7 1 8

M1C8N - 0 2 0 5

M1C9N - 0 2 0 2

M2C1N - 0 4 0 4

M2C2N - 0 8 0 9

M2C3N - 1 9 1 13

M2C4N - 1 14 1 19

M2C5N - 0 1 0 3

M2C6N - 0 2 1 5

M2C7N - 0 3 0 6

M2C8N - 0 0 0 1

M2C9N - 0 2 0 4

M3C1N - 0 5 0 8

M3C2N - 0 13 0 15

M3C3N - 3 23 3 28

M3C4N - 2 10 2 16

M3C5N - 0 1 0 4

M3C6N - 0 0 0 2

M3C7N - 3 7 3 15

M3C8N - 0 1 1 7

M3C9N - 0 7 1 13

L1C1N - 0 0 0 0

L1C2N - 0 4 0 4

L1C3N - 0 7 0 7

L1C4N - 0 17 0 17

L1C5N - 4 27 4 27

L1C6N - 0 10 0 10

L1C7N - 0 19 1 20

L1C8N - 1 16 1 17

L1C9N - 0 1 0 1

L2C1N - 0 0 0 0

L2C2N - 0 28 0 28

L2C3N - 0 19 0 19

L2C4N - 0 19 0 19

L2C5N - 1 25 1 29

L2C6N - 2 10 2 11

L2C7N - 3 12 3 13

L2C8N - 2 24 3 26

L2C9N - 0 26 0 27

L3C1N - 0 22 0 22

L3C2N - 0 57 0 57

L3C3N - 0 26 0 26

L3C4N - 0 45 0 45

L3C5N - 1 34 1 35

L3C6N - 1 17 1 17

L3C7N - 4 17 4 18

L3C8N - 9 40 9 41

L3C9N - 0 97 0 97

M1CK1N −Rescaled Yes 0 3 0 3

M1CK2N −Rescaled Yes 0 1 0 1

M1CK3N −Rescaled Yes 0 9 0 9

M1CK4N −Rescaled Yes 1 4 1 4

M1CK5N −Rescaled Yes 1 4 1 4

M1CK6N −Rescaled Yes 0 3 0 3

M1CK7N −Rescaled Yes 0 7 0 7

M1CK8N −Rescaled Yes 0 2 0 2

M1CK9N −Rescaled Yes 0 8 0 8

M2CK1N −Rescaled Yes 0 5 0 5

M2CK2N −Rescaled Yes 0 18 0 18

M2CK3N −Rescaled Yes 1 14 1 14

M2CK4N −Rescaled Yes 0 8 0 8

M2CK5N −Rescaled Yes 0 8 0 8

M2CK6N −Rescaled Yes 0 2 0 2

M2CK7N −Rescaled Yes 0 12 0 12

M2CK8N −Rescaled Yes 1 5 1 5

M2CK9N −Rescaled Yes 0 5 0 5

M3CK1N −Rescaled Yes 2 5 2 5

M3CK2N −Rescaled Yes 1 12 1 14

M3CK3N −Rescaled Yes 0 12 0 12

M3CK4N −Rescaled Yes 1 10 1 10

M3CK5N −Rescaled Yes 0 3 0 3

M3CK6N −Rescaled Yes 0 9 0 9

M3CK7N −Rescaled Yes 1 7 1 7

M3CK8N −Rescaled Yes 2 10 2 10

M3CK9N −Rescaled Yes 0 3 0 3

L1CK1N −Rescaled Yes 0 1 0 1

L1CK2N −Rescaled Yes 0 37 0 37

L1CK3N −Rescaled Yes 0 2 0 2

L1CK4N −Rescaled Yes 0 11 0 11

L1CK5N −Rescaled Yes 0 7 0 7

L1CK6N −Rescaled Yes 0 8 0 8

L1CK7N −Rescaled Yes 1 7 1 7

L1CK8N −Rescaled Yes 0 0 0 0

L1CK9N −Rescaled Yes 0 0 0 0

L2CK1N −Rescaled Yes 0 6 0 6

L2CK2N −Rescaled Yes 0 22 0 22

L2CK3N −Rescaled Yes 0 5 0 5

L2CK4N −Rescaled Yes 0 12 0 12

L2CK5N −Rescaled Yes 0 14 0 14

L2CK6N −Rescaled Yes 0 9 0 9

L2CK7N −Rescaled Yes 0 10 0 10

L2CK8N −Rescaled Yes 0 0 0 0

L2CK9N −Rescaled Yes 0 2 0 2

L3CK1N −Rescaled Yes 0 5 0 5

L3CK2N −Rescaled Yes 0 27 0 27

L3CK3N −Rescaled Yes 1 8 1 8

L3CK4N −Rescaled Yes 0 15 0 15

L3CK5N −Rescaled Yes 0 12 0 12

L3CK6N −Rescaled Yes 0 10 0 10

L3CK7N −Rescaled Yes 0 10 0 10

L3CK8N −Rescaled Yes 0 0 0 0

L3CK9N −Rescaled Yes 0 1 0 1
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2.4.3 Robustness tests for C-Models and CK-Models

2.4.3.1 The Diebold–Mariano(DM) Tests

In the DM tests, if the null can be rejected, a positive value (DM test statistic) suggests

the rejection may be due to the second model being the better forecast model. In contrast, a

negative value suggests the rejection may be due to the first model being the better forecast

model. The model pairs with statistically insignificant differences in their prediction accuracy

are reported in Table A.1.9. For the 1653 pairs created from models belonging to C-Models

that use lagged input variables, 1.69% of the pairs is insignificant for the 231 pairs created from

models belonging to C-Models that use one-trading-day-ahead input variables, 1.30% of the

pairs is insignificant, for the 1653 pairs created from models belonging to CK-Models that use

one-trading-day-ahead input variables, 0.91% of the pairs is insignificant, and for the 231 pairs

created from models belonging to CK-Models that use one-trading-day-ahead input variables,

0.87% of the pairs is insignificant. Apart from the pairs mentioned in Table A.1.9, all the other

pairs have significant forecasting power. Thus, the results are vastly statistically significant.

2.4.3.2 Bootstrap Tests

To further assess the validity of the forecasting performance results, we perform bootstrap tests

using the daily and monthly RMSEs and discuss them in Sections A.2.1 through A.2.5, and

present them in Tables A.2.1 to A.2.36 in Appendix A.2.23 In these tables, columns IX (lower

bound) and X (upper bound) present the results from the bootstrap (with replacement) using

monthly RMSEs at a 95% confidence level and shows the winning percentage out of 64 months

for each model (including the δCN model), and columns XI (lower bound) and XII (upper bound)

shows the 95% confidence intervals computed from bootstrapping of the daily RMSEs signifying

the winning percentage out of 1328 days for each model. We repeat the exercise of performing

the bootstrap by excluding the δCN model in the comparisons, report the corresponding results

in columns XV (lower bound), XVI (upper bound) for monthly RMSEs and columns XVII

(lower bound), XVIII (upper bound) for the daily RMSEs. We conclude that the results from

23These results are summarised in Tables A.2.1 to A.2.14 for C-Models that use lagged input
variables, Tables A.2.15 to A.2.18 for C-Models that use one-trading-day-ahead input variables,
Tables A.2.19 to A.2.32 for CK-Models that use lagged input variables, and Tables A.2.33 to
A.2.36 for CK-Models that use one-trading-day-ahead input variables.
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the bootstrap tests typically support the results discussed in Sections 2.4.1 and 2.4.2.

2.4.3.3 Pairwise Test

We complement the model comparisons in this chapter with pairwise comparisons by performing

a pairwise bootstrap comparison, which is computed using the respective pair’s daily RMSEs.

The pairwise bootstrap results for C-Models pairs using lagged input variables are presented in

Table 17, for the C-Models pairs using one-trading-day-ahead input variables are presented in

Table 18, for the CK-Models pairs using one-trading-day-ahead input variables are presented

in Table 19, and for the CK-Models pairs using one-trading-day-ahead input variables are

presented in Table 20 of the Electronic Appendix. We have summarised the results from all the

above-mentioned tables in Table A.1.10. The MLP class of models outperforms for over 68.1%,

the LSTM models for 24.2%, and parametric models a meagre 4.3% of the 1711 pairs created

from models belonging to C-Models that use lagged input variables. For the 253 pairs created

from models belonging to C-Models using one-trading-day-ahead input variables, the MLP class

of models outperforms for over 60.9%, the LSTM models for 17.4%, and parametric models for

17.8% of the pairs. Similar to the C-Models, for the 1711 pairs created from models belonging

to CK-Models that use lagged input variables, again the MLP class of models outperforms for,

over 69.4%, the LSTM models outperform for 25.5% and parametric models with the lowest

outperformance of 1.7%. Also, similar out-performance of the MLP class of models is evident

when we created 253 pairs from models belonging to CK-Models that use one-trading-day-

ahead input variables, where the MLP class of models outperforms for over 64%, the LSTM

models for 25.3%, and parametric models for 5.5% of the pairs. Even though the comparisons

performed in Sections 2.4.1 and 2.4.2 show that the LSTM models consistently outperform other

models, the pairwise bootstrap comparison cannot reveal conclusive evidence on outperforming

models.

2.4.3.4 Computational Effort

This exercise of daily forecasting of index option prices has shown that the models that forecast

option prices are able to capture the non-linear dynamics of option prices with a high degree of

accuracy but are computationally very intensive compared to models that forecast moneyness.

We have documented the number of epochs required for training models which are similar to C-

Models and CK-Models in Table A.1.15. The models belonging to the category of CK-Models
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were faster than their C-Models-based counterparts, with typically large RMSE (i.e. when we

compare the RMSEs from the rescaled forecasts of CK-Models with the RMSEs of forecasts of

call option prices from C-Models.

2.5 Conclusion

In this chapter, the daily forecasting performance of European-style index options prices has

been empirically evaluated by using parametric (Black–Scholes–Merton, Heston, Heston Jump

Diffusion, and the Finite Moment Log Stable), MLP, and LSTM networks. The MLP and LSTM

networks are trained using both lagged and one-trading-day-ahead input variables to forecast

the one-trading-day-ahead option price and moneyness. An alternative approach is investigated,

where MLP and LSTM networks are trained using lagged input variables to forecast moneyness

and then via re-scaling option prices. Several robustness tests have also been used to further

validate the analysis.

We find that the ANN tends to provide a considerable improvement in daily out-of-sample

forecast performance of options prices and moneyness compared to the parametric models. More

specifically, LSTM models using lagged input variables to forecast the one trading-day-ahead

option price outperform the parametric and MLP models. However, the MLP models outperform

the parametric and LSTM models when using one-trading-day ahead input variables for daily

forecasts of option prices. Within the parametric models, the Heston Jump Diffusion model has

the lowest RMSEs among the other three parametric models. This result holds for both types of

inputs, namely lagged and one-trading-day ahead input variables. Moreover, when the models

that used lagged input variables to forecast moneyness are rescaled to option prices, the rescaled

models fare poorly to the models using lagged input variables to forecast option prices. Also,

the LSTM models tend to outperform other parametric and MLP models. The robustness tests

further support these results.

Furthermore, from all of these comparisons, it is evident that neither the parametric models nor

the non-parametric models (MLP and LSTM models) could improve on a simple random walk

forecasting model. This suggests that there may be some innate randomness that cannot be

effectively forecasted by either parametric or non-parametric models. Though the out-of-sample

performance of parametric models are not necessarily dominated, at least for forecasting, they

have an important role in developing inputs for the Deep Learning ANN models (MLPs and

LSTMs).
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The focus of this study is to perform a comprehensive assessment of the daily forecast of option

prices. Even though it is beyond the purpose of this thesis, this ANN methodology can be

extended for longer forecast windows. That exercise would involve recursively forecasting one-

trading-day-ahead options, using multiple times a one-step model, where the forecast for the

prior time step is used as an input for making a forecast on the following time step. Thereby, this

multi-step forecast approach would incur higher forecasting errors compared to the one-trading-

day forecast. One of the concerns of the approach used in this chapter is that the forecasting

performance comparison between models is biased by model and error uncertainty. To improve

this in Chapter 5, we also assess the forecasting performance of the models considered in this

study based on an averaging error approach as proposed by Gençay and Qi (2001).
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Chapter 3

Daily Forecasting of Delta for S&P

500 Index Options Using Deep

Learning Models

3.1 Introduction

Risk management practices for options positions are critically important, with delta hedges

being the most conventional yet fundamental type of hedges. Hedging short-term price risk

for options positions requires dynamic hedges, which may not always be effective, especially

during periods of high volatility. Parametric models, such as the Black and Scholes (1973)

(BS) option pricing model, and the stochastic volatility models of Heston (1993), Bakshi et al.

(1997a), Heston (1993), and Black and Scholes (1973) derive the delta hedge ratio based on the

distributional assumptions of the underlying process and have been providing effective hedges

(Andreou et al. (2010), Buehler et al. (2019)). However, Artificial Neural Networks (ANNs)

provide an alternative approach that does not impose a rigid model structure; instead, they are

based on universal function approximators (Gybenko et al. (1989), Hornik et al. (1990), Buehler

et al. (2019), Hornik et al. (1989)). Most studies derive the hedge ratios from an ANN fitted to

options prices.1 Chen and Sutcliffe (2012), Carverhill and Cheuk (2003), Buehler et al. (2019),

and Ruf and Wang (2021) used ANNs to hedge options by directly training the ANN on hedge

ratios rather than prices. An ongoing direction of this research is to extend this literature to

1Refer to the list of papers in Table 1.2
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daily S&P 500 index call options and to train the ANN models with additional input variables

to better capture the relationships between the hedge ratios and the underlying asset and to

potentially produce improved hedging performance. Furthermore, most of the existing studies

are limited in evaluating hedge ratios and assessing hedging performance using single hidden

layer ANN, including Gençay and Qi (2001), Andreou et al. (2008), Andreou et al. (2010), and

Ruf and Wang (2020).

This chapter investigates the forecasting performance of deltas2 for European-style index op-

tions using triple hidden layer Deep Learning ANN models, in particular, the MLP and LSTM

networks. These multi-layer ANN models have the potential to achieve improved forecasting,

pricing, and hedging performance compared to single hidden layer ANN (Hutchinson et al.

(1994), Gençay and Qi (2001), Garcia and Gençay (2000), Andreou et al. (2008), Thomaidis

et al. (2006a)).3 We assess the empirical forecasting performance of European-style index op-

tions delta of parametric models and ANN models using daily data on S&P 500 index option

prices from September 2012 to December 2017. Similarly to the pricing forecasting analysis in

Chapter 2, we have used the following four parametric models, Black-Scholes-Merton, Heston,

Heston Jump Diffusion, and the Finite Moment Log Stable, and the ANN models are trained

on various lagged and one trading-day-ahead input variables. This study focuses on (only) one-

trading-day-ahead forecasts aiming to provide an assessment suitable for short-term dynamic

hedging relevant to traders who re-balance their portfolios on a daily basis. In practice, dynamic

delta hedging requires daily re-balancing of the hedged portfolio.4

We obtain daily forecasts of European-style index options delta in two different ways. First, the

delta is directly evaluated using ANN models to forecast the one trading-day-ahead delta. For

this direct forecasting methodology of the delta, the ANN models may use lagged input variables

and also one-trading-day-ahead input variables. The lagged input variables specification allows

to incorporate information from longer horizons of input variables and consists of one of the

innovations of the current study. The one-trading-day-ahead input variables specifications have

2For this paper, the focus is only on delta hedge ratio as we assess only short-term effects
(daily forecasting). These ANN approaches can be extended to consider other greeks letters,
e.g. gamma, but these approaches require forecasting for longer horizons, which are beyond the
purpose of this thesis.

3Note that for this exercise, we only consider triple layer ANN (MLP and LSTM) models,
because previously in Chapter 2, we saw the triple hidden layer ANN models had broadly out-
performed the single and double hidden layers ANN models.

4These methodologies can be extended to longer forecast windows, but it is beyond the
purpose of this thesis.
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been widely used in other studies.5 Thus, we compare seven MLP models and seven LSTM

models having lagged input variables with four parametric models and seven MLP models and

seven LSTM models having one-trading-day-ahead input variables with four parametric models.

Second, we use the ANN models to forecast the one trading-day-ahead option price, from which

the delta is then analytically derived. For this indirect forecasting methodology of deltas, the

ANN models are trained on one-trading-day-ahead input variables only. Using lagged input

variables to obtain option prices to analytically derive the delta is not feasible because calculating

the delta analytically would require the one-trading-day-ahead index price. Therefore, we assess

seven MLP models and seven LSTM models having one-trading-day-ahead input variables with

four parametric models to forecast the one-trading-day-ahead call option price, from which the

delta is then analytically derived.

Lastly, we (re-)assess the daily forecasting performance of the deltas based on their ability to

forecast the replicating portfolio value. The replicating portfolio can be constructed by selling

one call option at time 0 and dynamically adjusting the number of stocks and bonds throughout

the option’s life. Thus, at expiration, the combined value of the positions of stocks and bonds

should exactly match the value of the call under the assumption that the adjustments can be

made continuously and at zero cost. The difference in terminal values between the call, stock,

and bond positions is the measure of the option-pricing model’s accuracy.6 Robustness tests

based on bounds assessments and DM tests to assess the significance of pairwise comparisons

between the corresponding ANN and parametric models have also been performed.

We find that forecasting one trading-day-ahead delta using parametric models, specifically, the

BSM model outperforms other parametric models and ANN models (see also Andreou et al.

(2010) and Ruf and Wang (2021) for similar conclusions). The ANN models, independent of

the inputs used to be trained (lagged or one-trading-day-ahead input variables), have shown no

significant improvement in the out-of-sample forecasting performance of these networks. Hence,

deep learning models do not improve the forecasting performance of deltas or inferring the repli-

cating portfolio value compared to the parametric models. Indeed, the BSM model typically

displays the lowest RMSEs,7 especially when the comparison is limited to only parametric mod-

5Refer to the list of papers in Table 1.2
6Practically, continuous hedging is not possible, and hence the process of delta hedging always

results in tracking error.
7Some works from Table 1.2 have presented their results in an evaluation measure other than

RMSE. However, since our study assesses the daily forecast of the hedge ratio and the associated
replicating portfolio value, we use RMSE as a measure, as reporting in RMSE provides insight
in terms of actual dollar value.
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els. We also find that both forecasting assessments –forecasting of the one trading-day-ahead

delta and forecasting the replicating portfolio value –provide consistent results in terms of the

outperforming models. The results are also robust based on a bound assessment of performance,

while the DM tests show that out of the 918 model pairs, only 1.95% of the pairs have insignif-

icant forecasting power. However, when the MLP and LSTM networks are used to predict the

one-trading-day-ahead delta indirectly by training the ANN models to predict prices and then

analytically infer the one-trading-day-ahead delta, the LSTM models produce forecasts with the

lower RMSE’s compared the four parametric and the MLP models.

This study makes several key contributions to the literature. Many previous studies have covered

the hedging performance of the Black-Scholes-Merton, Heston, Heston Jump Diffusion and the

Multi-Layer Perceptron,8 but this is the first study to assess the performance of the Finite

Moment Log Stable and Long Short-Term Memory Networks. There is empirical evidence

(Masini et al. (2021)) that these ANNs, except for RNNs, deal with the vanishing or exploding

gradient and improve time series forecasting.

Secondly, we introduce lagged input variables to tackle look ahead bias while using a test set for

the parametric, MLP, and LSTM models. Much of the associated literature uses input variables,

for example, the end-of-day index close prices belonging to the test set to forecast the end-of-

day delta or the other associated greeks. Then, the index price is required to compute that

it is only available at the close of that trading day, thus inducing look-ahead bias. Except for

a few studies (Carverhill and Cheuk (2003), Chen and Sutcliffe (2012), Ruf and Wang (2021),

and Buehler et al. (2019)), previous literature9 has derived the hedge ratios analytically from

an ANN fitted to option prices. Thus, another contribution of the study is the assessment of

hedging performance using hedge ratios, which are computed directly from the ANN, as well as

hedge ratios, which are computed analytically from an ANN fitted to option prices.

Lastly, the economic significance of option pricing models can be assessed by the hedging perfor-

mance of various replicating portfolios, which can be designed to delta-hedge an option position

(Hutchinson et al. (1994)). Amilon (2003) proposed a different exercise for evaluating a pricing

model’s performance by trading in mispriced options, where the under-priced according to the

8For example, Hutchinson et al. (1994) were the first to measure the hedging performance of
ANN models by introducing three ANN models, the Radial-Basis Function network, the MLP
network, and the Projection Pursuit network, on the S&P Futures 500 options. Herrmann and
Narr (1997) followed Hutchinson et al. (1994) by training an ANN model for hedging DAX
options.

9Refer to the list of papers in Table 1.2.
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respective pricing model is bought and is then delta hedged until the overpriced option become

under-priced, or if the under-priced option become overpriced, or the option expires. In doing

so, a pricing model can identify mispriced options, and the terminal value of the position should

be positive. Similarly, Andreou et al. (2008) implemented a trading strategy for delta hedging,

whereby they create portfolios by buying (selling) options that are undervalued (overvalued) rel-

ative to the option price from the respective pricing model. Out-of-sample pricing performance

does not always prove to be better at delta hedging, according to Hutchinson et al. (1994),

Garcia and Gençay (2000) and Schittenkopf and Dorffner (2001). Ruf and Wang (2021) com-

pared linear regressions with their newly designed neural network known as ‘HedgeNet’, which

is designed for the hedging of options that was trained to minimise the hedging error instead of

the pricing error. This approach reduces the mean squared hedging error of the Black–Scholes

benchmark significantly; however, similar results were also obtained using simple linear regres-

sions. Thus, to investigate the economic significance of the option pricing models, we consider a

replicated portfolio constructed similar to Ruf and Wang (2021) and further assess the hedging

performance via the forecasting performance of the replicating portfolio.

This chapter is structured as follows. Section 3.2 explains the source of the data set, the filters

used to refine the data set, the summary statistics of the data set, and the inputs used. Section

3.3 presents the calibration procedures used in the BS, Heston, SVJ, and FMLS model and

the data fitting (network parameters, division of data set, the optimisation and generalisation

procedures used to improve the accuracy of ANN (MLP and LSTM) models). Section 3.4

compares the forecasting performance of deltas from the proposed deep learning models and the

parametric models and includes the findings of several robustness tests. The chapter concludes

with Section 3.5.

3.2 Data and Methodology

3.2.1 Optionmetrics and Data Filtering

This study uses the same Optionmetrics data set as mentioned in Section 2.3.1. In addition to

the filtering steps mentioned in Section 2.3.2, we also apply an additional filter as the previous

trading day’s call price is used to calculate the lagged empirical delta, which is an input to the

neural networks, and as a result, we remove those observations having no previous day option

price (16,716 observations), and thereby the total number of observations on call options used
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in this study is 547,011.

3.2.2 Summary Statistics

Appendix B.1.12 provides summary statistics for the call option delta used in this study. The

monthly summary statistics show that the total number of daily option prices included each

month varies from 1, 975 in September 2012 to 8, 281 in December 2017. The average delta

has been at around 0.406 from 2012 to 2017. Appendix B.1.13 provides summary statistics for

the call option prices used in this study. The monthly average call price varies from $76.89 to

$156.28, so we see that these average prices have doubled from 2012 to 2017. In contrast, the

average bid-ask spread, which varies from $1.46 in September 2012 to $1.81 in December 2017,

has increased by a smaller percentage. The CBOE reports that the annual average daily volume

has increased from 698, 000 SPX contracts in 2012 to 1, 163, 000 SPX contracts in 2017.

3.2.3 Forecasting Errors

Using the methodology to decompose the forecasting errors discussed in Section 2.3.4, the errors

in forecasting the delta (δCN+1/δSN+1) on day (N + 1) can be defined as:

δCN+1
δSN+1

= h
(
XN ; φ̂N+1

)
+ uXN+1 + uφN+1 + ugN+1 + urN+1 (3.1)

= h
(
XN ; φ̂N+1

)
+ εN+1 (3.2)

where uXN+1 is the error caused by using XN rather than XN+1, and is interpreted as forecasting

using observations from the previous trading day, rather than the trading day that the delta is

observed. In the analysis below, we consider the forecast errors as defined by εN+1 so that the

forecasts are made for the trading day (N + 1) based on information available at the end of the

trading day N .

3.2.4 Information Sets (for Computing the Delta)

In this section, we discuss the information sets required for each model that falls under the

category of H−Models and CH−Models for calibration and estimation of parameters and for

forecasting the one-trading-day-ahead delta.
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3.2.4.1 Empirical Delta

The empirical delta is computed using

δEMP
N+1 = CN+1 − CN

SN+1 − SN
(3.3)

where, CN is the call price and SN is the index price of the S&P 500 Index.

3.2.4.2 H −Models: Parametric Models (Black–Scholes–Merton,

Heston, Heston Jump Diffusion, and Finite Moment Log Stable Model)

The focus of this chapter is on the delta forecasting performance of parametric option pricing

models relative to Deep Learning ANNmodels (MLP and LSTM). Here we define the information

sets required for each model for calibration or estimation of parameters and for forecasting the

hedge ratio (delta). We implement a single forecasting horizon, that is, one-trading-day-ahead

forecasts of the delta. We use the information available on day t = N to forecast the delta for

day t = N + 1, and these models are denoted by an N subscript. Similarly, models that we

use the information available on day t = N + 1 to forecast the delta for day t = N + 1 are

denoted by the N + 1 subscript. The parametric models are calibrated daily, based only on the

data available for day N , whereas the MLP models use an expanding window, using data for

t = 1, ..., N for estimation and forecast for day t = N + 1 and the LSTM models use a fixed-

sliding window, using data for t = 1, ..., N for estimation and forecast for day t = N + 1. Thus,

the parametric models follow the usual convention of daily calibrations, whereas the expanding

window allows the MLP and the fixed-sliding window for the LSTM to cover a wide range of

values for its input variables. In what follows, we use φ to represent a generic parameter scalar

or vector for each model.

For the parametric models that fall under the H −Models category, on day N the information

used to calibrate the model parameters for each option is (CN , SN ,KN , TN ,

RN , QN ;φModel
N ), and we define the in-sample error in forecasting the delta, εModelN

N , for each

option under each model as:

εModelN
N = δEMP

N − δModel
(
SN ,KN , TN , RN , QN ;φModel

N

)
(3.4)

where, φModel
N and δModel are for each model as follows:
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• Black–Scholes–Merton model: φModel
N = φBSMHC

N = (σCALIBCN ), and δModel(.) is the delta

from the Black–Scholes–Merton model.

• Heston model: φModel
N = (σCALIBC

2

N ; φHHC

N ), where σCALIBC
2

N is the square of σCALIBCN

which is used as the initial value for the long-term variance parameter and φHH
C

N =

HHParamsCN = (κHHC

N , σHH
C

N , θHH
C

N , ρHH
C

N , V HHC

0,N ), and δModel(.) is the delta from the

Heston model.

• Heston Jump Diffusion model: φModel
N = (σCALIBC

2

N ; φHJDHC

N ), where

φHJDH
C

N =HJDHParamsCN = (κHJDHC

N , σHJDH
C

N , θHJDH
C

N , ρHJDH
C

N , V HJDHC

0,N , σHJDH
C

N ,

µHJDH
C

N , λHJDH
C

N ), and δModel(.) is the delta from the Heston Jump Diffusion model.

• Finite Moment Log Stable model: φModel
N = φFMLSHC

N = (αFMLSHC

N , σFMLSHC

N ), and

δModel(.) is the delta from the Finite Moment Log Stable model.

However, the models that have the one-day-ahead delta computed from the call prices (these

models are suffixed with CHN+1) are computed as:

CModel
N+1 = δModel

(
SN+1,KN+1, TN+1, RN+1, QN+1;φModel

N

)
(3.5)

δModel
N+1 =

CModel
N+1 − CModel

N

SN+1 − SN
(3.6)

We calibrate each model for each day (over historical empirical call option prices) by choosing

φModel
N to minimise the mean square error. In this case, we retain the fitted option prices and

the calibrated parameters for each respective model are as follows:

• σCALIB
C

N for the Black–Scholes–Merton model,

• HParamsHC
N for the Heston model,

• HJDParamsHC
N for the Heston Jump Diffusion model,

• αFMLSHC

N , and σFMLSHC

N for the Finite Moment Log Stable model,

We compute the one-trading-day-ahead forecast errors, εModelN
N+1 , for each of the respective models

as:

εModelN
N+1 = δEMP

N+1 − δModel
(
SN ,KN , TN , RN , QN ;φModel

N

)
. (3.7)
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Here we evaluate the delta at the index value on the previous trading day, using the known

exercise price and time to maturity, as well as the previous day’s interest rate, dividend yield, and

respective calibrated parameters for each of the respective models. Finally, for the parametric

models that fall under the H−Models category that use one-trading-day-ahead input variables

for forecasting the one-trading-day-ahead ∆N+1, we compute the one-trading-day-ahead forecast

errors for these models as:

ε
ModelN+1
N+1 = δEMP

N+1 − δModel
(
SN+1,KN+1, TN+1, RN+1, QN+1;φModel

N

)
. (3.8)

Finally, using the δN+1 computed in Eq. (3.6), the one-trading-day-ahead forecast errors for

those models (models that are suffixed with CHN+1) are:

εModel
N+1 = δEMP

N+1 − δModel
N+1 (3.9)

We report the root mean square error of these forecast errors.

3.2.4.3 Deep Learning Neural Network Models

A total of 21 MLPs and 21 LSTMs were estimated and reported in this study to compare the

one trading ahead delta. Amongst the 21 MLPs, we analysed the performance of 7 MLPs that

use the information available on day t = N to forecast option delta for day t = N+1 (referred to

as MLP M3HN -Models), 7 MLPs that use use the information available (except for calibrated

model parameters) on day t = N + 1 to forecast option delta for day t = N + 1 (referred to

as MLP M3HN+1-Models), and the other 7 MLPs that use the information available (except

for calibrated model parameters) on day t = N + 1 to forecast option prices for day t = N + 1

(referred to as MLP M3CHN+1-Models), and the delta for these is computed as,

δ
M3CHN+1-Models
N+1 =

C
M3CHN+1-Models
N+1 − CM3CHN+1-Models

N

SN+1 − SN
(3.10)

Similarly, the exercise conducted for MLP M3HN -Models is replicated for the LSTM L3HN -

Models and MLP M3HN+1-Models for the LSTM L3HN+1-Models.

The forecast variable (δCN+1/δSN+1), the target variable (δCN/δSN ) used while training,

and the inputs used to forecast δCN+1/δSN+1 are the same for the MLP M3HN -Models and

LSTM L3HN -Models. Similarly, the forecast variable (δCN+1/δSN+1), the target variable

(δCN/δSN ) used while training, and the inputs used to forecast δCN+1/δSN+1 are the same for
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the MLP M3HN+1-Models and LSTM L3HN+1-Models. Whereas, the seven MLP M3CHN+1-

Models, LSTM L3CHN+1-Models differ in the forecast variable (CN+1), the target variable

(CN ), but the input variable to forecast CN+1, is similar and inline with the M3HN+1-Models

and L3HN+1-Models. The input variables for the MLP M3HN -Models, LSTM L3HN -Models,

MLP M3HN+1-Models, LSTM L3HN+1-Models, MLP M3CHN+1-Models, and the LSTM

L3CHN+1-Models are mentioned in Table B.1.1. All the seven models under each category (i.e.

MLP M3HN -Models, LSTM L3HN -Models, MLP M3HN+1-Models, LSTM L3HN+1-Models,

MLP M3CHN+1-Models, and the LSTM L3CHN+1-Models) are differentiated by the choice of

input variables and the network architecture. As in the parametric models, each model here has

a set of input variables and a set of parameters, φ, called biases and weights. We compute the

one-trading-day-ahead forecast errors under the respective models as follows:

1. MLP M3HN -Models (M3H1N to M3H7N):

εM3HN−Models
N+1 = δEMP

N+1 − δ
(
XN ;φM3HN−Models

)
(3.11)

2. LSTM L3HN -Models (L3H1N to L3H7N):

εL3HN−Models
N+1 = δEMP

N+1 − δ
(
XN ;φL3HN−Models

)
(3.12)

3. MLP M3HN+1-Models (M3H1N+1 to M3H7N+1):

ε
M3HN+1−Models
N+1 = δEMP

N+1 − δ
(
XN+1;φM3HN+1−Models

)
(3.13)

4. LSTM L3HN+1-Models (L3H1N+1 to L3H7N+1):

ε
L3HN+1−Models
N+1 = δEMP

N+1 − δ
(
XN+1;φL3HN+1−Models

)
(3.14)

5. MLP M3CHN+1-Models (M3CH1N+1 to M3CH7N+1):

ε
M3CHN+1−Models
N+1 = δEMP

N+1 − δ
(
XN+1;φM3CHN+1−Models

)
(3.15)

6. LSTM L3CHN+1-Models (L3CH1N+1 to L3CH7N+1):

ε
L3CHN+1−Models
N+1 = δEMP

N+1 − δ
(
XN+1;φL3CHN+1−Models

)
(3.16)

where f(.) represents the delta obtained from a Deep Learning ANN model. We estimate this

model each day (over historical empirical call option prices) by choosing φ to minimise the mean

square error. We report the root mean square error of these forecast errors. Thus, the models
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above are defined by identifying the inputs of each model XN for the: MLP M3HN -Models

and LSTM L3HN -Models, and XN+1 for the: MLP M3HN+1-Models, LSTM L3HN+1-Models,

MLP M3CHN+1-Models, and the LSTM L3CHN+1-Models.

Unlike the parametric models, the MLPModels (M3HN -Models,M3HN+1-Models, andM3CHN+1-

Models) are estimated with an expanding window of observations, whereas, the LSTM Models

(L3HN -Models, L3HN+1-Models, and L3CHN+1-Models) are estimated with a fixed-sliding

window of observations, but the forecast horizon remains one trading day for all the models, so

we compute the one-trading-day-ahead forecasts and report the root mean square error of the

forecast errors. We denote the daily changes in the call and index prices as δCN = Ct+1 − CN

and δSN = St+1 − SN , respectively. The empirical delta from the observed call prices CN and

observed index prices SN is defined as the quotient δCN
δSN

. The empirical delta as defined above

are the target variable in the non-parametric models: M3HN -Models, L3HN -Models,M3HN+1-

Models, and L3HN+1-Models, whereas the target variable for the M3CHN+1-Models and the

L3CHN+1-Models is the CN . We have classified the non-parametric models (M3HN -Models,

L3HN -Models, M3HN+1-Models, L3HN+1-Models, M3CHN+1-Models and L3CHN+1-Models)

into seven categories:

1. Series 1: M3H1N , L3H1N , M3H1N+1, L3H1N+1, M3CH1N+1, and L3CH1N+1 models

2. Series 2: M3H2N , L3H2N , M3H2N+1, L3H2N+1, M3CH2N+1, and L3CH2N+1 models

3. Series 3: M3H3N , L3H3N , M3H3N+1, L3H3N+1, M3CH3N+1, and L3CH3N+1 models

4. Series 4: M3H4N , L3H4N , M3H4N+1, L3H4N+1, M3CH4N+1, and L3CH4N+1 models

5. Series 5: M3H5N , L3H5N , M3H5N+1, L3H5N+1, M3CH5N+1, and L3CH5N+1 models

6. Series 6: M3H6N , L3H6N , M3H6N+1, L3H6N+1, M3CH6N+1, and L3CH6N+1 models

7. Series 7: M3H7N , L3H7N , M3H7N+1, L3H7N+1, M3CH7N+1, and L3CH7N+1 models

The Series 1 set of models uses the inputs required to calibrate the Black–Scholes–Merton

model. The input variables are extended further by the Series 2 set of models by adding

the lagged empirical delta. The Series 3 set of models extends the input variables of Series

1 models by adding the Black–Scholes–Merton delta. The Series 4 set of models extends the

input variables of Series 1 models by adding the Black–Scholes–Merton greeks. The Series 5 set

of models reduces the input variables of Series 1 models by removing the Black–Scholes–Merton

implied volatility and extends the input variables of Series 1 models by adding the calibrated
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parameters and the delta from the Heston model. The Series 6 set of models reduces the

input variables of Series 1 models by removing the Black–Scholes–Merton implied volatility and

extends the input variables of the Series 1 set of models by adding the calibrated parameters

and the delta from the Heston Jump Diffusion model. The Series 7 set of models reduces the

input variables of Series 1 models by removing the Black–Scholes–Merton implied volatility and

extends the input variables of Series 1 models by adding the calibrated parameters and the delta

from the Finite Moment Log Stable model.

3.2.5 Information Sets (for Computing the Replicating Portfolio Value)

In the second half of this paper, we focus on comparing the value of the replicated portfolio

using the forecasted hedge ratio from the models discussed in Section 3.2.4. Here we define the

information sets required for each model for forecasting the value of the replicated portfolio. We

implement a single forecasting horizon, that is one-trading-day-ahead forecasts of the replicated

portfolio value. We use the information available on day t = N to forecast the replicated

portfolio value for day t = N + 1, and these models are denoted by an N subscript. Similarly,

models that we use the information available on day t = N+1 to forecast the replicated portfolio

value for day t = N + 1 are denoted by the N + 1 subscript.

3.2.5.1 Empirical Replicating Portfolio Value

The tracking/hedging error in the empirical replicating portfolio at time N, is computed as,

V EMP
N = δEMP

N SN + (1 +RNδt)
(
CN−1 − δEMP

N SN−1
)
− CN (3.17)

where, on day N , CN is observed call price of the S&P 500 Index, SN is the S&P500 Index price,

δt = 1, RN is the overnight rate, and δEMP
N is the empirical delta, which is computed using the

Eq. (3.3). Similarly, we compute the error of the replicating portfolio value for all the models

covered in this study.
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3.3 Fitting and Calibrating the Models

3.3.1 Performance Criterion

The hedging performance and the replicating portfolio value performance of each model are

measured using Root Mean Square Error (RMSE) in the test sample, that is, in out-of-sample

prediction. For each day, as we cycle through the observations, we retain the hedging and

replicating portfolio value errors for each model. Below, we use these errors to compute the

RMSE on a daily, monthly and annual basis. Defining the hedging and the replicating portfolio

value errors as εj = yj − ŷj , where yj is the target value and ŷj is its predicted value, the RMSE

for a series of J pricing errors is calculated using Eq. (2.53). We should choose the model with

the lowest out-of-sample RMSE.

3.3.2 Calibration of Parametric Option Pricing Models

A similar non-linear optimisation exercise mentioned in Section 2.3.7.2 is performed in this

chapter and is implemented differently and separately for parametric models under the H-

Models (BSMHN , HHN , HJDHN , and FMLSHN models) and for each model under CH-

Models (BSMCHN+1, HCHN+1, HJDCHN+1, and the FMLSCHN+1 models). For the

Black–Scholes–Merton models, the calibrated parameter, σCALIBCN (used by the BSMHN model,

BSMHN+1 model, and the BSMCHN+1 model) for day N , are retained for use in computing

the greeks, and as an input to other parametric and various ANN models. For the Heston

model, calibrated parameters, HParamsCN (used by the HHN model, the HHN+1 model, and

the HCHN+1 model) for day N , are retained as inputs for some ANN models. For the Heston

Jump Diffusion model, calibrated parameters, HJDParamsCN (used by the HJDHN model,

the HJDHN+1 model, and the HJDCHN+1 model) for day N , are retained as inputs for some

ANN models.

Similarly, for the Finite Moment Log Stable model, calibrated parameters, FMLSParamsCN

(used by the FMLSHN model, the FMLSHN+1 model, and the FMLSCHN+1 model) for day

N , are retained as inputs for some ANN models. The parametric models under the H-Models

category (having a forecast variable: HN+1) are calibrated separately to the CH-Models (having

a forecast variable: CN+1) for each of the 1,326 trading days in the sample.
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3.3.3 Estimating Deep Learning Neural Network Models

3.3.3.1 Network Parameters

The various network configurations to forecast the delta for day t = N + 1 are listed in Part

I of Table B.1.1 for models using the information available on day t = N , in Part II of Table

B.1.1 for models using the information available (except for calibrated model parameters) on

day t = N + 1, and in Part III of Table B.1.1 for models using the information available on day

t = N + 1 to forecast the CN+1 (from which the delta is later analytically derived using Eq.

(3.3)). The MLP (MHN -Models, MHN+1-Models, MCHN+1-Models) and the LSTM (LHN -

Models, LHN+1-Models, LCHN+1-Models) follows the network design of the MLP and LSTM

models mentioned in Section 2.3.7.3.1. The only difference in the set of models considered in this

chapter is that the MLP MHN -Models, MHN+1-Models, LSTM LHN -Models, and LHN+1-

Models use a simple linear transfer function, which returns the predicted delta while the MLP

MCHN+1-Models and the LSTM LCHN+1-Models returns the predicted call option price.

3.3.3.2 Data Division

Recall that the data set covers the period from September 2012 to December 2017 and includes

1,326 trading days. The MLP and LSTM methodologies require data for a training set, a val-

idation set, and a test set. The training set is used to estimate the parameters, the validation

set is used to evaluate under-fitting and over-fitting, and the test set is used for out-of-sample

prediction. In this study, for the MLP M3HN -Models, MLP M3HN+1-Models, and the MLP

M3CHN+1-Models, we utilise an expanding window (in terms of the number of trading days)

for the training and validation set (of one trading day) and a fixed size (of one trading day)

for the test set, and for the LSTM L3HN -Models, LSTM L3HN+1-Models, and the LSTM

L3CHN+1-Models, we utilise a fixed-sliding window (of 10 trading days) for training and vali-

dation set (of one trading day) and a fixed test set (of one trading day). Thus, the training and

validation set for both MLP (M3HN -Models, M3HN+1-Models, and the M3CHN+1-Models)

and LSTM (L3HN -Models, L3HN+1-Models, and the L3CHN+1-Models) models comprise of

the trading day including (N ) and the test set trading day (N + 1). This is repeated for the

trading days N = 11, 12,..., 1,326. For the MLP models, for each iteration, the combined set of

training and validation of observations temporarily consists of trading days from 1 to N but is

further randomly split into 80%: 20% as the training set and the validation set. The pictorial

representation of the MLP’s data division is presented in Figure 2.4. For the LSTM models,

98



for each iteration, the combined set of training and validation of observations, which consists

of trading days from 1 to N , stays fixed throughout each iteration and is not randomly split,

which is the case with MLPs. The expanding window for the MLP models is chosen over a

fixed-sliding window for the training and validation set so that the MLP be exposed to a large

variable and parameter space. The fixed-sliding window is chosen for the LSTM models because

as the training size keeps expanding, it becomes computationally intensive for the LSTM. The

test set for the MLP and LSTM models is fixed at one trading day as the focus of this study is

on one-trading-day-ahead prediction. The pictorial representation of the LSTMs data division

is presented in Figure 2.5 and is similar for the LSTM (L3HN -Models, L3HN+1-Models, and

the L3CHN+1-Models) models discussed in this chapter.

3.3.3.3 Training the Neural Network Models

The procedure to train the neural network in this chapter is similar to the procedure followed

in Section 2.3.7.3.3.

3.4 Empirical Results

In this section, we evaluate the out-of-sample forecasting performance of the various parametric

and ANN models in predicting the one-trading-day-ahead delta and associated replicating port-

folio value. Accordingly, the out-of-sample forecasting performance of H-Models, CH-Models,

HV -Models, and CHV -Models is analysed, together with several robustness tests.

3.4.1 H−Models: Results

We consider the following set of H-Models for forecasting one-trading-day-ahead delta (∆N+1).

• H-Models using lagged input variables:

– Parametric models:

∗ Black–Scholes–Merton (BSMHN ) model

∗ Heston (HHN ) model

∗ Heston Jump Diffusion (HJDHN ) model
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∗ Finite Moment Log Stable (FMLSHN ) model

– MLP models:

∗ Triple hidden layer MLP M3HN -Models (M3H1N to M3H7N )

– LSTM models:

∗ Triple hidden layer LSTM L3HN -Models (L3H1N to L3H7N )

• H-Models using one-trading-day-ahead input variables to forecast the delta (∆N+1) for

the next trading day:

– Parametric models:

∗ Black–Scholes–Merton (BSMHN+1) model

∗ Heston (HHN+1) model

∗ Heston Jump Diffusion (HJDHN+1) model

∗ Finite Moment Log Stable (FMLSHN+1) model

– MLP models:

∗ Triple hidden layer MLP M3HN+1-Models (M3H1N+1 to M3H7N+1)

– LSTM models:

∗ Triple hidden layer LSTM L3HN+1-Models (L3H1N+1 to L3H7N+1)

3.4.1.1 Forecasting performance of H-Models with lagged input variables

Table 3.1 presents the relative out-of-sample forecasting performance amongst the H-Models

that use lagged input variables to forecast the one-trading-day-ahead delta (∆N+1).10 Amongst

all of the models, columns V and VI record the number of months and days, respectively, that

each model has the lowest RMSE.11 For parametric models, the ∆N+1 is calculated using each

model’s characteristic function, while the MLP and LSTM models forecast the ∆N+1 directly.

There are two key findings from these investigations. Firstly, the parametric BSMHN model

has the lowest RMSE for the most days compared to other models (166 days out of 1,326 days,

10These model include the parametric models (BSMHN , HHN , HJDHN , and FMLSHN ),
the triple hidden layer MLP models (M3HN -Models), and triple hidden layer LSTM models
(L3HN -Models), as explained in section above.

11The performance metric is the RMSE of the one-trading-day-ahead forecast errors of ∆N+1,
which is computed for each model utilising all of the errors in each day or each month.
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12.5%). When we compute the monthly RMSE from daily forecasts, similar performance is

observed, where the BSMHN model outperforms for 19 months out of 64 months. Second, out

of 1,326 forecasting days, the MLP models collectively outperform the highest number of days,

for 685 days (52%), while the parametric models could collectively out-perform for only 463 days

(35%) and the LSTM models collectively outperformed the lowest, for 189 days (14%).

Next, we perform a more comprehensive analysis by comparing the parametric models to the

triple layer MLP models only, and to the triple layer LSTM models only, as in Tables B.2.2 and

B.2.3, respectively. We find that the BSMHN outperformed all other M3HN -Models for 188

days (having a daily bootstrap winning percentage of 12% to 16%) and all other L3HN -Models

for 452 days (having a daily bootstrap winning percentage of 31% to 37%). The outperformance

of BSMHN model is also clear when compared to other parametric models in Table B.2.4 where

they have the lowest RMSE for 910 days (having a daily bootstrap winning % of 66% to 71%)

out of 1,326 days. Thus, when lagged input variables are used to forecast the one-trading-day-

ahead delta, the Black–Scholes–Merton is consistently the best outperforming model (among

other models).

3.4.1.2 Forecasting Performance of H-Models with One-trading-day-ahead Input

Variables

We also discuss the relative out-of-sample hedging performance (in RMSE)11 amongst the H-

Models using one-trading-day-ahead input variables to forecast the one-trading-day-ahead delta.

These results are presented in Table 3.2. We observe that the BSMHN+1 model (similar to

that of the BSMHN model) outperforms. Indeed, the BSMHN+1 model outperforms other

models with the lowest RMSE for 196 days out of 1,326 days and the lowest RMSE for 37

months out of 64 months. This out-performance of the BSMHN+1 is also seen in Table B.2.6,

where it outperforms other parametric and MLP models for 208 days (having a daily bootstrap

winning percentage of 14% to 18%), and in Table B.2.7, where it outperforms other parametric

and LSTM models for 486 days (having a daily bootstrap winning percentage of 34% to 39%)

out of 1,326 days. The BSMHN+1 model also outperforms when the comparison is restricted

to only parametric models in Table B.2.8, where the BSMHN+1 model has the lowest RMSE

for 936 days (having a daily bootstrap winning percentage of 68% to 73%) out of 1,326 days.

Thus, irrespective of using lagged or one-trading-ahead input variables to forecast the one-

trading-day-ahead delta, the Black–Scholes–Merton is consistently the best-performing model.

However, predictions from theH-Models-based BSM with one trading-day-ahead input variables
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(from Table 3.2) provide the best improvement in forecasting performance, which represents an

improvement of 18% compared to deltas predicted from BSM H-Models with lagged input (from

Table 3.1), 11% from Table B.2.6 and 8% from Table B.2.7.12 The hedging out-performance of

the BSM model has also been cited by Andreou et al. (2010) where the delta was inferred using

ANNs and by Ruf and Wang (2021) using linear regression.

The scope of this study is limited to daily forecasting, and hence to compare our results with

past literature (Andreou et al. (2010), Ruf and Wang (2021)), we perform a comparison based on

the overall RMSE (for the period from September 2012 to December 2017), which is computed

from daily forecast errors. We compare only the H-Models, that use one-trading-day-ahead

input variables to forecast the ∆N+1, since past literature does not use lagged variables in the

test set to forecast deltas. Based on forecasting S&P 500 index options from January 2002 to

August 2004, Andreou et al. (2010) found that their BSM model (with a RMSE of 1.114) has

an out-performance of 17.7% over the CS model (RMSE of 1.354); however, the ANN-enhanced

CS ePOMP model (RMSE of 1.080) outperforms by 3.3% over the ANN-enhanced BS ePOMP

model (RMSE of 1.117). Our best performing model based on overall RMSE for a window

spanning from September 2012 to December 2017 is the BSMHN+1 model, which has a RMSE

of 2.474 (see Table B.1.4). Similarly, based on forecasting S&P 500 index options from January

2010 to June 2019, Ruf and Wang (2021) found that their regression-based BSM model had

an out-performance of 21.3% over the standard BSM model, and the ANN-based BSM model

has an out-performance of 23.4% over the standard BSM model. Our best-performing model,

the standard BSM model, BSMHN+1, based on overall RMSE for a window spanning from

September 2012 to December 2017, has an average out-performance of 46.3% over MLP models

and an average out-performance of 18.5% over LSTM models (see Table B.1.4).

3.4.2 CH−Models: Results

We consider the following set of CH-Models to forecast firstly the call option price (CN+1) for

the next trading day and then derive the delta analytically from the forecasted call option price

12We discuss in depth the relative out-of-sample forecasting performance amongst the models
that lagged variables and one-trading-day-ahead input variables to forecast the one-trading-day-
ahead ∆N+1 in Section B.2.1, Section B.2.2, and Section B.2.3 respectively. The RMSEs for the
H-Models that use lagged input variables to forecast the ∆N+1 for the next trading day on a
monthly, yearly, and overall basis can be found in tables 21, 27, and 33, for the H-Models that
use one-trading-day-ahead input variables to forecast the ∆N+1 for the next trading day on a
monthly, yearly, and overall basis can be found in Tables 22, 28, and 34, and for the CH-Models
in Tables 23, 29, and 35, respectively of the Electronic Appendix.
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(CN+1) as follows δCN+1/δSN+1.

• CH-Models using one-trading-day-ahead input variables

– Parametric models:

∗ Black–Scholes–Merton (BSMCHN+1) model

∗ Heston (HCHN+1) model

∗ Heston Jump Diffusion (HJDCHN+1) model

∗ Finite Moment Log Stable (FMLSCHN+1) model

– MLP models:

∗ Triple hidden layer MLP M3CHN+1-Models (M3CH1N+1 to M3CH7N+1)

– LSTM models:

∗ Triple hidden layer LSTM L3CHN+1-Models (L3CH1N+1 to L3CH7N+1)

3.4.2.1 Forecasting Performance Using CH-Models

The CH-Models derive analytically the delta (δCN+1/δSN+1) from forecasted call option prices

(CN+1). These models use one-trading-day input variables to forecast CN+1, which is the target

variable for the MLP M3CHN+1-Models and the LSTM L3CHN+1-Models, and later compute

the delta (δCN+1/δSN+1) using Eq. (3.3). The computation of δCN+1/δSN+1 requires SN+1,

and is only possible if we use one-trading-day input variables. These out-of-sample forecasting

results are summarised in Table 3.3.13

We find that the triple hidden layer LSTM L3CH4N+1 model outperforms other models with

the lowest RMSE for 274 days out of 1,326 days. The LSTM model L3CH4N+1 however, fails

to outperform when the comparison is confined to the parametric and the LSTM L3CHN+1-

Models only, in Table B.2.11, where the parametric HJDCHN+1 model outperforms other

models for 385 days (having a daily bootstrap winning percentage from 27% to 32%). Similar

outperformance of the parametric models is observed when the comparison is made amongst

the parametric models and the MLP M3CHN+1-Models only, in Table B.2.10. Now the para-

metric model FMLSCHN+1 outperforms with the lowest RMSE for 226 days (having a daily

bootstrap winning percentage of 15% to 19%) out of 1,326 days. Interestingly, the HJDCHN+1

13The models considered are the parametric models (BSMCHN+1, HCHN+1, HJDCHN+1,
and FMLSCHN+1), the triple hidden layer MLP models (M3CHN+1-Models), and triple hid-
den layer LSTM models (L3CHN+1-Models)
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again outperforms if the comparison is only made amongst the parametric models; see Table

B.2.12.14 Thus, when the delta is analytically computed using forecasted option prices, there is

no consistent outperforming model.

14HJDCHN+1 has the lowest RMSE for 475 days (having a daily bootstrap winning per-
centage of 34% to 39%) out of 1,326 days.
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Table 3.1: This table presents the forecasting performance using both daily and monthly statis-
tics amongst theH-Models that use lagged input variables to forecast the one-trading-day-ahead
delta. The forecast variable for the MLP and LSTM models is the delta that is directly fore-
casted from the respective model, whereas the delta for the parametric models is computed using
their respective characteristic functions. Column I identifies the models, and columns II, III,
and IV describe the network architecture of the MLP and the LSTM models. Column V reports
the number of months out of the 64 months that each model has the smallest RMSE, while
column VI reports the number of days out of the 1,326 days each model has the smallest RMSE.
The one-day-ahead forecast errors of the delta are used to compute the Root Mean Square Error
(RMSE).

(I) (II) (III) (IV) (V) (VI)

Model No.
of
hidden
layers

No. of
hidden
nodes
per layer

Network
architecture

Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

BSMHN - - - 19 166

HHN - - - 5 67

HJDHN - - - 0 69

FMLSHN - - - 0 161

M3H1N 3 6 6 ×6× 6 15 137

M3H2N 3 7 7× 7× 7 8 105

M3H3N 3 7 7 ×7× 7 7 89

M3H4N 3 11 11× 11× 11 0 72

M3H5N 3 11 11× 11× 11 0 93

M3H6N 3 14 14× 14× 14 0 94

M3H7N 3 8 8× 8× 8 7 95

L3H1N 3 6 6× 6× 6 0 19

L3H2N 3 7 7× 7× 7 0 20

L3H3N 3 7 7× 7× 7 0 21

L3H4N 3 11 11× 11× 11 3 78

L3H5N 3 11 11× 11× 11 0 16

L3H6N 3 14 14× 14× 14 0 20

L3H7N 3 8 8× 8× 8 0 15
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Table 3.2: This table presents the forecasting performance using both daily and monthly statis-
tics amongst the H-Models that use one-trading-day-ahead input variables to forecast the one-
trading-day-ahead delta. The forecast variable for the MLP and LSTM models is the delta that
is directly forecasted from the respective model, whereas the delta for the parametric models is
computed using their respective characteristic functions. Column I identifies the models, and
columns II, III, and IV describe the network architecture of the MLP and the LSTM models.
Column V reports the number of months out of the 64 months that each model has the smallest
RMSE, while column VI reports the number of days out of the 1,326 days each model has the
smallest RMSE. The one-day-ahead forecast errors of the delta are used to compute the Root
Mean Square Error (RMSE).

(I) (II) (III) (IV) (V) (VI)

Model No.
of
hidden
layers

No. of
hidden
nodes
per layer

Network
architecture

Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

BSMHN+1 - - - 37 196

HHN+1 - - - 4 44

HJDHN+1 - - - 0 71

FMLSHN+1 - - - 0 162

M3H1N+1 3 6 6× 6× 6 8 157

M3H2N+1 3 7 7× 7× 7 6 109

M3H3N+1 3 7 7× 7× 7 4 95

M3H4N+1 3 11 11× 11× 11 0 66

M3H5N+1 3 11 11× 11× 11 0 84

M3H6N+1 3 14 14× 14× 14 0 96

M3H7N+1 3 8 8× 8× 8 1 98

L3H1N+1 3 6 6× 6× 6 0 12

L3H2N+1 3 7 7× 7× 7 0 18

L3H3N+1 3 7 7× 7× 7 0 15

L3H4N+1 3 11 11× 11× 11 3 73

L3H5N+1 3 11 11× 11× 11 1 12

L3H6N+1 3 14 14× 14× 14 0 15

L3H7N+1 3 8 8× 8× 8 0 13
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Table 3.3: This table presents the forecasting performance using both daily and monthly statis-
tics amongst the CH-Models that use one-trading-day-ahead input variables to forecast the
one-trading-day-ahead call option price (CN+1). The delta (δCN+1/δSN+1) is derived analyt-
ically from the forecasted CN+1 using equation 3.3. The one-day-ahead forecast errors of the
delta are used to compute the Root Mean Square Error (RMSE). Column I identifies the mod-
els, and columns II, III, and IV describe the network architecture of the MLP and the LSTM
models. Column V reports the number of months out of the 64 months that each model has the
smallest RMSE, while column VI reports the number of days out of the 1,326 days each model
has the smallest RMSE.

(I) (II) (III) (IV) (V) (VI)

Model No.
of
hidden
layers

No. of
hidden
nodes
per layer

Network
architecture

Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

BSMCHN+1 - - - 0 77

HCHN+1 - - - 1 77

HJDCHN+1 - - - 2 39

FMLSCHN+1 - - 0 120

M3CH1N+1 3 6 6 X 6 X 6 3 69

M3CH2N+1 3 7 7 X 7 X 7 5 72

M3CH3N+1 3 7 7 X 7 X 7 4 80

M3CH4N+1 3 11 11 X 11 X 11 8 137

M3CH5N+1 3 11 11 X 11 X 11 20 107

M3CH6N+1 3 14 14 X 14 X 14 7 80

M3CH7N+1 3 8 8 X 8 X 8 14 87

L3CH1N+1 3 6 6 X 6 X 6 0 19

L3CH2N+1 3 7 7 X 7 X 7 0 13

L3CH3N+1 3 7 7 X 7 X 7 0 15

L3CH4N+1 3 11 11 X 11 X 11 0 274

L3CH5N+1 3 11 11 X 11 X 11 0 19

L3CH6N+1 3 14 14 X 14 X 14 0 33

L3CH7N+1 3 8 8 X 8 X 8 0 6
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3.4.3 HV -Models and CHV -Models: Results

We evaluate the replicating portfolio value performance of the various parametric and ANN

models in terms of their one-trading-day-ahead replicating portfolio value forecast errors. The

HV -Models comprises the same set of H-Models (which uses lagged or one-trading day ahead

input variables to forecast delta) as mentioned in Sections 3.4.1.1 and 3.4.1.2, and the VN+1

is computed for these H-Models using the delta obtained from the respective models. CHV -

Models, similarly comprises the same set of CH-Models in Section 3.4.2.1. Thus, to differentiate

these models, we append the end of each model name for which we compute the replicating

portfolio value by the letter "V ".

3.4.3.1 Forecasting Performance of HV -Models

Tables 3.4 and 3.5 present the relative out-of-sample forecasting performance (in RMSE)

amongst the models that use the delta from H-Models to compute the replicating portfolio

value (VN+1) using Eq. (3.17).15 The Table 3.4 is based on H-Models using lagged input

variables and Table 3.5 is based on H-Models using one-trading-day-ahead input to forecast

delta. Amongst all of the models, columns V and VI record the number of months and days,

respectively, that each model has the lowest RMSE.

The results are similar to what we document in Sections 3.4.1.1 and 3.4.1.2 regarding the fore-

casting of delta. More specifically, for the HV -Models in Table 3.4, the BSMHVN model

outperforms all models, with the lowest RMSE in 166 days out of 1326 days. The BSMHVN

model also outperforms other models when the comparison is made amongst the parametric and

MLP models only, in Table B.2.14, and the parametric models and LSTM models only, in Table

B.2.15, and amongst parametric models, in Table B.2.16.16 From Table 3.5, we also observe the

outperformance of the parametric Black–Scholes BSMHVN+1 model produced from H-Models

using one-trading-day-ahead input to forecast delta. The BSMHVN+1 model outperforms with

the lowest RMSE for 195 days out of 1,326 days and the lowest RMSE for 17 months out of 64

15The performance metric is the RMSE of the one-trading-day-ahead forecast errors of VN+1,
which is computed for each model utilising all of the errors in each day or each month.

16The BSMHVN model outperforms other parametric and MLP models for 188 days (having
a daily bootstrap winning percentage of 12% to 16%) out of 1,326 days, other parametric and
LSTM models for 451 days (having a daily bootstrap winning percentage of 31% to 37%) out of
1,326 days, and all parametric models for 909 days (having a daily bootstrap winning percentage
of 66% to 71%) out of 1,326 days.
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months. This out-performance of the BSMHVN+1 is also seen in Table B.2.18, where it outper-

forms other parametric and MLP models, in Table B.2.19, where it outperforms parametric and

LSTM models, and in Table B.2.20, where it outperforms parametric models.17 Thus, irrespec-

tive of using lagged or one-trading-ahead input variables to forecast the one-trading-day-ahead

delta, the BSMHVN+1 model has been the most outperforming model.

3.4.3.2 Forecasting Performance of CHV -Models

For the CHV -Models using delta from CH-Models to compute the VN+1 from Eq. (3.17), we

observe results similar to what is observed for the category of CH-Models in Section 3.4.2.1. Ta-

ble 3.6 compares the out-of-sample forecasting performance of these models, in which the delta

is computed analytically from option price forecasts. We find that the LSTM models outperform

other models (lowest RMSE for 276 days out of 1,326 days). However, comparing paramet-

ric models and the LSTM L3CHVN+1-Models in Table B.2.23, the parametric HJDCHVN+1

model outperforms, when comparing the parametric models and the MLP M3CHVN+1-Models

in Table B.2.22, the FMLSCHVN+1 model outperforms and within the parametric models

shown in Table B.2.24, the HJDCHVN+1 out-perform all other parametric models.18 Thus,

when the value of the replicating portfolio is obtained from the delta that is analytically com-

puted using the forecasted option prices (from CH-Models), the results do not reveal a consis-

tently outperforming model. This underscores the economic benefits of such approaches, which

imply that ANN models that cannot directly predict delta may not provide robust forecasting

performance.

17The BSMHVN+1 model outperforms other parametric and MLP models for 207 days (hav-
ing a daily bootstrap winning percentage of 14% to 18%), other parametric and LSTM models
for 485 days (having a daily bootstrap winning percentage of 34% to 39%) out of 1,326 days,
and all parametric models for 934 days (having a daily bootstrap winning percentage of 68% to
73%) out of 1,326 days.

18When we compare parametric models and the LSTM L3CHVN+1-Models only, the paramet-
ric HJDCHVN+1 model outperforms for 387 days (having a daily bootstrap winning percentage
from 27% to 32%) out of 1,326 days, when the parametric models and the MLP M3CHVN+1-
Models are compared, the FMLSCHVN+1 model outperforms for 224 days (having a daily
bootstrap winning percentage from 15% to 19%) out of 1,326 days, and finally within all para-
metric models, the HJDCHVN+1 outperforms for 479 days (having a daily bootstrap winning
percentage from 34% to 39%) out of 1,326 days.
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Table 3.4: This table presents the forecasting performance using both daily and monthly statis-
tics amongst the HV -Models that uses the delta obtained from H-Models. The H-Models use
lagged input variables to forecast the one-trading-day-ahead delta, and the delta is directly fore-
casted from the MLP and LSTM models, and whereas for the parametric models, it is computed
using their respective characteristic functions. The forecasted delta from a model is later used
to compute the replicating portfolio value (VN ) using equation 3.17. The one-day-ahead forecast
errors of VN are used to compute the Root Mean Square Error (RMSE). Column I identifies
the models, column II identifies the forecast variable, and columns II, III, and IV describe the
network architecture of the MLP and LSTM models. Column V reports the number of months
out of the 64 months that each model has the smallest RMSE, while column VI reports the
number of days out of the 1,326 days each model has the smallest RMSE.

(I) (II) (III) (IV) (V) (VI)

Model No.
of
hidden
layers

No. of
hidden
nodes
per layer

Network
architecture

Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

BSMHVN - - - 3 166

HHVN - - - 6 66

HJDHVN - - - 1 69

FMLSHVN - - 1 162

M3HV 1N 3 6 6 X 6 X 6 7 137

M3HV 2N 3 7 7 X 7 X 7 5 105

M3HV 3N 3 7 7 X 7 X 7 5 89

M3HV 4N 3 11 11 X 11 X 11 5 72

M3HV 5N 3 11 11 X 11 X 11 8 93

M3HV 6N 3 14 14 X 14 X 14 4 94

M3HV 7N 3 8 8 X 8 X 8 10 95

L3HV 1N 3 6 6 X 6 X 6 0 18

L3HV 2N 3 7 7 X 7 X 7 1 20

L3HV 3N 3 7 7 X 7 X 7 0 22

L3HV 4N 3 11 11 X 11 X 11 6 77

L3HV 5N 3 11 11 X 11 X 11 0 16

L3HV 6N 3 14 14 X 14 X 14 1 20

L3HV 7N 3 8 8 X 8 X 8 1 15
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Table 3.5: This table presents the forecasting performance using both daily and monthly statis-
tics amongst the HV -Models that uses the delta obtained from H-Models. The H-Models
use one-trading-day input variables to forecast the one-trading-day-ahead delta and the delta
is directly forecasted from the MLP and LSTM models, whereas for the parametric models, it
is computed using their respective characteristic functions. The forecasted delta from a model
is later used to compute the replicating portfolio value (VN+1) using equation 3.17. The one-
day-ahead forecast errors of VN+1 are used to compute the Root Mean Square Error (RMSE).
Column I identifies the models, column II identifies the forecast variable, and columns II, III,
and IV describe the network architecture of the MLP and LSTM models. Column V reports the
number of months out of the 64 months that each model has the smallest RMSE, while column
VI reports the number of days out of the 1,326 days each model has the smallest RMSE.

(I) (II) (III) (IV) (V) (VI)

Model No.
of
hidden
layers

No. of
hidden
nodes
per layer

Network
architecture

Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

BSMHVN+1 - - - 17 195

HHVN+1 - - - 11 43

HJDHVN+1 - - - 0 71

FMLSHVN+1 - - 3 165

M3HV 1N+1 3 6 6 X 6 X 6 9 158

M3HV 2N+1 3 7 7 X 7 X 7 6 109

M3HV 3N+1 3 7 7 X 7 X 7 2 95

M3HV 4N+1 3 11 11 X 11 X 11 2 67

M3HV 5N+1 3 11 11 X 11 X 11 1 83

M3HV 6N+1 3 14 14 X 14 X 14 3 95

M3HV 7N+1 3 8 8 X 8 X 8 0 97

L3HV 1N+1 3 6 6 X 6 X 6 0 12

L3HV 2N+1 3 7 7 X 7 X 7 1 18

L3HV 3N+1 3 7 7 X 7 X 7 0 15

L3HV 4N+1 3 11 11 X 11 X 11 6 72

L3HV 5N+1 3 11 11 X 11 X 11 1 12

L3HV 6N+1 3 14 14 X 14 X 14 0 15

L3HV 7N+1 3 8 8 X 8 X 8 1 13
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Table 3.6: This table presents the forecasting performance using both daily and monthly statis-
tics amongst the CHV -Models that uses the delta obtained from CH-Models. The CH-
Models use one-trading-day input variables to forecast the one-trading-day-ahead call option
price (CN+1). The delta (δCN+1/δSN+1) is derived analytically from the forecasted CN+1 using
equation 3.3, and then used to compute the replicating portfolio value VN+1 using equation
3.17. The one-day-ahead forecast errors of VN are used to compute the Root Mean Square
Error (RMSE). Column I identifies the models, column II identifies the forecast variable, and
columns III and IV describe the network architecture of the ANN models. Column V reports
the number of months out of the 64 months that each model has the smallest RMSE, while
column VI reports the number of days out of the 1,326 days each model has the smallest RMSE.
Forecasts are made for 1,326 trading days, and there are 64 months covered in the sample using
the monthly data.

(I) (II) (III) (IV) (V) (VI)

Model No.
of
hidden
layers

No. of
hidden
nodes
per layer

Network
architecture

Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

BSMCHVN+1 - - - 0 77

HCHVN+1 - - - 0 77

HJDCHVN+1 - - - 2 39

FMLSCHVN+1 - - 0 116

M3CHV 1N+1 3 6 6 X 6 X 6 5 70

M3CHV 2N+1 3 7 7 X 7 X 7 8 73

M3CHV 3N+1 3 7 7 X 7 X 7 8 82

M3CHV 4N+1 3 11 11 X 11 X 11 8 141

M3CHV 5N+1 3 11 11 X 11 X 11 14 109

M3CHV 6N+1 3 14 14 X 14 X 14 5 81

M3CHV 7N+1 3 8 8 X 8 X 8 13 87

L3CHV 1N+1 3 6 6 X 6 X 6 0 20

L3CHV 2N+1 3 7 7 X 7 X 7 0 14

L3CHV 3N+1 3 7 7 X 7 X 7 0 15

L3CHV 4N+1 3 11 11 X 11 X 11 1 276

L3CHV 5N+1 3 11 11 X 11 X 11 0 20

L3CHV 6N+1 3 14 14 X 14 X 14 0 34

L3CHV 7N+1 3 8 8 X 8 X 8 0 7
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3.4.4 Robustness tests

3.4.4.1 The Diebold–Mariano (DM) Tests

Similar to the DM tests performed in Chapter 2, the model pairs that are statistically insignif-

icant different in their prediction accuracy have been reported in Table B.1.9. For each model

category, 153 pairs are created, and for the models belonging to the category of H-Models that

use lagged input variables to forecast ∆N+1, 0% of the pairs are insignificant, for the models

belonging to H-Models that use one-trading-day-ahead input variables to forecast the ∆N+1,

2.6% of the pairs are insignificant, for models belonging to CH-Models that use one-trading-

day-ahead input variables to forecast the δN+1, 2.6% of the pairs are insignificant, for the HV -

Models computed from the ∆N+1 obtained from H-Models (that uses lagged input variables for

forecasting), 3.9% of the pairs are insignificant, for the HV -Models computed from the ∆N+1

obtained from H-Models (that uses one-trading-day-ahead input variables for forecasting), 0%

of the pairs are insignificant, and for the CHV -Models computed from the δN+1obtained from

CH-Models, 2.6% of the pairs are insignificant. Apart from the pairs mentioned in Table B.1.9,

all the other pairs have significant forecasting power. Thus, the daily delta forecasting results

are vastly statistically significant.

3.4.4.2 Bootstrap Tests

To further assess the validity of the forecasting performance results, we perform bootstrap tests

using the daily and monthly RMSEs and discuss them in Sections B.2.1 through B.2.6, and

present them in Tables B.2.1 to B.2.4 for H-Models that use lagged input variables to forecast

the ∆N+1, Tables B.2.5 to B.2.8 for H-Models that use one-trading-day-ahead input variables

to forecast the ∆N+1, Tables B.2.9 to B.2.12 for CH-Models that use one-trading-day-ahead

input variables to forecast the δN+1, Tables B.2.13 to B.2.16 for HV -Models computed from

the ∆N+1 obtained from H-Models (that uses lagged input variables for forecasting), Tables

B.2.17 to B.2.20 for HV -Models computed from the ∆N+1 obtained from H-Models (that uses

one-trading-day-ahead input variables for forecasting), and Tables B.2.21 to B.2.24 for CHV -

Models computed from the δN+1obtained from CH-Models in Appendix B.2, presents the

results of the bootstrap performed using the daily and monthly RMSEs. In these tables, columns

IX (lower bound) and X (upper bound) present the results from the bootstrap performed (with

replacement) using monthly RMSEs at a 95% confidence level and shows the winning percentage

out of 64 months for each model and similarly, the 95 % confidence intervals computed from

113



bootstrapping of the daily RMSEs signify the winning percentage out of 1328 days for each

model and are reported in columns XI (lower bound) and XII (upper bound). The results from

the bootstrap tests typically support the results discussed in Section 3.4.

3.4.4.3 Pairwise Test

In the above comparisons of Section 3.4, a particular model wins against a set of many models.

We also perform a pairwise bootstrap comparison which is computed using the respective pair’s

daily RMSEs. The pairwise bootstrap results for H-Models pairs that use lagged input variables

are presented in Table 45, for H-Models that use one-trading-day-ahead input variables in Table

46, for CH-Models that use one-trading-day-ahead input variables in Table 47, for HV -Models

that use delta from H-Models (using lagged inputs for forecasting) in Table 48, for HV -Models

that use delta from H-Models (using one-trading-day-ahead inputs for forecasting) in Table 49,

and CHV -Models that use delta from CH-Models in Table 50 of the Electronic Appendix. We

summarise the results from all the above-mentioned tables in Table B.1.10.

The comparisons of Section 3.4 reveal the parametric class of models to be consistently out-

performing. When we compare models pair-wise, the results in forecasting performance change.

The MLP class of models outperforms for over 47.1%, the LSTM models for 37.9%, and para-

metric models for 15% of the 153 pairs created from models belonging to H-Models that use

lagged input variables. For the 153 pairs created from models belonging to H-Models that use

one-trading-day-ahead input variables, the MLP class of models outperforms by over 39.2%, the

parametric models similar to the MLP models, at 39.9%, and the LSTM models for 20.9% of

the pairs. For the 153 pairs created from models belonging to CH-Models that use one-trading-

day-ahead input variables, the MLP class of models outperforms by over 62.7%, the parametric

models for 22.9%, and the LSTM models for 14.4% of the pairs. Thus, the pairwise bootstrap

comparison does not reveal conclusive evidence of outperforming models. Indeed, the pair-wise

bootstrap results for HV -Models and CHV -Models are quantitatively similar to the results for

H-Models and CH-Models, respectively.

3.5 Conclusion

This chapter empirically evaluates the daily forecasting performance of deltas for S&P 500

European-style index options using parametric models and triple hidden layer Deep Learning
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ANN models, namely the MLP and LSTM networks. One set of MLP and LSTM networks

is trained using lagged and one-trading-day-ahead input variables to directly forecast the one-

trading-day-ahead delta. Another set of MLP and LSTM networks is trained using one-trading-

day-ahead input variables to forecast the one-trading-day-ahead option price and then analyti-

cally the one-trading-day-ahead delta. The economic significance of these forecasts are further

gauged by assessing the daily forecast performance of the value of the corresponding replicating

portfolio.

We find that the Black–Scholes–Merton model produces one-trading-day-ahead delta forecasts

with the lower RMSEs than the three parametric (Heston, Heston Jump Diffusion, and the

Finite Moment Log Stable) models and the Deep Learning ANN (MLP and LSTM) models.

This result holds when the MLP and LSTM networks are used to predict directly the one-

trading-day-ahead delta and independent of the input variables used (e.g. for both lagged and

one-trading-day-ahead input variables). Based on the assessment of the forecasting performance

of the replicating portfolio, we find quantitatively similar results. Thus, deep learning models

would not typically improve (statistically or economically) the forecasting performance of deltas

compared to the parametric models.

However, we find contradicting results when the MLP and LSTM networks are used to predict

the one-trading-day-ahead delta indirectly by training the ANN models to predict prices and

then analytically infer the one-trading-day-ahead delta. Then, the LSTM models produced

forecasts with lower RMSEs compared to the four parametric and MLP models.

In summary, based on our empirical study, MLP and LSTM networks with a variety of input

variables and multiple hidden layers do not provide a clear advantage compared to parametric

models. Surprisingly, the most basic options pricing model tends to outperform all parametric

and the ANN models considered in this study in terms of predicting delta hedge ratios or the

value of corresponding replicating portfolios. This suggests that there may be some innate

randomness that confines MLP and LSTM networks from effectively forecasting deltas. As

mentioned in Chapter 2, the forecasting performance comparison between models may be biased

by model and error uncertainty. Thus, we also assess the forecasting performance of delta based

on an averaging error approach (Gençay and Qi (2001)) in the next chapter.

115



Chapter 4

Can Model Averaging Improve

Forecasting Performance?

4.1 Introduction

Previous research has attempted to improve the predictability of non-parametric ANN models by

making them more robust, reducing model uncertainty, and increasing predictive power by using

a method called bagging introduced by Breiman (1996). This method proposes an aggregate

value of the prediction from multiple versions of the model through bootstrapping. According

to Gençay and Qi (2001), multiple versions of the ANN are generated using a random seed, and

the outputs of these networks are aggregated to get an average predicted call price. We aim

to replicate this process of aggregation by using average call prices to infer the prediction error

in Chapter 4, which is the most basic form of ensemble learning. Non-parametric ANN models

tend to over-estimate or under-estimate forecasts (Andreou et al. (2010), Ruf and Wang (2020),

Buehler et al. (2019)). By averaging the forecasts from several models, we could balance the

over-estimation and under-estimation, thereby reducing the variance of the forecast and possibly

reducing the generalisation error of the pricing/hedging ANN model. The forecasts based on

the average of several pricing/hedging models may also be more reliable than a forecast based

on a single pricing/hedging model.

In this study, we use averaging methods for forecasting prices and delta. The average call

price is employed to infer the call price prediction error, which is computed as the difference

between the actual mid-point call price and the average of the forecasted call prices from multiple
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models. Taking averages is the simplest form of ensemble learning. We effectively use the same

method to evaluate the forecasting performance of call price scaled by the strike price, delta,

and replicating portfolio values. We thus empirically assess the daily forecasting performance

of prices and delta for S&P 500 index options using averaging of parametric and ANN models.

For a more comprehensive assessment, we compare between averaging all parametric and all

ANN models, as well as between the best performing model and the averaging of all parametric

and all ANN models. The best-performing models are selected by the analysis in Chapters 2

and 3, while MLP and LSTM networks are trained using lagged and one-trading-day-ahead

input variables to forecast the one-trading-day-ahead prices and delta. Alternatively, MLP

and LSTM networks forecast the one trading-day-ahead option price, and then we compute

analytically the one-trading-day-ahead delta. Finally, we investigate the economic significance

of these forecasts by comparing the daily forecast performance of the value of the corresponding

replicating portfolio.

The forecasting performance of daily option prices and moneyness using lagged input variables

shows that the simple random walk outperforms all models. When the random walk model is

excluded, we find that the average of all the triple hidden layer MLP models outperforms any

combination of the average of all the parametric models, the average of all the single, double,

or triple hidden layer LSTM models, and the average of all the single, or the double hidden

layer MLP models. The average of all the triple hidden layer MLP models, which forecasts

the call option price, typically cannot outperform the individually best-outperforming model,

an LSTM model, identified in Chapter 2. However, the average of all the triple hidden layer

MLP models, which forecasts moneyness, can consistently outperform the individually best-

outperforming models in any combination of comparisons. Furthermore, for forecasting the call

option price/moneyness using one-trading-day-ahead input variables, we test only the triple

hidden layer models, and we find that the average of all triple hidden layer MLP models again is

typically the best performing model that also outperforms the random walk forecasting model.

However, the average of all triple hidden layer MLP models which forecast call option prices

do not consistently outperform the individually best out-performing models listed in Chapter

2, whereas the average of all triple hidden layer MLP models that forecasts moneyness could

outperform the individually best out-performing models.

In terms of measuring the forecasting performance of daily delta using lagged/one-trading-day-

ahead input variables, we find that the average of all the parametric models produces forecasts

with the lowest RMSEs, followed by the average of all the triple hidden layer models. However,
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the average of all parametric models fails to outperform the best outperforming models identified

in Chapter 3. Similar results are also seen while measuring the forecasting performance of daily

delta, which is analytically derived from call option prices, where the average of all the parametric

models has the lowest RMSEs, but unlike before, it outperforms the best out-performing models

identified from Chapter 2. To assess the economic significance of these delta models, we compare

the forecasting performance of their corresponding replicating portfolio value. The average of all

triple hidden layer MLP models and the average of all parametric models has at-par forecasting

performance, yet, the average of all triple hidden layer MLP models outperforms the best out-

performing models identified in Chapter 3. Comparatively, we can see that the average of all

parametric models has the lowest RMSEs when the performance of replicating portfolio value

forecasting is measured from models that use one-trading-day inputs to forecast the delta but

cannot outperform the best-performing models. When delta is derived analytically from call

option prices, then the average of all triple hidden layer MLP models again displays the lowest

RMSEs and could outperform the best-performing models identified in Chapter 3 for replicating

portfolio value forecasting performance of models. The results are robust based on a bound

assessment of performance, while the DM tests show that out of the 66 model pairs, only 1.52%

of the pairs have insignificant forecasting power.

This chapter is organised into four sections. Section 4.2 presents the model averaging approach

for parametric and ANN models employed to assess forecasting performance for prices and delta.

The empirical results on the daily forecasting performance of S&P 500 index option prices using

model averaging are discussed in Section 4.3. The empirical comparison of the daily forecast-

ing performance of S&P 500 index option delta and replicating portfolio value performance is

discussed in Section 4.4. Robustness tests are summarised in Section 4.5. Section 4.6 concludes.

4.2 Methodology

We use a variety of models having different sets of predictors to get an average value of the

one-day-ahead call price and delta, as averaging can significantly improve the forecasting per-

formance of a model according to Breiman (1996) and Gençay and Qi (2001). We consider

two model averaging methods. In the first method, we compare the forecasting performance of

averaging for all parametric and ANN models. In the second method, we assess the forecasting

performance of the best performing model as indicated from Chapters 2 and 3 and the averaging

for corresponding parametric and ANN models.
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More specifically, to perform model averaging for the C-Models using lagged input variables to

forecast option prices (defined in Section 2.3.5.1), we take the average call option price of the

following models:

• ParamCAV GN -Models: all the parametric models (BSMCN ,HCN ,HJDCN , and FMLSCN )

• M1CAV GN -Models: all the single hidden MLP models (M1C1N to M1C9N ),

• M2CAV GN -Models: all the double hidden MLP models (M2C1N to M2C9N ),

• M3CAV GN -Models: all the triple hidden MLP models (M3C1N to M3C9N ),

• L1CAV GN -Models: all the single hidden LSTM models (L1C1N to L1C9N ),

• L2CAV GN -Models: all the double hidden LSTM models (L2C1N to L2C9N ),

• L3CAV GN -Models: all the triple hidden LSTM models (L3C1N to L3C9N ).

Similarly, for the C-Models, which use one-trading-day-ahead input variables to forecast option

prices (defined in Section 2.3.5.1), we take the average of the following models: 1

• ParamCAV GN+1 -Models: all the parametric models (BSMCN+1, HCN+1, HJDCN+1, and

FMLSCN+1)

• M3CAV GN+1 -Models: all the triple hidden MLP models (M3C1N+1 to M3C9N+1)

• L3CAV GN+1 -Models: all the triple hidden LSTM models (L3C1N+1 to L3C9N+1).

A similar exercise of computing the average forecast of CN+1/KN+1 from CK-Models using

lagged input variables and CK-Models using one-trading-day-ahead input variables (defined in

Section 2.3.5.2) is also examined.

For the H-Models using lagged input variables to forecast delta (defined in Section 3.2.4), we

take the average delta of the following models:

• ParamHAV G
N -Models: all the parametric models (BSMHN ,HHN ,HJDHN , and FMLSHN )

1Since forecasting using single, and double layer ANN (MLP/LSTM) models is computation-
ally intensive, and as the triple hidden layer ANN models have shown to largely outperform the
single and double layer C-Models which use lagged input variables (see extended results in Ap-
pendix A.2), this exercise only considers triple hidden layer C-Models. In a similar manner, we
only take into account CK-Models with triple hidden layers in order to maintain comparability
with C-Models.
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• M3HAV G
N -Models: all the triple hidden MLP models (M3H1N to M3H7N )

• L3HAV G
N -Models: all the triple hidden LSTM models (L3H1N to L3H7N )

For theH-Models using one-trading-day-ahead input variables to forecast the ∆N+1 (see Section

3.2.4, we consider the average delta of the models below:

• ParamHAV G
N+1 -Models: all the parametric models (BSMHN+1, HHN+1, HJDHN+1, and

FMLSHN+1)

• M3HAV G
N+1 -Models: all the triple hidden MLP models (M3H1N+1 to M3H7N+1)

• L3HAV G
N+1 -Models: all the triple hidden LSTM models (L3H1N+1 to L3H7N+1)

For the CH-Models using one-trading-day-ahead input variables to forecast the δN+1 (see Sec-

tion 3.2.4, we take the average delta of the models:

• ParamCHAV G
N+1 -Models: all the parametric models (BSMCHN+1, HCHN+1,

HJDCHN+1, and FMLSCHN+1)

• M3CHAV G
N+1 -Models: all the triple hidden MLP models (M3CH1N+1 to M3CH7N+1)

• L3CHAV G
N+1 -Models: all the triple hidden LSTM models (L3CH1N+1 to L3CH7N+1)

A similar exercise is done to compute the average replicating portfolio value for the HV -Models

and CHV -Models (from Section 3.2.5).

For the second method, we compare the performance of the best out-performing models detected

of the analysis in Chapters 2 and 3 with the performance of the corresponding model averaging

results. More specifically, we compare the call option prices of the best out-performing C-Models

(as detected in Section 2.4.1.1) with the call option prices from averaging the parametric, the

single, double, and triple hidden layer MLP/LSTM models. Furthermore, we compare the strike-

adjusted option prices of the best out-performing CK-Models discussed in Section 2.4.2 with the

adjusted option prices of the corresponding model averages. We perform similar comparisons for

the option’s delta and the associated replicating portfolios. These comparisons include the delta

of the best out-performing H-Models, CH-Models (as detected in Sections 3.4.1.1 , 3.4.1.2 and

3.4.2.1, respectively), and the replicating portfolio of the best out-performing HV -Models and

CHV -Models (as detected in Sections 3.4.3.1 and 3.4.3.2, respectively) with the delta from the
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corresponding average parametric, MLP models, and LSTM models. The detailed list of these

model averaging options is discussed above. Note that the data used in the analysis are S&P

500 options prices from September 2012 to December 2017; see for more details in Sections 2.3

and 3.2.

4.3 Forecasting of S&P 500 Index Options Prices using Averag-

ing Models

In this section, we evaluate the forecasting performance of the averaging models in predicting

one-trading-day-ahead call option prices (C-Models) and moneyness (CK-Models). We use

lagged input variables and one-trading-day-ahead input variables.

4.3.1 Averaging Forecasts from C-Models

4.3.2 Using Lagged Input Variables

Table 4.1 shows the relative out-of-sample pricing performance (in RMSE) amongst the aver-

aging models that forecast the one-trading-day-ahead call option price using lagged input vari-

ables. We compare the averages of the parametric (ParamCAV GN -Models), the single (M1CAV GN -

Models), double (M2CAV GN -Models), and triple (M2CAV GN -Models) hidden layer MLP models

and the single (L1CAV GN -Models), double (L2CAV GN -Models), and triple (L2CAV G
N -Models) hid-

den layer LSTM models belonging to C-Models from Table 2.1, separately, and present them

in the top panel of Table 4.1, namely under panel Method A. It is found that none of the av-

eraging models could outperform the random walk (δCN ) model. However, if the random walk

model is excluded from the comparison, the triple hidden layer MLP, M3CAV GN -Models, is the

best-performing model.

We perform further set comparisons for the averages derived from the C-Models from Section

2.4.1 of Chapter 2 (presented in Table C.2.1). We perform 13 combinations of comparisons

among the parametric, single, double, and triple hidden layer MLP/LSTM models. There are

three key findings in these 13 comparisons. Firstly, none of the models could outperform the

random walk model. Secondly, if the random walk model is excluded from the comparisons, and

if we compare the average of the parametric models with the averages of the single, double, or
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triple hidden layer MLP models, the average of the MLP models outperforms all other models

(i.e. in Parts II, V, VIII, and XI of Table C.2.1). However, if the comparison is confined between

the average of the parametric models and the averages of the single, double, or triple hidden

layer LSTM models, the average of the parametric models outperforms all other models (i.e.

in Parts III, VI, IX, and XII of Table C.2.1). Third, the outperformance of the average of the

MLP models can also be noticed if we compared the average of the parametric models with

the averages of the single, double, and triple hidden layer MLP models and the averages of the

single, double, and triple hidden layer LSTM models, where the average of the MLP models has

outperformed all other models (i.e. in Parts I, IV, X, XIII of Table C.2.1).

We next compare the best-performing C-Models (that use lagged input variables) from Section

2.4.1 of Chapter 2 with the model averages discussed above (i.e. in Tables 4.1 and C.2.1), which

sums up to 13 different combinations of comparisons. Method B panel of Table 4.1 presents the

results of comparing the best-performing model from Table 2.1 of Chapter 2, namely L3C9N
model, with the average of the parametric, and the single, double, and triple hidden layer MLP

and LSTM models. We find that this LSTM model (L3C9N model) outperforms all the above

models (for 311 days out of 1,328).

Furthermore, none of the models could outperform the random walk model, except in Parts I

and X of Table C.2.2. If the random walk model is excluded, and if we compared the best-

performing C-Models with the average of the parametric models, the averages of the single,

double, or triple hidden layer MLP models, then the average of the MLP models outperforms

all other models (i.e. in Parts II, V, and VIII of Table C.2.2).2 In addition, if the comparison is

confined between the best-performing C-Models with the average of the parametric models, the

averages of the single, double, or triple hidden layer LSTM models, the L1C8N , L2C9N , and

L3C9N model outperforms all other models (in Parts III and XII of Table C.2.2) – except in

Parts VI and IX, where the ParamCAV GN -Models outperforms all other models. Finally, if the

comparison is made between the best-performing C-Models with the average of the parametric

models, the averages of the single, double, and triple hidden layer MLP models, and the averages

of the single, double, and triple hidden layer LSTM models, then the average of the MLP models

has outperformed all other models (i.e. in Parts I, IV, and VII of Table C.2.2) – except in Parts

X and XIII, where the L3C9N model outperforms all other models.

2Except in Part XI, where the FMLSCN model outperforms all other models.
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4.3.3 Using One-trading-day-ahead Input Variables

The relative out-of-sample performance (in RMSE) amongst the averaging C-Models using one-

trading-day-ahead input variables is presented in Method A panel of Table 4.2. Method A com-

pares the average option prices of the parametric (ParamCAV GN+1 -Models), the triple (M2CAV GN+1 -

Models) hidden layer MLP models and the triple (L2CAV G
N+1 -Models) hidden layer LSTM models

from Table 2.2, separately. It is shown that the average of the triple hidden layer MLP models

outperforms all other models, including the random walk (for 987 days out of 1,328), and when

the random walk is excluded (for 1,114 days out of 1,328). This out-performance of the average

of the triple hidden layer MLP model is also seen when we compare it only with the parametric

models in Part II of Table C.2.3. The average of the parametric models however outperforms

only when the comparison is made with the average of the triple hidden layer LSTM models in

Part III of Table C.2.3 and for 1065 days out of 1,328.

Method B panel of Table 4.2 presents the comparisons of the best-performing C-Models (using

one-trading-day-ahead input variables) from Section 2.4.1 of Chapter 2 with the models discussed

above, i.e., models in Method A panel of Table 4.2. Here, the random walk model does not

outperform these comparisons. When the random walk model is excluded, and we compare

the best-performing model, namely M3C4N+1, to the models in Method A panel of Table 4.2,

i.e., with the average of the parametric, and average of the triple hidden layer MLP and LSTM

models, we find that the M3C4N+1 model outperforms all the above models (for 683 days out

of 1,328). This is slightly better than the average of all the triple hidden layer MLP models,

which outperforms (for 610 days out of 1,328).

Now, if we compare the best-performing model, M3C4N+1, with the average of the parametric

models, the averages of the triple hidden layer MLP in Part II of Table C.2.4, it shows consistent

outperformance for 683 days out of 1,328. Third, if the comparison is made between the best-

performing parametric model, HCN+1, with the average of the parametric models, and the

averages of the triple hidden layer LSTM models, in Part III of Table C.2.4, the parametric

model HCN+1 outperforms all other models.

Therefore, forecasting the call option prices derived from averaging models using lagged input

variables demonstrates that none of the pricing models could improve or outperform a simple

random walk forecasting model. The best approach is to average the forecast from several MLP

models, average from several parametric models, or use an individual LSTM model, like the

L3C9N model. Forecasting the call option prices derived from averaging models using one-
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trading-ahead input variables shows that the random walk model does not outperform in any of

these comparisons, and the best approach is to use an individual MLP model like the M3C4N+1

model, average the forecast from several MLP/parametric models, or use an individual para-

metric model, like the HCN+1 model.

4.3.4 Averaging Forecasts from CK-Models

4.3.5 Using Lagged Input Variables

Panel Method A of Table 4.3 compares the average of the CK-Models including paramet-

ric (ParamCKAV G
N -Models), the single (M1CKAV G

N -Models), double (M2CKAV G
N -Models),

triple (M3CKAV G
N -Models) hidden layer MLP models and the single (L1CKAV G

N -Models), dou-

ble (L2CKAV G
N -Models), triple (L3CKAV G

N -Models) hidden layer LSTM models of CK-Models

from Table 2.3. None of the models outperforms the random walk, but if the random walk is

excluded, then the MLP M3CKAV G
N -Models outperform (for 627 days out of 1,328).

Table C.2.5 shows the relative out-of-sample pricing performance (in RMSE) amongst the CK-

Models (i.e. from section 2.4.2 of Chapter 2) using lagged input variables, which is divided

again into thirteen parts as different combinations of comparisons amongst the parametric,

single, double, and triple hidden layer MLP/LSTM models are considered. The key findings

of these comparisons are summarised next. None of the models could outperform the random

walk model. If the random walk model is excluded, and the average of the parametric models

are compared with the averages of the single, double, and triple hidden layer MLP and LSTM

models (i.e. in Parts I, IV, VII, and X of Table C.2.5), then the average of the MLP models

outperforms all other models. The out-performance of the average of the MLP models is also

evident when we compare the average of the parametric models with the averages of the single,

double, and triple hidden layer MLP models (i.e. in Parts II, V, VIII, and XI of Table C.2.5).

Lastly, if the comparison is confined between the average of the parametric models with the

averages of the single, double, or triple hidden layer LSTM models (i.e. in Parts III, VI, IX, and

XII of Table C.2.5), the average of the parametric models outperforms all other models.

Panel Method B of Table 4.3 compares the best-performing CK-Models (using lagged input

variables) from Section 2.4.2 of Chapter 2 (which is the L1CK2N model) with the the average

of the parametric, the single, double, and triple hidden layer MLP and LSTM models. None of

the models could outperform the random walk model. If the random walk model is excluded, and
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the best-performing model compared to the models in Method A of Table 4.3, it is revealed that

the average of the triple hidden layer MLP models, namely the M3CKAV G
N model, outperforms

all the above models (for 492 days out of 1,328).

Comparing the best-performing CK-Models (that use lagged input variables) from Section

2.4.2 of Chapter 2 with the models discussed above in Table C.2.5 and present the comparison

in Table C.2.6, we draw the following conclusions (from these thirteen different comparisons). If

we compared the best-performing CK-Models with the average of the parametric models, the

averages of the single, double, and triple hidden layer MLP and LSTM models, then the average

of the MLP models outperforms all other models (i.e. in Parts I, II, IV, V, VII, VIII, X, XI,

and XIII of Table C.2.6). However, if the comparison is confined between the best-performing

CK-Models with the average of the parametric models, and the averages of the single, double,

or triple hidden layer LSTM models, the L1CK2N , L2CK2N , and L3CK2N model outperforms

all other models (in Parts III, VI, IX, and XII of Table C.2.6).

4.3.6 Using One-trading-day-ahead Input Variables

We summarise the relative out-of-sample performance (in RMSE) amongst the CK-Models

models using one-trading-day-ahead input variables in Table 4.4, where in panel Method A,

we compared the average CN+1/KN+1 of the parametric (ParamCKAV G
N+1 -Models), the triple

(M3CKAV G
N+1 -Models) hidden layer MLP models and the triple (L3CKAV G

N+1 -Models) hidden

layer LSTM models of the CK-Models in Table 2.4. It is shown that the average of the triple

hidden layer MLP models outperforms all other models, including the random walk (for 1076

days out of 1,328) or excluding the random walk (for 1,328 days out of 1,328). This out-

performance of the average of the triple hidden layer MLP model is also seen when we compare

it only with the parametric models in Part II of Table C.2.7. The average of the parametric

models, however, fails to outperform even when the comparison is made with the average of

the triple hidden layer LSTM models in Part III of Table C.2.7, where the average of the triple

hidden layer LSTM models outperform for 1,328 days out of 1,328.

There are three key findings when we compare the best-performing CK-Models (that use one-

trading-day-ahead input variables) from Section 2.4.2 of Chapter 2 with the models discussed

above in Tables 4.4 and C.2.7. First, the random walk model does not outperform in any of these

comparisons. When we exclude the random walk model from the comparisons and compare the

M3CK2N+1 model (i.e., the best outperforms model when compared to the models in Method
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A panel of Table 4.4) with the average of the parametric, and average of the triple hidden

layer MLP and LSTM models, the average of the triple hidden layer MLP models outperforms

all the above models (840 days out of 1,328). Second, when we compare the best-performing

CK-Models with the average of the parametric models, the average of the triple hidden layer

MLP models in Part II of Table C.2.8, then the best-performing model, the average of the triple

hidden layer MLP models, i.e. the M3CKAV G
N+1 model, consistently outperforms (for 840 days

out of 1,328). Third, if the comparisons are made between the best-performing model from

CK-Models, the L3CK2N+1 with the average of the parametric models, and the average of the

triple hidden layer LSTM models, in Part III of Table C.2.8, the L3CK2N+1 outperforms all

other models for 809 days out of 1,328 days.

A comparison between CK-Models with lagged input variables and CK-Models models with

one-trading-day-ahead input variables reveals a substantial improvement in forecasting perfor-

mance of using one-trading-day-ahead input variables in the M3CAV GN+1 -Models from Table 4.2,

when compared to the corresponding M3CAV GN -Models using lagged input variables from Ta-

ble 4.1 –similarly for theM3CKAV G
N+1 -Models from Table 4.4, when compared to theM3CKAV G

N -

Models using lagged input variables from Table 4.3. For example, the forecasting performance

of the M3CAV GN+1 -Models has an improvement of 347.5% (based on daily RMSE) / 75.8% (based

on monthly RMSE) over M3CAV GN -Models, and the M3CKAV G
N+1 -Models has an improvement

of 111.8% (based on daily RMSE) / 25.5% (based on monthly RMSE) over M3CKAV G
N -Models.

We also observe that the majority of the models that have outperformed based on daily RMSE

have outperformed based on their monthly RMSE.

Therefore, forecasting moneyness derived from averaging models using lagged input variables

demonstrates that none of the pricing models could improve or outperform the simple ran-

dom walk forecasting model. The best approach is to average the forecast from several MLP

models, average from several parametric models, or use an individual LSTM model, like the

L1CK2N , L2CK2N , and L3CK2N model. Forecasting moneyness from averaging models using

one-trading-ahead input variables also shows that the random walk model does not outperform

in any of these comparisons, and the best approach is to use an individual MLP model, like the

M3CK2N+1 model, average the forecast from several parametric/MLP/LSTM models.

126



Table 4.1: This table, categorised into two parts, presents the out-of-sample forecasting perfor-
mance using daily and monthly statistics amongst the set of models, which averages the forecast
of the one-day-ahead call option price from models that use lagged input variables. Below, in
each of the parts, we compare the out-of-sample performance of the following models: Method
A: The average call option price from the parametric, the single, double, and triple hidden
layer MLP models, and the single, double, and triple hidden layer LSTM models. Method B:
The best out-performing model (L3C9N ) from Table 2.1 with average call option price from
the parametric, the single, double, and triple hidden layer MLP models, and the single, double,
and triple hidden layer LSTM models. The average one-day-ahead forecast errors of the call
option prices are used to compute the Root Mean Square Error (RMSE). Column I identifies the
models, and when comparing all models (i.e. including the random walk model (δCN ), column
II reports the number of months out of the 64 months that each model has the smallest RMSE,
while column III reports the number of days out of the 1,328 days each model has the smallest
RMSE. Similarly, when the δCN model is excluded in the comparison, column IV reports the
number of months out of the 64 months that each model has the smallest RMSE, while column
V reports the number of days out of the 1,328 days each model has the smallest RMSE. Fore-
casts are made for 1,328 trading days, and there are 64 months covered in the sample using the
monthly data.

Incl. random walk Excl. random walk

(I) (II) (III) (IV) (V)

Model Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

Method A

δCN 34 369 - -

ParamCAVGN -Models 0 174 0 184

M1CAVGN -Models 10 126 16 185

M2CAVGN -Models 14 97 19 196

M3CAVGN -Models 6 86 29 249

L1CAVGN -Models 0 89 0 94

L2CAVGN -Models 0 161 0 176

L3CAVGN -Models 0 226 0 244

Method B

L3C9N 0 311 0 333

ParamCAVGN -Models 0 174 0 184

M1CAVGN -Models 10 97 16 134

M2CAVGN -Models 14 86 19 171

M3CAVGN -Models 6 76 29 204

L1CAVGN -Models 0 64 0 66

L2CAVGN -Models 0 116 0 123

L3CAVGN -Models 0 105 0 113
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Table 4.2: This table, categorised into two parts, presents the out-of-sample forecasting per-
formance using daily and monthly statistics amongst the set of models, which averages the
forecast of the one-day-ahead call option price from models that use one-trading-day-ahead in-
put variables. Below, in each of the parts, we compare the out-of-sample performance of the
following models: Method A: The average call option price from the parametric, the triple
hidden layer MLP models, and the triple hidden layer LSTM models. Method B: The best
out-performing model (M3C4N+1) from Table 2.2 with the average call option price from the
parametric, the triple hidden layer MLP models, and the triple hidden layer LSTM models.
The one-day-ahead forecast errors of the call option prices are used to compute the Root Mean
Square Error (RMSE). Column I identifies the models, and when comparing all models (i.e.
including the random walk model (δCN ), column II reports the number of months out of the 64
months that each model has the smallest RMSE, while column III reports the number of days
out of the 1,326 days each model has the smallest RMSE. Similarly, when the δCN model was
excluded in the comparison, column IV reports the number of months out of the 64 months that
each model has the smallest RMSE, while column V reports the number of days out of the 1,326
days each model has the smallest RMSE. Forecasts are made for 1,326 trading days, and there
are 64 months covered in the sample using the monthly data.

Incl. random walk Excl. random walk

(I) (II) (III) (IV) (V)

Model Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

Method A

δCN 0 129 - -

ParamCAVGN+1 -Models 13 208 13 208

M3CAVGN+1 -Models 51 987 51 1114

L3CAVGN+1 -Models 0 4 0 6

Method B

δC 0 119 - -

M3C4N+1 35 650 35 683

ParamCAVGN+1 -Models 0 34 0 34

M3CAVGN+1 -Models 29 525 29 610

L3CAVGN+1 -Models 0 0 0 1
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Table 4.3: This table, categorised into two parts, presents the out-of-sample forecasting perfor-
mance using daily and monthly statistics amongst the set of models, which averages the forecast
of the one-day-ahead call option price scaled by the exercise price from models that use lagged
input variables. Below, in each of the parts, we compare the out-of-sample performance of the
following models: Method A: The average call option price is scaled by the exercise price from
the parametric, single, double, and triple hidden layer MLP models, and the single, double, and
triple hidden layer LSTM models. Method B: The best out-performing model (L1CK2N ) from
Table 2.3 with the average call option price scaled by the exercise price from the parametric, the
single, double, and triple hidden layer MLP models, and the single, double, and triple hidden
layer LSTM models. The one-day-ahead forecast errors of call option prices scaled by the exer-
cise prices are used to compute the Root Mean Square Error (RMSE). Column I identifies the
models, and when comparing all models (i.e. including the random walk model (δCN ), column
II reports the number of months out of the 64 months that each model has the smallest RMSE,
while column III reports the number of days out of the 1,326 days each model has the smallest
RMSE. Similarly, when the δCN model was excluded in the comparison, column IV reports
the number of months out of the 64 months that each model has the smallest RMSE, while
column V reports the number of days out of the 1,326 days each model has the smallest RMSE.
Forecasts are made for 1,326 trading days, and there are 64 months covered in the sample using
the monthly data.

Incl. random walk Excl. random walk

(I) (II) (III) (IV) (V)

Model Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

Method A

δCKN 48 696 - -

ParamCKAVG
N -Models 0 26 0 27

M1CKAVG
N -Models 1 138 10 264

M2CKAVG
N -Models 2 227 3 349

M3CKAVG
N -Models 13 182 51 627

L1CKAVG
N -Models 0 7 0 9

L2CKAVG
N -Models 0 26 0 26

L3CKAVG
N -Models 0 26 0 26

Method B

δCK 48 586 - -

L1CK2N 0 250 0 290

ParamCKAVG
N -Models 0 16 0 16

M1CKAVG
N -Models 1 115 10 216

M2CKAVG
N -Models 2 180 3 272

M3CKAVG
N -Models 13 140 51 492

L1CKAVG
N -Models 0 6 0 7

L2CKAVG
N -Models 0 16 0 16

L3CKAVG
N -Models 0 19 0 19
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Table 4.4: This table, categorised into two parts, presents the out-of-sample forecasting perfor-
mance using daily and monthly statistics amongst the set of models, which averages the forecast
of the one-day-ahead call option price scaled by the exercise price from models that use lagged
input variables. Below, in each of the parts, we compare the out-of-sample performance of the
following models: Method A: The average call option price is scaled by the exercise price from
the parametric, the triple hidden layer MLP models, and the triple hidden layer LSTM models.
Method B: The best out-performing model (M3CK2N+1) from Table 2.4 with the average
call option price scaled by the exercise price from the parametric, the triple hidden layer MLP
models, and the triple hidden layer LSTM models. The one-day-ahead forecast errors of the call
option prices scaled by the exercise prices are used to compute the Root Mean Square Error
(RMSE). Column I identifies the models, and when comparing all models (i.e. including the
random walk model (δCN ), column II reports the number of months out of the 64 months that
each model has the smallest RMSE, while column III reports the number of days out of the
1,326 days each model has the smallest RMSE. Similarly, when the δCN model was excluded
in the comparison, column IV reports the number of months out of the 64 months that each
model has the smallest RMSE, while column V reports the number of days out of the 1,326 days
each model has the smallest RMSE. Forecasts are made for 1,326 trading days, and there are 64
months covered in the sample using the monthly data.

Incl. random walk Excl. random walk

(I) (II) (III) (IV) (V)

Model Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

Method A

δCKN 0 252 - -

ParamCKAVG
N+1 -Models 0 0 0 0

M3CKAVG
N+1 -Models 64 1076 64 1328

L3CKAVG
N+1 -Models 0 0 0 0

Method B

δCK 0 238 - -

M3CK2N+1 14 443 14 488

ParamCKAVG
N+1 -Models 0 0 0 0

M3CKAVG
N+1 -Models 50 647 50 840

L3CKAVG
N+1 -Models 0 0 0 0
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4.4 Forecasting of S&P 500 Index Options Delta Using Averag-

ing Models

We next evaluate the forecasting performance of the averaging models in predicting the deltas

for the H-Models, and CH-Models, and then the corresponding average replicating portfolio

value for the models HV -Models, and CHV -Models. We consider lagged and one-trading-day-

ahead input variables for the H-Models and the one-trading-day-ahead input variables for the

CH-Models.

4.4.1 Averaging Forecasts from H-Models and HV -Models

4.4.1.1 Using Lagged Input Variables

By following the approach of Section 4.3, we present the relative out-of-sample forecasting

performance (in RMSE) amongst the H-Models using lagged input variables in panel Method

A of Table 4.5. In this table, we compare the average of the parametric (ParamHAV G
N -Models),

the triple (M3HAV G
N -Models) hidden layer MLP models, and the triple (L3HAV G

N -Models)

hidden layer LSTM models belonging to H-Models from Table 3.1, separately. We find that

the average of the parametric models outperforms all other models for 593 days out of 1,326.

Furthermore, in Table C.2.9, we compare the average derived from the H-Models from the

Section 3.4.1 of Chapter 3. In Part II of this table, we compared the average of the parametric

models with the average of the triple hidden layer MLP models, and we find contrasting results.

The average of the triple hidden layer MLP models outperforms for 675 days out of 1,326 days,

but the average of the parametric models outperforms similarly for 652 days out of 1,326 days.

In Part III of this table, we also compared the average of the parametric models with the average

of the triple hidden layer LSTM models, and we find that the average of the parametric models

outperforms for 907 days out of 1,326 days. Thus, the average of the parametric and the MLP

models exhibit similar at-par outperformance.

We summarise three key findings when we compare the best-performing H-Models (using lagged

input variables) from Section 3.4.1 of Chapter 3 in Table 3.1, with the models discussed in

Method A of Table 4.5. Firstly, in panel Method B of Table 4.5, where we compare the BSMHN

model (i.e. the best-performing model of models in Table 3.1) with the average of the parametric,

the triple hidden layer MLP and LSTM models, we conclude that the average of the triple hidden
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layer MLP models, the M3HAV G
N -Models, outperforms all the above models (for 450 days out

of 1,326). In Part II of Table C.2.10, we compare the BSMHN model with the average of the

parametric models, and the average of the triple hidden layer MLP models and find that the

average of the MLP models (again) outperforms all other models. Thirdly, in Part III of Table

C.2.10, where the comparison is confined between the BSMHN model with the average of the

parametric models and the average of the triple hidden layer LSTM models, the BSMHN model

outperforms all other models (for 565 days out of 1,326 days).

We observe consistently similar results for the one-trading-day-ahead replicating portfolio value

from the averaging HV -Models in Section 3.4.3 of Chapter 3, which is obtained from the

H-Models (with lagged inputs). The average of the parametric models, the ParamHV AV G
N -

Models, outperforms all other models for 592 days out of 1,326 (in panel Method A of Table

4.8), and for 907 days out of 1,326 (in Part III of Table C.2.15), the average of the MLP models,

the M3HAV G
N -Models, outperforms all other models for 675 days out of 1,326 days (in Part II

of Table C.2.15). Similar results are also observed while comparing the best-performing HV -

Models (with lagged input variables) from Section 3.4.3 of Chapter 3) with the models discussed

in Tables 4.8 and C.2.15. The average of the MLP models, the M3HV AV G
N model, outperforms

for 448 days out of 1,326 days (in Method B of Table 4.8), and for 588 days out of 1,326 days

(in Part II of Table C.2.16), the BSMHVN model out-performs all other models for 561 days

out of 1,326 days (in Part III of Table C.2.16).

Therefore, forecasting the one-trading-ahead delta and the associated replicating portfolio value

from averaging models using lagged input variables demonstrates that the best approach is to

average the forecasts from the triple hidden layer MLP models or the parametric models.

4.4.1.2 Using one-trading-day-ahead Input Variables

Panel Method A of Table 4.6 shows the relative out-of-sample forecasting performance (in

RMSE) amongst the H-Models using one-trading-day input variables. We compare the aver-

age of the parametric (ParamHAV G
N+1 -Models), the triple (M3HAV G

N+1 -Models) hidden layer MLP

models, and the triple (L3HAV G
N+1 -Models) hidden layer LSTM models belonging to H-Models

from Table 3.2, separately. From these comparisons, we find that the average of the parametric

models outperforms all other models (for 653 days out of 1,326). We further compare the aver-

ages derived from the H-Models from Section 3.4.1 of Chapter 3 in Table C.2.9. Part II of this

table compares the average of the parametric models with the average of the triple hidden layer
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MLP models and finds that the average of the parametric models outperforms all other models

(for 754 days out of 1,326). The average of the parametric models also outperforms the average

of the triple hidden layer LSTM models in Part II of this table (for 907 days out of 1,326).

Comparing the best-performing H-Models (using one-trading-day input variables) from Section

3.4.1 of Chapter 3 with the models discussed above in Tables 4.6 and C.2.11, we find that in

panel Method B of Table 4.6, where we compare the BSMHN+1 model (i.e. the best-performing

model of the models in Table 3.2) with the average of the parametric, the triple hidden layer MLP

and LSTM models, the Black-Scholes BSMHN+1 model, outperforms all the above models (for

391 days out of 1,326). The BSMHN+1 model also outperforms in Part III of Table C.2.9 (for

595 days out of 1,326 days), where we compare the best-performing H-Models, the BSMHN+1

model, with the average of the parametric models and the average of the triple hidden layer

LSTM models. The average of the parametric models though outperforms for 595 days out of

1,326 days when the comparison is with the best-performing H-Models, the BSMHN+1 model,

and the average of the MLP models in Part III of Table C.2.9.

The results regarding the one-trading-day-ahead replicating portfolio value of the averaging

HV -Models - obtained from the H-Models (using one-trading-day inputs) in Section 3.4.3 of

Chapter 3 are presented in Tables 4.9 and C.2.17. Panel Method A of Table 4.9 finds that the

average of the parametric models, the ParamHV AV G
N+1 -Models, outperforms all other models (for

653 days out of 1,326) and for 754 days out of 1,326 (in Part II of Table C.2.17), and 907 days

out of 1,326 (in Part III of Table C.2.17). Similar results are also observed when comparing the

best-performing HV -Models (using one-trading-day-ahead input variables) from Section 3.4.3

of Chapter 3, in Table 3.5, with the models discussed in Method A of Table 4.9. The parametric

model, BSMHVN+1 model, outperforms for 389 days out of 1,326 days (in Method B of Table

4.9), and similar, for 591 days out of 1,326 days (in Part III of Table C.2.18), the average of

the MLP models, the M3HV AV G
N+1 model outperforms all other models for 487 days out of 1,326

days (in Part II of Table C.2.18).

Thus, the best approach towards daily forecasting delta and the associated replicating portfolio

value from models using one-trading-ahead input variables is to average the forecasts from the

parametric models or use the BSMHN+1 model.
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4.4.2 Averaging Forecasts from CH-Models and CHV -Models

Similar to above exercise, we present the relative out-of-sample forecasting performance (in

RMSE) amongst the CH-Models that forecast the one-trading-day-ahead average delta

(δCN+1/δSN+1) derived analytically from CN+1 forecasted from models that use one-trading-

day-ahead input variables from Table 4.7. We find similar results as the ones obtained from

averaging forecasts of H-Models and HV -Models that use one-trading-day-ahead input vari-

ables. The average of the parametric models (ParamCHAV G
N+1 -Models) outperforms all other

models (for 1290 days out of 1,326) when compared to the triple (M3CHAV G
N+1 -Models) hidden

layer MLP models and the triple (L3CHAV G
N+1 -Models) hidden layer LSTM models in Method A

of Table 4.7, and outperforms for 1290 days out of 1,326 when compared only to the average of

the triple hidden layer MLP models in Part II of Table C.2.13, and for 1327 days out of 1,326

when compared only to the average of the triple hidden layer LSTM models in Part III of Table

C.2.13.

We perform the comparison of the best-performing CH-Models (that use one-trading-day input

variables) from Section 3.4.2 of Chapter 3 with the models discussed above in Tables 4.7 and

C.2.14. Method B panel of Table 4.7 compares the best-performing model CH-Models, namely

L3CH4N+1 model from Table 3.3, with the average of the parametric, the triple hidden layer

MLP and LSTM models. The average of the parametric models, the ParamCHAV G
N+1 model,

outperforms all the above models for 1,285 days out of 1,326, also for 1,289 days out of 1,326

days when comparing the best-performing CH-Models, the FMLSCHN+1 model, with the

average of the parametric models and the average of the triple hidden layer MLP models in Part

II of Table C.2.14. Finally, the ParamCHAV G
N+1 model also outperforms when the comparison is

with the best-performing CH-Models, the HJDCHN+1 model, and the average of the LSTM

models in Part III of Table C.2.14.

Contrasting results are observed in Tables 4.10 and C.2.19 when averaging the CHV -Models

obtained from the CH-Models (with one-trading-day inputs) in Section 3.4.3 of Chapter 3. The

average of the MLP models outperforms all other models for 912 days out of 1,326 (in panel

Method A of Table 4.10), and for 1,038 days out of 1,326 (in Part II of Table C.2.19), and 1,134

days out of 1,326 (in Part III of Table C.2.19). Similar results are also observed when comparing

the best-performing CHV -Models with the models in Tables 4.10 and C.2.19. The average of

the MLP model outperforms for 721 days out of 1,326 days (in panel Method B of Table 4.10)

and for 655 days out of 1,326 days (in Part II of Table C.2.20).
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Thus, the best approach to daily forecasting of the delta from predicted call prices is to average

forecasts from the parametric models, while forecasting the average replicating portfolios would

involve averaging forecasts from the MLP models.
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Table 4.5: This table, categorised into two parts, presents the out-of-sample forecasting per-
formance using daily and monthly statistics amongst the set of models, which averages the
forecast of the one-day-ahead delta from models that lagged input variables. Below, in each of
the parts, we compare the out-of-sample performance of the following models: Method A: The
average delta from the parametric, the triple hidden layer MLP models, and the triple hidden
layer LSTM models. Method B: The best out-performing model (BSMHN ) from Table 3.1
with the average delta from the parametric, the triple hidden layer MLP models, and the triple
hidden layer LSTM models. The one-day-ahead forecast errors of the call option prices are used
to compute the Root Mean Square Error (RMSE). Column I identifies the models, and when
comparing all models, column II reports the number of months out of the 64 months that each
model has the smallest RMSE, while column III reports the number of days out of the 1,326
days each model has the smallest RMSE. Forecasts are made for 1,326 trading days, and there
are 64 months covered in the sample using the monthly data.

(I) (II) (III)

Model Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

Method A

ParamHAVG
N -Models 37 593

M3HAVG
N -Models 25 519

L3HAVG
N -Models 2 215

Method B

BSMHN 39 311

ParamHAVG
N -Models 5 370

M3HAVG
N -Models 18 450

L3HAVG
N -Models 2 195
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Table 4.6: This table, categorised into two parts, presents the out-of-sample forecasting perfor-
mance using daily and monthly statistics amongst the set of models, which averages the forecast
of the one-trading-day delta from models that use one-trading-day-ahead input variables. Be-
low, in each of the parts, we compare the out-of-sample performance of the following models:
Method A: The average delta from the parametric, the triple hidden layer MLP models, and the
triple hidden layer LSTM models. Method B: The best out-performing model (BSMHN+1)
from Table 3.2 with the average delta from the parametric, the triple hidden layer MLP models,
and the triple hidden layer LSTM models. The one-day-ahead forecast errors of the delta are
used to compute the Root Mean Square Error (RMSE). Column I identifies the models, and
when comparing all models, column II reports the number of months out of the 64 months that
each model has the smallest RMSE, while column III reports the number of days out of the
1,326 days each model has the smallest RMSE. Forecasts are made for 1,326 trading days, and
there are 64 months covered in the sample using the monthly data.

(I) (II) (III)

Model Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

Method A

ParamHAVG
N+1 -Models 46 653

M3HAVG
N+1 -Models 13 442

L3HAVG
N+1 -Models 5 232

Method B

BSMHN+1 46 391

ParamHAVG
N+1 -Models 6 353

M3HAVG
N+1 -Models 10 373

L3HAVG
N+1 -Models 2 209
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Table 4.7: This table, categorised into two parts, presents the out-of-sample forecasting perfor-
mance using daily and monthly statistics amongst the set of models, which averages the forecast
of the one-trading-day delta from models that use one-trading-day-ahead input variables to
forecast one-trading-day-ahead call option price from which the delta is derived analytically.
Below, in each of the parts, we compare the out-of-sample performance of the following models:
Method A: The average delta from the parametric, the triple hidden layer MLP models, and the
triple hidden layer LSTM models. Method B: The best out-performing model (L3CH4N+1)
from Table B.2.9 with the average delta from the parametric, the triple hidden layer MLP mod-
els, and the triple hidden layer LSTM models. The one-day-ahead forecast errors of the delta
are used to compute the Root Mean Square Error (RMSE). Column I identifies the models, and
when comparing all models, column II reports the number of months out of the 64 months that
each model has the smallest RMSE, while column III reports the number of days out of the
1,326 days each model has the smallest RMSE. Forecasts are made for 1,326 trading days, and
there are 64 months covered in the sample using the monthly data.

(I) (II) (III)

Model Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

Method A

ParamCHAVG
N+1 -Models 64 1290

M3CHAVG
N+1 -Models 0 37

L3CHAVG
N+1 -Models 0 0

Method B

L3CH4N+1 0 4

ParamCHAVG
N+1 -Models 64 1285

M3CHAVG
N+1 -Models 0 37

L3CHAVG
N+1 -Models 0 0
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Table 4.8: This table, categorised into two parts, presents the out-of-sample forecasting perfor-
mance using daily and monthly statistics amongst the set of models, which averages the forecast
of the replicating portfolio value from models that use lagged input variables to forecast the
one-trading-day-ahead delta. Below, in each of the parts, we compare the out-of-sample per-
formance of the following models: Method A: The average replicating portfolio value from
the parametric, the triple hidden layer MLP models, and the triple hidden layer LSTM models.
Method B: The best out-performing model (BSMHVN ) from Table 3.4 with the average repli-
cating portfolio value from the parametric, the triple hidden layer MLP models, and the triple
hidden layer LSTM models. The one-day-ahead forecast errors of the replicating portfolio value
are used to compute the Root Mean Square Error (RMSE). Column I identifies the models, and
when comparing all models, column II reports the number of months out of the 64 months that
each model has the smallest RMSE, while column III reports the number of days out of the
1,326 days each model has the smallest RMSE. Forecasts are made for 1,326 trading days, and
there are 64 months covered in the sample using the monthly data.

(I) (II) (III)

Model Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

Method A

ParamHV AVGN -Models 17 592

M3HV AVGN -Models 39 519

L3HV AVGN -Models 7 215

Method B

BSMHVN 10 308

ParamHV AVGN -Models 13 372

M3HV AVGN -Models 35 448

L3HV AVGN -Models 6 198
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Table 4.9: This table, categorised into two parts, presents the out-of-sample forecasting perfor-
mance using daily and monthly statistics amongst the set of models, which averages the forecast
of the replicating portfolio value from models that use one-trading-day-ahead input variables to
forecast the one-trading-day-ahead delta. Below, in each of the parts, we compare the out-of-
sample performance of the following models: Method A: The average replicating portfolio value
from the parametric, the triple hidden layer MLP models, and the triple hidden layer LSTM
models. Method B: The best out-performing model (BSMHVN+1) from Table 3.5 with the
average replicating portfolio value from the parametric, the triple hidden layer MLP models,
and the triple hidden layer LSTM models. The one-day-ahead forecast errors of the replicating
portfolio value are used to compute the Root Mean Square Error (RMSE). Column I identifies
the models, and when comparing all models, column II reports the number of months out of
the 64 months that each model has the smallest RMSE, while column III reports the number
of days out of the 1,326 days each model has the smallest RMSE. Forecasts are made for 1,326
trading days, and there are 64 months covered in the sample using the monthly data.

(I) (II) (III)

Model Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

Method A

ParamHV AVGN+1 -Models 37 653

M3HV AVGN+1 -Models 16 443

L3HV AVGN+1 -Models 10 230

Method B

BSMHVN+1 29 389

ParamHV AVGN+1 -Models 15 354

M3HV AVGN+1 -Models 12 373

L3HV AVGN+1 -Models 8 210
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Table 4.10: This table, categorised into two parts, presents the out-of-sample forecasting perfor-
mance using daily and monthly statistics amongst the set of models, which averages the forecast
of the replicating portfolio value from models that use one-trading-day-ahead input variables
to forecast one-trading-day-ahead call option price from which the delta is derived analytically.
Below, in each of the parts, we compare the out-of-sample performance of the following models:
Method A: The average replicating portfolio value from the parametric, the triple hidden layer
MLP models, and the triple hidden layer LSTM models. Method B: The best out-performing
model (L3CHV 4N+1) from Table 3.6 with the average replicating portfolio value from the para-
metric, the triple hidden layer MLP models, and the triple hidden layer LSTM models. The
one-day-ahead forecast errors of the replicating portfolio value are used to compute the Root
Mean Square Error (RMSE). Column I identifies the models, and when comparing all models,
column II reports the number of months out of the 64 months that each model has the smallest
RMSE, while column III reports the number of days out of the 1,326 days each model has the
smallest RMSE. Forecasts are made for 1,326 trading days, and there are 64 months covered in
the sample using the monthly data.

(I) (II) (III)

Model Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

Method A

ParamCHV AVGN+1 -
Models

0 284

M3CHV AVGN+1 -Models 63 912

L3CHV AVGN+1 -Models 0 132

Method B

L3CHV 4N+1 1 369

ParamCHV AVGN+1 -
Models

0 153

M3CHV AVGN+1 -Models 63 721

L3CHV AVGN+1 -Models 0 87
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4.5 Robustness Tests

4.5.1 The Diebold–Mariano(DM) Tests

Similar to the DM tests performed in Chapters 2 and 3, the model pairs that are statistically

insignificant differences in their prediction accuracy have been reported in Table C.1.1. For the

66 pairs created from the averaging of models belonging to C-Models (using lagged/one-trading-

day-ahead input variables to forecast CN+1), CK-Models (using lagged/one-trading-day-ahead

input variables to forecast CN+1/KN+1), H-Models (using lagged/one-trading-day-ahead input

variables to forecast δN+1), CH-Models (using one-trading-day-ahead input variables to forecast

δN+1), HV -Models (using the δN+1 from H-Models), CHV -Models (using the δN+1 from CH-

Models), only one pair is insignificant, and apart from that all the other pairs have significant

forecasting power.

4.5.2 Bootstrap Tests

To further assess the validity of the forecasting performance results, we perform bootstrap tests

using the daily and monthly RMSEs and discuss them in Sections C.2.1 through C.2.4, and

present them in Tables C.2.1 and C.2.2 for C-Models that use lagged input variables to forecast

the CN+1, Tables C.2.3 and C.2.4 for C-Models that use one-trading-day-ahead input variables

to forecast the CN+1, Tables C.2.5 and C.2.6 for CK-Models that use one-trading-day-ahead

input variables to forecast the CN+1/KN+1, and Tables C.2.7 and C.2.8 for CK-Models that

use one-trading-day-ahead input variables to forecast the CN+1/KN+1, Tables C.2.9 and C.2.10

for H-Models that use lagged input variables to forecast the ∆N+1, Tables C.2.11 and C.2.12

for H-Models that use one-trading-day-ahead input variables to forecast the ∆N+1, Tables

C.2.13 and C.2.14 for CH-Models that use one-trading-day-ahead input variables to forecast

the δN+1, Tables C.2.15 and C.2.16 for HV -Models computed from the ∆N+1 obtained from

H-Models (that uses lagged input variables for forecasting), Tables C.2.17 and C.2.18 for HV -

Models computed from the ∆N+1 obtained from H-Models (that uses one-trading-day-ahead

input variables for forecasting), Tables C.2.19 and C.2.20 for CHV -Models computed from

the δN+1obtained from CH-Models in Appendix C.2, presents the results of the bootstrap

performed using the daily and monthly RMSEs. In Tables C.2.1 to C.2.8, we present the

lower/upper bounds from the bootstrap performed (with replacement) using monthly RMSEs

at a 95% confidence level and shows the winning percentage out of 64 months for each model
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including/excluding the δCN model and similarly, the 95 % confidence intervals computed from

bootstrapping of the daily RMSEs signify the winning percentage out of 1328 days for each

model and are reported as lower/upper bounds. In Tables C.2.9 to C.2.20, we repeat a similar

exercise of performing the bootstrap. The results from the bootstrap tests support the results

discussed in Section C.2.

4.5.3 Pairwise Test

In the several comparisons made in Sections 4.3 and 4.4, even though a particular model wins

by a higher percentage against other models, we investigate further these models pairwise by

performing a pairwise bootstrap comparison which is computed using the respective pair’s daily

RMSEs. Amongst the several comparisons performed in Sections 4.3, we find that the average of

the MLP class of models has consistently out-performed other classes of models, and in Section

4.4, the average of the MLP/Parametric class of models has consistently outperformed other

classes of models. We make similar conclusions when we compare the models’ average pairwise.

We summarise the results from the pairwise bootstrap tests from Table 91 (for the C-Models

that use lagged ahead input variables), Table 92 (for the C-Models that use one-trading-day-

ahead input variables), Table 93 (for the CK-Models that use lagged ahead input variables),

Table 94 (for the CK-Models that use one-trading-day-ahead input variables), Table 95 (for the

H-Models that use lagged input variables), Table 96 (for the H-Models that use one-trading-

day-ahead input variables), Table 97 (for CH-Models that use one-trading-day-ahead input

variables), Table 97 (for the HV -Models that use delta from H-Models, that uses lagged input

variables), Table 98 (for the HV -Models that use delta from H-Models, that uses one-trading-

day inputs variables) of the Electronic Appendix in Table C.1.2. We observe similar results

for the 28 pairs derived from averaging the models belonging to C-Models (that use lagged

input variables) and 28 pairs from averaging the models belonging to the CK-Models (that

use lagged input variables), where the MLP class of models outperforms for over 53.6%, the

parametric 10.7%, and the LSTM models for 10.7% of the pairs. Similar results can be seen for

the 6 pairs derived from averaging the models belonging to C-Models (that use one-trading-

day input variables) and the 6 pairs from averaging the models belonging to CK-Models (that

use one-trading-day input variables), where the MLP class of models outperforms for 50%, the

parametric 33.3%, and the LSTM models for 16.7% of the pairs. For the 3 pairs derived from

averaging the models belonging to H-Models (that use lagged input variables) and the 3 pairs

from HV -Models (that use lagged input variables), we observe similar results where the MLP
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class of models outperforms 66.7%, the parametric 33.3%, and the LSTM models for 0% of the

pairs. Finally, for the 3 pairs derived from averaging the models belonging to H-Models, 3 pairs

averaging the models belonging to HV -Models (that use one-trading-day input variables), 3

pairs derived from averaging the models belonging to CH-Models, and 3 pairs averaging the

models belonging to CHV -Models, we see exactly similar results, where the parametric class of

models outperforms 66.7%, the MLP 33.3%, and the LSTM class of models for 0% of the pairs.

Thus, the pairwise bootstrap comparison reveals conclusive evidence that a class of models could

consistently outperform.

4.6 Conclusion

This chapter introduces averaging methods for forecasting prices and delta and computing the

replicating portfolio value of the options positions. Furthermore, this chapter gauges the empir-

ical daily forecasting performance of prices and delta for S&P 500 index options using averaging

of parametric and ANN models. These investigations are based on comparisons between av-

eraging all parametric and averaging all the ANN models based on the class of hidden layers,

as well as comparing these models with the best performing models (as identified in Chap-

ters 2 and 3). The MLP and LSTM networks used in this study are trained using lagged and

one-trading-day-ahead input variables to forecast the one-trading-day-ahead option prices and

delta. Alternatively, we also analytically compute the one-trading-day-ahead delta from a class

of MLP and LSTM networks that forecasts the one-trading-day-ahead option price. The eco-

nomic significance of these forecasts is assessed by the daily forecast performance of the value

of the corresponding replicating portfolio.

With regards to the forecasting performance of daily option prices and moneyness, we find

that simple random walk outperforms all models. Furthermore, when we exclude the random

walk, we find that the average of all the triple hidden layer MLP models outperforms any

combination of the average of all the models considered in the study.3 When using one-trading-

day-ahead input variables, we test only the triple hidden layer models, and we find that the

average of all triple hidden layer MLP models again is typically the best-performing model also

outperforming the random walk forecasting model. However, while the average of all the triple

hidden layer MLP models typically could not out-perform the individually best out-performing

3These models include the parametric models, the average of all the single, or the double,
or the triple hidden layer LSTM models, and the average of all the single or the double hidden
layer MLP models
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LSTM model (identified in Chapter 2) for forecasting prices, it outperforms the individually

best out-performing LSTM model when forecasting moneyness. This also holds for models that

average the forecasts from models that use one-trade-day ahead inputs to forecast moneyness.

With regards to the forecasting performance of daily delta using lagged/one-trading day ahead

input variables, we find that the average of all the parametric models is capable of producing

forecasts with the lowest RMSEs, and is closely followed by the average of all the triple hidden

layer models. Similar results are also seen while measuring the forecasting performance of

daily delta, which was analytically derived from call option prices. However, the average of all

parametric models does not perform better than the best outperforming models (identified in

Chapter 3) when forecasting daily delta directly but does perform better when forecasting daily

delta analytically.

The economic significance of these forecasts is measured by comparing the forecast performance

of their corresponding replicating portfolio value. The average replicating portfolio value (with

lagged inputs) reveals that the average of all triple hidden layer MLP models and the average

of all parametric models perform similarly, while the average of all triple hidden layer LSTM

models has the least forecasting accuracy. The out-performance of the average of all triple hidden

layer MLP models also remains when compared with the best-performing models identified in

Chapter 3, where it has the lowest RMSEs followed by the BSM model. The replicating portfolio

value forecasting performance of models that use one-trading-day ahead inputs to forecast the

delta reveals that the average of all parametric models has the lowest RMSEs, but when it is

compared to the best-performing models, it fails to outperform. For the replicating portfolio

value forecasting performance of models that derive the delta analytically from call option prices,

we see contrasting results where the average of all triple hidden layer MLP models has the lowest

RMSEs and could also perform better than the best-performing models identified in Chapter 3.

Overall, the average triple hidden layer MLP models tend to perform the best for forecasting

option prices, with the parametric models performing better in forecasting delta and even better

than the best-performing models when delta is computed analytically from prices. For the

replicating portfolio, the pricing forecasts seem to dominate the delta forecasts revealing an

outperformance for the average triple hidden layer MLP models. Thus, model averaging could

potentially benefit forecasting pricing and hedging applications with ANN.
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Chapter 5

Optimal Pairs Trading–An Alternate

Way of Trading Equity ETF Pairs

Using Machine Learning Models

5.1 Introduction

Pairs trading (PT) is a statistical arbitrage method that invests in the spread between two eq-

uities whose prices have historically moved in unison (Gatev et al. (2006)). A long position is

taken in one stock, and a short position is taken in the other simultaneously. Trading signals

are based on deviations from the long-term equilibrium spread, and the spread between the two

stocks creates a stationary process. Investors act and profit from the momentary inconsistency

created when spreads deviate from their historical equilibrium in the belief that they will revert

shortly. PT is a market-neutral strategy because it generates returns regardless of whether the

market rises or falls. PT studies have primarily been focused on traditional methods, where

statistical and parametric tools are used to improvise the trading strategy (Gatev et al. (2006,

1999), Nath (2003), Vidyamurthy (2011)). This chapter considers the more advanced applica-

tions of machine learning-based PT strategies to provide a comprehensive empirical assessment

of MS arbitrage methodologies.

In this study, we introduce a new methodology for PT equity ETFs that outperforms existing

traditional strategies by implementing several modified versions of the distance method, the

cointegration method (using the Johansen and the Engle-Granger tests), the Kalman filter and
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the ratio method as baselines for comparison with several technical indicators and modified

versions of the decision trees (DT) and deep learning ANN models based on the MLP network

architecture (Dunis et al. (2006, 2015), Sarmento and Horta (2020)). We perform a comparative

analysis based on actual PnL ($ value), returns, Sharpe ratios, and other performance indicators.

The modified versions of the aforementioned traditional approaches are formulated by effectively

applying commonly used technical indicators, such as the Exponential Moving Averages (EMA),

Relative Strength Index (RSI), Moving Average Convergence Divergence (MACD), and Bollinger

Bands (BB) to the spread generated by these traditional approaches, thereby generating ways

to enhance returns. We effectively apply the traditional and modified approaches to eight

equity ETF pairs—four of which are cointegrated/correlated and four of which are not. Finally,

we investigate the back-test performance of these eight equity ETF pairs across three rolling

windows of 30, 50 and 100 days.

The back-test/forecasting performance of the 3,084 trading strategies across the 30-, 50-, and

100-day rolling windows demonstrates that the modified (MOD) strategies have the potential

to provide significant returns over traditional (TRAD) strategies. However, the average number

of winning/losing trades and the average maximum drawdown (MDD) for the MOD strategies

are higher compared to those of the TRAD set of trading strategies. More specifically, out of

the 216 methods (i.e. 9 methods, across 3 rolling windows, used for back-testing each of the

eight ETF pairs), 8.8% of the methods belonging to TRAD trading strategies outperform the

methods belonging to the MOD, and machine learning (ML) strategies, 69.9% of the methods

belonging toMOD trading strategies outperform the methods belonging to the TRAD andML

strategies, and 20.8% of the methods belonging to ML trading strategies had out-performed the

methods belonging to the MOD and TRAD strategies. Thus, the methods using ML-based

strategies tend to have more predictive power than methods using TRAD-based strategies.

This study makes three contributions to the literature in that it assesses the sensitivity of rolling

windows, uses technical indicators and gauges the impact of cointegration between the pairs of

assets. In order to unfold more information on ways to trade ETF pairs in a high-frequency

setting, we compute three rolling windows (30, 50 and 100 days). Chaudhuri and Singh (2015)

proposed a framework for PT using technical analysis (Momentum, BBs and MACD), but they

were applied to the stock prices. This study is extended by Chaudhuri et al. (2017), who used

BBs on the ratios of stock prices as an input to the support vector regression (SVR), RF and

Adaptive Neuro-Fuzzy Inference System (ANFIS) to infer PT opportunities. The RSI, a tech-

nical indicator, is applied to spreads in PTF Pro’s software to find investment opportunities.
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However, there are no studies that apply these and other technical indicators to the spread/ratio

and use them along with machine learning techniques to infer PT opportunities. In addition,

the modified machine learning strategies that have been designed in this study have a dynamic

stop-loss barrier rather than fixed stop-loss barriers, which is different from traditional strate-

gies (Nath (2003), Huck and Afawubo (2015), Ramos-Requena et al. (2020) and Vidyamurthy

(2004)). These modified sets of strategies could also be applied regardless of whether the pairs

are cointegrated or correlated, thereby generating unique ways to enhance portfolio returns.

This chapter is organised into four sections. Section 5.2 provides the theoretical aspect of the

models and methods used in this study. Section 5.3 elaborates on the source of the dataset,

the filters used to refine the dataset, the summary statistics of the dataset, and the inputs used

in the models to forecast the spread. Section 5.4 examines the calibration procedures used in

the models, the data fitting (network parameters, division of datasets, the optimisation and

generalisation procedures used to improve the accuracy of the MLP and DT models and the

performance criteria used to evaluate the trading strategies. Section 5.5 discusses the empirical

results by comparing the performance of the proposed models, and finally, Section 5.6 concludes

the study.

5.2 Models

5.2.1 Distance Methods

There have been several variations on distance method-based pair selection, including Nath

(2003), Gatev et al. (2006), Huck (2015), Huck and Afawubo (2015), Ramos-Requena et al.

(2017, 2020). Gatev et al. (2006)’s distance method of pair selection can be considered the

baseline.

5.2.1.1 The Distance Method - Version 1

Gatev et al. (2006) selected pairs that minimised the distance criteria. The distance measure

is calculated by minimising the sum of squared differences between two normalised price series.

The Euclidean squared distance is defined as

ESD =
∑
t

(PX(t)− PY (t))2 , (5.1)
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where PX(t) is the cumulative return of price series X at time t and PY (t) is the cumulative

return of price series Y at time t. The pairs which minimise (5.1) were selected. The spread is

the price difference between series X and Y, and at time t, it is defined as

S(t) = PY (t)− PX(t). (5.2)

The spread generated using Eq. (5.2) is denoted as ‘DISTV1.1-SPRD’ in this chapter. Since

the definition of the spread is vaguely mentioned and not written down mathematically, we also

follow the definition of spread provided in Ramos-Requena et al. (2017, 2020) as follows:

S(t) = log(PY (t)− PY (0))− log(PX(t)− PX(0)). (5.3)

The spread generated using Eq. (5.3) is denoted as ‘DISTV1.2-SPRD’.

5.2.1.2 The Distance Method - Version 2

Huck (2015)’s and Huck and Afawubo (2015)’s interpretations of Gatev et al. (2006)’s distance

method were slightly different. Initially, for each pair, they normalise the price series of X and

Y to start at $1, respectively, and then they formed pairs by finding the pairs that minimised

the sum of squared differences, as shown in Eq. (5.2). Although, Huck (2015) and Huck and

Afawubo (2015) did not specify a mathematical definition, Quantpedia1 also follows the same

interpretation and defines the spread as

S(t) = PY (t)− PX(t), (5.4)

which is denoted as ‘DISTV2-SPRD’.

5.2.1.3 The Distance Method - Version 3

Nath (2003) approached the distance method differently in terms of pairs selection and the

definition of trading signals. The author defined the distance measure as the sum of the square

of the daily differences in the normalised prices of the securities, where the price used is the

median of the mid-quote for each day. The normalisation of prices for each security is carried out

by subtracting the sample mean of the training period and dividing it by the sample standard

deviation over the training period. The spread defined by Nath (2003) is as follows:

S(t) = PY (t)− PX(t), (5.5)

and in this chapter, it is denoted as ‘DISTV3-SPRD’.

1Follow the link: https://quantpedia.com/strategies/pairs-trading-with-stocks/
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5.2.1.4 The Distance Method - Version 4

The distance approach method proposed by Gatev et al. (2006) was identified as sub-optimal

by Krauss (2017). First, minimising the sum of the squared differences between two normalised

price series would also minimise the spread. Second, this results in the spread having fewer

deviations from the mean. For PT to be profitable, the spread should ideally exhibit some

variation. Krauss (2017) expressed the spread variance S2
PX−PY as

S2
PX−PY = 1

T

T∑
t=1

(PX(t)− PY (t))2 −
(

1
T

T∑
t=1

(PX(t)− PY (t))
)2

, (5.6)

which can be solved for the average sum of squared distances (SSDPX ,PY ) as

SSDPX ,PY = 1
T

T∑
t=1

(PX(t)− PY (t))2 = S2
PX−PY +

(
1
T

T∑
t=1

(PX(t)− PY (t))
)2

. (5.7)

In this chapter, we denote the spread interpreted by Krauss (2017) in Eq. (5.7) as ‘DISTV4-

SPRD’.

5.2.2 The Co-integration Methods

Three methods are used to assess cointegration, as discussed below.

5.2.2.1 Co-integration Method - Using ADF Test

Engle and Granger (1987) set in motion the concept of cointegration, which could be applied

to produce a stationary time series (S(t)) by forming a specific linear combination of two non-

stationary time series (or I(1) processes) PX and PY as

S(t) = PX(t)− βPY (t)− µ− ε(t), (5.8)

where, St is I(0) and exhibits a mean-reverting behaviour µ denotes the intercept. ε(t) was

further examined using the Dickey and Fuller (1979) test to test for cointegration. We denote

the spread in Eq. (5.8) as ‘ADF-SPRD’.

5.2.2.2 The Co-integration Method - Using Johansen’s Test

Johansen (1988, 1991) overcame the drawbacks of Engle and Granger (1987) by analysing the

cointegration relationship between variables simultaneously in one system by introducing a coin-

tegration test for a multivariate system, known as the Johansen test. This test uses the Vector
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Error Correction Model (VECM) to find the cointegration coefficient/vector(β) and considers

every time series as an independent variable. Using the eigenvalue statistics and trace statistics,

we are able to determine whether the time series is statistically significantly cointegrated. We

denote the spread interpreted by Johansen (1988) as ‘JOHANSEN-SPRD’.

5.2.3 Kalman Filter - State Space Regression Method

Drakos (2016) defined the multivariate Kalman filter process as a three-step process comprised

of prediction, observation and correction steps. The aim of the Kalman filter is to calculate at

each time step the updated hedge ratio β(t) of the synthetic asset. Dunis et al. (2010) and Kim

(2011) applied the Kalman states space regression method, where the state-space model consists

of two matrix equations as shown below:

Y (t) = β(t)X(t) + ε(t), (5.9)

β(t) = β(t− 1) + η(t), (5.10)

where Eq. (5.9) is known as the measurement equation, and the state variables are shown in Eq.

(5.10), which is also known as the state transition equation. They described the change in state

variables from one time period to the next. There is a linear dependence on the previous state

given by the transition matrix as well as normally distributed system noise. In the general sense,

this means that the transition matrix is itself time-dependent. Y (t) is the dependent variable,

β(t) is time-varying regression coefficient (hedge ratio) and X(t) is the independent variable at

time t. ε(t) and η(t) are independent, uncorrelated error terms with standard deviations H and

Q, respectively.

Kim (2011) mentioned that the variances of the noise process and other unknown parameters

could be estimated by maximising the following likelihood function:

logL = −NT2 log 2π − 1
2

T∑
t=1

logF (t)− 1
2
v(t)′v(t)
F (t) , (5.11)

where v(t) is the one-step-ahead residual, which is calculated from the difference between Y (t)

and its estimate, F (t) is its variance and N and T are the number of columns of X(t) and the

number of elements of the time series Y (t), respectively. The set of regressions below is known

as the Kalman filter, and it provides an estimate of the coefficient β at time t given the estimate
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of β at t-1:

β(t|t− 1) = β(t), (5.12)

v(t) = Y (t)−X(t)β(t), (5.13)

F (t) = X(t)P (t)X(t)′ +H, (5.14)

β(t+ 1) = β(t) + P (t)X(t)′ v(t)
F (t) , (5.15)

P (t+ 1) = P (t)− P (t)X(t)′X(t)P (t) 1
F (t) +Q. (5.16)

The parameters H and Q are the error terms of the process. The higher the noise ratio ( QH ), the

more adaptive the beta, and the lower the ratio, the less adaptive the beta. The most important

parameter of the Kalman filter procedure is the noise ratio.

After obtaining the estimate for β(t), the spread is calculated using the equation

S(t) = PY (t)− β(t)PX(t), (5.17)

and it is denoted as ‘KALMAN-SPRD’.

5.2.4 The Ratio Method

The ratio method applied by Chaudhuri et al. (2017), Chaudhuri and Singh (2015), and PTF

Pro involves finding arbitrage opportunities from the movement in the ratio of the prices of two

stocks. The ratio between two stocks or two ETFs in a pair trading strategy can be defined as:

R(t) = (PX(t)/PY (t)) (5.18)

In this study, we denote the ratio in Eq. (5.18) as ‘RATIO-SPRD’.

5.2.5 Machine Learning Algorithms

5.2.5.1 Decision Trees

We use the Python Scikit package to implement a DT for multi-class classification of trading

signals. The Scikit package uses an optimised version of the Classification and Regression Tree

(CART) algorithm, which is very similar to the C4.5 algorithm, which is the successor to the ID3

algorithm. As per the documentation on Scikit, the ID3 algorithm builds a multi-way tree and
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identifies the categorical feature for each node that provides the most information for categorical

targets. To enhance a tree’s capacity to generalise to new data, trees are typically pruned after

reaching their maximum size. As per Seni and Elder (2010) and Bai et al. (2019), an information

gain ratio is used by the ID3 algorithm to classify data. The information gain ratio (IGR) for

classifying the categorical variable(X) using the training set(T ) is given as

IGR(T,X) = IG(T,X)
HX(T ) , (5.19)

where IG(T,X) is the information gain to the entropy and HX(T ) is the eigenvalue X for the

given T . The information gain can be further expanded as

IG(T,X) = H(T )−H(T | X), (5.20)

where H(T) is the entropy of T and H(T | X) is the empirical conditional entropy of the training

set T under the given condition X. H(T | X) can be further expanded as,

H(T | X) =
n∑
i=1

PiH (T | X = Xi) , (5.21)

∴ H(T ) = −
n∑
i=1

Pi log2 Pi, (5.22)

where Pi is the probability of classification ‘i’. Thus, the entropy of T under the eigenvalue X

is given as

HX(T ) = −
n∑
i=1

Pi log2 Pi. (5.23)

5.2.5.2 Multilayer Perceptron

The theoretical foundations of the MLP model are discussed in detail in Section 2.2.5.1.

5.2.6 Technical Indicators

To offer a comprehensive assessment, several technical indicators are used in the analysis, in-

cluding SMA, EMA, RSI, MACD, and BBs.

5.2.6.1 The Simple Moving Average

The simple moving average (SMA) calculates an average over a finite size window of n obser-

vations. The SMA for a window length (number of periods) of n is

SMAn(t) = 1
n

n∑
t=0

S(t− 1),
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where, in our study, S(t) denotes the spread from the respective parametric models.

5.2.6.2 The Exponential Moving Average

The exponential moving average (EMA) scales each observation exponentially, which the SMA

fails to do. The EMA is preferred over the SMA because the SMA’s trendline is delayed by

a factor proportional to n, as it was calculated using the previous n observations. Moreover,

this also delays the detection of a change in the trend. The EMA scales each observation by an

exponential factor α, and an n-day EMA is defined as

EMAn(t) = α× S(t) + (1− α)× EMA(t− 1),

where α =
(

2
1+n

)
and S(t) denotes the spread from the respective parametric models.

5.2.6.3 The Relative Strength Index

Wilder (1978) developed the RSI momentum oscillator, which measures the extent to which a

time series has a positive change to its negative change. The RSI is defined as

RSIn(t) = 100−
( 100

1 +RSn(t)

)
,

where RSn(t) = the average positive change in the spread (S(t)) in the past n days and the

average negative change in the spread (S(t)) in the past n days, while S(t) denotes the spread

from the respective parametric models. According to Wilder (1978), the RSI fluctuates between

0 and 100. When the RSI rises above 70, the upper threshold, it is considered overbought, and

when it falls below 30, the lower threshold, it is considered oversold.

5.2.6.4 The Moving Average Convergence/Divergence Oscillator

Appel developed the MACD oscillator to trade the weekly cycles of the stock market. Zakamulin

(2017) and Stock Charts stated that the MACD oscillator consists of the MAC (which is a

combination of two EMAs) and the Signal (which is an EMA of the MAC). The MAC

indicator is defined as

MAC(s,l)(t) = EMA(s)(t)− EMA(l)(t),
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where the default values for s and l are taken as 12 days and 26 days, respectively. The Signal

indicator is defined as,

Signal(n)(t) = EMAn(MAC(s,l)(t)),

where n is 9 days. TheMAC(s,l)(t) and the Signal(n)(t) are combined and denoted asMACD(s,l,n)(t).

5.2.6.5 Bollinger Bands

Bollinger (1992) introduced a set of three bands (upper, middle and lower bands) that uses

standard deviations to dynamically calculate whether a time series (or stock price) is at its

highest (if the price is at the upper band) or lowest (if the price is at the lower band). The

n-day Bollinger bands are computed as follows,

• Middle band: n-day simple/weighted moving average.

• Upper band: Middle band + 2 × n−day standard deviation.

• Lower band: Middle band - 2 × n−day standard deviation.

In this chapter, we denote the n-day BBs as BB(n).

5.3 Data

5.3.1 Dataset

According to Chan (2013), one of the biggest advantages of using ETF pairs instead of stock

pairs is that once a pair is cointegrated, it is less prone to fall apart due to the fundamental

economics of a basket of stocks. Changes in ETFs happen much more slowly compared to

the fundamental economics of a single stock. The focus of this paper is on a subset of equity

ETFs listed on the NYSE. NYSE Arca has the highest market share of traded volume and

liquidity depth and narrowest quoted spreads and quotes the most time at the best prices across

all US ETFs, according to the NYSE. Finding the number of possible pairs among the entire

universe of equity ETFs is computationally intensive. By limiting the subset to ETFs obtained

using the filters applied in Section 5.3.2, we select four ETF pairs with a cointegration and

correlation value of greater than 90%, of which we choose four ETF pairs. We also choose
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four ETF pairs having a cointegration and correlation value lesser than 10%. This makes

the strategy computationally faster and allows time for a thorough analysis of the selected

pairs. Thus, we choose the following four ETF pairs, ITOT.N/IXUS.N, IWF.N/XLE.N,

SCHB.N/SCHF.N, and SCHF.N/VO.N which had a cointegration and correlation value

of greater than 90% as of 31 January 2022. Similarly, we choose four ETF pairs, namely

QQQ.N/XLE.N, USMV.N/XLE.N, VO.N/VXUS.N, and VWO.N/XLE.N which had

a cointegration and correlation values of less than 10% as on 01 January 2019. We further

consider open-high-low-close (OHLC) time-series data with an end-of-day (EOD) frequency for

the period from 01 January 2019 to 31 January 2022, which includes 776 trading days for the

eight ETF pairs mentioned above. For back-testing, depending on the trading signals generated

by the strategies discussed in Section 5.3.4, we initiate a long/short position on the next day’s

open price of the respective pair, thereby allowing for the precise and practical entry and exit

points where EOD data are used. This approach prevents look-ahead bias.

5.3.2 Data Filtering

The following filtering steps are performed before a pair selection is carried out:

• ETFs with fund sizes greater than $500 million.

• After filtering for fund size, 50 ETFs are chosen on the basis of the fund size.

• ETFs traded since 2015 are selected.

After selecting the universe of the top 50 ETFs, we form 1,225 ETF pairs among the 50 individual

ETFs. Once 1,225 ETF pairs are formed, we then check for any missing quotes. If an individual

ETF in an ETF pair has a missing open, high, low or close value for a given date/time, we

consider the previous traded value.

5.3.3 Information Sets

5.3.3.1 Information Sets using Z-Score-Based Trading Models:

The inputs used in Z-Score-based trading strategies are tabulated in Table D.1.2 (refer to the

trading strategy codes mentioned in column I), from A1.1 to A1.6, B1.1 to B1.6, C1.1 to C1.6,

D1.1 to D1.6, E1.1 to E1.6, F1.1 to F1.6, G1.1 to G1.6, H1.1 to H1.6 and I1.1 to I1.6.
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5.3.3.2 Information Sets used for MLP- and DT-Based Trading Strategies:

For the various MLP- and DT-based strategies, we use a variety of variables as inputs, which

are modelled from the spreads using the methods mentioned below. We model the spread (S(t))

returns as

SprdRet(t) = S(t)
S(t− 1) , (5.24)

and the close price returns of each ETF in a given pair are computed as

CloseRet(t) = Close(t)
Close(t− 1) . (5.25)

We also compute the daily running profit and loss for each trade and denote them as ‘PnL()’

in the information sets used in the strategies mentioned below. The close price returns, spread

returns and PnL are further categorically encoded as follows:

• a value > 0 is categorised as 1,

• a value < 0 is categorised as -1,

• a value = 0 is categorised as 0.

(5.26)

In the information sets used in the strategies mentioned below, we denote the categorical columns

as ‘CATEG()’. Creating a target variable for the various MLP- and DT-based trading strate-

gies mentioned below involves a process of merging categorical values from two outputs. We

take the categorical values of the average PnL computed based on multiple trading strategies

(denoted as value_column1 in Eqs. (5.27), (5.28), 5.29)) and the categorical values of those re-

spective trading strategies underlying spread returns (denoted as value_column2 in Eqs. 5.27,

5.28, 5.29). The multiple trading strategies are used to compute the average PnL and the un-

derlying spread from which the spread returns are computed differently for the A3/A4, B3/B4,

C3/C4, F3/F4, G3/G4, H3/H4 and I3/I4 trading strategies. Later, we apply a logical function,

which binds these two categorical variable inputs into a single categorical variable (denoted as

value_output in Eqs. (5.27), (5.28) and (5.29)). The logical function has the following rules,

where a buy is categorised as follows:

• if value_column1 = 1 and value_column2 = 1, then value_output = 1

• if value_column1 = 1 and value_column2 = 0, then value_output = 1

• if value_column1 = 0 and value_column2 = 1, then value_output = 1

(5.27)

157



a sell is categorised as follows:

• if value_column1 = -1 and value_column2 = -1, then value_output = -1

• if value_column1 = -1 and value_column2 = 0, then value_output = -1

• if value_column1 = 0 and value_column2 = -1, then value_output = -1

(5.28)

and a hold is categorised as follows:

• if value_column1 = 0 and value_column2 = 0, then value_output = 0

• if value_column1 = 1 and value_column2 = -1, then value_output = 0

• if value_column1 = -1 and value_column2 = 1, then value_output = 0

(5.29)

Below, we denote the first ETF in a given ETF pair as SYM1 and the second ETF in that pair

as SYM2. Also, in the above-mentioned sections, depending on the rolling window, i.e. 30, 50

or 100 days, we select the variables used for the train and test and target sets based on that

respective rolling window. The categorical values used as input in these train and test sets are

modelled using the logic presented in Eq. (5.26). Similarly, the logic used to model the target

variable is presented in Eqs. (5.27), (5.28) and (5.29).

The training set for trading strategies A3 and A4 involves using the categorical values of the

close price returns of SYM1 and SYM2, the difference in close price returns between SYM1

and SYM2, the categorical values of the daily running PnL values of the trades generated

from trading strategies CLS − SYM1.1 to CLS − SYM1.5 and the categorical values of the

daily running PnL values of the trades generated from trading strategies CLS − SYM2.1 to

CLS−SYM2.5. 2 These common inputs are also used for the training set of the B3/B4, C3/C4,

F3/F4, G3/G4, H3/H4 and I3/I4 trading strategies. In addition to the above, the training set

of the A3 and A4 trading strategies also includes the categorical values of the daily running PnL

values of the trades generated from trading strategies A2.1 to A2.5 and the close price returns

of SYM1 and SYM2. For the other set of trading strategies, which are for the B3/B4, C3/C4,

F3/F4, G3/G4, H3/H4 and I3/I4 models, apart from the common set of inputs (mentioned

above), the additional set of inputs used in the training set involves the categorical values of

the daily running PnL values of the trades generated from trading strategies 2.1 to 2.5 of the

2Refer to Section 5.4.3 for further details on CLS − SYM1.1 to CLS − SYM2.6 trading
strategies
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respective model category. For example, for the B3/B4 trading strategies, the additional set of

inputs used in the training set would involve using the categorical values of the daily running

PnL values of the trades generated from trading strategies B2.1 to B2.5.

The target set for the A3 and A4 trading strategies involves using the categorical values of the

average PnL of the daily running PnL values of the trades generated by trading strategies A1.1

to A1.6 and the categorical values of the underlying spread returns (DIST V 1.1−SPRD), which

are transformed to a single categorical target variable using the logic presented in Eqs. (5.27),

(5.28) and (5.29). The target set for the other category of trading strategies, the B3/B4, C3/C4,

F3/F4, G3/G4, H3/H4 and I3/I4 trading strategies, involves using the categorical values of the

average PnL of the daily running PnL values of the trades generated from trading strategies 1.1 to

1.6 and the categorical values of the underlying spread returns of that respective model category.

For example, for the B3/B4 trading strategies, the target set would have the categorical values

of the average PnL of the daily running PnL values of the trades generated by trading strategies

B1.1 to B1.6 and the categorical values of the underlying spread returns (DIST V 1.2−SPRD).

A detailed tabular representation of the variables used in the train, test and target sets for each

of the rolling windows, i.e. 30-, 50-, and 100-day, can be found in Table D.1.3.

5.3.4 Entry and Exit Thresholds

In this section, we discuss the entry and exit conditions for the z-score, technical indicator and

machine learning-based trading strategies.

5.3.4.1 Conditions for Z-Score-Based Trading Strategies:

The trade entry and exit conditions for the various trading strategies and the spread S(t)3 for

each of the trading strategies listed in Table D.1.2 are given below, where φModel
1 and φModel

2 are

the standard deviations for entering and exiting a trade,4 respectively:

• Long threshold:

3Note that t = i, . . . , n, where, n = 30 for a 30-day rolling window, n = 50 for a 50-day rolling
window and n = 100 for a 100-day rolling window.

4These standard deviations can take the values 0.5, 1, 2, 2.7 and 3. We consider a combination
of these values to create scenarios for trading.
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– Entry: µS(t) − φModel
1 σS(t)

– Exit: µS(t) − φModel
2 σS(t)

• Short threshold:

– Entry: µS(t) + φModel
1 σS(t)

– Exit: µS(t) + φModel
2 σS(t)

where

• φModel
1 = 3 and φModel

2 = 2 for the A1.1, B1.1, C1.1, D1.1, E1.1, G1.1, H1.1 and I1.1

trading strategies (i.e. trading strategies with the suffix 1.1).

• φModel
1 = 3 and φModel

2 = 1 for the A1.2, B1.2, C1.2, D1.2, E1.2, G1.2, H1.2 and I1.2

trading strategies (i.e. trading strategies with the suffix 1.2).

• φModel
1 = 3 and φModel

2 = 0.5 for the A1.3, B1.3, C1.3, D1.3, E1.3, G1.3, H1.3 and I1.3

trading strategies (i.e. trading strategies with the suffix 1.3).

• φModel
1 = 2.7 and φModel

2 = 2 for the A1.4, B1.4, C1.4, D1.4, E1.4, G1.4, H1.4 and I1.4

trading strategies (i.e. trading strategies with the suffix 1.4).

• φModel
1 = 2.7 and φModel

2 = 1 for the A1.5, B1.5, C1.5, D1.5, E1.5, G1.5, H1.5 and I1.5

trading strategies (i.e. trading strategies with the suffix 1.5).

• φModel
1 = 2.7 and φModel

2 = 0.5 for the A1.6, B1.6, C1.6, D1.6, E1.6, G1.6, H1.6 and I1.6

trading strategies (i.e. trading strategies with the suffix 1.6).

5.3.4.2 Conditions for Technical Indicator-Based Trading Strategies

For the SMA trading strategies (refer to Section 5.2.6.1), namely A2.1, B2.1, C2.1, D2.1, E2.1,

G2.1, H2.1 and I2.1, the trade entry and exit conditions are as follows:5

• Long threshold:

– Entry: SMA(10)(S(t− 1)) ≤ SMA(20)(S(t)) and

SMA(10)(S(t)) ≥ SMA(20)(S(t))

5The long threshold refers to initiating a BUY condition, whereas the short threshold refers
to initiating a SELL condition.
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– Exit: SMA(10)(S(t− 1)) ≥ SMA(20)(S(t)) and

SMA(10)(S(t)) ≤ SMA(20)(S(t))

• Short threshold:

– Entry: SMA(10)(S(t− 1)) ≥ SMA(20)(S(t)) and

SMA(10)(S(t)) ≤ SMA(20)(S(t))

– Exit: SMA(10)(S(t− 1)) ≤ SMA(20)(S(t)) and

SMA(10)(S(t)) ≥ SMA(20)(S(t))

For the EMA trading strategies (refer to Section 5.2.6.2), namely A2.2, B2.2, C2.2, D2.2, E2.2,

G2.2, H2.2 and I2.2 strategies, the trade entry and exit conditions are as follows:5

• Long threshold:

– Entry: EMA(10)(S(t− 1)) ≤ EMA(20)(S(t)) and

EMA(10)(S(t)) ≥ EMA(20)(S(t))

– Exit: EMA(10)(S(t− 1)) ≥ EMA(20)(S(t)) and

EMA(10)(S(t)) ≤ EMA(20)(S(t))

• Short threshold:

– Entry: EMA(10)(S(t− 1)) ≥ EMA(20)(S(t)) and

EMA(10)(S(t)) ≤ EMA(20)(S(t))

– Exit: EMA(10)(S(t− 1)) ≤ EMA(20)(S(t)) and

EMA(10)(S(t)) ≥ EMA(20)(S(t))

For the RSI trading strategies (refer to Section 5.2.6.3), namely A2.3, B2.3, C2.3, D2.3, E2.3,

G2.3, H2.3 and I2.3 strategies, the trade entry and exit conditions are as follows:5

• Long threshold:

– Entry: RSI(14)(S(t− 1)) < Threshold30 and RSI(14)(S(t)) > Threshold(30)

– Exit: RSI(14)(S(t− 1)) > Threshold70 and RSI(14)(S(t)) < Threshold(70)

• Short threshold:

– Entry: RSI(14)(S(t− 1)) > Threshold70 and RSI(14)(S(t)) < Threshold(70)
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– Exit: RSI(14)(S(t− 1)) < Threshold30 and RSI(14)(S(t)) > Threshold(30)

For the MACD trading strategies (refer to Section 5.2.6.4), namely A2.4, B2.4, C2.4, D2.4,

E2.4, G2.4, H2.4 and I2.4 strategies, the trade entry and exit conditions are as follows:5

• Long threshold:

– Entry: (MAC(12,26)(S(t−1))< Signal(9)(S(t))) and (MAC(12,26)(S(t−1))> Signal(9)(S(t)))

– Exit: (MAC(12,26)(S(t−1))> Signal(9)(S(t))) and (MAC(12,26)(S(t−1))< Signal(9)(S(t)))

• Short threshold:

– Entry: (MAC(12,26)(S(t−1))> Signal(9)(S(t))) and (MAC(12,26)(S(t−1))< Signal(9)(S(t)))

– Exit: (MAC(12,26)(S(t−1))< Signal(9)(S(t))) and (MAC(12,26)(S(t−1))> Signal(9)(S(t)))

Finally, for the BB(20) trading strategies (refer to Section 5.2.6.5), namely A2.5, B2.5, C2.5,

D2.5, E2.5, G2.5, H2.5 and I2.5 strategies, the trade entry and exit conditions are:5

• Long threshold:

– Entry: S(t− 1) < Lower − band(20) and S(t) > Lower − band(20)

– Exit: S(t− 1) < Middle− band(20) and S(t) >= Middle− band(20)

• Short threshold:

– Entry: S(t− 1) > Upper − band(20) and S(t) < Upper − band(20)

– Exit: S(t− 1) > Middle− band(20) and S(t) <= Middle− band(20)

5.3.4.3 Conditions for MLP- and DT-Based Trading Strategies

The MLP and DT strategies, namely A3/A4, B3/B4, C3/C4, F3/F4, G3/G4, H3/H4 and I3/I4,

provide output as 0 (Hold), 1 (Buy Pair) or -1 (Sell Pair), and their trade entry and exit

conditions are as follows:5

• Long threshold:

– Entry: 1

– Exit: -1
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• Short threshold:

– Entry: -1

– Exit: 1

5.4 Model Calibration and Performance Criteria

5.4.1 Performance Criterion

The evaluation metrics used in this study to analyse the eight ETF pairs across the different

rolling windows are as follows.

5.4.1.1 The Sharpe Ratio

Sharpe (1994) defined the ratio for a given strategy as

Share Ratio = r̄p − rf
σp

, (5.30)

where rp is the average portfolio return, rf represents the risk-free rate and σp is the standard

deviation of the portfolio returns.

5.4.1.2 Maximum Drawdown

The Maximum Drawdown (MDD) calculates the maximum loss from a peak to a trough in a

given period to determine the downside risk. de Melo Mendes and Leal (2005) defined draw-down

as

Dt = log
(
Vl
Vh

)
, (5.31)

where Vl,t is the local minimum value of the portfolio at time t, and Vm,t is the local maximum

value of the portfolio at time t. The MDD for a strategy over the entire out-of-sample period

t = 1, 2, . . . is

MDD = min (Dt=1, . . . , Dt=N ) . (5.32)
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5.4.1.3 Other Performance Metrics

To assess the performance of these trading strategies, we use other performance metrics, includ-

ing the total number of trades, number of winning trades (i.e. trades with a PnL > 0), number

of losing trades (i.e. trades with a PnL < 0), total trade capital ($10, 000 is the initial capital

used for each trade), average profit per trade (i.e. the average profit of all the trades with a

PnL > 0), average loss per trade (i.e. the average loss of all the trades with a PnL < 0), gross

profit (i.e. the sum of the PnL of all trades having PnL > 0), gross loss (i.e. the sum of the PnL

of all trades having PnL < 0), net profit (which is the difference between the gross profit and

gross loss), average return, minimum PnL, maximum PnL, the ROI (i.e. the net profit divided

by the total capital), hit ratio (i.e. the number of profitable trades divided by the number of

unprofitable trades), expectancy ratio,6 profit factor (i.e. gross profit divided by the gross loss)

and the realised risk-reward ratio (i.e. the ratio of the average profit to the average loss).

5.4.2 Estimating Deep Learning MLP Network and DT Models

5.4.2.1 Network Parameters

This study uses a triple hidden layer MLP model (for models A4, B4, C4, D4, E4, F4, G4,

H4 and I4, mentioned in Tables D.2.1 to D.2.24), where the number of neurons in each hidden

layer is equivalent to the number of inputs to the respective triple hidden layer MLP model. We

solve a multi-class classification problem, where the output node of all of these MLP networks

has three neurons that predicts or classify the output as 1 (for buy), 0 (for hold) or -1 (for

sell). Since there are two or more label classes in these models, the cross-entropy loss function

is used as the loss function. The rectified linear unit (ReLU) function is used as the squashing

function between the hidden layers. The layer biases and weights of the different networks are

also estimated in these MLP models using the adaptive moment estimator (ADAM) (see Kingma

and Ba (2005)).

5.4.2.2 Data Division

The dataset covers EOD ETF prices for the period from 01 January 2019 to 31 January 2022 and

includes 776 trading days. The MLP methodology requires data for a training set, a validation

6(average profit per trade × hit ratio) - (average loss per trade × (1 - hit ratio))
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set and a test set. The training set is used to estimate the parameters, the validation set is used

to evaluate under-fitting and over-fitting, and the test set is used for out-of-sample prediction.

In this study, for the MLP and the DT models, we utilise an expanding window (in terms of

the number of days) for the training and a fixed size (of one trading day) for the test set. Thus,

the training set comprises trading days (1 to N) and the test set trading day (N + 1). This is

repeated for trading days N = 1, 2, ..., 776. A pictorial representation of the data division is

presented in Figure 5.1.

Figure 5.1: MLP and DT Data Division: The dataset spanning from 01 January 2019 to 31
January 2022 is divided into a training set and a test set. The training set is used to estimate
the parameters, and the test set is used for out-of-sample prediction.

5.4.3 Approach

Each of the eight symbol pairs has been back-tested for three different rolling windows of 30,

50 and 100 days. For each pair and each window, there are 127 trading strategies created using

11 different models, and the bifurcation of these 127 trading strategies is detailed below. Each

of these 127 trading strategies has a unique trading strategy code, and these codes are similar

across the three different rolling windows.

• Distance Method (Version 1.1), denoted as DIST V 1.1 − SPRD: There are 13 trading

strategies that use the spread from DIST V 1.1 − SPRD, and they are denoted by trading

strategy codes from A1.1 to A4.

• Distance Method (Version 1.2), denoted as DIST V 1.2 − SPRD: There are 13 trading

strategies that use the spread from DIST V 1.2 − SPRD, and they are denoted by trading

strategy codes from B1.1 to B4.
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• Distance Method (Version 2), denoted asDIST V 2−SPRD: There are 13 trading strategies

that use the spread from DIST V 2 − SPRD, and they are denoted by trading strategy

codes from C1.1 to C4.

• Distance Method (Version 3), denoted asDIST V 3−SPRD: There are 13 trading strategies

that use the spread from DIST V 1.3 − SPRD, and they are denoted by trading strategy

codes from D1.1 to D4.

• Distance Method (Version 4), denoted asDIST V 4−SPRD: There are 13 trading strategies

that use the spread from DIST V 1.4 − SPRD, and they are denoted by trading strategy

codes from E1.1 to E4.

• Co-integration Method using the Johansen’s Test approach, denoted as JOHANSEN −

SPRD: There are 13 trading strategies that use the spread from JOHANSEN −SPRD,

and they are denoted by trading strategy codes from F1.1 to F4.

• Co-integration Method - using the ADF approach, denoted as JOHANSEN − SPRD:

There are 13 trading strategies that use the spread from ADF − SPRD, and they are

denoted by trading strategy codes from G1.1 to G4.

• Kalman Method, denoted as KALMAN − SPRD: There are 13 trading strategies that

use the spread from KALMAN −SPRD, and they are denoted by trading strategy codes

from H1.1 to H4.

• Ratio Method, denoted as RATIO−SPRD: There are 13 trading strategies that use the

spread from RATIO − SPRD, and they are denoted by trading strategy codes from I1.1

to I4.

• Using Close Prices of individual instruments:

– Using close prices of Symbol 17 denoted as CLS − SYM − 1: There are five trading

strategies that use the close price from the first instrument in a given pair, and they

are denoted by trading strategy codes from CLS-SYM-1.1 to CLS-SYM-1.5.

– Using close prices of Symbol 27 denoted as CLS − SYM − 2: There are five trading

strategies that use the close price from the second instrument in a given pair, and

they are denoted by trading strategy codes from CLS-SYM-2.1 to CLS-SYM-2.5.

7Each pair consists of two ETFs. The first instrument in the pair is called ‘Symbol 1’, and
the second instrument is called ‘Symbol 2’.
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In this study, we compare two types of strategies, the traditional strategies (TRAD) and the

modified strategies (MOD). TRAD strategies are categorised based on the distance method

(versions 1.1,1.2,2,3 and 4), the co-integration methods (using the Johansen’s Test and the ADF),

and the Kalman Filter (refer to Sections 5.2.1, 5.2.2 and 5.2.3). Thus, the trading strategy codes

with suffixes 1.1 to 1.6 fall under the TRAD classification. Similarly, the categorisation of the

MOD trading strategies is based on machine learning algorithms (refer to Section 5.2.5) and

technical indicators (refer to Section 5.2.6), and the trading strategy codes with suffixes 2.1 to

4, fall under this classification.

5.5 Empirical Results

The back-test results of the comparisons of the eight pairs over the 127 trading strategies for

the three rolling windows on the basis of the various performance criteria (discussed in Section

5.4.1) are presented in Appendix D.2.8 To assess the 127 trading strategies for each pair, we

summarise the results of the tables from Appendix D.2 according to their trading strategy codes.

For example, the trading strategy code 1.1 averages the performance of all the trading strategy

codes from A1.1 to I1.1, i.e. trading strategy codes with the suffixes 1.1. Similar exercises are

performed for the other trading strategy codes, namely from 1.2 to 4.

5.5.1 Performance Based on ROI

Table 5.1 presents the relative forecasting performance based on average ROI. We compare nine

different methods of obtaining the spread9 and using the different sets of TRAD (in Panel I)

and MOD (in Panel II) trading strategies.

We find that the MOD strategies have consistently superior returns compared to the TRAD

strategies. Specifically, for the DIST V 1.1 − SPRD method, we find the MOD trading strategy

8The detailed results are presented as follows: for pair ITOT.N/IXUS.N in Table D.2.1
to D.2.3, for pair SCHB.N/SCHF.N in Table D.2.10 to D.2.12, for pair SCHF.N/V O.N
in Table D.2.13 to D.2.15, for pair V O.N/V XUS.N in Table D.2.19 to Table D.2.21, for pair
IWF.N/XLE.N in Table D.2.4 to Table D.2.6, for pair QQQ.N/XLE.N in Table D.2.7 to Table
D.2.7, for pair USMV.N/XLE.N in Table D.2.16 to Table D.2.18 and for pair VWO.N/XLE.N
in Table D.2.22 to Table D.2.24.

9These methods are DIST V 1.1−SPRD, DIST V 1.2−SPRD, DIST V 2−SPRD, DIST V 3−
SPRD, DIST V 4−SPRD, JOHANSEN−SPRD, ADF −SPRD, KALMAN−SPRD, and
RATIO − SPRD.
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2.3 has an excess return of 7.8% compared to the best-performing TRAD strategy.10 For the

DIST V 1.2 − SPRD (DIST V 2 − SPRD) method, the MOD strategy 4 has an excess return of

15.4% (18%) compared to the the best performing TRAD strategy 1.3.11 For the DIST V 2 −

SPRD, DIST V 3 − SPRD and DIST V 4 − SPRD methods, the improvement of the MOD

strategies compared to the TRAD is 18%, 23.1% and 23.1%, respectively.12

For the cointegration methods JOHANSEN−SPRD (and ADF −SPRD), theMOD trading

strategy 2.5 (2.3) reaches excess returns of 829.1% (381.5%), respectively, compared to the best

performing TRAD strategy 1.6 (1.2). Finally, the KALMAN − SPRD and RATIO − SPRD

methods show similar results, where for theMOD strategies, the KALMAN−SPRD method’s

2.2 strategy (an ROI of 38.2% in a 100-day rolling window), and RATIO−SPRD method’s 2.2

strategy (an ROI of 40.4% in a 30-day rolling window) surpassed their corresponding TRAD

trading strategies.

The next step is to compare the above nine methods by aggregating them on the basis of the

three rolling windows (30, 50, and 100 days) in Panel I of Table 5.2 presenting the average of

the methods aggregated over all the different rolling windows in Panel II of Table 5.2.

Based on these tables, we conclude that the MOD strategies clearly outperform the TRAD

strategies. ThreeMOD methods (DIST V 1.2−SPRD, DIST V 2−SPRD andDIST V 3−SPRD)

perform better in the 30-day rolling window, two methods (DIST V 4 − SPRD, and ADF −

SPRD) in the 50-day rolling window and four methods (DIST V 1.1 − SPRD, JOHANSEN −

SPRD, KALMAN − SPRD and RATIO − SPRD) in the 100-day rolling window. The 100-

day rolling window provides the highest overall returns for MOD strategies. This can also be

observed in Panel II of 5.2.13

Furthermore, we aim to gauge the ROI performance of the MLP and DT trading strategies

separately. Thus, we compare the 216 methods (nine methods to obtain the spreads across

10The MOD trading strategy 2.3 has ROI of 20% for a 100-day rolling window. The best-
performing TRAD strategy is strategy 1.3 with an ROI of 12.2% in a 50-day rolling window.

11The MOD strategy has an ROI of 26.2% in a 30-day rolling window, while the TRAD has
an ROI of 10.9% in a 100-day rolling window.

12For the DIST V 2 − SPRD method, the MOD trading strategy 4 is compared to the best
performing TRAD strategy 1.3, and for the DIST V 3−SPRD and DIST V 4−SPRD methods,
MOD trading strategy 2.4 is compared to the best-performing TRAD strategy, 1.4.

13In Panel I of 5.2, the TRAD strategies have an average ROI of 5.7% in a 30-day rolling
window, 5.4% in a 50-day rolling window and 12.8% in a 100-day rolling window. The cor-
responding MOD strategies have 9.1% in a 30-day rolling window, 44.1% in a 30-day rolling
window and 34.5% in a 100-day rolling window.
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three rolling windows for eight ETF pairs) by clubbing the TRAD trading strategy codes with

the suffixes 1.1 to 1.6, clubbing the MOD trading strategy codes with the suffixes 2.1 to 2.5

and comparing them to the MLP and DT trading strategy codes with the suffixes 3 to 4. These

results are summarised in Table D.1.6.

We find that out of the 216 methods, 22 (10.2%) methods belonging to TRAD strategies out-

perform the MOD strategies, while 193 (89.8%) methods for MOD strategies outperform the

TRAD strategies (see columns IV and V). To assess how the ML (MLP and DT) strategies

compare to other strategies, see columns VI, VII and VIII. Out of the 216 methods, 19 (8.8%)

methods belonging to TRAD strategies outperform the methods used forMOD andML strate-

gies, while 151 (70%) methods belonging to MOD strategies (excluding the methods used for

ML strategies) outperform the methods used for TRAD andML strategies, and 45 (20.8%)ML

strategies outperform the methods used for MOD and TRAD strategies. Thus, a considerable

number of methods under the MOD- and ML-based strategies provide improved forecasting

power compared to TRAD-based strategies.

5.5.2 Performance based on Average Number Winning and Losing Trades

Panel I in Table 5.3 compares the methods based on the average number of winning and los-

ing trades, according to the three rolling windows. On the basis of the winning and losing

trades derived from Panel I, the improvement percentages of the MOD-based strategies over

the TRAD-based strategies are reported in Panel II. In Panel III, the average number of winning

and losing trades are aggregated over all the different rolling windows.

We find that the average number of winning trades for the MOD-based strategies is 13.08%

higher for the 30-day, 14.31% higher for the 50-day, and 23.61% higher for the 100-day rolling

windows (compared to the TRAD-based strategies). Similarly, the average losing number of

trades for the MOD-based strategies is higher by 20% for the 30-day, 16.36% for the 50-day

and 30.72% for the 100-day rolling windows compared to the TRAD-based strategies. This high

number of trades implies higher transaction costs, but considering the rise of discount brokers,

this cost should be manageable. We also find that the overall number of winning and losing

trades (across all rolling windows) for MOD-based strategies is considerably higher compared

to that of TRAD-based strategies, as shown in Panel II of Table 5.3.
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5.5.3 Performance Based on the Profit Factor, Realised Risk-Reward Ratio,

Average Profit Per Trade and Max Drawdown

We compare the methods on the basis of the profit factor (i.e. the gross profit divided by the

gross loss) in Table 5.5, the realised risk-reward ratio (i.e. the ratio of the average profit to the

average loss) in Table 5.6, the average profit per trade in Table 5.4 and the Max drawdown in

Table 5.7. Panel I presents the aggregated effect over the three rolling windows, and Panel II

the aggregated effect over all the rolling windows.

We find contrasting results, where TRAD-based strategies may offer a better profit factor and

realised risk-reward ratio. Within the TRAD-based strategies, the ones back-tested on the 30-

and 100-day outperform the 50-day rolling window-based strategies. In Panel I of Table 5.5, for

the 30 and 100-day rolling window-based TRAD strategies, seven out of nine methods have a

double-digit profit factor. Similarly, in Panel I of Table 5.6, eight out of nine methods have a

double-digit realised risk-reward ratio, and for the 100-day rolling window, five methods have

a double-digit ratio. This phenomenon is also visible in Panel II of Table 5.5. A double-digit

ratio in these cases, however, does not indicate a higher return but rather a return that has

been adjusted for risk. This is clearly reflected in Panel I of Table 5.4, where the TRAD-based

trading strategies (on the 30- and 100-day rolling windows) have higher profit factor/realised

risk-reward ratios but fail to yield profitable trading strategies when accounted for dollar value.

In Panel I of Table 5.4, the MOD-based 30-day rolling window produces 76% higher average

profit per trade compared to the TRAD-based 30-day rolling window. Similarly, the MOD-

based 50- and 100-day rolling windows have 96% and 175% higher average profits per trade than

TRAD-based rolling window counterparts, respectively. The same reasoning holds true for the

average loss per trade in Panel II of Table 5.4, where the MOD-based 30- and 100-day rolling

windows result in a higher loss per trade than their TRAD-based rolling window counterparts.

This can also be prominently seen when it comes to comparing the average MDDs in Panel I

and II of Table 5.7, where the average MDDs are considerably higher for MOD-based strategies

across all rolling windows.

5.5.4 Performance of Individual Pairs

We performed further comparisons by reporting the performance of different methods aggregated

at the window/pair level by bifurcating the MOD- and TRAD-based trading strategies that

have positive returns in Table D.1.4, and listing the pair/window method-based comparisons,
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with aggregation performed across all rolling windows in Table D.1.5.

In Table D.1.4, the numbers ofMOD- and TRAD-based trading strategies with positive returns

are typically the same in columns III and IV, but the number of TRAD-based trading strategies

having greater returns than the MOD-based trading strategies is virtually less than five or

close to zero trading strategies for all the eight ETF pair across all the rolling windows. The

number of MOD-based trading strategies having greater returns than the TRAD-based trading

strategies are prominently highlighted in column VI of this table, and columns VII and VIII

show that, even at a window-pair level, we see the MOD-based trading strategies outperforming

the TRAD-based trading strategies (except in one instance where for the IWF.N/XLE.N pair,

where 100-days rolling based TRAD trading strategies have outperformed the MOD trading

strategies).

Now for the pair/window method-based comparisons performed in Table D.1.5, we can no-

tice that, for the ITOT.N/IXUS.N pair, out of the 93 TRAD and 71 MOD strategies with

positive returns, only 2.2% of the TRAD-based strategies have returns greater than MOD-

based strategies, while 43.7% MOD-based strategies have positive returns greater than TRAD-

based strategies. Similarly, for the IWF.N/XLE.N pair, 67.7% of the MOD-based strategies

have returns greater than than those of the TRAD-based strategies; for the QQQ.N/XLE.N

pair, 66.3% of the MOD-based strategies have returns greater than those of the TRAD-based

strategies; for the SCHB.N/SCHF.N pair, 27% of the MOD-based strategies have returns

greater than those of the TRAD-based strategies; for the SCHF.N/V O.N pair, 57.7% of the

MOD-based strategies have returns greater than those of the TRAD-based strategies; for the

USMV.N/XLE.N pair, 63.6% of theMOD-based strategies, have returns greater than those of

the TRAD-based strategies; for the V O.N/V XUS.N pair, 58.3% of the MOD-based strategies

have returns greater than those of the TRAD-based strategies and for the VWO.N/XLE.N

pair 68.8% of the MOD-based strategies have returns greater than those of the TRAD-based

strategies.

Finally, for all 3,084 back-tested strategies (i.e. back-tests for the eight pairs), we calculate

the Sharpe and subsequently the annualised Share ratio and present these results in Appendix

D.1 (from Table D.2.1 to Table D.2.24). However, we summarise these results for the trading

strategies that have a positive Sharpe ratio in two tables: first in Table 5.8, where we present

the results for the various methods and their associated trading strategies categorised on the

basis of TRAD- and MOD-based trading strategies, and second in Table D.1.7, where these

methods and their associated trading strategies are presented on the basis of the eight pairs.
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Some trading strategies, despite having excellent returns, have negative Sharpe ratios and higher

drawdowns, which could indicate that these strategies are not consistent. However, the trades

in these trading strategies with higher drawdowns would or could see their drawdowns reverse

when the trade is closed, resulting in that trade having a profit. Thus, strategies that exhibit

larger volatility could have negative Sharpe ratios. The annualised Sharpe ratios in this study

are calculated based on a risk-free rate postulated as 1.5% (the average 3M treasury bill risk-free

rate prevailing from January 2019 to January 2022 was 0.81%). The results summarised in both

of the above-mentioned tables are computed before transaction costs. The results from Tables

5.8 and D.1.7 indicate that, for the 30-day rolling window, the highest annualised Sharpe ratio,

18.57 is achieved by the TRAD-based trading strategies belonging to the KALMAN − SPRD

method (for the QQQ.N/XLE.N pair, which has an ROI of 28.28%), whereas the MOD-based

trading strategies can attain a ratio of only 9.37 (for the IWF.N/XLE.N pair, which has an ROI

of 55.70%), which belongs to the DIST V 2 − SPRD method. However, for the 50-day rolling

window, the MOD-based trading strategies belonging to the ADF − SPRD method (for the

VWO.N/XLE.N pair, which has an ROI of 121.28%) have the highest annualised Sharpe ratio,

30.48, while the TRAD-based trading strategies belonging to the KALMAN −SPRD method

(for the IWF.N/XLE.N pair, which has an ROI of 11.07%) attain the highest annualised Sharpe

ratio, at 56.99.

Lastly, for the 100-day rolling window, the MOD-based trading strategies belonging to the

DIST V 1.1 − SPRD method (for the ITOT.N/IXUS.N pair, which has an ROI of 12.95%) have

the highest annualised Sharpe ratio, 16.19, and the highest annualised Sharpe ratio, 18.41 is

attained by the TRAD-based trading strategies belonging, once again to the DIST V 1.1−SPRD

method (for the USMV.N/XLE.N pair, which has an ROI of 12.10%). Though across the three

rolling windows, TRAD-based strategies have better Sharpe ratios than MOD-based strategies

in some cases, they have lower returns than the MOD-based strategies. Additionally, in Table

D.1.7, there are numerous strategies that do not have the highest Sharpe ratios but are still

able to produce higher returns. To compare these results to past literature, Gatev et al. (2006)

attained Sharpe ratios of 0.35 and 0.59 for the top 5 and top 20 US stock pairs, respectively,

from 1962 until 2002. After accounting for transaction costs, Avellaneda and Lee (2010)’s PCA-

based strategies for US securities had an average annual Sharpe ratio of 1.44 from 1997 to 2007,

and from 2003–2007, it is 0.9. Their ETF strategies with volume information achieved a Sharpe

ratio of 1.51 from 2003 to 2007, while Huck (2009) using an ELECTRE III and neural networks

achieved a Sharpe ratio of 1.5. Dunis et al. (2009, 2015) did not report their performance

metrics in terms of the Sharpe ratio. For the top five pairs of securities from the NYSE, Lin

172



(2018) calculated a Sharpe ratio of 0.078. Yang et al. (2017) achieved a Sharpe ratio of 0.94

with pairs based on Chinese commodity futures. Using annualised Sharpe ratios, Stübinger and

Bredthauer (2017) reported that the best-performing pairs from the S&P 500 from 1998 to 2015

had an annualised Sharpe ratio of 8.14 (significant returns of 50.50% p.a.) after transaction

costs. The results of our back-testing show that our trading strategies have significant returns

with a better Sharpe ratio.
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Table 5.1: This table is divided into two panels; where in Panel I, we present the forecasting performance comparison on the basis of the average ROIs among the trading strategies
with suffixes 1.1 to 1.6, which are classified as ‘TRAD’ trading strategies, for the rolling windows of 30, 50 and 100 days. In Panel II, we present the forecasting performance
comparison on the basis of the average ROIs among the trading strategies with suffixes 2.1 to 4, which are classified as ‘MOD’ trading strategies, for the rolling windows of 30, 50
and 100 days.

Panel I

"TRAD" trading strategies (Average ROI)

30 days 50 days 100 days

Model Category 1.1 1.2 1.3 1.4 1.5 1.6 1.1 1.2 1.3 1.4 1.5 1.6 1.1 1.2 1.3 1.4 1.5 1.6

DISTV 1.1 − SPRD 1.6% 2.8% 2.4% 3.1% 3.3% 6.6% 2.8% 4.6% 12.2% 11.0% 6.5% 10.6% 4.6% 9.7% 9.5% 5.0% 7.3% 9.8%

DISTV 1.2 − SPRD 2.4% 1.7% 3.2% 1.8% 3.8% 5.8% 4.1% 8.3% 7.6% 7.0% 7.7% 2.3% 10.9% 6.9%

DISTV 2 − SPRD 1.0% 1.8% 0.8% 3.1% 1.7% 2.2% 1.0% 3.6% 3.8% 2.0% 0.6% 1.6% 1.1% 1.4% 2.2% 0.7% 1.7% 2.3%

DISTV 3 − SPRD 2.9% 1.5% 1.5% 4.6% 3.3% 3.4% 0.3% 1.1% 2.2% 0.4% 1.5% 3.1% 2.7% 2.9% 2.6% 3.4% 3.7%

DISTV 4 − SPRD 2.9% 1.5% 1.5% 4.6% 3.3% 3.4% 0.3% 1.1% 2.2% 0.4% 1.5% 3.1% 2.7% 2.9% 2.6% 3.4% 3.7%

JOHANSEN − SPRD 4.9% 9.6% 8.9% 5.6% 14.7% 18.0% 11.7% 20.1% 17.9% 7.5% 16.3% 24.7% 5.1% 4.0% 6.9% 7.6% 5.7% 8.2%

ADF − SPRD 10.4% 10.9% 15.5% 33.0% 19.0% 17.5% 1.8% 17.9% 14.7% 0.5% 1.5% 2.1% 61.7% 118.2% 103.1% 73.3% 70.9% 35.2%

KALMAN − SPRD 11.1% 3.0% 8.6% 6.9% 3.9% 6.2% 5.8% 0.2% 1.8% 8.2% 0.2% 0.3% 5.0% 6.1% 8.6% 6.1% 5.7% 17.4%

RATIO − SPRD 1.2% 1.3% 1.4% 1.5% 2.4% 3.3% 1.9% 2.6% 3.1% 2.6% 4.6% 5.6% 1.0% 2.1% 3.2% 2.2% 3.7% 4.3%

Panel II

"MOD" trading strategies (Average ROI)

30 50 100

Model Category 2.1 2.2 2.3 2.4 2.5 3 4 2.1 2.2 2.3 2.4 2.5 3 4 2.1 2.2 2.3 2.4 2.5 3 4

DISTV 1.1 − SPRD 7.8% 6.5% 14.1% 17.8% 10.0% 15.0% 10.9% 5.9% 9.6% 16.5% 18.1% 8.7% 14.5% 13.9% 0.5% 5.9% 20.0% 18.9% 11.9% 15.5% 17.2%

DISTV 1.2 − SPRD 6.9% 19.7% 5.4% 9.3% 23.8% 26.2% 11.6% 14.4% 9.7% 7.2% 15.1% 11.3% 13.5% 15.7% 10.1% 14.5% 4.2%

DISTV 2 − SPRD 15.5% 8.2% 1.3% 7.4% 7.3% 8.6% 16.6% 13.8% 7.1% 2.5% 7.8% 10.4% 2.7% 12.4% 12.3% 11.2% 1.8% 3.5% 9.9% 9.7% 21.7%

DISTV 3 − SPRD 11.5% 12.2% 9.4% 2.9% 24.2% 14.8% 15.7% 2.0% 21.1% 27.7% 7.7% 5.3% 4.4% 13.3% 5.4% 2.7% 6.1% 8.1% 9.6%

DISTV 4 − SPRD 11.1% 12.2% 9.4% 2.9% 13.4% 13.0% 13.0% 2.0% 21.1% 27.7% 7.7% 9.6% 7.1% 4.4% 13.3% 5.4% 2.7% 6.1% 14.9% 9.6%

JOHANSEN − SPRD 19.8% 62.9% 12.9% 141.4% 51.3% 3.5% 12.4% 113.6% 175.1% 256.1% 64.1% 95.0% 16.3% 24.0% 78.8% 150.3% 110.4% 37.0% 853.9% 16.7% 13.9%

ADF − SPRD 66.7% 44.4% 52.4% 7.8% 29.1% 9.2% 24.8% 210.5% 342.7% 499.7% 28.7% 50.9% 15.6% 8.0% 75.2% 36.6% 72.6% 20.9% 138.1% 12.4% 10.0%

KALMAN − SPRD 37.5% 16.0% 23.4% 6.6% 7.7% 12.8% 9.0% 18.3% 13.2% 25.9% 21.8% 6.7% 6.9% 19.1% 38.2% 7.5% 0.7% 29.4% 20.7% 11.4%

RATIO − SPRD 7.3% 40.4% 25.5% 4.7% 3.6% 19.0% 7.5% 38.4% 22.0% 4.6% 7.5% 7.0% 11.1% 36.4% 33.7% 3.6% 9.1% 12.5%
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Table 5.2: In Panel I, we present the forecasting performance comparison
on the basis of the average ROIs among the trading strategies classified
as ‘TRAD’ from Panel I and the trading strategies classified as ‘MOD’
from Panel II of Table 5.1, for the rolling windows of 30, 50 and 100 days.
In Panel II of this table, we present the overall forecasting performance
comparison on the basis of the average ROI for the ‘TRAD’ and ‘MOD’
trading strategies presented in Panel I of this table.

Panel I

TRAD(Average ROI) MOD(Average ROI)

Model Category 30 50 100 30 50 100

DISTV 1.1 − SPRD 3.4% 7.5% 7.3% 12.9% 13.9% 14.0%

DISTV 1.2 − SPRD 3.3% 5.8% 8.9% 14.9% 11.9% 11.3%

DISTV 2 − SPRD 1.9% 2.3% 1.6% 10.9% 9.4% 10.7%

DISTV 3 − SPRD 3.1% 1.4% 3.0% 11.4% 11.0% 7.2%

DISTV 4 − SPRD 3.1% 1.4% 3.0% 10.0% 11.0% 8.2%

JOHANSEN − SPRD 9.5% 15.7% 6.1% 42.9% 129.8% 165.2%

ADF − SPRD 18.8% 7.6% 74.6% 33.9% 180.1% 52.9%

KALMAN − SPRD 6.6% 3.2% 7.9% 18.3% 15.0% 22.6%

RATIO − SPRD 1.8% 3.3% 2.8% 16.9% 14.9% 17.8%

Panel II

Model-Category TRAD
(Average ROI)

MOD
(Average ROI)

DISTV 1.1 − SPRD 6.1% 13.6%

DISTV 1.2 − SPRD 4.4% 12.5%

DISTV 2 − SPRD 2.0% 10.4%

DISTV 3 − SPRD 2.7% 9.6%

DISTV 4 − SPRD 2.7% 9.7%

JOHANSEN − SPRD 9.3% 117.6%

ADF − SPRD 42.4% 93.5%

KALMAN − SPRD 6.4% 18.7%

RATIO − SPRD 2.6% 16.5%
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Table 5.3: This table is divided into two panels, where in Panel I, we present the comparison on the basis of the average number of trades amongst the
trading strategies classified as ‘TRAD’ (i.e. those trading strategies with suffixes 1.1 to 1.6), and the trading strategies which are classified as ‘MOD’
(i.e. those trading strategies with suffixes 2.1 to 4), for the rolling windows of 30, 50 and 100 days. In Panel II, we present the percentage increase in
winning and losing trades when using MOD over TRAD-based strategies. These percentages are inferred from Panel I of this table. In Panel III, we
present the overall comparison on the basis of the average number of trades for the ‘TRAD’ and ‘MOD’ trading strategies presented in Panel I of this
table.

Panel I

TRAD MOD

Avg. Number of Winning Trades Avg. Number of Loosing Trades Avg. Number of Winning Trades Avg. Number of Loosing Trades

Model-Category 30 50 100 30 50 100 30 50 100 30 50 100

DISTV 1.1 − SPRD 2 2 1 2 2 1 51 49 45 56 53 49

DISTV 1.2 − SPRD 5 4 1 5 4 3 45 42 34 47 41 35

DISTV 2 − SPRD 2 2 1 2 2 1 48 44 40 59 54 51

DISTV 3 − SPRD 6 4 3 2 4 2 43 42 38 54 52 48

DISTV 4 − SPRD 6 4 3 2 4 2 42 41 38 54 52 48

JOHANSEN − SPRD 12 8 7 11 9 7 49 47 45 51 48 44

ADF − SPRD 3 3 2 4 4 2 46 44 44 46 45 48

KALMAN − SPRD 2 2 1 2 2 1 48 43 39 49 47 42

RATIO − SPRD 3 3 2 2 3 1 42 37 34 67 58 53

Panel II

Percentage increase in winning and losing trades when using
MOD over TRAD strategies

Avg. Number of Winning Trades Avg. Number of Loosing Trades

Model-Category 30 50 100 30 50 100

DISTV 1.1 − SPRD 26.08 28.64 51.24 25.48 24.72 46.16

DISTV 1.2 − SPRD 8.47 10.40 27.68 9.07 9.80 11.27

DISTV 2 − SPRD 21.60 20.40 37.25 30.39 31.22 58.52

DISTV 3 − SPRD 6.45 8.37 9.99 21.54 11.87 24.66

DISTV 4 − SPRD 6.33 8.26 9.99 21.61 11.85 24.71

JOHANSEN − SPRD 3.08 5.14 5.80 3.64 4.04 5.69

ADF − SPRD 14.34 15.51 28.45 12.13 10.50 21.74

KALMAN − SPRD 19.13 20.83 25.76 28.62 21.33 35.26

RATIO − SPRD 12.31 11.31 16.43 27.52 21.98 48.53

Average % 13.09 14.32 23.62 20.00 16.37 30.73

Panel III

TRAD MOD

Model Category Avg. Number
Of Winning
Trades

Avg. Number
Of Loosing
Trades

Avg. Number
Of Winning
Trades

Avg. Number
Of Loosing
Trades

DISTV 1.1 − SPRD 1 2 48 53

DISTV 1.2 − SPRD 3 4 40 41

DISTV 2 − SPRD 2 1 44 54

DISTV 3 − SPRD 5 3 41 51

DISTV 4 − SPRD 5 3 41 51

JOHANSEN − SPRD 9 9 47 47

ADF − SPRD 2 3 45 46

KALMAN − SPRD 2 2 43 46

RATIO − SPRD 3 2 37 59

176



Table 5.4: This table is divided into two panels, where in Panel I, we present the comparison on the basis of the average profit per trade amongst the trading strategies classified as ‘TRAD’ (i.e.
those trading strategies with suffixes 1.1 to 1.6), and the trading strategies which are classified as ‘MOD’ (i.e. those trading strategies with suffixes 2.1 to 4), for the rolling windows of 30, 50 and
100 days. In Panel II, we do a similar exercise by presenting a comparison based on the basis of the average loss per trade.

Panel I

TRAD MOD

Avg. Average Profit Per Trade ($) Avg. Average Profit Per Trade ($)

Model Category 30 50 100 30 50 100

DISTV 1.1 − SPRD 156 180 397 264 244 282

DISTV 1.2 − SPRD 181 253 134 185 220 278

DISTV 2 − SPRD 118 109 87 245 249 253

DISTV 3 − SPRD 136 146 158 220 214 231

DISTV 4 − SPRD 136 146 158 222 214 231

JOHANSEN − SPRD 132 157 139 550 780 1,670

ADF − SPRD 704 986 2,326 512 1,596 1,024

KALMAN − SPRD 346 252 375 568 545 504

RATIO − SPRD 173 146 98 224 212 220

Panel II

TRAD MOD

Avg. Average Loss Per Trade ($) Avg. Average Loss Per Trade ($)

Model Category 30 50 100 30 50 100

DISTV 1.1 − SPRD 118 109 87 244 248 251

DISTV 1.2 − SPRD 154 316 365 212 240 290

DISTV 2 − SPRD 156 180 397 264 244 273

DISTV 3 − SPRD 215 201 265 217 203 275

DISTV 4 − SPRD 215 201 265 217 203 275

JOHANSEN − SPRD 406 124 77 873 1,576 821

ADF − SPRD 646 2,207 1,211 1,841 3,700 11,041

KALMAN − SPRD 399 408 291 846 854 577

RATIO − SPRD 263 230 553 311 286 325
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Table 5.5: This table is divided into two panels, where in Panel I, we present the compar-
ison on the basis of the average profit factor amongst the trading strategies classified as
‘TRAD’ (i.e. those trading strategies with suffixes 1.1 to 1.6), and the trading strategies
which are classified as ‘MOD’ (i.e. those trading strategies with suffixes 2.1 to 4), for the
rolling windows of 30, 50 and 100 days. In Panel II, we present the overall comparison on
the basis of the average number of trades for the ‘TRAD’ and ‘MOD’ trading strategies
presented in Panel I of this table.

Panel I

TRAD MOD

Model Category 30 50 100 30 50 100

DISTV 1.1 − SPRD 32.4 12.9 226.2 1.6 2.3 24.7

DISTV 1.2 − SPRD 1.2 1.0 0.3 1.0 1.1 1.0

DISTV 2 − SPRD 37.1 65.1 60.8 1.4 1.3 1.4

DISTV 3 − SPRD 34.0 1.1 21.7 11.1 1.1 1.1

DISTV 4 − SPRD 34.0 1.1 21.7 11.1 1.1 1.1

JOHANSEN − SPRD 1.8 1.5 4.1 1.4 3.2 2.3

ADF − SPRD 140.2 10.6 20.9 4.5 224.0 54.5

KALMAN − SPRD 178.3 44.3 327.4 1.2 1.1 1.9

RATIO − SPRD 17.8 68.9 46.8 1.1 1.0 1.0

Panel II

Model Category TRAD MOD

DISTV 1.1 − SPRD 90.5 9.5

DISTV 1.2 − SPRD 0.8 1.0

DISTV 2 − SPRD 54.3 1.4

DISTV 3 − SPRD 18.9 4.4

DISTV 4 − SPRD 18.9 4.4

JOHANSEN − SPRD 2.5 2.3

ADF − SPRD 57.2 94.9

KALMAN − SPRD 180.1 1.4

RATIO − SPRD 44.5 1.1

178



Table 5.6: This table is divided into two panels, where in Panel I, we present the compar-
ison on the basis of the average realised risk-reward ratio amongst the trading strategies
classified as ‘TRAD’ (i.e. those trading strategies with suffixes 1.1 to 1.6), and the trading
strategies which are classified as ‘MOD’ (i.e. those trading strategies with suffixes 2.1 to
4), for the rolling windows of 30, 50 and 100 days. In Panel II, we present the overall
comparison on the basis of the average number of trades for the ‘TRAD’ and ‘MOD’
trading strategies presented in Panel I of this table.

Panel I

TRAD MOD

Model Category 30 50 100 30 50 100

DISTV 1.1 − SPRD 38.9 13.4 324.3 1.2 1.4 8.9

DISTV 1.2 − SPRD 1.1 1.0 0.6 1.0 1.0 1.0

DISTV 2 − SPRD 28.1 38.1 69.2 1.4 1.3 1.5

DISTV 3 − SPRD 6.2 0.8 7.3 11.3 1.3 1.3

DISTV 4 − SPRD 6.2 0.8 7.3 11.4 1.3 1.3

JOHANSEN − SPRD 1.8 1.7 3.3 1.2 2.1 2.3

ADF − SPRD 43.0 4.4 19.8 4.6 95.8 54.5

KALMAN − SPRD 140.3 26.5 258.8 1.5 1.4 1.6

RATIO − SPRD 8.5 25.8 25.1 1.3 1.3 1.3

Panel II

Model Category TRAD MOD

DISTV 1.1 − SPRD 114.0 3.9

DISTV 1.2 − SPRD 0.9 1.0

DISTV 2 − SPRD 44.4 1.4

DISTV 3 − SPRD 4.8 4.7

DISTV 4 − SPRD 4.8 4.7

JOHANSEN − SPRD 2.3 1.9

ADF − SPRD 22.5 52.8

KALMAN − SPRD 141.8 1.5

RATIO − SPRD 19.2 1.3
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Table 5.7: This table is divided into two panels, where in Panel I, we present the compari-
son on the basis of the average max drawdown amongst the trading strategies classified as
‘TRAD’ (i.e. those trading strategies with suffixes 1.1 to 1.6), and the trading strategies
which are classified as ‘MOD’ (i.e. those trading strategies with suffixes 2.1 to 4), for the
rolling windows of 30, 50 and 100 days. In Panel II, we present the overall comparison on
the basis of the average number of trades for the ‘TRAD’ and ‘MOD’ trading strategies
presented in Panel I of this table. The number presented below are dollar values.

Panel I

TRAD MOD

Model Category 30 50 100 30 50 100

DISTV 1.1 − SPRD -239 -256 -111 -1,362 -1,342 -1,255

DISTV 1.2 − SPRD -434 -646 -772 -1,779 -1,283 -1,249

DISTV 2 − SPRD -316 -411 -473 -1,606 -1,640 -1,391

DISTV 3 − SPRD -547 -718 -490 -1,873 -1,713 -1,316

DISTV 4 − SPRD -547 -718 -490 -1,891 -1,758 -1,325

JOHANSEN − SPRD -3,333 -887 -320 -9,521 -14,914 -7,676

ADF − SPRD -2,100 -7,424 -2,244 -14,356 -30,213 -20,146

KALMAN − SPRD -656 -815 -487 -2,850 -2,781 -2,290

RATIO − SPRD -614 -758 -659 -1,600 -1,486 -1,333

Panel II

Model Category TRAD MOD

DISTV 1.1 − SPRD -202 -1,320

DISTV 1.2 − SPRD -617 -1,437

DISTV 2 − SPRD -400 -1,546

DISTV 3 − SPRD -585 -1,634

DISTV 4 − SPRD -585 -1,658

JOHANSEN − SPRD -1,513 -10,704

ADF − SPRD -3,923 -21,572

KALMAN − SPRD -653 -2,640

RATIO − SPRD -677 -1,473
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Table 5.8: This table presents the summary of the Sharpe Ratios, which are categorised on the
basis of Window- and Method-wise)

MOD TRAD

Window Model Category Max. Annualized Sharpe Ratio

30 DISTV 1.1 − SPRD 7.14 2.06

DISTV 2 − SPRD 9.37

DISTV 3 − SPRD 4.76

DISTV 4 − SPRD 4.76

JOHANSEN − SPRD 5.87 1.27

ADF − SPRD 5.08 11.91

KALMAN − SPRD 3.81 18.57

RATIO − SPRD 4.76

50 DISTV 1.1 − SPRD 6.67 4.60

DISTV 1.2 − SPRD 3.97 1.43

DISTV 2 − SPRD 9.37 9.37

DISTV 3 − SPRD 6.19

DISTV 4 − SPRD 6.19

JOHANSEN − SPRD 9.05 5.56

ADF − SPRD 30.48

KALMAN − SPRD 3.33 56.99

100 RATIO − SPRD 4.44 5.87

DISTV 1.1 − SPRD 16.19 18.41

DISTV 1.2 − SPRD 2.38 1.59

DISTV 2 − SPRD 10.48 13.49

DISTV 3 − SPRD 0.32

DISTV 4 − SPRD 0.32

JOHANSEN − SPRD 8.25 5.71

ADF − SPRD 7.14 11.43

KALMAN − SPRD 6.83 2.86

RATIO − SPRD 3.49
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Table 5.9: This table presents the back-test metrics for the pair QQQ.N/XLE.N for the 30 days rolling window.The table is subdivided into two parts, where in Part I, we present the back-test metrics for the trading strategies using the spread from the DIST V 1.1

model, and in Part II, the trading strategies use the JOHANSEN − SPRD model.

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X) (XI) (XII) (XIII) (XIV) (XV) (XVI) (XVII) (XVIII) (XIX) (XX)

Trading
Strategy
Code

Model
Name

Total
Number
of
Trades

Number
of

Winning
Trades

Number
of Loosing
Trades

Average
Profit

per Trade
($)

Average
Loss per
Trade
($)

Gross
Profit
($)

Gross
Loss
($)

Net Profit
($)

ROI (%) Max P&L
($)

Min P&L
($)

Daily
Sharpe
Ratio

Annualized
Sharpe
Ratio

Hit Ratio Expectancy Profit
Factor

Realized
Risk

Reward
Ratio

Max
Drawdown

($)

Part I: Models derived using the spread obtained from DISTV 1.1 − SPRD30D

A1.1 DISTV 1.1 − ZSPRD30D
(3,2) - - - - - - - - - - - - - - - - - -

A1.2 DISTV 1.1 − ZSPRD30D
(3,1) - - - - - - - - - - - - - - - - - -

A1.3 DISTV 1.1 − ZSPRD30D
(3,0.5) - - - - - - - - - - - - - - - - - -

A1.4 DISTV 1.1 − ZSPRD30D
(2.7,2) 4 1 3 262.05 171.53 262.05 514.6 -252.55 -2.53 262.05 -226.15 -0.98 -15.56 25 -63.14 0.51 1.53 -514.6

A1.5 DISTV 1.1 − ZSPRD30D
(2.7,1) 3 1 2 325.1 361.47 325.1 722.94 -397.84 -3.98 325.1 -623.79 -0.6 -9.52 33.33 -132.64 0.45 0.9 -722.94

A1.6 DISTV 1.1 − ZSPRD30D
(2.7,0.5) 3 1 2 318.02 354.12 318.02 708.24 -390.21 -3.9 318.02 -374.34 -0.73 -11.59 33.33 -130.09 0.45 0.9 -708.24

A2.1 DISTV 1.1 − SPRD30D − SMA(10,20) 12 7 5 441.77 641.08 3092.42 3205.4 -112.98 -1.13 1112.86 -1432.79 -0.22 -3.49 58.33 -9.45 0.96 0.69 -2287.18

A2.2 DISTV 1.1 − SPRD30D − EMA(10,20) 22 16 6 409.95 851.33 6559.27 5107.97 1451.3 14.51 2101.89 -2011.03 -0.1 -1.59 72.73 66 1.28 0.48 -2246.75

A2.3 DISTV 1.1 − SPRD30D −MACD(12,26,9) 37 25 12 264.16 281.91 6603.91 3382.98 3220.94 32.21 1422.9 -887.69 -0.16 -2.54 67.57 87.07 1.95 0.94 -2533.12

A2.4 DISTV 1.1 − SPRD30D −RSI(14) 5 3 2 1618.7 576.95 4856.11 1153.9 3702.21 37.02 4771.09 -1099.04 0.26 4.13 60 740.44 4.21 2.81 -1099.04

A2.5 DISTV 1.1 − SPRD30D −BB(20) 9 6 3 304.87 574.76 1829.24 1724.28 104.96 1.05 968.03 -1324.15 -0.23 -3.65 66.67 11.69 1.06 0.53 -1558.57

A3 DISTV 1.1 − SPRD30D −DECTREE 350 166 184 106.66 79.59 17705.79 14645.45 3060.34 30.6 673.13 -420.52 -1.05 -16.67 47.43 8.75 1.21 1.34 -1310.27

A4 DISTV 1.1 − SPRD30D −MLP 313 145 168 124.37 87.49 18034.15 14698.76 3335.39 33.35 1044.96 -675.27 -0.88 -13.97 46.33 10.66 1.23 1.42 -1229.09

Part VI: Models derived using the spread obtained from JOHANSEN − SPRD30D

F1.1 JOHANSEN − ZSPRD30D
(3,2) 21 13 8 42.9 61.55 557.7 492.38 65.32 0.65 131.41 -247.04 -0.28 -4.44 61.9 3.11 1.13 0.7 -490.63

F1.2 JOHANSEN − ZSPRD30D
(3,1) 20 15 5 97.9 123.76 1468.48 618.79 849.69 8.5 532.09 -310.42 -0.27 -4.29 75 42.48 2.37 0.79 -617.95

F1.3 JOHANSEN − ZSPRD30D
(3,0.5) 18 14 4 112.18 154.49 1570.49 617.95 952.53 9.53 651.81 -310.42 -0.28 -4.44 77.78 52.92 2.54 0.73 -617.95

F1.4 JOHANSEN − ZSPRD30D
(2.7,2) 26 15 11 48.16 183.84 722.4 2022.24 -1299.84 -13 131.41 -1396.83 -0.32 -5.08 57.69 -50 0.36 0.26 -1984.89

F1.5 JOHANSEN − ZSPRD30D
(2.7,1) 23 16 7 109.63 1046.69 1754.1 7326.84 -5572.73 -55.73 532.09 -6507.09 -0.32 -5.08 69.57 -242.24 0.24 0.1 -7325.99

F1.6 JOHANSEN − ZSPRD30D
(2.7,0.5) 19 14 5 132.17 1204.29 1850.4 6021.46 -4171.06 -41.71 651.81 -5052.73 -0.37 -5.87 73.68 -219.59 0.31 0.11 -6021.46

F2.1 JOHANSEN − SPRD30D − SMA(10,20) 24 13 11 767.88 465.92 9982.38 5125.15 4857.23 48.57 3360.29 -1056.81 -0.08 -1.27 54.17 202.43 1.95 1.65 -1452.51

F2.2 JOHANSEN − SPRD30D − EMA(10,20) 38 18 20 1195.49 401.04 21518.8 8020.86 13497.94 134.98 14284.7 -1008.03 0.19 3.02 47.37 355.23 2.68 2.98 -4489.25

F2.3 JOHANSEN − SPRD30D −MACD(12,26,9) 40 19 21 652.72 484 12401.66 10163.99 2237.66 22.38 6435.11 -2816.45 -0.06 -0.95 47.5 55.94 1.22 1.35 -3560.87

F2.4 JOHANSEN − SPRD30D −RSI(14) 7 5 2 901.94 380.31 4509.72 760.62 3749.1 37.49 2162.65 -704.89 0.3 4.76 71.43 535.6 5.93 2.37 -704.89

F2.5 JOHANSEN − SPRD30D −BB(20) 22 12 10 1059.39 1215.26 12712.67 12152.61 560.06 5.6 10190.62 -8935.66 -0.09 -1.43 54.55 25.56 1.05 0.87 -10373.95

F3 JOHANSEN − SPRD30D −DECTREE 350 163 187 98.56 92.49 16065.71 17295.28 -1229.57 -12.3 547.34 -672.38 -1.11 -17.62 46.57 -3.52 0.93 1.07 -2932.04

F4 JOHANSEN − SPRD30D −MLP 236 116 120 114.34 136.11 13263.76 16332.81 -3069.05 -30.69 929.85 -1383.47 -0.79 -12.54 49.15 -13.01 0.81 0.84 -3737
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Table 5.10: This table presents the back-test metrics for the pair V O.N/V XUS.N for the 30 days rolling window.The table is subdivided into two parts, where in Part I, we present the back-test metrics for the trading strategies using the spread from the DIST V 1.1 model,
and in Part II, the trading strategies use the JOHANSEN − SPRD model.

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X) (XI) (XII) (XIII) (XIV) (XV) (XVI) (XVII) (XVIII) (XIX) (XX)

Trading
Strategy
Code

Model
Name

Total
Number
of
Trades

Number
of

Winning
Trades

Number
of Loosing
Trades

Average
Profit

per Trade
($)

Average
Loss per
Trade
($)

Gross
Profit
($)

Gross
Loss
($)

Net Profit
($)

ROI (%) Max P&L
($)

Min P&L
($)

Daily
Sharpe
Ratio

Annualized
Sharpe
Ratio

Hit Ratio Expectancy Profit
Factor

Realized
Risk

Reward
Ratio

Max
Drawdown

($)

Part I: Models derived using the spread obtained from DISTV 1.1 − SPRD30D

A1.1 DISTV 1.1 − ZSPRD30D
(3,2) 1 - 1 - 109.23 - 109.23 -109.23 -1.09 - -109.23 - - - -109.23 - - -109.23

A1.2 DISTV 1.1 − ZSPRD30D
(3,1) 1 1 - 117.28 - 117.28 - 117.28 1.17 117.28 - - - 100 117.28 117.28 117.28 -

A1.3 DISTV 1.1 − ZSPRD30D
(3,0.5) 1 1 - 110.89 - 110.89 - 110.89 1.11 110.89 - - - 100 110.89 110.89 110.89 -

A1.4 DISTV 1.1 − ZSPRD30D
(2.7,2) 4 - 4 - 60.45 - 241.8 -241.8 -2.42 - -90.39 -8.92 -141.6 - -60.45 - - -241.8

A1.5 DISTV 1.1 − ZSPRD30D
(2.7,1) 2 1 1 145.11 33.51 145.11 33.51 111.6 1.12 145.11 -33.51 -0.76 -12.06 50 55.8 4.33 4.33 -33.51

A1.6 DISTV 1.1 − ZSPRD30D
(2.7,0.5) 2 1 1 138.65 67.69 138.65 67.69 70.96 0.71 138.65 -67.69 -0.8 -12.7 50 35.48 2.05 2.05 -67.69

A2.1 DISTV 1.1 − SPRD30D − SMA(10,20) 17 7 10 91.49 88.61 640.45 886.11 -245.66 -2.46 216.07 -168.73 -1.47 -23.34 41.18 -14.44 0.72 1.03 -466.55

A2.2 DISTV 1.1 − SPRD30D − EMA(10,20) 20 11 9 56.99 92.23 626.86 830.1 -203.24 -2.03 159.89 -171.1 -1.75 -27.78 55 -10.16 0.76 0.62 -382.48

A2.3 DISTV 1.1 − SPRD30D −MACD(12,26,9) 31 20 11 57.94 88.12 1158.85 969.31 189.54 1.9 108.8 -244.03 -1.74 -27.62 64.52 6.12 1.2 0.66 -649.89

A2.4 DISTV 1.1 − SPRD30D −RSI(14) 3 2 1 713.67 236.17 1427.34 236.17 1191.17 11.91 736.97 -236.17 0.45 7.14 66.67 397.09 6.04 3.02 -236.17

A2.5 DISTV 1.1 − SPRD30D −BB(20) 17 9 8 91.57 26.85 824.09 214.81 609.28 6.09 222.43 -78.92 -1.45 -23.02 52.94 35.84 3.84 3.41 -145.98

A3 DISTV 1.1 − SPRD30D −DECTREE 385 181 204 27.08 22.44 4900.71 4578.23 322.48 3.22 163.09 -133.03 -4.31 -68.42 47.01 0.84 1.07 1.21 -778.42

A4 DISTV 1.1 − SPRD30D −MLP 335 144 191 30.56 25.56 4400.02 4882.35 -482.33 -4.82 120.53 -183.49 -3.99 -63.34 42.99 -1.44 0.9 1.2 -1164.63

Part VI: Models derived using the spread obtained from JOHANSEN − SPRD30D

F1.1 JOHANSEN − ZSPRD30D
(3,2) 21 9 12 74 20.92 666.04 251.04 415 4.15 421.03 -119.75 -0.32 -5.08 42.86 19.76 2.65 3.54 -136.81

F1.2 JOHANSEN − ZSPRD30D
(3,1) 21 9 12 81.91 24.75 737.2 296.97 440.23 4.4 421.03 -119.75 -0.32 -5.08 42.86 20.97 2.48 3.31 -182.59

F1.3 JOHANSEN − ZSPRD30D
(3,0.5) 21 9 12 87.75 27.21 789.73 326.53 463.2 4.63 421.03 -119.75 -0.32 -5.08 42.86 22.06 2.42 3.22 -189.15

F1.4 JOHANSEN − ZSPRD30D
(2.7,2) 25 11 14 93.56 28.96 1029.2 405.44 623.76 6.24 421.03 -130.04 -0.26 -4.13 44 24.95 2.54 3.23 -266.86

F1.5 JOHANSEN − ZSPRD30D
(2.7,1) 24 11 13 220.16 29.93 2421.81 389.12 2032.69 20.33 1621.5 -130.04 0.04 0.63 45.83 84.69 6.22 7.36 -250.39

F1.6 JOHANSEN − ZSPRD30D
(2.7,0.5) 23 11 12 270.36 32.31 2973.92 387.77 2586.15 25.86 2040.55 -130.04 0.08 1.27 47.83 112.45 7.67 8.37 -250.39

F2.1 JOHANSEN − SPRD30D − SMA(10,20) 26 15 11 226.66 142.5 3399.89 1567.46 1832.43 18.32 772.66 -436.6 -0.27 -4.29 57.69 70.47 2.17 1.59 -436.6

F2.2 JOHANSEN − SPRD30D − EMA(10,20) 29 16 13 295.76 227.58 4732.2 2958.55 1773.65 17.74 918.25 -800.52 0.18 2.86 55.17 61.15 1.6 1.3 -1365.5

F2.3 JOHANSEN − SPRD30D −MACD(12,26,9) 40 25 15 202.35 239.21 5058.68 3588.21 1470.47 14.7 2099.09 -652.27 -0.34 -5.4 62.5 36.76 1.41 0.85 -1130.56

F2.4 JOHANSEN − SPRD30D −RSI(14) 8 5 3 1319.72 662.16 6598.6 1986.49 4612.11 46.12 5338.3 -1622.95 0.26 4.13 62.5 576.51 3.32 1.99 -1622.95

F2.5 JOHANSEN − SPRD30D −BB(20) 21 13 8 240.79 538.51 3130.32 4308.11 -1177.79 -11.78 1223.09 -2065.71 -0.11 -1.75 61.9 -56.12 0.73 0.45 -3424.52

F3 JOHANSEN − SPRD30D −DECTREE 338 160 178 25.5 27.79 4080.33 4946.92 -866.58 -8.67 174.23 -144.36 -4.15 -65.88 47.34 -2.56 0.82 0.92 -1154.62

F4 JOHANSEN − SPRD30D −MLP 266 117 149 28.33 29.59 3314.44 4409.49 -1095.05 -10.95 145.74 -165.24 -3.7 -58.74 43.98 -4.12 0.75 0.96 -1659.48
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5.6 Conclusion

This chapter presents a new modified approach for PT equity ETFs formulated by effectively

applying commonly used technical indicators and machine learning algorithms (DT and deep

learning MLP models) to spreads generated by traditional approaches. This study offers a

thorough analysis of this new modified approach which back-tests eight ETF pairs across three

rolling windows (30-, 50-, and 100-days) and also provides a detailed back-test of 127 trading

strategies using spreads derived from nine approaches, some of which are modified, and some

are traditional. Finally, we perform a comparative analysis of these trading strategies based on

actual PnL, returns, Sharpe ratios, and other performance indicators.

There are several key takeaways. First, modified strategies provide significant improvement in

returns over traditional strategies. Second, the average number of winning/losing trades and the

average maximum drawdown of modified strategies are higher than those of traditional strate-

gies, and modified strategies typically surpass traditional strategies when coming to profitability.

Third, by bifurcating the methods of modified strategies and gauging the trading performance

of methods based on machine learning-based trading strategies, we find that 21% of the ma-

chine learning-based strategies outperform the methods belonging to modified and traditional

strategies.

These results provide empirical evidence that machine learning-based strategies can be useful in

improving the performance of pair trading. Moreover, machine learning and modified strategies

are designed to have dynamic stop-loss barriers rather than fixed stop-loss barriers, which are

typical of traditional strategies, allowing traders to hold trades for a longer duration. Further-

more, these modified strategies can be applied regardless of whether the pairs are cointegrated

or correlated, thereby generating unique ways to enhance portfolio returns. Finally, the ap-

proaches discussed in this study are easy to implement and provide practitioners with a variety

of profitable opportunities to select from.
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Chapter 6

Conclusion

Machine learning algorithms are widely used by practitioners and academicians as risk manage-

ment tools to improve asset price predictions and hedging applications and to develop effective

trading strategies for short- and long-term investing. This thesis analyses the effectiveness of

associated financial applications using machine learning approaches.

6.1 Summary of Findings

This thesis starts with an extensive empirical assessment of the daily forecasting performance

of S&P 500 call option prices/moneyness from September 9, 2012, through December 31, 2017.

We experimented with parametric models and single, double, and triple hidden layered MLP

and LSTM models trained on lagged and one-trading-day-ahead input variables. The numerical

investigations reveal that ANNs tend to provide an improvement in the daily out-of-sample

forecast performance of options prices and moneyness compared to parametric models. More

specifically, LSTM models are the best-performing models when using lagged input variables,

while MLP models perform best when one-trading-day-ahead input variables are employed.

Within the parametric models, the Heston Jump Diffusion model had the lowest RMSEs than

the other three parametric models (the Black–Scholes–Merton, Heston, and the Finite Moment

Log Stable), and this holds for both types of inputs: lagged and one-trading-day-ahead input

variables. In addition, forecasting prices directly offers improved performance compared to

forecasting prices with re-scaled models for moneyness (using lagged inputs), with LSTM models

outperforming other parametric and MLP models. The robustness tests further support these

findings. Finally, it is evident that neither parametric nor non-parametric models (such as MLP
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and LSTM models) can improve on a simple random walk forecasting model. This suggests

that there may be some intrinsic randomness that either parametric or non-parametric models

cannot effectively forecast. Although the out-of-sample performance of parametric models is not

necessarily dominant, at least for forecasting, they have an essential role in developing inputs

for the deep learning ANN models (MLPs and LSTMs).

In the second study, the ability to forecast the daily S&P 500 call option delta and the corre-

sponding replicating portfolio value using triple hidden layer deep learning ANN and parametric

models (with lagged and one-trading-day-ahead input variables) is empirically evaluated. Both

an analytical inference from option prices using one-trading-day-ahead input variables and a

direct forecast of the delta using lagged and one-trading-day-ahead input variables are made,

and the economic significance of these forecasts is further gauged by assessing the daily fore-

cast performance of the value of the corresponding replicating portfolio. We find that the

Black–Scholes–Merton model outperforms the parametric and ANN (MLP and LSTM) models,

whether using lagged or one-trading-day-ahead input variables. We find similar results when

evaluating these models’ performance in forecasting the replicating portfolio. However, when

the delta is estimated analytically from predicted option prices, then the LSTM models dis-

play the best performance relative to the other models. Within the parametric models, the

Black–Scholes–Merton model demonstrates the best performance in forecasting the delta di-

rectly, and the Heston Jump Diffusion model exhibits the best performance in predicting the

delta analytically. Thus, MLP and LSTM models typically do not enhance (statistically or

economically) the forecasting performance of delta compared to parametric models.

The third study assesses the empirical daily forecasting performance of averaging methods. We

compare the models by averaging the forecasts of prices, deltas and replicating portfolios from

deep learning ANN and parametric models discussed in the first two studies. We also compare

the performance of these models with the best-performing models from Chapters 2 and 3. The

models used in this study are trained using lagged and one-trading-day-ahead input variables to

forecast option prices/moneyness/delta, and one-trading-day-ahead input variables to forecast

the prices from which the delta is then analytically derived. The economic significance of the

delta forecasting models is assessed by comparing the forecasting performance of the value of the

corresponding replicating portfolio. We find that the simple random walk model provides the

best performance in forecasting daily option prices and moneyness (with lagged input variables),

while the average of all triple hidden layer MLP models is typically the best performing model,

even outperforming the random walk forecasting model (with one-trading-day-ahead input vari-

186



ables). When the random walk is excluded, the average of all the triple hidden layer MLP

models outperforms any combination of the average of all the models considered in the study.

Furthermore, while the average of all the triple hidden layer MLP models typically cannot out-

perform the individually best-performing LSTM model (identified in Chapter 2) for forecasting

prices, it outperforms the individually best out-performing LSTM model when forecasting mon-

eyness. These results hold for models that average the forecasts from models that use lagged

and one-trade-day ahead inputs.

The averages of all parametric models and the average of all triple hidden layer MLP models

generate superior forecasts for delta (directly and analytically). Although the average of all

parametric models falls short compared to the best-performing models identified in Chapter

3 when forecasting the daily delta directly, it does perform better when forecasting the daily

delta analytically. The averages of all triple hidden layer MLP models and the averages of

all parametric models typically exhibit similar performance regarding the forecasting of their

corresponding replicating portfolio values, even when they are compared to the best-performing

models listed in Chapter 3 or when delta is computed analytically from option prices. Thus,

ANN model averaging can be advantageous for forecasting, pricing, and hedging applications,

but the ideal model depends on the application. Thus it is recommended not to automatically

prefer ANN models, as, on occasion, random walk or simple parametric models such as Black-

Scholes can provide better predictions in pricing and hedging.

The fourth study presents a new modified approach for PT equity ETFs, which is formulated by

effectively applying commonly used technical indicators and machine learning algorithms (deci-

sion tree and deep learning MLP models) to the spreads generated by traditional approaches.

We carry out an exhaustive comparison of this newly modified approach by back-testing eight

ETF pairs over three rolling windows over 127 trading strategies. The actual PnL, returns,

Sharpe ratios, and other performance indicators serve as the basis for our comparative analysis.

We find that the forecasting performance across the 30-, 50-, and 100-day rolling windows of the

MOD-based strategies have provided significant returns over TRAD-based strategies, as well as

a higher average number of winning and losing trades and a higher average maximum drawdown

compared to TRAD-based trading strategies. The performance of methods based on machine

learning-based trading strategies obtained after bifurcating the performance of methods belong-

ing to MOD-based trading strategies shows that 21% of the machine learning-based strategies

outperform the methods belonging to both MOD- and TRAD-based trading strategies. Thus,

machine learning-based strategies can improve the performance ofMOD-based strategies of pair
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trading. The dynamic stop-loss barriers used by machine learning- and MOD-based strategies,

as opposed to the fixed stop-loss barriers used by TRAD-based strategies, make it easier for

traders to hold positions for extended periods of time. Additionally, MOD-based sets of strate-

gies could be used for correlated and non-correlated pairs, leading to novel ways of increasing

portfolio returns. Finally, unlike TRAD-based approaches, which limit one to a finite number

of opportunities, the proposed MOD-based approaches are simple to use and offer practitioners

a wide range of lucrative opportunities.

The four chapters in this thesis provide investors with practical suggestions for improving and

managing their investment strategies. The empirical results presented in Chapter 2 could help

financial institutions and retail options traders design and adjust their pricing models based

on the improved understanding of parametric and non-parametric models covered in this study.

Chapter 3 discusses improvised techniques of hedging call options and arriving at the replicating

portfolio value for traders to hedge call options more effectively, Chapter 4 discusses methods

a trader could deploy to enhance the forecast of a pricing/hedging model through the use of

model averaging and Chapter 5 introduces a new approach to PT whereby a pair of ETFs can

be traded irrespective of whether they are cointegrated or correlated, thereby enabling hedge

funds and institutional investors and retail traders to deploy this strategy as a long/short equity

investment tool.

6.2 Avenues for Future Research

The focus of Chapters 2 to 3 is performing a comprehensive assessment of the daily forecasts

of option prices. In future research, this methodology could be extended over longer forecast

windows by recursively forecasting one-trading-day-ahead options using a multi-step model in

which the forecast for the prior time step is used as input for making a forecast on the following

time step. Thereby, this multi-step forecasting approach would incur higher forecasting error

rates compared to the one-trading-day forecast, and it would be a far more computationally

expensive exercise. In addition, the use of a Transformer Neural Network (TNN) could be used

to price and hedge options, which could solve sequence-to-sequence tasks, handle dependencies

among longer time series than LSTM models, and outperform traditional deep learning ANN

models by providing accurate forecasts (Ahmed et al. (2022), Jonsson and Deumic (2022), Li

et al. (2022), Nino (2020), Wang et al. (2022), Wen et al. (2022), Woo et al. (2022), Zhang et al.

(2022), Zeng et al. (2022), So et al. (2019)). Additionally, for the inputs used in these MLP
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and LSTM ANN models, a feature selection using a Least Absolute Shrinkage and Selection

Operator (LASSO) regularisation which ascertains the importance of each input variable using

a random forest model (i.e. computed using Gini importance or mean decrease accuracy) or

a dimensionality reduction using Principal Component Analysis (PCA) could be carried out.

An expansion of the averaging models discussed in Chapter 4 would involve running each ANN

several times and averaging the outputs to obtain an average forecasted call price (see Gençay

and Qi (2001)’s method). For example, as shown in Figure 2.4, Iteration 1 could be performed

multiple times to arrive at an average call price. Finally, in terms of the PT strategies in

Chapter 5, the spread could be further modelled by using a variety of other technical indicators

and different machine learning classification algorithms to generate a buy/sell condition. The

existing MLP and DT algorithms could be provided with additional features derived from the

use of additional technical indicators or lagged variables. These algorithms could then be applied

and examined on other market instruments that might provide higher returns or better Sharpe

ratios.
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Appendix A.1

Appendix for Chapter 2: Tables and

Graphs
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Table A.1.1: Model Definition for Call Price Comparison: This table presents the models with the N subscript that use lagged input variables for forecasting CN+1. The forecast variable for all the models is the one-day-ahead call option price (CN+1). Column I identifies the models,
column II identifies the number of hidden layers used for the MLP and LSTM models, column III identifies the forecast variable, column IV identifies the target variable used while training the respective MLP and LSTM models, column V lists the input variables used by the models to
obtain the one-trading-day ahead forecast of CN+1. Forecasts are made for 1,326 trading days, and there are 64 months covered in the sample using the monthly data.

(I) (II) (III) (IV) (V) (I) (II) (III) (IV) (V)

Model No. of hidden layers Forecast variable Target variable Inputs for training/forecasting Model No. of hidden layers Forecast variable Target variable Inputs for training/forecasting

Black-Scholes-Merton Models Heston Models

BSMCN − C
BSMCN
N+1 CN SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N HN − C
HN
N+1 CN SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , HParamsCN

Finite Moment Log Stable Models Heston Jump Diffusion Models

FMLSN − C
FMLSN
N+1 CN SN ,KN+1, TN+1, RN , QN , FMLSParamsCN HJDN − C

HJDN
N+1 CN SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , HJDParamsCN

M1CN Multi Layer Perceptron (MLP) Models L1CN Long Short Term Memory (LSTM) Models

M1C1N 1 C
M1C1N
N+1 CN SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N L1C1N 1 C
L1C1N
N+1 CN SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N

M1C2N 1 C
M1C2N
N+1 CN SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN L1C2N 1 C
L1C2N
N+1 CN SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN

M1C3N 1 C
M1C3N
N+1 CN SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN L1C3N 1 C
L1C3N
N+1 CN SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN

M1C4N 1 C
M1C4N
N+1 CN SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN , HParams
C
N L1C4N 1 C

L1C4N
N+1 CN SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN , HParams
C
N

M1C5N 1 C
M1C5N
N+1 CN SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN , HParams
C
N , C

HC
N L1C5N 1 C

L1C5N
N+1 CN SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN , HParams
C
N , C

HC
N

M1C6N 1 C
M1C6N
N+1 CN SN ,KN+1, TN+1, RN , QN , HParams

C
N , C

HC
N L1C6N 1 C

L1C6N
N+1 CN SN ,KN+1, TN+1, RN , QN , HParams

C
N , C

HC
N

M1C7N 1 C
M1C7N
N+1 CN SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , BSMGreeksCN , C
BSMC
N L1C7N 1 C

L1C7N
N+1 CN SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , BSMGreeksCN , C
BSMC
N

M1C8N 1 C
M1C8N
N+1 CN SN ,KN+1, TN+1, RN , QN , HJDParams

C
N , C

HJDC
N L1C8N 1 C

L1C8N
N+1 CN SN ,KN+1, TN+1, RN , QN , HJDParams

C
N , C

HJDC
N

M1C9N 1 C
M1C9N
N+1 CN SN ,KN+1, TN+1, RN , QN , FMLSParamsCN , C

FMLSC
N L1C9N 1 C

L1C9N
N+1 CN SN ,KN+1, TN+1, RN , QN , FMLSParamsCN , C

FMLSC
N

M2CN Multi Layer Perceptron (MLP) Models L2CN Long Short Term Memory (LSTM) Models

M2C1N 2 C
M2C1N
N+1 CN SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N L2C1N 2 C
L2C1N
N+1 CN SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N

M2C2N 2 C
M2C2N
N+1 CN SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN L2C2N 2 C
L2C2N
N+1 CN SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN

M2C3N 2 C
M2C3N
N+1 CN SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN L2C3N 2 C
L2C3N
N+1 CN SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN

M2C4N 2 C
M2C4N
N+1 CN SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN , HParams
C
N L2C4N 2 C

L2C4N
N+1 CN SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN , HParams
C
N

M2C5N 2 C
M2C5N
N+1 CN SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN , HParams
C
N , C

HC
N L2C5N 2 C

L2C5N
N+1 CN SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN , HParams
C
N , C

HC
N

M2C6N 2 C
M2C6N
N+1 CN SN ,KN+1, TN+1, RN , QN , HParams

C
N , C

HC
N L2C6N 2 C

L2C6N
N+1 CN SN ,KN+1, TN+1, RN , QN , HParams

C
N , C

HC
N

M2C7N 2 C
M2C7N
N+1 CN SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , BSMGreeksCN , C
BSMC
N L2C7N 2 C

L2C7N
N+1 CN SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , BSMGreeksCN , C
BSMC
N

M2C8N 2 C
M2C8N
N+1 CN SN ,KN+1, TN+1, RN , QN , HJDParams

C
N , C

HJDC
N L2C8N 2 C

L2C8N
N+1 CN SN ,KN+1, TN+1, RN , QN , HJDParams

C
N , C

HJDC
N

M2C9N 2 C
M2C9N
N+1 CN SN ,KN+1, TN+1, RN , QN , FMLSParamsCN , C

FMLSC
N L2C9N 2 C

L2C9N
N+1 CN SN ,KN+1, TN+1, RN , QN , FMLSParamsCN , C

FMLSC
N

M3CN Multi Layer Perceptron (MLP) Models L3CN Long Short Term Memory (LSTM) Models

M3C1N 3 C
M3C1N
N+1 CN SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N L3C1N 3 C
L3C1N
N+1 CN SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N

M3C2N 3 C
M3C2N
N+1 CN SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN L3C2N 3 C
L3C2N
N+1 CN SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN

M3C3N 3 C
M3C3N
N+1 CN SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN L3C3N 3 C
L3C3N
N+1 CN SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN

M3C4N 3 C
M3C4N
N+1 CN SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN , HParams
C
N L3C4N 3 C

L3C4N
N+1 CN SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN , HParams
C
N

M3C5N 3 C
M3C5N
N+1 CN SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN , HParams
C
N , C

HC
N L3C5N 3 C

L3C5N
N+1 CN SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN , HParams
C
N , C

HC
N

M3C6N 3 C
M3C6N
N+1 CN SN ,KN+1, TN+1, RN , QN , HParams

C
N , C

HC
N L3C6N 3 C

L3C6N
N+1 CN SN ,KN+1, TN+1, RN , QN , HParams

C
N , C

HC
N

M3C7N 3 C
M3C7N
N+1 CN SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , BSMGreeksCN , C
BSMC
N L3C7N 3 C

L3C7N
N+1 CN SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , BSMGreeksCN , C
BSMC
N

M3C8N 3 C
M3C8N
N+1 CN SN ,KN+1, TN+1, RN , QN , HJDParams

C
N , C

HJDC
N L3C8N 3 C

L3C8N
N+1 CN SN ,KN+1, TN+1, RN , QN , HJDParams

C
N , C

HJDC
N

M3C9N 3 C
M3C9N
N+1 CN SN ,KN+1, TN+1, RN , QN , FMLSParamsCN , C

FMLSC
N L3C9N 3 C

L3C9N
N+1 CN SN ,KN+1, TN+1, RN , QN , FMLSParamsCN , C

FMLSC
N
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Table A.1.2: Model Definition for Call Price Comparison: This table presents the models with the N + 1 subscript that use one-day-ahead input variables for forecasting CN+1. The forecast variable for all the models is the one-day-ahead call option price (CN+1). Column I identifies
the models, column II identifies the number of hidden layers used for the MLP and LSTM models, column III identifies the forecast variable, column IV identifies the target variable used while training the respective MLP and LSTM models, column V lists the input variables used by
the models to obtain the one-trading-day ahead forecast of CN+1. Forecasts are made for 1,326 trading days, and there are 64 months covered in the sample using the monthly data.

(I) (II) (III) (IV) (V) (I) (II) (III) (IV) (V)

Model No. of hidden layers Forecast variable Target variable Inputs for training/forecasting Model No. of hidden layers Forecast variable Target variable Inputs for training/forecasting

Black-Scholes-Merton Models Heston Models

BSMCN+1 − C
BSMCN+1
N+1 CN SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N HN+1 − C
HN+1
N+1 CN SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N , HParamsCN

Finite Moment Log Stable Models Heston Jump Diffusion Models

FMLSN+1 − C
FMLSN+1
N+1 CN SN+1,KN+1, TN+1, RN+1, QN+1, FMLSParamsCN HJDN+1 − C

HJDN+1
N+1 CN SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N , HJDParamsCN

M3CN+1 Multi Layer Perceptron (MLP) Models L3CN+1 Long Short Term Memory (LSTM) Models

M3C1N+1 3 C
M3C1N+1
N+1 CN SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N L3C1N+1 3 C
L3C1N+1
N+1 CN SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N

M3C2N+1 3 C
M3C2N+1
N+1 CN SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N , CN L3C2N+1 3 C
L3C2N+1
N+1 CN SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N , CN

M3C3N+1 3 C
M3C3N+1
N+1 CN SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N , CN , BSMGreeksCN L3C3N+1 3 C
L3C3N+1
N+1 CN SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N , CN , BSMGreeksCN

M3C4N+1 3 C
M3C4N+1
N+1 CN SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N , CN , BSMGreeksCN , HParams
C
N L3C4N+1 3 C

L3C4N+1
N+1 CN SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N , CN , BSMGreeksCN , HParams
C
N

M3C5N+1 3 C
M3C5N+1
N+1 CN SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N , CN , BSMGreeksCN , HParams
C
N , C

HC
N L3C5N+1 3 C

L3C5N+1
N+1 CN SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N , CN , BSMGreeksCN , HParams
C
N , C

HC
N

M3C6N+1 3 C
M3C6N+1
N+1 CN SN+1,KN+1, TN+1, RN+1, QN+1, HParams

C
N , C

HC
N L3C6N+1 3 C

L3C6N+1
N+1 CN SN+1,KN+1, TN+1, RN+1, QN+1, HParams

C
N , C

HC
N

M3C7N+1 3 C
M3C7N+1
N+1 CN SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N , BSMGreeksCN , C
BSMC
N L3C7N+1 3 C

L3C7N+1
N+1 CN SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N , BSMGreeksCN , C
BSMC
N

M3C8N+1 3 C
M3C8N+1
N+1 CN SN+1,KN+1, TN+1, RN+1, QN+1, HJDParams

C
N , C

HJDC
N L3C8N+1 3 C

L3C8N+1
N+1 CN SN+1,KN+1, TN+1, RN+1, QN+1, HJDParams

C
N , C

HJDC
N

M3C9N+1 3 C
M3C9N+1
N+1 CN SN+1,KN+1, TN+1, RN+1, QN+1, FMLSParamsCN , C

FMLSC
N L3C9N+1 3 C

L3C9N+1
N+1 CN SN+1,KN+1, TN+1, RN+1, QN+1, FMLSParamsCN , C

FMLSC
N
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Table A.1.3: Model Definition for Call Price Scaled by the Exercise Price Comparison: This table presents the models with the N subscript that use lagged input variables for forecasting the one-day-ahead call option price scaled by the exercise price (CN+1/KN+1). The forecast
variable for all the models is the one-day-ahead CN+1/KN+1. Column I identifies the models, column II identifies the number of hidden layers used for the MLP and LSTM models, column III identifies the forecast variable, column IV identifies the target variable used while training
the respective MLP and LSTM models, column V lists the input variables used by the models to obtain the one-trading-day ahead forecast of CN+1/KN+1. Forecasts are made for 1,326 trading days, and there are 64 months covered in the sample using the monthly data.

(I) (II) (III) (IV) (V) (I) (II) (III) (IV) (V)

Model No. of hidden layers Forecast variable Target variable Inputs for training/forecasting Model No. of hidden layers Forecast variable Target variable Inputs for training/forecasting

Black-Scholes-Merton Models Heston Models

BSMCKN − C
BSMCKN
N+1 /KN+1 CN/KN SN ,KN+1, TN+1, RN , QN , σ

CALIBCK

N HCKN − C
HCKN
N+1 /KN+1 CN/KN SN ,KN+1, TN+1, RN , QN , σ

CALIBCK

N , HParamsCKN

Finite Moment Log Stable Models Heston Jump Diffusion Models

FMLSCKN − C
FMLSCKN
N+1 /KN+1 CN/KN SN ,KN+1, TN+1, RN , QN , FMLSParamsCKN HJDCKN − C

HJDCKN
N+1 /KN+1 CN/KN SN ,KN+1, TN+1, RN , QN , σ

CALIBCK

N , HJDParamsCKN

M1CKN Multi Layer Perceptron (MLP) Models L1CKN Long Short Term Memory (LSTM) Models

M1CK1N 1 C
M1CK1N
N+1 /KN+1 CN/KN SN/KN , TN+1, RN , QN , σ

CALIBCK

N L1CK1N 1 C
L1CK1N
N+1 /KN+1 CN/KN SN/KN , TN+1, RN , QN , σ

CALIBCK

N

M1CK2N 1 C
M1CK2N
N+1 /KN+1 CN/KN SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ) L1CK2N 1 C
L1CK2N
N+1 /KN+1 CN/KN SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN )

M1CK3N 1 C
M1CK3N
N+1 /KN+1 CN/KN SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN L1CK3N 1 C
L1CK3N
N+1 /KN+1 CN/KN SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN

M1CK4N 1 C
M1CK4N
N+1 /KN+1 CN/KN SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN , HParamsCKN L1CK4N 1 C
L1CK4N
N+1 /KN+1 CN/KN SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN , HParamsCKN

M1CK5N 1 C
M1CK5N
N+1 /KN+1 CN/KN SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN , HParamsCKN , (CHCKN /KN ) L1CK5N 1 C
L1CK5N
N+1 /KN+1 CN/KN SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN , HParamsCKN , (CHCKN /KN )

M1CK6N 1 C
M1CK6N
N+1 /KN+1 CN/KN SN/KN , TN+1, RN , QN , HParams

CK
N , (CHCKN /KN ) L1CK6N 1 C

L1CK6N
N+1 /KN+1 CN/KN SN/KN , TN+1, RN , QN , HParams

CK
N , (CHCKN /KN )

M1CK7N 1 C
M1CK7N
N+1 /KN+1 CN/KN SN/KN , TN+1, RN , QN , σ

CALIBCK

N , BSMGreeksCKN , (CBSMCK
N /KN ) L1CK7N 1 C

L1CK7N
N+1 /KN+1 CN/KN SN/KN , TN+1, RN , QN , σ

CALIBCK

N , BSMGreeksCKN , (CBSMCK
N /KN )

M1CK8N 1 C
M1CK8N
N+1 /KN+1 CN/KN SN/KN , TN+1, RN , QN , HJDParams

CK
N , (CHJDCKN /KN ) L1CK8N 1 C

L1CK8N
N+1 /KN+1 CN/KN SN/KN , TN+1, RN , QN , HJDParams

CK
N , (CHJDCKN /KN )

M1CK9N 1 C
M1CK9N
N+1 /KN+1 CN/KN SN/KN , TN+1, RN , QN , FMLSParamsCKN , (CFMLSCK

N /KN ) L1CK9N 1 C
L1CK9N
N+1 /KN+1 CN/KN SN/KN , TN+1, RN , QN , FMLSParamsCKN , (CFMLSCK

N /KN )

M2CKN Multi Layer Perceptron (MLP) Models L2CKN Long Short Term Memory (LSTM) Models

M2CK1N 2 C
M2CK1N
N+1 /KN+1 CN/KN SN/KN , TN+1, RN , QN , σ

CALIBCK

N L2CK1N 2 C
L2CK1N
N+1 /KN+1 CN/KN SN/KN , TN+1, RN , QN , σ

CALIBCK

N

M2CK2N 2 C
M2CK2N
N+1 /KN+1 CN/KN SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ) L2CK2N 2 C
L2CK2N
N+1 /KN+1 CN/KN SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN )

M2CK3N 2 C
M2CK3N
N+1 /KN+1 CN/KN SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN L2CK3N 2 C
L2CK3N
N+1 /KN+1 CN/KN SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN

M2CK4N 2 C
M2CK4N
N+1 /KN+1 CN/KN SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN , HParamsCKN L2CK4N 2 C
L2CK4N
N+1 /KN+1 CN/KN SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN , HParamsCKN

M2CK5N 2 C
M2CK5N
N+1 /KN+1 CN/KN SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN , HParamsCKN , (CHCKN /KN ) L2CK5N 2 C
L2CK5N
N+1 /KN+1 CN/KN SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN , HParamsCKN , (CHCKN /KN )

M2CK6N 2 C
M2CK6N
N+1 /KN+1 CN/KN SN/KN , TN+1, RN , QN , HParams

CK
N , (CHCKN /KN ) L2CK6N 2 C

L2CK6N
N+1 /KN+1 CN/KN SN/KN , TN+1, RN , QN , HParams

CK
N , (CHCKN /KN )

M2CK7N 2 C
M2CK7N
N+1 /KN+1 CN/KN SN/KN , TN+1, RN , QN , σ

CALIBCK

N , BSMGreeksCKN , (CBSMCK
N /KN ) L2CK7N 2 C

L2CK7N
N+1 /KN+1 CN/KN SN/KN , TN+1, RN , QN , σ

CALIBCK

N , BSMGreeksCKN , (CBSMCK
N /KN )

M2CK8N 2 C
M2CK8N
N+1 /KN+1 CN/KN SN/KN , TN+1, RN , QN , HJDParams

CK
N , (CHJDCKN /KN ) L2CK8N 2 C

L2CK8N
N+1 /KN+1 CN/KN SN/KN , TN+1, RN , QN , HJDParams

CK
N , (CHJDCKN /KN )

M2CK9N 2 C
M2CK9N
N+1 /KN+1 CN/KN SN/KN , TN+1, RN , QN , FMLSParamsCKN , (CFMLSCK

N /KN ) L2CK9N 2 C
L2CK9N
N+1 /KN+1 CN/KN SN/KN , TN+1, RN , QN , FMLSParamsCKN , (CFMLSCK

N /KN )

M3CKN Multi Layer Perceptron (MLP) Models L3CKN Long Short Term Memory (LSTM) Models

M3CK1N 3 C
M3CK1N
N+1 /KN+1 CN/KN SN/KN , TN+1, RN , QN , σ

CALIBCK

N L3CK1N 3 C
L3CK1N
N+1 /KN+1 CN/KN SN/KN , TN+1, RN , QN , σ

CALIBCK

N

M3CK2N 3 C
M3CK2N
N+1 /KN+1 CN/KN SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ) L3CK2N 3 C
L3CK2N
N+1 /KN+1 CN/KN SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN )

M3CK3N 3 C
M3CK3N
N+1 /KN+1 CN/KN SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN L3CK3N 3 C
L3CK3N
N+1 /KN+1 CN/KN SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN

M3CK4N 3 C
M3CK4N
N+1 /KN+1 CN/KN SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN , HParamsCKN L3CK4N 3 C
L3CK4N
N+1 /KN+1 CN/KN SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN , HParamsCKN

M3CK5N 3 C
M3CK5N
N+1 /KN+1 CN/KN SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN , HParamsCKN , (CHCKN /KN ) L3CK5N 3 C
L3CK5N
N+1 /KN+1 CN/KN SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN , HParamsCKN , (CHCKN /KN )

M3CK6N 3 C
M3CK6N
N+1 /KN+1 CN/KN SN/KN , TN+1, RN , QN , HParams

CK
N , (CHCKN /KN ) L3CK6N 3 C

L3CK6N
N+1 /KN+1 CN/KN SN/KN , TN+1, RN , QN , HParams

CK
N , (CHCKN /KN )

M3CK7N 3 C
M3CK7N
N+1 /KN+1 CN/KN SN/KN , TN+1, RN , QN , σ

CALIBCK

N , BSMGreeksCKN , (CBSMCK
N /KN ) L3CK7N 3 C

L3CK7N
N+1 /KN+1 CN/KN SN/KN , TN+1, RN , QN , σ

CALIBCK

N , BSMGreeksCKN , (CBSMCK
N /KN )

M3CK8N 3 C
M3CK8N
N+1 /KN+1 CN/KN SN/KN , TN+1, RN , QN , HJDParams

CK
N , (CHJDCKN /KN ) L3CK8N 3 C

L3CK8N
N+1 /KN+1 CN/KN SN/KN , TN+1, RN , QN , HJDParams

CK
N , (CHJDCKN /KN )

M3CK9N 3 C
M3CK9N
N+1 /KN+1 CN/KN SN/KN , TN+1, RN , QN , FMLSParamsCKN , (CFMLSCK

N /KN ) L3CK9N 3 C
L3CK9N
N+1 /KN+1 CN/KN SN/KN , TN+1, RN , QN , FMLSParamsCKN , (CFMLSCK

N /KN )
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Table A.1.4: Model Definition for Call Price Scaled by the Exercise Price Comparison: This table presents the models with the N + 1 subscript that use one-day-ahead input variables for forecasting the one-day-ahead call option price scaled by the exercise price (CN+1/KN+1). The forecast
variable for all the models is the one-day-ahead CN+1/KN+1. Column I identifies the models, column II identifies the number of hidden layers used for the MLP and LSTM models, column III identifies the forecast variable, column IV identifies the target variable used while training the respective
MLP and LSTM models, column V lists the input variables used by the models to obtain the one-trading-day ahead forecast of CN+1/KN+1. Forecasts are made for 1,326 trading days, and there are 64 months covered in the sample using the monthly data.

(I) (II) (III) (IV) (V) (I) (II) (III) (IV) (V)

Model No. of hidden layers Forecast variable Target variable Inputs for training/forecasting Model No. of hidden layers Forecast variable Target variable Inputs for training/forecasting

Black-Scholes-Merton Models Heston Models

BSMCKN+1 − C
BSMCKN+1
N+1 /KN+1 CN/KN SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBCK

N HCKN+1 − C
HCKN+1
N+1 /KN+1 CN/KN SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBCK

N , HParamsCKN

Finite Moment Log Stable Models Heston Jump Diffusion Models

FMLSCKN+1 − C
FMLSCKN+1
N+1 /KN+1 CN/KN SN+1,KN+1, TN+1, RN+1, QN+1, FMLSParamsCKN HJDCKN+1 − C

HJDCKN+1
N+1 /KN+1 CN/KN SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBCK

N , HJDParamsCKN

M1CKN+1 Multi Layer Perceptron (MLP) Models L1CKN+1 Long Short Term Memory (LSTM) Models

M3CK1N+1 3 C
M3CK1N+1
N+1 /KN+1 CN/KN SN+1/KN+1, TN+1, RN+1, QN+1, σ

CALIBCK

N L3CK1N+1 3 C
L3CK1N+1
N+1 /KN+1 CN/KN SN+1/KN+1, TN+1, RN+1, QN+1, σ

CALIBCK

N

M3CK2N+1 3 C
M3CK2N+1
N+1 /KN+1 CN/KN SN+1/KN+1, TN+1, RN+1, QN+1, σ

CALIBCK

N , (CN/KN ) L3CK2N+1 3 C
L3CK2N+1
N+1 /KN+1 CN/KN SN+1/KN+1, TN+1, RN+1, QN+1, σ

CALIBCK

N , (CN/KN )

M3CK3N+1 3 C
M3CK3N+1
N+1 /KN+1 CN/KN SN+1/KN+1, TN+1, RN+1, QN+1, σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN L3CK3N+1 3 C
L3CK3N+1
N+1 /KN+1 CN/KN SN+1/KN+1, TN+1, RN+1, QN+1, σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN

M3CK4N+1 3 C
M3CK4N+1
N+1 /KN+1 CN/KN SN+1/KN+1, TN+1, RN+1, QN+1, σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN , HParamsCKN L3CK4N+1 3 C
L3CK4N+1
N+1 /KN+1 CN/KN SN+1/KN+1, TN+1, RN+1, QN+1, σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN , HParamsCKN

M3CK5N+1 3 C
M3CK5N+1
N+1 /KN+1 CN/KN SN+1/KN+1, TN+1, RN+1, QN+1, σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN , HParamsCKN , (CHCKN /KN ) L3CK5N+1 3 C
L3CK5N+1
N+1 /KN+1 CN/KN SN+1/KN+1, TN+1, RN+1, QN+1, σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN , HParamsCKN , (CHCKN /KN )

M3CK6N+1 3 C
M3CK6N+1
N+1 /KN+1 CN/KN SN+1/KN+1, TN+1, RN+1, QN+1, HParams

CK
N , (CHCKN /KN ) L3CK6N+1 3 C

L3CK6N+1
N+1 /KN+1 CN/KN SN+1/KN+1, TN+1, RN+1, QN+1, HParams

CK
N , (CHCKN /KN )

M3CK7N+1 3 C
M3CK7N+1
N+1 /KN+1 CN/KN SN+1/KN+1, TN+1, RN+1, QN+1, σ

CALIBCK

N , BSMGreeksCKN , (CBSMCK
N /KN ) L3CK7N+1 3 C

L3CK7N+1
N+1 /KN+1 CN/KN SN+1/KN+1, TN+1, RN+1, QN+1, σ

CALIBCK

N , BSMGreeksCKN , (CBSMCK
N /KN )

M3CK8N+1 3 C
M3CK8N+1
N+1 /KN+1 CN/KN SN+1/KN+1, TN+1, RN+1, QN+1, HJDParams

CK
N , (CHJDCKN /KN ) L3CK8N+1 3 C

L3CK8N+1
N+1 /KN+1 CN/KN SN+1/KN+1, TN+1, RN+1, QN+1, HJDParams

CK
N , (CHJDCKN /KN )

M3CK9N+1 3 C
M3CK9N+1
N+1 /KN+1 CN/KN SN+1/KN+1, TN+1, RN+1, QN+1, FMLSParamsCKN , (CFMLSCK

N /KN ) L3CK9N+1 3 C
L3CK9N+1
N+1 /KN+1 CN/KN SN+1/KN+1, TN+1, RN+1, QN+1, FMLSParamsCKN , (CFMLSCK

N /KN )
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Table A.1.5: Overall Call Price Comparison (amongst Parametric, MLP M1CN -Models, LSTM L1CN -Models, MLP M2CN -Models, LSTM L2CN -Models, MLP M3CN -Models, and LSTM L3CN -Models): This table presents the overall comparison of out-of-sample root mean square error (RMSE) amongst the Random Walk (δCN ) model, Black-Scholes-Merton (BSMCN ) model, Heston (HCN ) model, Heston Jump Diffusion (HJDCN ) model, Finite Moment Log Stable
(FMLSCN ) model, MLP M1CN -Models (M1C1N to M1C9N ), MLP M2CN -Models (M2C1N to M2C9N ), MLP M3CN -Models (M3C1N to M3C9N ), LSTM L1CN -Models (L1C1N to L1C9N ), LSTM L2CN -Models (L2C1N to L2C9N ), and the LSTM L3CN -Models (L3C1N to L3C9N ) from column IV to column LXII. The forecast variable for all the models is the one-day-ahead call option price (CN+1). The models denoted by the N subscript use lagged input variables for
forecasting CN+1. The one-day-ahead forecast errors of CN+1 are used to compute the Root Mean Square Error (RMSE). Forecasts are made for 1,326 trading days. The model having the lowest RMSE has been highlighted in red.

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X) (XI) (XII) (XIII) (XIV) (XV) (XVI) (XVII) (XVIII) (XIX) (XX) (XXI) (XXII) (XXIII) (XXIV) (XXV) (XXVI) (XXVII)(XXVIII)(XXIX) (XXX) (XXXI) (XXXII)(XXXIII)(XXXIV)(XXXV)(XXXVI)(XXXVII)(XXXVIII)(XXXIX)(XL) (XLI) (XLII) (XLIII) (XLIV) (XLV) (XLVI) (XLVII) (XLVIII)(XLIX) (L) (LI) (LII) (LIII) (LIV) (LV) (LVI) (LVII) (LVIII) (LIX) (LX) (LXI) (LXII)
Size Mean

of CN
Std.Dev.
of CN

δCN BSMCN HCN HJDCN FMLSCNM1C1N M1C2N M1C3N M1C4N M1C5N M1C6N M1C7N M1C8N M1C9N L1C1N L1C2N L1C3N L1C4N L1C5N L1C6N L1C7N L1C8N L1C9N M2C1N M2C2N M2C3N M2C4N M2C5N M2C6N M2C7N M2C8N M2C9N L2C1N L2C2N L2C3N L2C4N L2C5N L2C6N L2C7N L2C8N L2C9N M3C1N M3C2N M3C3N M3C4N M3C5N M3C6N M3C7N M3C8N M3C9N L3C1N L3C2N L3C3N L3C4N L3C5N L3C6N L3C7N L3C8N L3C9N

556395 113.541 109.059 8.809 13.544 9.076 8.885 9.372 9.118 8.984 8.897 8.845 8.836 8.838 8.871 8.829 8.868 44.623 34.810 15.058 11.258 10.666 20.835 15.380 11.690 33.750 8.899 8.907 8.852 8.843 8.829 8.832 8.835 8.835 8.853 49.144 36.552 16.235 11.567 9.310 16.773 13.186 11.929 29.700 8.889 8.891 8.854 8.856 8.834 8.841 8.839 8.833 8.849 49.803 36.097 13.891 11.335 10.309 15.765 11.879 11.078 26.518

Table A.1.6: Overall Call Price Comparison (amongst Parametric, M3CN+1-Models and L3CN+1-Models): This table presents the overall comparison of out-of-sample root mean square error (RMSE) amongst the Random Walk (δCN ) model, Black-Scholes-Merton (BSMCN+1)
model, Heston (HCN+1) model, Heston Jump Diffusion (HJDCN+1) model, Finite Moment Log Stable (FMLSCN+1) model, MLP M3CN+1-Models (M3C1N+1 to M3C9N+1), and the LSTM L3CN+1-Models (L3C1N+1 to L3C9N+1) from column V to column XXVI. The
forecast variable for all the models is the one-day-ahead call option price (CN+1). The models denoted by the N+1 subscript use one-day-ahead input variables for forecasting CN+1. The one-day-ahead forecast errors of CN+1 are used to compute the Root Mean Square Error
(RMSE). Forecasts are made for 1,326 trading days. The model having the lowest RMSE has been highlighted in red.

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X) (XI) (XII) (XIII) (XIV) (XV) (XVI) (XVII) (XVIII) (XIX) (XX) (XXI) (XXII) (XXIII) (XXIV) (XXV) (XXVI)
Size Mean

of CN
Std.Dev.
of CN

δCN BSMCN+1 HCN+1 HJDCN+1 FMLSCN+1 M3C1N+1 M3C2N+1 M3C3N+1 M3C4N+1 M3C5N+1 M3C6N+1 M3C7N+1 M3C8N+1 M3C9N+1 L3C1N+1 L3C2N+1 L3C3N+1 L3C4N+1 L3C5N+1 L3C6N+1 L3C7N+1 L3C8N+1 L3C9N+1

556395 113.5 109.1 8.8 10.1 2.8 2.3 3.7 2.5 2.1 2.4 3.7 4.8 4.4 7.9 7.0 3.1 46.8 36.3 12.9 10.3 10.1 17.8 12.9 11.1 27.9

Table A.1.7: Overall Call Price Scaled by the Exercise Price Comparison (amongst Parametric, MLP M1CKN -Models, LSTM L1CKN -Models, MLP M2CKN -Models, LSTM L2CKN -Models, MLP M3CKN -Models, and LSTM L3CKN -Models): This table presents the overall comparison of out-of-sample root mean square error (RMSE) amongst the Random Walk (δCKN ) model, Black-Scholes-Merton (BSMCKN ) model, Heston (HCKN ) model, Heston Jump Diffusion (HJDCKN )
model, Finite Moment Log Stable (FMLSCKN ) model, MLP M1CKN -Models (M1CK1N to M1CK9N ), MLP M2CKN -Models (M2CK1N to M2CK9N ), MLP M3CKN -Models (M3CK1N to M3CK9N ), LSTM L1CKN -Models (L1CK1N to L1CK9N ), LSTM L2CKN -Models (L2CK1N to L2CK9N ), and the LSTM L3CKN -Models (L3CK1N to L3CK9N ) from column V to column LXII. The forecast variable for all the models is the one-day-ahead call option price scaled by
the exercise price (CN+1/KN+1). The models denoted by the N subscript use lagged input variables for forecasting CN+1/KN+1. The one-day-ahead forecast errors of CN+1/KN+1 are used to compute the Root Mean Square Error (RMSE). Forecasts are made for 1,326 trading days. The model having the lowest RMSE has been highlighted in red.

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X) (XI) (XII) (XIII) (XIV) (XV) (XVI) (XVII) (XVIII) (XIX) (XX) (XXI) (XXII) (XXIII) (XXIV) (XXV) (XXVI) (XXVII) (XXVIII) (XXIX) (XXX) (XXXI) (XXXII) (XXXIII) (XXXIV) (XXXV) (XXXVI) (XXXVII) (XXXVIII)(XXXIX) (XL) (XLI) (XLII) (XLIII) (XLIV) (XLV) (XLVI) (XLVII) (XLVIII) (XLIX) (L) (LI) (LII) (LIII) (LIV) (LV) (LVI) (LVII) (LVIII) (LIX) (LX) (LXI) (LXII)
Size Mean

of
CN/KN

Std.Dev.
of
CN/KN

δCKN BSMCKN HCKN HJDCKN FMLSCKNM1CK1N M1CK2N M1CK3N M1CK4N M1CK5N M1CK6N M1CK7N M1CK8N M1CK9N L1CK1N L1CK2N L1CK3N L1CK4N L1CK5N L1CK6N L1CK7N L1CK8N L1CK9N M2CK1N M2CK2N M2CK3N M2CK4N M2CK5N M2CK6N M2CK7N M2CK8N M2CK9N L2CK1N L2CK2N L2CK3N L2CK4N L2CK5N L2CK6N L2CK7N L2CK8N L2CK9N M3CK1N M3CK2N M3CK3N M3CK4N M3CK5N M3CK6N M3CK7N M3CK8N M3CK9N L3CK1N L3CK2N L3CK3N L3CK4N L3CK5N L3CK6N L3CK7N L3CK8N L3CK9N

556395 6.167 6.052 0.490 2.087 3.051 1.571 1.593 0.509 0.502 0.511 0.501 0.501 0.507 0.514 0.530 0.558 3.890 2.397 0.977 0.935 0.872 1.582 0.896 5.739 2.152 0.545 0.519 0.508 0.503 0.501 0.500 0.507 0.509 0.530 3.557 2.591 0.974 0.903 0.835 1.531 0.942 5.690 2.076 0.525 0.510 0.496 0.495 0.494 0.495 0.503 0.501 0.522 3.528 2.517 1.068 0.944 0.829 1.523 0.980 5.644 2.139

Table A.1.8: Overall Call Price Scaled by the Exercise Price Comparison (amongst Parametric, MLP M3CKN+1-Models and LSTM L3CKN+1-Models): This table presents the overall comparison of out-of-sample root mean square error (RMSE) amongst the Random Walk (δCKN )
model, Black-Scholes-Merton (BSMCKN+1) model, Heston (HCKN+1) model, Heston Jump Diffusion (HJDCKN+1) model, Finite Moment Log Stable (FMLSCKN+1) model, MLP M3CKN+1-Models (M3CK1N+1 to M3CK9N+1), and the LSTM L3CN+1-Models (L3CK1N+1
to L3CK9N+1) from column V to column XXVI. The forecast variable for all the models is the one-day-ahead call option price scaled by the exercise price (CN+1/KN+1). The models denoted by the N+1 subscript use one-day-ahead input variables for forecasting CN+1/KN+1. The
one-day-ahead forecast errors of CN+1/KN+1 are used to compute the Root Mean Square Error (RMSE). Forecasts are made for 1,326 trading days. The model having the lowest RMSE has been highlighted in red.

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X) (XI) (XII) (XIII) (XIV) (XV) (XVI) (XVII) (XVIII) (XIX) (XX) (XXI) (XXII) (XXIII) (XXIV) (XXV) (XXVI)
Size Mean

of
CN/KN

Std.Dev.
of
CN/KN

δCKN BSMCKN+1 HCKN+1 HJDCKN+1 FMLSCKN+1 M3CK1N+1 M3CK2N+1 M3CK3N+1 M3CK4N+1 M3CK5N+1 M3CK6N+1 M3CK7N+1 M3CK8N+1 M3CK9N+1 L3CK1N+1 L3CK2N+1 L3CK3N+1 L3CK4N+1 L3CK5N+1 L3CK6N+1 L3CK7N+1 L3CK8N+1 L3CK9N+1

556395 6.167 6.052 0.490 2.048 3.032 1.465 1.488 0.209 0.149 0.162 0.148 0.258 0.211 0.402 0.239 0.202 3.589 2.488 1.048 0.941 0.868 1.505 1.039 5.635 2.163
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Table A.1.9: This table presents the insignificant pairs for C −Models and CK −
Models. The complete table consisting of the DM test statistic for C −Models,
which use lagged input variables to forecast the CN+1 can be found in table 13, for
C −Models which use one-trading-day ahead input variables to forecast the CN+1
in table 14, for CK −Models that use one-trading-day ahead input variables to
forecast the CN+1/KN+1 in table 15 and for CK −Models that use one-trading-
day ahead input variables to forecast the CN+1/KN+1 in table 16 of the Electronic
Appendix.

Model Insignificant Pairs

For C −Models which use lagged
input variables to forecast
the CN+1

(HJDCN , M3C1N ), (M1C3N , M2C1N ),
(M1C4N , M2C4N ), (M1C5N , M2C7N ),
(M1C5N , M2C8N ), (M1C5N , M3C8N ),
(M1C6N , M2C7N ), (M1C6N , M3C7N ),
(M1C7N , M1C9N ), (M1C8N , M2C5N ),
(L1C4N , L3C4N ), (L1C8N , L2C4N ),
(M2C3N , M2C9N ), (M2C3N , M3C3N ),
(M2C3N , M3C9N ), (M2C6N , M2C7N ),
(M2C6N , M3C5N ), (M2C6N , M3C8N ),
(M2C7N , M2C8N ), (M2C7N , M3C5N ),
(M2C7N , M3C8N ), (M2C8N , M3C5N ),
(M2C9N , M3C3N ), (L2C8N , L3C7N ),
(M3C1N , M3C2N ), (M3C3N , M3C4N ),
(M3C5N , M3C8N ), and (M3C6N , M3C7N )

C−Models which use one-trading-day
ahead input variables to forecast the
CN+1

(BSMCN+1, L3C5N+1),
(FMLSCN+1, M3C4N+1),
and (L3C3N+1, L3C7N+1)

CK−Models that use one-trading-day
ahead input variables to forecast the
CN+1/KN+1

(BSMCKN , L2CK9N ), (M1CK1N , M2CK8N ),
(M1CK4N , M1CK5N ), (M1CK4N , M3CK8N ),
(M1CK5N , M3CK8N ), (M1CK6N , M2CK7N ),
(M1CK8N , M2CK9N ), (L1CK3N , L2CK3N ),
(L1CK3N , L3CK7N ), (L1CK9N , L3CK9N ),
(M2CK5N , M3CK8N ), (L2CK3N , L3CK7N ),
(L2CK6N , L3CK6N ), (L2CK7N , L3CK4N ),
and (M3CK4N , M3CK6N )

CK − Models that use one-trading-
day ahead input variables to forecast
the CN+1/KN+1

(M3CK2N+1, M3CK4N+1),
and (L3CK3N+1, L3CK7N+1)
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Table A.1.10: This table presents the summary of the pair-wise bootstrap tests
performed for C −Models and CK −Models. The complete table consisting of the
results for the pair-wise bootstrap for C−Models, which use lagged input variables
to forecast the CN+1 can be found in table 17, for C−Models which use one-trading-
day ahead input variables to forecast the CN+1 in table 18, for CK −Models that
use one-trading-day ahead input variables to forecast the CN+1/KN+1 in table 19
and for CK −Models that use one-trading-day ahead input variables to forecast
the CN+1/KN+1 in table 20 of the Electronic Appendix.

Model Number of pairs a model wins Winning %

C −Models (using lagged inputs)

M3CN −Models 413 24.1%

M2CN −Models 403 23.6%

M1CN −Models 349 20.4%

L2CN −Models 153 8.9%

L3CN −Models 137 8.0%

L1CN −Models 124 7.2%

Parametric 74 4.3%

δCN 58 3.4%

CK −Models (using lagged inputs)

M3CKN −Models 450 26.3%

M2CKN −Models 393 23.0%

M1CKN −Models 345 20.2%

L3CKN −Models 154 9.0%

L2CKN −Models 153 8.9%

L1CKN −Models 129 7.5%

δCKN 58 3.4%

Parametric 29 1.7%

C −Models (using one-trading-day ahead inputs)

M3CN+1 −Models 154 60.9%

Parametric 45 17.8%

L3CN+1 −Models 44 17.4%

δCN 10 4.0%

CK −Models (using one-trading-day ahead inputs)

M3CKN+1 −Models 162 64.0%

L3CKN+1 −Models 64 25.3%

Parametric 14 5.5%

δCKN 13 5.1%
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A.1.1 Fields from OptionMetrics

The OptionMetric manual is available to WRDS account holders and OptionMetric clients. The
direct link to the manual is https://wrds-www.wharton.upenn.edu/documents/755/IvyDB_
US_Reference_Manual.pdf

1. Option_Price File

The Options Price file from OptionMetrics contains the historical price, implied volatility,
and sensitivity information for the options on an underlying security.

Field descriptions

(a) Security ID = The Security ID for the underlying security.

(b) Date = The date of this price.

(c) Symbol = The option symbol.

(d) Strike = The strike price of the option times 1000.

(e) Expiration = The expiration date of the option.

(f) Call/Put = C or P, where C is Call, P is Put.

(g) Best Bid = The best, or highest, 15:59 EST bid price across all exchanges on which the option
trades.

(h) Best Offer = The best, or lowest, 15:59 EST ask price across all exchanges on which the option
trades.

(i) Special Settlement = 0 or 1 or E.

i. 0 - The option has a standard settlement (100 shares of underlying security are to be delivered
at exercise; the strike price and premium multipliers are $ 100 per tick).

ii. 1 - The option has a non-standard settlement. The number of shares to be delivered may be
different from 100 (fractional shares); additional securities and/or cash may be required, and
the strike price and premium multipliers may be different than $ 100 per tick.

iii. E - The option has a non-standard expiration date. This is usually due to an error in the
historical data, which has not yet been researched and fixed.

(j) Option ID = Option ID is a unique integer identifier for the options contract. This identifier can
be used to track specific options contracts over time.

2. Zero_Curve File

The Zero Curve file contains the current zero-coupon interest rate curve used by Option-
Metrics.

Field descriptions

(a) Date = The date of this zero curve

(b) Days = The number of days to maturity

(c) Rate = The continuously-compounded zero-coupon interest rate
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3. Index_Dividend file

The Index Dividend file contains the current dividend yield used for implied volatility calculations on index
options.

Field descriptions

(a) Security ID = The Security ID of the underlying index

(b) Date = The date of this dividend yield

(c) Rate = The annualized dividend yield
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A.1.2 Optimization Methods

Trust-Region method for nonlinear optimization:

According to Yang et al. (2017), in the trust-region algorithm, the first step is to approximate
the nonlinear objective function by using truncated Taylor expansions

φk(x) ≈ f (xk) +∇f (xk)T u+ 1
2u

THku

in a so-called trust region Ωk which is defined by

Ωk = {x ∈ Rn| ‖Γ (x− xk)‖ ≤ ∆k}

where ∆k is the trust-region radius, Hk is the local Hessian matrix, Γ is a diagonal scaling
matrix that is related to the scalings of the optimization problem,xk+1 is the next trial solution
from the current solution xk.

The minimization using trust-region follows a four-step process:

1. Start at an initial guess x0 and radius 0 of the trust region Ω0.

2. Initialize algorithm constants: 0 < α1 ≤ α2 < 1, 0 < β1 ≤ β2 < 1.

3. while (stop criterion)
Construct an approximate model φk(x) for the objective f (xk) in Ωk.
Find a trial point xk+1 with a sufficient model decrease inside Ωk
Calculate the ratio γk of the achieved versus predicted decrease (This ratio measures how good the ap-
proximation φk is to the actual objective f(x)):

γk = f (xk)− f (xk+1)
φk (xk)− φk (Xk+1)

If γk ≥ α1 ( i.e. if the above ratio γk was close to unity, then we have a good approximation and we should
move the trust region to xk+1) and perform the following steps:

• Accept the move and update the trust region: xk ← xk+1;

• If γk ≥ α2 (i.e. if γk is about O(1) or γk ≥ α2 ≈ 0.9, we say that decrease is significant, and we can
increase the trust-region radius) then ∆k+1 ∈ [∆k,∞); end if

• If γk ∈ [α1, α2), (i.e. if α1 < γk ≤ α2, we should shrink the trust region), then ∆k+1 ∈ [β2∆k,∆k];
end if

else (i.e. if the decrease is too small or γk < α1, we should abandon the move as the approximation is not
good enough over this larger region and seek a better approximation on a smaller region by reducing the
trust-region radius)

• Discard the move and reduce the trust-region radius ∆k+1;

• ∆k+1 ∈ [β1∆k, β2∆k] (where 0 < β1 ≤ β2 < 1, typically β1 = β2 = 1/2

4. Update k = k + 1.

5. end

The typical values of the parameters are α1 = 0.01, α2 = 0.9, β1 = β2 = 1
2 .
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A.1.3 Rule-of-Thumb Evaluation

The Tables A.1.11, A.1.12 and A.1.13 contains output from exercises designed to evaluate the performance of the rules-of-thumb

proposed Heaton (2008) relative to the architecture proposed for the CN −Models and CKN −Models. The performance of a two

hidden layer MLP over a three hidden layer MLP is mentioned in table A.1.13 from columns IV to IX. Since the three hidden layer

MLPs perform marginally better than the two-layered network and are faster to train (as mentioned in table A.1.15, we choose

three hidden layered MLPs in this study. Note, the inputs of the MLP models in table A.1.11 are similar to the MLP models used

in section 2.4.1, and the inputs of the MLP models in table A.1.14 are similar to the MLP models used in section 2.4.2

Table A.1.11: Overall Call Price Comparison (amongst Parametric and MLP models to evaluate the performance of the rules-of-
thumb proposed by Heaton (2008)): This table presents the overall comparison of out-of-sample root mean square error (RMSE)
amongst the Random Walk (δCN ) model, Black-Scholes-Merton (BSMCN ) model, Heston (HCN ) model and the MLP models. The
one-day-ahead forecast errors of CN+1 are used to compute the Root Mean Square Error (RMSE). Column I identifies the models,
column II identifies the forecast variable, column III lists the input variables used by the models to obtain the one-trading-day
ahead forecast of CN+1, and columns IV, V and VI describe the network architecture of the MLP models, and column VII describe
the overall RMSE. The forecast variable for all the models is the one-day-ahead call option price (CN+1). The models denoted by
the N subscript use lagged input variables for forecasting CN+1. Forecasts are made for 1,326 trading days.

(I) (II) (III) (IV) (V) (VI) (VII)
MLP Model Forecast

Variable
Inputs No.

of
Hidden
Lay-
ers

No. of
Hidden
Nodes
per layer

Network
Architecture

Overall
RMSE

δCN CN+1 CN - - - 8.807

BSMCN CN+1 SN ,KN+1, TN+1, RN , QN , σ
CALIBC

N - - - 13.542
HCN CN+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , HParamsCN - - - 9.077

C1N CN+1 SN ,KN+1, TN+1, RN , QN , σ
CALIBC

N 1 6 6 9.115
C2N CN+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN 1 7 7 8.982
C3N CN+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN 3 12 12× 12× 12 8.852
C4N CN+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN , HParams
C
N 3 17 17× 17× 17 8.854

C5N CN+1 SN ,KN+1, TN+1, RN , QN , σ
CALIBC

N , CN , BSMGreeksCN , HParams
C
N , C

HC
N 3 18 18× 18× 18 8.831

C6N CN+1 SN ,KN+1, TN+1, RN , QN , HParams
C
N , C

HC
N 3 11 11× 11× 11 8.838
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Table A.1.12: Heaton (2008) Methodology: This table presents the overall comparison of out-of-sample root mean square error (RMSE)
amongst the MLP JCN −Models (JC1N to JC6N ) that follow the methodology of Heaton (2008) in choosing the number of hidden layers
and the number of hidden neuron in each hidden layer, on the S&P 500 Index from Sept. 2012 to Dec. 2017. Column I identifies the
models, column II identifies the forecast variable, column III lists the input variables used by the models to obtain the one-trading-day
ahead forecast of CN+1, and columns IV, V and VI describe the network architecture of the MLP models, and column VII describe the
overall RMSE. The forecast variable for all the models is the one-day-ahead call option price (CN+1). The models denoted by the N

subscript use lagged input variables for forecasting CN+1. Forecasts are made for 1,326 trading days.

(I) (II) (III) (IV) (V) (VI) (VII)
Heaton (2008)
inspired
MLP Model

Forecast
Variable

Inputs No.
of
Hidden
Lay-
ers

No. of
Hidden
Nodes
per layer

Network
Architecture

Overall
RMSE

JC1N CN+1 SN ,KN+1, TN+1, RN , QN , σ
CALIBC

N 1 5 5 9.231
JC2N CN+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN 1 6 6 9.012
JC3N CN+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN 2 9 5 X 4 8.826
JC4N CN+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN , HParams
C
N 2 12 6 X 6 8.860

JC5N CN+1 SN ,KN+1, TN+1, RN , QN , σ
CALIBC

N , CN , BSMGreeksCN , HParams
C
N , C

HC
N 2 13 7 X 6 8.863

JC6N CN+1 SN ,KN+1, TN+1, RN , QN , HParams
C
N , C

HC
N 2 8 4 X 4 8.866

Table A.1.13: Heaton (2008) Methodology: This table presents the overall comparison of out-of-sample root mean square
error (RMSE) amongst the MLP JCN −Models models (JC1N to JC6N ) from table A.1.12 with the MLP models in the
table A.1.11. The performance of the JCN −Models, measured as a percentage reduction in RMSE, relative to BSMCN
model, is reported in column II, relative to the HCN in column III and relative to the MLP Models from table A.1.11 from
column IV to column IX.

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX)

MLP
Model

Performance of
JCN −Models
over BSMCN

Performance of
JCN − Models
over HCN

Performance
of JC1N
over C1N

Performance
of JC2N
over C2N

Performance
of JC3N
over C3N

Performance
of JC4N
over C4N

Performance
of JC5N
over C5N

Performance
of JC6N
over C6N

JC1N 31.83% -1.70% -1.27% - - - - -
JC2N 33.45% 0.71% - -0.33% - - - -
JC3N 34.82% 2.76% - - 0.06% - - -
JC4N 34.58% 2.39% - - - -0.24% - -
JC5N 34.55% 2.36% - - - - -0.10% -
JC6N 34.53% 2.32% - - - - - -0.16%
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A.1.4 Epochs

Table A.1.14: Overall Call Price Scaled by the Exercise Price Comparison (amongst Parametric and MLP models): This table presents the overall
comparison of out-of-sample root mean square error (RMSE) amongst the Random Walk (δCKN ) model, Black-Scholes-Merton (BSMCKN ) model,
Heston (HCKN ) model and the MLP models. Column I identifies the models, column II identifies the forecast variable, column III lists the input
variables used by the models to obtain the one-trading-day ahead forecast of CN+1/KN+1, and columns IV, V and VI describe the network architecture
of the MLP models, and column VII describe the overall RMSE. The forecast variable for all the models is the one-day-ahead call option price scaled by
the exercise price (CN+1/KN+1). The models denoted by the N subscript use lagged input variables for forecasting CN+1/KN+1. The one-day-ahead
forecast errors of CN+1/KN+1 are used to compute the Root Mean Square Error (RMSE). Forecasts are made for 1,326 trading days.

(I) (II) (III) (IV) (V) (VI) (VII)
MLP
Model

Forecast
Variable

Inputs No. of
Hidden
Layers

No. of
Hidden
Nodes
per layer

Network
Architecture

Overall
RMSE

δCKN CN+1/KN+1 CN/KN - - - 0.490

BSMCKN CN+1/KN+1 SN/KN , TN+1, RN , QN , σ
CALIBCK

N - - - 0.715
HCKN CN+1/KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , HParamsCKN - - - 0.502

CK1N CN+1/KN+1 SN/KN , TN+1, RN , QN , σ
CALIBCK

N 1 5 5 0.509
CK2N CN+1/KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , CN/KN 1 6 6 0.502
CK3N CN+1/KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , CN/KN , BSMGreeksCKN 3 11 11× 11× 11 0.496
CK4N CN+1/KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , CN/KN , BSMGreeksCKN , HParamsCKN 3 16 16× 16× 16 0.494
CK5N CN+1/KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , CN/KN , BSMGreeksCKN , HParamsCKN , (CHCKN /KN ) 3 17 17× 17× 17 0.494
CK6N CN+1/KN+1 SN/KN , TN+1, RN , QN , HParams

CK
N , (CHCKN /KN ) 3 10 10× 10× 10 0.495
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Table A.1.15: Observed Average Epochs: This table presents the average number of epochs,
over the whole sample, required to train the various MLP models. The number of epochs
observed depends on the early stopping criteria. Column I lists the models where the call price
(CN − Models) is the forecast variable, and Column II records the average epochs required
for training these models. Similarly, column III lists the JCN −Models which follow the rule
of thumb of Heaton (2008), and column IV reports the average epochs required to train the
JCN −Models. Column VI presents the average epochs required to train the CKN −Models
listed in Column V.

(I) (II) (III) (IV) (V) (VI)
CN −Models
from table
A.1.11

Average
no. of
epochs for
models in
column I

JCN − Models
from table
A.1.12

Average
no. of
epochs for
models in
column II

CKN −Models
from table
A.1.14

Average
no. of
epochs for
models in
column III

C1N 1,545 JC1N 1,368 CK1N 1,157
C2N 1,563 JC2N 1,542 CK2N 1,884
C3N 1,248 JC3N 1,632 CK3N 10
C4N 25 JC4N 583 CK4N 9
C5N 43 JC5N 205 CK5N 8
C6N 80 JC6N 982 CK6N 9
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Table A.1.16: Table of variables for Chapter 2

Symbol Name Description
Ct Call price Call price calculated by taking the average of the bid and ask call price

from OptionMetrics
St S&P 500 Index Price S&P 500 Index Price from OptionMetrics
Kt Exercise price Option exercise price from OptionMetrics
Tt Time to Maturity Time to maturity calculated from option expiry date from OptionMetrics
Rt Risk-free interest rate The interpolated interest rate using zero interest curves from

OptionMetrics
Qt Dividend Yield S&P 500 Index dividend yield from OptionMetrics
St/Kt Moneyness Moneyness is defined as the ratio of the S&P Index price and the option

strike price
σBt Volatility Black-Scholes-Merton implied volatility
δBt Delta Black-Scholes-Merton Delta.
γBt Gamma Black-Scholes-Merton Gamma.
θBt Theta Black-Scholes-Merton Theta.
ρBt Rho Black-Scholes-Merton Rho.
νBt Vega Black-Scholes-Merton Vega.
V H0,t Initial variance Initial variance in the Heston model
θHt Long term variance Long term variance in the Heston model
κHt Mean reversion speed Mean reversion speed in the Heston model
σHt Volatility Volatility of variance in the Heston model
ρHt Correlation Correlation parameter in the Heston model
V HJD0,t Initial variance Initial variance in the Heston Jump Diffusion model
θHJDt Long term variance Long term variance in the Heston Jump Diffusion model
κHJDt Mean reversion speed Mean reversion speed in the Heston Jump Diffusion model
σHJDt Volatility Volatility of variance in the Heston Jump Diffusion model
ρHJDt Correlation Correlation parameter in the Heston Jump Diffusion model
σHJDt Jump Volatility Jump volatility parameter in the Heston Jump Diffusion model
µHJDt Jump Mean Jump mean parameter in the Heston Jump Diffusion model
λHJDt Jump Frequency Jump frequency parameter in the Heston Jump Diffusion model
αFMLS
t Tail Parameter Tail parameter in the Finite Moment Log Stable model
σFMLS
t Dispersion Parameter Dispersion parameter in the Finite Moment Log Stable model
BGreekst BSM greeks Black-Scholes-Merton greeks (δBt , γBt , ρBt , θBt , νBt )
HParamst Heston parameters Heston model parameters (κHt , σHt , θHt , ρHt , V H0,t)
HJDParamst Heston Jump Diffusion

parameters
Heston Jump Diffusion model parameters (κHJDt , σHJDt , θHJDt , ρHJDt ,
V HJD0,t , σHJDt ,µHJDt ,λHJDt )

FMLSParamst Finite Moment Log Stable
parameters

FMLS model parameters (αFMLS
t , σFMLS

t )
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Table A.1.17: Month-wise summary statistics of the S&P 500 Index call options prices used
in Chapter 2.

Month Number of Observations Average Call Price Bid-Ask Spread

September 2012 2,005 $71.25 $1.46
October 2012 7,196 $71.38 $1.24
November 2012 6,918 $67.11 $0.78
December 2012 6,602 $71.51 $0.81
January 2013 6,526 $80.25 $0.87
February 2013 6,324 $81.94 $0.91
March 2013 6,768 $84.58 $0.95
April 2013 7,795 $84.04 $1.07
May 2013 8,189 $87.87 $1.02
June 2013 7,867 $84.84 $1.01
July 2013 8,672 $88.60 $1.13
August 2013 8,338 $85.23 $1.04
September 2013 7,461 $89.32 $1.00
October 2013 7,957 $93.49 $1.03
November 2013 6,884 $99.42 $1.05
December 2013 7,359 $97.48 $0.98
January 2014 7,676 $97.57 $0.98
February 2014 7,392 $96.73 $1.04
March 2014 8,235 $103.58 $1.08
April 2014 8,099 $101.67 $1.16
May 2014 7,809 $107.11 $1.05
June 2014 7,575 $113.44 $1.13
July 2014 8,264 $116.33 $1.28
August 2014 8,392 $109.66 $1.23
September 2014 8,115 $111.10 $1.21
October 2014 9,231 $104.16 $1.23
November 2014 7,070 $122.60 $1.23
December 2014 8,484 $120.37 $1.46
January 2015 8,667 $114.67 $1.39
February 2015 8,567 $120.67 $1.41
March 2015 10,283 $114.19 $1.19
April 2015 9,436 $119.03 $1.24
May 2015 9,082 $122.14 $1.30
June 2015 10,209 $119.98 $1.21
July 2015 9,840 $118.99 $1.32
August 2015 9,467 $112.70 $1.64
September 2015 10,956 $100.27 $1.47
October 2015 9,649 $114.73 $1.43
November 2015 8,575 $119.68 $1.24
December 2015 9,222 $114.99 $1.17
January 2016 8,297 $101.10 $1.02
February 2016 9,561 $105.90 $1.05
March 2016 9,992 $123.42 $1.04
April 2016 9,381 $119.88 $1.00
May 2016 9,820 $113.89 $0.98
June 2016 9,977 $114.51 $0.94
July 2016 9,036 $120.09 $0.95
August 2016 10,629 $121.10 $0.85
September 2016 9,597 $117.80 $0.96
October 2016 9,271 $118.89 $1.01
November 2016 9,542 $117.65 $1.14
December 2016 9,878 $125.01 $1.18
January 2017 9,514 $125.31 $1.14
February 2017 8,353 $132.58 $1.19
March 2017 10,939 $133.36 $1.41
April 2017 9,249 $132.04 $1.24
May 2017 10,424 $137.74 $1.36
June 2017 10,528 $133.50 $1.52
July 2017 10,076 $139.66 $1.41
August 2017 10,937 $141.37 $1.60
September 2017 9,403 $142.40 $1.66
October 2017 10,074 $151.84 $1.74
November 2017 9,833 $152.60 $1.84
December 2017 8,928 $156.71 $1.82
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Appendix A.2

Appendix for Chapter 2: Extended

Results

A.2.1 Pricing performance of C-Models that use lagged input

variables to forecast the call option price (CN+1) for the

next trading day:

Table A.2.1 to Table A.2.14 shows the relative out-of-sample pricing performance (in RMSE)
amongst the models that use lagged input variables to forecast the one-trading-day-ahead call
option price(CN+1). For convenience, the models in table A.2.1 to table A.2.13, lists the forecast
variable and the input variables in columns II and III, respectively, and the architecture of the
MLP and LSTM models in columns IV, V and VI, respectively. The performance metric is
the RMSE of the one-trading-day-ahead forecast errors of CN+1, which is computed for each
model utilising all of the errors in each day or each month. Amongst all of the models (including
the random walk model (δCN )), columns VII and VIII record the number of months and days,
respectively, that each model had the lowest RMSE. To be certain of our results, we performed
a bootstrap using the daily and monthly RMSEs. Columns IX (lower bound) and X (upper
bound) present the results from the bootstrap performed (with replacement) using monthly
RMSEs at a 95% confidence level and show the winning percentage out of 64 months for each
model (including the δCN model), and similarly, the 95 % confidence intervals computed from
bootstrapping of the daily RMSEs signifies the winning percentage out of 1328 days for each
model and are reported in columns XI (lower bound), XII (upper bound). While excluding
the δCN model amongst the comparison, columns XIII and XIV record the number of months
and days that each model had the lowest RMSE. We repeat the exercise of performing the
bootstrap by excluding the δCN model in the comparison, and thus, columns XV (lower bound)
and XVI (upper bound) present the results from the bootstrap performed (with replacement)
using monthly RMSEs at a 95% confidence level and shows the winning percentage out of 64
months for each model (excluding the δCN model), and similarly, the 95 % confidence intervals
computed from bootstrapping of the daily RMSEs signifies the winning percentage out of 1328
days for each model and are reported in columns XVII (lower bound), XVIII (upper bound).
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In the below several comparisons, even though a particular model wins by a higher percentage
against other models, we investigated further these models pairwise by performing a pairwise
bootstrap comparison, which was computed using the respective pair’s daily RMSEs. The re-
sults are presented in Table 17 of the Electronic Appendix. Also, we examined the pairwise
Diebold-Mariano(DM ) (Diebold and Mariano (1995)) tests on the and have presented the re-
sults in Table 13 of the Electronic Appendix. In constructing the DM tests, the model pairs are
reported in column I and column II, and the DM test statistics for a particular pair are reported
in column III. If the null can be rejected, a positive number suggests the rejection may be due
to the second model being the better forecast model. In contrast, a negative value suggests
the rejection may be due to the first model being the better forecast model. The model pairs
highlighted in a red state that their forecasts have statistically insignificant differences in their
prediction accuracy. The following model pairs have been shown to have statistically insignifi-
cant differences: (HJDCN , M3C1N ), (M1C3N , M2C1N ), (M1C4N , M2C4N ), (M1C5N ,
M2C7N ), (M1C5N ,M2C8N ), (M1C5N ,M3C8N ), (M1C6N ,M2C7N ), (M1C6N ,M3C7N ),
(M1C7N , M1C9N ), (M1C8N , M2C5N ), (L1C4N , L3C4N ), (L1C8N , L2C4N ), (M2C3N ,
M2C9N ), (M2C3N ,M3C3N ), (M2C3N ,M3C9N ), (M2C6N ,M2C7N ), (M2C6N ,M3C5N ),
(M2C6N , M3C8N ), (M2C7N , M2C8N ), (M2C7N , M3C5N ), (M2C7N , M3C8N ), (M2C8N
,M3C5N ), (M2C9N ,M3C3N ), (L2C8N , L3C7N ), (M3C1N ,M3C2N ), (M3C3N ,M3C4N ),
(M3C5N , M3C8N ), and (M3C6N , M3C7N ). The RMSEs for the C−Models that use lagged
input variables to forecast the CN+1 for the next trading day on a monthly, yearly, and overall
basis can be found in the Electronic Appendix, in Tables 1, 5, and 9, respectively.

A.2.1.1 Comparison amongst all Parametric Models with Single Hidden Layer

ANN Models:

In this section, we compare the out-of-sample pricing performance of the random walk model
(δCN ), the parametric models (BSMCN , HCN , HJDCN , and FMLSCN ), the single hidden
layer MLP models (M1CN −Models) and single hidden layer LSTM models (L1CN −Models),
then the parametric models with the M1CN −Models, and finally the parametric models with
the L1CN −Models.

The results for the parametric models with the MLP M1CN −Models (M1C1N to M1C9N )
and LSTM L1CN −Models (L1C1N to L1C9N ) are presented in Table A.2.1. If all the models
are individually compared, then the δCN model had the lowest RMSE for 161 days (having a
daily bootstrap winning % of 10% to 14%) out of 1,328 days, while other variants of the LSTM
model, the L1C4N (118 days), L1C8N (135 days) have had a collective daily bootstrap winning
percentage from 7% (lower bound for the L1C4N model) to 12% (upper bound for the L1C8N
model). When the δCN was excluded from the comparison, the L1C8N model outperformed all
other models for 142 days (having a daily bootstrap winning % of 9% to 12%) out of 1,328 days.
Though the L1C8N model outperformed, other variants of the LSTM model, like the L1C4N
(120 days), and the L1C5N (105 days), have shown similar outperformance to L1C8N model,
where they have a collective daily bootstrap winning percentage from 6% (lower bound for the
L1C5N model) to 11% (upper bound for the L1C4N model).

Table A.2.2 presents the results for the comparison of the parametric models with the MLP
M1CN −Models (M1C1N to M1C9N ). Accordingly, when all the models are compared, the
δCN model had the lowest RMSE for 234 days (having a daily bootstrap winning % of16% to
20%) out of 1,328 days, while another parametric model, the FMLSCN (221 days) had a similar
bootstrap winning % of15% to 19%). When the δCN was excluded from the comparison, the
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FMLSCN model outperformed all other models for 229 days (having a daily bootstrap winning
% of 15% to 19%) out of 1,328 days.

We present the comparison results of the parametric models with the LSTM L1CN −Models
(L1C1N to L1C9N ) in Table A.2.3. We find that the δCN model had the lowest RMSE for
248 (having a daily bootstrap winning % of 17% to 21%) days out of 1,328 days when all the
models were compared together. When the δCN was excluded from the comparison, the L1C8N
model had outperformed all other models for 171 days (having a daily bootstrap winning % of
11% to 15%) out of 1,328 days. Though the L1C8N model outperformed, other variants of the
parametric model, the HCN (145 days), and the HJDCN (144 days), and other variants of the
LSTM model, the L1C4N (124 days), L1C5N (142 days), L1C6N (118 days), and the L1C7N
(123 days) have shown similar outperformance to L1C8N model, where they have a collective
daily bootstrap winning percentage ranging from 7% (lower bound for the L1C6N model) to
13%(upper bound for the HCN , HJDCN model).

Thus, when the parametric models are compared with the single hidden layer ANN models, we
conclude that an LSTM model (L1C8N ) could outperform all other models. If the parametric
models were compared with the single hidden layer MLP models (in Table A.2.2), a parametric
model (FMLSCN ) had outperformed all the single hidden layer MLP models, but when the
parametric models were compared with the single hidden layer LSTM models (in Table A.2.3),
an LSTM model (L1C8N ) had still outperformed them all.

A.2.1.2 Comparison amongst all Parametric Models with Double Hidden

Layer ANN Models:

In this section, we compare the out-of-sample pricing performance of the random walk model
(δCN ), the parametric models (BSMCN , HCN , HJDCN , and FMLSCN ), the double hidden
layer MLP models (M2CN−Models) and double hidden layer LSTM models (L2CN−Models),
then the parametric models with the M2CN −Models, and finally the parametric models with
the L2CN −Models.

The results for the parametric models with the MLPM2CN−Models (M2C1N toM2C9N ) and
the LSTM L2CN −Models (L2C1N to L2C9N ) are presented in Table A.2.4. If all the models
are individually compared, then the L2C9N model had the lowest RMSE for 160 days (having
a daily bootstrap winning % of 10% to 14%) out of 1,328 days, while other variants of the LSTM
model, the L2C2N (126 days), and the L2C4N (108 days) have had a collective daily bootstrap
winning percentage from 7% (lower bound for the L2C4N model) to 11% (upper bound for
the L2C2N model). When the δCN was excluded from the comparison, the L2C9N model still
outperformed all other models for 161 days (having a daily bootstrap winning % of 10% to
14%) out of 1,328 days. Though the L2C9N model outperformed, other variants of the LSTM
model, the L2C2N (126 days), and the L2C4N (109 days), have shown similar outperformance
to L2C9N model, where they have a collective daily bootstrap winning percentage from 7%
(lower bound for the L2C4N model) to 11% (upper bound for the L2C2N model).

Table A.2.5 presents the results for the comparison of the parametric models with the MLP
M2CN − Models (M2C1N to M2C9N ). Accordingly, the FMLSCN model had the lowest
RMSE for 223 days (having a daily bootstrap winning % of 15% to 19%) out of 1,328 days.
When the δCN was excluded from the comparison, the FMLSCN model still outperformed all
other models for 230 days (having a daily bootstrap winning % of 15% to 19%) out of 1,328
days.
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We present the comparison results of the parametric models with the LSTM L2CN −Models
(L2C1N to L2C9N ) in Table A.2.6. We find that the δCN model had the lowest RMSE for
231 days (having a daily bootstrap winning % of 15% to 19%) out of 1,328 days, while another
variant of the LSTM model, the L2C9N (164 days) had a daily bootstrap winning percentage of
11% to 14%. When the δCN was excluded from the comparison, the L2C9N model outperformed
all other models for 165 days (having a daily bootstrap winning % of 11% to 14%) out of 1,328
days. Though the L2C9N model outperformed, other variants of the parametric model, the
HCN (138 days), and the HJDCN (114 days), and other variants of the LSTM model, the
L2C2N (127 days), L2C4N (116 days), L2C5N (121 days), and the L2C8N (142 days) have
shown similar outperformance to L2C9N model, where they have a collective daily bootstrap
winning percentage from 7% (lower bound for the L2C4N model) to 12% (upper bound for the
HCN model).

Thus, when the parametric models are compared with the double hidden layer ANN models, we
conclude that an LSTM model (L2C9N ) could outperform all other models (in Table A.2.4).
If the parametric models were compared with the double hidden layer MLP models (M2CN −
Models)(in Table A.2.5), a parametric model (FMLSCN ) outperformed all the double hidden
layer MLP models, but when the parametric models were compared with the double hidden
layer LSTM models (in Table A.2.6), an LSTM model (L2C9N ) model had still outperformed
them all.

A.2.1.3 Comparison amongst all Parametric Models with Triple Hidden Layer

ANN Models:

In this section, we compare the out-of-sample pricing performance of the random walk model
(δCN ), the parametric models (BSMCN , HCN , HJDCN , and FMLSCN ), the triple hidden
layer MLP models (M3CN −Models) and triple hidden layer LSTM models (L3CN −Models),
then the parametric models with the M3CN −Models, and finally the parametric models with
the L3CN −Models.

The results for the parametric models with the MLPM3CN−Models (M3C1N toM3C9N ) and
the LSTM L3CN −Models (L3C1N to L3C9N ) are presented in Table A.2.7. If all the models
are individually compared, then the L3C9N model had the lowest RMSE for 169 days (having
a daily bootstrap winning % of 11% to 15%) out of 1,328 days, while the δCN (128 days)
and another variant of the LSTM model, the L3C2N (138 days) have had a collective daily
bootstrap winning percentage from 9% (lower bound for the L3C2N model) to 11% (upper
bound for the δCN model). When the δCN was excluded from the comparison, the L3C9N
model still outperformed all other models for 169 (having a daily bootstrap winning % of 11%
to 15%) days out of 1,328 days. Though the L3C9N model outperformed, another variant of
the LSTM model, the L3C2N (138 days), had a daily bootstrap winning percentage of 9% to
12%).

Table A.2.8 presents the results for the comparison of the parametric models with the MLP
M3CN − Models (M3C1N to M3C9N ). Accordingly, the FMLSCN model had the lowest
RMSE for 224 days (having a daily bootstrap winning % of 15% to 19%) out of 1,328 days,
but the δCN model similarly out-performed for 206 days and had a daily bootstrap winning
percentage of 14% to 17%). When the δCN was excluded from the comparison, the FMLSCN
model (having a daily bootstrap winning % of 15% to 19%) still outperformed all other models
for 229 days out of 1,328 days. Though the FMLSCN model outperformed, another variant of
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the parametric model, the HCN (159 days), had a daily bootstrap winning percentage of 10%
to 14%).

We present the comparison results of the parametric models with the LSTM L3CN −Models
(L3C1N to L3C9N ) in Table A.2.9. We find that the δCN model had the lowest RMSE for
234 days (having a daily bootstrap winning % of 16% to 20%) out of 1,328 days, while another
variant of the LSTM model, the L3C9N (176 days) had a similar daily bootstrap winning
percentage of 11% to 15%). When the δCN was excluded from the comparison, the L3C9N
model outperformed all other models for 180 days (having a daily bootstrap winning % of
12% to 15%) out of 1,328 days. Though the L3C9N model outperformed other variants of the
parametric model, the HCN (144 days), and the HJDCN (126 days), and other variants of
the LSTM model, the L3C2N (144 days), L3C5N (127 days), and the L3C8N (121 days) have
shown similar outperformance to L3C9N model, where they have a collective daily bootstrap
winning percentage from 8% (lower bound for the HJDCN , L3C5N , L3C8N model) to 13%
(upper bound for the HCN , L3C2N model)

Thus, when the parametric models are compared with the triple hidden layer ANN models, we
conclude that an LSTM model (L3C9N ) could outperform all other models. If the parametric
models were compared with the triple hidden layer MLP models (M3CN −Models) (in Table
A.2.8), a parametric model (FMLSCN ) outperforms, but when the parametric models were
compared with the triple hidden layer LSTMmodels (in Table A.2.9), the LSTMmodel (L3C9N )
had still outperformed them all.

A.2.1.4 Comparison amongst all Parametric Models with Single, Double and

Triple Hidden Layer ANN Models:

In this section, we compare the out-of-sample pricing performance of the random walk model
(δCN ), the parametric models (BSMCN , HCN , HJDCN , and FMLSCN ), the single, double,
triple hidden layer MLP models (M1CN −Models, M2CN −Models, and M3CN −Models)
and single, double, triple hidden layer LSTM models (L1CN −Models, L2CN −Models, and
L3CN −Models), then the parametric models with the M1CN −Models, M2CN −Models, and
M3CN −Models, and finally the parametric models with the L1CN −Models, L2CN −Models,
and L3CN −Models.

The results for the parametric models with theM1CN−Models (M1C1N toM1C9N ),M2CN−
Models (M2C1N toM2C9N ),M3CN−Models (M3C1N toM3C9N ), L1CN−Models (L1C1N
to L1C9N ), L2CN −Models (L2C1N to L2C9N ), and L3CN −Models (L3C1N to L3C9N )
are presented in Table A.2.10. If all the models are individually compared, then the L3C9N
model had the lowest RMSE for 122 days (having a daily bootstrap winning % of 8% to 11%)
out of 1,328 days. Although the L3C9N model had outperformed, the δCN model had similarly
out-performed for 106 days (having a daily bootstrap winning % of 7% to 9%) days out of 1,328
days. When the δCN was excluded from the comparison, the L3C9N model still outperformed
all other models for 122 days (having a daily bootstrap winning % of 8% to 11%) out of 1,328
days, while there was another variant of the LSTM model, the L3C2N (86 days), that had a
daily bootstrap winning percentage of 5% to 8%).

Table A.2.11 presents the results for the comparison of the parametric models with the M1CN−
Models (M1C1N to M1C9N ), M2CN − Models (M2C1N to M2C9N ), M3CN − Models
(M3C1N to M3C9N ). Accordingly, the FMLSCN model had the lowest RMSE for 195 (hav-
ing a daily bootstrap winning % of 13% to 17%) days out of 1,328 days, while the δCN had
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similarly out-performed for 158 days (having a daily bootstrap winning % of 10% to 14%) out
of 1,328 days. When the δCN was excluded from the comparison, the FMLSCN model still
outperformed all other models for 198 days (having a daily bootstrap winning % of 13% to 17%)
out of 1,328 days.

We present the comparison results of the parametric models with the L1CN −Models (L1C1N
to L1C9N ), L2CN −Models (L2C1N to L2C9N ), and L3CN −Models (L3C1N to L3C9N ) in
Table A.2.12. We find that the δCN model had the lowest RMSE for 200 days (having a daily
bootstrap winning % of 13% to 17%) out of 1,328 days. When the δCN was excluded from the
comparison, the L3C9N model still outperformed all other models for 130 days (having a daily
bootstrap winning % of 8% to 11%) out of 1,328 days, although there were other variants of
the parametric model, the HCN (93 days), and the HJDCN (87 days) have had a collective
daily bootstrap winning percentage from 5% (lower bound for the HJDCN model) to 8% (upper
bound for the HCN model)).

Thus, when the parametric models are compared with the single, double and triple hidden layer
ANN models (in Table A.2.10), we notice that a three-hidden layer LSTM model (L3C9N ) had
outperformed all other models, including the δCN model, which had shown similar outperfor-
mance to the L3C9N model. If the parametric models were compared with the single, double
and triple hidden layer MLP models (in Table A.2.11), then a parametric model (FMLSCN )
outperforms all the single, double and the triple hidden layer MLP models, but when the para-
metric models were compared with the single, double and the triple hidden layer LSTM models
(in Table A.2.12), a three-hidden layer LSTM (L3C9N ) model had still outperformed them all.

A.2.1.5 Comparison amongst Single, Double and Triple Hidden Layer ANN

Models:

In this section, we compare the out-of-sample pricing performance of the random walk model
(δCN ), the single, double, and triple hidden layer MLP models (M1CN −Models (M1C1N to
M1C9N ), M2CN −Models (M2C1N toM2C9N ), andM3CN −Models (M3C1N toM3C9N ))
and the single, double, triple hidden layer LSTM models (L1CN −Models (L1C1N to L1C9N ),
L2CN −Models (L2C1N to L2C9N ), and L3CN −Models (L3C1N to L3C9N )), and present
the results in Table A.2.13. We find that the L3C9N model had the lowest RMSE for 125 days
(having a daily bootstrap winning % of 8% to 11%) out of 1,328 days. Although the L3C9N
model outperformed, the δCN (107 days) and other variants of the LSTM model, the L3C2N
(86 days), and the L3C4N (85 days) have had a collective daily bootstrap winning percentage
from 5% (lower bound for the L3C2N , and the L3C4N model) to 10% (upper bound for the δCN
model). When the δCN was excluded from the comparison, the L3C9N model still outperformed
all other models for 125 days (having a daily bootstrap winning % of 8% to 11%) out of 1,328
days, while other variants of the LSTM model, the L3C2N (86 days), and the L3C4N (85 days)
have had a collective daily bootstrap winning percentage from 5% (lower bound for the L3C2N ,
and the L3C4N model) to 8% (upper bound for the L3C2N , and the L3C4N model).

Thus, when comparing the out-of-sample pricing performance amongst the single, double and
triple hidden layer ANN models (in Table A.2.13), a triple hidden layer LSTM(L3C9N ) model
outperforms the single, double and the triple hidden layer MLP models and also the single,
double hidden layer LSTM models.
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A.2.1.6 Comparison amongst all Parametric models:

In this section, we compare the out-of-sample pricing performance of the random walk model
(δCN ), and the parametric models (BSMCN , HCN , HJDCN , and FMLSCN ) in Table A.2.14.
We find that the δCN model had the lowest RMSE for 498 days (having a daily bootstrap win-
ning % of 35% to 40%) out of 1,328 days. When the δCN was excluded from the comparison,
the HJDCN model still outperformed all other models for 458 days (having a daily boot-
strap winning % of 32% to 37%) out of 1,328 days. Though the HJDCN model outperformed
other parametric models, other variants of the parametric model, the HCN (376 days) and the
FMLSCN (362 days), have shown similar outperformance to HJDCN model, where they have a
collective daily bootstrap winning percentage from 25% (lower bound for the FMLSCN model)
to 31% (upper bound for the HCN model).

Thus, when comparing the out-of-sample pricing performance amongst the parametric models,
the HJDCN model had outperformed all other parametric models, followed by the FMLSCN
and HCN model (in Table A.2.14).
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Table A.2.1: Call Price Comparison (amongst Parametric, MLP M1CN −Models and LSTM L1CN −Models): This table presents a performance comparison using both daily and monthly statistics amongst the Black-Scholes-Merton (BSMCN ) model,
Heston (HCN ) model, Heston Jump Diffusion (HJDCN ) model, Finite Moment Log Stable (FMLSCN ) model, MLP M1CN −Models (M1C1N to M1C9N ) and the LSTM L1CN −Models (L1C1N to L1C9N ). The forecast variable for all the models is the
one-day-ahead call option price (CN+1). The models denoted by the N subscript use lagged input variables for forecasting CN+1. The one-day-ahead forecast errors of CN+1 are used to compute the Root Mean Square Error (RMSE). Column I identifies the
models, column II identifies the forecast variable, column III lists the input variables used by the models to obtain the one-trading-day ahead forecast of CN+1, and columns IV, V and VI describe the network architecture of the MLP M1CN −Models and
the LSTM L1CN −Models. Forecasts are made for 1,328 trading days, and there are 64 months covered in the sample using the monthly data.
When comparing all models simultaneously (i.e. including the random walk model (δCN ), column VII reports the number of months out of the 64 months that each model has the smallest RMSE, while column VIII reports the number of days out of the
1,328 days each model has the smallest RMSE. Columns IX (lower bound) and X (upper bound) present the winning percentage out of 64 months for each model, evaluated using the bootstrap sampling technique. The statistical bootstrap performed (with
replacement) at a 95% confidence level is computed from the monthly RMSE values of the respective models below. Columns XI (lower bound), XII (upper bound) presents the winning percentage out of 1326 days for each model computed from bootstrapping
the daily RMSE values of the respective models at a 95% confidence level.
Similarly, when the δCN model was excluded in the comparison, column XIII report the number of months out of the 64 months that each model has the smallest RMSE, while column XIV reports the number of days out of the 1,328 days each model has
the smallest RMSE. Columns XV (lower bound) and XVI (upper bound) present the winning percentage out of 64 months for each model, evaluated using the bootstrap sampling technique. The statistical bootstrap performed (with replacement) at a 95%
confidence level is computed from the monthly RMSE values of the respective models below. Also, columns XVII (lower bound) and XVIII (upper bound) present the winning percentage out of 1326 days for each model computed from bootstrapping the daily
RMSE values of the respective models at a 95% confidence level.

Including the random walk Excluding the random walk

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X) (XI) (XII) (XIII) (XIV) (XV) (XVI) (XVII) (XVIII)

Model Forecast Inputs No.
of
hidden
layers

No. of
hidden
nodes
per layer

Network
architecture

Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

δCN CN+1 CN - - - 13 161 11% 31% 10% 14% - - - - - -

BSMCN C
BSMCN
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N - - - 0 70 0% 0% 4% 7% 0 70 0% 0% 4% 6%

HCN C
HCN
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , HParamsCN - - - 2 79 0% 8% 5% 7% 2 81 0% 8% 5% 7%

HJDCN C
HJDCN
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , HJDParamsCN - - - 0 6 0% 0% 0% 1% 0 27 0% 0% 1% 3%

FMLSCN C
FMLSCN
N+1 SN ,KN+1, TN+1, RN , QN , FMLSParamsCN - - - 0 45 0% 0% 2% 4% 0 46 0% 0% 2% 4%

M1C1N C
M1C1N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N 1 6 6 0 14 0% 0% 1% 2% 0 14 0% 0% 1% 2%

M1C2N C
M1C2N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN 1 7 7 4 16 2% 13% 1% 2% 4 16 0% 13% 1% 2%

M1C3N C
M1C3N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN 1 12 12 1 61 0% 5% 4% 6% 1 73 0% 5% 4% 7%

M1C4N C
M1C4N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN , HParams
C
N 1 17 17 1 53 0% 5% 3% 5% 6 87 3% 17% 5% 8%

M1C5N C
M1C5N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN , HParams
C
N , C

HC
N 1 18 18 5 16 2% 16% 1% 2% 5 43 2% 16% 2% 4%

M1C6N C
M1C6N
N+1 SN ,KN+1, TN+1, RN , QN , HParams

C
N , C

HC
N 1 11 11 5 12 2% 16% 0% 2% 7 21 5% 19% 1% 2%

M1C7N C
M1C7N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , BSMGreeksCN , C
BSMC
N 1 12 12 10 43 8% 25% 2% 4% 10 51 7% 25% 3% 5%

M1C8N C
M1C8N
N+1 SN ,KN+1, TN+1, RN , QN , HJDParams

C
N , C

HJDC
N 1 14 14 2 6 0% 8% 0% 1% 5 24 2% 14% 1% 3%

M1C9N C
M1C9N
N+1 SN ,KN+1, TN+1, RN , QN , FMLSParamsCN , C

FMLSC
N 1 8 8 0 17 0% 0% 1% 2% 0 22 0% 0% 1% 2%

L1C1N C
L1C1N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N 1 6 6 0 2 0% 0% 0% 0% 0 2 0% 0% 0% 0%

L1C2N C
L1C2N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN 1 7 7 0 93 0% 0% 6% 8% 0 93 0% 0% 6% 8%

L1C3N C
L1C3N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN 1 12 12 0 85 0% 0% 5% 8% 0 85 0% 0% 5% 8%

L1C4N C
L1C4N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN , HParams
C
N 1 17 17 0 118 0% 0% 7% 11% 0 120 0% 0% 7% 11%

L1C5N C
L1C5N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN , HParams
C
N , C

HC
N 1 18 18 6 101 3% 17% 6% 9% 6 105 3% 17% 6% 9%

L1C6N C
L1C6N
N+1 SN ,KN+1, TN+1, RN , QN , HParams

C
N , C

HC
N 1 11 11 2 93 0% 8% 6% 8% 2 96 0% 8% 6% 9%

L1C7N C
L1C7N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , BSMGreeksCN , C
BSMC
N 1 12 12 4 67 2% 13% 4% 6% 5 75 2% 16% 4% 7%

L1C8N C
L1C8N
N+1 SN ,KN+1, TN+1, RN , QN , HJDParams

C
N , C

HJDC
N 1 14 14 9 135 6% 23% 9% 12% 11 142 8% 27% 9% 12%

L1C9N C
L1C9N
N+1 SN ,KN+1, TN+1, RN , QN , FMLSParamsCN , C

FMLSC
N 1 8 8 0 35 0% 0% 2% 4% 0 35 0% 0% 2% 3%
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Table A.2.2: Call Price Comparison (amongst Parametric and MLP M1CN −Models): This table presents a performance comparison using both daily and monthly statistics amongst the Black-Scholes-Merton (BSMCN ) model, Heston (HCN ) model, Heston
Jump Diffusion (HJDCN ) model, Finite Moment Log Stable (FMLSCN ) model and the MLP M1CN −Models (M1C1N to M1C9N ). The forecast variable for all the models is the one-day-ahead call option price (CN+1). The models denoted by the N

subscript use lagged input variables for forecasting CN+1. The one-day-ahead forecast errors of CN+1 are used to compute the Root Mean Square Error (RMSE). Column I identifies the models, column II identifies the forecast variable, column III lists the
input variables used by the models to obtain the one-trading-day ahead forecast of CN+1, and columns IV, V and VI describe the network architecture of the MLP M1CN −Models. Forecasts are made for 1,328 trading days, and there are 64 months covered
in the sample using the monthly data.
When comparing all models simultaneously (i.e. including the random walk model (δCN ), column VII reports the number of months out of the 64 months that each model has the smallest RMSE, while column VIII reports the number of days out of the
1,328 days each model has the smallest RMSE. Columns IX (lower bound) and X (upper bound) present the winning percentage out of 64 months for each model, evaluated using the bootstrap sampling technique. The statistical bootstrap performed (with
replacement) at a 95% confidence level is computed from the monthly RMSE values of the respective models below. Columns XI (lower bound), XII (upper bound) presents the winning percentage out of 1326 days for each model computed from bootstrapping
the daily RMSE values of the respective models at a 95% confidence level.
Similarly, when the δCN model was excluded in the comparison, column XIII report the number of months out of the 64 months that each model has the smallest RMSE, while column XIV reports the number of days out of the 1,328 days each model has
the smallest RMSE. Columns XV (lower bound) and XVI (upper bound) present the winning percentage out of 64 months for each model, evaluated using the bootstrap sampling technique. The statistical bootstrap performed (with replacement) at a 95%
confidence level is computed from the monthly RMSE values of the respective models below. Also, columns XVII (lower bound) and XVIII (upper bound) present the winning percentage out of 1326 days for each model computed from bootstrapping the daily
RMSE values of the respective models at a 95% confidence level.

Including the random walk Excluding the random walk

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X) (XI) (XII) (XIII) (XIV) (XV) (XVI) (XVII) (XVIII)

Model Forecast Inputs No.
of
hidden
layers

No. of
hidden
nodes
per layer

Network
architecture

Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

δCN CN+1 CN - - - 18 234 17% 39% 16% 20% - - - - - -

BSMCN C
BSMCN
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N - - - 0 124 0% 0% 8% 11% 0 124 0% 0% 8% 11%

HCN C
HCN
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , HParamsCN - - - 3 163 0% 11% 11% 14% 3 170 0% 11% 11% 15%

HJDCN C
HJDCN
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , HJDParamsCN - - - 0 16 0% 0% 1% 2% 0 52 0% 0% 3% 5%

FMLSCN C
FMLSCN
N+1 SN ,KN+1, TN+1, RN , QN , FMLSParamsCN - - - 0 221 0% 0% 15% 19% 0 229 0% 0% 15% 19%

M1C1N C
M1C1N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N 1 6 6 0 50 0% 0% 3% 5% 0 50 0% 0% 3% 5%

M1C2N C
M1C2N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN 1 7 7 6 49 3% 17% 3% 5% 6 50 3% 17% 3% 5%

M1C3N C
M1C3N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN 1 12 12 4 124 2% 13% 8% 11% 4 144 2% 13% 9% 13%

M1C4N C
M1C4N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN , HParams
C
N 1 17 17 3 93 0% 9% 6% 8% 8 140 6% 22% 9% 12%

M1C5N C
M1C5N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN , HParams
C
N , C

HC
N 1 18 18 7 45 5% 19% 3% 4% 11 81 8% 27% 5% 7%

M1C6N C
M1C6N
N+1 SN ,KN+1, TN+1, RN , QN , HParams

C
N , C

HC
N 1 11 11 6 37 3% 17% 2% 4% 8 54 5% 20% 3% 5%

M1C7N C
M1C7N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , BSMGreeksCN , C
BSMC
N 1 12 12 13 104 11% 31% 6% 9% 13 117 11% 30% 7% 10%

M1C8N C
M1C8N
N+1 SN ,KN+1, TN+1, RN , QN , HJDParams

C
N , C

HJDC
N 1 14 14 3 23 0% 11% 1% 2% 10 59 8% 25% 3% 6%

M1C9N C
M1C9N
N+1 SN ,KN+1, TN+1, RN , QN , FMLSParamsCN , C

FMLSC
N 1 8 8 1 45 0% 5% 2% 4% 1 58 0% 5% 3% 5%
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Table A.2.3: Call Price Comparison (amongst Parametric and LSTM L1CN −Models): This table presents a performance comparison using both daily and monthly statistics amongst the Black-Scholes-Merton (BSMCN ) model, Heston (HCN ) model, Heston
Jump Diffusion (HJDCN ) model, Finite Moment Log Stable (FMLSCN ) model and the LSTM L1CN −Models (L1C1N to L1C9N ). The forecast variable for all the models is the one-day-ahead call option price (CN+1). The models denoted by the N

subscript use lagged input variables for forecasting CN+1. The one-day-ahead forecast errors of CN+1 are used to compute the Root Mean Square Error (RMSE). Column I identifies the models, column II identifies the forecast variable, column III lists the
input variables used by the models to obtain the one-trading-day ahead forecast of CN+1, and columns IV, V and VI describe the network architecture of the LSTM L1CN −Models. Forecasts are made for 1,328 trading days, and there are 64 months covered
in the sample using the monthly data.
When comparing all models simultaneously (i.e. including the random walk model (δCN ), column VII reports the number of months out of the 64 months that each model has the smallest RMSE, while column VIII reports the number of days out of
the 1,328 days each model has the smallest RMSE. Columns IX (lower bound) and X (upper bound) present the winning percentage out of 64 months for each model, evaluated using the bootstrap sampling technique. The statistical bootstrap performed
(with replacement) at a 95% confidence level is computed from the monthly RMSE values of the respective models below. Columns XI (lower bound) and XII (upper bound) present the winning percentage out of 1326 days for each model computed from
bootstrapping the daily RMSE values of the respective models at a 95% confidence level.
Similarly, when the δCN model was excluded in the comparison, column XIII report the number of months out of the 64 months that each model has the smallest RMSE, while column XIV reports the number of days out of the 1,328 days each model has
the smallest RMSE. Columns XV (lower bound) and XVI (upper bound) present the winning percentage out of 64 months for each model, evaluated using the bootstrap sampling technique. The statistical bootstrap performed (with replacement) at a 95%
confidence level is computed from the monthly RMSE values of the respective models below. Also, columns XVII (lower bound) and XVIII (upper bound) present the winning percentage out of 1326 days for each model computed from bootstrapping the daily
RMSE values of the respective models at a 95% confidence level.

Including the random walk Excluding the random walk

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X) (XI) (XII) (XIII) (XIV) (XV) (XVI) (XVII) (XVIII)

Model Forecast Inputs No.
of
hidden
layers

No. of
hidden
nodes
per layer

Network
architecture

Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

δCN CN+1 CN - - - 27 248 31% 55% 17% 21% - - - - - -

BSMCN C
BSMCN
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N - - - 0 72 0% 0% 4% 7% 0 72 0% 0% 4% 7%

HCN C
HCN
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , HParamsCN - - - 6 133 3% 17% 8% 12% 7 145 5% 19% 9% 13%

HJDCN C
HJDCN
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , HJDParamsCN - - - 1 18 0% 5% 1% 2% 16 144 15% 36% 9% 13%

FMLSCN C
FMLSCN
N+1 SN ,KN+1, TN+1, RN , QN , FMLSParamsCN - - - 0 61 0% 0% 4% 6% 0 65 0% 0% 4% 6%

L1C1N C
L1C1N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N 1 6 6 0 2 0% 0% 0% 0% 0 2 0% 0% 0% 0%

L1C2N C
L1C2N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN 1 7 7 0 93 0% 0% 6% 8% 0 93 0% 0% 6% 8%

L1C3N C
L1C3N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN 1 12 12 0 87 0% 0% 5% 8% 0 88 0% 0% 5% 8%

L1C4N C
L1C4N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN , HParams
C
N 1 17 17 0 122 0% 0% 8% 11% 1 124 0% 5% 8% 11%

L1C5N C
L1C5N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN , HParams
C
N , C

HC
N 1 18 18 8 116 5% 20% 7% 10% 11 142 9% 27% 9% 12%

L1C6N C
L1C6N
N+1 SN ,KN+1, TN+1, RN , QN , HParams

C
N , C

HC
N 1 11 11 5 103 2% 14% 6% 9% 5 118 2% 16% 7% 10%

L1C7N C
L1C7N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , BSMGreeksCN , C
BSMC
N 1 12 12 7 92 3% 19% 5% 8% 9 123 6% 22% 8% 11%

L1C8N C
L1C8N
N+1 SN ,KN+1, TN+1, RN , QN , HJDParams

C
N , C

HJDC
N 1 14 14 10 142 8% 25% 9% 12% 15 171 14% 34% 11% 15%

L1C9N C
L1C9N
N+1 SN ,KN+1, TN+1, RN , QN , FMLSParamsCN , C

FMLSC
N 1 8 8 0 39 0% 0% 2% 4% 0 41 0% 0% 2% 4%
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Table A.2.4: Call Price Comparison (amongst Parametric, MLP M2CN −Models and LSTM L2CN −Models): This table presents a performance comparison using both daily and monthly statistics amongst the Black-Scholes-Merton (BSMCN ) model,
Heston (HCN ) model, Heston Jump Diffusion (HJDCN ) model, Finite Moment Log Stable (FMLSCN ) model, MLP M2CN −Models (M2C1N to M2C9N ) and the LSTM L2CN −Models (L2C1N to L2C9N ). The forecast variable for all the models is the
one-day-ahead call option price (CN+1). The models denoted by the N subscript use lagged input variables for forecasting CN+1. The one-day-ahead forecast errors of CN+1 are used to compute the Root Mean Square Error (RMSE). Column I identifies the
models, column II identifies the forecast variable, column III lists the input variables used by the models to obtain the one-trading-day ahead forecast of CN+1, and columns IV, V and VI describe the network architecture of the MLP M2CN −Models and
the LSTM L2CN −Models. Forecasts are made for 1,328 trading days, and there are 64 months covered in the sample using the monthly data.
When comparing all models simultaneously (i.e. including the random walk model (δCN ), column VII reports the number of months out of the 64 months that each model has the smallest RMSE, while column VIII reports the number of days out of
the 1,328 days each model has the smallest RMSE. Columns IX (lower bound) and X (upper bound) present the winning percentage out of 64 months for each model, evaluated using the bootstrap sampling technique. The statistical bootstrap performed
(with replacement) at a 95% confidence level is computed from the monthly RMSE values of the respective models below. Columns XI (lower bound) and XII (upper bound) present the winning percentage out of 1326 days for each model computed from
bootstrapping the daily RMSE values of the respective models at a 95% confidence level.
Similarly, when the δCN model was excluded in the comparison, column XIII report the number of months out of the 64 months that each model has the smallest RMSE, while column XIV reports the number of days out of the 1,328 days each model has
the smallest RMSE. Columns XV (lower bound) and XVI (upper bound) present the winning percentage out of 64 months for each model, evaluated using the bootstrap sampling technique. The statistical bootstrap performed (with replacement) at a 95%
confidence level is computed from the monthly RMSE values of the respective models below. Also, columns XVII (lower bound) and XVIII (upper bound) present the winning percentage out of 1326 days for each model computed from bootstrapping the daily
RMSE values of the respective models at a 95% confidence level.

Including the random walk Excluding the random walk

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X) (XI) (XII) (XIII) (XIV) (XV) (XVI) (XVII) (XVIII)

Model Forecast Inputs No.
of
hidden
layers

No. of
hidden
nodes
per layer

Network
architecture

Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

δCN CN+1 CN - - - 10 142 8% 25% 9% 12% - - - - - -

BSMCN C
BSMCN
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N - - - 0 67 0% 0% 4% 6% 0 67 0% 0% 4% 6%

HCN C
HCN
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , HParamsCN - - - 3 66 0% 9% 4% 6% 3 67 0% 11% 4% 6%

HJDCN C
HJDCN
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , HJDParamsCN - - - 0 5 0% 0% 0% 1% 0 21 0% 0% 1% 2%

FMLSCN C
FMLSCN
N+1 SN ,KN+1, TN+1, RN , QN , FMLSParamsCN - - - 0 29 0% 0% 1% 3% 0 29 0% 0% 1% 3%

M2C1N C
M2C1N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N 2 6 6 X 6 3 38 0% 11% 2% 4% 3 40 0% 9% 2% 4%

M2C2N C
M2C2N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN 2 7 7 X 7 0 38 0% 0% 2% 4% 0 43 0% 0% 2% 4%

M2C3N C
M2C3N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN 2 12 12 X 12 5 54 2% 14% 3% 5% 5 70 2% 14% 4% 7%

M2C4N C
M2C4N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN , HParams
C
N 2 17 17 X 17 4 43 2% 13% 2% 4% 6 56 3% 17% 3% 5%

M2C5N C
M2C5N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN , HParams
C
N , C

HC
N 2 18 18 X 18 2 16 0% 8% 1% 2% 3 30 0% 11% 2% 3%

M2C6N C
M2C6N
N+1 SN ,KN+1, TN+1, RN , QN , HParams

C
N , C

HC
N 2 11 11 X 11 3 12 0% 11% 0% 1% 4 30 2% 13% 2% 3%

M2C7N C
M2C7N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , BSMGreeksCN , C
BSMC
N 2 12 12 X 12 6 26 3% 17% 1% 3% 7 41 3% 19% 2% 4%

M2C8N C
M2C8N
N+1 SN ,KN+1, TN+1, RN , QN , HJDParams

C
N , C

HJDC
N 2 14 14 X 14 0 3 0% 0% 0% 1% 4 15 2% 13% 1% 2%

M2C9N C
M2C9N
N+1 SN ,KN+1, TN+1, RN , QN , FMLSParamsCN , C

FMLSC
N 2 8 8 X 8 3 16 0% 11% 1% 2% 3 26 0% 11% 1% 3%

L2C1N C
L2C1N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N 2 6 6 X 6 0 22 0% 0% 1% 2% 0 22 0% 0% 1% 2%

L2C2N C
L2C2N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN 2 7 7 X 7 0 126 0% 0% 8% 11% 0 126 0% 0% 8% 11%

L2C3N C
L2C3N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN 2 12 12 X 12 0 81 0% 0% 5% 7% 0 83 0% 0% 5% 8%

L2C4N C
L2C4N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN , HParams
C
N 2 17 17 X 17 0 108 0% 0% 7% 10% 0 109 0% 0% 7% 10%

L2C5N C
L2C5N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN , HParams
C
N , C

HC
N 2 18 18 X 18 2 74 0% 8% 4% 7% 2 79 0% 8% 5% 7%

L2C6N C
L2C6N
N+1 SN ,KN+1, TN+1, RN , QN , HParams

C
N , C

HC
N 2 11 11 X 11 6 57 3% 17% 3% 6% 6 62 3% 17% 4% 6%

L2C7N C
L2C7N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , BSMGreeksCN , C
BSMC
N 2 12 12 X 12 5 44 2% 14% 2% 4% 5 47 2% 14% 3% 4%

L2C8N C
L2C8N
N+1 SN ,KN+1, TN+1, RN , QN , HJDParams

C
N , C

HJDC
N 2 14 14 X 14 11 101 9% 27% 6% 9% 12 104 9% 30% 6% 9%

L2C9N C
L2C9N
N+1 SN ,KN+1, TN+1, RN , QN , FMLSParamsCN , C

FMLSC
N 2 8 8 X 8 1 160 0% 5% 10% 14% 1 161 0% 5% 10% 14%
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Table A.2.5: Call Price Comparison (amongst Parametric and MLP M2CN −Models): This table presents a performance comparison using both daily and monthly statistics amongst the Black-Scholes-Merton (BSMCN ) model, Heston (HCN ) model, Heston
Jump Diffusion (HJDCN ) model, Finite Moment Log Stable (FMLSCN ) model and the MLP M2CN −Models (M2C1N to M2C9N ). The forecast variable for all the models is the one-day-ahead call option price (CN+1). The models denoted by the N

subscript use lagged input variables for forecasting CN+1. The one-day-ahead forecast errors of CN+1 are used to compute the Root Mean Square Error (RMSE). Column I identifies the models, column II identifies the forecast variable, column III lists the
input variables used by the models to obtain the one-trading-day ahead forecast of CN+1, and columns IV, V and VI describe the network architecture of the MLP M2CN −Models. Forecasts are made for 1,328 trading days, and there are 64 months covered
in the sample using the monthly data.
When comparing all models simultaneously (i.e. including the random walk model (δCN ), column VII reports the number of months out of the 64 months that each model has the smallest RMSE, while column VIII reports the number of days out of
the 1,328 days each model has the smallest RMSE. Columns IX (lower bound) and X (upper bound) present the winning percentage out of 64 months for each model, evaluated using the bootstrap sampling technique. The statistical bootstrap performed
(with replacement) at a 95% confidence level is computed from the monthly RMSE values of the respective models below. Columns XI (lower bound) and XII (upper bound) present the winning percentage out of 1326 days for each model computed from
bootstrapping the daily RMSE values of the respective models at a 95% confidence level.
Similarly, when the δCN model was excluded in the comparison, column XIII report the number of months out of the 64 months that each model has the smallest RMSE, while column XIV reports the number of days out of the 1,328 days each model has
the smallest RMSE. Columns XV (lower bound) and XVI (upper bound) present the winning percentage out of 64 months for each model, evaluated using the bootstrap sampling technique. The statistical bootstrap performed (with replacement) at a 95%
confidence level is computed from the monthly RMSE values of the respective models below. Also, columns XVII (lower bound) and XVIII (upper bound) present the winning percentage out of 1326 days for each model computed from bootstrapping the daily
RMSE values of the respective models at a 95% confidence level.

Including the random walk Excluding the random walk

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X) (XI) (XII) (XIII) (XIV) (XV) (XVI) (XVII) (XVIII)

Model Forecast Inputs No.
of
hidden
layers

No. of
hidden
nodes
per layer

Network
architecture

Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

δCN CN+1 CN - - - 15 217 14% 34% 15% 18% - - - - - -

BSMCN C
BSMCN
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N - - - 0 122 0% 0% 8% 11% 0 122 0% 0% 8% 11%

HCN C
HCN
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , HParamsCN - - - 3 153 0% 10% 10% 13% 3 155 0% 11% 10% 13%

HJDCN C
HJDCN
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , HJDParamsCN - - - 1 16 0% 5% 1% 2% 2 40 0% 8% 2% 4%

FMLSCN C
FMLSCN
N+1 SN ,KN+1, TN+1, RN , QN , FMLSParamsCN - - - 0 223 0% 0% 15% 19% 0 230 0% 0% 15% 19%

M2C1N C
M2C1N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N 2 6 6 X 6 4 99 2% 13% 6% 9% 4 102 2% 13% 6% 9%

M2C2N C
M2C2N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN 2 7 7 X 7 0 87 0% 0% 5% 8% 1 97 0% 5% 6% 9%

M2C3N C
M2C3N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN 2 12 12 X 12 7 96 3% 19% 6% 9% 7 116 5% 19% 7% 10%

M2C4N C
M2C4N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN , HParams
C
N 2 17 17 X 17 5 91 2% 16% 5% 8% 8 111 5% 22% 7% 10%

M2C5N C
M2C5N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN , HParams
C
N , C

HC
N 2 18 18 X 18 4 45 2% 13% 2% 4% 6 69 3% 17% 4% 6%

M2C6N C
M2C6N
N+1 SN ,KN+1, TN+1, RN , QN , HParams

C
N , C

HC
N 2 11 11 X 11 5 36 2% 16% 2% 4% 6 63 3% 17% 4% 6%

M2C7N C
M2C7N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , BSMGreeksCN , C
BSMC
N 2 12 12 X 12 14 78 11% 30% 5% 7% 16 99 13% 33% 6% 9%

M2C8N C
M2C8N
N+1 SN ,KN+1, TN+1, RN , QN , HJDParams

C
N , C

HJDC
N 2 14 14 X 14 3 26 0% 11% 1% 3% 7 64 3% 19% 4% 6%

M2C9N C
M2C9N
N+1 SN ,KN+1, TN+1, RN , QN , FMLSParamsCN , C

FMLSC
N 2 8 8 X 8 4 39 2% 13% 2% 4% 5 60 2% 14% 3% 6%
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Table A.2.6: Call Price Comparison (amongst Parametric and LSTM L2CN −Models): This table presents a performance comparison using both daily and monthly statistics amongst the Black-Scholes-Merton (BSMCN ) model, Heston (HCN ) model, Heston
Jump Diffusion (HJDCN ) model, Finite Moment Log Stable (FMLSCN ) model and the LSTM L2CN −Models (L2C1N to L2C9N ). The forecast variable for all the models is the one-day-ahead call option price (CN+1). The models denoted by the N

subscript use lagged input variables for forecasting CN+1. The one-day-ahead forecast errors of CN+1 are used to compute the Root Mean Square Error (RMSE). Column I identifies the models, column II identifies the forecast variable, column III lists the
input variables used by the models to obtain the one-trading-day ahead forecast of CN+1, and columns IV, V and VI describe the network architecture of the LSTM L2CN −Models. Forecasts are made for 1,328 trading days, and there are 64 months covered
in the sample using the monthly data.
When comparing all models simultaneously (i.e. including the random walk model (δCN ), column VII reports the number of months out of the 64 months that each model has the smallest RMSE, while column VIII reports the number of days out of
the 1,328 days each model has the smallest RMSE. Columns IX (lower bound) and X (upper bound) present the winning percentage out of 64 months for each model, evaluated using the bootstrap sampling technique. The statistical bootstrap performed
(with replacement) at a 95% confidence level is computed from the monthly RMSE values of the respective models below. Columns XI (lower bound) and XII (upper bound) present the winning percentage out of 1326 days for each model computed from
bootstrapping the daily RMSE values of the respective models at a 95% confidence level.
Similarly, when the δCN model was excluded in the comparison, column XIII report the number of months out of the 64 months that each model has the smallest RMSE, while column XIV reports the number of days out of the 1,328 days each model has
the smallest RMSE. Columns XV (lower bound) and XVI (upper bound) present the winning percentage out of 64 months for each model, evaluated using the bootstrap sampling technique. The statistical bootstrap performed (with replacement) at a 95%
confidence level is computed from the monthly RMSE values of the respective models below. Also, columns XVII (lower bound) and XVIII (upper bound) present the winning percentage out of 1326 days for each model computed from bootstrapping the daily
RMSE values of the respective models at a 95% confidence level.

Including the random walk Excluding the random walk

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X) (XI) (XII) (XIII) (XIV) (XV) (XVI) (XVII) (XVIII)

Model Forecast Inputs No.
of
hidden
layers

No. of
hidden
nodes
per layer

Network
architecture

Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

δCN CN+1 CN - - - 22 231 22% 45% 15% 19% - - - - - -

BSMCN C
BSMCN
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N - - - 0 68 0% 0% 4% 6% 0 68 0% 0% 4% 6%

HCN C
HCN
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , HParamsCN - - - 10 122 8% 25% 8% 11% 11 138 8% 27% 9% 12%

HJDCN C
HJDCN
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , HJDParamsCN - - - 2 16 0% 8% 1% 2% 15 114 13% 33% 7% 10%

FMLSCN C
FMLSCN
N+1 SN ,KN+1, TN+1, RN , QN , FMLSParamsCN - - - 0 38 0% 0% 2% 4% 0 38 0% 0% 2% 4%

L2C1N C
L2C1N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N 2 6 6 X 6 0 22 0% 0% 1% 2% 0 22 0% 0% 1% 2%

L2C2N C
L2C2N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN 2 7 7 X 7 0 126 0% 0% 8% 11% 0 127 0% 0% 8% 11%

L2C3N C
L2C3N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN 2 12 12 X 12 0 83 0% 0% 5% 8% 0 86 0% 0% 5% 8%

L2C4N C
L2C4N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN , HParams
C
N 2 17 17 X 17 0 113 0% 0% 7% 10% 0 116 0% 0% 7% 10%

L2C5N C
L2C5N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN , HParams
C
N , C

HC
N 2 18 18 X 18 4 102 2% 13% 6% 9% 4 121 2% 13% 8% 11%

L2C6N C
L2C6N
N+1 SN ,KN+1, TN+1, RN , QN , HParams

C
N , C

HC
N 2 11 11 X 11 7 66 3% 20% 4% 6% 8 87 5% 20% 5% 8%

L2C7N C
L2C7N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , BSMGreeksCN , C
BSMC
N 2 12 12 X 12 6 63 3% 17% 4% 6% 9 104 6% 23% 7% 9%

L2C8N C
L2C8N
N+1 SN ,KN+1, TN+1, RN , QN , HJDParams

C
N , C

HJDC
N 2 14 14 X 14 12 114 9% 28% 7% 10% 16 142 16% 36% 9% 12%

L2C9N C
L2C9N
N+1 SN ,KN+1, TN+1, RN , QN , FMLSParamsCN , C

FMLSC
N 2 8 8 X 8 1 164 0% 5% 11% 14% 1 165 0% 5% 11% 14%
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Table A.2.7: Call Price Comparison (amongst Parametric, MLP M3CN −Models and LSTM L3CN −Models): This table presents a performance comparison using both daily and monthly statistics amongst the Black-Scholes-Merton (BSMCN ) model,
Heston (HCN ) model, Heston Jump Diffusion (HJDCN ) model, Finite Moment Log Stable (FMLSCN ) model, MLP M3CN −Models (M3C1N to M3C9N ) and the LSTM L3CN −Models (L3C1N to L3C9N ). The forecast variable for all the models is the
one-day-ahead call option price (CN+1). The models denoted by the N subscript use lagged input variables for forecasting CN+1. The one-day-ahead forecast errors of CN+1 are used to compute the Root Mean Square Error (RMSE). Column I identifies the
models, column II identifies the forecast variable, column III lists the input variables used by the models to obtain the one-trading-day ahead forecast of CN+1, and columns IV, V and VI describe the network architecture of the MLP M3CN −Models and the
LSTM L3CN −Models. Forecasts are made for 1,328 trading days, and there are 64 months covered in the sample using the monthly data.
When comparing all models simultaneously (i.e. including the random walk model (δCN ), column VII reports the number of months out of the 64 months that each model has the smallest RMSE, while column VIII reports the number of days out of the 1,328 days
each model has the smallest RMSE. Columns IX (lower bound) and X (upper bound) present the winning percentage out of 64 months for each model, evaluated using the bootstrap sampling technique. The statistical bootstrap performed (with replacement)
at a 95% confidence level is computed from the monthly RMSE values of the respective models below. Columns XI (lower bound) and XII (upper bound) present the winning percentage out of 1326 days for each model computed from bootstrapping the daily
RMSE values of the respective models at a 95% confidence level.
Similarly, when the δCN model was excluded in the comparison, column XIII report the number of months out of the 64 months that each model has the smallest RMSE, while column XIV reports the number of days out of the 1,328 days each model has the
smallest RMSE. Columns XV (lower bound) and XVI (upper bound) present the winning percentage out of 64 months for each model, evaluated using the bootstrap sampling technique. The statistical bootstrap performed (with replacement) at a 95% confidence
level is computed from the monthly RMSE values of the respective models below. Also, columns XVII (lower bound) and XVIII (upper bound) present the winning percentage out of 1326 days for each model computed from bootstrapping the daily RMSE values
of the respective models at a 95% confidence level.

Including the random walk Excluding the random walk

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X) (XI) (XII) (XIII) (XIV) (XV) (XVI) (XVII) (XVIII)

Model Forecast Inputs No.
of
hidden
layers

No. of
hidden
nodes
per layer

Network
architecture

Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

δCN CN+1 CN - - - 9 128 6% 22% 8% 11% - - - - - -

BSMCN C
BSMCN
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N - - - 0 55 0% 0% 3% 5% 0 55 0% 0% 3% 5%

HCN C
HCN
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , HParamsCN - - - 1 71 0% 5% 4% 7% 1 71 0% 5% 4% 6%

HJDCN C
HJDCN
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , HJDParamsCN - - - 0 5 0% 0% 0% 1% 1 17 0% 5% 1% 2%

FMLSCN C
FMLSCN
N+1 SN ,KN+1, TN+1, RN , QN , FMLSParamsCN - - - 0 13 0% 0% 1% 2% 0 13 0% 0% 0% 2%

M3C1N C
M3C1N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N 3 6 6 X 6 X 6 3 44 0% 11% 2% 4% 3 50 0% 9% 3% 5%

M3C2N C
M3C2N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN 3 7 7 X 7 X 7 1 45 0% 5% 2% 4% 1 53 0% 5% 3% 5%

M3C3N C
M3C3N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN 3 12 12 X 12 X 12 7 50 5% 20% 3% 5% 7 62 3% 19% 4% 6%

M3C4N C
M3C4N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN , HParams
C
N 3 17 17 X 17 X 17 3 40 0% 11% 2% 4% 4 53 2% 13% 3% 5%

M3C5N C
M3C5N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN , HParams
C
N , C

HC
N 3 18 18 X 18 X 18 1 12 0% 5% 0% 1% 3 31 0% 10% 2% 3%

M3C6N C
M3C6N
N+1 SN ,KN+1, TN+1, RN , QN , HParams

C
N , C

HC
N 3 11 11 X 11 X 11 4 13 2% 13% 0% 2% 4 21 2% 13% 1% 2%

M3C7N C
M3C7N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , BSMGreeksCN , C
BSMC
N 3 12 12 X 12 X 12 8 21 5% 22% 1% 2% 8 36 5% 22% 2% 4%

M3C8N C
M3C8N
N+1 SN ,KN+1, TN+1, RN , QN , HJDParams

C
N , C

HJDC
N 3 14 14 X 14 X 14 1 6 0% 5% 0% 1% 3 16 0% 11% 1% 2%

M3C9N C
M3C9N
N+1 SN ,KN+1, TN+1, RN , QN , FMLSParamsCN , C

FMLSC
N 3 8 8 X 8 X 8 2 19 0% 8% 1% 2% 4 32 2% 13% 2% 3%

L3C1N C
L3C1N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N 3 6 6 X 6 X 6 0 37 0% 0% 2% 4% 0 37 0% 0% 2% 4%

L3C2N C
L3C2N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN 3 7 7 X 7 X 7 0 138 0% 0% 9% 12% 0 138 0% 0% 9% 12%

L3C3N C
L3C3N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN 3 12 12 X 12 X 12 0 86 0% 0% 5% 8% 0 86 0% 0% 5% 8%

L3C4N C
L3C4N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN , HParams
C
N 3 17 17 X 17 X 17 0 105 0% 0% 6% 9% 0 105 0% 0% 6% 9%

L3C5N C
L3C5N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN , HParams
C
N , C

HC
N 3 18 18 X 18 X 18 2 89 0% 8% 5% 8% 2 91 0% 8% 6% 8%

L3C6N C
L3C6N
N+1 SN ,KN+1, TN+1, RN , QN , HParams

C
N , C

HC
N 3 11 11 X 11 X 11 3 53 0% 11% 3% 5% 3 55 0% 11% 3% 5%

L3C7N C
L3C7N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , BSMGreeksCN , C
BSMC
N 3 12 12 X 12 X 12 6 39 3% 16% 2% 4% 7 41 5% 19% 2% 4%

L3C8N C
L3C8N
N+1 SN ,KN+1, TN+1, RN , QN , HJDParams

C
N , C

HJDC
N 3 14 14 X 14 X 14 13 90 11% 31% 5% 8% 13 96 11% 30% 6% 9%

L3C9N C
L3C9N
N+1 SN ,KN+1, TN+1, RN , QN , FMLSParamsCN , C

FMLSC
N 3 8 8 X 8 X 8 0 169 0% 0% 11% 15% 0 169 0% 0% 11% 15%

220



Table A.2.8: Call Price Comparison (amongst Parametric and MLP M3CN −Models): This table presents a performance comparison using both daily and monthly statistics amongst the Black-Scholes-Merton (BSMCN ) model, Heston (HCN ) model,
Heston Jump Diffusion (HJDCN ) model, Finite Moment Log Stable (FMLSCN ) model and the MLP M3CN −Models (M3C1N to M3C9N ). The forecast variable for all the models is the one-day-ahead call option price (CN+1). The models denoted
by the N subscript use lagged input variables for forecasting CN+1. The one-day-ahead forecast errors of CN+1 are used to compute the Root Mean Square Error (RMSE). Column I identifies the models, column II identifies the forecast variable, column
III lists the input variables used by the models to obtain the one-trading-day ahead forecast of CN+1, and columns IV, V and VI describe the network architecture of the MLP M3CN −Models. Forecasts are made for 1,328 trading days, and there are
64 months covered in the sample using the monthly data.
When comparing all models simultaneously (i.e. including the random walk model (δCN ), column VII reports the number of months out of the 64 months that each model has the smallest RMSE, while column VIII reports the number of days out of the
1,328 days each model has the smallest RMSE. Columns IX (lower bound) and X (upper bound) present the winning percentage out of 64 months for each model, evaluated using the bootstrap sampling technique. The statistical bootstrap performed
(with replacement) at a 95% confidence level is computed from the monthly RMSE values of the respective models below. Columns XI (lower bound) and XII (upper bound) present the winning percentage out of 1326 days for each model computed from
bootstrapping the daily RMSE values of the respective models at a 95% confidence level.
Similarly, when the δCN model was excluded in the comparison, column XIII report the number of months out of the 64 months that each model has the smallest RMSE, while column XIV reports the number of days out of the 1,328 days each model has
the smallest RMSE. Columns XV (lower bound) and XVI (upper bound) present the winning percentage out of 64 months for each model, evaluated using the bootstrap sampling technique. The statistical bootstrap performed (with replacement) at a
95% confidence level is computed from the monthly RMSE values of the respective models below. Also, columns XVII (lower bound) and XVIII (upper bound) present the winning percentage out of 1326 days for each model computed from bootstrapping
the daily RMSE values of the respective models at a 95% confidence level.

Including the random walk Excluding the random walk

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X) (XI) (XII) (XIII) (XIV) (XV) (XVI) (XVII) (XVIII)

Model Forecast Inputs No.
of
hidden
layers

No. of
hidden
nodes
per layer

Network
architecture

Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

δCN CN+1 CN - - - 15 206 13% 36% 14% 17% - - - - - -

BSMCN C
BSMCN
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N - - - 0 124 0% 0% 8% 11% 0 124 0% 0% 8% 11%

HCN C
HCN
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , HParamsCN - - - 3 157 0% 11% 10% 13% 3 159 0% 11% 10% 14%

HJDCN C
HJDCN
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , HJDParamsCN - - - 0 19 0% 0% 1% 2% 2 46 0% 8% 3% 5%

FMLSCN C
FMLSCN
N+1 SN ,KN+1, TN+1, RN , QN , FMLSParamsCN - - - 0 224 0% 0% 15% 19% 0 229 0% 0% 15% 19%

M3C1N C
M3C1N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N 3 6 6 X 6 X 6 5 107 2% 15% 7% 9% 5 114 2% 14% 7% 10%

M3C2N C
M3C2N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN 3 7 7 X 7 X 7 1 91 0% 5% 5% 8% 2 101 0% 8% 6% 9%

M3C3N C
M3C3N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN 3 12 12 X 12 X 12 10 99 8% 25% 6% 9% 11 116 8% 27% 7% 10%

M3C4N C
M3C4N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN , HParams
C
N 3 17 17 X 17 X 17 6 71 3% 17% 4% 7% 7 90 5% 19% 5% 8%

M3C5N C
M3C5N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN , HParams
C
N , C

HC
N 3 18 18 X 18 X 18 3 38 0% 9% 2% 4% 6 68 3% 17% 4% 7%

M3C6N C
M3C6N
N+1 SN ,KN+1, TN+1, RN , QN , HParams

C
N , C

HC
N 3 11 11 X 11 X 11 6 48 3% 17% 3% 5% 6 65 3% 17% 4% 6%

M3C7N C
M3C7N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , BSMGreeksCN , C
BSMC
N 3 12 12 X 12 X 12 11 73 9% 27% 4% 7% 11 94 8% 27% 6% 9%

M3C8N C
M3C8N
N+1 SN ,KN+1, TN+1, RN , QN , HJDParams

C
N , C

HJDC
N 3 14 14 X 14 X 14 2 24 0% 8% 1% 3% 6 57 3% 17% 3% 5%

M3C9N C
M3C9N
N+1 SN ,KN+1, TN+1, RN , QN , FMLSParamsCN , C

FMLSC
N 3 8 8 X 8 X 8 2 47 0% 8% 3% 5% 5 65 2% 16% 4% 6%
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Table A.2.9: Call Price Comparison (amongst Parametric and LSTM L3CN −Models): This table presents a performance comparison using both daily and monthly statistics amongst the Black-Scholes-Merton (BSMCN ) model, Heston (HCN ) model,
Heston Jump Diffusion (HJDCN ) model, Finite Moment Log Stable (FMLSCN ) model and the LSTM L3CN −Models (L3C1N to L3C9N ). The forecast variable for all the models is the one-day-ahead call option price (CN+1). The models denoted
by the N subscript use lagged input variables for forecasting CN+1. The one-day-ahead forecast errors of CN+1 are used to compute the Root Mean Square Error (RMSE). Column I identifies the models, column II identifies the forecast variable, column
III lists the input variables used by the models to obtain the one-trading-day ahead forecast of CN+1, and columns IV, V and VI describe the network architecture of the LSTM L3CN −Models. Forecasts are made for 1,328 trading days, and there are
64 months covered in the sample using the monthly data.
When comparing all models simultaneously (i.e. including the random walk model (δCN ), column VII reports the number of months out of the 64 months that each model has the smallest RMSE, while column VIII reports the number of days out of the
1,328 days each model has the smallest RMSE. Columns IX (lower bound) and X (upper bound) present the winning percentage out of 64 months for each model, evaluated using the bootstrap sampling technique. The statistical bootstrap performed
(with replacement) at a 95% confidence level is computed from the monthly RMSE values of the respective models below. Columns XI (lower bound) and XII (upper bound) present the winning percentage out of 1326 days for each model computed from
bootstrapping the daily RMSE values of the respective models at a 95% confidence level.
Similarly, when the δCN model was excluded in the comparison, column XIII report the number of months out of the 64 months that each model has the smallest RMSE, while column XIV reports the number of days out of the 1,328 days each model has
the smallest RMSE. Columns XV (lower bound) and XVI (upper bound) present the winning percentage out of 64 months for each model, evaluated using the bootstrap sampling technique. The statistical bootstrap performed (with replacement) at a
95% confidence level is computed from the monthly RMSE values of the respective models below. Also, columns XVII (lower bound) and XVIII (upper bound) present the winning percentage out of 1326 days for each model computed from bootstrapping
the daily RMSE values of the respective models at a 95% confidence level.

Including the random walk Excluding the random walk

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X) (XI) (XII) (XIII) (XIV) (XV) (XVI) (XVII) (XVIII)

Model Forecast Inputs No.
of
hidden
layers

No. of
hidden
nodes
per layer

Network
architecture

Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

δCN CN+1 CN - - - 24 234 27% 50% 16% 20% - - - - - -

BSMCN C
BSMCN
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N - - - 0 55 0% 0% 3% 5% 0 55 0% 0% 3% 5%

HCN C
HCN
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , HParamsCN - - - 8 129 5% 20% 8% 11% 9 144 6% 23% 9% 13%

HJDCN C
HJDCN
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , HJDParamsCN - - - 0 17 0% 0% 1% 2% 15 126 13% 34% 8% 11%

FMLSCN C
FMLSCN
N+1 SN ,KN+1, TN+1, RN , QN , FMLSParamsCN - - - 0 18 0% 0% 1% 2% 0 18 0% 0% 1% 2%

L3C1N C
L3C1N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N 3 6 6 X 6 X 6 0 37 0% 0% 2% 4% 0 37 0% 0% 2% 4%

L3C2N C
L3C2N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN 3 7 7 X 7 X 7 1 143 0% 5% 9% 12% 1 144 0% 5% 9% 13%

L3C3N C
L3C3N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN 3 12 12 X 12 X 12 0 92 0% 0% 6% 8% 0 95 0% 0% 6% 9%

L3C4N C
L3C4N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN , HParams
C
N 3 17 17 X 17 X 17 0 112 0% 0% 7% 10% 0 115 0% 0% 7% 10%

L3C5N C
L3C5N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN , HParams
C
N , C

HC
N 3 18 18 X 18 X 18 3 103 0% 11% 6% 9% 3 127 0% 11% 8% 11%

L3C6N C
L3C6N
N+1 SN ,KN+1, TN+1, RN , QN , HParams

C
N , C

HC
N 3 11 11 X 11 X 11 7 58 5% 19% 3% 6% 11 75 8% 27% 4% 7%

L3C7N C
L3C7N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , BSMGreeksCN , C
BSMC
N 3 12 12 X 12 X 12 6 56 3% 17% 3% 5% 9 91 6% 23% 5% 8%

L3C8N C
L3C8N
N+1 SN ,KN+1, TN+1, RN , QN , HJDParams

C
N , C

HJDC
N 3 14 14 X 14 X 14 15 98 14% 33% 6% 9% 16 121 16% 36% 8% 11%

L3C9N C
L3C9N
N+1 SN ,KN+1, TN+1, RN , QN , FMLSParamsCN , C

FMLSC
N 3 8 8 X 8 X 8 0 176 0% 0% 11% 15% 0 180 0% 0% 12% 15%

222



Table A.2.10: Call Price Comparison (amongst Parametric, MLP M1CN −Models, LSTM L1CN −Models, MLP M2CN −Models, LSTM L2CN −Models, MLP M3CN −Models, and LSTM L3CN −Models): This table presents a performance
comparison using both daily and monthly statistics amongst the Black-Scholes-Merton (BSMCN ) model, Heston (HCN ) model, Heston Jump Diffusion (HJDCN ) model, Finite Moment Log Stable (FMLSCN ) model, MLP M1CN −Models (M1C1N
to M1C9N ), LSTM L1CN −Models (L1C1N to L1C9N ), MLP M2CN −Models (M2C1N to M2C9N ), LSTM L2CN −Models (L2C1N to L2C9N ), MLP M3CN −Models (M3C1N to M3C9N ) and the LSTM L3CN −Models (L3C1N to L3C9N ).
The forecast variable for all the models is the one-day-ahead call option price (CN+1). The models denoted by the N subscript use lagged input variables for forecasting CN+1. The one-day-ahead forecast errors of CN+1 are used to compute the Root
Mean Square Error (RMSE). Column I identifies the models, column II identifies the forecast variable, column III lists the input variables used by the models to obtain the one-trading-day ahead forecast of CN+1, and columns IV, V and VI describe the
network architecture of the MLP M1CN −Models, LSTM L1CN −Models, MLP M2CN −Models, LSTM L2CN −Models, MLP M3CN −Models, and the LSTM L3CN −Models. Forecasts are made for 1,328 trading days, and there are 64 months
covered in the sample using the monthly data.
When comparing all models simultaneously (i.e. including the random walk model (δCN ), column VII reports the number of months out of the 64 months that each model has the smallest RMSE, while column VIII reports the number of days out of the
1,328 days each model has the smallest RMSE. Columns IX (lower bound) and X (upper bound) present the winning percentage out of 64 months for each model, evaluated using the bootstrap sampling technique. The statistical bootstrap performed
(with replacement) at a 95% confidence level is computed from the monthly RMSE values of the respective models below. Columns XI (lower bound), and XII (upper bound) presents the winning percentage out of 1326 days for each model computed
from bootstrapping the daily RMSE values of the respective models at a 95% confidence level.
Similarly, when the δCN model was excluded in the comparison, column XIII report the number of months out of the 64 months that each model has the smallest RMSE, while column XIV reports the number of days out of the 1,328 days each model has
the smallest RMSE. Columns XV (lower bound) and XVI (upper bound) present the winning percentage out of 64 months for each model, evaluated using the bootstrap sampling technique. The statistical bootstrap performed (with replacement) at a
95% confidence level is computed from the monthly RMSE values of the respective models below. Also, columns XVII (lower bound) and XVIII (upper bound) present the winning percentage out of 1326 days for each model computed from bootstrapping
the daily RMSE values of the respective models at a 95% confidence level.

Including the random walk Excluding the random walk

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X) (XI) (XII) (XIII) (XIV) (XV) (XVI) (XVII) (XVIII)

Model Forecast Inputs No.
of
hidden
layers

No. of
hidden
nodes
per layer

Network
architecture

Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

δCN CN+1 CN - - - 6 106 3% 17% 7% 9% - - - - - -

BSMCN C
BSMCN
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N - - - 0 53 0% 0% 3% 5% 0 53 0% 0% 3% 5%

HCN C
HCN
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , HParamsCN - - - 1 40 0% 5% 2% 4% 1 40 0% 5% 2% 4%

HJDCN C
HJDCN
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , HJDParamsCN - - - 0 1 0% 0% 0% 0% 0 9 0% 0% 0% 1%

FMLSCN C
FMLSCN
N+1 SN ,KN+1, TN+1, RN , QN , FMLSParamsCN - - - 0 7 0% 0% 0% 1% 0 7 0% 0% 0% 1%

M1C1N C
M1C1N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N 1 6 6 0 6 0% 0% 0% 1% 0 6 0% 0% 0% 1%

M1C2N C
M1C2N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN 1 7 7 1 8 0% 5% 0% 1% 1 8 0% 5% 0% 1%

M1C3N C
M1C3N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN 1 12 12 1 19 0% 5% 1% 2% 1 24 0% 5% 1% 3%

M1C4N C
M1C4N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN , HParams
C
N 1 17 17 0 20 0% 0% 1% 2% 0 26 0% 0% 1% 3%

M1C5N C
M1C5N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN , HParams
C
N , C

HC
N 1 18 18 2 5 0% 8% 0% 1% 2 6 0% 8% 0% 1%

M1C6N C
M1C6N
N+1 SN ,KN+1, TN+1, RN , QN , HParams

C
N , C

HC
N 1 11 11 2 4 0% 8% 0% 1% 3 5 0% 11% 0% 1%

M1C7N C
M1C7N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , BSMGreeksCN , C
BSMC
N 1 12 12 2 14 0% 8% 1% 2% 2 15 0% 8% 1% 2%

M1C8N C
M1C8N
N+1 SN ,KN+1, TN+1, RN , QN , HJDParams

C
N , C

HJDC
N 1 14 14 0 3 0% 0% 0% 1% 0 6 0% 0% 0% 1%

M1C9N C
M1C9N
N+1 SN ,KN+1, TN+1, RN , QN , FMLSParamsCN , C

FMLSC
N 1 8 8 0 5 0% 0% 0% 1% 0 6 0% 0% 0% 1%

M2C1N C
M2C1N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N 2 6 6 X 6 0 1 0% 0% 0% 0% 0 1 0% 0% 0% 0%

M2C2N C
M2C2N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN 2 7 7 X 7 0 17 0% 0% 1% 2% 0 17 0% 0% 1% 2%

M2C3N C
M2C3N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN 2 12 12 X 12 0 13 0% 0% 1% 2% 0 13 0% 0% 1% 2%

M2C4N C
M2C4N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN , HParams
C
N 2 17 17 X 17 0 28 0% 0% 1% 3% 0 28 0% 0% 1% 3%

M2C5N C
M2C5N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN , HParams
C
N , C

HC
N 2 18 18 X 18 4 32 2% 13% 2% 3% 4 32 2% 13% 2% 3%

M2C6N C
M2C6N
N+1 SN ,KN+1, TN+1, RN , QN , HParams

C
N , C

HC
N 2 11 11 X 11 0 14 0% 0% 1% 2% 0 14 0% 0% 1% 2%

M2C7N C
M2C7N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , BSMGreeksCN , C
BSMC
N 2 12 12 X 12 2 26 0% 8% 1% 3% 3 27 0% 11% 1% 3%

M2C8N C
M2C8N
N+1 SN ,KN+1, TN+1, RN , QN , HJDParams

C
N , C

HJDC
N 2 14 14 X 14 1 21 0% 5% 1% 2% 1 22 0% 5% 1% 2%

M2C9N C
M2C9N
N+1 SN ,KN+1, TN+1, RN , QN , FMLSParamsCN , C

FMLSC
N 2 8 8 X 8 0 4 0% 0% 0% 1% 0 4 0% 0% 0% 1%

M3C1N C
M3C1N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N 3 6 6 X 6 X 6 0 11 0% 0% 0% 1% 0 11 0% 0% 0% 1%

M3C2N C
M3C2N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN 3 7 7 X 7 X 7 0 13 0% 0% 1% 2% 0 14 0% 0% 1% 2%

M3C3N C
M3C3N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN 3 12 12 X 12 X 12 3 17 0% 11% 1% 2% 3 21 0% 11% 1% 2%

M3C4N C
M3C4N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN , HParams
C
N 3 17 17 X 17 X 17 1 18 0% 5% 1% 2% 1 24 0% 5% 1% 3%

M3C5N C
M3C5N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN , HParams
C
N , C

HC
N 3 18 18 X 18 X 18 0 2 0% 0% 0% 0% 0 4 0% 0% 0% 1%

M3C6N C
M3C6N
N+1 SN ,KN+1, TN+1, RN , QN , HParams

C
N , C

HC
N 3 11 11 X 11 X 11 1 3 0% 5% 0% 1% 2 6 0% 8% 0% 1%

M3C7N C
M3C7N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , BSMGreeksCN , C
BSMC
N 3 12 12 X 12 X 12 1 4 0% 5% 0% 1% 1 8 0% 5% 0% 1%

M3C8N C
M3C8N
N+1 SN ,KN+1, TN+1, RN , QN , HJDParams

C
N , C

HJDC
N 3 14 14 X 14 X 14 0 1 0% 0% 0% 0% 0 2 0% 0% 0% 0%

M3C9N C
M3C9N
N+1 SN ,KN+1, TN+1, RN , QN , FMLSParamsCN , C

FMLSC
N 3 8 8 X 8 X 8 0 4 0% 0% 0% 1% 0 6 0% 0% 0% 1%

L1C1N C
L1C1N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N 1 6 6 0 3 0% 0% 0% 1% 0 3 0% 0% 0% 1%

L1C2N C
L1C2N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN 1 7 7 0 45 0% 0% 2% 4% 0 45 0% 0% 2% 4%

L1C3N C
L1C3N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN 1 12 12 0 27 0% 0% 1% 3% 0 27 0% 0% 1% 3%

L1C4N C
L1C4N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN , HParams
C
N 1 17 17 0 28 0% 0% 1% 3% 0 28 0% 0% 1% 3%

L1C5N C
L1C5N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN , HParams
C
N , C

HC
N 1 18 18 1 29 0% 5% 1% 3% 1 33 0% 5% 2% 3%

L1C6N C
L1C6N
N+1 SN ,KN+1, TN+1, RN , QN , HParams

C
N , C

HC
N 1 11 11 2 11 0% 8% 0% 1% 2 13 0% 8% 1% 2%

L1C7N C
L1C7N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , BSMGreeksCN , C
BSMC
N 1 12 12 3 21 0% 9% 1% 2% 3 22 0% 11% 1% 2%

L1C8N C
L1C8N
N+1 SN ,KN+1, TN+1, RN , QN , HJDParams

C
N , C

HJDC
N 1 14 14 2 25 0% 8% 1% 3% 3 27 0% 11% 1% 3%

L1C9N C
L1C9N
N+1 SN ,KN+1, TN+1, RN , QN , FMLSParamsCN , C

FMLSC
N 1 8 8 0 33 0% 0% 2% 3% 0 34 0% 0% 2% 3%

L2C1N C
L2C1N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N 2 6 6 X 6 0 8 0% 0% 0% 1% 0 11 0% 0% 0% 1%

L2C2N C
L2C2N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN 2 7 7 X 7 1 21 0% 5% 1% 2% 1 23 0% 5% 1% 3%

L2C3N C
L2C3N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN 2 12 12 X 12 4 32 2% 13% 2% 3% 4 37 2% 13% 2% 4%

L2C4N C
L2C4N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN , HParams
C
N 2 17 17 X 17 2 17 0% 8% 1% 2% 2 23 0% 8% 1% 2%

L2C5N C
L2C5N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN , HParams
C
N , C

HC
N 2 18 18 X 18 0 2 0% 0% 0% 0% 0 5 0% 0% 0% 1%

L2C6N C
L2C6N
N+1 SN ,KN+1, TN+1, RN , QN , HParams

C
N , C

HC
N 2 11 11 X 11 0 2 0% 0% 0% 0% 0 5 0% 0% 0% 1%

L2C7N C
L2C7N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , BSMGreeksCN , C
BSMC
N 2 12 12 X 12 4 8 0% 13% 0% 1% 4 16 1% 13% 1% 2%

L2C8N C
L2C8N
N+1 SN ,KN+1, TN+1, RN , QN , HJDParams

C
N , C

HJDC
N 2 14 14 X 14 1 2 0% 6% 0% 0% 2 8 0% 8% 0% 1%

L2C9N C
L2C9N
N+1 SN ,KN+1, TN+1, RN , QN , FMLSParamsCN , C

FMLSC
N 2 8 8 X 8 0 7 0% 0% 0% 1% 1 13 0% 5% 0% 2%

L3C1N C
L3C1N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N 3 6 6 X 6 X 6 0 34 0% 0% 2% 3% 0 34 0% 0% 2% 3%

L3C2N C
L3C2N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN 3 7 7 X 7 X 7 0 86 0% 0% 5% 8% 0 86 0% 0% 5% 8%

L3C3N C
L3C3N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN 3 12 12 X 12 X 12 0 38 0% 0% 2% 4% 0 38 0% 0% 2% 4%

L3C4N C
L3C4N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN , HParams
C
N 3 17 17 X 17 X 17 0 73 0% 0% 4% 7% 0 73 0% 0% 4% 7%

L3C5N C
L3C5N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN , HParams
C
N , C

HC
N 3 18 18 X 18 X 18 1 39 0% 5% 2% 4% 1 40 0% 5% 2% 4%

L3C6N C
L3C6N
N+1 SN ,KN+1, TN+1, RN , QN , HParams

C
N , C

HC
N 3 11 11 X 11 X 11 1 22 0% 5% 1% 2% 1 22 0% 5% 1% 2%

L3C7N C
L3C7N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , BSMGreeksCN , C
BSMC
N 3 12 12 X 12 X 12 5 24 2% 14% 1% 3% 5 25 2% 14% 1% 3%

L3C8N C
L3C8N
N+1 SN ,KN+1, TN+1, RN , QN , HJDParams

C
N , C

HJDC
N 3 14 14 X 14 X 14 9 49 6% 23% 3% 5% 9 50 6% 23% 3% 5%

L3C9N C
L3C9N
N+1 SN ,KN+1, TN+1, RN , QN , FMLSParamsCN , C

FMLSC
N 3 8 8 X 8 X 8 0 122 0% 0% 8% 11% 0 122 0% 0% 8% 11%
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Table A.2.11: Call Price Comparison (amongst Parametric, MLP M1CN −Models, MLP M2CN −Models, and MLP M3CN −Models): This table presents a performance comparison using both daily and monthly statistics amongst the Black-Scholes-
Merton (BSMCN ) model, Heston (HCN ) model, Heston Jump Diffusion (HJDCN ) model, Finite Moment Log Stable (FMLSCN ) model, MLP M1CN −Models (M1C1N to M1C9N ), MLP M2CN −Models (M2C1N to M2C9N ), and the MLP
M3CN −Models (M3C1N to M3C9N ). The forecast variable for all the models is the one-day-ahead call option price (CN+1). The models denoted by the N subscript use lagged input variables for forecasting CN+1. The one-day-ahead forecast errors
of CN+1 are used to compute the Root Mean Square Error (RMSE). Column I identifies the models, column II identifies the forecast variable, column III lists the input variables used by the models to obtain the one-trading-day ahead forecast of CN+1,
and columns IV, V and VI describe the network architecture of the MLP M1CN −Models, MLP M2CN −Models, and MLP M3CN −Models. Forecasts are made for 1,328 trading days, and there are 64 months covered in the sample using the monthly
data.
When comparing all models simultaneously (i.e. including the random walk model (δCN ), column VII reports the number of months out of the 64 months that each model has the smallest RMSE, while column VIII reports the number of days out of the
1,328 days each model has the smallest RMSE. Columns IX (lower bound) and X (upper bound) present the winning percentage out of 64 months for each model, evaluated using the bootstrap sampling technique. The statistical bootstrap performed
(with replacement) at a 95% confidence level is computed from the monthly RMSE values of the respective models below. Columns XI (lower bound), and XII (upper bound) presents the winning percentage out of 1326 days for each model computed
from bootstrapping the daily RMSE values of the respective models at a 95% confidence level.
Similarly, when the δCN model was excluded in the comparison, column XIII report the number of months out of the 64 months that each model has the smallest RMSE, while column XIV reports the number of days out of the 1,328 days each model has
the smallest RMSE. Columns XV (lower bound) and XVI (upper bound) present the winning percentage out of 64 months for each model, evaluated using the bootstrap sampling technique. The statistical bootstrap performed (with replacement) at a
95% confidence level is computed from the monthly RMSE values of the respective models below. Also, columns XVII (lower bound) and XVIII (upper bound) present the winning percentage out of 1326 days for each model computed from bootstrapping
the daily RMSE values of the respective models at a 95% confidence level.

Including the random walk Excluding the random walk

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X) (XI) (XII) (XIII) (XIV) (XV) (XVI) (XVII) (XVIII)

Model Forecast Inputs No.
of
hidden
layers

No. of
hidden
nodes
per layer

Network
architecture

Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

δCN CN+1 CN - - - 11 158 9% 27% 10% 14% - - - - - -

BSMCN C
BSMCN
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N - - - 0 121 0% 0% 8% 11% 0 121 0% 0% 8% 11%

HCN C
HCN
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , HParamsCN - - - 2 108 0% 8% 7% 10% 2 108 0% 8% 7% 10%

HJDCN C
HJDCN
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , HJDParamsCN - - - 0 10 0% 0% 0% 1% 0 24 0% 0% 1% 3%

FMLSCN C
FMLSCN
N+1 SN ,KN+1, TN+1, RN , QN , FMLSParamsCN - - - 0 195 0% 0% 13% 17% 0 198 0% 0% 13% 17%

M1C1N C
M1C1N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N 1 6 6 0 35 0% 0% 2% 4% 0 35 0% 0% 2% 4%

M1C2N C
M1C2N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN 1 7 7 3 28 0% 11% 1% 3% 3 28 0% 9% 1% 3%

M1C3N C
M1C3N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN 1 12 12 1 50 0% 5% 3% 5% 1 57 0% 6% 3% 5%

M1C4N C
M1C4N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN , HParams
C
N 1 17 17 0 38 0% 0% 2% 4% 0 46 0% 0% 2% 5%

M1C5N C
M1C5N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN , HParams
C
N , C

HC
N 1 18 18 2 16 0% 8% 1% 2% 2 22 0% 8% 1% 2%

M1C6N C
M1C6N
N+1 SN ,KN+1, TN+1, RN , QN , HParams

C
N , C

HC
N 1 11 11 2 11 0% 8% 0% 1% 3 12 0% 11% 0% 2%

M1C7N C
M1C7N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , BSMGreeksCN , C
BSMC
N 1 12 12 5 48 2% 16% 3% 5% 5 50 2% 16% 3% 5%

M1C8N C
M1C8N
N+1 SN ,KN+1, TN+1, RN , QN , HJDParams

C
N , C

HJDC
N 1 14 14 1 12 0% 5% 0% 1% 2 19 0% 8% 1% 2%

M1C9N C
M1C9N
N+1 SN ,KN+1, TN+1, RN , QN , FMLSParamsCN , C

FMLSC
N 1 8 8 0 16 0% 0% 1% 2% 0 20 0% 0% 1% 2%

M2C1N C
M2C1N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N 2 6 6 X 6 1 39 0% 5% 2% 4% 1 40 0% 5% 2% 4%

M2C2N C
M2C2N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN 2 7 7 X 7 0 35 0% 0% 2% 4% 0 36 0% 0% 2% 4%

M2C3N C
M2C3N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN 2 12 12 X 12 4 47 2% 13% 3% 5% 4 53 2% 13% 3% 5%

M2C4N C
M2C4N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN , HParams
C
N 2 17 17 X 17 3 46 0% 9% 2% 4% 4 53 2% 13% 3% 5%

M2C5N C
M2C5N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN , HParams
C
N , C

HC
N 2 18 18 X 18 1 8 0% 5% 0% 1% 2 12 0% 8% 0% 1%

M2C6N C
M2C6N
N+1 SN ,KN+1, TN+1, RN , QN , HParams

C
N , C

HC
N 2 11 11 X 11 1 10 0% 5% 0% 1% 2 13 0% 8% 0% 2%

M2C7N C
M2C7N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , BSMGreeksCN , C
BSMC
N 2 12 12 X 12 4 30 2% 13% 2% 3% 4 36 2% 13% 2% 4%

M2C8N C
M2C8N
N+1 SN ,KN+1, TN+1, RN , QN , HJDParams

C
N , C

HJDC
N 2 14 14 X 14 1 12 0% 5% 0% 1% 3 21 0% 11% 1% 2%

M2C9N C
M2C9N
N+1 SN ,KN+1, TN+1, RN , QN , FMLSParamsCN , C

FMLSC
N 2 8 8 X 8 2 14 0% 8% 1% 2% 2 20 0% 8% 1% 2%

M3C1N C
M3C1N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N 3 6 6 X 6 X 6 2 27 0% 8% 1% 3% 2 30 0% 8% 2% 3%

M3C2N C
M3C2N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN 3 7 7 X 7 X 7 1 35 0% 5% 2% 4% 1 38 0% 5% 2% 4%

M3C3N C
M3C3N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN 3 12 12 X 12 X 12 6 63 3% 17% 4% 6% 7 72 5% 19% 4% 7%

M3C4N C
M3C4N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN , HParams
C
N 3 17 17 X 17 X 17 4 33 2% 13% 2% 3% 4 41 2% 13% 2% 4%

M3C5N C
M3C5N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN , HParams
C
N , C

HC
N 3 18 18 X 18 X 18 1 9 0% 5% 0% 1% 1 14 0% 5% 1% 2%

M3C6N C
M3C6N
N+1 SN ,KN+1, TN+1, RN , QN , HParams

C
N , C

HC
N 3 11 11 X 11 X 11 0 15 0% 0% 1% 2% 0 21 0% 0% 1% 2%

M3C7N C
M3C7N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , BSMGreeksCN , C
BSMC
N 3 12 12 X 12 X 12 5 28 2% 16% 1% 3% 5 37 2% 16% 2% 4%

M3C8N C
M3C8N
N+1 SN ,KN+1, TN+1, RN , QN , HJDParams

C
N , C

HJDC
N 3 14 14 X 14 X 14 1 8 0% 5% 0% 1% 2 19 0% 8% 1% 2%

M3C9N C
M3C9N
N+1 SN ,KN+1, TN+1, RN , QN , FMLSParamsCN , C

FMLSC
N 3 8 8 X 8 X 8 0 23 0% 0% 1% 2% 2 32 0% 8% 2% 3%
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Table A.2.12: Call Price Comparison (amongst Parametric, LSTM L1CN −Models, LSTM L2CN −Models, and LSTM L3CN −Models): This table presents a performance comparison using both daily and monthly statistics amongst the Black-
Scholes-Merton (BSMCN ) model, Heston (HCN ) model, Heston Jump Diffusion (HJDCN ) model, Finite Moment Log Stable (FMLSCN ) model, LSTM L1CN −Models (L1C1N to L1C9N ), LSTM L2CN −Models (L2C1N to L2C9N ), and the LSTM
L3CN −Models (L3C1N to L3C9N ). The forecast variable for all the models is the one-day-ahead call option price (CN+1). The models denoted by the N subscript use lagged input variables for forecasting CN+1. The one-day-ahead forecast errors of
CN+1 are used to compute the Root Mean Square Error (RMSE). Column I identifies the models, column II identifies the forecast variable, column III lists the input variables used by the models to obtain the one-trading-day ahead forecast of CN+1, and
columns IV, V and VI describe the network architecture of the LSTM L1CN −Models, LSTM L2CN −Models, and LSTM L3CN −Models. Forecasts are made for 1,328 trading days, and there are 64 months covered in the sample using the monthly
data.
When comparing all models simultaneously (i.e. including the random walk model (δCN ), column VII reports the number of months out of the 64 months that each model has the smallest RMSE, while column VIII reports the number of days out of the
1,328 days each model has the smallest RMSE. Columns IX (lower bound) and X (upper bound) present the winning percentage out of 64 months for each model, evaluated using the bootstrap sampling technique. The statistical bootstrap performed
(with replacement) at a 95% confidence level is computed from the monthly RMSE values of the respective models below. Columns XI (lower bound), and XII (upper bound) presents the winning percentage out of 1326 days for each model computed
from bootstrapping the daily RMSE values of the respective models at a 95% confidence level.
Similarly, when the δCN model was excluded in the comparison, column XIII report the number of months out of the 64 months that each model has the smallest RMSE, while column XIV reports the number of days out of the 1,328 days each model has
the smallest RMSE. Columns XV (lower bound) and XVI (upper bound) present the winning percentage out of 64 months for each model, evaluated using the bootstrap sampling technique. The statistical bootstrap performed (with replacement) at a
95% confidence level is computed from the monthly RMSE values of the respective models below. Also, columns XVII (lower bound) and XVIII (upper bound) present the winning percentage out of 1326 days for each model computed from bootstrapping
the daily RMSE values of the respective models at a 95% confidence level.

Including the random walk Excluding the random walk

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X) (XI) (XII) (XIII) (XIV) (XV) (XVI) (XVII) (XVIII)

Model Forecast Inputs No.
of
hidden
layers

No. of
hidden
nodes
per layer

Network
architecture

Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

δCN CN+1 CN - - - 17 200 17% 38% 13% 17% - - - - - -

BSMCN C
BSMCN
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N - - - 0 53 0% 0% 3% 5% 0 53 0% 0% 3% 5%

HCN C
HCN
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , HParamsCN - - - 5 86 2% 14% 5% 8% 6 93 3% 17% 6% 8%

HJDCN C
HJDCN
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , HJDParamsCN - - - 0 12 0% 0% 0% 1% 7 87 5% 19% 5% 8%

FMLSCN C
FMLSCN
N+1 SN ,KN+1, TN+1, RN , QN , FMLSParamsCN - - - 0 9 0% 0% 0% 1% 0 9 0% 0% 0% 1%

L1C1N C
L1C1N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N 1 6 6 0 1 0% 0% 0% 0% 0 1 0% 0% 0% 0%

L1C2N C
L1C2N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN 1 7 7 0 17 0% 0% 1% 2% 0 17 0% 0% 1% 2%

L1C3N C
L1C3N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN 1 12 12 0 13 0% 0% 0% 2% 0 13 0% 0% 0% 2%

L1C4N C
L1C4N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN , HParams
C
N 1 17 17 0 29 0% 0% 1% 3% 0 29 0% 0% 1% 3%

L1C5N C
L1C5N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN , HParams
C
N , C

HC
N 1 18 18 5 38 2% 14% 2% 4% 6 44 3% 17% 2% 4%

L1C6N C
L1C6N
N+1 SN ,KN+1, TN+1, RN , QN , HParams

C
N , C

HC
N 1 11 11 2 21 0% 8% 1% 2% 2 24 0% 8% 1% 3%

L1C7N C
L1C7N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , BSMGreeksCN , C
BSMC
N 1 12 12 4 50 2% 13% 3% 5% 6 60 3% 17% 3% 6%

L1C8N C
L1C8N
N+1 SN ,KN+1, TN+1, RN , QN , HJDParams

C
N , C

HJDC
N 1 14 14 1 23 0% 5% 1% 2% 1 27 0% 5% 1% 3%

L1C9N C
L1C9N
N+1 SN ,KN+1, TN+1, RN , QN , FMLSParamsCN , C

FMLSC
N 1 8 8 0 4 0% 0% 0% 1% 0 4 0% 0% 0% 1%

L2C1N C
L2C1N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N 2 6 6 X 6 0 3 0% 0% 0% 1% 0 3 0% 0% 0% 1%

L2C2N C
L2C2N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN 2 7 7 X 7 0 45 0% 0% 2% 4% 0 45 0% 0% 2% 4%

L2C3N C
L2C3N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN 2 12 12 X 12 0 27 0% 0% 1% 3% 0 29 0% 0% 1% 3%

L2C4N C
L2C4N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN , HParams
C
N 2 17 17 X 17 0 30 0% 0% 2% 3% 0 31 0% 0% 2% 3%

L2C5N C
L2C5N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN , HParams
C
N , C

HC
N 2 18 18 X 18 2 38 0% 8% 2% 4% 2 47 0% 8% 3% 5%

L2C6N C
L2C6N
N+1 SN ,KN+1, TN+1, RN , QN , HParams

C
N , C

HC
N 2 11 11 X 11 4 15 2% 13% 1% 2% 5 27 2% 16% 1% 3%

L2C7N C
L2C7N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , BSMGreeksCN , C
BSMC
N 2 12 12 X 12 3 25 0% 9% 1% 3% 3 39 0% 11% 2% 4%

L2C8N C
L2C8N
N+1 SN ,KN+1, TN+1, RN , QN , HJDParams

C
N , C

HJDC
N 2 14 14 X 14 3 28 0% 11% 1% 3% 6 41 3% 17% 2% 4%

L2C9N C
L2C9N
N+1 SN ,KN+1, TN+1, RN , QN , FMLSParamsCN , C

FMLSC
N 2 8 8 X 8 0 37 0% 0% 2% 4% 0 38 0% 0% 2% 4%

L3C1N C
L3C1N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N 3 6 6 X 6 X 6 0 34 0% 0% 2% 3% 0 34 0% 0% 2% 3%

L3C2N C
L3C2N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN 3 7 7 X 7 X 7 0 89 0% 0% 5% 8% 0 90 0% 0% 5% 8%

L3C3N C
L3C3N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN 3 12 12 X 12 X 12 0 39 0% 0% 2% 4% 0 39 0% 0% 2% 4%

L3C4N C
L3C4N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN , HParams
C
N 3 17 17 X 17 X 17 0 76 0% 0% 5% 7% 0 77 0% 0% 5% 7%

L3C5N C
L3C5N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN , HParams
C
N , C

HC
N 3 18 18 X 18 X 18 2 49 0% 8% 3% 5% 2 59 0% 8% 3% 6%

L3C6N C
L3C6N
N+1 SN ,KN+1, TN+1, RN , QN , HParams

C
N , C

HC
N 3 11 11 X 11 X 11 1 24 0% 5% 1% 3% 3 30 0% 11% 2% 3%

L3C7N C
L3C7N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , BSMGreeksCN , C
BSMC
N 3 12 12 X 12 X 12 5 35 2% 16% 2% 4% 5 50 3% 16% 3% 5%

L3C8N C
L3C8N
N+1 SN ,KN+1, TN+1, RN , QN , HJDParams

C
N , C

HJDC
N 3 14 14 X 14 X 14 10 50 8% 25% 3% 5% 10 58 8% 25% 3% 5%

L3C9N C
L3C9N
N+1 SN ,KN+1, TN+1, RN , QN , FMLSParamsCN , C

FMLSC
N 3 8 8 X 8 X 8 0 128 0% 0% 8% 11% 0 130 0% 0% 8% 11%
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Table A.2.13: Call Price Comparison (amongst MLP M1CN −Models, LSTM L1CN −Models, MLP M2CN −Models, LSTM L2CN −Models, MLP M3CN −Models, and LSTM L3CN −Models): This table presents a performance comparison using
both daily and monthly statistics amongst the MLP M1CN −Models (M1C1N to M1C9N ), LSTM L1CN −Models (L1C1N to L1C9N ), MLP M2CN −Models (M2C1N to M2C9N ), LSTM L2CN −Models (L2C1N to L2C9N ), MLP M3CN −Models
(M3C1N to M3C9N ) and the LSTM L3CN −Models (L3C1N to L3C9N ). The forecast variable for all the models is the one-day-ahead call option price (CN+1). The models denoted by the N subscript use lagged input variables for forecasting CN+1.
The one-day-ahead forecast errors of CN+1 are used to compute the Root Mean Square Error (RMSE). Column I identifies the models, column II identifies the forecast variable, column III lists the input variables used by the models to obtain the
one-trading-day ahead forecast of CN+1, and columns IV, V and VI describe the network architecture of the MLP M1CN −Models (M1C1N to M1C9N ), LSTM L1CN −Models (L1C1N to L1C9N ), MLP M2CN −Models (M2C1N to M2C9N ), LSTM
L2CN −Models (L2C1N to L2C9N ), MLP M3CN −Models (M3C1N to M3C9N ) and the LSTM L3CN −Models (L3C1N to L3C9N ). Forecasts are made for 1,328 trading days, and there are 64 months covered in the sample using the monthly data.
When comparing all models simultaneously (i.e. including the random walk model (δCN ), column VII reports the number of months out of the 64 months that each model has the smallest RMSE, while column VIII reports the number of days out of the
1,328 days each model has the smallest RMSE. Columns IX (lower bound) and X (upper bound) present the winning percentage out of 64 months for each model, evaluated using the bootstrap sampling technique. The statistical bootstrap performed
(with replacement) at a 95% confidence level is computed from the monthly RMSE values of the respective models below. Columns XI (lower bound), and XII (upper bound) presents the winning percentage out of 1326 days for each model computed
from bootstrapping the daily RMSE values of the respective models at a 95% confidence level.
Similarly, when the δCN model was excluded in the comparison, column XIII report the number of months out of the 64 months that each model has the smallest RMSE, while column XIV reports the number of days out of the 1,328 days each model has
the smallest RMSE. Columns XV (lower bound) and XVI (upper bound) present the winning percentage out of 64 months for each model, evaluated using the bootstrap sampling technique. The statistical bootstrap performed (with replacement) at a
95% confidence level is computed from the monthly RMSE values of the respective models below. Also, columns XVII (lower bound) and XVIII (upper bound) present the winning percentage out of 1326 days for each model computed from bootstrapping
the daily RMSE values of the respective models at a 95% confidence level.

Including the random walk Excluding the random walk

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X) (XI) (XII) (XIII) (XIV) (XV) (XVI) (XVII) (XVIII)

Model Forecast Inputs No.
of
hidden
layers

No. of
hidden
nodes
per layer

Network
architecture

Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

δCN CN+1 CN - - - 6 107 3% 17% 7% 10% - - - - - -

M1C1N C
M1C1N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N 1 6 6 0 12 0% 0% 0% 2% 0 12 0% 0% 0% 1%

M1C2N C
M1C2N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN 1 7 7 1 13 0% 5% 0% 2% 1 13 0% 5% 1% 2%

M1C3N C
M1C3N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN 1 12 12 1 21 0% 5% 1% 2% 1 26 0% 5% 1% 3%

M1C4N C
M1C4N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN , HParams
C
N 1 17 17 0 21 0% 0% 1% 2% 0 28 0% 0% 1% 3%

M1C5N C
M1C5N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN , HParams
C
N , C

HC
N 1 18 18 2 6 0% 8% 0% 1% 2 7 0% 8% 0% 1%

M1C6N C
M1C6N
N+1 SN ,KN+1, TN+1, RN , QN , HParams

C
N , C

HC
N 1 11 11 2 4 0% 8% 0% 1% 3 5 0% 11% 0% 1%

M1C7N C
M1C7N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , BSMGreeksCN , C
BSMC
N 1 12 12 2 15 0% 8% 1% 2% 2 16 0% 8% 1% 2%

M1C8N C
M1C8N
N+1 SN ,KN+1, TN+1, RN , QN , HJDParams

C
N , C

HJDC
N 1 14 14 0 3 0% 0% 0% 1% 0 7 0% 0% 0% 1%

M1C9N C
M1C9N
N+1 SN ,KN+1, TN+1, RN , QN , FMLSParamsCN , C

FMLSC
N 1 8 8 0 7 0% 0% 0% 1% 0 8 0% 0% 0% 1%

M2C1N C
M2C1N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N 2 6 6 X 6 0 11 0% 0% 0% 1% 0 11 0% 0% 0% 1%

M2C2N C
M2C2N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN 2 7 7 X 7 0 17 0% 0% 1% 2% 0 18 0% 0% 1% 2%

M2C3N C
M2C3N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN 2 12 12 X 12 3 19 0% 11% 1% 2% 3 23 0% 11% 1% 2%

M2C4N C
M2C4N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN , HParams
C
N 2 17 17 X 17 1 23 0% 5% 1% 2% 1 32 0% 5% 2% 3%

M2C5N C
M2C5N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN , HParams
C
N , C

HC
N 2 18 18 X 18 0 2 0% 0% 0% 0% 0 4 0% 0% 0% 1%

M2C6N C
M2C6N
N+1 SN ,KN+1, TN+1, RN , QN , HParams

C
N , C

HC
N 2 11 11 X 11 1 3 0% 5% 0% 1% 2 6 0% 8% 0% 1%

M2C7N C
M2C7N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , BSMGreeksCN , C
BSMC
N 2 12 12 X 12 1 7 0% 5% 0% 1% 1 11 0% 5% 0% 1%

M2C8N C
M2C8N
N+1 SN ,KN+1, TN+1, RN , QN , HJDParams

C
N , C

HJDC
N 2 14 14 X 14 0 1 0% 0% 0% 0% 0 2 0% 0% 0% 0%

M2C9N C
M2C9N
N+1 SN ,KN+1, TN+1, RN , QN , FMLSParamsCN , C

FMLSC
N 2 8 8 X 8 0 6 0% 0% 0% 1% 0 9 0% 0% 0% 1%

M3C1N C
M3C1N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N 3 6 6 X 6 X 6 0 12 0% 0% 0% 1% 0 15 0% 0% 1% 2%

M3C2N C
M3C2N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN 3 7 7 X 7 X 7 1 22 0% 5% 1% 2% 1 24 0% 5% 1% 3%

M3C3N C
M3C3N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN 3 12 12 X 12 X 12 5 33 2% 14% 2% 3% 5 38 2% 16% 2% 4%

M3C4N C
M3C4N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN , HParams
C
N 3 17 17 X 17 X 17 2 20 0% 8% 1% 2% 2 27 0% 8% 1% 3%

M3C5N C
M3C5N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN , HParams
C
N , C

HC
N 3 18 18 X 18 X 18 0 2 0% 0% 0% 0% 0 5 0% 0% 0% 1%

M3C6N C
M3C6N
N+1 SN ,KN+1, TN+1, RN , QN , HParams

C
N , C

HC
N 3 11 11 X 11 X 11 0 4 0% 0% 0% 1% 0 7 0% 0% 0% 1%

M3C7N C
M3C7N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , BSMGreeksCN , C
BSMC
N 3 12 12 X 12 X 12 4 10 2% 13% 0% 1% 4 18 2% 13% 1% 2%

M3C8N C
M3C8N
N+1 SN ,KN+1, TN+1, RN , QN , HJDParams

C
N , C

HJDC
N 3 14 14 X 14 X 14 1 3 0% 6% 0% 0% 2 9 0% 8% 0% 1%

M3C9N C
M3C9N
N+1 SN ,KN+1, TN+1, RN , QN , FMLSParamsCN , C

FMLSC
N 3 8 8 X 8 X 8 0 9 0% 0% 0% 1% 1 17 0% 5% 1% 2%

L1C1N C
L1C1N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N 1 6 6 0 1 0% 0% 0% 0% 0 1 0% 0% 0% 0%

L1C2N C
L1C2N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN 1 7 7 0 18 0% 0% 1% 2% 0 18 0% 0% 1% 2%

L1C3N C
L1C3N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN 1 12 12 0 14 0% 0% 1% 2% 0 14 0% 0% 1% 2%

L1C4N C
L1C4N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN , HParams
C
N 1 17 17 0 29 0% 0% 1% 3% 0 29 0% 0% 1% 3%

L1C5N C
L1C5N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN , HParams
C
N , C

HC
N 1 18 18 4 33 2% 13% 2% 3% 4 33 2% 13% 2% 3%

L1C6N C
L1C6N
N+1 SN ,KN+1, TN+1, RN , QN , HParams

C
N , C

HC
N 1 11 11 0 17 0% 0% 1% 2% 0 17 0% 0% 1% 2%

L1C7N C
L1C7N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , BSMGreeksCN , C
BSMC
N 1 12 12 2 30 0% 8% 2% 3% 3 31 0% 11% 2% 3%

L1C8N C
L1C8N
N+1 SN ,KN+1, TN+1, RN , QN , HJDParams

C
N , C

HJDC
N 1 14 14 1 21 0% 5% 1% 2% 1 22 0% 5% 1% 2%

L1C9N C
L1C9N
N+1 SN ,KN+1, TN+1, RN , QN , FMLSParamsCN , C

FMLSC
N 1 8 8 0 4 0% 0% 0% 1% 0 4 0% 0% 0% 1%

L2C1N C
L2C1N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N 2 6 6 X 6 0 3 0% 0% 0% 1% 0 3 0% 0% 0% 1%

L2C2N C
L2C2N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN 2 7 7 X 7 0 46 0% 0% 2% 5% 0 46 0% 0% 2% 5%

L2C3N C
L2C3N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN 2 12 12 X 12 0 28 0% 0% 1% 3% 0 28 0% 0% 1% 3%

L2C4N C
L2C4N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN , HParams
C
N 2 17 17 X 17 0 30 0% 0% 1% 3% 0 30 0% 0% 2% 3%

L2C5N C
L2C5N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN , HParams
C
N , C

HC
N 2 18 18 X 18 1 32 0% 5% 2% 3% 1 36 0% 5% 2% 4%

L2C6N C
L2C6N
N+1 SN ,KN+1, TN+1, RN , QN , HParams

C
N , C

HC
N 2 11 11 X 11 2 12 0% 8% 0% 1% 2 14 0% 8% 1% 2%

L2C7N C
L2C7N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , BSMGreeksCN , C
BSMC
N 2 12 12 X 12 3 25 0% 11% 1% 3% 3 26 0% 11% 1% 3%

L2C8N C
L2C8N
N+1 SN ,KN+1, TN+1, RN , QN , HJDParams

C
N , C

HJDC
N 2 14 14 X 14 2 26 0% 8% 1% 3% 3 28 0% 9% 1% 3%

L2C9N C
L2C9N
N+1 SN ,KN+1, TN+1, RN , QN , FMLSParamsCN , C

FMLSC
N 2 8 8 X 8 0 33 0% 0% 2% 3% 0 34 0% 0% 2% 3%

L3C1N C
L3C1N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N 3 6 6 X 6 X 6 0 34 0% 0% 2% 3% 0 34 0% 0% 2% 3%

L3C2N C
L3C2N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN 3 7 7 X 7 X 7 0 86 0% 0% 5% 8% 0 86 0% 0% 5% 8%

L3C3N C
L3C3N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN 3 12 12 X 12 X 12 0 41 0% 0% 2% 4% 0 41 0% 0% 2% 4%

L3C4N C
L3C4N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN , HParams
C
N 3 17 17 X 17 X 17 0 85 0% 0% 5% 8% 0 85 0% 0% 5% 8%

L3C5N C
L3C5N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , CN , BSMGreeksCN , HParams
C
N , C

HC
N 3 18 18 X 18 X 18 1 42 0% 5% 2% 4% 1 43 0% 5% 2% 4%

L3C6N C
L3C6N
N+1 SN ,KN+1, TN+1, RN , QN , HParams

C
N , C

HC
N 3 11 11 X 11 X 11 1 22 0% 5% 1% 2% 1 22 0% 5% 1% 2%

L3C7N C
L3C7N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , BSMGreeksCN , C
BSMC
N 3 12 12 X 12 X 12 5 28 2% 16% 1% 3% 5 29 2% 14% 1% 3%

L3C8N C
L3C8N
N+1 SN ,KN+1, TN+1, RN , QN , HJDParams

C
N , C

HJDC
N 3 14 14 X 14 X 14 9 50 6% 22% 3% 5% 9 51 6% 23% 3% 5%

L3C9N C
L3C9N
N+1 SN ,KN+1, TN+1, RN , QN , FMLSParamsCN , C

FMLSC
N 3 8 8 X 8 X 8 0 125 0% 0% 8% 11% 0 125 0% 0% 8% 11%
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Table A.2.14: Call Price Comparison (amongst Parametric Models): This table presents a performance comparison using both daily and monthly statistics amongst the Black-Scholes-Merton (BSMCN ) model, Heston
(HCN ) model, Heston Jump Diffusion (HJDCN ) model, and the Finite Moment Log Stable (FMLSCN ) model. The forecast variable for all the models is the one-day-ahead call option price (CN+1). The models denoted
by the N subscript use lagged input variables for forecasting CN+1. The one-day-ahead forecast errors of CN+1 are used to compute the Root Mean Square Error (RMSE). Column I identifies the models, column II
identifies the forecast variable, and column III lists the input variables used by the models to obtain the one-trading-day ahead forecast of CN+1. Forecasts are made for 1,328 trading days, and there are 64 months covered
in the sample using the monthly data.
When comparing all models simultaneously (i.e. including the random walk model (δCN ), column VII reports the number of months out of the 64 months that each model has the smallest RMSE, while column VIII
reports the number of days out of the 1,328 days each model has the smallest RMSE. Columns IX (lower bound) and X (upper bound) present the winning percentage out of 64 months for each model, evaluated using the
bootstrap sampling technique. The statistical bootstrap performed (with replacement) at a 95% confidence level is computed from the monthly RMSE values of the respective models below. Columns XI (lower bound)
and XII (upper bound) present the winning percentage out of 1326 days for each model computed from bootstrapping the daily RMSE values of the respective models at a 95% confidence level.
Similarly, when the δCN model was excluded in the comparison, column XIII report the number of months out of the 64 months that each model has the smallest RMSE, while column XIV reports the number of days
out of the 1,328 days each model has the smallest RMSE. Columns XV (lower bound) and XVI (upper bound) present the winning percentage out of 64 months for each model, evaluated using the bootstrap sampling
technique. The statistical bootstrap performed (with replacement) at a 95% confidence level is computed from the monthly RMSE values of the respective models below. Also, columns XVII (lower bound) and XVIII
(upper bound) present the winning percentage out of 1326 days for each model computed from bootstrapping the daily RMSE values of the respective models at a 95% confidence level.

Including the random walk Excluding the random walk

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X) (XI) (XII) (XIII) (XIV) (XV)

Model Forecast Inputs Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

δCN CN+1 CN 47 498 63% 84% 35% 40% - - - - - -

BSMCN C
BSMCN
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N 0 132 0% 0% 8% 11% 0 132 0% 0% 8% 11%

HCN C
HCN
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , HParamsCN 13 304 11% 30% 21% 25% 15 376 14% 34% 26% 31%

HJDCN C
HJDCN
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , HJDParamsCN 4 73 2% 13% 4% 7% 49 458 66% 86% 32% 37%

FMLSCN C
FMLSCN
N+1 SN ,KN+1, TN+1, RN , QN , FMLSParamsCN 0 321 0% 0% 22% 26% 0 362 0% 0% 25% 30%
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A.2.2 Pricing performance of C-Models that use one-trading-

day-ahead input variables to forecast the call option price

CN+1 for the next trading day

Table A.2.15 to Table A.2.18 shows the relative out-of-sample pricing performance (in RMSE)
amongst the models that use one-trading-day-ahead input variables to forecast the one-trading-
day-ahead call option price(CN+1). For convenience, the models in table A.2.15 to table A.2.17,
list the forecast variable and the input variables in columns II and III, respectively, and the
architecture of the MLP and LSTM models in columns IV, V and VI, respectively. The per-
formance metric is the RMSE of the one-trading-day-ahead forecast errors of CN+1, which is
computed for each model utilising all of the errors in each day or each month. Amongst all of
the models (including the random walk model (δCN )), columns VII and VIII record the number
of months and days, respectively, that each model has the lowest RMSE. We performed a
bootstrap using the daily and monthly RMSEs to be certain of our results. Columns IX (lower
bound) and X (upper bound) present the results from the bootstrap performed (with replace-
ment) using monthly RMSEs at a 95% confidence level and show the winning percentage out
of 64 months for each model (including the δCN model), and similarly, the 95 % confidence
intervals computed from bootstrapping of the daily RMSEs signifies the winning percentage out
of 1328 days for each model and are reported in columns XI (lower bound), XII (upper bound).
While excluding the δCN model amongst the comparison, columns XIII and XIV record the
number of months and days that each model has the lowest RMSE. We repeat the exercise of
performing the bootstrap by excluding the δCN model in the comparison, and thus, columns
XV (lower bound) and XVI (upper bound) present the results from the bootstrap performed
(with replacement) using monthly RMSEs at a 95% confidence level and shows the winning
percentage out of 64 months for each model (excluding the δCN model) and similarly, the 95
% confidence intervals computed from bootstrapping of the daily RMSEs signifies the winning
percentage out of 1328 days for each model and are reported in columns XVII (lower bound),
XVIII (upper bound).

In the below several comparisons, even though a particular model wins by a higher percentage
against other models, we investigated further these models pairwise by performing a pairwise
bootstrap comparison, which was computed using the respective pair’s daily RMSEs. The results
are presented in Table 18 of the Electronic Appendix. Also, we examined the pairwise Diebold-
Mariano(DM) (Diebold and Mariano (1995)) tests on the and have presented the results in Table
14 of the Electronic Appendix. In constructing the DM tests, the model pairs are reported
in column I and column II, and the DM test statistics for a particular pair are reported in
column III. If the null can be rejected, a positive number suggests the rejection may be due
to the second model being the better forecast model. In contrast, a negative value suggests
the rejection may be due to the first model being the better forecast model. The model pairs
highlighted in a red state that their forecasts have statistically insignificant differences in their
prediction accuracy. The following model pairs have been shown to have statistically insignificant
differences: (BSMCN+1, L3C5N+1), (FMLSCN+1, M3C4N+1), and (L3C3N+1, L3C7N+1).
The RMSEs for the C − Models that use one-trading-day-ahead input variables to forecast
the CN+1 for the next trading day on a monthly, yearly, and overall basis can be found in the
Electronic Appendix, in Tables 2, 6, and 10, respectively.
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A.2.2.1 Comparison amongst all Parametric Models with Triple Hidden Layer

ANN Models:

In this section, we compare the out-of-sample pricing performance of the random walk model
(δCN ), the parametric models (BSMCN+1, HCN+1, HJDCN+1, and FMLSCN+1), the triple
hidden layer MLP models (M3CN+1 − Models) and the triple hidden layer LSTM models
(L3CN+1 −Models), then the parametric models with the M3CN+1 −Models, and finally the
parametric models with the L3CN+1 −Models.

The results for the parametric models with the MLPM3CN+1−Models (M3C1N+1 toM3C9N+1)
and the LSTM L3CN+1 −Models (L3C1N+1 to L3C9N+1) are presented in Table A.2.15. If
all the models are individually compared, then the M3C4N+1 model had the lowest RMSE for
232 days (having a daily bootstrap winning % of 15% to 20%) out of 1,328 days. Though the
M3C4N+1 model outperformed, other models like the M3C2N+1 (210 days), M3C3N+1 (228
days), and the M3C9N+1 (162 days) have shown similar outperformance to M3C4N+1 model,
where they have a collective daily bootstrap winning percentage from 10% (lower bound for
the M3C9N+1 model) to 19% (upper bound for the M3C3N+1 model). When the δCN was
excluded from the comparison, the M3C4N+1 model still outperformed all other models for 245
days (having a daily bootstrap winning % of 16% to 21%) out of 1,328 days. Although again the
M3C4N+1 model outperformed, it was closely followed by the M3C2N+1 (212 days), and the
M3C3N+1 (232 days) which have shown similar outperformance to M3C4N+1 model, and they
have a collective daily bootstrap winning percentage from 14% (lower bound for the M3C2N+1
model) to 20% (upper bound for the M3C3N+1 model).

Table A.2.16 presents the results for the comparison of the parametric models with the MLP
M3CN+1 −Models (M3C1N+1 to M3C9N+1). Accordingly, M3C4N+1 model had the lowest
RMSE for 240 days (having a daily bootstrap winning % of 16% to 20%) out of 1,328 days.
Though the M3C4N+1 model outperformed, other models like the M3C2N+1 (213 days), and
the M3C3N+1 (230 days) have shown similar outperformance to M3C4N+1 model, where they
have a collective daily bootstrap winning percentage from 14% (lower bound for the M3C2N+1
model) to 19% (upper bound for the M3C3N+1 model). When the δCN was excluded from the
comparison, the M3C4N+1 model still outperformed all other models for 253 days (having a
daily bootstrap winning % of 17% to 21%) out of 1,328 days. Although again the M3C4N+1
model outperformed, it was closely followed by the M3C2N+1 (215 days), and the M3C3N+1
(235 days), which have shown similar outperformance to M3C4N+1 model, and they have a
collective daily bootstrap winning percentage from 14% (lower bound for the M3C2N+1 model)
to 20% (upper bound for the M3C3N+1 model).

We present the comparison results of the parametric models with the LSTM L3CN+1−Models
(L3C1N+1 to L3C9N+1) in Table A.2.17. We find that the HJDCN+1 model had the lowest
RMSE for 878 days (having a daily bootstrap winning % of 64% to 69%) out of 1,328 days.
When the δCN was excluded from the comparison, the HJDCN+1 model still outperformed all
other models for 955 days (having a daily bootstrap winning % of 70% to 74%) out of 1,328
days.

Thus, when the parametric models are compared with the triple hidden layer ANN models
that use one-trading-day-ahead input variables to forecast CN+1, we conclude that the MLP
model (M3C4N+1) could outperform all other models, but there were other variants of the
MLP model that had similar out-performance. Similar out-performance of the MLP model
(M3C4N+1) (in Table A.2.16) can be noticed when the parametric models were compared with
the triple hidden layer MLP models. However, when the parametric models were compared
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with the triple hidden layer LSTM models, none of the LSTM models could out-perform the
parametric models, particularly the HJDCN+1) model (in Table A.2.17).

A.2.2.2 Comparison amongst all Parametric models:

In this section, we compare the out-of-sample pricing performance of the random walk model
(δCN ), and the parametric models (BSMCN+1, HCN+1, HJDCN+1, and FMLSCN+1) in
Table A.2.18. We find that the HJDCN+1 model had the lowest RMSE for 980 days (having
a daily bootstrap winning % of 72% to 76%) out of 1,328 days. When the δCN was excluded
from the comparison, the HJDCN+1 model still outperformed all other models for 1175 days
(having a daily bootstrap winning % of 87% to 90%) out of 1,328 days.

Thus, when comparing the out-of-sample pricing performance amongst the parametric models,
the HJDCN+1 model had outperformed all other parametric models by a large margin(in Table
A.2.18).
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Table A.2.15: Call Price Comparison (amongst Parametric, M3CN+1 −Models and L3CN+1 −Models): This table presents a performance comparison using both daily and monthly statistics amongst the Black-Scholes-Merton (BSMCN+1) model, Heston (HCN+1)
model, Heston Jump Diffusion (HJDCN+1) model, Finite Moment Log Stable (FMLSCN+1) model, MLP M3CN+1 −Models (M3C1N+1 to M3C9N+1) and the LSTM L3CN+1 −Models (L3C1N+1 to L3C9N+1). The forecast variable for all the models is the
one-day-ahead call option price (CN+1). The models denoted by the N+1 subscript use one-day-ahead input variables for forecasting CN+1. The one-day-ahead forecast errors of CN+1 are used to compute the Root Mean Square Error (RMSE). Column I identifies the
models, column II identifies the forecast variable, column III lists the input variables used by the models to obtain the one-trading-day ahead forecast of CN+1, and columns IV, V and VI describe the network architecture of the MLP M3CN+1−Models and the LSTM
L3CN+1 −Models. Forecasts are made for 1,328 trading days, and there are 64 months covered in the sample using the monthly data.
When comparing all models simultaneously (i.e. including the random walk model (δCN ), column VII reports the number of months out of the 64 months that each model has the smallest RMSE, while column VIII reports the number of days out of the 1,328 days
each model has the smallest RMSE. Columns IX (lower bound) and X (upper bound) present the winning percentage out of 64 months for each model, evaluated using the bootstrap sampling technique. The statistical bootstrap performed (with replacement) at a 95%
confidence level is computed from the monthly RMSE values of the respective models below. Columns XI (lower bound), and XII (upper bound) presents the winning percentage out of 1326 days for each model computed from bootstrapping the daily RMSE values of
the respective models at a 95% confidence level.
Similarly, when the δCN model was excluded in the comparison, column XIII report the number of months out of the 64 months that each model has the smallest RMSE, while column XIV reports the number of days out of the 1,328 days each model has the smallest
RMSE. Columns XV (lower bound) and XVI (upper bound) present the winning percentage out of 64 months for each model, evaluated using the bootstrap sampling technique. The statistical bootstrap performed (with replacement) at a 95% confidence level is
computed from the monthly RMSE values of the respective models below. Also, columns XVII (lower bound) and XVIII (upper bound) present the winning percentage out of 1326 days for each model computed from bootstrapping the daily RMSE values of the
respective models at a 95% confidence level.

Including the random walk Excluding the random walk

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X) (XI) (XII) (XIII) (XIV) (XV) (XVI) (XVII) (XVIII)

Model Forecast Inputs No.
of
hidden
layers

No. of
hidden
nodes
per layer

Network
architecture

Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

δCN CN+1 CN - - - 0 89 0% 0% 5% 8% - - - - - -

BSMCN+1 C
BSMCN+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N - - - 0 0 0% 0% 0% 0% 0 0 0% 0% 0% 0%

HCN+1 C
HCN+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N , HParamsCN - - - 0 9 0% 0% 0% 1% 0 9 0% 0% 0% 1%

HJDCN+1 C
HJDCN+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N , HJDParamsCN - - - 4 56 2% 13% 3% 5% 4 57 2% 13% 3% 5%

FMLSCN+1 C
FMLSCN+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, FMLSParamsCN - - - 0 0 0% 0% 0% 0% 0 0 0% 0% 0% 0%

M3C1N+1 C
M3C1N+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N 3 6 6 X 6 X 6 3 87 0% 11% 5% 8% 3 87 0% 11% 5% 8%

M3C2N+1 C
M3C2N+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N , CN 3 7 7 X 7 X 7 24 210 25% 50% 14% 18% 24 212 26% 48% 14% 18%

M3C3N+1 C
M3C3N+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N , CN , BSMGreeksCN 3 12 12 X 12 X 12 8 228 5% 22% 15% 19% 8 232 5% 20% 15% 20%

M3C4N+1 C
M3C4N+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N , CN , BSMGreeksCN , HParams
C
N 3 17 17 X 17 X 17 16 232 14% 36% 15% 20% 16 245 16% 36% 16% 21%

M3C5N+1 C
M3C5N+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N , CN , BSMGreeksCN , HParams
C
N , C

HC
N 3 18 18 X 18 X 18 4 112 2% 13% 7% 10% 4 124 2% 13% 8% 11%

M3C6N+1 C
M3C6N+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, HParams

C
N , C

HC
N 3 11 11 X 11 X 11 0 76 0% 0% 5% 7% 0 87 0% 0% 5% 8%

M3C7N+1 C
M3C7N+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N , BSMGreeksCN , C
BSMC
N 3 12 12 X 12 X 12 0 21 0% 0% 1% 2% 0 35 0% 0% 2% 4%

M3C8N+1 C
M3C8N+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, HJDParams

C
N , C

HJDC
N 3 14 14 X 14 X 14 0 17 0% 0% 1% 2% 0 38 0% 0% 2% 4%

M3C9N+1 C
M3C9N+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, FMLSParamsCN , C

FMLSC
N 3 8 8 X 8 X 8 5 162 2% 14% 10% 14% 5 166 2% 16% 11% 14%

L3C1N+1 C
L3C1N+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N 3 6 6 X 6 X 6 0 0 0% 0% 0% 0% 0 0 0% 0% 0% 0%

L3C2N+1 C
L3C2N+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N , CN 3 7 7 X 7 X 7 0 4 0% 0% 0% 1% 0 4 0% 0% 0% 1%

L3C3N+1 C
L3C3N+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N , CN , BSMGreeksCN 3 12 12 X 12 X 12 0 3 0% 0% 0% 1% 0 4 0% 0% 0% 1%

L3C4N+1 C
L3C4N+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N , CN , BSMGreeksCN , HParams
C
N 3 17 17 X 17 X 17 0 5 0% 0% 0% 1% 0 5 0% 0% 0% 1%

L3C5N+1 C
L3C5N+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N , CN , BSMGreeksCN , HParams
C
N , C

HC
N 3 18 18 X 18 X 18 0 8 0% 0% 0% 1% 0 9 0% 0% 0% 1%

L3C6N+1 C
L3C6N+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, HParams

C
N , C

HC
N 3 11 11 X 11 X 11 0 4 0% 0% 0% 1% 0 6 0% 0% 0% 1%

L3C7N+1 C
L3C7N+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N , BSMGreeksCN , C
BSMC
N 3 12 12 X 12 X 12 0 2 0% 0% 0% 0% 0 4 0% 0% 0% 1%

L3C8N+1 C
L3C8N+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, HJDParams

C
N , C

HJDC
N 3 14 14 X 14 X 14 0 2 0% 0% 0% 0% 0 3 0% 0% 0% 1%

L3C9N+1 C
L3C9N+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, FMLSParamsCN , C

FMLSC
N 3 8 8 X 8 X 8 0 1 0% 0% 0% 0% 0 1 0% 0% 0% 0%
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Table A.2.16: Call Price Comparison (amongst Parametric and M3CN+1−Models): This table presents a performance comparison using both daily and monthly statistics amongst the Black-Scholes-Merton (BSMCN+1) model, Heston (HCN+1) model, Heston Jump
Diffusion (HJDCN+1) model, Finite Moment Log Stable (FMLSCN+1) model and the MLP M3CN+1 −Models (M3C1N+1 to M3C9N+1). The forecast variable for all the models is the one-day-ahead call option price (CN+1). The models denoted by the N+1
subscript use one-day-ahead input variables for forecasting CN+1. The one-day-ahead forecast errors of CN+1 are used to compute the Root Mean Square Error (RMSE). Column I identifies the models, column II identifies the forecast variable, column III lists the
input variables used by the models to obtain the one-trading-day ahead forecast of CN+1, and columns IV, V and VI describe the network architecture of the MLP M3CN+1 −Models. Forecasts are made for 1,328 trading days, and there are 64 months covered in the
sample using the monthly data.
When comparing all models simultaneously (i.e. including the random walk model (δCN ), column VII reports the number of months out of the 64 months that each model has the smallest RMSE, while column VIII reports the number of days out of the 1,328 days
each model has the smallest RMSE. Columns IX (lower bound) and X (upper bound) present the winning percentage out of 64 months for each model, evaluated using the bootstrap sampling technique. The statistical bootstrap performed (with replacement) at a 95%
confidence level is computed from the monthly RMSE values of the respective models below. Columns XI (lower bound), and XII (upper bound) presents the winning percentage out of 1326 days for each model computed from bootstrapping the daily RMSE values of
the respective models at a 95% confidence level.
Similarly, when the δCN model was excluded in the comparison, column XIII report the number of months out of the 64 months that each model has the smallest RMSE, while column XIV reports the number of days out of the 1,328 days each model has the smallest
RMSE. Columns XV (lower bound) and XVI (upper bound) present the winning percentage out of 64 months for each model, evaluated using the bootstrap sampling technique. The statistical bootstrap performed (with replacement) at a 95% confidence level is
computed from the monthly RMSE values of the respective models below. Also, columns XVII (lower bound) and XVIII (upper bound) present the winning percentage out of 1326 days for each model computed from bootstrapping the daily RMSE values of the
respective models at a 95% confidence level.

Including the random walk Excluding the random walk

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X) (XI) (XII) (XIII) (XIV) (XV) (XVI) (XVII) (XVIII)

Model Forecast Inputs No.
of
hidden
layers

No. of
hidden
nodes
per layer

Network
architecture

Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

δCN CN+1 CN - - - 0 90 0% 0% 5% 8% - - - - - -

BSMCN+1 C
BSMCN+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N - - - 0 0 0% 0% 0% 0% 0 0 0% 0% 0% 0%

HCN+1 C
HCN+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N , HParamsCN - - - 0 9 0% 0% 0% 1% 0 9 0% 0% 0% 1%

HJDCN+1 C
HJDCN+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N , HJDParamsCN - - - 4 59 2% 13% 3% 6% 4 60 2% 13% 4% 6%

FMLSCN+1 C
FMLSCN+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, FMLSParamsCN - - - 0 0 0% 0% 0% 0% 0 0 0% 0% 0% 0%

M3C1N+1 C
M3C1N+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N 3 6 6 X 6 X 6 3 89 0% 11% 5% 8% 3 89 0% 9% 5% 8%

M3C2N+1 C
M3C2N+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N , CN 3 7 7 X 7 X 7 24 213 25% 50% 14% 18% 24 215 27% 50% 14% 18%

M3C3N+1 C
M3C3N+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N , CN , BSMGreeksCN 3 12 12 X 12 X 12 8 230 5% 21% 15% 19% 8 235 5% 20% 16% 20%

M3C4N+1 C
M3C4N+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N , CN , BSMGreeksCN , HParams
C
N 3 17 17 X 17 X 17 16 240 16% 36% 16% 20% 16 253 16% 36% 17% 21%

M3C5N+1 C
M3C5N+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N , CN , BSMGreeksCN , HParams
C
N , C

HC
N 3 18 18 X 18 X 18 4 114 2% 13% 7% 10% 4 127 1% 13% 8% 11%

M3C6N+1 C
M3C6N+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, HParams

C
N , C

HC
N 3 11 11 X 11 X 11 0 78 0% 0% 5% 7% 0 89 0% 0% 5% 8%

M3C7N+1 C
M3C7N+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N , BSMGreeksCN , C
BSMC
N 3 12 12 X 12 X 12 0 22 0% 0% 1% 2% 0 37 0% 0% 2% 4%

M3C8N+1 C
M3C8N+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, HJDParams

C
N , C

HJDC
N 3 14 14 X 14 X 14 0 18 0% 0% 1% 2% 0 44 0% 0% 2% 4%

M3C9N+1 C
M3C9N+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, FMLSParamsCN , C

FMLSC
N 3 8 8 X 8 X 8 5 166 2% 16% 11% 14% 5 170 2% 14% 11% 15%
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Table A.2.17: Call Price Comparison (amongst Parametric and L3CN+1 −Models): This table presents a performance comparison using both daily and monthly statistics amongst the Black-Scholes-Merton (BSMCN+1) model, Heston (HCN+1) model, Heston Jump
Diffusion (HJDCN+1) model, Finite Moment Log Stable (FMLSCN+1) model and the LSTM L3CN+1−Models (L3C1N+1 to L3C9N+1). The forecast variable for all the models is the one-day-ahead call option price (CN+1). The models denoted by the N+1 subscript
use one-day-ahead input variables for forecasting CN+1. The one-day-ahead forecast errors of CN+1 are used to compute the Root Mean Square Error (RMSE). Column I identifies the models, column II identifies the forecast variable, column III lists the input variables
used by the models to obtain the one-trading-day ahead forecast of CN+1, and columns IV, V and VI describe the network architecture of the LSTM L3CN+1 −Models. Forecasts are made for 1,328 trading days, and there are 64 months covered in the sample using
the monthly data.
When comparing all models simultaneously (i.e. including the random walk model (δCN ), column VII reports the number of months out of the 64 months that each model has the smallest RMSE, while column VIII reports the number of days out of the 1,328 days
each model has the smallest RMSE. Columns IX (lower bound) and X (upper bound) present the winning percentage out of 64 months for each model, evaluated using the bootstrap sampling technique. The statistical bootstrap performed (with replacement) at a 95%
confidence level is computed from the monthly RMSE values of the respective models below. Columns XI (lower bound), and XII (upper bound) presents the winning percentage out of 1326 days for each model computed from bootstrapping the daily RMSE values of
the respective models at a 95% confidence level.
Similarly, when the δCN model was excluded in the comparison, column XIII report the number of months out of the 64 months that each model has the smallest RMSE, while column XIV reports the number of days out of the 1,328 days each model has the smallest
RMSE. Columns XV (lower bound) and XVI (upper bound) present the winning percentage out of 64 months for each model, evaluated using the bootstrap sampling technique. The statistical bootstrap performed (with replacement) at a 95% confidence level is
computed from the monthly RMSE values of the respective models below. Also, columns XVII (lower bound) and XVIII (upper bound) present the winning percentage out of 1326 days for each model computed from bootstrapping the daily RMSE values of the
respective models at a 95% confidence level.

Including the random walk Excluding the random walk

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X) (XI) (XII) (XIII) (XIV) (XV) (XVI) (XVII) (XVIII)

Model Forecast Inputs No.
of
hidden
layers

No. of
hidden
nodes
per layer

Network
architecture

Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

δCN CN+1 CN - - - 0 182 0% 0% 12% 16% - - - - - -

BSMCN+1 C
BSMCN+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N - - - 0 0 0% 0% 0% 0% 0 0 0% 0% 0% 0%

HCN+1 C
HCN+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N , HParamsCN - - - 0 98 0% 0% 6% 9% 0 99 0% 0% 6% 9%

HJDCN+1 C
HJDCN+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N , HJDParamsCN - - - 64 878 100% 100% 64% 69% 64 955 100% 100% 70% 74%

FMLSCN+1 C
FMLSCN+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, FMLSParamsCN - - - 0 15 0% 0% 1% 2% 0 15 0% 0% 1% 2%

L3C1N+1 C
L3C1N+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N 3 6 6 X 6 X 6 0 0 0% 0% 0% 0% 0 0 0% 0% 0% 0%

L3C2N+1 C
L3C2N+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N , CN 3 7 7 X 7 X 7 0 23 0% 0% 1% 2% 0 25 0% 0% 1% 3%

L3C3N+1 C
L3C3N+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N , CN , BSMGreeksCN 3 12 12 X 12 X 12 0 27 0% 0% 1% 3% 0 30 0% 0% 2% 3%

L3C4N+1 C
L3C4N+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N , CN , BSMGreeksCN , HParams
C
N 3 17 17 X 17 X 17 0 22 0% 0% 1% 2% 0 26 0% 0% 1% 3%

L3C5N+1 C
L3C5N+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N , CN , BSMGreeksCN , HParams
C
N , C

HC
N 3 18 18 X 18 X 18 0 40 0% 0% 2% 4% 0 59 0% 0% 3% 6%

L3C6N+1 C
L3C6N+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, HParams

C
N , C

HC
N 3 11 11 X 11 X 11 0 14 0% 0% 1% 2% 0 32 0% 0% 2% 3%

L3C7N+1 C
L3C7N+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N , BSMGreeksCN , C
BSMC
N 3 12 12 X 12 X 12 0 11 0% 0% 0% 1% 0 42 0% 0% 2% 4%

L3C8N+1 C
L3C8N+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, HJDParams

C
N , C

HJDC
N 3 14 14 X 14 X 14 0 16 0% 0% 1% 2% 0 42 0% 0% 2% 4%

L3C9N+1 C
L3C9N+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, FMLSParamsCN , C

FMLSC
N 3 8 8 X 8 X 8 0 2 0% 0% 0% 0% 0 3 0% 0% 0% 1%
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Table A.2.18: Call Price Comparison (amongst Parametric Models): This table presents a performance comparison using both daily and monthly statistics amongst the Black-Scholes-Merton (BSMCN+1) model, Heston (HCN+1) model,
Heston Jump Diffusion (HJDCN+1) model, and the Finite Moment Log Stable (FMLSCN+1) model. The forecast variable for all the models is the one-day-ahead call option price (CN+1). The models denoted by the N+1 subscript use
one-day-ahead input variables for forecasting CN+1. The one-day-ahead forecast errors of CN+1 are used to compute the Root Mean Square Error (RMSE). Column I identifies the models, column II identifies the forecast variable, and
column III lists the input variables used by the models to obtain the one-trading-day ahead forecast of CN+1. Forecasts are made for 1,328 trading days, and there are 64 months covered in the sample using the monthly data.
When comparing all models simultaneously (i.e. including the random walk model (δCN ), column VII reports the number of months out of the 64 months that each model has the smallest RMSE, while column VIII reports the number
of days out of the 1,328 days each model has the smallest RMSE. Columns IX (lower bound) and X (upper bound) present the winning percentage out of 64 months for each model, evaluated using the bootstrap sampling technique. The
statistical bootstrap performed (with replacement) at a 95% confidence level is computed from the monthly RMSE values of the respective models below. Columns XI (lower bound), and XII (upper bound) presents the winning percentage
out of 1326 days for each model computed from bootstrapping the daily RMSE values of the respective models at a 95% confidence level.
Similarly, when the δCN model was excluded in the comparison, column XIII report the number of months out of the 64 months that each model has the smallest RMSE, while column XIV reports the number of days out of the 1,328
days each model has the smallest RMSE. Columns XV (lower bound) and XVI (upper bound) present the winning percentage out of 64 months for each model, evaluated using the bootstrap sampling technique. The statistical bootstrap
performed (with replacement) at a 95% confidence level is computed from the monthly RMSE values of the respective models below. Also, columns XVII (lower bound) and XVIII (upper bound) present the winning percentage out of 1326
days for each model computed from bootstrapping the daily RMSE values of the respective models at a 95% confidence level.

Including the random walk Excluding the random walk

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X) (XI) (XII) (XIII) (XIV) (XV)

Model Forecast Inputs Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

δCN CN+1 CN 0 217 0% 0% 14% 18% - - - - - -

BSMCN+1 C
BSMCN+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N 0 0 0% 0% 0% 0% 0 0 0% 0% 0% 0%

HCN+1 C
HCN+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N , HParamsCN 0 116 0% 0% 7% 10% 0 138 0% 0% 9% 12%

HJDCN+1 C
HJDCN+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N , HJDParamsCN 64 980 100% 100% 72% 76% 64 1175 100% 100% 87% 90%

FMLSCN+1 C
FMLSCN+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, FMLSParamsCN 0 15 0% 0% 1% 2% 0 15 0% 0% 1% 2%
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A.2.3 Pricing performance of CK-Models that use lagged input

variables to forecast the call option price scaled by the

strike price (CN+1/KN+1) for the next trading day

Table A.2.19 to Table A.2.32 shows the relative out-of-sample pricing performance (in RMSE)
amongst the models that use lagged input variables to forecast the one-trading-day-ahead call
option price scaled by the strike price(CN+1/KN+1). For convenience, the models in Table
A.2.19 to Table A.2.31, lists the forecast variable and the input variables are listed in columns
II and III, and the architecture of the MLP and LSTM models in columns IV, V and VI. The
performance metric is the RMSE of the one-trading-day-ahead forecast errors, computed for
each model utilising all of the errors in each day or each month. Amongst all of the models
(including the random walk model (δCKN )), columns VII and VIII record the number of months
and days, respectively, that each model has the lowest RMSE. To be certain of our results,
we performed a bootstrap using the daily and monthly RMSEs. Columns IX (lower bound)
and X (upper bound) present the results from the bootstrap performed (with replacement)
using monthly RMSEs at a 95% confidence level and show the winning percentage out of 64
months for each model (including the δCKN model), and similarly, the 95 % confidence intervals
computed from bootstrapping of the daily RMSEs signifies the winning percentage out of 1328
days for each model and are reported in columns XI (lower bound), XII (upper bound). While
excluding the δCKN model amongst the comparison, columns XIII and XIV record the number
of months and days, respectively, that each model has the lowest RMSE. We repeat the exercise
of performing the bootstrap by excluding the δCKN model in the comparison, and thus, columns
XV (lower bound) and XVI (upper bound) present the results from the bootstrap performed
(with replacement) using monthly RMSEs at a 95% confidence level and show the winning
percentage out of 64 months for each model (excluding the δCKN model), and similarly, the 95
% confidence intervals computed from bootstrapping of the daily RMSEs signifies the winning
percentage out of 1328 days for each model and are reported in columns XVII (lower bound),
XVIII (upper bound).

In the below several comparisons, even though a particular model wins by a higher percentage
against other models, we investigated further these models pairwise by performing a pairwise
bootstrap comparison, which was computed using the respective pair’s daily RMSEs. The re-
sults are presented in Table 19 of the Electronic Appendix. Also, we examined the pairwise
Diebold-Mariano(DM ) (Diebold and Mariano (1995)) tests on these models and have presented
the results in Table 15 of the Electronic Appendix. In constructing the DM tests, the model
pairs are reported in column I and column II, and the DM test statistics for a particular pair are
reported in column III. If the null can be rejected, a positive number suggests the rejection may
be due to the second model being the better forecast model. In contrast, a negative value suggests
the rejection may be due to the first model being the better forecast model. The model pairs
highlighted in a red state that their forecasts have statistically insignificant differences in their
prediction accuracy. The following model pairs have been shown to have statistically insignifi-
cant differences: (BSMCKN , L2CK9N ), (M1CK1N , M2CK8N ), (M1CK4N , M1CK5N ),
(M1CK4N , M3CK8N ), (M1CK5N , M3CK8N ), (M1CK6N , M2CK7N ), (M1CK8N ,
M2CK9N ), (L1CK3N , L2CK3N ), (L1CK3N , L3CK7N ), (L1CK9N , L3CK9N ), (M2CK5N
, M3CK8N ), (L2CK3N , L3CK7N ), (L2CK6N , L3CK6N ), (L2CK7N , L3CK4N ), and
(M3CK4N , M3CK6N ). The RMSEs for the CK −Models that use lagged input variables to
forecast the CN+1/KN+1 for the next trading day on a monthly, yearly, and overall basis can
be found in the Electronic Appendix, in Tables 3, 7, and 11, respectively.
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A.2.3.1 Comparison amongst all Parametric Models with Single Hidden Layer

ANN Models:

In this section, we compare the out-of-sample pricing performance of the random walk model
(δCKN ), the parametric models (BSMCKN , HCKN , HJDCKN , and FMLSCKN ), the single
hidden layer MLP models (M1CKN−Models) and single hidden layer LSTM models (L1CKN−
Models), then the parametric models with the M1CKN −Models, and finally the parametric
models with the L1CKN −Models.

The results for the parametric models with the MLPM1CKN−Models (M1CK1N toM1CK9N )
and LSTM L1CKN −Models (L1CK1N to L1CK9N ) are presented in Table A.2.19. If all the
models are individually compared, then the δCKN model had the lowest RMSE for 374 days
(having a daily bootstrap winning % of 26% to 31%) out of 1,328 days. When the δCKN was
excluded from the comparison, the L1CK2N model outperformed all other models for 218 days
(having a daily bootstrap winning % of 14% to 18%) out of 1,328 days, while there was another
variant of the MLP model, the M1CK3N (159 days) had a similar daily bootstrap winning
percentage of 10% to 14%.

Table A.2.20 presents the results for the comparison of the parametric models with the MLP
M1CKN −Models (M1CK1N to M1CK9N ). Accordingly, the δCKN model had the lowest
RMSE for 466 days (having a daily bootstrap winning % of 32% to 38%) out of 1,328 days.
When the δCKN was excluded from the comparison, the M1CK3N model outperformed all
other models for 216 days (having a daily bootstrap winning % of 14% to 18%) out of 1,328
days. Though the M1CK3N model outperformed them all, other variants of the MLP model,
theM1CK4N (146 days), M1CK5N (169 days), M1CK7N (161 days), and the M1CK8N (148
days) have shown similar outperformance toM1CK3N model, where they have a collective daily
bootstrap winning percentage from 9% (lower bound for the M1CK8N model) to 15% (upper
bound for the M1CK5N model).

We present the comparison results of the parametric models with the LSTM L1CKN −Models
(L1CK1N to L1CK9N ) in Table A.2.21. We find that the δCKN model had the lowest RMSE
for 737 days (having a daily bootstrap winning % of 53% to 58%) out of 1,328 days. When the
δCKN was excluded from the comparison, the L1CK2N model outperformed all other models
for 439 days (having a daily bootstrap winning % of 31% to 36%) out of 1,328 days.

Thus, when the parametric models are compared with the single hidden layer ANN models,
we conclude that an LSTM model (L1CK2N ) could outperform all other models (in Table
A.2.19). If the parametric models were compared with the single hidden layer MLP models (in
Table A.2.20), the MLP model (M1CK3N ) outperforms them all, but other there were other
variants of the MLP model that had similar out-performance. When the parametric models were
compared with the single hidden layer LSTM models (in Table A.2.21), the LSTM(L1CK2N )
model still outperformed them all.

A.2.3.2 Comparison amongst all Parametric Models with Double Hidden

Layer ANN Models:

In this section, we compare the out-of-sample pricing performance of the random walk model
(δCKN ), the parametric models (BSMCKN , HCKN , HJDCKN , and FMLSCKN ), the dou-
ble hidden layer MLP models (M2CKN − Models) and double hidden layer LSTM models
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(L2CKN −Models), then the parametric models with the M2CKN −Models, and finally the
parametric models with the L2CKN −Models.

The results for the parametric models with the MLPM2CKN−Models (M2CK1N toM2CK9N )
and the LSTM L2CKN −Models (L2CK1N to L2CK9N ) are presented in Table A.2.22. If all
the models are individually compared, then the δCKN model had the lowest RMSE for 334
days (having a daily bootstrap winning % of 23% to 28%) out of 1,328 days. When the δCKN

was excluded from the comparison, the L2CK2N model outperformed all other models for 201
days (having a daily bootstrap winning % of 13% to 17%) out of 1,328 days.

Table A.2.23 presents the results for the comparison of the parametric models with the MLP
M2CKN −Models (M2CK1N to M2CK9N ). Accordingly, the δCKN model had the lowest
RMSE for 428 days (having a daily bootstrap winning % of 30% to 35%) out of 1,328 days.
When the δCKN was excluded from the comparison, the M2CK3N model outperformed all
other models for 179 days (having a daily bootstrap winning % of 12% to 15%) out of 1,328
days. Though the M2CK3N model outperformed them all, other variants of the MLP model,
the M2CK2N (178 days), M2CK4N (131 days), M2CK6N (168 days), M2CK7N (145 days),
M2CK8N (160 days), and the M2CK9N (127 days) have shown similar outperformance to
M2CK3N model, where they have a collective daily bootstrap winning percentage from 8%
(lower bound for the M2CK9N model) to 15% (upper bound for the M2CK2N model).

We present the comparison results of the parametric models with the LSTM L2CKN −Models
(L2CK1N to L2CK9N ) in Table A.2.24. We find that the δCKN model had the lowest RMSE
for 704 days (having a daily bootstrap winning % of 50% to 56%) out of 1,328 days. When the
δCKN was excluded from the comparison, the L2CK2N model outperformed all other models
for 408 days (having a daily bootstrap winning % of 28% to 33%) out of 1,328 days.

Thus, when the parametric models are compared with the double hidden layer ANN models, we
conclude that though an LSTM model (L2CK2N ) could outperform all other models (i.e. in Ta-
ble A.2.22). If the parametric models were compared with the double hidden layer MLP models
(in Table A.2.23), the MLP model (M2CK3N ) outperforms, but other there were other vari-
ants of the MLP model that had similar out-performance, but when the parametric models were
compared with the double hidden layer LSTM models (in Table A.2.24), the LSTM(L2CK2N )
model had still outperformed them all.

A.2.3.3 Comparison amongst all Parametric Models with Triple Hidden Layer

ANN Models:

In this section, we compare the out-of-sample pricing performance of the random walk model
(δCKN ), the parametric models (BSMCKN , HCKN , HJDCKN , and FMLSCKN ), the triple
hidden layer MLP models (M3CKN−Models) and triple hidden layer LSTM models (L3CKN−
Models), then the parametric models with the M3CKN −Models, and finally the parametric
models with the L3CKN −Models.

The results for the parametric models with the MLPM3CKN−Models (M3CK1N toM3CK9N )
and the LSTM L3CKN −Models (L3CK1N to L3CK9N ) are presented in Table A.2.25. If all
the models are individually compared, then the δCKN model had the lowest RMSE for 259
days (having a daily bootstrap winning % of 17% to 22%) out of 1,328 days, while another LSTM
model, the L3CK2N (195 days) had a similar daily bootstrap winning percentage of 13% to
17%). When the δCKN was excluded from the comparison, the L3CK2N model outperformed
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all other models for 203 days (having a daily bootstrap winning % of 13% to 17%) out of 1,328
days.

Table A.2.26 presents the results for the comparison of the parametric models with the MLP
M3CKN −Models (M3CK1N to M3CK9N ). Accordingly, the δCKN model had the lowest
RMSE for 314 days (having a daily bootstrap winning % of 21% to 26%) out of 1,328 days.
When the δCKN was excluded from the comparison, the M3CK2N model outperformed all
other models for 164 days (having a daily bootstrap winning % of 11% to 14%) out of 1,328
days. Though theM3CK2N model outperformed them all, there were other variants of the MLP
model, the M3CK1N (134 days), M3CK3N (149 days), M3CK4N (160 days), M3CK5N (138
days), M3CK6N (155 days), M3CK7N (159 days), M3CK8N (120 days), and the M3CK9N
(133 days) have shown similar outperformance to M3CK2N model, where they have a collective
daily bootstrap winning percentage from 8% (lower bound for the M3CK8N model) to 14%
(upper bound for the M3CK4N model).

We present the comparison results of the parametric models with the LSTM L3CKN −Models
(L3CK1N to L3CK9N ) in Table A.2.27. We find that the δCKN model had the lowest RMSE
for 683 days (having a daily bootstrap winning % of 49% to 54%) out of 1,328 days. When the
δCKN was excluded from the comparison, the L3CK2N model outperformed all other models
for 410 days (having a daily bootstrap winning % of 28% to 34%) out of 1,328 days.

Thus, when the parametric models are compared with the triple hidden layer ANN models, we
conclude that an LSTM model (L3CK2N ) could outperform all other models (i.e. in Table
A.2.25). If the parametric models were compared with the triple hidden layer MLP models (in
Table A.2.26), the MLP model (M3CK2N ) outperforms, but there were other variants of the
MLP model that had similar out-performance. When the parametric models were compared
with the triple hidden layer LSTM models (in Table A.2.27), the LSTM(L3CK2N ) model had
still outperformed them all.

A.2.3.4 Comparison amongst all Parametric Models with Single, Double and

Triple Hidden Layer ANN Models:

In this section, we compare the out-of-sample pricing performance of the random walk model
(δCKN ), the parametric models (BSMCKN , HCKN , HJDCKN , and FMLSCKN ), the sin-
gle, double, triple hidden layer MLP models (M1CKN − Models, M2CKN − Models, and
M3CKN −Models) and single, double, triple hidden layer LSTM models (L1CKN −Models,
L2CKN −Models, and L3CKN −Models), then the parametric models with the M1CKN −
Models, M2CKN −Models, and M3CKN −Models, and finally the parametric models with
the L1CKN −Models, L2CKN −Models, and L3CKN −Models.

The results for the parametric models with the M1CKN −Models (M1CK1N to M1CK9N ),
M2CKN −Models (M2CK1N to M2CK9N ), M3CKN −Models (M3CK1N to M3CK9N ),
L1CKN −Models (L1CK1N to L1CK9N ), L2CKN −Models (L2CK1N to L2CK9N ), and
L3CKN −Models (L3CK1N to L3CK9N ) are presented in Table A.2.28. If all the models are
individually compared, then the δCKN model had the lowest RMSE for 202 days (having a
daily bootstrap winning % of 13% to 17%) out of 1,328 days. When the δCKN was excluded
from the comparison, the L1CK2N model outperformed all other models for 96 days (having a
daily bootstrap winning % of 6% to 9%) out of 1,328 days, but there was another MLP model,
the M2CK2N (89 days), and there were other variants of the LSTM model, the L2CK3N
(52 days), L2CK4N (63 days), L2CK5N (55 days), L2CK6N (52 days), that had a collective
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daily bootstrap winning percentage from 3% (lower bound for the L2CK3N , L2CK5N , and the
L2CK6N model) to 8% (upper bound for the M2CK2N model).

Table A.2.29 presents the results for the comparison of the parametric models with theM1CKN−
Models (M1CK1N to M1CK9N ), M2CKN −Models (M2CK1N to M2CK9N ), M3CKN −
Models (M3CK1N to M3CK9N ). Accordingly, the δCKN model had the lowest RMSE for
241 days (having a daily bootstrap winning % of 16% to 20%) out of 1,328 days. When the
δCKN was excluded from the comparison, the M3CK4N model outperformed all other models
for 99 days (having a daily bootstrap winning % of 6% to 9%) out of 1,328 days. Though the
M3CK4N model outperformed them all, other variants of the MLP model, the M2CK1N (51
days), M2CK2N (64 days), M2CK3N (65 days), M3CK1N (61 days), M3CK2N (62 days),
M3CK3N (79 days), M3CK5N (73 days), M3CK6N (87 days), M3CK8N (59 days), and the
M3CK9N (55 days) have shown similar outperformance to M3CK4N model, where they have
a collective daily bootstrap winning percentage from 3% (lower bound for the M2CK1N model)
to 8% (upper bound for the M3CK6N model).

We present the comparison results of the parametric models with the L1CKN−Models (L1CK1N
to L1CK9N ), L2CKN −Models (L2CK1N to L2CK9N ), and L3CKN −Models (L3CK1N to
L3CK9N ) in Table A.2.30. We find that the δCKN model had the lowest RMSE for 551 days
(having a daily bootstrap winning % of 39% to 44%) out of 1,328 days. When the δCKN was
excluded from the comparison, the L2CK2N model outperformed all other models for 185 days
(having a daily bootstrap winning % of 12% to 16%) out of 1,328 days. Though the L2CK2N
model outperformed them all, other variants of the LSTM model, the L1CK2N (157 days), and
the L3CK2N (158 days) have shown similar outperformance to L2CK2N model, where they
have a collective daily bootstrap winning percentage from 10% (lower bound for the L1CK2N ,
and the L3CK2N model) to 14% (upper bound for the L1CK2N , L3CK2N model)

Thus, when the parametric models are compared with the single, double and triple hidden layer
ANN models (in Table A.2.28), we notice that a single-hidden layer LSTM model (L1CK2N )
had outperformed all other models. If the parametric models were compared with the single,
double and triple hidden layer MLP models (in Table A.2.29), then a triple hidden layer MLP
model (M3CK4N ) outperforms all other MLP models, but when the parametric models were
compared with the single, double and the triple hidden layer LSTM models (in Table A.2.30), a
double hidden layer LSTM model (L2CK2N ) had outperformed them all, but there were other
variants of the triple hidden layer LSTM model that had similar out-performance.

A.2.3.5 Comparison amongst Single, Double and Triple Hidden Layer ANN

Models:

In this section, we compare the out-of-sample pricing performance of the random walk model
(δCKN ), the single, double, and triple hidden layer MLP models (M1CKN−Models (M1CK1N
toM1CK9N ),M2CKN−Models (M2CK1N toM2CK9N ), andM3CKN−Models (M3CK1N
to M3CK9N )) and the single, double, triple hidden layer LSTM models (L1CKN −Models
(L1CK1N to L1CK9N ), L2CKN −Models (L2CK1N to L2CK9N ), and L3CKN −Models
(L3CK1N to L3CK9N )), and present the results in Table A.2.31. We find that the δCKN

model had the lowest RMSE for 202 days (having a daily bootstrap winning % of 13% to
17%) out of 1,328 days. When the δCKN was excluded from the comparison, the L2CK2N
model outperformed all other models for 96 days (having a daily bootstrap winning % of 6% to
9%) out of 1,328 days. Although the L2CK2N model outperforms, other variants of the triple
hidden layer MLP model, the M3CK3N (52 days), M3CK4N (63 days), M3CK5N (55 days),
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and the M3CK6N (52 days), and other variants of the LSTM model, the L1CK2N (89 days),
and the L3C2N (78 days) have shown similar outperformance to L2CK2N model, where they
have a collective daily bootstrap winning percentage from 3% (lower bound for the M3CK3N ,
M3CK5N , M3CK6N model) to 8% (upper bound for the L1CK2N model).

Thus, when comparing the out-of-sample pricing performance amongst the single, double and
triple hidden layer ANN models (in Table A.2.31), a double hidden layer LSTM(L2CK2N )
model outperformed them all, but there were other variants of the MLP, and the LSTM model
that had shown similar out-performance to the L2CK2N model.

A.2.3.6 Comparison amongst all Parametric models:

In this section, we compare the out-of-sample pricing performance of the random walk model
(δCKN ), and the parametric models (BSMCKN , HCKN , HJDCKN , and FMLSCKN ) in
Table A.2.32. We find that the δCKN model had the lowest RMSE for 1279 days (having a
daily bootstrap winning % of 95% to 97%) out of 1,328 days. When the δCKN was excluded
from the comparison, the HJDCKN model still outperformed all other models for 540 days
(having a daily bootstrap winning % of 38% to 43%) out of 1,328 days.

Thus, when comparing the out-of-sample pricing performance amongst the parametric models,
theHJDCKN model had outperformed all other parametric models, followed by the BSMCKN

and HCKN model (in Table A.2.32).
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Table A.2.19: Call Option Price Scaled by the Exercise Price Comparison (amongst Parametric, MLP M1CKN −Models and LSTM L1CKN −Models): This table presents a performance comparison using both daily and monthly statistics amongst the Black-Scholes-Merton
(BSMCKN ) model, Heston (HCKN ) model, Heston Jump Diffusion (HJDCKN ) model, Finite Moment Log Stable (FMLSCKN ) model, MLP M1CKN −Models (M1CK1N to M1CK9N ) and the LSTM L1CKN −Models (L1CK1N to L1CK9N ). The forecast variable for all
the models is the one-day-ahead call option price scaled by the exercise price (CN+1/KN+1). The models denoted by the N subscript use lagged input variables for forecasting CN+1/KN+1. The one-day-ahead forecast errors of CN+1/KN+1 are used to compute the Root Mean Square
Error (RMSE). Column I identifies the models, column II identifies the forecast variable, column III lists the input variables used by the models to obtain the one-trading-day ahead forecast of CN+1/KN+1, and columns IV, V and VI describe the network architecture of the MLP
M1CKN −Models and the LSTM L1CKN −Models. Forecasts are made for 1,328 trading days, and there are 64 months covered in the sample using the monthly data.
When comparing all models simultaneously (i.e. including the random walk model (δCKN ), column VII reports the number of months out of the 64 months that each model has the smallest RMSE, while column VIII reports the number of days out of the 1,328 days each model has the
smallest RMSE. Columns IX (lower bound) and X (upper bound) present the winning percentage out of 64 months for each model, evaluated using the bootstrap sampling technique. The statistical bootstrap performed (with replacement) at a 95% confidence level is computed from
the monthly RMSE values of the respective models below. Columns XI (lower bound) and XII (upper bound) present the winning percentage out of 1326 days for each model computed from bootstrapping the daily RMSE values of the respective models at a 95% confidence level.
Similarly, when the δCKN model was excluded in the comparison, column XIII reports the number of months out of the 64 months that each model has the smallest RMSE, while column XIV reports the number of days out of the 1,328 days each model has the smallest RMSE.
Columns XV (lower bound) and XVI (upper bound) present the winning percentage out of 64 months for each model, evaluated using the bootstrap sampling technique. The statistical bootstrap performed (with replacement) at a 95% confidence level is computed from the monthly
RMSE values of the respective models below. Also, columns XVII (lower bound) and XVIII (upper bound) present the winning percentage out of 1326 days for each model computed from bootstrapping the daily RMSE values of the respective models at a 95% confidence level.

Including the random walk Excluding the random walk
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δCKN CN+1/KN+1 CN ,KN - - - 41 374 53% 75% 26% 31% - - - - - -

BSMCKN C
BSMCKN
N+1 /KN+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBCK

N - - - 0 4 0% 0% 0% 1% 0 4 0% 0% 0% 1%

HCKN C
HCKN
N+1 /KN+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBCK

N , HParamsCKN - - - 0 0 0% 0% 0% 0% 0 1 0% 0% 0% 0%

HJDCKN C
HJDCKN
N+1 /KN+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBCK

N , HJDParamsCKN - - - 0 1 0% 0% 0% 0% 0 1 0% 0% 0% 0%

FMLSCKN C
FMLSCKN
N+1 /KN+1 SN ,KN+1, TN+1, RN , QN , FMLSParamsCKN - - - 0 1 0% 0% 0% 0% 0 1 0% 0% 0% 0%

M1CK1N C
M1CK1N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N 1 5 5 3 31 0% 11% 2% 3% 5 43 2% 14% 2% 4%

M1CK2N C
M1CK2N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ) 1 6 6 7 34 5% 17% 2% 3% 15 76 13% 34% 4% 7%

M1CK3N C
M1CK3N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN 1 11 11 3 106 0% 11% 7% 9% 6 159 3% 17% 10% 14%

M1CK4N C
M1CK4N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN , HParamsCKN 1 16 16 4 58 2% 13% 3% 5% 10 110 8% 25% 7% 10%

M1CK5N C
M1CK5N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN , HParamsCKN , (CHCKN /KN ) 1 17 17 3 52 0% 11% 3% 5% 10 121 8% 25% 8% 11%

M1CK6N C
M1CK6N
N+1 /KN+1 SN/KN , TN+1, RN , QN , HParams

CK
N , (CHCKN /KN ) 1 10 10 1 47 0% 5% 3% 5% 10 75 6% 25% 4% 7%

M1CK7N C
M1CK7N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , BSMGreeksCKN , (CBSMCK
N /KN ) 1 11 11 1 77 0% 5% 5% 7% 4 113 2% 13% 7% 10%

M1CK8N C
M1CK8N
N+1 /KN+1 SN/KN , TN+1, RN , QN , HJDParams

CK
N , (CHJDCKN /KN ) 1 13 13 0 57 0% 0% 3% 5% 1 85 0% 5% 5% 8%

M1CK9N C
M1CK9N
N+1 /KN+1 SN/KN , TN+1, RN , QN , FMLSParamsCKN , (CFMLSCK

N /KN ) 1 7 7 0 71 0% 0% 4% 6% 1 80 0% 5% 5% 7%

L1CK1N C
L1CK1N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N 1 5 5 0 5 0% 0% 0% 1% 0 5 0% 0% 0% 1%

L1CK2N C
L1CK2N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ) 1 6 6 0 196 0% 0% 13% 17% 0 218 0% 0% 14% 18%

L1CK3N C
L1CK3N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN 1 11 11 0 33 0% 0% 2% 3% 0 34 0% 0% 2% 3%

L1CK4N C
L1CK4N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN , HParamsCKN 1 16 16 0 48 0% 0% 3% 5% 0 51 0% 0% 3% 5%

L1CK5N C
L1CK5N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN , HParamsCKN , (CHCKN /KN ) 1 17 17 0 46 0% 0% 2% 4% 1 55 0% 5% 3% 5%

L1CK6N C
L1CK6N
N+1 /KN+1 SN/KN , TN+1, RN , QN , HParams

CK
N , (CHCKN /KN ) 1 10 10 0 28 0% 0% 1% 3% 0 29 0% 0% 1% 3%

L1CK7N C
L1CK7N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , BSMGreeksCKN , (CBSMCK
N /KN ) 1 11 11 1 51 0% 5% 3% 5% 1 59 0% 5% 3% 6%

L1CK8N C
L1CK8N
N+1 /KN+1 SN/KN , TN+1, RN , QN , HJDParams

CK
N , (CHJDCKN /KN ) 1 13 13 0 0 0% 0% 0% 0% 0 0 0% 0% 0% 0%

L1CK9N C
L1CK9N
N+1 /KN+1 SN/KN , TN+1, RN , QN , FMLSParamsCKN , (CFMLSCK

N /KN ) 1 7 7 0 9 0% 0% 0% 1% 0 9 0% 0% 0% 1%
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Table A.2.20: Call Option Price Scaled by the Exercise Price Comparison (amongst Parametric and MLP M1CKN −Models): This table presents a performance comparison using both daily and monthly statistics amongst the Black-Scholes-Merton (BSMCKN ) model, Heston (HCKN )
model, Heston Jump Diffusion (HJDCKN ) model, Finite Moment Log Stable (FMLSCKN ) model and the MLP M1CKN −Models (M1CK1N to M1CK9N ). The forecast variable for all the models is the one-day-ahead call option price scaled by the exercise price (CN+1/KN+1).
The models denoted by the N subscript use lagged input variables for forecasting CN+1/KN+1. The one-day-ahead forecast errors of CN+1/KN+1 are used to compute the Root Mean Square Error (RMSE). Column I identifies the models, column II identifies the forecast variable,
column III lists the input variables used by the models to obtain the one-trading-day ahead forecast of CN+1/KN+1, and columns IV, V and VI describe the network architecture of the MLP M1CKN −Models. Forecasts are made for 1,328 trading days, and there are 64 months
covered in the sample using the monthly data.
When comparing all models simultaneously (i.e. including the random walk model (δCKN ), column VII reports the number of months out of the 64 months that each model has the smallest RMSE, while column VIII reports the number of days out of the 1,328 days each model has the
smallest RMSE. Columns IX (lower bound) and X (upper bound) present the winning percentage out of 64 months for each model, evaluated using the bootstrap sampling technique. The statistical bootstrap performed (with replacement) at a 95% confidence level is computed from
the monthly RMSE values of the respective models below. Columns XI (lower bound), and XII (upper bound) presents the winning percentage out of 1326 days for each model computed from bootstrapping the daily RMSE values of the respective models at a 95% confidence level.
Similarly, when the δCKN model was excluded in the comparison, column XIII reports the number of months out of the 64 months that each model has the smallest RMSE, while column XIV reports the number of days out of the 1,328 days each model has the smallest RMSE.
Columns XV (lower bound) and XVI (upper bound) present the winning percentage out of 64 months for each model, evaluated using the bootstrap sampling technique. The statistical bootstrap performed (with replacement) at a 95% confidence level is computed from the monthly
RMSE values of the respective models below. Also, columns XVII (lower bound) and XVIII (upper bound) present the winning percentage out of 1326 days for each model computed from bootstrapping the daily RMSE values of the respective models at a 95% confidence level.

Including the random walk Excluding the random walk
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δCKN CN+1/KN+1 CN ,KN - - - 41 466 53% 76% 32% 38% - - - - - -

BSMCKN C
BSMCKN
N+1 /KN+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBCK

N - - - 0 10 0% 0% 0% 1% 0 12 0% 0% 0% 1%

HCKN C
HCKN
N+1 /KN+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBCK

N , HParamsCKN - - - 0 1 0% 0% 0% 0% 0 2 0% 0% 0% 0%

HJDCKN C
HJDCKN
N+1 /KN+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBCK

N , HJDParamsCKN - - - 0 4 0% 0% 0% 1% 0 4 0% 0% 0% 1%

FMLSCKN C
FMLSCKN
N+1 /KN+1 SN ,KN+1, TN+1, RN , QN , FMLSParamsCKN - - - 0 1 0% 0% 0% 0% 0 1 0% 0% 0% 0%

M1CK1N C
M1CK1N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N 1 5 5 3 55 0% 9% 3% 5% 5 77 2% 16% 5% 7%

M1CK2N C
M1CK2N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ) 1 6 6 7 63 3% 19% 4% 6% 15 116 14% 34% 7% 10%

M1CK3N C
M1CK3N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN 1 11 11 3 142 0% 11% 9% 13% 6 216 3% 17% 14% 18%

M1CK4N C
M1CK4N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN , HParamsCKN 1 16 16 4 79 2% 13% 5% 7% 10 146 8% 25% 9% 13%

M1CK5N C
M1CK5N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN , HParamsCKN , (CHCKN /KN ) 1 17 17 4 80 2% 13% 5% 7% 12 169 9% 28% 11% 15%

M1CK6N C
M1CK6N
N+1 /KN+1 SN/KN , TN+1, RN , QN , HParams

CK
N , (CHCKN /KN ) 1 10 10 1 81 0% 5% 5% 7% 10 136 8% 25% 9% 12%

M1CK7N C
M1CK7N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , BSMGreeksCKN , (CBSMCK
N /KN ) 1 11 11 1 112 0% 5% 7% 10% 4 161 2% 13% 10% 14%

M1CK8N C
M1CK8N
N+1 /KN+1 SN/KN , TN+1, RN , QN , HJDParams

CK
N , (CHJDCKN /KN ) 1 13 13 0 108 0% 0% 7% 10% 1 148 0% 5% 9% 13%

M1CK9N C
M1CK9N
N+1 /KN+1 SN/KN , TN+1, RN , QN , FMLSParamsCKN , (CFMLSCK

N /KN ) 1 7 7 0 126 0% 0% 8% 11% 1 140 0% 5% 9% 12%
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Table A.2.21: Call Option Price Scaled by the Exercise Price Comparison (amongst Parametric and LSTM L1CKN −Models): This table presents a performance comparison using both daily and monthly statistics amongst the Black-Scholes-Merton (BSMCKN ) model, Heston (HCKN )
model, Heston Jump Diffusion (HJDCKN ) model, Finite Moment Log Stable (FMLSCKN ) model and the LSTM L1CKN −Models (L1CK1N to L1CK9N ). The forecast variable for all the models is the one-day-ahead call option price scaled by the exercise price (CN+1/KN+1).
The models denoted by the N subscript use lagged input variables for forecasting CN+1/KN+1. The one-day-ahead forecast errors of CN+1/KN+1 are used to compute the Root Mean Square Error (RMSE). Column I identifies the models, column II identifies the forecast variable,
column III lists the input variables used by the models to obtain the one-trading-day ahead forecast of CN+1/KN+1, and columns IV, V and VI describe the network architecture of the LSTM L1CKN −Models. Forecasts are made for 1,328 trading days, and there are 64 months
covered in the sample using the monthly data.
When comparing all models simultaneously (i.e. including the random walk model (δCKN ), column VII reports the number of months out of the 64 months that each model has the smallest RMSE, while column VIII reports the number of days out of the 1,328 days each model has the
smallest RMSE. Columns IX (lower bound) and X (upper bound) present the winning percentage out of 64 months for each model, evaluated using the bootstrap sampling technique. The statistical bootstrap performed (with replacement) at a 95% confidence level is computed from
the monthly RMSE values of the respective models below. Columns XI (lower bound) and XII (upper bound) present the winning percentage out of 1326 days for each model computed from bootstrapping the daily RMSE values of the respective models at a 95% confidence level.
Similarly, when the δCKN model was excluded in the comparison, column XIII reports the number of months out of the 64 months that each model has the smallest RMSE, while column XIV reports the number of days out of the 1,328 days each model has the smallest RMSE.
Columns XV (lower bound) and XVI (upper bound) present the winning percentage out of 64 months for each model, evaluated using the bootstrap sampling technique. The statistical bootstrap performed (with replacement) at a 95% confidence level is computed from the monthly
RMSE values of the respective models below. Also, columns XVII (lower bound) and XVIII (upper bound) present the winning percentage out of 1326 days for each model computed from bootstrapping the daily RMSE values of the respective models at a 95% confidence level.

Including the random walk Excluding the random walk
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δCKN CN+1/KN+1 CN ,KN - - - 63 737 95% 100% 53% 58% - - - - - -

BSMCKN C
BSMCKN
N+1 /KN+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBCK

N - - - 0 6 0% 0% 0% 1% 0 12 0% 0% 0% 1%

HCKN C
HCKN
N+1 /KN+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBCK

N , HParamsCKN - - - 0 2 0% 0% 0% 0% 0 34 0% 0% 2% 3%

HJDCKN C
HJDCKN
N+1 /KN+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBCK

N , HJDParamsCKN - - - 0 1 0% 0% 0% 0% 0 1 0% 0% 0% 0%

FMLSCKN C
FMLSCKN
N+1 /KN+1 SN ,KN+1, TN+1, RN , QN , FMLSParamsCKN - - - 0 2 0% 0% 0% 0% 1 2 0% 5% 0% 0%

L1CK1N C
L1CK1N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N 1 5 5 0 6 0% 0% 0% 1% 0 9 0% 0% 0% 1%

L1CK2N C
L1CK2N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ) 1 6 6 0 248 0% 0% 17% 21% 4 439 2% 13% 31% 36%

L1CK3N C
L1CK3N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN 1 11 11 0 54 0% 0% 3% 5% 5 112 2% 14% 7% 10%

L1CK4N C
L1CK4N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN , HParamsCKN 1 16 16 0 63 0% 0% 4% 6% 5 116 2% 16% 7% 10%

L1CK5N C
L1CK5N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN , HParamsCKN , (CHCKN /KN ) 1 17 17 0 76 0% 0% 4% 7% 20 193 20% 44% 12% 16%

L1CK6N C
L1CK6N
N+1 /KN+1 SN/KN , TN+1, RN , QN , HParams

CK
N , (CHCKN /KN ) 1 10 10 0 36 0% 0% 2% 4% 4 110 2% 13% 7% 10%

L1CK7N C
L1CK7N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , BSMGreeksCKN , (CBSMCK
N /KN ) 1 11 11 1 87 0% 5% 5% 8% 17 229 16% 38% 15% 19%

L1CK8N C
L1CK8N
N+1 /KN+1 SN/KN , TN+1, RN , QN , HJDParams

CK
N , (CHJDCKN /KN ) 1 13 13 0 0 0% 0% 0% 0% 0 0 0% 0% 0% 0%

L1CK9N C
L1CK9N
N+1 /KN+1 SN/KN , TN+1, RN , QN , FMLSParamsCKN , (CFMLSCK

N /KN ) 1 7 7 0 11 0% 0% 0% 1% 8 72 5% 22% 4% 7%
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Table A.2.22: Call Option Price Scaled by the Exercise Price Comparison (amongst Parametric, MLP M2CKN −Models and LSTM L2CKN −Models): This table presents a performance comparison using both daily and monthly statistics amongst the Black-Scholes-Merton
(BSMCKN ) model, Heston (HCKN ) model, Heston Jump Diffusion (HJDCKN ) model, Finite Moment Log Stable (FMLSCKN ) model, MLP M2CKN −Models (M2CK1N to M2CK9N ) and the LSTM L2CKN −Models (L2CK1N to L2CK9N ). The forecast variable for all
the models is the one-day-ahead call option price scaled by the exercise price (CN+1/KN+1). The models denoted by the N subscript use lagged input variables for forecasting CN+1/KN+1. The one-day-ahead forecast errors of CN+1/KN+1 are used to compute the Root Mean Square
Error (RMSE). Column I identifies the models, column II identifies the forecast variable, column III lists the input variables used by the models to obtain the one-trading-day ahead forecast of CN+1/KN+1, and columns IV, V and VI describe the network architecture of the MLP
M2CKN −Models and the LSTM L2CKN −Models. Forecasts are made for 1,328 trading days, and there are 64 months covered in the sample using the monthly data.
When comparing all models simultaneously (i.e. including the random walk model (δCKN ), column VII reports the number of months out of the 64 months that each model has the smallest RMSE, while column VIII reports the number of days out of the 1,328 days each model has the
smallest RMSE. Columns IX (lower bound) and X (upper bound) present the winning percentage out of 64 months for each model, evaluated using the bootstrap sampling technique. The statistical bootstrap performed (with replacement) at a 95% confidence level is computed from
the monthly RMSE values of the respective models below. Columns XI (lower bound) and XII (upper bound) present the winning percentage out of 1326 days for each model computed from bootstrapping the daily RMSE values of the respective models at a 95% confidence level.
Similarly, when the δCKN model was excluded in the comparison, column XIII reports the number of months out of the 64 months that each model has the smallest RMSE, while column XIV reports the number of days out of the 1,328 days each model has the smallest RMSE.
Columns XV (lower bound) and XVI (upper bound) present the winning percentage out of 64 months for each model, evaluated using the bootstrap sampling technique. The statistical bootstrap performed (with replacement) at a 95% confidence level is computed from the monthly
RMSE values of the respective models below. Also, columns XVII (lower bound) and XVIII (upper bound) present the winning percentage out of 1326 days for each model computed from bootstrapping the daily RMSE values of the respective models at a 95% confidence level.

Including the random walk Excluding the random walk
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δCKN CN+1/KN+1 CN ,KN - - - 32 334 38% 61% 23% 28% - - - - - -

BSMCKN C
BSMCKN
N+1 /KN+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBCK

N - - - 0 3 0% 0% 0% 1% 0 3 0% 0% 0% 1%

HCKN C
HCKN
N+1 /KN+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBCK

N , HParamsCKN - - - 0 0 0% 0% 0% 0% 0 1 0% 0% 0% 0%

HJDCKN C
HJDCKN
N+1 /KN+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBCK

N , HJDParamsCKN - - - 0 1 0% 0% 0% 0% 0 1 0% 0% 0% 0%

FMLSCKN C
FMLSCKN
N+1 /KN+1 SN ,KN+1, TN+1, RN , QN , FMLSParamsCKN - - - 0 0 0% 0% 0% 0% 0 0 0% 0% 0% 0%

M2CK1N C
M2CK1N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N 2 5 5 X 5 1 56 0% 5% 3% 5% 1 65 0% 5% 4% 6%

M2CK2N C
M2CK2N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ) 2 6 6 X 6 1 91 0% 5% 6% 8% 4 123 2% 13% 8% 11%

M2CK3N C
M2CK3N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN 2 11 11 X 11 4 78 2% 13% 5% 7% 6 120 3% 17% 8% 11%

M2CK4N C
M2CK4N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN , HParamsCKN 2 16 16 X 16 6 46 3% 17% 2% 4% 10 83 6% 23% 5% 8%

M2CK5N C
M2CK5N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN , HParamsCKN , (CHCKN /KN ) 2 17 17 X 17 2 42 0% 8% 2% 4% 8 71 5% 22% 4% 6%

M2CK6N C
M2CK6N
N+1 /KN+1 SN/KN , TN+1, RN , QN , HParams

CK
N , (CHCKN /KN ) 2 10 10 X 10 8 43 5% 22% 2% 4% 15 86 14% 34% 5% 8%

M2CK7N C
M2CK7N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , BSMGreeksCKN , (CBSMCK
N /KN ) 2 11 11 X 11 4 67 2% 13% 4% 6% 7 110 5% 19% 7% 10%

M2CK8N C
M2CK8N
N+1 /KN+1 SN/KN , TN+1, RN , QN , HJDParams

CK
N , (CHJDCKN /KN ) 2 13 13 X 13 5 58 2% 16% 3% 5% 10 103 6% 25% 6% 9%

M2CK9N C
M2CK9N
N+1 /KN+1 SN/KN , TN+1, RN , QN , FMLSParamsCKN , (CFMLSCK

N /KN ) 2 7 7 X 7 0 61 0% 0% 3% 6% 2 77 0% 8% 5% 7%

L2CK1N C
L2CK1N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N 2 5 5 X 5 0 7 0% 0% 0% 1% 0 7 0% 0% 0% 1%

L2CK2N C
L2CK2N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ) 2 6 6 X 6 0 187 0% 0% 12% 16% 0 201 0% 0% 13% 17%

L2CK3N C
L2CK3N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN 2 11 11 X 11 1 28 0% 5% 1% 3% 1 30 0% 5% 2% 3%

L2CK4N C
L2CK4N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN , HParamsCKN 2 16 16 X 16 0 64 0% 0% 4% 6% 0 67 0% 0% 4% 6%

L2CK5N C
L2CK5N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN , HParamsCKN , (CHCKN /KN ) 2 17 17 X 17 0 63 0% 0% 4% 6% 0 71 0% 0% 4% 7%

L2CK6N C
L2CK6N
N+1 /KN+1 SN/KN , TN+1, RN , QN , HParams

CK
N , (CHCKN /KN ) 2 10 10 X 10 0 40 0% 0% 2% 4% 0 40 0% 0% 2% 4%

L2CK7N C
L2CK7N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , BSMGreeksCKN , (CBSMCK
N /KN ) 2 11 11 X 11 0 45 0% 0% 2% 4% 0 55 0% 0% 3% 5%

L2CK8N C
L2CK8N
N+1 /KN+1 SN/KN , TN+1, RN , QN , HJDParams

CK
N , (CHJDCKN /KN ) 2 13 13 X 13 0 0 0% 0% 0% 0% 0 0 0% 0% 0% 0%

L2CK9N C
L2CK9N
N+1 /KN+1 SN/KN , TN+1, RN , QN , FMLSParamsCKN , (CFMLSCK

N /KN ) 2 7 7 X 7 0 14 0% 0% 0% 2% 0 14 0% 0% 1% 2%
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Table A.2.23: Call Option Price Scaled by the Exercise Price Comparison (amongst Parametric and MLP M2CKN −Models): This table presents a performance comparison using both daily and monthly statistics amongst the Black-Scholes-Merton (BSMCKN ) model, Heston (HCKN )
model, Heston Jump Diffusion (HJDCKN ) model, Finite Moment Log Stable (FMLSCKN ) model and the MLP M2CKN −Models (M2CK1N to M2CK9N ). The forecast variable for all the models is the one-day-ahead call option price scaled by the exercise price (CN+1/KN+1).
The models denoted by the N subscript use lagged input variables for forecasting CN+1/KN+1. The one-day-ahead forecast errors of CN+1/KN+1 are used to compute the Root Mean Square Error (RMSE). Column I identifies the models, column II identifies the forecast variable,
column III lists the input variables used by the models to obtain the one-trading-day ahead forecast of CN+1/KN+1, and columns IV, V and VI describe the network architecture of the MLP M2CKN −Models. Forecasts are made for 1,328 trading days, and there are 64 months
covered in the sample using the monthly data.
When comparing all models simultaneously (i.e. including the random walk model (δCKN ), column VII reports the number of months out of the 64 months that each model has the smallest RMSE, while column VIII reports the number of days out of the 1,328 days each model has the
smallest RMSE. Columns IX (lower bound) and X (upper bound) present the winning percentage out of 64 months for each model, evaluated using the bootstrap sampling technique. The statistical bootstrap performed (with replacement) at a 95% confidence level is computed from
the monthly RMSE values of the respective models below. Columns XI (lower bound) and XII (upper bound) present the winning percentage out of 1326 days for each model computed from bootstrapping the daily RMSE values of the respective models at a 95% confidence level.
Similarly, when the δCKN model was excluded in the comparison, column XIII reports the number of months out of the 64 months that each model has the smallest RMSE, while column XIV reports the number of days out of the 1,328 days each model has the smallest RMSE.
Columns XV (lower bound) and XVI (upper bound) present the winning percentage out of 64 months for each model, evaluated using the bootstrap sampling technique. The statistical bootstrap performed (with replacement) at a 95% confidence level is computed from the monthly
RMSE values of the respective models below. Also, columns XVII (lower bound) and XVIII (upper bound) present the winning percentage out of 1326 days for each model computed from bootstrapping the daily RMSE values of the respective models at a 95% confidence level.

Including the random walk Excluding the random walk

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X) (XI) (XII) (XIII) (XIV) (XV) (XVI) (XVII) (XVIII)

Model Forecast Inputs No.
of
hidden
layers

No. of
hidden
nodes
per layer

Network
architecture

Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

δCKN CN+1/KN+1 CN ,KN - - - 32 428 38% 63% 30% 35% - - - - - -

BSMCKN C
BSMCKN
N+1 /KN+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBCK

N - - - 0 12 0% 0% 0% 1% 0 12 0% 0% 0% 1%

HCKN C
HCKN
N+1 /KN+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBCK

N , HParamsCKN - - - 0 0 0% 0% 0% 0% 0 1 0% 0% 0% 0%

HJDCKN C
HJDCKN
N+1 /KN+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBCK

N , HJDParamsCKN - - - 0 4 0% 0% 0% 1% 0 4 0% 0% 0% 1%

FMLSCKN C
FMLSCKN
N+1 /KN+1 SN ,KN+1, TN+1, RN , QN , FMLSParamsCKN - - - 0 1 0% 0% 0% 0% 0 1 0% 0% 0% 0%

M2CK1N C
M2CK1N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N 2 5 5 X 5 1 104 0% 5% 6% 9% 1 117 0% 5% 7% 10%

M2CK2N C
M2CK2N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ) 2 6 6 X 6 1 137 0% 5% 9% 12% 4 178 2% 13% 12% 15%

M2CK3N C
M2CK3N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN 2 11 11 X 11 4 125 2% 13% 8% 11% 6 179 3% 17% 12% 15%

M2CK4N C
M2CK4N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN , HParamsCKN 2 16 16 X 16 6 76 3% 17% 5% 7% 10 131 6% 25% 8% 12%

M2CK5N C
M2CK5N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN , HParamsCKN , (CHCKN /KN ) 2 17 17 X 17 2 62 0% 8% 4% 6% 8 105 5% 22% 7% 9%

M2CK6N C
M2CK6N
N+1 /KN+1 SN/KN , TN+1, RN , QN , HParams

CK
N , (CHCKN /KN ) 2 10 10 X 10 9 88 6% 23% 5% 8% 16 168 14% 36% 11% 14%

M2CK7N C
M2CK7N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , BSMGreeksCKN , (CBSMCK
N /KN ) 2 11 11 X 11 4 88 2% 13% 5% 8% 7 145 3% 19% 9% 13%

M2CK8N C
M2CK8N
N+1 /KN+1 SN/KN , TN+1, RN , QN , HJDParams

CK
N , (CHJDCKN /KN ) 2 13 13 X 13 5 96 2% 14% 6% 9% 10 160 8% 25% 10% 14%

M2CK9N C
M2CK9N
N+1 /KN+1 SN/KN , TN+1, RN , QN , FMLSParamsCKN , (CFMLSCK

N /KN ) 2 7 7 X 7 0 107 0% 0% 6% 10% 2 127 0% 8% 8% 11%
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Table A.2.24: Call Option Price Scaled by the Exercise Price Comparison (amongst Parametric and LSTM L2CKN −Models): This table presents a performance comparison using both daily and monthly statistics amongst the Black-Scholes-Merton (BSMCKN ) model, Heston (HCKN )
model, Heston Jump Diffusion (HJDCKN ) model, Finite Moment Log Stable (FMLSCKN ) model and the LSTM L2CKN −Models (L2CK1N to L2CK9N ). The forecast variable for all the models is the one-day-ahead call option price scaled by the exercise price (CN+1/KN+1).
The models denoted by the N subscript use lagged input variables for forecasting CN+1/KN+1. The one-day-ahead forecast errors of CN+1/KN+1 are used to compute the Root Mean Square Error (RMSE). Column I identifies the models, column II identifies the forecast variable,
column III lists the input variables used by the models to obtain the one-trading-day ahead forecast of CN+1/KN+1, and columns IV, V and VI describe the network architecture of the LSTM L2CKN −Models. Forecasts are made for 1,328 trading days, and there are 64 months
covered in the sample using the monthly data.
When comparing all models simultaneously (i.e. including the random walk model (δCKN ), column VII reports the number of months out of the 64 months that each model has the smallest RMSE, while column VIII reports the number of days out of the 1,328 days each model has the
smallest RMSE. Columns IX (lower bound) and X (upper bound) present the winning percentage out of 64 months for each model, evaluated using the bootstrap sampling technique. The statistical bootstrap performed (with replacement) at a 95% confidence level is computed from
the monthly RMSE values of the respective models below. Columns XI (lower bound) and XII (upper bound) present the winning percentage out of 1326 days for each model computed from bootstrapping the daily RMSE values of the respective models at a 95% confidence level.
Similarly, when the δCKN model was excluded in the comparison, column XIII reports the number of months out of the 64 months that each model has the smallest RMSE, while column XIV reports the number of days out of the 1,328 days each model has the smallest RMSE.
Columns XV (lower bound) and XVI (upper bound) present the winning percentage out of 64 months for each model, evaluated using the bootstrap sampling technique. The statistical bootstrap performed (with replacement) at a 95% confidence level is computed from the monthly
RMSE values of the respective models below. Also, columns XVII (lower bound) and XVIII (upper bound) present the winning percentage out of 1326 days for each model computed from bootstrapping the daily RMSE values of the respective models at a 95% confidence level.

Including the random walk Excluding the random walk

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X) (XI) (XII) (XIII) (XIV) (XV) (XVI) (XVII) (XVIII)

Model Forecast Inputs No.
of
hidden
layers

No. of
hidden
nodes
per layer

Network
architecture

Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

δCKN CN+1/KN+1 CN ,KN - - - 63 704 95% 100% 50% 56% - - - - - -

BSMCKN C
BSMCKN
N+1 /KN+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBCK

N - - - 0 6 0% 0% 0% 1% 0 11 0% 0% 0% 1%

HCKN C
HCKN
N+1 /KN+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBCK

N , HParamsCKN - - - 0 1 0% 0% 0% 0% 0 33 0% 0% 2% 3%

HJDCKN C
HJDCKN
N+1 /KN+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBCK

N , HJDParamsCKN - - - 0 2 0% 0% 0% 0% 1 2 0% 5% 0% 0%

FMLSCKN C
FMLSCKN
N+1 /KN+1 SN ,KN+1, TN+1, RN , QN , FMLSParamsCKN - - - 0 1 0% 0% 0% 0% 1 1 0% 5% 0% 0%

L2CK1N C
L2CK1N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N 2 5 5 X 5 0 7 0% 0% 0% 1% 0 9 0% 0% 0% 1%

L2CK2N C
L2CK2N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ) 2 6 6 X 6 0 236 0% 0% 16% 20% 1 408 0% 5% 28% 33%

L2CK3N C
L2CK3N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN 2 11 11 X 11 1 51 0% 5% 3% 5% 2 91 0% 8% 6% 8%

L2CK4N C
L2CK4N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN , HParamsCKN 2 16 16 X 16 0 82 0% 0% 5% 8% 5 140 3% 16% 9% 12%

L2CK5N C
L2CK5N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN , HParamsCKN , (CHCKN /KN ) 2 17 17 X 17 0 99 0% 0% 6% 9% 32 246 39% 63% 16% 21%

L2CK6N C
L2CK6N
N+1 /KN+1 SN/KN , TN+1, RN , QN , HParams

CK
N , (CHCKN /KN ) 2 10 10 X 10 0 48 0% 0% 3% 5% 3 87 0% 11% 5% 8%

L2CK7N C
L2CK7N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , BSMGreeksCKN , (CBSMCK
N /KN ) 2 11 11 X 11 0 69 0% 0% 4% 6% 16 231 16% 34% 16% 19%

L2CK8N C
L2CK8N
N+1 /KN+1 SN/KN , TN+1, RN , QN , HJDParams

CK
N , (CHJDCKN /KN ) 2 13 13 X 13 0 0 0% 0% 0% 0% 0 0 0% 0% 0% 0%

L2CK9N C
L2CK9N
N+1 /KN+1 SN/KN , TN+1, RN , QN , FMLSParamsCKN , (CFMLSCK

N /KN ) 2 7 7 X 7 0 22 0% 0% 1% 2% 3 69 0% 11% 4% 6%
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Table A.2.25: Call Option Price Scaled by the Exercise Price Comparison (amongst Parametric, MLP M3CKN −Models and LSTM L3CKN −Models): This table presents a performance comparison using both daily and monthly statistics amongst the Black-Scholes-Merton
(BSMCKN ) model, Heston (HCKN ) model, Heston Jump Diffusion (HJDCKN ) model, Finite Moment Log Stable (FMLSCKN ) model, MLP M3CKN −Models (M3CK1N to M3CK9N ) and the LSTM L3CKN −Models (L3CK1N to L3CK9N ). The forecast variable for all
the models is the one-day-ahead call option price scaled by the exercise price (CN+1/KN+1). The models denoted by the N subscript use lagged input variables for forecasting CN+1/KN+1. The one-day-ahead forecast errors of CN+1/KN+1 are used to compute the Root Mean Square
Error (RMSE). Column I identifies the models, column II identifies the forecast variable, column III lists the input variables used by the models to obtain the one-trading-day ahead forecast of CN+1/KN+1, and columns IV, V and VI describe the network architecture of the MLP
M3CKN −Models and the LSTM L3CKN −Models. Forecasts are made for 1,328 trading days, and there are 64 months covered in the sample using the monthly data.
When comparing all models simultaneously (i.e. including the random walk model (δCKN ), column VII reports the number of months out of the 64 months that each model has the smallest RMSE, while column VIII reports the number of days out of the 1,328 days each model has the
smallest RMSE. Columns IX (lower bound) and X (upper bound) present the winning percentage out of 64 months for each model, evaluated using the bootstrap sampling technique. The statistical bootstrap performed (with replacement) at a 95% confidence level is computed from
the monthly RMSE values of the respective models below. Columns XI (lower bound) and XII (upper bound) present the winning percentage out of 1326 days for each model computed from bootstrapping the daily RMSE values of the respective models at a 95% confidence level.
Similarly, when the δCKN model was excluded in the comparison, column XIII reports the number of months out of the 64 months that each model has the smallest RMSE, while column XIV reports the number of days out of the 1,328 days each model has the smallest RMSE.
Columns XV (lower bound) and XVI (upper bound) present the winning percentage out of 64 months for each model, evaluated using the bootstrap sampling technique. The statistical bootstrap performed (with replacement) at a 95% confidence level is computed from the monthly
RMSE values of the respective models below. Also, columns XVII (lower bound) and XVIII (upper bound) present the winning percentage out of 1326 days for each model computed from bootstrapping the daily RMSE values of the respective models at a 95% confidence level.

Including the random walk Excluding the random walk

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X) (XI) (XII) (XIII) (XIV) (XV) (XVI) (XVII) (XVIII)

Model Forecast Inputs No.
of
hidden
layers

No. of
hidden
nodes
per layer

Network
architecture

Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

δCKN CN+1/KN+1 CN ,KN - - - 22 259 22% 47% 17% 22% - - - - - -

BSMCKN C
BSMCKN
N+1 /KN+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBCK

N - - - 0 1 0% 0% 0% 0% 0 1 0% 0% 0% 0%

HCKN C
HCKN
N+1 /KN+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBCK

N , HParamsCKN - - - 0 1 0% 0% 0% 0% 0 1 0% 0% 0% 0%

HJDCKN C
HJDCKN
N+1 /KN+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBCK

N , HJDParamsCKN - - - 0 1 0% 0% 0% 0% 0 1 0% 0% 0% 0%

FMLSCKN C
FMLSCKN
N+1 /KN+1 SN ,KN+1, TN+1, RN , QN , FMLSParamsCKN - - - 0 1 0% 0% 0% 0% 0 1 0% 0% 0% 0%

M3CK1N C
M3CK1N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N 3 5 5 X 5 X 5 2 70 0% 8% 4% 7% 2 76 0% 8% 4% 7%

M3CK2N C
M3CK2N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ) 3 6 6 X 6 X 6 2 80 0% 8% 5% 7% 5 103 2% 16% 6% 9%

M3CK3N C
M3CK3N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN 3 11 11 X 11 X 11 8 79 5% 21% 5% 7% 9 98 6% 22% 6% 9%

M3CK4N C
M3CK4N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN , HParamsCKN 3 16 16 X 16 X 16 8 71 5% 22% 4% 7% 10 111 8% 25% 7% 10%

M3CK5N C
M3CK5N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN , HParamsCKN , (CHCKN /KN ) 3 17 17 X 17 X 17 4 40 0% 13% 2% 4% 10 89 6% 25% 5% 8%

M3CK6N C
M3CK6N
N+1 /KN+1 SN/KN , TN+1, RN , QN , HParams

CK
N , (CHCKN /KN ) 3 10 10 X 10 X 10 4 58 2% 13% 3% 6% 11 101 8% 27% 6% 9%

M3CK7N C
M3CK7N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , BSMGreeksCKN , (CBSMCK
N /KN ) 3 11 11 X 11 X 11 4 93 2% 13% 6% 8% 5 117 2% 16% 7% 10%

M3CK8N C
M3CK8N
N+1 /KN+1 SN/KN , TN+1, RN , QN , HJDParams

CK
N , (CHJDCKN /KN ) 3 13 13 X 13 X 13 7 57 3% 19% 3% 5% 8 80 5% 20% 5% 7%

M3CK9N C
M3CK9N
N+1 /KN+1 SN/KN , TN+1, RN , QN , FMLSParamsCKN , (CFMLSCK

N /KN ) 3 7 7 X 7 X 7 2 62 0% 8% 4% 6% 3 77 0% 11% 5% 7%

L3CK1N C
L3CK1N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N 3 5 5 X 5 X 5 0 12 0% 0% 0% 1% 0 12 0% 0% 0% 1%

L3CK2N C
L3CK2N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ) 3 6 6 X 6 X 6 0 195 0% 0% 13% 17% 0 203 0% 0% 13% 17%

L3CK3N C
L3CK3N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN 3 11 11 X 11 X 11 1 28 0% 5% 1% 3% 1 28 0% 5% 1% 3%

L3CK4N C
L3CK4N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN , HParamsCKN 3 16 16 X 16 X 16 0 55 0% 0% 3% 5% 0 57 0% 0% 3% 5%

L3CK5N C
L3CK5N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN , HParamsCKN , (CHCKN /KN ) 3 17 17 X 17 X 17 0 62 0% 0% 4% 6% 0 65 0% 0% 4% 6%

L3CK6N C
L3CK6N
N+1 /KN+1 SN/KN , TN+1, RN , QN , HParams

CK
N , (CHCKN /KN ) 3 10 10 X 10 X 10 0 35 0% 0% 2% 4% 0 35 0% 0% 2% 4%

L3CK7N C
L3CK7N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , BSMGreeksCKN , (CBSMCK
N /KN ) 3 11 11 X 11 X 11 0 44 0% 0% 2% 4% 0 47 0% 0% 2% 5%

L3CK8N C
L3CK8N
N+1 /KN+1 SN/KN , TN+1, RN , QN , HJDParams

CK
N , (CHJDCKN /KN ) 3 13 13 X 13 X 13 0 0 0% 0% 0% 0% 0 0 0% 0% 0% 0%

L3CK9N C
L3CK9N
N+1 /KN+1 SN/KN , TN+1, RN , QN , FMLSParamsCKN , (CFMLSCK

N /KN ) 3 7 7 X 7 X 7 0 24 0% 0% 1% 3% 0 25 0% 0% 1% 3%
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Table A.2.26: Call Option Price Scaled by the Exercise Price Comparison (amongst Parametric and MLP M3CKN −Models): This table presents a performance comparison using both daily and monthly statistics amongst the Black-Scholes-Merton (BSMCKN ) model, Heston (HCKN )
model, Heston Jump Diffusion (HJDCKN ) model, Finite Moment Log Stable (FMLSCKN ) model and the MLP M3CKN −Models (M3CK1N to M3CK9N ). The forecast variable for all the models is the one-day-ahead call option price scaled by the exercise price (CN+1/KN+1).
The models denoted by the N subscript use lagged input variables for forecasting CN+1/KN+1. The one-day-ahead forecast errors of CN+1/KN+1 are used to compute the Root Mean Square Error (RMSE). Column I identifies the models, column II identifies the forecast variable,
column III lists the input variables used by the models to obtain the one-trading-day ahead forecast of CN+1/KN+1, and columns IV, V and VI describe the network architecture of the MLP M3CKN −Models. Forecasts are made for 1,328 trading days, and there are 64 months
covered in the sample using the monthly data.
When comparing all models simultaneously (i.e. including the random walk model (δCKN ), column VII reports the number of months out of the 64 months that each model has the smallest RMSE, while column VIII reports the number of days out of the 1,328 days each model has the
smallest RMSE. Columns IX (lower bound) and X (upper bound) present the winning percentage out of 64 months for each model, evaluated using the bootstrap sampling technique. The statistical bootstrap performed (with replacement) at a 95% confidence level is computed from
the monthly RMSE values of the respective models below. Columns XI (lower bound) and XII (upper bound) present the winning percentage out of 1326 days for each model computed from bootstrapping the daily RMSE values of the respective models at a 95% confidence level.
Similarly, when the δCKN model was excluded in the comparison, column XIII reports the number of months out of the 64 months that each model has the smallest RMSE, while column XIV reports the number of days out of the 1,328 days each model has the smallest RMSE.
Columns XV (lower bound) and XVI (upper bound) present the winning percentage out of 64 months for each model, evaluated using the bootstrap sampling technique. The statistical bootstrap performed (with replacement) at a 95% confidence level is computed from the monthly
RMSE values of the respective models below. Also, columns XVII (lower bound) and XVIII (upper bound) present the winning percentage out of 1326 days for each model computed from bootstrapping the daily RMSE values of the respective models at a 95% confidence level.

Including the random walk Excluding the random walk

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X) (XI) (XII) (XIII) (XIV) (XV) (XVI) (XVII) (XVIII)

Model Forecast Inputs No.
of
hidden
layers

No. of
hidden
nodes
per layer

Network
architecture

Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

δCKN CN+1/KN+1 CN ,KN - - - 23 314 23% 48% 21% 26% - - - - - -

BSMCKN C
BSMCKN
N+1 /KN+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBCK

N - - - 0 9 0% 0% 0% 1% 0 9 0% 0% 0% 1%

HCKN C
HCKN
N+1 /KN+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBCK

N , HParamsCKN - - - 0 2 0% 0% 0% 0% 0 2 0% 0% 0% 0%

HJDCKN C
HJDCKN
N+1 /KN+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBCK

N , HJDParamsCKN - - - 0 4 0% 0% 0% 1% 0 4 0% 0% 0% 1%

FMLSCKN C
FMLSCKN
N+1 /KN+1 SN ,KN+1, TN+1, RN , QN , FMLSParamsCKN - - - 0 1 0% 0% 0% 0% 0 1 0% 0% 0% 0%

M3CK1N C
M3CK1N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N 3 5 5 X 5 X 5 2 127 0% 8% 8% 11% 2 134 0% 8% 9% 12%

M3CK2N C
M3CK2N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ) 3 6 6 X 6 X 6 2 134 0% 8% 9% 12% 5 164 2% 16% 11% 14%

M3CK3N C
M3CK3N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN 3 11 11 X 11 X 11 8 122 5% 20% 8% 11% 9 149 6% 22% 10% 13%

M3CK4N C
M3CK4N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN , HParamsCKN 3 16 16 X 16 X 16 8 109 5% 20% 7% 10% 10 160 8% 25% 10% 14%

M3CK5N C
M3CK5N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN , HParamsCKN , (CHCKN /KN ) 3 17 17 X 17 X 17 4 73 2% 13% 4% 7% 10 138 7% 25% 9% 12%

M3CK6N C
M3CK6N
N+1 /KN+1 SN/KN , TN+1, RN , QN , HParams

CK
N , (CHCKN /KN ) 3 10 10 X 10 X 10 4 94 2% 13% 6% 8% 12 155 9% 28% 10% 14%

M3CK7N C
M3CK7N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , BSMGreeksCKN , (CBSMCK
N /KN ) 3 11 11 X 11 X 11 4 132 2% 13% 8% 12% 5 159 2% 14% 10% 14%

M3CK8N C
M3CK8N
N+1 /KN+1 SN/KN , TN+1, RN , QN , HJDParams

CK
N , (CHJDCKN /KN ) 3 13 13 X 13 X 13 7 91 3% 20% 6% 8% 8 120 5% 20% 8% 11%

M3CK9N C
M3CK9N
N+1 /KN+1 SN/KN , TN+1, RN , QN , FMLSParamsCKN , (CFMLSCK

N /KN ) 3 7 7 X 7 X 7 2 116 0% 8% 7% 10% 3 133 0% 11% 8% 12%
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Table A.2.27: Call Option Price Scaled by the Exercise Price Comparison (amongst Parametric and LSTM L3CKN −Models): This table presents a performance comparison using both daily and monthly statistics amongst the Black-Scholes-Merton (BSMCKN ) model, Heston (HCKN )
model, Heston Jump Diffusion (HJDCKN ) model, Finite Moment Log Stable (FMLSCKN ) model and the LSTM L3CKN −Models (L3CK1N to L3CK9N ). The forecast variable for all the models is the one-day-ahead call option price scaled by the exercise price (CN+1/KN+1).
The models denoted by the N subscript use lagged input variables for forecasting CN+1/KN+1. The one-day-ahead forecast errors of CN+1/KN+1 are used to compute the Root Mean Square Error (RMSE). Column I identifies the models, column II identifies the forecast variable,
column III lists the input variables used by the models to obtain the one-trading-day ahead forecast of CN+1/KN+1, and columns IV, V and VI describe the network architecture of the LSTM L3CKN −Models. Forecasts are made for 1,328 trading days, and there are 64 months
covered in the sample using the monthly data.
When comparing all models simultaneously (i.e. including the random walk model (δCKN ), column VII reports the number of months out of the 64 months that each model has the smallest RMSE, while column VIII reports the number of days out of the 1,328 days each model has the
smallest RMSE. Columns IX (lower bound) and X (upper bound) present the winning percentage out of 64 months for each model, evaluated using the bootstrap sampling technique. The statistical bootstrap performed (with replacement) at a 95% confidence level is computed from
the monthly RMSE values of the respective models below. Columns XI (lower bound) and XII (upper bound) present the winning percentage out of 1326 days for each model computed from bootstrapping the daily RMSE values of the respective models at a 95% confidence level.
Similarly, when the δCKN model was excluded in the comparison, column XIII reports the number of months out of the 64 months that each model has the smallest RMSE, while column XIV reports the number of days out of the 1,328 days each model has the smallest RMSE.
Columns XV (lower bound) and XVI (upper bound) present the winning percentage out of 64 months for each model, evaluated using the bootstrap sampling technique. The statistical bootstrap performed (with replacement) at a 95% confidence level is computed from the monthly
RMSE values of the respective models below. Also, columns XVII (lower bound) and XVIII (upper bound) present the winning percentage out of 1326 days for each model computed from bootstrapping the daily RMSE values of the respective models at a 95% confidence level.

Including the random walk Excluding the random walk

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X) (XI) (XII) (XIII) (XIV) (XV) (XVI) (XVII) (XVIII)

Model Forecast Inputs No.
of
hidden
layers

No. of
hidden
nodes
per layer

Network
architecture

Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

δCKN CN+1/KN+1 CN ,KN - - - 61 683 89% 100% 49% 54% - - - - - -

BSMCKN C
BSMCKN
N+1 /KN+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBCK

N - - - 0 3 0% 0% 0% 1% 0 8 0% 0% 0% 1%

HCKN C
HCKN
N+1 /KN+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBCK

N , HParamsCKN - - - 0 2 0% 0% 0% 0% 0 35 0% 0% 2% 4%

HJDCKN C
HJDCKN
N+1 /KN+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBCK

N , HJDParamsCKN - - - 0 1 0% 0% 0% 0% 0 1 0% 0% 0% 0%

FMLSCKN C
FMLSCKN
N+1 /KN+1 SN ,KN+1, TN+1, RN , QN , FMLSParamsCKN - - - 0 2 0% 0% 0% 0% 0 2 0% 0% 0% 0%

L3CK1N C
L3CK1N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N 3 5 5 X 5 X 5 0 13 0% 0% 1% 2% 0 15 0% 0% 1% 2%

L3CK2N C
L3CK2N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ) 3 6 6 X 6 X 6 0 247 0% 0% 17% 21% 2 410 0% 8% 28% 34%

L3CK3N C
L3CK3N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN 3 11 11 X 11 X 11 1 53 0% 5% 3% 5% 2 85 0% 8% 5% 8%

L3CK4N C
L3CK4N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN , HParamsCKN 3 16 16 X 16 X 16 1 87 0% 5% 5% 8% 8 154 5% 22% 10% 13%

L3CK5N C
L3CK5N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN , HParamsCKN , (CHCKN /KN ) 3 17 17 X 17 X 17 1 99 0% 5% 6% 9% 40 239 52% 73% 16% 20%

L3CK6N C
L3CK6N
N+1 /KN+1 SN/KN , TN+1, RN , QN , HParams

CK
N , (CHCKN /KN ) 3 10 10 X 10 X 10 0 42 0% 0% 2% 4% 4 86 2% 13% 5% 8%

L3CK7N C
L3CK7N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , BSMGreeksCKN , (CBSMCK
N /KN ) 3 11 11 X 11 X 11 0 66 0% 0% 4% 6% 3 238 0% 11% 16% 20%

L3CK8N C
L3CK8N
N+1 /KN+1 SN/KN , TN+1, RN , QN , HJDParams

CK
N , (CHJDCKN /KN ) 3 13 13 X 13 X 13 0 0 0% 0% 0% 0% 0 0 0% 0% 0% 0%

L3CK9N C
L3CK9N
N+1 /KN+1 SN/KN , TN+1, RN , QN , FMLSParamsCKN , (CFMLSCK

N /KN ) 3 7 7 X 7 X 7 0 30 0% 0% 2% 3% 5 55 2% 16% 3% 5%
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Table A.2.28: Call Option Price Scaled by the Exercise Price Comparison (amongst Parametric, MLP M1CKN −Models, LSTM L1CKN −Models, MLP M2CKN −Models, LSTM L2CKN −Models, MLP M3CKN −Models, and the LSTM L3CKN −Models): This table presents
a performance comparison using both daily and monthly statistics amongst the Black-Scholes-Merton (BSMCKN ) model, Heston (HCKN ) model, Heston Jump Diffusion (HJDCKN ) model, Finite Moment Log Stable (FMLSCKN ) model, MLP M1CKN −Models (M1CK1N to
M1CK9N ), LSTM L1CKN −Models (L1CK1N to L1CK9N ), MLP M2CKN −Models (M2CK1N to M2CK9N ), LSTM L2CKN −Models (L2CK1N to L2CK9N ), MLP M3CKN −Models (M3CK1N to M3CK9N ) and the LSTM L3CKN −Models (L3CK1N to L3CK9N ).
The forecast variable for all the models is the one-day-ahead call option price scaled by the exercise price (CN+1/KN+1). The models denoted by the N subscript use lagged input variables for forecasting CN+1/KN+1. The one-day-ahead forecast errors of CN+1/KN+1 are used to
compute the Root Mean Square Error (RMSE). Column I identifies the models, column II identifies the forecast variable, column III lists the input variables used by the models to obtain the one-trading-day ahead forecast of CN+1/KN+1, and columns IV, V and VI describe the network
architecture of the MLP M1CKN −Models, LSTM L1CKN −Models, MLP M2CKN −Models, LSTM L2CKN −Models, MLP M3CKN −Models, and the LSTM L3CKN −Models. Forecasts are made for 1,328 trading days, and there are 64 months covered in the sample using
the monthly data.
When comparing all models simultaneously (i.e. including the random walk model (δCKN ), column VII reports the number of months out of the 64 months that each model has the smallest RMSE, while column VIII reports the number of days out of the 1,328 days each model has the
smallest RMSE. Columns IX (lower bound) and X (upper bound) present the winning percentage out of 64 months for each model, evaluated using the bootstrap sampling technique. The statistical bootstrap performed (with replacement) at a 95% confidence level is computed from
the monthly RMSE values of the respective models below. Columns XI (lower bound) and XII (upper bound) present the winning percentage out of 1326 days for each model computed from bootstrapping the daily RMSE values of the respective models at a 95% confidence level.
Similarly, when the δCKN model was excluded in the comparison, column XIII reports the number of months out of the 64 months that each model has the smallest RMSE, while column XIV reports the number of days out of the 1,328 days each model has the smallest RMSE.
Columns XV (lower bound) and XVI (upper bound) present the winning percentage out of 64 months for each model, evaluated using the bootstrap sampling technique. The statistical bootstrap performed (with replacement) at a 95% confidence level is computed from the monthly
RMSE values of the respective models below. Also, columns XVII (lower bound) and XVIII (upper bound) present the winning percentage out of 1326 days for each model computed from bootstrapping the daily RMSE values of the respective models at a 95% confidence level.

Including the random walk Excluding the random walk

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X) (XI) (XII) (XIII) (XIV) (XV) (XVI) (XVII) (XVIII)

Model Forecast Inputs No.
of
hidden
layers

No. of
hidden
nodes
per layer

Network
architecture

Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

δCKN CN+1/KN+1 CN ,KN - - - 18 202 17% 40% 13% 17% - - - - - -

BSMCKN C
BSMCKN
N+1 /KN+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBCK

N - - - 0 1 0% 0% 0% 0% 0 1 0% 0% 0% 0%

HCKN C
HCKN
N+1 /KN+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBCK

N , HParamsCKN - - - 0 0 0% 0% 0% 0% 0 0 0% 0% 0% 0%

HJDCKN C
HJDCKN
N+1 /KN+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBCK

N , HJDParamsCKN - - - 0 1 0% 0% 0% 0% 0 1 0% 0% 0% 0%

FMLSCKN C
FMLSCKN
N+1 /KN+1 SN ,KN+1, TN+1, RN , QN , FMLSParamsCKN - - - 0 0 0% 0% 0% 0% 0 0 0% 0% 0% 0%

M1CK1N C
M1CK1N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N 1 5 5 0 13 0% 0% 0% 2% 0 14 0% 0% 1% 2%

M1CK2N C
M1CK2N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ) 1 6 6 0 6 0% 0% 0% 1% 1 6 0% 5% 0% 1%

M1CK3N C
M1CK3N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN 1 11 11 0 23 0% 0% 1% 3% 0 26 0% 0% 1% 3%

M1CK4N C
M1CK4N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN , HParamsCKN 1 16 16 3 15 0% 11% 1% 2% 3 16 0% 11% 1% 2%

M1CK5N C
M1CK5N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN , HParamsCKN , (CHCKN /KN ) 1 17 17 2 15 0% 8% 1% 2% 2 23 0% 8% 1% 2%

M1CK6N C
M1CK6N
N+1 /KN+1 SN/KN , TN+1, RN , QN , HParams

CK
N , (CHCKN /KN ) 1 10 10 0 14 0% 0% 1% 2% 1 14 0% 5% 1% 2%

M1CK7N C
M1CK7N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , BSMGreeksCKN , (CBSMCK
N /KN ) 1 11 11 0 19 0% 0% 1% 2% 0 19 0% 0% 1% 2%

M1CK8N C
M1CK8N
N+1 /KN+1 SN/KN , TN+1, RN , QN , HJDParams

CK
N , (CHJDCKN /KN ) 1 13 13 0 18 0% 0% 1% 2% 0 19 0% 0% 1% 2%

M1CK9N C
M1CK9N
N+1 /KN+1 SN/KN , TN+1, RN , QN , FMLSParamsCKN , (CFMLSCK

N /KN ) 1 7 7 0 16 0% 0% 1% 2% 0 16 0% 0% 1% 2%

M2CK1N C
M2CK1N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N 2 5 5 X 5 0 1 0% 0% 0% 0% 0 1 0% 0% 0% 0%

M2CK2N C
M2CK2N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ) 2 6 6 X 6 0 89 0% 0% 5% 8% 0 89 0% 0% 5% 8%

M2CK3N C
M2CK3N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN 2 11 11 X 11 0 4 0% 0% 0% 1% 0 4 0% 0% 0% 1%

M2CK4N C
M2CK4N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN , HParamsCKN 2 16 16 X 16 0 19 0% 0% 1% 2% 0 20 0% 0% 1% 2%

M2CK5N C
M2CK5N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN , HParamsCKN , (CHCKN /KN ) 2 17 17 X 17 0 16 0% 0% 1% 2% 0 16 0% 0% 1% 2%

M2CK6N C
M2CK6N
N+1 /KN+1 SN/KN , TN+1, RN , QN , HParams

CK
N , (CHCKN /KN ) 2 10 10 X 10 0 10 0% 0% 0% 1% 0 10 0% 0% 0% 1%

M2CK7N C
M2CK7N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , BSMGreeksCKN , (CBSMCK
N /KN ) 2 11 11 X 11 1 14 0% 5% 1% 2% 1 14 0% 5% 1% 2%

M2CK8N C
M2CK8N
N+1 /KN+1 SN/KN , TN+1, RN , QN , HJDParams

CK
N , (CHJDCKN /KN ) 2 13 13 X 13 0 0 0% 0% 0% 0% 0 0 0% 0% 0% 0%

M2CK9N C
M2CK9N
N+1 /KN+1 SN/KN , TN+1, RN , QN , FMLSParamsCKN , (CFMLSCK

N /KN ) 2 7 7 X 7 0 2 0% 0% 0% 0% 0 2 0% 0% 0% 0%

M3CK1N C
M3CK1N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N 3 5 5 X 5 X 5 0 25 0% 0% 1% 3% 0 26 0% 0% 1% 3%

M3CK2N C
M3CK2N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ) 3 6 6 X 6 X 6 0 36 0% 0% 2% 4% 0 40 0% 0% 2% 4%

M3CK3N C
M3CK3N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN 3 11 11 X 11 X 11 2 32 0% 8% 2% 3% 3 41 0% 11% 2% 4%

M3CK4N C
M3CK4N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN , HParamsCKN 3 16 16 X 16 X 16 1 20 0% 5% 1% 2% 1 25 0% 5% 1% 3%

M3CK5N C
M3CK5N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN , HParamsCKN , (CHCKN /KN ) 3 17 17 X 17 X 17 0 15 0% 0% 1% 2% 0 17 0% 0% 1% 2%

M3CK6N C
M3CK6N
N+1 /KN+1 SN/KN , TN+1, RN , QN , HParams

CK
N , (CHCKN /KN ) 3 10 10 X 10 X 10 4 12 2% 13% 0% 1% 5 15 2% 14% 1% 2%

M3CK7N C
M3CK7N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , BSMGreeksCKN , (CBSMCK
N /KN ) 3 11 11 X 11 X 11 1 21 0% 5% 1% 2% 1 27 0% 5% 1% 3%

M3CK8N C
M3CK8N
N+1 /KN+1 SN/KN , TN+1, RN , QN , HJDParams

CK
N , (CHJDCKN /KN ) 3 13 13 X 13 X 13 2 21 0% 8% 1% 2% 2 27 0% 8% 1% 3%

M3CK9N C
M3CK9N
N+1 /KN+1 SN/KN , TN+1, RN , QN , FMLSParamsCKN , (CFMLSCK

N /KN ) 3 7 7 X 7 X 7 0 16 0% 0% 1% 2% 0 22 0% 0% 1% 2%

L1CK1N C
L1CK1N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N 1 5 5 0 6 0% 0% 0% 1% 0 6 0% 0% 0% 1%

L1CK2N C
L1CK2N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ) 1 6 6 0 92 0% 0% 6% 8% 0 96 0% 0% 6% 9%

L1CK3N C
L1CK3N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN 1 11 11 0 8 0% 0% 0% 1% 0 8 0% 0% 0% 1%

L1CK4N C
L1CK4N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN , HParamsCKN 1 16 16 0 18 0% 0% 1% 2% 0 19 0% 0% 1% 2%

L1CK5N C
L1CK5N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN , HParamsCKN , (CHCKN /KN ) 1 17 17 0 28 0% 0% 1% 3% 0 31 0% 0% 2% 3%

L1CK6N C
L1CK6N
N+1 /KN+1 SN/KN , TN+1, RN , QN , HParams

CK
N , (CHCKN /KN ) 1 10 10 0 15 0% 0% 1% 2% 0 15 0% 0% 1% 2%

L1CK7N C
L1CK7N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , BSMGreeksCKN , (CBSMCK
N /KN ) 1 11 11 0 17 0% 0% 1% 2% 0 18 0% 0% 1% 2%

L1CK8N C
L1CK8N
N+1 /KN+1 SN/KN , TN+1, RN , QN , HJDParams

CK
N , (CHJDCKN /KN ) 1 13 13 0 0 0% 0% 0% 0% 0 0 0% 0% 0% 0%

L1CK9N C
L1CK9N
N+1 /KN+1 SN/KN , TN+1, RN , QN , FMLSParamsCKN , (CFMLSCK

N /KN ) 1 7 7 0 10 0% 0% 0% 1% 0 10 0% 0% 0% 1%

L2CK1N C
L2CK1N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N 2 5 5 X 5 2 25 0% 8% 1% 3% 2 26 0% 8% 1% 3%

L2CK2N C
L2CK2N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ) 2 6 6 X 6 2 29 0% 8% 1% 3% 4 40 2% 13% 2% 4%

L2CK3N C
L2CK3N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN 2 11 11 X 11 6 41 3% 17% 2% 4% 6 52 3% 17% 3% 5%

L2CK4N C
L2CK4N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN , HParamsCKN 2 16 16 X 16 5 39 3% 14% 2% 4% 7 63 5% 19% 4% 6%

L2CK5N C
L2CK5N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN , HParamsCKN , (CHCKN /KN ) 2 17 17 X 17 3 22 0% 11% 1% 2% 7 55 5% 19% 3% 5%

L2CK6N C
L2CK6N
N+1 /KN+1 SN/KN , TN+1, RN , QN , HParams

CK
N , (CHCKN /KN ) 2 10 10 X 10 3 30 0% 11% 2% 3% 8 52 5% 22% 3% 5%

L2CK7N C
L2CK7N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , BSMGreeksCKN , (CBSMCK
N /KN ) 2 11 11 X 11 3 24 0% 11% 1% 3% 3 32 0% 11% 2% 3%

L2CK8N C
L2CK8N
N+1 /KN+1 SN/KN , TN+1, RN , QN , HJDParams

CK
N , (CHJDCKN /KN ) 2 13 13 X 13 4 24 2% 13% 1% 3% 4 35 2% 13% 2% 4%

L2CK9N C
L2CK9N
N+1 /KN+1 SN/KN , TN+1, RN , QN , FMLSParamsCKN , (CFMLSCK

N /KN ) 2 7 7 X 7 1 18 0% 5% 1% 2% 2 28 0% 8% 1% 3%

L3CK1N C
L3CK1N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N 3 5 5 X 5 X 5 0 7 0% 0% 0% 1% 0 7 0% 0% 0% 1%

L3CK2N C
L3CK2N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ) 3 6 6 X 6 X 6 0 76 0% 0% 4% 7% 0 78 0% 0% 5% 7%

L3CK3N C
L3CK3N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN 3 11 11 X 11 X 11 1 12 0% 5% 0% 1% 1 12 0% 5% 0% 1%

L3CK4N C
L3CK4N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN , HParamsCKN 3 16 16 X 16 X 16 0 25 0% 0% 1% 3% 0 26 0% 0% 1% 3%

L3CK5N C
L3CK5N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN , HParamsCKN , (CHCKN /KN ) 3 17 17 X 17 X 17 0 25 0% 0% 1% 3% 0 26 0% 0% 1% 3%

L3CK6N C
L3CK6N
N+1 /KN+1 SN/KN , TN+1, RN , QN , HParams

CK
N , (CHCKN /KN ) 3 10 10 X 10 X 10 0 14 0% 0% 1% 2% 0 14 0% 0% 1% 2%

L3CK7N C
L3CK7N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , BSMGreeksCKN , (CBSMCK
N /KN ) 3 11 11 X 11 X 11 0 15 0% 0% 1% 2% 0 16 0% 0% 1% 2%

L3CK8N C
L3CK8N
N+1 /KN+1 SN/KN , TN+1, RN , QN , HJDParams

CK
N , (CHJDCKN /KN ) 3 13 13 X 13 X 13 0 0 0% 0% 0% 0% 0 0 0% 0% 0% 0%

L3CK9N C
L3CK9N
N+1 /KN+1 SN/KN , TN+1, RN , QN , FMLSParamsCKN , (CFMLSCK

N /KN ) 3 7 7 X 7 X 7 0 13 0% 0% 1% 2% 0 13 0% 0% 0% 2%
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Table A.2.29: Call Option Price Scaled by the Exercise Price Comparison (amongst Parametric, MLP M1CKN −Models, MLP M2CKN −Models, and MLP M3CKN −Models): This table presents a performance comparison using both daily and monthly statistics amongst the
Black-Scholes-Merton (BSMCKN ) model, Heston (HCKN ) model, Heston Jump Diffusion (HJDCKN ) model, Finite Moment Log Stable (FMLSCKN ) model, MLP M1CKN −Models (M1CK1N to M1CK9N ), MLP M2CKN −Models (M2CK1N to M2CK9N ), and the MLP
M3CKN −Models (M3CK1N to M3CK9N ). The forecast variable for all the models is the one-day-ahead call option price scaled by the exercise price (CN+1/KN+1). The models denoted by the N subscript use lagged input variables for forecasting CN+1/KN+1. The one-day-ahead
forecast errors of CN+1/KN+1 are used to compute the Root Mean Square Error (RMSE). Column I identifies the models, column II identifies the forecast variable, column III lists the input variables used by the models to obtain the one-trading-day ahead forecast of CN+1/KN+1, and
columns IV, V and VI describe the network architecture of the MLP M1CKN −Models, MLP M2CKN −Models, and the MLP M3CKN −Models. Forecasts are made for 1,328 trading days, and there are 64 months covered in the sample using the monthly data.
When comparing all models simultaneously (i.e. including the random walk model (δCKN ), column VII reports the number of months out of the 64 months that each model has the smallest RMSE, while column VIII reports the number of days out of the 1,328 days each model has the
smallest RMSE. Columns IX (lower bound) and X (upper bound) present the winning percentage out of 64 months for each model, evaluated using the bootstrap sampling technique. The statistical bootstrap performed (with replacement) at a 95% confidence level is computed from
the monthly RMSE values of the respective models below. Columns XI (lower bound) and XII (upper bound) present the winning percentage out of 1326 days for each model computed from bootstrapping the daily RMSE values of the respective models at a 95% confidence level.
Similarly, when the δCKN model was excluded in the comparison, column XIII reports the number of months out of the 64 months that each model has the smallest RMSE, while column XIV reports the number of days out of the 1,328 days each model has the smallest RMSE.
Columns XV (lower bound) and XVI (upper bound) present the winning percentage out of 64 months for each model, evaluated using the bootstrap sampling technique. The statistical bootstrap performed (with replacement) at a 95% confidence level is computed from the monthly
RMSE values of the respective models below. Also, columns XVII (lower bound) and XVIII (upper bound) present the winning percentage out of 1326 days for each model computed from bootstrapping the daily RMSE values of the respective models at a 95% confidence level.

Including the random walk Excluding the random walk

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X) (XI) (XII) (XIII) (XIV) (XV) (XVI) (XVII) (XVIII)

Model Forecast Inputs No.
of
hidden
layers

No. of
hidden
nodes
per layer

Network
architecture

Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

δCKN CN+1/KN+1 CN ,KN - - - 19 241 20% 42% 16% 20% - - - - - -

BSMCKN C
BSMCKN
N+1 /KN+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBCK

N - - - 0 8 0% 0% 0% 1% 0 8 0% 0% 0% 1%

HCKN C
HCKN
N+1 /KN+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBCK

N , HParamsCKN - - - 0 0 0% 0% 0% 0% 0 0 0% 0% 0% 0%

HJDCKN C
HJDCKN
N+1 /KN+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBCK

N , HJDParamsCKN - - - 0 2 0% 0% 0% 0% 0 2 0% 0% 0% 0%

FMLSCKN C
FMLSCKN
N+1 /KN+1 SN ,KN+1, TN+1, RN , QN , FMLSParamsCKN - - - 0 1 0% 0% 0% 0% 0 1 0% 0% 0% 0%

M1CK1N C
M1CK1N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N 1 6 6 0 27 0% 0% 1% 3% 0 28 0% 0% 1% 3%

M1CK2N C
M1CK2N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ) 1 7 7 0 17 0% 0% 1% 2% 1 18 0% 5% 1% 2%

M1CK3N C
M1CK3N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN 1 12 12 0 40 0% 0% 2% 4% 0 43 0% 0% 2% 4%

M1CK4N C
M1CK4N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN , HParamsCKN 1 17 17 3 28 0% 9% 1% 3% 3 30 0% 11% 2% 3%

M1CK5N C
M1CK5N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN , HParamsCKN , (CHCKN /KN ) 1 18 18 2 22 0% 8% 1% 2% 2 30 0% 8% 2% 3%

M1CK6N C
M1CK6N
N+1 /KN+1 SN/KN , TN+1, RN , QN , HParams

CK
N , (CHCKN /KN ) 1 11 11 0 31 0% 0% 2% 3% 1 33 0% 5% 2% 3%

M1CK7N C
M1CK7N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , BSMGreeksCKN , (CBSMCK
N /KN ) 1 12 12 0 34 0% 0% 2% 3% 0 34 0% 0% 2% 3%

M1CK8N C
M1CK8N
N+1 /KN+1 SN/KN , TN+1, RN , QN , HJDParams

CK
N , (CHJDCKN /KN ) 1 14 14 0 35 0% 0% 2% 4% 0 37 0% 0% 2% 4%

M1CK9N C
M1CK9N
N+1 /KN+1 SN/KN , TN+1, RN , QN , FMLSParamsCKN , (CFMLSCK

N /KN ) 1 8 8 0 42 0% 0% 2% 4% 0 43 0% 0% 2% 4%

M2CK1N C
M2CK1N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N 3 6 6 X 6 0 50 0% 0% 3% 5% 0 51 0% 0% 3% 5%

M2CK2N C
M2CK2N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ) 3 7 7 X 7 0 59 0% 0% 3% 6% 0 64 0% 0% 4% 6%

M2CK3N C
M2CK3N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN 3 12 12 X 12 2 52 0% 8% 3% 5% 3 65 0% 11% 4% 6%

M2CK4N C
M2CK4N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN , HParamsCKN 3 17 17 X 17 1 34 0% 5% 2% 3% 1 41 0% 5% 2% 4%

M2CK5N C
M2CK5N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN , HParamsCKN , (CHCKN /KN ) 3 18 18 X 18 0 22 0% 0% 1% 2% 0 27 0% 0% 1% 3%

M2CK6N C
M2CK6N
N+1 /KN+1 SN/KN , TN+1, RN , QN , HParams

CK
N , (CHCKN /KN ) 3 11 11 X 11 4 30 2% 13% 2% 3% 5 36 2% 16% 2% 4%

M2CK7N C
M2CK7N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , BSMGreeksCKN , (CBSMCK
N /KN ) 3 12 12 X 12 1 30 0% 6% 1% 3% 2 36 0% 8% 2% 4%

M2CK8N C
M2CK8N
N+1 /KN+1 SN/KN , TN+1, RN , QN , HJDParams

CK
N , (CHJDCKN /KN ) 3 14 14 X 14 2 34 0% 8% 2% 3% 2 41 0% 8% 2% 4%

M2CK9N C
M2CK9N
N+1 /KN+1 SN/KN , TN+1, RN , QN , FMLSParamsCKN , (CFMLSCK

N /KN ) 3 8 8 X 8 0 34 0% 0% 2% 3% 0 41 0% 0% 2% 4%

M3CK1N C
M3CK1N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N 3 6 6 X 6 X 6 2 60 0% 8% 3% 6% 2 61 0% 8% 4% 6%

M3CK2N C
M3CK2N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ) 3 7 7 X 7 X 7 2 51 0% 8% 3% 5% 4 62 2% 13% 4% 6%

M3CK3N C
M3CK3N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN 3 12 12 X 12 X 12 6 62 3% 16% 4% 6% 6 79 3% 17% 5% 7%

M3CK4N C
M3CK4N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN , HParamsCKN 3 17 17 X 17 X 17 5 67 2% 16% 4% 6% 7 99 5% 19% 6% 9%

M3CK5N C
M3CK5N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN , HParamsCKN , (CHCKN /KN ) 3 18 18 X 18 X 18 3 35 0% 11% 2% 4% 7 73 5% 20% 4% 7%

M3CK6N C
M3CK6N
N+1 /KN+1 SN/KN , TN+1, RN , QN , HParams

CK
N , (CHCKN /KN ) 3 11 11 X 11 X 11 4 56 2% 13% 3% 5% 9 87 6% 23% 5% 8%

M3CK7N C
M3CK7N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , BSMGreeksCKN , (CBSMCK
N /KN ) 3 12 12 X 12 X 12 3 33 0% 10% 2% 3% 3 44 0% 11% 2% 4%

M3CK8N C
M3CK8N
N+1 /KN+1 SN/KN , TN+1, RN , QN , HJDParams

CK
N , (CHJDCKN /KN ) 3 14 14 X 14 X 14 4 47 2% 13% 3% 5% 4 59 2% 13% 3% 6%

M3CK9N C
M3CK9N
N+1 /KN+1 SN/KN , TN+1, RN , QN , FMLSParamsCKN , (CFMLSCK

N /KN ) 3 8 8 X 8 X 8 1 44 0% 5% 2% 4% 2 55 0% 8% 3% 5%
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Table A.2.30: Call Option Price Scaled by the Exercise Price Comparison (amongst Parametric and LSTM L1CKN −Models, LSTM L2CKN −Models, and LSTM L3CKN −Models): This table presents a performance comparison using both daily and monthly statistics amongst
the Black-Scholes-Merton (BSMCKN ) model, Heston (HCKN ) model, Heston Jump Diffusion (HJDCKN ) model, Finite Moment Log Stable (FMLSCKN ) model, LSTM L1CKN −Models (L1CK1N to L1CK9N ), LSTM L2CKN −Models (L2CK1N to L2CK9N ), and the LSTM
L3CKN −Models (L3CK1N to L3CK9N ). The forecast variable for all the models is the one-day-ahead call option price scaled by the exercise price (CN+1/KN+1). The models denoted by the N subscript use lagged input variables for forecasting CN+1/KN+1. The one-day-ahead
forecast errors of CN+1/KN+1 are used to compute the Root Mean Square Error (RMSE). Column I identifies the models, column II identifies the forecast variable, column III lists the input variables used by the models to obtain the one-trading-day ahead forecast of CN+1/KN+1, and
columns IV, V and VI describe the network architecture of the LSTM L1CKN −Models, LSTM L2CKN −Models, and the LSTM L3CKN −Models. Forecasts are made for 1,328 trading days, and there are 64 months covered in the sample using the monthly data.
When comparing all models simultaneously (i.e. including the random walk model (δCKN ), column VII reports the number of months out of the 64 months that each model has the smallest RMSE, while column VIII reports the number of days out of the 1,328 days each model has the
smallest RMSE. Columns IX (lower bound) and X (upper bound) present the winning percentage out of 64 months for each model, evaluated using the bootstrap sampling technique. The statistical bootstrap performed (with replacement) at a 95% confidence level is computed from
the monthly RMSE values of the respective models below. Columns XI (lower bound) and XII (upper bound) present the winning percentage out of 1326 days for each model computed from bootstrapping the daily RMSE values of the respective models at a 95% confidence level.
Similarly, when the δCKN model was excluded in the comparison, column XIII reports the number of months out of the 64 months that each model has the smallest RMSE, while column XIV reports the number of days out of the 1,328 days each model has the smallest RMSE.
Columns XV (lower bound) and XVI (upper bound) present the winning percentage out of 64 months for each model, evaluated using the bootstrap sampling technique. The statistical bootstrap performed (with replacement) at a 95% confidence level is computed from the monthly
RMSE values of the respective models below. Also, columns XVII (lower bound) and XVIII (upper bound) present the winning percentage out of 1326 days for each model computed from bootstrapping the daily RMSE values of the respective models at a 95% confidence level.

Including the random walk Excluding the random walk

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X) (XI) (XII) (XIII) (XIV) (XV) (XVI) (XVII) (XVIII)

Model Forecast Inputs No.
of
hidden
layers

No. of
hidden
nodes
per layer

Network
architecture

Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

δCKN CN+1/KN+1 CN ,KN - - - 60 551 88% 98% 39% 44% - - - - - -

BSMCKN C
BSMCKN
N+1 /KN+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBCK

N - - - 0 2 0% 0% 0% 0% 0 5 0% 0% 0% 1%

HCKN C
HCKN
N+1 /KN+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBCK

N , HParamsCKN - - - 0 1 0% 0% 0% 0% 0 17 0% 0% 1% 2%

HJDCKN C
HJDCKN
N+1 /KN+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBCK

N , HJDParamsCKN - - - 0 1 0% 0% 0% 0% 0 1 0% 0% 0% 0%

FMLSCKN C
FMLSCKN
N+1 /KN+1 SN ,KN+1, TN+1, RN , QN , FMLSParamsCKN - - - 0 1 0% 0% 0% 0% 0 1 0% 0% 0% 0%

L1CK1N C
L1CK1N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N 1 6 6 0 2 0% 0% 0% 0% 0 3 0% 0% 0% 1%

L1CK2N C
L1CK2N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ) 1 7 7 0 117 0% 0% 7% 10% 2 157 0% 8% 10% 14%

L1CK3N C
L1CK3N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN 1 12 12 0 9 0% 0% 0% 1% 0 9 0% 0% 0% 1%

L1CK4N C
L1CK4N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN , HParamsCKN 1 17 17 0 21 0% 0% 1% 2% 0 26 0% 0% 1% 3%

L1CK5N C
L1CK5N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN , HParamsCKN , (CHCKN /KN ) 1 18 18 0 23 0% 0% 1% 2% 1 38 0% 5% 2% 4%

L1CK6N C
L1CK6N
N+1 /KN+1 SN/KN , TN+1, RN , QN , HParams

CK
N , (CHCKN /KN ) 1 11 11 0 15 0% 0% 1% 2% 3 44 0% 11% 2% 4%

L1CK7N C
L1CK7N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , BSMGreeksCKN , (CBSMCK
N /KN ) 1 12 12 1 33 0% 5% 2% 3% 3 49 0% 9% 3% 5%

L1CK8N C
L1CK8N
N+1 /KN+1 SN/KN , TN+1, RN , QN , HJDParams

CK
N , (CHJDCKN /KN ) 1 14 14 0 0 0% 0% 0% 0% 0 0 0% 0% 0% 0%

L1CK9N C
L1CK9N
N+1 /KN+1 SN/KN , TN+1, RN , QN , FMLSParamsCKN , (CFMLSCK

N /KN ) 1 8 8 0 4 0% 0% 0% 1% 7 15 4% 19% 1% 2%

L2CK1N C
L2CK1N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N 3 6 6 X 6 0 6 0% 0% 0% 1% 0 6 0% 0% 0% 1%

L2CK2N C
L2CK2N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ) 3 7 7 X 7 0 117 0% 0% 7% 10% 1 185 0% 5% 12% 16%

L2CK3N C
L2CK3N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN 3 12 12 X 12 1 11 0% 5% 0% 1% 1 17 0% 5% 1% 2%

L2CK4N C
L2CK4N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN , HParamsCKN 3 17 17 X 17 0 23 0% 0% 1% 2% 0 35 0% 0% 2% 3%

L2CK5N C
L2CK5N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN , HParamsCKN , (CHCKN /KN ) 3 18 18 X 18 0 47 0% 0% 3% 4% 8 96 5% 20% 6% 9%

L2CK6N C
L2CK6N
N+1 /KN+1 SN/KN , TN+1, RN , QN , HParams

CK
N , (CHCKN /KN ) 3 11 11 X 11 0 19 0% 0% 1% 2% 1 22 0% 5% 1% 2%

L2CK7N C
L2CK7N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , BSMGreeksCKN , (CBSMCK
N /KN ) 3 12 12 X 12 0 30 0% 0% 2% 3% 3 81 0% 11% 5% 7%

L2CK8N C
L2CK8N
N+1 /KN+1 SN/KN , TN+1, RN , QN , HJDParams

CK
N , (CHJDCKN /KN ) 3 14 14 X 14 0 0 0% 0% 0% 0% 0 0 0% 0% 0% 0%

L2CK9N C
L2CK9N
N+1 /KN+1 SN/KN , TN+1, RN , QN , FMLSParamsCKN , (CFMLSCK

N /KN ) 3 8 8 X 8 0 12 0% 0% 0% 1% 3 22 0% 11% 1% 2%

L3CK1N C
L3CK1N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N 3 6 6 X 6 X 6 0 8 0% 0% 0% 1% 0 8 0% 0% 0% 1%

L3CK2N C
L3CK2N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ) 3 7 7 X 7 X 7 0 106 0% 0% 6% 9% 2 158 0% 8% 10% 14%

L3CK3N C
L3CK3N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN 3 12 12 X 12 X 12 1 21 0% 5% 1% 2% 1 28 0% 5% 1% 3%

L3CK4N C
L3CK4N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN , HParamsCKN 3 17 17 X 17 X 17 1 36 0% 5% 2% 4% 3 59 0% 11% 3% 6%

L3CK5N C
L3CK5N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN , HParamsCKN , (CHCKN /KN ) 3 18 18 X 18 X 18 0 48 0% 0% 3% 5% 20 97 19% 42% 6% 9%

L3CK6N C
L3CK6N
N+1 /KN+1 SN/KN , TN+1, RN , QN , HParams

CK
N , (CHCKN /KN ) 3 11 11 X 11 X 11 0 20 0% 0% 1% 2% 1 30 0% 5% 1% 3%

L3CK7N C
L3CK7N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , BSMGreeksCKN , (CBSMCK
N /KN ) 3 12 12 X 12 X 12 0 29 0% 0% 2% 3% 0 98 0% 0% 6% 9%

L3CK8N C
L3CK8N
N+1 /KN+1 SN/KN , TN+1, RN , QN , HJDParams

CK
N , (CHJDCKN /KN ) 3 14 14 X 14 X 14 0 0 0% 0% 0% 0% 0 0 0% 0% 0% 0%

L3CK9N C
L3CK9N
N+1 /KN+1 SN/KN , TN+1, RN , QN , FMLSParamsCKN , (CFMLSCK

N /KN ) 3 8 8 X 8 X 8 0 16 0% 0% 1% 2% 4 22 2% 13% 1% 2%
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Table A.2.31: Call Option Price Scaled by the Exercise Price Comparison (amongst MLP M1CKN −Models, LSTM L1CKN −Models, MLP M2CKN −Models, LSTM L2CKN −Models, MLP M3CKN −Models, and LSTM L3CKN −Models): This table presents a performance
comparison using both daily and monthly statistics amongst the MLP M1CKN −Models (M1CK1N to M1CK9N ), LSTM L1CKN −Models (L1CK1N to L1CK9N ), MLP M2CKN −Models (M2CK1N to M2CK9N ), LSTM L2CKN −Models (L2CK1N to L2CK9N ), MLP
M3CKN −Models (M3CK1N to M3CK9N ) and the LSTM L3CKN −Models (L3CK1N to L3CK9N ). The forecast variable for all the models is the one-day-ahead call option price scaled by the exercise price (CN+1/KN+1). The models denoted by the N subscript use lagged input
variables for forecasting CN+1/KN+1. The one-day-ahead forecast errors of CN+1/KN+1 are used to compute the Root Mean Square Error (RMSE). Column I identifies the models, column II identifies the forecast variable, column III lists the input variables used by the models to obtain
the one-trading-day ahead forecast of CN+1/KN+1, and columns IV, V and VI describe the network architecture of the MLP M1CKN −Models, LSTM L1CKN −Models, MLP M2CKN −Models, LSTM L2CKN −Models, MLP M3CKN −Models, and the LSTM L3CKN −Models.
Forecasts are made for 1,328 trading days, and there are 64 months covered in the sample using the monthly data.
When comparing all models simultaneously (i.e. including the random walk model (δCKN ), column VII reports the number of months out of the 64 months that each model has the smallest RMSE, while column VIII reports the number of days out of the 1,328 days each model has the
smallest RMSE. Columns IX (lower bound) and X (upper bound) present the winning percentage out of 64 months for each model, evaluated using the bootstrap sampling technique. The statistical bootstrap performed (with replacement) at a 95% confidence level is computed from
the monthly RMSE values of the respective models below. Columns XI (lower bound) and XII (upper bound) present the winning percentage out of 1326 days for each model computed from bootstrapping the daily RMSE values of the respective models at a 95% confidence level.
Similarly, when the δCKN model was excluded in the comparison, column XIII reports the number of months out of the 64 months that each model has the smallest RMSE, while column XIV reports the number of days out of the 1,328 days each model has the smallest RMSE.
Columns XV (lower bound) and XVI (upper bound) present the winning percentage out of 64 months for each model, evaluated using the bootstrap sampling technique. The statistical bootstrap performed (with replacement) at a 95% confidence level is computed from the monthly
RMSE values of the respective models below. Also, columns XVII (lower bound) and XVIII (upper bound) present the winning percentage out of 1326 days for each model computed from bootstrapping the daily RMSE values of the respective models at a 95% confidence level.

Including the random walk Excluding the random walk

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X) (XI) (XII) (XIII) (XIV) (XV) (XVI) (XVII) (XVIII)

Model Forecast Inputs No.
of
hidden
layers

No. of
hidden
nodes
per layer

Network
architecture

Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

δCKN CN+1/KN+1 CN ,KN - - - 18 202 17% 40% 13% 17% - - - - - -

M1CK1N C
M1CK1N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N 1 5 5 0 13 0% 0% 0% 2% 0 14 0% 0% 1% 2%

M1CK2N C
M1CK2N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ) 1 6 6 0 7 0% 0% 0% 1% 1 7 0% 5% 0% 1%

M1CK3N C
M1CK3N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN 1 11 11 0 23 0% 0% 1% 2% 0 26 0% 0% 1% 3%

M1CK4N C
M1CK4N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN , HParamsCKN 1 16 16 3 15 0% 11% 1% 2% 3 16 0% 11% 1% 2%

M1CK5N C
M1CK5N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN , HParamsCKN , (CHCKN /KN ) 1 17 17 2 15 0% 8% 1% 2% 2 23 0% 8% 1% 2%

M1CK6N C
M1CK6N
N+1 /KN+1 SN/KN , TN+1, RN , QN , HParams

CK
N , (CHCKN /KN ) 1 10 10 0 14 0% 0% 1% 2% 1 14 0% 5% 1% 2%

M1CK7N C
M1CK7N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , BSMGreeksCKN , (CBSMCK
N /KN ) 1 11 11 0 19 0% 0% 1% 2% 0 19 0% 0% 1% 2%

M1CK8N C
M1CK8N
N+1 /KN+1 SN/KN , TN+1, RN , QN , HJDParams

CK
N , (CHJDCKN /KN ) 1 13 13 0 18 0% 0% 1% 2% 0 19 0% 0% 1% 2%

M1CK9N C
M1CK9N
N+1 /KN+1 SN/KN , TN+1, RN , QN , FMLSParamsCKN , (CFMLSCK

N /KN ) 1 7 7 0 16 0% 0% 1% 2% 0 16 0% 0% 1% 2%

M2CK1N C
M2CK1N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N 2 5 5 X 5 0 25 0% 0% 1% 3% 0 26 0% 0% 1% 3%

M2CK2N C
M2CK2N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ) 2 6 6 X 6 0 36 0% 0% 2% 4% 0 40 0% 0% 2% 4%

M2CK3N C
M2CK3N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN 2 11 11 X 11 2 32 0% 8% 2% 3% 3 41 0% 9% 2% 4%

M2CK4N C
M2CK4N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN , HParamsCKN 2 16 16 X 16 1 20 0% 5% 1% 2% 1 25 0% 6% 1% 3%

M2CK5N C
M2CK5N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN , HParamsCKN , (CHCKN /KN ) 2 17 17 X 17 0 15 0% 0% 1% 2% 0 17 0% 0% 1% 2%

M2CK6N C
M2CK6N
N+1 /KN+1 SN/KN , TN+1, RN , QN , HParams

CK
N , (CHCKN /KN ) 2 10 10 X 10 4 12 2% 13% 0% 1% 5 15 2% 16% 1% 2%

M2CK7N C
M2CK7N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , BSMGreeksCKN , (CBSMCK
N /KN ) 2 11 11 X 11 1 21 0% 5% 1% 2% 1 27 0% 5% 1% 3%

M2CK8N C
M2CK8N
N+1 /KN+1 SN/KN , TN+1, RN , QN , HJDParams

CK
N , (CHJDCKN /KN ) 2 13 13 X 13 2 21 0% 8% 1% 2% 2 27 0% 8% 1% 3%

M2CK9N C
M2CK9N
N+1 /KN+1 SN/KN , TN+1, RN , QN , FMLSParamsCKN , (CFMLSCK

N /KN ) 2 7 7 X 7 0 16 0% 0% 1% 2% 0 22 0% 0% 1% 2%

M3CK1N C
M3CK1N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N 3 5 5 X 5 X 5 2 25 0% 8% 1% 3% 2 26 0% 8% 1% 3%

M3CK2N C
M3CK2N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ) 3 6 6 X 6 X 6 2 29 0% 8% 1% 3% 4 40 2% 13% 2% 4%

M3CK3N C
M3CK3N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN 3 11 11 X 11 X 11 6 41 3% 17% 2% 4% 6 52 3% 17% 3% 5%

M3CK4N C
M3CK4N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN , HParamsCKN 3 16 16 X 16 X 16 5 39 2% 16% 2% 4% 7 63 3% 19% 4% 6%

M3CK5N C
M3CK5N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN , HParamsCKN , (CHCKN /KN ) 3 17 17 X 17 X 17 3 22 0% 11% 1% 2% 7 55 5% 19% 3% 5%

M3CK6N C
M3CK6N
N+1 /KN+1 SN/KN , TN+1, RN , QN , HParams

CK
N , (CHCKN /KN ) 3 10 10 X 10 X 10 3 30 0% 11% 1% 3% 8 52 5% 20% 3% 5%

M3CK7N C
M3CK7N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , BSMGreeksCKN , (CBSMCK
N /KN ) 3 11 11 X 11 X 11 3 24 0% 9% 1% 3% 3 32 0% 11% 2% 3%

M3CK8N C
M3CK8N
N+1 /KN+1 SN/KN , TN+1, RN , QN , HJDParams

CK
N , (CHJDCKN /KN ) 3 13 13 X 13 X 13 4 24 2% 13% 1% 3% 4 35 2% 13% 2% 4%

M3CK9N C
M3CK9N
N+1 /KN+1 SN/KN , TN+1, RN , QN , FMLSParamsCKN , (CFMLSCK

N /KN ) 3 7 7 X 7 X 7 1 18 0% 5% 1% 2% 2 28 0% 8% 1% 3%

L1CK1N C
L1CK1N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N 1 5 5 0 1 0% 0% 0% 0% 0 1 0% 0% 0% 0%

L1CK2N C
L1CK2N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ) 1 6 6 0 89 0% 0% 5% 8% 0 89 0% 0% 5% 8%

L1CK3N C
L1CK3N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN 1 11 11 0 4 0% 0% 0% 1% 0 4 0% 0% 0% 1%

L1CK4N C
L1CK4N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN , HParamsCKN 1 16 16 0 19 0% 0% 1% 2% 0 20 0% 0% 1% 2%

L1CK5N C
L1CK5N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN , HParamsCKN , (CHCKN /KN ) 1 17 17 0 16 0% 0% 1% 2% 0 16 0% 0% 1% 2%

L1CK6N C
L1CK6N
N+1 /KN+1 SN/KN , TN+1, RN , QN , HParams

CK
N , (CHCKN /KN ) 1 10 10 0 10 0% 0% 0% 1% 0 10 0% 0% 0% 1%

L1CK7N C
L1CK7N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , BSMGreeksCKN , (CBSMCK
N /KN ) 1 11 11 1 14 0% 5% 1% 2% 1 14 0% 5% 0% 2%

L1CK8N C
L1CK8N
N+1 /KN+1 SN/KN , TN+1, RN , QN , HJDParams

CK
N , (CHJDCKN /KN ) 1 13 13 0 0 0% 0% 0% 0% 0 0 0% 0% 0% 0%

L1CK9N C
L1CK9N
N+1 /KN+1 SN/KN , TN+1, RN , QN , FMLSParamsCKN , (CFMLSCK

N /KN ) 1 7 7 0 2 0% 0% 0% 0% 0 2 0% 0% 0% 0%

L2CK1N C
L2CK1N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N 2 5 5 X 5 0 6 0% 0% 0% 1% 0 6 0% 0% 0% 1%

L2CK2N C
L2CK2N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ) 2 6 6 X 6 0 92 0% 0% 6% 8% 0 96 0% 0% 6% 9%

L2CK3N C
L2CK3N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN 2 11 11 X 11 0 8 0% 0% 0% 1% 0 8 0% 0% 0% 1%

L2CK4N C
L2CK4N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN , HParamsCKN 2 16 16 X 16 0 18 0% 0% 1% 2% 0 19 0% 0% 1% 2%

L2CK5N C
L2CK5N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN , HParamsCKN , (CHCKN /KN ) 2 17 17 X 17 0 28 0% 0% 1% 3% 0 31 0% 0% 2% 3%

L2CK6N C
L2CK6N
N+1 /KN+1 SN/KN , TN+1, RN , QN , HParams

CK
N , (CHCKN /KN ) 2 10 10 X 10 0 16 0% 0% 1% 2% 0 16 0% 0% 1% 2%

L2CK7N C
L2CK7N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , BSMGreeksCKN , (CBSMCK
N /KN ) 2 11 11 X 11 0 17 0% 0% 1% 2% 0 18 0% 0% 1% 2%

L2CK8N C
L2CK8N
N+1 /KN+1 SN/KN , TN+1, RN , QN , HJDParams

CK
N , (CHJDCKN /KN ) 2 13 13 X 13 0 0 0% 0% 0% 0% 0 0 0% 0% 0% 0%

L2CK9N C
L2CK9N
N+1 /KN+1 SN/KN , TN+1, RN , QN , FMLSParamsCKN , (CFMLSCK

N /KN ) 2 7 7 X 7 0 10 0% 0% 0% 1% 0 10 0% 0% 0% 1%

L3CK1N C
L3CK1N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N 3 5 5 X 5 X 5 0 7 0% 0% 0% 1% 0 7 0% 0% 0% 1%

L3CK2N C
L3CK2N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ) 3 6 6 X 6 X 6 0 76 0% 0% 4% 7% 0 78 0% 0% 4% 7%

L3CK3N C
L3CK3N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN 3 11 11 X 11 X 11 1 12 0% 5% 0% 2% 1 12 0% 5% 0% 1%

L3CK4N C
L3CK4N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN , HParamsCKN 3 16 16 X 16 X 16 0 25 0% 0% 1% 3% 0 26 0% 0% 1% 3%

L3CK5N C
L3CK5N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN , HParamsCKN , (CHCKN /KN ) 3 17 17 X 17 X 17 0 25 0% 0% 1% 3% 0 26 0% 0% 1% 3%

L3CK6N C
L3CK6N
N+1 /KN+1 SN/KN , TN+1, RN , QN , HParams

CK
N , (CHCKN /KN ) 3 10 10 X 10 X 10 0 14 0% 0% 1% 2% 0 14 0% 0% 1% 2%

L3CK7N C
L3CK7N
N+1 /KN+1 SN/KN , TN+1, RN , QN , σ

CALIBCK

N , BSMGreeksCKN , (CBSMCK
N /KN ) 3 11 11 X 11 X 11 0 15 0% 0% 1% 2% 0 16 0% 0% 1% 2%

L3CK8N C
L3CK8N
N+1 /KN+1 SN/KN , TN+1, RN , QN , HJDParams

CK
N , (CHJDCKN /KN ) 3 13 13 X 13 X 13 0 0 0% 0% 0% 0% 0 0 0% 0% 0% 0%

L3CK9N C
L3CK9N
N+1 /KN+1 SN/KN , TN+1, RN , QN , FMLSParamsCKN , (CFMLSCK

N /KN ) 3 7 7 X 7 X 7 0 13 0% 0% 0% 2% 0 13 0% 0% 0% 2%
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Table A.2.32: Call Option Price Scaled by the Exercise Price Comparison (amongst Parametric Models): This table presents a performance comparison using both daily and monthly statistics amongst the Black-Scholes-Merton (BSMCKN ) model,
Heston (HCKN ) model, Heston Jump Diffusion (HJDCKN ) model, and the Finite Moment Log Stable (FMLSCKN ) model. The forecast variable for all the models is the one-day-ahead call option price scaled by the exercise price (CN+1/KN+1).
The models denoted by the N subscript use lagged input variables for forecasting CN+1/KN+1. The one-day-ahead forecast errors of CN+1/KN+1 are used to compute the Root Mean Square Error (RMSE). Column I identifies the models, column II
identifies the forecast variable, and column III lists the input variables used by the models to obtain the one-trading-day ahead forecast of CN+1. Forecasts are made for 1,328 trading days, and there are 64 months covered in the sample using the
monthly data.
When comparing all models simultaneously (i.e. including the random walk model (δCKN ), column VII reports the number of months out of the 64 months that each model has the smallest RMSE, while column VIII reports the number of days out
of the 1,328 days each model has the smallest RMSE. Columns IX (lower bound) and X (upper bound) present the winning percentage out of 64 months for each model, evaluated using the bootstrap sampling technique. The statistical bootstrap
performed (with replacement) at a 95% confidence level is computed from the monthly RMSE values of the respective models below. Columns XI (lower bound) and XII (upper bound) present the winning percentage out of 1326 days for each model
computed from bootstrapping the daily RMSE values of the respective models at a 95% confidence level.
Similarly, when the δCKN model was excluded in the comparison, column XIII reports the number of months out of the 64 months that each model has the smallest RMSE, while column XIV reports the number of days out of the 1,328 days each model
has the smallest RMSE. Columns XV (lower bound) and XVI (upper bound) present the winning percentage out of 64 months for each model, evaluated using the bootstrap sampling technique. The statistical bootstrap performed (with replacement)
at a 95% confidence level is computed from the monthly RMSE values of the respective models below. Also, columns XVII (lower bound) and XVIII (upper bound) present the winning percentage out of 1326 days for each model computed from
bootstrapping the daily RMSE values of the respective models at a 95% confidence level.

Including the random walk Excluding the random walk

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X) (XI) (XII) (XIII) (XIV) (XV)

Model Forecast Inputs Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

δCKN CN+1/KN+1 CN ,KN 64 1279 100% 100% 95% 97% - - - - - -

BSMCKN C
BSMCKN
N+1 /KN+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBCK

N 0 29 0% 0% 2% 3% 17 354 16% 38% 24% 29%

HCKN C
HCKN
N+1 /KN+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBCK

N , HParamsCKN 0 9 0% 0% 0% 1% 0 259 0% 0% 17% 22%

HJDCKN C
HJDCKN
N+1 /KN+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBCK

N , HJDParamsCKN 0 8 0% 0% 0% 1% 40 540 52% 75% 38% 43%

FMLSCKN C
FMLSCKN
N+1 /KN+1 SN ,KN+1, TN+1, RN , QN , FMLSParamsCKN 0 3 0% 0% 0% 1% 7 178 5% 20% 12% 15%
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A.2.4 Pricing performance of CK-Models that use one-trading-

day-ahead input variables to forecast the call option price

CKN+1 for the next trading day

Table A.2.33 to Table A.2.36 shows the relative out-of-sample pricing performance (in RMSE)
amongst the models that use one-trading-day-ahead input variables to forecast the one-trading-
day-ahead call option price scaled by the strike price(CN+1/KN+1). For convenience, the models
in Table A.2.33 to Table A.2.35 list the forecast variable and the input variables in columns II
and III, respectively, and the architecture of the MLP and LSTM models in columns IV, V and
VI, respectively. The performance metric is the RMSE of the one-trading-day-ahead forecast
errors of CN+1/KN+1, which is computed for each model utilising all of the errors in each day or
each month. Amongst all of the models (including the random walk model (δCKN )), columns
VII and VIII record the number of months and days, respectively, that each model has the
lowest RMSE. In order to be certain of our results, we performed a bootstrap using the daily
and monthly RMSEs. Columns IX (lower bound) and X (upper bound) present the results
from the bootstrap performed (with replacement) using monthly RMSEs at a 95% confidence
level and show the winning percentage out of 64 months for each model (including the δCKN

model), and similarly, the 95 % confidence intervals computed from bootstrapping of the daily
RMSEs signifies the winning percentage out of 1328 days for each model and are reported in
columns XI (lower bound), XII (upper bound). While excluding the δCKN model amongst the
comparison, columns XIII and XIV record the number of months and days that each model has
the lowest RMSE. We repeat the exercise of performing the bootstrap by excluding the δCKN

model in the comparison, and thus, columns XV (lower bound) and XVI (upper bound) present
the results from the bootstrap performed (with replacement) using monthly RMSEs at a 95%
confidence level, and shows the winning percentage out of 64 months for each model (excluding
the δCKN model) and similarly, the 95 % confidence intervals computed from bootstrapping
of the daily RMSEs signifies the winning percentage out of 1328 days for each model and are
reported in columns XVII (lower bound), XVIII (upper bound).

In the below several comparisons, even though a particular model wins by a higher percentage
against other models, we investigated further these models pairwise by performing a pairwise
bootstrap comparison, which was computed using the respective pair’s daily RMSEs. The results
are presented in Table 20 of the Electronic Appendix. Also, we examined the pairwise Diebold-
Mariano(DM) (Diebold and Mariano (1995)) tests on these models and have presented the
results in Table 16 of the Electronic Appendix. In constructing the DM tests, the model pairs
are reported in column I and column II, and the DM test statistics for a particular pair are
reported in column III. If the null can be rejected, a positive number suggests the rejection may
be due to the second model being the better forecast model. In contrast, a negative value suggests
the rejection may be due to the first model being the better forecast model. The model pairs
highlighted in a red state that their forecasts have statistically insignificant differences in their
prediction accuracy. The following model pairs have been shown to have statistically insignificant
differences:(M3CK2N+1, M3CK4N+1), and (L3CK3N+1, L3CK7N+1). The RMSEs for the
CK −Models that use one-trading-day-ahead input variables to forecast the CN+1/KN+1 for
the next trading day on a monthly, yearly, and overall basis can be found in the Electronic
Appendix, in Tables 4, 8, and 12, respectively.
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A.2.4.1 Comparison amongst all Parametric Models with Triple Hidden Layer

ANN Models:

In this section, we compare the out-of-sample pricing performance of the random walk model
(δCKN ), the parametric models (BSMCKN+1, HCKN+1, HJDCKN+1, and FMLSCKN+1),
the triple hidden layer MLP models (M3CKN+1 −Models) and the triple hidden layer LSTM
models (L3CKN+1−Models), then the parametric models with the M3CKN+1−Models, and
finally the parametric models with the L3CKN+1 −Models.

The results for the parametric models with the MLP M3CKN+1 −Models (M3CK1N+1 to
M3CK9N+1) and the LSTM L3CKN+1 −Models (L3CK1N+1 to L3CK9N+1) are presented
in Table A.2.33. If all the models are individually compared, then the M3CK2N+1 model had
the lowest RMSE for 291 days (having a daily bootstrap winning % of 20% to 24%) out of
1,328 days. When the δCKN was excluded from the comparison, the M3CK2N+1 model still
outperformed all other models for 308 days (having a daily bootstrap winning % of 21% to 26%)
out of 1,328 days.

Table A.2.34 presents the results for the comparison of the parametric models with the MLP
M3CKN+1−Models (M3CK1N+1 to M3CK9N+1). Accordingly, the M3CK2N+1 model had
the lowest RMSE for 292 days (having a daily bootstrap winning % of 20% to 24%) out of
1,328 days. When the δCKN was excluded from the comparison, the M3CK2N+1 model still
outperformed all other models for 313 days (having a daily bootstrap winning % of 21% to 26%)
out of 1,328 days.

We present the comparison results of the parametric models with the LSTM L3CKN+1−Models
(L3CK1N+1 to L3CK9N+1) in Table A.2.35. We find that the δCKN model had the lowest
RMSE for 680 days (having a daily bootstrap winning % of 48% to 54%) out of 1,328 days.
When the δCKN was excluded from the comparison, the L3CK2N+1 model outperformed all
other models for 345 days (having a daily bootstrap winning % of 24% to 28%) out of 1,328
days.

Thus, when the parametric models are compared with the triple hidden layer ANN models
that use one-trading-day-ahead input variables to forecast the CN+1/KN+1, we conclude that
an MLP model (M3CK2N+1) could outperform all other models (in Table A.2.33). Similarly,
the out-performance of an MLP model (M3CK2N+1 in Table A.2.34) can be noticed when the
parametric models were compared with the triple hidden layer MLP models. However, when the
parametric models were compared with the triple hidden layer LSTM models, an LSTM model
(L3CK2N+1) could outperform the parametric models (in Table A.2.35).

A.2.4.2 Comparison amongst all Parametric models:

In this section, we compare the out-of-sample pricing performance of the random walk model
(δCKN ), and the parametric models (BSMCKN+1,HCKN+1,HJDCKN+1, and FMLSCKN+1)
in Table A.2.36. We find that the δCKN model had the lowest RMSE for 1158 days (having a
daily bootstrap winning % of 85% to 89%) out of 1,328 days. When the δCKN was excluded from
the comparison, the HJDCKN+1 model outperformed all other models for 559 days (having a
daily bootstrap winning % of 39% to 45%) out of 1,328 days.

Thus, when comparing the out-of-sample pricing performance amongst the parametric models,
the HJDCKN+1 model had outperformed all other parametric models by a large margin (in
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Table A.2.36).
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Table A.2.33: Call Option Price Scaled by the Exercise Price Comparison (amongst Parametric, MLP M3CKN+1 − Models and LSTM L3CKN+1 − Models): This table presents a performance comparison using both daily and monthly statistics amongst the Black-Scholes-Merton
(BSMCKN+1) model, Heston (HCKN+1) model, Heston Jump Diffusion (HJDCKN+1) model, Finite Moment Log Stable (FMLSCKN+1) model, MLP M3CKN+1 −Models (M3CK1N+1 to M3CK9N+1) and the LSTM L3CKN+1 −Models (L3CK1N+1 to L3CK9N+1). The forecast
variable for all the models is the one-day-ahead call option price scaled by the exercise price (CN+1/KN+1). The models denoted by the N+1 subscript use one-day-ahead input variables for forecasting CN+1/KN+1. The one-day-ahead forecast errors of CN+1/KN+1 are used to compute the
Root Mean Square Error (RMSE). Column I identifies the models, column II identifies the forecast variable, column III lists the input variables used by the models to obtain the one-trading-day-ahead forecast of CN+1/KN+1, and columns IV, V and VI describe the network architecture of
the MLP M3CKN+1 −Models and the LSTM L3CKN+1 −Models. Forecasts are made for 1,328 trading days, and there are 64 months covered in the sample using the monthly data.
When comparing all models simultaneously (i.e. including the random walk model (δCKN ), column VII reports the number of months out of the 64 months that each model has the smallest RMSE, while column VIII reports the number of days out of the 1,328 days each model has the
smallest RMSE. Columns IX (lower bound) and X (upper bound) present the winning percentage out of 64 months for each model, evaluated using the bootstrap sampling technique. The statistical bootstrap performed (with replacement) at a 95% confidence level is computed from the
monthly RMSE values of the respective models below. Columns XI (lower bound), and XII (upper bound) present the winning percentage out of 1326 days for each model computed from bootstrapping the daily RMSE values of the respective models at a 95% confidence level.
Similarly, when the δCKN model was excluded in the comparison, column XIII reports the number of months out of the 64 months that each model has the smallest RMSE, while column XIV reports the number of days out of the 1,328 days each model has the smallest RMSE. Columns XV
(lower bound) and XVI (upper bound) present the winning percentage out of 64 months for each model, evaluated using the bootstrap sampling technique. The statistical bootstrap performed (with replacement) at a 95% confidence level is computed from the monthly RMSE values of the
respective models below. Also, columns XVII (lower bound) and XVIII (upper bound) present the winning percentage out of 1326 days for each model computed from bootstrapping the daily RMSE values of the respective models at a 95% confidence level.

Including the random walk Excluding the random walk

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X) (XI) (XII) (XIII) (XIV) (XV) (XVI) (XVII) (XVIII)

Model Forecast Inputs No.
of
hidden
layers

No. of
hidden
nodes
per layer

Network
architecture

Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

δCKN CN+1/KN+1 CN ,KN - - - 0 183 0% 0% 12% 16% - - - - - -

BSMCKN+1 C
BSMCKN+1
N+1 /KN+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBCK

N - - - 0 0 0% 0% 0% 0% 0 0 0% 0% 0% 0%

HCKN+1 C
HCKN+1
N+1 /KN+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBCK

N , HParamsCKN - - - 0 2 0% 0% 0% 0% 0 2 0% 0% 0% 0%

HJDCKN+1 C
HJDCKN+1
N+1 /KN+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBCK

N , HJDParamsCKN - - - 0 0 0% 0% 0% 0% 0 0 0% 0% 0% 0%

FMLSCKN+1 C
FMLSCKN+1
N+1 /KN+1 SN+1,KN+1, TN+1, RN+1, QN+1, FMLSParamsCKN - - - 0 0 0% 0% 0% 0% 0 0 0% 0% 0% 0%

M3CK1N+1 C
M3CK1N+1
N+1 /KN+1 SN+1/KN+1, TN+1, RN+1, QN+1, σ

CALIBCK

N 3 5 5 X 5 X 5 0 117 0% 0% 7% 10% 0 120 0% 0% 8% 11%

M3CK2N+1 C
M3CK2N+1
N+1 /KN+1 SN+1/KN+1, TN+1, RN+1, QN+1, σ

CALIBCK

N , (CN/KN ) 3 6 6 X 6 X 6 27 291 30% 55% 20% 24% 27 308 30% 55% 21% 26%

M3CK3N+1 C
M3CK3N+1
N+1 /KN+1 SN+1/KN+1, TN+1, RN+1, QN+1, σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN 3 11 11 X 11 X 11 12 181 11% 28% 12% 16% 12 203 9% 28% 13% 17%

M3CK4N+1 C
M3CK4N+1
N+1 /KN+1 SN+1/KN+1, TN+1, RN+1, QN+1, σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN , HParamsCKN 3 16 16 X 16 X 16 18 120 17% 39% 8% 11% 18 143 17% 39% 9% 13%

M3CK5N+1 C
M3CK5N+1
N+1 /KN+1 SN+1/KN+1, TN+1, RN+1, QN+1, σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN , HParamsCKN , (CHCKN /KN ) 3 17 17 X 17 X 17 0 49 0% 0% 3% 5% 0 71 0% 0% 4% 6%

M3CK6N+1 C
M3CK6N+1
N+1 /KN+1 SN+1/KN+1, TN+1, RN+1, QN+1, HParams

CK
N , (CHCKN /KN ) 3 10 10 X 10 X 10 3 79 0% 11% 5% 7% 3 106 0% 11% 7% 9%

M3CK7N+1 C
M3CK7N+1
N+1 /KN+1 SN+1/KN+1, TN+1, RN+1, QN+1, σ

CALIBCK

N , BSMGreeksCKN , (CBSMCK
N /KN ) 3 11 11 X 11 X 11 0 25 0% 0% 1% 3% 0 52 0% 0% 3% 5%

M3CK8N+1 C
M3CK8N+1
N+1 /KN+1 SN+1/KN+1, TN+1, RN+1, QN+1, HJDParams

CK
N , (CHJDCKN /KN ) 3 13 13 X 13 X 13 2 140 0% 8% 9% 12% 2 165 0% 8% 11% 14%

M3CK9N+1 C
M3CK9N+1
N+1 /KN+1 SN+1/KN+1, TN+1, RN+1, QN+1, FMLSParamsCKN , (CFMLSCK

N /KN ) 3 7 7 X 7 X 7 2 131 0% 8% 8% 11% 2 140 0% 8% 9% 12%

L3CK1N+1 C
L3CK1N+1
N+1 /KN+1 SN+1/KN+1, TN+1, RN+1, QN+1, σ

CALIBCK

N 3 5 5 X 5 X 5 0 0 0% 0% 0% 0% 0 0 0% 0% 0% 0%

L3CK2N+1 C
L3CK2N+1
N+1 /KN+1 SN+1/KN+1, TN+1, RN+1, QN+1, σ

CALIBCK

N , (CN/KN ) 3 6 6 X 6 X 6 0 5 0% 0% 0% 1% 0 10 0% 0% 0% 1%

L3CK3N+1 C
L3CK3N+1
N+1 /KN+1 SN+1/KN+1, TN+1, RN+1, QN+1, σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN 3 11 11 X 11 X 11 0 1 0% 0% 0% 0% 0 2 0% 0% 0% 0%

L3CK4N+1 C
L3CK4N+1
N+1 /KN+1 SN+1/KN+1, TN+1, RN+1, QN+1, σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN , HParamsCKN 3 16 16 X 16 X 16 0 1 0% 0% 0% 0% 0 2 0% 0% 0% 0%

L3CK5N+1 C
L3CK5N+1
N+1 /KN+1 SN+1/KN+1, TN+1, RN+1, QN+1, σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN , HParamsCKN , (CHCKN /KN ) 3 17 17 X 17 X 17 0 2 0% 0% 0% 0% 0 2 0% 0% 0% 0%

L3CK6N+1 C
L3CK6N+1
N+1 /KN+1 SN+1/KN+1, TN+1, RN+1, QN+1, HParams

CK
N , (CHCKN /KN ) 3 10 10 X 10 X 10 0 0 0% 0% 0% 0% 0 0 0% 0% 0% 0%

L3CK7N+1 C
L3CK7N+1
N+1 /KN+1 SN+1/KN+1, TN+1, RN+1, QN+1, σ

CALIBCK

N , BSMGreeksCKN , (CBSMCK
N /KN ) 3 11 11 X 11 X 11 0 1 0% 0% 0% 0% 0 2 0% 0% 0% 0%

L3CK8N+1 C
L3CK8N+1
N+1 /KN+1 SN+1/KN+1, TN+1, RN+1, QN+1, HJDParams

CK
N , (CHJDCKN /KN ) 3 13 13 X 13 X 13 0 0 0% 0% 0% 0% 0 0 0% 0% 0% 0%

L3CK9N+1 C
L3CK9N+1
N+1 /KN+1 SN+1/KN+1, TN+1, RN+1, QN+1, FMLSParamsCKN , (CFMLSCK

N /KN ) 3 7 7 X 7 X 7 0 0 0% 0% 0% 0% 0 0 0% 0% 0% 0%
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Table A.2.34: Call Option Price Scaled by the Exercise Price Comparison (amongst Parametric and MLP M3CKN+1 −Models): This table presents a performance comparison using both daily and monthly statistics amongst the Black-Scholes-Merton (BSMCKN+1) model, Heston
(HCKN+1) model, Heston Jump Diffusion (HJDCKN+1) model, Finite Moment Log Stable (FMLSCKN+1) model and the MLP M3CKN+1 −Models (M3CK1N+1 to M3CK9N+1). The forecast variable for all the models is the one-day-ahead call option price scaled by the exercise price
(CN+1/KN+1). The models denoted by the N+1 subscript use one-day-ahead input variables for forecasting CN+1/KN+1. The one-day-ahead forecast errors of CN+1/KN+1 are used to compute the Root Mean Square Error (RMSE). Column I identifies the models, column II identifies the
forecast variable, column III lists the input variables used by the models to obtain the one-trading-day-ahead forecast of CN+1/KN+1, and columns IV, V and VI describe the network architecture of the MLP M3CKN+1 −Models. Forecasts are made for 1,328 trading days, and there are 64
months covered in the sample using the monthly data.
When comparing all models simultaneously (i.e. including the random walk model (δCKN ), column VII reports the number of months out of the 64 months that each model has the smallest RMSE, while column VIII reports the number of days out of the 1,328 days each model has the
smallest RMSE. Columns IX (lower bound) and X (upper bound) present the winning percentage out of 64 months for each model, evaluated using the bootstrap sampling technique. The statistical bootstrap performed (with replacement) at a 95% confidence level is computed from the
monthly RMSE values of the respective models below. Columns XI (lower bound) and XII (upper bound) present the winning percentage out of 1326 days for each model computed from bootstrapping the daily RMSE values of the respective models at a 95% confidence level.
Similarly, when the δCKN model was excluded in the comparison, column XIII reports the number of months out of the 64 months that each model has the smallest RMSE, while column XIV reports the number of days out of the 1,328 days each model has the smallest RMSE. Columns XV
(lower bound) and XVI (upper bound) present the winning percentage out of 64 months for each model, evaluated using the bootstrap sampling technique. The statistical bootstrap performed (with replacement) at a 95% confidence level is computed from the monthly RMSE values of the
respective models below. Also, columns XVII (lower bound) and XVIII (upper bound) present the winning percentage out of 1326 days for each model computed from bootstrapping the daily RMSE values of the respective models at a 95% confidence level.

Including the random walk Excluding the random walk

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X) (XI) (XII) (XIII) (XIV) (XV) (XVI) (XVII) (XVIII)

Model Forecast Inputs No.
of
hidden
layers

No. of
hidden
nodes
per layer

Network
architecture

Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

δCKN CN+1/KN+1 CN ,KN - - - 0 185 0% 0% 12% 16% - - - - - -

BSMCKN+1 C
BSMCKN+1
N+1 /KN+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBCK

N - - - 0 0 0% 0% 0% 0% 0 0 0% 0% 0% 0%

HCKN+1 C
HCKN+1
N+1 /KN+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBCK

N , HParamsCKN - - - 0 2 0% 0% 0% 0% 0 2 0% 0% 0% 0%

HJDCKN+1 C
HJDCKN+1
N+1 /KN+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBCK

N , HJDParamsCKN - - - 0 0 0% 0% 0% 0% 0 0 0% 0% 0% 0%

FMLSCKN+1 C
FMLSCKN+1
N+1 /KN+1 SN+1,KN+1, TN+1, RN+1, QN+1, FMLSParamsCKN - - - 0 0 0% 0% 0% 0% 0 0 0% 0% 0% 0%

M3CK1N+1 C
M3CK1N+1
N+1 /KN+1 SN+1/KN+1, TN+1, RN+1, QN+1, σ

CALIBCK

N 3 5 5 X 5 X 5 0 117 0% 0% 7% 10% 0 121 0% 0% 8% 11%

M3CK2N+1 C
M3CK2N+1
N+1 /KN+1 SN+1/KN+1, TN+1, RN+1, QN+1, σ

CALIBCK

N , (CN/KN ) 3 6 6 X 6 X 6 27 292 31% 55% 20% 24% 27 313 31% 55% 21% 26%

M3CK3N+1 C
M3CK3N+1
N+1 /KN+1 SN+1/KN+1, TN+1, RN+1, QN+1, σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN 3 11 11 X 11 X 11 12 183 9% 30% 12% 16% 12 205 9% 29% 13% 17%

M3CK4N+1 C
M3CK4N+1
N+1 /KN+1 SN+1/KN+1, TN+1, RN+1, QN+1, σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN , HParamsCKN 3 16 16 X 16 X 16 18 124 17% 39% 8% 11% 18 149 17% 39% 10% 13%

M3CK5N+1 C
M3CK5N+1
N+1 /KN+1 SN+1/KN+1, TN+1, RN+1, QN+1, σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN , HParamsCKN , (CHCKN /KN ) 3 17 17 X 17 X 17 0 49 0% 0% 3% 5% 0 72 0% 0% 4% 7%

M3CK6N+1 C
M3CK6N+1
N+1 /KN+1 SN+1/KN+1, TN+1, RN+1, QN+1, HParams

CK
N , (CHCKN /KN ) 3 10 10 X 10 X 10 3 79 0% 11% 5% 7% 3 106 0% 11% 6% 9%

M3CK7N+1 C
M3CK7N+1
N+1 /KN+1 SN+1/KN+1, TN+1, RN+1, QN+1, σ

CALIBCK

N , BSMGreeksCKN , (CBSMCK
N /KN ) 3 11 11 X 11 X 11 0 26 0% 0% 1% 3% 0 55 0% 0% 3% 5%

M3CK8N+1 C
M3CK8N+1
N+1 /KN+1 SN+1/KN+1, TN+1, RN+1, QN+1, HJDParams

CK
N , (CHJDCKN /KN ) 3 13 13 X 13 X 13 2 140 0% 8% 9% 12% 2 165 0% 8% 11% 14%

M3CK9N+1 C
M3CK9N+1
N+1 /KN+1 SN+1/KN+1, TN+1, RN+1, QN+1, FMLSParamsCKN , (CFMLSCK

N /KN ) 3 7 7 X 7 X 7 2 131 0% 8% 8% 12% 2 140 0% 8% 9% 12%
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Table A.2.35: Call Option Price Scaled by the Exercise Price Comparison (amongst Parametric and LSTM L3CKN+1 −Models): This table presents a performance comparison using both daily and monthly statistics amongst the Black-Scholes-Merton (BSMCKN+1) model, Heston
(HCKN+1) model, Heston Jump Diffusion (HJDCKN+1) model, Finite Moment Log Stable (FMLSCKN+1) model and the LSTM L3CKN+1 −Models (L3CK1N+1 to L3CK9N+1). The forecast variable for all the models is the one-day-ahead call option price scaled by the exercise price
(CN+1/KN+1). The models denoted by the N+1 subscript use one-day-ahead input variables for forecasting CN+1/KN+1. The one-day-ahead forecast errors of CN+1/KN+1 are used to compute the Root Mean Square Error (RMSE). Column I identifies the models, column II identifies the
forecast variable, column III lists the input variables used by the models to obtain the one-trading-day-ahead forecast of CN+1/KN+1, and columns IV, V and VI describe the network architecture of the LSTM L3CKN+1 −Models. Forecasts are made for 1,328 trading days, and there are 64
months covered in the sample using the monthly data.
When comparing all models simultaneously (i.e. including the random walk model (δCKN ), column VII reports the number of months out of the 64 months that each model has the smallest RMSE, while column VIII reports the number of days out of the 1,328 days each model has the
smallest RMSE. Columns IX (lower bound) and X (upper bound) present the winning percentage out of 64 months for each model, evaluated using the bootstrap sampling technique. The statistical bootstrap performed (with replacement) at a 95% confidence level is computed from the
monthly RMSE values of the respective models below. Columns XI (lower bound) and XII (upper bound) present the winning percentage out of 1326 days for each model computed from bootstrapping the daily RMSE values of the respective models at a 95% confidence level.
Similarly, when the δCKN model was excluded in the comparison, column XIII reports the number of months out of the 64 months that each model has the smallest RMSE, while column XIV reports the number of days out of the 1,328 days each model has the smallest RMSE. Columns XV
(lower bound) and XVI (upper bound) present the winning percentage out of 64 months for each model, evaluated using the bootstrap sampling technique. The statistical bootstrap performed (with replacement) at a 95% confidence level is computed from the monthly RMSE values of the
respective models below. Also, columns XVII (lower bound) and XVIII (upper bound) present the winning percentage out of 1326 days for each model computed from bootstrapping the daily RMSE values of the respective models at a 95% confidence level.

Including the random walk Excluding the random walk

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X) (XI) (XII) (XIII) (XIV) (XV) (XVI) (XVII) (XVIII)

Model Forecast Inputs No.
of
hidden
layers

No. of
hidden
nodes
per layer

Network
architecture

Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

δCKN CN+1/KN+1 CN ,KN - - - 64 680 100% 100% 48% 54% - - - - - -

BSMCKN+1 C
BSMCKN+1
N+1 /KN+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBCK

N - - - 0 21 0% 0% 1% 2% 0 26 0% 0% 1% 3%

HCKN+1 C
HCKN+1
N+1 /KN+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBCK

N , HParamsCKN - - - 0 109 0% 0% 7% 10% 0 141 0% 0% 9% 12%

HJDCKN+1 C
HJDCKN+1
N+1 /KN+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBCK

N , HJDParamsCKN - - - 0 0 0% 0% 0% 0% 1 1 0% 5% 0% 0%

FMLSCKN+1 C
FMLSCKN+1
N+1 /KN+1 SN+1,KN+1, TN+1, RN+1, QN+1, FMLSParamsCKN - - - 0 0 0% 0% 0% 0% 2 1 0% 8% 0% 0%

L3CK1N+1 C
L3CK1N+1
N+1 /KN+1 SN+1/KN+1, TN+1, RN+1, QN+1, σ

CALIBCK

N 3 5 5 X 5 X 5 0 5 0% 0% 0% 1% 0 7 0% 0% 0% 1%

L3CK2N+1 C
L3CK2N+1
N+1 /KN+1 SN+1/KN+1, TN+1, RN+1, QN+1, σ

CALIBCK

N , (CN/KN ) 3 6 6 X 6 X 6 0 182 0% 0% 12% 15% 0 345 0% 0% 24% 28%

L3CK3N+1 C
L3CK3N+1
N+1 /KN+1 SN+1/KN+1, TN+1, RN+1, QN+1, σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN 3 11 11 X 11 X 11 0 39 0% 0% 2% 4% 4 87 2% 13% 5% 8%

L3CK4N+1 C
L3CK4N+1
N+1 /KN+1 SN+1/KN+1, TN+1, RN+1, QN+1, σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN , HParamsCKN 3 16 16 X 16 X 16 0 64 0% 0% 4% 6% 5 123 2% 16% 8% 11%

L3CK5N+1 C
L3CK5N+1
N+1 /KN+1 SN+1/KN+1, TN+1, RN+1, QN+1, σ

CALIBCK

N , (CN/KN ), BSMGreeksCKN , HParamsCKN , (CHCKN /KN ) 3 17 17 X 17 X 17 0 72 0% 0% 4% 7% 32 223 38% 63% 15% 19%

L3CK6N+1 C
L3CK6N+1
N+1 /KN+1 SN+1/KN+1, TN+1, RN+1, QN+1, HParams

CK
N , (CHCKN /KN ) 3 10 10 X 10 X 10 0 28 0% 0% 1% 3% 4 62 2% 13% 4% 6%

L3CK7N+1 C
L3CK7N+1
N+1 /KN+1 SN+1/KN+1, TN+1, RN+1, QN+1, σ

CALIBCK

N , BSMGreeksCKN , (CBSMCK
N /KN ) 3 11 11 X 11 X 11 0 39 0% 0% 2% 4% 14 195 13% 33% 13% 17%

L3CK8N+1 C
L3CK8N+1
N+1 /KN+1 SN+1/KN+1, TN+1, RN+1, QN+1, HJDParams

CK
N , (CHJDCKN /KN ) 3 13 13 X 13 X 13 0 0 0% 0% 0% 0% 0 0 0% 0% 0% 0%

L3CK9N+1 C
L3CK9N+1
N+1 /KN+1 SN+1/KN+1, TN+1, RN+1, QN+1, FMLSParamsCKN , (CFMLSCK

N /KN ) 3 7 7 X 7 X 7 0 89 0% 0% 5% 8% 2 117 0% 8% 7% 10%
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Table A.2.36: Call Option Price Scaled by the Exercise Comparison (amongst Parametric Models): This table presents a performance comparison using both daily and monthly statistics amongst the Black-Scholes-Merton (BSMCKN+1) model, Heston (HCKN+1)
model, Heston Jump Diffusion (HJDCKN+1) model, and the Finite Moment Log Stable (FMLSCKN+1) model. The forecast variable for all the models is the one-day-ahead call option price scaled by the exercise price (CN+1/KN+1). The models denoted
by the N+1 subscript use one-day-ahead input variables for forecasting CN+1/KN+1. The one-day-ahead forecast errors of CN+1/KN+1 are used to compute the Root Mean Square Error (RMSE). Column I identifies the models, column II identifies the forecast
variable, column III lists the input variables used by the models to obtain the one-trading-day-ahead forecast of CN+1. Forecasts are made for 1,328 trading days, and there are 64 months covered in the sample using the monthly data.
When comparing all models simultaneously (i.e. including the random walk model (δCKN ), column VII reports the number of months out of the 64 months that each model has the smallest RMSE, while column VIII reports the number of days out of the 1,328
days each model has the smallest RMSE. Columns IX (lower bound) and X (upper bound) present the winning percentage out of 64 months for each model, evaluated using the bootstrap sampling technique. The statistical bootstrap performed (with replacement)
at a 95% confidence level is computed from the monthly RMSE values of the respective models below. Columns XI (lower bound) and XII (upper bound) present the winning percentage out of 1326 days for each model computed from bootstrapping the daily
RMSE values of the respective models at a 95% confidence level.
Similarly, when the δCKN model was excluded in the comparison, column XIII reports the number of months out of the 64 months that each model has the smallest RMSE, while column XIV reports the number of days out of the 1,328 days each model has the
smallest RMSE. Columns XV (lower bound) and XVI (upper bound) present the winning percentage out of 64 months for each model, evaluated using the bootstrap sampling technique. The statistical bootstrap performed (with replacement) at a 95% confidence
level is computed from the monthly RMSE values of the respective models below. Also, columns XVII (lower bound) and XVIII (upper bound) present the winning percentage out of 1326 days for each model computed from bootstrapping the daily RMSE values
of the respective models at a 95% confidence level.

Including the random walk Excluding the random walk

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X) (XI) (XII) (XIII) (XIV) (XV)

Model Forecast Inputs Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

δCKN CN+1/KN+1 CN ,KN 64 1158 100% 100% 85% 89% - - - - - -

BSMCKN+1 C
BSMCKN+1
N+1 /KN+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBCK

N 0 36 0% 0% 2% 4% 18 305 17% 39% 21% 25%

HCKN+1 C
HCKN+1
N+1 /KN+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBCK

N , HParamsCKN 0 131 0% 0% 8% 11% 0 285 0% 0% 19% 24%

HJDCKN+1 C
HJDCKN+1
N+1 /KN+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBCK

N , HJDParamsCKN 0 3 0% 0% 0% 1% 39 559 50% 73% 39% 45%

FMLSCKN+1 C
FMLSCKN+1
N+1 /KN+1 SN+1,KN+1, TN+1, RN+1, QN+1, FMLSParamsCKN 0 0 0% 0% 0% 0% 7 179 5% 20% 12% 15%
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A.2.5 Pricing performance of C −Models that use lagged input

variables to forecast the call option price (CN+1) and per-

formance of CK −Models − Rescaled that have re-scaled

call option prices from CK−Models that use lagged input

variables to forecast the call option prices scaled by the

strike price (CN+1/KN+1) for the next trading day

Table A.2.37 shows the relative out-of-sample performance (in RMSE) amongst the models
that use lagged input variables to forecast the one-trading-day-ahead call option price (CN+1),
and the models that use lagged input variables to forecast the one-trading-day-ahead call option
price scaled by the strike price(CN+1/KN+1) which is later re-scaled to CN+1. Column II lists
whether the forecast variable of the model has been re-scaled to CN+1. The performance metric
is the RMSE of the one-trading-day-ahead forecast errors, computed for each model utilising
all of the errors in each day or each month. Amongst all of the models (including the random
walk model (δCN )), columns III and IV record the number of months and days, respectively,
that each model has the lowest RMSE. We performed a bootstrap using the daily and monthly
RMSEs to be certain of our results. Columns V (lower bound) and VI (upper bound) present
the results from the bootstrap performed (with replacement) using monthly RMSEs at a 95%
confidence level and show the winning percentage out of 64 months for each model (including
the δCN model), and similarly, the 95 % confidence intervals computed from bootstrapping
of the daily RMSEs signifies the winning percentage out of 1328 days for each model and are
reported in columns VII (lower bound), VIII (upper bound). While excluding the δCKN model
amongst the comparison, columns IX and X record the number of months and days, respectively,
that each model has the lowest RMSE. We repeat the exercise of performing the bootstrap
by excluding the δCN model in the comparison, and thus, the columns XI (lower bound) and
XII (upper bound) present the results from the bootstrap performed (with replacement) using
monthly RMSEs at a 95% confidence level and shows the winning percentage out of 64 months
for each model (excluding the δCN model) and similarly, the 95 % confidence intervals computed
from bootstrapping of the daily RMSEs signifies the winning percentage out of 1328 days for
each model and are reported in columns XIII (lower bound), XIV (upper bound).

A.2.5.1 Comparison amongst all Parametric Models with C − Models and

CK −Models−Rescaled:

In this section, we compare the out-of-sample performance of the random walk model (δCN ),
the parametric models (BSMCKN+1, HCKN+1, HJDCKN+1, and FMLSCKN+1), the C −
Models which consists of the single, double, triple hidden layer MLPmodels (M1CN−Models(M1C1N
toM1C9N ),M2CN−Models(M2C1N toM2C9N ), andM3CN−Models(M3C1N toM3C9N )),
the single, double, triple hidden layer LSTM models (L1CN − Models(L1C1N to L1C9N ),
L2CN − Models(L2C1N to L2C9N ), and L3CN − Models(L3C1N to L3C9N )), the CK −
Models − Rescaled models which consists of single, double, triple hidden layer MLP models
(M1CKN −Models − Rescaled(M1CK1N − Rescaled to M1CK9N − Rescaled), M2CKN −
Models−Rescaled(M2CK1N −Rescaled to M2CK9N −Rescaled), and M3CKN −Models−
Rescaled(M3CK1N−Rescaled toM3CK9N−Rescaled)), the single, double, triple hidden layer
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LSTM models (L1CKN −Models − Rescaled(L1CK1N − Rescaled to L1CK9N − Rescaled),
L2CKN −Models − Rescaled(L2CK1N − Rescaled to L2CK9N − Rescaled), and L3CKN −
Models−Rescaled(L3CK1N −Rescaled to L3CK9N −Rescaled)) in Table A.2.37.

We find that the δCN model had the lowest RMSE for 100 days (having a daily bootstrap
winning % of 6% to 9%) out of 1,328 days. When the δCN was excluded from the comparison,
the L3C9N model outperformed all other models for 97 days (having a daily bootstrap winning
% of 6% to 9%) out of 1,328 days.

Thus, when comparing the out-of-sample performance amongst the single, double and triple
hidden layer ANN models belonging to the C−Models category and amongst the single, double
and triple hidden layer ANN models belonging to the CK −Models − Rescaled category (in
Table A.2.37), we notice that only a triple hidden layer LSTM(L3C9N ) model belonging to the
C −Models category could outperform all other models.
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Table A.2.37: Call Price Comparison (amongst Parametric, MLP M1CN −Models, MLP M2CN −Models, MLP M3CN −Models, LSTM L1CN −Models, LSTM L2CN −Models,
LSTM L3CN − Models, MLP M1CKN − Models − Rescaled, MLP M2CKN − Models − Rescaled, MLP M3CKN − Models − Rescaled, LSTM L1CKN − Models − Rescaled,
LSTM L2CKN −Models − Rescaled, and LSTM L3CKN −Models − Rescaled): This table presents a performance comparison using both daily and monthly statistics amongst
the Black-Scholes-Merton (BSMCN ) model, Heston (HCN ) model, Heston Jump Diffusion (HJDCN ) model, Finite Moment Log Stable (FMLSCN ) model, MLP M1CN −Models
(M1C1N to M1C9N ), MLP M2CN −Models (M2C1N to M2C9N ), MLP M3CN −Models (M3C1N to M3C9N ), LSTM L1CN −Models (L1C1N to L1C9N ), LSTM L2CN −Models
(L2C1N to L2C9N ), LSTM L3CN −Models (L3C1N to L3C9N ), MLP M1CKN −Models − Rescaled (M1CK1N to M1CK9N ), MLP M2CKN −Models − Rescaled (M2CK1N
to M2CK9N ), MLP M3CKN −Models − Rescaled (M3CK1N to M3CK9N ), LSTM L1CKN −Models − Rescaled (L1CK1N to L1CK9N ), LSTM L2CKN −Models − Rescaled
(L2CK1N to L2CK9N ), and the LSTM L3CKN −Models−Rescaled (L3CK1N to L3CK9N ). The forecast variable for all the models is the one-day-ahead call option price (CN+1).
The models denoted by the N subscript use lagged input variables for forecasting CN+1. The one-day-ahead forecast errors of CN+1 are used to compute the Root Mean Square Error
(RMSE). Column I identifies the models, and column II identifies whether the forecast variable of the model has been re-scaled to CN+1. Forecasts are made for 1,328 trading days, and
there are 64 months covered in the sample using the monthly data. When comparing all models simultaneously (i.e. including the random walk model (δCN ), column III reports the
number of months out of the 64 months that each model has the smallest RMSE, while column IV reports the number of days out of the 1,328 days each model has the smallest RMSE.
Columns V (lower bound) and VI (upper bound) present the winning percentage out of 64 months for each model, evaluated using the bootstrap sampling technique. The statistical
bootstrap performed (with replacement) at a 95% confidence level is computed from the monthly RMSE values of the respective models below. Columns VII (lower bound) and VIII
(upper bound) present the winning percentage out of 1326 days for each model computed from bootstrapping the daily RMSE values of the respective models at a 95% confidence level.
Similarly, when the δCN model was excluded in the comparison, column IX reports the number of months out of the 64 months that each model has the smallest RMSE, while column X
reports the number of days out of the 1,328 days each model has the smallest RMSE. Columns XI (lower bound) and XII (upper bound) present the winning percentage out of 64 months
for each model, evaluated using the bootstrap sampling technique. The statistical bootstrap performed (with replacement) at a 95% confidence level is computed from the monthly
RMSE values of the respective models below. Also, columns XIII (lower bound) and XIV (upper bound) present the winning percentage out of 1326 days for each model computed from
bootstrapping the daily RMSE values of the respective models at a 95% confidence level.

Including the random walk Excluding the random walk

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X) (XI) (XII) (XIII) (XIV)

Model Forecast
variable
re-scaled
to call
price

Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

δCN - 6 100 3% 17% 6% 9% - - - - - -

BSMCN - 0 17 0% 0% 1% 2% 0 17 0% 0% 1% 2%

HCN - 1 9 0% 6% 0% 1% 1 9 0% 5% 0% 1%

HJDCN - 0 0 0% 0% 0% 0% 0 6 0% 0% 0% 1%

FMLSCN - 0 0 0% 0% 0% 0% 0 0 0% 0% 0% 0%

M1C1N - 0 0 0% 0% 0% 0% 0 0 0% 0% 0% 0%

M1C2N - 1 1 0% 5% 0% 0% 1 1 0% 5% 0% 0%

M1C3N - 1 13 0% 5% 0% 2% 1 17 0% 5% 1% 2%

M1C4N - 0 13 0% 0% 1% 2% 0 19 0% 0% 1% 2%

M1C5N - 2 4 0% 8% 0% 1% 2 5 0% 8% 0% 1%

M1C6N - 1 2 0% 5% 0% 0% 2 3 0% 8% 0% 1%

M1C7N - 1 7 0% 5% 0% 1% 1 8 0% 5% 0% 1%

M1C8N - 0 2 0% 0% 0% 0% 0 5 0% 0% 0% 1%

M1C9N - 0 2 0% 0% 0% 0% 0 2 0% 0% 0% 0%

M2C1N - 0 4 0% 0% 0% 1% 0 4 0% 0% 0% 1%

M2C2N - 0 8 0% 0% 0% 1% 0 9 0% 0% 0% 1%

M2C3N - 1 9 0% 5% 0% 1% 1 13 0% 5% 1% 2%

M2C4N - 1 14 0% 5% 1% 2% 1 19 0% 5% 1% 2%

M2C5N - 0 1 0% 0% 0% 0% 0 3 0% 0% 0% 1%

M2C6N - 0 2 0% 0% 0% 0% 1 5 0% 5% 0% 1%

M2C7N - 0 3 0% 0% 0% 1% 0 6 0% 0% 0% 1%

M2C8N - 0 0 0% 0% 0% 0% 0 1 0% 0% 0% 0%

M2C9N - 0 2 0% 0% 0% 0% 0 4 0% 0% 0% 1%

M3C1N - 0 5 0% 0% 0% 1% 0 8 0% 0% 0% 1%

M3C2N - 0 13 0% 0% 0% 2% 0 15 0% 0% 1% 2%

M3C3N - 3 23 0% 10% 1% 2% 3 28 0% 11% 1% 3%

M3C4N - 2 10 0% 8% 0% 1% 2 16 0% 8% 1% 2%

M3C5N - 0 1 0% 0% 0% 0% 0 4 0% 0% 0% 1%

M3C6N - 0 0 0% 0% 0% 0% 0 2 0% 0% 0% 0%

M3C7N - 3 7 0% 11% 0% 1% 3 15 0% 11% 1% 2%

M3C8N - 0 1 0% 0% 0% 0% 1 7 0% 5% 0% 1%

M3C9N - 0 7 0% 0% 0% 1% 1 13 0% 5% 0% 2%

L1C1N - 0 0 0% 0% 0% 0% 0 0 0% 0% 0% 0%

L1C2N - 0 4 0% 0% 0% 1% 0 4 0% 0% 0% 1%

L1C3N - 0 7 0% 0% 0% 1% 0 7 0% 0% 0% 1%

L1C4N - 0 17 0% 0% 1% 2% 0 17 0% 0% 1% 2%

L1C5N - 4 27 2% 13% 1% 3% 4 27 2% 13% 1% 3%

L1C6N - 0 10 0% 0% 0% 1% 0 10 0% 0% 0% 1%

L1C7N - 0 19 0% 0% 1% 2% 1 20 0% 5% 1% 2%

L1C8N - 1 16 0% 5% 1% 2% 1 17 0% 5% 1% 2%

L1C9N - 0 1 0% 0% 0% 0% 0 1 0% 0% 0% 0%

L2C1N - 0 0 0% 0% 0% 0% 0 0 0% 0% 0% 0%

L2C2N - 0 28 0% 0% 1% 3% 0 28 0% 0% 1% 3%

L2C3N - 0 19 0% 0% 1% 2% 0 19 0% 0% 1% 2%

L2C4N - 0 19 0% 0% 1% 2% 0 19 0% 0% 1% 2%

L2C5N - 1 25 0% 5% 1% 3% 1 29 0% 5% 1% 3%

L2C6N - 2 10 0% 8% 0% 1% 2 11 0% 8% 0% 1%

L2C7N - 3 12 0% 9% 0% 1% 3 13 0% 10% 0% 2%

L2C8N - 2 24 0% 8% 1% 3% 3 26 0% 11% 1% 3%

L2C9N - 0 26 0% 0% 1% 3% 0 27 0% 0% 1% 3%

L3C1N - 0 22 0% 0% 1% 2% 0 22 0% 0% 1% 2%

L3C2N - 0 57 0% 0% 3% 5% 0 57 0% 0% 3% 5%

L3C3N - 0 26 0% 0% 1% 3% 0 26 0% 0% 1% 3%

L3C4N - 0 45 0% 0% 2% 4% 0 45 0% 0% 2% 4%

L3C5N - 1 34 0% 5% 2% 4% 1 35 0% 6% 2% 4%

L3C6N - 1 17 0% 5% 1% 2% 1 17 0% 5% 1% 2%

L3C7N - 4 17 2% 13% 1% 2% 4 18 2% 13% 1% 2%

L3C8N - 9 40 6% 23% 2% 4% 9 41 6% 23% 2% 4%

L3C9N - 0 97 0% 0% 6% 9% 0 97 0% 0% 6% 9%

M1CK1N −Rescaled Yes 0 3 0% 0% 0% 1% 0 3 0% 0% 0% 1%

M1CK2N −Rescaled Yes 0 1 0% 0% 0% 0% 0 1 0% 0% 0% 0%

M1CK3N −Rescaled Yes 0 9 0% 0% 0% 1% 0 9 0% 0% 0% 1%

M1CK4N −Rescaled Yes 1 4 0% 6% 0% 1% 1 4 0% 5% 0% 1%

M1CK5N −Rescaled Yes 1 4 0% 5% 0% 1% 1 4 0% 5% 0% 1%

M1CK6N −Rescaled Yes 0 3 0% 0% 0% 1% 0 3 0% 0% 0% 0%

M1CK7N −Rescaled Yes 0 7 0% 0% 0% 1% 0 7 0% 0% 0% 1%

M1CK8N −Rescaled Yes 0 2 0% 0% 0% 0% 0 2 0% 0% 0% 0%

M1CK9N −Rescaled Yes 0 8 0% 0% 0% 1% 0 8 0% 0% 0% 1%

M2CK1N −Rescaled Yes 0 5 0% 0% 0% 1% 0 5 0% 0% 0% 1%

M2CK2N −Rescaled Yes 0 18 0% 0% 1% 2% 0 18 0% 0% 1% 2%

M2CK3N −Rescaled Yes 1 14 0% 6% 0% 2% 1 14 0% 5% 0% 2%

M2CK4N −Rescaled Yes 0 8 0% 0% 0% 1% 0 8 0% 0% 0% 1%

M2CK5N −Rescaled Yes 0 8 0% 0% 0% 1% 0 8 0% 0% 0% 1%

M2CK6N −Rescaled Yes 0 2 0% 0% 0% 0% 0 2 0% 0% 0% 0%

M2CK7N −Rescaled Yes 0 12 0% 0% 0% 1% 0 12 0% 0% 0% 1%

M2CK8N −Rescaled Yes 1 5 0% 5% 0% 1% 1 5 0% 5% 0% 1%

M2CK9N −Rescaled Yes 0 5 0% 0% 0% 1% 0 5 0% 0% 0% 1%

M3CK1N −Rescaled Yes 2 5 0% 8% 0% 1% 2 5 0% 8% 0% 1%

M3CK2N −Rescaled Yes 1 12 0% 5% 0% 1% 1 14 0% 5% 1% 2%

M3CK3N −Rescaled Yes 0 12 0% 0% 0% 1% 0 12 0% 0% 0% 1%

M3CK4N −Rescaled Yes 1 10 0% 5% 0% 1% 1 10 0% 5% 0% 1%

M3CK5N −Rescaled Yes 0 3 0% 0% 0% 1% 0 3 0% 0% 0% 1%

M3CK6N −Rescaled Yes 0 9 0% 0% 0% 1% 0 9 0% 0% 0% 1%

M3CK7N −Rescaled Yes 1 7 0% 5% 0% 1% 1 7 0% 5% 0% 1%

M3CK8N −Rescaled Yes 2 10 0% 8% 0% 1% 2 10 0% 8% 0% 1%

M3CK9N −Rescaled Yes 0 3 0% 0% 0% 1% 0 3 0% 0% 0% 0%

L1CK1N −Rescaled Yes 0 1 0% 0% 0% 0% 0 1 0% 0% 0% 0%

L1CK2N −Rescaled Yes 0 37 0% 0% 2% 4% 0 37 0% 0% 2% 4%

L1CK3N −Rescaled Yes 0 2 0% 0% 0% 0% 0 2 0% 0% 0% 0%

L1CK4N −Rescaled Yes 0 11 0% 0% 0% 1% 0 11 0% 0% 0% 1%

L1CK5N −Rescaled Yes 0 7 0% 0% 0% 1% 0 7 0% 0% 0% 1%

L1CK6N −Rescaled Yes 0 8 0% 0% 0% 1% 0 8 0% 0% 0% 1%

L1CK7N −Rescaled Yes 1 7 0% 5% 0% 1% 1 7 0% 5% 0% 1%

L1CK8N −Rescaled Yes 0 0 0% 0% 0% 0% 0 0 0% 0% 0% 0%

L1CK9N −Rescaled Yes 0 0 0% 0% 0% 0% 0 0 0% 0% 0% 0%

L2CK1N −Rescaled Yes 0 6 0% 0% 0% 1% 0 6 0% 0% 0% 1%

L2CK2N −Rescaled Yes 0 22 0% 0% 1% 2% 0 22 0% 0% 1% 2%

L2CK3N −Rescaled Yes 0 5 0% 0% 0% 1% 0 5 0% 0% 0% 1%

L2CK4N −Rescaled Yes 0 12 0% 0% 0% 1% 0 12 0% 0% 0% 1%

L2CK5N −Rescaled Yes 0 14 0% 0% 1% 2% 0 14 0% 0% 1% 2%

L2CK6N −Rescaled Yes 0 9 0% 0% 0% 1% 0 9 0% 0% 0% 1%

L2CK7N −Rescaled Yes 0 10 0% 0% 0% 1% 0 10 0% 0% 0% 1%

L2CK8N −Rescaled Yes 0 0 0% 0% 0% 0% 0 0 0% 0% 0% 0%

L2CK9N −Rescaled Yes 0 2 0% 0% 0% 0% 0 2 0% 0% 0% 0%

L3CK1N −Rescaled Yes 0 5 0% 0% 0% 1% 0 5 0% 0% 0% 1%

L3CK2N −Rescaled Yes 0 27 0% 0% 1% 3% 0 27 0% 0% 1% 3%

L3CK3N −Rescaled Yes 1 8 0% 5% 0% 1% 1 8 0% 5% 0% 1%

L3CK4N −Rescaled Yes 0 15 0% 0% 1% 2% 0 15 0% 0% 1% 2%

L3CK5N −Rescaled Yes 0 12 0% 0% 0% 2% 0 12 0% 0% 0% 1%

L3CK6N −Rescaled Yes 0 10 0% 0% 0% 1% 0 10 0% 0% 0% 1%

L3CK7N −Rescaled Yes 0 10 0% 0% 0% 1% 0 10 0% 0% 0% 1%

L3CK8N −Rescaled Yes 0 0 0% 0% 0% 0% 0 0 0% 0% 0% 0%

L3CK9N −Rescaled Yes 0 1 0% 0% 0% 0% 0 1 0% 0% 0% 0%
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Table A.2.38: Out-of-sample out-performance comparison based on average number of days and the total number of days amongst MLP M1CN −Models, MLP M2CN −Models, MLP
M3CN −Models, LSTM L1CN −Models, LSTM L2CN −Models, LSTM L3CN −Models, MLP M1CKN −Models, MLP M2CKN −Models, MLP M3CKN −Models, LSTM
L1CKN −Models, LSTM L2CKN −Models, LSTM L3CKN −Models, MLP M1CKN −Models−Rescaled, MLPM2CKN −Models−Rescaled, MLPM3CKN −Models−Rescaled,
LSTM L1CKN −Models−Rescaled, LSTM L2CKN −Models−Rescaled, and LSTM L3CKN −Models−Rescaled: This table presents the out-of-sample out-performance comparison
based on average number of days and the total number of days amongst the MLP M1CN −Models, MLP M2CN −Models, MLP M3CN −Models, LSTM L1CN −Models , LSTM
L2CN −Models, LSTM L3CN −Models in Part I, MLP M1CKN −Models, MLP M2CKN −Models, MLP M3CKN −Models, LSTM L1CKN −Models, LSTM L2CKN −Models,
LSTM L3CKN−Models in Part II, and MLPM1CN−Models, MLPM2CN−Models, MLPM3CN−Models, LSTM L1CN−Models, LSTM L2CN−Models, LSTM L3CN−Models,
MLPM1CKN−Models−Rescaled, MLPM2CKN−Models−Rescaled, MLPM3CKN−Models−Rescaled, LSTM L1CKN−Models−Rescaled, LSTM L2CKN−Models−Rescaled,
LSTM L3CKN −Models−Rescaled in Part III. For models in Part I, the average number of days a model out-performed and the total number of days it out-performed was computed
from column VIII of Table A.2.10, for models in Part II, the average number of days a model out-performed and the total number of days it out-performed was computed from column
VIII of Table A.2.28, and for models in Part III, the average number of days a model out-performed and the total number of days it out-performed was computed from column IV of
A.2.38. The forecast variable for the models in Part I is the one-day-ahead call option (CN+1), in Part II is the one-day-ahead call option price scaled by the exercise price (CN+1/KN+1),
and in Part III is the one-day-ahead call option price (CN+1) which is re-scaled from CN+1/KN+1). The models denoted by the N subscript use lagged input variables for forecasting
the CN+1 in Part I, CN+1/KN+1 in Part II and Part III. The one-day-ahead forecast errors are used to compute the Root Mean Square Error (RMSE). Column I identifies the models,
column II identifies whether the forecast variable of the model has been re-scaled to CN+1, and column III reports the average number of days each model has out-performed in Part I,
II and III, respectively, and similarly, column IV reports the total number of days each model has out-performed in Part I, II and III respectively. Forecasts are made for 1,328 trading
days, and there are 64 months covered in the sample using the monthly data.

(I) (II) (III) (IV)

Model Forecast
variable
re-scaled
to call
price

Avg. num-
ber of
days out-
performed

Total num-
ber of
days out-
performed

Part I: Performance of M1CN −Models, M2CN −Models, M3CN −
Models, L1CN −Models, L2CN −Models, L3CN −Models

M1CN −Models - 9 84

M2CN −Models - 17 156

M3CN −Models - 8 73

L1CN −Models - 25 222

L2CN −Models - 11 99

L3CN −Models - 54 487

Part II: Performance of M1CKN − Models, M2CKN − Models,
M3CKN −Models, L1CKN −Models, L2CKN −Models, L3CKN −
Models

M1CKN −Models - 15 139

M2CKN −Models - 17 155

M3CKN −Models - 22 198

L1CKN −Models - 22 194

L2CKN −Models - 28 252

L3CKN −Models - 21 187

Part III: Performance of M1CN − Models, M2CN − Models,
M3CN −Models, L3CN −Models, L2CN −Models, L3CN −Models,
M1CKN − Models − Rescaled, M2CKN − Models − Rescaled,
M3CKN − Models − Rescaled, L3CKN − Models − Rescaled,
L2CKN −Models−Rescaled, L3CKN −Models−Rescaled

M1CN −Models - 5 44

M2CN −Models - 5 43

M3CN −Models - 7 67

L1CN −Models - 11 101

L2CN −Models - 18 163

L3CN −Models - 39 355

M1CKN −Models−Rescaled Yes 5 41

M2CKN −Models−Rescaled Yes 9 77

M3CKN −Models−Rescaled Yes 8 71

L1CKN −Models−Rescaled Yes 8 73

L2CKN −Models−Rescaled Yes 9 80

L3CKN −Models−Rescaled Yes 10 89
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Table B.1.1: Model Definition for Delta Comparison: This table is compartmentalised into III parts. Column I identifies the models, column II identifies the forecast variable, column III identifies the target variable used while training the respective
MLP and LSTM models, and column IV list the input variables used by the respective models to obtain the one-trading-day-ahead forecast. Forecasts are made for 1,326 trading days, and there are 64 months covered in the sample using the monthly
data. Each sub-section below presents the following set of models: Part I: This sub-section presents the models having the N subscript that uses lagged input variables for forecasting the delta. The one-trading-day-ahead forecast errors of the
delta are used to compute the Root Mean Square Error (RMSE). The forecast variable for the MLP M3HN -Models and the LSTM L3HN -Models is the delta that is directly forecasted from the respective ANN model, whereas the delta for the
BSMHN , HHN , HJDHN models are computed using their respective characteristic functions. Part II: This sub-section presents the models having the N + 1 subscript that use one-trading-day-ahead input variables for forecasting the delta. The
one-trading-day-ahead forecast errors of the delta are used to compute the Root Mean Square Error (RMSE). The forecast variable for the MLP M3HN+1-Models and the LSTM L3HN+1-Models is the delta that is directly forecasted from the respective
ANN model, whereas the delta for the BSMHN+1, HHN+1, HJDHN+1 models are computed using their respective characteristic functions. Part III: This sub-section presents the models having the N + 1 subscript that use one-trading-day-ahead
input variables for forecasting the one-trading-day-ahead call option price (CN+1), and later using the CN+1, we analytically derive the delta (δCN+1/δSN+1) using equation 3.3. The one-trading-day-ahead forecast errors of δCN+1/δSN+1 are used to
compute the Root Mean Square Error (RMSE). The forecast variable, the delta, for all the models in this sub-section is computed as δCN+1/δSN+1.

(I) (II) (III) (IV) (I) (II) (III) (IV)

Model Forecast variable Target variable Inputs for training/forecasting Model Forecast variable Target variable Inputs for training/forecasting

Part I

Black-Scholes-Merton Model Heston Model

BSMHN ∆BSMHN
N+1 - SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N HHN ∆HHN
N+1 - SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , HParamsCN

Heston Jump Diffusion Model Finite Moment Log Stable Model

HJDHN ∆HJDHN
N+1 - SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , HJDParamsCN FMLSHN ∆FMLSHN
N+1 - SN ,KN+1, TN+1, RN , QN , FMLSParamsCN

M3HN Multi Layer Perceptron (MLP) Models L3HN Long Short Term Memory (LSTM) Models

M3H1N ∆M3H1N
N+1 (δCM3H1N

N+1 /δSN+1) SN ,KN+1, TN+1, RN , QN , σ
CALIBC

N L3H1N ∆L3H1N
N+1 (δCL3H1N

N+1 /δSN+1) SN ,KN+1, TN+1, RN , QN , σ
CALIBC

N

M3H2N ∆M3H2N
N+1 (δCM3H2N

N+1 /δSN+1) SN ,KN+1, TN+1, RN , QN , σ
CALIBC

N , (δCN/δSN ) L3H2N ∆L3H2N
N+1 (δCL3H2N

N+1 /δSN+1) SN ,KN+1, TN+1, RN , QN , σ
CALIBC

N , (δCN/δSN )

M3H3N ∆M3H3N
N+1 (δCM3H3N

N+1 /δSN+1) SN ,KN+1, TN+1, RN , QN , σ
CALIBC

N ,∆BSMHN
N L3H3N ∆L3H3N

N+1 (δCL3H3N
N+1 /δSN+1) SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N ,∆BSMHN
N

M3H4N ∆M3H4N
N+1 (δCM3H4N

N+1 /δSN+1) SN ,KN+1, TN+1, RN , QN , σ
CALIBC

N , BSMGreeksCN L3H4N ∆L3H4N
N+1 (δCL3H4N

N+1 /δSN+1) SN ,KN+1, TN+1, RN , QN , σ
CALIBC

N , BSMGreeksCN

M3H5N ∆M3H5N
N+1 (δCM3H5N

N+1 /δSN+1) SN ,KN+1, TN+1, RN , QN , HParams
C
N ,∆

HHN
N L3H5N ∆L3H5N

N+1 (δCL3H5N
N+1 /δSN+1) SN ,KN+1, TN+1, RN , QN , HParams

C
N ,∆

HHN
N

M3H6N ∆M3H6N
N+1 (δCM3H6N

N+1 /δSN+1) SN ,KN+1, TN+1, RN , QN , HJDParams
C
N ,∆

HJDHN
N L3H6N ∆L3H6N

N+1 (δCL3H6N
N+1 /δSN+1) SN ,KN+1, TN+1, RN , QN , HJDParams

C
N ,∆

HJDHN
N

M3H7N ∆M3H7N
N+1 (δCM3H7N

N+1 /δSN+1) SN ,KN+1, TN+1, RN , QN , FMLSParamsCN ,∆
FMLSHN
N L3H7N ∆L3H7N

N+1 (δCL3H7N
N+1 /δSN+1) SN ,KN+1, TN+1, RN , QN , FMLSParamsCN ,∆

FMLSHN
N

Part II

Black-Scholes-Merton Model Heston Model

BSMHN+1 ∆BSMHN+1
N+1 - SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N HHN+1 ∆HHN+1
N+1 - SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N , HParamsCN

Heston Jump Diffusion Model Finite Moment Log Stable Model

HJDHN+1 ∆HJDHN+1
N+1 - SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N , HJDParamsCN FMLSHN+1 ∆FMLSHN+1
N+1 - SN+1,KN+1, TN+1, RN+1, QN+1, FMLSParamsCN

M3HN+1 Multi Layer Perceptron (MLP) Models L3HN+1 Long Short Term Memory (LSTM) Models

M3H1N+1 ∆M3H1N+1
N+1 (δCM3H1N+1

N+1 /δSN+1) SN+1,KN+1, TN+1, RN+1, QN+1, σ
CALIBC

N L3H1N+1 ∆L3H1N+1
N+1 (δCL3H1N+1

N+1 /δSN+1) SN+1,KN+1, TN+1, RN+1, QN+1, σ
CALIBC

N

M3H2N+1 ∆M3H2N+1
N+1 (δCM3H2N+1

N+1 /δSN+1) SN+1,KN+1, TN+1, RN+1, QN+1, σ
CALIBC

N , (δCN/δSN ) L3H2N+1 ∆L3H2N+1
N+1 (δCL3H2N+1

N+1 /δSN+1) SN+1,KN+1, TN+1, RN+1, QN+1, σ
CALIBC

N , (δCN/δSN )

M3H3N+1 ∆M3H3N+1
N+1 (δCM3H3N+1

N+1 /δSN+1) SN+1,KN+1, TN+1, RN+1, QN+1, σ
CALIBC

N ,∆BSMHN
N L3H3N+1 ∆L3H3N+1

N+1 (δCL3H3N+1
N+1 /δSN+1) SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N ,∆BSMHN
N

M3H4N+1 ∆M3H4N+1
N+1 (δCM3H4N+1

N+1 /δSN+1) SN+1,KN+1, TN+1, RN+1, QN+1, σ
CALIBC

N , BSMGreeksCN L3H4N+1 ∆L3H4N+1
N+1 (δCL3H4N+1

N+1 /δSN+1) SN+1,KN+1, TN+1, RN+1, QN+1, σ
CALIBC

N , BSMGreeksCN

M3H5N+1 ∆M3H5N+1
N+1 (δCM3H5N+1

N+1 /δSN+1) SN+1,KN+1, TN+1, RN+1, QN+1, HParams
C
N ,∆

HHN
N L3H5N+1 ∆L3H5N+1

N+1 (δCL3H5N+1
N+1 /δSN+1) SN+1,KN+1, TN+1, RN+1, QN+1, HParams

C
N ,∆

HHN
N

M3H6N+1 ∆M3H6N+1
N+1 (δCM3H6N+1

N+1 /δSN+1) SN+1,KN+1, TN+1, RN+1, QN+1, HJDParams
C
N ,∆

HJDHN
N L3H6N+1 ∆L3H6N+1

N+1 (δCL3H6N+1
N+1 /δSN+1) SN+1,KN+1, TN+1, RN+1, QN+1, HJDParams

C
N ,∆

HJDHN
N

M3H7N+1 ∆M3H7N+1
N+1 (δCM3H7N+1

N+1 /δSN+1) SN+1,KN+1, TN+1, RN+1, QN+1, FMLSParamsCN ,∆
FMLSHN
N L3H7N+1 ∆L3H7N+1

N+1 (δCL3H7N+1
N+1 /δSN+1) SN+1,KN+1, TN+1, RN+1, QN+1, FMLSParamsCN ,∆

FMLSHN
N

Part III

Black-Scholes-Merton Model Heston Model

BSMCHN+1 δ
BSMCHN+1
N+1 - SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N HCHN+1 δ
HCHN+1
N+1 - SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N , HParamsCN

Heston Jump Diffusion Model Finite Moment Log Stable Model

HJDCHN+1 δ
HJDCHN+1
N+1 - SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N , HJDParamsCN FMLSCHN+1 δ
FMLSCHN+1
N+1 - SN+1,KN+1, TN+1, RN+1, QN+1, FMLSParamsCN

M3CHN+1 Multi Layer Perceptron (MLP) Models L3CHN+1 Long Short Term Memory (LSTM) Models

M3CH1N+1 (δCM3CH1N+1
N+1 /δSN+1) C

M3CH1N+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N L3CH1N+1 C
L3CH1N+1
N+1 (δCL3CH1N+1

N+1 /δSN+1) SN+1,KN+1, TN+1, RN+1, QN+1, σ
CALIBC

N

M3CH2N+1 (δCM3CH2N+1
N+1 /δSN+1) C

M3CH2N+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N , (δCN/δSN ) L3CH2N+1 C
L3CH2N+1
N+1 (δCL3CH2N+1

N+1 /δSN+1) SN+1,KN+1, TN+1, RN+1, QN+1, σ
CALIBC

N , (δCN/δSN )

M3CH3N+1 (δCM3CH3N+1
N+1 /δSN+1) C

M3CH3N+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N , δ
BSMCHN+1
N L3CH3N+1 C

L3CH3N+1
N+1 (δCL3CH3N+1

N+1 /δSN+1) SN+1,KN+1, TN+1, RN+1, QN+1, σ
CALIBC

N , δ
BSMCHN+1
N

M3CH4N+1 (δCM3CH4N+1
N+1 /δSN+1) C

M3CH4N+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N , BSMGreeksCN L3CH4N+1 C
L3CH4N+1
N+1 (δCL3CH4N+1

N+1 /δSN+1) SN+1,KN+1, TN+1, RN+1, QN+1, σ
CALIBC

N , BSMGreeksCN

M3CH5N+1 (δCM3CH5N+1
N+1 /δSN+1) C

M3CH5N+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, HParams

C
N , δ

HCHN+1
N L3CH5N+1 C

L3CH5N+1
N+1 (δCL3CH5N+1

N+1 /δSN+1) SN+1,KN+1, TN+1, RN+1, QN+1, HParams
C
N , δ

HCHN+1
N

M3CH6N+1 (δCM3CH6N+1
N+1 /δSN+1) C

M3CH6N+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, HJDParams

C
N , δ

HJDCHN+1
N L3CH6N+1 C

L3CH6N+1
N+1 (δCL3CH6N+1

N+1 /δSN+1) SN+1,KN+1, TN+1, RN+1, QN+1, HJDParams
C
N , δ

HJDCHN+1
N

M3CH7N+1 (δCM3CH7N+1
N+1 /δSN+1) C

M3CH7N+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, FMLSParamsCN , δ

FMLSCHN+1
N L3CH7N+1 C

L3CH7N+1
N+1 (δCL3CH7N+1

N+1 /δSN+1) SN+1,KN+1, TN+1, RN+1, QN+1, FMLSParamsCN , δ
FMLSCHN+1
N
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Table B.1.2: Model Definition for Replicating Portfolio Value Comparison: This table is compartmentalized into III parts. Column I identifies the models, column II identifies the computed variable, and
column III lists the input variables used by the respective models to compute the one-trading-day-ahead forecast of the replicating portfolio value(VN+1). Forecasts are made for 1,326 trading days, and
there are 64 months covered in the sample using the monthly data. Each sub-section below presents the following set of models: Part I: This sub-section presents the models having the N subscript that
use lagged input variables for forecasting the delta. The forecast variable for the MLP M3HVN -Models and LSTM L3HVN -Models is the delta that is directly forecasted from the respective ANN model,
whereas the delta for the BSMHVN , HHVN , HJDHVN models are computed using their respective characteristic functions. The forecasted delta is later used to compute the replicating portfolio value
VN+1 using equation 3.17. The one-trading-day-ahead forecast errors of VN+1 are used to compute the Root Mean Square Error (RMSE). Part II: This sub-section presents the models having the N + 1
subscript that use one-trading-day-ahead input variables for forecasting the delta. The forecast variable for the MLP M3HVN+1-Models and LSTM L3HVN+1-Models is the delta that is directly forecasted
from the respective ANN model, whereas the delta for the BSMHVN+1, HHVN+1, HJDHVN+1 models are computed using their respective characteristic functions. The forecasted delta is later used to
compute the replicating portfolio value VN+1 using equation 3.17. The one-trading-day-ahead forecast errors of VN+1 are used to compute the Root Mean Square Error (RMSE). Part III: This sub-section
presents the models having the N + 1 subscript that use one-trading-day-ahead input variables for forecasting the one-trading-day-ahead call option price (CN+1), and later using the CN+1, we analytically
derive the delta (δCN+1/δSN+1) using equation 3.3, and used to compute VN+1 using equation 3.17. The one-trading-day-ahead forecast errors of VN+1 are used to compute the Root Mean Square Error
(RMSE).

(I) (II) (III) (I) (II) (III)

Model Computed variable Inputs for training/forecasting Model Computed variable Inputs for training/forecasting

Part I

Black-Scholes-Merton Model Heston Model

BSMHVN V
BSMHVN
N+1 SN+1, SN , RN+1, δt, C

BSMHN
N , C

BSMHN
N+1 ,∆BSMHN

N+1 HHVN V
HHVN
N+1 SN+1, SN , RN+1, δt, C

HHN
N , C

HHN
N+1 ,∆HHN

N+1

Heston Jump Diffusion Model Finite Moment Log Stable Model

FMLSVN V
FMLSVN
N+1 SN , SN−1, RN , δt, C

FMLSN
N , C

FMLSN
N+1 ,∆FMLSN

N+1 HJDVN V
HJDVN
N+1 SN , SN−1, RN , δt, C

HJDN
N , C

HJDN
N+1 ,∆HJDN

N+1

M3HN Multi Layer Perceptron (MLP) Models L3HN Long Short Term Memory (LSTM) Models

M3H1VN V
M3H1VN
N+1 SN+1, SN , RN+1, δt, C

M3H1N
N , C

M3H1N
N+1 ,∆M3H1N

N+1 L3H1VN V
L3H1VN
N+1 SN+1, SN , RN+1, δt, C

L3H1N
N , C

L3H1N
N+1 ,∆L3H1N

N+1

M3H2VN V
M3H2VN
N+1 SN+1, SN , RN+1, δt, C

M3H2N
N , C

M3H2N
N+1 ,∆M3H2N

N+1 L3H2VN V
L3H2VN
N+1 SN+1, SN , RN+1, δt, C

L3H2N
N , C

L3H2N
N+1 ,∆L3H2N

N+1

M3H3VN V
M3H3VN
N+1 SN+1, SN , RN+1, δt, C

M3H3N
N , C

M3H3N
N+1 ,∆M3H3N

N+1 L3H3VN V
L3H3VN
N+1 SN+1, SN , RN+1, δt, C

L3H3N
N , C

L3H3N
N+1 ,∆L3H3N

N+1

M3H4VN V
M3H4VN
N+1 SN+1, SN , RN+1, δt, C

M3H4N
N , C

M3H4N
N+1 ,∆M3H4N

N+1 L3H4VN V
L3H4VN
N+1 SN+1, SN , RN+1, δt, C

L3H4N
N , C

L3H4N
N+1 ,∆L3H4N

N+1

M3H5VN V
M3H5VN
N+1 SN+1, SN , RN+1, δt, C

M3H5N
N , C

M3H5N
N+1 ,∆M3H5N

N+1 L3H5VN V
L3H5VN
N+1 SN+1, SN , RN+1, δt, C

L3H5N
N , C

L3H5N
N+1 ,∆L3H5N

N+1

M3H6VN V
M3H6VN
N+1 SN+1, SN , RN+1, δt, C

M3H6N
N , C

M3H6N
N+1 ,∆M3H6N

N+1 L3H6VN V
L3H6VN
N+1 SN+1, SN , RN+1, δt, C

L3H6N
N , C

L3H6N
N+1 ,∆L3H6N

N+1

M3H7VN V
M3H7VN
N+1 SN+1, SN , RN+1, δt, C

M3H7N
N , C

M3H7N
N+1 ,∆M3H7N

N+1 L3H7VN V
L3H7VN
N+1 SN+1, SN , RN+1, δt, C

L3H7N
N , C

L3H7N
N+1 ,∆L3H7N

N+1

Part II

Black-Scholes-Merton Model Heston Model

BSMHVN+1 V
BSMHVN+1
N+1 SN+1, SN , RN+1, δt, C

BSMHN+1
N , C

BSMHN+1
N+1 ,∆BSMHN+1

N+1 HHVN+1 V
HHVN+1
N+1 SN+1, SN , RN+1, δt, C

HHN+1
N , C

HHN+1
N+1 ,∆HHN+1

N+1

Heston Jump Diffusion Model Finite Moment Log Stable Model

FMLSVN+1 V
FMLSVN+1
N+1 SN+1, SN , RN+1, δt, C

FMLSN+1
N , C

FMLSN+1
N+1 ,∆FMLSN+1

N+1 HJDVN+1 V
HJDVN+1
N+1 SN+1, SN , RN+1, δt, C

HJDN+1
N , C

HJDN+1
N+1 ,∆HJDN+1

N+1

M3HN+1 Multi Layer Perceptron (MLP) Models L3HN+1 Long Short Term Memory (LSTM) Models

M3H1VN+1 V
M3H1VN+1
N+1 SN+1, SN , RN+1, δt, C

M3H1N+1
N , C

M3H1N+1
N+1 ,∆M3H1N+1

N+1 L3H1VN+1 V
L3H1VN+1
N+1 SN+1, SN , RN+1, δt, C

L3H1N+1
N , C

L3H1N+1
N+1 ,∆L3H1N+1

N+1

M3H2VN+1 V
M3H2VN+1
N+1 SN+1, SN , RN+1, δt, C

M3H2N+1
N , C

M3H2N+1
N+1 ,∆M3H2N+1

N+1 L3H2VN+1 V
L3H2VN+1
N+1 SN+1, SN , RN+1, δt, C

L3H2N+1
N , C

L3H2N+1
N+1 ,∆L3H2N+1

N+1

M3H3VN+1 V
M3H3VN+1
N+1 SN+1, SN , RN+1, δt, C

M3H3N+1
N , C

M3H3N+1
N+1 ,∆M3H3N+1

N+1 L3H3VN+1 V
L3H3VN+1
N+1 SN+1, SN , RN+1, δt, C

L3H3N+1
N , C

L3H3N+1
N+1 ,∆L3H3N+1

N+1

M3H4VN+1 V
M3H4VN+1
N+1 SN+1, SN , RN+1, δt, C

M3H4N+1
N , C

M3H4N+1
N+1 ,∆M3H4N+1

N+1 L3H4VN+1 V
L3H4VN+1
N+1 SN+1, SN , RN+1, δt, C

L3H4N+1
N , C

L3H4N+1
N+1 ,∆L3H4N+1

N+1

M3H5VN+1 V
M3H5VN+1
N+1 SN+1, SN , RN+1, δt, C

M3H5N+1
N , C

M3H5N+1
N+1 ,∆M3H5N+1

N+1 L3H5VN+1 V
L3H5VN+1
N+1 SN+1, SN , RN+1, δt, C

L3H5N+1
N , C

L3H5N+1
N+1 ,∆L3H5N+1

N+1

M3H6VN+1 V
M3H6VN+1
N+1 SN+1, SN , RN+1, δt, C

M3H6N+1
N , C

M3H6N+1
N+1 ,∆M3H6N+1

N+1 L3H6VN+1 V
L3H6VN+1
N+1 SN+1, SN , RN+1, δt, C

L3H6N+1
N , C

L3H6N+1
N+1 ,∆L3H6N+1

N+1

M3H7VN+1 V
M3H7VN+1
N+1 SN+1, SN , RN+1, δt, C

M3H7N+1
N , C

M3H7N+1
N+1 ,∆M3H7N+1

N+1 L3H7VN+1 V
L3H7VN+1
N+1 SN+1, SN , RN+1, δt, C

L3H7N+1
N , C

L3H7N+1
N+1 ,∆L3H7N+1

N+1

Part III

Black-Scholes-Merton Model Heston Model

BSMCHVN+1 V
BSMCHVN+1
N+1 SN+1, SN , RN+1, δt, C

BSMCHN+1
N , C

BSMCHN+1
N+1 , δ

BSMCHN+1
N+1 HCHVN+1 V

HCHVN+1
N+1 SN+1, SN , RN+1, δt, C

HCHN+1
N , C

HCHN+1
N+1 , δ

HCHN+1
N+1

Heston Jump Diffusion Model Finite Moment Log Stable Model

FMLSCHVN+1 V
FMLSCHVN+1
N+1 SN+1, SN , RN+1, δt, C

FMLSCHN+1
N , C

FMLSCHN+1
N+1 , δ

FMLSCHN+1
N+1 HJDCHVN+1 V

HJDCHVN+1
N+1 SN+1, SN , RN+1, δt, C

HJDCHN+1
N , C

HJDCHN+1
N+1 , δ

HJDCHN+1
N+1

M3CHN+1 Multi Layer Perceptron (MLP) Models L3CHN+1 Long Short Term Memory (LSTM) Models

M3CH1VN+1 V
M3CH1VN+1
N+1 SN+1, SN , RN+1, δt, C

M3CH1N+1
N , C

M3CH1N+1
N+1 , δ

M3CH1N+1
N+1 L3CH1VN+1 V

L3CH1VN+1
N+1 SN+1, SN , RN+1, δt, C

L3CH1N+1
N , C

L3CH1N+1
N+1 , δ

L3CH1N+1
N+1

M3CH2VN+1 V
M3CH2VN+1
N+1 SN+1, SN , RN+1, δt, C

M3CH2N+1
N , C

M3CH2N+1
N+1 , δ

M3CH2N+1
N+1 L3CH2VN+1 V

L3CH2VN+1
N+1 SN+1, SN , RN+1, δt, C

L3CH2N+1
N , C

L3CH2N+1
N+1 , δ

L3CH2N+1
N+1

M3CH3VN+1 V
M3CH3VN+1
N+1 SN+1, SN , RN+1, δt, C

M3CH3N+1
N , C

M3CH3N+1
N+1 , δ

M3CH3N+1
N+1 L3CH3VN+1 V

L3CH3VN+1
N+1 SN+1, SN , RN+1, δt, C

L3CH3N+1
N , C

L3CH3N+1
N+1 , δ

L3CH3N+1
N+1

M3CH4VN+1 V
M3CH4VN+1
N+1 SN+1, SN , RN+1, δt, C

M3CH4N+1
N , C

M3CH4N+1
N+1 , δ

M3CH4N+1
N+1 L3CH4VN+1 V

L3CH4VN+1
N+1 SN+1, SN , RN+1, δt, C

L3CH4N+1
N , C

L3CH4N+1
N+1 , δ

L3CH4N+1
N+1

M3CH5VN+1 V
M3CH5VN+1
N+1 SN+1, SN , RN+1, δt, C

M3CH5N+1
N , C

M3CH5N+1
N+1 , δ

M3CH5N+1
N+1 L3CH5VN+1 V

L3CH5VN+1
N+1 SN+1, SN , RN+1, δt, C

L3CH5N+1
N , C

L3CH5N+1
N+1 , δ

L3CH5N+1
N+1

M3CH6VN+1 V
M3CH6VN+1
N+1 SN+1, SN , RN+1, δt, C

M3CH6N+1
N , C

M3CH6N+1
N+1 , δ

M3CH6N+1
N+1 L3CH6VN+1 V

L3CH6VN+1
N+1 SN+1, SN , RN+1, δt, C

L3CH6N+1
N , C

L3CH6N+1
N+1 , δ

L3CH6N+1
N+1

M3CH7VN+1 V
M3CH7VN+1
N+1 SN+1, SN , RN+1, δt, C

M3CH7N+1
N , C

M3CH7N+1
N+1 , δ

M3CH7N+1
N+1 L3CH7VN+1 V

L3CH7VN+1
N+1 SN+1, SN , RN+1, δt, C

L3CH7N+1
N , C

L3CH7N+1
N+1 , δ

L3CH7N+1
N+1
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Table B.1.3: This table presents the overall comparison of out-of-sample root mean square error (RMSE) amongst the MLP M3HN -Models (M3H1N to M3H7N ), LSTM L3HN -Models (L3H1N to L3H7N ), Black-Scholes-Merton
(BSMHN ) model, Heston (HHN ) model, Heston Jump Diffusion (HJDHN ) model and the Finite Moment Log Stable (FMLSHN ) model. The forecast variable for the MLP M3HN -Models and LSTM L3HN -Models is the delta that
is directly forecasted from the respective ANN model, whereas the delta for the BSMHN , HHN , HJDHN models are computed using their respective characteristic functions. The models denoted by the N subscript use lagged input
variables for forecasting the delta. The one-trading-day-ahead forecast errors of the delta are used to compute the Root Mean Square Error (RMSE). Forecasts are made for 1,326 trading days.

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X) (XI) (XII) (XIII) (XIV) (XV) (XVI) (XVII) (XVIII) (XIX) (XX) (XXI)
Size Mean of

δN

Std.Dev.
of δN

BSMHN HHN HJDHN FMLSHN M1H1N M1H2N M1H3N M1H4N M1H5N M1H6N M1H7N L1H1N L1H2N L1H3N L1H4N L1H5N L1H6N L1H7N

543255 0.49962 0.37312 0.2494 0.25598 0.25937 0.2614 0.26121 0.27071 0.27368 0.29036 0.28967 0.29395 0.27452 0.31418 0.30771 0.31361 0.27235 0.30855 0.31142 0.30812

Table B.1.4: Overall Delta Comparison (amongst Parametric, M3HN+1-Models and L3HN+1-Models): This table presents the overall comparison of out-of-sample root mean square error (RMSE) amongst the MLPM3HN+1-Models (M3H1N+1
to M3H7N+1), LSTM L3HN+1-Models (L3H1N+1 to L3H7N+1), Black-Scholes-Merton (BSMHN+1) model, Heston (HHN+1) model, Heston Jump Diffusion (HJDHN+1) model and the Finite Moment Log Stable (FMLSHN+1) model. The
forecast variable for the MLP M3HN+1-Models and LSTM L3HN+1-Models is the delta that is directly forecasted from the respective ANN model, whereas the delta for the BSMHN+1, HHN+1, HJDHN+1 models are computed using their
respective characteristic functions. The models denoted by the N+1 subscript use one-trading-day-ahead input variables for forecasting the delta. The one-trading-day-ahead forecast errors of the delta are used to compute the Root Mean Square
Error (RMSE). Forecasts are made for 1,326 trading days.

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X) (XI) (XII) (XIII) (XIV) (XV) (XVI) (XVII) (XVIII) (XIX) (XX) (XXI)
Size Mean of

δN

Std.Dev.
of δN

BSMHN+1 HHN+1 HJDHN+1 FMLSHN+1 M1H1N+1 M1H2N+1 M1H3N+1 M1H4N+1 M1H5N+1 M1H6N+1 M1H7N+1 L1H1N+1 L1H2N+1 L1H3N+1 L1H4N+1 L1H5N+1 L1H6N+1 L1H7N+1

543255 0.49962 0.37312 0.2474 0.25414 0.25746 0.25935 0.64811 0.31258 0.96403 0.82149 0.36591 0.32038 0.42534 0.31331 0.3069 0.31265 0.27201 0.30768 0.31034 0.30712

Table B.1.5: Overall Delta Comparison (amongst Parametric, M3CHN+1-Models and L3CHN+1-Models): This table presents the overall comparison of out-of-sample root mean square error (RMSE) amongst the MLP M3CHN+1-Models (M3CH1N+1 to M3CH7N+1), LSTM L3CHN+1-Models
(L3CH1N+1 to L3CH7N+1), Black-Scholes-Merton (BSMCHN+1) model, Heston (HCHN+1) model, Heston Jump Diffusion (HJDCHN+1) model and the Finite Moment Log Stable (FMLSCHN+1) model. The forecast variable for all the models is the call option price (CN+1). The models denoted
by the N+1 subscript use one-trading-day-ahead input variables. The delta (δCN+1/δSN+1) is then derived analytically from the forecasted call option price (CN+1) using equation 3.3. The one-trading-day-ahead forecast errors of the delta are used to compute the Root Mean Square Error (RMSE).
Forecasts are made for 1,326 trading days.

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X) (XI) (XII) (XIII) (XIV) (XV) (XVI) (XVII) (XVIII) (XIX) (XX) (XXI)
Size Mean of δN Std.Dev. of

δN

BSMCHN+1 HCHN+1 HJDCHN+1 FMLSCHN+1 M1CH1N+1 M1CH2N+1 M1CH3N+1 M1CH4N+1 M1CH5N+1 M1CH6N+1 M1CH7N+1 L1CH1N+1 L1CH2N+1 L1CH3N+1 L1CH4N+1 L1CH5N+1 L1CH6N+1 L1CH7N+1

542456 0.49986 0.37301 41.747 9.8384 8.0976 13.6301 7.7184 7.8624 8.5897 8.6353 6.8567 9.216 8.2547 87.6469 63.1143 333.702 30.6275 65.2476 57.3935 59.4208
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Table B.1.6: Overall Replicating Portfolio Value Comparison (amongst Parametric, M3HVN -Models and L3HVN -Models): This table presents the overall comparison of out-of-sample root mean square error (RMSE) amongst the MLP
M3HVN -Models (M3HV 1N to M3HV 7N ), LSTM L3HVN -Models (L3HV 1N to L3HV 7N ), Black-Scholes-Merton (BSMHVN ) model, Heston (HHVN ) model, Heston Jump Diffusion (HJDHVN ) model and the Finite Moment Log Stable
(FMLSHVN ) model. The forecast variable for the MLP M3HVN -Models and LSTM L3HVN -Models is the delta that is directly forecasted from the respective ANN model, whereas the delta for the BSMHVN , HHVN , HJDHVN models
are computed using their respective characteristic functions. The models denoted by the N subscript use lagged input variables for forecasting the delta. The forecasted delta is later used to compute the replicating portfolio value VN+1 using
equation 3.17. The one-trading-day-ahead forecast errors of VN+1 are used to compute the Root Mean Square Error (RMSE). Forecasts are made for 1,326 trading days.

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X) (XI) (XII) (XIII) (XIV) (XV) (XVI) (XVII) (XVIII) (XIX) (XX) (XXI)
Size Mean of

VN

Std.Dev.
of VN

BSMHVN HHVN HJDHVN FMLSHVN M1HV 1N M1HV 2N M1HV 3N M1HV 4N M1HV 5N M1HV 6N M1HV 7N L1HV 1N L1HV 2N L1HV 3N L1HV 4N L1HV 5N L1HV 6N L1HV 7N

543255 0.32637 3.5141 3.6292 3.7628 3.8124 3.8517 3.5073 3.634 3.6042 3.6073 3.5684 3.5641 3.5703 4.4059 4.2652 4.3184 3.77 4.2146 4.2344 4.2018

Table B.1.7: Overall Replicating Portfolio Value Comparison (amongst Parametric, M3HVN+1-Models and L3HVN+1-Models): This table presents the overall comparison of out-of-sample root mean square error (RMSE) amongst the MLP
M3HVN+1-Models (M3HV 1N+1 to M3HV 7N+1), LSTM L3HVN+1-Models (L3HV 1N+1 to L3HV 7N+1), Black-Scholes-Merton (BSMHVN+1) model, Heston (HHVN+1) model, Heston Jump Diffusion (HJDHVN+1) model and the Finite
Moment Log Stable (FMLSHVN+1) model. The forecast variable for the MLP M3HVN+1-Models and LSTM L3HVN+1-Models is the delta that is directly forecasted from the respective ANN model, whereas the delta for the BSMHVN+1,
HHVN+1, HJDHVN+1 models are computed using their respective characteristic functions. The models denoted by the N+1 subscript use one-trading-day-ahead input variables for forecasting the delta. The forecasted delta is later used to
compute the replicating portfolio value VN+1 using equation 3.17. The one-trading-day-ahead forecast errors of VN+1 are used to compute the Root Mean Square Error (RMSE). Forecasts are made for 1,326 trading days.

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X) (XI) (XII) (XIII) (XIV) (XV) (XVI) (XVII) (XVIII) (XIX) (XX) (XXI)
Size Mean of

VN

Std.Dev.
of VN

BSMHVN+1 HHVN+1 HJDHVN+1 FMLSHVN+1M1HV 1N+1 M1HV 2N+1 M1HV 3N+1 M1HV 4N+1 M1HV 5N+1 M1HV 6N+1 M1HV 7N+1 L1HV 1N+1 L1HV 2N+1 L1HV 3N+1 L1HV 4N+1 L1HV 5N+1 L1HV 6N+1 L1HV 7N+1

543255 0.32637 3.5141 0.2474 0.25414 0.25746 0.25935 0.64811 0.31258 0.96403 0.82149 0.36591 0.32038 0.42534 0.31331 0.3069 0.31265 0.27201 0.30768 0.31034 0.30712

Table B.1.8: Overall Replicating Portfolio Value Comparison (amongst Parametric, M3CHVN+1-Models and L3CHVN+1-Models): This table presents the overall comparison of out-of-sample root mean square error (RMSE) amongst the MLP M3CHVN+1-Models (M3CHV 1N+1 to
M3CHV 7N+1), LSTM L3CHVN+1-Models (L3CHV 1N+1 to L3CHV 7N+1), Black-Scholes-Merton (BSMCHVN+1) model, Heston (HCHVN+1) model, Heston Jump Diffusion (HJDCHVN+1) model and the Finite Moment Log Stable (FMLSCHVN+1) model. The forecast variable for
all the models is the call option price (CN+1). The models denoted by the N+1 subscript use one-trading-day-ahead input variables for forecasting the call option price. The delta (δCN+1/δSN+1) is derived analytically from the forecasted call option price (CN+1) using equation 3.3 and then
used to compute the replicating portfolio value VN+1 using equation 3.17. The one-trading-day-ahead forecast errors of VN+1 are used to compute the Root Mean Square Error (RMSE).

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X) (XI) (XII) (XIII) (XIV) (XV) (XVI) (XVII) (XVIII) (XIX) (XX) (XXI)
Size Mean of VN Std.Dev. of

VN

BSMCHVN+1 HCHVN+1 HJDCHVN+1 FMLSCHVN+1M1CHV 1N+1 M1CHV 2N+1 M1CHV 3N+1 M1CHV 4N+1 M1CHV 5N+1 M1CHV 6N+1 M1CHV 7N+1 L1CHV 1N+1 L1CHV 2N+1 L1CHV 3N+1 L1CHV 4N+1 L1CHV 5N+1 L1CHV 6N+1 L1CHV 7N+1

543255 0.32637 3.5141 826.11 207.0706 164.5071 232.8291 156.9775 159.5832 189.3558 147.0468 132.6154 192.4877 164.7324 1427.6376 1113.023 7027.106 459.8463 1189.366 1148.76 1142.848
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Table B.1.9: Diebold-Mariano(DM) test-based insignificant pairs: This table
presents the insignificant pairs for H − Models, CH − Models, HV − Models,
and CHV −Models. The complete table consisting of the DM test statistic for
H − Models, which use lagged input variables to forecast the DeltaN+1 can be
found in Table 39, for H −Models which use one-trading-day-ahead input variables
to forecast the ∆N+1 in Table 40, for CH −Models that use one-trading-day-ahead
input variables to forecast the δN+1 in Table 41, for HV −Models which use delta
from H−Models (using lagged inputs for forecasting) in Table 42, for HV −Models
which use delta from H −Models (using one-trading-day-ahead inputs for forecast-
ing) in Table 43, and CHV −Models which use delta from CH −Models in Table
44 of the Electronic Appendix.

Model Insignificant Pairs

For H −Models (using lagged inputs) None

For H − Models (using one-trading-
day-ahead inputs)

(M3H2N+1 , L3H1N+1), (M3H2N+1 , L3H3N+1),
(M3H2N+1 , L3H6N+1), (L3H2N+1 , L3H7N+1)

For CH −Models (using one-trading-
day-ahead inputs)

(M3CH3N+1 , M3CH4N+1), (M3CH4N+1 ,
M3CH6N+1), (M3CH4N+1 , M3CH7N+1), and
(HJDCHN+1 , M3CH7N+1)

For HV −Models computed from the
∆N+1 obtained from H−Models that
uses lagged input variables for fore-
casting

(BSMHVN , M3HV 2N ), (M3HV 3N , M3HV 4N ),
(M3HV 5N , M3HV 6N ), (M3HV 5N , M3HV 7N ),
(M3HV 6N , M3HV 7N ), and (HHVN , L3HV 4NN )

For HV −Models computed from the
∆N+1 obtained from H−Models that
uses one-trading-day input variables
for forecasting

None

For CHV − Models computed from
the δN+1 obtained from CH−Models
that uses one-trading-day input vari-
ables for forecasting

(M3CHV 1N+1 , M3CHV 2N+1), (M3CHV 3N+1 ,
M3CHV 6N+1), (HJDCHVN+1 , M3CHV 7N+1), and
(L3CHV 6N+1 , L3CHV 7N+1)

271

https://drive.google.com/file/d/1A7bV0fo8Oz6WfbBNIJ5EHUlLI3V1NMsw/view?usp=share_link


Table B.1.10: This table presents the summary of the pair-wise bootstrap tests
performed for H−Models, CH−Models, HV −Models, and CHV −Models. The
complete table consisting of the results for the pair-wise bootstrap for H −Models,
which use lagged input variables to forecast the ∆N+1 can be found in Table 45, for
H −Models which use one-trading-day-ahead input variables to forecast the ∆N+1
in Table 46, for CH −Models that use one-trading-day-ahead input variables to
forecast the δN+1 in Table 47, for HV −Models which use delta from H −Models
(using lagged inputs for forecasting) in Table 48, for HV −Models which use delta
from H −Models (using one-trading-day-ahead inputs for forecasting) in Table 49,
and CHV −Models which use delta from CH−Models in Table 50 of the Electronic
Appendix.

Model Number of pairs a model wins Winning %

H −Models (using lagged inputs)

M3HN -Models 72 47.1%

Parametric 58 37.9%

L3HN -Models 23 15.0%

H −Models(using one-trading-day-ahead inputs)

M3HN+1-Models 60 39.2%

Parametric 61 39.9%

L3HN+1-Models 32 20.9%

CH −Models (using one-trading-day-ahead inputs)

M3CHN+1-Models 96 62.7%

Parametric 35 22.9%

L3CHN+1-Models 22 14.4%

HV −Models (computed from the ∆N+1 obtained from H −Models that use lagged
input variables for forecasting)

M3HVN -Models 72 47.1%

Parametric 58 37.9%

L3HVN -Models 23 15.0%

HV −Models (computed from the ∆N+1 obtained from H −Models that use one-
trading-day-ahead input variables for forecasting

M3HVN+1-Models 60 39.2%

Parametric 61 39.9%

L3HVN+1-Models 32 20.9%

CHV − Models (computed from the δN+1 obtained from CH − Models that use
one-trading-day-ahead input variables for forecasting)

M3CHVN+1-Models 96 62.7%

Parametric 35 22.9%

L3CHVN+1-Models 22 14.4%
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Table B.1.11: Table of variables for Chapter 3

Symbol Name Description
Ct Call price Call price calculated by taking the average of the bid and ask call price

from OptionMetrics
St S&P500 Index Price S&P500 Index Price from OptionMetrics
Kt Exercise price Option exercise price from OptionMetrics
Tt Time to Maturity Time to maturity calculated from option expiry date from OptionMetrics
Rt Risk-free interest rate The interpolated interest rate using zero interest curves from

OptionMetrics
Qt Dividend Yield S&P500 Index dividend yield from OptionMetrics
St/Kt Moneyness Moneyness is defined as the ratio of the S&P Index price and the option

strike price
σBt Volatility Black-Scholes-Merton implied volatility
δBt Delta Black-Scholes-Merton Delta.
γBt Gamma Black-Scholes-Merton Gamma.
θBt Theta Black-Scholes-Merton Theta.
ρBt Rho Black-Scholes-Merton Rho.
νBt Vega Black-Scholes-Merton Vega.
V H0,t Initial variance Initial variance in the Heston model
θHt Long term variance Long term variance in the Heston model
κHt Mean reversion speed Mean reversion speed in the Heston model
σHt Volatility Volatility of variance in the Heston model
ρHt Correlation Correlation parameter in the Heston model
V HJD0,t Initial variance Initial variance in the Heston Jump Diffusion model
θHJDt Long term variance Long term variance in the Heston Jump Diffusion model
κHJDt Mean reversion speed Mean reversion speed in the Heston Jump Diffusion model
σHJDt Volatility Volatility of variance in the Heston Jump Diffusion model
ρHJDt Correlation Correlation parameter in the Heston Jump Diffusion model
σHJDt Jump Volatility Jump volatility parameter in the Heston Jump Diffusion model
µHJDt Jump Mean Jump mean parameter in the Heston Jump Diffusion model
λHJDt Jump Frequency Jump frequency parameter in the Heston Jump Diffusion model
αFMLS
t Tail Parameter Tail parameter in the Finite Moment Log Stable model
σFMLS
t Dispersion Parameter Dispersion parameter in the Finite Moment Log Stable model
BGreekst BSM greeks Black-Scholes-Merton greeks (δBt , γBt , ρBt , θBt , νBt )
HParamst Heston parameters Heston model parameters (κHt , σHt , θHt , ρHt , V H0,t)
HJDParamst Heston Jump Diffusion

parameters
Heston Jump Diffusion model parameters (κHJDt , σHJDt , θHJDt , ρHJDt ,
V HJD0,t , σHJDt ,µHJDt ,λHJDt )

FMLSParamst Finite Moment Log Stable
parameters

FMLS model parameters (αFMLS
t , σFMLS

t )
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Table B.1.12: Month-wise statistics of the S&P 500 Index call options delta used in Chapter 3

Month Number of Observations Mean Variance

September 2012 1975 0.406 0.104
October 2012 7010 0.474 0.154
November 2012 6716 0.416 0.142
December 2012 6425 0.438 0.130
January 2013 6387 0.480 0.167
February 2013 6187 0.434 0.126
March 2013 6637 0.484 0.126
April 2013 7625 0.494 0.126
May 2013 8034 0.568 0.129
June 2013 7677 0.476 0.115
July 2013 8468 0.446 0.141
August 2013 8177 0.502 0.129
September 2013 7286 0.483 0.132
October 2013 7769 0.437 0.133
November 2013 6741 0.560 0.139
December 2013 7176 0.491 0.138
January 2014 7505 0.542 0.142
February 2014 7213 0.510 0.155
March 2014 8048 0.462 0.141
April 2014 7909 0.494 0.127
May 2014 7626 0.542 0.132
June 2014 7396 0.623 0.141
July 2014 8092 0.492 0.121
August 2014 8195 0.502 0.144
September 2014 7943 0.487 0.134
October 2014 8955 0.437 0.131
November 2014 6917 0.480 0.158
December 2014 8268 0.526 0.146
January 2015 8429 0.470 0.114
February 2015 8381 0.533 0.143
March 2015 10037 0.541 0.129
April 2015 9216 0.522 0.132
May 2015 8892 0.536 0.132
June 2015 9982 0.482 0.122
July 2015 9610 0.522 0.145
August 2015 9089 0.492 0.109
September 2015 10643 0.429 0.118
October 2015 9396 0.445 0.131
November 2015 8381 0.494 0.129
December 2015 8920 0.534 0.118
January 2016 8008 0.403 0.117
February 2016 9246 0.504 0.123
March 2016 9783 0.486 0.138
April 2016 9217 0.497 0.135
May 2016 9619 0.498 0.156
June 2016 9722 0.501 0.130
July 2016 8864 0.566 0.152
August 2016 10459 0.552 0.145
September 2016 9374 0.518 0.140
October 2016 9111 0.505 0.153
November 2016 9345 0.490 0.143
December 2016 9673 0.527 0.144
January 2017 9282 0.515 0.147
February 2017 8141 0.520 0.141
March 2017 10758 0.571 0.155
April 2017 9078 0.527 0.142
May 2017 10219 0.466 0.151
June 2017 10373 0.473 0.145
July 2017 9899 0.493 0.156
August 2017 10704 0.487 0.153
September 2017 9241 0.495 0.138
October 2017 9895 0.523 0.136
November 2017 9630 0.539 0.163
December 2017 8281 0.503 0.145



Table B.1.13: Month-wise statistics of the S&P 500 Index call options delta used in Chapter 3

Month Number of Observations Average Call Price Bid-Ask spread

September 2012 1,975 $76.89 $1.46
October 2012 7,010 $71.52 $1.25
November 2012 6,716 $66.67 $0.78
December 2012 6,425 $70.79 $0.81
January 2013 6,387 $79.55 $0.87
February 2013 6,187 $81.37 $0.91
March 2013 6,637 $83.69 $0.95
April 2013 7,625 $83.11 $1.08
May 2013 8,034 $87.16 $1.02
June 2013 7,677 $84.54 $1.01
July 2013 8,468 $87.70 $1.13
August 2013 8,177 $85.66 $1.04
September 2013 7,286 $88.26 $1.00
October 2013 7,769 $92.46 $1.03
November 2013 6,741 $98.83 $1.05
December 2013 7,176 $96.65 $0.98
January 2014 7,505 $98.04 $0.99
February 2014 7,213 $95.37 $1.04
March 2014 8,048 $102.83 $1.08
April 2014 7,909 $100.98 $1.14
May 2014 7,626 $106.56 $1.06
June 2014 7,396 $113.06 $1.14
July 2014 8,092 $116.21 $1.29
August 2014 8,195 $109.09 $1.23
September 2014 7,943 $111.36 $1.21
October 2014 8,955 $102.64 $1.23
November 2014 6,917 $122.20 $1.24
December 2014 8,268 $120.01 $1.47
January 2015 8,429 $114.74 $1.41
February 2015 8,381 $119.10 $1.40
March 2015 10,037 $114.03 $1.20
April 2015 9,216 $118.89 $1.25
May 2015 8,892 $121.37 $1.30
June 2015 9,982 $119.67 $1.22
July 2015 9,610 $118.28 $1.32
August 2015 9,089 $113.15 $1.66
September 2015 10,643 $100.33 $1.47
October 2015 9,396 $112.53 $1.42
November 2015 8,381 $119.86 $1.24
December 2015 8,920 $115.18 $1.17
January 2016 8,008 $101.51 $1.03
February 2016 9,246 $105.11 $1.04
March 2016 9,783 $122.04 $1.04
April 2016 9,217 $119.39 $0.99
May 2016 9,619 $113.45 $0.98
June 2016 9,722 $113.40 $0.93
July 2016 8,864 $118.95 $0.94
August 2016 10,459 $120.93 $0.85
September 2016 9,374 $117.73 $0.96
October 2016 9,111 $118.89 $1.01
November 2016 9,345 $115.96 $1.14
December 2016 9,673 $123.69 $1.18
January 2017 9,282 $125.04 $1.14
February 2017 8,141 $130.89 $1.18
March 2017 10,758 $133.35 $1.41
April 2017 9,078 $131.80 $1.24
May 2017 10,219 $137.02 $1.36
June 2017 10,373 $133.19 $1.49
July 2017 9,899 $138.71 $1.40
August 2017 10,704 $140.97 $1.58
September 2017 9,241 $141.28 $1.66
October 2017 9,895 $150.71 $1.74
November 2017 9,630 $151.53 $1.83
December 2017 8,281 $156.28 $1.81



Appendix B.2

Appendix for Chapter 3: Extended

Results

B.2.1 Hedging performance of H-Models that use lagged input

variables to forecast the delta (∆N+1) for the next trading

day:

Tables B.2.1, B.2.2, B.2.3 and B.2.4 shows the relative out-of-sample hedging performance (in
RMSE) amongst the models that use lagged input variables to forecast the one-trading-day-
ahead delta ∆N+1. For convenience, the models in Tables B.2.1, B.2.2, B.2.3, lists the forecast
variable and the input variables are listed in columns II and III, and, the architecture of the
MLP and LSTM models in columns IV, V and VI. The performance metric is the RMSE of the
one-trading-day-ahead forecast errors of the delta, which is computed for each model utilising
all of the errors in each day or each month. Amongst all models, columns VII and VIII record
the number of months and days, respectively, that each model has the lowest RMSE. To be
certain of our results, we performed a bootstrap using the daily and monthly RMSEs. Columns
IX (lower bound) and X (upper bound) present the results from the bootstrap performed (with
replacement) using monthly RMSEs at a 95% confidence level and show the winning percentage
out of 64 months for each model, and similarly, the 95 % confidence intervals computed from
bootstrapping of the daily RMSEs signifies the winning percentage out of 1326 days for each
model and are reported in columns XI (lower bound), XII (upper bound).

In the below several comparisons, even though a particular model wins by a higher percentage
against other models, we investigated further these models pairwise by performing a pairwise
bootstrap comparison, which was computed using the respective pair’s daily RMSEs. The
results are presented in Table 45 of the Electronic Appendix. Also, we examined the pairwise
Diebold-Mariano(DM ) (Diebold and Mariano (1995)) tests on these models and have presented
the results in Table 39 of the Electronic Appendix. In constructing the DM test statistics, the
models listed in the left column represent Model 1, and the models in the first row represent
Model 2 in Table 39 of the Electronic Appendix. If the null can be rejected, a positive number
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suggests the rejection may be due to the second model being the better forecast model. In
contrast, a negative value suggests the rejection may be due to the first model being the better
forecast model. The model pairs highlighted in a red state that their forecasts have statistically
insignificant differences in their prediction accuracy. Considering the DM -Test statistics in
Table 39 of the Electronic Appendix, all the model pairs lead to the rejection of the null of equal
forecasting performance. The RMSEs for the models that use lagged input variables to forecast
the ∆N+1 on a monthly, yearly, and overall basis can be found in the Electronic Appendix, in
Tables 21, 27, and 33, respectively.

In this section, we compare the out-of-sample hedging performance of the parametric models
(BSMHN , HHN , HJDHN and FMLSHN ), the triple hidden layer MLP models (M3HN −
Models) and triple hidden layer LSTM models (L3HN −Models), then the parametric models
with the M3HN −Models, and finally the parametric models with the L3HN −Models.

The results for the parametric models with the triple hidden layer MLP M3HN − Models
(M3H1N to M3H7N ) and the triple hidden layer LSTM L3HN −Models (L3H1N to L3H7N )
are presented in Table B.2.1. If all the models are compared together, then the BSMHN

model had the lowest RMSE for 166 days (having a daily bootstrap winning % of 11% to
14%) out of 1,326 days. Although the BSMHN model had outperformed other models, the
FMLSHN (161 days) and the M3H1N (137 days) have shown similar outperformance, where
they have a collective daily bootstrap winning percentage from 9% (lower bound for the M3H1N
model) to 14%. (upper bound for the FMLSHN model). Table B.2.2 presents the results for
the comparison of the parametric models with the triple hidden layer MLP M3HN −Models
(M3H1N to M3H7N ), and the BSMHN model had the lowest RMSE for 188 days (having a
daily bootstrap winning % of 12% to 16%) out of 1,326 days. Though the BSMHN model had
outperformed other models, the FMLSHN (165 days),M3H1N (169 days), and theM3H2N (143
days) have shown similar outperformance, where they have a collective daily bootstrap winning
percentage from 9% (lower bound for theM3H2N model) to 15%. (upper bound for theM3H1N
model). We present the comparison results of the parametric models with the triple hidden layer
LSTM L3HN −Models (L3H1N to L3H7N ) in Table B.2.3. We find that the BSMHN model
had the lowest RMSE for 452 days (having a daily bootstrap winning % of 31% to 37%) out of
1,326 days. Finally, we compare amongst the parametric models in Table B.2.4 and find that
the BSMHN model still had the lowest RMSE for 910 days (having a daily bootstrap winning
% of 66% to 71%) out of 1,326 days.

Thus, when the parametric models are compared with the triple hidden layer ANN models that
use lagged input variables to forecast the delta (in Table B.2.1), we conclude that a parametric
model (BSMHN ) could outperform all other models. If the parametric models were compared
with the triple hidden layer MLP models (in Table B.2.2), a parametric model (BSMHN )
outperforms all the triple hidden layer MLP models, also when the parametric models were
compared with the triple hidden layer LSTM models (in Table B.2.3), a parametric model
(BSMHN ) still outperforms them all. Finally, when a comparison is made amongst the para-
metric models, the BSMHN model has been shown to outperform the rest of the parametric
models.
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Table B.2.1: Delta Comparison (amongst Parametric, M3HN -Models and L3HN -Models): This table presents a performance comparison using both daily and monthly statistics amongst
the Black-Scholes-Merton (BSMHN ) model, Heston (HHN ) model, Heston Jump Diffusion (HJDHN ) model, Finite Moment Log Stable (FMLSHN ) model, MLP M3HN -Models
(M3H1N to M3H7N ) and the LSTM L3HN -Models (L3H1N to L3H7N ). The forecast variable for the MLP M3HN -Models and LSTM L3HN -Models is the delta that is directly
forecasted from the respective ANN model, whereas the delta for the BSMHN , HHN , HJDHN models are computed using their respective characteristic functions. The models denoted
by the N subscript use lagged input variables for forecasting the delta. Column I identifies the models, column II identifies the forecast variable, column III lists the input variables
used by the models to obtain the one-trading-day-ahead forecast of the delta and columns IV, V and VI describe the network architecture of the MLP M3HN -Models and the LSTM
L3HN -Models. The one-trading-day-ahead forecast errors of the delta are used to compute the Root Mean Square Error (RMSE). Forecasts are made for 1,326 trading days, and there
are 64 months covered in the sample using the monthly data. Column VII reports the number of months out of the 64 months that each model has the smallest RMSE, while column
VIII reports the number of days out of the 1,326 days each model has the smallest RMSE. Columns IX (lower bound) and X (upper bound) present the winning percentage out of
64 months for each model, evaluated using the bootstrap sampling technique. The statistical bootstrap performed (with replacement) at a 95% confidence level is computed from the
monthly RMSE values of the respective models below. Similarly, columns XI (lower bound) and XII (upper bound) present the winning percentage out of 1326 days for each model
computed from bootstrapping the daily RMSE values of the respective models at a 95% confidence level.

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X) (XI) (XII)

Model Forecast Inputs No.
of
hidden
Lay-
ers

No. of
hidden
nodes
per layer

Network
architecture

Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

BSMHN ∆BSMHN
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N - - - 19 166 19% 41% 11% 14%

HHN ∆HHN
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , HParamsCN - - - 5 67 2% 16% 4% 6%

HJDHN ∆HJDHN
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , HJDParamsCN - - - 0 69 0% 0% 4% 6%

FMLSHN ∆FMLSHN
N+1 SN ,KN+1, TN+1, RN , QN , FMLSParamsCN - - - 0 161 0% 0% 10% 14%

M3H1N ∆M3H1N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N 3 6 6 ×6× 6 15 137 14% 34% 9% 12%

M3H2N ∆M3H2N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , (δCN/δSN ) 3 7 7× 7× 7 8 105 5% 20% 6% 9%

M3H3N ∆M3H3N
N+1 (SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N ,∆BSMHN
N 3 7 7 ×7× 7 7 89 5% 19% 5% 8%

M3H4N ∆M3H4N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , BSMGreeksCN 3 11 11× 11× 11 0 72 0% 0% 4% 7%

M3H5N ∆M3H5N
N+1 SN ,KN+1, TN+1, RN , QN , HParams

C
N ,∆

HHN
N 3 11 11× 11× 11 0 93 0% 0% 6% 8%

M3H6N ∆M3H6N
N+1 SN ,KN+1, TN+1, RN , QN , HJDParams

C
N ,∆

HJDHN
N 3 14 14× 14× 14 0 94 0% 0% 6% 9%

M3H7N ∆M3H7N
N+1 SN ,KN+1, TN+1, RN , QN , FMLSParamsCN ,∆

FMLSHN
N 3 8 8× 8× 8 7 95 3% 19% 6% 9%

L3H1N ∆L3H1N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N 3 6 6× 6× 6 0 19 0% 0% 1% 2%

L3H2N ∆L3H2N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , (δCN/δSN ) 3 7 7× 7× 7 0 20 0% 0% 1% 2%

L3H3N ∆L3H3N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N ,∆BSMHN
N 3 7 7× 7× 7 0 21 0% 0% 1% 2%

L3H4N ∆L3H4N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , BSMGreeksCN 3 11 11× 11× 11 3 78 0% 11% 5% 7%

L3H5N ∆L3H5N
N+1 SN ,KN+1, TN+1, RN , QN , HParams

C
N ,∆

HHN
N 3 11 11× 11× 11 0 16 0% 0% 1% 2%

L3H6N ∆L3H6N
N+1 SN ,KN+1, TN+1, RN , QN , HJDParams

C
N ,∆

HJDHN
N 3 14 14× 14× 14 0 20 0% 0% 1% 2%

L3H7N ∆L3H7N
N+1 SN ,KN+1, TN+1, RN , QN , FMLSParamsCN ,∆

FMLSHN
N 3 8 8× 8× 8 0 15 0% 0% 0% 2%
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Table B.2.2: Delta Comparison (amongst Parametric and M3HN -Models): This table presents a performance comparison using both daily and monthly statistics amongst the Black-
Scholes-Merton (BSMHN ) model, Heston (HHN ) model, Heston Jump Diffusion (HJDHN ) model, Finite Moment Log Stable (FMLSHN ) model, and the MLP M3HN -Models
(M3H1N to M3H7N ). The forecast variable for the MLP M3HN -Models is the delta that is directly forecasted from the respective MLP model, whereas the delta for the BSMHN ,
HHN , HJDHN models are computed using their respective characteristic functions. The models denoted by the N subscript use lagged input variables for forecasting the delta. Column
I identifies the models, column II identifies the forecast variable, column III lists the input variables used by the models to obtain the one-trading-day-ahead forecast of the delta, and
columns IV, V and VI describe the network architecture of the MLP M3HN -Models. The one-trading-day-ahead forecast errors of the delta are used to compute the Root Mean Square
Error (RMSE). Forecasts are made for 1,326 trading days, and there are 64 months covered in the sample using the monthly data. Column VII reports the number of months out of
the 64 months that each model has the smallest RMSE, while column VIII reports the number of days out of the 1,326 days each model has the smallest RMSE. Columns IX (lower
bound) and X (upper bound) present the winning percentage out of 64 months for each model, evaluated using the bootstrap sampling technique. The statistical bootstrap performed
(with replacement) at a 95% confidence level is computed from the monthly RMSE values of the respective models below. Similarly, columns XI (lower bound) and XII (upper bound)
present the winning percentage out of 1326 days for each model computed from bootstrapping the daily RMSE values of the respective models at a 95% confidence level.

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X) (XI) (XII)

Model Forecast Inputs No.
of
hidden
Lay-
ers

No. of
hidden
nodes
per layer

Network
architecture

Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

BSMHN ∆BSMHN
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N - - - 20 188 20% 44% 12% 16%

HHN ∆HHN
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , HParamsCN - - - 5 68 2% 16% 4% 6%

HJDHN ∆HJDHN
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , HJDParamsCN - - - 0 69 0% 0% 4% 7%

FMLSHN ∆FMLSHN
N+1 SN ,KN+1, TN+1, RN , QN , FMLSParamsCN - - - 0 165 0% 0% 11% 14%

M3H1N ∆M3H1N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N 3 6 6× 6× 6 16 169 14% 36% 11% 15%

M3H2N ∆M3H2N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , (δCN/δSN ) 3 7 7× 7× 7 9 143 6% 23% 9% 12%

M3H3N ∆M3H3N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N ,∆BSMHN
N 3 7 7× 7× 7 7 111 5% 19% 7% 10%

M3H4N ∆M3H4N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , BSMGreeksCN 3 11 11× 11× 11 0 87 0% 0% 5% 8%

M3H5N ∆M3H5N
N+1 SN ,KN+1, TN+1, RN , QN , HParams

C
N ,∆

HHN
N 3 11 11× 11× 11 0 108 0% 0% 7% 10%

M3H6N ∆M3H6N
N+1 SN ,KN+1, TN+1, RN , QN , HJDParams

C
N ,∆

HJDHN
N 3 14 14× 14× 14 0 105 0% 0% 6% 9%

M3H7N ∆M3H7N
N+1 SN ,KN+1, TN+1, RN , QN , FMLSParamsCN ,∆

FMLSHN
N 3 8 8× 8× 8 7 113 3% 19% 7% 10%
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Table B.2.3: Delta Comparison (amongst Parametric and L3HN -Models): This table presents a performance comparison using both daily and monthly statistics amongst the Black-
Scholes-Merton (BSMHN ) model, Heston (HHN ) model, Heston Jump Diffusion (HJDHN ) model, Finite Moment Log Stable (FMLSHN ) model, and the LSTM L3HN -Models
(L3H1N to L3H7N ). The forecast variable for the LSTM L3HN -Models is the delta that is directly forecasted from the respective LSTM model, whereas the delta for the BSMHN ,
HHN , HJDHN models are computed using their respective characteristic functions. The models denoted by the N subscript use lagged input variables for forecasting the delta. Column
I identifies the models, column II identifies the forecast variable, column III lists the input variables used by the models to obtain the one-trading-day-ahead forecast of the delta, and
columns IV, V and VI describe the network architecture of the LSTM L3HN -Models. The one-trading-day-ahead forecast errors of the delta are used to compute the Root Mean Square
Error (RMSE). Forecasts are made for 1,326 trading days, and there are 64 months covered in the sample using the monthly data. Column VII reports the number of months out of
the 64 months that each model has the smallest RMSE, while column VIII reports the number of days out of the 1,326 days each model has the smallest RMSE. Columns IX (lower
bound) and X (upper bound) present the winning percentage out of 64 months for each model, evaluated using the bootstrap sampling technique. The statistical bootstrap performed
(with replacement) at a 95% confidence level is computed from the monthly RMSE values of the respective models below. Similarly, in columns XI (lower bound) and XII (upper bound)
presents the winning percentage out of 1326 days for each model computed from bootstrapping the daily RMSE values of the respective models at a 95% confidence level.

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X) (XI) (XII)

Model Forecast Inputs No.
of
hidden
Lay-
ers

No. of
hidden
nodes
per layer

Network
architecture

Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

BSMHN ∆BSMHN
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N - - - 48 452 64% 84% 31% 37%

HHN ∆HHN
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , HParamsCN - - - 8 95 5% 22% 6% 9%

HJDHN ∆HJDHN
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , HJDParamsCN - - - 0 78 0% 0% 5% 7%

FMLSHN ∆FMLSHN
N+1 SN ,KN+1, TN+1, RN , QN , FMLSParamsCN - - - 0 197 0% 0% 13% 17%

L3H1N ∆L3H1N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N 3 6 6× 6× 6 0 38 0% 0% 2% 4%

L3H2N ∆L3H2N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , (δCN/δSN ) 3 7 7× 7× 7 1 55 0% 5% 3% 5%

L3H3N ∆L3H3N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N ,∆BSMHN
N 3 7 7× 7× 7 0 40 0% 0% 2% 4%

L3H4N ∆L3H4N
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , BSMGreeksCN 3 11 11× 11× 11 5 251 2% 14% 17% 21%

L3H5N ∆L3H5N
N+1 SN ,KN+1, TN+1, RN , QN , HParams

C
N ,∆

HHN
N 3 11 11× 11× 11 1 49 0% 6% 3% 5%

L3H6N ∆L3H6N
N+1 SN ,KN+1, TN+1, RN , QN , HJDParams

C
N ,∆

HJDHN
N 3 14 14× 14× 14 1 52 0% 5% 3% 5%

L3H7N ∆L3H7N
N+1 SN ,KN+1, TN+1, RN , QN , FMLSParamsCN ,∆

FMLSHN
N 3 8 8× 8× 8 0 31 0% 0% 1% 3%
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Table B.2.4: Delta Comparison (amongst Parametric Models): This table presents a performance comparison using both daily and monthly statistics
amongst the Black-Scholes-Merton (BSMHN ) model, Heston (HHN ) model, Heston Jump Diffusion (HJDHN ) model, and the Finite Moment Log
Stable (FMLSHN ) model. The delta for the BSMHN , HHN , HJDHN models are computed using their respective characteristic functions. The
models denoted by the N subscript use lagged input variables for forecasting the delta. The one-trading-day-ahead forecast errors of the delta are
used to compute the Root Mean Square Error (RMSE). Forecasts are made for 1,326 trading days, and there are 64 months covered in the sample
using the monthly data. Column I identifies the models, column II identifies the forecast variable, and column III lists the input variables used by the
models to obtain the one-trading-day-ahead forecast of the delta. Column IV reports the number of months out of the 64 months that each model
has the smallest RMSE, while column V reports lists the number of days out of the 1,326 days that each model has the smallest RMSE. Columns
VI (lower bound) and VII (upper bound) present the winning percentage out of 64 months for each model, evaluated using the bootstrap sampling
technique. The statistical bootstrap performed (with replacement) at a 95% confidence level is computed from the monthly RMSE values of the
respective models below. Similarly, columns VIII (lower bound) and IX (upper bound) present the winning percentage out of 1326 days for each
model computed from bootstrapping the daily RMSE values of the respective models at a 95% confidence level.

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX)

Model Forecast Inputs Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

BSMHN ∆BSMHN
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N 55 910 77% 94% 66% 71%

HHN ∆HHN
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , HParamsCN 9 131 6% 23% 8% 12%

HJDHN ∆HJDHN
N+1 SN ,KN+1, TN+1, RN , QN , σ

CALIBC

N , HJDParamsCN 0 79 0% 0% 5% 7%

FMLSHN ∆FMLSHN
N+1 SN ,KN+1, TN+1, RN , QN , FMLSParamsCN 0 206 0% 0% 14% 17%
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B.2.2 Hedging performance of H-Models that use one-trading-

day-ahead input variables to forecast the delta (∆N+1) for

the next trading day:

Tables B.2.5, B.2.6, B.2.7 and B.2.8 shows the relative out-of-sample hedging performance (in
RMSE) amongst the models that use one-trading-day-ahead input variables to forecast the
one-trading-day-ahead delta ∆N+1. For convenience, the models in Tables B.2.5, B.2.6, B.2.7,
lists the forecast variable and the input variables are listed in columns II and III, and, the
architecture of the MLP and LSTM models in columns IV, V and VI. The performance metric
is the RMSE of the one-trading-day-ahead forecast errors of the delta, which is computed for
each model utilising all of the errors in each day or each month. Amongst all models, columns
VII and VIII record the number of months and days, respectively, that each model has the lowest
RMSE. To be certain of our results, we performed a bootstrap using the daily and monthly
RMSEs. Columns IX (lower bound) and X (upper bound) present the results from the bootstrap
performed (with replacement) using monthly RMSEs at a 95% confidence level and show the
winning percentage out of 64 months for each model, and similarly, the 95 % confidence intervals
computed from bootstrapping of the daily RMSEs signifies the winning percentage out of 1326
days for each model and are reported in columns XI (lower bound), XII (upper bound).

In the below several comparisons, even though a particular model wins by a higher percentage
against other models, we investigated further these models pairwise by performing a pairwise
bootstrap comparison, which was computed using the respective pair’s daily RMSEs. The
results are presented in Table 46 of the Electronic Appendix. Also, we examined the pairwise
Diebold-Mariano(DM ) (Diebold and Mariano (1995)) tests on these models and have presented
the results in Table 40 of the Electronic Appendix. In constructing the DM test statistics, the
models listed in the left column represent Model 1, and the models in the first row represent
Model 2 in Table 40 of the Electronic Appendix. If the null can be rejected, a positive number
suggests the rejection may be due to the second model being the better forecast model. In
contrast, a negative value suggests the rejection may be due to the first model being the better
forecast model. The model pairs highlighted in a red state that their forecasts have statistically
insignificant differences in their prediction accuracy. The following model pairs have been shown
to have statistically insignificant differences: (M3H2N+1, L3H1N+1), (M3H2N+1, L3H3N+1),
(M3H2N+1, L3H6N+1), (L3H2N+1, L3H7N+1). The RMSEs for the models that use one-
trading-day-ahead input variables to forecast the ∆N+1 for the next trading day on a monthly,
yearly, and overall basis can be found in the Electronic Appendix, in Tables 22, 28, and 34,
respectively.

In this section, we compare the out-of-sample hedging performance of the parametric models
(BSMHN+1, HHN+1, HJDHN+1, and FMLSHN+1), the triple hidden layer MLP models
(M3HN+1 − Models) and triple hidden layer LSTM models (L3HN+1 − Models), then the
parametric models with the M3HN+1 −Models, and finally the parametric models with the
L3HN+1 −Models.

The results for the parametric models with the triple hidden layer MLP M3HN+1 −Models
(M3H1N+1 to M3H7N+1) and the triple hidden layer LSTM L3HN+1 −Models (L3H1N+1
to L3H7N+1) are presented in Table B.2.5. If all the models are compared together, then the
BSMHN+1 model had the lowest RMSE for 196 days (having a daily bootstrap winning % of
13% to 17%) out of 1,326 days. Although the BSMHN+1 model had outperformed other models,
the FMLSHN+1(162 days), and the M3H1N+1(157 days) have shown similar outperformance,
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where they have a collective daily bootstrap winning percentage from 10% (lower bound for the
M3H1N+1 model) to 14%. (upper bound for the FMLSHN+1 model). Table B.2.6 presents
the results for the comparison of the parametric models with the triple hidden layer MLP
M3HN+1 − Models (M3H1N+1 to M3H7N+1), and the BSMHN+1 model had the lowest
RMSE for 208 days (having a daily bootstrap winning % of 14% to 18%) out of 1,326 days.
Though the BSMHN+1 model had outperformed other models, the FMLSHN+1(167 days),
and the M3H1N+1(192 days) have shown similar outperformance, where they have a collective
daily bootstrap winning percentage from 11% (lower bound for the FMLSHN+1 model) to 16%.
(upper bound for the M3H1N+1 model). We present the comparison results of the parametric
models with the triple hidden layer LSTM L3HN+1−Models (L3H1N+1 to L3H7N+1) in Table
B.2.7. We find that the BSMHN+1 model had the lowest RMSE for 486 days (having a
daily bootstrap winning % of 34% to 39%) out of 1,326 days. Finally, we compare amongst
the parametric models in Table B.2.8 and find that the BSMHN+1 still model had the lowest
RMSE for 936 days (having a daily bootstrap winning % of 68% to 73%) out of 1,326 days.

Thus, when the parametric models are compared with the triple hidden layer ANN models that
use one-trading-day-ahead input variables to forecast the delta(in Table B.2.5), we conclude that
a parametric model (BSMHN+1) could outperform all other models. If the parametric models
were compared with the triple hidden layer MLP models (in Table B.2.6), a parametric model
(BSMHN+1) outperforms all the triple hidden layer MLP models, also when the parametric
models were compared with the triple hidden layer LSTM models (in Table B.2.7), a parametric
model (BSMHN+1) still outperforms them all. Finally, when a comparison is made amongst
the parametric models, the BSMHN+1 model has been shown to outperform the rest of the
parametric models.
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Table B.2.5: Delta Comparison (amongst Parametric, M3HN+1-Models and L3HN+1-Models): This table presents a performance comparison using both daily and monthly statistics
amongst the Black-Scholes-Merton (BSMHN+1) model, Heston (HHN+1) model, Heston Jump Diffusion (HJDHN+1) model, Finite Moment Log Stable (FMLSHN+1) model, MLP
M3HN+1-Models (M3H1N+1 to M3H7N+1) and the LSTM L3HN+1-Models (L3H1N+1 to L3H7N+1). The forecast variable for the MLP M3HN+1-Models and LSTM L3HN+1-
Models is the delta that is directly forecasted from the respective ANN model, whereas the delta for the BSMHN+1, HHN+1, HJDHN+1 models are computed using their respective
characteristic functions. The models denoted by the N+1 subscript use one-trading-day-ahead input variables for forecasting the delta. Column I identifies the models, column II identifies
the forecast variable, column III lists the input variables used by the models to obtain the one-trading-day-ahead forecasts of the delta, and columns IV, V and VI describe the network
architecture of the MLP M3HN+1-Models and the LSTM L3HN+1-Models. The one-trading-day-ahead forecast errors of the delta are used to compute the Root Mean Square Error
(RMSE). Forecasts are made for 1,326 trading days, and there are 64 months covered in the sample using the monthly data. Column VII reports the number of months out of the 64
months that each model has the smallest RMSE, while column VIII reports the number of days out of the 1,326 days each model has the smallest RMSE. Columns IX (lower bound)
and X (upper bound) present the winning percentage out of 64 months for each model, evaluated using the bootstrap sampling technique. The statistical bootstrap performed (with
replacement) at a 95% confidence level is computed from the monthly RMSE values of the respective models below. Similarly, in columns XI (lower bound) and XII (upper bound)
presents the winning percentage out of 1326 days for each model computed from bootstrapping the daily RMSE values of the respective models at a 95% confidence level.

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X) (XI) (XII)

Model Forecast Inputs No.
of
hidden
Lay-
ers

No. of
hidden
nodes
per layer

Network
architecture

Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

BSMHN+1 ∆BSMHN+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N - - - 37 196 45% 70% 13% 17%

HHN+1 ∆HHN+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N , HParamsCN - - - 4 44 2% 13% 2% 4%

HJDHN+1 ∆HJDHN+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N , HJDParamsCN - - - 0 71 0% 0% 4% 7%

FMLSHN+1 ∆FMLSHN+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, FMLSParamsCN - - - 0 162 0% 0% 10% 14%

M3H1N+1 ∆M3H1N+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N 3 6 6× 6× 6 8 157 5% 21% 10% 14%

M3H2N+1 ∆M3H2N+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N , (δCN/δSN ) 3 7 7× 7× 7 6 109 3% 17% 7% 10%

M3H3N+1 ∆M3H3N+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N ,∆BSMHN+1
N 3 7 7× 7× 7 4 95 2% 13% 6% 9%

M3H4N+1 ∆M3H4N+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N , BSMGreeksCN 3 11 11× 11× 11 0 66 0% 0% 4% 6%

M3H5N+1 ∆M3H5N+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, HParams

C
N ,∆

HHN+1
N 3 11 11× 11× 11 0 84 0% 0% 5% 8%

M3H6N+1 ∆M3H6N+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, HJDParams

C
N ,∆

HJDHN+1
N 3 14 14× 14× 14 0 96 0% 0% 6% 9%

M3H7N+1 ∆M3H7N+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, FMLSParamsCN ,∆

FMLSHN+1
N 3 8 8× 8× 8 1 98 0% 5% 6% 9%

L3H1N+1 ∆L3H1N+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N 3 6 6× 6× 6 0 12 0% 0% 0% 1%

L3H2N+1 ∆L3H2N+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N , (δCN/δSN ) 3 7 7× 7× 7 0 18 0% 0% 1% 2%

L3H3N+1 ∆L3H3N+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N ,∆BSMHN+1
N 3 7 7× 7× 7 0 15 0% 0% 0% 1%

L3H4N+1 ∆L3H4N+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N , BSMGreeksCN 3 11 11× 11× 11 3 73 0% 11% 4% 7%

L3H5N+1 ∆L3H5N+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, HParams

C
N ,∆

HHN+1
N 3 11 11× 11× 11 1 12 0% 5% 0% 1%

L3H6N+1 ∆L3H6N+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, HJDParams

C
N ,∆

HJDHN+1
N 3 14 14× 14× 14 0 15 0% 0% 0% 1%

L3H7N+1 ∆L3H7N+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, FMLSParamsCN ,∆

FMLSHN+1
N 3 8 8× 8× 8 0 13 0% 0% 0% 1%
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Table B.2.6: Delta Comparison (amongst Parametric and M3HN+1-Models): This table presents a performance comparison using both daily and monthly statistics amongst the
Black-Scholes-Merton (BSMHN+1) model, Heston (HHN+1) model, Heston Jump Diffusion (HJDHN+1) model, Finite Moment Log Stable (FMLSHN+1) model, and the MLP
M3HN+1-Models (M3H1N+1 to M3H7N+1). The forecast variable for the MLP M3HN+1-Models is the delta that is directly forecasted from the respective MLP model, whereas the
delta for the BSMHN+1, HHN+1, HJDHN+1 models are computed using their respective characteristic functions. The models denoted by the N+1 subscript use one-trading-day-ahead
input variables for forecasting the delta. Column I identifies the models, column II identifies the forecast variable, column III lists the input variables used by the models to obtain the
one-trading-day-ahead forecasts of the delta, and columns IV, V and VI describe the network architecture of the MLP M3HN+1-Models. The one-trading-day-ahead forecast errors of
the delta are used to compute the Root Mean Square Error (RMSE). Forecasts are made for 1,326 trading days, and there are 64 months covered in the sample using the monthly data.
Column VII reports the number of months out of the 64 months that each model has the smallest RMSE, while column VIII reports the number of days out of the 1,326 days each
model has the smallest RMSE. Columns IX (lower bound) and X (upper bound) present the winning percentage out of 64 months for each model, evaluated using the bootstrap sampling
technique. The statistical bootstrap performed (with replacement) at a 95% confidence level is computed from the monthly RMSE values of the respective models below. Similarly,
columns XI (lower bound) and XII (upper bound) present the winning percentage out of 1326 days for each model computed from bootstrapping the daily RMSE values of the respective
models at a 95% confidence level.

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X) (XI) (XII)

Model Forecast Inputs No.
of
hidden
Lay-
ers

No. of
hidden
nodes
per layer

Network
architecture

Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

BSMHN+1 ∆BSMHN+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N - - - 39 208 48% 73% 14% 18%

HHN+1 ∆HHN+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N , HParamsCN - - - 4 46 2% 13% 2% 5%

HJDHN+1 ∆HJDHN+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N , HJDParamsCN - - - 0 72 0% 0% 4% 7%

FMLSHN+1 ∆FMLSHN+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, FMLSParamsCN - - - 0 167 0% 0% 11% 15%

M3H1N+1 ∆M3H1N+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N 3 6 6 ×6× 6 10 192 8% 25% 13% 16%

M3H2N+1 ∆M3H2N+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N , (δCN/δSN ) 3 7 7× 7× 7 6 135 3% 17% 9% 12%

M3H3N+1 ∆M3H3N+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N ,∆BSMHN+1
N 3 7 7× 7× 7 4 117 2% 13% 7% 10%

M3H4N+1 ∆M3H4N+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N , BSMGreeksCN 3 11 11× 11× 11 0 72 0% 0% 4% 7%

M3H5N+1 ∆M3H5N+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, HParams

C
N ,∆

HHN+1
N 3 11 11× 11× 11 0 102 0% 0% 6% 9%

M3H6N+1 ∆M3H6N+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, HJDParams

C
N ,∆

HJDHN+1
N 3 14 14× 14× 14 0 105 0% 0% 6% 9%

M3H7N+1 ∆M3H7N+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, FMLSParamsCN ,∆

FMLSHN+1
N 3 8 8× 8× 8 1 110 0% 5% 7% 10%
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Table B.2.7: Delta Comparison (amongst Parametric and L3HN+1-Models): This table presents a performance comparison using both daily and monthly statistics amongst the
Black-Scholes-Merton (BSMHN+1) model, Heston (HHN+1) model, Heston Jump Diffusion (HJDHN+1) model, Finite Moment Log Stable (FMLSHN+1) model, and the LSTM
L3HN+1-Models (L3H1N+1 to L3H7N+1). The forecast variable for the LSTM L3HN+1-Models is the delta that is directly forecasted from the respective LSTM model, whereas the
delta for the BSMHN+1, HHN+1, HJDHN+1 models are computed using their respective characteristic functions. The models denoted by the N+1 subscript use one-trading-day-ahead
input variables for forecasting the delta. Column I identifies the models, column II identifies the forecast variable, column III lists the input variables used by the models to obtain the
one-trading-day-ahead forecasts of the delta, and columns IV, V and VI describe the network architecture of the LSTM L3HN+1-Models. The one-trading-day-ahead forecast errors of
the delta are used to compute the Root Mean Square Error (RMSE). Forecasts are made for 1,326 trading days, and there are 64 months covered in the sample using the monthly data.
Column VII reports the number of months out of the 64 months that each model has the smallest RMSE, while column VIII reports the number of days out of the 1,326 days each
model has the smallest RMSE. Columns IX (lower bound) and X (upper bound) present the winning percentage out of 64 months for each model, evaluated using the bootstrap sampling
technique. The statistical bootstrap performed (with replacement) at a 95% confidence level is computed from the monthly RMSE values of the respective models below. Similarly, in
columns XI (lower bound) and XII (upper bound) present the winning percentage out of 1326 days for each model computed from bootstrapping the daily RMSE values of the respective
models at a 95% confidence level.

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X) (XI) (XII)

Model Forecast Inputs No.
of
hidden
Lay-
ers

No. of
hidden
nodes
per layer

Network
architecture

Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

BSMHN+1 ∆BSMHN+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N - - - 50 486 67% 88% 34% 39%

HHN+1 ∆HHN+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N , HParamsCN - - - 6 68 3% 17% 4% 6%

HJDHN+1 ∆HJDHN+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N , HJDParamsCN - - - 0 78 0% 0% 5% 7%

FMLSHN+1 ∆FMLSHN+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, FMLSParamsCN - - - 0 198 0% 0% 13% 17%

L3H1N+1 ∆L3H1N+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N 3 6 6× 6× 6 0 37 0% 0% 2% 4%

L3H2N+1 ∆L3H2N+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N , (δCN/δSN ) 3 7 7× 7× 7 1 49 0% 5% 3% 5%

L3H3N+1 ∆L3H3N+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N ,∆BSMHN+1
N 3 7 7× 7× 7 0 43 0% 0% 2% 4%

L3H4N+1 ∆L3H4N+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N , BSMGreeksCN 3 11 11× 11× 11 5 248 2% 16% 17% 21%

L3H5N+1 ∆L3H5N+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, HParams

C
N ,∆

HHN+1
N 3 11 11× 11× 11 1 51 0% 5% 3% 5%

L3H6N+1 ∆L3H6N+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, HJDParams

C
N ,∆

HJDHN+1
N 3 14 14× 14× 14 1 53 0% 5% 3% 5%

L3H7N+1 ∆L3H7N+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, FMLSParamsCN ,∆

FMLSHN+1
N 3 8 8× 8× 8 0 28 0% 0% 1% 3%

286



Table B.2.8: Delta Comparison (amongst Parametric Models): This table presents a performance comparison using both daily and monthly statistics
amongst the Black-Scholes-Merton (BSMHN+1) model, Heston (HHN+1) model, Heston Jump Diffusion (HJDHN+1) model, and the Finite Moment
Log Stable (FMLSHN+1) model. The delta for the BSMHN+1, HHN+1, HJDHN+1 models are computed using their respective characteristic
functions. The models denoted by the N+1 subscript use one-trading-day-ahead input variables for forecasting the delta. The one-trading-day-ahead
forecast errors of the delta are used to compute the Root Mean Square Error (RMSE). Forecasts are made for 1,326 trading days, and there are 64
months covered in the sample using the monthly data. Column I identifies the models, column II identifies the forecast variable, and column III lists
the input variables used by the models to obtain the one-trading-day-ahead forecasts of the delta. Column IV reports the number of months out of
the 64 months that each model has the smallest RMSE, while column V reports lists the number of days out of the 1,326 days that each model has
the smallest RMSE. Columns VI (lower bound) and VII (upper bound) present the winning percentage out of 64 months for each model, evaluated
using the bootstrap sampling technique. The statistical bootstrap performed (with replacement) at a 95% confidence level is computed from the
monthly RMSE values of the respective models below. Similarly, columns VIII (lower bound) and IX (upper bound) present the winning percentage
out of 1326 days for each model computed from bootstrapping the daily RMSE values of the respective models at a 95% confidence level.

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX)

Model Forecast Inputs Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

BSMHN+1 ∆BSMHN+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N 58 936 83% 97% 68% 73%

HHN+1 ∆HHN+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N , HParamsCN 6 103 3% 17% 6% 9%

HJDHN+1 ∆HJDHN+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N , HJDParamsCN 0 79 0% 0% 5% 7%

FMLSHN+1 ∆FMLSHN+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, FMLSParamsCN 0 208 0% 0% 14% 18%
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B.2.3 Hedging performance of CH-Models that have analyti-

cally derived the delta (δCN+1/δSN+1) from the call option

price (CN+1), which is forecasted from models that use

one-trading-day-ahead input variables:

Tables B.2.9, B.2.10, B.2.11 and B.2.12 shows the relative out-of-sample hedging performance
(in RMSE) amongst the models that have analytically derived the delta (δCN+1/δSN+1) using
the CN+1 which is forecasted from models that use one-trading-day-ahead input variables. For
convenience, the models in Tables B.2.9, B.2.10, B.2.11, lists the forecast variable and the input
variables are listed in columns II and III, and, the architecture of the MLP and LSTM models
in columns IV, V and VI. The performance metric is the RMSE of the one-trading-day-ahead
forecast errors of the delta, which is computed for each model utilising all of the errors in each
day or each month. Amongst all models, columns VII and VIII record the number of months
and days, respectively, that each model has the lowest RMSE. To be certain of our results, we
performed a bootstrap using the daily and monthly RMSEs. Columns IX (lower bound) and
X (upper bound) present the results from the bootstrap performed (with replacement) using
monthly RMSEs at a 95% confidence level and show the winning percentage out of 64 months
for each model, and similarly, the 95 % confidence intervals computed from bootstrapping of the
daily RMSEs signifies the winning percentage out of 1326 days for each model and are reported
in columns XI (lower bound), XII (upper bound).

In the below several comparisons, even though a particular model wins by a higher percentage
against other models, we investigated further these models pairwise by performing a pairwise
bootstrap comparison, which was computed using the respective pair’s daily RMSEs. The results
are presented in Table 47 of the Electronic Appendix.

Also, we examined the pairwise Diebold-Mariano(DM) (Diebold and Mariano (1995)) tests on
these models and have presented the results in Table 41 of the Electronic Appendix. In con-
structing the DM test statistics, the models listed in the left column represent Model 1, and
the models in the first row represent Model 2 in Table 41 of the Electronic Appendix. If the null
can be rejected, a positive number suggests the rejection may be due to the second model being
the better forecast model. In contrast, a negative value suggests the rejection may be due to
the first model being the better forecast model. The model pairs highlighted in a red state that
their forecasts have statistically insignificant differences in their prediction accuracy. The follow-
ing model pairs have been shown to have statistically insignificant differences: (M3CH3N+1,
M3CH4N+1), (M3CH4N+1, M3CH6N+1), (M3CH4N+1, M3CH7N+1), and (HJDCHN+1,
M3CH7N+1).

The RMSEs for the models that have analytically derived the δCN+1/δSN+1 from CN+1 which
is forecasted from models that use one-trading-day-ahead input variables on a monthly, yearly,
and overall basis can be found in the Electronic Appendix, in Tables 23, 29, and 35, respectively.

In this section, we compare the out-of-sample hedging performance of the parametric models
(BSMCHN+1, HCHN+1, HJDCHN+1, and FMLSCHN+1), the triple hidden layer MLP
models (M3CHN+1 −Models) and triple hidden layer LSTM models (L3CHN+1 −Models),
then the parametric models with the M3CHN+1 −Models, and finally the parametric models
with the L3CHN+1 −Models. The results for the parametric models with the triple hidden
layer MLP M3CHN+1 − Models (M3CH1N+1 to M3CH7N+1) and the triple hidden layer
LSTM L3CHN+1−Models (L3CH1N+1 to L3CH7N+1) are presented in Table B.2.9. If all the
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models are compared together, then the L3CH4N+1 model had the lowest RMSE for 274 days
(having a daily bootstrap winning % of 19% to 23%) out of 1,326 days. Table B.2.10 presents
the results for the comparison of the parametric models with the triple hidden layer MLP
M3CHN −Models (M3CH1N to M3CH7N ), and the FMLSCHN+1 model had the lowest
RMSE for 226 days (having a daily bootstrap winning % of 15% to 19%) out of 1,326 days.
Though the FMLSCHN+1 model had out-performed other models, a variant of the MLP model,
the M3CH4N+1(182 days) had shown a daily bootstrap winning percentage from 12% to 16%.
We present the comparison results of the parametric models with the triple hidden layer LSTM
L3CHN+1−Models (L3CH1N+1 to L3CH7N+1) in Table B.2.11. We find that theHDJCHN+1
model had the lowest RMSE for 385 days (having a daily bootstrap winning % of 27% to 32%)
out of 1,326 days. Though the HJDCHN+1 model had out-performed other models, a variant
of the LSTM model, the L3CH4N+1(307 days), have shown similar out-performance, where it
had a daily bootstrap winning percentage from 21% to 25%. Finally, we compare amongst the
parametric models in Table B.2.12, and find that, yet again the HJDCHN+1 model had the
lowest RMSE for 475 days (having a daily bootstrap winning % of 34% to 39%) out of 1,326
days.

Thus, when the parametric models are compared with the triple hidden layer ANN models that
use one-trading-day-ahead input variables to forecast the call option price (CN+1), from which
the delta(δCN+1/δSN+1) is analytically computed using the forecasted CN+1 (in Table B.2.9),
we conclude that an LSTM model (L3CH4N+1) could outperform all other models. If the
parametric models were compared with the triple hidden layer MLP models (in Table B.2.10), a
parametric model (FMLSCHN+1) outperforms all other triple hidden layer MLP models, also
when the parametric models were compared with the triple hidden layer LSTM models (in Table
B.2.11), a parametric model (HJDCHN+1) outperforms them all. Finally, when a comparison
is made amongst the parametric models, the HJDCHN+1 model has been shown to outperform
the rest of the parametric models.
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Table B.2.9: Delta Comparison (amongst Parametric, M3CHN+1-Models and L3CHN+1-Models): This table presents a performance comparison using both daily and monthly statistics amongst the
Black-Scholes-Merton (BSMCHN+1) model, Heston (HCHN+1) model, Heston Jump Diffusion (HJDCHN+1) model, Finite Moment Log Stable (FMLSCHN+1) model, MLP M3CHN+1-Models
(M3CH1N+1 to M3CH7N+1) and the LSTM L3CHN+1-Models (L3CH1N+1 to L3CH7N+1). The forecast variable for all the models is the call option price (CN+1). The models denoted by the
N+1 subscript use one-trading-day-ahead input variables to forecast the CN+1. The delta (δCN+1/δSN+1) is then derived analytically from the forecasted call option price (CN+1) using equation 3.3.
The one-trading-day-ahead forecast errors of the delta are used to compute the Root Mean Square Error (RMSE). Column I identifies the models, column II identifies the forecast variable, column
III lists the input variables used by the models to obtain the one-trading-day-ahead forecast of CN+1, and columns IV, V and VI describe the network architecture of the MLP M3CHN+1-Models
and the LSTM L3CHN+1-Models. Forecasts are made for 1,326 trading days, and there are 64 months covered in the sample using the monthly data. Column VII reports the number of months
out of the 64 months that each model has the smallest RMSE, while column VIII reports the number of days out of the 1,326 days each model has the smallest RMSE. Columns IX (lower bound)
and X (upper bound) present the winning percentage out of 64 months for each model, evaluated using the bootstrap sampling technique. The statistical bootstrap performed (with replacement)
at a 95% confidence level is computed from the monthly RMSE values of the respective models below. Similarly, columns XI (lower bound) and XII (upper bound) present the winning percentage
out of 1326 days for each model computed from bootstrapping the daily RMSE values of the respective models at a 95% confidence level.

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X) (XI) (XII)

Model Forecast Inputs No.
of
hidden
Lay-
ers

No. of
hidden
nodes
per layer

Network
architecture

Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

BSMCHN+1 C
BSMCHN+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N - - - 0 77 0% 0% 4% 7%

HCHN+1 C
HCHN+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N , HParamsCN - - - 1 77 0% 5% 5% 7%

HJDCHN+1 C
HJDCHN+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N , HJDParamsCN - - - 2 39 0% 8% 2% 4%

FMLSCHN+1 C
FMLSCHN+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, FMLSParamsCN - - 0 120 0% 0% 8% 11%

M3CH1N+1 C
M3CH1N+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N 3 6 6 X 6 X 6 3 69 0% 11% 4% 6%

M3CH2N+1 C
M3CH2N+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N , (δCN/δSN ) 3 7 7 X 7 X 7 5 72 2% 16% 4% 7%

M3CH3N+1 C
M3CH3N+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N , δ
BSMCHN+1
N 3 7 7 X 7 X 7 4 80 2% 13% 5% 7%

M3CH4N+1 C
M3CH4N+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N , BSMGreeksCN 3 11 11 X 11 X 11 8 137 5% 22% 9% 12%

M3CH5N+1 C
M3CH5N+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, HParams

C
N , δ

HCHN+1
N 3 11 11 X 11 X 11 20 107 20% 44% 7% 10%

M3CH6N+1 C
M3CH6N+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, HJDParams

C
N , δ

HJDCHN+1
N 3 14 14 X 14 X 14 7 80 5% 19% 5% 7%

M3CH7N+1 C
M3CH7N+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, FMLSParamsCN , δ

FMLSCHN+1
N 3 8 8 X 8 X 8 14 87 12% 33% 5% 8%

L3CH1N+1 C
L3CH1N+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N 3 6 6 X 6 X 6 0 19 0% 0% 1% 2%

L3CH2N+1 C
L3CH2N+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N , (δCN/δSN ) 3 7 7 X 7 X 7 0 13 0% 0% 1% 2%

L3CH3N+1 C
L3CH3N+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N , δ
BSMCHN+1
N 3 7 7 X 7 X 7 0 15 0% 0% 1% 2%

L3CH4N+1 C
L3CH4N+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N , BSMGreeksCN 3 11 11 X 11 X 11 0 274 0% 0% 19% 23%

L3CH5N+1 C
L3CH5N+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, HParams

C
N , δ

HCHN+1
N 3 11 11 X 11 X 11 0 19 0% 0% 1% 2%

L3CH6N+1 C
L3CH6N+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, HJDParams

C
N , δ

HJDCHN+1
N 3 14 14 X 14 X 14 0 33 0% 0% 2% 3%

L3CH7N+1 C
L3CH7N+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, FMLSParamsCN , δ

FMLSCHN+1
N 3 8 8 X 8 X 8 0 6 0% 0% 0% 1%
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Table B.2.10: Delta Comparison (amongst Parametric and M3CHN+1-Models): This table presents a performance comparison using both daily and monthly statistics amongst the Black-Scholes-
Merton (BSMCHN+1) model, Heston (HCHN+1) model, Heston Jump Diffusion (HJDCHN+1) model, Finite Moment Log Stable (FMLSCHN+1) model, and the MLP M3CHN+1-Models
(M3CH1N+1 to M3CH7N+1). The forecast variable for all the models is the call option price (CN+1). The models denoted by the N+1 subscript use one-trading-day-ahead input variables to
forecast the CN+1. The delta (δCN+1/δSN+1) is then derived analytically from the forecasted call option price (CN+1) using equation 3.3. The one-trading-day-ahead forecast errors of the delta are
used to compute the Root Mean Square Error (RMSE). Column I identifies the models, column II identifies the forecast variable, column III lists the input variables used by the models to obtain
the one-trading-day-ahead forecast of CN+1, and columns IV, V and VI describe the network architecture of the MLP M3CHN+1-Models and the LSTM L3CHN+1-Models. Forecasts are made for
1,326 trading days, and there are 64 months covered in the sample using the monthly data. Column VII reports the number of months out of the 64 months that each model has the smallest RMSE,
while column VIII reports the number of days out of the 1,326 days each model has the smallest RMSE. Columns IX (lower bound) and X (upper bound) present the winning percentage out of 64
months for each model, evaluated using the bootstrap sampling technique. The statistical bootstrap performed (with replacement) at a 95% confidence level is computed from the monthly RMSE
values of the respective models below. Similarly, in columns XI (lower bound), XII (upper bound) presents the winning percentage out of 1326 days for each model computed from bootstrapping
the daily RMSE values of the respective models at a 95% confidence level.

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X) (XI) (XII)

Model Forecast Inputs No.
of
hidden
Lay-
ers

No. of
hidden
nodes
per layer

Network
architecture

Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

BSMCHN+1 C
BSMCHN+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N - - - 0 122 0% 0% 8% 11%

HCHN+1 C
HCHN+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N , HParamsCN - - - 1 112 0% 5% 7% 10%

HJDCHN+1 C
HJDCHN+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N , HJDParamsCN - - - 2 50 0% 8% 3% 5%

FMLSCHN+1 C
FMLSCHN+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, FMLSParamsCN - - 0 226 0% 0% 15% 19%

M3CH1N+1 C
M3CH1N+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N 3 6 6 X 6 X 6 3 92 0% 11% 6% 8%

M3CH2N+1 C
M3CH2N+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N , (δCN/δSN ) 3 7 7 X 7 X 7 5 97 2% 14% 6% 9%

M3CH3N+1 C
M3CH3N+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N , δ
BSMCHN+1
N 3 7 7 X 7 X 7 4 116 2% 13% 7% 10%

M3CH4N+1 C
M3CH4N+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N , BSMGreeksCN 3 11 11 X 11 X 11 8 182 5% 22% 12% 16%

M3CH5N+1 C
M3CH5N+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, HParams

C
N , δ

HCHN+1
N 3 11 11 X 11 X 11 20 128 20% 44% 8% 11%

M3CH6N+1 C
M3CH6N+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, HJDParams

C
N , δ

HJDCHN+1
N 3 14 14 X 14 X 14 7 94 5% 19% 6% 8%

M3CH7N+1 C
M3CH7N+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, FMLSParamsCN , δ

FMLSCHN+1
N 3 8 8 X 8 X 8 14 105 13% 33% 6% 9%
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Table B.2.11: Delta Comparison (amongst Parametric and L3CHN+1-Models): This table presents a performance comparison using both daily and monthly statistics amongst the Black-Scholes-
Merton (BSMCHN+1) model, Heston (HCHN+1) model, Heston Jump Diffusion (HJDCHN+1) model, Finite Moment Log Stable (FMLSCHN+1) model, and the LSTM L3CHN+1-Models
(L3CH1N+1 to L3CH7N+1). The forecast variable for all the models is the call option price (CN+1). The models denoted by the N+1 subscript use one-trading-day-ahead input variables to forecast
the CN+1. The delta (δCN+1/δSN+1) is then derived analytically from the forecasted call option price (CN+1) using equation 3.3. The one-trading-day-ahead forecast errors of the delta are used
to compute the Root Mean Square Error (RMSE). Column I identifies the models, column II identifies the forecast variable, column III lists the input variables used by the models to obtain the
one-trading-day-ahead forecast of CN+1, and columns IV, V and VI describe the network architecture of the MLP M3CHN+1-Models and the LSTM L3CHN+1-Models. Forecasts are made for
1,326 trading days, and there are 64 months covered in the sample using the monthly data. Column VII reports the number of months out of the 64 months that each model has the smallest RMSE,
while column VIII reports the number of days out of the 1,326 days each model has the smallest RMSE. Columns IX (lower bound) and X (upper bound) present the winning percentage out of 64
months for each model, evaluated using the bootstrap sampling technique. The statistical bootstrap performed (with replacement) at a 95% confidence level is computed from the monthly RMSE
values of the respective models below. Similarly, in columns XI (lower bound), XII (upper bound) presents the winning percentage out of 1326 days for each model computed from bootstrapping
the daily RMSE values of the respective models at a 95% confidence level.

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X) (XI) (XII)

Model Forecast Inputs No.
of
hidden
Lay-
ers

No. of
hidden
nodes
per layer

Network
architecture

Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

BSMCHN+1 C
BSMCHN+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N - - - 0 84 0% 0% 5% 8%

HCHN+1 C
HCHN+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N , HParamsCN - - - 4 255 2% 13% 17% 21%

HJDCHN+1 C
HJDCHN+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N , HJDParamsCN - - - 60 385 88% 98% 27% 32%

FMLSCHN+1 C
FMLSCHN+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, FMLSParamsCN - - 0 186 0% 0% 12% 16%

L3CH1N+1 C
L3CH1N+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N 3 6 6 X 6 X 6 0 20 0% 0% 1% 2%

L3CH2N+1 C
L3CH2N+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N , (δCN/δSN ) 3 7 7 X 7 X 7 0 13 0% 0% 1% 2%

L3CH3N+1 C
L3CH3N+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N , δ
BSMCHN+1
N 3 7 7 X 7 X 7 0 15 0% 0% 1% 2%

L3CH4N+1 C
L3CH4N+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N , BSMGreeksCN 3 11 11 X 11 X 11 0 307 0% 0% 21% 25%

L3CH5N+1 C
L3CH5N+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, HParams

C
N , δ

HCHN+1
N 3 11 11 X 11 X 11 0 20 0% 0% 1% 2%

L3CH6N+1 C
L3CH6N+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, HJDParams

C
N , δ

HJDCHN+1
N 3 14 14 X 14 X 14 0 33 0% 0% 2% 3%

L3CH7N+1 C
L3CH7N+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, FMLSParamsCN , δ

FMLSCHN+1
N 3 8 8 X 8 X 8 0 6 0% 0% 0% 1%
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Table B.2.12: Delta Comparison (amongst Parametric Models): This table presents a performance comparison using both daily and monthly statistics amongst
the Black-Scholes-Merton (BSMCHN+1) model, Heston (HCHN+1) model, Heston Jump Diffusion (HJDCHN+1) model, and the Finite Moment Log Stable
(FMLSCHN+1) model. The forecast variable for all the models is the call option price (CN+1). The models denoted by the N+1 subscript use one-trading-day-
ahead input variables to forecast the CN+1. The delta (δCN+1/δSN+1) is then derived analytically from the forecasted call option price (CN+1) using equation
3.3. The one-trading-day-ahead forecast errors of the delta are used to compute the Root Mean Square Error (RMSE). Column I identifies the models, column
II identifies the forecast variable, column III lists the input variables used by the models to obtain the one-trading-day-ahead forecast of CN+1. Forecasts are
made for 1,326 trading days, and there are 64 months covered in the sample using the monthly data. Column IV reports the number of months out of the 64
months that each model has the smallest RMSE, while column V reports the number of days out of the 1,326 days each model has the smallest RMSE. Columns
VI (lower bound) and VII (upper bound) present the winning percentage out of 64 months for each model, evaluated using the bootstrap sampling technique.
The statistical bootstrap performed (with replacement) at a 95% confidence level is computed from the monthly RMSE values of the respective models below.
Similarly, in columns VIII (lower bound), IX (upper bound) presents the winning percentage out of 1326 days for each model computed from bootstrapping the
daily RMSE values of the respective models at a 95% confidence level.

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX)

Model Forecast Inputs Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

BSMCHN+1 C
BSMCHN+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N 0 135 0% 0% 9% 12%

HCHN+1 C
HCHN+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N , HParamsCN 4 361 2% 13% 25% 30%

HJDCHN+1 C
HJDCHN+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, σ

CALIBC

N , HJDParamsCN 60 475 88% 98% 34% 39%

FMLSCHN+1 C
FMLSCHN+1
N+1 SN+1,KN+1, TN+1, RN+1, QN+1, FMLSParamsCN 0 353 0% 0% 24% 29%

293



B.2.4 Replicating portfolio value performance of HV-Models

that forecast the replicating portfolio value(VN+1), com-

puted using the delta from H-Models that use lagged in-

put variables:

Tables B.2.13, B.2.14, B.2.15 and B.2.16 shows the relative out-of-sample replicating portfolio
value performance (in RMSE) amongst the models that forecast the one-trading-day-ahead
replicating portfolio value (VN+1). The VN+1 is computed from equation 3.17 using the fore-
casted one-trading-day-ahead delta from models that use lagged input variables. For conve-
nience, the models in Tables B.2.13, B.2.14, B.2.15, lists the forecast variable and the input
variables are listed in columns II and III, and the architecture of the MLP and LSTM models
in columns IV, V and VI. The performance metric is the RMSE of the one-trading-day-ahead
forecast errors of VN+1, which is computed for each model utilising all of the errors in each day
or each month. Amongst all models, columns VII and VIII record the number of months and
days, respectively, that each model has the lowest RMSE. We performed a bootstrap using
the daily and monthly RMSEs to be certain of our results. Columns IX (lower bound) and
X (upper bound) present the results from the bootstrap performed (with replacement) using
monthly RMSEs at a 95% confidence level and show the winning percentage out of 64 months
for each model, and similarly, the 95 % confidence intervals computed from bootstrapping of the
daily RMSEs signifies the winning percentage out of 1326 days for each model and are reported
in columns XI (lower bound), XII (upper bound).

In the below several comparisons, even though a particular model wins by a higher percentage
against other models, we investigated further these models pairwise by performing a pairwise
bootstrap comparison, which was computed using the respective pair’s daily RMSEs. The results
are presented in Table 48 of the Electronic Appendix. Also, we examined the pairwise Diebold-
Mariano(DM) (Diebold and Mariano (1995)) tests on these models and have presented the
results in Table 42 of the Electronic Appendix. In constructing theDM test statistics, the models
listed in the left column represent Model 1, and the models in the first row represent Model 2 in
Table 42 of the Electronic Appendix. If the null can be rejected, a positive number suggests the
rejection may be due to the second model being the better forecast model. In contrast, a negative
value suggests the rejection may be due to the first model being the better forecast model.
The model pairs highlighted in a red state that their forecasts have statistically insignificant
differences in their prediction accuracy. The following model pairs have been shown to have
statistically insignificant differences: (BSMHVN , M3HV 2N ), and (HHVN , L3HV 4NN ). The
RMSEs for the models that use lagged input variables to forecast the VN+1 on a monthly, yearly,
and overall basis can be found in the Electronic Appendix, in Tables 24, 30, and 36, respectively.

In this section, we compare the out-of-sample replicating portfolio value performance of the
parametric models (BSMHVN , HHVN , HJDHVN , and FMLSHVN ), the triple hidden layer
MLP models (M3HVN −Models) and triple hidden layer LSTM models (L3HVN −Models),
then the parametric models with the M3HVN−Models, and finally the parametric models with
the L3HVN −Models.

The results for the parametric models with the triple hidden layer MLP M3HVN − Models
(M3HV 1N to M3HV 7N ) and the triple hidden layer LSTM L3HVN −Models (L3HV 1N to
L3HV 7N ) are presented in Table B.2.13. If all the models are compared together, then the
BSMHVN model had the lowest RMSE for 166 days (having a daily bootstrap winning % of
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11% to 14%) out of 1,326 days. Although the BSMHVN model had outperformed other models,
the FMLSHVN (162 days), and the M3HV 1N (137 days) have shown similar outperformance,
where they have a collective daily bootstrap winning percentage from 9% (lower bound for the
M3HV 1N model) to 14%. (upper bound for the FMLSHVN model). Table B.2.14 presents
the results for the comparison of the parametric models with the triple hidden layer MLP
M3HVN−Models (M3HV 1N toM3HV 7N ), and the BSMHVN model had the lowest RMSE
for 188 days (having a daily bootstrap winning % of 12% to 16%) out of 1,326 days. Though the
BSMHVN model had outperformed other models, the FMLSHVN (166 days), M3HV 1N (169
days), and the M3HV 2N (143 days) have shown similar outperformance, where they have a
collective daily bootstrap winning percentage from 9% (lower bound for the M3H2VN model)
to 14%. (upper bound for the M3HV 1N model). We present the comparison results of the
parametric models with the triple hidden layer LSTM L3HVN−Models (L3HV 1N to L3HV 7N )
in Table B.2.15. We find that the BSMHVN model had the lowest RMSE for 451 days (having
a daily bootstrap winning % of 31% to 37%) out of 1,326 days. Finally, we compare amongst the
parametric models in Table B.2.16 and find that the BSMHVN model had the lowest RMSE
for 909 days (having a daily bootstrap winning % of 66% to 71%) out of 1,326 days.

Thus, when the parametric models are compared with the triple hidden layer ANN models that
use lagged input variables to forecast the replicating portfolio value(in Table B.2.13), we con-
clude that a parametric model (BSMHVN ) could outperform all models. If the parametric
models were compared with the triple hidden layer MLP models (in Table B.2.14), a parametric
model (BSMHVN ) outperforms all the triple hidden layer MLP models, also when the para-
metric models were compared with the triple hidden layer LSTM models (in Table B.2.15), a
parametric model (BSMHVN ) still outperforms them all. Finally, when a comparison is made
amongst parametric models, the BSMHVN model has been shown to outperform the rest of
the parametric models.

295



Table B.2.13: Replicating Portfolio Value Comparison (amongst Parametric, M3HVN -Models and L3HVN -Models): This table presents a performance comparison using both daily and
monthly statistics amongst the Black-Scholes-Merton (BSMHVN ) model, Heston (HHVN ) model, Heston Jump Diffusion (HJDHVN ) model, Finite Moment Log Stable (FMLSHVN )
model, MLP M3HVN -Models (M3HV 1N to M3HV 7N ) and the LSTM L3HVN -Models (L3HV 1N to L3HV 7N ). The forecast variable for the MLP M3HVN -Models and LSTM
L3HVN -Models is the delta that is directly forecasted from the respective ANN model, whereas the delta for the BSMHVN , HHVN , HJDHVN models are computed using their
respective characteristic functions. The models denoted by the N subscript use lagged input variables for forecasting the delta. The forecasted delta is later used to compute the
replicating portfolio value VN+1 using equation 3.17. The one-trading-day-ahead forecast errors of VN+1 are used to compute the Root Mean Square Error (RMSE). Column I identifies
the models, column II identifies the forecast variable, and column III lists the input variables used by the models to obtain the VN+1. Forecasts are made for 1,326 trading days, and
there are 64 months covered in the sample using the monthly data. Column VII reports the number of months out of the 64 months that each model has the smallest RMSE, while
column VIII reports the number of days out of the 1,326 days each model has the smallest RMSE. Columns IX (lower bound) and X (upper bound) present the winning percentage out
of 64 months for each model, evaluated using the bootstrap sampling technique. The statistical bootstrap performed (with replacement) at a 95% confidence level is computed from
the monthly RMSE values of the respective models below. Similarly, columns XI (lower bound) and XII (upper bound) present the winning percentage out of 1326 days for each model
computed from bootstrapping the daily RMSE values of the respective models at a 95% confidence level.

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX)

Model Forecast Inputs Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

BSMHVN V
BSMHVN
N+1 SN+1, SN , RN+1, δt, C

BSMHN
N , C

BSMHN
N+1 ,∆BSMHN

N+1 3 166 0% 10% 11% 14%

HHVN V
HHVN
N+1 SN+1, SN , RN+1, δt, C

HHN
N , C

HHN
N+1 ,∆HHN

N+1 6 66 3% 17% 4% 6%

HJDHVN V
HJDVN
N+1 SN , SN−1, RN , δt, C

HJDN
N , C

HJDN
N+1 ,∆HJDN

N+1 1 69 0% 5% 4% 6%

FMLSHVN V
FMLSVN
N+1 SN , SN−1, RN , δt, C

FMLSN
N , C

FMLSN
N+1 ,∆FMLSN

N+1 1 162 0% 5% 10% 14%

M3HV 1N V
M3HV 1N
N+1 SN+1, SN , RN+1, δt, C

M3H1N
N , C

M3H1N
N+1 ,∆M3H1N

N+1 7 137 3% 19% 9% 12%

M3HV 2N V
M3HV 2N
N+1 SN+1, SN , RN+1, δt, C

M3H2N
N , C

M3H2N
N+1 ,∆M3H2N

N+1 5 105 2% 16% 7% 9%

M3HV 3N V
M3HV 3N
N+1 SN+1, SN , RN+1, δt, C

M3H3N
N , C

M3H3N
N+1 ,∆M3H3N

N+1 5 89 2% 16% 5% 8%

M3HV 4N V
M3HV 4N
N+1 SN+1, SN , RN+1, δt, C

M3H4N
N , C

M3H4N
N+1 ,∆M3H4N

N+1 5 72 2% 16% 4% 7%

M3HV 5N V
M3HV 5N
N+1 SN+1, SN , RN+1, δt, C

M3H5N
N , C

M3H5N
N+1 ,∆M3H5N

N+1 8 93 5% 20% 6% 8%

M3HV 6N V
M3HV 6N
N+1 SN+1, SN , RN+1, δt, C

M3H6N
N , C

M3H6N
N+1 ,∆M3H6N

N+1 4 94 2% 13% 6% 9%

M3HV 7N V
M3HV 7N
N+1 SN+1, SN , RN+1, δt, C

M3H7N
N , C

M3H7N
N+1 ,∆M3H7N

N+1 10 95 8% 25% 6% 9%

L3HV 1N V
L3HV 1N
N+1 SN+1, SN , RN+1, δt, C

L3H1N
N , C

L3H1N
N+1 ,∆L3H1N

N+1 0 18 0% 0% 1% 2%

L3HV 2N V
L3HV 2N
N+1 SN+1, SN , RN+1, δt, C

L3H2N
N , C

L3H2N
N+1 ,∆L3H2N

N+1 1 20 0% 5% 1% 2%

L3HV 3N V
L3HV 3N
N+1 SN+1, SN , RN+1, δt, C

L3H3N
N , C

L3H3N
N+1 ,∆L3H3N

N+1 0 22 0% 0% 1% 2%

L3HV 4N V
L3HV 4N
N+1 SN+1, SN , RN+1, δt, C

L3H4N
N , C

L3H4N
N+1 ,∆L3H4N

N+1 6 77 3% 16% 5% 7%

L3HV 5N V
L3HV 5N
N+1 SN+1, SN , RN+1, δt, C

L3H5N
N , C

L3H5N
N+1 ,∆L3H5N

N+1 0 16 0% 0% 1% 2%

L3HV 6N V
L3HV 6N
N+1 SN+1, SN , RN+1, δt, C

L3H6N
N , C

L3H6N
N+1 ,∆L3H6N

N+1 1 20 0% 5% 1% 2%

L3HV 7N V
L3HV 7N
N+1 SN+1, SN , RN+1, δt, C

L3H7N
N , C

L3H7N
N+1 ,∆L3H7N

N+1 1 15 0% 5% 0% 2%
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Table B.2.14: Replicating Portfolio Value Comparison (amongst Parametric and M3HVN -Models): This table presents a performance comparison using both daily and monthly statistics
amongst the Black-Scholes-Merton (BSMHVN ) model, Heston (HHVN ) model, Heston Jump Diffusion (HJDHVN ) model, Finite Moment Log Stable (FMLSHVN ) model, and the
MLP M3HVN -Models (M3HV 1N to M3HV 7N ). The forecast variable for the MLP M3HVN -Models and LSTM L3HVN -Models is the delta that is directly forecasted from the
respective MLP model, whereas the delta for the BSMHVN , HHVN , HJDHVN models are computed using their respective characteristic functions. The models denoted by the N

subscript use lagged input variables for forecasting the delta. The forecasted delta is later used to compute the replicating portfolio value VN+1 using equation 3.17. The one-trading-day-
ahead forecast errors of VN+1 are used to compute the Root Mean Square Error (RMSE). Column I identifies the models, column II identifies the forecast variable, and column III lists
the input variables used by the models to obtain the VN+1. Forecasts are made for 1,326 trading days, and there are 64 months covered in the sample using the monthly data. Column
VII reports the number of months out of the 64 months that each model has the smallest RMSE, while column VIII reports the number of days out of the 1,326 days each model has the
smallest RMSE. Columns IX (lower bound) and X (upper bound) present the winning percentage out of 64 months for each model, evaluated using the bootstrap sampling technique.
The statistical bootstrap performed (with replacement) at a 95% confidence level is computed from the monthly RMSE values of the respective models below. Similarly, columns XI
(lower bound) and XII (upper bound) present the winning percentage out of 1326 days for each model computed from bootstrapping the daily RMSE values of the respective models at
a 95% confidence level.

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX)

Model Forecast Inputs Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

BSMHVN V
BSMHVN
N+1 SN+1, SN , RN+1, δt, C

BSMHN
N , C

BSMHN
N+1 ,∆BSMHN

N+1 4 188 2% 13% 12% 16%

HHVN V
HHVN
N+1 SN+1, SN , RN+1, δt, C

HHN
N , C

HHN
N+1 ,∆HHN

N+1 6 67 3% 17% 4% 6%

HJDHVN V
HJDVN
N+1 SN , SN−1, RN , δt, C

HJDN
N , C

HJDN
N+1 ,∆HJDN

N+1 1 69 0% 5% 4% 6%

FMLSHVN V
FMLSVN
N+1 SN , SN−1, RN , δt, C

FMLSN
N , C

FMLSN
N+1 ,∆FMLSN

N+1 1 166 0% 5% 11% 14%

M3HV 1N V
M3HV 1N
N+1 SN+1, SN , RN+1, δt, C

M3H1N
N , C

M3H1N
N+1 ,∆M3H1N

N+1 9 169 6% 23% 11% 14%

M3HV 2N V
M3HV 2N
N+1 SN+1, SN , RN+1, δt, C

M3H2N
N , C

M3H2N
N+1 ,∆M3H2N

N+1 6 143 3% 17% 9% 12%

M3HV 3N V
M3HV 3N
N+1 SN+1, SN , RN+1, δt, C

M3H3N
N , C

M3H3N
N+1 ,∆M3H3N

N+1 5 111 2% 16% 7% 10%

M3HV 4N V
M3HV 4N
N+1 SN+1, SN , RN+1, δt, C

M3H4N
N , C

M3H4N
N+1 ,∆M3H4N

N+1 5 87 2% 16% 5% 8%

M3HV 5N V
M3HV 5N
N+1 SN+1, SN , RN+1, δt, C

M3H5N
N , C

M3H5N
N+1 ,∆M3H5N

N+1 9 108 6% 24% 7% 10%

M3HV 6N V
M3HV 6N
N+1 SN+1, SN , RN+1, δt, C

M3H6N
N , C

M3H6N
N+1 ,∆M3H6N

N+1 7 105 3% 19% 6% 9%

M3HV 7N V
M3HV 7N
N+1 SN+1, SN , RN+1, δt, C

M3H7N
N , C

M3H7N
N+1 ,∆M3H7N

N+1 11 113 9% 27% 7% 10%

297



Table B.2.15: Replicating Portfolio Value Comparison (amongst Parametric and L3HVN -Models): This table presents a performance comparison using both daily and monthly statistics
amongst the Black-Scholes-Merton (BSMHVN ) model, Heston (HHVN ) model, Heston Jump Diffusion (HJDHVN ) model, Finite Moment Log Stable (FMLSHVN ) model, and the
LSTM L3HVN -Models (L3HV 1N to L3HV 7N ). The forecast variable for the MLPM3HVN -Models and LSTM L3HVN -Models is the delta that is directly forecasted from the respective
LSTM model, whereas the delta for the BSMHVN , HHVN , HJDHVN models are computed using their respective characteristic functions. The models denoted by the N subscript
use lagged input variables for forecasting the delta. The forecasted delta is later used to compute the replicating portfolio value VN+1 using equation 3.17. The one-trading-day-ahead
forecast errors of VN+1 are used to compute the Root Mean Square Error (RMSE). Column I identifies the models, column II identifies the forecast variable, and column III lists the
input variables used by the models to obtain the VN+1. Forecasts are made for 1,326 trading days, and there are 64 months covered in the sample using the monthly data. Column VII
reports the number of months out of the 64 months that each model has the smallest RMSE, while column VIII reports the number of days out of the 1,326 days each model has the
smallest RMSE. Columns IX (lower bound) and X (upper bound) present the winning percentage out of 64 months for each model, evaluated using the bootstrap sampling technique.
The statistical bootstrap performed (with replacement) at a 95% confidence level is computed from the monthly RMSE values of the respective models below. Similarly, columns XI
(lower bound) and XII (upper bound) present the winning percentage out of 1326 days for each model computed from bootstrapping the daily RMSE values of the respective models at
a 95% confidence level.

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX)

Model Forecast Inputs Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

BSMHVN V
BSMHVN
N+1 SN+1, SN , RN+1, δt, C

BSMHN
N , C

BSMHN
N+1 ,∆BSMHN

N+1 27 451 31% 55% 31% 37%

HHVN V
HHVN
N+1 SN+1, SN , RN+1, δt, C

HHN
N , C

HHN
N+1 ,∆HHN

N+1 13 95 11% 30% 6% 9%

HJDHVN V
HJDVN
N+1 SN , SN−1, RN , δt, C

HJDN
N , C

HJDN
N+1 ,∆HJDN

N+1 1 78 0% 5% 5% 7%

FMLSHVN V
FMLSVN
N+1 SN , SN−1, RN , δt, C

FMLSN
N , C

FMLSN
N+1 ,∆FMLSN

N+1 2 198 0% 8% 13% 17%

L3HV 1N V
L3HV 1N
N+1 SN+1, SN , RN+1, δt, C

L3H1N
N , C

L3H1N
N+1 ,∆L3H1N

N+1 0 37 0% 0% 2% 4%

L3HV 2N V
L3HV 2N
N+1 SN+1, SN , RN+1, δt, C

L3H2N
N , C

L3H2N
N+1 ,∆L3H2N

N+1 1 55 0% 6% 3% 5%

L3HV 3N V
L3HV 3N
N+1 SN+1, SN , RN+1, δt, C

L3H3N
N , C

L3H3N
N+1 ,∆L3H3N

N+1 0 41 0% 0% 2% 4%

L3HV 4N V
L3HV 4N
N+1 SN+1, SN , RN+1, δt, C

L3H4N
N , C

L3H4N
N+1 ,∆L3H4N

N+1 18 250 17% 40% 17% 21%

L3HV 5N V
L3HV 5N
N+1 SN+1, SN , RN+1, δt, C

L3H5N
N , C

L3H5N
N+1 ,∆L3H5N

N+1 0 49 0% 0% 3% 5%

L3HV 6N V
L3HV 6N
N+1 SN+1, SN , RN+1, δt, C

L3H6N
N , C

L3H6N
N+1 ,∆L3H6N

N+1 1 52 0% 5% 3% 5%

L3HV 7N V
L3HV 7N
N+1 SN+1, SN , RN+1, δt, C

L3H7N
N , C

L3H7N
N+1 ,∆L3H7N

N+1 1 31 0% 5% 1% 3%
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Table B.2.16: Replicating Portfolio Value Comparison (amongst Parametric models): This table presents a performance comparison using both daily
and monthly statistics amongst the Black-Scholes-Merton (BSMHVN ) model, Heston (HHVN ) model, Heston Jump Diffusion (HJDHVN ) model,
and the Finite Moment Log Stable (FMLSHVN ) model. The delta for the BSMHVN , HHVN , HJDHVN models are computed using their respective
characteristic functions. The models denoted by the N subscript use lagged input variables for forecasting the delta. The forecasted delta is later
used to compute the replicating portfolio value VN+1 using equation 3.17. The one-trading-day-ahead forecast errors of VN+1 are used to compute the
Root Mean Square Error (RMSE). Column I identifies the models, column II identifies the forecast variable, and column III lists the input variables
used by the models to obtain the VN+1. Forecasts are made for 1,326 trading days, and there are 64 months covered in the sample using the monthly
data. Column IV reports the number of months out of the 64 months that each model has the smallest RMSE, while column V reports the number
of days out of the 1,326 days each model has the smallest RMSE. Columns VI (lower bound) and VII (upper bound) present the winning percentage
out of 64 months for each model, evaluated using the bootstrap sampling technique. The statistical bootstrap performed (with replacement) at a 95%
confidence level is computed from the monthly RMSE values of the respective models below. Similarly, columns VIII (lower bound) and IX (upper
bound) present the winning percentage out of 1326 days for each model computed from bootstrapping the daily RMSE values of the respective models
at a 95% confidence level.

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX)

Model Forecast Inputs Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

BSMHVN V
BSMHVN
N+1 SN+1, SN , RN+1, δt, C

BSMHN
N , C

BSMHN
N+1 ,∆BSMHN

N+1 46 909 61% 83% 66% 71%

HHVN V
HHVN
N+1 SN+1, SN , RN+1, δt, C

HHN
N , C

HHN
N+1 ,∆HHN

N+1 15 131 13% 34% 8% 12%

HJDHVN V
HJDVN
N+1 SN , SN−1, RN , δt, C

HJDN
N , C

HJDN
N+1 ,∆HJDN

N+1 1 79 0% 5% 5% 7%

FMLSHVN V
FMLSVN
N+1 SN , SN−1, RN , δt, C

FMLSN
N , C

FMLSN
N+1 ,∆FMLSN

N+1 2 207 0% 8% 14% 18%
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B.2.5 Replicating portfolio value performance of HV-Models

that forecast the replicating portfolio value(VN+1), com-

puted using the delta from H-Models that use one-trading-

day-ahead input variables:

Tables B.2.17, B.2.18, B.2.19 and B.2.20 shows the relative out-of-sample replicating portfolio
value performance (in RMSE) amongst the models that forecast the one-trading-day-ahead
replicating portfolio value (VN+1). The VN+1 is computed from equation 3.17 using the fore-
casted one-trading-day-ahead delta from models that use one-trading-day-ahead input variables.
For convenience, the models in Tables B.2.17, B.2.18, B.2.19, lists the forecast variable and the
input variables are listed in columns II and III, and, the architecture of the MLP and LSTM
models in columns IV, V and VI. The performance metric is the RMSE of the one-trading-day-
ahead forecast errors of VN+1, which is computed for each model utilising all of the errors in each
day or each month. Amongst all models, columns VII and VIII record the number of months
and days, respectively, that each model has the lowest RMSE. To be certain of our results, we
performed a bootstrap using the daily and monthly RMSEs. Columns IX (lower bound) and
X (upper bound) present the results from the bootstrap performed (with replacement) using
monthly RMSEs at a 95% confidence level and show the winning percentage out of 64 months
for each model, and similarly, the 95 % confidence intervals computed from bootstrapping of the
daily RMSEs signifies the winning percentage out of 1326 days for each model and are reported
in columns XI (lower bound), XII (upper bound).

In the below several comparisons, even though a particular model wins by a higher percentage
against other models, we investigated further these models pairwise by performing a pairwise
bootstrap comparison, which was computed using the respective pair’s daily RMSEs. The
results are presented in Table 49 of the Electronic Appendix. Also, we examined the pairwise
Diebold-Mariano(DM ) (Diebold and Mariano (1995)) tests on these models and have presented
the results in Table 43 of the Electronic Appendix. In constructing the DM test statistics, the
models listed in the left column represent Model 1, and the models in the first row represent
Model 2 in Table 43 of the Electronic Appendix. If the null can be rejected, a positive number
suggests the rejection may be due to the second model being the better forecast model. In
contrast, a negative value suggests the rejection may be due to the first model being the better
forecast model. The model pairs highlighted in a red state that their forecasts have statistically
insignificant differences in their prediction accuracy. Considering the DM -Test statistics in
Table 43 of the Electronic Appendix, all the model pairs lead to the rejection of the null of
equal forecasting performance. The RMSEs for the models that use one-trading-day-ahead
input variables to forecast the VN+1 on a monthly, yearly, and overall basis can be found in the
Electronic Appendix, in Tables 25, 31, and 37, respectively.

In this section, we compare the out-of-sample replicating portfolio value performance of the para-
metric models (BSMHVN+1, HHVN+1, HJDHVN+1, and FMLSHVN+1), the triple hidden
layer MLP models (M3HVN+1 −Models) and triple hidden layer LSTM models (L3HVN+1 −
Models), then the parametric models with the M3HVN+1−Models, and finally the parametric
models with the L3HVN+1 −Models.

The results for the parametric models with the triple hidden layer MLP M3HVN+1 −Models
(M3HV 1N+1 toM3HV 7N+1) and the triple hidden layer LSTM L3HVN+1−Models (L3HV 1N+1
to L3HV 7N+1) are presented in Table B.2.17. If all the models are compared together, then
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the BSMHVN+1 model had the lowest RMSE for 195 (having a daily bootstrap winning % of
13% to 17%) days out of 1,326 days. Although the BSMHVN+1 model had outperformed other
models, the FMLSHVN+1(165 days), and the M3HV 1N+1(158 days) had shown similar out-
performance, where they had a collective daily bootstrap winning percentage from 10% (lower
bound for the M3HV 1N+1 model) to 14%. (upper bound for the FMLSHVN+1 model). Table
B.2.18 presents the results for the comparison of the parametric models with the triple hidden
layer MLP M3HVN −Models (M3HV 1N+1 to M3HV 7N+1), and the BSMHVN+1 model had
the lowest RMSE for 207 days (having a daily bootstrap winning % of 14% to 18%) out of 1,326
days. Though the BSMHVN+1 model had outperformed other models, the FMLSHVN+1(170
days), and the M3HV 1N+1(193 days) have shown similar outperformance, where they had a
collective daily bootstrap winning percentage from 11% (lower bound for the FMLSHVN+1
model) to 17%. (upper bound for the M3HV 1N+1 model). We present the comparison results
of the parametric models with the triple hidden layer LSTM L3HVN+1 −Models (L3HV 1N+1
to L3HV 7N+1) in Table B.2.19. We find that the BSMHVN+1 model had the lowest RMSE
for 485 days (having a daily bootstrap winning % of 34% to 39%) out of 1,326 days. Finally, we
compare amongst the parametric models in Table B.2.20, and find that the BSMHVN+1 model
still had the lowest RMSE for 934 days (having a daily bootstrap winning % of 68% to 73%)
out of 1,326 days.

Thus, when the parametric models are compared with the triple hidden layer ANN models
that use one-trading-day-ahead input variables to forecast the replicating portfolio value(in
Table B.2.17), we conclude that a parametric model (BSMHVN+1) could outperform all other
models. If the parametric models were compared with the triple hidden layer MLP models (in
Table B.2.18), a parametric model (BSMHVN+1) outperforms all the triple hidden layer MLP
models, also when the parametric models were compared with the triple hidden layer LSTM
models (in Table B.2.19), a parametric model (BSMHVN+1) still outperforms all the triple
hidden layer, LSTM models. Finally, when the comparison is made amongst parametric models,
the BSMHVN+1 model has been shown to outperform the rest of the parametric models.
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Table B.2.17: Replicating Portfolio Value Comparison (amongst Parametric, M3HVN+1-Models and L3HVN+1-Models): This table presents a performance comparison using both daily and monthly
statistics amongst the Black-Scholes-Merton (BSMHVN+1) model, Heston (HHVN+1) model, Heston Jump Diffusion (HJDHVN+1) model, Finite Moment Log Stable (FMLSHVN+1) model, MLP
M3HVN+1-Models (M3HV 1N+1 to M3HV 7N+1) and the LSTM L3HVN+1-Models (L3HV 1N+1 to L3HV 7N+1). The forecast variable for the MLP M3HVN+1-Models and LSTM L3HVN+1-Models
is the delta that is directly forecasted from the respective ANN model, whereas the delta for the BSMHVN+1, HHVN+1, HJDHVN+1 models are computed using their respective characteristic
functions. The models denoted by the N+1 subscript use one-trading-day-ahead input variables for forecasting the delta. The forecasted delta is later used to compute the replicating portfolio value
VN+1 using equation 3.17. The one-trading-day-ahead forecast errors of VN+1 are used to compute the Root Mean Square Error (RMSE). Column I identifies the models, column II identifies the
forecast variable, and column III lists the input variables used by the models to obtain the VN+1. Forecasts are made for 1,326 trading days, and there are 64 months covered in the sample using the
monthly data. Column VII reports the number of months out of the 64 months that each model has the smallest RMSE, while column VIII reports the number of days out of the 1,326 days each
model has the smallest RMSE. Columns IX (lower bound) and X (upper bound) present the winning percentage out of 64 months for each model, evaluated using the bootstrap sampling technique.
The statistical bootstrap performed (with replacement) at a 95% confidence level is computed from the monthly RMSE values of the respective models below. Similarly, columns XI (lower bound) and
XII (upper bound) present the winning percentage out of 1326 days for each model computed from bootstrapping the daily RMSE values of the respective models at a 95% confidence level.

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX)

Model Forecast Inputs Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

BSMHVN+1 V
BSMHVN+1
N+1 SN+1, SN , RN+1, δt, C

BSMHN+1
N , C

BSMHN+1
N+1 ,∆BSMHN+1

N+1 17 195 17% 39% 13% 17%

HHVN+1 V
HHVN+1
N+1 SN+1, SN , RN+1, δt, C

HHN+1
N , C

HHN+1
N+1 ,∆HHN+1

N+1 11 43 9% 27% 2% 4%

HJDHVN+1 V
HJDHVN+1
N+1 SN+1, SN , RN+1, δt, C

HJDN+1
N , C

HJDN+1
N+1 ,∆HJDN+1

N+1 0 71 0% 0% 4% 7%

FMLSHVN+1 V
FMLSHVN+1
N+1 SN+1, SN , RN+1, δt, C

FMLSN+1
N , C

FMLSN+1
N+1 ,∆FMLSN+1

N+1 3 165 0% 11% 11% 14%

M3HV 1N+1 V
M3HV 1N+1
N+1 SN+1, SN , RN+1, δt, C

M3H1N+1
N , C

M3H1N+1
N+1 ,∆M3H1N+1

N+1 9 158 6% 23% 10% 14%

M3HV 2N+1 V
M3HV 2N+1
N+1 SN+1, SN , RN+1, δt, C

M3H2N+1
N , C

M3H2N+1
N+1 ,∆M3H2N+1

N+1 6 109 3% 17% 7% 10%

M3HV 3N+1 V
M3HV 3N+1
N+1 SN+1, SN , RN+1, δt, C

M3H3N+1
N , C

M3H3N+1
N+1 ,∆M3H3N+1

N+1 2 95 0% 8% 6% 9%

M3HV 4N+1 V
M3HV 4N+1
N+1 SN+1, SN , RN+1, δt, C

M3H4N+1
N , C

M3H4N+1
N+1 ,∆M3H4N+1

N+1 2 67 0% 8% 4% 6%

M3HV 5N+1 V
M3HV 5N+1
N+1 SN+1, SN , RN+1, δt, C

M3H5N+1
N , C

M3H5N+1
N+1 ,∆M3H5N+1

N+1 1 83 0% 5% 5% 8%

M3HV 6N+1 V
M3HV 6N+1
N+1 SN+1, SN , RN+1, δt, C

M3H6N+1
N , C

M3H6N+1
N+1 ,∆M3H6N+1

N+1 3 95 0% 11% 6% 9%

M3HV 7N+1 V
M3HV 7N+1
N+1 SN+1, SN , RN+1, δt, C

M3H7N+1
N , C

M3H7N+1
N+1 ,∆M3H7N+1

N+1 0 97 0% 0% 6% 9%

L3HV 1N+1 V
L3HV 1N+1
N+1 SN+1, SN , RN+1, δt, C

L3H1N+1
N , C

L3H1N+1
N+1 ,∆L3H1N+1

N+1 0 12 0% 0% 0% 1%

L3HV 2N+1 V
L3HV 2N+1
N+1 SN+1, SN , RN+1, δt, C

L3H2N+1
N , C

L3H2N+1
N+1 ,∆L3H2N+1

N+1 1 18 0% 5% 1% 2%

L3HV 3N+1 V
L3HV 3N+1
N+1 SN+1, SN , RN+1, δt, C

L3H3N+1
N , C

L3H3N+1
N+1 ,∆L3H3N+1

N+1 0 15 0% 0% 0% 1%

L3HV 4N+1 V
L3HV 4N+1
N+1 SN+1, SN , RN+1, δt, C

L3H4N+1
N , C

L3H4N+1
N+1 ,∆L3H4N+1

N+1 6 72 3% 17% 4% 7%

L3HV 5N+1 V
L3HV 5N+1
N+1 SN+1, SN , RN+1, δt, C

L3H5N+1
N , C

L3H5N+1
N+1 ,∆L3H5N+1

N+1 1 12 0% 5% 0% 1%

L3HV 6N+1 V
L3HV 6N+1
N+1 SN+1, SN , RN+1, δt, C

L3H6N+1
N , C

L3H6N+1
N+1 ,∆L3H6N+1

N+1 0 15 0% 0% 0% 1%

L3HV 7N+1 V
L3HV 7N+1
N+1 SN+1, SN , RN+1, δt, C

L3H7N+1
N , C

L3H7N+1
N+1 ,∆L3H7N+1

N+1 1 13 0% 5% 0% 1%
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Table B.2.18: Replicating Portfolio Value Comparison (amongst Parametric and M3HVN+1-Models): This table presents a performance comparison using both daily and monthly statistics
amongst the Black-Scholes-Merton (BSMHVN+1) model, Heston (HHVN+1) model, Heston Jump Diffusion (HJDHVN+1) model, Finite Moment Log Stable (FMLSHVN+1) model, and the MLP
M3HVN+1-Models (M3HV 1N+1 to M3HV 7N+1). The forecast variable for the MLP M3HVN+1-Models and LSTM L3HVN+1-Models is the delta that is directly forecasted from the respective
MLP model, whereas the delta for the BSMHVN+1, HHVN+1, HJDHVN+1 models are computed using their respective characteristic functions. The models denoted by the N+1 subscript use
one-trading-day-ahead input variables for forecasting the delta. The forecasted delta is later used to compute the replicating portfolio value VN+1 using equation 3.17. The one-trading-day-ahead
forecast errors of VN+1 are used to compute the Root Mean Square Error (RMSE). Column I identifies the models, column II identifies the forecast variable, and column III lists the input variables
used by the models to obtain the VN+1. Forecasts are made for 1,326 trading days, and there are 64 months covered in the sample using the monthly data. Column VII reports the number of months
out of the 64 months that each model has the smallest RMSE, while column VIII reports the number of days out of the 1,326 days each model has the smallest RMSE. Columns IX (lower bound)
and X (upper bound) present the winning percentage out of 64 months for each model, evaluated using the bootstrap sampling technique. The statistical bootstrap performed (with replacement)
at a 95% confidence level is computed from the monthly RMSE values of the respective models below. Similarly, columns XI (lower bound) and XII (upper bound) present the winning percentage
out of 1326 days for each model computed from bootstrapping the daily RMSE values of the respective models at a 95% confidence level.‘

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX)

Model Forecast Inputs Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

BSMHVN+1 V
BSMHVN+1
N+1 SN+1, SN , RN+1, δt, C

BSMHN+1
N , C

BSMHN+1
N+1 ,∆BSMHN+1

N+1 20 207 22% 44% 14% 18%

HHVN+1 V
HHVN+1
N+1 SN+1, SN , RN+1, δt, C

HHN+1
N , C

HHN+1
N+1 ,∆HHN+1

N+1 11 45 8% 27% 2% 4%

HJDHVN+1 V
HJDHVN+1
N+1 SN+1, SN , RN+1, δt, C

HJDN+1
N , C

HJDN+1
N+1 ,∆HJDN+1

N+1 0 72 0% 0% 4% 7%

FMLSHVN+1 V
FMLSHVN+1
N+1 SN+1, SN , RN+1, δt, C

FMLSN+1
N , C

FMLSN+1
N+1 ,∆FMLSN+1

N+1 3 170 0% 11% 11% 15%

M3HV 1N+1 V
M3HV 1N+1
N+1 SN+1, SN , RN+1, δt, C

M3H1N+1
N , C

M3H1N+1
N+1 ,∆M3H1N+1

N+1 11 193 8% 27% 13% 17%

M3HV 2N+1 V
M3HV 2N+1
N+1 SN+1, SN , RN+1, δt, C

M3H2N+1
N , C

M3H2N+1
N+1 ,∆M3H2N+1

N+1 6 134 3% 17% 8% 12%

M3HV 3N+1 V
M3HV 3N+1
N+1 SN+1, SN , RN+1, δt, C

M3H3N+1
N , C

M3H3N+1
N+1 ,∆M3H3N+1

N+1 2 117 0% 8% 7% 10%

M3HV 4N+1 V
M3HV 4N+1
N+1 SN+1, SN , RN+1, δt, C

M3H4N+1
N , C

M3H4N+1
N+1 ,∆M3H4N+1

N+1 3 73 0% 11% 4% 7%

M3HV 5N+1 V
M3HV 5N+1
N+1 SN+1, SN , RN+1, δt, C

M3H5N+1
N , C

M3H5N+1
N+1 ,∆M3H5N+1

N+1 1 101 0% 5% 6% 9%

M3HV 6N+1 V
M3HV 6N+1
N+1 SN+1, SN , RN+1, δt, C

M3H6N+1
N , C

M3H6N+1
N+1 ,∆M3H6N+1

N+1 5 104 2% 16% 6% 9%

M3HV 7N+1 V
M3HV 7N+1
N+1 SN+1, SN , RN+1, δt, C

M3H7N+1
N , C

M3H7N+1
N+1 ,∆M3H7N+1

N+1 1 109 0% 5% 7% 10%

303



Table B.2.19: Replicating Portfolio Value Comparison (amongst Parametric and L3HVN+1-Models): This table presents a performance comparison using both daily and monthly statistics amongst
the Black-Scholes-Merton (BSMHVN+1) model, Heston (HHVN+1) model, Heston Jump Diffusion (HJDHVN+1) model, Finite Moment Log Stable (FMLSHVN+1) model, and the LSTM
L3HVN+1-Models (L3HV 1N+1 to L3HV 7N+1). The forecast variable for the MLP M3HVN+1-Models and LSTM L3HVN+1-Models is the delta that is directly forecasted from the respective
LSTM model, whereas the delta for the BSMHVN+1, HHVN+1, HJDHVN+1 models are computed using their respective characteristic functions. The models denoted by the N+1 subscript use
one-trading-day-ahead input variables for forecasting the delta. The forecasted delta is later used to compute the replicating portfolio value VN+1 using equation 3.17. The one-trading-day-ahead
forecast errors of VN+1 are used to compute the Root Mean Square Error (RMSE). Column I identifies the models, column II identifies the forecast variable, and column III lists the input variables
used by the models to obtain the VN+1. Forecasts are made for 1,326 trading days, and there are 64 months covered in the sample using the monthly data. Column VII reports the number of months
out of the 64 months that each model has the smallest RMSE, while column VIII reports the number of days out of the 1,326 days each model has the smallest RMSE. Columns IX (lower bound)
and X (upper bound) present the winning percentage out of 64 months for each model, evaluated using the bootstrap sampling technique. The statistical bootstrap performed (with replacement)
at a 95% confidence level is computed from the monthly RMSE values of the respective models below. Similarly, columns XI (lower bound) and XII (upper bound) present the winning percentage
out of 1326 days for each model computed from bootstrapping the daily RMSE values of the respective models at a 95% confidence level.

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX)

Model Forecast Inputs Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

BSMHVN+1 V
BSMHVN+1
N+1 SN+1, SN , RN+1, δt, C

BSMHN+1
N , C

BSMHN+1
N+1 ,∆BSMHN+1

N+1 31 485 38% 63% 34% 39%

HHVN+1 V
HHVN+1
N+1 SN+1, SN , RN+1, δt, C

HHN+1
N , C

HHN+1
N+1 ,∆HHN+1

N+1 12 68 9% 28% 4% 6%

HJDHVN+1 V
HJDHVN+1
N+1 SN+1, SN , RN+1, δt, C

HJDN+1
N , C

HJDN+1
N+1 ,∆HJDN+1

N+1 0 78 0% 0% 5% 7%

FMLSHVN+1 V
FMLSHVN+1
N+1 SN+1, SN , RN+1, δt, C

FMLSN+1
N , C

FMLSN+1
N+1 ,∆FMLSN+1

N+1 3 199 0% 11% 13% 17%

L3HV 1N+1 V
L3HV 1N+1
N+1 SN+1, SN , RN+1, δt, C

L3H1N+1
N , C

L3H1N+1
N+1 ,∆L3H1N+1

N+1 0 37 0% 0% 2% 4%

L3HV 2N+1 V
L3HV 2N+1
N+1 SN+1, SN , RN+1, δt, C

L3H2N+1
N , C

L3H2N+1
N+1 ,∆L3H2N+1

N+1 1 49 0% 5% 3% 5%

L3HV 3N+1 V
L3HV 3N+1
N+1 SN+1, SN , RN+1, δt, C

L3H3N+1
N , C

L3H3N+1
N+1 ,∆L3H3N+1

N+1 0 43 0% 0% 2% 4%

L3HV 4N+1 V
L3HV 4N+1
N+1 SN+1, SN , RN+1, δt, C

L3H4N+1
N , C

L3H4N+1
N+1 ,∆L3H4N+1

N+1 12 247 9% 28% 17% 21%

L3HV 5N+1 V
L3HV 5N+1
N+1 SN+1, SN , RN+1, δt, C

L3H5N+1
N , C

L3H5N+1
N+1 ,∆L3H5N+1

N+1 1 51 0% 5% 3% 5%

L3HV 6N+1 V
L3HV 6N+1
N+1 SN+1, SN , RN+1, δt, C

L3H6N+1
N , C

L3H6N+1
N+1 ,∆L3H6N+1

N+1 1 53 0% 5% 3% 5%

L3HV 7N+1 V
L3HV 7N+1
N+1 SN+1, SN , RN+1, δt, C

L3H7N+1
N , C

L3H7N+1
N+1 ,∆L3H7N+1

N+1 2 28 0% 8% 1% 3%
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Table B.2.20: Replicating Portfolio Value Comparison (amongst Parametric models): This table presents a performance comparison using both daily and monthly
statistics amongst the Black-Scholes-Merton (BSMHVN+1) model, Heston (HHVN+1) model, Heston Jump Diffusion (HJDHVN+1) model, and the Finite Moment
Log Stable (FMLSHVN+1) model. The delta for the BSMHVN+1, HHVN+1, HJDHVN+1 models are computed using their respective characteristic functions.
The models denoted by the N+1 subscript use one-trading-day-ahead input variables for forecasting the delta. The forecasted delta is later used to compute the
replicating portfolio value VN+1 using equation 3.17. The one-trading-day-ahead forecast errors of VN+1 are used to compute the Root Mean Square Error (RMSE).
Column I identifies the models, column II identifies the forecast variable, and column III lists the input variables used by the models to obtain the VN+1. Forecasts
are made for 1,326 trading days, and there are 64 months covered in the sample using the monthly data. Column IV reports the number of months out of the 64
months that each model has the smallest RMSE, while column V reports the number of days out of the 1,326 days each model has the smallest RMSE. Columns
VI (lower bound) and VII (upper bound) present the winning percentage out of 64 months for each model, evaluated using the bootstrap sampling technique. The
statistical bootstrap performed (with replacement) at a 95% confidence level is computed from the monthly RMSE values of the respective models below. Similarly,
columns VIII (lower bound) and IX (upper bound) present the winning percentage out of 1326 days for each model computed from bootstrapping the daily RMSE
values of the respective models at a 95% confidence level.

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX)

Model Forecast Inputs Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

BSMHVN+1 V
BSMHVN+1
N+1 SN+1, SN , RN+1, δt, C

BSMHN+1
N , C

BSMHN+1
N+1 ,∆BSMHN+1

N+1 46 934 63% 84% 68% 73%

HHVN+1 V
HHVN+1
N+1 SN+1, SN , RN+1, δt, C

HHN+1
N , C

HHN+1
N+1 ,∆HHN+1

N+1 14 103 13% 33% 6% 9%

HJDHVN+1 V
HJDHVN+1
N+1 SN+1, SN , RN+1, δt, C

HJDN+1
N , C

HJDN+1
N+1 ,∆HJDN+1

N+1 0 79 0% 0% 5% 7%

FMLSHVN+1 V
FMLSHVN+1
N+1 SN+1, SN , RN+1, δt, C

FMLSN+1
N , C

FMLSN+1
N+1 ,∆FMLSN+1

N+1 3 209 0% 11% 14% 18%
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B.2.6 Replicating portfolio value performance of CHV-Models

that forecast the replicating portfolio value(VN+1) com-

puted using the analytically derived delta (δCN+1/δSN+1),

and where the δCN+1/δSN+1 is inferred from models that

forecast the call option price (CN+1) using one-trading-

day-ahead input variables:

Tables B.2.21, B.2.22, B.2.23 and B.2.24 shows the relative out-of-sample replicating portfolio
value performance (in RMSE) amongst the models that forecast the one-trading-day-ahead
replicating portfolio value (VN+1). The VN+1 is computed from equation 3.17 using the analyti-
cally derived delta (δCN+1/δSN+1). The δCN+1/δSN+1 is computed from models that forecast
the call option price (CN+1) using one-trading-day-ahead input variables. For convenience, the
models in Tables B.2.21, B.2.22, B.2.23, lists the forecast variable and the input variables are
listed in columns II and III, and, the architecture of the MLP and LSTM models in columns
IV, V and VI. The performance metric is the RMSE of the one-trading-day-ahead forecast
errors of VN+1, which is computed for each model utilising all of the errors in each day or each
month. Amongst all of the models, columns VII and VIII record the number of months and
days, respectively, that each model has the lowest RMSE. In order to be certain of our results,
we performed a bootstrap using the daily and monthly RMSEs. Columns IX (lower bound) and
X (upper bound) present the results from the bootstrap performed (with replacement) using
monthly RMSEs at a 95% confidence level and show the winning percentage out of 64 months
for each model, and similarly, the 95 % confidence intervals computed from bootstrapping of the
daily RMSEs signifies the winning percentage out of 1326 days for each model and are reported
in columns XI (lower bound), XII (upper bound).

In the below several comparisons, even though a particular model wins by a higher percentage
against other models, we investigated further these models pairwise by performing a pairwise
bootstrap comparison, which was computed using the respective pair’s daily RMSEs. The re-
sults are presented in Table 50 of the Electronic Appendix. Also, we examined the pairwise
Diebold-Mariano(DM ) (Diebold and Mariano (1995)) tests on these models and have presented
the results in Table 44 of the Electronic Appendix. In constructing the DM test statistics, the
models listed in the left column represent Model 1, and the models in the first row represent
Model 2 in Table 44 of the Electronic Appendix. If the null can be rejected, a positive number
suggests the rejection may be due to the second model being the better forecast model. In
contrast, a negative value suggests the rejection may be due to the first model being the better
forecast model. The model pairs highlighted in a red state that their forecasts have statistically
insignificant differences in their prediction accuracy. The following model pairs have been shown
to have statistically insignificant differences: (M3CHV 1N+1, M3CHV 2N+1), (M3CHV 3N+1,
M3CHV 6N+1), (HJDCHVN+1,M3CHV 7N+1), and (L3CHV 6N+1, L3CHV 7N+1). The RM-
SEs for the models that forecast the VN+1 computed using the analytically derived δCN+1/δSN+1
(where the δCN+1/δSN+1 is inferred from models that forecast the CN+1 using one-trading-day-
ahead input variables) on a monthly, yearly, and overall basis can be found in the Electronic
Appendix, in Tables 26, 32, and 38, respectively.

In this section, we compare the out-of-sample replicating portfolio value performance of the
parametric models (BSMCHVN+1, HCHVN+1, HJDCHVN+1, and FMLSCHVN+1), the
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triple hidden layer MLP models (M3CHVN+1 −Models) and triple hidden layer LSTM mod-
els (L3CHVN+1 −Models), then the parametric models with the M3CHVN+1 −Models, and
finally the parametric models with the L3CHVN+1 −Models.

The results for the parametric models with the triple hidden layer MLP M3CHVN+1−Models
(M3CHV 1N+1 to M3CHV 7N+1) and the triple hidden layer LSTM L3CHVN+1 − Models
(L3CHV 1N+1 to L3CHV 7N+1) are presented in Table B.2.21. If all the models are compared
together, then the L3CHV 4N+1 model had the lowest RMSE for 276 days (having a daily
bootstrap winning % of 18% to 23%) out of 1,326 days. Table B.2.22 presents the results
for the comparison of the parametric models with the triple hidden layer MLP M3CHVN −
Models (M3CHV 1N+1 to M3CHV 7N+1), and the FMLSCHVN+1 model had the lowest
RMSE for 224 days (having a daily bootstrap winning % of 15% to 19%) out of 1,326 days.
Though the FMLSCHVN+1 model had outperformed other models, another MLP model, the
M3CHV 4N+1(185 days) had shown similar outperformance, where it had a daily bootstrap win-
ning percentage from 12% to 16%. We present the comparison results of the parametric models
with the triple hidden layer LSTM L3CHVN+1 −Models (L3CHV 1N+1 to L3CHV 7N+1) in
Table B.2.23. We find that the HDJCHVN+1 model had the lowest RMSE for 387 days (hav-
ing a daily bootstrap winning % of 27% to 32%) out of 1,326 days. Though the HJDCHVN+1
model had outperformed other models, another LSTM model, the L3CHV 4N+1(311 days), had
shown similar outperformance, where it had a daily bootstrap winning percentage from 21% to
26%. Finally, we compare amongst the parametric models in Table B.2.24, and find that the
HJDCHVN+1 model had the lowest RMSE for 479 days (having a daily bootstrap winning %
of 34% to 39%) out of 1,326 days.

Thus, when the parametric models are compared with the triple hidden layer ANN models that
use one-trading-day-ahead input variables to forecast the call option price (CN+1), from which
the delta(δCN+1/δSN+1) is analytically computed using the forecasted CN+1, and then the
one-trading-day-ahead replicating portfolio value is computed (in Table B.2.21), we conclude
that an LSTM model (L3CHV 4N+1) could outperform all other models. If the parametric
models were compared with the triple hidden layer MLP models (in Table B.2.22), a parametric
model (FMLSCHVN+1) outperforms all other triple hidden layer MLP models, also when the
parametric models were compared with the triple hidden layer LSTM models (in Table B.2.23),
a parametric model (HJDCHVN+1) outperforms all other triple hidden layer LSTM models.
Finally, when a comparison is made amongst the parametric models, the HJDCHVN+1 model
has been shown to outperform the rest of the parametric models.
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Table B.2.21: Replicating Portfolio Value Comparison (amongst Parametric, M3CHVN+1-Models and L3CHVN+1-Models): This table presents a performance comparison using both daily and monthly
statistics amongst the Black-Scholes-Merton (BSMCHVN+1) model, Heston (HCHVN+1) model, Heston Jump Diffusion (HJDCHVN+1) model, Finite Moment Log Stable (FMLSCHVN+1) model,
MLP M3CHVN+1-Models (M3CHV 1N+1 to M3CHV 7N+1) and the LSTM L3CHVN+1-Models (L3CHV 1N+1 to L3CHV 7N+1). The forecast variable for all the models is the call option price (CN+1).
The models denoted by the N+1 subscript use one-trading-day-ahead input variables for forecasting the call option price. The delta (δCN+1/δSN+1) is derived analytically from the forecasted call option
price (CN+1) using equation 3.3 and then used to compute the replicating portfolio value VN+1 using equation 3.17. The one-trading-day-ahead forecast errors of VN+1 are used to compute the Root
Mean Square Error (RMSE). Column I identifies the models, column II identifies the forecast variable, and column III lists the input variables used by the models to obtain the VN+1. Forecasts are made
for 1,326 trading days, and there are 64 months covered in the sample using the monthly data. Column VII reports the number of months out of the 64 months that each model has the smallest RMSE,
while column VIII reports the number of days out of the 1,326 days each model has the smallest RMSE. Columns IX (lower bound) and X (upper bound) present the winning percentage out of 64 months
for each model, evaluated using the bootstrap sampling technique. The statistical bootstrap performed (with replacement) at a 95% confidence level is computed from the monthly RMSE values of the
respective models below. Similarly, columns XI (lower bound) and XII (upper bound) present the winning percentage out of 1326 days for each model computed from bootstrapping the daily RMSE
values of the respective models at a 95% confidence level.

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX)

Model Forecast Inputs Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

BSMCHVN+1 V
BSMCHVN+1
N+1 SN+1, SN , RN+1, δt, C

BSMCHN+1
N , C

BSMCHN+1
N+1 , δ

BSMCHN+1
N+1 0 77 0% 5% 5% 7%

HCHVN+1 V
HCHVN+1
N+1 SN+1, SN , RN+1, δt, C

HCHN+1
N , C

HCHN+1
N+1 , δ

HCHN+1
N+1 0 77 0% 0% 5% 7%

HJDCHVN+1 V
HJDCHVN+1
N+1 SN+1, SN , RN+1, δt, C

HJDCHN+1
N , C

HJDCHN+1
N+1 , δ

HJDCHN+1
N+1 2 39 0% 8% 2% 4%

FMLSCHVN+1 V
FMLSCHVN+1
N+1 SN+1, SN , RN+1, δt, C

FMLSCHN+1
N , C

FMLSCHN+1
N+1 , δ

FMLSCHN+1
N+1 0 116 0% 0% 7% 10%

M3CHV 1N+1 V
M3CHV 1N+1
N+1 SN+1, SN , RN+1, δt, C

M3CH1N+1
N , C

M3CH1N+1
N+1 , δ

M3CH1N+1
N+1 5 70 2% 14% 4% 6%

M3CHV 2N+1 V
M3CHV 2N+1
N+1 SN+1, SN , RN+1, δt, C

M3CH2N+1
N , C

M3CH2N+1
N+1 , δ

M3CH2N+1
N+1 8 73 5% 22% 4% 7%

M3CHV 3N+1 V
M3CHV 3N+1
N+1 SN+1, SN , RN+1, δt, C

M3CH3N+1
N , C

M3CH3N+1
N+1 , δ

M3CH3N+1
N+1 8 82 5% 20% 5% 7%

M3CHV 4N+1 V
M3CHV 4N+1
N+1 SN+1, SN , RN+1, δt, C

M3CH4N+1
N , C

M3CH4N+1
N+1 , δ

M3CH4N+1
N+1 8 141 6% 20% 9% 12%

M3CHV 5N+1 V
M3CHV 5N+1
N+1 SN+1, SN , RN+1, δt, C

M3CH5N+1
N , C

M3CH5N+1
N+1 , δ

M3CH5N+1
N+1 14 109 11% 31% 7% 10%

M3CHV 6N+1 V
M3CHV 6N+1
N+1 SN+1, SN , RN+1, δt, C

M3CH6N+1
N , C

M3CH6N+1
N+1 , δ

M3CH6N+1
N+1 5 81 2% 14% 5% 7%

M3CHV 7N+1 V
M3CHV 7N+1
N+1 SN+1, SN , RN+1, δt, C

M3CH7N+1
N , C

M3CH7N+1
N+1 , δ

M3CH7N+1
N+1 13 87 11% 31% 5% 8%

L3CHV 1N+1 V
L3CHV 1N+1
N+1 SN+1, SN , RN+1, δt, C

L3CH1N+1
N , C

L3CH1N+1
N+1 , δ

L3CH1N+1
N+1 0 20 0% 0% 1% 2%

L3CHV 2N+1 V
L3CHV 2N+1
N+1 SN+1, SN , RN+1, δt, C

L3CH2N+1
N , C

L3CH2N+1
N+1 , δ

L3CH2N+1
N+1 0 14 0% 0% 0% 2%

L3CHV 3N+1 V
L3CHV 3N+1
N+1 SN+1, SN , RN+1, δt, C

L3CH3N+1
N , C

L3CH3N+1
N+1 , δ

L3CH3N+1
N+1 0 15 0% 0% 1% 2%

L3CHV 4N+1 V
L3CHV 4N+1
N+1 SN+1, SN , RN+1, δt, C

L3CH4N+1
N , C

L3CH4N+1
N+1 , δ

L3CH4N+1
N+1 1 276 0% 5% 18% 23%

L3CHV 5N+1 V
L3CHV 5N+1
N+1 SN+1, SN , RN+1, δt, C

L3CH5N+1
N , C

L3CH5N+1
N+1 , δ

L3CH5N+1
N+1 0 20 0% 0% 1% 2%

L3CHV 6N+1 V
L3CHV 6N+1
N+1 SN+1, SN , RN+1, δt, C

L3CH6N+1
N , C

L3CH6N+1
N+1 , δ

L3CH6N+1
N+1 0 34 0% 0% 2% 3%

L3CHV 7N+1 V
L3CHV 7N+1
N+1 SN+1, SN , RN+1, δt, C

L3CH7N+1
N , C

L3CH7N+1
N+1 , δ

L3CH7N+1
N+1 0 7 0% 0% 0% 1%
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Table B.2.22: Replicating Portfolio Value Comparison (amongst Parametric andM3CHVN+1-Models): This table presents a performance comparison using both daily and monthly statistics amongst
the Black-Scholes-Merton (BSMCHVN+1) model, Heston (HCHVN+1) model, Heston Jump Diffusion (HJDCHVN+1) model, Finite Moment Log Stable (FMLSCHVN+1) model, and the MLP
M3CHVN+1-Models (M3CHV 1N+1 to M3CHV 7N+1). The forecast variable for all the models is the call option price (CN+1). The models denoted by the N+1 subscript use one-trading-day-ahead
input variables for forecasting the call option price. The delta (δCN+1/δSN+1) is derived analytically from the forecasted call option price (CN+1) using equation 3.3 and then used to compute
the replicating portfolio value VN+1 using equation 3.17. The one-trading-day-ahead forecast errors of VN+1 are used to compute the Root Mean Square Error (RMSE). Column I identifies the
models, column II identifies the forecast variable, and column III lists the input variables used by the models to obtain the VN+1. Forecasts are made for 1,326 trading days, and there are 64 months
covered in the sample using the monthly data. Column VII reports the number of months out of the 64 months that each model has the smallest RMSE, while column VIII reports the number of
days out of the 1,326 days each model has the smallest RMSE. Columns IX (lower bound) and X (upper bound) present the winning percentage out of 64 months for each model, evaluated using
the bootstrap sampling technique. The statistical bootstrap performed (with replacement) at a 95% confidence level is computed from the monthly RMSE values of the respective models below.
Similarly, columns XI (lower bound) and XII (upper bound) present the winning percentage out of 1326 days for each model computed from bootstrapping the daily RMSE values of the respective
models at a 95% confidence level.

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX)

Model Forecast Inputs Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

BSMCHVN+1 V
BSMCHVN+1
N+1 SN+1, SN , RN+1, δt, C

BSMCHN+1
N , C

BSMCHN+1
N+1 , δ

BSMCHN+1
N+1 0 123 0% 5% 8% 11%

HCHVN+1 V
HCHVN+1
N+1 SN+1, SN , RN+1, δt, C

HCHN+1
N , C

HCHN+1
N+1 , δ

HCHN+1
N+1 0 110 0% 0% 7% 10%

HJDCHVN+1 V
HJDCHVN+1
N+1 SN+1, SN , RN+1, δt, C

HJDCHN+1
N , C

HJDCHN+1
N+1 , δ

HJDCHN+1
N+1 2 50 0% 8% 3% 5%

FMLSCHVN+1 V
FMLSCHVN+1
N+1 SN+1, SN , RN+1, δt, C

FMLSCHN+1
N , C

FMLSCHN+1
N+1 , δ

FMLSCHN+1
N+1 0 224 0% 0% 15% 19%

M3CHV 1N+1 V
M3CHV 1N+1
N+1 SN+1, SN , RN+1, δt, C

M3CH1N+1
N , C

M3CH1N+1
N+1 , δ

M3CH1N+1
N+1 5 93 2% 16% 6% 8%

M3CHV 2N+1 V
M3CHV 2N+1
N+1 SN+1, SN , RN+1, δt, C

M3CH2N+1
N , C

M3CH2N+1
N+1 , δ

M3CH2N+1
N+1 8 98 5% 20% 6% 9%

M3CHV 3N+1 V
M3CHV 3N+1
N+1 SN+1, SN , RN+1, δt, C

M3CH3N+1
N , C

M3CH3N+1
N+1 , δ

M3CH3N+1
N+1 8 116 5% 20% 7% 10%

M3CHV 4N+1 V
M3CHV 4N+1
N+1 SN+1, SN , RN+1, δt, C

M3CH4N+1
N , C

M3CH4N+1
N+1 , δ

M3CH4N+1
N+1 8 185 5% 22% 12% 16%

M3CHV 5N+1 V
M3CHV 5N+1
N+1 SN+1, SN , RN+1, δt, C

M3CH5N+1
N , C

M3CH5N+1
N+1 , δ

M3CH5N+1
N+1 15 130 13% 33% 8% 11%

M3CHV 6N+1 V
M3CHV 6N+1
N+1 SN+1, SN , RN+1, δt, C

M3CH6N+1
N , C

M3CH6N+1
N+1 , δ

M3CH6N+1
N+1 5 97 2% 16% 6% 9%

M3CHV 7N+1 V
M3CHV 7N+1
N+1 SN+1, SN , RN+1, δt, C

M3CH7N+1
N , C

M3CH7N+1
N+1 , δ

M3CH7N+1
N+1 13 105 11% 30% 6% 9%
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Table B.2.23: Replicating Portfolio Value Comparison (amongst Parametric and L3CHVN+1-Models): This table presents a performance comparison using both daily and monthly statistics amongst
the Black-Scholes-Merton (BSMCHVN+1) model, Heston (HCHVN+1) model, Heston Jump Diffusion (HJDCHVN+1) model, Finite Moment Log Stable (FMLSCHVN+1) model, and the LSTM
L3CHVN+1-Models (L3CHV 1N+1 to L3CHV 7N+1). The forecast variable for all the models is the call option price (CN+1). The models denoted by the N+1 subscript use one-trading-day-ahead
input variables for forecasting the call option price. The delta (δCN+1/δSN+1) is derived analytically from the forecasted call option price (CN+1) using equation 3.3 and then used to compute
the replicating portfolio value VN+1 using equation 3.17. The one-trading-day-ahead forecast errors of VN+1 are used to compute the Root Mean Square Error (RMSE). Column I identifies the
models, column II identifies the forecast variable, and column III lists the input variables used by the models to obtain the VN+1. Forecasts are made for 1,326 trading days, and there are 64 months
covered in the sample using the monthly data. Column VII reports the number of months out of the 64 months that each model has the smallest RMSE, while column VIII reports the number of
days out of the 1,326 days each model has the smallest RMSE. Columns IX (lower bound) and X (upper bound) present the winning percentage out of 64 months for each model, evaluated using
the bootstrap sampling technique. The statistical bootstrap performed (with replacement) at a 95% confidence level is computed from the monthly RMSE values of the respective models below.
Similarly, columns XI (lower bound) and XII (upper bound) present the winning percentage out of 1326 days for each model computed from bootstrapping the daily RMSE values of the respective
models at a 95% confidence level.

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX)

Model Forecast Inputs Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

BSMCHVN+1 V
BSMCHVN+1
N+1 SN+1, SN , RN+1, δt, C

BSMCHN+1
N , C

BSMCHN+1
N+1 , δ

BSMCHN+1
N+1 0 84 0% 5% 5% 8%

HCHVN+1 V
HCHVN+1
N+1 SN+1, SN , RN+1, δt, C

HCHN+1
N , C

HCHN+1
N+1 , δ

HCHN+1
N+1 7 254 3% 17% 17% 21%

HJDCHVN+1 V
HJDCHVN+1
N+1 SN+1, SN , RN+1, δt, C

HJDCHN+1
N , C

HJDCHN+1
N+1 , δ

HJDCHN+1
N+1 56 387 80% 95% 27% 32%

FMLSCHVN+1 V
FMLSCHVN+1
N+1 SN+1, SN , RN+1, δt, C

FMLSCHN+1
N , C

FMLSCHN+1
N+1 , δ

FMLSCHN+1
N+1 0 182 0% 0% 12% 16%

L3CHV 1N+1 V
L3CHV 1N+1
N+1 SN+1, SN , RN+1, δt, C

L3CH1N+1
N , C

L3CH1N+1
N+1 , δ

L3CH1N+1
N+1 0 21 0% 0% 1% 2%

L3CHV 2N+1 V
L3CHV 2N+1
N+1 SN+1, SN , RN+1, δt, C

L3CH2N+1
N , C

L3CH2N+1
N+1 , δ

L3CH2N+1
N+1 0 14 0% 0% 1% 2%

L3CHV 3N+1 V
L3CHV 3N+1
N+1 SN+1, SN , RN+1, δt, C

L3CH3N+1
N , C

L3CH3N+1
N+1 , δ

L3CH3N+1
N+1 0 15 0% 0% 1% 2%

L3CHV 4N+1 V
L3CHV 4N+1
N+1 SN+1, SN , RN+1, δt, C

L3CH4N+1
N , C

L3CH4N+1
N+1 , δ

L3CH4N+1
N+1 1 311 0% 5% 21% 26%

L3CHV 5N+1 V
L3CHV 5N+1
N+1 SN+1, SN , RN+1, δt, C

L3CH5N+1
N , C

L3CH5N+1
N+1 , δ

L3CH5N+1
N+1 0 21 0% 0% 1% 2%

L3CHV 6N+1 V
L3CHV 6N+1
N+1 SN+1, SN , RN+1, δt, C

L3CH6N+1
N , C

L3CH6N+1
N+1 , δ

L3CH6N+1
N+1 0 35 0% 0% 2% 3%

L3CHV 7N+1 V
L3CHV 7N+1
N+1 SN+1, SN , RN+1, δt, C

L3CH7N+1
N , C

L3CH7N+1
N+1 , δ

L3CH7N+1
N+1 0 7 0% 0% 0% 1%
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Table B.2.24: Replicating Portfolio Value Comparison (amongst Parametric models): This table presents a performance comparison using both daily and monthly
statistics amongst the Black-Scholes-Merton (BSMCHVN+1) model, Heston (HCHVN+1) model, Heston Jump Diffusion (HJDCHVN+1) model, and the Finite
Moment Log Stable (FMLSCHVN+1) model. The forecast variable for all the models is the call option price (CN+1). The models denoted by the N+1 subscript
use one-trading-day-ahead input variables for forecasting the call option price. The delta (δCN+1/δSN+1) is derived analytically from the forecasted call option price
(CN+1) using equation 3.3 and then used to compute the replicating portfolio value VN+1 using equation 3.17. The one-trading-day-ahead forecast errors of VN+1 are
used to compute the Root Mean Square Error (RMSE). Column I identifies the models, column II identifies the forecast variable, and column III lists the input variables
used by the models to obtain the VN+1. Forecasts are made for 1,326 trading days, and there are 64 months covered in the sample using the monthly data. Column IV
reports the number of months out of the 64 months that each model has the smallest RMSE, while column V reports the number of days out of the 1,326 days each
model has the smallest RMSE. Columns VI (lower bound) and VII (upper bound) present the winning percentage out of 64 months for each model, evaluated using
the bootstrap sampling technique. The statistical bootstrap performed (with replacement) at a 95% confidence level is computed from the monthly RMSE values of
the respective models below. Similarly, columns VIII (lower bound) and IX (upper bound) present the winning percentage out of 1326 days for each model computed
from bootstrapping the daily RMSE values of the respective models at a 95% confidence level.

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX)

Model Forecast Inputs Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

BSMCHVN+1 V
BSMCHVN+1
N+1 SN+1, SN , RN+1, δt, C

BSMCHN+1
N , C

BSMCHN+1
N+1 , δ

BSMCHN+1
N+1 0 136 0% 5% 9% 12%

HCHVN+1 V
HCHVN+1
N+1 SN+1, SN , RN+1, δt, C

HCHN+1
N , C

HCHN+1
N+1 , δ

HCHN+1
N+1 8 360 3% 19% 25% 29%

HJDCHVN+1 V
HJDCHVN+1
N+1 SN+1, SN , RN+1, δt, C

HJDCHN+1
N , C

HJDCHN+1
N+1 , δ

HJDCHN+1
N+1 56 479 80% 95% 34% 39%

FMLSCHVN+1 V
FMLSCHVN+1
N+1 SN+1, SN , RN+1, δt, C

FMLSCHN+1
N , C

FMLSCHN+1
N+1 , δ

FMLSCHN+1
N+1 0 350 0% 0% 24% 29%
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Appendix for Chapter 4: Tables
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Table C.1.1: Diebold-Mariano(DM) test-based insignificant pairs: This table
presents the insignificant pairs for models discussed in 4, where the averaging was
done for the C−Models, CK−Models, H−Models, CH−Models, HV −Models,
CHV − Models. The complete table consisting of the DM test statistic for
C −Models which use lagged input variables to forecast the CN+1 can be found
in table 81, for C − Models which use one-trading-day-ahead input variables to
forecast the CN+1 in table 83, for CK −Models that use one-trading-day-ahead
input variables to forecast the CN+1/KN+1 in table 82 and for CK −Models that
use one-trading-day-ahead input variables to forecast the CN+1/KN+1 in table 84,
for the H −Models which use lagged input variables to forecast the ∆N+1 can be
found in table 85, for H −Models which use one-trading-day-ahead input variables
to forecast the ∆N+1 in table 86, for CH −Models that use one-trading-day-ahead
input variables to forecast the δN+1 in table 87, for HV −Models which use delta
from H−Models (using lagged inputs for forecasting) in table 88, for HV −Models
which use delta from H −Models (using one-trading-day-ahead inputs for forecast-
ing) in table 89, and CHV −Models which use delta from CH −Models in table
90 of the Electronic Appendix.

Model Insignificant Pairs

For C −Models which use lagged
input variables to forecast
the CN+1

(L1CAVGN −Models , L2CAVGN −Models)

C − Models which use one-trading-
day-ahead input variables to forecast
the CN+1

None

CK − Models that use one-trading-
day-ahead input variables to forecast
the CN+1/KN+1

None

CK − Models that use one-trading-
day-ahead input variables to forecast
the CN+1/KN+1

None

For H −Models (using lagged inputs) None

For H − Models (using one-trading-
day-ahead inputs)

None

For CH −Models (using one-trading-
day-ahead inputs)

None

For HV −Models computed from the
∆N+1 obtained from H−Models that
uses lagged input variables for fore-
casting

None

For HV −Models computed from the
∆N+1 obtained from H−Models that
uses one-trading-day input variables
for forecasting

None

For CHV − Models computed from
the δN+1 obtained from CH−Models
that uses one-trading-day input vari-
ables for forecasting

None
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Table C.1.2: This table presents the summary of the pair-wise bootstrap tests
performed for models in 4, where the averaging was done for the C − Models,
CK −Models, H −Models, CH −Models, HV −Models, CHV −Models. The
complete table consisting of the results for the pair-wise bootstrap for C −Models
which use lagged input variables to forecast the CN+1 can be found in Table 91, for
C−Models which use one-trading-day-ahead input variables to forecast the CN+1 in
Table 92, for CK −Models that use one-trading-day-ahead input variables to fore-
cast the CN+1/KN+1 in Table 93 and for CK −Models that use one-trading-day-
ahead input variables to forecast the CN+1/KN+1 in Table 94, for the H −Models
which use lagged input variables to forecast the ∆N+1 can be found in Table 95, for
H −Models which use one-trading-day-ahead input variables to forecast the ∆N+1
in Table 96, for CH −Models that use one-trading-day-ahead input variables to
forecast the δN+1 in Table 97, for HV −Models which use delta from H −Models
(that uses lagged inputs for forecasting δN+1) in Table 98, for HV −Models which
use delta from H −Models (that uses one-trading-day-ahead inputs for forecasting
δN+1) in Table 99, and CHV −Models which use delta from CH−Models in Table
100 of the Electronic Appendix.

Model Number of pairs a model wins Winning %

C −Models (using lagged inputs)

δCN 7 25.0%

M2CAVGN −Models 6 21.4%

M3CAVGN −Models 5 17.9%

M1CAVGN −Models 4 14.3%

ParamCAVGN −Models 3 10.7%

L2CAVGN −Models 2 7.1%

L3CAVGN −Models 1 3.6%

L1CAVGN −Models 0 0.0%

CK −Models (using lagged inputs)

δCKN 7 25.0%

M3CKAVG
N −Models 6 21.4%

M2CKAVG
N −Models 5 17.9%

M1CKAVG
N −Models 4 14.3%

ParamCKAVG
N −Models 3 10.7%

L3CKAVG
N −Models 2 7.1%

L2CKAVG
N −Models 1 3.6%

L1CKAVG
N −Models 0 0.0%

C −Models (using one-trading-day-ahead inputs)

M3CAVGN+1 −Models 3 50.0%

ParamCAVGN+1 −Models 2 33.3%

δCN+1 1 16.7%

L3CAVGN+1 −Models 0 0.0%

CK −Models (using one-trading-day-ahead inputs)

M3CKAVG
N+1 −Models 3 50.0%

δCKN+1 2 33.3%

ParamCKAVG
N+1 −Models 1 16.7%

L3CKAVG
N+1 −Models 0 0.0%

H −Models (using lagged inputs)

M3HAVG
N −Models 2 66.7%

ParamHAVG
N −Models 1 33.3%

L3HAVG
N −Models 0 0.0%

H −Models(using one-trading-day-ahead inputs)

ParamHAVG
N+1 −Models 2 66.7%

M3HAVG
N+1 −Models 1 33.3%

L3HAVG
N+1 −Models 0 0.0%

CH −Models (using one-trading-day-ahead inputs)

ParamCHAVG
N+1 −Models 2 66.7%

M3CHAVG
N+1 −Models 1 33.3%

L3CHAVG
N+1 −Models 0 0.0%

HV −Models (computed from the ∆N+1 obtained from H −Models that use lagged
input variables for forecasting)

M3HV AVGN −Models 2 66.7%

ParamHV AVGN −Models 1 33.3%

L3HV AVGN −Models 0 0.0%

HV −Models (computed from the ∆N+1 obtained from H −Models that use one-
trading-day-ahead input variables for forecasting

ParamHV AVGN+1 −Models 2 66.7%

M3HV AVGN+1 −Models 1 33.3%

L3HV AVGN+1 −Models 0 0.0%

CHV − Models (computed from the δN+1 obtained from CH − Models that use
one-trading-day-ahead input variables for forecasting)

ParamCHV AVGN+1 −Models 2 66.7%

M3CHV AVGN+1 −Models 1 33.3%

L3CHV AVGN+1 −Models 0 0.0%
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Table C.1.3: Model Definition for Parametric, MLP and LSTM models discussed in Chapter4

(I) (II)

Model Inputs

Average of C −Models which use lagged input variables to forecast the CN+1

ParamCAVGN −Models BSMCN , HCN , HJDCN , and FMLSCN

M1CAVGN −Models M1C1N , M1C2N , M1C3N , M1C4N , M1C5N , M1C6N , M1C7N , M1C8N , and M1C9N
M2CAVGN −Models M2C1N , M2C2N , M2C3N , M2C4N , M2C5N , M2C6N , M2C7N , M2C8N , and M2C9N
M3CAVGN −Models M3C1N , M3C2N , M3C3N , M3C4N , M3C5N , M3C6N , M3C7N , M3C8N , and M3C9N
L1CAVGN −Models L1C1N , L1C2N , L1C3N , L1C4N , L1C5N , L1C6N , L1C7N , L1C8N , and L1C9N
L2CAVGN −Models L2C1N , L2C2N , L2C3N , L2C4N , L2C5N , L2C6N , L2C7N , L2C8N , and L2C9N
L3CAVGN −Models L3C1N , L3C2N , L3C3N , L3C4N , L3C5N , L3C6N , L3C7N , L3C8N , and L3C9N

Average of C −Models which use one-trading-day-ahead input variables to forecast the CN+1

ParamCAVGN+1 −Models BSMCN+1, HCN+1, HJDCN+1, and FMLSCN+1

M3CAVGN+1 −Models M3C1N+1, M3C2N+1, M3C3N+1, M3C4N+1, M3C5N+1, M3C6N+1, M3C7N+1, M3C8N+1, and M3C9N+1

L3CAVGN+1 −Models L3C1N+1, L3C2N+1, L3C3N+1, L3C4N+1, L3C5N+1, L3C6N+1, L3C7N+1, L3C8N+1, and L3C9N+1

Average of CK −Models that use lagged ahead input variables to forecast the CN+1/KN+1

ParamCKAVG
N −Models BSMCKN , HCKN , HJDCKN , and FMLSCKN

M1CKAVG
N −Models M1CK1N , M1CK2N , M1CK3N , M1CK4N , M1CK5N , M1CK6N , M1CK7N , M1CK8N , and M1CK9N

M2CKAVG
N −Models M2CK1N , M2CK2N , M2CK3N , M2CK4N , M2CK5N , M2CK6N , M2CK7N , M2CK8N , and M2CK9N

M3CKAVG
N −Models M3CK1N , M3CK2N , M3CK3N , M3CK4N , M3CK5N , M3CK6N , M3CK7N , M3CK8N , and M3CK9N

L1CKAVG
N −Models L1CK1N , L1CK2N , L1CK3N , L1CK4N , L1CK5N , L1CK6N , L1CK7N , L1CK8N , and L1CK9N

L2CKAVG
N −Models L2CK1N , L2CK2N , L2CK3N , L2CK4N , L2CK5N , L2CK6N , L2CK7N , L2CK8N , and L2CK9N

L3CKAVG
N −Models L3CK1N , L3CK2N , L3CK3N , L3CK4N , L3CK5N , L3CK6N , L3CK7N , L3CK8N , and L3CK9N

Average of CK −Models that use one-trading-day-ahead input variables to forecast the CN+1/KN+1

ParamCKAVG
N+1 −Models BSMCKN+1, HCKN+1, HJDCKN+1, and FMLSCKN+1

M3CKAVG
N+1 −Models M3CK1N+1, M3CK2N+1, M3CK3N+1, M3CK4N+1, M3CK5N+1, M3CK6N+1, M3CK7N+1, M3CK8N+1, and M3CK9N+1

L3CKAVG
N+1 −Models L3CK1N+1, L3CK2N+1, L3CK3N+1, L3CK4N+1, L3CK5N+1, L3CK6N+1, L3CK7N+1, L3CK8N+1, and L3CK9N+1

H −Models (using lagged inputs)

ParamHAVG
N −Models BSMHN , HHN , HJDHN , and FMLSHN

M3HAVG
N −Models M3H1N , M3H2N , M3H3N , M3H4N , M3H5N , M3H6N , M3H7N

L3HAVG
N −Models L3H1N , L3H2N , L3H3N , L3H4N , L3H5N , L3H6N , L3H7N

H −Models(using one-trading-day-ahead inputs)

ParamHAVG
N+1 −Models BSMHN+1, HHN+1, HJDHN+1, and FMLSHN+1

M3HAVG
N+1 −Models M3H1N+1, M3H2N+1, M3H3N+1, M3H4N+1, M3H5N+1, M3H6N+1, M3H7N+1

L3HAVG
N+1 −Models L3H1N+1, L3H2N+1, L3H3N+1, L3H4N+1, L3H5N+1, L3H6N+1, L3H7N+1

CH −Models (using one-trading-day-ahead inputs)

ParamCHAVG
N+1 −Models BSMCHN+1, CHCHN+1, CHJDCHN+1, and FMLSCHN+1

M3CHAVG
N+1 −Models M3CH1N+1, M3CH2N+1, M3CH3N+1, M3CH4N+1, M3CH5N+1, M3CH6N+1, M3CH7N+1

L3CHAVG
N+1 −Models L3CH1N+1, L3CH2N+1, L3CH3N+1, L3CH4N+1, L3CH5N+1, L3CH6N+1, L3CH7N+1

HV −Models (computed from the ∆N+1 obtained from H −Models that use lagged input variables for forecasting)

ParamHV AVGN −Models BSMHVN , HVHVN , HV JDHVN , and FMLSHVN

M3HV AVGN −Models M3HV 1N , M3HV 2N , M3HV 3N , M3HV 4N , M3HV 5N , M3HV 6N , M3HV 7N
L3HV AVGN −Models L3HV 1N , L3HV 2N , L3HV 3N , L3HV 4N , L3HV 5N , L3HV 6N , L3HV 7N

HV −Models (computed from the ∆N+1 obtained from H −Models that use one-trading-day-ahead input variables for forecasting

ParamHV AVGN+1 −Models BSMHVN+1, HVHVN+1, HV JDHVN+1, and FMLSHVN+1

M3HV AVGN+1 −Models M3HV 1N+1, M3HV 2N+1, M3HV 3N+1, M3HV 4N+1, M3HV 5N+1, M3HV 6N+1, M3HV 7N+1

L3HV AVGN+1 −Models L3HV 1N+1, L3HV 2N+1, L3HV 3N+1, L3HV 4N+1, L3HV 5N+1, L3HV 6N+1, L3HV 7N+1

CHV −Models (computed from the δN+1 obtained from CH −Models that use one-trading-day-ahead input variables for forecasting)

ParamCHV AVGN+1 −Models BSMCHVN+1, CHV CHVN+1, CHV JDCHVN+1, and FMLSCHVN+1

M3CHV AVGN+1 −Models M3CHV 1N+1, M3CHV 2N+1, M3CHV 3N+1, M3CHV 4N+1, M3CHV 5N+1, M3CHV 6N+1, M3CHV 7N+1

L3CHV AVGN+1 −Models L3CHV 1N+1, L3CHV 2N+1, L3CHV 3N+1, L3CHV 4N+1, L3CHV 5N+1, L3CHV 6N+1, L3CHV 7N+1
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Appendix C.2

Appendix for Chapter 4: Extended

Results

C.2.1 Results - CAV G −Models - Model Averaging

C.2.1.1 CAV G−Models: Model averaging pricing performance of models that

use lagged input variables to forecast the call option price (CN+1) for

the next trading day:

Table C.2.1 shows the relative out-of-sample pricing performance (in RMSE) amongst the
models that forecast the one-trading-day-ahead average call option price(CN+1) using lagged
input variables. In column II of table C.2.1, we list the several models used as input to obtain
the average one-trading-day-ahead forecast of CN+1. The performance metric is the RMSE
of the one-trading-day-ahead forecast errors of the average CN+1, which is computed for each
averaging model utilising all of the errors in each day or each month. Amongst all of the models
(including the random walk model (δCN )), columns III and IV record the number of months
and days, respectively, that each model had the lowest RMSE. We performed a bootstrap using
the daily and monthly RMSEs to be certain of our results. The columns V (lower bound) and
VI (upper bound) present the results from the bootstrap performed (with replacement) using
monthly RMSEs at a 95% confidence level and shows the winning percentage out of 64 months
for each model (including the δCN model) and similarly, the 95 % confidence intervals computed
from bootstrapping of the daily RMSEs signifies the winning percentage out of 1,328 days for
each model and are reported in columns VII (lower bound), VIII (upper bound). While excluding
the δCN model amongst the comparison, columns IX and X record the number of months and
days that each model had the lowest RMSE. We repeat the exercise of performing the bootstrap
by excluding the δCN model in the comparison, and thus, the columns XI (lower bound) and
XII (upper bound) present the results from the bootstrap performed (with replacement) using
monthly RMSEs at a 95% confidence level and shows the winning percentage out of 64 months
for each model (excluding the δCN model) and similarly, the 95 % confidence intervals computed
from bootstrapping of the daily RMSEs signifies the winning percentage out of 1,328 days for
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each model and are reported in columns XIII (lower bound), XIV (upper bound). After a model
is found to out-perform other individual parametric models, MLP and LSTM models in each
of the several comparisons below, we look into whether that out-performing model individually
can out-perform the average call option price of all the parametric models combinedly, MLP
models combinedly or LSTM models combinedly, covered in that section.

In the below several comparisons, even though a particular model wins by a higher percentage
against other models, we investigated further these models pairwise by performing a pairwise
bootstrap comparison, which was computed using the respective pair’s daily RMSEs. The results
are presented in Table 91 of the Electronic Appendix.

The Diebold-Mariano(DM ) (Diebold and Mariano (1995)) test was performed on pairs amongst
the RandomWalk (δCN ) model, the average call option price of all parametric models (ParamCAV GN −
Models), the average call option price of all single hidden layer MLP models (M1CAV GN −
Models), the average call option price of all single hidden layer LSTM models (L1CAV GN −
Models), the average option price of all double hidden layer MLP models (M2CAV GN −Models),
the average call option price of all double hidden layer LSTM models (L3CAV GN − Models),
the average call option price of all triple hidden layer MLP models (M3CAV GN −Models), and
the average call option price of all triple hidden layer LSTM models (L3CAV G

N −Models) are
reported in Table 81 of the Electronic Appendix. In constructing the DM tests, the model pairs
are reported in column I and column II, and the DM test statistics for a particular pair are re-
ported in column III. If the null can be rejected, a positive number suggests the rejection may be
due to the second model being the better forecast model. In contrast, a negative value suggests
the rejection may be due to the first model being the better forecast model. The model pairs
highlighted in a red state that their forecasts have statistically insignificant differences in their
prediction accuracy. The following model pairs have been shown to have statistically insignificant
differences: (M3CAV GN −Models,MCAV GN −Models), (L1CAV GN −Models, L2CAV GN −Models).

The RMSEs for the models under the CAV G −Models category, which averages the forecasted
CN+1 from models belonging to the C −Models category (which uses lagged input variables to
forecast the CN+1 for the next trading day) on a monthly, yearly, and overall basis can be found
in the Electronic Appendix, in Tables 51, 61, and 71, respectively.

C.2.1.1.1 Comparison amongst all Parametric Models with Single Hidden Layer

ANN Models:

In this section, we compare the out-of-sample pricing performance of the random walk model
(δCN ), the parametric models (ParamCAV G

N −Models), the single hidden layer MLP models
(M1CAV GN − Models), and the single hidden layer LSTM models (L1CAV GN − Models), and
then ParamCAV GN −Models with the M1CAV GN −Models, and Accordingly the ParamCAV GN −
Models with the L1CAV GN −Models.

Initially, in Part I of Table C.2.1, when we compared the ParamCAV GN − Models with the
M1CAV GN − Models and the L1CAV GN − Models, and found that none of the models could
outperform the δCN model, where the δCN model had the lowest RMSE for 566 days (having a
daily bootstrap winning % of 40% to 45%) out of 1,328, but if the δCN model was excluded from
the comparison, the M1CAV GN −Models outperformed for 815 days (having a daily bootstrap
winning % of 59% to 64%) out of 1,328. Accordingly, we now compare the L1C8N model (i.e.
the best-performing model when compared to the models in column XIV of Table A.2.1) with
the ParamCAV GN −Models, M1CAV GN −Models and the L1CAV GN −Models in Part I of Table
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C.2.2, we found that the L1C8N could only marginally outperform the δCN model on 375 days
(having a daily bootstrap winning % of 26% to 31%) out of 1,328, where the δCN had a similar
out-performance for 347 days (having a daily bootstrap winning % of 24% to 29%), but if the
δCN model was excluded from this comparison, the M1CAV GN −Models had outperformed for
477 days (having a daily bootstrap winning % of 33% to 39%) out of 1,328. Although the
M1CAV GN − Models outperformed, the LSTM model, L1CAV GN − Models (440 days) had a
similar daily bootstrap winning percentage from 31% to 36%.

Secondly, in Part II of Table C.2.1, we compared the ParamCAV GN −Models with theM1CAV GN −
Models and found that none of the models could outperform the δCN model, where the δCN
model had the lowest RMSE for 661 days (having a daily bootstrap winning % of 47% to
52%) out of 1,328, but if the δCN model was excluded from the comparison, the M1CAV GN −
Models outperformed for 1,018 days (having a daily bootstrap winning % of 74% to 79%) out
of 1,328. Accordingly, we now compare the FMLSCN model (i.e. the best-performing model
when compared to the models in column XIV of Table A.2.2) with the ParamCAV GN −Models,
and the M1CAV GN −Models in Part II of Table C.2.2, and found that none of the models could
outperform the δCN model, which had the lowest RMSE for 465 days (having a daily bootstrap
winning % of 32% to 37%) out of 1,328, but if the δCN model was excluded from this comparison,
the M1CAV GN −Models had outperformed for 646 days (having a daily bootstrap winning % of
46% to 51%) out of 1,328.

Finally, in Part III of Table C.2.1, we compared the ParamCAV GN −Models with the L1CAV GN −
Models and found that none of the models could outperform the δCN model, where the δCN
model had the lowest RMSE for 842 days (having a daily bootstrap winning of 61% to 66%)
out of 1,328, but if the δCN model was excluded from the comparison, the ParamCAV GN −
Models outperformed for 788 days (having a daily bootstrap winning % of 57% to 62%) out
of 1,328. Accordingly, we now compare the L1C8N model (i.e. the best-performing model
when compared to the models in column XIV of Table A.2.3) with the ParamCAV GN −Models,
and the L1CAV GN −Models in Part III of Table C.2.2, and found that none of the models could
outperform the δCN model, which had the lowest RMSE for 506 days (having a daily bootstrap
winning % of 35% to 41%) out of 1,328, but if the δCN model was excluded from this comparison,
the L1C8N model had outperformed for 766 days (having a daily bootstrap winning % of 55%
to 60%) out of 1,328.

Thus, when the best individually performing model, the L1C8N model (from Table A.2.1) was
compared to the average of all the parametric models, and the averages of all the single hidden
layer ANN models (in Part I of Table C.2.2), we conclude that an individual LSTM could not
out-perform the model averages, where the averages of all the single hidden layer MLP models
(i.e. M1CAV GN −Models) had out-performed them all. Similarly, when the best individually
performing model, the FMLSCN model (from Table A.2.2) was compared to the average of all
the parametric models, and the averages of all the single hidden layer MLP models (in Part II of
Table C.2.2), the averages of all the single hidden layer MLP models (i.e. M1CAV GN −Models)
had yet again out-performed them all. Lastly, when the best individually performing model, the
L1C8N model (from Table A.2.3) was compared to the average of all the parametric models,
and the averages of all the single hidden layer LSTM models (in Part III of Table C.2.2), an
individual LSTM model (i.e. the L1C8N model) could out-perform them all.
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C.2.1.1.2 Comparison amongst all Parametric Models with Double Hidden Layer

ANN Models:

In this section, we compare the out-of-sample pricing performance of the random walk model
(δCN ), the parametric models (ParamCAV GN −Models), the double hidden layer MLP models
(M2CAV GN −Models), and the double hidden layer LSTM models (L2CAV GN −Models), and
then ParamCAV GN −Models with the M2CAV GN −Models, and Accordingly the ParamCAV GN −
Models with the L2CAV GN −Models.

Initially, in Part IV of Table C.2.1, we compared the ParamCAV GN −Models with theM2CAV GN −
Models and the L2CAV GN − Models, and found that none of the models could outperform
the δCN model, where the δCN model had the lowest RMSE for 511 days (having a daily
bootstrap winning % of 36% to 41%) out of 1,328, but if the δCN model was excluded from
the comparison, the M2CAV GN −Models outperformed for 763 days (having a daily bootstrap
winning % of 55% to 60%) out of 1,328. Accordingly, we now compare the L2C9N model (i.e.
the best-performing model when compared to the models in column XIV of Table A.2.4) with
the ParamCAV GN − Models, M2CAV GN − Models, and the L2CAV GN − Models in Part IV of
Table C.2.2, and found that none of the models could outperform the δCN model, which had
the lowest RMSE for 376 days (having a daily bootstrap winning % of 26% to 31%) out of
1,328, where the L2C9N models also had a similar out-performance for 319 days (having a daily
bootstrap winning % of 22% to 26%), but if the δCN model was excluded from this comparison,
the M2CAV GN −Models had outperformed for 542 days (having a daily bootstrap winning % of
38% to 43%) out of 1,328.

Secondly, in Part V of Table C.2.1, we compared the ParamCAV GN −Models with theM2CAV GN −
Models, and found that none of the models could outperform the δCN model, where the δCN
model had the lowest RMSE for 653 days (having a daily bootstrap winning % of 46% to
52%) out of 1,328, but if the δCN model was excluded from the comparison, the M2CAV GN −
Models outperformed for 1,022 days (having a daily bootstrap winning % of 75% to 79%) out
of 1,328. Accordingly, we now compare the FMLSCN model (i.e. the best-performing model
when compared to the models in column XIV of Table A.2.5) with the ParamCAV GN −Models,
and the M2CAV GN −Models in Part V of Table C.2.2, and found that none of the models could
outperform the δCN model, which had the lowest RMSE for 452 days (having a daily bootstrap
winning % of 32% to 37%) out of 1,328, but if the δCN model was excluded from this comparison,
the M2CAV GN −Models had outperformed for 653 days (having a daily bootstrap winning % of
47% to 52%) out of 1,328.

Finally, in Part VI of Table C.2.1, we compared the ParamCAV GN −Models with the L2CAV GN −
Models and found that none of the models could outperform the δCN model, where the δCN
model had the lowest RMSE for 781 days (having a daily bootstrap winning % of 56% to 61%)
out of 1,328, but if the δCN model was excluded from the comparison, the ParamCAV GN −
Models outperformed for 778 days (having a daily bootstrap winning % of 56% to 61%) out
of 1,328. Accordingly, we now compare the L2C9N model (i.e. the best-performing model
when compared to the models in column XIV of Table A.2.6) with the ParamCAV GN −Models,
and the L2CAV GN −Models in Part VI of Table C.2.2, and found that none of the models could
outperform the δCN model, which had the lowest RMSE for 569 days (having a daily bootstrap
winning % of 40% to 46%) out of 1,328, but if the δCN model was excluded from this comparison,
the ParamCAV GN −Models had outperformed for 534 days (having a daily bootstrap winning
% of 38% to 43%) out of 1,328. Though the ParamCAV GN −Models outperformed, the LSTM
model, L2C9N (476 days) had a similar daily bootstrap winning percentage from 33% to 39%.
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Thus, when the best individually performing model, the L2C9N model (from Table A.2.4) was
compared to the average of all the parametric models, and the averages of all the double hidden
layer ANN models (in Part IV of Table C.2.2), we conclude that an individual LSTM could not
out-perform the model averages, where the averages of all the double hidden layer MLP models
(i.e. M2CAV GN −Models) had out-performed them all. Similarly, when the best individually
performing model, the FMLSCN model (from Table A.2.5) was compared to the average of all
the parametric models, and the averages of all the double hidden layer MLP models (in Part V of
Table C.2.2), the averages of all the double hidden layer MLP models (i.e. M2CAV GN −Models)
had yet again out-performed them all. Lastly, when the best individually performing model, the
L2C9N model (from Table A.2.6) was compared to the average of all the parametric models,
and the averages of all the double hidden layer LSTM models (in Part VI of Table C.2.2), an
individual LSTM model (i.e. the L2C9N model) could not out-perform other models, and the
averages of all the parametric models (i.e. ParamCAV GN −Models) could out-perform them all.

C.2.1.1.3 Comparison amongst all Parametric Models with Triple Hidden Layer

ANN Models:

In this section, we compare the out-of-sample pricing performance of the random walk model
(δCN ), the parametric models (ParamCAV G

N −Models), the triple hidden layer MLP models
(M3CAV GN −Models), and the triple hidden layer LSTM models (L3CAV GN −Models), and then
ParamCAV GN −Models with the M3CAV GN −Models, and finally the ParamCAV GN −Models
with the L3CAV GN −Models.

Initially, in Part VII of Table C.2.1, we compared the ParamCAV GN −Models with theM3CAV GN −
Models and the L3CAV GN −Models, and found that none of the models could outperform the
δCN model, where the δCN model had the lowest RMSE for 481 days (having a daily boot-
strap winning % of 33% to 39%) out of 1,328, but if the δCN model was excluded from the
comparison, the M3CAV GN −Models outperformed for 730 days (having a daily bootstrap win-
ning % of 52% to 57%) out of 1,328. Accordingly, we now compare the L3C9N model (i.e. the
best-performing model when compared to the models in column XIV of Table A.2.7) with the
ParamCAV GN −Models with the M3CAV GN −Models in Part VII of Table C.2.2, and found
that none of the models could outperform the δCN model, which had the lowest RMSE for
354 days (having a daily bootstrap winning % of 24% to 29%) out of 1,328. Though the δCN
model outperformed, the L3C9N model had similar out-performance, where it outperforms for
344 days (having a daily bootstrap winning % of 24% to 28%) out of 1,328, but if the δCN
model was excluded from this comparison, the M3CAV GN −Models had outperformed for 528
days (having a daily bootstrap winning % of 37% to 42%) out of 1,328.

Secondly, in Part VIII of Table C.2.1, we compared the ParamCAV GN − Models with the
M3CAV GN − Models, and found that none of the models could outperform the δCN model,
where the δCN model had the lowest RMSE for 651 days (having a daily bootstrap winning
% of 46% to 52%) out of 1,328, but if the δCN model was excluded from the comparison,
the M3CAV GN − Models outperformed for 1,022 days (having a daily bootstrap winning %
of 75% to 79%) out of 1,328. Accordingly, we now compare the FMLSCN model (i.e. the
best-performing model when compared to the models in column XIV of Table A.2.8) with the
ParamCAV GN −Models, and theM3CAV GN −Models in Part VIII of Table C.2.2, and found that
none of the models could outperform the δCN model, which had the lowest RMSE for 454 days
(having a daily bootstrap winning % of 32% to 37%) out of 1,328, but if the δCN model was
excluded from this comparison, the M3CAV GN −Models had outperformed for 655 days (having
a daily bootstrap winning % of 47% to 52%) out of 1,328.
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Finally, in Part IX of Table C.2.1, we compared the ParamCAV GN −Models with the L3CAV GN −
Models, and found that none of the models could outperform the δCN model, where the δCN
model had the lowest RMSE for 740 days (having a daily bootstrap winning % of 53% to 58%)
out of 1,328, but if the δCN model was excluded from the comparison, the ParamCAV GN −Models
outperformed for 796 days (having a daily bootstrap winning % of 57% to 63%) out of 1,328.

Accordingly, we now compare the L3C9N model (i.e. the best-performing model when compared
to the models in column XIV of Table A.2.9) with the ParamCAV GN −Models, and the L3CAV GN −
Models in Part IX of Table C.2.2, and found that none of the models could outperform the δCN
model, which had the lowest RMSE for 558 days (having a daily bootstrap winning % of 39%
to 45%) out of 1,328, but if the δCN model was excluded from this comparison, the L3C8N
model had outperformed for 564 days (having a daily bootstrap winning % of 40% to 45%) out
of 1,328.

Thus, when the best individually performing model, the L3C9N model (from Table A.2.7) was
compared to the average of all the parametric models, and the averages of all the triple hidden
layer ANN models (in Part VII of Table C.2.2), we conclude that an individual LSTM could not
out-perform the model averages, where the averages of all the triple hidden layer MLP models
(i.e. M3CAV GN −Models) had out-performed them all. Similarly, when the best individually
performing model, the FMLSCN model (from Table A.2.8) was compared to the average of all
the parametric models, and the averages of all the triple hidden layer MLP models (in Part VIII
of Table C.2.2), the averages of all the triple hidden layer MLP models (i.e. M3CAV GN −Models)
had yet again out-performed them all. Lastly, when the best individually performing model, the
L3C9N model (from Table A.2.9) was compared to the average of all the parametric models,
and the averages of all the triple hidden layer LSTM models (in Part IX of Table C.2.2), an
individual LSTM model (i.e. the L3C9N model) could not out-perform other models, and the
averages of all the parametric models (i.e. ParamCAV GN −Models) could out-perform them all.

C.2.1.1.4 Comparison amongst all Parametric Models with Single, Double and

Triple Hidden Layer ANN Models:

In this section, we compare the out-of-sample pricing performance of the random walk model
(δCN ), the parametric models (ParamCAV G

N − Models), with the single hidden layer MLP
models (M1CAV GN −Models), the single hidden layer LSTM models (L1CAV G

N −Models), the
double hidden layer MLP models (M2CAV GN −Models), the double hidden layer LSTM mod-
els (L2CAV GN −Models), the triple hidden layer MLP models (M3CAV GN −Models), and the
triple hidden layer LSTM models (L3CAV G

N −Models), and then ParamCAV GN −Models with
the M1CAV GN − Models, M2CAV GN − Models and the M3CAV GN − Models, and finally the
ParamCAV GN −Models with the L1CAV GN −Models, L2CAV GN −Models and the L3CAV GN −
Models.

Initially, in Part X of Table C.2.1, we compared the ParamCAV GN −Models with theM1CAV GN −
Models, M2CAV GN −Models, M3CAV GN −Models, L1CAV GN −Models, L2CAV GN −Models and
the L3CAV GN −Models, and found that none of the models could outperform the δCN model,
where the δCN model had the lowest RMSE for 369 days (having a daily bootstrap winning
% of 25% to 30%) out of 1,328, but if the δCN model was excluded from the comparison, the
M3CAV GN −Models outperformed for 249 days (having a daily bootstrap winning % of 17%
to 21%) out of 1,328. Although the M3CAV GN −Models outperformed, the parametric model,
the ParamCAV GN −Models (184 days) and other variants of the MLP model, the M1CAV GN −
Models (185 days), M2CAV GN −Models (196 days), and the LSTM model, L3CAV GN −Models
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(244 days) have had a collective daily bootstrap winning percentage from 12% (lower bound
for the ParamCAV GN − Models, and the M1CAV GN − Models) to 21% (upper bound for the
L3CAV GN −Models). Accordingly, we now compare the L3C9N model (i.e. the best-performing
model when compared to the models in column XIV of Table A.2.10) with the ParamCAV GN −
Models, M1CAV GN −Models, M2CAV GN −Models, M3CAV GN −Models, L1CAV GN −Models,
L2CAV GN −Models and the L3CAV GN −Models in Part X of Table C.2.2, and found that L3C9N
model had outperformed other models on 311 days (having a daily bootstrap winning % of
21% to 26%) out of 1,328, which was closely followed by the δCN model, which had a similar
out-performance for 299 days (having a daily bootstrap winning % of 20% to 25%), but if the
δCN model was excluded from this comparison, the L3C9N model still outperformed for 333
days (having a daily bootstrap winning % of 23% to 27%) out of 1,328.

Secondly, in Part XI of Table C.2.1, we compared the ParamCAV GN −Models with theM1CAV GN −
Models, M2CAV GN −Models, and the M3CAV GN −Models, and found that none of the models
could outperform the δCN model, where the δCN model had the lowest RMSE for 574 days
(having a daily bootstrap winning % of 40% to 46%) out of 1,328, but if the δCN model was
excluded from the comparison, the M3CAV GN −Models outperformed for 386 days (having a
daily bootstrap winning % of 27% to 31%) out of 1,328. Although the M3CAV GN − Models
outperformed, the parametric model, the ParamCAV GN −Models (294 days) and other variants
of the MLP model, theM1CAV GN −Models (341 days),M2CAV GN −Models (308 days), have had
a collective daily bootstrap winning percentage from 20% (lower bound for the ParamCAV GN −
Models) to 28% (upper bound for the M1CAV GN −Models). Accordingly, we now compare the
FMLSCN (i.e. the best-performing model when compared to the models in column XIV of
Table A.2.11) with the ParamCAV GN −Models, M1CAV GN −Models, M2CAV GN −Models, and
the M3CAV GN −Models in Part XI of Table C.2.2, and found that none of the models could
outperform the δCN model, which had the lowest RMSE for 402 days (having a daily boot-
strap winning % of 28% to 33%) out of 1,328, but if the δCN model was excluded from this
comparison, the FMLSCN had outperformed for 346 days (having a daily bootstrap winning %
of 24% to 28%) out of 1,328, which was closely followed by the ParamCAV GN −Models, which
had similar out-performance for 294 days (having a daily bootstrap winning % of 20% to 24%).

Finally, initially in Part XII of Table C.2.1, we compared the ParamCAV GN −Models with the
L1CAV GN −Models, L2CAV GN −Models, and the L3CAV GN −Models, and found that none of the
models could outperform the δCN model, where the δCN model had the lowest RMSE for 631
days (having a daily bootstrap winning % of 45% to 50%) out of 1,328, but if the δCN model was
excluded from the comparison, the ParamCAV GN −Models outperformed for 480 days (having
a daily bootstrap winning % of 34% to 39%) out of 1,328. Accordingly, we now compare the
L3C9N model (i.e. the best-performing model when compared to the models in column XIV of
Table A.2.12) with the ParamCAV GN −Models, L1CAV GN −Models, L2CAV GN −Models, and
the L3CAV GN −Models in Part XII of Table C.2.2, and found that none of the models could
outperform the δCN model, which had the lowest RMSE for 520 days (having a daily bootstrap
winning % of 37% to 42%) out of 1,328, but if the δCN model was excluded from this comparison,
the L3C9AV GN −Models had outperformed for 417 days (having a daily bootstrap winning %
of 29% to 34%) out of 1,328, which was closely followed by the ParamCAV GN −Models, which
had similar out-performance for 400 days (having a daily bootstrap winning % of 28% to 33%).

Thus, when the best individually performing model, the L3C9N model (from Table A.2.10)
was compared to the average of all the parametric models, the averages of all the single hidden
layer ANN models, the averages of all the double hidden layer ANN models, and the averages
of all the triple hidden layer ANN models (in Part X of Table C.2.2), we conclude that an
individual LSTM could out-perform all the model averages. Similarly, when the best individually
performing model, the FMLSCN model (from Table A.2.11) was compared to the average of all
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the parametric models, the averages of all the single hidden layer MLP models, the averages of all
the double hidden layer MLP models, and the averages of all the triple hidden layer MLP models
(in Part XI of Table C.2.2), the FMLSCN model had out-performed them all. Lastly, when
the best individually performing model, the L3C9N model (from Table A.2.12) was compared
to the average of all the parametric models, the averages of all the single hidden layer LSTM
models, the averages of all the double hidden layer LSTM models, and the averages of all the
triple hidden layer LSTM models (in Part XII of Table C.2.2), an individual LSTM model (i.e.
the L3C9N model) could out-perform all other models.

C.2.1.1.5 Comparison amongst Single, Double and Triple Hidden Layer ANN

Models:

In this section, we compare the out-of-sample pricing performance amongst the random walk
model (δCN ), the single hidden layer MLP models (M1CAV GN −Models), the single hidden layer
LSTM models (L1CAV GN −Models), the double hidden layer MLP models (M2CAV GN −Models),
the double hidden layer LSTM models (L2CAV GN −Models), the triple hidden layer MLP models
(M3CAV GN −Models), and the triple hidden layer LSTM models (L3CAV GN −Models).

In Part XIII of Table C.2.1, we compared within the M1CAV GN −Models, M2CAV GN −Models,
M3CAV GN −Models, L1CAV GN −Models, L2CAV GN −Models and the L3CAV GN −Models, and
found that none of the models could outperform the δCN model, where the δCN model had the
lowest RMSE for 403 days (having a daily bootstrap winning % of 28% to 33%) out of 1,328,
but if the δCN model was excluded from the comparison, the M3CAV GN −Models outperformed
for 311 days (having a daily bootstrap winning % of 21% to 26%) out of 1,328. Although the
M3CAV GN −Models outperformed, other variants of the MLP model, the M1CAV GN −Models
(235 days), M2CAV GN − Models (239 days), and the LSTM model, L3CAV GN − Models (247
days) have had a collective daily bootstrap winning percentage from 16% (lower bound for the
M1CAV GN −Models, and the M2CAV GN −Models) to 21% (upper bound for the L3CAV GN −
Models). Accordingly, we now compare the L3C9N model (i.e. the best-performing model
when compared to the models in column XIV of Table A.2.13) with the M1CAV GN −Models,
M2CAV GN − Models, M3CAV GN − Models, L1CAV GN − Models, L2CAV GN − Models and the
L3CAV GN − Models in Part XIII of Table C.2.2, and found that none of the models could
outperform the δCN model, which had the lowest RMSE for 333 days (having a daily bootstrap
winning % of 23% to 27%) out of 1,328, which was closely followed by the L3C9N model,
which had similar out-performance for 312 days (having a daily bootstrap winning % of 21% to
26%), but if the δCN model was excluded from this comparison, the L3C9AV GN −Models had
outperformed for 334 days (having a daily bootstrap winning % of 23% to 27%) out of 1,328,
which was closely followed by the M3CAV GN −Models, which had similar out-performance for
266 days (having a daily bootstrap winning % of 18% to 22%).

Thus, when the best individually performing model, the L3C9N model (from Table A.2.7) was
compared to the averages of all the single hidden layer ANN models, the averages of all the
double hidden layer ANN models, and the averages of all the triple hidden layer ANN models
(in Part XIII of Table C.2.2), we conclude that an individual LSTM could out-perform all the
model averages.
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C.2.1.1.6 Comparison amongst all Parametric models:

We now compare the HJDCN model (i.e. the best-performing model when compared to the
models in column XI of Table A.2.14) with the ParamCAV GN −Models in Part XIV of Table
C.2.2, and found that none of the models could outperform the δCN model, which had the lowest
RMSE for 746 days (having a daily bootstrap winning % of 54% to 59%) out of 1,328, but if
the δCN model was excluded from this comparison, the HJDCN model had outperformed for
972 days (having a daily bootstrap winning % of 71% to 76%) out of 1,328.

Thus, when the best individually performing model, the HJDCN model (from Table A.2.14)
was compared to the average of all the parametric models (in Part XIV of Table C.2.2), we can
conclude that the HJDCN model could outperform the average of all the parametric models.
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Table C.2.1: Call Option Price Comparison (Model Averaging): This table is compartmentalised into XVII parts, where each part presents a performance comparison using both daily and monthly statistics amongst the set of models mentioned
in that part. The forecast variable for all the models is the one-trading-day-ahead call option price (CN+1). The models denoted by the N subscript use lagged input variables for forecasting the average call option price CN+1. In the parts
mentioned below, we compare the out-of-sample performance of the following models: In Part I: ParamCAV GN −Models, M1CAV GN −Models, L1CAV GN −Models, in Part II: ParamCAV GN −Models, M1CAV GN −Models, in Part III:
ParamCAV GN −Models, L1CAV GN −Models, in Part IV: ParamCAV GN −Models, M2CAV GN −Models, L2CAV GN −Models, in Part V: ParamCAV GN −Models, M2CAV GN −Models, in Part VI: ParamCAV GN −Models, L2CAV GN −Models,
in Part VII: ParamCAV GN −Models, M3CAV GN −Models, L3CAV GN −Models,in Part VIII: ParamCAV GN −Models, M3CAV GN −Models, in Part IX: ParamCAV GN −Models, L3CAV GN −Models, in Part X: ParamCAV GN −Models,
M1CAV GN −Models, M2CAV GN −Models, M3CAV GN −Models, L1CAV GN −Models, L2CAV GN −Models, L3CAV GN −Models, in Part XI: ParamCAV GN −Models, M1CAV GN −Models, M2CAV GN −Models, M3CAV GN −Models, in Part
XII: ParamCAV GN −Models, L1CAV GN −Models, L2CAV GN −Models, L3CAV GN −Models, in Part XIII: M1CAV GN −Models, M2CAV GN −Models, M3CAV GN −Models, L1CAV GN −Models, L2CAV GN −Models, L3CAV GN −Models. The
one-trading-day-ahead forecast errors of CN+1 are used to compute the Root Mean Square Error (RMSE). Column I identifies the models, and column II lists the models used as input to obtain the average one-trading-day-ahead forecast of
CN+1. Forecasts are made for 1,328 trading days, and there are 64 months covered in the sample using the monthly data. When comparing all models simultaneously (i.e. including the random walk model (δCN ), column III reports the number
of months out of the 64 months that each model has the smallest RMSE, while column IV reports the number of days out of the 1,328 days each model has the smallest RMSE. Columns V (lower bound) and VI (upper bound) present the
winning percentage out of 64 months for each model, evaluated using the bootstrap sampling technique. The statistical bootstrap performed (with replacement) at a 95% confidence level is computed from the monthly RMSE values of the
respective models below. Columns VII (lower bound) and VIII (upper bound) present the winning percentage out of 1326 days for each model computed from bootstrapping the daily RMSE values of the respective models at a 95% confidence
level. Similarly, when the δCN model was excluded in the comparison, column IX report the number of months out of the 64 months that each model has the smallest RMSE, while column X reports the number of days out of the 1,328 days
each model has the smallest RMSE. Columns XI (lower bound) and XII (upper bound) present the winning percentage out of 64 months for each model, evaluated using the bootstrap sampling technique. The statistical bootstrap performed
(with replacement) at a 95% confidence level is computed from the monthly RMSE values of the respective models below. Also, columns XIII (lower bound) and XIV (upper bound) present the winning percentage out of 1326 days for each
model computed from bootstrapping the daily RMSE values of the respective models at a 95% confidence level.

Including the random walk Excluding the random walk

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X) (XI) (XII) (XIII) (XIV)
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Part I: ParamCAVGN −Models v/s M1CAVGN −Models v/s L1CAVGN −Models

δCN - 41 566 52% 75% 40% 45% - - - - - -

ParamCAVGN −Models BSMCN ,HCN ,HJDCN ,FMLSCN 0 219 0% 0% 15% 19% 0 239 0% 0% 16% 20%

M1CAVGN −Models M1C1N ,M1C2N ,M1C3N ,M1C4N ,M1C5N ,M1C6N ,M1C7N ,M1C8N ,M1C9N 23 314 25% 48% 21% 26% 64 815 100% 100% 59% 64%

L1CAVGN −Models L1C1N ,L1C2N ,L1C3N ,L1C4N ,L1C5N ,L1C6N ,L1C7N ,L1C8N ,L1C9N 0 230 0% 0% 15% 19% 0 275 0% 0% 19% 23%

Part II: ParamCAVGN −Models v/s M1CAVGN −Models

δCN - 41 661 52% 75% 47% 52% - - - - - -

ParamCAVGN −Models BSMCN ,HCN ,HJDCN ,FMLSCN 0 285 0% 0% 19% 24% 0 310 0% 0% 21% 26%

M1CAVGN −Models M1C1N ,M1C2N ,M1C3N ,M1C4N ,M1C5N ,M1C6N ,M1C7N ,M1C8N ,M1C9N 23 382 25% 48% 26% 31% 64 1018 100% 100% 74% 79%

Part III: ParamCAVGN −Models v/s L1CAVGN −Models

δCN - 64 842 100% 100% 61% 66% - - - - - -

ParamCAVGN −Models BSMCN ,HCN ,HJDCN ,FMLSCN 0 244 0% 0% 16% 20% 64 788 100% 100% 57% 62%

L1CAVGN −Models L1C1N ,L1C2N ,L1C3N ,L1C4N ,L1C5N ,L1C6N ,L1C7N ,L1C8N ,L1C9N 0 242 0% 0% 16% 20% 0 540 0% 0% 38% 43%

Part IV: ParamCAVGN −Models v/s M2CAVGN −Models v/s L2CAVGN −Models

δCN - 37 511 45% 70% 36% 41% - - - - - -

ParamCAVGN −Models BSMCN ,HCN ,HJDCN ,FMLSCN 0 231 0% 0% 15% 20% 0 248 0% 0% 17% 21%

M2CAVGN −Models M2C1N ,M2C2N ,M2C3N ,M2C4N ,M2C5N ,M2C6N ,M2C7N ,M2C8N ,M2C9N 27 305 30% 55% 21% 25% 64 763 100% 100% 55% 60%

L2CAVGN −Models L2C1N ,L2C2N ,L2C3N ,L2C4N ,L2C5N ,L2C6N ,L2C7N ,L2C8N ,L2C9N 0 281 0% 0% 19% 23% 0 317 0% 0% 21% 26%

Part V: ParamCAVGN −Models v/s M2CAVGN −Models

δCN - 37 653 45% 69% 46% 52% - - - - - -

ParamCAVGN −Models BSMCN ,HCN ,HJDCN ,FMLSCN 0 288 0% 0% 20% 24% 0 306 0% 0% 21% 25%

M2CAVGN −Models M2C1N ,M2C2N ,M2C3N ,M2C4N ,M2C5N ,M2C6N ,M2C7N ,M2C8N ,M2C9N 27 387 31% 55% 27% 32% 64 1022 100% 100% 75% 79%

Part VI: ParamCAVGN −Models v/s L2CAVGN −Models

δCN - 63 781 95% 100% 56% 61% - - - - - -

ParamCAVGN −Models BSMCN ,HCN ,HJDCN ,FMLSCN 0 252 0% 0% 17% 21% 62 778 92% 100% 56% 61%

L2CAVGN −Models L2C1N ,L2C2N ,L2C3N ,L2C4N ,L2C5N ,L2C6N ,L2C7N ,L2C8N ,L2C9N 1 295 0% 5% 20% 24% 2 550 0% 8% 39% 44%

Part VII: ParamCAVGN −Models v/s M3CAVGN −Models v/s L3CAVGN −Models

δCN - 44 481 57% 80% 33% 39% - - - - - -

ParamCAVGN −Models BSMCN ,HCN ,HJDCN ,FMLSCN 0 244 0% 0% 16% 21% 0 255 0% 0% 17% 21%

M3CAVGN −Models M3C1N ,M3C2N ,M3C3N ,M3C4N ,M3C5N ,M3C6N ,M3C7N ,M3C8N ,M3C9N 20 291 20% 43% 20% 24% 64 730 100% 100% 52% 57%

L3CAVGN −Models L3C1N ,L3C2N ,L3C3N ,L3C4N ,L3C5N ,L3C6N ,L3C7N ,L3C8N ,L3C9N 0 312 0% 0% 21% 26% 0 343 0% 0% 24% 28%

Part VIII: ParamCAVGN −Models v/s M3CAVGN −Models

δCN - 44 651 56% 80% 46% 52% - - - - - -

ParamCAVGN −Models BSMCN ,HCN ,HJDCN ,FMLSCN 0 293 0% 0% 20% 24% 0 306 0% 0% 21% 25%

M3CAVGN −Models M3C1N ,M3C2N ,M3C3N ,M3C4N ,M3C5N ,M3C6N ,M3C7N ,M3C8N ,M3C9N 20 384 20% 44% 27% 32% 64 1022 100% 100% 75% 79%

Part IX: ParamCAVGN −Models v/s L3CAVGN −Models

δCN - 64 740 100% 100% 53% 58% - - - - - -

ParamCAVGN −Models BSMCN ,HCN ,HJDCN ,FMLSCN 0 264 0% 0% 18% 22% 64 796 100% 100% 57% 63%

L3CAVGN −Models L3C1N ,L3C2N ,L3C3N ,L3C4N ,L3C5N ,L3C6N ,L3C7N ,L3C8N ,L3C9N 0 324 0% 0% 22% 27% 0 532 0% 0% 38% 43%

Part X: ParamCAVGN −Models v/s M1CAVGN −Models v/s M2CAVGN −Models M3CAVGN −Models v/s L1CAVGN −Models v/s L2CAVGN −Models v/s L3CAVGN −Models

δCN - 34 369 41% 64% 25% 30% - - - - - -

ParamCAVGN −Models BSMCN ,HCN ,HJDCN ,FMLSCN 0 174 0% 0% 11% 15% 0 184 0% 0% 12% 16%

M1CAVGN −Models M1C1N ,M1C2N ,M1C3N ,M1C4N ,M1C5N ,M1C6N ,M1C7N ,M1C8N ,M1C9N 10 126 8% 25% 8% 11% 16 185 14% 36% 12% 16%

M2CAVGN −Models M2C1N ,M2C2N ,M2C3N ,M2C4N ,M2C5N ,M2C6N ,M2C7N ,M2C8N ,M2C9N 14 97 13% 33% 6% 9% 19 196 19% 41% 13% 17%

M3CAVGN −Models M3C1N ,M3C2N ,M3C3N ,M3C4N ,M3C5N ,M3C6N ,M3C7N ,M3C8N ,M3C9N 6 86 3% 17% 5% 8% 29 249 33% 58% 17% 21%

L1CAVGN −Models L1C1N ,L1C2N ,L1C3N ,L1C4N ,L1C5N ,L1C6N ,L1C7N ,L1C8N ,L1C9N 0 89 0% 0% 5% 8% 0 94 0% 0% 6% 8%

L2CAVGN −Models L2C1N ,L2C2N ,L2C3N ,L2C4N ,L2C5N ,L2C6N ,L2C7N ,L2C8N ,L2C9N 0 161 0% 0% 10% 14% 0 176 0% 0% 11% 15%

L3CAVGN −Models L3C1N ,L3C2N ,L3C3N ,L3C4N ,L3C5N ,L3C6N ,L3C7N ,L3C8N ,L3C9N 0 226 0% 0% 15% 19% 0 244 0% 0% 16% 21%

Part XI: ParamCAVGN −Models v/s M1CAVGN −Models v/s M2CAVGN −Models v/s M3CAVGN −Models

δCN - 34 574 41% 64% 40% 46% - - - - - -

ParamCAVGN −Models BSMCN ,HCN ,HJDCN ,FMLSCN 0 282 0% 0% 19% 24% 0 294 0% 0% 20% 24%

M1CAVGN −Models M1C1N ,M1C2N ,M1C3N ,M1C4N ,M1C5N ,M1C6N ,M1C7N ,M1C8N ,M1C9N 10 206 8% 25% 13% 18% 16 341 14% 36% 23% 28%

M2CAVGN −Models M2C1N ,M2C2N ,M2C3N ,M2C4N ,M2C5N ,M2C6N ,M2C7N ,M2C8N ,M2C9N 14 141 13% 33% 9% 12% 19 308 19% 41% 21% 25%

M3CAVGN −Models M3C1N ,M3C2N ,M3C3N ,M3C4N ,M3C5N ,M3C6N ,M3C7N ,M3C8N ,M3C9N 6 126 3% 17% 8% 11% 29 386 33% 58% 27% 31%

Part XII: ParamCAVGN −Models v/s L1CAVGN −Models v/s L2CAVGN −Models v/s L3CAVGN −Models

δCN - 63 631 95% 100% 45% 50% - - - - - -

ParamCAVGN −Models BSMCN ,HCN ,HJDCN ,FMLSCN 0 198 0% 0% 13% 17% 62 480 92% 100% 34% 39%

L1CAVGN −Models L1C1N ,L1C2N ,L1C3N ,L1C4N ,L1C5N ,L1C6N ,L1C7N ,L1C8N ,L1C9N 0 94 0% 0% 6% 8% 0 176 0% 0% 11% 15%

L2CAVGN −Models L2C1N ,L2C2N ,L2C3N ,L2C4N ,L2C5N ,L2C6N ,L2C7N ,L2C8N ,L2C9N 1 167 0% 5% 11% 14% 2 307 0% 8% 21% 25%

L3CAVGN −Models L3C1N ,L3C2N ,L3C3N ,L3C4N ,L3C5N ,L3C6N ,L3C7N ,L3C8N ,L3C9N 0 238 0% 0% 16% 20% 0 365 0% 0% 25% 30%

Part XIII: M1CAVGN −Models v/s M2CAVGN −Models M3CAVGN −Models v/s L1CAVGN −Models v/s L2CAVGN −Models v/s L3CAVGN −Models

δCN - 34 403 42% 66% 28% 33% - - - - - -

M1CAVGN −Models M1C1N ,M1C2N ,M1C3N ,M1C4N ,M1C5N ,M1C6N ,M1C7N ,M1C8N ,M1C9N 10 171 6% 25% 11% 15% 16 235 16% 36% 16% 20%

M2CAVGN −Models M2C1N ,M2C2N ,M2C3N ,M2C4N ,M2C5N ,M2C6N ,M2C7N ,M2C8N ,M2C9N 14 125 13% 33% 8% 11% 19 239 19% 41% 16% 20%

M3CAVGN −Models M3C1N ,M3C2N ,M3C3N ,M3C4N ,M3C5N ,M3C6N ,M3C7N ,M3C8N ,M3C9N 6 124 2% 17% 8% 11% 29 311 33% 58% 21% 26%

L1CAVGN −Models L1C1N ,L1C2N ,L1C3N ,L1C4N ,L1C5N ,L1C6N ,L1C7N ,L1C8N ,L1C9N 0 106 0% 0% 7% 9% 0 111 0% 0% 7% 10%

L2CAVGN −Models L2C1N ,L2C2N ,L2C3N ,L2C4N ,L2C5N ,L2C6N ,L2C7N ,L2C8N ,L2C9N 0 170 0% 0% 11% 15% 0 185 0% 0% 12% 16%

L3CAVGN −Models L3C1N ,L3C2N ,L3C3N ,L3C4N ,L3C5N ,L3C6N ,L3C7N ,L3C8N ,L3C9N 0 229 0% 0% 15% 19% 0 247 0% 0% 17% 21%
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Table C.2.2: Call Option Price Comparison (Model Averaging): This table is compartmentalised into XVII parts. Each part presents a performance comparison using
daily and monthly statistics amongst the set of models mentioned in that part. The forecast variable for all the models is the one-trading-day-ahead call option price
(CN+1). The models denoted by the N subscript use lagged input variables for forecasting the call option price CN+1. In the parts mentioned below, we compare the
out-of-sample performance of the best performing model (based on the total number of days out of 1326 days that a particular model had the lowest RMSE) with the
average of parametric models (ParamCAV G

N −Models), the average of single (M1CAV GN −Models), double (M2CAV GN −Models) and triple (M3CAV GN −Models)
hidden layer MLP models, and the average of single (L1CAV GN −Models), double (L2CAV GN −Models) and triple (L3CAV GN −Models) hidden layer LSTM models. In
Part I: The best performing model (L1C8N ) from Table A.2.1 with ParamCAV GN −Models, M1CAV GN −Models, L1CAV GN −Models, in Part II: The best performing
model (FMLSCN ) from Table A.2.2 with ParamCAV GN −Models, M1CAV GN −Models, in Part III: The best performing model (L1C8N ) from Table A.2.3 with
ParamCAV GN −Models, L1CAV GN −Models, in Part IV: The best performing model (L2C9N ) from Table A.2.4 with ParamCAV GN −Models, M2CAV GN −Models,
L2CAV GN −Models, in Part V: The best performing model (FMLSCN ) from Table A.2.5 with ParamCAV GN −Models, M2CAV GN −Models, in Part VI: The best
performing model (L2C9N ) from Table A.2.6 with ParamCAV GN −Models, L2CAV GN −Models, in Part VII: The best performing model (L3C9N ) from Table A.2.7 with
ParamCAV GN −Models,M3CAV GN −Models, L3CAV GN −Models, in Part VIII: The best performing model (FMLSCN ) from Table A.2.8 with ParamCAV GN −Models,
M3CAV GN −Models, in Part IX: The best performing model (L3C9N ) from Table A.2.9 with ParamCAV GN −Models, L3CAV GN −Models, in Part X: The best
performing model (L3C9N ) from Table A.2.10 with ParamCAV GN − Models, M1CAV GN − Models, M2CAV GN − Models, M3CAV GN − Models, L1CAV GN − Models,
L2CAV GN −Models, L3CAV GN −Models, in Part XI: The best performing model (FMLSCN ) from Table A.2.11 with ParamCAV GN −Models, M1CAV GN −Models,
M2CAV GN −Models, M3CAV GN −Models, in Part XII: The best performing model (L3C9N ) from Table A.2.12 with ParamCAV GN −Models, L1CAV GN −Models,
L2CAV GN − Models, L3CAV GN − Models, in Part XIII: The best performing model (L3C9N ) from Table A.2.13 with M1CAV GN − Models, M2CAV GN − Models,
M3CAV GN −Models, L1CAV GN −Models, L2CAV GN −Models, L3CAV GN −Models, in Part XIV: The best performing model (HJDCN ) from Table A.2.14 with
ParamCAV GN −Models. The one-trading-day-ahead forecast errors of CN+1 are used to compute the Root Mean Square Error (RMSE). Forecasts are made for 1,326
trading days, and there are 64 months covered in the sample using the monthly data. Column I identifies the models. When comparing all models simultaneously (i.e.
including the random walk model (δCN ), column II reports the number of months out of the 64 months that each model has the smallest RMSE, while column III
reports the number of days out of the 1,326 days each model has the smallest RMSE. Columns IV (lower bound) and V (upper bound) present the winning percentage
out of 64 months for each model, evaluated using the bootstrap sampling technique. The statistical bootstrap performed (with replacement) at a 95% confidence level
is computed from the monthly RMSE values of the respective models below. Columns VI (lower bound) and VII (upper bound) present the winning percentage out
of 1326 days for each model computed from bootstrapping the daily RMSE values of the respective models at a 95% confidence level. Similarly, when the δCN model
was excluded in the comparison, column VIII report the number of months out of the 64 months that each model has the smallest RMSE, while column IX reports
the number of days out of the 1,326 days each model has the smallest RMSE. Columns X (lower bound) and XI (upper bound) present the winning percentage out
of 64 months for each model, evaluated using the bootstrap sampling technique. The statistical bootstrap performed (with replacement) at a 95% confidence level is
computed from the monthly RMSE values of the respective models below. Also, columns XII (lower bound) and XIII (upper bound) present the winning percentage
out of 1326 days for each model computed from bootstrapping the daily RMSE values of the respective models at a 95% confidence level.

Including the random walk Excluding the random walk
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Part I: L1C8N v/s ParamCAVGN −Models v/s M1CAVGN −Models v/s L1CAVGN −Models

δC 30 347 34% 59% 24% 29% - - - - - -

L1C8N 17 375 17% 38% 26% 31% 26 440 28% 52% 31% 36%

ParamCAVGN −Models 0 211 0% 0% 14% 18% 0 228 0% 0% 15% 19%

M1CAVGN −Models 17 220 16% 38% 15% 19% 38 477 48% 72% 33% 39%

L1CAVGN −Models 0 176 0% 0% 11% 15% 0 184 0% 0% 12% 16%

Part II: FMLSCN v/s ParamCAVGN −Models v/s M1CAVGN −Models

δC 41 465 53% 75% 32% 37% - - - - - -

FMLSCN 0 306 0% 0% 21% 25% 0 372 0% 0% 26% 30%

ParamCAVGN −Models 0 285 0% 0% 19% 24% 0 310 0% 0% 21% 26%

M1CAVGN −Models 23 272 25% 47% 18% 23% 64 646 100% 100% 46% 51%

Part III: L1C8N v/s ParamCAVGN −Models v/s L1CAVGN −Models

δC 47 506 63% 84% 35% 41% - - - - - -

L1C8N 17 405 16% 38% 28% 33% 51 766 70% 89% 55% 60%

ParamCAVGN −Models 0 234 0% 0% 16% 20% 13 342 11% 30% 23% 28%

L1CAVGN −Models 0 183 0% 0% 12% 16% 0 220 0% 0% 15% 19%

Part IV: L2C9N v/s ParamCAVGN −Models v/s M2CAVGN −Models v/s L2CAVGN −Models

δC 37 376 47% 70% 26% 31% - - - - - -

L2C9N 2 319 0% 8% 22% 26% 3 350 0% 11% 24% 29%

ParamCAVGN −Models 0 231 0% 0% 15% 19% 0 248 0% 0% 16% 21%

M2CAVGN −Models 25 226 27% 50% 15% 19% 61 542 89% 100% 38% 43%

L2CAVGN −Models 0 176 0% 0% 11% 15% 0 188 0% 0% 12% 16%

Part V: FMLSCN v/s ParamCAVGN −Models v/s M2CAVGN −Models

δC 37 452 45% 69% 32% 37% - - - - - -

FMLSCN 0 307 0% 0% 21% 25% 0 369 0% 0% 25% 30%

ParamCAVGN −Models 0 288 0% 0% 19% 24% 0 306 0% 0% 21% 25%

M2CAVGN −Models 27 281 31% 55% 19% 23% 64 653 100% 100% 47% 52%

Part VI: L2C9N v/s ParamCAVGN −Models v/s L2CAVGN −Models

δC 61 569 89% 100% 40% 46% - - - - - -

L2C9N 2 326 0% 8% 22% 27% 5 476 2% 14% 33% 39%

ParamCAVGN −Models 0 251 0% 0% 17% 21% 57 534 81% 95% 38% 43%

L2CAVGN −Models 1 182 0% 5% 12% 16% 2 318 0% 8% 22% 26%

Part VII: L3C9N v/s ParamCAVGN −Models v/s M3CAVGN −Models v/s L3CAVGN −Models

δC 43 354 55% 78% 24% 29% - - - - - -

L3C9N 1 344 0% 5% 24% 28% 2 373 0% 8% 26% 31%

ParamCAVGN −Models 0 244 0% 0% 16% 20% 0 255 0% 0% 17% 21%

M3CAVGN −Models 20 229 20% 44% 15% 19% 62 528 92% 100% 37% 42%

L3CAVGN −Models 0 157 0% 0% 10% 14% 0 172 0% 0% 11% 15%

Part VIII: FMLSCN v/s ParamCAVGN −Models v/s M3CAVGN −Models

δC 44 454 58% 80% 32% 37% - - - - - -

FMLSCN 0 307 0% 0% 21% 25% 1 367 0% 5% 25% 30%

ParamCAVGN −Models 0 293 0% 0% 20% 24% 0 306 0% 0% 21% 25%

M3CAVGN −Models 20 274 20% 42% 19% 23% 63 655 95% 100% 47% 52%

Part IX: L3C9N v/s ParamCAVGN −Models v/s L3CAVGN −Models

δC 63 558 95% 100% 39% 45% - - - - - -

L3C9N 1 348 0% 5% 24% 28% 9 486 6% 23% 34% 39%

ParamCAVGN −Models 0 264 0% 0% 18% 22% 55 564 77% 94% 40% 45%

L3CAVGN −Models 0 158 0% 0% 10% 14% 0 278 0% 0% 19% 23%

Part X: L3C9N v/s ParamCAVGN −Models v/s M1CAVGN −Models v/s M2CAVGN −Models M3CAVGN −Models v/s L1CAVGN −Models v/s L2CAVGN −Models v/s L3CAVGN −Models

δC 34 299 41% 66% 20% 25% - - - - - -

L3C9N 0 311 0% 0% 21% 26% 0 333 0% 0% 23% 27%

ParamCAVGN −Models 0 174 0% 0% 11% 15% 0 184 0% 0% 12% 16%

M1CAVGN −Models 10 97 6% 25% 6% 9% 16 134 14% 36% 9% 12%

M2CAVGN −Models 14 86 13% 33% 5% 8% 19 171 19% 42% 11% 15%

M3CAVGN −Models 6 76 3% 16% 5% 7% 29 204 34% 58% 13% 17%

L1CAVGN −Models 0 64 0% 0% 4% 6% 0 66 0% 0% 4% 6%

L2CAVGN −Models 0 116 0% 0% 7% 10% 0 123 0% 0% 8% 11%

L3CAVGN −Models 0 105 0% 0% 7% 9% 0 113 0% 0% 7% 10%

Part XI: FMLSCN v/s ParamCAVGN −Models v/s M1CAVGN −Models v/s M2CAVGN −Models v/s M3CAVGN −Models

δC 34 402 41% 65% 28% 33% - - - - - -

FMLSCN 0 298 0% 0% 20% 25% 0 346 0% 0% 24% 28%

ParamCAVGN −Models 0 282 0% 0% 19% 23% 0 294 0% 0% 20% 24%

M1CAVGN −Models 10 145 8% 25% 9% 13% 16 209 16% 36% 14% 18%

M2CAVGN −Models 14 109 13% 33% 7% 10% 19 215 19% 41% 14% 18%

M3CAVGN −Models 6 92 3% 17% 5% 8% 29 264 33% 58% 18% 22%

Part XII: L3C9N v/s ParamCAVGN −Models v/s L1CAVGN −Models v/s L2CAVGN −Models v/s L3CAVGN −Models

δC 62 520 92% 100% 37% 42% - - - - - -

L3C9N 1 316 0% 5% 22% 26% 9 417 6% 23% 29% 34%

ParamCAVGN −Models 0 198 0% 0% 13% 17% 53 400 73% 92% 28% 33%

L1CAVGN −Models 0 67 0% 0% 4% 6% 0 125 0% 0% 8% 11%

L2CAVGN −Models 1 119 0% 5% 7% 10% 2 212 0% 8% 14% 18%

L3CAVGN −Models 0 108 0% 0% 7% 10% 0 174 0% 0% 11% 15%

Part XIII: L3C9N v/s M1CAVGN −Models v/s M2CAVGN −Models M3CAVGN −Models v/s L1CAVGN −Models v/s L2CAVGN −Models v/s L3CAVGN −Models

δC 34 333 41% 66% 23% 27% - - - - - -

L3C9N 0 312 0% 0% 21% 26% 0 334 0% 0% 23% 27%

M1CAVGN −Models 10 141 8% 25% 9% 12% 16 183 16% 36% 12% 16%

M2CAVGN −Models 14 114 13% 33% 7% 10% 19 214 19% 42% 14% 18%

M3CAVGN −Models 6 114 3% 17% 7% 10% 29 266 34% 56% 18% 22%

L1CAVGN −Models 0 81 0% 0% 5% 7% 0 83 0% 0% 5% 8%

L2CAVGN −Models 0 125 0% 0% 8% 11% 0 132 0% 0% 8% 12%

L3CAVGN −Models 0 108 0% 0% 7% 10% 0 116 0% 0% 7% 10%

Part XIV: HJDCN v/s ParamCAVGN −Models

δC 57 746 81% 95% 54% 59% - - - - - -

HJDCN 7 267 5% 19% 18% 23% 63 972 95% 100% 71% 76%

ParamCAVGN −Models 0 315 0% 0% 21% 26% 1 356 0% 5% 24% 29%
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C.2.1.2 CAV G−Models: Model averaging pricing performance of models that

use one-trading-day-ahead input variables to forecast the call option

price (CN+1) for the next trading day:

Table C.2.3 shows the relative out-of-sample performance (in RMSE) amongst the models that
forecast the one-trading-day-ahead average call option price(CN+1) using one-trading-day-ahead
input variables. In column II of table C.2.3, we list the several models used as an input to obtain
the average one-trading-day-ahead forecast of CN+1. The performance metric is the RMSE of
the one-trading-day-ahead forecast errors of the average CN+1, which is computed for each
averaging model utilising all of the errors in each day or each month. Amongst all of the models
(including the random walk model (δCN )), columns III and IV record the number of months
and days, respectively, that each model has the lowest RMSE. We performed a bootstrap using
the daily and monthly RMSEs to be certain of our results. The columns V (lower bound) and
VI (upper bound) present the results from the bootstrap performed (with replacement) using
monthly RMSEs at a 95% confidence level and shows the winning percentage out of 64 months
for each model (including the δCN model) and similarly, the 95 % confidence intervals computed
from bootstrapping of the daily RMSEs signifies the winning percentage out of 1,328 days for
each model and are reported in columns VII (lower bound), VIII (upper bound). While excluding
the δCN model amongst the comparison, columns IX and X record the number of months and
days that each model has the lowest RMSE. We repeat the exercise of performing the bootstrap
by excluding the δCN model in the comparison, and thus, the columns XI (lower bound) and
XII (upper bound) present the results from the bootstrap performed (with replacement) using
monthly RMSEs at a 95% confidence level and shows the winning percentage out of 64 months
for each model (excluding the δCN model) and similarly, the 95 % confidence intervals computed
from bootstrapping of the daily RMSEs signifies the winning percentage out of 1,328 days for
each model and are reported in columns XIII (lower bound), XIV (upper bound). After a model
is found to outperform other individual parametric models, MLP and LSTM models in each of
the several comparisons below, we look into whether that out-performing model individually can
outperform the average call option price of all the parametric models combinedly, MLP models
combinedly or LSTM models combinedly, covered in that section.

In the below several comparisons, even though a particular model wins by a higher percentage
against other models, we investigated further these models pairwise by performing a pairwise
bootstrap comparison, which was computed using the respective pair’s daily RMSEs. The results
are presented in Table 92 of the Electronic Appendix.

The Diebold-Mariano(DM ) (Diebold and Mariano (1995)) test was performed on pairs amongst
the RandomWalk (δCN ) model, the average call option price of all parametric models (ParamCAV GN+1 −
Models), the average call option price of all single hidden layer MLP models (M1CAV GN+1 −
Models), the average call option price of all single hidden layer LSTM models (L1CAV GN+1 −
Models), the average call option price of all double hidden layer MLP models (M2CAV GN+1 −
Models), the average call option price of all double hidden layer LSTM models (L3CAV GN+1 −
Models), the average call option price of all triple hidden layer MLP models (M3CAV GN+1 −
Models), and the average call option price of all triple hidden layer LSTM models (L3CAV GN+1 −
Models) are reported in Table 83 of the Electronic Appendix. In constructing the DM tests,
the model pairs are reported in column I and column II, and the DM test statistics for a par-
ticular pair are reported in column III. If the null can be rejected, a positive number suggests
the rejection may be due to the second model being the better forecast model. In contrast, a
negative value suggests the rejection may be due to the first model being the better forecast
model. The model pairs highlighted in a red state that their forecasts have statistically insignif-
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icant differences in their prediction accuracy. Considering the DM -Test statistics in Table 83 of
the Electronic Appendix, all the model pairs lead to the rejection of the null of equal forecasting
performance.

The RMSEs for the models under the CAV G −Models category, which averages the forecasted
CN+1 from models belonging to the C − Models category(which uses one-trading-day-ahead
input variables to forecast the CN+1 for the next trading day) on a monthly, yearly, and overall
basis can be found in the Electronic Appendix, in Tables 52, 62, and 72, respectively.

C.2.1.2.1 Comparison amongst all Parametric Models with Triple Hidden Layer

ANN Models:

In this section, we compare the out-of-sample performance of the random walk model (δCN+1),
the parametric models (ParamCAV GN+1 −Models), the triple hidden layer MLPmodels (M3CAV GN+1 −
Models), and the triple hidden layer LSTMmodels (L3CAV GN+1 −Models), and then ParamCAV GN+1 −
Models with theM3CAV GN+1 −Models, and finally the ParamCAV GN+1 −Models with the L3CAV GN+1 −
Models.

Initially in Part I of Table C.2.3, we compared the ParamCAV GN+1 −Models with the M3CAV GN+1 −
Models and the L3CAV GN+1 − Models and found that the M3CAV GN+1 − Models had the lowest
RMSE for 987 days (having a daily bootstrap winning % of 72% to 77%) out of 1,328, but if
the δCN model was excluded from the comparison, the M3CAV GN+1 −Models still outperformed
for 1,114 days (having a daily bootstrap winning % of 82% to 86%) out of 1,328. Accordingly,
we now compare the M3C4N+1 model (i.e. the best-performing model when compared to the
models in column XIV of Table A.2.15) with the ParamCAV GN+1 −Models, M3CAV GN+1 −Models,
and the L3CAV GN+1 − Models in Part I of Table C.2.4 and found that M3C4N+1 model had
the lowest RMSE for 650 days (having a daily bootstrap winning % of 46% to 52%) out of
1,328, but if the δCN model was excluded from this comparison, the M3C4N+1 model had still
outperformed for 683 days (having a daily bootstrap winning % of 49% to 54%) out of 1,328,
which was closely followed by the M3CAV GN+1 −Models, which had similar out-performance for
610 days (having a daily bootstrap winning % of 43% to 49%).

Secondly, in Part II of Table C.2.3, we compared the ParamCAV GN+1 −Models with theM3CAV GN+1 −
Models, and found that the M3CAV GN+1 −Models model had the lowest RMSE for 991 days
(having a daily bootstrap winning % of 72% to 77%) out of 1,328, and even if the δCN model
was excluded from the comparison, the M3CAV GN+1 − Models could still outperform for 1,120
days (having a daily bootstrap winning % of 82 % to 86%) out of 1,328. Accordingly, we now
compare the M3C4N+1 model (i.e. the best-performing model when compared to the models in
column XIV of Table A.2.16) with the ParamCAV GN+1 −Models, and the M3CAV GN+1 −Models in
Part II of Table C.2.4, and found that the M3C4N+1 model had the lowest RMSE for 650 days
(having a daily bootstrap winning % of 46% to 52%) out of 1,328, but if the δCN model was
excluded from this comparison, the M3CAV GN+1 −Models still outperformed for 683 days (having
a daily bootstrap winning % of 49% to 54%) out of 1,328, which was closely followed by the
M3CAV GN+1 −Models, which had similar out-performance for 610 days (having a daily bootstrap
winning % of 43% to 49%).

Finally, in Part III of Table C.2.3, we compared the ParamCAV GN+1 −Models with the L3CAV GN+1 −
Models, and found that the ParamCAV GN+1 −Models had the lowest RMSE for 788 days (having
a daily bootstrap winning % of 57% to 62%) out of 1,328, but if the δCN model was excluded
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from the comparison, the ParamCAV GN+1 −Models outperformed for 1,065 days (having a daily
bootstrap winning % of 78% to 82%) out of 1,328.

Accordingly, we now compare the HJDCN+1 model (i.e. the best-performing model when
compared to the models in column XIV of Table A.2.17) with the ParamCAV GN+1 −Models, and
the L3CAV GN+1 −Models in Part III of Table C.2.4, and found that the HJDCN+1 model had
the lowest RMSE for 456 days (having a daily bootstrap winning % of 32% to 37%) out of
1,328. Even though the HJDCN+1 model outperformed, the ParamCAV GN+1 −Models also had
similar out-performance, where it outperformed for 384 days (having a daily bootstrap winning
% of 27% to 31%), but if the δCN model was excluded from this comparison, the HJDCN+1
model had still outperformed for 594 days (having a daily bootstrap winning % of 42% to 48%)
out of 1,328, which was closely followed by the ParamCAV GN − Models, which had similar
out-performance for 517 days (having a daily bootstrap winning % of 36% to 42%).

Thus, when the individually out-performing model, the M3C4N+1 model (from Table A.2.15)
was compared to the average of all the parametric models, and the averages of all the triple
hidden layer ANN models (in Part I of Table C.2.4), we conclude that an individual MLP
model (i.e. M3C4N+1) could outperform all the models. Similarly, when the individually out-
performing model, the M3C4N+1 model (from Table A.2.16) was compared to the average of all
the parametric models, and the averages of all the triple hidden layer MLP models (in Part II of
Table C.2.4), an individual MLP model (i.e. M3C4N+1) had yet again outperformed them all.
Lastly, when the individually out-performing model, the HJDCN+1 model (from Table A.2.17)
was compared to the average of all the parametric models, and the averages of all the triple
hidden layer LSTM models (in Part III of Table C.2.4), the HJDCN+1 model could outperform
other models, and even the averages of all the LSTM models (i.e. L3CAV GN+1 −Models).

C.2.1.2.2 Comparison amongst all Parametric models:

Lastly, we compare the HJDCN+1 model (i.e. the best-performing model when compared to
the models in column XI of Table A.2.18) with the ParamCAV GN+1 −Models in Part IV of Table
C.2.4 and found that the HJDCN+1 model had the lowest RMSE for 1,050 days (having a
daily bootstrap winning % of 77% to 81%) out of 1,328, but if the δCN model was excluded
from this comparison, the HJDCAV GN+1 −Models had still outperformed for 1,262 days (having
a daily bootstrap winning % of 94% to 96%) out of 1,328.

Thus, when the individually out-performing model, the HJDCN+1 model (from Table A.2.18)
was compared to the average of all the parametric models (in Part IV of Table C.2.4), we can
conclude that the HJDCN+1 model could outperform the average of all the parametric models.
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Table C.2.3: Call Option Price Comparison (Model Averaging): This table is compartmentalised into III parts, where each part presents a performance comparison using both daily and monthly statistics amongst the set of models mentioned in that part. The
forecast variable for all the models is the one-trading-day-ahead call option price (CN+1). The models denoted by the N+1 subscript use one-trading-day-ahead input variables for forecasting CN+1. In the parts mentioned below, we compare the out-of-sample
performance of the following models: In Part I: ParamCAV GN+1 −Models, M3CAV GN+1 −Models, L3CAV GN+1 −Models, in Part II: ParamCAV GN+1 −Models, M3CAV GN+1 −Models, in Part III: ParamCAV GN+1 −Models, L3CAV GN+1 −Models. The one-trading-day-ahead
forecast errors of CN+1 are used to compute the Root Mean Square Error (RMSE). Column I identifies the models, and column II lists the models used as input to obtain the average one-trading-day-ahead forecast of CN+1. Forecasts are made for 1,328
trading days, and there are 64 months covered in the sample using the monthly data. When comparing all models simultaneously (i.e. including the random walk model (δCN ), column III reports the number of months out of the 64 months that each model
has the smallest RMSE, while column IV reports the number of days out of the 1,328 days each model has the smallest RMSE. Columns V (lower bound) and VI (upper bound) present the winning percentage out of 64 months for each model, evaluated using
the bootstrap sampling technique. The statistical bootstrap performed (with replacement) at a 95% confidence level is computed from the monthly RMSE values of the respective models below. Columns VII (lower bound) and VIII (upper bound) present the
winning percentage out of 1326 days for each model computed from bootstrapping the daily RMSE values of the respective models at a 95% confidence level. Similarly, when the δCN model was excluded in the comparison, column IX report the number of
months out of the 64 months that each model has the smallest RMSE, while column X reports the number of days out of the 1,328 days each model has the smallest RMSE. Columns XI (lower bound) and XII (upper bound) present the winning percentage
out of 64 months for each model, evaluated using the bootstrap sampling technique. The statistical bootstrap performed (with replacement) at a 95% confidence level is computed from the monthly RMSE values of the respective models below. Also, columns
XIII (lower bound) and XIV (upper bound) present the winning percentage out of 1326 days for each model computed from bootstrapping the daily RMSE values of the respective models at a 95% confidence level.

Including the random walk Excluding the random walk

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X) (XI) (XII) (XIII) (XIV)

Model Inputs Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

Part I: ParamCAVGN+1 −Models v/s M3CAVGN+1 −Models v/s L3CAVGN+1 −Models

δCN - 0 129 0% 0% 8% 11% - - - - - -

ParamCAVGN+1 −Models BSMCN+1 ,HCN+1 ,HJDCN+1 ,FMLSCN+1 13 208 11% 31% 14% 18% 13 208 11% 30% 14% 18%

M3CAVGN+1 −Models M3C1N+1 ,M3C2N+1 ,M3C3N+1 ,M3C4N+1 ,M3C5N+1 ,M3C6N+1 ,M3C7N+1 ,M3C8N+1 ,M3C9N+1 51 987 69% 89% 72% 77% 51 1114 70% 89% 82% 86%

L3CAVGN+1 −Models L3C1N+1 ,L3C2N+1 ,L3C3N+1 ,L3C4N+1 ,L3C5N+1 ,L3C6N+1 ,L3C7N+1 ,L3C8N+1 ,L3C9N+1 0 4 0% 0% 0% 1% 0 6 0% 0% 0% 1%

Part II: ParamCAVGN+1 −Models v/s M3CAVGN+1 −Models

δCN - 0 129 0% 0% 8% 11% - - - - - -

ParamCAVGN+1 −Models BSMCN+1 ,HCN+1 ,HJDCN+1 ,FMLSCN+1 13 208 11% 30% 14% 18% 13 208 11% 30% 14% 18%

M3CAVGN+1 −Models M3C1N+1 ,M3C2N+1 ,M3C3N+1 ,M3C4N+1 ,M3C5N+1 ,M3C6N+1 ,M3C7N+1 ,M3C8N+1 ,M3C9N+1 51 991 70% 89% 72% 77% 51 1120 70% 89% 82% 86%

Part III: ParamCAVGN+1 −Models v/s L3CAVGN+1 −Models

δCN - 0 443 0% 0% 31% 36% - - - - - -

ParamCAVGN+1 −Models BSMCN+1 ,HCN+1 ,HJDCN+1 ,FMLSCN+1 64 788 100% 100% 57% 62% 64 1065 100% 100% 78% 82%

L3CAVGN+1 −Models L3C1N+1 ,L3C2N+1 ,L3C3N+1 ,L3C4N+1 ,L3C5N+1 ,L3C6N+1 ,L3C7N+1 ,L3C8N+1 ,L3C9N+1 0 97 0% 0% 6% 9% 0 263 0% 0% 18% 22%
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Table C.2.4: Call Option Price Comparison (Model Averaging): This table is compartmentalised into IV parts. Each part presents a performance comparison using
daily and monthly statistics amongst the models mentioned in that part. The forecast variable for all the models is the one-trading-day-ahead call option price (CN+1).
The models denoted by the N+1 subscript use one-trading-day-ahead input variables for forecasting the call option price CN+1. In the parts mentioned below, we
compare the out-of-sample performance of the best performing model (based on the total number of days out of 1326 days that a particular model had the lowest
RMSE) with the average of parametric models (ParamCAV G

N+1 − Models), the average of triple (M3CAV GN+1 − Models) hidden layer MLP models, and the average
of triple (L3CAV GN+1 − Models) hidden layer LSTM models. In Part I: The best performing model (M3C4N+1) from Table A.2.15 with ParamCAV GN+1 − Models,
M3CAV GN+1 −Models, L3CAV GN+1 −Models, in Part II: The best performing model (M3C4N+1) from Table A.2.16 with ParamCAV GN+1 −Models, M3CAV GN+1 −Models,
in Part III: The best performing model (HCN+1) from Table A.2.17 with ParamCAV GN+1 −Models, L3CAV GN+1 −Models, in Part IV: The best performing model
(HJDCN+1) from Table A.2.18 with ParamCAV GN+1 −Models. The one-trading-day-ahead forecast errors of CN+1 are used to compute the Root Mean Square Error
(RMSE). Forecasts are made for 1,328 trading days, and there are 64 months covered in the sample using the monthly data. Column I identifies the models. When
comparing all models simultaneously (i.e. including the random walk model (δCN ), column II reports the number of months out of the 64 months that each model has
the smallest RMSE, while column III reports the number of days out of the 1,328 days each model has the smallest RMSE. Columns IV (lower bound) and V (upper
bound) present the winning percentage out of 64 months for each model, evaluated using the bootstrap sampling technique. The statistical bootstrap performed (with
replacement) at a 95% confidence level is computed from the monthly RMSE values of the respective models below. Columns VI (lower bound) and VII (upper bound)
present the winning percentage out of 1326 days for each model computed from bootstrapping the daily RMSE values of the respective models at a 95% confidence
level. Similarly, when the δCN model was excluded in the comparison, column VIII report the number of months out of the 64 months that each model has the smallest
RMSE, while column IX reports the number of days out of the 1,328 days each model has the smallest RMSE. Columns X (lower bound) and XI (upper bound) present
the winning percentage out of 64 months for each model, evaluated using the bootstrap sampling technique. The statistical bootstrap performed (with replacement) at
a 95% confidence level is computed from the monthly RMSE values of the respective models below. Also, columns XII (lower bound) and XIII (upper bound) present
the winning percentage out of 1326 days for each model computed from bootstrapping the daily RMSE values of the respective models at a 95% confidence level.

Including the random walk Excluding the random walk

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X) (XI) (XII) (XIII)

Model Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

Part I: M3C4N+1 v/s ParamCAVGN+1 −Models v/s M3CAVGN+1 −Models v/s L3CAVGN+1 −Models

δC 0 119 0% 0% 7% 11% - - - - - -

M3C4N+1 35 650 44% 67% 46% 52% 35 683 42% 66% 49% 54%

ParamCAVGN+1 −Models 0 34 0% 0% 2% 3% 0 34 0% 0% 2% 3%

M3CAVGN+1 −Models 29 525 33% 56% 37% 42% 29 610 34% 58% 43% 49%

L3CAVGN+1 −Models 0 0 0% 0% 0% 0% 0 1 0% 0% 0% 0%

Part II: M3C4N+1 v/s ParamCAVGN+1 −Models v/s M3CAVGN+1 −Models

δC 0 119 0% 0% 7% 10% - - - - - -

M3C4N+1 35 650 42% 66% 46% 52% 35 683 44% 66% 49% 54%

ParamCAVGN+1 −Models 0 34 0% 0% 2% 3% 0 34 0% 0% 2% 3%

M3CAVGN+1 −Models 29 525 34% 58% 37% 42% 29 611 34% 56% 43% 49%

Part III: HCN+1 v/s ParamCAVGN+1 −Models v/s L3CAVGN+1 −Models

δC 0 403 0% 0% 28% 33% - - - - - -

HJDCN+1 39 456 48% 73% 32% 37% 39 594 48% 73% 42% 48%

ParamCAVGN+1 −Models 25 384 27% 52% 27% 31% 25 517 27% 52% 36% 42%

L3CAVGN+1 −Models 0 85 0% 0% 5% 8% 0 217 0% 0% 14% 18%

Part IV: HJDCN+1 v/s ParamCAVGN+1 −Models v/s L3CAVGN+1 −Models

δC 0 218 0% 0% 14% 18% - - - - - -

HJDCN+1 64 1050 100% 100% 77% 81% 64 1262 100% 100% 94% 96%

ParamCAVGN+1 −Models 0 60 0% 0% 3% 6% 0 66 0% 0% 4% 6%
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C.2.2 Results - CK −Models - Model Averaging

C.2.2.1 CKAV G−Models: Model averaging pricing performance of models that

use lagged input variables to forecast the call option price scaled by

the strike price (CN+1/KN+1) for the next trading day

Table C.2.5 shows the relative out-of-sample pricing performance (in RMSE) amongst the
models that forecast the one-trading-day-ahead average call option price scaled by the strike
price(CN+1/KN+1) using lagged input variables. In column II of table C.2.5, we list the several
models used as an input to obtain the average one-trading-day-ahead forecast of CN+1/KN+1.
The performance metric is the RMSE of the one-trading-day-ahead forecast errors of the average
CN+1/KN+1, which is computed for each averaging model utilising all of the errors in each day
or each month. Amongst all of the models (including the random walk model (δCKN )), columns
III and IV record the number of months and days, respectively, that each model has the lowest
RMSE. We performed a bootstrap using the daily and monthly RMSEs to be certain of our
results. The columns V (lower bound) and VI (upper bound) present the results from the
bootstrap performed (with replacement) using monthly RMSEs at a 95% confidence level and
show the winning percentage out of 64 months for each model (including the δCKN model)
and similarly, the 95 % confidence intervals computed from bootstrapping of the daily RMSEs
signifies the winning percentage out of 1,328 days for each model and are reported in columns VII
(lower bound), VIII (upper bound). While excluding the δCKN model amongst the comparison,
columns IX and X record the number of months and days that each model has the lowest
RMSE.e repeat the exercise of performing the bootstrap by excluding the δCKN model in the
comparison, and thus, the columns XI (lower bound), XII (upper bound) presents the results
from the bootstrap performed (with replacement) using monthly RMSEs at a 95% confidence
level and shows the winning percentage out of 64 months for each model (excluding the δCKN

model) and similarly, the 95 % confidence intervals computed from bootstrapping of the daily
RMSEs signifies the winning percentage out of 1,328 days for each model and are reported in
columns XIII (lower bound), XIV (upper bound). After a model is found to outperform other
individual parametric models, MLP and LSTM models in each of the several comparisons below,
we look into whether that out-performing model individually can outperform the average call
option price of all the parametric models combinedly, MLP models combinedly or LSTM models
combinedly, covered in that section.

In the below several comparisons, even though a particular model wins by a higher percentage
against other models, we investigated further these models pairwise by performing a pairwise
bootstrap comparison, which was computed using the respective pair’s daily RMSEs. The results
are presented in Table 93 of the Electronic Appendix.

The Diebold-Mariano(DM ) (Diebold and Mariano (1995)) test was performed on pairs amongst
the RandomWalk (δCKN ) model, the average CN+1/KN+1 of all parametric models (ParamCKAV G

N −
Models), the average CN+1/KN+1 of all single hidden layer MLPmodels (M1CKAV G

N −Models),
the average CN+1/KN+1 of all single hidden layer LSTM models (L1CKAV G

N −Models), the
average CN+1/KN+1 of all double hidden layer MLP models (M2CKAV G

N −Models), the aver-
age CN+1/KN+1 of all double hidden layer LSTM models (L3CKAV G

N −Models), the average
CN+1/KN+1 of all triple hidden layer MLP models (M3CKAV G

N −Models), and the average
CN+1/KN+1 of all triple hidden layer LSTM models (L3CKAV G

N −Models) are reported in Table
82 of the Electronic Appendix. In constructing the DM tests, the model pairs are reported in
column I and column II, and the DM test statistics for a particular pair are reported in column
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III. If the null can be rejected, a positive number suggests the rejection may be due to the second
model being the better forecast model. In contrast, a negative value suggests the rejection may
be due to the first model being the better forecast model. The model pairs highlighted in a red
state that their forecasts have statistically insignificant differences in their prediction accuracy.
Considering the DM -Test statistics in Table 82 of the Electronic Appendix, all the model pairs
lead to the rejection of the null of equal forecasting performance.

The RMSEs for the models under the CKAV G−Models category, which averages the forecasted
CN+1/KN+1 from models belonging to the CK −Models category (which uses lagged input
variables to forecast the CN+1/KN+1 for the next trading day) on a monthly, yearly, and overall
basis can be found in the Electronic Appendix, in Tables 53, 63, and 73, respectively.

C.2.2.1.1 Comparison amongst all Parametric Models with Single Hidden Layer

ANN Models:

In this section, we compare the out-of-sample pricing performance of the random walk model
(δCKN ), the parametric models (ParamCKAV G

N − Models), the single hidden layer MLP
models (M1CKAV G

N − Models), and the single hidden layer LSTM models (L1CKAV G
N −

Models), and then ParamCKAV G
N −Models with the M1CKAV G

N −Models, and Accordingly
the ParamCKAV G

N −Models with the L1CKAV G
N −Models.

Initially, in Part I of Table C.2.5, when we compared the ParamCKAV G
N −Models with the

M1CKAV G
N −Models and the L1CKAV G

N −Models, and found that none of the models could
outperform the δCKN model, where the δCKN model had the lowest RMSE for 849 days
(having a daily bootstrap winning % of 61% to 66%) out of 1,328, but if the δCKN model was
excluded from the comparison, the M1CKAV G

N −Models outperformed for 1,260 days (having
a daily bootstrap winning % of 94% to 96%) out of 1,328. Accordingly, we now compare the
L1CK2N model (i.e. the best-performing model when compared to the models in column XIV
of Table A.2.19) with the ParamCKAV G

N −Models,M1CKAV G
N −Models and the L1CKAV G

N −
Models in Part I of Table C.2.6 and found that the δCKN model still outperformed for 685
days (having a daily bootstrap winning % of 49% to 54%) out of 1,328, but if the δCKN model
was excluded from this comparison, the M1CKAV G

N −Models had outperformed for 937 days
(having a daily bootstrap winning % of 68% to 73%) out of 1,328.

Secondly, in Part II of Table C.2.5, we compared the ParamCKAV G
N − Models with the

M1CKAV G
N −Models and found that none of the models could outperform the δCKN model,

where the δCKN model had the lowest RMSE for 853 days (having a daily bootstrap winning
% of 62% to 67%) out of 1,328, but if the δCKN model was excluded from the comparison,
the M1CKAV G

N −Models outperformed for 1,281 days (having a daily bootstrap winning %
of 95% to 97%) out of 1,328. Accordingly, we now compare the M1CK3N model (i.e. the
best-performing model when compared to the models in column XIV of Table A.2.20) with the
ParamCKAV G

N −Models, and the M1CKAV G
N −Models in Part II of Table C.2.6 and found

that none of the models could outperform the the δCKN model, which had the lowest RMSE
for 765 days (having a daily bootstrap winning % of 55% to 60%) out of 1,328, but if the δCKN

model was excluded from this comparison, the M1CKAV G
N −Models had outperformed for 753

days (having a daily bootstrap winning % of 54% to 59%) out of 1,328.

Finally, in Part III of Table C.2.5, we compared the ParamCKAV G
N −Models with the L1CKAV G

N −
Models and found that none of the models could outperform the δCKN model, where the δCKN

model had the lowest RMSE for 1,263 days (having a daily bootstrap winning % of 94% to 96%)
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out of 1,328, but if the δCKN model was excluded from the comparison, the L1CKAV G
N −Models

outperformed for 946 days (having a daily bootstrap winning % of 69% to 74%) out of 1,328.
Accordingly, we now compare the L1CK2N model (i.e. the best-performing model when com-
pared to the models in column XIV of Table A.2.21) with the ParamCKAV G

N −Models, and
the L1CKAV G

N −Models in Part III of Table C.2.6 and found that none of the models could out-
perform the δCKN model, which had the lowest RMSE for 987 days (having a daily bootstrap
winning % of 72% to 77%) out of 1,328, but if the δCKN model was excluded from this com-
parison, the L1CK2N model had outperformed for 912 days (having a daily bootstrap winning
% of 66% to 71%) out of 1,328.

Thus, when the individually out-performing model, the L1CK2N model (from Table A.2.19) was
compared to the average of all the parametric models, and the averages of all the single hidden
layer ANN models (in Part I of Table C.2.6), we conclude that an individual LSTM could not
outperform the model averages, where the averages of all the single hidden layer MLP models
(i.e. M1CKAV G

N −Models) had out-performed them all. Similarly, when the individually out-
performing model, the M1CK3N model (from Table A.2.20) was compared to the average of all
the parametric models, and the averages of all the single hidden layer MLP models (in Part II of
Table C.2.6), the averages of all the single hidden layer MLP models (i.e. M1CKAV G

N −Models)
had yet again out-performed them all. Lastly, when the individually out-performing model, the
L1CK2N model (from Table A.2.21) was compared to the average of all the parametric models,
and the averages of all the single hidden layer LSTM models (in Part III of Table C.2.6), an
individual LSTM model (i.e. the L1CK2N model) could outperform them all.

C.2.2.1.2 Comparison amongst all Parametric Models with Double Hidden Layer

ANN Models:

In this section, we compare the out-of-sample pricing performance of the random walk model
(δCKN ), the parametric models (ParamCKAV G

N − Models), the double hidden layer MLP
models (M2CKAV G

N − Models), and the double hidden layer LSTM models (L2CKAV G
N −

Models), and then ParamCKAV G
N −Models with the M2CKAV G

N −Models, and Accordingly
the ParamCKAV G

N −Models with the L2CKAV G
N −Models.

Initially, in Part IV of Table C.2.5, we compared the ParamCKAV G
N − Models with the

M2CKAV G
N −Models and the L2CKAV G

N −Models, and found that none of the models could
outperform the δCKN model, where the δCKN model had the lowest RMSE for 805 days
(having a daily bootstrap winning % of 58% to 63%) out of 1,328, but if the δCKN model was
excluded from the comparison, the M2CKAV G

N −Models outperformed for 1,248 days (hav-
ing a daily bootstrap winning % of 93% to 95%) out of 1,328. Accordingly, we now compare
the L2CK2N model (i.e. the best-performing model when compared to the models in col-
umn XIV of Table A.2.22) with the ParamCKAV G

N −Models, M2CKAV G
N −Models, and the

L2CKAV G
N −Models in Part IV of Table C.2.6 and found that none of the models could out-

perform the δCKN model, which had the lowest RMSE for 656 days (having a daily bootstrap
winning % of 47% to 52%) out of 1,328, but if the δCKN model was excluded from this com-
parison, the M2CKAV G

N −Models had outperformed for 934 days (having a daily bootstrap
winning % of 68% to 73%) out of 1,328.

Secondly, in Part V of Table C.2.5, we compared the ParamCKAV G
N − Models with the

M2CKAV G
N −Models, and found that none of the models could outperform the δCKN model,

where the δCKN model had the lowest RMSE for 816 days (having a daily bootstrap winning
% of 59% to 64%) out of 1,328, but if the δCKN model was excluded from the comparison,
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the M2CKAV G
N −Models outperformed for 1,284 days (having a daily bootstrap winning %

of 96% to 98%) out of 1,328. Accordingly, we now compare the M2CK3N model (i.e. the
best-performing model when compared to the models in column XIV of Table A.2.23) with the
ParamCKAV G

N −Models, and the M2CKAV G
N −Models in Part V of Table C.2.6 and found

that none of the models could outperform the δCKN model, which had the lowest RMSE for
704 days (having a daily bootstrap winning % of 50% to 56%) out of 1,328, but if the δCKN

model was excluded from this comparison, the M2CKAV G
N −Models had outperformed for 733

days (having a daily bootstrap winning % of 52% to 58%) out of 1,328.

Finally, in Part VI of Table C.2.5, we compared the ParamCKAV G
N −Models with the L2CKAV G

N −
Models and found that none of the models could outperform the δCKN model, where the
δCKN model had the lowest RMSE for 1,242 days (having a daily bootstrap winning % of
92% to 95%) out of 1,328, but if the δCKN model was excluded from the comparison, the
ParamCKAV G

N −Models outperformed for 855 days (having a daily bootstrap winning % of
62% to 67%) out of 1,328. Accordingly, we now compare the L2CK2N model (i.e. the best-
performing model when compared to the models in column XIV of Table A.2.24) with the
ParamCKAV G

N −Models, and the L2CKAV G
N −Models in Part VI of Table C.2.6 and found

that none of the models could outperform the δCKN model, which had the lowest RMSE for
970 days (having a daily bootstrap winning % of 71% to 75%) out of 1,328, but if the δCKN

model was excluded from this comparison, the L2CK2N model had outperformed for 873 days
(having a daily bootstrap winning % of 63% to 68%) out of 1,328.

Thus, when the individually out-performing model, the L2CK2N model (from Table A.2.22)
was compared to the average of all the parametric models, and the averages of all the double
hidden layer ANN models (in Part IV of Table C.2.6), we conclude that an individual LSTM
could not outperform the model averages, where the averages of all the double hidden layer
MLP models (i.e. M2CKAV G

N − Models) had out-performed them all. Similarly, when the
individually out-performing model, the M2CK3N model (from Table A.2.23) was compared to
the average of all the parametric models, and the averages of all the double hidden layer MLP
models (in Part V of Table C.2.6), the averages of all the double hidden layer MLP models (i.e.
M2CKAV G

N −Models) had yet again out-performed them all. Lastly, when the individually
out-performing model, the L2CK2N model (from Table A.2.24) was compared to the average
of all the parametric models, and the averages of all the double hidden layer LSTM models (in
Part VI of Table C.2.6), an individual LSTM model (i.e. the L2C9N model) could outperform
other models.

C.2.2.1.3 Comparison amongst all Parametric Models with Triple Hidden Layer

ANN Models:

In this section, we compare the out-of-sample pricing performance of the random walk model
(δCKN ), the parametric models (ParamCKAV G

N −Models), the triple hidden layer MLP models
(M3CKAV G

N −Models), and the triple hidden layer LSTM models (L3CKAV G
N −Models), and

then ParamCKAV G
N −Models with theM3CKAV G

N −Models, and finally the ParamCKAV G
N −

Models with the L3CKAV G
N −Models.

Initially, in Part VII of Table C.2.5, we compared the ParamCKAV G
N − Models with the

M3CKAV G
N −Models and the L3CKAV G

N −Models, and found that none of the models could
outperform the δCKN model, where the δCKN model had the lowest RMSE for 797 days
(having a daily bootstrap winning % of 57% to 62%) out of 1,328, but if the δCKN model was
excluded from the comparison, the M3CKAV G

N −Models outperformed for 1,244 days (having
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a daily bootstrap winning % of 92% to 95%) out of 1,328. Accordingly, we now compare the
L3CK2N model (i.e. the best-performing model when compared to the models in column XIV
of Table A.2.25) with the ParamCKAV G

N −Models with the M3CKAV G
N −Models in Part VII

of Table C.2.6 and found that none of the models could outperform the δCKN model, which
had the lowest RMSE for 656 days (having a daily bootstrap winning % of 47% to 52%) out
of 1,328, but if the δCKN model was excluded from this comparison, the M3CKAV G

N −Models
had outperformed for 930 days (having a daily bootstrap winning % of 68% to 72%) out of
1,328.

Secondly, in Part VIII of Table C.2.5, we compared the ParamCKAV G
N − Models with the

M3CKAV G
N −Models, and found that none of the models could outperform the δCKN model,

where the δCKN model had the lowest RMSE for 810 days (having a daily bootstrap winning
% of 58% to 64%) out of 1,328, but if the δCKN model was excluded from the comparison,
the M3CKAV G

N −Models outperformed for 1,283 days (having a daily bootstrap winning %
of 96% to 98%) out of 1,328. Accordingly, we now compare the M3CK2N model (i.e. the
best-performing model when compared to the models in column XIV of Table A.2.26) with the
ParamCKAV G

N −Models, and the M3CKAV G
N −Models in Part VIII of Table C.2.6 and found

that none of the models could outperform the δCKN model, which had the lowest RMSE for
714 days (having a daily bootstrap winning % of 51% to 57%) out of 1,328, but if the δCKN

model was excluded from this comparison, the M3CKAV G
N −Models had outperformed for 785

days (having a daily bootstrap winning % of 56% to 62%) out of 1,328.

Finally, in Part IX of Table C.2.5, we compared the ParamCKAV G
N −Models with the L3CKAV G

N −
Models and found that none of the models could outperform the δCKN model, where the
δCKN model had the lowest RMSE for 1,241 days (having a daily bootstrap winning % of
92% to 95%) out of 1,328, but if the δCKN model was excluded from the comparison, the
ParamCKAV G

N −Models outperformed for 862 days (having a daily bootstrap winning % of
62% to 68%) out of 1,328. Accordingly, we now compare the L3CK2N model (i.e. the best-
performing model when compared to the models in column XIV of Table A.2.27) with the
ParamCKAV G

N −Models, and the L3CKAV G
N −Models in Part IX of Table C.2.6 and found

that none of the models could outperform the δCKN model, which had the lowest RMSE for
957 days (having a daily bootstrap winning % of 70% to 74%) out of 1,328, but if the δCKN

model was excluded from this comparison, the L3CK2N model had outperformed for 907 days
(having a daily bootstrap winning % of 66% to 71%) out of 1,328.

Thus, when the individually out-performing model, the L3CK2N model (from Table A.2.25)
was compared to the average of all the parametric models, and the averages of all the triple
hidden layer ANN models (in Part VII of Table C.2.6), we conclude that an individual LSTM
could not outperform the model averages, where the averages of all the triple hidden layer
MLP models (i.e. M3CKAV G

N − Models) had out-performed them all. Similarly, when the
individually out-performing model, the M3CK2N model (from Table A.2.26) was compared to
the average of all the parametric models, and the averages of all the triple hidden layer MLP
models (in Part VIII of Table C.2.6), the averages of all the triple hidden layer MLP models (i.e.
M3CKAV G

N −Models) had yet again out-performed them all. Lastly, when the best individually
performing model, the L3CK2N model (from Table A.2.27) was compared to the average of all
the parametric models, and the averages of all the triple hidden layer LSTM models (in Part IX
of Table C.2.6), an individual LSTM model (i.e. the L3CK2N model) had outperformed other
models.
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C.2.2.1.4 Comparison amongst all Parametric Models with Single, Double and

Triple Hidden Layer ANN Models:

In this section, we compare the out-of-sample pricing performance of the random walk model
(δCKN ), the parametric models (ParamCKAV G

N −Models), with the single hidden layer MLP
models (M1CKAV G

N −Models), the single hidden layer LSTMmodels (L1CKAV G
N −Models), the

double hidden layer MLP models (M2CKAV G
N −Models), the double hidden layer LSTM models

(L2CKAV G
N −Models), the triple hidden layer MLP models (M3CKAV G

N −Models), and the
triple hidden layer LSTM models (L3CKAV G

N −Models), and then ParamCKAV G
N −Models

with the M1CKAV G
N − Models, M2CKAV G

N − Models and the M3CKAV G
N − Models, and

finally the ParamCKAV G
N −Models with the L1CKAV G

N −Models, L2CKAV G
N −Models and

the L3CKAV G
N −Models.

Initially, in Part X of Table C.2.5, we compared the ParamCKAV G
N −Models with theM1CKAV G

N −
Models, M2CKAV G

N − Models, M3CKAV G
N − Models, L1CKAV G

N − Models, L2CKAV G
N −

Models and the L3CKAV G
N −Models, and found that none of the models could outperform

the δCKN model, where the δCKN model had the lowest RMSE for 696 days (having a daily
bootstrap winning % of 50% to 55%) out of 1,328, but if the δCKN model was excluded from the
comparison, theM3CKAV G

N −Models outperformed for 627 days (having a daily bootstrap win-
ning % of 44% to 50%) out of 1,328. Accordingly, we now compare the L1CK2N model (i.e. the
best-performing model when compared to the models in column XIV of Table A.2.28) with the
ParamCKAV G

N −Models, M1CKAV G
N −Models, M2CKAV G

N −Models, M3CKAV G
N −Models,

L1CKAV G
N −Models, L2CKAV G

N −Models and the L3CKAV G
N −Models in Part X of Table

C.2.6, and found that none of the models could outperform the δCKN model, which had the
lowest RMSE for 586 days (having a daily bootstrap winning % of 41% to 47%) out of 1,328,
but if the δCKN model was excluded from this comparison, the M3CKAV G

N −Models model
had outperformed for 492 days (having a daily bootstrap winning % of 34% to 40%) out of
1,328.

Secondly, in Part XI of Table C.2.5, we compared the ParamCKAV G
N − Models with the

M1CKAV G
N −Models, M2CKAV G

N −Models, and the M3CKAV G
N −Models, and found that

none of the models could outperform the δCKN model, where the δCKN model had the lowest
RMSE for 708 days (having a daily bootstrap winning % of 51% to 56%) out of 1,328, but if
the δCKN model was excluded from the comparison, the M3CKAV G

N −Models outperformed
for 651 days (having a daily bootstrap winning % of 47% to 52%) out of 1,328. Accordingly, we
now compare the M3CK4N model (i.e. the best-performing model when compared to the mod-
els in column XIV of Table A.2.29) with the ParamCKAV G

N −Models, M1CKAV G
N −Models,

M2CKAV G
N −Models, and the M3CKAV G

N −Models in Part XI of Table C.2.6, and found that
none of the models could outperform the δCKN model, which had the lowest RMSE for 536
days (having a daily bootstrap winning % of 38% to 43%) out of 1,328, but if the δCKN model
was excluded from this comparison, the M3CK4N had outperformed for 539 days (having a
daily bootstrap winning % of 38% to 43%) out of 1,328.

Finally, initially in Part XII of Table C.2.5, we compared the ParamCKAV G
N −Models with

the L1CKAV G
N −Models, L2CKAV G

N −Models, and the L3CKAV G
N −Models, and found that

none of the models could outperform the δCKN model, where the δCKN model had the lowest
RMSE for 1,225 days (having a daily bootstrap winning % of 91% to 94%) out of 1,328, but if
the δCKN model was excluded from the comparison, the ParamCKAV G

N −Models outperformed
for 622 days (having a daily bootstrap winning % of 44% to 50%) out of 1,328. Accordingly,
we now compare the L2CK2N model (i.e. the best-performing model when compared to the
models in column XIV of Table A.2.30) with the ParamCKAV G

N −Models, L1CKAV G
N −Models,
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L2CKAV G
N −Models, and the L3CKAV G

N −Models in Part XII of Table C.2.6, and found that
none of the models could outperform the δCKN model, which had the lowest RMSE for 957
days (having a daily bootstrap winning % of 70% to 74%) out of 1,328, but if the δCKN model
was excluded from this comparison, the L2CK2N had outperformed for 847 days (having a daily
bootstrap winning % of 61% to 66%) out of 1,328.

Thus, when the individually out-performing model, the L1CK2N model (from Table A.2.28) was
compared to the average of all the parametric models, the averages of all the single hidden layer
ANN models, the averages of all the double hidden layer ANN models, and the averages of all the
triple hidden layer ANN models (in Part X of Table C.2.6), we conclude that the averages of all
the triple hidden layer MLP models (i.e. the M3CKAV G

N −Models) had out-performed other
models. Similarly, when the individually out-performing model, the M3CK4N model (from
Table A.2.29) was compared to the average of all the parametric models, the averages of all the
single hidden layer MLP models, the averages of all the double hidden layer MLP models, and the
averages of all the triple hidden layer MLP models (in Part XI of Table C.2.6), the M3CK4N
model had out-performed them all. Lastly, when the individually out-performing model, the
L2CK2N model (from Table A.2.30) was compared to the average of all the parametric models,
the averages of all the single hidden layer LSTM models, the averages of all the double hidden
layer LSTM models, and the averages of all the triple hidden layer LSTM models (in Part XII of
Table C.2.6), an individual LSTM model (i.e. the L2CK2N model) could outperform all other
models.

C.2.2.1.5 Comparison amongst Single, Double and Triple Hidden Layer ANN

Models:

In this section, we compare the out-of-sample pricing performance amongst the random walk
model (δCKN ), the single hidden layer MLP models (M1CKAV G

N −Models), the single hidden
layer LSTM models (L1CKAV G

N −Models), the double hidden layer MLP models (M2CKAV G
N −

Models), the double hidden layer LSTM models (L2CKAV G
N −Models), the triple hidden layer

MLP models (M3CKAV G
N −Models), and the triple hidden layer LSTM models (L3CKAV G

N −
Models).

In Part XIII of Table C.2.5, we compared within the M1CKAV G
N − Models, M2CKAV G

N −
Models,M3CKAV G

N −Models, L1CKAV G
N −Models, L2CKAV G

N −Models and the L3CKAV G
N −

Models, and found that none of the models could outperform the δCKN model, where the δCKN

model had the lowest RMSE for 706 days (having a daily bootstrap winning % of 51% to 56%)
out of 1,328, but if the δCKN model was excluded from the comparison, the M3CKAV G

N −
Models outperformed for 636 days (having a daily bootstrap winning % of 45% to 51%) out
of 1,328. Accordingly, we now compare the L2CK2N model (i.e. the best-performing model
when compared to the models in column XIV of Table A.2.31) with the M1CKAV G

N −Models,
M2CKAV G

N −Models, M3CKAV G
N −Models, L1CKAV G

N −Models, L2CKAV G
N −Models and

the L3CKAV G
N − Models in Part XIII of Table C.2.6, and found that none of the models

could outperform the δCKN model, which had the lowest RMSE for 584 days (having a daily
bootstrap winning % of 41% to 46%) out of 1,328, but if the δCKN model was excluded from this
comparison, the M3CKAV G

N −Models had outperformed for 497 days (having a daily bootstrap
winning % of 35% to 40%) out of 1,328.

Thus, when the individually out-performing model, the L2CK2N model (from Table A.2.25)
was compared to the averages of all the single hidden layer ANN models, the averages of all the
double hidden layer ANN models, and the averages of all the triple hidden layer ANN models
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(in Part XIII of Table C.2.6), we conclude that an individual LSTM could not outperform
other model averages, but the averages of all the triple hidden layer MLP models (i.e. the
M3CKAV G

N −Models) had out-performed all models.

C.2.2.1.6 Comparison amongst all Parametric models:

We now compare the HJDCKN model (i.e. the best-performing model when compared to the
models in column XI of Table A.2.32) with the ParamCKAV G

N −Models in Part XIV of Table
C.2.6 and found that none of the models could outperform the δCKN model, which had the
lowest RMSE for 1,272 days (having a daily bootstrap winning % of 95% to 97%) out of 1,328,
but if the δCKN model was excluded from this comparison, the ParamCKAV G

N −Models had
outperformed for 1,077 days (having a daily bootstrap winning % of 79% to 83%) out of 1,328.

Thus, when the best individually performing model, the HJDCKN model (from Table A.2.32)
was compared to the average of all the parametric models (in Part XIV of Table C.2.6), we can
conclude that the average of all the parametric models (i.e. the ParamCKAV G

N −Models) could
outperform the HJDCKN model.
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Table C.2.5: Call Option Price Scaled by the Exercise Price Comparison (Model Averaging): This table is compartmentalised into XVII parts, where each part presents a performance comparison using daily and monthly statistics amongst the set of models
mentioned in that part. The forecast variable for all the models is the one-trading-day-ahead call option price scaled by the exercise price (CN+1/KN+1). The models denoted by the N subscript use lagged input variables for forecasting CN+1/KN+1.
In the parts mentioned below, we compare the out-of-sample performance of the following models: In Part I: ParamCKAV G

N −Models, M1CKAV G
N −Models, L1CKAV G

N −Models, in Part II: ParamCKAV G
N −Models, M1CKAV G

N −Models, in
Part III: ParamCKAV G

N −Models, L1CKAV G
N −Models, in Part IV: ParamCKAV G

N −Models, M2CKAV G
N −Models, L2CKAV G

N −Models, in Part V: ParamCKAV G
N −Models, M2CKAV G

N −Models, in Part VI: ParamCKAV G
N −Models,

L2CKAV G
N −Models, in Part VII: ParamCKAV G

N −Models, M3CKAV G
N −Models, L3CKAV G

N −Models,in Part VIII: ParamCKAV G
N −Models, M3CKAV G

N −Models, in Part IX: ParamCKAV G
N −Models, L3CKAV G

N −Models, in Part X:
ParamCKAV G

N −Models, M1CKAV G
N −Models, M2CKAV G

N −Models, M3CKAV G
N −Models, L1CKAV G

N −Models, L2CKAV G
N −Models, L3CKAV G

N −Models, in Part XI: ParamCKAV G
N −Models, M1CKAV G

N −Models, M2CKAV G
N −Models,

M3CKAV G
N − Models, in Part XII: ParamCKAV G

N − Models, L1CKAV G
N − Models, L2CKAV G

N − Models, L3CKAV G
N − Models, in Part XIII: M1CKAV G

N − Models, M2CKAV G
N − Models, M3CKAV G

N − Models, L1CKAV G
N − Models,

L2CKAV G
N −Models, L3CKAV G

N −Models. The one-trading-day-ahead forecast errors of CN+1/KN+1 are used to compute the Root Mean Square Error (RMSE). Column I identifies the models, and column II lists the models used as input to obtain
the average one-trading-day-ahead forecast of CN+1/KN+1. Forecasts are made for 1,328 trading days, and there are 64 months covered in the sample using the monthly data. When comparing all models simultaneously (i.e. including the random walk
model (δCKN ), column III reports the number of months out of the 64 months that each model has the smallest RMSE, while column IV reports the number of days out of the 1,328 days each model has the smallest RMSE. Columns V (lower bound)
and VI (upper bound) present the winning percentage out of 64 months for each model, evaluated using the bootstrap sampling technique. The statistical bootstrap performed (with replacement) at a 95% confidence level is computed from the monthly
RMSE values of the respective models below. Columns VII (lower bound) and VIII (upper bound) present the winning percentage out of 1326 days for each model computed from bootstrapping the daily RMSE values of the respective models at a 95%
confidence level. Similarly, when the δCKN model was excluded in the comparison, column IX report the number of months out of the 64 months that each model has the smallest RMSE, while column X reports the number of days out of the 1,328
days each model has the smallest RMSE. Columns XI (lower bound) and XII (upper bound) present the winning percentage out of 64 months for each model, evaluated using the bootstrap sampling technique. The statistical bootstrap performed (with
replacement) at a 95% confidence level is computed from the monthly RMSE values of the respective models below. Also, columns XIII (lower bound) and XIV (upper bound) present the winning percentage out of 1326 days for each model computed
from bootstrapping the daily RMSE values of the respective models at a 95% confidence level.

Including the random walk Excluding the random walk

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X) (XI) (XII) (XIII) (XIV)

Model Inputs Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

Part I: ParamCKAVG
N −Models v/s M1CKAVG

N −Models v/s L1CKAVG
N −Models

δCKN - 59 849 85% 98% 61% 66% - - - - - -

ParamCKAVG
N −Models BSMCKN ,HCKN ,HJDCKN ,FMLSCKN 0 36 0% 0% 2% 4% 0 46 0% 0% 3% 5%

M1CKAVG
N −Models M1CK1N ,M1CK2N ,M1CK3N ,M1CK4N ,M1CK5N ,M1CK6N ,M1CK7N ,M1CK8N ,M1CK9N 5 425 2% 15% 30% 35% 64 1260 100% 100% 94% 96%

L1CKAVG
N −Models L1CK1N ,L1CK2N ,L1CK3N ,L1CK4N ,L1CK5N ,L1CK6N ,L1CK7N ,L1CK8N ,L1CK9N 0 18 0% 0% 1% 2% 0 22 0% 0% 1% 2%

Part II: ParamCKAVG
N −Models v/s M1CKAVG

N −Models

δCKN - 59 853 84% 98% 62% 67% - - - - - -

ParamCKAVG
N −Models BSMCKN ,HCKN ,HJDCKN ,FMLSCKN 0 37 0% 0% 2% 4% 0 47 0% 0% 3% 5%

M1CKAVG
N −Models M1CK1N ,M1CK2N ,M1CK3N ,M1CK4N ,M1CK5N ,M1CK6N ,M1CK7N ,M1CK8N ,M1CK9N 5 438 2% 16% 31% 36% 64 1281 100% 100% 95% 97%

Part III: ParamCKAVG
N −Models v/s L1CKAVG

N −Models

δCKN - 64 1263 100% 100% 94% 96% - - - - - -

ParamCKAVG
N −Models BSMCKN ,HCKN ,HJDCKN ,FMLSCKN 0 46 0% 0% 2% 5% 62 946 92% 100% 69% 74%

L1CKAVG
N −Models L1CK1N ,L1CK2N ,L1CK3N ,L1CK4N ,L1CK5N ,L1CK6N ,L1CK7N ,L1CK8N ,L1CK9N 0 19 0% 0% 1% 2% 2 382 0% 8% 26% 31%

Part IV: ParamCKAVG
N −Models v/s M2CKAVG

N −Models v/s L2CKAVG
N −Models

δCKN - 57 805 81% 95% 58% 63% - - - - - -

ParamCKAVG
N −Models BSMCKN ,HCKN ,HJDCKN ,FMLSCKN 0 29 0% 0% 1% 3% 0 36 0% 0% 2% 4%

M2CKAVG
N −Models M2CK1N ,M2CK2N ,M2CK3N ,M2CK4N ,M2CK5N ,M2CK6N ,M2CK7N ,M2CK8N ,M2CK9N 7 452 5% 19% 32% 37% 64 1248 100% 100% 93% 95%

L2CKAVG
N −Models L2CK1N ,L2CK2N ,L2CK3N ,L2CK4N ,L2CK5N ,L2CK6N ,L2CK7N ,L2CK8N ,L2CK9N 0 42 0% 0% 2% 4% 0 44 0% 0% 2% 4%

Part V: ParamCKAVG
N −Models v/s M2CKAVG

N −Models

δCKN - 57 816 81% 97% 59% 64% - - - - - -

ParamCKAVG
N −Models BSMCKN ,HCKN ,HJDCKN ,FMLSCKN 0 36 0% 0% 2% 4% 0 44 0% 0% 2% 4%

M2CKAVG
N −Models M2CK1N ,M2CK2N ,M2CK3N ,M2CK4N ,M2CK5N ,M2CK6N ,M2CK7N ,M2CK8N ,M2CK9N 7 476 3% 19% 33% 38% 64 1284 100% 100% 96% 98%

Part VI: ParamCKAVG
N −Models v/s L2CKAVG

N −Models

δCKN - 64 1242 100% 100% 92% 95% - - - - - -

ParamCKAVG
N −Models BSMCKN ,HCKN ,HJDCKN ,FMLSCKN 0 39 0% 0% 2% 4% 61 855 89% 100% 62% 67%

L2CKAVG
N −Models L2CK1N ,L2CK2N ,L2CK3N ,L2CK4N ,L2CK5N ,L2CK6N ,L2CK7N ,L2CK8N ,L2CK9N 0 47 0% 0% 3% 5% 3 473 0% 11% 33% 38%

Part VII: ParamCKAVG
N −Models v/s M3CKAVG

N −Models v/s L3CKAVG
N −Models

δCKN - 49 797 66% 86% 57% 62% - - - - - -

ParamCKAVG
N −Models BSMCKN ,HCKN ,HJDCKN ,FMLSCKN 0 35 0% 0% 2% 4% 0 39 0% 0% 2% 4%

M3CKAVG
N −Models M3CK1N ,M3CK2N ,M3CK3N ,M3CK4N ,M3CK5N ,M3CK6N ,M3CK7N ,M3CK8N ,M3CK9N 15 452 14% 34% 31% 37% 64 1244 100% 100% 92% 95%

L3CKAVG
N −Models L3CK1N ,L3CK2N ,L3CK3N ,L3CK4N ,L3CK5N ,L3CK6N ,L3CK7N ,L3CK8N ,L3CK9N 0 44 0% 0% 2% 4% 0 45 0% 0% 2% 4%

Part VIII: ParamCKAVG
N −Models v/s M3CKAVG

N −Models

δCKN - 49 810 66% 86% 58% 64% - - - - - -

ParamCKAVG
N −Models BSMCKN ,HCKN ,HJDCKN ,FMLSCKN 0 40 0% 0% 2% 4% 0 45 0% 0% 2% 4%

M3CKAVG
N −Models M3CK1N ,M3CK2N ,M3CK3N ,M3CK4N ,M3CK5N ,M3CK6N ,M3CK7N ,M3CK8N ,M3CK9N 15 478 14% 34% 33% 39% 64 1283 100% 100% 96% 98%

Part IX: ParamCKAVG
N −Models v/s L3CKAVG

N −Models

δCKN - 64 1241 100% 100% 92% 95% - - - - - -

ParamCKAVG
N −Models BSMCKN ,HCKN ,HJDCKN ,FMLSCKN 0 41 0% 0% 2% 4% 62 862 92% 100% 62% 68%

L3CKAVG
N −Models L3CK1N ,L3CK2N ,L3CK3N ,L3CK4N ,L3CK5N ,L3CK6N ,L3CK7N ,L3CK8N ,L3CK9N 0 46 0% 0% 3% 4% 2 466 0% 8% 32% 38%

Part X: ParamCKAVG
N −Models v/s M1CKAVG

N −Models v/s M2CKAVG
N −Models M3CKAVG

N −Models v/s L1CKAVG
N −Models v/s L2CKAVG

N −Models v/s L3CKAVG
N −Models

δCKN - 48 696 64% 86% 50% 55% - - - - - -

ParamCKAVG
N −Models BSMCKN ,HCKN ,HJDCKN ,FMLSCKN 0 26 0% 0% 1% 3% 0 27 0% 0% 1% 3%

M1CKAVG
N −Models M1CK1N ,M1CK2N ,M1CK3N ,M1CK4N ,M1CK5N ,M1CK6N ,M1CK7N ,M1CK8N ,M1CK9N 1 138 0% 5% 9% 12% 10 264 8% 25% 18% 22%

M2CKAVG
N −Models M2CK1N ,M2CK2N ,M2CK3N ,M2CK4N ,M2CK5N ,M2CK6N ,M2CK7N ,M2CK8N ,M2CK9N 2 227 0% 8% 15% 19% 3 349 0% 10% 24% 29%

M3CKAVG
N −Models M3CK1N ,M3CK2N ,M3CK3N ,M3CK4N ,M3CK5N ,M3CK6N ,M3CK7N ,M3CK8N ,M3CK9N 13 182 11% 31% 12% 16% 51 627 69% 89% 44% 50%

L1CKAVG
N −Models L1CK1N ,L1CK2N ,L1CK3N ,L1CK4N ,L1CK5N ,L1CK6N ,L1CK7N ,L1CK8N ,L1CK9N 0 7 0% 0% 0% 1% 0 9 0% 0% 0% 1%

L2CKAVG
N −Models L2CK1N ,L2CK2N ,L2CK3N ,L2CK4N ,L2CK5N ,L2CK6N ,L2CK7N ,L2CK8N ,L2CK9N 0 26 0% 0% 1% 3% 0 26 0% 0% 1% 3%

L3CKAVG
N −Models L3CK1N ,L3CK2N ,L3CK3N ,L3CK4N ,L3CK5N ,L3CK6N ,L3CK7N ,L3CK8N ,L3CK9N 0 26 0% 0% 1% 3% 0 26 0% 0% 1% 3%

Part XI: ParamCKAVG
N −Models v/s M1CKAVG

N −Models v/s M2CKAVG
N −Models v/s M3CKAVG

N −Models

δCKN - 48 708 64% 86% 51% 56% - - - - - -

ParamCKAVG
N −Models BSMCKN ,HCKN ,HJDCKN ,FMLSCKN 0 34 0% 0% 2% 3% 0 35 0% 0% 2% 4%

M1CKAVG
N −Models M1CK1N ,M1CK2N ,M1CK3N ,M1CK4N ,M1CK5N ,M1CK6N ,M1CK7N ,M1CK8N ,M1CK9N 1 153 0% 5% 10% 13% 10 282 8% 24% 19% 23%

M2CKAVG
N −Models M2CK1N ,M2CK2N ,M2CK3N ,M2CK4N ,M2CK5N ,M2CK6N ,M2CK7N ,M2CK8N ,M2CK9N 2 236 0% 8% 16% 20% 3 360 0% 11% 25% 29%

M3CKAVG
N −Models M3CK1N ,M3CK2N ,M3CK3N ,M3CK4N ,M3CK5N ,M3CK6N ,M3CK7N ,M3CK8N ,M3CK9N 13 197 11% 31% 13% 17% 51 651 69% 89% 47% 52%

Part XII: ParamCKAVG
N −Models v/s L1CKAVG

N −Models v/s L2CKAVG
N −Models v/s L3CKAVG

N −Models

δCKN - 64 1225 100% 100% 91% 94% - - - - - -

ParamCKAVG
N −Models BSMCKN ,HCKN ,HJDCKN ,FMLSCKN 0 35 0% 0% 2% 4% 60 622 88% 98% 44% 50%

L1CKAVG
N −Models L1CK1N ,L1CK2N ,L1CK3N ,L1CK4N ,L1CK5N ,L1CK6N ,L1CK7N ,L1CK8N ,L1CK9N 0 7 0% 0% 0% 1% 2 157 0% 8% 10% 13%

L2CKAVG
N −Models L2CK1N ,L2CK2N ,L2CK3N ,L2CK4N ,L2CK5N ,L2CK6N ,L2CK7N ,L2CK8N ,L2CK9N 0 32 0% 0% 2% 3% 2 274 0% 8% 19% 23%

L3CKAVG
N −Models L3CK1N ,L3CK2N ,L3CK3N ,L3CK4N ,L3CK5N ,L3CK6N ,L3CK7N ,L3CK8N ,L3CK9N 0 29 0% 0% 1% 3% 0 275 0% 0% 19% 23%

Part XIII: M1CKAVG
N −Models v/s M2CKAVG

N −Models M3CKAVG
N −Models v/s L1CKAVG

N −Models v/s L2CKAVG
N −Models v/s L3CKAVG

N −Models

δCKN - 48 706 63% 84% 51% 56% - - - - - -

M1CKAVG
N −Models M1CK1N ,M1CK2N ,M1CK3N ,M1CK4N ,M1CK5N ,M1CK6N ,M1CK7N ,M1CK8N ,M1CK9N 1 139 0% 5% 9% 12% 10 267 8% 25% 18% 22%

M2CKAVG
N −Models M2CK1N ,M2CK2N ,M2CK3N ,M2CK4N ,M2CK5N ,M2CK6N ,M2CK7N ,M2CK8N ,M2CK9N 2 232 0% 8% 15% 19% 3 356 0% 11% 25% 29%

M3CKAVG
N −Models M3CK1N ,M3CK2N ,M3CK3N ,M3CK4N ,M3CK5N ,M3CK6N ,M3CK7N ,M3CK8N ,M3CK9N 13 184 13% 31% 12% 16% 51 636 69% 89% 45% 51%

L1CKAVG
N −Models L1CK1N ,L1CK2N ,L1CK3N ,L1CK4N ,L1CK5N ,L1CK6N ,L1CK7N ,L1CK8N ,L1CK9N 0 7 0% 0% 0% 1% 0 9 0% 0% 0% 1%

L2CKAVG
N −Models L2CK1N ,L2CK2N ,L2CK3N ,L2CK4N ,L2CK5N ,L2CK6N ,L2CK7N ,L2CK8N ,L2CK9N 0 29 0% 0% 1% 3% 0 29 0% 0% 1% 3%

L3CKAVG
N −Models L3CK1N ,L3CK2N ,L3CK3N ,L3CK4N ,L3CK5N ,L3CK6N ,L3CK7N ,L3CK8N ,L3CK9N 0 31 0% 0% 2% 3% 0 31 0% 0% 2% 3%
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Table C.2.6: Call Option Price Scaled by the Exercise Price Comparison (Model Averaging): This table is compartmentalised into XVII parts. Each part
presents a performance comparison using daily and monthly statistics amongst the models mentioned in that part. The forecast variable for all the models is
the one-trading-day-ahead call option price scaled by the exercise price (CKN+1/KN+1). The models denoted by the N subscript use lagged input variables
for forecasting CKN+1/KN+1. In the parts mentioned below, we compare the out-of-sample performance of the best performing model (based on the total
number of days out of 1326 days that a particular model had the lowest RMSE) with the average of parametric models (ParamCKAV G

N − Models), the
average of single (M1CKAV G

N − Models), double (M2CKAV G
N − Models) and triple (M3CKAV G

N − Models) hidden layer MLP models, and the average of
single (L1CKAV G

N −Models), double (L2CKAV G
N −Models) and triple (L3CKAV G

N −Models) hidden layer LSTM models. In Part I: The best performing
model (L1CK2N ) from Table A.2.19 with ParamCKAV G

N −Models, M1CKAV G
N −Models, L1CKAV G

N −Models, in Part II: The best performing model
(M1CK3N ) from Table A.2.20 with ParamCKAV G

N −Models, M1CKAV G
N −Models, in Part III: The best performing model (L1CK2N ) from Table A.2.21

with ParamCKAV G
N −Models, L1CKAV G

N −Models, in Part IV: The best performing model (L2CK2N ) from Table A.2.22 with ParamCKAV G
N −Models,

M2CKAV G
N −Models, L2CKAV G

N −Models, in Part V: The best performing model (M2CK3N ) from Table A.2.23 with ParamCKAV G
N −Models,M2CKAV G

N −
Models, in Part VI: The best performing model (L2CK2N ) from Table A.2.24 with ParamCKAV G

N −Models, L2CKAV G
N −Models, in Part VII: The best

performing model (L3CK2N ) from Table A.2.25 with ParamCKAV G
N −Models,M3CKAV G

N −Models, L3CKAV G
N −Models, in Part VIII: The best performing

model (M3CK2N ) from Table A.2.26 with ParamCKAV G
N −Models, M3CKAV G

N −Models, in Part IX: The best performing model (L3CK2N ) from Table
A.2.27 with ParamCKAV G

N −Models, L3CKAV G
N −Models, in Part X: The best performing model (L1CK2N ) from Table A.2.28 with ParamCKAV G

N −Models,
M1CKAV G

N −Models, M2CKAV G
N −Models, M3CKAV G

N −Models, L1CKAV G
N −Models, L2CKAV G

N −Models, L3CKAV G
N −Models, in Part XI: The best

performing model (M3CK4N ) from Table A.2.29 with ParamCKAV G
N −Models,M1CKAV G

N −Models,M2CKAV G
N −Models,M3CKAV G

N −Models, in Part XII:
The best performing model (L2CK2N ) from Table A.2.30 with ParamCKAV G

N −Models, L1CKAV G
N −Models, L2CKAV G

N −Models, L3CKAV G
N −Models, in Part

XIII: The best performing model (L2CK2N ) from Table A.2.31 with M1CKAV G
N −Models, M2CKAV G

N −Models, M3CKAV G
N −Models, L1CKAV G

N −Models,
L2CKAV G

N −Models, L3CKAV G
N −Models, in Part XIV: The best performing model (HJDCKN ) from Table A.2.32 with ParamCKAV G

N −Models. The
one-trading-day-ahead forecast errors of CKN+1/KN+1 are used to compute the Root Mean Square Error (RMSE). Forecasts are made for 1,328 trading days, and
there are 64 months covered in the sample using the monthly data. Column I identifies the models. When comparing all models simultaneously (i.e. including the
random walk model (δCKN ), column II reports the number of months out of the 64 months that each model has the smallest RMSE, while column III reports the
number of days out of the 1,328 days each model has the smallest RMSE. Columns IV (lower bound) and V (upper bound) present the winning percentage out of
64 months for each model, evaluated using the bootstrap sampling technique. The statistical bootstrap performed (with replacement) at a 95% confidence level is
computed from the monthly RMSE values of the respective models below. Columns VI (lower bound) and VII (upper bound) present the winning percentage out
of 1326 days for each model computed from bootstrapping the daily RMSE values of the respective models at a 95% confidence level. Similarly, when the δCKN

model was excluded in the comparison, column VIII report the number of months out of the 64 months that each model has the smallest RMSE, while column
IX reports the number of days out of the 1,328 days each model has the smallest RMSE. Columns X (lower bound) and XI (upper bound) present the winning
percentage out of 64 months for each model, evaluated using the bootstrap sampling technique. The statistical bootstrap performed (with replacement) at a 95%
confidence level is computed from the monthly RMSE values of the respective models below. Also, columns XII (lower bound) and XIII (upper bound) present
the winning percentage out of 1326 days for each model computed from bootstrapping the daily RMSE values of the respective models at a 95% confidence level.

Including the random walk Excluding the random walk

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X) (XI) (XII) (XIII)

Model Performance
amongst
all models
(Monthly)

Performance
amongst
all mod-
els
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

Performance
amongst
all models
(Monthly)

Performance
amongst
all mod-
els
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

Part I: L1CK2N v/s ParamCKAVG
N −Models v/s M1CKAVG

N −Models v/s L1CKAVG
N −Models

δCK 59 685 84% 98% 49% 54% - - - - - -

L1CK2N 0 273 0% 0% 18% 23% 0 353 0% 0% 24% 29%

ParamCKAVG
N −

Models
0 20 0% 0% 1% 2% 0 24 0% 0% 1% 2%

M1CKAVG
N −Models 5 339 2% 16% 23% 28% 64 937 100% 100% 68% 73%

L1CKAVG
N −Models 0 11 0% 0% 0% 1% 0 14 0% 0% 1% 2%

Part II: M1CK3N v/s ParamCKAVG
N −Models v/s M1CKAVG

N −Models

δCK 56 765 78% 95% 55% 60% - - - - - -

M1CK3N 5 309 2% 15% 21% 26% 14 538 13% 33% 38% 43%

ParamCKAVG
N −

Models
0 29 0% 0% 2% 3% 0 37 0% 0% 2% 4%

M1CKAVG
N −Models 3 225 0% 11% 15% 19% 50 753 67% 88% 54% 59%

Part III: L1CK2N v/s ParamCKAVG
N −Models v/s L1CKAVG

N −Models

δCK 64 987 100% 100% 72% 77% - - - - - -

L1CK2N 0 301 0% 0% 21% 25% 5 912 2% 14% 66% 71%

ParamCKAVG
N −

Models
0 28 0% 0% 1% 3% 58 345 83% 97% 24% 28%

L1CKAVG
N −Models 0 12 0% 0% 0% 1% 1 71 0% 5% 4% 7%

Part IV: L2CK2N v/s ParamCKAVG
N −Models v/s M2CKAVG

N −Models v/s L2CKAVG
N −Models

δCK 57 656 81% 95% 47% 52% - - - - - -

L2CK2N 0 278 0% 0% 19% 23% 0 340 0% 0% 23% 28%

ParamCKAVG
N −

Models
0 21 0% 0% 1% 2% 0 24 0% 0% 1% 2%

M2CKAVG
N −Models 7 345 5% 19% 24% 28% 64 934 100% 100% 68% 73%

L2CKAVG
N −Models 0 28 0% 0% 1% 3% 0 30 0% 0% 1% 3%

Part V: M2CK3N v/s ParamCKAVG
N −Models v/s M2CKAVG

N −Models

δCK 54 704 75% 92% 50% 56% - - - - - -

M2CK3N 7 322 3% 19% 22% 27% 19 560 19% 41% 40% 45%

ParamCKAVG
N −

Models
0 29 0% 0% 1% 3% 0 35 0% 0% 2% 4%

M2CKAVG
N −Models 3 273 0% 9% 18% 23% 45 733 59% 81% 52% 58%

Part VI: L2CK2N v/s ParamCKAVG
N −Models v/s L2CKAVG

N −Models

δCK 64 970 100% 100% 71% 75% - - - - - -

L2CK2N 0 300 0% 0% 20% 25% 2 873 0% 8% 63% 68%

ParamCKAVG
N −

Models
0 27 0% 0% 1% 3% 59 350 86% 98% 24% 29%

L2CKAVG
N −Models 0 31 0% 0% 2% 3% 3 105 0% 11% 6% 9%

Part VII: L3CK2N v/s ParamCKAVG
N −Models v/s M3CKAVG

N −Models v/s L3CKAVG
N −Models

δCK 49 656 66% 86% 47% 52% - - - - - -

L3CK2N 0 298 0% 0% 20% 25% 0 344 0% 0% 23% 28%

ParamCKAVG
N −

Models
0 21 0% 0% 1% 2% 0 24 0% 0% 1% 3%

M3CKAVG
N −Models 15 324 14% 34% 22% 27% 64 930 100% 100% 68% 72%

L3CKAVG
N −Models 0 29 0% 0% 1% 3% 0 30 0% 0% 2% 3%

Part VIII: M3CK2N v/s ParamCKAVG
N −Models v/s M3CKAVG

N −Models

δCK 49 714 66% 87% 51% 57% - - - - - -

M3CK2N 4 384 2% 13% 26% 31% 6 507 3% 17% 36% 41%

ParamCKAVG
N −

Models
0 32 0% 0% 2% 3% 0 36 0% 0% 2% 4%

M3CKAVG
N −Models 11 198 8% 27% 13% 17% 58 785 83% 97% 56% 62%

Part IX: L3CK2N v/s ParamCKAVG
N −Models v/s L3CKAVG

N −Models

δCK 64 957 100% 100% 70% 74% - - - - - -

L3CK2N 0 315 0% 0% 21% 26% 2 907 0% 8% 66% 71%

ParamCKAVG
N −

Models
0 26 0% 0% 1% 3% 60 320 88% 98% 22% 26%

L3CKAVG
N −Models 0 30 0% 0% 2% 3% 2 101 0% 8% 6% 9%

Part X: L1CK2N v/s ParamCKAVG
N −Models v/s M1CKAVG

N −Models v/s M2CKAVG
N −Models M3CKAVG

N −Models v/s L1CKAVG
N −Models v/s L2CKAVG

N −Models v/s L3CKAVG
N −Models

δCK 48 586 64% 85% 41% 47% - - - - - -

L1CK2N 0 250 0% 0% 17% 21% 0 290 0% 0% 20% 24%

ParamCKAVG
N −

Models
0 16 0% 0% 1% 2% 0 16 0% 0% 1% 2%

M1CKAVG
N −Models 1 115 0% 5% 7% 10% 10 216 8% 25% 14% 18%

M2CKAVG
N −Models 2 180 0% 8% 12% 15% 3 272 0% 11% 18% 23%

M3CKAVG
N −Models 13 140 11% 30% 9% 12% 51 492 69% 89% 34% 40%

L1CKAVG
N −Models 0 6 0% 0% 0% 1% 0 7 0% 0% 0% 1%

L2CKAVG
N −Models 0 16 0% 0% 1% 2% 0 16 0% 0% 1% 2%

L3CKAVG
N −Models 0 19 0% 0% 1% 2% 0 19 0% 0% 1% 2%

Part XI: M3CK4N v/s ParamCKAVG
N −Models v/s M1CKAVG

N −Models v/s M2CKAVG
N −Models v/s M3CKAVG

N −Models

δCK 35 536 42% 66% 38% 43% - - - - - -

M3CK4N 16 283 16% 36% 19% 24% 30 539 34% 59% 38% 43%

ParamCKAVG
N −

Models
0 32 0% 0% 2% 3% 0 33 0% 0% 2% 3%

M1CKAVG
N −Models 1 130 0% 5% 8% 11% 3 183 0% 9% 12% 16%

M2CKAVG
N −Models 1 216 0% 5% 14% 18% 2 290 0% 8% 20% 24%

M3CKAVG
N −Models 11 131 9% 27% 8% 12% 29 284 34% 56% 19% 24%

Part XII: L2CK2N v/s ParamCKAVG
N −Models v/s L1CKAVG

N −Models v/s L2CKAVG
N −Models v/s L3CKAVG

N −Models

δCK 64 957 100% 100% 70% 74% - - - - - -

L2CK2N 0 297 0% 0% 20% 25% 2 847 0% 8% 61% 66%

ParamCKAVG
N −

Models
0 24 0% 0% 1% 3% 58 253 83% 97% 17% 21%

L1CKAVG
N −Models 0 7 0% 0% 0% 1% 2 60 0% 8% 3% 6%

L2CKAVG
N −Models 0 18 0% 0% 1% 2% 2 58 0% 8% 3% 5%

L3CKAVG
N −Models 0 25 0% 0% 1% 3% 0 110 0% 0% 7% 10%

Part XIII: L2CK2N v/s M1CKAVG
N −Models v/s M2CKAVG

N −Models M3CKAVG
N −Models v/s L1CKAVG

N −Models v/s L2CKAVG
N −Models v/s L3CKAVG

N −Models

δCK 48 584 64% 84% 41% 46% - - - - - -

L2CK2N 0 272 0% 0% 18% 23% 0 308 0% 0% 21% 25%

M1CKAVG
N −Models 1 110 0% 5% 7% 10% 10 206 8% 25% 14% 17%

M2CKAVG
N −Models 2 177 0% 8% 12% 15% 3 270 0% 11% 18% 23%

M3CKAVG
N −Models 13 139 11% 30% 9% 12% 51 497 69% 89% 35% 40%

L1CKAVG
N −Models 0 7 0% 0% 0% 1% 0 8 0% 0% 0% 1%

L2CKAVG
N −Models 0 16 0% 0% 1% 2% 0 16 0% 0% 1% 2%

L3CKAVG
N −Models 0 23 0% 0% 1% 2% 0 23 0% 0% 1% 2%

Part XIV: HJDCKN v/s ParamCKAVG
N −Models

δCK 64 1272 100% 100% 95% 97% - - - - - -

HJDCKN 0 8 0% 0% 0% 1% 6 251 3% 19% 17% 21%

ParamCKAVG
N −

Models
0 48 0% 0% 3% 5% 58 1077 81% 97% 79% 83%
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C.2.2.2 CKAV G − Models: Model averaging pricing performance of models

that use one-trading-day input variables to forecast the call option

price scaled by the strike price (CN+1/KN+1) for the next trading day

C.2.2.2.1 Comparison amongst all Parametric Models with Triple Hidden Layer

ANN Models:

Table C.2.7 shows the relative out-of-sample pricing performance (in RMSE) amongst the
models that forecast the one-trading-day-ahead average call option price scaled by the strike
price(CN+1/KN+1) using one-trading-day-ahead input variables. In column II of Table C.2.7,
we list the several models used as an input to obtain the average one-trading-day-ahead forecast
of CN+1/KN+1. The performance metric is the RMSE of the one-trading-day-ahead forecast
errors of the average CN+1/KN+1, which is computed for each averaging model utilising all
of the errors in each day or each month. Amongst all of the models (including the random
walk model (δCKN )), columns III and IV record the number of months and days, respectively,
that each model has the lowest RMSE. We performed a bootstrap using the daily and monthly
RMSEs to be certain of our results. The columns V (lower bound) and VI (upper bound) present
the results from the bootstrap performed (with replacement) using monthly RMSEs at a 95%
confidence level and show the winning percentage out of 64 months for each model (including
the δCKN model) and similarly, the 95 % confidence intervals computed from bootstrapping
of the daily RMSEs signifies the winning percentage out of 1326 days for each model and are
reported in columns VII (lower bound), VIII (upper bound). While excluding the δCKN model
amongst the comparison, columns IX and X record the number of months and days that each
model has the lowest RMSE.e repeat the exercise of performing the bootstrap by excluding
the δCKN model in the comparison, and thus, the columns XI (lower bound), XII (upper
bound) presents the results from the bootstrap performed (with replacement) using monthly
RMSEs at a 95% confidence level and shows the winning percentage out of 64 months for each
model (excluding the δCKN model) and similarly, the 95 % confidence intervals computed from
bootstrapping of the daily RMSEs signifies the winning percentage out of 1326 days for each
model and are reported in columns XIII (lower bound), XIV (upper bound). After a model is
found to outperform other individual parametric models, MLP and LSTM models in each of the
several comparisons below, we look into whether that out-performing model individually can
outperform the average call option price of all the parametric models combinedly, MLP models
combinedly or LSTM models combinedly, covered in that section.

In the below several comparisons, even though a particular model wins by a higher percentage
against other models, we investigated further these models pairwise by performing a pairwise
bootstrap comparison, which was computed using the respective pair’s daily RMSEs. The results
are presented in Table 94 of the Electronic Appendix.

The Diebold-Mariano(DM ) (Diebold and Mariano (1995)) test was performed on pairs amongst
the RandomWalk (δCKN ) model, the average CN+1/KN+1 of all parametric models (ParamCKAV G

N+1 −
Models), the average CN+1/KN+1 of all triple hidden layer MLP models (M3CKAV G

N+1 −Models),
and the average CN+1/KN+1 of all triple hidden layer LSTM models (L3CKAV G

N+1 −Models)
are reported in Table 84 of the Electronic Appendix. In constructing the DM tests, the model
pairs are reported in column I and column II, and the DM test statistics for a particular pair
are reported in column III. If the null can be rejected, a positive number suggests the rejection
may be due to the second model being the better forecast model. In contrast, a negative value
suggests the rejection may be due to the first model being the better forecast model. The model
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pairs highlighted in a red state that their forecasts have statistically insignificant differences
in their prediction accuracy. Considering the DM -Test statistics in Table 84 of the Electronic
Appendix, all the model pairs lead to the rejection of the null of equal forecasting performance.

The RMSEs for the models under the CKAV G−Models category, which averages the forecasted
CN+1/KN+1 from models belonging to the CK −Models category(which uses one-trading-day-
ahead input variables to forecast the CN+1/KN+1 for the next trading day) on a monthly, yearly,
and overall basis can be found in the Electronic Appendix, in Tables 54, 64, and 74, respectively.

C.2.2.2.2 Comparison amongst all Parametric Models with Triple Hidden Layer

ANN Models:

In this section, we compare the out-of-sample pricing performance of the random walk model
(δCKN+1), the parametric models (ParamCKAV G

N+1 −Models), the triple hidden layer MLP mod-
els (M3CKAV G

N+1 −Models), and the triple hidden layer LSTMmodels (L3CKAV G
N+1 −Models), and

then ParamCKAV G
N+1 −Models with theM3CKAV G

N+1 −Models, and finally the ParamCKAV G
N+1 −

Models with the L3CKAV G
N+1 −Models.

Initially, in Part I of Table C.2.7, we compared the ParamCKAV G
N+1 −Models with theM3CKAV G

N+1 −
Models and the L3CKAV G

N+1 −Models and found that the M3CKAV G
N+1 −Models had the lowest

RMSE for 1,076 days (having a daily bootstrap winning % of 79% to 83%) out of 1,328, but if the
δCKN model was excluded from the comparison, the M3CKAV G

N+1 −Models still outperformed
for 1,328 days (having a daily bootstrap winning % of 100% to 100%) out of 1,328. Accordingly,
we now compare the M3CK2N+1 model (i.e. the best-performing model when compared to the
models in column XIV of Table A.2.33) to the average call option price scaled by the exercise
price of all the parametric models (ParamCKAV G

N+1 −Models), all the triple hidden layer MLP
models (M3CKAV G

N+1 −Models) in Part I of Table C.2.8 and found that M3CKAV G
N+1 −Models

had the lowest RMSE for 647 days (having a daily bootstrap winning % of 46% to 51%) out
of 1,328, but if the δCKN model was excluded from this comparison, the M3CKAV G

N+1 −Models
had still outperformed for 840 days (having a daily bootstrap winning % of 61% to 66%) out of
1,328.

Secondly, in Part II of Table C.2.7, we compared the ParamCKAV G
N+1 − Models with the

M3CKAV G
N+1 −Models and found that the M3CKAV G

N+1 −Models model had the lowest RMSE
for 1,076 days (having a daily bootstrap winning % of 79% to 83%) out of 1,328, and even
if the δCKN model was excluded from the comparison, the M3CKAV G

N+1 −Models could still
outperform for 1,328 days (having a daily bootstrap winning % of 100% to 100%) out of 1,328.
Accordingly, we now compare the M3CK2N+1 model (i.e. the best-performing model when
compared to the models in column XIV of Table A.2.34) with the ParamCKAV G

N+1 −Models,
and theM3CKAV G

N+1 −Models in Part II of Table C.2.8, and found that theM3CKAV G
N+1 −Models

had the lowest RMSE for 647 days (having a daily bootstrap winning % of 46% to 51%) out
of 1,328, but if the δCKN model was excluded from this comparison, the M3CKAV G

N+1 −Models
still outperformed for 840 days (having a daily bootstrap winning % of 61% to 66%) out of
1,328.

Finally, in Part III of Table C.2.7, we compared the ParamCKAV G
N+1 −Models with the L3CKAV G

N+1 −
Models, and found that the δCKN had the lowest RMSE for 1,121 days (having a daily boot-
strap winning % of 82% to 86%) out of 1,328, but if the δCKN model was excluded from the
comparison, the L3CKAV G

N+1 −Models outperformed for 1,328 days (having a daily bootstrap
winning % of 100% to 100%) out of 1,328. Accordingly, we now compare the L3CK2N+1 model
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(i.e. the best-performing model when compared to the models in column XIV of Table A.2.35)
with the ParamCKAV G

N+1 −Models, and the L3CKAV G
N+1 −Models in Part III of Table C.2.8, and

found that the δCKN had the lowest RMSE for 914 days (having a daily bootstrap winning %
of 67% to 71%) out of 1,328, but if the δCKN model was excluded from this comparison, the
L3CK2N+1 model had still outperformed for 809 days (having a daily bootstrap winning % of
58% to 64%) out of 1,328.

Thus, when the individually out-performing model, the M3CK2N+1 model (from Table A.2.33)
was compared to the average of all the parametric models, and the averages of all the triple
hidden layer ANN models (in Part I of Table C.2.8), we conclude that the average of all triple
hidden layer MLP models (i.e. the M3CKAV G

N+1 −Models) could outperform all other models.
Similarly, when the individually out-performing model, the M3CK2N+1 model (from Table
A.2.34) was compared to the average of all the parametric models, and the averages of all the
triple hidden layer MLP models (in Part II of Table C.2.8), yet again the average of all triple
hidden layer MLP models (i.e. the M3CKAV G

N+1 −Models) could outperform all other models.
Lastly, when the individually out-performing model, the L3CK2N+1 model (from Table A.2.35)
was compared to the average of all the parametric models, and the averages of all the triple
hidden layer LSTM models (in Part III of Table C.2.8), we conclude that an individual LSTM
model (i.e. the L3CK2N+1 model) could outperform all other models.

C.2.2.2.3 Comparison amongst all Parametric models:

We now compare the HJDCKN+1 model (i.e. the best-performing model when compared to
the models in column XI of Table A.2.36) with the ParamCKAV G

N+1 −Models in Part IV of Table
C.2.8, and found that the δCKN model had the lowest RMSE for 1,143 days (having a daily
bootstrap winning % of 84% to 88%) out of 1,328, but if the δCKN model was excluded from
this comparison, the ParamCKAV G

N+1 −Models had outperformed for 1,097 days (having a daily
bootstrap winning % of 80% to 84%) out of 1,328.

Thus, when the individually out-performing model, the HJDCKN+1 model (from Table A.2.36)
was compared to the average of all the parametric models (in Part IV of Table C.2.8), we can
conclude that the ParamCKAV G

N+1 −Models model could again outperform other parametric
models.
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Table C.2.7: Call Option Price Scaled by the Exercise Price Comparison (Model Averaging): This table is compartmentalised into III parts, where each part presents a performance comparison using both daily and monthly statistics amongst the set of models mentioned in that
part. The models denoted by the N+1 subscript use one-trading-day-ahead input variables for forecasting CN+1/KN+1. In the parts mentioned below, we compare the out-of-sample performance of the following models: In Part I: ParamCKAV G

N+1 −Models, M3CKAV G
N+1 −Models,

L3CKAV G
N+1 −Models, in Part II: ParamCKAV G

N+1 −Models, M3CKAV G
N+1 −Models, in Part III: ParamCKAV G

N+1 −Models, L3CKAV G
N+1 −Models. The one-trading-day-ahead forecast errors of CN+1/KN+1 are used to compute the Root Mean Square Error (RMSE). Column I

identifies the models, and column II lists the models used as input to obtain the average one-trading-day-ahead forecast of CN+1/KN+1. Forecasts are made for 1,328 trading days, and there are 64 months covered in the sample using the monthly data. When comparing all
models simultaneously (i.e. including the random walk model (δCKN ), column III reports the number of months out of the 64 months that each model has the smallest RMSE, while column IV reports the number of days out of the 1,328 days each model has the smallest
RMSE. Columns V (lower bound) and VI (upper bound) present the winning percentage out of 64 months for each model, evaluated using the bootstrap sampling technique. The statistical bootstrap performed (with replacement) at a 95% confidence level is computed from the
monthly RMSE values of the respective models below. Columns VII (lower bound) and VIII (upper bound) present the winning percentage out of 1326 days for each model computed from bootstrapping the daily RMSE values of the respective models at a 95% confidence level.
Similarly, when the δCKN model was excluded in the comparison, column IX report the number of months out of the 64 months that each model has the smallest RMSE, while column X reports the number of days out of the 1,328 days each model has the smallest RMSE.
Columns XI (lower bound) and XII (upper bound) present the winning percentage out of 64 months for each model, evaluated using the bootstrap sampling technique. The statistical bootstrap performed (with replacement) at a 95% confidence level is computed from the
monthly RMSE values of the respective models below. Also, columns XIII (lower bound) and XIV (upper bound) present the winning percentage out of 1326 days for each model computed from bootstrapping the daily RMSE values of the respective models at a 95% confidence
level.

Including the random walk Excluding the random walk

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X) (XI) (XII) (XIII) (XIV)

Model Inputs Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

Part I: ParamCKAVG
N+1 −Models v/s M3CKAVG

N+1 −Models v/s L3CKAVG
N+1 −Models

δCKN - 0 252 0% 0% 17% 21% - - - - - -

ParamCKAVG
N+1 −Models BSMCKN+1 ,HCKN+1 ,HJDCKN+1 ,FMLSCKN+1 0 0 0% 0% 0% 0% 0 0 0% 0% 0% 0%

M3CKAVG
N+1 −Models M3CK1N+1 ,M3CK2N+1 ,M3CK3N+1 ,M3CK4N+1 ,M3CK5N+1 ,M3CK6N+1 ,M3CK7N+1 ,M3CK8N+1 ,M3CK9N+1 64 1076 100% 100% 79% 83% 64 1328 100% 100% 100% 100%

L3CKAVG
N+1 −Models L3CK1N+1 ,L3CK2N+1 ,L3CK3N+1 ,L3CK4N+1 ,L3CK5N+1 ,L3CK6N+1 ,L3CK7N+1 ,L3CK8N+1 ,L3CK9N+1 0 0 0% 0% 0% 0% 0 0 0% 0% 0% 0%

Part II: ParamCKAVG
N+1 −Models v/s M3CKAVG

N+1 −Models

δCKN - 0 252 0% 0% 17% 21% - - - - - -

ParamCKAVG
N+1 −Models BSMCKN+1 ,HCKN+1 ,HJDCKN+1 ,FMLSCKN+1 0 0 0% 0% 0% 0% 0 0 0% 0% 0% 0%

M3CKAVG
N+1 −Models M3CK1N+1 ,M3CK2N+1 ,M3CK3N+1 ,M3CK4N+1 ,M3CK5N+1 ,M3CK6N+1 ,M3CK7N+1 ,M3CK8N+1 ,M3CK9N+1 64 1076 100% 100% 79% 83% 64 1328 100% 100% 100% 100%

Part III: ParamCKAVG
N+1 −Models v/s L3CKAVG

N+1 −Models

δCKN - 60 1121 88% 98% 82% 86% - - - - - -

ParamCKAVG
N+1 −Models BSMCKN+1 ,HCKN+1 ,HJDCKN+1 ,FMLSCKN+1 4 174 2% 13% 11% 15% 0 0 0% 0% 0% 0%

L3CKAVG
N+1 −Models L3CK1N+1 ,L3CK2N+1 ,L3CK3N+1 ,L3CK4N+1 ,L3CK5N+1 ,L3CK6N+1 ,L3CK7N+1 ,L3CK8N+1 ,L3CK9N+1 0 33 0% 0% 2% 3% 64 1328 100% 100% 100% 100%
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Table C.2.8: Call Option Price Scaled by the Exercise Price Comparison (Model Averaging): This table is compartmentalised into IV parts. Each part presents a performance
comparison using daily and monthly statistics amongst the models mentioned in that part. The forecast variable for all the models is the one-trading-day-ahead call option price
scaled by the exercise price (CKN+1/KN+1). The models denoted by the N+1 subscript use one-trading-day-ahead input variables for forecasting CKN+1/KN+1. In the parts
mentioned below, we compare the out-of-sample performance of the best performing model (based on the total number of days out of 1326 days that a particular model had the
lowest RMSE) with the average of parametric models (ParamCKAV G

N+1 −Models), the average of the triple (M3CKAV G
N+1 −Models) hidden layer MLP models, and the average

of the triple (L3CKAV G
N+1 −Models) hidden layer LSTM models. In Part I: The best performing model (M3CK2N+1) from Table A.2.33 with ParamCKAV G

N+1 −Models,
M3CKAV G

N+1 −Models, L3CKAV G
N+1 −Models, in Part II: The best performing model (M3CK2N+1) from Table A.2.34 with ParamCKAV G

N+1 −Models, M3CKAV G
N+1 −Models,

in Part III: The best performing model (L3CK2N+1) from Table A.2.35 with ParamCKAV G
N+1 −Models, L3CKAV G

N+1 −Models, in Part IV: The best performing model
(HJDCKN+1) from Table A.2.36 with ParamCKAV G

N+1 −Models. The one-trading-day-ahead forecast errors of CKN+1/KN+1 are used to compute the Root Mean Square
Error (RMSE). Forecasts are made for 1,328 trading days, and there are 64 months covered in the sample using the monthly data. Column I identifies the models. When
comparing all models simultaneously (i.e. including the random walk model (δCKN ), column II reports the number of months out of the 64 months that each model has the
smallest RMSE, while column III reports the number of days out of the 1,328 days each model has the smallest RMSE. Columns IV (lower bound) and V (upper bound)
present the winning percentage out of 64 months for each model, evaluated using the bootstrap sampling technique. The statistical bootstrap performed (with replacement)
at a 95% confidence level is computed from the monthly RMSE values of the respective models below. Columns VI (lower bound) and VII (upper bound) present the winning
percentage out of 1326 days for each model computed from bootstrapping the daily RMSE values of the respective models at a 95% confidence level. Similarly, when the
δCKN model was excluded in the comparison, column VIII report the number of months out of the 64 months that each model has the smallest RMSE, while column IX
reports the number of days out of the 1,328 days each model has the smallest RMSE. Columns X (lower bound) and XI (upper bound) present the winning percentage out of
64 months for each model, evaluated using the bootstrap sampling technique. The statistical bootstrap performed (with replacement) at a 95% confidence level is computed
from the monthly RMSE values of the respective models below. Also, columns XII (lower bound) and XIII (upper bound) present the winning percentage out of 1326 days
for each model computed from bootstrapping the daily RMSE values of the respective models at a 95% confidence level.

Including the random walk Excluding the random walk

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X) (XI) (XII) (XIII)

Model Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

Part I: M3CK2N+1 v/s ParamCKAVG
N+1 −Models v/s M3CKAVG

N+1 −Models v/s L3CKAVG
N+1 −Models

δCK 0 238 0% 0% 16% 20% - - - - - -

M3CK2N+1 14 443 13% 31% 31% 36% 14 488 13% 31% 34% 39%

ParamCKAVG
N+1 −Models 0 0 0% 0% 0% 0% 0 0 0% 0% 0% 0%

M3CKAVG
N+1 −Models 50 647 69% 88% 46% 51% 50 840 69% 88% 61% 66%

L3CKAVG
N+1 −Models 0 0 0% 0% 0% 0% 0 0 0% 0% 0% 0%

Part II: M3CK2N+1 v/s ParamCKAVG
N+1 −Models v/s M3CKAVG

N+1 −Models

δCK 0 238 0% 0% 16% 20% - - - - - -

M3CK2N+1 14 443 13% 33% 31% 36% 14 488 13% 33% 34% 39%

ParamCKAVG
N+1 −Models 0 0 0% 0% 0% 0% 0 0 0% 0% 0% 0%

M3CKAVG
N+1 −Models 50 647 67% 88% 46% 51% 50 840 67% 88% 61% 66%

Part III: L3CK2N+1 v/s ParamCKAVG
N+1 −Models v/s L3CKAVG

N+1 −Models

δCK 60 914 88% 98% 67% 71% - - - - - -

L3CK2N+1 0 237 0% 0% 16% 20% 1 809 0% 6% 58% 64%

ParamCKAVG
N+1 −Models 4 150 2% 13% 10% 13% 59 434 84% 97% 30% 35%

L3CKAVG
N+1 −Models 0 27 0% 0% 1% 3% 4 85 2% 13% 5% 8%

Part IV: HJDCKN+1 v/s ParamCKAVG
N+1 −Models v/s L3CKAVG

N+1 −Models

δCK 60 1143 86% 98% 84% 88% - - - - - -

HJDCKN+1 0 0 0% 0% 0% 0% 9 231 6% 23% 16% 20%

ParamCKAVG
N+1 −Models 4 185 2% 14% 12% 16% 55 1097 77% 94% 80% 84%
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C.2.3 Results - Model Averaging for Hedging

C.2.3.1 HAV G−Models: Model averaging hedging performance of models that

use lagged input variables to forecast the delta (∆N+1) for the next

trading day:

Table C.2.9 shows the relative out-of-sample hedging performance (in RMSE) amongst the
models that forecast the one-trading-day-ahead average empirical delta ∆N+1 using lagged input
variables. In column II of table C.2.9, we list the several models used as input to obtain the
average one-trading-day-ahead forecast of ∆N+1. The performance metric is the RMSE of the
one-trading-day-ahead forecast errors of the average ∆N+1, which is computed for each averaging
model utilising all of the errors in each day or each month. Amongst all of the models, columns
III and IV record the number of months and days, respectively, that each model has the lowest
RMSE. We performed a bootstrap using the daily and monthly RMSEs to be certain of our
results. Columns V (lower bound) and VI (upper bound) present the results from the bootstrap
performed (with replacement) using monthly RMSEs at a 95% confidence level and show the
winning percentage out of 64 months for each model, and similarly, the 95 % confidence intervals
computed from bootstrapping of the daily RMSEs signifies the winning percentage out of 1326
days for each model and are reported in columns VII (lower bound), VIII (upper bound). After
a model is found to outperform other individual parametric models, MLP and LSTM models
in each of the several comparisons below, we look into whether that out-performing model
individually can outperform the average ∆N+1 of all the parametric models combinedly, MLP
models combinedly or LSTM models combinedly covered in that section.

In the below several comparisons, even though a particular model wins by a higher percentage
against other models, we investigated further these models pairwise by performing a pairwise
bootstrap comparison, which was computed using the respective pair’s daily RMSEs. The results
are presented in Table 95 of the Electronic Appendix.

The Diebold-Mariano statistics were also performed on pairs amongst the average ∆N+1 of all
parametric models (ParamHAV G

N −Models), the average ∆N+1 of all triple hidden layer MLP
models (M3HAV G

N −Models), and the average ∆N+1 of all triple hidden layer LSTM models
(L3HAV G

N −Models) are reported in Table 85 of the Electronic Appendix. In constructing the
DM tests, the model pairs are reported in column I and column II, and the DM test statistics
for a particular pair are reported in column III. If the null can be rejected, a positive number
suggests the rejection may be due to the second model being the better forecast model. In
contrast, a negative value suggests the rejection may be due to the first model being the better
forecast model. The model pairs highlighted in a red state that their forecasts have statistically
insignificant differences in their prediction accuracy. Considering the DM -Test statistics in
Table 85 of the Electronic Appendix, all the model pairs lead to the rejection of the null of equal
forecasting performance.

The RMSEs for the models under the HAV G −Models category, which averages the forecasted
∆N+1 from models belonging to the H −Models category(which uses lagged input variables to
forecast the ∆N+1 for the next trading day) on a monthly, yearly, and overall basis can be found
in the Electronic Appendix, in Tables 55, 65, and 75, respectively.
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C.2.3.1.1 Comparison amongst all Parametric Models with Triple Hidden Layer

ANN Models:

In this section, we compare the out-of-sample hedging performance of the parametric models
(ParamHAV G

N −Models), the triple hidden layer MLP models (M3HAV G
N −Models), and the

triple hidden layer LSTM models (L3HAV G
N −Models), and then ParamHAV G

N −Models with
the M3HAV G

N −Models, and finally the ParamHAV G
N −Models with the L3HAV G

N −Models.

Initially, in Part I of Table C.2.9, we compared the ParamHAV G
N −Models with theM3HAV G

N −
Models and the L3HAV G

N −Models and found that the ParamHAV G
N −Models had the lowest

RMSE for 593 days (having a daily bootstrap winning % of 42% to 47%) out of 1,326, which
was closely followed by the M3HAV G

N − Models, which had similar out-performance for 519
days (having a daily bootstrap winning % of 37% to 42%). Accordingly, we now compare the
BSMHN model (i.e. the best-performing model when compared to the models in column VIII of
Table B.2.1) with the ParamHAV G

N −Models, M3HAV G
N −Models, and the L3HAV G

N −Models
in Part I of Table C.2.10, and found that M3HAV G

N −Models had the lowest RMSE for 450
days (having a daily bootstrap winning % of 31% to 37%) out of 1,326.

Secondly, in Part II of Table C.2.9, we compared the ParamHAV G
N −Models with theM3HAV G

N −
Models and found that the M3HAV G

N −Models had the lowest RMSE for 675 days (having
a daily bootstrap winning % of 48% to 54%) out of 1,326, which was closely followed by the
ParamHAV G

N −Models, which had similar out-performance for 652 days (having a daily boot-
strap winning % of 46% to 52%). Accordingly, we now compare the BSMHN model (i.e. the
best-performing model when compared to the models in column VIII of Table B.2.2) with the
ParamHAV G

N −Models, and the M3HAV G
N −Models in Part II of Table C.2.10, and found that

the M3HAV G
N −Models had the lowest RMSE for 589 days (having a daily bootstrap winning

% of 42% to 47%) out of 1,326.

Finally, in Part III of Table C.2.9, we compared the ParamHAV G
N −Models with the L3HAV G

N −
Models, and found that the ParamHAV G

N −Models had the lowest RMSE for 907 days (having
a daily bootstrap winning % of 66% to 71%) out of 1,326. Accordingly, we now compare the
BSMHN model (i.e. the best-performing model when compared to the models in column VIII
of Table B.2.3) with the ParamHAV G

N −Models, and the L3HAV G
N −Models in Part III of

Table C.2.10, and found that the BSMHN model had the lowest RMSE for 565 days (having
a daily bootstrap winning % of 40% to 45%) out of 1,326.

Thus, when the individually out-performing model, the BSMHN model (from Table B.2.1)
was compared to the average of all the parametric models, and the averages of all the triple
hidden layer ANN models (in Part I of Table C.2.10), we conclude that the average of all triple
hidden layer MLP models (i.e. the M3HAV G

N −Models) could outperform all other models.
Similarly, when the individually out-performing model, the BSMHN model (from Table B.2.2)
was compared to the average of all the parametric models, and the averages of all the triple
hidden layer MLP models (in Part II of Table C.2.10), yet again the average of all triple hidden
layer MLP models (i.e. theM3HAV G

N −Models) could outperform all other models. Lastly, when
the individually out-performing model, the BSMHN model (from Table B.2.3) was compared
to the average of all the parametric models, and the averages of all the triple hidden layer LSTM
models (in Part III of Table C.2.10), we conclude that BSMHN model could outperform all
other models.
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C.2.3.1.2 Comparison amongst all Parametric models:

We now compare the BSMHN model (i.e. the best-performing model when compared to the
models in column V of Table B.2.4) ParamHAV G

N −Models in Part IV of Table C.2.10, and found
that the BSMHN model still had the lowest RMSE for 892 days (having a daily bootstrap
winning % of 64% to 70%) out of 1,326.

Thus, when the best individually out-performing model, the BSMHN model (from Table B.2.4)
was compared to the average of all the parametric models (in Part IV of Table C.2.10), we can
conclude that the BSMHN model could outperform the average of all the parametric models.
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Table C.2.9: Model Averaging for Delta Comparison (amongst ParamHAV G
N −Models, M3HAV G

N −Models, and L3HAV G
N −Models): This table is compartmentalised

into III parts, where each part presents a performance comparison using both daily and monthly statistics amongst the set of models mentioned in that part. The forecast
variable for all the models is the one-trading-day-ahead delta. The N subscript denotes models that take an average of the delta from models that forecast the delta
using lagged input variables. In the parts mentioned below, we compare the out-of-sample performance of the following models: In Part I: ParamHAV G

N −Models,
MLP M3HAV G

N −Models, and LSTM L3HAV G
N −Models, in Part II: ParamHAV G

N −Models, and MLP M3HAV G
N −Models, in Part III: ParamHAV G

N −Models,
and LSTM L3HAV G

N −Models. The one-trading-day-ahead forecast errors of the delta are used to compute the Root Mean Square Error (RMSE). Column I identifies
the models, and column II lists the models used as input to obtain the average one-trading-day-ahead forecast of the delta. Forecasts are made for 1,326 trading days,
and there are 64 months covered in the sample using the monthly data. When comparing all models simultaneously, column III reports the number of months out of the
64 months that each model has the smallest RMSE, while column IV reports the number of days out of the 1,326 days each model has the smallest RMSE. Columns V
(lower bound) and VI (upper bound) present the winning percentage out of 64 months for each model, evaluated using the bootstrap sampling technique. The statistical
bootstrap performed (with replacement) at a 95% confidence level is computed from the monthly RMSE values of the respective models below. Columns VII (lower
bound) and VIII (upper bound) present the winning percentage out of 1326 days for each model computed from bootstrapping the daily RMSE values of the respective
models at a 95% confidence level.

(I) (II) (III) (IV) (V) (VI) (VII) (VIII)

Model Inputs Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

Part I: ParamHAVG
N −Models v/s M3HAVG

N −Models v/s L3HAVG
N −Models

ParamHAVG
N −Models BSMHN , HHN , HJDHN , FMLSHN 37 593 45% 70% 42% 47%

M3HAVG
N −Models M3H1N , M3H2N , M3H3N , M3H4N , M3H5N , M3H6N , M3H7N 25 519 28% 50% 37% 42%

L3HAVG
N −Models L3H1N , L3H2N , L3H3N , L3H4N , L3H5N , L3H6N , L3H7N 2 215 0% 8% 14% 18%

Part II: ParamHAVG
N −Models v/s M3HAVG

N −Models

ParamHAVG
N −Models BSMHN , HHN , HJDHN , FMLSHN 37 652 45% 69% 46% 52%

M3HAVG
N −Models M3H1N , M3H2N , M3H3N , M3H4N , M3H5N , M3H6N , M3H7N 27 675 31% 55% 48% 54%

Part III: ParamHAVG
N −Models v/s L3HAVG

N −Models

ParamHAVG
N −Models BSMHN , HHN , HJDHN , FMLSHN 59 907 84% 98% 66% 71%

L3HAVG
N −Models L3H1N , L3H2N , L3H3N , L3H4N , L3H5N , L3H6N , L3H7N 5 420 2% 16% 29% 34%

350



Table C.2.10: Model Averaging for Delta Comparison: This table is compartmentalised into
IV parts. Each part presents a performance comparison using daily and monthly statistics
amongst the models mentioned in that part. The forecast variable for all the models is the
one-trading-day-ahead delta. The N subscript denotes models that take an average of the
delta from models that forecast the delta using lagged input variables. In the parts mentioned
below, we compare the out-of-sample performance of the best performing model (based on
the total number of days out of 1326 days that a particular model had the lowest RMSE)
with the average of parametric models (ParamHAV G

N − Models), the average of the triple
(M3HAV G

N −Models) hidden layer MLP models, and the average of the triple (L3HAV G
N −

Models) hidden layer LSTM models. In Part I: The best performing model (BSMHN ) from
Table B.2.5 with ParamHAV G

N −Models, M3HAV G
N −Models, L3HAV G

N −Models, in Part
II: The best performing model (BSMHN ) from Table B.2.6 with ParamHAV G

N −Models,
M3HAV G

N −Models, in Part III: The best performing model (BSMHN ) from Table B.2.7
with ParamHAV G

N −Models, L3HAV G
N −Models, in Part IV: The best performing model

(BSMHN ) from Table B.2.8 with ParamHAV G
N −Models. The one-trading-day-ahead forecast

errors of the delta are used to compute the Root Mean Square Error (RMSE). Forecasts are
made for 1,326 trading days, and there are 64 months covered in the sample using the monthly
data. Column I identifies the models. When comparing all models simultaneously, column II
reports the number of months out of the 64 months that each model has the smallest RMSE,
while column III reports the number of days out of the 1,326 days each model has the smallest
RMSE. Columns IV (lower bound) and V (upper bound) present the winning percentage
out of 64 months for each model, evaluated using the bootstrap sampling technique. The
statistical bootstrap performed (with replacement) at a 95% confidence level is computed from
the monthly RMSE values of the respective models below. Columns VI (lower bound) and VII
(upper bound) present the winning percentage out of 1326 days for each model computed from
bootstrapping the daily RMSE values of the respective models at a 95% confidence level.

(I) (II) (III) (IV) (V) (VI) (VII)

Model Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

Part I: BSMHN v/s ParamHAVG
N −Models v/s M3HAVG

N −Models v/s L3HAVG
N −Models

BSMHN 39 311 49% 73% 21% 26%

ParamHAVG
N −Models 5 370 3% 14% 25% 30%

M3HAVG
N −Models 18 450 17% 39% 31% 37%

L3HAVG
N −Models 2 195 0% 8% 13% 17%

Part II: BSMHN v/s ParamHAVG
N −Models v/s M3HAVG

N −Models

BSMHN 40 353 50% 75% 24% 29%

ParamHAVG
N −Models 5 384 2% 16% 27% 31%

M3HAVG
N −Models 19 589 19% 41% 42% 47%

Part III: BSMHN v/s ParamHAVG
N −Models v/s L3HAVG

N −Models

BSMHN 55 565 77% 94% 40% 45%

ParamHAVG
N −Models 6 402 3% 17% 28% 33%

L3HAVG
N −Models 3 359 0% 11% 25% 29%

Part IV: BSMHN v/s ParamHAVG
N −Models

BSMHN 58 892 83% 97% 64% 70%

ParamHAVG
N −Models 6 434 3% 17% 30% 36%
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C.2.3.2 HAV G−Models: Model averaging hedging performance of models that

use one-trading-day input variables to forecast the delta (∆N+1) for

the next trading day:

Table C.2.11 shows the relative out-of-sample performance (in RMSE) amongst the models
that forecast the one-trading-day-ahead average empirical delta ∆N+1 using one-trading-day-
ahead input variables. In column II of table C.2.11, we list the several models used as an input
to obtain the average one-trading-day-ahead forecast of ∆N+1. The performance metric is the
RMSE of the one-trading-day-ahead forecast errors of the average ∆N+1, which is computed
for each averaging model utilising all of the errors in each day or each month. Amongst all
models, columns III and IV record the number of months and days, respectively, that each
model has the lowest RMSE. We performed a bootstrap using the daily and monthly RMSEs
to be certain of our results. Columns V (lower bound) and VI (upper bound) present the results
from the bootstrap performed (with replacement) using monthly RMSEs at a 95% confidence
level and show the winning percentage out of 64 months for each model, and similarly, the 95
% confidence intervals computed from bootstrapping of the daily RMSEs signifies the winning
percentage out of 1326 days for each model and are reported in columns VII (lower bound), VIII
(upper bound). After a model is found to outperform other individual parametric models, MLP
and LSTM models in each of the several comparisons below, we look into whether that out-
performing model individually can outperform the average ∆N+1 of all the parametric models
combinedly, MLP models combinedly or LSTM models combinedly covered in that section.

In the below several comparisons, even though a particular model wins by a higher percentage
against other models, we investigated further these models pairwise by performing a pairwise
bootstrap comparison, which was computed using the respective pair’s daily RMSEs. The results
are presented in Table 96 of the Electronic Appendix.

The Diebold-Mariano statistics were also performed on pairs amongst the average ∆N+1 of all
parametric models (ParamHAV G

N+1 −Models), the average ∆N+1 of all triple hidden layer MLP
models (M3HAV G

N+1 −Models), and the average ∆N+1 of all triple hidden layer LSTM models
(L3HAV G

N+1 −Models) are reported in Table 86 of the Electronic Appendix. In constructing the
DM tests, the model pairs are reported in column I and column II, and the DM test statistics
for a particular pair are reported in column III. If the null can be rejected, a positive number
suggests the rejection may be due to the second model being the better forecast model. In
contrast, a negative value suggests the rejection may be due to the first model being the better
forecast model. The model pairs highlighted in a red state that their forecasts have statistically
insignificant differences in their prediction accuracy. Considering the DM -Test statistics in
Table 86 of the Electronic Appendix, all the model pairs lead to the rejection of the null of equal
forecasting performance.

The RMSEs for the models under the HAV G −Models category, which averages the forecasted
∆N+1 from models belonging to the H −Models category(which uses one-trading-day-ahead
input variables to forecast the ∆N+1 for the next trading day) on a monthly, yearly, and overall
basis can be found in the Electronic Appendix, in Tables 56, 66, and 76, respectively.
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C.2.3.2.1 Comparison amongst all Parametric Models with Triple Hidden Layer

ANN Models:

In this section, we compare the out-of-sample hedging performance of the parametric models
(ParamHAV G

N+1 −Models), the triple hidden layer MLP models (M3HAV G
N+1 −Models), and the

triple hidden layer LSTM models (L3HAV G
N+1 −Models), and then ParamHAV G

N+1 −Models with
the M3HAV G

N+1 −Models, and finally the ParamHAV G
N+1 −Models with the L3HAV G

N+1 −Models.

Initially in Part I of Table C.2.11, we compared the ParamHAV G
N+1 −Models with theM3HAV G

N+1 −
Models and the L3HAV G

N+1 −Models, and find that the ParamHAV G
N+1 −Models had the low-

est RMSE for 653 days (having a daily bootstrap winning % of 47% to 52%) out of 1,326.
Accordingly, we now compare the BSMHN+1 model (i.e. the best-performing model when
compared to the models in column VIII of Table B.2.5) with the ParamHAV G

N+1 − Models,
M3HAV G

N+1 − Models, and the L3HAV G
N+1 − Models in Part I of Table C.2.12, and find that

BSMHN+1 model had the lowest RMSE for 391 days (having a daily bootstrap winning %
of 27% to 32%) out of 1,326. Though the BSMHN+1 model outperformed, the parametric
model, ParamHAV G

N+1 − Models (353 days), and the MLP model, M3HAV G
N+1 − Models (373

days) have shown similar out-performance and have a collective daily bootstrap winning per-
centage from 24% (lower bound for the ParamHAV G

N+1 −Models) to 31% (upper bound for the
M3HAV G

N+1 −Models).

Secondly, in Part II of Table C.2.11, we compared the ParamHAV G
N+1 −Models with theM3HAV G

N+1 −
Models, and find that the ParamHAV G

N+1 −Models had the lowest RMSE for 754 days (having
a daily bootstrap winning % of 54% to 59%) out of 1,326. Accordingly, we now compare the
BSMHN+1 model (i.e. the best-performing model when compared to the models in column
VIII of Table B.2.6) with the ParamHAV G

N+1 −Models, and the M3HAV G
N+1 −Models in Part II

of Table C.2.12, and find that the M3HAV G
N+1 −Models model had the lowest RMSE for 487

days (having a daily bootstrap winning % of 34% to 39%) out of 1,326.

Finally, in Part III of Table C.2.11, we compared the ParamHAV G
N+1 −Models with the L3HAV G

N+1 −
Models, and find that the ParamHAV G

N+1 −Models had the lowest RMSE for 907 days (having
a daily bootstrap winning % of 66% to 71%) out of 1,326. Accordingly, we now compare the
BSMHN+1 model (i.e. the best-performing model when compared to the models in column
VIII of Table B.2.7) with the ParamHAV G

N+1 −Models, and the L3HAV G
N+1 −Models in Part III of

Table C.2.12, and find that the BSMHN+1 model had the lowest RMSE for 595 days (having
a daily bootstrap winning % of 42% to 48%) out of 1,326.

Thus, when the individually out-performing model, the BSMHN+1 model (from Table B.2.5)
was compared to the average of all the parametric models, and the averages of all the triple
hidden layer ANN models (in Part I of Table C.2.12), we conclude that BSMHN+1 model
could outperform all other models. Similarly, when the individually out-performing model, the
BSMHN+1 model (from Table B.2.6) was compared to the average of all the parametric models,
and the averages of all the triple hidden layer MLP models (in Part II of Table C.2.12), the
average of all triple hidden layer MLP models (i.e. theM3HAV G

N+1 −Models) could outperform all
other models. Lastly, when the individually out-performing model, the BSMHN+1 model (from
Table B.2.7) was compared to the average of all the parametric models, and the averages of all
the triple hidden layer LSTM models (in Part III of Table C.2.12), yet again the BSMHN+1
model could outperform all other models.
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C.2.3.2.2 Comparison amongst all Parametric models:

We now compare the BSMHN+1 model (i.e. the best-performing model when compared to the
models in column V of Table B.2.8) with the ParamHAV G

N+1 −Models in Part IV of Table C.2.12,
and find that the BSMHN+1 model still had the lowest RMSE for 912 days (having a daily
bootstrap winning % of 66% to 71%) out of 1,326.

Thus, when the best individually out-performing model, the BSMHN+1 model (from Table
B.2.8) was compared to the average of all the parametric models (in Part IV of Table C.2.12),
we can conclude that the BSMHN+1 model could outperform the average of all the parametric
models.

354



Table C.2.11: Model Averaging for Delta Comparison (amongst ParamHAV G
N+1 −Models, M3HAV G

N+1 −Models, and L3HAV G
N+1 −Models): This table is compartmentalised

into III parts, where each part presents a performance comparison using both daily and monthly statistics amongst the set of models mentioned in that part. The forecast
variable for all the models is the one-trading-day-ahead delta. The N+1 subscript denotes models that take an average of the delta from models that forecast the delta using
one-trading-day-ahead input variables. In the parts mentioned below, we compare the out-of-sample performance of the following models: In Part I: ParamHAV G

N+1 −Models,
MLP M3HAV G

N+1 −Models, and LSTM L3HAV G
N+1 −Models, in Part II: ParamHAV G

N+1 −Models, and MLP M3HAV G
N+1 −Models, in Part III: ParamHAV G

N+1 −Models,
and LSTM L3HAV G

N+1 −Models. The one-trading-day-ahead forecast errors of the delta are used to compute the Root Mean Square Error (RMSE). Column I identifies
the models, and column II lists the models used as input to obtain the average one-trading-day-ahead forecast of the delta. Forecasts are made for 1,326 trading days,
and there are 64 months covered in the sample using the monthly data. When comparing all models simultaneously, column III reports the number of months out of the
64 months that each model has the smallest RMSE, while column IV reports the number of days out of the 1,326 days each model has the smallest RMSE. Columns V
(lower bound) and VI (upper bound) present the winning percentage out of 64 months for each model, evaluated using the bootstrap sampling technique. The statistical
bootstrap performed (with replacement) at a 95% confidence level is computed from the monthly RMSE values of the respective models below. Columns VII (lower bound)
and VIII (upper bound) present the winning percentage out of 1326 days for each model computed from bootstrapping the daily RMSE values of the respective models at
a 95% confidence level.

(I) (II) (III) (IV) (V) (VI) (VII) (VIII)

Model Inputs Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

Part I: ParamHAVG
N+1 −Models v/s M3HAVG

N+1 −Models v/s L3HAVG
N+1 −Models

ParamHAVG
N+1 −Models BSMHN+1 , HHN+1 , HJDHN+1 , FMLSHN+1 46 653 61% 81% 47% 52%

M3HAVG
N+1 −Models M3H1N+1 , M3H2N+1 , M3H3N+1 , M3H4N+1 , M3H5N+1 , M3H6N+1 , M3H7N+1 13 442 11% 30% 31% 36%

L3HAVG
N+1 −Models L3H1N+1 , L3H2N+1 , L3H3N+1 , L3H4N+1 , L3H5N+1 , L3H6N+1 , L3H7N+1 5 232 2% 14% 15% 20%

Part II: ParamHAVG
N+1 −Models v/s M3HAVG

N+1 −Models

ParamHAVG
N+1 −Models BSMHN+1 , HHN+1 , HJDHN+1 , FMLSHN+1 51 754 70% 89% 54% 59%

M3HAVG
N+1 −Models M3H1N+1 , M3H2N+1 , M3H3N+1 , M3H4N+1 , M3H5N+1 , M3H6N+1 , M3H7N+1 13 573 11% 30% 41% 46%

Part III: ParamHAVG
N+1 −Models v/s L3HAVG

N+1 −Models

ParamHAVG
N+1 −Models BSMHN+1 , HHN+1 , HJDHN+1 , FMLSHN+1 58 907 83% 97% 66% 71%

L3HAVG
N+1 −Models L3H1N+1 , L3H2N+1 , L3H3N+1 , L3H4N+1 , L3H5N+1 , L3H6N+1 , L3H7N+1 6 420 3% 17% 29% 34%
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Table C.2.12: Model Averaging for Delta Comparison: This table is compartmentalised into
IV parts. Each part presents a performance comparison using daily and monthly statistics
amongst the models mentioned in that part. The forecast variable for all the models is the one-
trading-day-ahead delta. The N+1 subscript denotes models that take an average of the delta
from models that forecast the delta using one-trading-day-ahead input variables. In the parts
mentioned below, we compare the out-of-sample performance of the best performing model
(based on the total number of days out of 1326 days that a particular model had the lowest
RMSE) with the average of parametric models (ParamHAV G

N+1 −Models), the average of the
triple (M3HAV G

N+1 −Models) hidden layer MLP models, and the average of the triple (L3HAV G
N+1 −

Models) hidden layer LSTM models. In Part I: The best performing model (BSMHN+1)
from Table B.2.5 with ParamHAV G

N+1 −Models, M3HAV G
N+1 −Models, L3HAV G

N+1 −Models, in
Part II: The best performing model (BSMHN+1) from Table B.2.6 with ParamHAV G

N+1 −
Models, M3HAV G

N+1 −Models, in Part III: The best performing model (BSMHN+1) from
Table B.2.7 with ParamHAV G

N+1 −Models, L3HAV G
N+1 −Models, in Part IV: The best performing

model (BSMHN+1) from Table B.2.8 with ParamHAV G
N+1 − Models. The one-trading-day-

ahead forecast errors of the delta are used to compute the Root Mean Square Error (RMSE).
Forecasts are made for 1,326 trading days, and there are 64 months covered in the sample using
the monthly data. Column I identifies the models. When comparing all models simultaneously,
column II reports the number of months out of the 64 months that each model has the smallest
RMSE, while column III reports the number of days out of the 1,326 days each model has
the smallest RMSE. Columns IV (lower bound) and V (upper bound) present the winning
percentage out of 64 months for each model, evaluated using the bootstrap sampling technique.
The statistical bootstrap performed (with replacement) at a 95% confidence level is computed
from the monthly RMSE values of the respective models below. Columns VI (lower bound) and
VII (upper bound) present the winning percentage out of 1326 days for each model computed
from bootstrapping the daily RMSE values of the respective models at a 95% confidence level.

(I) (II) (III) (IV) (V) (VI) (VII)

Model Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

Part I: BSMHN+1 v/s ParamHAVG
N+1 −Models v/s M3HAVG

N+1 −Models v/s L3HAVG
N+1 −Models

BSMHN+1 46 391 61% 83% 27% 32%

ParamHAVG
N+1 −Models 6 353 3% 17% 24% 29%

M3HAVG
N+1 −Models 10 373 8% 25% 26% 31%

L3HAVG
N+1 −Models 2 209 0% 8% 14% 18%

Part II: BSMHN+1 v/s ParamHAVG
N+1 −Models v/s M3HAVG

N+1 −Models

BSMHN+1 48 474 64% 85% 33% 38%

ParamHAVG
N+1 −Models 6 365 3% 17% 25% 30%

M3HAVG
N+1 −Models 10 487 7% 25% 34% 39%

Part III: BSMHN+1 v/s ParamHAVG
N+1 −Models v/s L3HAVG

N+1 −Models

BSMHN+1 55 595 77% 92% 42% 48%

ParamHAVG
N+1 −Models 6 383 3% 17% 27% 32%

L3HAVG
N+1 −Models 3 348 0% 11% 24% 29%

Part IV: BSMHN+1 v/s ParamHAVG
N+1 −Models

BSMHN+1 58 912 83% 97% 66% 71%

ParamHAVG
N+1 −Models 6 414 3% 17% 29% 34%
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C.2.3.3 CHAV G −Models: Model averaging hedging performance of models

that have analytically derived the delta (δCN+1/δSN+1) from the call

option price (CN+1), which is forecasted from models that use one-

trading-day ahead input variables:

Table C.2.13 shows the relative out-of-sample performance (in RMSE) amongst the models
that forecast the one-trading-day-ahead average delta (δCN+1/δSN+1) derived analytically from
CN+1 which is forecasted from models that use one-trading-day-ahead input variables. In column
II of Table C.2.13, we list the several models used as an input to obtain the average one-trading-
day-ahead forecast of δCN+1/δSN+1. The performance metric is the RMSE of the one-trading-
day-ahead forecast errors of the average δCN+1/δSN+1, which is computed for each averaging
model utilising all of the errors in each day or each month. Amongst all of the models, columns
III and IV record the number of months and days, respectively, that each model has the lowest
RMSE. We performed a bootstrap using the daily and monthly RMSEs to be certain of our
results. Columns V (lower bound) and VI (upper bound) present the results from the bootstrap
performed (with replacement) using monthly RMSEs at a 95% confidence level and show the
winning percentage out of 64 months for each model, and similarly, the 95 % confidence intervals
computed from bootstrapping of the daily RMSEs signifies the winning percentage out of 1,326
days for each model and are reported in columns VII (lower bound), VIII (upper bound). After
a model is found to outperform other individual parametric models, MLP and LSTM models
in each of the several comparisons below, we look into whether that out-performing model
individually can outperform the average δCN+1/δSN+1 of all the parametric models combinedly,
MLP models combinedly or LSTM models combinedly covered in that section.

In the below several comparisons, even though a particular model wins by a higher percentage
against other models, we investigated further these models pairwise by performing a pairwise
bootstrap comparison, which was computed using the respective pair’s daily RMSEs. The results
are presented in Table 97 of the Electronic Appendix.

The Diebold-Mariano statistics were also performed on pairs amongst the average δCN+1/δSN+1
of all parametric models (ParamCHAV G

N+1 −Models), the average δCN+1/δSN+1 of all triple
hidden layer MLP models (M3CHAV G

N+1 −Models), and the average δCN+1/δSN+1 of all triple
hidden layer LSTM models (L3CHAV G

N+1 −Models) are reported in Table 87 of the Electronic
Appendix. In constructing the DM tests, the model pairs are reported in column I and column
II, and the DM test statistics for a particular pair are reported in column III. If the null can
be rejected, a positive number suggests the rejection may be due to the second model being the
better forecast model. In contrast, a negative value suggests the rejection may be due to the
first model being the better forecast model. The model pairs highlighted in a red state that their
forecasts have statistically insignificant differences in their prediction accuracy. Considering the
DM -Test statistics in Table 87 of the Electronic Appendix, all the model pairs lead to the
rejection of the null of equal forecasting performance.

The RMSEs for the models under the CHAV G−Models category, which averages the analytically
computed δCN+1/δSN+1 from models belonging to the CH −Models category(which uses one-
trading-day-ahead input variables to forecast the CN+1 for the next trading day) on a monthly,
yearly, and overall basis can be found in the Electronic Appendix, in Tables 57, 67, and 77,
respectively.
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C.2.3.3.1 Comparison amongst all Parametric Models with Triple Hidden Layer

ANN Models:

In this section, we compare the out-of-sample hedging performance of the parametric models
(ParamCHAV G

N+1 −Models), the triple hidden layer MLP models (M3CHAV G
N+1 −Models), and

the triple hidden layer LSTM models (L3CHAV G
N+1 −Models), and then ParamCHAV G

N+1 −Models
with the M3CHAV G

N+1 −Models, and finally the ParamCHAV G
N+1 −Models with the L3CHAV G

N+1 −
Models.

Initially, in Part I of Table C.2.13, we compared the ParamCHAV G
N+1 −Models with theM3CHAV G

N+1 −
Models and the L3CHAV G

N+1 −Models, and found that the ParamCHAV G
N+1 −Models had the

lowest RMSE for 1,290 days (having a daily bootstrap winning % of 96% to 98%) out of 1,326.
Accordingly, we now compare the L3CH4N+1 model (i.e. the best-performing model when
compared to the models in column VIII of Table B.2.9) with the ParamCHAV G

N+1 −Models,
M3CHAV G

N+1 − Models, and the L3CHAV G
N+1 − Models in Part I of Table C.2.14, and found

that ParamCHAV G
N+1 −Models had the lowest RMSE for 1,285 days (having a daily bootstrap

winning % of 96% to 98%) out of 1,326.

Secondly, in Part II of Table C.2.13, we compared the ParamCHAV G
N+1 − Models with the

M3CHAV G
N+1 −Models, and found that the ParamCHAV G

N+1 −Models had the lowest RMSE
for 1,290 days (having a daily bootstrap winning % of 96% to 98%) out of 1,326. Accordingly,
we now compare the FMLSCHN+1 model (i.e. the best-performing model when compared
to the models in column VIII of Table B.2.10) with the ParamCHAV G

N+1 − Models, and the
M3CHAV G

N+1 −Models in Part II of Table C.2.14, and found that ParamCHAV G
N+1 −Models had

the lowest RMSE for 1,289 days (having a daily bootstrap winning % of 96% to 98%) out of
1,326.

Finally, in Part III of Table C.2.13, we compared the ParamCHAV G
N+1 − Models with the

L3CHAV G
N+1 − Models, and found that the ParamCHAV G

N+1 − Models had the lowest RMSE
for 1,327 days (having a daily bootstrap winning % of 100% to 100%) out of 1,326. Accord-
ingly, we now compare the HDJCHN+1 model (i.e. the best-performing model when compared
to the models in column VIII of Table B.2.11) with the ParamCHAV G

N+1 − Models, and the
L3CHAV G

N+1 −Models in Part III of Table C.2.14, and found that the ParamCHAV G
N+1 −Models

had the lowest RMSE for 1,306 days (having a daily bootstrap winning % of 98% to 99%) out
of 1,326.

Thus, when the best individually out-performing model, the L3CH4N+1 model (from Table
B.2.9) was compared to the average of all the parametric models, and the averages of all the
triple hidden layer ANN models (in Part I of Table C.2.14), we conclude that the average of
all the parametric models (i.e. ParamCHAV G

N+1 −Models) could outperform all other models.
Similarly, when the best individually out-performing model, the FMLSCHN+1 model (from
Table B.2.10) was compared to the average of all the parametric models, and the averages of all
the triple hidden layer MLP models (in Part II of Table C.2.14), yet again the average of all the
parametric models (i.e. ParamCHAV G

N+1 −Models) could outperform all other models. Lastly,
when the best individually out-performing model, the HJDCHN+1 model (from Table B.2.11)
was compared to the average of all the parametric models, and the averages of all the triple
hidden layer LSTM models (in Part III of Table C.2.14), again the average of all the parametric
models (i.e. ParamCHAV G

N+1 −Models) could outperform all other models.
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C.2.3.3.2 Comparison amongst all Parametric models:

We now compare the HJDCHN+1 model (i.e. the best-performing model when compared to
the models in column V of Table B.2.12) with the ParamCHAV G

N+1 −Models in Part IV of Table
C.2.14 and found that the ParamCHAV G

N+1 − Models had the lowest RMSE for 1,306 days
(having a daily bootstrap winning % of 98% to 99%) out of 1,326.

Thus, when the best individually out-performing model, the HJDCHN+1 model (from Table
B.2.12) was compared to the average of all the parametric models (in Part IV of Table C.2.14),
the average of all the parametric models (i.e. ParamCHAV G

N+1 −Models) could outperform the
HJDCHN+1 model.
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Table C.2.13: Model Averaging for Delta Comparison (amongst ParamCHAV G
N+1 −Models, M3CHAV G

N+1 −Models, and L3CHAV G
N+1 −Models): This table is compartmentalised into III

parts, where each part presents a performance comparison using both daily and monthly statistics amongst the set of models mentioned in that part. The forecast variable for all the
models is the one-trading-day-ahead delta. The N+1 subscript denotes models that take an average of the delta from models that forecast the delta using one-trading-day-ahead input
variables. In the parts mentioned below, we compare the out-of-sample performance of the following models: In Part I: ParamCHAV G

N+1 −Models, MLP M3CHAV G
N+1 −Models, and

LSTM L3CHAV G
N+1 −Models, in Part II: ParamCHAV G

N+1 −Models, and MLP M3CHAV G
N+1 −Models, in Part III: ParamCHAV G

N+1 −Models, and LSTM L3CHAV G
N+1 −Models. The

one-trading-day-ahead forecast errors of the delta are used to compute the Root Mean Square Error (RMSE). Column I identifies the models, and column II lists the models used as
input to obtain the average one-trading-day-ahead forecast of the delta. Forecasts are made for 1,326 trading days, and there are 64 months covered in the sample using the monthly
data. When comparing all models simultaneously, column III reports the number of months out of the 64 months that each model has the smallest RMSE, while column IV reports
the number of days out of the 1,326 days each model has the smallest RMSE. Columns V (lower bound) and VI (upper bound) present the winning percentage out of 64 months
for each model, evaluated using the bootstrap sampling technique. The statistical bootstrap performed (with replacement) at a 95% confidence level is computed from the monthly
RMSE values of the respective models below. Columns VII (lower bound) and VIII (upper bound) present the winning percentage out of 1326 days for each model computed from
bootstrapping the daily RMSE values of the respective models at a 95% confidence level.

(I) (II) (III) (IV) (V) (VI) (VII) (VIII)

Model Inputs Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

Part I: ParamCHAVG
N+1 −Models v/s M3CHAVG

N+1 −Models v/s L3CHAVG
N+1 −Models

ParamCHAVG
N+1 −Models BSMCHN+1 , HCHN+1 , HJDCHN+1 , FMLSCHN+1 64 1290 100% 100% 96% 98%

M3CHAVG
N+1 −Models M3CH1N+1 , M3CH2N+1 , M3CH3N+1 , M3CH4N+1 , M3CH5N+1 , M3CH6N+1 , M3CH7N+1 0 37 0% 0% 2% 4%

L3CHAVG
N+1 −Models L3CH1N+1 , L3CH2N+1 , L3CH3N+1 , L3CH4N+1 , L3CH5N+1 , L3CH6N+1 , L3CH7N+1 0 0 0% 0% 0% 0%

Part II: ParamCHAVG
N+1 −Models v/s M3CHAVG

N+1 −Models

ParamCHAVG
N+1 −Models BSMCHN+1 , HCHN+1 , HJDCHN+1 , FMLSCHN+1 64 1290 100% 100% 96% 98%

M3CHAVG
N+1 −Models M3CH1N+1 , M3CH2N+1 , M3CH3N+1 , M3CH4N+1 , M3CH5N+1 , M3CH6N+1 , M3CH7N+1 0 37 0% 0% 2% 4%

Part III: ParamCHAVG
N+1 −Models v/s L3CHAVG

N+1 −Models

ParamCHAVG
N+1 −Models BSMCHN+1 , HCHN+1 , HJDCHN+1 , FMLSCHN+1 64 1327 100% 100% 100% 100%

L3CHAVG
N+1 −Models L3CH1N+1 , L3CH2N+1 , L3CH3N+1 , L3CH4N+1 , L3CH5N+1 , L3CH6N+1 , L3CH7N+1 0 0 0% 0% 0% 0%
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Table C.2.14: Model Averaging for Delta Comparison: This table is compartmentalised into
IV parts. Each part presents a performance comparison using daily and monthly statistics
amongst the models mentioned in that part. The forecast variable for all the models is the
one-trading-day-ahead delta. The N+1 subscript denotes models that take an average of the
delta from models that forecast the delta using one-trading-day-ahead input variables. In the
parts mentioned below, we compare the out-of-sample performance of the best performing
model (based on the total number of days out of 1326 days that a particular model had the
lowest RMSE) with the average of parametric models (ParamCHAV G

N+1 −Models), the aver-
age of the triple (M3CHAV G

N+1 −Models) hidden layer MLP models, and the average of the
triple (L3CHAV G

N+1 −Models) hidden layer LSTM models. In Part I: The best performing
model (L3CH4N+1) from Table B.2.9 with ParamCHAV G

N+1 −Models, M3CHAV G
N+1 −Models,

L3CHAV G
N+1 − Models, in Part II: The best performing model (FMLSCCHN+1) from

Table B.2.10 with ParamCHAV G
N+1 − Models, M3CHAV G

N+1 − Models, in Part III: The
best performing model (HJDCCHN+1) from Table B.2.11 with ParamCHAV G

N+1 −Models,
L3CHAV G

N+1 −Models, in Part IV: The best performing model (HJDCCHN+1) from Table
B.2.12 with ParamCHAV G

N+1 −Models. The one-trading-day-ahead forecast errors of the delta
are used to compute the Root Mean Square Error (RMSE). Forecasts are made for 1,326 trad-
ing days, and there are 64 months covered in the sample using the monthly data. Column I
identifies the models. When comparing all models simultaneously, column II reports the num-
ber of months out of the 64 months that each model has the smallest RMSE, while column III
reports the number of days out of the 1,326 days each model has the smallest RMSE. Columns
IV (lower bound) and V (upper bound) present the winning percentage out of 64 months for
each model, evaluated using the bootstrap sampling technique. The statistical bootstrap per-
formed (with replacement) at a 95% confidence level is computed from the monthly RMSE
values of the respective models below. Columns VI (lower bound) and VII (upper bound)
present the winning percentage out of 1326 days for each model computed from bootstrapping
the daily RMSE values of the respective models at a 95% confidence level.

(I) (II) (III) (IV) (V) (VI) (VII)

Model Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

Part I: L3CH4N+1 v/s ParamCHAVG
N+1 −Models v/s M3CHAVG

N+1 −Models v/s L3CHAVG
N+1 −Models

L3CH4N+1 0 4 0% 0% 0% 1%

ParamCHAVG
N+1 −Models 64 1285 100% 100% 96% 98%

M3CHAVG
N+1 −Models 0 37 0% 0% 2% 4%

L3CHAVG
N+1 −Models 0 0 0% 0% 0% 0%

Part II: FMLSCHN+1 v/s ParamCHAVG
N+1 −Models v/s M3CHAVG

N+1 −Models

FMLSCHN+1 0 1 0% 0% 0% 0%

ParamCHAVG
N+1 −Models 64 1289 100% 100% 96% 98%

M3CHAVG
N+1 −Models 0 36 0% 0% 2% 4%

Part III: HJDCHN+1 v/s ParamCHAVG
N+1 −Models v/s L3CHAVG

N+1 −Models

HJDCHN+1 0 20 0% 0% 1% 2%

ParamCHAVG
N+1 −Models 64 1306 100% 100% 98% 99%

L3CHAVG
N+1 −Models 0 0 0% 0% 0% 0%

Part IV: HJDCHN+1 v/s ParamCHAVG
N+1 −Models

HJDCHN+1 0 20 0% 0% 1% 2%

ParamCHAVG
N+1 −Models 64 1306 100% 100% 98% 99%
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C.2.4 Results - Model Averaging for computing the Replicating

Portfolio

C.2.4.1 HV AV G−Models: Model averaging replicating portfolio value perfor-

mance of models that forecast the replicating portfolio value(VN+1),

computed using the delta from H-Models, that use lagged input vari-

ables:

Table C.2.15 shows the relative out-of-sample replicating portfolio value performance (in RMSE)
amongst the models that forecast the average one-trading-day-ahead replicating portfolio value
(VN+1). The VN+1 is computed from equation 3.17 using the forecasted one-trading-day-ahead
delta (∆N+1) from models that use lagged input variables. In column II of table C.2.15, we
list the several models used as input to obtain the average one-trading-day-ahead forecast of
VN+1. The performance metric is the RMSE of the one-trading-day-ahead forecast errors of
the average VN+1, which is computed for each averaging model utilising all of the errors in each
day or each month. Amongst all of the models, columns III and IV record the number of months
and days, respectively, that each model has the lowest RMSE. We performed a bootstrap us-
ing the daily and monthly RMSEs to be certain of our results. Columns V (lower bound) and
VI (upper bound) present the results from the bootstrap performed (with replacement) using
monthly RMSEs at a 95% confidence level and show the winning percentage out of 64 months
for each model, and similarly, the 95 % confidence intervals computed from bootstrapping of the
daily RMSEs signifies the winning percentage out of 1326 days for each model and are reported
in columns VII (lower bound), VIII (upper bound). After a model is found to outperform other
individual parametric models, MLP and LSTM models in each of the several comparisons below,
we look into whether that out-performing model individually can outperform the average VN+1
of all the parametric models combinedly, MLP models combinedly or LSTM models combinedly,
covered in that section.

In the below several comparisons, even though a particular model wins by a higher percentage
against other models, we investigated further these models pairwise by performing a pairwise
bootstrap comparison, which was computed using the respective pair’s daily RMSEs. The results
are presented in Table 98 of the Electronic Appendix.

The Diebold-Mariano(DM ) (Diebold and Mariano (1995)) test was performed on pairs amongst
the average VN+1 of all parametric models (ParamHV AV G

N −Models), the average VN+1 of all
triple hidden layer MLP models (M3HV AV G

N − Models), and the average VN+1 of all triple
hidden layer LSTM models (L3HV AV G

N −Models) are reported in Table 88 of the Electronic
Appendix. In constructing the DM tests, the model pairs are reported in column I and column
II, and the DM test statistics for a particular pair are reported in column III. If the null can
be rejected, a positive number suggests the rejection may be due to the second model being the
better forecast model. In contrast, a negative value suggests the rejection may be due to the
first model being the better forecast model. The model pairs highlighted in a red state that their
forecasts have statistically insignificant differences in their prediction accuracy. Considering the
DM -Test statistics in Table 88 of the Electronic Appendix, all the model pairs lead to the
rejection of the null of equal forecasting performance.

The RMSEs for the models under the HV AV G−Models category, which averages the forecasted
VN+1 from models belonging to the HV −Models category(which uses lagged input variables
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to forecast the VN+1 for the next trading day) on a monthly, yearly, and overall basis can be
found in the Electronic Appendix, in Tables 58, 68, and 78, respectively.

C.2.4.1.1 Comparison amongst all Parametric Models with Triple Hidden Layer

ANN Models:

In this section, we compare the out-of-sample hedging performance of the parametric models
(ParamHV AV G

N −Models), the triple hidden layer MLP models (M3HV AV G
N −Models), and

the triple hidden layer LSTM models (L3HV AV G
N −Models), and then ParamHV AV G

N −Models
with the M3HV AV G

N −Models, and finally the ParamHV AV G
N −Models with the L3HV AV G

N −
Models.

Initially in Part I of Table C.2.15, we compared the ParamHV AV G
N −Models with theM3HV AV G

N −
Models and the L3HV AV G

N −Models, and found that the ParamHV AV G
N −Models had the

lowest RMSE for 592 days (having a daily bootstrap winning % of 42% to 47%) out of 1,326.
Accordingly, we now compare the BSMHVN model (i.e. the best-performing model when
compared to the models in column V of Table B.2.13) with the ParamHV AV G

N − Models,
M3HV AV G

N −Models, and the L3HV AV G
N −Models in Part I of Table C.2.16, and found that

M3HV AV G
N −Models had the lowest RMSE for 448 days (having a daily bootstrap winning %

of 31% to 36%) out of 1,326, which was closely followed by the ParamHAV G
N −Models, which

had similar out-performance for 372 days (having a daily bootstrap winning % of 26% to 30%).

Secondly, in Part II of Table C.2.15, we compared the ParamHV AV G
N − Models with the

M3HV AV G
N − Models and found that the M3HV AV G

N − Models had the lowest RMSE for
675 days (having a daily bootstrap winning % of 48% to 54%) out of 1,326, which was closely
followed by the ParamHAV G

N −Models, which had similar out-performance for 651 days (having
a daily bootstrap winning % of 46% to 52%). Accordingly, we now compare the BSMHVN model
(i.e. the best-performing model when compared to the models in column V of Table B.2.14)
with the ParamHV AV G

N −Models, and the M3HV AV G
N −Models in Part II of Table C.2.16,

and found that the M3HV AV G
N −Models had the lowest RMSE for 588 days (having a daily

bootstrap winning % of 42% to 47%) out of 1,326.

Finally, in Part III of Table C.2.15, we compared the ParamHV AV G
N − Models with the

L3HV AV G
N − Models, and found that the ParamHV AV G

N − Models had the lowest RMSE
for 907 days (having a daily bootstrap winning % of 66% to 71%) out of 1,326. Accordingly, we
now compare the BSMHVN model (i.e. the best-performing model when compared to the mod-
els in column V of Table B.2.15) with the ParamHV AV G

N −Models in Part III of Table C.2.16,
and the L3HV AV G

N −Models and found that the BSMHVN model had the lowest RMSE for
561 days (having a daily bootstrap winning % of 40% to 45%) out of 1,326.

Thus, when the best individually out-performing model, the BSMHVN model (from Table
B.2.13) was compared to the average of all the parametric models, and the averages of all the
triple hidden layer ANN models (in Part I of Table C.2.16), we conclude that the average of
all triple hidden layer MLP models (i.e. the M3HV AV G

N −Models) could outperform all other
models. Similarly, when the best individually out-performing model, the BSMHVN model
(from Table B.2.14) was compared to the average of all the parametric models, and the averages
of all the triple hidden layer MLP models (in Part II of Table C.2.16), yet again the average of
all triple hidden layer MLP models (i.e. the M3HV AV G

N −Models) could outperform all other
models. Lastly, when the best individually out-performing model, the BSMHVN model (from
Table B.2.15) was compared to the average of all the parametric models, and the averages of all
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the triple hidden layer LSTM models (in Part III of Table C.2.16), we conclude that BSMHVN
model could outperform all other models.

C.2.4.1.2 Comparison amongst all Parametric models:

We now compare the BSMHVN model (i.e. the best-performing model when compared to the
models in column V of Table B.2.16) with the ParamHV AV G

N −Models in Part IV of Table
C.2.16, and found that the BSMHVN model still had the lowest RMSE for 890 days (having
a daily bootstrap winning % of 65% to 70%) out of 1,326.

Thus, when the best individually out-performing model, the BSMHVN model (from Table
B.2.16) was compared to the average of all the parametric models (in Part IV of Table C.2.16),
we can conclude that the BSMHVN model could outperform the average of all the parametric
models.
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Table C.2.15: Model Averaging for Replicating Portfolio Value Comparison (amongst ParamHV AV G
N −Models, M3HV AV G

N −Models, and L3HV AV G
N −Models): This

table is compartmentalised into III parts, where each part presents a performance comparison using both daily and monthly statistics amongst the set of models mentioned
in that part. The forecast variable for all the models is the one-trading-day-ahead replicating portfolio value (VN+1). The N subscript denotes models that take an
average of the VN+1 from models that forecast VN+1 using lagged input variables. In the parts mentioned below, we compare the out-of-sample performance of the
following models: In Part I: ParamHV AV G

N −Models, MLP M3HV AV G
N −Models, and LSTM L3HV AV G

N −Models, in Part II: ParamHV AV G
N −Models, and MLP

M3HV AV G
N −Models, in Part III: ParamHV AV G

N −Models, and LSTM L3HV AV G
N −Models. The one-trading-day-ahead forecast errors of the VN+1 are used to

compute the Root Mean Square Error (RMSE). Column I identifies the models, and column II lists the models used as input to obtain the average one-trading-day-ahead
forecast of the VN+1. Forecasts are made for 1,326 trading days, and there are 64 months covered in the sample using the monthly data. When comparing all models
simultaneously, column III reports the number of months out of the 64 months that each model has the smallest RMSE, while column IV reports the number of days out
of the 1,326 days each model has the smallest RMSE. Columns V (lower bound) and VI (upper bound) present the winning percentage out of 64 months for each model,
evaluated using the bootstrap sampling technique. The statistical bootstrap performed (with replacement) at a 95% confidence level is computed from the monthly RMSE
values of the respective models below. Columns VII (lower bound) and VIII (upper bound) present the winning percentage out of 1326 days for each model computed
from bootstrapping the daily RMSE values of the respective models at a 95% confidence level.

(I) (II) (III) (IV) (V) (VI) (VII) (VIII)

Model Inputs Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

Part I: ParamHV AVGN −Models v/s M3HV AVGN −Models v/s L3HV AVGN −Models

ParamHV AVGN −Models BSMHVN , HHVN , HJDHVN , FMLSHVN 17 592 19% 39% 42% 47%

M3HV AVGN −Models M3HV 1N , M3HV 2N , M3HV 3N , M3HV 4N , M3HV 5N , M3HV 6N , M3HV 7N 39 519 50% 72% 37% 42%

L3HV AVGN −Models L3HV 1N , L3HV 2N , L3HV 3N , L3HV 4N , L3HV 5N , L3HV 6N , L3HV 7N 7 215 4% 19% 14% 18%

Part II: ParamHV AVGN −Models v/s M3HV AVGN −Models

ParamHV AVGN −Models BSMHVN , HHVN , HJDHVN , FMLSHVN 17 651 17% 41% 46% 52%

M3HV AVGN −Models M3HV 1N , M3HV 2N , M3HV 3N , M3HV 4N , M3HV 5N , M3HV 6N , M3HV 7N 46 675 59% 83% 48% 54%

Part III: ParamHV AVGN −Models v/s L3HV AVGN −Models

ParamHV AVGN −Models BSMHVN , HHVN , HJDHVN , FMLSHVN 44 907 58% 81% 66% 71%

L3HV AVGN −Models L3HV 1N , L3HV 2N , L3HV 3N , L3HV 4N , L3HV 5N , L3HV 6N , L3HV 7N 19 419 19% 42% 29% 34%
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Table C.2.16: Model Averaging for Replicating Portfolio Value Comparison: This table is com-
partmentalised into IV parts. Each part presents a performance comparison using daily and
monthly statistics amongst the models mentioned in that part. The forecast variable for all
the models is the one-trading-day-ahead replicating portfolio value (VN+1). The N subscript
denotes models that take an average of the VN+1 from models that forecast VN+1 using lagged
input variables. In the parts mentioned below, we compare the out-of-sample performance of
the best model (based on the total number of days out of 1326 days that a particular model had
the lowest RMSE) with the average of parametric models (ParamHV AV G

N −Models), the aver-
age of the triple (M3HV AV G

N −Models) hidden layer MLP models, and the average of the triple
(L3HV AV G

N −Models) hidden layer LSTM models. In Part I: The best model (BSMHVN )
from Table B.2.13 with ParamHV AV G

N −Models,M3HV AV G
N −Models, L3HV AV G

N −Models,
in Part II: The best model (BSMHVN ) from Table B.2.14 with ParamHV AV G

N −Models,
M3HV AV G

N − Models, in Part III: The best model (BSMHVN ) from Table B.2.15 with
ParamHV AV G

N −Models, L3HV AV G
N −Models, in Part IV: The best model (BSMHVN )

from Table B.2.16 with ParamHV AV G
N −Models. The one-trading-day-ahead forecast errors

of the VN+1 are used to compute the Root Mean Square Error (RMSE). Forecasts are made
for 1,326 trading days, and there are 64 months covered in the sample using the monthly data.
Column I identifies the models. When comparing all models simultaneously, column II reports
the number of months out of the 64 months that each model has the smallest RMSE, while
column III reports the number of days out of the 1,326 days each model has the smallest
RMSE. Columns IV (lower bound) and V (upper bound) present the winning percentage out
of 64 months for each model, evaluated using the bootstrap sampling technique. The statis-
tical bootstrap performed (with replacement) at a 95% confidence level is computed from the
monthly RMSE values of the respective models below. Columns VI (lower bound) and VII
(upper bound) present the winning percentage out of 1326 days for each model computed from
bootstrapping the daily RMSE values of the respective models at a 95% confidence level.

(I) (II) (III) (IV) (V) (VI) (VII)

Model Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

Part I: BSMHVN v/s ParamHV AVGN −Models v/s M3HV AVGN −Models v/s L3HV AVGN −Models

BSMHVN 10 308 6% 25% 21% 25%

ParamHV AVGN −Models 13 372 12% 30% 26% 30%

M3HV AVGN −Models 35 448 42% 66% 31% 36%

L3HV AVGN −Models 6 198 3% 17% 13% 17%

Part II: BSMHVN v/s ParamHV AVGN −Models v/s M3HV AVGN −Models

BSMHVN 10 352 8% 25% 24% 29%

ParamHV AVGN −Models 13 386 11% 31% 27% 32%

M3HV AVGN −Models 41 588 53% 75% 42% 47%

Part III: BSMHVNv/s ParamHV AVGN −Models v/s L3HV AVGN −Models

BSMHVN 36 561 42% 69% 40% 45%

ParamHV AVGN −Models 15 404 14% 34% 28% 33%

L3HV AVGN −Models 13 361 11% 31% 25% 29%

Part IV: BSMHVN v/s ParamHV AVGN −Models

BSMHVN 48 890 64% 84% 65% 70%

ParamHV AVGN −Models 16 436 16% 36% 30% 35%
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C.2.4.2 HV AV G−Models: Model averaging replicating portfolio value perfor-

mance of models that forecast the replicating portfolio value(VN+1),

computed using the delta from H-Models, that use one-trading-day

input variables:

Table C.2.17 shows the relative out-of-sample replicating portfolio value performance (in RMSE)
amongst the models that forecast the average one-trading-day-ahead replicating portfolio value
(VN+1). The VN+1 is computed from equation 3.17 using the forecasted one-trading-day-ahead
delta (∆N+1) from models that use one-trading-day input variables. In column II of Table
C.2.17, we list the several models used as an input to obtain the average one-trading-day-ahead
forecast of VN+1. The performance metric is the RMSE of the one-trading-day-ahead forecast
errors of the average VN+1, which is computed for each averaging model utilising all of the
errors in each day or each month. Amongst all of the models, columns III and IV record the
number of months and days, respectively, that each model has the lowest RMSE. We per-
formed a bootstrap using the daily and monthly RMSEs to be certain of our results. Columns
V (lower bound) and VI (upper bound) present the results from the bootstrap performed (with
replacement) using monthly RMSEs at a 95% confidence level and show the winning percentage
out of 64 months for each model, and similarly, the 95 % confidence intervals computed from
bootstrapping of the daily RMSEs signifies the winning percentage out of 1326 days for each
model and are reported in columns VII (lower bound), VIII (upper bound). After a model is
found to outperform other individual parametric models, MLP and LSTM models in each of the
several comparisons below, we look into whether that out-performing model individually can
outperform the average VN+1 of all the parametric models combinedly, MLP models combinedly
or LSTM models combinedly, covered in that section.

In the below several comparisons, even though a particular model wins by a higher percentage
against other models, we investigated further these models pairwise by performing a pairwise
bootstrap comparison, which was computed using the respective pair’s daily RMSEs. The results
are presented in Table 99 of the Electronic Appendix.

The Diebold-Mariano(DM ) (Diebold and Mariano (1995)) test was performed on pairs amongst
the average VN+1 of all parametric models (ParamHV AV G

N+1 −Models), the average VN+1 of all
triple hidden layer MLP models (M3HV AV G

N+1 − Models), and the average VN+1 of all triple
hidden layer LSTM models (L3HV AV G

N+1 −Models) are reported in Table 89 of the Electronic
Appendix. In constructing the DM tests, the model pairs are reported in column I and column
II, and the DM test statistics for a particular pair are reported in column III. If the null can
be rejected, a positive number suggests the rejection may be due to the second model being the
better forecast model. In contrast, a negative value suggests the rejection may be due to the
first model being the better forecast model. The model pairs highlighted in a red state that their
forecasts have statistically insignificant differences in their prediction accuracy. Considering the
DM -Test statistics in Table 89 of the Electronic Appendix, all the model pairs lead to the
rejection of the null of equal forecasting performance.

The RMSEs for the models under the HV AV G−Models category, which averages the forecasted
VN+1 from models belonging to the HV −Models category(which uses one-trading-day-ahead
input variables to forecast the VN+1 for the next trading day) on a monthly, yearly, and overall
basis can be found in the Electronic Appendix, in Tables 59, 69, and 79, respectively.
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C.2.4.2.1 Comparison amongst all Parametric Models with Triple Hidden Layer

ANN Models:

In this section, we compare the out-of-sample hedging performance of the parametric models
(ParamHV AV G

N+1 −Models), the triple hidden layer MLP models (M3HV AV G
N+1 −Models), and

the triple hidden layer LSTM models (L3HV AV G
N+1 −Models), and then ParamHV AV G

N+1 −Models
with the M3HV AV G

N+1 −Models, and finally the ParamHV AV G
N+1 −Models with the L3HV AV G

N+1 −
Models.

Initially in Part I of Table C.2.17, we compared the ParamHV AV G
N+1 −Models with theM3HV AV G

N+1 −
Models and the L3HV AV G

N+1 −Models, and found that the ParamHV AV G
N+1 −Models had the

lowest RMSE for 653 days (having a daily bootstrap winning % of 47% to 52%) out of 1,326.
Accordingly, we now compare the BSMHVN+1 model (i.e. the best-performing model when
compared to the models in column V of Table B.2.17) with the ParamHV AV G

N+1 − Models,
M3HV AV G

N+1 −Models, and the L3HV AV G
N+1 −Models in Part I of Table C.2.18, and found that

BSMHVN+1 model had the lowest RMSE for 389 days (having a daily bootstrap winning %
of 27% to 32%) out of 1,326. Though the BSMHVN+1 model outperformed, the parametric
model, ParamHV AV G

N+1 −Models (354 days), and the MLP model, M3HV AV G
N+1 −Models (373

days) have shown similar out-performance and have a collective daily bootstrap winning per-
centage from 24% (lower bound for the ParamHV AV G

N+1 −Models) to 30% (upper bound for the
M3HV AV G

N+1 −Models).

Secondly, in Part II of Table C.2.17, we compared the ParamHV AV G
N+1 − Models with the

M3HV AV G
N+1 −Models, and found that the ParamHV AV G

N+1 −Models had the lowest RMSE for
754 days (having a daily bootstrap winning % of 54% to 60%) out of 1,326. Accordingly, we now
compare the BSMHVN+1 model (i.e. the best-performing model when compared to the models
in column V of Table B.2.18) with the ParamHV AV G

N+1 −Models, and the M3HV AV G
N+1 −Models

in Part II of Table C.2.18, and found that the M3HV AV G
N+1 −Models had the lowest RMSE

for 487 days (having a daily bootstrap winning % of 34% to 39%) out of 1,326. Though the
M3HV AV G

N+1 −Models outperformed, the parametric models, BSMHVN+1 model (473 days), and
ParamHV AV G

N+1 −Models (366 days) have shown similar out-performance, and have a collective
daily bootstrap winning percentage from 25% (lower bound for the ParamHV AV G

N+1 −Models)
to 38% (upper bound for the BSMHVN+1 model).

Finally, in Part III of Table C.2.17, we compared the ParamHV AV G
N+1 − Models with the

L3HV AV G
N+1 −Models, and found that the ParamHV AV G

N+1 −Models had the lowest RMSE for
907 days (having a daily bootstrap winning % of 66% to 71%) out of 1,326. Accordingly, we now
compare the BSMHVN+1 model (i.e. the best-performing model when compared to the models
in column V of Table B.2.19) with the ParamHV AV G

N+1 −Models and the L3HV AV G
N+1 −Models

in Part III of Table C.2.18, and found that the BSMHVN+1 model had the lowest RMSE for
591 days (having a daily bootstrap winning % of 42% to 47%) out of 1,326.

Thus, when the best individually out-performing model, the BSMHVN+1 model (from Table
B.2.17) was compared to the average of all the parametric models, and the averages of all the
triple hidden layer ANN models (in Part I of Table C.2.18), we conclude that BSMHVN+1
model could outperform all other models. Similarly, when the best individually out-performing
model, the BSMHVN+1 model (from Table B.2.18) was compared to the average of all the
parametric models, and the averages of all the triple hidden layer MLP models (in Part II of
Table C.2.18), the average of all triple hidden layer MLP models (i.e. the M3HV AV G

N+1 −Models)
could outperform all other models. Lastly, when the best individually out-performing model,
the BSMHVN+1 model (from Table B.2.19) was compared to the average of all the parametric
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models, and the averages of all the triple hidden layer LSTM models (in Part III of Table C.2.18),
yet again the BSMHVN+1 model could outperform all other models.

C.2.4.2.2 Comparison amongst all Parametric models:

We now compare the BSMHVN+1 model (i.e. the best-performing model when compared to
the models in column V of Table B.2.20) to the average VN+1 of all the parametric models
(ParamHV AV G

N+1 −Models) in Part IV of Table C.2.18, and found that the BSMHVN+1 model
still had the lowest RMSE for 910 days (having a daily bootstrap winning % of 66% to 71%)
out of 1,326.

Thus, when the best individually out-performing model, the BSMHVN+1 model (from Table
B.2.20) was compared to the average of all the parametric models (in Part IV of Table C.2.18),
we can conclude that the BSMHVN+1 model could outperform the average of all the parametric
models.
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Table C.2.17: Model Averaging for Replicating Portfolio Value Comparison (amongst ParamHV AV G
N+1 −Models, M3HV AV G

N+1 −Models, and L3HV AV G
N+1 −Models): This table is

compartmentalised into III parts, where each part presents a performance comparison using both daily and monthly statistics amongst the set of models mentioned in that part.
The forecast variable for all the models is the one-trading-day-ahead replicating portfolio value (VN+1). The N+1 subscript denotes models that take an average of the VN+1 from
models that forecast VN+1 using one-trading-day-ahead input variables. In the parts mentioned below, we compare the out-of-sample performance of the following models: In Part
I: ParamHV AV G

N+1 −Models, MLP M3HV AV G
N+1 −Models, and LSTM L3HV AV G

N+1 −Models, in Part II: ParamHV AV G
N+1 −Models, and MLP M3HV AV G

N+1 −Models, in Part III:
ParamHV AV G

N+1 −Models, and LSTM L3HV AV G
N+1 −Models. The one-trading-day-ahead forecast errors of VN+1 are used to compute the Root Mean Square Error (RMSE). Column I

identifies the models, and column II lists the models used as input to obtain the average one-trading-day-ahead forecast of VN+1. Forecasts are made for 1,326 trading days, and there
are 64 months covered in the sample using the monthly data. When comparing all models simultaneously, column III reports the number of months out of the 64 months that each
model has the smallest RMSE, while column IV reports the number of days out of the 1,326 days each model has the smallest RMSE. Columns V (lower bound) and VI (upper bound)
present the winning percentage out of 64 months for each model, evaluated using the bootstrap sampling technique. The statistical bootstrap performed (with replacement) at a 95%
confidence level is computed from the monthly RMSE values of the respective models below. Columns VII (lower bound) and VIII (upper bound) present the winning percentage out
of 1326 days for each model computed from bootstrapping the daily RMSE values of the respective models at a 95% confidence level.

(I) (II) (III) (IV) (V) (VI) (VII) (VIII)

Model Inputs Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

Part I: ParamHV AVGN+1 −Models v/s M3HV AVGN+1 −Models v/s L3HV AVGN+1 −Models

ParamHV AVGN+1 −Models BSMHVN+1 , HHVN+1 , HJDHVN+1 , FMLSHVN+1 37 653 47% 70% 47% 52%

M3HV AVGN+1 −Models M3HV 1N+1 , M3HV 2N+1 , M3HV 3N+1 , M3HV 4N+1 , M3HV 5N+1 , M3HV 6N+1 , M3HV 7N+1 16 443 14% 36% 31% 36%

L3HV AVGN+1 −Models L3HV 1N+1 , L3HV 2N+1 , L3HV 3N+1 , L3HV 4N+1 , L3HV 5N+1 , L3HV 6N+1 , L3HV 7N+1 10 230 8% 25% 15% 19%

Part II: ParamHV AVGN+1 −Models v/s M3HV AVGN+1 −Models

ParamHV AVGN+1 −Models BSMHVN+1 , HHVN+1 , HJDHVN+1 , FMLSHVN+1 42 754 55% 78% 54% 60%

M3HV AVGN+1 −Models M3HV 1N+1 , M3HV 2N+1 , M3HV 3N+1 , M3HV 4N+1 , M3HV 5N+1 , M3HV 6N+1 , M3HV 7N+1 21 572 22% 45% 40% 46%

Part III: ParamHV AVGN+1 −Models v/s L3HV AVGN+1 −Models

ParamHV AVGN+1 −Models BSMHVN+1 , HHVN+1 , HJDHVN+1 , FMLSHVN+1 49 907 67% 88% 66% 71%

L3HV AVGN+1 −Models L3HV 1N+1 , L3HV 2N+1 , L3HV 3N+1 , L3HV 4N+1 , L3HV 5N+1 , L3HV 6N+1 , L3HV 7N+1 14 419 13% 33% 29% 34%
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Table C.2.18: Model Averaging for Replicating Portfolio Value Comparison: This table is
compartmentalised into IV parts. Each part presents a performance comparison using daily
and monthly statistics amongst the models mentioned in that part. The forecast variable
for all the models is the one-trading-day-ahead replicating portfolio value (VN+1). The N+1
subscript denotes models that take an average of the VN+1 from models that forecast VN+1
using one-trading-day-ahead input variables. In the parts mentioned below, we compare the
out-of-sample performance of the best model (based on the total number of days out of 1326
days that a particular model had the lowest RMSE) with the average of parametric models
(ParamHV AV G

N+1 − Models), the average of the triple (M3HV AV G
N+1 − Models) hidden layer

MLP models, and the average of the triple (L3HV AV G
N+1 −Models) hidden layer LSTM models.

In Part I: The best model (BSMHVN+1) from Table B.2.17 with ParamHV AV G
N+1 −Models,

M3HV AV G
N+1 − Models, L3HV AV G

N+1 − Models, in Part II: The best model (BSMHVN+1)
from Table B.2.18 with ParamHV AV G

N+1 −Models, M3HV AV G
N+1 −Models, in Part III: The

best model (BSMHVN+1) from Table B.2.19 with ParamHV AV G
N+1 −Models, L3HV AV G

N+1 −
Models, in Part IV: The best model (BSMHVN+1) from Table B.2.20 with ParamHV AV G

N+1 −
Models. The one-trading-day-ahead forecast errors of the VN+1 are used to compute the Root
Mean Square Error (RMSE). Forecasts are made for 1,326 trading days, and there are 64
months covered in the sample using the monthly data. Column I identifies the models. When
comparing all models simultaneously, column II reports the number of months out of the 64
months that each model has the smallest RMSE, while column III reports the number of days
out of the 1,326 days each model has the smallest RMSE. Columns IV (lower bound) and V
(upper bound) present the winning percentage out of 64 months for each model, evaluated using
the bootstrap sampling technique. The statistical bootstrap performed (with replacement) at
a 95% confidence level is computed from the monthly RMSE values of the respective models
below. Columns VI (lower bound) and VII (upper bound) present the winning percentage
out of 1326 days for each model computed from bootstrapping the daily RMSE values of the
respective models at a 95% confidence level.

(I) (II) (III) (IV) (V) (VI) (VII)

Model Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

Part I: BSMHVN+1 v/s ParamHV AVGN+1 −Models v/s M3HV AVGN+1 −Models v/s L3HV AVGN+1 −Models

BSMHVN+1 29 389 33% 58% 27% 32%

ParamHV AVGN+1 −Models 15 354 14% 34% 24% 29%

M3HV AVGN+1 −Models 12 373 9% 30% 26% 30%

L3HV AVGN+1 −Models 8 210 5% 20% 14% 18%

Part II: BSMHVN+1 v/s ParamHV AVGN+1 −Models v/s M3HV AVGN+1 −Models

BSMHVN+1 33 473 39% 63% 33% 38%

ParamHV AVGN+1 −Models 15 366 14% 34% 25% 30%

M3HV AVGN+1 −Models 16 487 14% 35% 34% 39%

Part III: BSMHVN+1 v/s ParamHV AVGN+1 −Models v/s L3HV AVGN+1 −Models

BSMHVN+1 37 591 45% 70% 42% 47%

ParamHV AVGN+1 −Models 16 385 15% 36% 27% 32%

L3HV AVGN+1 −Models 11 350 8% 27% 24% 29%

Part IV: BSMHVN+1 v/s ParamHV AVGN+1 −Models

BSMHVN+1 47 910 63% 84% 66% 71%

ParamHV AVGN+1 −Models 17 416 16% 38% 29% 34%
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C.2.4.3 CHV AV G −Models: Model averaging replicating portfolio value per-

formance of models that forecast the replicating portfolio value(VN+1)

computed using the analytically derived delta

(δCN+1/δSN+1), and where the δCN+1/δSN+1 is inferred from models

that forecast the call option price (CN+1) using one-trading-day ahead

input variables:

Table C.2.19 shows the relative out-of-sample replicating portfolio value performance (in RMSE)
amongst the models that forecast the average one-trading-day-ahead replicating portfolio value
(VN+1). The VN+1 is computed from equation 3.17 using the forecasted one-trading-day-ahead
delta (δCN+1/δSN+1), which is in turn derived analytically from CN+1 that were forecasted
from models that use one-trading-day-ahead input variables. In column II of table C.2.19, we
list the several models used as an input to obtain the average one-trading-day-ahead forecast
of VN+1. The performance metric is the RMSE of the one-trading-day-ahead forecast errors of
the average VN+1, which is computed for each averaging model utilising all of the errors in each
day or each month. Amongst all of the models, columns III and IV record the number of months
and days, respectively, that each model has the lowest RMSE. We performed a bootstrap us-
ing the daily and monthly RMSEs to be certain of our results. Columns V (lower bound) and
VI (upper bound) present the results from the bootstrap performed (with replacement) using
monthly RMSEs at a 95% confidence level and show the winning percentage out of 64 months
for each model, and similarly, the 95 % confidence intervals computed from bootstrapping of the
daily RMSEs signifies the winning percentage out of 1326 days for each model and are reported
in columns VII (lower bound), VIII (upper bound). After a model is found to outperform other
individual parametric models, MLP and LSTM models in each of the several comparisons below,
we look into whether that out-performing model individually can outperform the average VN+1
of all the parametric models combinedly, MLP models combinedly or LSTM models combinedly,
covered in that section.

In the below several comparisons, even though a particular model wins by a higher percentage
against other models, we investigated further these models pairwise by performing a pairwise
bootstrap comparison, which was computed using the respective pair’s daily RMSEs. The results
are presented in Table 100 of the Electronic Appendix.

The Diebold-Mariano(DM ) (Diebold and Mariano (1995)) test was performed on pairs amongst
the average VN+1 of all parametric models (ParamCHV AV G

N+1 −Models), the average VN+1 of
all triple hidden layer MLP models (M3CHV AV G

N+1 −Models), and the average VN+1 of all triple
hidden layer LSTM models (L3CHV AV G

N+1 −Models) are reported in Table 90 of the Electronic
Appendix. In constructing the DM tests, the model pairs are reported in column I and column
II, and the DM test statistics for a particular pair are reported in column III. If the null can
be rejected, a positive number suggests the rejection may be due to the second model being the
better forecast model. In contrast, a negative value suggests the rejection may be due to the
first model being the better forecast model. The model pairs highlighted in a red state that their
forecasts have statistically insignificant differences in their prediction accuracy. Considering the
DM -Test statistics in Table 90 of the Electronic Appendix, all the model pairs lead to the
rejection of the null of equal forecasting performance.

The RMSEs for the models under the CHV AV G −Models category, which averages the fore-
casted VN+1 from models belonging to the CHV −Models category(which uses the inferred
δCN+1/δSN+1 to forecast the VN+1, from models that forecast the CN+1 for the next trading
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day, using one-trading-day-ahead input variables) on a monthly, yearly, and overall basis can be
found in the Electronic Appendix, in Tables 60, 70, and 80, respectively.

C.2.4.3.1 Comparison amongst all Parametric Models with Triple Hidden Layer

ANN Models:

In this section, we compare the out-of-sample hedging performance of the parametric models
(ParamCHV AV G

N+1 −Models), the triple hidden layer MLP models (M3CHV AV G
N+1 −Models),

and the triple hidden layer LSTM models (L3CHV AV G
N+1 −Models), and then ParamCHV AV G

N+1 −
Models with the M3CHV AV G

N+1 −Models, and finally the ParamCHV AV G
N+1 −Models with the

L3CHV AV G
N+1 −Models.

Initially in Part I of Table C.2.19, we compared the ParamCHV AV G
N+1 − Models with the

M3CHV AV G
N+1 −Models and the L3CHV AV G

N+1 −Models, and found that the M3CHV AV G
N+1 −

Models had the lowest RMSE for 912 days (having a daily bootstrap winning % of 66% to 71%)
out of 1,326. Accordingly, we now compare the L3CHV 4N+1 model (i.e. the best-performing
model when compared to the models in column V of Table B.2.21) with the ParamCHV AV G

N+1 −
Models, M3CHV AV G

N+1 − Models, and the L3CHV AV G
N+1 − Models in Part I of Table C.2.20,

and found that M3CHV AV G
N+1 −Models had the lowest RMSE for 721 days (having a daily

bootstrap winning % of 51% to 57%) out of 1,326.

Secondly, in Part II of Table C.2.19, we compared the ParamCHV AV G
N+1 − Models with the

M3CHV AV G
N+1 −Models, and found that the M3CHV AV G

N+1 −Models had the lowest RMSE
for 1,038 days (having a daily bootstrap winning % of 76% to 81%) out of 1,326. Accordingly,
we now compare the FMLSCHVN+1 model (i.e. the best-performing model when compared
to the models in column V of Table B.2.22) with the ParamCHV AV G

N+1 − Models, and the
M3CHV AV G

N+1 −Models in Part II of Table C.2.20, and found that M3CHV AV G
N+1 −Models had

the lowest RMSE for 655 days (having a daily bootstrap winning % of 47% to 52%) out of
1,326.

Finally, in Part III of Table C.2.19, we compared the ParamCHV AV G
N+1 − Models with the

L3CHV AV G
N+1 −Models, and found that the ParamCHV AV G

N+1 −Models had the lowest RMSE
for 1134 days (having a daily bootstrap winning % of 84% to 87%) out of 1,326. Accordingly,
we now compare the HDJCHVN+1 model (i.e. the best-performing model when compared
to the models in column V of Table B.2.23) with the ParamCHV AV G

N+1 − Models, and the
L3CHV AV G

N+1 −Models in Part III of Table C.2.20, and found that the HDJCHVN+1 model
had the lowest RMSE for 839 days (having a daily bootstrap winning % of 60% to 66%) out of
1,326.

Thus, when the best individually out-performing model, the L3CHV 4N+1 model (from Table
B.2.21) was compared to the average of all the parametric models, and the averages of all the
triple hidden layer ANN models (in Part I of Table C.2.20), we conclude that the average of all
the triple hidden layer models (i.e. M3CHV AV G

N+1 −Models) could outperform all other models.
Similarly, when the best individually out-performing model, the FMLSCHVN+1 model (from
Table B.2.22) was compared to the average of all the parametric models, and the averages of
all the triple hidden layer MLP models (in Part II of Table C.2.20), yet again the average of all
the triple hidden layer models (i.e. M3CHV AV G

N+1 −Models) could outperform all other models.
Lastly, when the best individually out-performing model, the HJDCHVN+1 model (from Table
B.2.23) was compared to the average of all the parametric models, and the averages of all the
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triple hidden layer LSTM models (in Part III of Table C.2.20), the HJDCHVN+1 model could
outperform all other models.

C.2.4.3.2 Comparison amongst all Parametric models:

We now compare the HJDCHVN+1 model (i.e. the best-performing model when compared
to the models in column V of Table B.2.24) with the ParamCHV AV G

N+1 −Models in Part IV
of Table C.2.20 and found that the HJDCHVN+1 model had the lowest RMSE for 962 days
(having a daily bootstrap winning % of 70% to 75%) out of 1,326.

Thus, when the best individually out-performing model, the HJDCHVN+1 model (from Table
B.2.24) was compared to the average of all the parametric models (in Part IV of Table C.2.20),
the HJDCHVN+1 model could outperform the average of all the parametric models.
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Table C.2.19: Monthly Replicating Portfolio Value Comparison (amongst ParamCHV AV G
N+1 −Models, M3CHV AV G

N+1 −Models, and L3CHV AV G
N+1 −Models): This table is compartmentalized into III

parts, where each part presents a performance comparison using both daily and monthly statistics amongst the set of models mentioned in that part. The forecast variable for all the models is the one-
trading-day-ahead replicating portfolio value (VN+1). The N+1 subscript denotes models that take an average of the VN+1 from models that forecast VN+1 using one-trading-day-ahead input variables. In
the parts mentioned below, we compare the out-of-sample performance of the following models: In Part I: ParamCHV AV G

N+1 −Models, MLP M3CHV AV G
N+1 −Models, and LSTM L3CHV AV G

N+1 −Models,
in Part II: ParamCHV AV G

N+1 −Models, and MLP M3CHV AV G
N+1 −Models, in Part III: ParamCHV AV G

N+1 −Models, and LSTM L3CHV AV G
N+1 −Models. The one-trading-day-ahead forecast errors of

VN+1 are used to compute the Root Mean Square Error (RMSE). Column I identifies the models, and column II lists the models used as input to obtain the average one-trading-day-ahead forecast of
VN+1. Forecasts are made for 1,326 trading days, and there are 64 months covered in the sample using the monthly data. When comparing all models simultaneously, column III reports the number of
months out of the 64 months that each model has the smallest RMSE, while column IV reports the number of days out of the 1,326 days each model has the smallest RMSE. Columns V (lower bound)
and VI (upper bound) present the winning percentage out of 64 months for each model, evaluated using the bootstrap sampling technique. The statistical bootstrap performed (with replacement) at a
95% confidence level is computed from the monthly RMSE values of the respective models below. Columns VII (lower bound) and VIII (upper bound) present the winning percentage out of 1326 days
for each model computed from bootstrapping the daily RMSE values of the respective models at a 95% confidence level.

(I) (II) (III) (IV) (V) (VI) (VII) (VIII)

Model Inputs Performance
amongst
all models
(Monthly)

Performance
amongst
all models
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

Part I: ParamCHV AVGN+1 −Models v/s M3CHV AVGN+1 −Models v/s L3CHV AVGN+1 −Models

ParamCHV AVGN+1 −Models BSMCHVN+1 , HCHVN+1 , HJDCHVN+1 , FMLSCHVN+1 0 284 0% 5% 19% 24%

M3CHV AVGN+1 −Models M3CHV 1N+1 , M3CHV 2N+1 , M3CHV 3N+1 , M3CHV 4N+1 , M3CHV 5N+1 , M3CHV 6N+1 , M3CHV 7N+1 63 912 95% 100% 66% 71%

L3CHV AVGN+1 −Models L3CHV 1N+1 , L3CHV 2N+1 , L3CHV 3N+1 , L3CHV 4N+1 , L3CHV 5N+1 , L3CHV 6N+1 , L3CHV 7N+1 0 132 0% 0% 8% 11%

Part II: ParamCHV AVGN+1 −Models v/s M3CHV AVGN+1 −Models

ParamCHV AVGN+1 −Models BSMCHVN+1 , HCHVN+1 , HJDCHVN+1 , FMLSCHVN+1 0 288 0% 5% 19% 24%

M3CHV AVGN+1 −Models M3CHV 1N+1 , M3CHV 2N+1 , M3CHV 3N+1 , M3CHV 4N+1 , M3CHV 5N+1 , M3CHV 6N+1 , M3CHV 7N+1 63 1038 95% 100% 76% 81%

Part III: ParamCHV AVGN+1 −Models v/s L3CHV AVGN+1 −Models

ParamCHV AVGN+1 −Models BSMCHVN+1 , HCHVN+1 , HJDCHVN+1 , FMLSCHVN+1 63 1134 100% 100% 84% 87%

L3CHV AVGN+1 −Models L3CHV 1N+1 , L3CHV 2N+1 , L3CHV 3N+1 , L3CHV 4N+1 , L3CHV 5N+1 , L3CHV 6N+1 , L3CHV 7N+1 0 192 0% 0% 13% 16%
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Table C.2.20: Model Averaging for Replicating Portfolio Value Comparison: This table is
compartmentalised into IV parts. Each part presents a performance comparison using daily
and monthly statistics amongst the models mentioned in that part. The forecast variable
for all the models is the one-trading-day-ahead replicating portfolio value (VN+1). The N+1
subscript denotes models that take an average of the VN+1 from models that forecast VN+1
using one-trading-day-ahead input variables. In the parts mentioned below, we compare
the out-of-sample performance of the best model (based on the total number of days out
of 1326 days that a particular model had the lowest RMSE) with the average of paramet-
ric models (ParamCHV AV G

N+1 −Models), the average of the triple (M3CHV AV G
N+1 −Models)

hidden layer MLP models, and the average of the triple (L3CHV AV G
N+1 − Models) hidden

layer LSTM models. In Part I: The best model (L3CHV 4N+1) from Table B.2.21 with
ParamCHV AV G

N+1 − Models, M3CHV AV G
N+1 − Models, L3CHV AV G

N+1 − Models, in Part II:
The best model (FMLSCCHVN+1) from Table B.2.22 with ParamCHV AV G

N+1 − Models,
M3CHV AV G

N+1 −Models, in Part III: The best model (HJDCCHVN+1) from Table B.2.23
with ParamCHV AV G

N+1 − Models, L3CHV AV G
N+1 − Models, in Part IV: The best model

(HJDCCHVN+1) from Table B.2.24 with ParamCHV AV G
N+1 −Models. The one-trading-day-

ahead forecast errors of the VN+1 are used to compute the Root Mean Square Error (RMSE).
Forecasts are made for 1,326 trading days, and there are 64 months covered in the sample
using the monthly data. Column I identifies the models. When comparing all models simul-
taneously, column II reports the number of months out of the 64 months that each model has
the smallest RMSE, while column III reports the number of days out of the 1,326 days each
model has the smallest RMSE. Columns IV (lower bound) and V (upper bound) present the
winning percentage out of 64 months for each model, evaluated using the bootstrap sampling
technique. The statistical bootstrap performed (with replacement) at a 95% confidence level
is computed from the monthly RMSE values of the respective models below. Columns VI
(lower bound) and VII (upper bound) present the winning percentage out of 1326 days for
each model computed from bootstrapping the daily RMSE values of the respective models at
a 95% confidence level.

(I) (II) (III) (IV) (V) (VI) (VII)

Model Performance
amongst
all models
(Monthly)

Performance
amongst
all mod-
els
(Daily)

2.5%
lower
bound-
(for
monthly)
(%)

2.5% up-
per
bound-
(for
monthly)
(%)

2.5%
lower
bound-
(for
daily)
(%)

2.5% up-
per
bound-
(for daily)
(%)

Part I: L3CHV 4N+1 v/s ParamCHV AVGN+1 −Models v/s M3CHV AVGN+1 −Models v/s L3CHV AVGN+1 −Models

L3CHV 4N+1 1 369 0% 5% 25% 30%

ParamCHV AVGN+1 −Models 0 153 0% 0% 10% 13%

M3CHV AVGN+1 −Models 63 721 95% 100% 51% 57%

L3CHV AVGN+1 −Models 0 87 0% 0% 5% 8%

Part II: FMLSCHVN+1 v/s ParamCHV AVGN+1 −Models v/s M3CHV AVGN+1 −Models

FMLSCHVN+1 0 384 0% 0% 27% 31%

ParamCHV AVGN+1 −Models 0 287 0% 0% 19% 24%

M3CHV AVGN+1 −Models 64 655 100% 100% 47% 52%

Part III: HJDCHVN+1 v/s ParamCHV AVGN+1 −Models v/s L3CHV AVGN+1 −Models

HJDCHVN+1 63 839 95% 100% 60% 66%

ParamCHV AVGN+1 −Models 1 360 0% 5% 25% 30%

L3CHV AVGN+1 −Models 0 127 0% 0% 8% 11%

Part IV: HJDCHVN+1 v/s ParamCHV AVGN+1 −Models

HJDCHVN+1 63 962 95% 100% 70% 75%

ParamCHV AVGN+1 −Models 1 364 0% 5% 25% 30%
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Table D.1.1: This table presents the summary statistics of the 11 Equity ETFs from which 8 ETF
pairs have been formed and back-tested in Chapter 5

(I) (II) (III) (IV) (V)

Symbol ETF Name Asset Class Total Assets ($, Million) Avg. Daily Volume

QQQ Invesco QQQ Trust Equity 177,010 39,229,028

VWO Vanguard FTSE Emerging Markets ETF Equity 84,079 8,201,537

IWF iShares Russell 1000 Growth ETF Equity 69,189 1,308,928

VO Vanguard Mid-Cap ETF Equity 49,891 550,526

VXUS Vanguard Total International Stock ETF Equity 48,255 2,933,415

ITOT iShares Core S&P Total U.S. Stock Market ETF Equity 40,106 1,463,958

IXUS iShares Core MSCI Total International Stock ETF Equity 29,536 1,460,634

USMV iShares MSCI USA Min Vol Factor ETF Equity 27,559 3,037,369

SCHF Schwab International Equity ETF Equity 26,988 2,650,951

XLE Energy Select Sector SPDR Fund Equity 25,467 28,604,568

SCHB Schwab U.S. Broad Market ETF Equity 21,501 451,023
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Table D.1.2: This table is compartmentalized into IX parts, where each part mentions the inputs used for the respective trading strategies. In Part I, the spread that
is used as an input for these trading strategies is derived from the DIST V 1.1 model, in Part II from the DIST V 1.2 model, in Part III from the DIST V 2 model, in Part
IV from the DIST V 3 model, in Part V from the DIST V 4 model, in Part VI from the JOHANSEN − SPRD model, in Part VIII from the ADF − SPRD model,
in from the DIST V 2 model, in Part VIII from the KALMAN − SPRD model, and in Part IX from the RATIO − SPRD model. Column I identifies the strategy
code, column II, III and IV mentions the trading strategies based on the 30, 50 and 100-day rolling windows, respectively, and Column V mentions the input used for
computing the trading strategies mentioned in column II, III and IV.

(I) (II) (III) (IV) (V)

Strategy
Code

30-day rolling
window based
trading strategies

50-day rolling
window based
trading strategies

100-day rolling
window based
trading strategies

Underlying spread used for
30, 50 and 100-day
rolling window based
trading strategies

Part I: Models based on DISTV 1.1 − SPRD

A1.1 DISTV 1.1 − ZSPRD30D
(3,2) DISTV 1.1 − ZSPRD50D

(3,2) DISTV 1.1 − ZSPRD100D
(3,2)

DISTV 1.1 − SPRD

A1.2 DISTV 1.1 − ZSPRD30D
(3,1) DISTV 1.1 − ZSPRD50D

(3,1) DISTV 1.1 − ZSPRD100D
(3,1)

A1.3 DISTV 1.1 − ZSPRD30D
(3,0.5) DISTV 1.1 − ZSPRD50D

(3,0.5) DISTV 1.1 − ZSPRD100D
(3,0.5)

A1.4 DISTV 1.1 − ZSPRD30D
(2.7,2) DISTV 1.1 − ZSPRD50D

(2.7,2) DISTV 1.1 − ZSPRD100D
(2.7,2)

A1.5 DISTV 1.1 − ZSPRD30D
(2.7,1) DISTV 1.1 − ZSPRD50D

(2.7,1) DISTV 1.1 − ZSPRD100D
(2.7,1)

A1.6 DISTV 1.1 − ZSPRD30D
(2.7,0.5) DISTV 1.1 − ZSPRD50D

(2.7,0.5) DISTV 1.1 − ZSPRD100D
(2.7,0.5)

A2.1 DISTV 1.1 − SPRD30D − SMA(10,20) DISTV 1.1 − SPRD50D − SMA(10,20) DISTV 1.1 − SPRD100D − SMA(10,20)

A2.2 DISTV 1.1 − SPRD30D − EMA(10,20) DISTV 1.1 − SPRD50D − EMA(10,20) DISTV 1.1 − SPRD100D − EMA(10,20)

A2.3 DISTV 1.1 − SPRD30D −MACD(12,26,9) DISTV 1.1 − SPRD50D −MACD(12,26,9) DISTV 1.1 − SPRD100D −MACD(12,26,9)

A2.4 DISTV 1.1 − SPRD30D −RSI(14) DISTV 1.1 − SPRD50D −RSI(14) DISTV 1.1 − SPRD100D −RSI(14)

A2.5 DISTV 1.1 − SPRD30D −BB(20) DISTV 1.1 − SPRD50D −BB(20) DISTV 1.1 − SPRD100D −BB(20)

A3 DISTV 1.1 − SPRD30D −DECTREE DISTV 1.1 − SPRD50D −DECTREE DISTV 1.1 − SPRD100D −DECTREE Discussed in Table D.1.3

A4 DISTV 1.1 − SPRD30D −MLP DISTV 1.1 − SPRD50D −MLP DISTV 1.1 − SPRD100D −MLP Discussed in Table D.1.3

Part II: Models based on DISTV 1.2 − SPRD

B1.1 DISTV 1.2 − ZSPRD30D
(3,2) DISTV 1.2 − ZSPRD50D

(3,2) DISTV 1.2 − ZSPRD100D
(3,2)

DISTV 1.2 − SPRD

B1.2 DISTV 1.2 − ZSPRD30D
(3,1) DISTV 1.2 − ZSPRD50D

(3,1) DISTV 1.2 − ZSPRD100D
(3,1)

B1.3 DISTV 1.2 − ZSPRD30D
(3,0.5) DISTV 1.2 − ZSPRD50D

(3,0.5) DISTV 1.2 − ZSPRD100D
(3,0.5)

B1.4 DISTV 1.2 − ZSPRD30D
(2.7,2) DISTV 1.2 − ZSPRD50D

(2.7,2) DISTV 1.2 − ZSPRD100D
(2.7,2)

B1.5 DISTV 1.2 − ZSPRD30D
(2.7,1) DISTV 1.2 − ZSPRD50D

(2.7,1) DISTV 1.2 − ZSPRD100D
(2.7,1)

B1.6 DISTV 1.2 − ZSPRD30D
(2.7,0.5) DISTV 1.2 − ZSPRD50D

(2.7,0.5) DISTV 1.2 − ZSPRD100D
(2.7,0.5)

B2.1 DISTV 1.2 − SPRD30D − SMA(10,20) DISTV 1.2 − SPRD50D − SMA(10,20) DISTV 1.2 − SPRD100D − SMA(10,20)

B2.2 DISTV 1.2 − SPRD30D − EMA(10,20) DISTV 1.2 − SPRD50D − EMA(10,20) DISTV 1.2 − SPRD100D − EMA(10,20)

B2.3 DISTV 1.2 − SPRD30D −MACD(12,26,9) DISTV 1.2 − SPRD50D −MACD(12,26,9) DISTV 1.2 − SPRD100D −MACD(12,26,9)

B2.4 DISTV 1.2 − SPRD30D −RSI(14) DISTV 1.2 − SPRD50D −RSI(14) DISTV 1.2 − SPRD100D −RSI(14)

B2.5 DISTV 1.2 − SPRD30D −BB(20) DISTV 1.2 − SPRD50D −BB(20) DISTV 1.2 − SPRD100D −BB(20)

B3 DISTV 1.2 − SPRD30D −DECTREE DISTV 1.2 − SPRD50D −DECTREE DISTV 1.2 − SPRD100D −DECTREE Discussed in Table D.1.3

B4 DISTV 1.2 − SPRD30D −MLP DISTV 1.2 − SPRD50D −MLP DISTV 1.2 − SPRD100D −MLP Discussed in Table D.1.3

Part III: Models based on DISTV 2 − SPRD

C1.1 DISTV 2 − ZSPRD30D
(3,2) DISTV 2 − ZSPRD50D

(3,2) DISTV 2 − ZSPRD100D
(3,2)

DISTV 2 − SPRD

C1.2 DISTV 2 − ZSPRD30D
(3,1) DISTV 2 − ZSPRD50D

(3,1) DISTV 2 − ZSPRD100D
(3,1)

C1.3 DISTV 2 − ZSPRD30D
(3,0.5) DISTV 2 − ZSPRD50D

(3,0.5) DISTV 2 − ZSPRD100D
(3,0.5)

C1.4 DISTV 2 − ZSPRD30D
(2.7,2) DISTV 2 − ZSPRD50D

(2.7,2) DISTV 2 − ZSPRD100D
(2.7,2)

C1.5 DISTV 2 − ZSPRD30D
(2.7,1) DISTV 2 − ZSPRD50D

(2.7,1) DISTV 2 − ZSPRD100D
(2.7,1)

C1.6 DISTV 2 − ZSPRD30D
(2.7,0.5) DISTV 2 − ZSPRD50D

(2.7,0.5) DISTV 2 − ZSPRD100D
(2.7,0.5)

C2.1 DISTV 2 − SPRD30D − SMA(10,20) DISTV 2 − SPRD50D − SMA(10,20) DISTV 2 − SPRD100D − SMA(10,20)

C2.2 DISTV 2 − SPRD30D − EMA(10,20) DISTV 2 − SPRD50D − EMA(10,20) DISTV 2 − SPRD100D − EMA(10,20)

C2.3 DISTV 2 − SPRD30D −MACD(12,26,9) DISTV 2 − SPRD50D −MACD(12,26,9) DISTV 2 − SPRD100D −MACD(12,26,9)

C2.4 DISTV 2 − SPRD30D −RSI(14) DISTV 2 − SPRD50D −RSI(14) DISTV 2 − SPRD100D −RSI(14)

C2.5 DISTV 2 − SPRD30D −BB(20) DISTV 2 − SPRD50D −BB(20) DISTV 2 − SPRD100D −BB(20)

C3 DISTV 2 − SPRD30D −DECTREE DISTV 2 − SPRD50D −DECTREE DISTV 2 − SPRD100D −DECTREE Discussed in Table D.1.3

C4 DISTV 2 − SPRD30D −MLP DISTV 2 − SPRD50D −MLP DISTV 2 − SPRD100D −MLP Discussed in Table D.1.3

Part IV: Models based on DISTV 3 − SPRD

D1.1 DISTV 3 − ZSPRD30D
(3,2) DISTV 3 − ZSPRD50D

(3,2) DISTV 3 − ZSPRD100D
(3,2)

DISTV 3 − SPRD

D1.2 DISTV 3 − ZSPRD30D
(3,1) DISTV 3 − ZSPRD50D

(3,1) DISTV 3 − ZSPRD100D
(3,1)

D1.3 DISTV 3 − ZSPRD30D
(3,0.5) DISTV 3 − ZSPRD50D

(3,0.5) DISTV 3 − ZSPRD100D
(3,0.5)

D1.4 DISTV 3 − ZSPRD30D
(2.7,2) DISTV 3 − ZSPRD50D

(2.7,2) DISTV 3 − ZSPRD100D
(2.7,2)

D1.5 DISTV 3 − ZSPRD30D
(2.7,1) DISTV 3 − ZSPRD50D

(2.7,1) DISTV 3 − ZSPRD100D
(2.7,1)

D1.6 DISTV 3 − ZSPRD30D
(2.7,0.5) DISTV 3 − ZSPRD50D

(2.7,0.5) DISTV 3 − ZSPRD100D
(2.7,0.5)

D2.1 DISTV 3 − SPRD30D − SMA(10,20) DISTV 3 − SPRD50D − SMA(10,20) DISTV 3 − SPRD100D − SMA(10,20)

D2.2 DISTV 3 − SPRD30D − EMA(10,20) DISTV 3 − SPRD50D − EMA(10,20) DISTV 3 − SPRD100D − EMA(10,20)

D2.3 DISTV 3 − SPRD30D −MACD(12,26,9) DISTV 3 − SPRD50D −MACD(12,26,9) DISTV 3 − SPRD100D −MACD(12,26,9)

D2.4 DISTV 3 − SPRD30D −RSI(14) DISTV 3 − SPRD50D −RSI(14) DISTV 3 − SPRD100D −RSI(14)

D2.5 DISTV 3 − SPRD30D −BB(20) DISTV 3 − SPRD50D −BB(20) DISTV 3 − SPRD100D −BB(20)

D3 DISTV 3 − SPRD30D −DECTREE DISTV 3 − SPRD50D −DECTREE DISTV 3 − SPRD100D −DECTREE Discussed in Table D.1.3

D4 DISTV 3 − SPRD30D −MLP DISTV 3 − SPRD50D −MLP DISTV 3 − SPRD100D −MLP Discussed in Table D.1.3

Part V: Models based on DISTV 4 − SPRD

E1.1 DISTV 4 − ZSPRD30D
(3,2) DISTV 4 − ZSPRD50D

(3,2) DISTV 4 − ZSPRD100D
(3,2)

DISTV 4 − SPRD

E1.2 DISTV 4 − ZSPRD30D
(3,1) DISTV 4 − ZSPRD50D

(3,1) DISTV 4 − ZSPRD100D
(3,1)

E1.3 DISTV 4 − ZSPRD30D
(3,0.5) DISTV 4 − ZSPRD50D

(3,0.5) DISTV 4 − ZSPRD100D
(3,0.5)

E1.4 DISTV 4 − ZSPRD30D
(2.7,2) DISTV 4 − ZSPRD50D

(2.7,2) DISTV 4 − ZSPRD100D
(2.7,2)

E1.5 DISTV 4 − ZSPRD30D
(2.7,1) DISTV 4 − ZSPRD50D

(2.7,1) DISTV 4 − ZSPRD100D
(2.7,1)

E1.6 DISTV 4 − ZSPRD30D
(2.7,0.5) DISTV 4 − ZSPRD50D

(2.7,0.5) DISTV 4 − ZSPRD100D
(2.7,0.5)

E2.1 DISTV 4 − SPRD30D − SMA(10,20) DISTV 4 − SPRD50D − SMA(10,20) DISTV 4 − SPRD100D − SMA(10,20)

E2.2 DISTV 4 − SPRD30D − EMA(10,20) DISTV 4 − SPRD50D − EMA(10,20) DISTV 4 − SPRD100D − EMA(10,20)

E2.3 DISTV 4 − SPRD30D −MACD(12,26,9) DISTV 4 − SPRD50D −MACD(12,26,9) DISTV 4 − SPRD100D −MACD(12,26,9)

E2.4 DISTV 4 − SPRD30D −RSI(14) DISTV 4 − SPRD50D −RSI(14) DISTV 4 − SPRD100D −RSI(14)

E2.5 DISTV 4 − SPRD30D −BB(20) DISTV 4 − SPRD50D −BB(20) DISTV 4 − SPRD100D −BB(20)

E3 DISTV 4 − SPRD30D −DECTREE DISTV 4 − SPRD50D −DECTREE DISTV 4 − SPRD100D −DECTREE Discussed in Table D.1.3

E4 DISTV 4 − SPRD30D −MLP DISTV 4 − SPRD50D −MLP DISTV 4 − SPRD100D −MLP Discussed in Table D.1.3

Part VI: Models based on JOHANSEN − SPRD

F1.1 JOHANSEN − ZSPRD30D
(3,2) JOHANSEN − ZSPRD50D

(3,2) JOHANSEN − ZSPRD100D
(3,2)

JOHANSEN − SPRD

F1.2 JOHANSEN − ZSPRD30D
(3,1) JOHANSEN − ZSPRD50D

(3,1) JOHANSEN − ZSPRD100D
(3,1)

F1.3 JOHANSEN − ZSPRD30D
(3,0.5) JOHANSEN − ZSPRD50D

(3,0.5) JOHANSEN − ZSPRD100D
(3,0.5)

F1.4 JOHANSEN − ZSPRD30D
(2.7,2) JOHANSEN − ZSPRD50D

(2.7,2) JOHANSEN − ZSPRD100D
(2.7,2)

F1.5 JOHANSEN − ZSPRD30D
(2.7,1) JOHANSEN − ZSPRD50D

(2.7,1) JOHANSEN − ZSPRD100D
(2.7,1)

F1.6 JOHANSEN − ZSPRD30D
(2.7,0.5) JOHANSEN − ZSPRD50D

(2.7,0.5) JOHANSEN − ZSPRD100D
(2.7,0.5)

F2.1 JOHANSEN − SPRD30D − SMA(10,20) JOHANSEN − SPRD50D − SMA(10,20) JOHANSEN − SPRD100D − SMA(10,20)

F2.2 JOHANSEN − SPRD30D − EMA(10,20) JOHANSEN − SPRD50D − EMA(10,20) JOHANSEN − SPRD100D − EMA(10,20)

F2.3 JOHANSEN − SPRD30D −MACD(12,26,9) JOHANSEN − SPRD50D −MACD(12,26,9) JOHANSEN − SPRD100D −MACD(12,26,9)

F2.4 JOHANSEN − SPRD30D −RSI(14) JOHANSEN − SPRD50D −RSI(14) JOHANSEN − SPRD100D −RSI(14)

F2.5 JOHANSEN − SPRD30D −BB(20) JOHANSEN − SPRD50D −BB(20) JOHANSEN − SPRD100D −BB(20)

F3 JOHANSEN − SPRD30D −DECTREE JOHANSEN − SPRD50D −DECTREE JOHANSEN − SPRD100D −DECTREE Discussed in Table D.1.3

F4 JOHANSEN − SPRD30D −MLP JOHANSEN − SPRD50D −MLP JOHANSEN − SPRD100D −MLP Discussed in Table D.1.3

Part VII: Models based on ADF − SPRD

G1.1 ADF − ZSPRD30D
(3,2) ADF − ZSPRD50D

(3,2) ADF − ZSPRD100D
(3,2)

ADF − SPRD

G1.2 ADF − ZSPRD30D
(3,1) ADF − ZSPRD50D

(3,1) ADF − ZSPRD100D
(3,1)

G1.3 ADF − ZSPRD30D
(3,0.5) ADF − ZSPRD50D

(3,0.5) ADF − ZSPRD100D
(3,0.5)

G1.4 ADF − ZSPRD30D
(2.7,2) ADF − ZSPRD50D

(2.7,2) ADF − ZSPRD100D
(2.7,2)

G1.5 ADF − ZSPRD30D
(2.7,1) ADF − ZSPRD50D

(2.7,1) ADF − ZSPRD100D
(2.7,1)

G1.6 ADF − ZSPRD30D
(2.7,0.5) ADF − ZSPRD50D

(2.7,0.5) ADF − ZSPRD100D
(2.7,0.5)

G2.1 ADF − SPRD30D − SMA(10,20) ADF − SPRD50D − SMA(10,20) ADF − SPRD100D − SMA(10,20)

G2.2 ADF − SPRD30D − EMA(10,20) ADF − SPRD50D − EMA(10,20) ADF − SPRD100D − EMA(10,20)

G2.3 ADF − SPRD30D −MACD(12,26,9) ADF − SPRD50D −MACD(12,26,9) ADF − SPRD100D −MACD(12,26,9)

G2.4 ADF − SPRD30D −RSI(14) ADF − SPRD50D −RSI(14) ADF − SPRD100D −RSI(14)

G2.5 ADF − SPRD30D −BB(20) ADF − SPRD50D −BB(20) ADF − SPRD100D −BB(20)

G3 ADF − SPRD30D −DECTREE ADF − SPRD50D −DECTREE ADF − SPRD100D −DECTREE Discussed in Table D.1.3

G4 ADF − SPRD30D −MLP ADF − SPRD50D −MLP ADF − SPRD100D −MLP Discussed in Table D.1.3

Part VIII: Models based on KALMAN − SPRD

H1.1 KALMAN − ZSPRD30D
(3,2) KALMAN − ZSPRD50D

(3,2) KALMAN − ZSPRD100D
(3,2)

KALMAN − SPRD

H1.2 KALMAN − ZSPRD30D
(3,1) KALMAN − ZSPRD50D

(3,1) KALMAN − ZSPRD100D
(3,1)

H1.3 KALMAN − ZSPRD30D
(3,0.5) KALMAN − ZSPRD50D

(3,0.5) KALMAN − ZSPRD100D
(3,0.5)

H1.4 KALMAN − ZSPRD30D
(2.7,2) KALMAN − ZSPRD50D

(2.7,2) KALMAN − ZSPRD100D
(2.7,2)

H1.5 KALMAN − ZSPRD30D
(2.7,1) KALMAN − ZSPRD50D

(2.7,1) KALMAN − ZSPRD100D
(2.7,1)

H1.6 KALMAN − ZSPRD30D
(2.7,0.5) KALMAN − ZSPRD50D

(2.7,0.5) KALMAN − ZSPRD100D
(2.7,0.5)

H2.1 KALMAN − SPRD30D − SMA(10,20) KALMAN − SPRD50D − SMA(10,20) KALMAN − SPRD100D − SMA(10,20)

H2.2 KALMAN − SPRD30D − EMA(10,20) KALMAN − SPRD50D − EMA(10,20) KALMAN − SPRD100D − EMA(10,20)

H2.3 KALMAN − SPRD30D −MACD(12,26,9) KALMAN − SPRD50D −MACD(12,26,9) KALMAN − SPRD100D −MACD(12,26,9)

H2.4 KALMAN − SPRD30D −RSI(14) KALMAN − SPRD50D −RSI(14) KALMAN − SPRD100D −RSI(14)

H2.5 KALMAN − SPRD30D −BB(20) KALMAN − SPRD50D −BB(20) KALMAN − SPRD100D −BB(20)

H3 KALMAN − SPRD30D −DECTREE KALMAN − SPRD50D −DECTREE KALMAN − SPRD100D −DECTREE Discussed in Table D.1.3

H4 KALMAN − SPRD30D −MLP KALMAN − SPRD50D −MLP KALMAN − SPRD100D −MLP Discussed in Table D.1.3

Part IX: Models based on RATIO − SPRD

I1.1 RATIO − ZSPRD30D
(3,2) RATIO − ZSPRD50D

(3,2) RATIO − ZSPRD100D
(3,2)

RATIO − SPRD

I1.2 RATIO − ZSPRD30D
(3,1) RATIO − ZSPRD50D

(3,1) RATIO − ZSPRD100D
(3,1)

I1.3 RATIO − ZSPRD30D
(3,0.5) RATIO − ZSPRD50D

(3,0.5) RATIO − ZSPRD100D
(3,0.5)

I1.4 RATIO − ZSPRD30D
(2.7,2) RATIO − ZSPRD50D

(2.7,2) RATIO − ZSPRD100D
(2.7,2)

I1.5 RATIO − ZSPRD30D
(2.7,1) RATIO − ZSPRD50D

(2.7,1) RATIO − ZSPRD100D
(2.7,1)

I1.6 RATIO − ZSPRD30D
(2.7,0.5) RATIO − ZSPRD50D

(2.7,0.5) RATIO − ZSPRD100D
(2.7,0.5)

I2.1 RATIO − SPRD30D − SMA(10,20) RATIO − SPRD50D − SMA(10,20) RATIO − SPRD100D − SMA(10,20)

I2.2 RATIO − SPRD30D − EMA(10,20) RATIO − SPRD50D − EMA(10,20) RATIO − SPRD100D − EMA(10,20)

I2.3 RATIO − SPRD30D −MACD(12,26,9) RATIO − SPRD50D −MACD(12,26,9) RATIO − SPRD100D −MACD(12,26,9)

I2.4 RATIO − SPRD30D −RSI(14) RATIO − SPRD50D −RSI(14) RATIO − SPRD100D −RSI(14)

I2.5 RATIO − SPRD30D −BB(20) RATIO − SPRD50D −BB(20) RATIO − SPRD100D −BB(20)

I3 RATIO − SPRD30D −DECTREE RATIO − SPRD50D −DECTREE RATIO − SPRD100D −DECTREE Discussed in Table D.1.3

I4 RATIO − SPRD30D −MLP RATIO − SPRD50D −MLP RATIO − SPRD100D −MLP Discussed in Table D.1.3
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Table D.1.3: This table is compartmentalized into IX parts, each mentioning the inputs used for the respective ML-based trading strategies. Column I identifies the strategy code, column II the rolling window used for these models, column III the inputs used in the train and test set of
these ML-based trading strategies, and column IV the target variable used for these ML-based trading strategies.

(I) (II) (III) (IV) (V)

Strategy
Code

Rolling
Window
(in days)

Train and Test Set Input Variables Target Set Input Variables Note

Part I: A3 and A4 models

A3 and A4 30 CATEG(PnL(A2.1), CATEG(PnL(A2.2), CATEG(PnL(A2.3), CATEG(PnL(A2.4),
CATEG(PnL(A2.5), CATEG(DifferenceinCloseRet(SYM1-SYM2)),
CATEG(PnL(CLS-SYM1.1), CATEG(PnL(CLS-SYM1.2), CATEG(PnL(CLS-SYM1.3),
CATEG(PnL(CLS-SYM1.4), CATEG(PnL(CLS-SYM1.5), CATEG(PnL(CLS-SYM2.1),
CATEG(PnL(CLS-SYM2.2), CATEG(PnL(CLS-SYM2.3), CATEG(PnL(CLS-SYM2.4) ,
CATEG(PnL(CLS-SYM2.5)

TARGET 30D
A3,A4 = LOGIC(CATEG(AVG(PnL(A1.1), PnL(A1.2), PnL(A1.3), PnL(A1.4),

PnL(A1.5), PnL(A1.6)), CATEG(DISTV 1.1 − SPRD30D))
The train/test and target input variables used in columns III and IV belong to the 30 day rolling window.
ETF pairs belonging to the 30 day rolling window are tables D.2.1, D.2.10, D.2.13, D.2.19, D.2.4, D.2.7,
D.2.16, D.2.22

A3 and A4 50 CATEG(PnL(A2.1), CATEG(PnL(A2.2), CATEG(PnL(A2.3), CATEG(PnL(A2.4),
CATEG(PnL(A2.5), CATEG(DifferenceinCloseRet(SYM1-SYM2)),
CATEG(PnL(CLS-SYM1.1), CATEG(PnL(CLS-SYM1.2), CATEG(PnL(CLS-SYM1.3),
CATEG(PnL(CLS-SYM1.4), CATEG(PnL(CLS-SYM1.5), CATEG(PnL(CLS-SYM2.1),
CATEG(PnL(CLS-SYM2.2), CATEG(PnL(CLS-SYM2.3), CATEG(PnL(CLS-SYM2.4) ,
CATEG(PnL(CLS-SYM2.5)

TARGET 50D
A3,A4 = LOGIC(CATEG(AVG(PnL(A1.1), PnL(A1.2), PnL(A1.3), PnL(A1.4),

PnL(A1.5), PnL(A1.6)), CATEG(DISTV 1.1 − SPRD50D))
The train/test and target input variables used in columns III and IV belong to the 50 day rolling window.
ETF pairs belonging to the 50 day rolling window are tables D.2.2, D.2.11, D.2.14, D.2.20, D.2.5, D.2.8,
D.2.17, D.2.23

A3 and A4 100 CATEG(PnL(A2.1), CATEG(PnL(A2.2), CATEG(PnL(A2.3), CATEG(PnL(A2.4),
CATEG(PnL(A2.5), CATEG(DifferenceinCloseRet(SYM1-SYM2)),
CATEG(PnL(CLS-SYM1.1), CATEG(PnL(CLS-SYM1.2), CATEG(PnL(CLS-SYM1.3),
CATEG(PnL(CLS-SYM1.4), CATEG(PnL(CLS-SYM1.5), CATEG(PnL(CLS-SYM2.1),
CATEG(PnL(CLS-SYM2.2), CATEG(PnL(CLS-SYM2.3), CATEG(PnL(CLS-SYM2.4) ,
CATEG(PnL(CLS-SYM2.5)

TARGET 100D
A3,A4 = LOGIC(CATEG(AVG(PnL(A1.1), PnL(A1.2), PnL(A1.3), PnL(A1.4),

PnL(A1.5), PnL(A1.6)), CATEG(DISTV 1.1 − SPRD100D))
The train/test and target input variables used in columns III and IV belong to the 100 day rolling window.
ETF pairs belonging to the 100 day rolling window are tables D.2.3, D.2.12, D.2.15, D.2.21, D.2.6, D.2.9,
D.2.18, D.2.24

Part II: B3 and B4 models

B3 and B4 30 CATEG(PnL(B2.1), CATEG(PnL(B2.2), CATEG(PnL(B2.3), CATEG(PnL(B2.4),
CATEG(PnL(B2.5), CATEG(DifferenceinCloseRet(SYM1-SYM2)),
CATEG(PnL(CLS-SYM1.1), CATEG(PnL(CLS-SYM1.2), CATEG(PnL(CLS-SYM1.3),
CATEG(PnL(CLS-SYM1.4), CATEG(PnL(CLS-SYM1.5), CATEG(PnL(CLS-SYM2.1),
CATEG(PnL(CLS-SYM2.2), CATEG(PnL(CLS-SYM2.3), CATEG(PnL(CLS-SYM2.4) ,
CATEG(PnL(CLS-SYM2.5)

TARGET 30D
B3,B4 = LOGIC(CATEG(AVG(PnL(B1.1), PnL(B1.2), PnL(B1.3), PnL(B1.4),

PnL(B1.5), PnL(B1.6)), CATEG(DISTV 1.2 − SPRD30D))
The train/test and target input variables used in columns III and IV belong to the 30 day rolling window.
ETF pairs belonging to the 30 day rolling window are tables D.2.1, D.2.10, D.2.13, D.2.19, D.2.4, D.2.7,
D.2.16, D.2.22

B3 and B4 50 CATEG(PnL(B2.1), CATEG(PnL(B2.2), CATEG(PnL(B2.3), CATEG(PnL(B2.4),
CATEG(PnL(B2.5), CATEG(DifferenceinCloseRet(SYM1-SYM2)),
CATEG(PnL(CLS-SYM1.1), CATEG(PnL(CLS-SYM1.2), CATEG(PnL(CLS-SYM1.3),
CATEG(PnL(CLS-SYM1.4), CATEG(PnL(CLS-SYM1.5), CATEG(PnL(CLS-SYM2.1),
CATEG(PnL(CLS-SYM2.2), CATEG(PnL(CLS-SYM2.3), CATEG(PnL(CLS-SYM2.4) ,
CATEG(PnL(CLS-SYM2.5)

TARGET 50D
B3,B4 = LOGIC(CATEG(AVG(PnL(B1.1), PnL(B1.2), PnL(B1.3), PnL(B1.4),

PnL(B1.5), PnL(B1.6)), CATEG(DISTV 1.2 − SPRD50D))
The train/test and target input variables used in columns III and IV belong to the 50 day rolling window.
ETF pairs belonging to the 50 day rolling window are tables D.2.2, D.2.11, D.2.14, D.2.20, D.2.5, D.2.8,
D.2.17, D.2.23

B3 and B4 100 CATEG(PnL(B2.1), CATEG(PnL(B2.2), CATEG(PnL(B2.3), CATEG(PnL(B2.4),
CATEG(PnL(B2.5), CATEG(DifferenceinCloseRet(SYM1-SYM2)),
CATEG(PnL(CLS-SYM1.1), CATEG(PnL(CLS-SYM1.2), CATEG(PnL(CLS-SYM1.3),
CATEG(PnL(CLS-SYM1.4), CATEG(PnL(CLS-SYM1.5), CATEG(PnL(CLS-SYM2.1),
CATEG(PnL(CLS-SYM2.2), CATEG(PnL(CLS-SYM2.3), CATEG(PnL(CLS-SYM2.4) ,
CATEG(PnL(CLS-SYM2.5)

TARGET 100D
B3,B4 = LOGIC(CATEG(AVG(PnL(B1.1), PnL(B1.2), PnL(B1.3), PnL(B1.4),

PnL(B1.5), PnL(B1.6)), CATEG(DISTV 1.2 − SPRD100D))
The train/test and target input variables used in columns III and IV belong to the 100 day rolling window.
ETF pairs belonging to the 100 day rolling window are tables D.2.3, D.2.12, D.2.15, D.2.21, D.2.6, D.2.9,
D.2.18, D.2.24

Part III: C3 and C4 models

C3 and C4 30 CATEG(PnL(C2.1), CATEG(PnL(C2.2), CATEG(PnL(C2.3), CATEG(PnL(C2.4),
CATEG(PnL(C2.5), CATEG(DifferenceinCloseRet(SYM1-SYM2)),
CATEG(PnL(CLS-SYM1.1), CATEG(PnL(CLS-SYM1.2), CATEG(PnL(CLS-SYM1.3),
CATEG(PnL(CLS-SYM1.4), CATEG(PnL(CLS-SYM1.5), CATEG(PnL(CLS-SYM2.1),
CATEG(PnL(CLS-SYM2.2), CATEG(PnL(CLS-SYM2.3), CATEG(PnL(CLS-SYM2.4) ,
CATEG(PnL(CLS-SYM2.5)

TARGET 30D
C3,C4 = LOGIC(CATEG(AVG(PnL(C1.1), PnL(C1.2), PnL(C1.3), PnL(C1.4),

PnL(C1.5), PnL(C1.6)), CATEG(DISTV 2 − SPRD30D))
The train/test and target input variables used in columns III and IV belong to the 30 day rolling window.
ETF pairs belonging to the 30 day rolling window are tables D.2.1, D.2.10, D.2.13, D.2.19, D.2.4, D.2.7,
D.2.16, D.2.22

C3 and C4 50 CATEG(PnL(C2.1), CATEG(PnL(C2.2), CATEG(PnL(C2.3), CATEG(PnL(C2.4),
CATEG(PnL(C2.5), CATEG(DifferenceinCloseRet(SYM1-SYM2)),
CATEG(PnL(CLS-SYM1.1), CATEG(PnL(CLS-SYM1.2), CATEG(PnL(CLS-SYM1.3),
CATEG(PnL(CLS-SYM1.4), CATEG(PnL(CLS-SYM1.5), CATEG(PnL(CLS-SYM2.1),
CATEG(PnL(CLS-SYM2.2), CATEG(PnL(CLS-SYM2.3), CATEG(PnL(CLS-SYM2.4) ,
CATEG(PnL(CLS-SYM2.5)

TARGET 50D
C3,C4 = LOGIC(CATEG(AVG(PnL(C1.1), PnL(C1.2), PnL(C1.3), PnL(C1.4),

PnL(C1.5), PnL(C1.6)), CATEG(DISTV 2 − SPRD50D))
The train/test and target input variables used in columns III and IV belong to the 50 day rolling window.
ETF pairs belonging to the 50 day rolling window are tables D.2.2, D.2.11, D.2.14, D.2.20, D.2.5, D.2.8,
D.2.17, D.2.23

C3 and C4 100 CATEG(PnL(C2.1), CATEG(PnL(C2.2), CATEG(PnL(C2.3), CATEG(PnL(C2.4),
CATEG(PnL(C2.5), CATEG(DifferenceinCloseRet(SYM1-SYM2)),
CATEG(PnL(CLS-SYM1.1), CATEG(PnL(CLS-SYM1.2), CATEG(PnL(CLS-SYM1.3),
CATEG(PnL(CLS-SYM1.4), CATEG(PnL(CLS-SYM1.5), CATEG(PnL(CLS-SYM2.1),
CATEG(PnL(CLS-SYM2.2), CATEG(PnL(CLS-SYM2.3), CATEG(PnL(CLS-SYM2.4) ,
CATEG(PnL(CLS-SYM2.5)

TARGET 100D
C3,C4 = LOGIC(CATEG(AVG(PnL(C1.1), PnL(C1.2), PnL(C1.3), PnL(C1.4),

PnL(C1.5), PnL(C1.6)), CATEG(DISTV 2 − SPRD100D))
The train/test and target input variables used in columns III and IV belong to the 100 day rolling window.
ETF pairs belonging to the 100 day rolling window are tables D.2.3, D.2.12, D.2.15, D.2.21, D.2.6, D.2.9,
D.2.18, D.2.24

Part IV: D3 and D4 models

D3 and D4 30 CATEG(PnL(D2.1), CATEG(PnL(D2.2), CATEG(PnL(D2.3), CATEG(PnL(D2.4),
CATEG(PnL(D2.5), CATEG(DifferenceinCloseRet(SYM1-SYM2)),
CATEG(PnL(CLS-SYM1.1), CATEG(PnL(CLS-SYM1.2), CATEG(PnL(CLS-SYM1.3),
CATEG(PnL(CLS-SYM1.4), CATEG(PnL(CLS-SYM1.5), CATEG(PnL(CLS-SYM2.1),
CATEG(PnL(CLS-SYM2.2), CATEG(PnL(CLS-SYM2.3), CATEG(PnL(CLS-SYM2.4) ,
CATEG(PnL(CLS-SYM2.5)

TARGET 30D
D3,D4 = LOGIC(CATEG(AVG(PnL(D1.1), PnL(D1.2), PnL(D1.3), PnL(D1.4),

PnL(D1.5), PnL(D1.6)), CATEG(DISTV 3 − SPRD30D))
The train/test and target input variables used in columns III and IV belong to the 30 day rolling window.
ETF pairs belonging to the 30 day rolling window are tables D.2.1, D.2.10, D.2.13, D.2.19, D.2.4, D.2.7,
D.2.16, D.2.22

D3 and D4 50 CATEG(PnL(D2.1), CATEG(PnL(D2.2), CATEG(PnL(D2.3), CATEG(PnL(D2.4),
CATEG(PnL(D2.5), CATEG(DifferenceinCloseRet(SYM1-SYM2)),
CATEG(PnL(CLS-SYM1.1), CATEG(PnL(CLS-SYM1.2), CATEG(PnL(CLS-SYM1.3),
CATEG(PnL(CLS-SYM1.4), CATEG(PnL(CLS-SYM1.5), CATEG(PnL(CLS-SYM2.1),
CATEG(PnL(CLS-SYM2.2), CATEG(PnL(CLS-SYM2.3), CATEG(PnL(CLS-SYM2.4) ,
CATEG(PnL(CLS-SYM2.5)

TARGET 50D
D3,D4 = LOGIC(CATEG(AVG(PnL(D1.1), PnL(D1.2), PnL(D1.3), PnL(D1.4),

PnL(D1.5), PnL(D1.6)), CATEG(DISTV 3 − SPRD50D))
The train/test and target input variables used in columns III and IV belong to the 50 day rolling window.
ETF pairs belonging to the 50 day rolling window are tables D.2.2, D.2.11, D.2.14, D.2.20, D.2.5, D.2.8,
D.2.17, D.2.23

D3 and D4 100 CATEG(PnL(D2.1), CATEG(PnL(D2.2), CATEG(PnL(D2.3), CATEG(PnL(D2.4),
CATEG(PnL(D2.5), CATEG(DifferenceinCloseRet(SYM1-SYM2)),
CATEG(PnL(CLS-SYM1.1), CATEG(PnL(CLS-SYM1.2), CATEG(PnL(CLS-SYM1.3),
CATEG(PnL(CLS-SYM1.4), CATEG(PnL(CLS-SYM1.5), CATEG(PnL(CLS-SYM2.1),
CATEG(PnL(CLS-SYM2.2), CATEG(PnL(CLS-SYM2.3), CATEG(PnL(CLS-SYM2.4) ,
CATEG(PnL(CLS-SYM2.5)

TARGET 100D
D3,D4 = LOGIC(CATEG(AVG(PnL(D1.1), PnL(D1.2), PnL(D1.3), PnL(D1.4),

PnL(D1.5), PnL(D1.6)), CATEG(DISTV 3 − SPRD100D))
The train/test and target input variables used in columns III and IV belong to the 100 day rolling window.
ETF pairs belonging to the 100 day rolling window are tables D.2.3, D.2.12, D.2.15, D.2.21, D.2.6, D.2.9,
D.2.18, D.2.24

Part V: E3 and E4 models

E3 and E4 30 CATEG(PnL(E2.1), CATEG(PnL(E2.2), CATEG(PnL(E2.3), CATEG(PnL(E2.4),
CATEG(PnL(E2.5), CATEG(DifferenceinCloseRet(SYM1-SYM2)),
CATEG(PnL(CLS-SYM1.1), CATEG(PnL(CLS-SYM1.2), CATEG(PnL(CLS-SYM1.3),
CATEG(PnL(CLS-SYM1.4), CATEG(PnL(CLS-SYM1.5), CATEG(PnL(CLS-SYM2.1),
CATEG(PnL(CLS-SYM2.2), CATEG(PnL(CLS-SYM2.3), CATEG(PnL(CLS-SYM2.4) ,
CATEG(PnL(CLS-SYM2.5)

TARGET 30D
E3,E4 = LOGIC(CATEG(AVG(PnL(E1.1), PnL(E1.2), PnL(E1.3), PnL(E1.4),

PnL(E1.5), PnL(E1.6)), CATEG(DISTV 4 − SPRD30D))
The train/test and target input variables used in columns III and IV belong to the 30 day rolling window.
ETF pairs belonging to the 30 day rolling window are tables D.2.1, D.2.10, D.2.13, D.2.19, D.2.4, D.2.7,
D.2.16, D.2.22

E3 and E4 50 CATEG(PnL(E2.1), CATEG(PnL(E2.2), CATEG(PnL(E2.3), CATEG(PnL(E2.4),
CATEG(PnL(E2.5), CATEG(DifferenceinCloseRet(SYM1-SYM2)),
CATEG(PnL(CLS-SYM1.1), CATEG(PnL(CLS-SYM1.2), CATEG(PnL(CLS-SYM1.3),
CATEG(PnL(CLS-SYM1.4), CATEG(PnL(CLS-SYM1.5), CATEG(PnL(CLS-SYM2.1),
CATEG(PnL(CLS-SYM2.2), CATEG(PnL(CLS-SYM2.3), CATEG(PnL(CLS-SYM2.4) ,
CATEG(PnL(CLS-SYM2.5)

TARGET 50D
E3,E4 = LOGIC(CATEG(AVG(PnL(E1.1), PnL(E1.2), PnL(E1.3), PnL(E1.4),

PnL(E1.5), PnL(E1.6)), CATEG(DISTV 4 − SPRD50D))
The train/test and target input variables used in columns III and IV belong to the 50 day rolling window.
ETF pairs belonging to the 50 day rolling window are tables D.2.2, D.2.11, D.2.14, D.2.20, D.2.5, D.2.8,
D.2.17, D.2.23

E3 and E4 100 CATEG(PnL(E2.1), CATEG(PnL(E2.2), CATEG(PnL(E2.3), CATEG(PnL(E2.4),
CATEG(PnL(E2.5), CATEG(DifferenceinCloseRet(SYM1-SYM2)),
CATEG(PnL(CLS-SYM1.1), CATEG(PnL(CLS-SYM1.2), CATEG(PnL(CLS-SYM1.3),
CATEG(PnL(CLS-SYM1.4), CATEG(PnL(CLS-SYM1.5), CATEG(PnL(CLS-SYM2.1),
CATEG(PnL(CLS-SYM2.2), CATEG(PnL(CLS-SYM2.3), CATEG(PnL(CLS-SYM2.4) ,
CATEG(PnL(CLS-SYM2.5)

TARGET 100D
E3,E4 = LOGIC(CATEG(AVG(PnL(E1.1), PnL(E1.2), PnL(E1.3), PnL(E1.4),

PnL(E1.5), PnL(E1.6)), CATEG(DISTV 4 − SPRD100D))
The train/test and target input variables used in columns III and IV belong to the 100 day rolling window.
ETF pairs belonging to the 100 day rolling window are tables D.2.3, D.2.12, D.2.15, D.2.21, D.2.6, D.2.9,
D.2.18, D.2.24

Part VI: F3 and F4 models

F3 and F4 30 CATEG(PnL(F2.1), CATEG(PnL(F2.2), CATEG(PnL(F2.3), CATEG(PnL(F2.4),
CATEG(PnL(F2.5), CATEG(DifferenceinCloseRet(SYM1-SYM2)), CATEG(PnL(CLS-SYM1.1),
CATEG(PnL(CLS-SYM1.2), CATEG(PnL(CLS-SYM1.3), CATEG(PnL(CLS-SYM1.4),
CATEG(PnL(CLS-SYM1.5), CATEG(PnL(CLS-SYM2.1), CATEG(PnL(CLS-SYM2.2),
CATEG(PnL(CLS-SYM2.3), CATEG(PnL(CLS-SYM2.4) , CATEG(PnL(CLS-SYM2.5)

TARGET 30D
F3,F4 = LOGIC(CATEG(AVG(PnL(F1.1), PnL(F1.2), PnL(F1.3), PnL(F1.4),

PnL(F1.5), PnL(F1.6)), CATEG(JOHANSEN − SPRD30D))
The train/test and target input variables used in columns III and IV belong to the 30 day rolling window.
ETF pairs belonging to the 30 day rolling window are tables D.2.1, D.2.10, D.2.13, D.2.19, D.2.4, D.2.7,
D.2.16, D.2.22

F3 and F4 50 CATEG(PnL(F2.1), CATEG(PnL(F2.2), CATEG(PnL(F2.3), CATEG(PnL(F2.4),
CATEG(PnL(F2.5), CATEG(DifferenceinCloseRet(SYM1-SYM2)), CATEG(PnL(CLS-SYM1.1),
CATEG(PnL(CLS-SYM1.2), CATEG(PnL(CLS-SYM1.3), CATEG(PnL(CLS-SYM1.4),
CATEG(PnL(CLS-SYM1.5), CATEG(PnL(CLS-SYM2.1), CATEG(PnL(CLS-SYM2.2),
CATEG(PnL(CLS-SYM2.3), CATEG(PnL(CLS-SYM2.4) , CATEG(PnL(CLS-SYM2.5)

TARGET 50D
F3,F4 = LOGIC(CATEG(AVG(PnL(F1.1), PnL(F1.2), PnL(F1.3), PnL(F1.4),

PnL(F1.5), PnL(F1.6)), CATEG(JOHANSEN − SPRD50D))
The train/test and target input variables used in columns III and IV belong to the 50 day rolling window.
ETF pairs belonging to the 50 day rolling window are tables D.2.2, D.2.11, D.2.14, D.2.20, D.2.5, D.2.8,
D.2.17, D.2.23

F3 and F4 100 CATEG(PnL(F2.1), CATEG(PnL(F2.2), CATEG(PnL(F2.3), CATEG(PnL(F2.4),
CATEG(PnL(F2.5), CATEG(DifferenceinCloseRet(SYM1-SYM2)), CATEG(PnL(CLS-SYM1.1),
CATEG(PnL(CLS-SYM1.2), CATEG(PnL(CLS-SYM1.3), CATEG(PnL(CLS-SYM1.4),
CATEG(PnL(CLS-SYM1.5), CATEG(PnL(CLS-SYM2.1), CATEG(PnL(CLS-SYM2.2),
CATEG(PnL(CLS-SYM2.3), CATEG(PnL(CLS-SYM2.4) , CATEG(PnL(CLS-SYM2.5)

TARGET 100D
F3,F4 = LOGIC(CATEG(AVG(PnL(F1.1), PnL(F1.2), PnL(F1.3), PnL(F1.4),

PnL(F1.5), PnL(F1.6)), CATEG(JOHANSEN − SPRD100D))
The train/test and target input variables used in columns III and IV belong to the 100 day rolling window.
ETF pairs belonging to the 100 day rolling window are tables D.2.3, D.2.12, D.2.15, D.2.21, D.2.6, D.2.9,
D.2.18, D.2.24

Part VII: G3 and G4 models

G3 and G4 30 CATEG(PnL(G2.1), CATEG(PnL(G2.2), CATEG(PnL(G2.3), CATEG(PnL(G2.4),
CATEG(PnL(G2.5), CATEG(DifferenceinCloseRet(SYM1-SYM2)),
CATEG(PnL(CLS-SYM1.1), CATEG(PnL(CLS-SYM1.2), CATEG(PnL(CLS-SYM1.3),
CATEG(PnL(CLS-SYM1.4), CATEG(PnL(CLS-SYM1.5), CATEG(PnL(CLS-SYM2.1),
CATEG(PnL(CLS-SYM2.2), CATEG(PnL(CLS-SYM2.3), CATEG(PnL(CLS-SYM2.4) ,
CATEG(PnL(CLS-SYM2.5)

TARGET 30D
G3,G4 = LOGIC(CATEG(AVG(PnL(G1.1), PnL(G1.2), PnL(G1.3), PnL(G1.4),

PnL(G1.5), PnL(G1.6)), CATEG(ADF − SPRD30D))
The train/test and target input variables used in columns III and IV belong to the 30 day rolling window.
ETF pairs belonging to the 30 day rolling window are tables D.2.1, D.2.10, D.2.13, D.2.19, D.2.4, D.2.7,
D.2.16, D.2.22

G3 and G4 50 CATEG(PnL(G2.1), CATEG(PnL(G2.2), CATEG(PnL(G2.3), CATEG(PnL(G2.4),
CATEG(PnL(G2.5), CATEG(DifferenceinCloseRet(SYM1-SYM2)),
CATEG(PnL(CLS-SYM1.1), CATEG(PnL(CLS-SYM1.2), CATEG(PnL(CLS-SYM1.3),
CATEG(PnL(CLS-SYM1.4), CATEG(PnL(CLS-SYM1.5), CATEG(PnL(CLS-SYM2.1),
CATEG(PnL(CLS-SYM2.2), CATEG(PnL(CLS-SYM2.3), CATEG(PnL(CLS-SYM2.4) ,
CATEG(PnL(CLS-SYM2.5)

TARGET 50D
G3,G4 = LOGIC(CATEG(AVG(PnL(G1.1), PnL(G1.2), PnL(G1.3), PnL(G1.4),

PnL(G1.5), PnL(G1.6)), CATEG(ADF − SPRD50D))
The train/test and target input variables used in columns III and IV belong to the 50 day rolling window.
ETF pairs belonging to the 50 day rolling window are tables D.2.2, D.2.11, D.2.14, D.2.20, D.2.5, D.2.8,
D.2.17, D.2.23

G3 and G4 100 CATEG(PnL(G2.1), CATEG(PnL(G2.2), CATEG(PnL(G2.3), CATEG(PnL(G2.4),
CATEG(PnL(G2.5), CATEG(DifferenceinCloseRet(SYM1-SYM2)),
CATEG(PnL(CLS-SYM1.1), CATEG(PnL(CLS-SYM1.2), CATEG(PnL(CLS-SYM1.3),
CATEG(PnL(CLS-SYM1.4), CATEG(PnL(CLS-SYM1.5), CATEG(PnL(CLS-SYM2.1),
CATEG(PnL(CLS-SYM2.2), CATEG(PnL(CLS-SYM2.3), CATEG(PnL(CLS-SYM2.4) ,
CATEG(PnL(CLS-SYM2.5)

TARGET 100D
G3,G4 = LOGIC(CATEG(AVG(PnL(G1.1), PnL(G1.2), PnL(G1.3), PnL(G1.4),

PnL(G1.5), PnL(G1.6)), CATEG(ADF − SPRD100D))
The train/test and target input variables used in columns III and IV belong to the 100 day rolling window.
ETF pairs belonging to the 100 day rolling window are tables D.2.3, D.2.12, D.2.15, D.2.21, D.2.6, D.2.9,
D.2.18, D.2.24

Part VIII: H3 and H4 models

H3 and H4 30 CATEG(PnL(H2.1), CATEG(PnL(H2.2), CATEG(PnL(H2.3), CATEG(PnL(H2.4),
CATEG(PnL(H2.5), CATEG(DifferenceinCloseRet(SYM1-SYM2)),
CATEG(PnL(CLS-SYM1.1), CATEG(PnL(CLS-SYM1.2), CATEG(PnL(CLS-SYM1.3),
CATEG(PnL(CLS-SYM1.4), CATEG(PnL(CLS-SYM1.5), CATEG(PnL(CLS-SYM2.1),
CATEG(PnL(CLS-SYM2.2), CATEG(PnL(CLS-SYM2.3), CATEG(PnL(CLS-SYM2.4) ,
CATEG(PnL(CLS-SYM2.5)

TARGET 30D
H3,H4 = LOGIC(CATEG(AVG(PnL(H1.1), PnL(H1.2), PnL(H1.3), PnL(H1.4),

PnL(H1.5), PnL(H1.6)), CATEG(KALMAN − SPRD30D))
The train/test and target input variables used in columns III and IV belong to the 30 day rolling window.
ETF pairs belonging to the 30 day rolling window are tables D.2.1, D.2.10, D.2.13, D.2.19, D.2.4, D.2.7,
D.2.16, D.2.22

H3 and H4 50 CATEG(PnL(H2.1), CATEG(PnL(H2.2), CATEG(PnL(H2.3), CATEG(PnL(H2.4),
CATEG(PnL(H2.5), CATEG(DifferenceinCloseRet(SYM1-SYM2)),
CATEG(PnL(CLS-SYM1.1), CATEG(PnL(CLS-SYM1.2), CATEG(PnL(CLS-SYM1.3),
CATEG(PnL(CLS-SYM1.4), CATEG(PnL(CLS-SYM1.5), CATEG(PnL(CLS-SYM2.1),
CATEG(PnL(CLS-SYM2.2), CATEG(PnL(CLS-SYM2.3), CATEG(PnL(CLS-SYM2.4) ,
CATEG(PnL(CLS-SYM2.5)

TARGET 50D
H3,H4 = LOGIC(CATEG(AVG(PnL(H1.1), PnL(H1.2), PnL(H1.3), PnL(H1.4),

PnL(H1.5), PnL(H1.6)), CATEG(KALMAN − SPRD50D))
The train/test and target input variables used in columns III and IV belong to the 50 day rolling window.
ETF pairs belonging to the 50 day rolling window are tables D.2.2, D.2.11, D.2.14, D.2.20, D.2.5, D.2.8,
D.2.17, D.2.23

H3 and H4 100 CATEG(PnL(H2.1), CATEG(PnL(H2.2), CATEG(PnL(H2.3), CATEG(PnL(H2.4),
CATEG(PnL(H2.5), CATEG(DifferenceinCloseRet(SYM1-SYM2)),
CATEG(PnL(CLS-SYM1.1), CATEG(PnL(CLS-SYM1.2), CATEG(PnL(CLS-SYM1.3),
CATEG(PnL(CLS-SYM1.4), CATEG(PnL(CLS-SYM1.5), CATEG(PnL(CLS-SYM2.1),
CATEG(PnL(CLS-SYM2.2), CATEG(PnL(CLS-SYM2.3), CATEG(PnL(CLS-SYM2.4) ,
CATEG(PnL(CLS-SYM2.5)

TARGET 100D
H3,H4 = LOGIC(CATEG(AVG(PnL(H1.1), PnL(H1.2), PnL(H1.3), PnL(H1.4),

PnL(H1.5), PnL(H1.6)), CATEG(KALMAN − SPRD100D))
The train/test and target input variables used in columns III and IV belong to the 100 day rolling window.
ETF pairs belonging to the 100 day rolling window are tables D.2.3, D.2.12, D.2.15, D.2.21, D.2.6, D.2.9,
D.2.18, D.2.24

Part IX: I3 and I4 models

I3 and I4 30 CATEG(PnL(I2.1), CATEG(PnL(I2.2), CATEG(PnL(I2.3), CATEG(PnL(I2.4),
CATEG(PnL(I2.5), CATEG(DifferenceinCloseRet(SYM1-SYM2)), CATEG(PnL(CLS-SYM1.1),
CATEG(PnL(CLS-SYM1.2), CATEG(PnL(CLS-SYM1.3), CATEG(PnL(CLS-SYM1.4),
CATEG(PnL(CLS-SYM1.5), CATEG(PnL(CLS-SYM2.1), CATEG(PnL(CLS-SYM2.2),
CATEG(PnL(CLS-SYM2.3), CATEG(PnL(CLS-SYM2.4) , CATEG(PnL(CLS-SYM2.5)

TARGET 30D
I3,I4 = LOGIC(CATEG(AVG(PnL(I1.1), PnL(I1.2), PnL(I1.3), PnL(I1.4),

PnL(I1.5), PnL(I1.6)), CATEG(RATIO − SPRD30D))
The train/test and target input variables used in columns III and IV belong to the 30 day rolling window.
ETF pairs belonging to the 30 day rolling window are tables D.2.1, D.2.10, D.2.13, D.2.19, D.2.4, D.2.7,
D.2.16, D.2.22

I3 and I4 50 CATEG(PnL(I2.1), CATEG(PnL(I2.2), CATEG(PnL(I2.3), CATEG(PnL(I2.4),
CATEG(PnL(I2.5), CATEG(DifferenceinCloseRet(SYM1-SYM2)), CATEG(PnL(CLS-SYM1.1),
CATEG(PnL(CLS-SYM1.2), CATEG(PnL(CLS-SYM1.3), CATEG(PnL(CLS-SYM1.4),
CATEG(PnL(CLS-SYM1.5), CATEG(PnL(CLS-SYM2.1), CATEG(PnL(CLS-SYM2.2),
CATEG(PnL(CLS-SYM2.3), CATEG(PnL(CLS-SYM2.4) , CATEG(PnL(CLS-SYM2.5)

TARGET 50D
I3,I4 = LOGIC(CATEG(AVG(PnL(I1.1), PnL(I1.2), PnL(I1.3), PnL(I1.4),

PnL(I1.5), PnL(I1.6)), CATEG(RATIO − SPRD50D))
The train/test and target input variables used in columns III and IV belong to the 50 day rolling window.
ETF pairs belonging to the 50 day rolling window are tables D.2.2, D.2.11, D.2.14, D.2.20, D.2.5, D.2.8,
D.2.17, D.2.23

I3 and I4 100 CATEG(PnL(I2.1), CATEG(PnL(I2.2), CATEG(PnL(I2.3), CATEG(PnL(I2.4),
CATEG(PnL(I2.5), CATEG(DifferenceinCloseRet(SYM1-SYM2)), CATEG(PnL(CLS-SYM1.1),
CATEG(PnL(CLS-SYM1.2), CATEG(PnL(CLS-SYM1.3), CATEG(PnL(CLS-SYM1.4),
CATEG(PnL(CLS-SYM1.5), CATEG(PnL(CLS-SYM2.1), CATEG(PnL(CLS-SYM2.2),
CATEG(PnL(CLS-SYM2.3), CATEG(PnL(CLS-SYM2.4) , CATEG(PnL(CLS-SYM2.5)

TARGET 100D
I3,I4 = LOGIC(CATEG(AVG(PnL(I1.1), PnL(I1.2), PnL(I1.3), PnL(I1.4),

PnL(I1.5), PnL(I1.6)), CATEG(RATIO − SPRD100D))
The train/test and target input variables used in columns III and IV belong to the 100 day rolling window.
ETF pairs belonging to the 100 day rolling window are tables D.2.3, D.2.12, D.2.15, D.2.21, D.2.6, D.2.9,
D.2.18, D.2.24
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Figure D.1.1: These charts present the rolling correlation from 01 January 2019 to 31 January 2022 for the eight ETF pairs (ITOT.N/IXUS.N,
IWF.N/XLE.N, SCHB.N/SCHF.N, SCHF.N/VO.N, QQQ.N/XLE.N, USMV.N/XLE.N, VO.N/VXUS.N, and VWO.N/XLE.N) covered
in Chapter 5
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Figure D.1.2: These charts present the rolling cointegration from 01 January 2019 to 31 January 2022 for the eight ETF pairs (ITOT.N/IXUS.N,
IWF.N/XLE.N, SCHB.N/SCHF.N, SCHF.N/VO.N, QQQ.N/XLE.N, USMV.N/XLE.N, VO.N/VXUS.N, and VWO.N/XLE.N) covered
in Chapter 5
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Table D.1.4: This table presents the summary of ROI bifurcated window-wise and then pair-wise. Column I identifies the rolling window, column II the pair
name, column III the number of TRAD-based trading strategies that have had a positive ROI, column IV the number of MOD-based trading strategies that
have had a positive ROI, column V the number of TRAD-based trading strategies having an ROI greater than the ROI of MOD-based strategies, column VI
the number of MOD-based trading strategies having an ROI greater than the ROI of TRAD-based strategies, column VII the average ROI of TRAD-based
trading strategies, and column VIII the average ROI of MOD-based trading strategies.

(I) (II) (III) (IV) (V) (VI) (VII) (VIII)

Rolling
Window

Pair
Name

No. of TRAD
Strategies
having
+ve ROI

No. of MOD
Strategies
having
+ve ROI

ROI of TRAD
Strategies
>ROI of MOD
Strategies

ROI of MOD
Strategies
>ROI of TRAD
Strategies

Average ROI of
TRAD Strategies

Average ROI of
MOD Strategies

30

ITOT.N/IXUS.N 37 23 0 11 1.07% 10.89%

IWF.N/XLE.N 29 26 0 17 8.28% 25.66%

QQQ.N/XLE.N 21 28 0 21 10.02% 29.38%

SCHB.N/SCHF.N 34 16 2 4 4.63% 17.25%

SCHF.N/VO.N 38 31 0 20 3.14% 11.42%

USMV.N/XLE.N 29 25 1 17 10.33% 30.44%

VO.N/VXUS.N 36 23 2 14 3.22% 13.28%

VWO.N/XLE.N 20 29 0 18 4.62% 17.57%

50

ITOT.N/IXUS.N 23 25 0 11 1.29% 10.24%

IWF.N/XLE.N 19 32 0 21 4.73% 62.37%

QQQ.N/XLE.N 11 33 0 20 4.65% 105.06%

SCHB.N/SCHF.N 22 24 4 6 2.41% 21.89%

SCHF.N/VO.N 25 30 0 17 1.50% 21.78%

USMV.N/XLE.N 21 30 0 21 19.33% 53.87%

VO.N/VXUS.N 23 28 5 18 1.93% 21.77%

VWO.N/XLE.N 14 31 0 22 6.36% 41.70%

100

ITOT.N/IXUS.N 33 23 2 9 3.31% 8.24%

IWF.N/XLE.N 17 35 0 25 47.29% 35.60%

QQQ.N/XLE.N 21 34 0 22 43.06% 49.53%

SCHB.N/SCHF.N 36 23 10 7 4.80% 13.87%

SCHF.N/VO.N 36 36 0 19 4.32% 21.09%

USMV.N/XLE.N 19 33 2 18 15.21% 122.10%

VO.N/VXUS.N 28 21 4 10 2.15% 8.03%

VWO.N/XLE.N 24 33 0 24 5.49% 23.90%
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Table D.1.5: This table presents the summary of ROI bifurcated pair-wise, window-wise and then model-wise. Column I identifies the pair, column II the rolling window, column
III the model name, column IV the number of TRAD-based trading strategies that have had a positive ROI, column V the number of MOD-based trading strategies that have had
a positive ROI, column VI the number of TRAD-based trading strategies having an ROI greater than the ROI of MOD-based strategies, column VII the number of MOD-based
trading strategies having an ROI greater than the ROI of TRAD-based strategies, column VIII the average ROI of TRAD-based trading strategies, and column IX the average
ROI of MOD-based trading strategies.

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX)

Pair

Name

Rolling

Window
Model

No. of TRAD

Strategies

having

+ve ROI

No. of MOD

Strategies

having

+ve ROI

ROI of TRAD

Strategies >

ROI of MOD

Strategies

ROI of MOD

Strategies >

ROI of TRAD

Strategies

Average ROI of

TRAD Strategies

Average ROI of

MOD Strategies

ITOT.N/IXUS.N

30

DISTV 1.1 − SPRD 5 2 0 1 1.61% 6.04%

DISTV 1.2 − SPRD 4 4 0 3 0.96% 4.75%

DISTV 2 − SPRD 1 3 0 1 0.15% 2.13%

DISTV 3 − SPRD 6 2 0 2 0.76% 5.51%

DISTV 4 − SPRD 6 2 0 2 0.76% 4.73%

JOHANSEN − SPRD 3 3 0 0 1.29% 4.62%

ADF − SPRD 0 3 0 0 52.77%

KALMAN − SPRD 6 3 0 2 1.97% 5.76%

RATIO − SPRD 6 1 0 0 0.43% 3.06%

Total 37 23 0 11

50

DISTV 1.1 − SPRD 3 2 0 1 0.54% 6.92%

DISTV 1.2 − SPRD 4 1 0 0 1.75% 0.22%

DISTV 2 − SPRD 3 3 0 1 1.38% 2.54%

DISTV 3 − SPRD 4 3 0 1 1.64% 2.57%

DISTV 4 − SPRD 4 3 0 1 1.64% 2.57%

JOHANSEN − SPRD 1 5 0 3 1.10% 30.67%

ADF − SPRD 0 3 0 0 11.06%

KALMAN − SPRD 2 4 0 4 1.06% 7.24%

RATIO − SPRD 2 1 0 0 0.26% 3.36%

Total 23 25 0 11

100

DISTV 1.1 − SPRD 1 2 0 1 0.06% 7.92%

DISTV 1.2 − SPRD 0 2 0 1 2.93%

DISTV 2 − SPRD 5 3 0 0 1.92% 2.21%

DISTV 3 − SPRD 6 3 0 1 2.33% 3.66%

DISTV 4 − SPRD 6 3 0 1 2.33% 3.66%

JOHANSEN − SPRD 6 5 0 2 8.03% 21.26%

ADF − SPRD 0 0 0 0

KALMAN − SPRD 5 4 0 3 2.35% 7.32%

RATIO − SPRD 4 1 2 0 2.96% 3.64%

Total 33 23 2 9

IWF.N/XLE.N

30

DISTV 1.1 − SPRD 3 5 0 3 2.62% 20.05%

DISTV 1.2 − SPRD 4 2 0 2 2.41% 18.85%

DISTV 2 − SPRD 3 4 0 2 2.24% 19.99%

DISTV 3 − SPRD 5 3 0 2 3.86% 13.60%

DISTV 4 − SPRD 5 3 0 2 3.86% 13.60%

JOHANSEN − SPRD 0 2 0 2 30.86%

ADF − SPRD 4 2 0 0 32.14% 97.42%

KALMAN − SPRD 4 2 0 1 12.12% 17.26%

RATIO − SPRD 1 3 0 3 0.38% 25.54%

Total 29 26 0 17

50

DISTV 1.1 − SPRD 1 5 0 4 5.77% 23.78%

DISTV 1.2 − SPRD 3 4 0 2 8.03% 11.39%

DISTV 2 − SPRD 5 2 0 1 3.31% 27.92%

DISTV 3 − SPRD 2 3 0 2 3.42% 14.80%

DISTV 4 − SPRD 2 4 0 2 3.42% 12.35%

JOHANSEN − SPRD 3 3 0 3 6.11% 144.65%

ADF − SPRD 0 2 0 1 507.63%

KALMAN − SPRD 3 5 0 2 3.81% 32.24%

RATIO − SPRD 0 4 0 4 17.80%

Total 19 32 0 21

100

DISTV 1.1 − SPRD 4 7 0 5 14.07% 22.37%

DISTV 1.2 − SPRD 0 3 0 2 19.21%

DISTV 2 − SPRD 2 1 0 1 0.52% 58.23%

DISTV 3 − SPRD 1 4 0 2 0.18% 6.57%

DISTV 4 − SPRD 1 4 0 2 0.18% 6.57%

JOHANSEN − SPRD 2 4 0 4 0.84% 52.69%

ADF − SPRD 6 4 0 2 123.35% 129.52%

KALMAN − SPRD 1 4 0 3 4.45% 27.52%

RATIO − SPRD 0 4 0 4 20.55%

Total 17 35 0 25

QQQ.N/XLE.N

30

DISTV 1.1 − SPRD 0 6 0 4 24.79%

DISTV 1.2 − SPRD 5 1 0 1 4.52% 9.71%

DISTV 2 − SPRD 3 3 0 3 3.47% 21.16%

DISTV 3 − SPRD 2 2 0 2 7.51% 27.15%

DISTV 4 − SPRD 2 2 0 2 7.51% 23.97%

JOHANSEN − SPRD 3 5 0 4 6.23% 49.80%

ADF − SPRD 2 2 0 0 35.56% 3.06%

KALMAN − SPRD 4 3 0 1 14.37% 39.55%

RATIO − SPRD 0 4 0 4 31.16%

Total 21 28 0 21

50

DISTV 1.1 − SPRD 2 6 0 3 7.42% 22.94%

DISTV 1.2 − SPRD 0 4 0 3 18.52%

DISTV 2 − SPRD 1 3 0 2 6.04% 8.26%

DISTV 3 − SPRD 0 4 0 2 24.06%

DISTV 4 − SPRD 0 4 0 2 24.06%

JOHANSEN − SPRD 5 1 0 1 2.88% 41.90%

ADF − SPRD 0 4 0 2 719.80%

KALMAN − SPRD 2 2 0 0 7.60% 4.25%

RATIO − SPRD 1 5 0 5 0.65% 21.73%

Total 11 33 0 20

100

DISTV 1.1 − SPRD 2 6 0 4 15.31% 21.53%

DISTV 1.2 − SPRD 0 2 0 1 14.57%

DISTV 2 − SPRD 1 3 0 2 1.60% 19.93%

DISTV 3 − SPRD 2 2 0 1 4.33% 9.60%

DISTV 4 − SPRD 2 2 0 1 4.33% 20.03%

JOHANSEN − SPRD 4 4 0 4 8.38% 141.49%

ADF − SPRD 6 5 0 1 125.37% 94.84%

KALMAN − SPRD 4 5 0 3 17.27% 48.55%

RATIO − SPRD 0 5 0 5 24.77%

Total 21 34 0 22

SCHB.N/SCHF.N

30

DISTV 1.1 − SPRD 0 2 0 2 8.96%

DISTV 1.2 − SPRD 3 0 0 0 1.94%

DISTV 2 − SPRD 6 3 0 1 2.28% 4.54%

DISTV 3 − SPRD 6 0 0 0 1.99%

DISTV 4 − SPRD 6 0 0 0 1.99%

JOHANSEN − SPRD 6 2 0 0 14.59% 7.27%

ADF − SPRD 0 4 0 0 42.15%

KALMAN − SPRD 1 3 0 1 3.29% 18.41%

RATIO − SPRD 6 2 2 0 3.86% 3.03%

Total 34 16 2 4

50

DISTV 1.1 − SPRD 0 3 0 2 6.71%

DISTV 1.2 − SPRD 1 3 0 0 1.37% 0.76%

DISTV 2 − SPRD 6 2 0 1 0.82% 3.79%

DISTV 3 − SPRD 3 3 0 0 1.37% 2.23%

DISTV 4 − SPRD 3 3 0 0 1.37% 2.23%

JOHANSEN − SPRD 0 3 0 3 38.08%

ADF − SPRD 0 3 0 0 116.09%

KALMAN − SPRD 3 3 0 0 3.18% 5.09%

RATIO − SPRD 6 1 4 0 4.82% 4.27%

Total 22 24 4 6

100

DISTV 1.1 − SPRD 4 4 0 2 2.27% 5.87%

DISTV 1.2 − SPRD 0 1 0 1 5.89%

DISTV 2 − SPRD 2 1 0 1 0.27% 14.23%

DISTV 3 − SPRD 6 4 4 0 4.39% 2.15%

DISTV 4 − SPRD 6 4 4 0 4.39% 2.15%

JOHANSEN − SPRD 6 2 0 2 0.78% 24.77%

ADF − SPRD 0 3 0 0 53.60%

KALMAN − SPRD 6 3 0 1 13.88% 14.73%

RATIO − SPRD 6 1 2 0 3.75% 3.77%

Total 36 23 10 7

SCHF.N/VO.N

30

DISTV 1.1 − SPRD 3 5 0 3 1.90% 5.03%

DISTV 1.2 − SPRD 2 1 0 1 1.43% 2.22%

DISTV 2 − SPRD 3 3 0 3 0.70% 7.94%

DISTV 3 − SPRD 6 3 0 2 2.02% 3.63%

DISTV 4 − SPRD 6 3 0 2 2.02% 3.63%

JOHANSEN − SPRD 6 4 0 2 8.69% 44.17%

ADF − SPRD 6 6 0 2 3.64% 7.18%

KALMAN − SPRD 1 5 0 4 0.06% 10.70%

RATIO − SPRD 5 1 0 1 2.08% 7.74%

Total 38 31 0 20

50

DISTV 1.1 − SPRD 2 4 0 1 1.43% 4.51%

DISTV 1.2 − SPRD 0 3 0 3 4.04%

DISTV 2 − SPRD 4 4 0 2 0.31% 4.50%

DISTV 3 − SPRD 3 2 0 0 0.61% 3.32%

DISTV 4 − SPRD 3 4 0 2 0.61% 6.59%

JOHANSEN − SPRD 0 3 0 2 145.51%

ADF − SPRD 4 6 0 4 2.16% 16.22%

KALMAN − SPRD 3 3 0 2 1.20% 10.26%

RATIO − SPRD 6 1 0 1 2.92% 7.74%

Total 25 30 0 17

100

DISTV 1.1 − SPRD 2 4 0 3 0.80% 6.49%

DISTV 1.2 − SPRD 0 4 0 1 1.45%

DISTV 2 − SPRD 4 4 0 3 1.81% 5.63%

DISTV 3 − SPRD 6 4 0 2 2.67% 5.09%

DISTV 4 − SPRD 6 4 0 2 2.67% 4.83%

JOHANSEN − SPRD 6 5 0 2 14.32% 113.51%

ADF − SPRD 1 5 0 3 0.59% 11.67%

KALMAN − SPRD 5 5 0 2 3.48% 6.31%

RATIO − SPRD 6 1 0 1 1.78% 7.73%

Total 36 36 0 19

USMV.N/XLE.N

30

DISTV 1.1 − SPRD 5 3 0 0 6.98% 14.22%

DISTV 1.2 − SPRD 5 2 0 1 6.66% 22.56%

DISTV 2 − SPRD 1 3 0 3 0.08% 14.60%

DISTV 3 − SPRD 3 4 0 3 6.08% 16.35%

DISTV 4 − SPRD 3 4 0 2 6.08% 12.52%

JOHANSEN − SPRD 0 2 0 1 176.69%

ADF − SPRD 6 0 1 0 27.20%

KALMAN − SPRD 6 3 0 3 5.27% 25.93%

RATIO − SPRD 0 4 0 4 20.68%

Total 29 25 1 17

50

DISTV 1.1 − SPRD 6 3 0 1 13.05% 23.85%

DISTV 1.2 − SPRD 6 2 0 1 7.54% 22.80%

DISTV 2 − SPRD 0 3 0 3 14.51%

DISTV 3 − SPRD 0 4 0 3 15.03%

DISTV 4 − SPRD 0 4 0 3 15.03%

JOHANSEN − SPRD 6 2 0 2 39.66% 539.38%

ADF − SPRD 3 4 0 0 14.84% 25.01%

KALMAN − SPRD 0 4 0 4 20.82%

RATIO − SPRD 0 4 0 4 18.30%

Total 21 30 0 21

100

DISTV 1.1 − SPRD 6 4 0 1 9.85% 13.59%

DISTV 1.2 − SPRD 2 2 0 0 8.91% 7.00%

DISTV 2 − SPRD 0 3 0 3 9.37%

DISTV 3 − SPRD 0 5 0 3 11.66%

DISTV 4 − SPRD 0 5 0 3 12.88%

JOHANSEN − SPRD 4 4 0 2 1.91% 891.01%

ADF − SPRD 6 4 2 0 34.07% 24.42%

KALMAN − SPRD 0 3 0 3 24.97%

RATIO − SPRD 1 3 0 3 0.04% 24.53%

Total 19 33 2 18

VO.N/VXUS.N

30

DISTV 1.1 − SPRD 4 4 0 4 1.03% 5.78%

DISTV 1.2 − SPRD 4 3 0 3 0.98% 10.66%

DISTV 2 − SPRD 2 2 0 0 1.76% 2.25%

DISTV 3 − SPRD 6 2 0 1 2.06% 4.29%

DISTV 4 − SPRD 6 2 0 1 2.06% 4.29%

JOHANSEN − SPRD 6 4 0 1 10.94% 24.22%

ADF − SPRD 0 3 0 2 40.05%

KALMAN − SPRD 2 2 0 2 2.77% 4.91%

RATIO − SPRD 6 1 2 0 1.44% 1.76%

Total 36 23 2 14

50

DISTV 1.1 − SPRD 2 5 0 5 1.15% 5.32%

DISTV 1.2 − SPRD 0 5 0 2 1.99%

DISTV 2 − SPRD 4 2 0 1 1.06% 2.58%

DISTV 3 − SPRD 4 3 0 2 0.63% 4.28%

DISTV 4 − SPRD 4 3 0 2 0.63% 4.28%

JOHANSEN − SPRD 3 3 0 1 3.71% 40.65%

ADF − SPRD 0 3 0 3 127.57%

KALMAN − SPRD 0 3 0 2 12.19%

RATIO − SPRD 6 1 5 0 3.60% 1.04%

Total 23 28 5 18

100

DISTV 1.1 − SPRD 2 4 0 3 0.21% 5.61%

DISTV 1.2 − SPRD 0 3 0 2 5.26%

DISTV 2 − SPRD 4 3 0 1 2.30% 2.36%

DISTV 3 − SPRD 5 2 0 1 2.40% 5.87%

DISTV 4 − SPRD 5 2 0 1 2.40% 6.51%

JOHANSEN − SPRD 4 3 0 0 0.16% 13.28%

ADF − SPRD 1 1 0 0 6.55% 2.68%

KALMAN − SPRD 2 2 0 2 1.80% 27.65%

RATIO − SPRD 5 1 4 0 3.16% 0.75%

Total 28 21 4 10

VWO.N/XLE.N

30

DISTV 1.1 − SPRD 3 3 0 0 5.76% 5.26%

DISTV 1.2 − SPRD 2 5 0 4 6.47% 24.35%

DISTV 2 − SPRD 3 4 0 1 2.08% 9.38%

DISTV 3 − SPRD 4 1 0 0 5.68% 3.42%

DISTV 4 − SPRD 4 2 0 1 5.68% 6.42%

JOHANSEN − SPRD 0 3 0 2 35.08%

ADF − SPRD 3 3 0 2 3.18% 29.30%

KALMAN − SPRD 0 4 0 4 22.62%

RATIO − SPRD 1 4 0 4 0.85% 8.62%

Total 20 29 0 18

50

DISTV 1.1 − SPRD 4 4 0 0 11.29% 9.30%

DISTV 1.2 − SPRD 2 6 0 5 7.29% 23.73%

DISTV 2 − SPRD 2 4 0 2 9.58% 13.27%

DISTV 3 − SPRD 3 2 0 1 1.69% 14.42%

DISTV 4 − SPRD 3 1 0 1 1.69% 25.86%

JOHANSEN − SPRD 0 4 0 3 183.86%

ADF − SPRD 0 3 0 3 62.04%

KALMAN − SPRD 0 4 0 4 13.66%

RATIO − SPRD 0 3 0 3 9.72%

Total 14 31 0 22

100

DISTV 1.1 − SPRD 6 3 0 1 6.86% 16.47%

DISTV 1.2 − SPRD 0 4 0 4 25.90%

DISTV 2 − SPRD 0 5 0 2 10.06%

DISTV 3 − SPRD 4 3 0 2 3.43% 13.30%

DISTV 4 − SPRD 4 3 0 2 3.43% 13.30%

JOHANSEN − SPRD 6 6 0 5 8.32% 58.13%

ADF − SPRD 3 4 0 3 4.13% 15.90%

KALMAN − SPRD 1 3 0 3 0.75% 22.49%

RATIO − SPRD 0 2 0 2 12.86%

Total 24 33 0 24
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Table D.1.6: This table presents the summary of ROI bifurcated pair-wise, window-wise and model-wise. The trading strategies are bifurcated
based on two sets of comparisons. We compare the average ROI of TRAD andMOD-based trading strategies in columns I and II, respectively.
Similarly, in columns III, IV, and V, we compare the average ROI of TRAD, MOD-based trading strategies (excluding the ML-based trading
strategies) and the ML-based trading strategies, respectively. Please note that we have bifurcated the average ROI of MOD-based trading
strategies into MOD-based trading strategies without ML-based trading strategies and the average ROI of ML-based trading strategies in
columns VII and VIII, respectively.

(I) (II) (III) (IV) (V) (VI) (VII) (VIII)

Pair

Name

Rolling

Window
Model

Average ROI of

TRAD Strategies

Average ROI of

MOD Strategies

(Incl ML Strategies)

Average ROI of

TRAD Strategies

Average ROI of

MOD Strategies

(Excl ML Strategies)

Average ROI of

ML Strategies

ITOT.N/IXUS.N

30

DISTV 1.1 − SPRD 1.61% 6.04% 1.61% 6.04%

DISTV 1.2 − SPRD 0.96% 4.75% 0.96% 2.80% 10.60%

DISTV 2 − SPRD 0.15% 2.13% 0.15% 2.13%

DISTV 3 − SPRD 0.76% 5.51% 0.76% 5.51%

DISTV 4 − SPRD 0.76% 4.73% 0.76% 4.73%

JOHANSEN − SPRD 1.29% 4.62% 1.29% 6.78% 0.30%

ADF − SPRD 52.77% 52.77%

KALMAN − SPRD 1.97% 5.76% 1.97% 1.60% 7.85%

RATIO − SPRD 0.43% 3.06% 0.43% 3.06%

50

DISTV 1.1 − SPRD 0.54% 6.92% 0.54% 6.92%

DISTV 1.2 − SPRD 1.75% 0.22% 1.75% 0.22%

DISTV 2 − SPRD 1.38% 2.54% 1.38% 2.54%

DISTV 3 − SPRD 1.64% 2.57% 1.64% 2.57%

DISTV 4 − SPRD 1.64% 2.57% 1.64% 2.57%

JOHANSEN − SPRD 1.10% 30.67% 1.10% 36.69% 6.60%

ADF − SPRD 11.06% 11.06%

KALMAN − SPRD 1.06% 7.24% 1.06% 6.63% 7.86%

RATIO − SPRD 0.26% 3.36% 0.26% 3.36%

100

DISTV 1.1 − SPRD 0.06% 7.92% 0.06% 7.92%

DISTV 1.2 − SPRD 2.93% 3.47% 2.38%

DISTV 2 − SPRD 1.92% 2.21% 1.92% 2.21%

DISTV 3 − SPRD 2.33% 3.66% 2.33% 3.66%

DISTV 4 − SPRD 2.33% 3.66% 2.33% 3.66%

JOHANSEN − SPRD 8.03% 21.26% 8.03% 24.87% 6.83%

ADF − SPRD

KALMAN − SPRD 2.35% 7.32% 2.35% 3.51% 11.13%

RATIO − SPRD 2.96% 3.64% 2.96% 3.64%

IWF.N/XLE.N

30

DISTV 1.1 − SPRD 2.62% 20.05% 2.62% 27.42% 8.99%

DISTV 1.2 − SPRD 2.41% 18.85% 2.41% 16.83% 20.86%

DISTV 2 − SPRD 2.24% 19.99% 2.24% 27.99% 11.99%

DISTV 3 − SPRD 3.86% 13.60% 3.86% 13.60%

DISTV 4 − SPRD 3.86% 13.60% 3.86% 13.60%

JOHANSEN − SPRD 30.86% 52.76% 8.95%

ADF − SPRD 32.14% 97.42% 32.14% 97.42%

KALMAN − SPRD 12.12% 17.26% 12.12% 17.26%

RATIO − SPRD 0.38% 25.54% 0.38% 25.54%

50

DISTV 1.1 − SPRD 5.77% 23.78% 5.77% 28.80% 16.27%

DISTV 1.2 − SPRD 8.03% 11.39% 8.03% 14.83% 7.95%

DISTV 2 − SPRD 3.31% 27.92% 3.31% 27.92%

DISTV 3 − SPRD 3.42% 14.80% 3.42% 14.80%

DISTV 4 − SPRD 3.42% 12.35% 3.42% 14.80% 4.98%

JOHANSEN − SPRD 6.11% 144.65% 6.11% 355.24% 39.36%

ADF − SPRD 507.63% 507.63%

KALMAN − SPRD 3.81% 32.24% 3.81% 51.03% 4.06%

RATIO − SPRD 17.80% 22.99% 2.20%

100

DISTV 1.1 − SPRD 14.07% 22.37% 14.07% 17.76% 33.91%

DISTV 1.2 − SPRD 19.21% 28.75% 0.14%

DISTV 2 − SPRD 0.52% 58.23% 0.52% 58.23%

DISTV 3 − SPRD 0.18% 6.57% 0.18% 8.00% 2.25%

DISTV 4 − SPRD 0.18% 6.57% 0.18% 8.00% 2.25%

JOHANSEN − SPRD 0.84% 52.69% 0.84% 83.05% 22.33%

ADF − SPRD 123.35% 129.52% 123.35% 249.09% 9.94%

KALMAN − SPRD 4.45% 27.52% 4.45% 34.96% 20.09%

RATIO − SPRD 20.55% 25.40% 5.99%

QQQ.N/XLE.N

30

DISTV 1.1 − SPRD 24.79% 21.20% 31.98%

DISTV 1.2 − SPRD 4.52% 9.71% 4.52% 9.71%

DISTV 2 − SPRD 3.47% 21.16% 3.47% 13.69% 24.89%

DISTV 3 − SPRD 7.51% 27.15% 7.51% 21.39% 32.91%

DISTV 4 − SPRD 7.51% 23.97% 7.51% 21.39% 26.54%

JOHANSEN − SPRD 6.23% 49.80% 6.23% 49.80%

ADF − SPRD 35.56% 3.06% 35.56% 3.06%

KALMAN − SPRD 14.37% 39.55% 14.37% 58.51% 1.63%

RATIO − SPRD 31.16% 29.88% 35.00%

50

DISTV 1.1 − SPRD 7.42% 22.94% 7.42% 24.23% 20.35%

DISTV 1.2 − SPRD 18.52% 19.90% 14.38%

DISTV 2 − SPRD 6.04% 8.26% 6.04% 13.69% 5.54%

DISTV 3 − SPRD 24.06% 24.06%

DISTV 4 − SPRD 24.06% 24.06%

JOHANSEN − SPRD 2.88% 41.90% 2.88% 41.90%

ADF − SPRD 719.80% 955.48% 12.75%

KALMAN − SPRD 7.60% 4.25% 7.60% 4.25%

RATIO − SPRD 0.65% 21.73% 0.65% 29.13% 10.63%

100

DISTV 1.1 − SPRD 15.31% 21.53% 15.31% 21.84% 20.91%

DISTV 1.2 − SPRD 14.57% 14.57%

DISTV 2 − SPRD 1.60% 19.93% 1.60% 3.40% 28.19%

DISTV 3 − SPRD 4.33% 9.60% 4.33% 9.60%

DISTV 4 − SPRD 4.33% 20.03% 4.33% 20.03%

JOHANSEN − SPRD 8.38% 141.49% 8.38% 174.28% 43.12%

ADF − SPRD 125.37% 94.84% 125.37% 144.76% 19.97%

KALMAN − SPRD 17.27% 48.55% 17.27% 64.83% 24.13%

RATIO − SPRD 24.77% 33.06% 12.34%

SCHB.N/SCHF.N

30

DISTV 1.1 − SPRD 8.96% 8.96%

DISTV 1.2 − SPRD 1.94% 1.94%

DISTV 2 − SPRD 2.28% 4.54% 2.28% 4.54%

DISTV 3 − SPRD 1.99% 1.99%

DISTV 4 − SPRD 1.99% 1.99%

JOHANSEN − SPRD 14.59% 7.27% 14.59% 7.27%

ADF − SPRD 42.15% 50.80% 16.20%

KALMAN − SPRD 3.29% 18.41% 3.29% 18.41%

RATIO − SPRD 3.86% 3.03% 3.86% 3.03%

50

DISTV 1.1 − SPRD 6.71% 6.71%

DISTV 1.2 − SPRD 1.37% 0.76% 1.37% 0.97% 0.34%

DISTV 2 − SPRD 0.82% 3.79% 0.82% 3.79%

DISTV 3 − SPRD 1.37% 2.23% 1.37% 2.23%

DISTV 4 − SPRD 1.37% 2.23% 1.37% 2.23%

JOHANSEN − SPRD 38.08% 38.08%

ADF − SPRD 116.09% 116.09%

KALMAN − SPRD 3.18% 5.09% 3.18% 5.09%

RATIO − SPRD 4.82% 4.27% 4.82% 4.27%

100

DISTV 1.1 − SPRD 2.27% 5.87% 2.27% 5.87%

DISTV 1.2 − SPRD 5.89% 5.89%

DISTV 2 − SPRD 0.27% 14.23% 0.27% 14.23%

DISTV 3 − SPRD 4.39% 2.15% 4.39% 2.15%

DISTV 4 − SPRD 4.39% 2.15% 4.39% 2.15%

JOHANSEN − SPRD 0.78% 24.77% 0.78% 24.77%

ADF − SPRD 53.60% 53.60%

KALMAN − SPRD 13.88% 14.73% 13.88% 14.73%

RATIO − SPRD 3.75% 3.77% 3.75% 3.77%

SCHF.N/VO.N

30

DISTV 1.1 − SPRD 1.90% 5.03% 1.90% 4.34% 7.79%

DISTV 1.2 − SPRD 1.43% 2.22% 1.43% 2.22%

DISTV 2 − SPRD 0.70% 7.94% 0.70% 11.54% 6.14%

DISTV 3 − SPRD 2.02% 3.63% 2.02% 3.07% 4.76%

DISTV 4 − SPRD 2.02% 3.63% 2.02% 3.07% 4.76%

JOHANSEN − SPRD 8.69% 44.17% 8.69% 58.52% 1.12%

ADF − SPRD 3.64% 7.18% 3.64% 5.82% 9.89%

KALMAN − SPRD 0.06% 10.70% 0.06% 9.03% 13.21%

RATIO − SPRD 2.08% 7.74% 2.08% 7.74%

50

DISTV 1.1 − SPRD 1.43% 4.51% 1.43% 5.38% 1.92%

DISTV 1.2 − SPRD 4.04% 3.48% 4.32%

DISTV 2 − SPRD 0.31% 4.50% 0.31% 3.78% 5.23%

DISTV 3 − SPRD 0.61% 3.32% 0.61% 3.92% 2.71%

DISTV 4 − SPRD 0.61% 6.59% 0.61% 3.18% 10.00%

JOHANSEN − SPRD 145.51% 213.01% 10.53%

ADF − SPRD 2.16% 16.22% 2.16% 19.44% 9.78%

KALMAN − SPRD 1.20% 10.26% 1.20% 11.48% 9.66%

RATIO − SPRD 2.92% 7.74% 2.92% 7.74%

100

DISTV 1.1 − SPRD 0.80% 6.49% 0.80% 6.20% 7.37%

DISTV 1.2 − SPRD 1.45% 1.74% 0.57%

DISTV 2 − SPRD 1.81% 5.63% 1.81% 3.93% 7.34%

DISTV 3 − SPRD 2.67% 5.09% 2.67% 4.02% 6.17%

DISTV 4 − SPRD 2.67% 4.83% 2.67% 4.02% 5.64%

JOHANSEN − SPRD 14.32% 113.51% 14.32% 140.28% 6.40%

ADF − SPRD 0.59% 11.67% 0.59% 10.42% 13.54%

KALMAN − SPRD 3.48% 6.31% 3.48% 6.70% 5.73%

RATIO − SPRD 1.78% 7.73% 1.78% 7.73%

USMV.N/XLE.N

30

DISTV 1.1 − SPRD 6.98% 14.22% 6.98% 18.93% 4.82%

DISTV 1.2 − SPRD 6.66% 22.56% 6.66% 22.56%

DISTV 2 − SPRD 0.08% 14.60% 0.08% 14.60%

DISTV 3 − SPRD 6.08% 16.35% 6.08% 12.57% 20.13%

DISTV 4 − SPRD 6.08% 12.52% 6.08% 12.57% 12.47%

JOHANSEN − SPRD 176.69% 340.65% 12.72%

ADF − SPRD 27.20% 27.20%

KALMAN − SPRD 5.27% 25.93% 5.27% 32.25% 13.30%

RATIO − SPRD 20.68% 20.68%

50

DISTV 1.1 − SPRD 13.05% 23.85% 13.05% 19.71% 32.14%

DISTV 1.2 − SPRD 7.54% 22.80% 7.54% 8.19% 37.41%

DISTV 2 − SPRD 14.51% 14.51%

DISTV 3 − SPRD 15.03% 15.94% 12.30%

DISTV 4 − SPRD 15.03% 15.94% 12.30%

JOHANSEN − SPRD 39.66% 539.38% 39.66% 539.38%

ADF − SPRD 14.84% 25.01% 14.84% 26.03% 21.94%

KALMAN − SPRD 20.82% 20.82%

RATIO − SPRD 18.30% 18.30%

100

DISTV 1.1 − SPRD 9.85% 13.59% 9.85% 26.83% 0.36%

DISTV 1.2 − SPRD 8.91% 7.00% 8.91% 8.57% 5.43%

DISTV 2 − SPRD 9.37% 9.37%

DISTV 3 − SPRD 11.66% 11.78% 11.47%

DISTV 4 − SPRD 12.88% 11.78% 14.54%

JOHANSEN − SPRD 1.91% 891.01% 1.91% 1182.22% 17.35%

ADF − SPRD 34.07% 24.42% 34.07% 24.42%

KALMAN − SPRD 24.97% 24.97%

RATIO − SPRD 0.04% 24.53% 0.04% 24.53%

VO.N/VXUS.N

30

DISTV 1.1 − SPRD 1.03% 5.78% 1.03% 6.63% 3.22%

DISTV 1.2 − SPRD 0.98% 10.66% 0.98% 7.04% 12.47%

DISTV 2 − SPRD 1.76% 2.25% 1.76% 2.25%

DISTV 3 − SPRD 2.06% 4.29% 2.06% 4.29%

DISTV 4 − SPRD 2.06% 4.29% 2.06% 4.29%

JOHANSEN − SPRD 10.94% 24.22% 10.94% 24.22%

ADF − SPRD 40.05% 40.05%

KALMAN − SPRD 2.77% 4.91% 2.77% 4.91%

RATIO − SPRD 1.44% 1.76% 1.44% 1.76%

50

DISTV 1.1 − SPRD 1.15% 5.32% 1.15% 6.90% 2.94%

DISTV 1.2 − SPRD 1.99% 1.39% 2.90%

DISTV 2 − SPRD 1.06% 2.58% 1.06% 2.58%

DISTV 3 − SPRD 0.63% 4.28% 0.63% 4.92% 3.02%

DISTV 4 − SPRD 0.63% 4.28% 0.63% 4.92% 3.02%

JOHANSEN − SPRD 3.71% 40.65% 3.71% 40.65%

ADF − SPRD 127.57% 127.57%

KALMAN − SPRD 12.19% 12.19%

RATIO − SPRD 3.60% 1.04% 3.60% 1.04%

100

DISTV 1.1 − SPRD 0.21% 5.61% 0.21% 6.88% 1.81%

DISTV 1.2 − SPRD 5.26% 5.26%

DISTV 2 − SPRD 2.30% 2.36% 2.30% 2.36%

DISTV 3 − SPRD 2.40% 5.87% 2.40% 9.57% 2.17%

DISTV 4 − SPRD 2.40% 6.51% 2.40% 9.57% 3.45%

JOHANSEN − SPRD 0.16% 13.28% 0.16% 19.77% 0.29%

ADF − SPRD 6.55% 2.68% 6.55% 2.68%

KALMAN − SPRD 1.80% 27.65% 1.80% 27.65%

RATIO − SPRD 3.16% 0.75% 3.16% 0.75%

VWO.N/XLE.N

30

DISTV 1.1 − SPRD 5.76% 5.26% 5.76% 7.05% 1.68%

DISTV 1.2 − SPRD 6.47% 24.35% 6.47% 9.30% 46.92%

DISTV 2 − SPRD 2.08% 9.38% 2.08% 10.51% 5.98%

DISTV 3 − SPRD 5.68% 3.42% 5.68% 3.42%

DISTV 4 − SPRD 5.68% 6.42% 5.68% 3.42% 9.42%

JOHANSEN − SPRD 35.08% 46.61% 12.02%

ADF − SPRD 3.18% 29.30% 3.18% 13.92% 60.07%

KALMAN − SPRD 22.62% 21.78% 25.14%

RATIO − SPRD 0.85% 8.62% 0.85% 13.92% 3.32%

50

DISTV 1.1 − SPRD 11.29% 9.30% 11.29% 4.62% 13.99%

DISTV 1.2 − SPRD 7.29% 23.73% 7.29% 16.70% 37.79%

DISTV 2 − SPRD 9.58% 13.27% 9.58% 10.66% 21.11%

DISTV 3 − SPRD 1.69% 14.42% 1.69% 25.86% 2.97%

DISTV 4 − SPRD 1.69% 25.86% 1.69% 25.86%

JOHANSEN − SPRD 183.86% 242.28% 8.61%

ADF − SPRD 62.04% 88.74% 8.64%

KALMAN − SPRD 13.66% 21.72% 5.60%

RATIO − SPRD 9.72% 11.80% 5.58%

100

DISTV 1.1 − SPRD 6.86% 16.47% 6.86% 5.55% 21.93%

DISTV 1.2 − SPRD 25.90% 28.92% 22.89%

DISTV 2 − SPRD 10.06% 9.17% 13.64%

DISTV 3 − SPRD 3.43% 13.30% 3.43% 9.23% 21.43%

DISTV 4 − SPRD 3.43% 13.30% 3.43% 9.23% 21.43%

JOHANSEN − SPRD 8.32% 58.13% 8.32% 80.77% 12.85%

ADF − SPRD 4.13% 15.90% 4.13% 21.08% 0.35%

KALMAN − SPRD 0.75% 22.49% 0.75% 24.88% 17.72%

RATIO − SPRD 12.86% 12.86%
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Table D.1.7: This table presents the summary of the Sharpe ratio bifurcated window-wise, model-wise and
pair-wise. Column I identifies the rolling window, column II the model name, column III the pair name, column
IV the maximum annualized Sharpe ratio forMOD-based trading strategies, column V the maximum average
ROI for MOD-based trading strategies, column VI the maximum annualized Sharpe ratio for TRAD-based
trading strategies, column VII the maximum average ROI for TRAD-based trading strategies.

MOD TRAD

(I) (II) (III) (IV) (V) (VI) (VII)

Window Model Category Pair Name Max.
Annualized
Sharpe Ratio

Max. Roi Max.
Annualized
Sharpe Ratio

Max. Roi

30

DISTV 1.1 − SPRD ITOT.N/IXUS.N 3.33 9.35

IWF.N/XLE.N 2.70 27.29

QQQ.N/XLE.N 4.13 37.02

SCHF.N/VO.N 6.67 12.87

USMV.N/XLE.N 1.90 15.68 2.06 20.04

VO.N/VXUS.N 7.14 11.91

VWO.N/XLE.N 1.11 9.24

DISTV 2 − SPRD IWF.N/XLE.N 9.37 55.70

USMV.N/XLE.N 0.16 34.48

VWO.N/XLE.N 0.48 7.36

DISTV 3 − SPRD IWF.N/XLE.N 4.76 22.26

DISTV 4 − SPRD IWF.N/XLE.N 4.76 22.26

JOHANSEN − SPRD IWF.N/XLE.N 2.38 52.76

QQQ.N/XLE.N 4.76 134.98

SCHF.N/VO.N 5.87 139.00 1.11 13.29

USMV.N/XLE.N 4.29 340.65

VO.N/VXUS.N 4.13 46.12 1.27 25.86

ADF − SPRD ITOT.N/IXUS.N 1.90 142.15

IWF.N/XLE.N 3.02 137.67 8.10 74.44

QQQ.N/XLE.N 6.35 58.05

SCHF.N/VO.N 3.65 9.47

USMV.N/XLE.N 11.91 39.52

VO.N/VXUS.N 1.59 106.85

VWO.N/XLE.N 5.08 25.41 2.54 6.06

KALMAN − SPRD IWF.N/XLE.N 1.75 27.96 3.02 16.16

QQQ.N/XLE.N 3.81 116.27 18.57 28.28

USMV.N/XLE.N 1.11 39.55

VWO.N/XLE.N 3.17 37.37

RATIO − SPRD IWF.N/XLE.N 1.27 40.95

QQQ.N/XLE.N 3.17 49.11

USMV.N/XLE.N 4.76 53.77

50

DISTV 1.1 − SPRD ITOT.N/IXUS.N 6.67 11.50

IWF.N/XLE.N 2.22 24.62 1.59 5.77

QQQ.N/XLE.N 5.24 39.87 1.11 8.09

SCHF.N/VO.N 6.67 12.87

USMV.N/XLE.N 2.22 16.45 4.60 24.86

VO.N/VXUS.N 5.56 11.44

VWO.N/XLE.N 2.54 20.69

DISTV 1.2 − SPRD QQQ.N/XLE.N 3.97 29.91

USMV.N/XLE.N 1.43 9.54

DISTV 2 − SPRD IWF.N/XLE.N 9.37 55.70 9.37 6.79

USMV.N/XLE.N 0.00 33.73

VWO.N/XLE.N 0.16 7.83 0.32 12.57

DISTV 3 − SPRD IWF.N/XLE.N 0.16 26.74

QQQ.N/XLE.N 6.19 58.53

USMV.N/XLE.N 1.43 30.43

DISTV 4 − SPRD IWF.N/XLE.N 0.16 26.74

QQQ.N/XLE.N 6.19 58.53

USMV.N/XLE.N 1.43 30.43

JOHANSEN − SPRD ITOT.N/IXUS.N 3.17 75.17 2.38 1.10

IWF.N/XLE.N 3.49 355.24

QQQ.N/XLE.N 1.90 41.90

SCHF.N/VO.N 9.05 311.34

USMV.N/XLE.N 5.08 1,009.54 5.56 56.92

VO.N/VXUS.N 2.38 94.96

VWO.N/XLE.N 4.13 358.69

ADF − SPRD ITOT.N/IXUS.N 11.91 13.17

QQQ.N/XLE.N 4.44 1,578.35

SCHF.N/VO.N 6.03 16.91

USMV.N/XLE.N 5.71 38.67

VO.N/VXUS.N 15.56 177.00

VWO.N/XLE.N 30.48 121.28

KALMAN − SPRD IWF.N/XLE.N 3.33 72.27 56.99 11.07

QQQ.N/XLE.N 3.97 13.70

USMV.N/XLE.N 2.38 48.75

VO.N/VXUS.N 0.32 25.16

VWO.N/XLE.N 0.79 29.65

RATIO − SPRD IWF.N/XLE.N 1.11 39.73

QQQ.N/XLE.N 3.02 47.35

USMV.N/XLE.N 4.44 52.38

VO.N/VXUS.N 5.87 4.26

100

DISTV 1.1 − SPRD ITOT.N/IXUS.N 16.19 12.95

IWF.N/XLE.N 2.38 25.39

QQQ.N/XLE.N 4.76 37.35

SCHF.N/VO.N 4.60 12.41

USMV.N/XLE.N 3.49 31.95 18.41 12.10

VO.N/VXUS.N 5.08 11.12

VWO.N/XLE.N 2.54 12.70

DISTV 1.2 − SPRD IWF.N/XLE.N 2.22 27.05

QQQ.N/XLE.N 0.48 21.88

USMV.N/XLE.N 1.59 10.88

VWO.N/XLE.N 2.38 33.17

DISTV 2 − SPRD ITOT.N/IXUS.N 13.49 3.59

IWF.N/XLE.N 10.48 58.23

VWO.N/XLE.N 0.00 19.69

DISTV 3 − SPRD USMV.N/XLE.N 0.32 34.35

DISTV 4 − SPRD USMV.N/XLE.N 0.32 34.35

JOHANSEN − SPRD IWF.N/XLE.N 3.17 150.01 1.11 0.84

QQQ.N/XLE.N 5.40 215.16 1.11 15.80

SCHF.N/VO.N 4.44 353.41 1.90 15.35

USMV.N/XLE.N 7.78 134.29

VWO.N/XLE.N 8.25 278.59 5.71 9.06

ADF − SPRD IWF.N/XLE.N 5.24 328.45 10.95 159.69

QQQ.N/XLE.N 6.19 338.79 11.43 181.69

USMV.N/XLE.N 7.14 36.35 10.95 46.18

VWO.N/XLE.N 3.49 26.00 7.46 3.24

KALMAN − SPRD ITOT.N/IXUS.N 2.86 3.02

IWF.N/XLE.N 2.54 40.59

QQQ.N/XLE.N 6.83 110.62

USMV.N/XLE.N 3.97 31.19

VO.N/VXUS.N 1.75 36.86 0.00 1.99

VWO.N/XLE.N 0.95 31.06

RATIO − SPRD IWF.N/XLE.N 0.32 34.18

QQQ.N/XLE.N 2.54 43.59

USMV.N/XLE.N 3.49 47.08
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Table D.2.1: This table presents the back-test metrics for the pair ITOT.N/IXUS.N based on a 30-day rolling window. The table is subdivided into eleven parts, and in each of these parts, we present the back-test metrics and the trading strategies which use the
spread derived from various models. In Part I, the spread is derived from the DIST V 1.1 model, in Part II from the DIST V 1.2 model, in Part III from the DIST V 2 model, in Part IV from the DIST V 3 model, in Part V from the DIST V 4 model, in Part VI from the
JOHANSEN − SPRD model, in Part VIII from the ADF − SPRD model, in from the DIST V 2 model, in Part VIII from the KALMAN − SPRD model, and in Part IX from the RATIO − SPRD model. In Part X and XI, we present the back-test metrics of
the trading strategies which use the close price of ITOT.N, and IXUS.N, respectively. All $ numbers reported below are in USD.

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X) (XI) (XII) (XIII) (XIV) (XV) (XVI) (XVII) (XVIII) (XIX) (XX)

Trading
Strategy
Code

Model
Name

Total
Number
of
Trades

Number
of

Winning
Trades

Number
of Loosing
Trades

Average
Profit

per Trade
($)

Average
Loss per
Trade
($)

Gross
Profit
($)

Gross
Loss
($)

Net Profit
($)

ROI (%) Max P&L
($)

Min P&L
($)

Daily
Sharpe
Ratio

Annualized
Sharpe
Ratio

Hit Ratio Expectancy Profit
Factor

Realized
Risk

Reward
Ratio

Max
Drawdown

($)

Part I: Models derived using the spread obtained from DISTV 1.1 − SPRD30D

A1.1 DISTV 1.1 − ZSPRD30D
(3,2) 2 1 1 11.24 26.03 11.24 26.03 -14.79 -0.15 11.24 -26.03 -6.05 -96.04 50 -7.39 0.43 0.43 -26.03

A1.2 DISTV 1.1 − ZSPRD30D
(3,1) 2 2 - 13.33 - 26.66 - 26.66 0.27 17.12 - -25.88 -410.83 100 13.33 26.66 13.33 -

A1.3 DISTV 1.1 − ZSPRD30D
(3,0.5) 2 2 - 2.37 - 4.73 - 4.73 0.05 3.5 - -93.47 -1483.79 100 2.37 4.73 2.37 -

A1.4 DISTV 1.1 − ZSPRD30D
(2.7,2) 8 3 5 64.6 34.79 193.79 173.95 19.84 0.2 160.91 -64.57 -2.14 -33.97 37.5 2.48 1.11 1.86 -98.14

A1.5 DISTV 1.1 − ZSPRD30D
(2.7,1) 7 5 2 93.84 46.34 469.19 92.67 376.52 3.77 228.57 -81.55 -0.96 -15.24 71.43 53.79 5.06 2.03 -92.67

A1.6 DISTV 1.1 − ZSPRD30D
(2.7,0.5) 7 5 2 93.64 45.2 468.18 90.41 377.77 3.78 225.04 -81.55 -0.9 -14.29 71.43 53.97 5.18 2.07 -81.55

A2.1 DISTV 1.1 − SPRD30D − SMA(10,20) 17 8 9 53.13 80.12 425.02 721.05 -296.04 -2.96 121.26 -254.5 -1.87 -29.69 47.06 -17.41 0.59 0.66 -449

A2.2 DISTV 1.1 − SPRD30D − EMA(10,20) 24 17 7 73.3 139.09 1246.1 973.66 272.45 2.72 201.75 -279.78 -1.17 -18.57 70.83 11.34 1.28 0.53 -377.78

A2.3 DISTV 1.1 − SPRD30D −MACD(12,26,9) 33 20 13 61.12 110.44 1222.34 1435.69 -213.35 -2.13 149.06 -272.02 -1.47 -23.34 60.61 -6.46 0.85 0.55 -432.94

A2.4 DISTV 1.1 − SPRD30D −RSI(14) 4 3 1 373.47 185.16 1120.42 185.16 935.26 9.35 738.43 -185.16 0.21 3.33 75 233.82 6.05 2.02 -185.16

A2.5 DISTV 1.1 − SPRD30D −BB(20) 20 8 12 62.54 44.18 500.29 530.12 -29.83 -0.3 159.4 -136.41 -2.24 -35.56 40 -1.49 0.94 1.42 -284.68

A3 DISTV 1.1 − SPRD30D −DECTREE 327 117 210 24.17 23.17 2827.99 4865.09 -2037.1 -20.37 191.36 -127.55 -4.82 -76.52 35.78 -6.23 0.58 1.04 -2526.49

A4 DISTV 1.1 − SPRD30D −MLP 337 124 213 24.13 21.71 2992.22 4624.19 -1631.97 -16.32 200.31 -127.55 -4.78 -75.88 36.8 -4.84 0.65 1.11 -1846.19

Part II: Models derived using the spread obtained from DISTV 1.2 − SPRD30D

B1.1 DISTV 1.2 − ZSPRD30D
(3,2) 9 6 3 38.44 19.46 230.66 58.39 172.28 1.72 112.26 -33.69 -3.09 -49.05 66.67 19.14 3.95 1.98 -56.34

B1.2 DISTV 1.2 − ZSPRD30D
(3,1) 8 4 4 71.09 68.88 284.38 275.51 8.87 0.09 143.35 -193.8 -1.52 -24.13 50 1.11 1.03 1.03 -193.8

B1.3 DISTV 1.2 − ZSPRD30D
(3,0.5) 8 4 4 94.68 57.53 378.73 230.1 148.63 1.49 183.55 -98.19 -1.38 -21.91 50 18.58 1.65 1.65 -138.43

B1.4 DISTV 1.2 − ZSPRD30D
(2.7,2) 10 6 4 27.7 28.64 166.21 114.55 51.66 0.52 53.61 -39.87 -4.44 -70.48 60 5.17 1.45 0.97 -90.43

B1.5 DISTV 1.2 − ZSPRD30D
(2.7,1) 9 4 5 31.51 62.6 126.02 313.02 -187 -1.87 61.09 -159.07 -2.57 -40.8 44.44 -20.78 0.4 0.5 -211.52

B1.6 DISTV 1.2 − ZSPRD30D
(2.7,0.5) 9 4 5 57.49 53.46 229.96 267.3 -37.35 -0.37 87.76 -98.19 -2.39 -37.94 44.44 -4.15 0.86 1.08 -138.43

B2.1 DISTV 1.2 − SPRD30D − SMA(10,20) 15 9 6 118.59 87.81 1067.28 526.85 540.43 5.4 312.84 -279.57 -0.79 -12.54 60 36.03 2.03 1.35 -179.01

B2.2 DISTV 1.2 − SPRD30D − EMA(10,20) 25 12 13 79.97 105.47 959.62 1371.13 -411.51 -4.12 275.42 -204.41 -1.39 -22.07 48 -16.46 0.7 0.76 -688.9

B2.3 DISTV 1.2 − SPRD30D −MACD(12,26,9) 27 15 12 72.63 67.27 1089.46 807.18 282.28 2.82 191.97 -158.53 -1.58 -25.08 55.56 10.46 1.35 1.08 -527.38

B2.4 DISTV 1.2 − SPRD30D −RSI(14) 9 2 7 150.14 205.98 300.27 1441.84 -1141.56 -11.42 226.99 -469.1 -1.24 -19.68 22.22 -126.85 0.21 0.73 -715.87

B2.5 DISTV 1.2 − SPRD30D −BB(20) 15 7 8 79.52 67.46 556.67 539.66 17.01 0.17 218.15 -158.16 -1.54 -24.45 46.67 1.14 1.03 1.18 -283.11

B3 DISTV 1.2 − SPRD30D −DECTREE 303 157 146 27.44 22.24 4307.85 3247.48 1060.37 10.6 195.59 -100.04 -4.16 -66.04 51.82 3.5 1.33 1.23 -433.4

B4 DISTV 1.2 − SPRD30D −MLP 214 109 105 28.52 32.7 3109.12 3433.38 -324.25 -3.24 222.87 -105.09 -3.48 -55.24 50.93 -1.52 0.91 0.87 -673.87

Part III: Models derived using the spread obtained from DISTV 2 − SPRD30D

C1.1 DISTV 2 − ZSPRD30D
(3,2) 2 1 1 26.03 11.24 26.03 11.24 14.79 0.15 26.03 -11.24 -5.49 -87.15 50 7.39 2.32 2.32 -11.24

C1.2 DISTV 2 − ZSPRD30D
(3,1) 2 - 2 - 13.33 - 26.66 -26.66 -0.27 - -17.12 -30.85 -489.73 - -13.33 - - -26.66

C1.3 DISTV 2 − ZSPRD30D
(3,0.5) 2 - 2 - 2.37 - 4.73 -4.73 -0.05 - -3.5 -96.43 -1530.78 - -2.37 - - -4.73

C1.4 DISTV 2 − ZSPRD30D
(2.7,2) 8 5 3 34.79 64.6 173.95 193.79 -19.84 -0.2 64.57 -160.91 -2.21 -35.08 62.5 -2.48 0.9 0.54 -182.55

C1.5 DISTV 2 − ZSPRD30D
(2.7,1) 7 2 5 46.34 93.84 92.67 469.19 -376.52 -3.77 81.55 -228.57 -2.01 -31.91 28.57 -53.79 0.2 0.49 -459.65

C1.6 DISTV 2 − ZSPRD30D
(2.7,0.5) 7 2 5 45.2 93.64 90.41 468.18 -377.77 -3.78 81.55 -225.04 -1.89 -30 28.57 -53.97 0.19 0.48 -458.09

C2.1 DISTV 2 − SPRD30D − SMA(10,20) 17 9 8 87.36 48.74 786.22 389.93 396.29 3.96 254.5 -121.26 -1.41 -22.38 52.94 23.31 2.02 1.79 -208.64

C2.2 DISTV 2 − SPRD30D − EMA(10,20) 24 7 17 139.09 73.3 973.66 1246.1 -272.45 -2.72 279.78 -201.75 -1.36 -21.59 29.17 -11.34 0.78 1.9 -706.65

C2.3 DISTV 2 − SPRD30D −MACD(12,26,9) 33 13 20 110.44 61.12 1435.69 1222.34 213.35 2.13 272.02 -149.06 -1.35 -21.43 39.39 6.46 1.17 1.81 -455.41

C2.4 DISTV 2 − SPRD30D −RSI(14) 4 1 3 185.16 373.47 185.16 1120.42 -935.26 -9.35 185.16 -738.43 -1.01 -16.03 25 -233.82 0.17 0.5 -961.65

C2.5 DISTV 2 − SPRD30D −BB(20) 20 12 8 44.18 62.54 530.12 500.29 29.83 0.3 136.41 -159.4 -2.2 -34.92 60 1.49 1.06 0.71 -169.33

C3 DISTV 2 − SPRD30D −DECTREE 330 120 210 24.34 22.65 2920.8 4756.1 -1835.3 -18.35 191.36 -127.55 -4.79 -76.04 36.36 -5.56 0.61 1.07 -2126

C4 DISTV 2 − SPRD30D −MLP 327 120 207 22.96 22.89 2755.73 4738.94 -1983.2 -19.83 191.36 -127.55 -5.06 -80.33 36.7 -6.06 0.58 1 -2083.9

Part IV: Models derived using the spread obtained from DISTV 3 − SPRD30D

D1.1 DISTV 3 − ZSPRD30D
(3,2) 8 5 3 45.23 31.6 226.16 94.8 131.36 1.31 84.77 -38.35 -3.1 -49.21 62.5 16.42 2.39 1.43 -38.35

D1.2 DISTV 3 − ZSPRD30D
(3,1) 8 5 3 53.91 46.29 269.54 138.87 130.67 1.31 84.77 -67.91 -2.48 -39.37 62.5 16.33 1.94 1.16 -67.91

D1.3 DISTV 3 − ZSPRD30D
(3,0.5) 8 5 3 49.44 65.15 247.21 195.46 51.74 0.52 84.77 -133.71 -2.06 -32.7 62.5 6.47 1.26 0.76 -133.74

D1.4 DISTV 3 − ZSPRD30D
(2.7,2) 10 6 4 41.13 59.91 246.78 239.64 7.14 0.07 84.77 -177.87 -2.11 -33.5 60 0.71 1.03 0.69 -210.48

D1.5 DISTV 3 − ZSPRD30D
(2.7,1) 10 6 4 50.44 48.41 302.62 193.64 108.99 1.09 84.77 -87.81 -2.47 -39.21 60 10.9 1.56 1.04 -120.41

D1.6 DISTV 3 − ZSPRD30D
(2.7,0.5) 10 6 4 46.23 62.56 277.36 250.23 27.13 0.27 84.77 -133.71 -2.18 -34.61 60 2.71 1.11 0.74 -133.71

D2.1 DISTV 3 − SPRD30D − SMA(10,20) 22 11 11 106.82 60.25 1175.01 662.74 512.27 5.12 257.62 -212.65 -1.24 -19.68 50 23.28 1.77 1.77 -212.65

D2.2 DISTV 3 − SPRD30D − EMA(10,20) 44 13 31 100.95 66.36 1312.41 2057.06 -744.65 -7.45 264.76 -215.43 -1.73 -27.46 29.55 -16.92 0.64 1.52 -1089.18

D2.3 DISTV 3 − SPRD30D −MACD(12,26,9) 48 12 36 76.57 49.3 918.85 1774.86 -856.01 -8.56 240.53 -152.77 -2.15 -34.13 25 -17.83 0.52 1.55 -1291.33

D2.4 DISTV 3 − SPRD30D −RSI(14) 5 4 1 216.79 277.47 867.14 277.47 589.68 5.9 487.34 -277.47 -0.12 -1.9 80 117.94 3.13 0.78 -277.47

D2.5 DISTV 3 − SPRD30D −BB(20) 16 11 5 29.36 74.69 323 373.45 -50.45 -0.5 94.86 -172.61 -2.29 -36.35 68.75 -3.15 0.86 0.39 -172.61

D3 DISTV 3 − SPRD30D −DECTREE 314 150 164 25.91 24.31 3886.11 3986.78 -100.67 -1.01 225.05 -214.49 -3.96 -62.86 47.77 -0.32 0.97 1.07 -545.17

D4 DISTV 3 − SPRD30D −MLP 125 54 71 26.02 46.49 1405.13 3301.12 -1895.99 -18.96 165.28 -213.23 -2.95 -46.83 43.2 -15.17 0.43 0.56 -2079.3

Part V: Models derived using the spread obtained from DISTV 4 − SPRD30D

E1.1 DISTV 4 − ZSPRD30D
(3,2) 8 5 3 45.23 31.6 226.16 94.8 131.36 1.31 84.77 -38.35 -3.1 -49.21 62.5 16.42 2.39 1.43 -38.35

E1.2 DISTV 4 − ZSPRD30D
(3,1) 8 5 3 53.91 46.29 269.54 138.87 130.67 1.31 84.77 -67.91 -2.48 -39.37 62.5 16.33 1.94 1.16 -67.91

E1.3 DISTV 4 − ZSPRD30D
(3,0.5) 8 5 3 49.44 65.15 247.21 195.46 51.74 0.52 84.77 -133.71 -2.06 -32.7 62.5 6.47 1.26 0.76 -133.74

E1.4 DISTV 4 − ZSPRD30D
(2.7,2) 10 6 4 41.13 59.91 246.78 239.64 7.14 0.07 84.77 -177.87 -2.11 -33.5 60 0.71 1.03 0.69 -210.48

E1.5 DISTV 4 − ZSPRD30D
(2.7,1) 10 6 4 50.44 48.41 302.62 193.64 108.99 1.09 84.77 -87.81 -2.47 -39.21 60 10.9 1.56 1.04 -120.41

E1.6 DISTV 4 − ZSPRD30D
(2.7,0.5) 10 6 4 46.23 62.56 277.36 250.23 27.13 0.27 84.77 -133.71 -2.18 -34.61 60 2.71 1.11 0.74 -133.71

E2.1 DISTV 4 − SPRD30D − SMA(10,20) 22 11 11 92.56 60.25 1018.2 662.74 355.46 3.55 257.62 -212.65 -1.36 -21.59 50 16.16 1.54 1.54 -212.65

E2.2 DISTV 4 − SPRD30D − EMA(10,20) 44 13 31 100.95 66.36 1312.41 2057.06 -744.65 -7.45 264.76 -215.43 -1.73 -27.46 29.55 -16.92 0.64 1.52 -1089.18

E2.3 DISTV 4 − SPRD30D −MACD(12,26,9) 48 12 36 76.57 49.3 918.85 1774.86 -856.01 -8.56 240.53 -152.77 -2.15 -34.13 25 -17.83 0.52 1.55 -1291.33

E2.4 DISTV 4 − SPRD30D −RSI(14) 5 4 1 216.79 277.47 867.14 277.47 589.68 5.9 487.34 -277.47 -0.12 -1.9 80 117.94 3.13 0.78 -277.47

E2.5 DISTV 4 − SPRD30D −BB(20) 16 11 5 29.36 74.69 323 373.45 -50.45 -0.5 94.86 -172.61 -2.29 -36.35 68.75 -3.15 0.86 0.39 -172.61

E3 DISTV 4 − SPRD30D −DECTREE 329 147 182 25 23.68 3674.36 4308.86 -634.5 -6.34 132.54 -219.24 -4.32 -68.58 44.68 -1.93 0.85 1.06 -714.89

E4 DISTV 4 − SPRD30D −MLP 146 68 78 33.56 40.99 2281.84 3197.08 -915.23 -9.15 254.38 -286.26 -2.6 -41.27 46.58 -6.27 0.71 0.82 -1716.9

Part VI: Models derived using the spread obtained from JOHANSEN − SPRD30D

F1.1 JOHANSEN − ZSPRD30D
(3,2) 24 14 10 50.93 53.06 712.97 530.56 182.41 1.82 248.2 -317.44 -0.47 -7.46 58.33 7.6 1.34 0.96 -339.29

F1.2 JOHANSEN − ZSPRD30D
(3,1) 23 11 12 58.37 63.07 642.06 756.82 -114.76 -1.15 248.2 -317.44 -0.42 -6.67 47.83 -4.98 0.85 0.93 -457.43

F1.3 JOHANSEN − ZSPRD30D
(3,0.5) 23 12 11 60.22 58.31 722.61 641.44 81.17 0.81 248.2 -317.44 -0.47 -7.46 52.17 3.52 1.13 1.03 -339.29

F1.4 JOHANSEN − ZSPRD30D
(2.7,2) 28 15 13 46.21 43.84 693.14 569.91 123.23 1.23 248.2 -317.44 -0.42 -6.67 53.57 4.4 1.22 1.05 -339.29

F1.5 JOHANSEN − ZSPRD30D
(2.7,1) 26 12 14 53.3 56.04 639.62 784.56 -144.94 -1.45 215.83 -317.44 -0.25 -3.97 46.15 -5.58 0.82 0.95 -453.89

F1.6 JOHANSEN − ZSPRD30D
(2.7,0.5) 25 12 13 53.59 62.54 643.05 812.99 -169.94 -1.7 215.83 -317.44 -0.26 -4.13 48 -6.8 0.79 0.86 -400.81

F2.1 JOHANSEN − SPRD30D − SMA(10,20) 28 11 17 461.65 271.19 5078.14 4610.18 467.97 4.68 2405.82 -2376.23 -0.24 -3.81 39.29 16.74 1.1 1.7 -2803.96

F2.2 JOHANSEN − SPRD30D − EMA(10,20) 33 13 20 208.97 291.2 2716.58 5823.96 -3107.39 -31.07 1046.7 -1433.97 -0.17 -2.7 39.39 -94.18 0.47 0.72 -3711.31

F2.3 JOHANSEN − SPRD30D −MACD(12,26,9) 41 20 21 290.44 234.39 5808.71 4922.17 886.54 8.87 1591.29 -2213.68 -0.1 -1.59 48.78 21.62 1.18 1.24 -3329.2

F2.4 JOHANSEN − SPRD30D −RSI(14) 9 2 7 23.9 283.17 47.81 1982.22 -1934.41 -19.34 41.41 -934.16 -0.3 -4.76 22.22 -214.94 0.02 0.08 -1898.87

F2.5 JOHANSEN − SPRD30D −BB(20) 27 14 13 203.66 309.81 2851.3 4027.57 -1176.27 -11.76 1538.43 -1330.8 0.21 3.33 51.85 -43.58 0.71 0.66 -1513.2

F3 JOHANSEN − SPRD30D −DECTREE 327 152 175 26.08 22.48 3964.47 3934.03 30.44 0.3 251.52 -139.61 -4.18 -66.36 46.48 0.09 1.01 1.16 -619.69

F4 JOHANSEN − SPRD30D −MLP 190 84 106 22.85 36.93 1919.64 3914.64 -1994.99 -19.95 124.52 -254.69 -3.52 -55.88 44.21 -10.5 0.49 0.62 -2037.37

Part VII: Models derived using the spread obtained from ADF − SPRD30D

G1.1 ADF − ZSPRD30D
(3,2) 4 1 3 17.84 539.62 17.84 1618.87 -1601.02 -16.01 17.84 -1220.26 -0.82 -13.02 25 -400.26 0.01 0.03 -1618.87

G1.2 ADF − ZSPRD30D
(3,1) 4 1 3 207.8 400.91 207.8 1202.72 -994.92 -9.95 207.8 -728.25 -0.82 -13.02 25 -248.73 0.17 0.52 -1202.72

G1.3 ADF − ZSPRD30D
(3,0.5) 4 2 2 129.69 743.22 259.38 1486.44 -1227.07 -12.27 253.76 -1037.21 -0.71 -11.27 50 -306.77 0.17 0.17 -1480.83

G1.4 ADF − ZSPRD30D
(2.7,2) 9 2 7 78.69 327.15 157.37 2290.04 -2132.67 -21.33 139.53 -1220.26 -0.81 -12.86 22.22 -236.97 0.07 0.24 -2132.67

G1.5 ADF − ZSPRD30D
(2.7,1) 8 2 6 119.68 315.55 239.36 1893.28 -1653.93 -16.54 207.8 -728.25 -0.85 -13.49 25 -206.74 0.13 0.38 -1874.06

G1.6 ADF − ZSPRD30D
(2.7,0.5) 8 2 6 129.69 399.27 259.38 2395.65 -2136.27 -21.36 253.76 -1037.21 -0.87 -13.81 25 -267.03 0.11 0.32 -2137.95

G2.1 ADF − SPRD30D − SMA(10,20) 22 13 9 207.18 1000.85 2693.4 9007.68 -6314.28 -63.14 944.22 -7256.1 -0.23 -3.65 59.09 -287.02 0.3 0.21 -7504.17

G2.2 ADF − SPRD30D − EMA(10,20) 52 31 21 193.66 210.83 6003.43 4427.46 1575.98 15.76 1118.17 -826.58 -0.16 -2.54 59.62 30.33 1.36 0.92 -1240.89

G2.3 ADF − SPRD30D −MACD(12,26,9) 45 27 18 623.16 145 16825.42 2610.03 14215.39 142.15 12532.27 -474.63 0.12 1.9 60 315.9 6.45 4.3 -911.54

G2.4 ADF − SPRD30D −RSI(14) 1 1 - 40.37 - 40.37 - 40.37 0.4 40.37 - - - 100 40.37 40.37 40.37 -

G2.5 ADF − SPRD30D −BB(20) 21 8 13 61.5 135.96 492.02 1767.48 -1275.45 -12.75 151.68 -406.99 -0.96 -15.24 38.1 -60.73 0.28 0.45 -1382.51

G3 ADF − SPRD30D −DECTREE 327 142 185 25.02 22.48 3553.15 4159.62 -606.47 -6.06 157.15 -188.03 -4.32 -68.58 43.43 -1.85 0.85 1.11 -953.08

G4 ADF − SPRD30D −MLP 194 78 116 20.65 28.46 1610.63 3301.56 -1690.94 -16.91 131.9 -160.17 -4.27 -67.78 40.21 -8.71 0.49 0.73 -1690.94

Part VIII: Models derived using the spread obtained from KALMAN − SPRD30D

H1.1 KALMAN − ZSPRD30D
(3,2) 1 1 - 133.29 - 133.29 - 133.29 1.33 133.29 - - - 100 133.29 133.29 133.29 -

H1.2 KALMAN − ZSPRD30D
(3,1) 1 1 - 125.1 - 125.1 - 125.1 1.25 125.1 - - - 100 125.1 125.1 125.1 -

H1.3 KALMAN − ZSPRD30D
(3,0.5) 1 1 - 123.33 - 123.33 - 123.33 1.23 123.33 - - - 100 123.33 123.33 123.33 -

H1.4 KALMAN − ZSPRD30D
(2.7,2) 5 5 - 53.17 - 265.85 - 265.85 2.66 132.33 - -1.8 -28.57 100 53.17 265.85 53.17 -

H1.5 KALMAN − ZSPRD30D
(2.7,1) 5 4 1 83.33 23.57 333.33 23.57 309.76 3.1 124.01 -23.57 -1.26 -20 80 61.95 14.14 3.54 -23.57

H1.6 KALMAN − ZSPRD30D
(2.7,0.5) 4 3 1 79.14 12.47 237.42 12.47 224.95 2.25 122.41 -12.47 -1.39 -22.07 75 56.24 19.04 6.35 -12.47

H2.1 KALMAN − SPRD30D − SMA(10,20) 17 4 13 80.37 104.56 321.49 1359.28 -1037.79 -10.38 153.92 -227.57 -1.84 -29.21 23.53 -61.05 0.24 0.77 -1033.42

H2.2 KALMAN − SPRD30D − EMA(10,20) 24 6 18 76.06 102.14 456.35 1838.56 -1382.2 -13.82 130.99 -196.35 -2.06 -32.7 25 -57.59 0.25 0.74 -1381.62

H2.3 KALMAN − SPRD30D −MACD(12,26,9) 34 14 20 89.77 72.23 1256.83 1444.54 -187.71 -1.88 254.66 -365.55 -1.28 -20.32 41.18 -5.52 0.87 1.24 -596.41

H2.4 KALMAN − SPRD30D −RSI(14) 2 1 1 107.31 1799.17 107.31 1799.17 -1691.86 -16.92 107.31 -1799.17 -0.73 -11.59 50 -845.93 0.06 0.06 -1799.17

H2.5 KALMAN − SPRD30D −BB(20) 19 10 9 52.52 40.56 525.22 365.01 160.21 1.6 123.05 -135.75 -2.09 -33.18 52.63 8.43 1.44 1.3 -188.38

H3 KALMAN − SPRD30D −DECTREE 336 178 158 22.86 21 4069.67 3317.81 751.87 7.52 152.77 -104.27 -4.66 -73.98 52.98 2.24 1.23 1.09 -425.42

H4 KALMAN − SPRD30D −MLP 278 163 115 24.28 27.31 3957.38 3140.15 817.23 8.17 127.55 -286.07 -3.87 -61.43 58.63 2.94 1.26 0.89 -507.39

Part IX: Models derived using the spread obtained from RATIO − SPRD30D

I1.1 RATIO − ZSPRD30D
(3,2) 2 2 - 33.65 - 67.29 - 67.29 0.67 41.26 - -10.98 -174.3 100 33.65 67.29 33.65 -

I1.2 RATIO − ZSPRD30D
(3,1) 2 1 1 38.33 1.24 38.33 1.24 37.09 0.37 38.33 -1.24 -4.77 -75.72 50 18.55 31.03 31.03 -1.24

I1.3 RATIO − ZSPRD30D
(3,0.5) 2 1 1 8.86 1.24 8.86 1.24 7.62 0.08 8.86 -1.24 -20.77 -329.71 50 3.81 7.17 7.17 -1.24

I1.4 RATIO − ZSPRD30D
(2.7,2) 5 4 1 31.21 1.08 124.84 1.08 123.76 1.24 41.26 -1.08 -7.3 -115.88 80 24.75 115.8 28.95 -1.08

I1.5 RATIO − ZSPRD30D
(2.7,1) 5 3 2 44 58.29 132.01 116.57 15.44 0.15 53.91 -115.34 -2.15 -34.13 60 3.09 1.13 0.75 -116.57

I1.6 RATIO − ZSPRD30D
(2.7,0.5) 5 3 2 30.94 43.78 92.81 87.57 5.24 0.05 44.18 -86.33 -2.87 -45.56 60 1.05 1.06 0.71 -87.57

I2.1 RATIO − SPRD30D − SMA(10,20) 18 6 12 139.47 103.26 836.84 1239.12 -402.29 -4.02 580.16 -248.57 -0.97 -15.4 33.33 -22.36 0.68 1.35 -1047.84

I2.2 RATIO − SPRD30D − EMA(10,20) 26 7 19 149.21 84.36 1044.47 1602.79 -558.32 -5.58 290.66 -406.79 -1.23 -19.53 26.92 -21.48 0.65 1.77 -1357.01

I2.3 RATIO − SPRD30D −MACD(12,26,9) 37 12 25 92.37 47.61 1108.4 1190.32 -81.92 -0.82 218.33 -271.45 -1.71 -27.15 32.43 -2.22 0.93 1.94 -497.89

I2.4 RATIO − SPRD30D −RSI(14) 4 2 2 172.79 798.48 345.57 1596.96 -1251.39 -12.51 231.19 -1417.3 -0.61 -9.68 50 -312.85 0.22 0.22 -1417.3

I2.5 RATIO − SPRD30D −BB(20) 21 16 5 53.78 110.87 860.56 554.35 306.21 3.06 132.81 -244.77 -1.62 -25.72 76.19 14.58 1.55 0.49 -259.78

I3 RATIO − SPRD30D −DECTREE 368 127 241 22.69 19.96 2881.7 4809.66 -1927.96 -19.28 138.71 -127.55 -5.38 -85.4 34.51 -5.24 0.6 1.14 -2318.17

I4 RATIO − SPRD30D −MLP 329 122 207 24.29 21.94 2963.23 4541.57 -1578.34 -15.78 132.54 -127.55 -4.95 -78.58 37.08 -4.8 0.65 1.11 -1809.68

Part X: Models derived using the close price of ITOT.N

CLS-SYM-1.1 CLOSEITOT.N − SMA(10,20) 12 7 5 349.7 110.23 2447.92 551.13 1896.79 18.97 1275.51 -231.05 0.2 3.17 58.33 158.05 4.44 3.17 -320.08

CLS-SYM-1.2 CLOSEITOT.N − EMA(10,20) 18 8 10 320.51 242.25 2564.09 2422.52 141.57 1.42 1107.76 -798.87 -0.17 -2.7 44.44 7.84 1.06 1.32 -637.32

CLS-SYM-1.3 CLOSEITOT.N −MACD(12,26,9) 38 15 23 136.98 113.32 2054.75 2606.43 -551.68 -5.52 565.03 -354.83 -0.56 -8.89 39.47 -14.53 0.79 1.21 -1373.77

CLS-SYM-1.4 CLOSEITOT.N −RSI(14) 6 3 3 350.41 842.6 1051.24 2527.79 -1476.55 -14.77 576.4 -2049.07 -0.34 -5.4 50 -246.09 0.42 0.42 -2049.07

CLS-SYM-1.5 CLOSEITOT.N −BB(20) 12 9 3 93.75 445.83 843.77 1337.49 -493.72 -4.94 226.17 -778.78 -0.39 -6.19 75 -41.14 0.63 0.21 -778.78

Part XI: Models derived using the close price of IXUS.N

CLS-SYM-2.1 CLOSEIXUS.N − SMA(10,20) 14 6 8 191.25 153.22 1147.51 1225.77 -78.26 -0.78 563.95 -480.15 -0.33 -5.24 42.86 -5.58 0.94 1.25 -673.35

CLS-SYM-2.2 CLOSEIXUS.N − EMA(10,20) 23 8 15 370.89 149.39 2967.1 2240.79 726.3 7.26 1091.8 -556.4 -0.12 -1.9 34.78 31.56 1.32 2.48 -790.14

CLS-SYM-2.3 CLOSEIXUS.N −MACD(12,26,9) 38 11 27 188.47 95.85 2073.12 2587.91 -514.79 -5.15 932.53 -366.94 -0.45 -7.14 28.95 -13.54 0.8 1.97 -1634.42

CLS-SYM-2.4 CLOSEIXUS.N −RSI(14) 6 3 3 307.42 280.97 922.25 842.92 79.33 0.79 405.82 -589.96 -0.17 -2.7 50 13.22 1.09 1.09 -589.96

CLS-SYM-2.5 CLOSEIXUS.N −BB(20) 20 14 6 66.01 208.54 924.11 1251.26 -327.15 -3.27 209.32 -831.57 -0.43 -6.83 70 -16.36 0.74 0.32 -837.17
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Table D.2.2: This table presents the back-test metrics for the pair ITOT.N/IXUS.N based on a 50-day rolling window. The table is subdivided into eleven parts, and in each of these parts, we present the back-test metrics and the trading strategies which use the
spread derived from various models. In Part I, the spread is derived from the DIST V 1.1 model, in Part II from the DIST V 1.2 model, in Part III from the DIST V 2 model, in Part IV from the DIST V 3 model, in Part V from the DIST V 4 model, in Part VI from the
JOHANSEN − SPRD model, in Part VIII from the ADF − SPRD model, in from the DIST V 2 model, in Part VIII from the KALMAN − SPRD model, and in Part IX from the RATIO − SPRD model. In Part X and XI, we present the back-test metrics of
the trading strategies which use the close price of ITOT.N, and IXUS.N, respectively. All $ numbers reported below are in USD.

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X) (XI) (XII) (XIII) (XIV) (XV) (XVI) (XVII) (XVIII) (XIX) (XX)

Trading
Strategy
Code

Model
Name

Total
Number
of
Trades

Number
of

Winning
Trades

Number
of Loosing
Trades

Average
Profit

per Trade
($)

Average
Loss per
Trade
($)

Gross
Profit
($)

Gross
Loss
($)

Net Profit
($)

ROI (%) Max P&L
($)

Min P&L
($)

Daily
Sharpe
Ratio

Annualized
Sharpe
Ratio

Hit Ratio Expectancy Profit
Factor

Realized
Risk

Reward
Ratio

Max
Drawdown

($)

Part I: Models derived using the spread obtained from DISTV 1.1 − SPRD50D

A1.1 DISTV 1.1 − ZSPRD50D
(3,2) 2 - 2 - 73.58 - 147.17 -147.17 -1.47 - -121.14 -3.35 -53.18 - -73.58 - - -147.17

A1.2 DISTV 1.1 − ZSPRD50D
(3,1) 1 1 - 1.24 - 1.24 - 1.24 0.01 1.24 - - - 100 1.24 1.24 1.24 -

A1.3 DISTV 1.1 − ZSPRD50D
(3,0.5) 1 - 1 - 6.71 - 6.71 -6.71 -0.07 - -6.71 - - - -6.71 - - -6.71

A1.4 DISTV 1.1 − ZSPRD50D
(2.7,2) 8 2 6 32.5 54.18 64.99 325.11 -260.12 -2.6 41.39 -121.14 -3.71 -58.89 25 -32.51 0.2 0.6 -260.11

A1.5 DISTV 1.1 − ZSPRD50D
(2.7,1) 6 3 3 71.7 45.21 215.11 135.63 79.49 0.79 122.45 -88.31 -1.74 -27.62 50 13.25 1.59 1.59 -135.63

A1.6 DISTV 1.1 − ZSPRD50D
(2.7,0.5) 6 2 4 127.54 43.31 255.08 173.24 81.85 0.82 174.74 -87.12 -1.4 -22.22 33.33 13.64 1.47 2.94 -173.24

A2.1 DISTV 1.1 − SPRD50D − SMA(10,20) 16 8 8 73.87 85.5 590.98 683.98 -93 -0.93 205.74 -254.5 -1.46 -23.18 50 -5.81 0.86 0.86 -411.92

A2.2 DISTV 1.1 − SPRD50D − EMA(10,20) 24 17 7 71.05 139.09 1207.85 973.66 234.19 2.34 201.75 -279.78 -1.21 -19.21 70.83 9.75 1.24 0.51 -377.78

A2.3 DISTV 1.1 − SPRD50D −MACD(12,26,9) 32 19 13 64.79 111.6 1230.98 1450.74 -219.77 -2.2 149.06 -272.02 -1.44 -22.86 59.38 -6.86 0.85 0.58 -450.53

A2.4 DISTV 1.1 − SPRD50D −RSI(14) 4 3 1 392.31 26.47 1176.93 26.47 1150.46 11.5 738.43 -26.47 0.42 6.67 75 287.62 44.46 14.82 -26.47

A2.5 DISTV 1.1 − SPRD50D −BB(20) 19 7 12 67.98 44.18 475.83 530.12 -54.29 -0.54 159.4 -136.41 -2.21 -35.08 36.84 -2.86 0.9 1.54 -284.68

A3 DISTV 1.1 − SPRD50D −DECTREE 340 141 199 22.07 20.86 3111.64 4151.44 -1039.8 -10.4 191.36 -127.55 -4.93 -78.26 41.47 -3.06 0.75 1.06 -1660.31

A4 DISTV 1.1 − SPRD50D −MLP 323 123 200 23.46 22.83 2885.43 4565.16 -1679.73 -16.8 200.31 -127.55 -4.64 -73.66 38.08 -5.2 0.63 1.03 -2080.66

Part II: Models derived using the spread obtained from DISTV 1.2 − SPRD50D

B1.1 DISTV 1.2 − ZSPRD50D
(3,2) 5 4 1 44.53 103.19 178.12 103.19 74.94 0.75 93.25 -103.19 -1.79 -28.42 80 14.99 1.73 0.43 -103.19

B1.2 DISTV 1.2 − ZSPRD50D
(3,1) 5 2 3 168.96 152.4 337.91 457.19 -119.27 -1.19 183.55 -238.93 -0.95 -15.08 40 -23.85 0.74 1.11 -368.2

B1.3 DISTV 1.2 − ZSPRD50D
(3,0.5) 5 2 3 200.44 153.6 400.88 460.81 -59.92 -0.6 270.19 -305.99 -0.74 -11.75 40 -11.98 0.87 1.3 -355.1

B1.4 DISTV 1.2 − ZSPRD50D
(2.7,2) 11 7 4 63.76 62.21 446.32 248.82 197.5 1.97 99.64 -139.49 -1.75 -27.78 63.64 17.96 1.79 1.02 -139.49

B1.5 DISTV 1.2 − ZSPRD50D
(2.7,1) 9 5 4 176.21 157.77 881.05 631.1 249.95 2.5 225.21 -185.13 -0.7 -11.11 55.56 27.79 1.4 1.12 -308.58

B1.6 DISTV 1.2 − ZSPRD50D
(2.7,0.5) 9 5 4 188.22 190.94 941.08 763.78 177.3 1.77 290.05 -296.61 -0.6 -9.52 55.56 19.72 1.23 0.99 -425.68

B2.1 DISTV 1.2 − SPRD50D − SMA(10,20) 10 3 7 235.33 144.64 706 1012.47 -306.47 -3.06 499.96 -328.58 -0.77 -12.22 30 -30.65 0.7 1.63 -405.12

B2.2 DISTV 1.2 − SPRD50D − EMA(10,20) 19 8 11 144.15 119.88 1153.17 1318.66 -165.49 -1.65 328.18 -390.07 -0.93 -14.76 42.11 -8.7 0.87 1.2 -539.09

B2.3 DISTV 1.2 − SPRD50D −MACD(12,26,9) 28 15 13 61.65 83.76 924.82 1088.87 -164.05 -1.64 168.56 -301.11 -1.5 -23.81 53.57 -5.86 0.85 0.74 -586.08

B2.4 DISTV 1.2 − SPRD50D −RSI(14) 9 2 7 31.95 152.75 63.89 1069.24 -1005.35 -10.05 53.96 -503.94 -1.49 -23.65 22.22 -111.71 0.06 0.21 -731.8

B2.5 DISTV 1.2 − SPRD50D −BB(20) 10 4 6 55.08 143.12 220.3 858.69 -638.39 -6.38 84.48 -217.46 -1.81 -28.73 40 -63.84 0.26 0.38 -641.23

B3 DISTV 1.2 − SPRD50D −DECTREE 268 131 137 23.19 22.02 3038.53 3016.45 22.08 0.22 109.21 -104.51 -4.91 -77.94 48.88 0.08 1.01 1.05 -713.7

B4 DISTV 1.2 − SPRD50D −MLP 262 130 132 25.49 29.2 3314.2 3853.86 -539.66 -5.4 171.32 -205.58 -3.86 -61.28 49.62 -2.06 0.86 0.87 -1406.06

Part III: Models derived using the spread obtained from DISTV 2 − SPRD50D

C1.1 DISTV 2 − ZSPRD50D
(3,2) 2 2 - 73.58 - 147.17 - 147.17 1.47 121.14 - -1.17 -18.57 100 73.58 147.17 73.58 -

C1.2 DISTV 2 − ZSPRD50D
(3,1) 1 - 1 - 1.24 - 1.24 -1.24 -0.01 - -1.24 - - - -1.24 - - -1.24

C1.3 DISTV 2 − ZSPRD50D
(3,0.5) 1 1 - 6.71 - 6.71 - 6.71 0.07 6.71 - - - 100 6.71 6.71 6.71 -

C1.4 DISTV 2 − ZSPRD50D
(2.7,2) 8 6 2 54.18 32.5 325.11 64.99 260.12 2.6 121.14 -41.39 -2.4 -38.1 75 32.51 5 1.67 -64.99

C1.5 DISTV 2 − ZSPRD50D
(2.7,1) 6 3 3 45.21 71.7 135.63 215.11 -79.49 -0.79 88.31 -122.45 -2.08 -33.02 50 -13.25 0.63 0.63 -213.88

C1.6 DISTV 2 − ZSPRD50D
(2.7,0.5) 6 4 2 43.31 127.54 173.24 255.08 -81.85 -0.82 87.12 -174.74 -1.68 -26.67 66.67 -13.64 0.68 0.34 -255.08

C2.1 DISTV 2 − SPRD50D − SMA(10,20) 16 9 7 97.09 55.03 873.77 385.24 488.53 4.89 254.5 -121.26 -1.2 -19.05 56.25 30.53 2.27 1.76 -208.64

C2.2 DISTV 2 − SPRD50D − EMA(10,20) 24 7 17 139.09 71.05 973.66 1207.85 -234.19 -2.34 279.78 -201.75 -1.38 -21.91 29.17 -9.75 0.81 1.96 -706.65

C2.3 DISTV 2 − SPRD50D −MACD(12,26,9) 32 13 19 111.6 64.79 1450.74 1230.98 219.77 2.2 272.02 -149.06 -1.32 -20.95 40.62 6.86 1.18 1.72 -455.41

C2.4 DISTV 2 − SPRD50D −RSI(14) 4 1 3 26.47 392.31 26.47 1176.93 -1150.46 -11.5 26.47 -738.43 -1.35 -21.43 25 -287.62 0.02 0.07 -1020.81

C2.5 DISTV 2 − SPRD50D −BB(20) 19 12 7 44.18 67.98 530.12 475.83 54.29 0.54 136.41 -159.4 -2.13 -33.81 63.16 2.86 1.11 0.65 -169.33

C3 DISTV 2 − SPRD50D −DECTREE 317 123 194 24.23 20.82 2980.13 4038.16 -1058.03 -10.58 125.99 -127.55 -4.9 -77.79 38.8 -3.34 0.74 1.16 -1555.53

C4 DISTV 2 − SPRD50D −MLP 253 99 154 29.34 23.28 2904.88 3585.74 -680.86 -6.81 259.94 -136.59 -3.92 -62.23 39.13 -2.69 0.81 1.26 -1221.87

Part IV: Models derived using the spread obtained from DISTV 3 − SPRD50D

D1.1 DISTV 3 − ZSPRD50D
(3,2) 8 5 3 35.46 41.68 177.31 125.04 52.27 0.52 61.57 -47.5 -3.35 -53.18 62.5 6.53 1.42 0.85 -47.5

D1.2 DISTV 3 − ZSPRD50D
(3,1) 8 6 2 32.92 67.41 197.54 134.81 62.73 0.63 97.07 -67.41 -2.64 -41.91 75 7.84 1.47 0.49 -67.41

D1.3 DISTV 3 − ZSPRD50D
(3,0.5) 8 6 2 58.32 22.01 349.93 44.02 305.91 3.06 92.03 -42.78 -2.55 -40.48 75 38.24 7.95 2.65 -44.02

D1.4 DISTV 3 − ZSPRD50D
(2.7,2) 9 4 5 41.35 48.32 165.41 241.62 -76.21 -0.76 61.57 -104.36 -2.98 -47.31 44.44 -8.47 0.68 0.86 -104.36

D1.5 DISTV 3 − ZSPRD50D
(2.7,1) 9 5 4 38.89 60.19 194.47 240.78 -46.31 -0.46 97.07 -134.65 -2.32 -36.83 55.56 -5.14 0.81 0.65 -134.65

D1.6 DISTV 3 − ZSPRD50D
(2.7,0.5) 9 6 3 59.43 40.26 356.58 120.78 235.8 2.36 92.03 -47.71 -2.32 -36.83 66.67 26.2 2.95 1.48 -73.07

D2.1 DISTV 3 − SPRD50D − SMA(10,20) 23 11 12 82.27 84.71 904.92 1016.52 -111.6 -1.12 240.65 -212.23 -1.51 -23.97 47.83 -4.85 0.89 0.97 -439.24

D2.2 DISTV 3 − SPRD50D − EMA(10,20) 32 13 19 94.48 59.5 1228.18 1130.54 97.64 0.98 269.72 -157.17 -1.51 -23.97 40.62 3.04 1.09 1.59 -294.85

D2.3 DISTV 3 − SPRD50D −MACD(12,26,9) 38 18 20 93.77 51.31 1687.91 1026.16 661.75 6.62 258.77 -189.36 -1.38 -21.91 47.37 17.42 1.64 1.83 -497.17

D2.4 DISTV 3 − SPRD50D −RSI(14) 6 2 4 32.27 160.81 64.53 643.25 -578.72 -5.79 50.49 -401 -1.49 -23.65 33.33 -96.46 0.1 0.2 -436.64

D2.5 DISTV 3 − SPRD50D −BB(20) 19 11 8 42.98 57.89 472.8 463.14 9.66 0.1 71.25 -108.13 -2.62 -41.59 57.89 0.5 1.02 0.74 -242.92

D3 DISTV 3 − SPRD50D −DECTREE 324 129 195 25.29 24.16 3262.73 4710.38 -1447.65 -14.48 179.14 -146.74 -4.51 -71.59 39.81 -4.47 0.69 1.05 -1619.27

D4 DISTV 3 − SPRD50D −MLP 252 106 146 25.86 28.11 2741.31 4103.8 -1362.49 -13.62 182.26 -219.24 -4.08 -64.77 42.06 -5.41 0.67 0.92 -1777.4

Part V: Models derived using the spread obtained from DISTV 4 − SPRD50D

E1.1 DISTV 4 − ZSPRD50D
(3,2) 8 5 3 35.46 41.68 177.31 125.04 52.27 0.52 61.57 -47.5 -3.35 -53.18 62.5 6.53 1.42 0.85 -47.5

E1.2 DISTV 4 − ZSPRD50D
(3,1) 8 6 2 32.92 67.41 197.54 134.81 62.73 0.63 97.07 -67.41 -2.64 -41.91 75 7.84 1.47 0.49 -67.41

E1.3 DISTV 4 − ZSPRD50D
(3,0.5) 8 6 2 58.32 22.01 349.93 44.02 305.91 3.06 92.03 -42.78 -2.55 -40.48 75 38.24 7.95 2.65 -44.02

E1.4 DISTV 4 − ZSPRD50D
(2.7,2) 9 4 5 41.35 48.32 165.41 241.62 -76.21 -0.76 61.57 -104.36 -2.98 -47.31 44.44 -8.47 0.68 0.86 -104.36

E1.5 DISTV 4 − ZSPRD50D
(2.7,1) 9 5 4 38.89 60.19 194.47 240.78 -46.31 -0.46 97.07 -134.65 -2.32 -36.83 55.56 -5.14 0.81 0.65 -134.65

E1.6 DISTV 4 − ZSPRD50D
(2.7,0.5) 9 6 3 59.43 40.26 356.58 120.78 235.8 2.36 92.03 -47.71 -2.32 -36.83 66.67 26.2 2.95 1.48 -73.07

E2.1 DISTV 4 − SPRD50D − SMA(10,20) 23 11 12 65.63 84.71 721.92 1016.52 -294.59 -2.95 145.19 -212.23 -1.82 -28.89 47.83 -12.8 0.71 0.77 -439.24

E2.2 DISTV 4 − SPRD50D − EMA(10,20) 32 13 19 94.48 59.5 1228.18 1130.54 97.64 0.98 269.72 -157.17 -1.51 -23.97 40.62 3.04 1.09 1.59 -294.85

E2.3 DISTV 4 − SPRD50D −MACD(12,26,9) 38 18 20 93.77 51.31 1687.91 1026.16 661.75 6.62 258.77 -189.36 -1.38 -21.91 47.37 17.42 1.64 1.83 -497.17

E2.4 DISTV 4 − SPRD50D −RSI(14) 6 2 4 32.27 160.81 64.53 643.25 -578.72 -5.79 50.49 -401 -1.49 -23.65 33.33 -96.46 0.1 0.2 -436.64

E2.5 DISTV 4 − SPRD50D −BB(20) 19 11 8 42.98 57.89 472.8 463.14 9.66 0.1 71.25 -108.13 -2.62 -41.59 57.89 0.5 1.02 0.74 -242.92

E3 DISTV 4 − SPRD50D −DECTREE 321 132 189 24.94 22.67 3292.51 4285.19 -992.68 -9.93 179.14 -244.2 -4.45 -70.64 41.12 -3.09 0.77 1.1 -1115.06

E4 DISTV 4 − SPRD50D −MLP 224 87 137 24.4 28.13 2122.69 3854.09 -1731.4 -17.31 141.45 -161.53 -4.19 -66.51 38.84 -7.73 0.55 0.87 -1891.66

Part VI: Models derived using the spread obtained from JOHANSEN − SPRD50D

F1.1 JOHANSEN − ZSPRD50D
(3,2) 13 7 6 72.37 90.69 506.58 544.12 -37.54 -0.38 243.29 -381.14 0.17 2.7 53.85 -2.88 0.93 0.8 -456.99

F1.2 JOHANSEN − ZSPRD50D
(3,1) 13 6 7 88.25 163.66 529.5 1145.65 -616.16 -6.16 243.29 -662.73 0.18 2.86 46.15 -47.41 0.46 0.54 -1009.25

F1.3 JOHANSEN − ZSPRD50D
(3,0.5) 12 4 8 55.04 142.02 220.14 1136.12 -915.98 -9.16 178.53 -666.41 0.3 4.76 33.33 -76.34 0.19 0.39 -1040.05

F1.4 JOHANSEN − ZSPRD50D
(2.7,2) 15 9 6 73.54 92.01 661.84 552.06 109.79 1.1 243.29 -381.14 0.15 2.38 60 7.32 1.2 0.8 -381.14

F1.5 JOHANSEN − ZSPRD50D
(2.7,1) 14 8 6 85.96 195.95 687.66 1175.7 -488.03 -4.88 243.29 -662.73 0.17 2.7 57.14 -34.87 0.58 0.44 -857.66

F1.6 JOHANSEN − ZSPRD50D
(2.7,0.5) 13 5 8 45.34 163.17 226.72 1305.38 -1078.66 -10.79 178.53 -666.41 0.3 4.76 38.46 -82.98 0.17 0.28 -1181.74

F2.1 JOHANSEN − SPRD50D − SMA(10,20) 21 12 9 477.38 276.84 5728.57 2491.53 3237.03 32.37 1070.09 -817.45 0.19 3.02 57.14 154.12 2.3 1.72 -1117.08

F2.2 JOHANSEN − SPRD50D − EMA(10,20) 24 18 6 545.25 382.88 9814.58 2297.26 7517.32 75.17 1937.07 -1476.6 0.2 3.17 75 313.22 4.27 1.42 -1566.66

F2.3 JOHANSEN − SPRD50D −MACD(12,26,9) 32 18 14 275.51 134.59 4959.17 1884.2 3074.97 30.75 1656.55 -302.9 -0.28 -4.44 56.25 96.09 2.63 2.05 -765.31

F2.4 JOHANSEN − SPRD50D −RSI(14) 7 3 4 447.72 124.34 1343.15 497.38 845.77 8.46 873.74 -244.62 -0.59 -9.37 42.86 120.84 2.7 3.6 -244.62

F2.5 JOHANSEN − SPRD50D −BB(20) 18 3 15 1058.45 264.58 3175.34 3968.73 -793.38 -7.93 2850.94 -2317.88 -0.31 -4.92 16.67 -44.03 0.8 4 -2462.55

F3 JOHANSEN − SPRD50D −DECTREE 279 151 128 24.68 23.96 3727 3066.74 660.26 6.6 215.62 -161.09 -4.15 -65.88 54.12 2.37 1.22 1.03 -333.38

F4 JOHANSEN − SPRD50D −MLP 253 120 133 24.39 26.23 2926.82 3488.04 -561.22 -5.61 201.78 -152.24 -4.04 -64.13 47.43 -2.22 0.84 0.93 -880.74

Part VII: Models derived using the spread obtained from ADF − SPRD50D

G1.1 ADF − ZSPRD50D
(3,2) 5 2 3 104.63 1460.57 209.26 4381.71 -4172.44 -41.72 204.37 -4023.22 -0.51 -8.1 40 -834.49 0.05 0.07 -4364.47

G1.2 ADF − ZSPRD50D
(3,1) 5 2 3 150.56 1133.49 301.12 3400.48 -3099.36 -30.99 157.43 -3312.74 -0.48 -7.62 40 -619.87 0.09 0.13 -3374.69

G1.3 ADF − ZSPRD50D
(3,0.5) 5 2 3 184.64 1064.55 369.27 3193.65 -2824.38 -28.24 191.21 -3078.6 -0.47 -7.46 40 -564.88 0.12 0.17 -3140.54

G1.4 ADF − ZSPRD50D
(2.7,2) 10 5 5 131.65 888.53 658.23 4442.65 -3784.42 -37.84 224.71 -4023.22 -0.37 -5.87 50 -378.44 0.15 0.15 -4297.23

G1.5 ADF − ZSPRD50D
(2.7,1) 9 4 5 172.88 725.21 691.51 3626.07 -2934.56 -29.35 267.09 -3312.74 -0.38 -6.03 44.44 -326.1 0.19 0.24 -3538.34

G1.6 ADF − ZSPRD50D
(2.7,0.5) 9 4 5 176.89 694.28 707.56 3471.4 -2763.84 -27.64 267.09 -3078.6 -0.38 -6.03 44.44 -307.13 0.2 0.25 -3356.35

G2.1 ADF − SPRD50D − SMA(10,20) 20 9 11 258.85 128.9 2329.67 1417.9 911.77 9.12 651.05 -272.18 -0.22 -3.49 45 45.59 1.64 2.01 -678.66

G2.2 ADF − SPRD50D − EMA(10,20) 34 19 15 461.93 794.56 8776.69 11918.46 -3141.77 -31.42 5298.68 -9656.92 -0.09 -1.43 55.88 -92.43 0.74 0.58 -9729.89

G2.3 ADF − SPRD50D −MACD(12,26,9) 37 18 19 135.36 241.05 2436.41 4580.01 -2143.61 -21.44 644.19 -994.59 -0.47 -7.46 48.65 -57.93 0.53 0.56 -2396.51

G2.4 ADF − SPRD50D −RSI(14) 3 2 1 680.54 44.14 1361.09 44.14 1316.95 13.17 718.51 -44.14 0.75 11.91 66.67 439.01 30.84 15.42 -

G2.5 ADF − SPRD50D −BB(20) 17 9 8 218.82 109.94 1969.37 879.54 1089.83 10.9 572.59 -195.65 -0.2 -3.17 52.94 64.1 2.24 1.99 -527.32

G3 ADF − SPRD50D −DECTREE 304 129 175 24.78 24.83 3196.03 4344.97 -1148.94 -11.49 149.06 -177.12 -4.28 -67.94 42.43 -3.78 0.74 1 -1511.47

G4 ADF − SPRD50D −MLP 246 108 138 23.36 30.71 2523.29 4238.2 -1714.91 -17.15 187.92 -279.43 -3.83 -60.8 43.9 -6.97 0.6 0.76 -2087.11

Part VIII: Models derived using the spread obtained from KALMAN − SPRD50D

H1.1 KALMAN − ZSPRD50D
(3,2) 2 1 1 31.46 167 31.46 167 -135.54 -1.36 31.46 -167 -1.48 -23.49 50 -67.77 0.19 0.19 -167

H1.2 KALMAN − ZSPRD50D
(3,1) 2 1 1 35.2 3.61 35.2 3.61 31.59 0.32 35.2 -3.61 -4.61 -73.18 50 15.8 9.76 9.76 -3.61

H1.3 KALMAN − ZSPRD50D
(3,0.5) 2 2 - 89.84 - 179.67 - 179.67 1.8 121.63 - -1.07 -16.99 100 89.84 179.67 89.84 -

H1.4 KALMAN − ZSPRD50D
(2.7,2) 6 3 3 25.09 131.93 75.27 395.79 -320.52 -3.21 65.78 -170.34 -1.95 -30.96 50 -53.42 0.19 0.19 -388.11

H1.5 KALMAN − ZSPRD50D
(2.7,1) 6 3 3 37.64 80.8 112.92 242.4 -129.48 -1.29 79.43 -220.28 -1.51 -23.97 50 -21.58 0.47 0.47 -238.79

H1.6 KALMAN − ZSPRD50D
(2.7,0.5) 6 4 2 63.93 187.56 255.73 375.12 -119.39 -1.19 121.63 -253.39 -1.11 -17.62 66.67 -19.89 0.68 0.34 -375.12

H2.1 KALMAN − SPRD50D − SMA(10,20) 13 7 6 180.86 95.15 1266.04 570.9 695.15 6.95 354.17 -220.08 -0.46 -7.3 53.85 53.48 2.22 1.9 -232.1

H2.2 KALMAN − SPRD50D − EMA(10,20) 25 9 16 155.54 89.37 1399.82 1429.88 -30.06 -0.3 350.48 -196.57 -0.91 -14.45 36 -1.2 0.98 1.74 -693.32

H2.3 KALMAN − SPRD50D −MACD(12,26,9) 37 16 21 83.92 89.48 1342.75 1878.98 -536.22 -5.36 245.13 -215.92 -1.36 -21.59 43.24 -14.5 0.71 0.94 -992.52

H2.4 KALMAN − SPRD50D −RSI(14) 2 1 1 39.94 1803.12 39.94 1803.12 -1763.18 -17.63 39.94 -1803.12 -0.78 -12.38 50 -881.59 0.02 0.02 -1803.12

H2.5 KALMAN − SPRD50D −BB(20) 20 15 5 54.62 37.65 819.24 188.24 631 6.31 123.07 -63.98 -1.97 -31.27 75 31.55 4.35 1.45 -118

H3 KALMAN − SPRD50D −DECTREE 316 165 151 24.57 23.64 4054.44 3568.96 485.48 4.85 184.53 -137.43 -4.26 -67.63 52.22 1.54 1.14 1.04 -672.21

H4 KALMAN − SPRD50D −MLP 260 153 107 25.82 26.77 3950.04 2864.33 1085.71 10.86 204.7 -310.67 -3.55 -56.35 58.85 4.18 1.38 0.96 -531.74

Part IX: Models derived using the spread obtained from RATIO − SPRD50D

I1.1 RATIO − ZSPRD50D
(3,2) 1 1 - 26.03 - 26.03 - 26.03 0.26 26.03 - - - 100 26.03 26.03 26.03 -

I1.2 RATIO − ZSPRD50D
(3,1) 1 - 1 - 1.24 - 1.24 -1.24 -0.01 - -1.24 - - - -1.24 - - -1.24

I1.3 RATIO − ZSPRD50D
(3,0.5) 1 1 - 24.54 - 24.54 - 24.54 0.25 24.54 - - - 100 24.54 24.54 24.54 -

I1.4 RATIO − ZSPRD50D
(2.7,2) 5 2 3 27.6 35.61 55.2 106.84 -51.64 -0.52 29.17 -97.39 -3.16 -50.16 40 -10.33 0.52 0.78 -97.39

I1.5 RATIO − ZSPRD50D
(2.7,1) 5 1 4 38.46 68.1 38.47 272.39 -233.93 -2.34 38.46 -158.84 -2.65 -42.07 20 -46.79 0.14 0.56 -233.93

I1.6 RATIO − ZSPRD50D
(2.7,0.5) 5 3 2 33.84 107.13 101.51 214.25 -112.74 -1.13 67.99 -120.43 -2.16 -34.29 60 -22.55 0.47 0.32 -214.25

I2.1 RATIO − SPRD50D − SMA(10,20) 17 6 11 139.47 109.78 836.84 1207.56 -370.72 -3.71 580.16 -248.57 -0.94 -14.92 35.29 -21.82 0.69 1.27 -1003.86

I2.2 RATIO − SPRD50D − EMA(10,20) 25 7 18 154.25 83.79 1079.77 1508.26 -428.49 -4.28 290.66 -406.79 -1.16 -18.41 28 -17.14 0.72 1.84 -1357.01

I2.3 RATIO − SPRD50D −MACD(12,26,9) 37 12 25 86.67 54.11 1040.03 1352.78 -312.75 -3.13 218.33 -271.45 -1.73 -27.46 32.43 -8.46 0.77 1.6 -538.82

I2.4 RATIO − SPRD50D −RSI(14) 3 1 2 83.63 747.25 83.63 1494.51 -1410.88 -14.11 83.63 -1338.39 -0.82 -13.02 33.33 -470.32 0.06 0.11 -1338.39

I2.5 RATIO − SPRD50D −BB(20) 20 16 4 53.78 131.04 860.56 524.16 336.4 3.36 132.81 -244.77 -1.56 -24.76 80 16.82 1.64 0.41 -259.78

I3 RATIO − SPRD50D −DECTREE 339 121 218 24.45 20.81 2958.67 4536.71 -1578.04 -15.78 132.54 -127.55 -5.1 -80.96 35.69 -4.66 0.65 1.17 -1913.09

I4 RATIO − SPRD50D −MLP 239 101 138 22.7 21.1 2292.5 2912.17 -619.67 -6.2 114.65 -187.92 -4.71 -74.77 42.26 -2.59 0.79 1.08 -825.33

Part X: Models derived using the close price of ITOT.N

CLS-SYM-1.1 CLOSEITOT.N − SMA(10,20) 12 7 5 349.7 110.23 2447.92 551.13 1896.79 18.97 1275.51 -231.05 0.2 3.17 58.33 158.05 4.44 3.17 -320.08

CLS-SYM-1.2 CLOSEITOT.N − EMA(10,20) 18 8 10 320.51 242.25 2564.09 2422.52 141.57 1.42 1107.76 -798.87 -0.17 -2.7 44.44 7.84 1.06 1.32 -637.32

CLS-SYM-1.3 CLOSEITOT.N −MACD(12,26,9) 38 15 23 136.98 113.32 2054.75 2606.43 -551.68 -5.52 565.03 -354.83 -0.56 -8.89 39.47 -14.53 0.79 1.21 -1373.77

CLS-SYM-1.4 CLOSEITOT.N −RSI(14) 6 3 3 350.41 842.6 1051.24 2527.79 -1476.55 -14.77 576.4 -2049.07 -0.34 -5.4 50 -246.09 0.42 0.42 -2049.07

CLS-SYM-1.5 CLOSEITOT.N −BB(20) 12 9 3 93.75 445.83 843.77 1337.49 -493.72 -4.94 226.17 -778.78 -0.39 -6.19 75 -41.14 0.63 0.21 -778.78

Part XI: Models derived using the close price of IXUS.N

CLS-SYM-2.1 CLOSEIXUS.N − SMA(10,20) 14 6 8 191.25 153.22 1147.51 1225.77 -78.26 -0.78 563.95 -480.15 -0.33 -5.24 42.86 -5.58 0.94 1.25 -673.35

CLS-SYM-2.2 CLOSEIXUS.N − EMA(10,20) 23 8 15 370.89 149.39 2967.1 2240.79 726.3 7.26 1091.8 -556.4 -0.12 -1.9 34.78 31.56 1.32 2.48 -790.14

CLS-SYM-2.3 CLOSEIXUS.N −MACD(12,26,9) 38 11 27 188.47 95.85 2073.12 2587.91 -514.79 -5.15 932.53 -366.94 -0.45 -7.14 28.95 -13.54 0.8 1.97 -1634.42

CLS-SYM-2.4 CLOSEIXUS.N −RSI(14) 6 3 3 307.42 280.97 922.25 842.92 79.33 0.79 405.82 -589.96 -0.17 -2.7 50 13.22 1.09 1.09 -589.96

CLS-SYM-2.5 CLOSEIXUS.N −BB(20) 20 14 6 66.01 208.54 924.11 1251.26 -327.15 -3.27 209.32 -831.57 -0.43 -6.83 70 -16.36 0.74 0.32 -837.17
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Table D.2.3: This table presents the back-test metrics for the pair ITOT.N/IXUS.N based on a 100-day rolling window. The table is subdivided into eleven parts, and in each of these parts, we present the back-test metrics and the trading strategies which use the
spread derived from various models. In Part I, the spread is derived from the DIST V 1.1 model, in Part II from the DIST V 1.2 model, in Part III from the DIST V 2 model, in Part IV from the DIST V 3 model, in Part V from the DIST V 4 model, in Part VI from the
JOHANSEN − SPRD model, in Part VIII from the ADF − SPRD model, in from the DIST V 2 model, in Part VIII from the KALMAN − SPRD model, and in Part IX from the RATIO − SPRD model. In Part X and XI, we present the back-test metrics of
the trading strategies which use the close price of ITOT.N, and IXUS.N, respectively. All $ numbers reported below are in USD.

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X) (XI) (XII) (XIII) (XIV) (XV) (XVI) (XVII) (XVIII) (XIX) (XX)

Trading
Strategy
Code

Model
Name

Total
Number
of
Trades

Number
of

Winning
Trades

Number
of Loosing
Trades

Average
Profit

per Trade
($)

Average
Loss per
Trade
($)

Gross
Profit
($)

Gross
Loss
($)

Net Profit
($)

ROI (%) Max P&L
($)

Min P&L
($)

Daily
Sharpe
Ratio

Annualized
Sharpe
Ratio

Hit Ratio Expectancy Profit
Factor

Realized
Risk

Reward
Ratio

Max
Drawdown

($)

Part I: Models derived using the spread obtained from DISTV 1.1 − SPRD100D

A1.1 DISTV 1.1 − ZSPRD100D
(3,2) 2 - 2 - 73.16 - 146.32 -146.32 -1.46 - -86.7 -11.76 -186.68 - -73.16 - - -146.31

A1.2 DISTV 1.1 − ZSPRD100D
(3,1) 2 - 2 - 114.75 - 229.5 -229.5 -2.3 - -149.72 -5.39 -85.56 - -114.75 - - -229.5

A1.3 DISTV 1.1 − ZSPRD100D
(3,0.5) 2 - 2 - 179.4 - 358.8 -358.8 -3.59 - -202.2 -10.28 -163.19 - -179.4 - - -358.8

A1.4 DISTV 1.1 − ZSPRD100D
(2.7,2) 4 1 3 115.34 46.04 115.34 138.14 -22.8 -0.23 115.34 -55.57 -1.94 -30.8 25 -5.7 0.83 2.5 -138.13

A1.5 DISTV 1.1 − ZSPRD100D
(2.7,1) 3 2 1 51.1 96.1 102.19 96.1 6.09 0.06 86.33 -96.1 -1.63 -25.88 66.67 2.04 1.06 0.53 -96.1

A1.6 DISTV 1.1 − ZSPRD100D
(2.7,0.5) 3 1 2 6.09 103.02 6.09 206.04 -199.95 -2 6.09 -148.54 -2.81 -44.61 33.33 -66.65 0.03 0.06 -206.05

A2.1 DISTV 1.1 − SPRD100D − SMA(10,20) 15 7 8 55.03 85.5 385.24 683.98 -298.73 -2.99 121.26 -254.5 -1.8 -28.57 46.67 -19.91 0.56 0.64 -330.93

A2.2 DISTV 1.1 − SPRD100D − EMA(10,20) 24 17 7 75.9 143.19 1290.25 1002.32 287.93 2.88 262.66 -279.78 -1.11 -17.62 70.83 11.99 1.29 0.53 -377.78

A2.3 DISTV 1.1 − SPRD100D −MACD(12,26,9) 31 17 14 64.89 104.24 1103.05 1459.31 -356.26 -3.56 149.06 -272.02 -1.5 -23.81 54.84 -11.49 0.76 0.62 -489.4

A2.4 DISTV 1.1 − SPRD100D −RSI(14) 3 3 - 431.75 - 1295.24 - 1295.24 12.95 738.43 - 1.02 16.19 100 431.75 1295.24 431.75 -

A2.5 DISTV 1.1 − SPRD100D −BB(20) 18 7 11 67.98 43.99 475.83 483.9 -8.07 -0.08 159.4 -136.41 -2.14 -33.97 38.89 -0.45 0.98 1.55 -284.68

A3 DISTV 1.1 − SPRD100D −DECTREE 320 121 199 24.05 22.06 2909.93 4389.63 -1479.71 -14.8 191.36 -127.55 -4.8 -76.2 37.81 -4.63 0.66 1.09 -1827.23

A4 DISTV 1.1 − SPRD100D −MLP 284 110 174 25.03 23.58 2753.74 4102.52 -1348.77 -13.49 191.36 -107.68 -4.63 -73.5 38.73 -4.75 0.67 1.06 -1487.79

Part II: Models derived using the spread obtained from DISTV 1.2 − SPRD100D

B1.1 DISTV 1.2 − ZSPRD100D
(3,2) 6 2 4 21.97 77.24 43.93 308.98 -265.04 -2.65 31.41 -115.34 -3.16 -50.16 33.33 -44.18 0.14 0.28 -265.04

B1.2 DISTV 1.2 − ZSPRD100D
(3,1) 5 2 3 62.55 61.22 125.09 183.67 -58.58 -0.59 96.1 -140.08 -1.88 -29.84 40 -11.72 0.68 1.02 -177.58

B1.3 DISTV 1.2 − ZSPRD100D
(3,0.5) 5 2 3 116.7 80.21 233.4 240.63 -7.24 -0.07 181.33 -134.63 -1.22 -19.37 40 -1.45 0.97 1.45 -234.54

B1.4 DISTV 1.2 − ZSPRD100D
(2.7,2) 8 4 4 38.49 63.48 153.96 253.92 -99.97 -1 91.08 -115.34 -2.45 -38.89 50 -12.5 0.61 0.61 -191.05

B1.5 DISTV 1.2 − ZSPRD100D
(2.7,1) 7 4 3 56.17 107.06 224.7 321.17 -96.47 -0.96 96.1 -183.38 -1.56 -24.76 57.14 -13.79 0.7 0.52 -315.07

B1.6 DISTV 1.2 − ZSPRD100D
(2.7,0.5) 6 2 4 116.7 83.21 233.4 332.82 -99.43 -0.99 181.33 -147.72 -1.38 -21.91 33.33 -16.58 0.7 1.4 -326.73

B2.1 DISTV 1.2 − SPRD100D − SMA(10,20) 18 8 10 87.69 112.38 701.49 1123.75 -422.26 -4.22 170.2 -372.55 -1.29 -20.48 44.44 -23.47 0.62 0.78 -376.12

B2.2 DISTV 1.2 − SPRD100D − EMA(10,20) 24 10 14 101.45 114.23 1014.47 1599.17 -584.7 -5.85 233.53 -252.22 -1.29 -20.48 41.67 -24.36 0.63 0.89 -759.98

B2.3 DISTV 1.2 − SPRD100D −MACD(12,26,9) 26 14 12 97.8 85.17 1369.25 1022.05 347.19 3.47 263.26 -204.49 -1.13 -17.94 53.85 13.36 1.34 1.15 -798.53

B2.4 DISTV 1.2 − SPRD100D −RSI(14) 6 4 2 164.49 480.7 657.95 961.4 -303.45 -3.03 326.9 -536.53 -0.58 -9.21 66.67 -50.55 0.68 0.34 -424.87

B2.5 DISTV 1.2 − SPRD100D −BB(20) 9 4 5 55.34 197.62 221.36 988.12 -766.77 -7.67 79.34 -436.28 -1.26 -20 44.44 -85.21 0.22 0.28 -373.02

B3 DISTV 1.2 − SPRD100D −DECTREE 264 124 140 23.04 22.51 2856.4 3151.99 -295.59 -2.96 109.95 -146.74 -4.67 -74.13 46.97 -1.12 0.91 1.02 -1196.66

B4 DISTV 1.2 − SPRD100D −MLP 220 118 102 22.24 23.4 2623.86 2386.35 237.51 2.38 152.77 -103.9 -4.67 -74.13 53.64 1.08 1.1 0.95 -701.18

Part III: Models derived using the spread obtained from DISTV 2 − SPRD100D

C1.1 DISTV 2 − ZSPRD100D
(3,2) 2 2 - 73.16 - 146.32 - 146.32 1.46 86.7 - -4.12 -65.4 100 73.16 146.32 73.16 -

C1.2 DISTV 2 − ZSPRD100D
(3,1) 2 2 - 114.75 - 229.5 - 229.5 2.3 149.72 - -0.75 -11.91 100 114.75 229.5 114.75 -

C1.3 DISTV 2 − ZSPRD100D
(3,0.5) 2 2 - 179.4 - 358.8 - 358.8 3.59 202.2 - 0.85 13.49 100 179.4 358.8 179.4 -

C1.4 DISTV 2 − ZSPRD100D
(2.7,2) 4 3 1 46.04 115.34 138.14 115.34 22.8 0.23 55.57 -115.34 -1.8 -28.57 75 5.7 1.2 0.4 -115.34

C1.5 DISTV 2 − ZSPRD100D
(2.7,1) 3 1 2 96.1 51.1 96.1 102.19 -6.09 -0.06 96.1 -86.33 -1.67 -26.51 33.33 -2.04 0.94 1.88 -86.33

C1.6 DISTV 2 − ZSPRD100D
(2.7,0.5) 3 2 1 103.02 6.09 206.04 6.09 199.95 2 148.54 -6.09 -1.1 -17.46 66.67 66.65 33.82 16.91 -6.09

C2.1 DISTV 2 − SPRD100D − SMA(10,20) 15 8 7 85.5 55.03 683.98 385.24 298.73 2.99 254.5 -121.26 -1.39 -22.07 53.33 19.91 1.78 1.55 -208.64

C2.2 DISTV 2 − SPRD100D − EMA(10,20) 24 7 17 143.19 75.9 1002.32 1290.25 -287.93 -2.88 279.78 -262.66 -1.3 -20.64 29.17 -11.99 0.78 1.89 -706.65

C2.3 DISTV 2 − SPRD100D −MACD(12,26,9) 31 14 17 104.24 64.89 1459.31 1103.05 356.26 3.56 272.02 -149.06 -1.29 -20.48 45.16 11.49 1.32 1.61 -455.41

C2.4 DISTV 2 − SPRD100D −RSI(14) 3 - 3 - 431.75 - 1295.24 -1295.24 -12.95 - -738.43 -2.12 -33.65 - -431.75 - - -1087.03

C2.5 DISTV 2 − SPRD100D −BB(20) 18 11 7 43.99 67.98 483.9 475.83 8.07 0.08 136.41 -159.4 -2.12 -33.65 61.11 0.45 1.02 0.65 -169.33

C3 DISTV 2 − SPRD100D −DECTREE 308 119 189 25.32 22.25 3013.48 4206.19 -1192.7 -11.93 191.36 -127.55 -4.61 -73.18 38.64 -3.87 0.72 1.14 -1487.11

C4 DISTV 2 − SPRD100D −MLP 294 103 191 21.04 23.97 2167.05 4578.32 -2411.27 -24.11 120.54 -202.03 -4.96 -78.74 35.03 -8.2 0.47 0.88 -2449.99

Part IV: Models derived using the spread obtained from DISTV 3 − SPRD100D

D1.1 DISTV 3 − ZSPRD100D
(3,2) 4 4 - 73.69 - 294.75 - 294.75 2.95 148.58 - -1.15 -18.26 100 73.69 294.75 73.69 -

D1.2 DISTV 3 − ZSPRD100D
(3,1) 4 3 1 76.13 2.11 228.38 2.11 226.28 2.26 92.03 -2.11 -2.34 -37.15 75 56.57 108.44 36.14 -2.11

D1.3 DISTV 3 − ZSPRD100D
(3,0.5) 4 3 1 84.21 60.69 252.63 60.69 191.94 1.92 92.03 -60.69 -1.42 -22.54 75 47.98 4.16 1.39 -60.69

D1.4 DISTV 3 − ZSPRD100D
(2.7,2) 7 6 1 56.26 19.57 337.53 19.57 317.96 3.18 148.58 -19.57 -1.74 -27.62 85.71 45.42 17.25 2.87 -19.57

D1.5 DISTV 3 − ZSPRD100D
(2.7,1) 7 5 2 60.36 34.63 301.82 69.25 232.56 2.33 92.03 -67.15 -2.2 -34.92 71.43 33.22 4.36 1.74 -67.15

D1.6 DISTV 3 − ZSPRD100D
(2.7,0.5) 6 4 2 77.63 87.63 310.51 175.26 135.25 1.35 92.03 -114.57 -1.47 -23.34 66.67 22.55 1.77 0.89 -114.57

D2.1 DISTV 3 − SPRD100D − SMA(10,20) 16 7 9 177.73 61.66 1244.08 554.91 689.17 6.89 347.93 -131.59 -0.74 -11.75 43.75 43.07 2.24 2.88 -297.24

D2.2 DISTV 3 − SPRD100D − EMA(10,20) 30 12 18 87.23 61.14 1046.77 1100.47 -53.7 -0.54 240.23 -192.58 -1.59 -25.24 40 -1.79 0.95 1.43 -639.2

D2.3 DISTV 3 − SPRD100D −MACD(12,26,9) 37 14 23 73.86 53.12 1034.03 1221.66 -187.63 -1.88 192.9 -161.53 -2.05 -32.54 37.84 -5.07 0.85 1.39 -392.53

D2.4 DISTV 3 − SPRD100D −RSI(14) 6 3 3 270.14 236.44 810.41 709.33 101.08 1.01 446.3 -266.64 -0.46 -7.3 50 16.85 1.14 1.14 -266.64

D2.5 DISTV 3 − SPRD100D −BB(20) 14 9 5 64.83 55.3 583.48 276.5 306.98 3.07 316.73 -143.6 -1.26 -20 64.29 21.93 2.11 1.17 -219.16

D3 DISTV 3 − SPRD100D −DECTREE 306 122 184 24.28 23.13 2962.05 4255.59 -1293.53 -12.94 191.36 -104.51 -4.8 -76.2 39.87 -4.23 0.7 1.05 -1465.87

D4 DISTV 3 − SPRD100D −MLP 229 91 138 28.38 24.79 2582.27 3420.67 -838.39 -8.38 161.09 -144.51 -3.91 -62.07 39.74 -3.66 0.75 1.14 -1143.35

Part V: Models derived using the spread obtained from DISTV 4 − SPRD100D

E1.1 DISTV 4 − ZSPRD100D
(3,2) 4 4 - 73.69 - 294.75 - 294.75 2.95 148.58 - -1.15 -18.26 100 73.69 294.75 73.69 -

E1.2 DISTV 4 − ZSPRD100D
(3,1) 4 3 1 76.13 2.11 228.38 2.11 226.28 2.26 92.03 -2.11 -2.34 -37.15 75 56.57 108.44 36.14 -2.11

E1.3 DISTV 4 − ZSPRD100D
(3,0.5) 4 3 1 84.21 60.69 252.63 60.69 191.94 1.92 92.03 -60.69 -1.42 -22.54 75 47.98 4.16 1.39 -60.69

E1.4 DISTV 4 − ZSPRD100D
(2.7,2) 7 6 1 56.26 19.57 337.53 19.57 317.96 3.18 148.58 -19.57 -1.74 -27.62 85.71 45.42 17.25 2.87 -19.57

E1.5 DISTV 4 − ZSPRD100D
(2.7,1) 7 5 2 60.36 34.63 301.82 69.25 232.56 2.33 92.03 -67.15 -2.2 -34.92 71.43 33.22 4.36 1.74 -67.15

E1.6 DISTV 4 − ZSPRD100D
(2.7,0.5) 6 4 2 77.63 87.63 310.51 175.26 135.25 1.35 92.03 -114.57 -1.47 -23.34 66.67 22.55 1.77 0.89 -114.57

E2.1 DISTV 4 − SPRD100D − SMA(10,20) 16 7 9 177.73 61.66 1244.08 554.91 689.17 6.89 347.93 -131.59 -0.74 -11.75 43.75 43.07 2.24 2.88 -297.24

E2.2 DISTV 4 − SPRD100D − EMA(10,20) 30 12 18 87.23 61.14 1046.77 1100.47 -53.7 -0.54 240.23 -192.58 -1.59 -25.24 40 -1.79 0.95 1.43 -639.2

E2.3 DISTV 4 − SPRD100D −MACD(12,26,9) 37 14 23 73.86 53.12 1034.03 1221.66 -187.63 -1.88 192.9 -161.53 -2.05 -32.54 37.84 -5.07 0.85 1.39 -392.53

E2.4 DISTV 4 − SPRD100D −RSI(14) 6 3 3 270.14 236.44 810.41 709.33 101.08 1.01 446.3 -266.64 -0.46 -7.3 50 16.85 1.14 1.14 -266.64

E2.5 DISTV 4 − SPRD100D −BB(20) 14 9 5 64.83 55.3 583.48 276.5 306.98 3.07 316.73 -143.6 -1.26 -20 64.29 21.93 2.11 1.17 -219.16

E3 DISTV 4 − SPRD100D −DECTREE 304 124 180 23.75 24.13 2944.73 4344.06 -1399.33 -13.99 191.36 -127.55 -4.67 -74.13 40.79 -4.6 0.68 0.98 -1530.78

E4 DISTV 4 − SPRD100D −MLP 229 91 138 28.38 24.79 2582.27 3420.67 -838.39 -8.38 161.09 -144.51 -3.91 -62.07 39.74 -3.66 0.75 1.14 -1143.35

Part VI: Models derived using the spread obtained from JOHANSEN − SPRD100D

F1.1 JOHANSEN − ZSPRD100D
(3,2) 17 8 9 38.15 19.32 305.17 173.85 131.32 1.31 88.07 -53.39 -4.02 -63.82 47.06 7.73 1.76 1.97 -118.67

F1.2 JOHANSEN − ZSPRD100D
(3,1) 15 8 7 102.21 23.46 817.68 164.22 653.45 6.53 601.6 -53.39 -0.45 -7.14 53.33 43.56 4.98 4.36 -118.67

F1.3 JOHANSEN − ZSPRD100D
(3,0.5) 15 8 7 115.94 23.46 927.56 164.22 763.33 7.63 701.48 -53.39 -0.43 -6.83 53.33 50.88 5.65 4.94 -118.67

F1.4 JOHANSEN − ZSPRD100D
(2.7,2) 20 11 9 67.43 19.32 741.78 173.85 567.94 5.68 318.35 -53.39 -0.75 -11.91 55 28.4 4.27 3.49 -109.19

F1.5 JOHANSEN − ZSPRD100D
(2.7,1) 18 11 7 131.16 23.46 1442.74 164.22 1278.52 12.79 601.6 -53.39 -0.58 -9.21 61.11 71.03 8.79 5.59 -109.19

F1.6 JOHANSEN − ZSPRD100D
(2.7,0.5) 17 10 7 158.81 23.46 1588.13 164.22 1423.91 14.24 701.48 -53.39 -0.5 -7.94 58.82 83.75 9.67 6.77 -109.19

F2.1 JOHANSEN − SPRD100D − SMA(10,20) 17 13 4 176.11 100.49 2289.41 401.95 1887.46 18.87 638.97 -186.03 -0.34 -5.4 76.47 111.03 5.7 1.75 -186.03

F2.2 JOHANSEN − SPRD100D − EMA(10,20) 25 11 14 2031.49 1031.97 22346.36 14447.57 7898.79 78.99 20030.2 -6957 -0.1 -1.59 44 315.95 1.55 1.97 -7770.64

F2.3 JOHANSEN − SPRD100D −MACD(12,26,9) 25 15 10 497.05 818.71 7455.71 8187.14 -731.42 -7.31 3558.59 -7152.92 -0.25 -3.97 60 -29.26 0.91 0.61 -7358.32

F2.4 JOHANSEN − SPRD100D −RSI(14) 4 3 1 278.62 782.64 835.85 782.64 53.2 0.53 610.63 -782.64 -0.38 -6.03 75 13.3 1.07 0.36 -782.64

F2.5 JOHANSEN − SPRD100D −BB(20) 18 9 9 224.11 211.96 2016.95 1907.62 109.32 1.09 649.86 -869.13 -0.3 -4.76 50 6.07 1.06 1.06 -869.13

F3 JOHANSEN − SPRD100D −DECTREE 271 144 127 28.16 26.55 4054.55 3371.6 682.95 6.83 222.87 -101.66 -3.79 -60.16 53.14 2.52 1.2 1.06 -531.07

F4 JOHANSEN − SPRD100D −MLP 154 71 83 27.77 27.28 1971.46 2264.2 -292.74 -2.93 203.35 -205.91 -3.28 -52.07 46.1 -1.9 0.87 1.02 -609.13

Part VII: Models derived using the spread obtained from ADF − SPRD100D

G1.1 ADF − ZSPRD100D
(3,2) 3 1 2 135.42 313.73 135.42 627.46 -492.05 -4.92 135.42 -342.96 -1.03 -16.35 33.33 -164.03 0.22 0.43 -627.46

G1.2 ADF − ZSPRD100D
(3,1) 2 1 1 55 1553.76 55 1553.76 -1498.76 -14.99 55 -1553.76 -0.75 -11.91 50 -749.38 0.04 0.04 -1553.76

G1.3 ADF − ZSPRD100D
(3,0.5) 2 1 1 126.58 1858.45 126.58 1858.45 -1731.87 -17.32 126.58 -1858.45 -0.69 -10.95 50 -865.94 0.07 0.07 -1858.45

G1.4 ADF − ZSPRD100D
(2.7,2) 5 1 4 87.09 199.95 87.09 799.8 -712.72 -7.13 87.09 -342.96 -1.45 -23.02 20 -142.54 0.11 0.44 -799.8

G1.5 ADF − ZSPRD100D
(2.7,1) 4 1 3 3.52 610.61 3.52 1831.83 -1828.31 -18.28 3.52 -1553.76 -0.77 -12.22 25 -457.08 - 0.01 -1831.83

G1.6 ADF − ZSPRD100D
(2.7,0.5) 4 1 3 80.31 706.36 80.31 2119.09 -2038.78 -20.39 80.31 -1858.45 -0.68 -10.79 25 -509.7 0.04 0.11 -2119.09

G2.1 ADF − SPRD100D − SMA(10,20) 15 9 6 303.69 1112.73 2733.24 6676.36 -3943.13 -39.43 676.6 -5028.17 -0.29 -4.6 60 -262.88 0.41 0.27 -6676.36

G2.2 ADF − SPRD100D − EMA(10,20) 34 22 12 124.97 1968.85 2749.39 23626.22 -20876.83 -208.77 493.92 -9630.2 -0.36 -5.71 64.71 -613.94 0.12 0.06 -23225.01

G2.3 ADF − SPRD100D −MACD(12,26,9) 32 17 15 149.53 563.27 2542.05 8449.05 -5907 -59.07 1338.52 -4445.34 -0.29 -4.6 53.12 -184.63 0.3 0.27 -7887.61

G2.4 ADF − SPRD100D −RSI(14) 5 2 3 364.87 738.13 729.74 2214.39 -1484.64 -14.85 520.6 -1163.82 -0.66 -10.48 40 -296.93 0.33 0.49 -2018.12

G2.5 ADF − SPRD100D −BB(20) 15 4 11 95.86 261.92 383.44 2881.17 -2497.74 -24.98 191.59 -1760.34 -0.49 -7.78 26.67 -166.5 0.13 0.37 -2698.8

G3 ADF − SPRD100D −DECTREE 309 138 171 27.37 24.92 3777.34 4261.14 -483.8 -4.84 148.42 -127.55 -4.23 -67.15 44.66 -1.57 0.89 1.1 -998.96

G4 ADF − SPRD100D −MLP 286 135 151 24.04 24.48 3245.7 3696.9 -451.2 -4.51 114.48 -141.96 -4.64 -73.66 47.2 -1.58 0.88 0.98 -731.34

Part VIII: Models derived using the spread obtained from KALMAN − SPRD100D

H1.1 KALMAN − ZSPRD100D
(3,2) 2 2 - 150.88 - 301.75 - 301.75 3.02 221.63 - 0.18 2.86 100 150.88 301.75 150.88 -

H1.2 KALMAN − ZSPRD100D
(3,1) 2 1 1 270.27 79.74 270.27 79.74 190.53 1.91 270.27 -79.74 -0.15 -2.38 50 95.26 3.39 3.39 -79.74

H1.3 KALMAN − ZSPRD100D
(3,0.5) 2 1 1 319.99 20.36 319.99 20.36 299.62 3 319.99 -20.36 0.07 1.11 50 149.81 15.71 15.72 -20.36

H1.4 KALMAN − ZSPRD100D
(2.7,2) 5 4 1 103.64 90.18 414.57 90.18 324.4 3.24 176.01 -90.18 -0.67 -10.64 80 64.88 4.6 1.15 -90.18

H1.5 KALMAN − ZSPRD100D
(2.7,1) 4 2 2 130.69 102.34 261.37 204.68 56.69 0.57 224.22 -111.77 -0.76 -12.06 50 14.17 1.28 1.28 -204.68

H1.6 KALMAN − ZSPRD100D
(2.7,0.5) 3 1 2 273.58 175.19 273.58 350.38 -76.8 -0.77 273.58 -316.66 -0.54 -8.57 33.33 -25.61 0.78 1.56 -350.38

H2.1 KALMAN − SPRD100D − SMA(10,20) 16 7 9 98.75 49.42 691.23 444.77 246.46 2.46 276.3 -104.26 -1.2 -19.05 43.75 15.4 1.55 2 -360.74

H2.2 KALMAN − SPRD100D − EMA(10,20) 27 10 17 129.58 107.91 1295.83 1834.42 -538.59 -5.39 312.22 -322.44 -1 -15.87 37.04 -19.94 0.71 1.2 -1299.98

H2.3 KALMAN − SPRD100D −MACD(12,26,9) 29 10 19 95.9 87.39 958.99 1660.33 -701.34 -7.01 255.1 -216.1 -1.44 -22.86 34.48 -24.19 0.58 1.1 -1193.92

H2.4 KALMAN − SPRD100D −RSI(14) 2 - 2 - 846.13 - 1692.27 -1692.27 -16.92 - -1671.34 -0.84 -13.33 - -846.13 - - -1671.34

H2.5 KALMAN − SPRD100D −BB(20) 11 6 5 110.38 41.23 662.28 206.16 456.13 4.56 195.65 -64.03 -1.06 -16.83 54.55 41.47 3.21 2.68 -118.13

H3 KALMAN − SPRD100D −DECTREE 271 145 126 26.13 24.94 3788.3 3142.57 645.73 6.46 135.08 -215.62 -4.03 -63.97 53.51 2.39 1.21 1.05 -529.11

H4 KALMAN − SPRD100D −MLP 253 150 103 24.62 20.53 3693.17 2114.24 1578.93 15.79 104.51 -130.93 -4.67 -74.13 59.29 6.24 1.75 1.2 -301.21

Part IX: Models derived using the spread obtained from RATIO − SPRD100D

I1.1 RATIO − ZSPRD100D
(3,2) 4 3 1 72.87 12.55 218.6 12.55 206.05 2.06 94.86 -12.55 -2.21 -35.08 75 51.51 17.42 5.81 -12.55

I1.2 RATIO − ZSPRD100D
(3,1) 4 4 - 91.68 - 366.74 - 366.74 3.67 149.72 - -1.42 -22.54 100 91.68 366.74 91.68 -

I1.3 RATIO − ZSPRD100D
(3,0.5) 4 4 - 124.69 - 498.77 - 498.77 4.99 149.72 - -1.49 -23.65 100 124.69 498.77 124.69 -

I1.4 RATIO − ZSPRD100D
(2.7,2) 5 3 2 47.98 89.52 143.95 179.04 -35.1 -0.35 87.2 -115.34 -1.92 -30.48 60 -7.02 0.8 0.54 -122.3

I1.5 RATIO − ZSPRD100D
(2.7,1) 5 3 2 65.54 41.58 196.62 83.17 113.45 1.13 138.33 -77.08 -1.64 -26.03 60 22.69 2.36 1.58 -77.08

I1.6 RATIO − ZSPRD100D
(2.7,0.5) 4 3 1 75.64 338.47 226.92 338.47 -111.55 -1.12 138.33 -338.47 -0.85 -13.49 75 -27.89 0.67 0.22 -338.47

I2.1 RATIO − SPRD100D − SMA(10,20) 16 6 10 140.11 134.8 840.65 1348.04 -507.39 -5.07 580.16 -382.68 -0.89 -14.13 37.5 -31.71 0.62 1.04 -891.54

I2.2 RATIO − SPRD100D − EMA(10,20) 25 7 18 160.35 89.21 1122.46 1605.86 -483.4 -4.83 290.66 -406.79 -1.15 -18.26 28 -19.34 0.7 1.8 -1357.01

I2.3 RATIO − SPRD100D −MACD(12,26,9) 34 13 21 75.59 47.18 982.71 990.81 -8.1 -0.08 218.33 -271.45 -1.74 -27.62 38.24 -0.23 0.99 1.6 -497.89

I2.4 RATIO − SPRD100D −RSI(14) 2 - 2 - 864.53 - 1729.05 -1729.05 -17.29 - -1520.84 -1.1 -17.46 - -864.53 - - -1520.84

I2.5 RATIO − SPRD100D −BB(20) 18 15 3 51.83 137.94 777.45 413.81 363.65 3.64 132.81 -244.77 -1.55 -24.61 83.33 20.2 1.88 0.38 -244.77

I3 RATIO − SPRD100D −DECTREE 300 111 189 21.99 20.49 2441.34 3872.54 -1431.2 -14.31 109.95 -101 -5.64 -89.53 37 -4.77 0.63 1.07 -1804.7

I4 RATIO − SPRD100D −MLP 194 79 115 26.96 22.83 2130.15 2625.7 -495.55 -4.96 183.9 -218.3 -3.97 -63.02 40.72 -2.56 0.81 1.18 -785.29

Part X: Models derived using the close price of ITOT.N

CLS-SYM-1.1 CLOSEITOT.N − SMA(10,20) 12 7 5 349.7 110.23 2447.92 551.13 1896.79 18.97 1275.51 -231.05 0.2 3.17 58.33 158.05 4.44 3.17 -320.08

CLS-SYM-1.2 CLOSEITOT.N − EMA(10,20) 18 8 10 320.51 242.25 2564.09 2422.52 141.57 1.42 1107.76 -798.87 -0.17 -2.7 44.44 7.84 1.06 1.32 -637.32

CLS-SYM-1.3 CLOSEITOT.N −MACD(12,26,9) 38 15 23 136.98 113.32 2054.75 2606.43 -551.68 -5.52 565.03 -354.83 -0.56 -8.89 39.47 -14.53 0.79 1.21 -1373.77

CLS-SYM-1.4 CLOSEITOT.N −RSI(14) 6 3 3 350.41 842.6 1051.24 2527.79 -1476.55 -14.77 576.4 -2049.07 -0.34 -5.4 50 -246.09 0.42 0.42 -2049.07

CLS-SYM-1.5 CLOSEITOT.N −BB(20) 12 9 3 93.75 445.83 843.77 1337.49 -493.72 -4.94 226.17 -778.78 -0.39 -6.19 75 -41.14 0.63 0.21 -778.78

Part XI: Models derived using the close price of IXUS.N

CLS-SYM-2.1 CLOSEIXUS.N − SMA(10,20) 14 6 8 191.25 153.22 1147.51 1225.77 -78.26 -0.78 563.95 -480.15 -0.33 -5.24 42.86 -5.58 0.94 1.25 -673.35

CLS-SYM-2.2 CLOSEIXUS.N − EMA(10,20) 23 8 15 370.89 149.39 2967.1 2240.79 726.3 7.26 1091.8 -556.4 -0.12 -1.9 34.78 31.56 1.32 2.48 -790.14

CLS-SYM-2.3 CLOSEIXUS.N −MACD(12,26,9) 38 11 27 188.47 95.85 2073.12 2587.91 -514.79 -5.15 932.53 -366.94 -0.45 -7.14 28.95 -13.54 0.8 1.97 -1634.42

CLS-SYM-2.4 CLOSEIXUS.N −RSI(14) 6 3 3 307.42 280.97 922.25 842.92 79.33 0.79 405.82 -589.96 -0.17 -2.7 50 13.22 1.09 1.09 -589.96

CLS-SYM-2.5 CLOSEIXUS.N −BB(20) 20 14 6 66.01 208.54 924.11 1251.26 -327.15 -3.27 209.32 -831.57 -0.43 -6.83 70 -16.36 0.74 0.32 -837.17
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Table D.2.4: This table presents the back-test metrics for the pair IWF.N/XLE.N based on a 30-day rolling window. The table is subdivided into eleven parts, and in each of these parts, we present the back-test metrics and the trading
strategies which use the spread derived from various models. In Part I, the spread is derived from the DIST V 1.1 model, in Part II from the DIST V 1.2 model, in Part III from the DIST V 2 model, in Part IV from the DIST V 3 model, in
Part V from the DIST V 4 model, in Part VI from the JOHANSEN − SPRD model, in Part VIII from the ADF − SPRD model, in from the DIST V 2 model, in Part VIII from the KALMAN − SPRD model, and in Part IX from the
RATIO − SPRD model. In Part X and XI, we present the back-test metrics of the trading strategies which use the close price of IWF.N, and XLE.N, respectively. All $ numbers reported below are in USD.

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X) (XI) (XII) (XIII) (XIV) (XV) (XVI) (XVII) (XVIII) (XIX) (XX)

Trading
Strategy
Code

Model
Name

Total
Number
of
Trades

Number
of

Winning
Trades

Number
of Loosing
Trades

Average
Profit

per Trade
($)

Average
Loss per
Trade
($)

Gross
Profit
($)

Gross
Loss
($)

Net Profit
($)

ROI (%) Max P&L
($)

Min P&L
($)

Daily
Sharpe
Ratio

Annualized
Sharpe
Ratio

Hit Ratio Expectancy Profit
Factor

Realized
Risk

Reward
Ratio

Max
Drawdown

($)

Part I: Models derived using the spread obtained from DISTV 1.1 − SPRD30D

A1.1 DISTV 1.1 − ZSPRD30D
(3,2) 1 1 - 181.84 - 181.84 - 181.84 1.82 181.84 - - - 100 181.84 181.84 181.84 -

A1.2 DISTV 1.1 − ZSPRD30D
(3,1) 1 1 - 310.87 - 310.87 - 310.87 3.11 310.87 - - - 100 310.87 310.87 310.87 -

A1.3 DISTV 1.1 − ZSPRD30D
(3,0.5) 1 1 - 294.06 - 294.06 - 294.06 2.94 294.06 - - - 100 294.06 294.06 294.06 -

A1.4 DISTV 1.1 − ZSPRD30D
(2.7,2) 4 1 3 181.84 157.05 181.84 471.15 -289.3 -2.89 181.84 -204.95 -1.3 -20.64 25 -72.33 0.39 1.16 -471.15

A1.5 DISTV 1.1 − ZSPRD30D
(2.7,1) 3 1 2 310.87 191.11 310.87 382.23 -71.35 -0.71 310.87 -286.6 -0.58 -9.21 33.33 -23.8 0.81 1.63 -382.23

A1.6 DISTV 1.1 − ZSPRD30D
(2.7,0.5) 3 1 2 294.06 303.13 294.06 606.26 -312.2 -3.12 294.06 -319.66 -0.74 -11.75 33.33 -104.08 0.49 0.97 -606.25

A2.1 DISTV 1.1 − SPRD30D − SMA(10,20) 10 4 6 168.35 911.79 673.38 5470.77 -4797.39 -47.97 377.05 -1545.23 -0.87 -13.81 40 -479.74 0.12 0.18 -5026.8

A2.2 DISTV 1.1 − SPRD30D − EMA(10,20) 23 15 8 375.4 707.37 5631.01 5659 -27.99 -0.28 1055.98 -1756.39 -0.22 -3.49 65.22 -1.19 1 0.53 -2365.42

A2.3 DISTV 1.1 − SPRD30D −MACD(12,26,9) 40 25 15 279.61 223.58 6990.33 3353.69 3636.64 36.37 735.56 -766.66 -0.18 -2.86 62.5 90.92 2.08 1.25 -1067.68

A2.4 DISTV 1.1 − SPRD30D −RSI(14) 5 3 2 1556.52 970.29 4669.55 1940.57 2728.98 27.29 4483.68 -1083.69 0.17 2.7 60 545.8 2.41 1.6 -1884.62

A2.5 DISTV 1.1 − SPRD30D −BB(20) 15 7 8 545.7 244.97 3819.9 1959.77 1860.12 18.6 1007.29 -1121.7 -0.05 -0.79 46.67 124.03 1.95 2.23 -1121.7

A3 DISTV 1.1 − SPRD30D −DECTREE 340 147 193 110.9 78.75 16302.63 15198.6 1104.02 11.04 580.21 -890.7 -1.04 -16.51 43.24 3.26 1.07 1.41 -1967.41

A4 DISTV 1.1 − SPRD30D −MLP 330 145 185 114.53 86.02 16607.4 15913.4 694.01 6.94 631.69 -890.7 -1.02 -16.19 43.94 2.1 1.04 1.33 -2041.18

Part II: Models derived using the spread obtained from DISTV 1.2 − SPRD30D

B1.1 DISTV 1.2 − ZSPRD30D
(3,2) 7 4 3 192.74 161.32 770.96 483.95 287 2.87 301.81 -350.57 -0.49 -7.78 57.14 40.99 1.59 1.19 -445.28

B1.2 DISTV 1.2 − ZSPRD30D
(3,1) 7 4 3 287.04 381.5 1148.16 1144.49 3.68 0.04 769.02 -822.51 -0.32 -5.08 57.14 0.51 1 0.75 -941.57

B1.3 DISTV 1.2 − ZSPRD30D
(3,0.5) 7 3 4 494.27 405.7 1482.82 1622.8 -139.98 -1.4 790.67 -765.93 -0.31 -4.92 42.86 -19.97 0.91 1.22 -884.99

B1.4 DISTV 1.2 − ZSPRD30D
(2.7,2) 12 7 5 102.86 152.39 720 761.96 -41.97 -0.42 274.77 -350.57 -0.97 -15.4 58.33 -3.51 0.94 0.67 -445.28

B1.5 DISTV 1.2 − ZSPRD30D
(2.7,1) 12 6 6 270.77 254.1 1624.64 1524.6 100.04 1 769.02 -822.51 -0.38 -6.03 50 8.34 1.07 1.07 -941.57

B1.6 DISTV 1.2 − ZSPRD30D
(2.7,0.5) 11 7 4 354.48 477.36 2481.35 1909.44 571.91 5.72 790.67 -765.93 -0.2 -3.17 63.64 52.02 1.3 0.74 -989.1

B2.1 DISTV 1.2 − SPRD30D − SMA(10,20) 16 6 10 259.41 600.24 1556.44 6002.35 -4445.91 -44.46 815.43 -1270.72 -0.76 -12.06 37.5 -277.87 0.26 0.43 -4662.81

B2.2 DISTV 1.2 − SPRD30D − EMA(10,20) 23 11 12 353.18 621.24 3884.96 7454.93 -3569.97 -35.7 1016.48 -1888.86 -0.44 -6.98 47.83 -155.18 0.52 0.57 -5408.31

B2.3 DISTV 1.2 − SPRD30D −MACD(12,26,9) 34 17 17 304.13 308.3 5170.15 5241.14 -70.99 -0.71 702.34 -1025.84 -0.37 -5.87 50 -2.09 0.99 0.99 -2359.39

B2.4 DISTV 1.2 − SPRD30D −RSI(14) 9 5 4 552.44 742.5 2762.21 2970.01 -207.8 -2.08 1177.72 -1407.44 -0.22 -3.49 55.56 -23.03 0.93 0.74 -1407.44

B2.5 DISTV 1.2 − SPRD30D −BB(20) 16 10 6 345.64 295.64 3456.37 1773.86 1682.52 16.83 1131.58 -699.73 -0.11 -1.75 62.5 105.16 1.95 1.17 -929.37

B3 DISTV 1.2 − SPRD30D −DECTREE 299 126 173 101.32 99.98 12766.14 17296.92 -4530.78 -45.31 504.13 -653.33 -1.16 -18.41 42.14 -15.15 0.74 1.01 -5253.46

B4 DISTV 1.2 − SPRD30D −MLP 228 111 117 133.19 108.54 14784.43 12698.62 2085.81 20.86 673.85 -569.86 -0.85 -13.49 48.68 9.14 1.16 1.23 -3063.02

Part III: Models derived using the spread obtained from DISTV 2 − SPRD30D

C1.1 DISTV 2 − ZSPRD30D
(3,2) 1 - 1 - 181.84 - 181.84 -181.84 -1.82 - -181.84 - - - -181.84 - - -181.84

C1.2 DISTV 2 − ZSPRD30D
(3,1) 1 - 1 - 310.87 - 310.87 -310.87 -3.11 - -310.87 - - - -310.87 - - -310.87

C1.3 DISTV 2 − ZSPRD30D
(3,0.5) 1 - 1 - 294.06 - 294.06 -294.06 -2.94 - -294.06 - - - -294.06 - - -294.06

C1.4 DISTV 2 − ZSPRD30D
(2.7,2) 4 3 1 157.05 181.84 471.15 181.84 289.3 2.89 204.95 -181.84 -0.46 -7.3 75 72.33 2.59 0.86 -181.84

C1.5 DISTV 2 − ZSPRD30D
(2.7,1) 3 2 1 191.11 310.87 382.23 310.87 71.35 0.71 286.6 -310.87 -0.42 -6.67 66.67 23.8 1.23 0.61 -310.87

C1.6 DISTV 2 − ZSPRD30D
(2.7,0.5) 3 2 1 303.13 294.06 606.26 294.06 312.2 3.12 319.66 -294.06 -0.14 -2.22 66.67 104.08 2.06 1.03 -294.06

C2.1 DISTV 2 − SPRD30D − SMA(10,20) 10 7 3 867.17 166.9 6070.2 500.7 5569.5 55.7 1545.23 -377.05 0.59 9.37 70 556.95 12.12 5.2 -377.05

C2.2 DISTV 2 − SPRD30D − EMA(10,20) 23 8 15 707.37 375.4 5659 5631.01 27.99 0.28 1756.39 -1055.98 -0.22 -3.49 34.78 1.19 1 1.88 -3541.35

C2.3 DISTV 2 − SPRD30D −MACD(12,26,9) 40 15 25 223.58 279.61 3353.69 6990.33 -3636.64 -36.37 766.66 -735.56 -0.73 -11.59 37.5 -90.92 0.48 0.8 -4292.48

C2.4 DISTV 2 − SPRD30D −RSI(14) 5 2 3 970.29 1556.52 1940.57 4669.55 -2728.98 -27.29 1083.69 -4483.68 -0.31 -4.92 40 -545.8 0.42 0.62 -4483.68

C2.5 DISTV 2 − SPRD30D −BB(20) 15 8 7 244.97 545.7 1959.77 3819.9 -1860.12 -18.6 1121.7 -1007.29 -0.51 -8.1 53.33 -124.03 0.51 0.45 -1992.14

C3 DISTV 2 − SPRD30D −DECTREE 358 152 206 108.59 78.62 16506.27 16195.42 310.85 3.11 548.97 -890.7 -1.1 -17.46 42.46 0.87 1.02 1.38 -1712.87

C4 DISTV 2 − SPRD30D −MLP 323 147 176 112.55 82.15 16544.9 14458.3 2086.6 20.87 700.5 -890.7 -1 -15.87 45.51 6.46 1.14 1.37 -2295.68

Part IV: Models derived using the spread obtained from DISTV 3 − SPRD30D

D1.1 DISTV 3 − ZSPRD30D
(3,2) 7 6 1 109.36 206.4 656.17 206.4 449.77 4.5 208.26 -206.4 -0.64 -10.16 85.71 64.24 3.18 0.53 -206.4

D1.2 DISTV 3 − ZSPRD30D
(3,1) 7 4 3 432.54 523.48 1730.14 1570.44 159.7 1.6 1097.39 -700.62 -0.21 -3.33 57.14 22.79 1.1 0.83 -1570.44

D1.3 DISTV 3 − ZSPRD30D
(3,0.5) 7 4 3 532.58 762.69 2130.31 2288.06 -157.75 -1.58 1250.37 -863.78 -0.22 -3.49 57.14 -22.57 0.93 0.7 -2288.06

D1.4 DISTV 3 − ZSPRD30D
(2.7,2) 10 7 3 126.11 98.63 882.8 295.88 586.92 5.87 252.76 -206.4 -0.69 -10.95 70 58.69 2.98 1.28 -206.4

D1.5 DISTV 3 − ZSPRD30D
(2.7,1) 9 5 4 418.85 393.11 2094.24 1572.43 521.81 5.22 1100.73 -700.62 -0.17 -2.7 55.56 58.02 1.33 1.07 -1209.69

D1.6 DISTV 3 − ZSPRD30D
(2.7,0.5) 9 6 3 416.66 762.69 2499.94 2288.06 211.87 2.12 1243.23 -863.78 -0.19 -3.02 66.67 23.58 1.09 0.55 -1927.31

D2.1 DISTV 3 − SPRD30D − SMA(10,20) 17 7 10 816.16 429.66 5713.11 4296.61 1416.51 14.17 3471.98 -1242.37 -0.07 -1.11 41.18 83.37 1.33 1.9 -3865.26

D2.2 DISTV 3 − SPRD30D − EMA(10,20) 39 14 25 480.47 251.62 6726.64 6290.45 436.2 4.36 1129.59 -1286.53 -0.3 -4.76 35.9 11.2 1.07 1.91 -2905.78

D2.3 DISTV 3 − SPRD30D −MACD(12,26,9) 39 11 28 411.73 260.09 4528.99 7282.62 -2753.63 -27.54 1220.5 -1241.46 -0.51 -8.1 28.21 -70.57 0.62 1.58 -5791.91

D2.4 DISTV 3 − SPRD30D −RSI(14) 5 3 2 966.64 336.89 2899.92 673.78 2226.14 22.26 1991.46 -543.85 0.3 4.76 60 445.23 4.3 2.87 -543.85

D2.5 DISTV 3 − SPRD30D −BB(20) 18 12 6 133.01 518.04 1596.12 3108.26 -1512.14 -15.12 241.35 -977.01 -0.6 -9.52 66.67 -83.99 0.51 0.26 -2886.46

D3 DISTV 3 − SPRD30D −DECTREE 305 135 170 95.46 89.79 12887.12 15264.49 -2377.36 -23.77 544.14 -603.01 -1.2 -19.05 44.26 -7.8 0.84 1.06 -3391.25

D4 DISTV 3 − SPRD30D −MLP 247 89 158 133.5 101.67 11881.89 16064.35 -4182.46 -41.82 1560.82 -1083.67 -0.89 -14.13 36.03 -16.94 0.74 1.31 -5702.28

Part V: Models derived using the spread obtained from DISTV 4 − SPRD30D

E1.1 DISTV 4 − ZSPRD30D
(3,2) 7 6 1 109.36 206.4 656.17 206.4 449.77 4.5 208.26 -206.4 -0.64 -10.16 85.71 64.24 3.18 0.53 -206.4

E1.2 DISTV 4 − ZSPRD30D
(3,1) 7 4 3 432.54 523.48 1730.14 1570.44 159.7 1.6 1097.39 -700.62 -0.21 -3.33 57.14 22.79 1.1 0.83 -1570.44

E1.3 DISTV 4 − ZSPRD30D
(3,0.5) 7 4 3 532.58 762.69 2130.31 2288.06 -157.75 -1.58 1250.37 -863.78 -0.22 -3.49 57.14 -22.57 0.93 0.7 -2288.06

E1.4 DISTV 4 − ZSPRD30D
(2.7,2) 10 7 3 126.11 98.63 882.8 295.88 586.92 5.87 252.76 -206.4 -0.69 -10.95 70 58.69 2.98 1.28 -206.4

E1.5 DISTV 4 − ZSPRD30D
(2.7,1) 9 5 4 418.85 393.11 2094.24 1572.43 521.81 5.22 1100.73 -700.62 -0.17 -2.7 55.56 58.02 1.33 1.07 -1209.69

E1.6 DISTV 4 − ZSPRD30D
(2.7,0.5) 9 6 3 416.66 762.69 2499.94 2288.06 211.87 2.12 1243.23 -863.78 -0.19 -3.02 66.67 23.58 1.09 0.55 -1927.31

E2.1 DISTV 4 − SPRD30D − SMA(10,20) 17 7 10 816.16 429.66 5713.11 4296.61 1416.51 14.17 3471.98 -1242.37 -0.07 -1.11 41.18 83.37 1.33 1.9 -3865.26

E2.2 DISTV 4 − SPRD30D − EMA(10,20) 39 14 25 480.47 251.62 6726.64 6290.45 436.2 4.36 1129.59 -1286.53 -0.3 -4.76 35.9 11.2 1.07 1.91 -2905.78

E2.3 DISTV 4 − SPRD30D −MACD(12,26,9) 39 11 28 411.73 260.09 4528.99 7282.62 -2753.63 -27.54 1220.5 -1241.46 -0.51 -8.1 28.21 -70.57 0.62 1.58 -5791.91

E2.4 DISTV 4 − SPRD30D −RSI(14) 5 3 2 966.64 336.89 2899.92 673.78 2226.14 22.26 1991.46 -543.85 0.3 4.76 60 445.23 4.3 2.87 -543.85

E2.5 DISTV 4 − SPRD30D −BB(20) 18 12 6 133.01 518.04 1596.12 3108.26 -1512.14 -15.12 241.35 -977.01 -0.6 -9.52 66.67 -83.99 0.51 0.26 -2886.46

E3 DISTV 4 − SPRD30D −DECTREE 297 127 170 97.91 93.42 12434.04 15880.73 -3446.7 -34.47 631.69 -603.01 -1.2 -19.05 42.76 -11.61 0.78 1.05 -4178.46

E4 DISTV 4 − SPRD30D −MLP 247 89 158 133.5 101.67 11881.89 16064.35 -4182.46 -41.82 1560.82 -1083.67 -0.89 -14.13 36.03 -16.94 0.74 1.31 -5702.28

Part VI: Models derived using the spread obtained from JOHANSEN − SPRD30D

F1.1 JOHANSEN − ZSPRD30D
(3,2) 19 12 7 81.48 433.17 977.8 3032.21 -2054.41 -20.54 254.59 -2865.69 -0.26 -4.13 63.16 -108.12 0.32 0.19 -2879.26

F1.2 JOHANSEN − ZSPRD30D
(3,1) 18 12 6 116.58 2082.17 1399 12493.01 -11094.01 -110.94 254.59 -12311.2 -0.25 -3.97 66.67 -616.26 0.11 0.06 -12436.16

F1.3 JOHANSEN − ZSPRD30D
(3,0.5) 17 12 5 141.13 2150.34 1693.61 10751.71 -9058.1 -90.58 289.24 -10519.85 -0.26 -4.13 70.59 -532.79 0.16 0.07 -10732.64

F1.4 JOHANSEN − ZSPRD30D
(2.7,2) 21 12 9 91.89 353.38 1102.73 3180.41 -2077.68 -20.78 274.74 -2865.69 -0.19 -3.02 57.14 -98.95 0.35 0.26 -2879.26

F1.5 JOHANSEN − ZSPRD30D
(2.7,1) 20 12 8 96.37 1779.72 1156.4 14237.78 -13081.38 -130.81 254.59 -12311.2 -0.33 -5.24 60 -654.07 0.08 0.05 -14186.61

F1.6 JOHANSEN − ZSPRD30D
(2.7,0.5) 19 12 7 116.75 1978.64 1401.02 13850.45 -12449.43 -124.49 289.24 -10519.85 -0.35 -5.56 63.16 -655.19 0.1 0.06 -13831.39

F2.1 JOHANSEN − SPRD30D − SMA(10,20) 25 12 13 1221.04 1132.3 14652.45 14719.85 -67.4 -0.67 10520.18 -9055.58 0.04 0.63 48 -2.7 1 1.08 -13701.88

F2.2 JOHANSEN − SPRD30D − EMA(10,20) 42 23 19 917.84 833.4 21110.23 15834.64 5275.59 52.76 8978.31 -3126.95 0.15 2.38 54.76 125.58 1.33 1.1 -7692

F2.3 JOHANSEN − SPRD30D −MACD(12,26,9) 42 22 20 520.75 834.05 11456.57 16681.08 -5224.51 -52.25 4848.38 -10217.21 0.07 1.11 52.38 -124.41 0.69 0.62 -11856.63

F2.4 JOHANSEN − SPRD30D −RSI(14) 6 4 2 143.59 649.1 574.37 1298.2 -723.84 -7.24 358.65 -1120.42 -0.25 -3.97 66.67 -120.61 0.44 0.22 -1120.42

F2.5 JOHANSEN − SPRD30D −BB(20) 21 10 11 242.23 999.92 2422.27 10999.1 -8576.83 -85.77 1316.96 -7488.45 -0.3 -4.76 47.62 -408.41 0.22 0.24 -9204.6

F3 JOHANSEN − SPRD30D −DECTREE 338 166 172 94.17 85.68 15631.88 14736.76 895.11 8.95 365.41 -683.07 -1.16 -18.41 49.11 2.64 1.06 1.1 -1510.75

F4 JOHANSEN − SPRD30D −MLP 227 115 112 101.3 131.29 11649.92 14704.59 -3054.67 -30.55 530.25 -945.8 -0.94 -14.92 50.66 -13.46 0.79 0.77 -3519.76

Part VII: Models derived using the spread obtained from ADF − SPRD30D

G1.1 ADF − ZSPRD30D
(3,2) 6 3 3 807.55 204.06 2422.65 612.19 1810.46 18.1 2252.42 -330.39 0.24 3.81 50 301.74 3.96 3.96 -532.04

G1.2 ADF − ZSPRD30D
(3,1) 5 1 4 3125.4 888.94 3125.4 3555.76 -430.36 -4.3 3125.4 -2329.85 -0.1 -1.59 20 -86.07 0.88 3.52 -3555.77

G1.3 ADF − ZSPRD30D
(3,0.5) 5 2 3 1816.16 1151.07 3632.33 3453.22 179.11 1.79 3529.33 -1717.55 -0.03 -0.48 40 35.82 1.05 1.58 -3350.22

G1.4 ADF − ZSPRD30D
(2.7,2) 8 5 3 1600.9 186.94 8004.5 560.81 7443.69 74.44 4428.5 -330.39 0.51 8.1 62.5 930.46 14.27 8.56 -480.66

G1.5 ADF − ZSPRD30D
(2.7,1) 7 3 4 1983.88 632.53 5951.63 2530.12 3421.51 34.22 3125.4 -1350.63 0.26 4.13 42.86 488.86 2.35 3.14 -1350.63

G1.6 ADF − ZSPRD30D
(2.7,0.5) 7 2 5 1816.16 905.06 3632.33 4525.28 -892.96 -8.93 3529.33 -1639.92 -0.13 -2.06 28.57 -127.6 0.8 2.01 -4422.28

G2.1 ADF − SPRD30D − SMA(10,20) 19 13 6 1914.04 1852.54 24882.49 11115.24 13767.25 137.67 13347.99 -5577.36 0.19 3.02 68.42 724.55 2.24 1.03 -5577.36

G2.2 ADF − SPRD30D − EMA(10,20) 44 26 18 830.48 1587.74 21592.39 28579.27 -6986.88 -69.87 6472.84 -6211.73 -0.08 -1.27 59.09 -158.81 0.76 0.52 -11760.07

G2.3 ADF − SPRD30D −MACD(12,26,9) 43 25 18 1314.7 5077.58 32867.46 91396.37 -58528.91 -585.29 15250.87 -57480.81 -0.16 -2.54 58.14 -1361.11 0.36 0.26 -59702.13

G2.4 ADF − SPRD30D −RSI(14) 1 - 1 - 7567.48 - 7567.48 -7567.48 -75.67 - -7567.48 - - - -7567.48 - - -7567.48

G2.5 ADF − SPRD30D −BB(20) 21 7 14 2218.48 700.89 15529.37 9812.46 5716.91 57.17 4953.19 -5952.17 0.09 1.43 33.33 272.14 1.58 3.17 -6456.32

G3 ADF − SPRD30D −DECTREE 293 133 160 110.14 92.79 14648.61 14846.86 -198.24 -1.98 700.5 -822.93 -0.99 -15.72 45.39 -0.68 0.99 1.19 -2424.79

G4 ADF − SPRD30D −MLP 140 60 80 149.52 153.02 8971.13 12241.8 -3270.67 -32.71 1088.52 -1232.16 -0.67 -10.64 42.86 -23.35 0.73 0.98 -5026.17

Part VIII: Models derived using the spread obtained from KALMAN − SPRD30D

H1.1 KALMAN − ZSPRD30D
(3,2) 1 1 - 857.18 - 857.18 - 857.18 8.57 857.18 - - - 100 857.18 857.18 857.18 -

H1.2 KALMAN − ZSPRD30D
(3,1) 1 1 - 632.57 - 632.57 - 632.57 6.33 632.57 - - - 100 632.57 632.57 632.57 -

H1.3 KALMAN − ZSPRD30D
(3,0.5) 1 1 - 1742.14 - 1742.14 - 1742.14 17.42 1742.14 - - - 100 1742.14 1742.14 1742.14 -

H1.4 KALMAN − ZSPRD30D
(2.7,2) 8 4 4 357.16 397 1428.66 1587.99 -159.33 -1.59 857.18 -1006.13 -0.21 -3.33 50 -19.92 0.9 0.9 -1372.79

H1.5 KALMAN − ZSPRD30D
(2.7,1) 7 5 2 320.75 830.09 1603.75 1660.17 -56.43 -0.56 632.57 -1193.31 -0.14 -2.22 71.43 -8.04 0.97 0.39 -1193.31

H1.6 KALMAN − ZSPRD30D
(2.7,0.5) 7 4 3 731.72 436.94 2926.88 1310.81 1616.07 16.16 1742.14 -912.5 0.19 3.02 57.14 230.83 2.23 1.67 -982.62

H2.1 KALMAN − SPRD30D − SMA(10,20) 14 5 9 921.72 715.59 4608.6 6440.3 -1831.7 -18.32 3175.97 -1410.62 -0.21 -3.33 35.71 -130.91 0.72 1.29 -5770.2

H2.2 KALMAN − SPRD30D − EMA(10,20) 19 6 13 2304.17 1145.25 13825.02 14888.25 -1063.23 -10.63 8538.22 -2681.58 -0.08 -1.27 31.58 -55.92 0.93 2.01 -10109.42

H2.3 KALMAN − SPRD30D −MACD(12,26,9) 27 13 14 887.01 953.32 11531.08 13346.51 -1815.43 -18.15 2944.39 -3265.78 -0.13 -2.06 48.15 -67.2 0.86 0.93 -6937.81

H2.4 KALMAN − SPRD30D −RSI(14) 3 2 1 4247.28 7838.11 8494.57 7838.11 656.46 6.56 4355.58 -7838.11 0.09 1.43 66.67 219.22 1.08 0.54 -7838.11

H2.5 KALMAN − SPRD30D −BB(20) 14 9 5 708.75 716.57 6378.72 3582.84 2795.88 27.96 2599.3 -1331.03 0.11 1.75 64.29 199.77 1.78 0.99 -1497.15

H3 KALMAN − SPRD30D −DECTREE 322 144 178 98.06 97.13 14121.08 17289.63 -3168.55 -31.69 542.97 -822.93 -1.13 -17.94 44.72 -9.84 0.82 1.01 -3961.64

H4 KALMAN − SPRD30D −MLP 183 76 107 131.13 105.22 9965.59 11258.74 -1293.16 -12.93 742.67 -1033.87 -0.82 -13.02 41.53 -7.07 0.89 1.25 -3514.95

Part IX: Models derived using the spread obtained from RATIO − SPRD30D

I1.1 RATIO − ZSPRD30D
(3,2) 7 3 4 314.92 358.02 944.76 1432.1 -487.33 -4.87 473.7 -584.89 -0.54 -8.57 42.86 -69.6 0.66 0.88 -662.42

I1.2 RATIO − ZSPRD30D
(3,1) 6 3 3 281.81 328.97 845.44 986.91 -141.47 -1.41 473.7 -546.4 -0.45 -7.14 50 -23.58 0.86 0.86 -546.4

I1.3 RATIO − ZSPRD30D
(3,0.5) 6 3 3 333.61 320.97 1000.82 962.91 37.91 0.38 631.69 -401.5 -0.35 -5.56 50 6.32 1.04 1.04 -561.41

I1.4 RATIO − ZSPRD30D
(2.7,2) 10 5 5 226.84 376.26 1134.21 1881.3 -747.09 -7.47 473.7 -584.89 -0.62 -9.84 50 -74.71 0.6 0.6 -1111.62

I1.5 RATIO − ZSPRD30D
(2.7,1) 9 4 5 238.16 332.99 952.65 1664.98 -712.32 -7.12 473.7 -673.04 -0.61 -9.68 44.44 -79.17 0.57 0.72 -1219.43

I1.6 RATIO − ZSPRD30D
(2.7,0.5) 8 5 3 241.37 700.25 1206.86 2100.74 -893.88 -8.94 631.69 -1539.34 -0.4 -6.35 62.5 -111.74 0.57 0.34 -1539.34

I2.1 RATIO − SPRD30D − SMA(10,20) 15 6 9 563.09 293.2 3378.56 2638.77 739.79 7.4 1837.22 -688.58 -0.17 -2.7 40 49.32 1.28 1.92 -1684.01

I2.2 RATIO − SPRD30D − EMA(10,20) 20 8 12 786.55 183.08 6292.39 2196.98 4095.41 40.95 1882.7 -488.63 0.08 1.27 40 204.77 2.86 4.3 -1003.86

I2.3 RATIO − SPRD30D −MACD(12,26,9) 31 13 18 498.62 203.05 6482.03 3654.91 2827.12 28.27 1267.96 -548.25 -0.13 -2.06 41.94 91.23 1.77 2.46 -1970.71

I2.4 RATIO − SPRD30D −RSI(14) 5 3 2 633.17 2043.39 1899.5 4086.78 -2187.27 -21.87 1076.55 -3956.85 -0.29 -4.6 60 -437.45 0.46 0.31 -3956.85

I2.5 RATIO − SPRD30D −BB(20) 14 9 5 195.98 510.32 1763.78 2551.59 -787.81 -7.88 561.22 -1073.5 -0.45 -7.14 64.29 -56.24 0.69 0.38 -1518.5

I3 RATIO − SPRD30D −DECTREE 322 122 200 108.4 68.97 13224.36 13794.35 -569.99 -5.7 706.84 -504.13 -1.21 -19.21 37.89 -1.77 0.96 1.57 -2333.28

I4 RATIO − SPRD30D −MLP 280 113 167 107.22 85.77 12115.6 14323.98 -2208.38 -22.08 770.61 -728.55 -1.11 -17.62 40.36 -7.88 0.85 1.25 -3428.01

Part X: Models derived using the close price of IWF.N

CLS-SYM-1.1 CLOSEIWF.N − SMA(10,20) 12 6 6 356.71 189.67 2140.24 1138.02 1002.23 10.02 555.73 -253.08 0.02 0.32 50 83.52 1.88 1.88 -501.5

CLS-SYM-1.2 CLOSEIWF.N − EMA(10,20) 21 7 14 379.1 169.37 2653.72 2371.16 282.56 2.83 1556.82 -381.44 -0.15 -2.38 33.33 13.44 1.12 2.24 -1078.61

CLS-SYM-1.3 CLOSEIWF.N −MACD(12,26,9) 30 8 22 188.24 130.91 1505.94 2880.12 -1374.18 -13.74 760.82 -320.06 -0.61 -9.68 26.67 -45.8 0.52 1.44 -1432.72

CLS-SYM-1.4 CLOSEIWF.N −RSI(14) 6 2 4 490.13 759 980.26 3036 -2055.74 -20.56 767.73 -2215.65 -0.41 -6.51 33.33 -342.67 0.32 0.65 -2215.65

CLS-SYM-1.5 CLOSEIWF.N −BB(20) 12 7 5 112.1 284.97 784.69 1424.86 -640.17 -6.4 257.89 -668.35 -0.48 -7.62 58.33 -53.36 0.55 0.39 -1142.05

Part XI: Models derived using the close price of XLE.N

CLS-SYM-2.1 CLOSEXLE.N − SMA(10,20) 19 9 10 492.93 337.96 4436.4 3379.63 1056.77 10.57 1969.29 -993.26 -0.03 -0.48 47.37 55.63 1.31 1.46 -2390.02

CLS-SYM-2.2 CLOSEXLE.N − EMA(10,20) 26 11 15 546.32 161.14 6009.56 2417.09 3592.47 35.92 2197.81 -326.2 0.12 1.9 42.31 138.19 2.49 3.39 -711.67

CLS-SYM-2.3 CLOSEXLE.N −MACD(12,26,9) 27 10 17 637.2 211.29 6372.04 3591.96 2780.08 27.8 1931.38 -613.01 0.05 0.79 37.04 102.99 1.77 3.02 -645.92

CLS-SYM-2.4 CLOSEXLE.N −RSI(14) 5 3 2 314.75 1213.82 944.26 2427.64 -1483.38 -14.83 365.04 -1229.73 -0.44 -6.98 60 -296.68 0.39 0.26 -2062.6

CLS-SYM-2.5 CLOSEXLE.N −BB(20) 20 17 3 198.62 500.07 3376.55 1500.22 1876.33 18.76 822.47 -1185.85 0.05 0.79 85 93.82 2.25 0.4 -1185.85
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Table D.2.5: This table presents the back-test metrics for the pair IWF.N/XLE.N based on a 50-day rolling window. The table is subdivided into eleven parts, and in each of these parts, we present the back-test metrics and the trading strategies which use the
spread derived from various models. In Part I, the spread is derived from the DIST V 1.1 model, in Part II from the DIST V 1.2 model, in Part III from the DIST V 2 model, in Part IV from the DIST V 3 model, in Part V from the DIST V 4 model, in Part VI from the
JOHANSEN − SPRD model, in Part VIII from the ADF − SPRD model, in from the DIST V 2 model, in Part VIII from the KALMAN − SPRD model, and in Part IX from the RATIO − SPRD model. In Part X and XI, we present the back-test metrics of
the trading strategies which use the close price of IWF.N, and XLE.N, respectively. All $ numbers reported below are in USD.

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X) (XI) (XII) (XIII) (XIV) (XV) (XVI) (XVII) (XVIII) (XIX) (XX)

Trading
Strategy
Code

Model
Name

Total
Number
of
Trades

Number
of

Winning
Trades

Number
of Loosing
Trades

Average
Profit

per Trade
($)

Average
Loss per
Trade
($)

Gross
Profit
($)

Gross
Loss
($)

Net Profit
($)

ROI (%) Max P&L
($)

Min P&L
($)

Daily
Sharpe
Ratio

Annualized
Sharpe
Ratio

Hit Ratio Expectancy Profit
Factor

Realized
Risk

Reward
Ratio

Max
Drawdown

($)

Part I: Models derived using the spread obtained from DISTV 1.1 − SPRD50D

A1.1 DISTV 1.1 − ZSPRD50D
(3,2) 3 1 2 251.16 150.17 251.16 300.34 -49.17 -0.49 251.16 -164.49 -0.73 -11.59 33.33 -16.4 0.84 1.67 -300.34

A1.2 DISTV 1.1 − ZSPRD50D
(3,1) 2 - 2 - 184.65 - 369.3 -369.3 -3.69 - -319.66 -1.76 -27.94 - -184.65 - - -369.29

A1.3 DISTV 1.1 − ZSPRD50D
(3,0.5) 2 - 2 - 339.37 - 678.74 -678.74 -6.79 - -565.11 -1.54 -24.45 - -339.37 - - -678.74

A1.4 DISTV 1.1 − ZSPRD50D
(2.7,2) 3 2 1 370.84 164.49 741.69 164.49 577.2 5.77 623.98 -164.49 0.1 1.59 66.67 192.42 4.51 2.25 -164.49

A1.5 DISTV 1.1 − ZSPRD50D
(2.7,1) 2 - 2 - 58.75 - 117.5 -117.5 -1.17 - -67.86 -16.35 -259.55 - -58.75 - - -117.5

A1.6 DISTV 1.1 − ZSPRD50D
(2.7,0.5) 2 - 2 - 219.87 - 439.74 -439.74 -4.4 - -326.11 -2.48 -39.37 - -219.87 - - -439.74

A2.1 DISTV 1.1 − SPRD50D − SMA(10,20) 10 4 6 168.35 911.79 673.38 5470.77 -4797.39 -47.97 377.05 -1545.23 -0.87 -13.81 40 -479.74 0.12 0.18 -5026.8

A2.2 DISTV 1.1 − SPRD50D − EMA(10,20) 23 15 8 378.82 711.93 5682.29 5695.47 -13.18 -0.13 1055.98 -1756.39 -0.22 -3.49 65.22 -0.54 1 0.53 -2401.89

A2.3 DISTV 1.1 − SPRD50D −MACD(12,26,9) 40 27 13 282.19 254.01 7619.14 3302.19 4316.95 43.17 735.56 -766.66 -0.13 -2.06 67.5 107.92 2.31 1.11 -1067.68

A2.4 DISTV 1.1 − SPRD50D −RSI(14) 6 3 3 1474.62 653.95 4423.86 1961.85 2462.01 24.62 4124.57 -1083.69 0.14 2.22 50 410.34 2.25 2.25 -1884.62

A2.5 DISTV 1.1 − SPRD50D −BB(20) 15 7 8 545.7 244.97 3819.9 1959.77 1860.12 18.6 1007.29 -1121.7 -0.05 -0.79 46.67 124.03 1.95 2.23 -1121.7

A3 DISTV 1.1 − SPRD50D −DECTREE 340 153 187 114.43 76.9 17507.41 14379.78 3127.64 31.28 585.71 -890.7 -1 -15.87 45 9.2 1.22 1.49 -2134.27

A4 DISTV 1.1 − SPRD50D −MLP 306 135 171 110.92 86.84 14974.4 14849.42 124.98 1.25 571.7 -890.7 -1.05 -16.67 44.12 0.41 1.01 1.28 -2506.82

Part II: Models derived using the spread obtained from DISTV 1.2 − SPRD50D

B1.1 DISTV 1.2 − ZSPRD50D
(3,2) 8 5 3 155.21 161.92 776.03 485.77 290.26 2.9 247.6 -283.85 -0.62 -9.84 62.5 36.28 1.6 0.96 -396.06

B1.2 DISTV 1.2 − ZSPRD50D
(3,1) 8 3 5 651.82 502.54 1955.45 2512.69 -557.24 -5.57 875.82 -1159.04 -0.31 -4.92 37.5 -69.65 0.78 1.3 -1231.76

B1.3 DISTV 1.2 − ZSPRD50D
(3,0.5) 6 2 4 503.5 718.7 1006.99 2874.8 -1867.81 -18.68 802.46 -1075.55 -0.63 -10 33.33 -311.34 0.35 0.7 -1867.81

B1.4 DISTV 1.2 − ZSPRD50D
(2.7,2) 11 7 4 264.27 210.66 1849.89 842.64 1007.25 10.07 1006 -356.88 -0.17 -2.7 63.64 91.59 2.2 1.25 -396.06

B1.5 DISTV 1.2 − ZSPRD50D
(2.7,1) 10 5 5 724.64 502.54 3623.21 2512.69 1110.52 11.11 1006 -1159.04 -0.06 -0.95 50 111.05 1.44 1.44 -1159.04

B1.6 DISTV 1.2 − ZSPRD50D
(2.7,0.5) 8 4 4 534.62 718.7 2138.46 2874.8 -736.34 -7.36 1006 -1075.55 -0.31 -4.92 50 -92.04 0.74 0.74 -1075.55

B2.1 DISTV 1.2 − SPRD50D − SMA(10,20) 11 5 6 361.92 582.27 1809.61 3493.6 -1683.99 -16.84 559.42 -1544.84 -0.45 -7.14 45.45 -153.13 0.52 0.62 -2800.23

B2.2 DISTV 1.2 − SPRD50D − EMA(10,20) 16 10 6 544.35 729.64 5443.54 4377.83 1065.71 10.66 1276.86 -1445.23 -0.11 -1.75 62.5 66.61 1.24 0.75 -3056.42

B2.3 DISTV 1.2 − SPRD50D −MACD(12,26,9) 26 15 11 287.05 218.71 4305.7 2405.79 1899.92 19 623.18 -814.67 -0.22 -3.49 57.69 73.06 1.79 1.31 -887.77

B2.4 DISTV 1.2 − SPRD50D −RSI(14) 9 5 4 740.34 935.41 3701.71 3741.66 -39.95 -0.4 1262 -1284.67 -0.17 -2.7 55.56 -4.36 0.99 0.79 -2180.26

B2.5 DISTV 1.2 − SPRD50D −BB(20) 13 6 7 331.78 390.35 1990.66 2732.44 -741.78 -7.42 749 -617.27 -0.49 -7.78 46.15 -57.09 0.73 0.85 -1112.83

B3 DISTV 1.2 − SPRD50D −DECTREE 239 122 117 100.67 101.19 12281.57 11838.81 442.76 4.43 631.69 -1521.9 -0.87 -13.81 51.05 1.86 1.04 0.99 -2091.98

B4 DISTV 1.2 − SPRD50D −MLP 239 123 116 107.05 103.62 13166.87 12019.77 1147.1 11.47 700.48 -433.74 -0.96 -15.24 51.46 4.79 1.1 1.03 -2269.6

Part III: Models derived using the spread obtained from DISTV 2 − SPRD50D

C1.1 DISTV 2 − ZSPRD50D
(3,2) 3 2 1 150.17 251.16 300.34 251.16 49.17 0.49 164.49 -251.16 -0.58 -9.21 66.67 16.4 1.2 0.6 -251.16

C1.2 DISTV 2 − ZSPRD50D
(3,1) 2 2 - 184.65 - 369.3 - 369.3 3.69 319.66 - 0.17 2.7 100 184.65 369.3 184.65 -

C1.3 DISTV 2 − ZSPRD50D
(3,0.5) 2 2 - 339.37 - 678.74 - 678.74 6.79 565.11 - 0.59 9.37 100 339.37 678.74 339.37 -

C1.4 DISTV 2 − ZSPRD50D
(2.7,2) 3 1 2 164.49 370.84 164.49 741.69 -577.2 -5.77 164.49 -623.98 -0.86 -13.65 33.33 -192.42 0.22 0.44 -623.98

C1.5 DISTV 2 − ZSPRD50D
(2.7,1) 2 2 - 58.75 - 117.5 - 117.5 1.17 67.86 - -7.24 -114.93 100 58.75 117.5 58.75 -

C1.6 DISTV 2 − ZSPRD50D
(2.7,0.5) 2 2 - 219.87 - 439.74 - 439.74 4.4 326.11 - 0.45 7.14 100 219.87 439.74 219.87 -

C2.1 DISTV 2 − SPRD50D − SMA(10,20) 10 7 3 867.17 166.9 6070.2 500.7 5569.5 55.7 1545.23 -377.05 0.59 9.37 70 556.95 12.12 5.2 -377.05

C2.2 DISTV 2 − SPRD50D − EMA(10,20) 23 8 15 711.93 378.82 5695.47 5682.29 13.18 0.13 1756.39 -1055.98 -0.22 -3.49 34.78 0.54 1 1.88 -3541.35

C2.3 DISTV 2 − SPRD50D −MACD(12,26,9) 40 13 27 254.01 282.19 3302.19 7619.14 -4316.95 -43.17 766.66 -735.56 -0.77 -12.22 32.5 -107.92 0.43 0.9 -4942.15

C2.4 DISTV 2 − SPRD50D −RSI(14) 6 3 3 653.95 1474.62 1961.85 4423.86 -2462.01 -24.62 1083.69 -4124.57 -0.3 -4.76 50 -410.34 0.44 0.44 -4124.57

C2.5 DISTV 2 − SPRD50D −BB(20) 15 8 7 244.97 545.7 1959.77 3819.9 -1860.12 -18.6 1121.7 -1007.29 -0.51 -8.1 53.33 -124.03 0.51 0.45 -1992.14

C3 DISTV 2 − SPRD50D −DECTREE 350 151 199 107.37 83.23 16212.68 16562.75 -350.08 -3.5 571.7 -890.7 -1.09 -17.3 43.14 -1.01 0.98 1.29 -2126.06

C4 DISTV 2 − SPRD50D −MLP 302 137 165 106.34 92.18 14569.05 15209.16 -640.11 -6.4 631.69 -890.7 -1.03 -16.35 45.36 -2.13 0.96 1.15 -3612.53

Part IV: Models derived using the spread obtained from DISTV 3 − SPRD50D

D1.1 DISTV 3 − ZSPRD50D
(3,2) 8 4 4 171.59 306.25 686.37 1225.01 -538.64 -5.39 234.51 -582.03 -0.67 -10.64 50 -67.33 0.56 0.56 -1143.71

D1.2 DISTV 3 − ZSPRD50D
(3,1) 6 3 3 464.91 398.35 1394.74 1195.05 199.69 2 536.33 -727.18 -0.23 -3.65 50 33.28 1.17 1.17 -1141.23

D1.3 DISTV 3 − ZSPRD50D
(3,0.5) 6 4 2 351.15 460.22 1404.61 920.44 484.16 4.84 535.21 -670.05 -0.15 -2.38 66.67 80.72 1.53 0.76 -920.44

D1.4 DISTV 3 − ZSPRD50D
(2.7,2) 13 6 7 182.09 295.34 1092.52 2067.38 -974.86 -9.75 288.94 -768.24 -0.7 -11.11 46.15 -75.01 0.53 0.62 -1350.26

D1.5 DISTV 3 − ZSPRD50D
(2.7,1) 9 3 6 322.08 317.07 966.25 1902.43 -936.18 -9.36 473.7 -782.94 -0.65 -10.32 33.33 -104.04 0.51 1.02 -1360.68

D1.6 DISTV 3 − ZSPRD50D
(2.7,0.5) 9 4 5 276.22 407.59 1104.88 2037.94 -933.05 -9.33 473.7 -726.76 -0.61 -9.68 44.44 -103.7 0.54 0.68 -1510.88

D2.1 DISTV 3 − SPRD50D − SMA(10,20) 17 9 8 519.98 250.76 4679.78 2006.06 2673.72 26.74 1936.61 -535.03 0.01 0.16 52.94 157.27 2.33 2.07 -647.91

D2.2 DISTV 3 − SPRD50D − EMA(10,20) 35 13 22 470.37 314.6 6114.85 6921.25 -806.39 -8.06 1455.29 -1501.74 -0.32 -5.08 37.14 -23.06 0.88 1.5 -3188.62

D2.3 DISTV 3 − SPRD50D −MACD(12,26,9) 34 14 20 454.72 239.68 6366.13 4793.64 1572.5 15.72 1336.24 -1356.61 -0.21 -3.33 41.18 46.27 1.33 1.9 -2602.19

D2.4 DISTV 3 − SPRD50D −RSI(14) 5 2 3 880.78 1557.06 1761.55 4671.18 -2909.62 -29.1 1171.42 -2525.26 -0.46 -7.3 40 -581.93 0.38 0.57 -3242.48

D2.5 DISTV 3 − SPRD50D −BB(20) 18 12 6 255.12 477.69 3061.42 2866.16 195.26 1.95 1195.01 -993.18 -0.29 -4.6 66.67 10.87 1.07 0.53 -1856.68

D3 DISTV 3 − SPRD50D −DECTREE 315 132 183 115.47 84.54 15241.71 15470.54 -228.83 -2.29 604.61 -997.97 -1.04 -16.51 41.9 -0.74 0.99 1.37 -2357.54

D4 DISTV 3 − SPRD50D −MLP 107 41 66 155.6 152.5 6379.64 10065.21 -3685.57 -36.86 1057.92 -895.17 -0.72 -11.43 38.32 -34.44 0.63 1.02 -6073.31

Part V: Models derived using the spread obtained from DISTV 4 − SPRD50D

E1.1 DISTV 4 − ZSPRD50D
(3,2) 8 4 4 171.59 306.25 686.37 1225.01 -538.64 -5.39 234.51 -582.03 -0.67 -10.64 50 -67.33 0.56 0.56 -1143.71

E1.2 DISTV 4 − ZSPRD50D
(3,1) 6 3 3 464.91 398.35 1394.74 1195.05 199.69 2 536.33 -727.18 -0.23 -3.65 50 33.28 1.17 1.17 -1141.23

E1.3 DISTV 4 − ZSPRD50D
(3,0.5) 6 4 2 351.15 460.22 1404.61 920.44 484.16 4.84 535.21 -670.05 -0.15 -2.38 66.67 80.72 1.53 0.76 -920.44

E1.4 DISTV 4 − ZSPRD50D
(2.7,2) 13 6 7 182.09 295.34 1092.52 2067.38 -974.86 -9.75 288.94 -768.24 -0.7 -11.11 46.15 -75.01 0.53 0.62 -1350.26

E1.5 DISTV 4 − ZSPRD50D
(2.7,1) 9 3 6 322.08 317.07 966.25 1902.43 -936.18 -9.36 473.7 -782.94 -0.65 -10.32 33.33 -104.04 0.51 1.02 -1360.68

E1.6 DISTV 4 − ZSPRD50D
(2.7,0.5) 9 4 5 276.22 407.59 1104.88 2037.94 -933.05 -9.33 473.7 -726.76 -0.61 -9.68 44.44 -103.7 0.54 0.68 -1510.88

E2.1 DISTV 4 − SPRD50D − SMA(10,20) 17 9 8 519.98 250.76 4679.78 2006.06 2673.72 26.74 1936.61 -535.03 0.01 0.16 52.94 157.27 2.33 2.07 -647.91

E2.2 DISTV 4 − SPRD50D − EMA(10,20) 35 13 22 470.37 314.6 6114.85 6921.25 -806.39 -8.06 1455.29 -1501.74 -0.32 -5.08 37.14 -23.06 0.88 1.5 -3188.62

E2.3 DISTV 4 − SPRD50D −MACD(12,26,9) 34 14 20 454.72 239.68 6366.13 4793.64 1572.5 15.72 1336.24 -1356.61 -0.21 -3.33 41.18 46.27 1.33 1.9 -2602.19

E2.4 DISTV 4 − SPRD50D −RSI(14) 5 2 3 880.78 1557.06 1761.55 4671.18 -2909.62 -29.1 1171.42 -2525.26 -0.46 -7.3 40 -581.93 0.38 0.57 -3242.48

E2.5 DISTV 4 − SPRD50D −BB(20) 18 12 6 255.12 477.69 3061.42 2866.16 195.26 1.95 1195.01 -993.18 -0.29 -4.6 66.67 10.87 1.07 0.53 -1856.68

E3 DISTV 4 − SPRD50D −DECTREE 299 130 169 116.71 86.83 15171.68 14673.86 497.83 4.98 604.61 -1157.69 -0.96 -15.24 43.48 1.67 1.03 1.34 -2127.32

E4 DISTV 4 − SPRD50D −MLP 107 41 66 155.6 152.5 6379.64 10065.21 -3685.57 -36.86 1057.92 -895.17 -0.72 -11.43 38.32 -34.44 0.63 1.02 -6073.31

Part VI: Models derived using the spread obtained from JOHANSEN − SPRD50D

F1.1 JOHANSEN − ZSPRD50D
(3,2) 18 9 9 109.43 60.02 984.9 540.18 444.72 4.45 364.47 -160.33 -0.28 -4.44 50 24.71 1.82 1.82 -250.88

F1.2 JOHANSEN − ZSPRD50D
(3,1) 15 7 8 167.59 73.04 1173.16 584.33 588.83 5.89 364.47 -160.33 -0.23 -3.65 46.67 39.26 2.01 2.29 -332.09

F1.3 JOHANSEN − ZSPRD50D
(3,0.5) 14 6 8 221.77 66.45 1330.62 531.59 799.03 7.99 454.91 -131.79 -0.16 -2.54 42.86 57.08 2.5 3.34 -279.35

F1.4 JOHANSEN − ZSPRD50D
(2.7,2) 21 10 11 158.37 233.13 1583.66 2564.43 -980.77 -9.81 1082.11 -1967.62 -0.28 -4.44 47.62 -46.7 0.62 0.68 -2158.54

F1.5 JOHANSEN − ZSPRD50D
(2.7,1) 18 8 10 233.38 274.59 1867.07 2745.86 -878.79 -8.79 1082.11 -1967.62 -0.4 -6.35 44.44 -48.84 0.68 0.85 -2161.52

F1.6 JOHANSEN − ZSPRD50D
(2.7,0.5) 17 7 10 294.44 252.69 2061.06 2526.87 -465.81 -4.66 1082.11 -1967.62 -0.44 -6.98 41.18 -27.38 0.82 1.17 -1995.28

F2.1 JOHANSEN − SPRD50D − SMA(10,20) 20 10 10 618.31 1254.93 6183.09 12549.32 -6366.23 -63.66 3047.85 -8147.9 -0.11 -1.75 50 -318.31 0.49 0.49 -9870.3

F2.2 JOHANSEN − SPRD50D − EMA(10,20) 26 9 17 4532.07 309.69 40788.64 5264.68 35523.96 355.24 34416.23 -2188.41 0.22 3.49 34.62 1366.53 7.75 14.63 -2750.65

F2.3 JOHANSEN − SPRD50D −MACD(12,26,9) 34 10 24 1410.5 1342.77 14105.03 32226.46 -18121.42 -181.21 5965.43 -27871.68 -0.05 -0.79 29.41 -533.03 0.44 1.05 -30786.44

F2.4 JOHANSEN − SPRD50D −RSI(14) 7 4 3 395.36 685.54 1581.43 2056.61 -475.18 -4.75 924.7 -1424.88 -0.3 -4.76 57.14 -67.91 0.77 0.58 -1470.3

F2.5 JOHANSEN − SPRD50D −BB(20) 18 6 12 216.08 947.86 1296.47 11374.3 -10077.83 -100.78 502.93 -7271.21 -0.27 -4.29 33.33 -559.92 0.11 0.23 -10617.07

F3 JOHANSEN − SPRD50D −DECTREE 327 174 153 103.51 100.73 18011.32 15411.13 2600.19 26 690.46 -890.7 -0.93 -14.76 53.21 7.95 1.17 1.03 -2787.58

F4 JOHANSEN − SPRD50D −MLP 211 117 94 129.31 104.88 15128.93 9858.37 5270.56 52.71 821.29 -421.38 -0.75 -11.91 55.45 24.98 1.53 1.23 -1104.89

Part VII: Models derived using the spread obtained from ADF − SPRD50D

G1.1 ADF − ZSPRD50D
(3,2) 4 1 3 226.74 1197.21 226.74 3591.63 -3364.89 -33.65 226.74 -1937.61 -0.91 -14.45 25 -841.22 0.06 0.19 -3364.89

G1.2 ADF − ZSPRD50D
(3,1) 4 1 3 2997.93 2391.3 2997.93 7173.9 -4175.97 -41.76 2997.93 -3385.06 -0.17 -2.7 25 -1043.99 0.42 1.25 -4175.97

G1.3 ADF − ZSPRD50D
(3,0.5) 4 1 3 4499.45 2610.14 4499.45 7830.43 -3330.98 -33.31 4499.45 -3986.09 -0.04 -0.63 25 -832.74 0.57 1.72 -4946.02

G1.4 ADF − ZSPRD50D
(2.7,2) 9 2 7 1518.91 1673.85 3037.82 11716.97 -8679.15 -86.79 2200.87 -4344.98 -0.49 -7.78 22.22 -964.42 0.26 0.91 -8679.15

G1.5 ADF − ZSPRD50D
(2.7,1) 7 3 4 3097.13 3414.18 9291.38 13656.72 -4365.33 -43.65 5624.01 -6793.04 -0.1 -1.59 42.86 -623.43 0.68 0.91 -10216.84

G1.6 ADF − ZSPRD50D
(2.7,0.5) 7 3 4 3285.21 3579.98 9855.63 14319.91 -4464.28 -44.64 4840.21 -6793.04 -0.07 -1.11 42.86 -637.56 0.69 0.92 -9677.45

G2.1 ADF − SPRD50D − SMA(10,20) 17 9 8 14791.94 4776.78 133127.43 38214.21 94913.22 949.13 123127.22 -26941.5 0.18 2.86 52.94 5582.9 3.48 3.1 -28807.82

G2.2 ADF − SPRD50D − EMA(10,20) 40 23 17 2339.57 3879.64 53810.2 65953.91 -12143.71 -121.44 38773.83 -22910.02 -0.05 -0.79 57.5 -303.59 0.82 0.6 -34142.02

G2.3 ADF − SPRD50D −MACD(12,26,9) 32 22 10 645.14 1817.89 14193.17 18178.91 -3985.74 -39.86 3683.72 -9944.39 -0.11 -1.75 68.75 -124.55 0.78 0.35 -10144.87

G2.4 ADF − SPRD50D −RSI(14) 6 1 5 951.5 6035.22 951.5 30176.12 -29224.62 -292.25 951.5 -20125.84 -0.61 -9.68 16.67 -4870.54 0.03 0.16 -30176.12

G2.5 ADF − SPRD50D −BB(20) 17 4 13 7621.67 1836.54 30486.7 23875.03 6611.66 66.12 15268.11 -14458.37 0.07 1.11 23.53 388.98 1.28 4.15 -19631.48

G3 ADF − SPRD50D −DECTREE 342 142 200 94.75 92.19 13455.15 18437.69 -4982.54 -49.83 572.24 -622.13 -1.22 -19.37 41.52 -14.57 0.73 1.03 -5421.5

G4 ADF − SPRD50D −MLP 147 69 78 123.18 135.39 8499.67 10560.46 -2060.79 -20.61 1006.54 -826.78 -0.81 -12.86 46.94 -14.02 0.8 0.91 -4603.24

Part VIII: Models derived using the spread obtained from KALMAN − SPRD50D

H1.1 KALMAN − ZSPRD50D
(3,2) 3 3 - 368.95 - 1106.84 - 1106.84 11.07 425.64 - 3.59 56.99 100 368.95 1106.84 368.95 -

H1.2 KALMAN − ZSPRD50D
(3,1) 1 - 1 - 343.56 - 343.56 -343.56 -3.44 - -343.56 - - - -343.56 - - -343.56

H1.3 KALMAN − ZSPRD50D
(3,0.5) 1 1 - 11.48 - 11.48 - 11.48 0.11 11.48 - - - 100 11.48 11.48 11.48 -

H1.4 KALMAN − ZSPRD50D
(2.7,2) 4 2 2 237.76 583.37 475.52 1166.73 -691.21 -6.91 396.78 -1006.13 -0.44 -6.98 50 -172.8 0.41 0.41 -1166.73

H1.5 KALMAN − ZSPRD50D
(2.7,1) 2 - 2 - 321.08 - 642.16 -642.16 -6.42 - -343.56 -14.1 -223.83 - -321.08 - - -642.16

H1.6 KALMAN − ZSPRD50D
(2.7,0.5) 2 2 - 12.67 - 25.34 - 25.34 0.25 13.86 - -44.06 -699.43 100 12.67 25.34 12.67 -

H2.1 KALMAN − SPRD50D − SMA(10,20) 14 8 6 1984.17 1464.27 15873.36 8785.62 7087.75 70.88 5308.74 -2299.32 0.17 2.7 57.14 506.17 1.81 1.36 -5622.63

H2.2 KALMAN − SPRD50D − EMA(10,20) 21 6 15 2459.15 917.49 14754.9 13762.28 992.61 9.93 8190.64 -2401.53 -0.03 -0.48 28.57 47.22 1.07 2.68 -7731.56

H2.3 KALMAN − SPRD50D −MACD(12,26,9) 30 12 18 849.6 679.17 10195.15 12225.03 -2029.88 -20.3 2444.04 -2962.07 -0.16 -2.54 40 -67.66 0.83 1.25 -6925.73

H2.4 KALMAN − SPRD50D −RSI(14) 3 2 1 3034.8 8389.35 6069.61 8389.35 -2319.74 -23.2 3346 -8389.35 -0.07 -1.11 66.67 -772.87 0.72 0.36 -8389.35

H2.5 KALMAN − SPRD50D −BB(20) 18 13 5 982.27 1108.61 12769.56 5543.03 7226.53 72.27 2805.47 -4689.56 0.21 3.33 72.22 401.43 2.3 0.89 -4689.56

H3 KALMAN − SPRD50D −DECTREE 346 151 195 109.36 83.18 16513.72 16220.29 293.43 2.93 906.91 -890.7 -1.03 -16.35 43.64 0.84 1.02 1.31 -2661.24

H4 KALMAN − SPRD50D −MLP 278 117 161 125.98 88.32 14739.33 14219.96 519.37 5.19 633.2 -367.39 -1.01 -16.03 42.09 1.88 1.04 1.43 -2323.54

Part IX: Models derived using the spread obtained from RATIO − SPRD50D

I1.1 RATIO − ZSPRD50D
(3,2) 5 1 4 367.51 426.54 367.51 1706.18 -1338.66 -13.39 367.51 -673.44 -0.98 -15.56 20 -267.73 0.22 0.86 -1338.66

I1.2 RATIO − ZSPRD50D
(3,1) 4 2 2 273.66 282.35 547.31 564.7 -17.38 -0.17 536.33 -401.5 -0.39 -6.19 50 -4.35 0.97 0.97 -401.5

I1.3 RATIO − ZSPRD50D
(3,0.5) 4 - 4 - 356.92 - 1427.67 -1427.67 -14.28 - -883.99 -1.33 -21.11 - -356.92 - - -1427.67

I1.4 RATIO − ZSPRD50D
(2.7,2) 9 3 6 58.41 379.06 175.24 2274.35 -2099.11 -20.99 90.46 -792.02 -1.21 -19.21 33.33 -233.25 0.08 0.15 -2099.11

I1.5 RATIO − ZSPRD50D
(2.7,1) 7 4 3 93.94 518.53 375.76 1555.6 -1179.84 -11.8 186.68 -1363.51 -0.59 -9.37 57.14 -168.57 0.24 0.18 -1363.51

I1.6 RATIO − ZSPRD50D
(2.7,0.5) 7 2 5 76.64 577.77 153.29 2888.87 -2735.58 -27.36 113.5 -1496.57 -0.83 -13.18 28.57 -390.81 0.05 0.13 -2770.06

I2.1 RATIO − SPRD50D − SMA(10,20) 15 5 10 610.85 268.81 3054.25 2688.08 366.16 3.66 1837.22 -688.58 -0.21 -3.33 33.33 24.38 1.14 2.27 -1684.01

I2.2 RATIO − SPRD50D − EMA(10,20) 20 8 12 786.55 193.24 6292.39 2318.92 3973.47 39.73 1882.7 -488.63 0.07 1.11 40 198.67 2.71 4.07 -1003.86

I2.3 RATIO − SPRD50D −MACD(12,26,9) 28 12 16 548.57 251.51 6582.86 4024.16 2558.7 25.59 1267.96 -632.86 -0.12 -1.9 42.86 91.41 1.64 2.18 -1970.71

I2.4 RATIO − SPRD50D −RSI(14) 6 4 2 495.71 2100.09 1982.85 4200.19 -2217.34 -22.17 1076.55 -3956.85 -0.29 -4.6 66.67 -369.47 0.47 0.24 -3956.85

I2.5 RATIO − SPRD50D −BB(20) 13 8 5 208.83 510.32 1670.63 2551.59 -880.96 -8.81 561.22 -1073.5 -0.46 -7.3 61.54 -67.75 0.65 0.41 -1518.5

I3 RATIO − SPRD50D −DECTREE 273 113 160 101.62 70.39 11483 11262.89 220.11 2.2 770.61 -504.13 -1.23 -19.53 41.39 0.8 1.02 1.44 -2512.23

I4 RATIO − SPRD50D −MLP 34 14 20 143.59 129.95 2010.33 2599.06 -588.73 -5.89 590.25 -761.39 -0.8 -12.7 41.18 -17.31 0.77 1.1 -1654.09

Part X: Models derived using the close price of IWF.N

CLS-SYM-1.1 CLOSEIWF.N − SMA(10,20) 12 6 6 356.71 189.67 2140.24 1138.02 1002.23 10.02 555.73 -253.08 0.02 0.32 50 83.52 1.88 1.88 -501.5

CLS-SYM-1.2 CLOSEIWF.N − EMA(10,20) 21 7 14 379.1 169.37 2653.72 2371.16 282.56 2.83 1556.82 -381.44 -0.15 -2.38 33.33 13.44 1.12 2.24 -1078.61

CLS-SYM-1.3 CLOSEIWF.N −MACD(12,26,9) 30 8 22 188.24 130.91 1505.94 2880.12 -1374.18 -13.74 760.82 -320.06 -0.61 -9.68 26.67 -45.8 0.52 1.44 -1432.72

CLS-SYM-1.4 CLOSEIWF.N −RSI(14) 6 2 4 490.13 759 980.26 3036 -2055.74 -20.56 767.73 -2215.65 -0.41 -6.51 33.33 -342.67 0.32 0.65 -2215.65

CLS-SYM-1.5 CLOSEIWF.N −BB(20) 12 7 5 112.1 284.97 784.69 1424.86 -640.17 -6.4 257.89 -668.35 -0.48 -7.62 58.33 -53.36 0.55 0.39 -1142.05

Part XI: Models derived using the close price of XLE.N

CLS-SYM-2.1 CLOSEXLE.N − SMA(10,20) 19 9 10 492.93 337.96 4436.4 3379.63 1056.77 10.57 1969.29 -993.26 -0.03 -0.48 47.37 55.63 1.31 1.46 -2390.02

CLS-SYM-2.2 CLOSEXLE.N − EMA(10,20) 26 11 15 546.32 161.14 6009.56 2417.09 3592.47 35.92 2197.81 -326.2 0.12 1.9 42.31 138.19 2.49 3.39 -711.67

CLS-SYM-2.3 CLOSEXLE.N −MACD(12,26,9) 27 10 17 637.2 211.29 6372.04 3591.96 2780.08 27.8 1931.38 -613.01 0.05 0.79 37.04 102.99 1.77 3.02 -645.92

CLS-SYM-2.4 CLOSEXLE.N −RSI(14) 5 3 2 314.75 1213.82 944.26 2427.64 -1483.38 -14.83 365.04 -1229.73 -0.44 -6.98 60 -296.68 0.39 0.26 -2062.6

CLS-SYM-2.5 CLOSEXLE.N −BB(20) 20 17 3 198.62 500.07 3376.55 1500.22 1876.33 18.76 822.47 -1185.85 0.05 0.79 85 93.82 2.25 0.4 -1185.85
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Table D.2.6: This table presents the back-test metrics for the pair IWF.N/XLE.N based on a 100-day rolling window. The table is subdivided into eleven parts, and in each of these parts, we present the back-test metrics and the trading strategies which use the
spread derived from various models. In Part I, the spread is derived from the DIST V 1.1 model, in Part II from the DIST V 1.2 model, in Part III from the DIST V 2 model, in Part IV from the DIST V 3 model, in Part V from the DIST V 4 model, in Part VI from the
JOHANSEN − SPRD model, in Part VIII from the ADF − SPRD model, in from the DIST V 2 model, in Part VIII from the KALMAN − SPRD model, and in Part IX from the RATIO − SPRD model. In Part X and XI, we present the back-test metrics of
the trading strategies which use the close price of IWF.N, and XLE.N, respectively. All $ numbers reported below are in USD.

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X) (XI) (XII) (XIII) (XIV) (XV) (XVI) (XVII) (XVIII) (XIX) (XX)

Trading
Strategy
Code

Model
Name

Total
Number
of
Trades

Number
of

Winning
Trades

Number
of Loosing
Trades

Average
Profit

per Trade
($)

Average
Loss per
Trade
($)

Gross
Profit
($)

Gross
Loss
($)

Net Profit
($)

ROI (%) Max P&L
($)

Min P&L
($)

Daily
Sharpe
Ratio

Annualized
Sharpe
Ratio

Hit Ratio Expectancy Profit
Factor

Realized
Risk

Reward
Ratio

Max
Drawdown

($)

Part I: Models derived using the spread obtained from DISTV 1.1 − SPRD100D

A1.1 DISTV 1.1 − ZSPRD100D
(3,2) 1 - 1 - 80.32 - 80.32 -80.32 -0.8 - -80.32 - - - -80.32 - - -80.32

A1.2 DISTV 1.1 − ZSPRD100D
(3,1) 1 1 - 1073.26 - 1073.26 - 1073.26 10.73 1073.26 - - - 100 1073.26 1073.26 1073.26 -

A1.3 DISTV 1.1 − ZSPRD100D
(3,0.5) 1 1 - 1704.59 - 1704.58 - 1704.58 17.05 1704.59 - - - 100 1704.59 1704.58 1704.59 -

A1.4 DISTV 1.1 − ZSPRD100D
(2.7,2) 1 - 1 - 23.79 - 23.79 -23.79 -0.24 - -23.79 - - - -23.79 - - -23.79

A1.5 DISTV 1.1 − ZSPRD100D
(2.7,1) 1 1 - 1115.55 - 1115.55 - 1115.55 11.16 1115.55 - - - 100 1115.55 1115.55 1115.55 -

A1.6 DISTV 1.1 − ZSPRD100D
(2.7,0.5) 1 1 - 1731.54 - 1731.54 - 1731.54 17.32 1731.54 - - - 100 1731.54 1731.54 1731.54 -

A2.1 DISTV 1.1 − SPRD100D − SMA(10,20) 8 6 2 444.54 1301.75 2667.22 2603.49 63.72 0.64 1185.1 -1612.36 -0.16 -2.54 75 7.97 1.02 0.34 -2479.85

A2.2 DISTV 1.1 − SPRD100D − EMA(10,20) 23 15 8 406.03 712.58 6090.47 5700.68 389.79 3.9 1055.98 -1756.39 -0.19 -3.02 65.22 16.98 1.07 0.57 -2407.1

A2.3 DISTV 1.1 − SPRD100D −MACD(12,26,9) 40 26 14 267.03 238.09 6942.7 3333.25 3609.46 36.09 735.56 -766.66 -0.19 -3.02 65 90.24 2.08 1.12 -1067.68

A2.4 DISTV 1.1 − SPRD100D −RSI(14) 6 3 3 1518.12 671.94 4554.35 2015.81 2538.54 25.39 3734.81 -1083.69 0.15 2.38 50 423.09 2.26 2.26 -1884.62

A2.5 DISTV 1.1 − SPRD100D −BB(20) 13 7 6 574.14 290.02 4018.99 1740.09 2278.9 22.79 1007.29 -1121.7 0.04 0.63 53.85 175.33 2.31 1.98 -1121.7

A3 DISTV 1.1 − SPRD100D −DECTREE 300 137 163 119.31 79.26 16346.14 12919.62 3426.52 34.27 608.33 -421.38 -0.99 -15.72 45.67 11.43 1.27 1.51 -1704.45

A4 DISTV 1.1 − SPRD100D −MLP 249 116 133 132.97 90.76 15424.61 12070.63 3353.98 33.54 631.69 -637.18 -0.87 -13.81 46.59 13.48 1.28 1.47 -1213.19

Part II: Models derived using the spread obtained from DISTV 1.2 − SPRD100D

B1.1 DISTV 1.2 − ZSPRD100D
(3,2) 2 1 1 204.38 414.88 204.38 414.88 -210.5 -2.1 204.38 -414.88 -0.59 -9.37 50 -105.25 0.49 0.49 -414.88

B1.2 DISTV 1.2 − ZSPRD100D
(3,1) 2 1 1 196.83 783.92 196.83 783.92 -587.09 -5.87 196.83 -783.92 -0.64 -10.16 50 -293.54 0.25 0.25 -783.92

B1.3 DISTV 1.2 − ZSPRD100D
(3,0.5) 2 1 1 796.8 1199.47 796.8 1199.47 -402.67 -4.03 796.8 -1199.47 -0.25 -3.97 50 -201.34 0.66 0.66 -1199.47

B1.4 DISTV 1.2 − ZSPRD100D
(2.7,2) 2 - 2 - 256 - 511.99 -511.99 -5.12 - -414.88 -1.82 -28.89 - -256 - - -511.99

B1.5 DISTV 1.2 − ZSPRD100D
(2.7,1) 2 - 2 - 452.33 - 904.67 -904.67 -9.05 - -783.92 -1.29 -20.48 - -452.33 - - -904.67

B1.6 DISTV 1.2 − ZSPRD100D
(2.7,0.5) 2 1 1 481.22 1199.47 481.22 1199.47 -718.26 -7.18 481.22 -1199.47 -0.43 -6.83 50 -359.13 0.4 0.4 -1199.47

B2.1 DISTV 1.2 − SPRD100D − SMA(10,20) 7 4 3 1151.55 633.74 4606.22 1901.21 2705.01 27.05 3908.58 -1003.74 0.14 2.22 57.14 386.38 2.42 1.82 -1901.21

B2.2 DISTV 1.2 − SPRD100D − EMA(10,20) 16 9 7 445.57 685.27 4010.17 4796.87 -786.69 -7.87 1316.82 -1731.89 -0.26 -4.13 56.25 -49.17 0.84 0.65 -3593.62

B2.3 DISTV 1.2 − SPRD100D −MACD(12,26,9) 23 16 7 352.51 370.87 5640.16 2596.11 3044.05 30.44 845.37 -1244.86 -0.04 -0.63 69.57 132.38 2.17 0.95 -2237.82

B2.4 DISTV 1.2 − SPRD100D −RSI(14) 6 3 3 971.41 1516.5 2914.24 4549.5 -1635.27 -16.35 1777.02 -1877.72 -0.29 -4.6 50 -272.54 0.64 0.64 -3439.69

B2.5 DISTV 1.2 − SPRD100D −BB(20) 11 3 8 887.97 390.08 2663.91 3120.6 -456.7 -4.57 1550.53 -960.37 -0.26 -4.13 27.27 -41.55 0.85 2.28 -1866.99

B3 DISTV 1.2 − SPRD100D −DECTREE 290 142 148 98.05 93.98 13923.68 13909.58 14.1 0.14 536.52 -877.12 -1.08 -17.14 48.97 0.06 1 1.04 -1994.9

B4 DISTV 1.2 − SPRD100D −MLP 199 93 106 106.5 104.65 9904.71 11092.74 -1188.03 -11.88 501.96 -784.84 -1.04 -16.51 46.73 -5.98 0.89 1.02 -2147.15

Part III: Models derived using the spread obtained from DISTV 2 − SPRD100D

C1.1 DISTV 2 − ZSPRD100D
(3,2) 1 1 - 80.32 - 80.32 - 80.32 0.8 80.32 - - - 100 80.32 80.32 80.32 -

C1.2 DISTV 2 − ZSPRD100D
(3,1) 1 - 1 - 1073.26 - 1073.26 -1073.26 -10.73 - -1073.26 - - - -1073.26 - - -1073.26

C1.3 DISTV 2 − ZSPRD100D
(3,0.5) 1 - 1 - 1704.59 - 1704.58 -1704.58 -17.05 - -1704.59 - - - -1704.59 - - -1704.59

C1.4 DISTV 2 − ZSPRD100D
(2.7,2) 1 1 - 23.79 - 23.79 - 23.79 0.24 23.79 - - - 100 23.79 23.79 23.79 -

C1.5 DISTV 2 − ZSPRD100D
(2.7,1) 1 - 1 - 1115.55 - 1115.55 -1115.55 -11.16 - -1115.55 - - - -1115.55 - - -1115.55

C1.6 DISTV 2 − ZSPRD100D
(2.7,0.5) 1 - 1 - 1731.54 - 1731.54 -1731.54 -17.32 - -1731.54 - - - -1731.54 - - -1731.54

C2.1 DISTV 2 − SPRD100D − SMA(10,20) 9 6 3 1053.92 166.9 6323.51 500.7 5822.82 58.23 1545.23 -377.05 0.66 10.48 66.67 647.02 12.63 6.31 -377.05

C2.2 DISTV 2 − SPRD100D − EMA(10,20) 23 8 15 712.58 406.03 5700.68 6090.47 -389.79 -3.9 1756.39 -1055.98 -0.24 -3.81 34.78 -16.98 0.94 1.75 -3541.35

C2.3 DISTV 2 − SPRD100D −MACD(12,26,9) 40 14 26 238.09 267.03 3333.25 6942.7 -3609.46 -36.09 766.66 -735.56 -0.73 -11.59 35 -90.24 0.48 0.89 -4265.71

C2.4 DISTV 2 − SPRD100D −RSI(14) 6 3 3 671.94 1518.12 2015.81 4554.35 -2538.54 -25.39 1083.69 -3734.81 -0.33 -5.24 50 -423.09 0.44 0.44 -3734.81

C2.5 DISTV 2 − SPRD100D −BB(20) 13 6 7 290.02 574.14 1740.09 4018.99 -2278.9 -22.79 1121.7 -1007.29 -0.56 -8.89 46.15 -175.33 0.43 0.51 -1992.14

C3 DISTV 2 − SPRD100D −DECTREE 307 132 175 115.41 90.57 15233.84 15849.71 -615.87 -6.16 631.69 -890.7 -1.02 -16.19 43 -2 0.96 1.27 -2081.68

C4 DISTV 2 − SPRD100D −MLP 176 77 99 111.55 92.18 8589.2 9126.15 -536.95 -5.37 640.74 -673.98 -0.97 -15.4 43.75 -3.05 0.94 1.21 -1775.28

Part IV: Models derived using the spread obtained from DISTV 3 − SPRD100D

D1.1 DISTV 3 − ZSPRD100D
(3,2) 3 1 2 120.63 93.32 120.63 186.64 -66.02 -0.66 120.63 -181.62 -1.15 -18.26 33.33 -22.01 0.65 1.29 -186.64

D1.2 DISTV 3 − ZSPRD100D
(3,1) 3 1 2 286.86 523.17 286.86 1046.34 -759.49 -7.59 286.86 -741.86 -0.78 -12.38 33.33 -253.19 0.27 0.55 -1046.34

D1.3 DISTV 3 − ZSPRD100D
(3,0.5) 3 1 2 312 601.1 312 1202.2 -890.2 -8.9 312 -627.94 -0.85 -13.49 33.33 -296.76 0.26 0.52 -1202.2

D1.4 DISTV 3 − ZSPRD100D
(2.7,2) 4 2 2 131.91 122.86 263.82 245.71 18.11 0.18 196.42 -240.69 -0.8 -12.7 50 4.53 1.07 1.07 -245.71

D1.5 DISTV 3 − ZSPRD100D
(2.7,1) 4 2 2 274.24 551.31 548.48 1102.61 -554.13 -5.54 312.55 -741.86 -0.58 -9.21 50 -138.53 0.5 0.5 -1102.61

D1.6 DISTV 3 − ZSPRD100D
(2.7,0.5) 4 2 2 350.48 622.44 700.96 1244.89 -543.92 -5.44 439.38 -627.94 -0.51 -8.1 50 -135.98 0.56 0.56 -1244.89

D2.1 DISTV 3 − SPRD100D − SMA(10,20) 12 5 7 643.13 331.86 3215.64 2323.04 892.59 8.93 973.31 -634.28 -0.14 -2.22 41.67 74.42 1.38 1.94 -635.76

D2.2 DISTV 3 − SPRD100D − EMA(10,20) 30 14 16 423.95 339.07 5935.27 5425.09 510.18 5.1 1001.79 -1032.37 -0.27 -4.29 46.67 17.03 1.09 1.25 -1596.97

D2.3 DISTV 3 − SPRD100D −MACD(12,26,9) 30 11 19 505.62 240.19 5561.79 4563.6 998.19 9.98 1256.96 -1326.53 -0.24 -3.81 36.67 33.3 1.22 2.11 -2059.29

D2.4 DISTV 3 − SPRD100D −RSI(14) 7 4 3 926.23 1581.6 3704.92 4744.79 -1039.87 -10.4 1366.77 -3351.42 -0.19 -3.02 57.14 -148.62 0.78 0.59 -1393.36

D2.5 DISTV 3 − SPRD100D −BB(20) 14 9 5 221.19 589.82 1990.72 2949.11 -958.4 -9.58 871.09 -993.18 -0.44 -6.98 64.29 -68.42 0.68 0.38 -2658.17

D3 DISTV 3 − SPRD100D −DECTREE 292 119 173 111.93 81.58 13320.08 14113.6 -793.52 -7.94 878.84 -448.31 -1.06 -16.83 40.75 -2.72 0.94 1.37 -3107.42

D4 DISTV 3 − SPRD100D −MLP 145 66 79 133.01 108.27 8778.62 8553.13 225.5 2.25 679.87 -462.73 -0.86 -13.65 45.52 1.56 1.03 1.23 -2754.39

Part V: Models derived using the spread obtained from DISTV 4 − SPRD100D

E1.1 DISTV 4 − ZSPRD100D
(3,2) 3 1 2 120.63 93.32 120.63 186.64 -66.02 -0.66 120.63 -181.62 -1.15 -18.26 33.33 -22.01 0.65 1.29 -186.64

E1.2 DISTV 4 − ZSPRD100D
(3,1) 3 1 2 286.86 523.17 286.86 1046.34 -759.49 -7.59 286.86 -741.86 -0.78 -12.38 33.33 -253.19 0.27 0.55 -1046.34

E1.3 DISTV 4 − ZSPRD100D
(3,0.5) 3 1 2 312 601.1 312 1202.2 -890.2 -8.9 312 -627.94 -0.85 -13.49 33.33 -296.76 0.26 0.52 -1202.2

E1.4 DISTV 4 − ZSPRD100D
(2.7,2) 4 2 2 131.91 122.86 263.82 245.71 18.11 0.18 196.42 -240.69 -0.8 -12.7 50 4.53 1.07 1.07 -245.71

E1.5 DISTV 4 − ZSPRD100D
(2.7,1) 4 2 2 274.24 551.31 548.48 1102.61 -554.13 -5.54 312.55 -741.86 -0.58 -9.21 50 -138.53 0.5 0.5 -1102.61

E1.6 DISTV 4 − ZSPRD100D
(2.7,0.5) 4 2 2 350.48 622.44 700.96 1244.89 -543.92 -5.44 439.38 -627.94 -0.51 -8.1 50 -135.98 0.56 0.56 -1244.89

E2.1 DISTV 4 − SPRD100D − SMA(10,20) 12 5 7 643.13 331.86 3215.64 2323.04 892.59 8.93 973.31 -634.28 -0.14 -2.22 41.67 74.42 1.38 1.94 -635.76

E2.2 DISTV 4 − SPRD100D − EMA(10,20) 30 14 16 423.95 339.07 5935.27 5425.09 510.18 5.1 1001.79 -1032.37 -0.27 -4.29 46.67 17.03 1.09 1.25 -1596.97

E2.3 DISTV 4 − SPRD100D −MACD(12,26,9) 30 11 19 505.62 240.19 5561.79 4563.6 998.19 9.98 1256.96 -1326.53 -0.24 -3.81 36.67 33.3 1.22 2.11 -2059.29

E2.4 DISTV 4 − SPRD100D −RSI(14) 7 4 3 926.23 1581.6 3704.92 4744.79 -1039.87 -10.4 1366.77 -3351.42 -0.19 -3.02 57.14 -148.62 0.78 0.59 -1393.36

E2.5 DISTV 4 − SPRD100D −BB(20) 14 9 5 221.19 589.82 1990.72 2949.11 -958.4 -9.58 871.09 -993.18 -0.44 -6.98 64.29 -68.42 0.68 0.38 -2658.17

E3 DISTV 4 − SPRD100D −DECTREE 302 121 181 104.77 83.5 12676.75 15113.54 -2436.79 -24.37 548.97 -448.31 -1.21 -19.21 40.07 -8.06 0.84 1.25 -3857.08

E4 DISTV 4 − SPRD100D −MLP 145 66 79 133.01 108.27 8778.62 8553.13 225.5 2.25 679.87 -462.73 -0.86 -13.65 45.52 1.56 1.03 1.23 -2754.39

Part VI: Models derived using the spread obtained from JOHANSEN − SPRD100D

F1.1 JOHANSEN − ZSPRD100D
(3,2) 17 5 12 114.87 58.4 574.34 700.75 -126.41 -1.26 317.93 -307.77 0.04 0.63 29.41 -7.44 0.82 1.97 -369.61

F1.2 JOHANSEN − ZSPRD100D
(3,1) 16 4 12 136.35 38.41 545.42 460.97 84.45 0.84 317.93 -100.08 0.07 1.11 25 5.28 1.18 3.55 -208.91

F1.3 JOHANSEN − ZSPRD100D
(3,0.5) 14 5 9 136.36 102.02 681.79 918.15 -236.35 -2.36 317.93 -424.82 0.09 1.43 35.71 -16.89 0.74 1.34 -569.98

F1.4 JOHANSEN − ZSPRD100D
(2.7,2) 17 5 12 114.87 58.4 574.34 700.75 -126.41 -1.26 317.93 -307.77 0.04 0.63 29.41 -7.44 0.82 1.97 -369.61

F1.5 JOHANSEN − ZSPRD100D
(2.7,1) 16 4 12 136.35 38.41 545.42 460.97 84.45 0.84 317.93 -100.08 0.07 1.11 25 5.28 1.18 3.55 -208.91

F1.6 JOHANSEN − ZSPRD100D
(2.7,0.5) 14 5 9 136.36 102.02 681.79 918.15 -236.35 -2.36 317.93 -424.82 0.09 1.43 35.71 -16.89 0.74 1.34 -569.98

F2.1 JOHANSEN − SPRD100D − SMA(10,20) 20 12 8 638.18 756.11 7658.11 6048.84 1609.26 16.09 2288.63 -3259.26 0.08 1.27 60 80.46 1.27 0.84 -3259.26

F2.2 JOHANSEN − SPRD100D − EMA(10,20) 31 16 15 1500.92 600.92 24014.73 9013.73 15001 150.01 8108.57 -4131.66 0.2 3.17 51.61 483.84 2.66 2.5 -4171.68

F2.3 JOHANSEN − SPRD100D −MACD(12,26,9) 30 12 18 436.93 875.65 5243.2 15761.79 -10518.58 -105.19 2194.82 -3668.96 -0.15 -2.38 40 -350.62 0.33 0.5 -10707.64

F2.4 JOHANSEN − SPRD100D −RSI(14) 5 2 3 91.56 595.09 183.12 1785.27 -1602.15 -16.02 159.45 -1413.73 -0.44 -6.98 40 -320.43 0.1 0.15 -1602.15

F2.5 JOHANSEN − SPRD100D −BB(20) 16 8 8 235.89 415.51 1887.14 3324.06 -1436.92 -14.37 683.56 -931.03 -0.16 -2.54 50 -89.81 0.57 0.57 -2035.55

F3 JOHANSEN − SPRD100D −DECTREE 318 180 138 96.5 102.34 17370.08 14123.32 3246.75 32.47 480.47 -1083.39 -0.96 -15.24 56.6 10.2 1.23 0.94 -1255.91

F4 JOHANSEN − SPRD100D −MLP 268 137 131 97.29 92.44 13328.65 12109.64 1219 12.19 741.01 -474.91 -1.1 -17.46 51.12 4.55 1.1 1.05 -1536.1

Part VII: Models derived using the spread obtained from ADF − SPRD100D

G1.1 ADF − ZSPRD100D
(3,2) 3 2 1 7160.76 319.83 14321.53 319.83 14001.69 140.02 12836.58 -319.83 0.66 10.48 66.67 4667.48 44.78 22.39 -319.83

G1.2 ADF − ZSPRD100D
(3,1) 3 2 1 8378.24 787.17 16756.48 787.17 15969.31 159.69 14507.22 -787.17 0.68 10.79 66.67 5323.41 21.29 10.64 -787.17

G1.3 ADF − ZSPRD100D
(3,0.5) 3 2 1 6753.3 787.17 13506.61 787.17 12719.44 127.19 11426.33 -787.17 0.69 10.95 66.67 4240.06 17.16 8.58 -787.17

G1.4 ADF − ZSPRD100D
(2.7,2) 4 2 2 7160.76 1270.94 14321.53 2541.87 11779.66 117.8 12836.58 -2222.04 0.44 6.98 50 2944.91 5.63 5.63 -2222.04

G1.5 ADF − ZSPRD100D
(2.7,1) 4 2 2 8378.24 1504.61 16756.48 3009.21 13747.27 137.47 14507.22 -2222.04 0.47 7.46 50 3436.82 5.57 5.57 -2222.04

G1.6 ADF − ZSPRD100D
(2.7,0.5) 4 2 2 6753.3 3856.53 13506.61 7713.06 5793.55 57.94 11426.33 -6925.89 0.22 3.49 50 1448.39 1.75 1.75 -6925.89

G2.1 ADF − SPRD100D − SMA(10,20) 20 14 6 3061.55 1669.45 42861.75 10016.73 32845.02 328.45 17893.45 -3889.86 0.33 5.24 70 1642.25 4.28 1.83 -5771.11

G2.2 ADF − SPRD100D − EMA(10,20) 34 23 11 1308.59 3074.04 30097.48 33814.47 -3716.99 -37.17 5007.81 -11276.49 -0.08 -1.27 67.65 -109.19 0.89 0.43 -12986.02

G2.3 ADF − SPRD100D −MACD(12,26,9) 26 13 13 1024.25 3078.89 13315.3 40025.56 -26710.25 -267.1 3169.8 -12836.58 -0.31 -4.92 50 -1027.32 0.33 0.33 -26710.25

G2.4 ADF − SPRD100D −RSI(14) 5 3 2 4729.38 188174.11 14188.15 376348.22 -
362160.08

-3621.6 6835.42 -373120.26 -0.43 -6.83 60 -72432.02 0.04 0.03 -376348.22

G2.5 ADF − SPRD100D −BB(20) 20 6 14 4883.48 880.54 29300.89 12327.51 16973.39 169.73 11905.9 -2739.4 0.23 3.65 30 848.67 2.38 5.55 -5970.1

G3 ADF − SPRD100D −DECTREE 321 154 167 109.5 91.53 16863.72 15285.88 1577.84 15.78 890.7 -561.35 -0.98 -15.56 47.98 4.93 1.1 1.2 -2498.08

G4 ADF − SPRD100D −MLP 225 103 122 125.59 102.67 12935.71 12525.87 409.85 4.1 890.7 -585.71 -0.9 -14.29 45.78 1.83 1.03 1.22 -3064.54

Part VIII: Models derived using the spread obtained from KALMAN − SPRD100D

H1.1 KALMAN − ZSPRD100D
(3,2) - - - - - - - - - - - - - - - - - -

H1.2 KALMAN − ZSPRD100D
(3,1) - - - - - - - - - - - - - - - - - -

H1.3 KALMAN − ZSPRD100D
(3,0.5) - - - - - - - - - - - - - - - - - -

H1.4 KALMAN − ZSPRD100D
(2.7,2) 1 1 - 445.07 - 445.07 - 445.07 4.45 445.07 - - - 100 445.07 445.07 445.07 -

H1.5 KALMAN − ZSPRD100D
(2.7,1) - - - - - - - - - - - - - - - - - -

H1.6 KALMAN − ZSPRD100D
(2.7,0.5) - - - - - - - - - - - - - - - - - -

H2.1 KALMAN − SPRD100D − SMA(10,20) 10 5 5 663.54 1251.62 3317.7 6258.11 -2940.4 -29.4 2345.48 -2003.28 -0.35 -5.56 50 -294.04 0.53 0.53 -5610.39

H2.2 KALMAN − SPRD100D − EMA(10,20) 18 9 9 1514.11 1063.13 13627.03 9568.13 4058.9 40.59 8263.98 -1976.24 0.04 0.63 50 225.49 1.42 1.42 -6767.21

H2.3 KALMAN − SPRD100D −MACD(12,26,9) 29 8 21 676.54 607.52 5412.3 12757.83 -7345.54 -73.46 1340.66 -1607.97 -0.46 -7.3 27.59 -253.25 0.42 1.11 -8075.52

H2.4 KALMAN − SPRD100D −RSI(14) 5 3 2 2261.66 5779.69 6784.99 11559.38 -4774.39 -47.74 3810.61 -7608.22 -0.2 -3.17 60 -954.88 0.59 0.39 -11559.38

H2.5 KALMAN − SPRD100D −BB(20) 11 7 4 967.81 960.7 6774.67 3842.8 2931.87 29.32 2604.17 -1689.41 0.16 2.54 63.64 266.6 1.76 1.01 -1894.78

H3 KALMAN − SPRD100D −DECTREE 298 140 158 126.98 87.56 17776.78 13835.15 3941.63 39.42 654.13 -890.7 -0.88 -13.97 46.98 13.23 1.28 1.45 -1827.32

H4 KALMAN − SPRD100D −MLP 189 81 108 131.42 97.87 10645.34 10569.42 75.92 0.76 877.12 -535.93 -0.88 -13.97 42.86 0.41 1.01 1.34 -2001.03

Part IX: Models derived using the spread obtained from RATIO − SPRD100D

I1.1 RATIO − ZSPRD100D
(3,2) 2 - 2 - 405.02 - 810.04 -810.04 -8.1 - -408.53 -112.07 -1779.06 - -405.02 - - -810.04

I1.2 RATIO − ZSPRD100D
(3,1) 1 - 1 - 1411.09 - 1411.09 -1411.09 -14.11 - -1411.09 - - - -1411.09 - - -1411.09

I1.3 RATIO − ZSPRD100D
(3,0.5) 1 - 1 - 1469.88 - 1469.88 -1469.88 -14.7 - -1469.88 - - - -1469.88 - - -1469.88

I1.4 RATIO − ZSPRD100D
(2.7,2) 4 1 3 69.04 360.96 69.04 1082.87 -1013.83 -10.14 69.04 -507.22 -1.56 -24.76 25 -253.46 0.06 0.19 -1082.87

I1.5 RATIO − ZSPRD100D
(2.7,1) 3 2 1 37.13 1484.04 74.27 1484.04 -1409.78 -14.1 39.78 -1484.04 -0.71 -11.27 66.67 -469.87 0.05 0.03 -1484.04

I1.6 RATIO − ZSPRD100D
(2.7,0.5) 3 2 1 256.79 1549.27 513.58 1549.27 -1035.69 -10.36 381.89 -1549.27 -0.47 -7.46 66.67 -345.17 0.33 0.17 -1549.27

I2.1 RATIO − SPRD100D − SMA(10,20) 14 5 9 610.85 290.61 3054.25 2615.52 438.72 4.39 1837.22 -688.58 -0.2 -3.17 35.71 31.3 1.17 2.1 -1684.01

I2.2 RATIO − SPRD100D − EMA(10,20) 21 8 13 786.67 221.15 6293.35 2875 3418.35 34.18 1882.7 -684.13 0.02 0.32 38.1 162.83 2.19 3.56 -1003.86

I2.3 RATIO − SPRD100D −MACD(12,26,9) 28 12 16 602.03 216.35 7224.31 3461.58 3762.73 37.63 1267.96 -548.25 -0.04 -0.63 42.86 134.41 2.09 2.78 -1970.71

I2.4 RATIO − SPRD100D −RSI(14) 5 3 2 633.17 2437.21 1899.5 4874.43 -2974.92 -29.75 1076.55 -4110.84 -0.36 -5.71 60 -594.98 0.39 0.26 -4110.84

I2.5 RATIO − SPRD100D −BB(20) 11 7 4 233.22 610.89 1632.52 2443.55 -811.03 -8.11 561.22 -1073.5 -0.43 -6.83 63.64 -73.7 0.67 0.38 -1410.47

I3 RATIO − SPRD100D −DECTREE 279 110 169 117.45 72.91 12919.84 12320.95 598.89 5.99 770.61 -504.13 -1.14 -18.1 39.43 2.15 1.05 1.61 -1949.22

I4 RATIO − SPRD100D −MLP 54 25 29 170.35 234.64 4258.69 6804.62 -2545.93 -25.46 882.57 -1367.31 -0.61 -9.68 46.3 -47.13 0.63 0.73 -3193.86

Part X: Models derived using the close price of IWF.N

CLS-SYM-1.1 CLOSEIWF.N − SMA(10,20) 12 6 6 356.71 189.67 2140.24 1138.02 1002.23 10.02 555.73 -253.08 0.02 0.32 50 83.52 1.88 1.88 -501.5

CLS-SYM-1.2 CLOSEIWF.N − EMA(10,20) 21 7 14 379.1 169.37 2653.72 2371.16 282.56 2.83 1556.82 -381.44 -0.15 -2.38 33.33 13.44 1.12 2.24 -1078.61

CLS-SYM-1.3 CLOSEIWF.N −MACD(12,26,9) 30 8 22 188.24 130.91 1505.94 2880.12 -1374.18 -13.74 760.82 -320.06 -0.61 -9.68 26.67 -45.8 0.52 1.44 -1432.72

CLS-SYM-1.4 CLOSEIWF.N −RSI(14) 6 2 4 490.13 759 980.26 3036 -2055.74 -20.56 767.73 -2215.65 -0.41 -6.51 33.33 -342.67 0.32 0.65 -2215.65

CLS-SYM-1.5 CLOSEIWF.N −BB(20) 12 7 5 112.1 284.97 784.69 1424.86 -640.17 -6.4 257.89 -668.35 -0.48 -7.62 58.33 -53.36 0.55 0.39 -1142.05

Part XI: Models derived using the close price of XLE.N

CLS-SYM-2.1 CLOSEXLE.N − SMA(10,20) 19 9 10 492.93 337.96 4436.4 3379.63 1056.77 10.57 1969.29 -993.26 -0.03 -0.48 47.37 55.63 1.31 1.46 -2390.02

CLS-SYM-2.2 CLOSEXLE.N − EMA(10,20) 26 11 15 546.32 161.14 6009.56 2417.09 3592.47 35.92 2197.81 -326.2 0.12 1.9 42.31 138.19 2.49 3.39 -711.67

CLS-SYM-2.3 CLOSEXLE.N −MACD(12,26,9) 27 10 17 637.2 211.29 6372.04 3591.96 2780.08 27.8 1931.38 -613.01 0.05 0.79 37.04 102.99 1.77 3.02 -645.92

CLS-SYM-2.4 CLOSEXLE.N −RSI(14) 5 3 2 314.75 1213.82 944.26 2427.64 -1483.38 -14.83 365.04 -1229.73 -0.44 -6.98 60 -296.68 0.39 0.26 -2062.6

CLS-SYM-2.5 CLOSEXLE.N −BB(20) 20 17 3 198.62 500.07 3376.55 1500.22 1876.33 18.76 822.47 -1185.85 0.05 0.79 85 93.82 2.25 0.4 -1185.85
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Table D.2.7: This table presents the back-test metrics for the pair QQQ.N/XLE.N based on a 30-day rolling window. The table is subdivided into eleven parts, and in each of these parts, we present the back-test metrics and the trading strategies which use the
spread derived from various models. In Part I, the spread is derived from the DIST V 1.1 model, in Part II from the DIST V 1.2 model, in Part III from the DIST V 2 model, in Part IV from the DIST V 3 model, in Part V from the DIST V 4 model, in Part VI from the
JOHANSEN − SPRD model, in Part VIII from the ADF − SPRD model, in from the DIST V 2 model, in Part VIII from the KALMAN − SPRD model, and in Part IX from the RATIO − SPRD model. In Part X and XI, we present the back-test metrics of
the trading strategies which use the close price of QQQ.N, and XLE.N, respectively. All $ numbers reported below are in USD.

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X) (XI) (XII) (XIII) (XIV) (XV) (XVI) (XVII) (XVIII) (XIX) (XX)

Trading
Strategy
Code

Model
Name

Total
Number
of
Trades

Number
of

Winning
Trades

Number
of Loosing
Trades

Average
Profit

per Trade
($)

Average
Loss per
Trade
($)

Gross
Profit
($)

Gross
Loss
($)

Net Profit
($)

ROI (%) Max P&L
($)

Min P&L
($)

Daily
Sharpe
Ratio

Annualized
Sharpe
Ratio

Hit Ratio Expectancy Profit
Factor

Realized
Risk

Reward
Ratio

Max
Drawdown

($)

Part I: Models derived using the spread obtained from DISTV 1.1 − SPRD30D

A1.1 DISTV 1.1 − ZSPRD30D
(3,2) - - - - - - - - - - - - - - - - - -

A1.2 DISTV 1.1 − ZSPRD30D
(3,1) - - - - - - - - - - - - - - - - - -

A1.3 DISTV 1.1 − ZSPRD30D
(3,0.5) - - - - - - - - - - - - - - - - - -

A1.4 DISTV 1.1 − ZSPRD30D
(2.7,2) 4 1 3 262.05 171.53 262.05 514.6 -252.55 -2.53 262.05 -226.15 -0.98 -15.56 25 -63.14 0.51 1.53 -514.6

A1.5 DISTV 1.1 − ZSPRD30D
(2.7,1) 3 1 2 325.1 361.47 325.1 722.94 -397.84 -3.98 325.1 -623.79 -0.6 -9.52 33.33 -132.64 0.45 0.9 -722.94

A1.6 DISTV 1.1 − ZSPRD30D
(2.7,0.5) 3 1 2 318.02 354.12 318.02 708.24 -390.21 -3.9 318.02 -374.34 -0.73 -11.59 33.33 -130.09 0.45 0.9 -708.24

A2.1 DISTV 1.1 − SPRD30D − SMA(10,20) 12 7 5 441.77 641.08 3092.42 3205.4 -112.98 -1.13 1112.86 -1432.79 -0.22 -3.49 58.33 -9.45 0.96 0.69 -2287.18

A2.2 DISTV 1.1 − SPRD30D − EMA(10,20) 22 16 6 409.95 851.33 6559.27 5107.97 1451.3 14.51 2101.89 -2011.03 -0.1 -1.59 72.73 66 1.28 0.48 -2246.75

A2.3 DISTV 1.1 − SPRD30D −MACD(12,26,9) 37 25 12 264.16 281.91 6603.91 3382.98 3220.94 32.21 1422.9 -887.69 -0.16 -2.54 67.57 87.07 1.95 0.94 -2533.12

A2.4 DISTV 1.1 − SPRD30D −RSI(14) 5 3 2 1618.7 576.95 4856.11 1153.9 3702.21 37.02 4771.09 -1099.04 0.26 4.13 60 740.44 4.21 2.81 -1099.04

A2.5 DISTV 1.1 − SPRD30D −BB(20) 9 6 3 304.87 574.76 1829.24 1724.28 104.96 1.05 968.03 -1324.15 -0.23 -3.65 66.67 11.69 1.06 0.53 -1558.57

A3 DISTV 1.1 − SPRD30D −DECTREE 350 166 184 106.66 79.59 17705.79 14645.45 3060.34 30.6 673.13 -420.52 -1.05 -16.67 47.43 8.75 1.21 1.34 -1310.27

A4 DISTV 1.1 − SPRD30D −MLP 313 145 168 124.37 87.49 18034.15 14698.76 3335.39 33.35 1044.96 -675.27 -0.88 -13.97 46.33 10.66 1.23 1.42 -1229.09

Part II: Models derived using the spread obtained from DISTV 1.2 − SPRD30D

B1.1 DISTV 1.2 − ZSPRD30D
(3,2) 8 4 4 252.62 148.57 1010.49 594.28 416.22 4.16 345.03 -353.67 -0.41 -6.51 50 52.03 1.7 1.7 -463.39

B1.2 DISTV 1.2 − ZSPRD30D
(3,1) 8 4 4 370.42 362.28 1481.68 1449.12 32.56 0.33 809.58 -756.79 -0.31 -4.92 50 4.07 1.02 1.02 -870.57

B1.3 DISTV 1.2 − ZSPRD30D
(3,0.5) 8 4 4 677.97 511.06 2711.89 2044.23 667.66 6.68 1082.85 -885.28 -0.09 -1.43 50 83.46 1.33 1.33 -1130.34

B1.4 DISTV 1.2 − ZSPRD30D
(2.7,2) 11 6 5 140.12 131.88 840.75 659.38 181.36 1.81 285.25 -353.67 -0.74 -11.75 54.55 16.5 1.28 1.06 -463.39

B1.5 DISTV 1.2 − ZSPRD30D
(2.7,1) 11 6 5 219.87 298.87 1319.24 1494.36 -175.12 -1.75 809.58 -756.79 -0.44 -6.98 54.55 -15.9 0.88 0.74 -870.57

B1.6 DISTV 1.2 − ZSPRD30D
(2.7,0.5) 10 6 4 501.17 511.06 3007.01 2044.23 962.78 9.63 823.22 -885.28 -0.09 -1.43 60 96.28 1.47 0.98 -1130.34

B2.1 DISTV 1.2 − SPRD30D − SMA(10,20) 14 6 8 300.02 568.46 1800.14 4547.65 -2747.51 -27.48 1048.33 -1515.23 -0.51 -8.1 42.86 -196.23 0.4 0.53 -4360.06

B2.2 DISTV 1.2 − SPRD30D − EMA(10,20) 19 9 10 463.18 654.03 4168.61 6540.27 -2371.66 -23.72 1533.97 -1953.51 -0.32 -5.08 47.37 -124.81 0.64 0.71 -4477.8

B2.3 DISTV 1.2 − SPRD30D −MACD(12,26,9) 34 13 21 348.57 312.18 4531.41 6555.76 -2024.35 -20.24 882.63 -1107.03 -0.47 -7.46 38.24 -59.51 0.69 1.12 -4641.34

B2.4 DISTV 1.2 − SPRD30D −RSI(14) 9 3 6 655.79 751.35 1967.38 4508.1 -2540.72 -25.41 1507.75 -1495.67 -0.5 -7.94 33.33 -282.35 0.44 0.87 -2226.76

B2.5 DISTV 1.2 − SPRD30D −BB(20) 16 9 7 369.68 336.58 3327.14 2356.08 971.06 9.71 1044.96 -762.21 -0.19 -3.02 56.25 60.69 1.41 1.1 -954.17

B3 DISTV 1.2 − SPRD30D −DECTREE 285 136 149 95.8 106.46 13029.34 15862.76 -2833.42 -28.33 672.38 -1410.01 -1 -15.87 47.72 -9.94 0.82 0.9 -4158.65

B4 DISTV 1.2 − SPRD30D −MLP 277 136 141 96.71 123.4 13153.05 17399.83 -4246.78 -42.47 390.44 -843.47 -1.05 -16.67 49.1 -15.33 0.76 0.78 -5325.21

Part III: Models derived using the spread obtained from DISTV 2 − SPRD30D

C1.1 DISTV 2 − ZSPRD30D
(3,2) - - - - - - - - - - - - - - - - - -

C1.2 DISTV 2 − ZSPRD30D
(3,1) - - - - - - - - - - - - - - - - - -

C1.3 DISTV 2 − ZSPRD30D
(3,0.5) - - - - - - - - - - - - - - - - - -

C1.4 DISTV 2 − ZSPRD30D
(2.7,2) 4 3 1 171.53 262.05 514.6 262.05 252.55 2.53 226.15 -262.05 -0.4 -6.35 75 63.14 1.96 0.65 -262.05

C1.5 DISTV 2 − ZSPRD30D
(2.7,1) 3 2 1 361.47 325.1 722.94 325.1 397.84 3.98 623.79 -325.1 -0.04 -0.63 66.67 132.64 2.22 1.11 -325.1

C1.6 DISTV 2 − ZSPRD30D
(2.7,0.5) 3 2 1 354.12 318.02 708.24 318.02 390.21 3.9 374.34 -318.02 -0.06 -0.95 66.67 130.09 2.23 1.11 -318.02

C2.1 DISTV 2 − SPRD30D − SMA(10,20) 12 7 5 580.52 538.87 4063.67 2694.37 1369.3 13.69 1449.08 -1112.86 -0.05 -0.79 58.33 114.07 1.51 1.08 -2275.06

C2.2 DISTV 2 − SPRD30D − EMA(10,20) 22 6 16 851.33 409.95 5107.97 6559.27 -1451.3 -14.51 2011.03 -2101.89 -0.26 -4.13 27.27 -66 0.78 2.08 -3917.86

C2.3 DISTV 2 − SPRD30D −MACD(12,26,9) 37 12 25 281.91 264.16 3382.98 6603.91 -3220.94 -32.21 887.69 -1422.9 -0.61 -9.68 32.43 -87.07 0.51 1.07 -5804.97

C2.4 DISTV 2 − SPRD30D −RSI(14) 5 2 3 576.95 1618.7 1153.9 4856.11 -3702.21 -37.02 1099.04 -4771.09 -0.39 -6.19 40 -740.44 0.24 0.36 -4826.88

C2.5 DISTV 2 − SPRD30D −BB(20) 9 3 6 574.76 304.87 1724.28 1829.24 -104.96 -1.05 1324.15 -968.03 -0.27 -4.29 33.33 -11.69 0.94 1.89 -695.5

C3 DISTV 2 − SPRD30D −DECTREE 350 164 186 109.72 86.15 17993.77 16023.63 1970.14 19.7 817.79 -918.24 -0.92 -14.6 46.86 5.63 1.12 1.27 -1432.36

C4 DISTV 2 − SPRD30D −MLP 323 156 167 118.97 93.12 18558.6 15550.76 3007.84 30.08 778.86 -918.24 -0.88 -13.97 48.3 9.32 1.19 1.28 -1605.36

Part IV: Models derived using the spread obtained from DISTV 3 − SPRD30D

D1.1 DISTV 3 − ZSPRD30D
(3,2) 5 4 1 158.1 176.53 632.4 176.53 455.86 4.56 379.06 -176.53 -0.31 -4.92 80 91.17 3.58 0.9 -176.53

D1.2 DISTV 3 − ZSPRD30D
(3,1) 5 2 3 258.04 505.45 516.09 1516.36 -1000.27 -10 379.06 -726.84 -0.76 -12.06 40 -200.05 0.34 0.51 -1516.36

D1.3 DISTV 3 − ZSPRD30D
(3,0.5) 5 2 3 304.99 788.89 609.98 2366.66 -1756.68 -17.57 379.06 -899.43 -0.83 -13.18 40 -351.34 0.26 0.39 -2366.66

D1.4 DISTV 3 − ZSPRD30D
(2.7,2) 11 7 4 193.76 77.62 1356.31 310.5 1045.81 10.46 419.43 -176.53 -0.31 -4.92 63.64 95.08 4.37 2.5 -179.23

D1.5 DISTV 3 − ZSPRD30D
(2.7,1) 10 6 4 205.83 428.82 1234.96 1715.27 -480.31 -4.8 401.05 -726.84 -0.53 -8.41 60 -48.03 0.72 0.48 -1516.36

D1.6 DISTV 3 − ZSPRD30D
(2.7,0.5) 10 6 4 234.44 711.48 1406.63 2845.94 -1439.31 -14.39 401.05 -899.43 -0.58 -9.21 60 -143.93 0.49 0.33 -2366.66

D2.1 DISTV 3 − SPRD30D − SMA(10,20) 22 12 10 481.75 364.19 5781.04 3641.95 2139.1 21.39 1176.77 -818.23 -0.1 -1.59 54.55 97.27 1.59 1.32 -1594.37

D2.2 DISTV 3 − SPRD30D − EMA(10,20) 43 13 30 512.35 256.28 6660.56 7688.52 -1027.96 -10.28 1067.69 -1438.24 -0.37 -5.87 30.23 -23.93 0.87 2 -4047.8

D2.3 DISTV 3 − SPRD30D −MACD(12,26,9) 38 10 28 544.29 227.52 5442.88 6370.44 -927.56 -9.28 1296.34 -1609.76 -0.36 -5.71 26.32 -24.38 0.85 2.39 -4144.93

D2.4 DISTV 3 − SPRD30D −RSI(14) 5 3 2 749.16 1293.98 2247.49 2587.97 -340.48 -3.4 945.5 -2515.7 -0.15 -2.38 60 -68.1 0.87 0.58 -2515.7

D2.5 DISTV 3 − SPRD30D −BB(20) 19 12 7 230.33 467.54 2763.98 3272.79 -508.81 -5.09 1292.35 -941.24 -0.37 -5.87 63.16 -26.76 0.84 0.49 -3118.36

D3 DISTV 3 − SPRD30D −DECTREE 306 143 163 122.77 87.52 17556.81 14266.3 3290.51 32.91 709.77 -579.63 -0.93 -14.76 46.73 10.75 1.23 1.4 -2349.28

D4 DISTV 3 − SPRD30D −MLP 240 93 147 117.58 104.77 10935.31 15401.62 -4466.31 -44.66 856.9 -843.47 -0.98 -15.56 38.75 -18.61 0.71 1.12 -6995.95

Part V: Models derived using the spread obtained from DISTV 4 − SPRD30D

E1.1 DISTV 4 − ZSPRD30D
(3,2) 5 4 1 158.1 176.53 632.4 176.53 455.86 4.56 379.06 -176.53 -0.31 -4.92 80 91.17 3.58 0.9 -176.53

E1.2 DISTV 4 − ZSPRD30D
(3,1) 5 2 3 258.04 505.45 516.09 1516.36 -1000.27 -10 379.06 -726.84 -0.76 -12.06 40 -200.05 0.34 0.51 -1516.36

E1.3 DISTV 4 − ZSPRD30D
(3,0.5) 5 2 3 304.99 788.89 609.98 2366.66 -1756.68 -17.57 379.06 -899.43 -0.83 -13.18 40 -351.34 0.26 0.39 -2366.66

E1.4 DISTV 4 − ZSPRD30D
(2.7,2) 11 7 4 193.76 77.62 1356.31 310.5 1045.81 10.46 419.43 -176.53 -0.31 -4.92 63.64 95.08 4.37 2.5 -179.23

E1.5 DISTV 4 − ZSPRD30D
(2.7,1) 10 6 4 205.83 428.82 1234.96 1715.27 -480.31 -4.8 401.05 -726.84 -0.53 -8.41 60 -48.03 0.72 0.48 -1516.36

E1.6 DISTV 4 − ZSPRD30D
(2.7,0.5) 10 6 4 234.44 711.48 1406.63 2845.94 -1439.31 -14.39 401.05 -899.43 -0.58 -9.21 60 -143.93 0.49 0.33 -2366.66

E2.1 DISTV 4 − SPRD30D − SMA(10,20) 22 12 10 481.75 364.19 5781.04 3641.95 2139.1 21.39 1176.77 -818.23 -0.1 -1.59 54.55 97.27 1.59 1.32 -1594.37

E2.2 DISTV 4 − SPRD30D − EMA(10,20) 43 13 30 512.35 256.28 6660.56 7688.52 -1027.96 -10.28 1067.69 -1438.24 -0.37 -5.87 30.23 -23.93 0.87 2 -4047.8

E2.3 DISTV 4 − SPRD30D −MACD(12,26,9) 38 10 28 544.29 227.52 5442.88 6370.44 -927.56 -9.28 1296.34 -1609.76 -0.36 -5.71 26.32 -24.38 0.85 2.39 -4144.93

E2.4 DISTV 4 − SPRD30D −RSI(14) 5 3 2 749.16 1293.98 2247.49 2587.97 -340.48 -3.4 945.5 -2515.7 -0.15 -2.38 60 -68.1 0.87 0.58 -2515.7

E2.5 DISTV 4 − SPRD30D −BB(20) 19 12 7 230.33 467.54 2763.98 3272.79 -508.81 -5.09 1292.35 -941.24 -0.37 -5.87 63.16 -26.76 0.84 0.49 -3118.36

E3 DISTV 4 − SPRD30D −DECTREE 305 139 166 121.08 85.4 16830.25 14176.67 2653.58 26.54 651.07 -419.43 -0.96 -15.24 45.57 8.69 1.19 1.42 -2951.86

E4 DISTV 4 − SPRD30D −MLP 240 93 147 117.58 104.77 10935.31 15401.62 -4466.31 -44.66 856.9 -843.47 -0.98 -15.56 38.75 -18.61 0.71 1.12 -6995.95

Part VI: Models derived using the spread obtained from JOHANSEN − SPRD30D

F1.1 JOHANSEN − ZSPRD30D
(3,2) 21 13 8 42.9 61.55 557.7 492.38 65.32 0.65 131.41 -247.04 -0.28 -4.44 61.9 3.11 1.13 0.7 -490.63

F1.2 JOHANSEN − ZSPRD30D
(3,1) 20 15 5 97.9 123.76 1468.48 618.79 849.69 8.5 532.09 -310.42 -0.27 -4.29 75 42.48 2.37 0.79 -617.95

F1.3 JOHANSEN − ZSPRD30D
(3,0.5) 18 14 4 112.18 154.49 1570.49 617.95 952.53 9.53 651.81 -310.42 -0.28 -4.44 77.78 52.92 2.54 0.73 -617.95

F1.4 JOHANSEN − ZSPRD30D
(2.7,2) 26 15 11 48.16 183.84 722.4 2022.24 -1299.84 -13 131.41 -1396.83 -0.32 -5.08 57.69 -50 0.36 0.26 -1984.89

F1.5 JOHANSEN − ZSPRD30D
(2.7,1) 23 16 7 109.63 1046.69 1754.1 7326.84 -5572.73 -55.73 532.09 -6507.09 -0.32 -5.08 69.57 -242.24 0.24 0.1 -7325.99

F1.6 JOHANSEN − ZSPRD30D
(2.7,0.5) 19 14 5 132.17 1204.29 1850.4 6021.46 -4171.06 -41.71 651.81 -5052.73 -0.37 -5.87 73.68 -219.59 0.31 0.11 -6021.46

F2.1 JOHANSEN − SPRD30D − SMA(10,20) 24 13 11 767.88 465.92 9982.38 5125.15 4857.23 48.57 3360.29 -1056.81 -0.08 -1.27 54.17 202.43 1.95 1.65 -1452.51

F2.2 JOHANSEN − SPRD30D − EMA(10,20) 38 18 20 1195.49 401.04 21518.8 8020.86 13497.94 134.98 14284.7 -1008.03 0.19 3.02 47.37 355.23 2.68 2.98 -4489.25

F2.3 JOHANSEN − SPRD30D −MACD(12,26,9) 40 19 21 652.72 484 12401.66 10163.99 2237.66 22.38 6435.11 -2816.45 -0.06 -0.95 47.5 55.94 1.22 1.35 -3560.87

F2.4 JOHANSEN − SPRD30D −RSI(14) 7 5 2 901.94 380.31 4509.72 760.62 3749.1 37.49 2162.65 -704.89 0.3 4.76 71.43 535.6 5.93 2.37 -704.89

F2.5 JOHANSEN − SPRD30D −BB(20) 22 12 10 1059.39 1215.26 12712.67 12152.61 560.06 5.6 10190.62 -8935.66 -0.09 -1.43 54.55 25.56 1.05 0.87 -10373.95

F3 JOHANSEN − SPRD30D −DECTREE 350 163 187 98.56 92.49 16065.71 17295.28 -1229.57 -12.3 547.34 -672.38 -1.11 -17.62 46.57 -3.52 0.93 1.07 -2932.04

F4 JOHANSEN − SPRD30D −MLP 236 116 120 114.34 136.11 13263.76 16332.81 -3069.05 -30.69 929.85 -1383.47 -0.79 -12.54 49.15 -13.01 0.81 0.84 -3737

Part VII: Models derived using the spread obtained from ADF − SPRD30D

G1.1 ADF − ZSPRD30D
(3,2) 6 3 3 949.42 513.97 2848.27 1541.9 1306.36 13.06 2390.54 -1188.28 0.12 1.9 50 217.73 1.85 1.85 -1243.71

G1.2 ADF − ZSPRD30D
(3,1) 5 2 3 1905.63 2702.28 3811.25 8106.84 -4295.59 -42.96 3420.68 -4408.28 -0.3 -4.76 40 -859.12 0.47 0.71 -7716.27

G1.3 ADF − ZSPRD30D
(3,0.5) 5 1 4 3928.05 2047.38 3928.06 8189.51 -4261.46 -42.61 3928.05 -3677.6 -0.33 -5.24 20 -852.29 0.48 1.92 -8189.51

G1.4 ADF − ZSPRD30D
(2.7,2) 9 5 4 1510.98 437.36 7554.91 1749.42 5805.49 58.05 3233.56 -1188.28 0.4 6.35 55.56 645.14 4.32 3.45 -1451.22

G1.5 ADF − ZSPRD30D
(2.7,1) 8 4 4 1498.01 1703.14 5992.05 6812.57 -820.52 -8.21 3420.68 -3677.6 -0.09 -1.43 50 -102.57 0.88 0.88 -5767.02

G1.6 ADF − ZSPRD30D
(2.7,0.5) 8 2 6 2291.52 1726.46 4583.04 10358.76 -5775.72 -57.76 3928.05 -3677.6 -0.37 -5.87 25 -721.96 0.44 1.33 -9703.77

G2.1 ADF − SPRD30D − SMA(10,20) 19 10 9 1676.64 9738.27 16766.39 87644.43 -70878.04 -708.78 5716.48 -46621.85 -0.31 -4.92 52.63 -3730.6 0.19 0.17 -78506.74

G2.2 ADF − SPRD30D − EMA(10,20) 39 24 15 2803.78 29216.23 67290.7 438243.42 -
370952.72

-3709.53 23401.6 -292177.53 -0.19 -3.02 61.54 -9511.12 0.15 0.1 -409479.77

G2.3 ADF − SPRD30D −MACD(12,26,9) 37 18 19 1228.56 2393.57 22114 45477.74 -23363.74 -233.64 3714.07 -11021.16 -0.22 -3.49 48.65 -631.4 0.49 0.51 -24298.22

G2.4 ADF − SPRD30D −RSI(14) 2 - 2 - 26538.65 - 53077.3 -53077.3 -530.77 - -40142.08 -1.32 -20.95 - -26538.65 - - -53077.3

G2.5 ADF − SPRD30D −BB(20) 18 7 11 3400.33 2492.23 23802.34 27414.52 -3612.18 -36.12 9240.83 -12456.83 -0.06 -0.95 38.89 -200.61 0.87 1.36 -14858.64

G3 ADF − SPRD30D −DECTREE 328 155 173 104.83 91.36 16248.52 15805.63 442.89 4.43 697.93 -869.07 -1.01 -16.03 47.26 1.36 1.03 1.15 -1776.12

G4 ADF − SPRD30D −MLP 219 109 110 130.61 127.89 14236.18 14067.45 168.73 1.69 955.67 -843.47 -0.73 -11.59 49.77 0.77 1.01 1.02 -2125.55

Part VIII: Models derived using the spread obtained from KALMAN − SPRD30D

H1.1 KALMAN − ZSPRD30D
(3,2) 3 3 - 942.56 - 2827.67 - 2827.67 28.28 1585.08 - 1.17 18.57 100 942.56 2827.67 942.56 -

H1.2 KALMAN − ZSPRD30D
(3,1) 1 1 - 184.59 - 184.59 - 184.59 1.85 184.59 - - - 100 184.59 184.59 184.59 -

H1.3 KALMAN − ZSPRD30D
(3,0.5) 1 1 - 1061.44 - 1061.44 - 1061.44 10.61 1061.44 - - - 100 1061.44 1061.44 1061.44 -

H1.4 KALMAN − ZSPRD30D
(2.7,2) 4 2 2 1338.77 501.56 2677.54 1003.12 1674.42 16.74 1585.08 -792.82 0.31 4.92 50 418.61 2.67 2.67 -792.82

H1.5 KALMAN − ZSPRD30D
(2.7,1) 2 1 1 184.59 1468.54 184.59 1468.54 -1283.96 -12.84 184.59 -1468.54 -0.62 -9.84 50 -641.98 0.13 0.13 -1468.54

H1.6 KALMAN − ZSPRD30D
(2.7,0.5) 2 1 1 1061.44 1468.54 1061.44 1468.54 -407.1 -4.07 1061.44 -1468.54 -0.13 -2.06 50 -203.55 0.72 0.72 -1468.54

H2.1 KALMAN − SPRD30D − SMA(10,20) 12 6 6 3300.27 1362.49 19801.61 8174.92 11626.7 116.27 9953.38 -2923.46 0.24 3.81 50 968.89 2.42 2.42 -2923.46

H2.2 KALMAN − SPRD30D − EMA(10,20) 25 7 18 3055.34 1346.18 21387.37 24231.31 -2843.94 -28.44 10592.66 -3588.92 -0.08 -1.27 28 -113.76 0.88 2.27 -13703.86

H2.3 KALMAN − SPRD30D −MACD(12,26,9) 35 13 22 572.81 988.63 7446.57 21749.95 -14303.38 -143.03 1894.46 -5752.25 -0.39 -6.19 37.14 -408.71 0.34 0.58 -14558.94

H2.4 KALMAN − SPRD30D −RSI(14) 1 - 1 - 13346.62 - 13346.62 -13346.62 -133.47 - -13346.62 - - - -13346.62 - - -13346.62

H2.5 KALMAN − SPRD30D −BB(20) 14 8 6 607.29 797.46 4858.34 4784.78 73.55 0.74 1996.35 -2420.01 -0.07 -1.11 57.14 5.21 1.02 0.76 -4449.21

H3 KALMAN − SPRD30D −DECTREE 344 165 179 101.13 92.31 16685.66 16522.85 162.81 1.63 716.36 -591.33 -1.06 -16.83 47.97 0.48 1.01 1.1 -2899.28

H4 KALMAN − SPRD30D −MLP 277 131 146 112.71 113.09 14765.1 16511.14 -1746.04 -17.46 566.01 -682.51 -1.01 -16.03 47.29 -6.31 0.89 1 -3000.1

Part IX: Models derived using the spread obtained from RATIO − SPRD30D

I1.1 RATIO − ZSPRD30D
(3,2) 6 3 3 190.87 480.51 572.61 1441.52 -868.91 -8.69 315.01 -717.1 -0.72 -11.43 50 -144.82 0.4 0.4 -897.48

I1.2 RATIO − ZSPRD30D
(3,1) 5 1 4 530.69 460.01 530.69 1840.04 -1309.35 -13.09 530.69 -887.67 -0.76 -12.06 20 -261.87 0.29 1.15 -1519.9

I1.3 RATIO − ZSPRD30D
(3,0.5) 4 1 3 530.69 806.25 530.69 2418.76 -1888.08 -18.88 530.69 -1860.29 -0.62 -9.84 25 -472.02 0.22 0.66 -1888.08

I1.4 RATIO − ZSPRD30D
(2.7,2) 11 6 5 153.23 396.27 919.41 1981.34 -1061.94 -10.62 315.01 -717.1 -0.73 -11.59 54.55 -96.51 0.46 0.39 -1180.61

I1.5 RATIO − ZSPRD30D
(2.7,1) 9 4 5 281.5 373.26 1126 1866.32 -740.32 -7.4 530.69 -887.67 -0.52 -8.25 44.44 -82.29 0.6 0.75 -1519.9

I1.6 RATIO − ZSPRD30D
(2.7,0.5) 8 5 3 242.73 806.25 1213.66 2418.76 -1205.1 -12.05 530.69 -1860.29 -0.41 -6.51 62.5 -150.64 0.5 0.3 -1860.29

I2.1 RATIO − SPRD30D − SMA(10,20) 14 8 6 495.01 413.33 3960.1 2479.96 1480.14 14.8 1983.68 -670.84 -0.07 -1.11 57.14 105.7 1.6 1.2 -1519.65

I2.2 RATIO − SPRD30D − EMA(10,20) 15 7 8 1058.95 312.73 7412.64 2501.81 4910.83 49.11 2524.4 -468.08 0.2 3.17 46.67 327.43 2.96 3.39 -965.51

I2.3 RATIO − SPRD30D −MACD(12,26,9) 35 13 22 534.93 199.09 6954.07 4379.95 2574.12 25.74 1366.95 -564.35 -0.17 -2.7 37.14 73.53 1.59 2.69 -1919.03

I2.4 RATIO − SPRD30D −RSI(14) 5 3 2 613.91 2494.67 1841.73 4989.34 -3147.6 -31.48 999.24 -4917.07 -0.32 -5.08 60 -629.52 0.37 0.25 -4917.07

I2.5 RATIO − SPRD30D −BB(20) 13 6 7 226.02 540.82 1356.12 3785.77 -2429.65 -24.3 428.2 -1889.83 -0.55 -8.73 46.15 -186.93 0.36 0.42 -2061.04

I3 RATIO − SPRD30D −DECTREE 317 124 193 109.65 70.8 13597 13664.62 -67.63 -0.68 731.42 -508.22 -1.15 -18.26 39.12 -0.21 1 1.55 -1774.19

I4 RATIO − SPRD30D −MLP 252 118 134 130.59 88.88 15409.59 11910.01 3499.58 35 811.5 -508.22 -0.85 -13.49 46.83 13.9 1.29 1.47 -1648.25

Part X: Models derived using the close price of QQQ.N

CLS-SYM-1.1 CLOSEQQQ.N − SMA(10,20) 13 6 7 194.37 151.12 1166.2 1057.82 108.38 1.08 605.78 -255.49 -0.28 -4.44 46.15 8.32 1.1 1.29 -788.38

CLS-SYM-1.2 CLOSEQQQ.N − EMA(10,20) 20 5 15 606.51 147.26 3032.57 2208.83 823.74 8.24 1524.27 -363.38 -0.08 -1.27 25 41.19 1.37 4.12 -712.96

CLS-SYM-1.3 CLOSEQQQ.N −MACD(12,26,9) 35 16 19 198.63 140.31 3178.11 2665.81 512.3 5.12 695.53 -296.02 -0.29 -4.6 45.71 14.62 1.19 1.42 -1251.08

CLS-SYM-1.4 CLOSEQQQ.N −RSI(14) 7 3 4 938.66 707.17 2815.99 2828.67 -12.68 -0.13 1724.49 -1923.52 -0.07 -1.11 42.86 -1.76 1 1.33 -1923.52

CLS-SYM-1.5 CLOSEQQQ.N −BB(20) 15 10 5 79.54 186.14 795.4 930.7 -135.3 -1.35 153.41 -575.2 -0.46 -7.3 66.67 -9.01 0.85 0.43 -600.51

Part XI: Models derived using the close price of XLE.N

CLS-SYM-2.1 CLOSEXLE.N − SMA(10,20) 19 9 10 492.93 337.96 4436.4 3379.63 1056.77 10.57 1969.29 -993.26 -0.03 -0.48 47.37 55.63 1.31 1.46 -2390.02

CLS-SYM-2.2 CLOSEXLE.N − EMA(10,20) 26 11 15 546.32 161.14 6009.56 2417.09 3592.47 35.92 2197.81 -326.2 0.12 1.9 42.31 138.19 2.49 3.39 -711.67

CLS-SYM-2.3 CLOSEXLE.N −MACD(12,26,9) 27 10 17 637.2 211.29 6372.04 3591.96 2780.08 27.8 1931.38 -613.01 0.05 0.79 37.04 102.99 1.77 3.02 -645.92

CLS-SYM-2.4 CLOSEXLE.N −RSI(14) 5 3 2 314.75 1213.82 944.26 2427.64 -1483.38 -14.83 365.04 -1229.73 -0.44 -6.98 60 -296.68 0.39 0.26 -2062.6

CLS-SYM-2.5 CLOSEXLE.N −BB(20) 20 17 3 198.62 500.07 3376.55 1500.22 1876.33 18.76 822.47 -1185.85 0.05 0.79 85 93.82 2.25 0.4 -1185.85
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Table D.2.8: This table presents the back-test metrics for the pair QQQ.N/XLE.N based on a 50-day rolling window. The table is subdivided into eleven parts, and in each of these parts, we present the back-test metrics and the trading strategies which use the
spread derived from various models. In Part I, the spread is derived from the DIST V 1.1 model, in Part II from the DIST V 1.2 model, in Part III from the DIST V 2 model, in Part IV from the DIST V 3 model, in Part V from the DIST V 4 model, in Part VI from the
JOHANSEN − SPRD model, in Part VIII from the ADF − SPRD model, in from the DIST V 2 model, in Part VIII from the KALMAN − SPRD model, and in Part IX from the RATIO − SPRD model. In Part X and XI, we present the back-test metrics of
the trading strategies which use the close price of QQQ.N, and XLE.N, respectively. All $ numbers reported below are in USD.

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X) (XI) (XII) (XIII) (XIV) (XV) (XVI) (XVII) (XVIII) (XIX) (XX)

Trading
Strategy
Code

Model
Name

Total
Number
of
Trades

Number
of

Winning
Trades

Number
of Loosing
Trades

Average
Profit

per Trade
($)

Average
Loss per
Trade
($)

Gross
Profit
($)

Gross
Loss
($)

Net Profit
($)

ROI (%) Max P&L
($)

Min P&L
($)

Daily
Sharpe
Ratio

Annualized
Sharpe
Ratio

Hit Ratio Expectancy Profit
Factor

Realized
Risk

Reward
Ratio

Max
Drawdown

($)

Part I: Models derived using the spread obtained from DISTV 1.1 − SPRD50D

A1.1 DISTV 1.1 − ZSPRD50D
(3,2) - - - - - - - - - - - - - - - - - -

A1.2 DISTV 1.1 − ZSPRD50D
(3,1) - - - - - - - - - - - - - - - - - -

A1.3 DISTV 1.1 − ZSPRD50D
(3,0.5) - - - - - - - - - - - - - - - - - -

A1.4 DISTV 1.1 − ZSPRD50D
(2.7,2) 4 - 4 - 150.9 - 603.59 -603.59 -6.04 - -226.15 -4.59 -72.86 - -150.9 - - -603.59

A1.5 DISTV 1.1 − ZSPRD50D
(2.7,1) 4 1 3 1240.03 188.6 1240.03 565.79 674.24 6.74 1240.03 -365.13 0.02 0.32 25 168.56 2.19 6.58 -565.79

A1.6 DISTV 1.1 − ZSPRD50D
(2.7,0.5) 4 1 3 1276.35 155.9 1276.35 467.7 808.65 8.09 1276.35 -308.51 0.07 1.11 25 202.16 2.73 8.19 -467.7

A2.1 DISTV 1.1 − SPRD50D − SMA(10,20) 12 7 5 441.77 641.08 3092.42 3205.4 -112.98 -1.13 1112.86 -1432.79 -0.22 -3.49 58.33 -9.45 0.96 0.69 -2287.18

A2.2 DISTV 1.1 − SPRD50D − EMA(10,20) 22 16 6 424.08 851.33 6785.24 5107.97 1677.27 16.77 2101.89 -2011.03 -0.09 -1.43 72.73 76.27 1.33 0.5 -2246.75

A2.3 DISTV 1.1 − SPRD50D −MACD(12,26,9) 38 28 10 254.25 319.62 7119.03 3196.2 3922.83 39.23 1422.9 -887.69 -0.12 -1.9 73.68 103.21 2.23 0.8 -2533.12

A2.4 DISTV 1.1 − SPRD50D −RSI(14) 4 3 1 1695.22 1099.04 5085.67 1099.04 3986.63 39.87 4771.09 -1099.04 0.33 5.24 75 996.66 4.63 1.54 -1099.04

A2.5 DISTV 1.1 − SPRD50D −BB(20) 9 6 3 304.87 574.76 1829.24 1724.28 104.96 1.05 968.03 -1324.15 -0.23 -3.65 66.67 11.69 1.06 0.53 -1558.57

A3 DISTV 1.1 − SPRD50D −DECTREE 335 156 179 108.19 87.44 16878.02 15652.62 1225.4 12.25 844.69 -918.24 -0.94 -14.92 46.57 3.66 1.08 1.24 -2085.64

A4 DISTV 1.1 − SPRD50D −MLP 315 151 164 114.95 88.49 17357.06 14512.08 2844.99 28.45 811.5 -368.59 -0.96 -15.24 47.94 9.04 1.2 1.3 -1830.84

Part II: Models derived using the spread obtained from DISTV 1.2 − SPRD50D

B1.1 DISTV 1.2 − ZSPRD50D
(3,2) 5 3 2 122.54 214.89 367.63 429.78 -62.15 -0.62 168.56 -309.86 -0.8 -12.7 60 -12.43 0.86 0.57 -309.86

B1.2 DISTV 1.2 − ZSPRD50D
(3,1) 5 2 3 661.81 839.79 1323.62 2519.37 -1195.75 -11.96 830.28 -1285.49 -0.43 -6.83 40 -239.15 0.53 0.79 -1285.49

B1.3 DISTV 1.2 − ZSPRD50D
(3,0.5) 5 2 3 412.98 923.22 825.96 2769.66 -1943.7 -19.44 767.37 -1096.83 -0.69 -10.95 40 -388.74 0.3 0.45 -1943.7

B1.4 DISTV 1.2 − ZSPRD50D
(2.7,2) 9 5 4 113.85 233.88 569.25 935.52 -366.27 -3.66 168.56 -309.86 -0.98 -15.56 55.56 -40.68 0.61 0.49 -570.72

B1.5 DISTV 1.2 − ZSPRD50D
(2.7,1) 7 4 3 618.98 839.79 2475.94 2519.37 -43.43 -0.43 830.28 -1285.49 -0.19 -3.02 57.14 -6.25 0.98 0.74 -1285.49

B1.6 DISTV 1.2 − ZSPRD50D
(2.7,0.5) 6 2 4 412.98 761.96 825.96 3047.83 -2221.87 -22.22 767.37 -1096.83 -0.74 -11.75 33.33 -370.35 0.27 0.54 -2221.87

B2.1 DISTV 1.2 − SPRD50D − SMA(10,20) 8 6 2 752.79 763.08 4516.72 1526.17 2990.55 29.91 1777.44 -1106.35 0.25 3.97 75 373.82 2.96 0.99 -1106.35

B2.2 DISTV 1.2 − SPRD50D − EMA(10,20) 11 6 5 989.76 747.84 5938.58 3739.21 2199.36 21.99 1460.54 -1375.49 0.05 0.79 54.55 200.02 1.59 1.32 -1375.49

B2.3 DISTV 1.2 − SPRD50D −MACD(12,26,9) 24 13 11 172.77 524.73 2246.02 5772.06 -3526.04 -35.26 304.33 -1381.54 -0.62 -9.84 54.17 -146.9 0.39 0.33 -4453.91

B2.4 DISTV 1.2 − SPRD50D −RSI(14) 8 4 4 783.23 1056.11 3132.92 4224.46 -1091.53 -10.92 1526.8 -1736.59 -0.26 -4.13 50 -136.44 0.74 0.74 -2237.33

B2.5 DISTV 1.2 − SPRD50D −BB(20) 8 4 4 467.19 271.94 1868.76 1087.76 781 7.81 1066 -673.51 -0.1 -1.59 50 97.62 1.72 1.72 -673.51

B3 DISTV 1.2 − SPRD50D −DECTREE 238 125 113 96.01 125.96 12000.94 14233.94 -2233 -22.33 477.5 -950.21 -0.94 -14.92 52.52 -9.38 0.84 0.76 -3950.91

B4 DISTV 1.2 − SPRD50D −MLP 222 109 113 122.07 105.02 13305.74 11867.5 1438.24 14.38 547.34 -502.99 -0.92 -14.6 49.1 6.48 1.12 1.16 -2074.78

Part III: Models derived using the spread obtained from DISTV 2 − SPRD50D

C1.1 DISTV 2 − ZSPRD50D
(3,2) - - - - - - - - - - - - - - - - - -

C1.2 DISTV 2 − ZSPRD50D
(3,1) - - - - - - - - - - - - - - - - - -

C1.3 DISTV 2 − ZSPRD50D
(3,0.5) - - - - - - - - - - - - - - - - - -

C1.4 DISTV 2 − ZSPRD50D
(2.7,2) 4 4 - 150.9 - 603.59 - 603.59 6.04 226.15 - -0.02 -0.32 100 150.9 603.59 150.9 -

C1.5 DISTV 2 − ZSPRD50D
(2.7,1) 4 3 1 188.6 1240.03 565.79 1240.03 -674.24 -6.74 365.13 -1240.03 -0.44 -6.98 75 -168.56 0.46 0.15 -1240.03

C1.6 DISTV 2 − ZSPRD50D
(2.7,0.5) 4 3 1 155.9 1276.35 467.7 1276.35 -808.65 -8.09 308.51 -1276.35 -0.49 -7.78 75 -202.16 0.37 0.12 -1276.35

C2.1 DISTV 2 − SPRD50D − SMA(10,20) 12 7 5 580.52 538.87 4063.67 2694.37 1369.3 13.69 1449.08 -1112.86 -0.05 -0.79 58.33 114.07 1.51 1.08 -2275.06

C2.2 DISTV 2 − SPRD50D − EMA(10,20) 22 6 16 851.33 424.08 5107.97 6785.24 -1677.27 -16.77 2011.03 -2101.89 -0.27 -4.29 27.27 -76.27 0.75 2.01 -3917.86

C2.3 DISTV 2 − SPRD50D −MACD(12,26,9) 38 10 28 319.62 254.25 3196.2 7119.03 -3922.83 -39.23 887.69 -1422.9 -0.65 -10.32 26.32 -103.21 0.45 1.26 -6300.07

C2.4 DISTV 2 − SPRD50D −RSI(14) 4 1 3 1099.04 1695.22 1099.04 5085.67 -3986.63 -39.87 1099.04 -4771.09 -0.44 -6.98 25 -996.66 0.22 0.65 -4826.88

C2.5 DISTV 2 − SPRD50D −BB(20) 9 3 6 574.76 304.87 1724.28 1829.24 -104.96 -1.05 1324.15 -968.03 -0.27 -4.29 33.33 -11.69 0.94 1.89 -695.5

C3 DISTV 2 − SPRD50D −DECTREE 331 147 184 105.02 82.09 15438.28 15103.69 334.59 3.35 716.36 -508.22 -1.07 -16.99 44.41 1.01 1.02 1.28 -2004.83

C4 DISTV 2 − SPRD50D −MLP 201 107 94 101.78 107.62 10889.96 10116.61 773.36 7.73 859.41 -791.59 -0.93 -14.76 53.23 3.84 1.08 0.95 -2042.44

Part IV: Models derived using the spread obtained from DISTV 3 − SPRD50D

D1.1 DISTV 3 − ZSPRD50D
(3,2) 8 3 5 130.1 287.47 390.3 1437.35 -1047.05 -10.47 221.06 -569.17 -0.95 -15.08 37.5 -130.88 0.27 0.45 -1140.08

D1.2 DISTV 3 − ZSPRD50D
(3,1) 7 3 4 390.31 422.17 1170.93 1688.68 -517.75 -5.18 487.23 -737.02 -0.47 -7.46 42.86 -73.94 0.69 0.92 -1183.11

D1.3 DISTV 3 − ZSPRD50D
(3,0.5) 7 4 3 352.8 493.39 1411.19 1480.16 -68.97 -0.69 580.37 -712.63 -0.33 -5.24 57.14 -9.88 0.95 0.72 -979.54

D1.4 DISTV 3 − ZSPRD50D
(2.7,2) 11 5 6 186.47 291.81 932.34 1750.86 -818.52 -8.19 315.01 -652.17 -0.72 -11.43 45.45 -74.43 0.53 0.64 -1213.05

D1.5 DISTV 3 − ZSPRD50D
(2.7,1) 9 4 5 305.4 372.79 1221.61 1863.95 -642.34 -6.42 530.69 -821.64 -0.5 -7.94 44.44 -71.4 0.66 0.82 -1358.38

D1.6 DISTV 3 − ZSPRD50D
(2.7,0.5) 9 5 4 319.55 402.5 1597.75 1610.01 -12.26 -0.12 530.69 -799.27 -0.34 -5.4 55.56 -1.33 0.99 0.79 -1109.39

D2.1 DISTV 3 − SPRD50D − SMA(10,20) 22 9 13 430.78 291.22 3876.98 3785.85 91.13 0.91 964.67 -1289.14 -0.29 -4.6 40.91 4.15 1.02 1.48 -2031.52

D2.2 DISTV 3 − SPRD50D − EMA(10,20) 36 10 26 561.22 266.85 5612.19 6938.13 -1325.94 -13.26 1347.19 -1657.64 -0.36 -5.71 27.78 -36.81 0.81 2.1 -3106

D2.3 DISTV 3 − SPRD50D −MACD(12,26,9) 33 16 17 571.51 193.62 9144.23 3291.6 5852.63 58.53 1660.16 -741.41 0.05 0.79 48.48 177.32 2.78 2.95 -1640.8

D2.4 DISTV 3 − SPRD50D −RSI(14) 7 5 2 705.35 378 3526.73 756.01 2770.73 27.71 1310.06 -497.21 0.39 6.19 71.43 395.83 4.66 1.87 -497.21

D2.5 DISTV 3 − SPRD50D −BB(20) 20 14 6 243.53 416.83 3409.42 2501 908.42 9.08 697.93 -1035.66 -0.26 -4.13 70 45.42 1.36 0.58 -1345.49

D3 DISTV 3 − SPRD50D −DECTREE 345 149 196 93.46 83.97 13924.87 16458.49 -2533.62 -25.34 771.58 -675.27 -1.23 -19.53 43.19 -7.34 0.85 1.11 -3951.02

D4 DISTV 3 − SPRD50D −MLP 295 125 170 107.19 97.82 13398.43 16629.98 -3231.55 -32.32 547.34 -843.47 -1.09 -17.3 42.37 -10.96 0.81 1.1 -5296.2

Part V: Models derived using the spread obtained from DISTV 4 − SPRD50D

E1.1 DISTV 4 − ZSPRD50D
(3,2) 8 3 5 130.1 287.47 390.3 1437.35 -1047.05 -10.47 221.06 -569.17 -0.95 -15.08 37.5 -130.88 0.27 0.45 -1140.08

E1.2 DISTV 4 − ZSPRD50D
(3,1) 7 3 4 390.31 422.17 1170.93 1688.68 -517.75 -5.18 487.23 -737.02 -0.47 -7.46 42.86 -73.94 0.69 0.92 -1183.11

E1.3 DISTV 4 − ZSPRD50D
(3,0.5) 7 4 3 352.8 493.39 1411.19 1480.16 -68.97 -0.69 580.37 -712.63 -0.33 -5.24 57.14 -9.88 0.95 0.72 -979.54

E1.4 DISTV 4 − ZSPRD50D
(2.7,2) 11 5 6 186.47 291.81 932.34 1750.86 -818.52 -8.19 315.01 -652.17 -0.72 -11.43 45.45 -74.43 0.53 0.64 -1213.05

E1.5 DISTV 4 − ZSPRD50D
(2.7,1) 9 4 5 305.4 372.79 1221.61 1863.95 -642.34 -6.42 530.69 -821.64 -0.5 -7.94 44.44 -71.4 0.66 0.82 -1358.38

E1.6 DISTV 4 − ZSPRD50D
(2.7,0.5) 9 5 4 319.55 402.5 1597.75 1610.01 -12.26 -0.12 530.69 -799.27 -0.34 -5.4 55.56 -1.33 0.99 0.79 -1109.39

E2.1 DISTV 4 − SPRD50D − SMA(10,20) 22 9 13 430.78 291.22 3876.98 3785.85 91.13 0.91 964.67 -1289.14 -0.29 -4.6 40.91 4.15 1.02 1.48 -2031.52

E2.2 DISTV 4 − SPRD50D − EMA(10,20) 36 10 26 561.22 266.85 5612.19 6938.13 -1325.94 -13.26 1347.19 -1657.64 -0.36 -5.71 27.78 -36.81 0.81 2.1 -3106

E2.3 DISTV 4 − SPRD50D −MACD(12,26,9) 33 16 17 571.51 193.62 9144.23 3291.6 5852.63 58.53 1660.16 -741.41 0.05 0.79 48.48 177.32 2.78 2.95 -1640.8

E2.4 DISTV 4 − SPRD50D −RSI(14) 7 5 2 705.35 378 3526.73 756.01 2770.73 27.71 1310.06 -497.21 0.39 6.19 71.43 395.83 4.66 1.87 -497.21

E2.5 DISTV 4 − SPRD50D −BB(20) 20 14 6 243.53 416.83 3409.42 2501 908.42 9.08 697.93 -1035.66 -0.26 -4.13 70 45.42 1.36 0.58 -1345.49

E3 DISTV 4 − SPRD50D −DECTREE 345 145 200 95.02 84.84 13777.9 16968.38 -3190.48 -31.9 771.58 -390.44 -1.27 -20.16 42.03 -9.25 0.81 1.12 -3970.57

E4 DISTV 4 − SPRD50D −MLP 295 125 170 107.19 97.82 13398.43 16629.98 -3231.55 -32.32 547.34 -843.47 -1.09 -17.3 42.37 -10.96 0.81 1.1 -5296.2

Part VI: Models derived using the spread obtained from JOHANSEN − SPRD50D

F1.1 JOHANSEN − ZSPRD50D
(3,2) 21 10 11 49.52 42.13 495.15 463.44 31.71 0.32 144.01 -95.16 -1.49 -23.65 47.62 1.51 1.07 1.18 -122.4

F1.2 JOHANSEN − ZSPRD50D
(3,1) 20 11 9 56.17 93.09 617.82 837.85 -220.03 -2.2 197.29 -378.29 -0.89 -14.13 55 -11 0.74 0.6 -423.82

F1.3 JOHANSEN − ZSPRD50D
(3,0.5) 19 11 8 66.3 58.17 729.26 465.39 263.87 2.64 197.29 -167.41 -0.86 -13.65 57.89 13.88 1.57 1.14 -228

F1.4 JOHANSEN − ZSPRD50D
(2.7,2) 24 13 11 56.99 44.91 740.88 494.05 246.84 2.47 161.2 -95.16 -1.48 -23.49 54.17 10.29 1.5 1.27 -153.01

F1.5 JOHANSEN − ZSPRD50D
(2.7,1) 23 14 9 78.7 93.36 1101.8 840.26 261.55 2.62 399.45 -378.29 -0.83 -13.18 60.87 11.37 1.31 0.84 -426.23

F1.6 JOHANSEN − ZSPRD50D
(2.7,0.5) 20 14 6 85.23 93.01 1193.29 558.07 635.22 6.35 399.45 -184.98 -0.79 -12.54 70 31.76 2.14 0.92 -352.39

F2.1 JOHANSEN − SPRD50D − SMA(10,20) 24 12 12 450.45 533.34 5405.45 6400.03 -994.57 -9.95 2529.96 -1375.28 -0.11 -1.75 50 -41.44 0.84 0.84 -2481.22

F2.2 JOHANSEN − SPRD50D − EMA(10,20) 29 14 15 568.51 718.4 7959.17 10776.03 -2816.86 -28.17 3767.65 -6466.61 -0.05 -0.79 48.28 -97.08 0.74 0.79 -8345.48

F2.3 JOHANSEN − SPRD50D −MACD(12,26,9) 34 14 20 922.64 436.35 12916.94 8727.07 4189.87 41.9 8576.92 -2378.66 0.12 1.9 41.18 123.28 1.48 2.11 -5878.18

F2.4 JOHANSEN − SPRD50D −RSI(14) 10 6 4 342.75 1531.62 2056.47 6126.47 -4070 -40.7 840.7 -5714.41 -0.37 -5.87 60 -407 0.34 0.22 -5935.06

F2.5 JOHANSEN − SPRD50D −BB(20) 23 12 11 834.34 34388.05 10012.13 378268.57 -
368256.44

-3682.56 6943.82 -366873.55 -0.21 -3.33 52.17 -16012.53 0.03 0.02 -368985.29

F3 JOHANSEN − SPRD50D −DECTREE 310 159 151 91 107.49 14469.42 16231.28 -1761.86 -17.62 716.36 -682.51 -1.1 -17.46 51.29 -5.68 0.89 0.85 -4213.12

F4 JOHANSEN − SPRD50D −MLP 270 125 145 95.55 129 11943.79 18705.49 -6761.7 -67.62 766.92 -706.4 -1.02 -16.19 46.3 -25.04 0.64 0.74 -8212.8

Part VII: Models derived using the spread obtained from ADF − SPRD50D

G1.1 ADF − ZSPRD50D
(3,2) 5 2 3 133.29 3144.52 266.58 9433.56 -9166.98 -91.67 161.5 -5366.21 -0.87 -13.81 40 -1833.4 0.03 0.04 -9272.06

G1.2 ADF − ZSPRD50D
(3,1) 4 1 3 5345.19 4834.78 5345.19 14504.33 -9159.14 -91.59 5345.19 -6550.89 -0.28 -4.44 25 -2289.79 0.37 1.11 -9159.15

G1.3 ADF − ZSPRD50D
(3,0.5) 4 1 3 5345.19 5497.88 5345.19 16493.64 -11148.46 -111.48 5345.19 -7492.56 -0.34 -5.4 25 -2787.11 0.32 0.97 -11148.46

G1.4 ADF − ZSPRD50D
(2.7,2) 9 2 7 244.41 3129.23 488.82 21904.58 -21415.76 -214.16 327.32 -9831.32 -0.75 -11.91 22.22 -2379.6 0.02 0.08 -21743.08

G1.5 ADF − ZSPRD50D
(2.7,1) 8 2 6 2739.28 5512.58 5478.57 33075.5 -27596.93 -275.97 5345.19 -12770.75 -0.54 -8.57 25 -3449.62 0.17 0.5 -27596.93

G1.6 ADF − ZSPRD50D
(2.7,0.5) 8 2 6 3014.27 6505.13 6028.54 39030.79 -33002.25 -330.02 5345.19 -18103.75 -0.53 -8.41 25 -4125.28 0.15 0.46 -33002.25

G2.1 ADF − SPRD50D − SMA(10,20) 20 11 9 20055.86 150466.16 220614.51 1354195.48 -
1133580.98

-11335.81 212050.53 -
1345283.82

-0.18 -2.86 55 -56679.05 0.16 0.13 -
1350163.17

G2.2 ADF − SPRD50D − EMA(10,20) 37 25 12 6623.26 3795.36 165581.49 45544.27 120037.22 1200.37 95809.15 -19354.91 0.18 2.86 67.57 3244.5 3.64 1.75 -30977.99

G2.3 ADF − SPRD50D −MACD(12,26,9) 31 21 10 8347.99 1747.23 175307.83 17472.35 157835.48 1578.35 83618.08 -5345.19 0.28 4.44 67.74 5091.27 10.03 4.78 -7527.07

G2.4 ADF − SPRD50D −RSI(14) 4 1 3 1447.85 16190.39 1447.85 48571.17 -47123.32 -471.23 1447.85 -29969.36 -0.88 -13.97 25 -11780.83 0.03 0.09 -48571.17

G2.5 ADF − SPRD50D −BB(20) 17 5 12 3825.62 863.12 19128.11 10357.44 8770.67 87.71 10177.53 -2823.91 0.17 2.7 29.41 515.84 1.85 4.43 -6851.03

G3 ADF − SPRD50D −DECTREE 302 139 163 116.98 91.93 16260.18 14984.98 1275.21 12.75 918.24 -768.37 -0.96 -15.24 46.03 4.23 1.09 1.27 -2250.32

G4 ADF − SPRD50D −MLP 140 72 68 151.71 181.59 10922.92 12348.28 -1425.36 -14.25 1262.9 -1455.41 -0.58 -9.21 51.43 -10.18 0.88 0.84 -3075.43

Part VIII: Models derived using the spread obtained from KALMAN − SPRD50D

H1.1 KALMAN − ZSPRD50D
(3,2) 1 1 - 150.18 - 150.18 - 150.18 1.5 150.18 - - - 100 150.18 150.18 150.18 -

H1.2 KALMAN − ZSPRD50D
(3,1) - - - - - - - - - - - - - - - - - -

H1.3 KALMAN − ZSPRD50D
(3,0.5) - - - - - - - - - - - - - - - - - -

H1.4 KALMAN − ZSPRD50D
(2.7,2) 4 3 1 685.34 686.16 2056.01 686.16 1369.85 13.7 1586.97 -686.16 0.25 3.97 75 342.46 3 1 -686.16

H1.5 KALMAN − ZSPRD50D
(2.7,1) 3 1 2 2515.71 1541.06 2515.71 3082.11 -566.4 -5.66 2515.71 -2482.48 -0.11 -1.75 33.33 -188.94 0.82 1.63 -2482.48

H1.6 KALMAN − ZSPRD50D
(2.7,0.5) 3 1 2 3118.21 2233.52 3118.21 4467.03 -1348.82 -13.49 3118.21 -2418.95 -0.16 -2.54 33.33 -449.78 0.7 1.4 -2418.95

H2.1 KALMAN − SPRD50D − SMA(10,20) 15 6 9 1535.71 1006.43 9214.28 9057.88 156.4 1.56 3246.16 -2819.47 -0.05 -0.79 40 10.43 1.02 1.53 -3852.88

H2.2 KALMAN − SPRD50D − EMA(10,20) 21 7 14 2317.48 1109.23 16222.39 15529.15 693.24 6.93 11503.72 -3333.91 -0.03 -0.48 33.33 32.9 1.04 2.09 -14278.43

H2.3 KALMAN − SPRD50D −MACD(12,26,9) 29 12 17 801.02 851.21 9612.2 14470.56 -4858.36 -48.58 2693.84 -1990.68 -0.24 -3.81 41.38 -167.52 0.66 0.94 -7445.43

H2.4 KALMAN − SPRD50D −RSI(14) 2 1 1 1454.44 11697.95 1454.44 11697.95 -10243.51 -102.44 1454.44 -11697.95 -0.54 -8.57 50 -5121.75 0.12 0.12 -11697.95

H2.5 KALMAN − SPRD50D −BB(20) 14 7 7 720.54 1159.02 5043.75 8113.11 -3069.36 -30.69 1997.01 -3505.85 -0.2 -3.17 50 -219.24 0.62 0.62 -6139.95

H3 KALMAN − SPRD50D −DECTREE 330 153 177 101.27 101.82 15494.53 18022.59 -2528.05 -25.28 716.36 -918.24 -1.04 -16.51 46.36 -7.67 0.86 0.99 -4027.82

H4 KALMAN − SPRD50D −MLP 156 73 83 99.21 124.6 7242.43 10341.64 -3099.21 -30.99 572.08 -1565.91 -0.84 -13.33 46.79 -19.88 0.7 0.8 -5532.94

Part IX: Models derived using the spread obtained from RATIO − SPRD50D

I1.1 RATIO − ZSPRD50D
(3,2) 5 2 3 240.84 608.66 481.69 1825.97 -1344.28 -13.44 370.84 -836.11 -0.83 -13.18 40 -268.86 0.26 0.4 -1344.28

I1.2 RATIO − ZSPRD50D
(3,1) 4 2 2 378.87 346.53 757.74 693.06 64.68 0.65 580.37 -518.47 -0.29 -4.6 50 16.17 1.09 1.09 -518.47

I1.3 RATIO − ZSPRD50D
(3,0.5) 4 2 2 259.68 293.36 519.36 586.72 -67.36 -0.67 509.22 -529.77 -0.4 -6.35 50 -16.84 0.89 0.89 -529.77

I1.4 RATIO − ZSPRD50D
(2.7,2) 10 4 6 49.05 442.91 196.18 2657.47 -2461.29 -24.61 79.67 -836.11 -1.22 -19.37 40 -246.13 0.07 0.11 -2498.38

I1.5 RATIO − ZSPRD50D
(2.7,1) 8 5 3 180.17 574.57 900.86 1723.71 -822.85 -8.23 387.24 -1544.66 -0.42 -6.67 62.5 -102.86 0.52 0.31 -1544.66

I1.6 RATIO − ZSPRD50D
(2.7,0.5) 8 6 2 200.51 900.54 1203.08 1801.08 -598 -5.98 585.45 -1711.81 -0.33 -5.24 75 -74.75 0.67 0.22 -1711.81

I2.1 RATIO − SPRD50D − SMA(10,20) 14 8 6 495.01 413.33 3960.1 2479.96 1480.14 14.8 1983.68 -670.84 -0.07 -1.11 57.14 105.7 1.6 1.2 -1519.65

I2.2 RATIO − SPRD50D − EMA(10,20) 15 7 8 1033.8 312.73 7236.58 2501.81 4734.77 47.35 2524.4 -468.08 0.19 3.02 46.67 315.7 2.89 3.31 -965.51

I2.3 RATIO − SPRD50D −MACD(12,26,9) 32 13 19 545.08 240.17 7086.05 4563.26 2522.79 25.23 1366.95 -564.35 -0.15 -2.38 40.62 78.8 1.55 2.27 -1919.03

I2.4 RATIO − SPRD50D −RSI(14) 6 4 2 479.04 2428.88 1916.17 4857.76 -2941.6 -29.42 999.24 -4598.97 -0.31 -4.92 66.67 -490.17 0.39 0.2 -4598.97

I2.5 RATIO − SPRD50D −BB(20) 13 6 7 226.02 540.82 1356.12 3785.77 -2429.65 -24.3 428.2 -1889.83 -0.55 -8.73 46.15 -186.93 0.36 0.42 -2061.04

I3 RATIO − SPRD50D −DECTREE 307 128 179 111.22 72.36 14235.61 12952.06 1283.55 12.84 734.68 -508.22 -1.09 -17.3 41.69 4.17 1.1 1.54 -1569.69

I4 RATIO − SPRD50D −MLP 256 113 143 123.39 91.62 13942.75 13101.32 841.43 8.41 734.68 -508.22 -0.97 -15.4 44.14 3.29 1.06 1.35 -2575.75

Part X: Models derived using the close price of QQQ.N

CLS-SYM-1.1 CLOSEQQQ.N − SMA(10,20) 13 6 7 194.37 151.12 1166.2 1057.82 108.38 1.08 605.78 -255.49 -0.28 -4.44 46.15 8.32 1.1 1.29 -788.38

CLS-SYM-1.2 CLOSEQQQ.N − EMA(10,20) 20 5 15 606.51 147.26 3032.57 2208.83 823.74 8.24 1524.27 -363.38 -0.08 -1.27 25 41.19 1.37 4.12 -712.96

CLS-SYM-1.3 CLOSEQQQ.N −MACD(12,26,9) 35 16 19 198.63 140.31 3178.11 2665.81 512.3 5.12 695.53 -296.02 -0.29 -4.6 45.71 14.62 1.19 1.42 -1251.08

CLS-SYM-1.4 CLOSEQQQ.N −RSI(14) 7 3 4 938.66 707.17 2815.99 2828.67 -12.68 -0.13 1724.49 -1923.52 -0.07 -1.11 42.86 -1.76 1 1.33 -1923.52

CLS-SYM-1.5 CLOSEQQQ.N −BB(20) 15 10 5 79.54 186.14 795.4 930.7 -135.3 -1.35 153.41 -575.2 -0.46 -7.3 66.67 -9.01 0.85 0.43 -600.51

Part XI: Models derived using the close price of XLE.N

CLS-SYM-2.1 CLOSEXLE.N − SMA(10,20) 19 9 10 492.93 337.96 4436.4 3379.63 1056.77 10.57 1969.29 -993.26 -0.03 -0.48 47.37 55.63 1.31 1.46 -2390.02

CLS-SYM-2.2 CLOSEXLE.N − EMA(10,20) 26 11 15 546.32 161.14 6009.56 2417.09 3592.47 35.92 2197.81 -326.2 0.12 1.9 42.31 138.19 2.49 3.39 -711.67

CLS-SYM-2.3 CLOSEXLE.N −MACD(12,26,9) 27 10 17 637.2 211.29 6372.04 3591.96 2780.08 27.8 1931.38 -613.01 0.05 0.79 37.04 102.99 1.77 3.02 -645.92

CLS-SYM-2.4 CLOSEXLE.N −RSI(14) 5 3 2 314.75 1213.82 944.26 2427.64 -1483.38 -14.83 365.04 -1229.73 -0.44 -6.98 60 -296.68 0.39 0.26 -2062.6

CLS-SYM-2.5 CLOSEXLE.N −BB(20) 20 17 3 198.62 500.07 3376.55 1500.22 1876.33 18.76 822.47 -1185.85 0.05 0.79 85 93.82 2.25 0.4 -1185.85
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Table D.2.9: This table presents the back-test metrics for the pair QQQ.N/XLE.N based on a 100-day rolling window. The table is subdivided into eleven parts, and in each of these parts, we present the back-test metrics and the trading strategies which use the
spread derived from various models. In Part I, the spread is derived from the DIST V 1.1 model, in Part II from the DIST V 1.2 model, in Part III from the DIST V 2 model, in Part IV from the DIST V 3 model, in Part V from the DIST V 4 model, in Part VI from the
JOHANSEN − SPRD model, in Part VIII from the ADF − SPRD model, in from the DIST V 2 model, in Part VIII from the KALMAN − SPRD model, and in Part IX from the RATIO − SPRD model. In Part X and XI, we present the back-test metrics of
the trading strategies which use the close price of QQQ.N, and XLE.N, respectively. All $ numbers reported below are in USD.

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X) (XI) (XII) (XIII) (XIV) (XV) (XVI) (XVII) (XVIII) (XIX) (XX)

Trading
Strategy
Code

Model
Name

Total
Number
of
Trades

Number
of

Winning
Trades

Number
of Loosing
Trades

Average
Profit

per Trade
($)

Average
Loss per
Trade
($)

Gross
Profit
($)

Gross
Loss
($)

Net Profit
($)

ROI (%) Max P&L
($)

Min P&L
($)

Daily
Sharpe
Ratio

Annualized
Sharpe
Ratio

Hit Ratio Expectancy Profit
Factor

Realized
Risk

Reward
Ratio

Max
Drawdown

($)

Part I: Models derived using the spread obtained from DISTV 1.1 − SPRD100D

A1.1 DISTV 1.1 − ZSPRD100D
(3,2) - - - - - - - - - - - - - - - - - -

A1.2 DISTV 1.1 − ZSPRD100D
(3,1) - - - - - - - - - - - - - - - - - -

A1.3 DISTV 1.1 − ZSPRD100D
(3,0.5) - - - - - - - - - - - - - - - - - -

A1.4 DISTV 1.1 − ZSPRD100D
(2.7,2) 1 - 1 - 159.92 - 159.92 -159.92 -1.6 - -159.92 - - - -159.92 - - -159.92

A1.5 DISTV 1.1 − ZSPRD100D
(2.7,1) 1 1 - 1190.07 - 1190.07 - 1190.07 11.9 1190.07 - - - 100 1190.07 1190.07 1190.07 -

A1.6 DISTV 1.1 − ZSPRD100D
(2.7,0.5) 1 1 - 1871.51 - 1871.51 - 1871.51 18.72 1871.51 - - - 100 1871.51 1871.51 1871.51 -

A2.1 DISTV 1.1 − SPRD100D − SMA(10,20) 11 6 5 477.49 641.08 2864.92 3205.4 -340.48 -3.4 1112.86 -1432.79 -0.24 -3.81 54.55 -30.9 0.89 0.74 -2287.18

A2.2 DISTV 1.1 − SPRD100D − EMA(10,20) 22 16 6 441.54 849.29 7064.57 5095.72 1968.85 19.69 2101.89 -2011.03 -0.07 -1.11 72.73 89.53 1.39 0.52 -2246.75

A2.3 DISTV 1.1 − SPRD100D −MACD(12,26,9) 37 23 14 272.55 238.65 6268.64 3341.12 2927.52 29.28 1422.9 -887.69 -0.19 -3.02 62.16 79.11 1.88 1.14 -2533.12

A2.4 DISTV 1.1 − SPRD100D −RSI(14) 5 3 2 1640.03 592.73 4920.09 1185.47 3734.62 37.35 4133.83 -1099.04 0.3 4.76 60 746.92 4.15 2.77 -1099.04

A2.5 DISTV 1.1 − SPRD100D −BB(20) 9 6 3 304.87 574.76 1829.24 1724.28 104.96 1.05 968.03 -1324.15 -0.23 -3.65 66.67 11.69 1.06 0.53 -1558.57

A3 DISTV 1.1 − SPRD100D −DECTREE 321 149 172 114.35 83.63 17037.85 14384.92 2652.93 26.53 716.36 -420.52 -0.97 -15.4 46.42 8.27 1.18 1.37 -2429.43

A4 DISTV 1.1 − SPRD100D −MLP 271 129 142 109.93 89.1 14181.39 12652.42 1528.96 15.29 673.13 -306.2 -1.01 -16.03 47.6 5.64 1.12 1.23 -2641.37

Part II: Models derived using the spread obtained from DISTV 1.2 − SPRD100D

B1.1 DISTV 1.2 − ZSPRD100D
(3,2) 2 1 1 302.72 489.82 302.72 489.82 -187.1 -1.87 302.72 -489.82 -0.44 -6.98 50 -93.55 0.62 0.62 -489.82

B1.2 DISTV 1.2 − ZSPRD100D
(3,1) 2 1 1 239.68 479.77 239.68 479.77 -240.09 -2.4 239.68 -479.77 -0.53 -8.41 50 -120.05 0.5 0.5 -479.77

B1.3 DISTV 1.2 − ZSPRD100D
(3,0.5) 2 1 1 875.55 983.86 875.54 983.86 -108.31 -1.08 875.55 -983.86 -0.16 -2.54 50 -54.15 0.89 0.89 -983.86

B1.4 DISTV 1.2 − ZSPRD100D
(2.7,2) 3 - 3 - 238.08 - 714.23 -714.23 -7.14 - -489.82 -1.62 -25.72 - -238.08 - - -714.23

B1.5 DISTV 1.2 − ZSPRD100D
(2.7,1) 3 - 3 - 631.26 - 1893.78 -1893.78 -18.94 - -1324.84 -1.24 -19.68 - -631.26 - - -1893.78

B1.6 DISTV 1.2 − ZSPRD100D
(2.7,0.5) 3 1 2 551.03 1272.51 551.03 2545.03 -1994 -19.94 551.03 -1561.17 -0.75 -11.91 33.33 -664.73 0.22 0.43 -2545.03

B2.1 DISTV 1.2 − SPRD100D − SMA(10,20) 8 4 4 547.31 738.1 2189.26 2952.41 -763.16 -7.63 1137.14 -1091.31 -0.32 -5.08 50 -95.39 0.74 0.74 -1545.35

B2.2 DISTV 1.2 − SPRD100D − EMA(10,20) 12 7 5 720.14 570.53 5040.96 2852.63 2188.33 21.88 2272.11 -1226.64 0.03 0.48 58.33 182.32 1.77 1.26 -1789.81

B2.3 DISTV 1.2 − SPRD100D −MACD(12,26,9) 22 12 10 394.47 400.75 4733.65 4007.54 726.11 7.26 1010.72 -1217.21 -0.22 -3.49 54.55 33.04 1.18 0.98 -2697.45

B2.4 DISTV 1.2 − SPRD100D −RSI(14) 5 2 3 1285.34 1545.7 2570.68 4637.11 -2066.44 -20.66 1343.94 -3224.51 -0.3 -4.76 40 -413.29 0.55 0.83 -1297.98

B2.5 DISTV 1.2 − SPRD100D −BB(20) 10 2 8 955.91 299.1 1911.83 2392.77 -480.94 -4.81 961.62 -944.06 -0.33 -5.24 20 -48.09 0.8 3.2 -1022.1

B3 DISTV 1.2 − SPRD100D −DECTREE 276 128 148 109.75 98.18 14047.85 14530.84 -482.99 -4.83 682.51 -895.06 -1.01 -16.03 46.38 -1.74 0.97 1.12 -1923.5

B4 DISTV 1.2 − SPRD100D −MLP 127 59 68 107.97 116.73 6370.22 7937.68 -1567.45 -15.67 513.65 -432.07 -1.09 -17.3 46.46 -12.33 0.8 0.92 -2418.02

Part III: Models derived using the spread obtained from DISTV 2 − SPRD100D

C1.1 DISTV 2 − ZSPRD100D
(3,2) - - - - - - - - - - - - - - - - - -

C1.2 DISTV 2 − ZSPRD100D
(3,1) - - - - - - - - - - - - - - - - - -

C1.3 DISTV 2 − ZSPRD100D
(3,0.5) - - - - - - - - - - - - - - - - - -

C1.4 DISTV 2 − ZSPRD100D
(2.7,2) 1 1 - 159.92 - 159.92 - 159.92 1.6 159.92 - - - 100 159.92 159.92 159.92 -

C1.5 DISTV 2 − ZSPRD100D
(2.7,1) 1 - 1 - 1190.07 - 1190.07 -1190.07 -11.9 - -1190.07 - - - -1190.07 - - -1190.07

C1.6 DISTV 2 − ZSPRD100D
(2.7,0.5) 1 - 1 - 1871.51 - 1871.51 -1871.51 -18.72 - -1871.51 - - - -1871.51 - - -1871.51

C2.1 DISTV 2 − SPRD100D − SMA(10,20) 11 5 6 641.08 477.49 3205.4 2864.92 340.48 3.4 1432.79 -1112.86 -0.16 -2.54 45.45 30.9 1.12 1.34 -2275.06

C2.2 DISTV 2 − SPRD100D − EMA(10,20) 22 6 16 849.29 441.54 5095.72 7064.57 -1968.85 -19.69 2011.03 -2101.89 -0.29 -4.6 27.27 -89.53 0.72 1.92 -3917.86

C2.3 DISTV 2 − SPRD100D −MACD(12,26,9) 37 14 23 238.65 272.55 3341.12 6268.64 -2927.52 -29.28 887.69 -1422.9 -0.59 -9.37 37.84 -79.11 0.53 0.88 -5372.95

C2.4 DISTV 2 − SPRD100D −RSI(14) 5 2 3 592.73 1640.03 1185.47 4920.09 -3734.62 -37.35 1099.04 -4133.83 -0.45 -7.14 40 -746.92 0.24 0.36 -4189.62

C2.5 DISTV 2 − SPRD100D −BB(20) 9 3 6 574.76 304.87 1724.28 1829.24 -104.96 -1.05 1324.15 -968.03 -0.27 -4.29 33.33 -11.69 0.94 1.89 -695.5

C3 DISTV 2 − SPRD100D −DECTREE 320 147 173 117.57 91.69 17282.9 15861.65 1421.25 14.21 716.36 -918.24 -0.92 -14.6 45.94 4.45 1.09 1.28 -2170.69

C4 DISTV 2 − SPRD100D −MLP 266 134 132 121.66 91.55 16301.98 12085.14 4216.83 42.17 716.36 -420.52 -0.87 -13.81 50.38 15.86 1.35 1.33 -2101.63

Part IV: Models derived using the spread obtained from DISTV 3 − SPRD100D

D1.1 DISTV 3 − ZSPRD100D
(3,2) 4 3 1 124.27 375.49 372.82 375.49 -2.66 -0.03 164.67 -375.49 -0.61 -9.68 75 -0.67 0.99 0.33 -375.49

D1.2 DISTV 3 − ZSPRD100D
(3,1) 3 2 1 162.39 357.33 324.79 357.33 -32.55 -0.33 188.34 -357.33 -0.54 -8.57 66.67 -10.83 0.91 0.45 -357.33

D1.3 DISTV 3 − ZSPRD100D
(3,0.5) 3 1 2 270.69 994.17 270.69 1988.33 -1717.64 -17.18 270.69 -1406.01 -0.86 -13.65 33.33 -572.59 0.14 0.27 -1988.33

D1.4 DISTV 3 − ZSPRD100D
(2.7,2) 6 5 1 160.14 412.12 800.69 412.12 388.57 3.89 221.67 -412.12 -0.37 -5.87 83.33 64.74 1.94 0.39 -412.12

D1.5 DISTV 3 − ZSPRD100D
(2.7,1) 4 3 1 290 394.13 870 394.13 475.87 4.76 545.22 -394.13 -0.09 -1.43 75 118.97 2.21 0.74 -394.13

D1.6 DISTV 3 − ZSPRD100D
(2.7,0.5) 4 2 2 381.87 994.47 763.74 1988.94 -1225.2 -12.25 493.05 -1406.62 -0.53 -8.41 50 -306.3 0.38 0.38 -1988.94

D2.1 DISTV 3 − SPRD100D − SMA(10,20) 17 5 12 604.68 402.79 3023.4 4833.43 -1810.03 -18.1 970.38 -1516.61 -0.43 -6.83 29.41 -106.49 0.63 1.5 -3269.66

D2.2 DISTV 3 − SPRD100D − EMA(10,20) 29 12 17 490.49 361.93 5885.85 6152.74 -266.89 -2.67 1121.85 -1455.18 -0.28 -4.44 41.38 -9.2 0.96 1.36 -3187.54

D2.3 DISTV 3 − SPRD100D −MACD(12,26,9) 29 10 19 394 267.29 3940.05 5078.52 -1138.47 -11.38 849.89 -1328.51 -0.43 -6.83 34.48 -39.28 0.78 1.47 -3329.71

D2.4 DISTV 3 − SPRD100D −RSI(14) 6 5 1 609.78 3646.2 3048.89 3646.2 -597.31 -5.97 910.29 -3646.2 -0.14 -2.22 83.33 -99.69 0.84 0.17 -

D2.5 DISTV 3 − SPRD100D −BB(20) 16 8 8 142.95 292.86 1143.58 2342.87 -1199.29 -11.99 332.27 -817.41 -0.72 -11.43 50 -74.96 0.49 0.49 -1416.39

D3 DISTV 3 − SPRD100D −DECTREE 299 135 164 111.42 83.68 15041.81 13723.44 1318.37 13.18 699.95 -843.47 -1 -15.87 45.15 4.41 1.1 1.33 -1736.9

D4 DISTV 3 − SPRD100D −MLP 223 93 130 134.37 91.49 12496.29 11894.04 602.25 6.02 1000.7 -498.26 -0.91 -14.45 41.7 2.69 1.05 1.47 -1333.47

Part V: Models derived using the spread obtained from DISTV 4 − SPRD100D

E1.1 DISTV 4 − ZSPRD100D
(3,2) 4 3 1 124.27 375.49 372.82 375.49 -2.66 -0.03 164.67 -375.49 -0.61 -9.68 75 -0.67 0.99 0.33 -375.49

E1.2 DISTV 4 − ZSPRD100D
(3,1) 3 2 1 162.39 357.33 324.79 357.33 -32.55 -0.33 188.34 -357.33 -0.54 -8.57 66.67 -10.83 0.91 0.45 -357.33

E1.3 DISTV 4 − ZSPRD100D
(3,0.5) 3 1 2 270.69 994.17 270.69 1988.33 -1717.64 -17.18 270.69 -1406.01 -0.86 -13.65 33.33 -572.59 0.14 0.27 -1988.33

E1.4 DISTV 4 − ZSPRD100D
(2.7,2) 6 5 1 160.14 412.12 800.69 412.12 388.57 3.89 221.67 -412.12 -0.37 -5.87 83.33 64.74 1.94 0.39 -412.12

E1.5 DISTV 4 − ZSPRD100D
(2.7,1) 4 3 1 290 394.13 870 394.13 475.87 4.76 545.22 -394.13 -0.09 -1.43 75 118.97 2.21 0.74 -394.13

E1.6 DISTV 4 − ZSPRD100D
(2.7,0.5) 4 2 2 381.87 994.47 763.74 1988.94 -1225.2 -12.25 493.05 -1406.62 -0.53 -8.41 50 -306.3 0.38 0.38 -1988.94

E2.1 DISTV 4 − SPRD100D − SMA(10,20) 17 5 12 604.68 402.79 3023.4 4833.43 -1810.03 -18.1 970.38 -1516.61 -0.43 -6.83 29.41 -106.49 0.63 1.5 -3269.66

E2.2 DISTV 4 − SPRD100D − EMA(10,20) 29 12 17 490.49 361.93 5885.85 6152.74 -266.89 -2.67 1121.85 -1455.18 -0.28 -4.44 41.38 -9.2 0.96 1.36 -3187.54

E2.3 DISTV 4 − SPRD100D −MACD(12,26,9) 29 10 19 394 267.29 3940.05 5078.52 -1138.47 -11.38 849.89 -1328.51 -0.43 -6.83 34.48 -39.28 0.78 1.47 -3329.71

E2.4 DISTV 4 − SPRD100D −RSI(14) 6 5 1 609.78 3646.2 3048.89 3646.2 -597.31 -5.97 910.29 -3646.2 -0.14 -2.22 83.33 -99.69 0.84 0.17 -

E2.5 DISTV 4 − SPRD100D −BB(20) 16 8 8 142.95 292.86 1143.58 2342.87 -1199.29 -11.99 332.27 -817.41 -0.72 -11.43 50 -74.96 0.49 0.49 -1416.39

E3 DISTV 4 − SPRD100D −DECTREE 296 142 154 115.15 84.07 16351.48 12947.47 3404.01 34.04 699.95 -843.47 -0.9 -14.29 47.97 11.49 1.26 1.37 -1684.66

E4 DISTV 4 − SPRD100D −MLP 223 93 130 134.37 91.49 12496.29 11894.04 602.25 6.02 1000.7 -498.26 -0.91 -14.45 41.7 2.69 1.05 1.47 -1333.47

Part VI: Models derived using the spread obtained from JOHANSEN − SPRD100D

F1.1 JOHANSEN − ZSPRD100D
(3,2) 15 7 8 63.99 71.54 447.92 572.34 -124.43 -1.24 330.57 -249.39 -0.75 -11.91 46.67 -8.29 0.78 0.89 -382.54

F1.2 JOHANSEN − ZSPRD100D
(3,1) 13 6 7 62.33 38.24 373.96 267.66 106.3 1.06 190.9 -111.5 -0.98 -15.56 46.15 8.17 1.4 1.63 -192.41

F1.3 JOHANSEN − ZSPRD100D
(3,0.5) 13 6 7 306.3 38.24 1837.77 267.66 1570.11 15.7 1457.02 -111.5 0.07 1.11 46.15 120.76 6.87 8.01 -192.41

F1.4 JOHANSEN − ZSPRD100D
(2.7,2) 16 7 9 66.39 66.81 464.7 601.3 -136.6 -1.37 330.57 -249.39 -0.78 -12.38 43.75 -8.54 0.77 0.99 -382.54

F1.5 JOHANSEN − ZSPRD100D
(2.7,1) 14 6 8 65.12 37.08 390.75 296.62 94.12 0.94 190.9 -111.5 -1.05 -16.67 42.86 6.73 1.32 1.76 -192.41

F1.6 JOHANSEN − ZSPRD100D
(2.7,0.5) 14 6 8 312.84 37.08 1877.01 296.62 1580.39 15.8 1457.02 -111.5 0.05 0.79 42.86 112.9 6.33 8.44 -192.41

F2.1 JOHANSEN − SPRD100D − SMA(10,20) 20 10 10 1406.59 499.24 14065.88 4992.43 9073.44 90.73 5991.07 -3106.22 0.29 4.6 50 453.67 2.82 2.82 -4177.38

F2.2 JOHANSEN − SPRD100D − EMA(10,20) 28 15 13 1791.94 412.55 26879.16 5363.08 21516.07 215.16 8330.39 -1654.5 0.34 5.4 53.57 768.4 5.01 4.34 -2242.66

F2.3 JOHANSEN − SPRD100D −MACD(12,26,9) 31 13 18 3067.59 1010.17 39878.65 18183.02 21695.63 216.96 34658.26 -4141.92 0.09 1.43 41.94 700.04 2.19 3.04 -13009.89

F2.4 JOHANSEN − SPRD100D −RSI(14) 6 4 2 196.82 560.51 787.28 1121.01 -333.73 -3.34 551.08 -588.1 -0.59 -9.37 66.67 -55.6 0.7 0.35 -1121.01

F2.5 JOHANSEN − SPRD100D −BB(20) 15 4 11 519.95 468.35 2079.78 5151.85 -3072.06 -30.72 1302.24 -2717.97 -0.2 -3.17 26.67 -204.77 0.4 1.11 -3072.06

F3 JOHANSEN − SPRD100D −DECTREE 307 161 146 109.24 90.93 17588.43 13276.07 4312.35 43.12 716.36 -913.64 -0.88 -13.97 52.44 14.04 1.32 1.2 -1567.07

F4 JOHANSEN − SPRD100D −MLP 277 144 133 104.35 114.58 15026.91 15239.09 -212.18 -2.12 716.36 -918.24 -0.91 -14.45 51.99 -0.76 0.99 0.91 -2509.4

Part VII: Models derived using the spread obtained from ADF − SPRD100D

G1.1 ADF − ZSPRD100D
(3,2) 3 2 1 9358.39 548.03 18716.78 548.03 18168.74 181.69 16623.12 -548.03 0.66 10.48 66.67 6056.58 34.15 17.08 -548.03

G1.2 ADF − ZSPRD100D
(3,1) 3 2 1 7956.29 1051.87 15912.58 1051.87 14860.71 148.61 12812.06 -1051.87 0.72 11.43 66.67 4953.87 15.13 7.56 -1051.87

G1.3 ADF − ZSPRD100D
(3,0.5) 3 2 1 7516.24 1051.87 15032.47 1051.87 13980.6 139.81 12252.15 -1051.87 0.7 11.11 66.67 4660.49 14.29 7.15 -1051.87

G1.4 ADF − ZSPRD100D
(2.7,2) 4 2 2 9358.39 2128.71 18716.78 4257.42 14459.36 144.59 16623.12 -3709.39 0.41 6.51 50 3614.84 4.4 4.4 -3709.39

G1.5 ADF − ZSPRD100D
(2.7,1) 4 2 2 7956.29 2380.63 15912.58 4761.26 11151.32 111.51 12812.06 -3709.39 0.4 6.35 50 2787.83 3.34 3.34 -3709.39

G1.6 ADF − ZSPRD100D
(2.7,0.5) 4 2 2 7516.24 6214.59 15032.47 12429.19 2603.28 26.03 12252.15 -11377.31 0.09 1.43 50 650.82 1.21 1.21 -11377.31

G2.1 ADF − SPRD100D − SMA(10,20) 16 8 8 3654.75 3595.33 29238.02 28762.65 475.38 4.75 11318.93 -16880.79 -0.02 -0.32 50 29.71 1.02 1.02 -26063.73

G2.2 ADF − SPRD100D − EMA(10,20) 26 16 10 2325.9 2814 37214.34 28139.96 9074.38 90.74 9075.09 -12812.06 0.04 0.63 61.54 349.09 1.32 0.83 -12812.06

G2.3 ADF − SPRD100D −MACD(12,26,9) 28 14 14 2007.56 2689.16 28105.87 37648.24 -9542.37 -95.42 8317.72 -17437.42 -0.09 -1.43 50 -340.8 0.75 0.75 -33014.43

G2.4 ADF − SPRD100D −RSI(14) 4 3 1 8538.67 377954.01 25616.01 377954.01 -352338 -3523.38 14476.98 -377954.01 -0.45 -7.14 75 -88084.5 0.07 0.02 -377954.01

G2.5 ADF − SPRD100D −BB(20) 18 7 11 5930.56 694.12 41513.95 7635.33 33878.62 338.79 13832.48 -1782.47 0.39 6.19 38.89 1882.22 5.44 8.54 -4189.2

G3 ADF − SPRD100D −DECTREE 313 153 160 107.95 89.5 16516.96 14320.02 2196.94 21.97 918.24 -672.23 -0.96 -15.24 48.88 7.02 1.15 1.21 -2229.75

G4 ADF − SPRD100D −MLP 235 115 120 125.12 104.94 14388.45 12592.31 1796.14 17.96 918.24 -626.71 -0.86 -13.65 48.94 7.65 1.14 1.19 -2206.41

Part VIII: Models derived using the spread obtained from KALMAN − SPRD100D

H1.1 KALMAN − ZSPRD100D
(3,2) 1 - 1 - 263.61 - 263.61 -263.61 -2.64 - -263.61 - - - -263.61 - - -263.61

H1.2 KALMAN − ZSPRD100D
(3,1) 1 1 - 851 - 851 - 851 8.51 851 - - - 100 851 851 851 -

H1.3 KALMAN − ZSPRD100D
(3,0.5) 1 1 - 2935.85 - 2935.85 - 2935.85 29.36 2935.85 - - - 100 2935.85 2935.85 2935.85 -

H1.4 KALMAN − ZSPRD100D
(2.7,2) 1 - 1 - 643.85 - 643.85 -643.85 -6.44 - -643.85 - - - -643.85 - - -643.85

H1.5 KALMAN − ZSPRD100D
(2.7,1) 1 1 - 498.81 - 498.81 - 498.81 4.99 498.81 - - - 100 498.81 498.81 498.81 -

H1.6 KALMAN − ZSPRD100D
(2.7,0.5) 1 1 - 2621.39 - 2621.39 - 2621.39 26.21 2621.39 - - - 100 2621.39 2621.39 2621.39 -

H2.1 KALMAN − SPRD100D − SMA(10,20) 12 5 7 1095.42 961.53 5477.08 6730.72 -1253.64 -12.54 2517.6 -2680.28 -0.15 -2.38 41.67 -104.4 0.81 1.14 -4076.5

H2.2 KALMAN − SPRD100D − EMA(10,20) 19 8 11 2575.97 867.81 20607.74 9545.9 11061.84 110.62 11148.33 -3023.99 0.16 2.54 42.11 582.37 2.16 2.97 -3775.16

H2.3 KALMAN − SPRD100D −MACD(12,26,9) 34 11 23 1265.08 602.91 13915.86 13866.97 48.89 0.49 2913.71 -1571.95 -0.08 -1.27 32.35 1.38 1 2.1 -3739.35

H2.4 KALMAN − SPRD100D −RSI(14) 4 2 2 1153.22 6101.84 2306.44 12203.69 -9897.24 -98.97 1549.04 -9164.83 -0.53 -8.41 50 -2474.31 0.19 0.19 -10654.64

H2.5 KALMAN − SPRD100D −BB(20) 14 11 3 1047.43 1060.9 11521.75 3182.7 8339.06 83.39 2474.13 -1936.61 0.43 6.83 78.57 595.62 3.62 0.99 -2094.14

H3 KALMAN − SPRD100D −DECTREE 317 165 152 108.53 98.42 17907.92 14959.68 2948.24 29.48 898.8 -918.24 -0.89 -14.13 52.05 9.3 1.2 1.1 -1613.44

H4 KALMAN − SPRD100D −MLP 243 115 128 134.91 106.55 15515.18 13638.17 1877.01 18.77 1094.76 -787.41 -0.78 -12.38 47.33 7.74 1.14 1.27 -2945.26

Part IX: Models derived using the spread obtained from RATIO − SPRD100D

I1.1 RATIO − ZSPRD100D
(3,2) 2 - 2 - 489.76 - 979.53 -979.53 -9.8 - -518.47 -15.81 -250.98 - -489.76 - - -979.53

I1.2 RATIO − ZSPRD100D
(3,1) 1 - 1 - 1592.18 - 1592.18 -1592.18 -15.92 - -1592.18 - - - -1592.18 - - -1592.18

I1.3 RATIO − ZSPRD100D
(3,0.5) 1 - 1 - 1688.02 - 1688.02 -1688.02 -16.88 - -1688.02 - - - -1688.02 - - -1688.02

I1.4 RATIO − ZSPRD100D
(2.7,2) 2 - 2 - 547.96 - 1095.91 -1095.91 -10.96 - -568.66 -23.91 -379.56 - -547.96 - - -1095.91

I1.5 RATIO − ZSPRD100D
(2.7,1) 1 - 1 - 1674.13 - 1674.13 -1674.13 -16.74 - -1674.13 - - - -1674.13 - - -1674.13

I1.6 RATIO − ZSPRD100D
(2.7,0.5) 1 - 1 - 1777.3 - 1777.3 -1777.3 -17.77 - -1777.3 - - - -1777.3 - - -1777.3

I2.1 RATIO − SPRD100D − SMA(10,20) 13 8 5 493.63 432.25 3949.02 2161.22 1787.8 17.88 1983.68 -670.84 -0.02 -0.32 61.54 137.54 1.83 1.14 -1519.65

I2.2 RATIO − SPRD100D − EMA(10,20) 15 7 8 980.1 312.73 6860.67 2501.81 4358.86 43.59 2524.4 -468.08 0.16 2.54 46.67 290.63 2.74 3.13 -965.51

I2.3 RATIO − SPRD100D −MACD(12,26,9) 31 14 17 542.67 225.01 7597.42 3825.11 3772.31 37.72 1366.95 -564.35 -0.06 -0.95 45.16 121.68 1.99 2.41 -1919.03

I2.4 RATIO − SPRD100D −RSI(14) 6 3 3 613.91 1658.74 1841.73 4976.21 -3134.48 -31.34 999.24 -4209.14 -0.36 -5.71 50 -522.41 0.37 0.37 -4245.74

I2.5 RATIO − SPRD100D −BB(20) 13 6 7 226.02 569.09 1356.12 3983.61 -2627.49 -26.27 428.2 -1889.83 -0.56 -8.89 46.15 -202.15 0.34 0.4 -2061.04

I3 RATIO − SPRD100D −DECTREE 296 128 168 112.98 78.8 14461.45 13239.02 1222.43 12.22 734.68 -508.22 -1.07 -16.99 43.24 4.12 1.09 1.43 -2108.57

I4 RATIO − SPRD100D −MLP 231 99 132 119.44 80.14 11824.73 10579.1 1245.63 12.46 734.68 -508.22 -1.03 -16.35 42.86 5.4 1.12 1.49 -1841.13

Part X: Models derived using the close price of QQQ.N

CLS-SYM-1.1 CLOSEQQQ.N − SMA(10,20) 13 6 7 194.37 151.12 1166.2 1057.82 108.38 1.08 605.78 -255.49 -0.28 -4.44 46.15 8.32 1.1 1.29 -788.38

CLS-SYM-1.2 CLOSEQQQ.N − EMA(10,20) 20 5 15 606.51 147.26 3032.57 2208.83 823.74 8.24 1524.27 -363.38 -0.08 -1.27 25 41.19 1.37 4.12 -712.96

CLS-SYM-1.3 CLOSEQQQ.N −MACD(12,26,9) 35 16 19 198.63 140.31 3178.11 2665.81 512.3 5.12 695.53 -296.02 -0.29 -4.6 45.71 14.62 1.19 1.42 -1251.08

CLS-SYM-1.4 CLOSEQQQ.N −RSI(14) 7 3 4 938.66 707.17 2815.99 2828.67 -12.68 -0.13 1724.49 -1923.52 -0.07 -1.11 42.86 -1.76 1 1.33 -1923.52

CLS-SYM-1.5 CLOSEQQQ.N −BB(20) 15 10 5 79.54 186.14 795.4 930.7 -135.3 -1.35 153.41 -575.2 -0.46 -7.3 66.67 -9.01 0.85 0.43 -600.51

Part XI: Models derived using the close price of XLE.N

CLS-SYM-2.1 CLOSEXLE.N − SMA(10,20) 19 9 10 492.93 337.96 4436.4 3379.63 1056.77 10.57 1969.29 -993.26 -0.03 -0.48 47.37 55.63 1.31 1.46 -2390.02

CLS-SYM-2.2 CLOSEXLE.N − EMA(10,20) 26 11 15 546.32 161.14 6009.56 2417.09 3592.47 35.92 2197.81 -326.2 0.12 1.9 42.31 138.19 2.49 3.39 -711.67

CLS-SYM-2.3 CLOSEXLE.N −MACD(12,26,9) 27 10 17 637.2 211.29 6372.04 3591.96 2780.08 27.8 1931.38 -613.01 0.05 0.79 37.04 102.99 1.77 3.02 -645.92

CLS-SYM-2.4 CLOSEXLE.N −RSI(14) 5 3 2 314.75 1213.82 944.26 2427.64 -1483.38 -14.83 365.04 -1229.73 -0.44 -6.98 60 -296.68 0.39 0.26 -2062.6

CLS-SYM-2.5 CLOSEXLE.N −BB(20) 20 17 3 198.62 500.07 3376.55 1500.22 1876.33 18.76 822.47 -1185.85 0.05 0.79 85 93.82 2.25 0.4 -1185.85
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Table D.2.10: This table presents the back-test metrics for the pair SCHB.N/SCHF based on a 30-day rolling window. The table is subdivided into eleven parts, and in each of these parts, we present the back-test metrics and the trading strategies which use the
spread derived from various models. In Part I, the spread is derived from the DIST V 1.1 model, in Part II from the DIST V 1.2 model, in Part III from the DIST V 2 model, in Part IV from the DIST V 3 model, in Part V from the DIST V 4 model, in Part VI from the
JOHANSEN − SPRD model, in Part VIII from the ADF − SPRD model, in from the DIST V 2 model, in Part VIII from the KALMAN − SPRD model, and in Part IX from the RATIO − SPRD model. In Part X and XI, we present the back-test metrics of
the trading strategies which use the close price of SCHB.N, and SCHF.N, respectively. All $ numbers reported below are in USD.

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X) (XI) (XII) (XIII) (XIV) (XV) (XVI) (XVII) (XVIII) (XIX) (XX)

Trading
Strategy
Code

Model
Name

Total
Number
of
Trades

Number
of

Winning
Trades

Number
of Loosing
Trades

Average
Profit

per Trade
($)

Average
Loss per
Trade
($)

Gross
Profit
($)

Gross
Loss
($)

Net Profit
($)

ROI (%) Max P&L
($)

Min P&L
($)

Daily
Sharpe
Ratio

Annualized
Sharpe
Ratio

Hit Ratio Expectancy Profit
Factor

Realized
Risk

Reward
Ratio

Max
Drawdown

($)

Part I: Models derived using the spread obtained from DISTV 1.1 − SPRD30D

A1 DISTV 1.1 − ZSPRD30D
(3,2) 2 - 2 - 138.52 - 277.05 -277.05 -2.77 - -220.17 -2.52 -40 - -138.52 - - -277.05

A1 DISTV 1.1 − ZSPRD30D
(3,1) 1 - 1 - 181.3 - 181.3 -181.3 -1.81 - -181.3 - - - -181.3 - - -181.3

A1 DISTV 1.1 − ZSPRD30D
(3,0.5) 1 - 1 - 153.49 - 153.49 -153.49 -1.53 - -153.49 - - - -153.49 - - -153.49

A1 DISTV 1.1 − ZSPRD30D
(2.7,2) 4 - 4 - 109.35 - 437.39 -437.39 -4.37 - -220.17 -3.21 -50.96 - -109.35 - - -437.39

A1 DISTV 1.1 − ZSPRD30D
(2.7,1) 2 1 1 16.14 181.3 16.14 181.3 -165.16 -1.65 16.14 -181.3 -1.68 -26.67 50 -82.58 0.09 0.09 -181.3

A1 DISTV 1.1 − ZSPRD30D
(2.7,0.5) 1 - 1 - 153.49 - 153.49 -153.49 -1.53 - -153.49 - - - -153.49 - - -153.49

A2 DISTV 1.1 − SPRD30D − SMA(10,20) 10 3 7 39.45 189.45 118.36 1326.15 -1207.8 -12.08 61.13 -622.55 -1.35 -21.43 30 -120.78 0.09 0.21 -1207.8

A2 DISTV 1.1 − SPRD30D − EMA(10,20) 23 13 10 93.51 123.69 1215.63 1236.91 -21.28 -0.21 237.02 -336.69 -1.06 -16.83 56.52 -0.93 0.98 0.76 -538.74

A2 DISTV 1.1 − SPRD30D −MACD(12,26,9) 35 25 10 58.5 70.44 1462.6 704.41 758.18 7.58 180.99 -168.62 -1.75 -27.78 71.43 21.66 2.08 0.83 -143.04

A2 DISTV 1.1 − SPRD30D −RSI(14) 4 3 1 399.94 166.87 1199.81 166.86 1032.94 10.33 658.17 -166.87 0.31 4.92 75 258.24 7.19 2.4 -166.87

A2 DISTV 1.1 − SPRD30D −BB(20) 12 5 7 66.87 66.56 334.35 465.9 -131.54 -1.32 122.41 -123.14 -1.9 -30.16 41.67 -10.96 0.72 1 -331.26

A3 DISTV 1.1 − SPRD30D −DECTREE 358 155 203 22.36 23.87 3465.93 4846.15 -1380.22 -13.8 115 -192.07 -4.78 -75.88 43.3 -3.85 0.72 0.94 -1717.51

A4 DISTV 1.1 − SPRD30D −MLP 302 132 170 26.47 23.46 3493.67 3988.68 -495.01 -4.95 206.99 -208.41 -4.1 -65.09 43.71 -1.64 0.88 1.13 -894.37

Part II: Models derived using the spread obtained from DISTV 1.2 − SPRD30D

B1 DISTV 1.2 − ZSPRD30D
(3,2) 5 3 2 15.48 72.5 46.44 145 -98.56 -0.99 23.13 -111.04 -3.09 -49.05 60 -19.71 0.32 0.21 -134.94

B1 DISTV 1.2 − ZSPRD30D
(3,1) 5 1 4 18.06 55.6 18.06 222.42 -204.36 -2.04 18.06 -144.96 -3.01 -47.78 20 -40.87 0.08 0.32 -222.42

B1 DISTV 1.2 − ZSPRD30D
(3,0.5) 5 1 4 3.6 75.86 3.6 303.43 -299.83 -3 3.6 -197.61 -2.51 -39.85 20 -59.97 0.01 0.05 -303.43

B1 DISTV 1.2 − ZSPRD30D
(2.7,2) 11 8 3 47.91 50.05 383.28 150.16 233.12 2.33 110.73 -111.04 -2.1 -33.34 72.73 21.2 2.55 0.96 -111.04

B1 DISTV 1.2 − ZSPRD30D
(2.7,1) 10 5 5 128.15 73.91 640.76 369.57 271.19 2.71 221.28 -152.04 -0.98 -15.56 50 27.12 1.73 1.73 -152.04

B1 DISTV 1.2 − ZSPRD30D
(2.7,0.5) 10 5 5 105.97 90.09 529.87 450.44 79.43 0.79 161.55 -197.61 -1.16 -18.41 50 7.94 1.18 1.18 -197.61

B2 DISTV 1.2 − SPRD30D − SMA(10,20) 17 5 12 120.26 133.15 601.31 1597.78 -996.46 -9.96 280.5 -207.19 -1.55 -24.61 29.41 -58.62 0.38 0.9 -1141.37

B2 DISTV 1.2 − SPRD30D − EMA(10,20) 23 8 15 122.53 111.2 980.27 1668.04 -687.77 -6.88 307.61 -250.84 -1.26 -20 34.78 -29.91 0.59 1.1 -1311.34

B2 DISTV 1.2 − SPRD30D −MACD(12,26,9) 28 10 18 86.45 61.12 864.45 1100.09 -235.64 -2.36 253.01 -189.14 -1.67 -26.51 35.71 -8.42 0.79 1.41 -725.93

B2 DISTV 1.2 − SPRD30D −RSI(14) 8 1 7 7.73 153.9 7.73 1077.32 -1069.59 -10.7 7.73 -414.81 -2.04 -32.38 12.5 -133.7 0.01 0.05 -662.51

B2 DISTV 1.2 − SPRD30D −BB(20) 15 6 9 84.45 74.95 506.69 674.56 -167.87 -1.68 191.06 -252.35 -1.48 -23.49 40 -11.19 0.75 1.13 -316.97

B3 DISTV 1.2 − SPRD30D −DECTREE 298 140 158 23.88 29.08 3342.61 4594.32 -1251.71 -12.52 152.1 -164.53 -4.26 -67.63 46.98 -4.2 0.73 0.82 -1598.22

B4 DISTV 1.2 − SPRD30D −MLP 219 107 112 24.84 33.5 2658.3 3752.02 -1093.73 -10.94 170.9 -171.77 -3.57 -56.67 48.86 -4.99 0.71 0.74 -1249.14

Part III: Models derived using the spread obtained from DISTV 2 − SPRD30D

C1 DISTV 2 − ZSPRD30D
(3,2) 2 2 - 138.52 - 277.05 - 277.05 2.77 220.17 - -0.12 -1.9 100 138.52 277.05 138.52 -

C1 DISTV 2 − ZSPRD30D
(3,1) 1 1 - 181.3 - 181.3 - 181.3 1.81 181.3 - - - 100 181.3 181.3 181.3 -

C1 DISTV 2 − ZSPRD30D
(3,0.5) 1 1 - 153.49 - 153.49 - 153.49 1.53 153.49 - - - 100 153.49 153.49 153.49 -

C1 DISTV 2 − ZSPRD30D
(2.7,2) 4 4 - 109.35 - 437.39 - 437.39 4.37 220.17 - -0.52 -8.25 100 109.35 437.39 109.35 -

C1 DISTV 2 − ZSPRD30D
(2.7,1) 2 1 1 181.3 16.14 181.3 16.14 165.16 1.65 181.3 -16.14 -0.5 -7.94 50 82.58 11.23 11.23 -16.14

C1 DISTV 2 − ZSPRD30D
(2.7,0.5) 1 1 - 153.49 - 153.49 - 153.49 1.53 153.49 - - - 100 153.49 153.49 153.49 -

C2 DISTV 2 − SPRD30D − SMA(10,20) 10 7 3 189.45 39.45 1326.15 118.36 1207.8 12.08 622.55 -61.13 -0.15 -2.38 70 120.78 11.2 4.8 -87.93

C2 DISTV 2 − SPRD30D − EMA(10,20) 23 10 13 123.69 93.51 1236.91 1215.63 21.28 0.21 336.69 -237.02 -1.05 -16.67 43.48 0.93 1.02 1.32 -410.71

C2 DISTV 2 − SPRD30D −MACD(12,26,9) 35 10 25 70.44 58.5 704.41 1462.6 -758.18 -7.58 168.62 -180.99 -2.33 -36.99 28.57 -21.66 0.48 1.2 -1059.3

C2 DISTV 2 − SPRD30D −RSI(14) 4 1 3 166.87 399.94 166.86 1199.81 -1032.94 -10.33 166.87 -658.17 -1.2 -19.05 25 -258.24 0.14 0.42 -840.4

C2 DISTV 2 − SPRD30D −BB(20) 12 7 5 66.56 66.87 465.9 334.35 131.54 1.32 123.14 -122.41 -1.64 -26.03 58.33 10.96 1.39 1 -175.5

C3 DISTV 2 − SPRD30D −DECTREE 351 147 204 23.54 24.75 3460.9 5048.82 -1587.92 -15.88 115 -289.77 -4.36 -69.21 41.88 -4.52 0.69 0.95 -1910.26

C4 DISTV 2 − SPRD30D −MLP 330 137 193 26.98 26.61 3696.1 5135.19 -1439.08 -14.39 184.3 -289.77 -3.88 -61.59 41.52 -4.36 0.72 1.01 -1935.97

Part IV: Models derived using the spread obtained from DISTV 3 − SPRD30D

D1 DISTV 3 − ZSPRD30D
(3,2) 4 3 1 35.37 4.61 106.12 4.61 101.51 1.02 52.49 -4.61 -5.42 -86.04 75 25.38 23.01 7.67 -4.61

D1 DISTV 3 − ZSPRD30D
(3,1) 4 4 - 37.62 - 150.48 - 150.48 1.5 69.4 - -4.36 -69.21 100 37.62 150.48 37.62 -

D1 DISTV 3 − ZSPRD30D
(3,0.5) 4 4 - 47.46 - 189.83 - 189.83 1.9 69.4 - -3.81 -60.48 100 47.46 189.83 47.46 -

D1 DISTV 3 − ZSPRD30D
(2.7,2) 8 7 1 26.11 4.61 182.75 4.61 178.14 1.78 52.49 -4.61 -6.27 -99.53 87.5 22.27 39.62 5.66 -4.61

D1 DISTV 3 − ZSPRD30D
(2.7,1) 8 8 - 33.31 - 266.48 - 266.48 2.66 69.4 - -5.22 -82.86 100 33.31 266.48 33.31 -

D1 DISTV 3 − ZSPRD30D
(2.7,0.5) 8 8 - 38.38 - 307.05 - 307.05 3.07 69.4 - -4.62 -73.34 100 38.38 307.05 38.38 -

D2 DISTV 3 − SPRD30D − SMA(10,20) 25 11 14 85.36 77.03 938.93 1078.38 -139.45 -1.39 171.06 -211.41 -1.6 -25.4 44 -5.58 0.87 1.11 -768.12

D2 DISTV 3 − SPRD30D − EMA(10,20) 43 14 29 76.11 64.62 1065.52 1874.02 -808.5 -8.08 298.61 -184.93 -1.99 -31.59 32.56 -18.8 0.57 1.18 -936.91

D2 DISTV 3 − SPRD30D −MACD(12,26,9) 44 17 27 59.73 59.76 1015.49 1613.46 -597.98 -5.98 207.03 -218.08 -2.05 -32.54 38.64 -13.59 0.63 1 -645.77

D2 DISTV 3 − SPRD30D −RSI(14) 2 1 1 449.96 476.88 449.96 476.88 -26.91 -0.27 449.96 -476.88 -0.25 -3.97 50 -13.46 0.94 0.94 -476.88

D2 DISTV 3 − SPRD30D −BB(20) 20 11 9 28.2 48.91 310.18 440.17 -129.99 -1.3 58.31 -132.53 -3.11 -49.37 55 -6.5 0.7 0.58 -194.39

D3 DISTV 3 − SPRD30D −DECTREE 320 144 176 27.72 23.96 3991.73 4217.52 -225.8 -2.26 352.34 -185.94 -3.75 -59.53 45 -0.71 0.95 1.16 -927.98

D4 DISTV 3 − SPRD30D −MLP 138 63 75 28.89 30.77 1820.24 2307.48 -487.24 -4.87 256.44 -281.43 -2.89 -45.88 45.65 -3.53 0.79 0.94 -865.9

Part V: Models derived using the spread obtained from DISTV 4 − SPRD30D

E1 DISTV 4 − ZSPRD30D
(3,2) 4 3 1 35.37 4.61 106.12 4.61 101.51 1.02 52.49 -4.61 -5.42 -86.04 75 25.38 23.01 7.67 -4.61

E1 DISTV 4 − ZSPRD30D
(3,1) 4 4 - 37.62 - 150.48 - 150.48 1.5 69.4 - -4.36 -69.21 100 37.62 150.48 37.62 -

E1 DISTV 4 − ZSPRD30D
(3,0.5) 4 4 - 47.46 - 189.83 - 189.83 1.9 69.4 - -3.81 -60.48 100 47.46 189.83 47.46 -

E1 DISTV 4 − ZSPRD30D
(2.7,2) 8 7 1 26.11 4.61 182.75 4.61 178.14 1.78 52.49 -4.61 -6.27 -99.53 87.5 22.27 39.62 5.66 -4.61

E1 DISTV 4 − ZSPRD30D
(2.7,1) 8 8 - 33.31 - 266.48 - 266.48 2.66 69.4 - -5.22 -82.86 100 33.31 266.48 33.31 -

E1 DISTV 4 − ZSPRD30D
(2.7,0.5) 8 8 - 38.38 - 307.05 - 307.05 3.07 69.4 - -4.62 -73.34 100 38.38 307.05 38.38 -

E2 DISTV 4 − SPRD30D − SMA(10,20) 25 11 14 72.16 81.13 793.78 1135.86 -342.08 -3.42 153.71 -211.41 -1.79 -28.42 44 -13.68 0.7 0.89 -768.12

E2 DISTV 4 − SPRD30D − EMA(10,20) 43 14 29 76.11 64.62 1065.52 1874.02 -808.5 -8.08 298.61 -184.93 -1.99 -31.59 32.56 -18.8 0.57 1.18 -936.91

E2 DISTV 4 − SPRD30D −MACD(12,26,9) 44 17 27 59.73 59.76 1015.49 1613.46 -597.98 -5.98 207.03 -218.08 -2.05 -32.54 38.64 -13.59 0.63 1 -645.77

E2 DISTV 4 − SPRD30D −RSI(14) 2 1 1 449.96 476.88 449.96 476.88 -26.91 -0.27 449.96 -476.88 -0.25 -3.97 50 -13.46 0.94 0.94 -476.88

E2 DISTV 4 − SPRD30D −BB(20) 20 11 9 28.2 48.91 310.18 440.17 -129.99 -1.3 58.31 -132.53 -3.11 -49.37 55 -6.5 0.7 0.58 -194.39

E3 DISTV 4 − SPRD30D −DECTREE 307 142 165 24.86 26.89 3529.97 4437.53 -907.56 -9.08 189.97 -174.81 -4 -63.5 46.25 -2.96 0.8 0.92 -1278.93

E4 DISTV 4 − SPRD30D −MLP 151 69 82 25.28 27.32 1744.4 2240.16 -495.77 -4.96 98.79 -140.04 -3.97 -63.02 45.7 -3.28 0.78 0.93 -764.05

Part VI: Models derived using the spread obtained from JOHANSEN − SPRD30D

F1 JOHANSEN − ZSPRD30D
(3,2) 28 13 15 131.8 24.79 1713.37 371.82 1341.55 13.42 988.29 -184.39 -0.23 -3.65 46.43 47.91 4.61 5.32 -203.92

F1 JOHANSEN − ZSPRD30D
(3,1) 25 12 13 145.52 27.35 1746.25 355.58 1390.68 13.91 988.29 -184.39 -0.22 -3.49 48 55.63 4.91 5.32 -198.02

F1 JOHANSEN − ZSPRD30D
(3,0.5) 25 13 12 151.29 29.2 1966.79 350.46 1616.34 16.16 988.29 -184.39 -0.22 -3.49 52 64.65 5.61 5.18 -198.02

F1 JOHANSEN − ZSPRD30D
(2.7,2) 29 13 16 132.22 24.96 1718.83 399.41 1319.42 13.19 988.29 -184.39 -0.23 -3.65 44.83 45.5 4.3 5.3 -235.18

F1 JOHANSEN − ZSPRD30D
(2.7,1) 26 12 14 145.94 27.01 1751.22 378.12 1373.1 13.73 988.29 -184.39 -0.22 -3.49 46.15 52.8 4.63 5.4 -230.13

F1 JOHANSEN − ZSPRD30D
(2.7,0.5) 26 14 12 147.3 29.01 2062.21 348.12 1714.09 17.14 988.29 -184.39 -0.21 -3.33 53.85 65.93 5.92 5.08 -198.02

F2 JOHANSEN − SPRD30D − SMA(10,20) 24 10 14 177.59 485.13 1775.86 6791.84 -5015.98 -50.16 861.74 -3480.35 0.11 1.75 41.67 -208.98 0.26 0.37 -5726.73

F2 JOHANSEN − SPRD30D − EMA(10,20) 41 18 23 207.06 470.88 3727.08 10830.13 -7103.05 -71.03 1043.76 -4020.71 0.02 0.32 43.9 -173.26 0.34 0.44 -8023.54

F2 JOHANSEN − SPRD30D −MACD(12,26,9) 43 14 29 349.66 150.68 4895.27 4369.85 525.42 5.25 2669 -988.29 -0.05 -0.79 32.56 12.23 1.12 2.32 -1849.54

F2 JOHANSEN − SPRD30D −RSI(14) 6 2 4 21.78 669.83 43.57 2679.32 -2635.75 -26.36 36.36 -1393.58 -0.67 -10.64 33.33 -439.32 0.02 0.03 -2635.75

F2 JOHANSEN − SPRD30D −BB(20) 24 13 11 242.94 202.66 3158.24 2229.24 929 9.29 957.95 -775.63 0.04 0.63 54.17 38.72 1.42 1.2 -834.38

F3 JOHANSEN − SPRD30D −DECTREE 324 149 175 24.94 26.21 3716.48 4586.8 -870.32 -8.7 141.64 -195.28 -4.03 -63.97 45.99 -2.68 0.81 0.95 -1542.12

F4 JOHANSEN − SPRD30D −MLP 204 98 106 26.07 34.98 2555.18 3708.26 -1153.07 -11.53 162.04 -189.27 -3.44 -54.61 48.04 -5.65 0.69 0.75 -1203.52

Part VII: Models derived using the spread obtained from ADF − SPRD30D

G1 ADF − ZSPRD30D
(3,2) 5 3 2 126.4 934.48 379.21 1868.97 -1489.76 -14.9 318.31 -976.02 -0.66 -10.48 60 -297.95 0.2 0.14 -1827.37

G1 ADF − ZSPRD30D
(3,1) 5 3 2 283.98 821.7 851.94 1643.39 -791.45 -7.91 583.08 -1014.88 -0.4 -6.35 60 -158.29 0.52 0.35 -1403.67

G1 ADF − ZSPRD30D
(3,0.5) 5 3 2 281.93 1641.15 845.8 3282.31 -2436.5 -24.37 583.08 -2060.34 -0.53 -8.41 60 -487.3 0.26 0.17 -3053.49

G1 ADF − ZSPRD30D
(2.7,2) 10 6 4 140.86 581.45 845.16 2325.79 -1480.62 -14.81 318.31 -976.02 -0.54 -8.57 60 -148.06 0.36 0.24 -1828.62

G1 ADF − ZSPRD30D
(2.7,1) 10 5 5 285.57 512.05 1427.82 2560.27 -1132.44 -11.32 583.08 -1014.88 -0.44 -6.98 50 -113.24 0.56 0.56 -1749.41

G1 ADF − ZSPRD30D
(2.7,0.5) 10 3 7 336.84 637.73 1010.52 4464.11 -3453.6 -34.54 583.08 -2060.34 -0.58 -9.21 30 -345.36 0.23 0.53 -4029.01

G2 ADF − SPRD30D − SMA(10,20) 27 18 9 534.39 401.11 9618.96 3609.94 6009.01 60.09 1690.04 -1051.71 0.19 3.02 66.67 222.59 2.66 1.33 -1268.39

G2 ADF − SPRD30D − EMA(10,20) 41 26 15 436.93 484.11 11360.14 7261.6 4098.54 40.99 1672.08 -2223.46 0.03 0.48 63.41 99.92 1.56 0.9 -3157.05

G2 ADF − SPRD30D −MACD(12,26,9) 49 28 21 444.97 348.92 12459.17 7327.34 5131.83 51.32 3030.38 -1290.38 0.03 0.48 57.14 104.71 1.7 1.28 -3618.45

G2 ADF − SPRD30D −RSI(14) - - - - - - - - - - - - - - - - - -

G2 ADF − SPRD30D −BB(20) 21 9 12 234.74 385.97 2112.67 4631.6 -2518.93 -25.19 862.08 -1054.53 -0.5 -7.94 42.86 -119.93 0.46 0.61 -2642.32

G3 ADF − SPRD30D −DECTREE 322 182 140 26.63 23.05 4846.61 3226.45 1620.15 16.2 289.77 -112.1 -3.73 -59.21 56.52 5.03 1.5 1.16 -334.18

G4 ADF − SPRD30D −MLP 155 92 63 25.2 37.88 2318.72 2386.62 -67.9 -0.68 121.59 -252.21 -3.15 -50 59.35 -0.44 0.97 0.67 -797.34

Part VIII: Models derived using the spread obtained from KALMAN − SPRD30D

H1 KALMAN − ZSPRD30D
(3,2) - - - - - - - - - - - - - - - - - -

H1 KALMAN − ZSPRD30D
(3,1) - - - - - - - - - - - - - - - - - -

H1 KALMAN − ZSPRD30D
(3,0.5) - - - - - - - - - - - - - - - - - -

H1 KALMAN − ZSPRD30D
(2.7,2) 5 4 1 138.6 225.56 554.41 225.56 328.85 3.29 270.58 -225.56 -0.23 -3.65 80 65.77 2.46 0.61 -225.56

H1 KALMAN − ZSPRD30D
(2.7,1) 3 2 1 123.99 628.27 247.99 628.27 -380.28 -3.8 236.7 -628.27 -0.53 -8.41 66.67 -126.73 0.39 0.2 -628.27

H1 KALMAN − ZSPRD30D
(2.7,0.5) 3 1 2 288.9 425.01 288.9 850.01 -561.11 -5.61 288.9 -501.43 -0.71 -11.27 33.33 -187.06 0.34 0.68 -850.01

H2 KALMAN − SPRD30D − SMA(10,20) 11 3 8 842.59 160.02 2527.76 1280.16 1247.59 12.48 2346.06 -437.31 0.01 0.16 27.27 113.39 1.97 5.27 -932.39

H2 KALMAN − SPRD30D − EMA(10,20) 17 8 9 512.91 167.68 4103.26 1509.09 2594.17 25.94 1797.97 -466.69 0.09 1.43 47.06 152.61 2.72 3.06 -938.82

H2 KALMAN − SPRD30D −MACD(12,26,9) 34 14 20 310 132.93 4340 2658.65 1681.34 16.81 1349.13 -333.75 -0.18 -2.86 41.18 49.47 1.63 2.33 -788.6

H2 KALMAN − SPRD30D −RSI(14) 4 1 3 1945.16 1155.98 1945.16 3467.94 -1522.78 -15.23 1945.16 -2942.77 -0.24 -3.81 25 -380.7 0.56 1.68 -2942.77

H2 KALMAN − SPRD30D −BB(20) 11 8 3 147.64 674.97 1181.16 2024.92 -843.76 -8.44 453.61 -1108.69 -0.42 -6.67 72.73 -76.68 0.58 0.22 -1479.58

H3 KALMAN − SPRD30D −DECTREE 358 144 214 21.1 23.05 3038.23 4932.88 -1894.64 -18.95 167.06 -126.84 -4.86 -77.15 40.22 -5.29 0.62 0.92 -2047.57

H4 KALMAN − SPRD30D −MLP 287 112 175 28.06 24.31 3142.89 4254.84 -1111.95 -11.12 250.01 -179.79 -4.12 -65.4 39.02 -3.88 0.74 1.15 -1385.6

Part IX: Models derived using the spread obtained from RATIO − SPRD30D

I1 RATIO − ZSPRD30D
(3,2) 4 3 1 118.79 109.38 356.38 109.38 247 2.47 289.77 -109.38 -0.54 -8.57 75 61.75 3.26 1.09 -109.38

I1 RATIO − ZSPRD30D
(3,1) 4 3 1 164.13 152.03 492.38 152.03 340.35 3.4 414.81 -152.03 -0.28 -4.44 75 85.09 3.24 1.08 -152.03

I1 RATIO − ZSPRD30D
(3,0.5) 4 3 1 180.26 120.28 540.79 120.28 420.51 4.21 414.81 -120.28 -0.21 -3.33 75 105.13 4.5 1.5 -120.28

I1 RATIO − ZSPRD30D
(2.7,2) 6 4 2 98.8 55.39 395.19 110.78 284.41 2.84 289.77 -109.38 -0.8 -12.7 66.67 47.41 3.57 1.78 -110.78

I1 RATIO − ZSPRD30D
(2.7,1) 6 5 1 119.53 152.03 597.66 152.03 445.64 4.46 414.81 -152.03 -0.42 -6.67 83.33 74.26 3.93 0.79 -152.03

I1 RATIO − ZSPRD30D
(2.7,0.5) 6 5 1 139.73 120.28 698.67 120.28 578.39 5.78 414.81 -120.28 -0.32 -5.08 83.33 96.39 5.81 1.16 -120.28

I2 RATIO − SPRD30D − SMA(10,20) 17 7 10 146.21 81.29 1023.44 812.89 210.54 2.11 364.83 -182.68 -0.95 -15.08 41.18 12.39 1.26 1.8 -448.64

I2 RATIO − SPRD30D − EMA(10,20) 24 7 17 123.4 66.35 863.78 1128.01 -264.23 -2.64 248.67 -266.81 -1.46 -23.18 29.17 -11 0.77 1.86 -915.14

I2 RATIO − SPRD30D −MACD(12,26,9) 32 12 20 57.54 66.43 690.46 1328.57 -638.11 -6.38 156.26 -240.74 -1.97 -31.27 37.5 -19.94 0.52 0.87 -825.85

I2 RATIO − SPRD30D −RSI(14) 3 1 2 190.19 808.88 190.19 1617.76 -1427.57 -14.28 190.19 -1425.46 -0.74 -11.75 33.33 -475.89 0.12 0.24 -1425.46

I2 RATIO − SPRD30D −BB(20) 14 12 2 55.3 134.46 663.57 268.92 394.65 3.95 139 -237 -1.43 -22.7 85.71 28.18 2.47 0.41 -237

I3 RATIO − SPRD30D −DECTREE 372 130 242 22.52 21.2 2927.27 5129.48 -2202.21 -22.02 112.86 -110.99 -5.31 -84.29 34.95 -5.92 0.57 1.06 -2411.62

I4 RATIO − SPRD30D −MLP 357 123 234 23.4 21.48 2877.65 5025.72 -2148.07 -21.48 112.86 -110.99 -5.23 -83.02 34.45 -6.02 0.57 1.09 -2331.97

Part X: Models derived using the close price of SCHB.N

CLS-SYM-1 CLOSESCHB.N − SMA(10,20) 14 8 6 275.75 104.83 2206.01 628.98 1577.04 15.77 789.43 -230.52 0.13 2.06 57.14 112.63 3.51 2.63 -324.24

CLS-SYM-1 CLOSESCHB.N − EMA(10,20) 17 7 10 370.21 232.37 2591.45 2323.66 267.79 2.68 1083.32 -810.29 -0.15 -2.38 41.18 15.77 1.12 1.59 -630.81

CLS-SYM-1 CLOSESCHB.N −MACD(12,26,9) 37 14 23 144.19 101.44 2018.6 2333.05 -314.45 -3.14 604.53 -326.15 -0.5 -7.94 37.84 -8.49 0.87 1.42 -1087.87

CLS-SYM-1 CLOSESCHB.N −RSI(14) 5 2 3 313.96 850.97 627.91 2552.9 -1924.99 -19.25 584.15 -2050.03 -0.46 -7.3 40 -385 0.25 0.37 -2050.03

CLS-SYM-1 CLOSESCHB.N −BB(20) 11 9 2 83.74 413.03 753.64 826.06 -72.41 -0.72 239.73 -780.29 -0.31 -4.92 81.82 -6.57 0.91 0.2 -780.29

Part XI: Models derived using the close price of SCHF.N

CLS-SYM-2 CLOSESCHF.N − SMA(10,20) 20 7 13 314.26 125.66 2199.8 1633.59 566.2 5.66 1106.36 -575.54 -0.14 -2.22 35 28.31 1.35 2.5 -918.42

CLS-SYM-2 CLOSESCHF.N − EMA(10,20) 23 8 15 331.11 93.37 2648.86 1400.61 1248.24 12.48 911.97 -332.73 -0.07 -1.11 34.78 54.26 1.89 3.55 -643.72

CLS-SYM-2 CLOSESCHF.N −MACD(12,26,9) 30 10 20 221.35 120.16 2213.46 2403.27 -189.81 -1.9 1043.11 -326.35 -0.34 -5.4 33.33 -6.34 0.92 1.84 -1733.81

CLS-SYM-2 CLOSESCHF.N −RSI(14) 5 2 3 617.93 304.16 1235.87 912.48 323.39 3.23 959.27 -697.61 -0.02 -0.32 40 64.68 1.35 2.03 -697.61

CLS-SYM-2 CLOSESCHF.N −BB(20) 15 8 7 79.49 192.86 635.89 1349.99 -714.1 -7.14 252.09 -785.71 -0.51 -8.1 53.33 -47.62 0.47 0.41 -785.71
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Table D.2.11: This table presents the back-test metrics for the pair SCHB.N/SCHF based on a 50-day rolling window. The table is subdivided into eleven parts, and in each of these parts, we present the back-test metrics and the trading strategies which use the
spread derived from various models. In Part I, the spread is derived from the DIST V 1.1 model, in Part II from the DIST V 1.2 model, in Part III from the DIST V 2 model, in Part IV from the DIST V 3 model, in Part V from the DIST V 4 model, in Part VI from the
JOHANSEN − SPRD model, in Part VIII from the ADF − SPRD model, in from the DIST V 2 model, in Part VIII from the KALMAN − SPRD model, and in Part IX from the RATIO − SPRD model. In Part X and XI, we present the back-test metrics of
the trading strategies which use the close price of SCHB.N, and SCHF.N, respectively. All $ numbers reported below are in USD.

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X) (XI) (XII) (XIII) (XIV) (XV) (XVI) (XVII) (XVIII) (XIX) (XX)
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Part I: Models derived using the spread obtained from DISTV 1.1 − SPRD50D

A1 DISTV 1.1 − ZSPRD50D
(3,2) 2 - 2 - 65.28 - 130.56 -130.56 -1.31 - -98.65 -4.61 -73.18 - -65.28 - - -130.56

A1 DISTV 1.1 − ZSPRD50D
(3,1) 1 - 1 - 66.31 - 66.31 -66.31 -0.66 - -66.31 - - - -66.31 - - -66.31

A1 DISTV 1.1 − ZSPRD50D
(3,0.5) 1 - 1 - 170.67 - 170.67 -170.67 -1.71 - -170.67 - - - -170.67 - - -170.67

A1 DISTV 1.1 − ZSPRD50D
(2.7,2) 3 1 2 59.66 38.57 59.66 77.13 -17.47 -0.17 59.66 -45.22 -2.76 -43.81 33.33 -5.83 0.77 1.55 -45.22

A1 DISTV 1.1 − ZSPRD50D
(2.7,1) 2 1 1 63.96 66.31 63.96 66.31 -2.35 -0.02 63.96 -66.31 -1.66 -26.35 50 -1.17 0.96 0.96 -66.31

A1 DISTV 1.1 − ZSPRD50D
(2.7,0.5) 2 1 1 63.3 170.67 63.3 170.67 -107.37 -1.07 63.3 -170.67 -1.24 -19.68 50 -53.68 0.37 0.37 -170.67

A2 DISTV 1.1 − SPRD50D − SMA(10,20) 9 4 5 51.59 187.14 206.38 935.69 -729.32 -7.29 120.92 -622.55 -1.08 -17.14 44.44 -81.05 0.22 0.28 -830.62

A2 DISTV 1.1 − SPRD50D − EMA(10,20) 22 13 9 90.34 133.55 1174.37 1201.94 -27.58 -0.28 237.02 -336.69 -1.06 -16.83 59.09 -1.26 0.98 0.68 -503.78

A2 DISTV 1.1 − SPRD50D −MACD(12,26,9) 37 29 8 55.24 74.84 1602.02 598.68 1003.34 10.03 180.99 -171.06 -1.76 -27.94 78.38 27.12 2.68 0.74 -143.04

A2 DISTV 1.1 − SPRD50D −RSI(14) 5 3 2 395.5 109.98 1186.49 219.95 966.54 9.67 658.17 -166.87 0.13 2.06 60 193.31 5.39 3.6 -166.87

A2 DISTV 1.1 − SPRD50D −BB(20) 12 5 7 101.81 66.56 509.07 465.9 43.18 0.43 297.13 -123.14 -1.25 -19.84 41.67 3.6 1.09 1.53 -331.26

A3 DISTV 1.1 − SPRD50D −DECTREE 354 152 202 23.81 23.96 3618.57 4840.44 -1221.87 -12.22 162.66 -289.77 -4.32 -68.58 42.94 -3.45 0.75 0.99 -1753.28

A4 DISTV 1.1 − SPRD50D −MLP 296 127 169 26.18 23.99 3324.44 4054.27 -729.82 -7.3 289.77 -110.99 -4.13 -65.56 42.91 -2.46 0.82 1.09 -1188.26

Part II: Models derived using the spread obtained from DISTV 1.2 − SPRD50D

B1 DISTV 1.2 − ZSPRD50D
(3,2) 7 4 3 59.67 34 238.69 102 136.69 1.37 102.64 -83.42 -2.02 -32.07 57.14 19.52 2.34 1.76 -83.42

B1 DISTV 1.2 − ZSPRD50D
(3,1) 7 2 5 149.15 157.87 298.3 789.36 -491.07 -4.91 197 -279.6 -1.24 -19.68 28.57 -70.16 0.38 0.94 -592.36

B1 DISTV 1.2 − ZSPRD50D
(3,0.5) 7 2 5 185.45 178.96 370.9 894.8 -523.9 -5.24 256.24 -320.86 -1.05 -16.67 28.57 -74.85 0.41 1.04 -638.56

B1 DISTV 1.2 − ZSPRD50D
(2.7,2) 11 6 5 30.84 48.88 185.07 244.39 -59.32 -0.59 101.3 -98.8 -2.88 -45.72 54.55 -5.39 0.76 0.63 -207.45

B1 DISTV 1.2 − ZSPRD50D
(2.7,1) 9 3 6 90.73 143.65 272.18 861.89 -589.71 -5.9 102.99 -279.6 -1.54 -24.45 33.33 -65.53 0.32 0.63 -691.01

B1 DISTV 1.2 − ZSPRD50D
(2.7,0.5) 9 3 6 136.04 161.33 408.12 967.97 -559.85 -5.6 149.86 -320.86 -1.2 -19.05 33.33 -62.22 0.42 0.84 -674.51

B2 DISTV 1.2 − SPRD50D − SMA(10,20) 19 8 11 122.31 80.95 978.49 890.46 88.02 0.88 320.86 -221.02 -1.06 -16.83 42.11 4.64 1.1 1.51 -221.02

B2 DISTV 1.2 − SPRD50D − EMA(10,20) 25 10 15 106.77 105.66 1067.68 1584.88 -517.2 -5.17 358.9 -339.95 -1.19 -18.89 40 -20.69 0.67 1.01 -817.51

B2 DISTV 1.2 − SPRD50D −MACD(12,26,9) 24 8 16 78.56 69.03 628.51 1104.53 -476.02 -4.76 150.19 -278.15 -1.79 -28.42 33.33 -19.84 0.57 1.14 -769.03

B2 DISTV 1.2 − SPRD50D −RSI(14) 8 1 7 23.99 170.13 23.99 1190.93 -1166.94 -11.67 23.99 -261.59 -2.73 -43.34 12.5 -145.87 0.02 0.14 -905.35

B2 DISTV 1.2 − SPRD50D −BB(20) 10 6 4 40.59 34.63 243.53 138.52 105.01 1.05 74.61 -68.96 -3.05 -48.42 60 10.5 1.76 1.17 -103.44

B3 DISTV 1.2 − SPRD50D −DECTREE 290 138 152 21.47 23.94 2963.47 3638.5 -675.03 -6.75 168.44 -111.66 -4.78 -75.88 47.59 -2.33 0.81 0.9 -1155.02

B4 DISTV 1.2 − SPRD50D −MLP 273 138 135 23.11 23.37 3188.68 3154.73 33.94 0.34 162.96 -130.19 -4.51 -71.59 50.55 0.12 1.01 0.99 -556.4

Part III: Models derived using the spread obtained from DISTV 2 − SPRD50D

C1 DISTV 2 − ZSPRD50D
(3,2) 2 2 - 65.28 - 130.56 - 130.56 1.31 98.65 - -1.84 -29.21 100 65.28 130.56 65.28 -

C1 DISTV 2 − ZSPRD50D
(3,1) 1 1 - 66.31 - 66.31 - 66.31 0.66 66.31 - - - 100 66.31 66.31 66.31 -

C1 DISTV 2 − ZSPRD50D
(3,0.5) 1 1 - 170.67 - 170.67 - 170.67 1.71 170.67 - - - 100 170.67 170.67 170.67 -

C1 DISTV 2 − ZSPRD50D
(2.7,2) 3 2 1 38.57 59.66 77.13 59.66 17.47 0.17 45.22 -59.66 -2.56 -40.64 66.67 5.83 1.29 0.65 -59.66

C1 DISTV 2 − ZSPRD50D
(2.7,1) 2 1 1 66.31 63.96 66.31 63.96 2.35 0.02 66.31 -63.96 -1.64 -26.03 50 1.17 1.04 1.04 -63.96

C1 DISTV 2 − ZSPRD50D
(2.7,0.5) 2 1 1 170.67 63.3 170.67 63.3 107.37 1.07 170.67 -63.3 -0.59 -9.37 50 53.68 2.7 2.7 -63.3

C2 DISTV 2 − SPRD50D − SMA(10,20) 9 5 4 187.14 51.59 935.69 206.38 729.32 7.29 622.55 -120.92 -0.33 -5.24 55.56 81.05 4.53 3.63 -120.92

C2 DISTV 2 − SPRD50D − EMA(10,20) 22 9 13 133.55 90.34 1201.94 1174.37 27.58 0.28 336.69 -237.02 -1.05 -16.67 40.91 1.26 1.02 1.48 -410.71

C2 DISTV 2 − SPRD50D −MACD(12,26,9) 37 8 29 74.84 55.24 598.68 1602.02 -1003.34 -10.03 171.06 -180.99 -2.53 -40.16 21.62 -27.12 0.37 1.35 -1174.39

C2 DISTV 2 − SPRD50D −RSI(14) 5 2 3 109.98 395.5 219.95 1186.49 -966.54 -9.67 166.87 -658.17 -1.05 -16.67 40 -193.31 0.19 0.28 -840.4

C2 DISTV 2 − SPRD50D −BB(20) 12 7 5 66.56 101.81 465.9 509.07 -43.18 -0.43 123.14 -297.13 -1.31 -20.8 58.33 -3.6 0.92 0.65 -175.5

C3 DISTV 2 − SPRD50D −DECTREE 353 151 202 23.03 24.15 3477.27 4878.81 -1401.54 -14.02 162.66 -289.77 -4.41 -70.01 42.78 -3.97 0.71 0.95 -1823.35

C4 DISTV 2 − SPRD50D −MLP 310 133 177 28.54 25.56 3796.15 4523.85 -727.7 -7.28 277.29 -179.79 -3.85 -61.12 42.9 -2.35 0.84 1.12 -1383.09

Part IV: Models derived using the spread obtained from DISTV 3 − SPRD50D

D1 DISTV 3 − ZSPRD50D
(3,2) 8 5 3 37.38 92.86 186.9 278.59 -91.69 -0.92 73.23 -133.49 -2.14 -33.97 62.5 -11.46 0.67 0.4 -253.1

D1 DISTV 3 − ZSPRD50D
(3,1) 8 5 3 47.58 116.39 237.92 349.17 -111.25 -1.11 100.11 -173.38 -1.69 -26.83 62.5 -13.91 0.68 0.41 -322.1

D1 DISTV 3 − ZSPRD50D
(3,0.5) 8 5 3 56.31 78.36 281.55 235.07 46.48 0.46 100.11 -120.28 -1.89 -30 62.5 5.81 1.2 0.72 -209.19

D1 DISTV 3 − ZSPRD50D
(2.7,2) 13 9 4 28.63 71.32 257.7 285.29 -27.58 -0.28 73.23 -133.49 -2.56 -40.64 69.23 -2.12 0.9 0.4 -234.99

D1 DISTV 3 − ZSPRD50D
(2.7,1) 13 10 3 41.15 116.39 411.48 349.17 62.31 0.62 100.11 -173.38 -1.79 -28.42 76.92 4.79 1.18 0.35 -264.32

D1 DISTV 3 − ZSPRD50D
(2.7,0.5) 13 10 3 53.69 78.36 536.9 235.07 301.83 3.02 112.05 -120.28 -1.86 -29.53 76.92 23.21 2.28 0.69 -120.28

D2 DISTV 3 − SPRD50D − SMA(10,20) 18 8 10 84.98 95.35 679.86 953.5 -273.64 -2.74 224.09 -216.74 -1.49 -23.65 44.44 -15.21 0.71 0.89 -805.27

D2 DISTV 3 − SPRD50D − EMA(10,20) 33 12 21 124.96 70.25 1499.51 1475.32 24.19 0.24 300.9 -253.97 -1.28 -20.32 36.36 0.73 1.02 1.78 -717.26

D2 DISTV 3 − SPRD50D −MACD(12,26,9) 39 21 18 84.13 79.14 1766.74 1424.5 342.24 3.42 265.78 -190.43 -1.25 -19.84 53.85 8.78 1.24 1.06 -389.42

D2 DISTV 3 − SPRD50D −RSI(14) 6 3 3 202.69 213.81 608.07 641.43 -33.36 -0.33 423.07 -404.14 -0.56 -8.89 50 -5.56 0.95 0.95 -404.14

D2 DISTV 3 − SPRD50D −BB(20) 19 13 6 55.85 70.31 726 421.84 304.16 3.04 194.53 -189.14 -1.63 -25.88 68.42 16.01 1.72 0.79 -207.2

D3 DISTV 3 − SPRD50D −DECTREE 307 138 169 24.69 25.23 3407.55 4263.27 -855.71 -8.56 189.97 -220.17 -4 -63.5 44.95 -2.79 0.8 0.98 -1108.88

D4 DISTV 3 − SPRD50D −MLP 189 82 107 31.41 26.68 2576 2854.92 -278.92 -2.79 147.49 -191.87 -3.61 -57.31 43.39 -1.47 0.9 1.18 -635.17

Part V: Models derived using the spread obtained from DISTV 4 − SPRD50D

E1 DISTV 4 − ZSPRD50D
(3,2) 8 5 3 37.38 92.86 186.9 278.59 -91.69 -0.92 73.23 -133.49 -2.14 -33.97 62.5 -11.46 0.67 0.4 -253.1

E1 DISTV 4 − ZSPRD50D
(3,1) 8 5 3 47.58 116.39 237.92 349.17 -111.25 -1.11 100.11 -173.38 -1.69 -26.83 62.5 -13.91 0.68 0.41 -322.1

E1 DISTV 4 − ZSPRD50D
(3,0.5) 8 5 3 56.31 78.36 281.55 235.07 46.48 0.46 100.11 -120.28 -1.89 -30 62.5 5.81 1.2 0.72 -209.19

E1 DISTV 4 − ZSPRD50D
(2.7,2) 13 9 4 28.63 71.32 257.7 285.29 -27.58 -0.28 73.23 -133.49 -2.56 -40.64 69.23 -2.12 0.9 0.4 -234.99

E1 DISTV 4 − ZSPRD50D
(2.7,1) 13 10 3 41.15 116.39 411.48 349.17 62.31 0.62 100.11 -173.38 -1.79 -28.42 76.92 4.79 1.18 0.35 -264.32

E1 DISTV 4 − ZSPRD50D
(2.7,0.5) 13 10 3 53.69 78.36 536.9 235.07 301.83 3.02 112.05 -120.28 -1.86 -29.53 76.92 23.21 2.28 0.69 -120.28

E2 DISTV 4 − SPRD50D − SMA(10,20) 18 6 12 74.7 97.85 448.18 1174.18 -726 -7.26 142.66 -216.74 -1.96 -31.11 33.33 -40.34 0.38 0.76 -805.27

E2 DISTV 4 − SPRD50D − EMA(10,20) 33 12 21 124.96 70.25 1499.51 1475.32 24.19 0.24 300.9 -253.97 -1.28 -20.32 36.36 0.73 1.02 1.78 -717.26

E2 DISTV 4 − SPRD50D −MACD(12,26,9) 39 21 18 84.13 79.14 1766.74 1424.5 342.24 3.42 265.78 -190.43 -1.25 -19.84 53.85 8.78 1.24 1.06 -389.42

E2 DISTV 4 − SPRD50D −RSI(14) 6 3 3 202.69 213.81 608.07 641.43 -33.36 -0.33 423.07 -404.14 -0.56 -8.89 50 -5.56 0.95 0.95 -404.14

E2 DISTV 4 − SPRD50D −BB(20) 19 13 6 55.85 70.31 726 421.84 304.16 3.04 194.53 -189.14 -1.63 -25.88 68.42 16.01 1.72 0.79 -207.2

E3 DISTV 4 − SPRD50D −DECTREE 303 132 171 25.33 25.81 3343.75 4414.24 -1070.49 -10.7 189.97 -220.17 -3.97 -63.02 43.56 -3.54 0.76 0.98 -1409.77

E4 DISTV 4 − SPRD50D −MLP 206 93 113 29.91 31.84 2781.32 3597.47 -816.15 -8.16 132.5 -265.94 -3.48 -55.24 45.15 -3.96 0.77 0.94 -1008.22

Part VI: Models derived using the spread obtained from JOHANSEN − SPRD50D

F1 JOHANSEN − ZSPRD50D
(3,2) 21 8 13 27.98 46.26 223.85 601.36 -377.51 -3.78 67.73 -139.33 -2.68 -42.54 38.1 -17.97 0.37 0.6 -411.58

F1 JOHANSEN − ZSPRD50D
(3,1) 19 6 13 69.55 71.1 417.31 924.27 -506.96 -5.07 216.55 -401.57 -1.27 -20.16 31.58 -26.68 0.45 0.98 -667.84

F1 JOHANSEN − ZSPRD50D
(3,0.5) 18 5 13 75.52 85.37 377.58 1109.85 -732.26 -7.32 216.55 -401.57 -1.24 -19.68 27.78 -40.68 0.34 0.88 -777.97

F1 JOHANSEN − ZSPRD50D
(2.7,2) 25 10 15 27.6 53.92 275.97 808.78 -532.81 -5.33 67.73 -183.45 -2.92 -46.35 40 -21.31 0.34 0.51 -566.88

F1 JOHANSEN − ZSPRD50D
(2.7,1) 20 6 14 69.55 83.33 417.31 1166.67 -749.36 -7.49 216.55 -445 -0.91 -14.45 30 -37.47 0.36 0.83 -910.25

F1 JOHANSEN − ZSPRD50D
(2.7,0.5) 19 5 14 75.52 96.59 377.58 1352.25 -974.67 -9.75 216.55 -445 -0.9 -14.29 26.32 -51.29 0.28 0.78 -1020.37

F2 JOHANSEN − SPRD50D − SMA(10,20) 26 17 9 232.39 131.81 3950.68 1186.31 2764.37 27.64 1231.47 -328.11 0.35 5.56 65.38 106.31 3.33 1.76 -459.75

F2 JOHANSEN − SPRD50D − EMA(10,20) 35 22 13 451.23 254.98 9927.13 3314.78 6612.35 66.12 4605.67 -1142.4 0.16 2.54 62.86 188.94 2.99 1.77 -1929.6

F2 JOHANSEN − SPRD50D −MACD(12,26,9) 35 19 16 236.72 153.02 4497.63 2448.39 2049.24 20.49 1092.74 -514.34 -0.18 -2.86 54.29 58.57 1.84 1.55 -1039.27

F2 JOHANSEN − SPRD50D −RSI(14) 7 3 4 451.38 704.7 1354.15 2818.8 -1464.65 -14.65 956.94 -1509.45 -0.72 -11.43 42.86 -209.2 0.48 0.64 -1855.78

F2 JOHANSEN − SPRD50D −BB(20) 19 5 14 81.23 292.24 406.14 4091.42 -3685.28 -36.85 191.46 -976.16 -0.41 -6.51 26.32 -193.95 0.1 0.28 -3638.76

F3 JOHANSEN − SPRD50D −DECTREE 303 147 156 26.81 25.87 3941.62 4035.84 -94.22 -0.94 235.5 -289.77 -3.7 -58.74 48.51 -0.31 0.98 1.04 -924.74

F4 JOHANSEN − SPRD50D −MLP 173 82 91 26.3 36.29 2156.36 3302.48 -1146.13 -11.46 147.49 -367.01 -3.04 -48.26 47.4 -6.62 0.65 0.72 -1340.17

Part VII: Models derived using the spread obtained from ADF − SPRD50D

G1 ADF − ZSPRD50D
(3,2) 5 3 2 185.86 3624.57 557.58 7249.15 -6691.57 -66.92 374.94 -6771.48 -0.47 -7.46 60 -1338.31 0.08 0.05 -7079.79

G1 ADF − ZSPRD50D
(3,1) 5 3 2 384.24 3343.2 1152.73 6686.4 -5533.67 -55.34 742.2 -5755.94 -0.45 -7.14 60 -1106.73 0.17 0.11 -5944.2

G1 ADF − ZSPRD50D
(3,0.5) 5 2 3 412.97 1879.15 825.95 5637.44 -4811.49 -48.11 742.2 -5295.69 -0.43 -6.83 40 -962.3 0.15 0.22 -5637.44

G1 ADF − ZSPRD50D
(2.7,2) 10 8 2 288.51 3624.57 2308.09 7249.15 -4941.06 -49.41 627.22 -6771.48 -0.27 -4.29 80 -494.11 0.32 0.08 -6771.48

G1 ADF − ZSPRD50D
(2.7,1) 10 6 4 417.97 1792.11 2507.8 7168.46 -4660.66 -46.61 742.2 -5755.94 -0.3 -4.76 60 -466.07 0.35 0.23 -6166.1

G1 ADF − ZSPRD50D
(2.7,0.5) 10 5 5 521.81 1246.92 2609.04 6234.6 -3625.57 -36.26 985.59 -5295.69 -0.26 -4.13 50 -362.56 0.42 0.42 -5295.69

G2 ADF − SPRD50D − SMA(10,20) 18 8 10 640.21 494.02 5121.71 4940.17 181.54 1.82 2919.67 -1095.9 -0.07 -1.11 44.44 10.04 1.04 1.3 -2360.9

G2 ADF − SPRD50D − EMA(10,20) 38 24 14 789.78 378.52 18954.65 5299.3 13655.36 136.55 11804.99 -957.88 0.13 2.06 63.16 359.38 3.58 2.09 -2103.24

G2 ADF − SPRD50D −MACD(12,26,9) 41 22 19 1297.72 397.92 28549.76 7560.39 20989.38 209.89 14862.78 -1383.86 0.17 2.7 53.66 511.96 3.78 3.26 -2788.56

G2 ADF − SPRD50D −RSI(14) 3 1 2 911.47 2652.7 911.47 5305.41 -4393.94 -43.94 911.47 -3214.69 -0.78 -12.38 33.33 -1464.76 0.17 0.34 -5305.41

G2 ADF − SPRD50D −BB(20) 19 10 9 323.67 394.66 3236.7 3551.96 -315.26 -3.15 967.5 -949.09 -0.23 -3.65 52.63 -16.6 0.91 0.82 -1906.69

G3 ADF − SPRD50D −DECTREE 294 148 146 23.15 25.79 3425.66 3765.31 -339.65 -3.4 161.47 -133.15 -4.35 -69.05 50.34 -1.16 0.91 0.9 -1049.27

G4 ADF − SPRD50D −MLP 129 46 83 35.81 47.28 1647.27 3924.4 -2277.13 -22.77 225.13 -316.07 -2.27 -36.04 35.66 -17.65 0.42 0.76 -2514.44

Part VIII: Models derived using the spread obtained from KALMAN − SPRD50D

H1 KALMAN − ZSPRD50D
(3,2) 3 2 1 289.35 89.97 578.71 89.97 488.74 4.89 308.03 -89.97 0.27 4.29 66.67 162.93 6.43 3.22 -89.97

H1 KALMAN − ZSPRD50D
(3,1) 1 - 1 - 166.36 - 166.36 -166.36 -1.66 - -166.36 - - - -166.36 - - -166.36

H1 KALMAN − ZSPRD50D
(3,0.5) 1 1 - 203.04 - 203.04 - 203.04 2.03 203.04 - - - 100 203.04 203.04 203.04 -

H1 KALMAN − ZSPRD50D
(2.7,2) 5 2 3 199.93 46.32 399.86 138.95 260.91 2.61 270.68 -89.97 -0.38 -6.03 40 52.18 2.88 4.32 -138.95

H1 KALMAN − ZSPRD50D
(2.7,1) 2 1 1 162.86 501.67 162.86 501.67 -338.81 -3.39 162.86 -501.67 -0.58 -9.21 50 -169.41 0.32 0.32 -501.67

H1 KALMAN − ZSPRD50D
(2.7,0.5) 2 - 2 - 110.68 - 221.35 -221.35 -2.21 - -167.02 -2.8 -44.45 - -110.68 - - -221.35

H2 KALMAN − SPRD50D − SMA(10,20) 14 5 9 451.13 218.95 2255.65 1970.56 285.09 2.85 856.39 -482.65 -0.22 -3.49 35.71 20.33 1.14 2.06 -734.96

H2 KALMAN − SPRD50D − EMA(10,20) 23 8 15 453.89 164.91 3631.11 2473.61 1157.5 11.57 1591.02 -331.16 -0.13 -2.06 34.78 50.31 1.47 2.75 -671.5

H2 KALMAN − SPRD50D −MACD(12,26,9) 37 8 29 366.08 115.16 2928.67 3339.62 -410.95 -4.11 1620.19 -324.25 -0.37 -5.87 21.62 -11.11 0.88 3.18 -1566.92

H2 KALMAN − SPRD50D −RSI(14) 4 2 2 1220.33 1766.41 2440.67 3532.82 -1092.16 -10.92 2169.84 -2942.44 -0.18 -2.86 50 -273.04 0.69 0.69 -2942.44

H2 KALMAN − SPRD50D −BB(20) 14 10 4 159.02 376.3 1590.25 1505.2 85.05 0.85 453.7 -1109.32 -0.27 -4.29 71.43 6.08 1.06 0.42 -1505.2

H3 KALMAN − SPRD50D −DECTREE 345 150 195 23.11 25.33 3466.71 4938.94 -1472.23 -14.72 162.66 -289.77 -4.16 -66.04 43.48 -4.27 0.7 0.91 -1845

H4 KALMAN − SPRD50D −MLP 288 119 169 23.68 26.31 2817.44 4446.06 -1628.62 -16.29 164.53 -289.77 -3.99 -63.34 41.32 -5.65 0.63 0.9 -1847.75

Part IX: Models derived using the spread obtained from RATIO − SPRD50D

I1 RATIO − ZSPRD50D
(3,2) 3 3 - 118.79 - 356.38 - 356.38 3.56 289.77 - -0.22 -3.49 100 118.79 356.38 118.79 -

I1 RATIO − ZSPRD50D
(3,1) 3 3 - 180.26 - 540.79 - 540.79 5.41 414.81 - 0.14 2.22 100 180.26 540.79 180.26 -

I1 RATIO − ZSPRD50D
(3,0.5) 3 3 - 170.33 - 511 - 511 5.11 414.81 - 0.09 1.43 100 170.33 511 170.33 -

I1 RATIO − ZSPRD50D
(2.7,2) 5 4 1 97.18 22.05 388.74 22.05 366.68 3.67 289.77 -22.05 -0.64 -10.16 80 73.34 17.63 4.41 -22.05

I1 RATIO − ZSPRD50D
(2.7,1) 5 4 1 154.32 50.07 617.3 50.07 567.22 5.67 414.81 -50.07 -0.22 -3.49 80 113.44 12.33 3.08 -50.07

I1 RATIO − ZSPRD50D
(2.7,0.5) 5 4 1 149.98 50.07 599.91 50.07 549.84 5.5 414.81 -50.07 -0.24 -3.81 80 109.97 11.98 3 -50.07

I2 RATIO − SPRD50D − SMA(10,20) 15 6 9 167.26 115.67 1003.57 1040.99 -37.42 -0.37 364.83 -314.97 -0.87 -13.81 40 -2.49 0.96 1.45 -448.64

I2 RATIO − SPRD50D − EMA(10,20) 24 8 16 112.3 73.13 898.42 1170.03 -271.61 -2.72 248.67 -266.81 -1.44 -22.86 33.33 -11.32 0.77 1.54 -915.14

I2 RATIO − SPRD50D −MACD(12,26,9) 30 12 18 54.87 80.19 658.4 1443.45 -785.05 -7.85 156.26 -240.74 -1.93 -30.64 40 -26.17 0.46 0.68 -825.85

I2 RATIO − SPRD50D −RSI(14) 3 1 2 169.67 802.34 169.67 1604.68 -1435.02 -14.35 169.67 -1425.46 -0.75 -11.91 33.33 -478.37 0.11 0.21 -1425.46

I2 RATIO − SPRD50D −BB(20) 13 12 1 55.3 237 663.57 237 426.57 4.27 139 -237 -1.35 -21.43 92.31 32.82 2.8 0.23 -237

I3 RATIO − SPRD50D −DECTREE 348 118 230 24.85 21.17 2931.95 4868.73 -1936.78 -19.37 123.14 -110.99 -5.13 -81.44 33.91 -5.56 0.6 1.17 -2209.93

I4 RATIO − SPRD50D −MLP 308 110 198 27.73 22.34 3050.04 4423.22 -1373.17 -13.73 239.75 -124.63 -4.3 -68.26 35.71 -4.46 0.69 1.24 -1544.39

Part X: Models derived using the close price of SCHB.N

CLS-SYM-1 CLOSESCHB.N − SMA(10,20) 14 8 6 275.75 104.83 2206.01 628.98 1577.04 15.77 789.43 -230.52 0.13 2.06 57.14 112.63 3.51 2.63 -324.24

CLS-SYM-1 CLOSESCHB.N − EMA(10,20) 17 7 10 370.21 232.37 2591.45 2323.66 267.79 2.68 1083.32 -810.29 -0.15 -2.38 41.18 15.77 1.12 1.59 -630.81

CLS-SYM-1 CLOSESCHB.N −MACD(12,26,9) 37 14 23 144.19 101.44 2018.6 2333.05 -314.45 -3.14 604.53 -326.15 -0.5 -7.94 37.84 -8.49 0.87 1.42 -1087.87

CLS-SYM-1 CLOSESCHB.N −RSI(14) 5 2 3 313.96 850.97 627.91 2552.9 -1924.99 -19.25 584.15 -2050.03 -0.46 -7.3 40 -385 0.25 0.37 -2050.03

CLS-SYM-1 CLOSESCHB.N −BB(20) 11 9 2 83.74 413.03 753.64 826.06 -72.41 -0.72 239.73 -780.29 -0.31 -4.92 81.82 -6.57 0.91 0.2 -780.29

Part XI: Models derived using the close price of SCHF.N

CLS-SYM-2 CLOSESCHF.N − SMA(10,20) 20 7 13 314.26 125.66 2199.8 1633.59 566.2 5.66 1106.36 -575.54 -0.14 -2.22 35 28.31 1.35 2.5 -918.42

CLS-SYM-2 CLOSESCHF.N − EMA(10,20) 23 8 15 331.11 93.37 2648.86 1400.61 1248.24 12.48 911.97 -332.73 -0.07 -1.11 34.78 54.26 1.89 3.55 -643.72

CLS-SYM-2 CLOSESCHF.N −MACD(12,26,9) 30 10 20 221.35 120.16 2213.46 2403.27 -189.81 -1.9 1043.11 -326.35 -0.34 -5.4 33.33 -6.34 0.92 1.84 -1733.81

CLS-SYM-2 CLOSESCHF.N −RSI(14) 5 2 3 617.93 304.16 1235.87 912.48 323.39 3.23 959.27 -697.61 -0.02 -0.32 40 64.68 1.35 2.03 -697.61

CLS-SYM-2 CLOSESCHF.N −BB(20) 15 8 7 79.49 192.86 635.89 1349.99 -714.1 -7.14 252.09 -785.71 -0.51 -8.1 53.33 -47.62 0.47 0.41 -785.71
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Table D.2.12: This table presents the back-test metrics for the pair SCHB.N/SCHF based on a 100-day rolling window. The table is subdivided into eleven parts, and in each of these parts, we present the back-test metrics and the trading strategies which use the
spread derived from various models. In Part I, the spread is derived from the DIST V 1.1 model, in Part II from the DIST V 1.2 model, in Part III from the DIST V 2 model, in Part IV from the DIST V 3 model, in Part V from the DIST V 4 model, in Part VI from the
JOHANSEN − SPRD model, in Part VIII from the ADF − SPRD model, in from the DIST V 2 model, in Part VIII from the KALMAN − SPRD model, and in Part IX from the RATIO − SPRD model. In Part X and XI, we present the back-test metrics of
the trading strategies which use the close price of SCHB.N, and SCHF.N, respectively. All $ numbers reported below are in USD.

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X) (XI) (XII) (XIII) (XIV) (XV) (XVI) (XVII) (XVIII) (XIX) (XX)

Trading
Strategy
Code

Model
Name

Total
Number
of
Trades

Number
of

Winning
Trades

Number
of Loosing
Trades

Average
Profit

per Trade
($)

Average
Loss per
Trade
($)

Gross
Profit
($)

Gross
Loss
($)

Net Profit
($)

ROI (%) Max P&L
($)

Min P&L
($)

Daily
Sharpe
Ratio

Annualized
Sharpe
Ratio

Hit Ratio Expectancy Profit
Factor

Realized
Risk

Reward
Ratio

Max
Drawdown

($)

Part I: Models derived using the spread obtained from DISTV 1.1 − SPRD100D

A1 DISTV 1.1 − ZSPRD100D
(3,2) 2 1 1 235.5 117.3 235.5 117.3 118.2 1.18 235.5 -117.3 -0.37 -5.87 50 59.1 2.01 2.01 -117.3

A1 DISTV 1.1 − ZSPRD100D
(3,1) 1 - 1 - 10.16 - 10.16 -10.16 -0.1 - -10.16 - - - -10.16 - - -10.16

A1 DISTV 1.1 − ZSPRD100D
(3,0.5) 1 - 1 - 42.88 - 42.88 -42.88 -0.43 - -42.88 - - - -42.88 - - -42.88

A1 DISTV 1.1 − ZSPRD100D
(2.7,2) 4 2 2 166.46 79.94 332.93 159.87 173.06 1.73 235.5 -117.3 -0.7 -11.11 50 43.26 2.08 2.08 -159.87

A1 DISTV 1.1 − ZSPRD100D
(2.7,1) 3 2 1 182.95 10.16 365.89 10.16 355.74 3.56 252.71 -10.16 -0.25 -3.97 66.67 118.59 36.02 18.01 -10.16

A1 DISTV 1.1 − ZSPRD100D
(2.7,0.5) 3 2 1 151.46 42.88 302.91 42.88 260.03 2.6 252.71 -42.88 -0.43 -6.83 66.67 86.68 7.06 3.53 -42.88

A2 DISTV 1.1 − SPRD100D − SMA(10,20) 8 3 5 55.81 187.14 167.43 935.69 -768.27 -7.68 120.92 -622.55 -1.1 -17.46 37.5 -96.03 0.18 0.3 -830.62

A2 DISTV 1.1 − SPRD100D − EMA(10,20) 22 14 8 92.73 147.79 1298.2 1182.33 115.87 1.16 237.02 -336.69 -0.99 -15.72 63.64 5.28 1.1 0.63 -484.16

A2 DISTV 1.1 − SPRD100D −MACD(12,26,9) 34 26 8 61.29 85.87 1593.52 686.95 906.57 9.07 180.99 -259.32 -1.51 -23.97 76.47 26.66 2.32 0.71 -143.04

A2 DISTV 1.1 − SPRD100D −RSI(14) 4 3 1 439.12 166.87 1317.36 166.86 1150.5 11.5 658.17 -166.87 0.38 6.03 75 287.62 7.89 2.63 -166.87

A2 DISTV 1.1 − SPRD100D −BB(20) 11 4 7 159.61 66.56 638.44 465.9 172.55 1.73 434.52 -123.14 -0.86 -13.65 36.36 15.68 1.37 2.4 -331.26

A3 DISTV 1.1 − SPRD100D −DECTREE 314 131 183 23.48 24.41 3075.85 4467.68 -1391.84 -13.92 125.53 -117.3 -4.79 -76.04 41.72 -4.43 0.69 0.96 -1618.84

A4 DISTV 1.1 − SPRD100D −MLP 290 124 166 23.48 26.57 2911.81 4410.7 -1498.89 -14.99 152.4 -289.77 -4.07 -64.61 42.76 -5.17 0.66 0.88 -1750.18

Part II: Models derived using the spread obtained from DISTV 1.2 − SPRD100D

B1 DISTV 1.2 − ZSPRD100D
(3,2) 5 3 2 26.49 136.86 79.47 273.73 -194.26 -1.94 62.62 -184.45 -1.95 -30.96 60 -38.85 0.29 0.19 -203.66

B1 DISTV 1.2 − ZSPRD100D
(3,1) 5 1 4 160.41 66.49 160.41 265.97 -105.56 -1.06 160.41 -156.04 -1.51 -23.97 20 -21.11 0.6 2.41 -203.37

B1 DISTV 1.2 − ZSPRD100D
(3,0.5) 5 2 3 34.41 120.06 68.83 360.19 -291.36 -2.91 53.68 -245.7 -1.82 -28.89 40 -58.27 0.19 0.29 -345.05

B1 DISTV 1.2 − ZSPRD100D
(2.7,2) 6 4 2 31.43 145.94 125.72 291.88 -166.15 -1.66 62.62 -230.41 -1.66 -26.35 66.67 -27.69 0.43 0.22 -230.41

B1 DISTV 1.2 − ZSPRD100D
(2.7,1) 6 2 4 103.33 69.84 206.67 279.34 -72.68 -0.73 160.41 -156.04 -1.5 -23.81 33.33 -12.12 0.74 1.48 -243.71

B1 DISTV 1.2 − ZSPRD100D
(2.7,0.5) 6 3 3 38.36 123.89 115.08 371.68 -256.6 -2.57 53.68 -216.85 -1.88 -29.84 50 -42.77 0.31 0.31 -310.28

B2 DISTV 1.2 − SPRD100D − SMA(10,20) 9 5 4 40.94 126.81 204.68 507.24 -302.56 -3.03 151.19 -393.46 -1.26 -20 55.56 -33.61 0.4 0.32 -58.32

B2 DISTV 1.2 − SPRD100D − EMA(10,20) 16 6 10 95.13 107.1 570.77 1071.03 -500.25 -5 177.22 -260.15 -1.46 -23.18 37.5 -31.27 0.53 0.89 -560.38

B2 DISTV 1.2 − SPRD100D −MACD(12,26,9) 29 12 17 61.63 74.39 739.5 1264.65 -525.15 -5.25 280.18 -297.99 -1.6 -25.4 41.38 -18.11 0.58 0.83 -892.91

B2 DISTV 1.2 − SPRD100D −RSI(14) 7 2 5 116.98 212.58 233.96 1062.92 -828.96 -8.29 122.05 -449.8 -1.25 -19.84 28.57 -118.43 0.22 0.55 -484.77

B2 DISTV 1.2 − SPRD100D −BB(20) 9 6 3 55.09 148.01 330.56 444.04 -113.48 -1.13 133.21 -312.45 -1.27 -20.16 66.67 -12.6 0.74 0.37 -312.45

B3 DISTV 1.2 − SPRD100D −DECTREE 260 129 131 29.1 24.16 3754.41 3165.35 589.06 5.89 189.83 -164.53 -3.81 -60.48 49.62 2.27 1.19 1.2 -531.13

B4 DISTV 1.2 − SPRD100D −MLP 190 87 103 23.63 20.07 2056.13 2066.81 -10.68 -0.11 143.32 -108.91 -5 -79.37 45.79 -0.06 0.99 1.18 -442.69

Part III: Models derived using the spread obtained from DISTV 2 − SPRD100D

C1 DISTV 2 − ZSPRD100D
(3,2) 2 1 1 117.3 235.5 117.3 235.5 -118.2 -1.18 117.3 -235.5 -0.85 -13.49 50 -59.1 0.5 0.5 -235.5

C1 DISTV 2 − ZSPRD100D
(3,1) 1 1 - 10.16 - 10.16 - 10.16 0.1 10.16 - - - 100 10.16 10.16 10.16 -

C1 DISTV 2 − ZSPRD100D
(3,0.5) 1 1 - 42.88 - 42.88 - 42.88 0.43 42.88 - - - 100 42.88 42.88 42.88 -

C1 DISTV 2 − ZSPRD100D
(2.7,2) 4 2 2 79.94 166.46 159.87 332.93 -173.06 -1.73 117.3 -235.5 -1.25 -19.84 50 -43.26 0.48 0.48 -332.93

C1 DISTV 2 − ZSPRD100D
(2.7,1) 3 1 2 10.16 182.95 10.16 365.89 -355.74 -3.56 10.16 -252.71 -2.06 -32.7 33.33 -118.59 0.03 0.06 -355.74

C1 DISTV 2 − ZSPRD100D
(2.7,0.5) 3 1 2 42.88 151.46 42.88 302.91 -260.03 -2.6 42.88 -252.71 -1.58 -25.08 33.33 -86.68 0.14 0.28 -260.03

C2 DISTV 2 − SPRD100D − SMA(10,20) 9 6 3 256.91 39.45 1541.46 118.36 1423.1 14.23 622.55 -61.13 0.03 0.48 66.67 158.13 13.02 6.51 -87.93

C2 DISTV 2 − SPRD100D − EMA(10,20) 22 8 14 147.79 92.73 1182.33 1298.2 -115.87 -1.16 336.69 -237.02 -1.06 -16.83 36.36 -5.28 0.91 1.59 -410.71

C2 DISTV 2 − SPRD100D −MACD(12,26,9) 34 8 26 85.87 61.29 686.95 1593.52 -906.57 -9.07 259.32 -180.99 -2.15 -34.13 23.53 -26.66 0.43 1.4 -1165.89

C2 DISTV 2 − SPRD100D −RSI(14) 4 1 3 166.87 439.12 166.86 1317.36 -1150.5 -11.5 166.87 -658.17 -1.23 -19.53 25 -287.62 0.13 0.38 -957.96

C2 DISTV 2 − SPRD100D −BB(20) 11 7 4 66.56 159.61 465.9 638.44 -172.55 -1.73 123.14 -434.52 -1.05 -16.67 63.64 -15.68 0.73 0.42 -175.5

C3 DISTV 2 − SPRD100D −DECTREE 316 133 183 22.96 23.89 3053.2 4372.5 -1319.3 -13.19 126.1 -192.07 -4.62 -73.34 42.09 -4.17 0.7 0.96 -1512.15

C4 DISTV 2 − SPRD100D −MLP 246 97 149 24.74 26.77 2399.43 3988.45 -1589.02 -15.89 177.01 -179.79 -4.23 -67.15 39.43 -6.46 0.6 0.92 -1727.21

Part IV: Models derived using the spread obtained from DISTV 3 − SPRD100D

D1 DISTV 3 − ZSPRD100D
(3,2) 9 6 3 65.14 14.27 390.84 42.81 348.03 3.48 141.54 -22.08 -2.16 -34.29 66.67 38.67 9.13 4.56 -22.08

D1 DISTV 3 − ZSPRD100D
(3,1) 8 6 2 79.28 16.66 475.65 33.33 442.33 4.42 112.05 -29.7 -1.97 -31.27 75 55.29 14.27 4.76 -29.7

D1 DISTV 3 − ZSPRD100D
(3,0.5) 8 6 2 77.02 8.22 462.13 16.45 445.68 4.46 174.81 -14.31 -1.59 -25.24 75 55.71 28.1 9.37 -14.31

D1 DISTV 3 − ZSPRD100D
(2.7,2) 11 7 4 64.63 12.27 452.44 49.08 403.36 4.03 141.54 -22.08 -2.33 -36.99 63.64 36.67 9.22 5.27 -22.08

D1 DISTV 3 − ZSPRD100D
(2.7,1) 10 7 3 77.05 14.93 539.35 44.8 494.55 4.95 112.05 -29.7 -2.11 -33.5 70 49.45 12.04 5.16 -41.18

D1 DISTV 3 − ZSPRD100D
(2.7,0.5) 10 7 3 75.23 8.22 526.58 24.65 501.93 5.02 177.13 -14.31 -1.76 -27.94 70 50.19 21.36 9.16 -22.51

D2 DISTV 3 − SPRD100D − SMA(10,20) 19 7 12 138.3 53.2 968.12 638.34 329.77 3.3 343.54 -101.26 -1.12 -17.78 36.84 17.35 1.52 2.6 -522.68

D2 DISTV 3 − SPRD100D − EMA(10,20) 34 11 23 131.43 60.27 1445.69 1386.26 59.43 0.59 343.62 -139.46 -1.41 -22.38 32.35 1.74 1.04 2.18 -827.97

D2 DISTV 3 − SPRD100D −MACD(12,26,9) 34 12 22 61.52 64.03 738.19 1408.7 -670.51 -6.71 125.52 -213 -2.2 -34.92 35.29 -19.73 0.52 0.96 -694.25

D2 DISTV 3 − SPRD100D −RSI(14) 5 2 3 496.09 186.43 992.18 559.28 432.9 4.33 656.75 -192.54 -0.17 -2.7 40 86.58 1.77 2.66 -186.74

D2 DISTV 3 − SPRD100D −BB(20) 18 10 8 40.69 46.12 406.86 368.98 37.89 0.38 79.96 -153.08 -2.58 -40.96 55.56 2.11 1.1 0.88 -319.57

D3 DISTV 3 − SPRD100D −DECTREE 307 130 177 23.78 23.33 3091.6 4129.47 -1037.87 -10.38 246.56 -87.3 -4.51 -71.59 42.35 -3.38 0.75 1.02 -1847.68

D4 DISTV 3 − SPRD100D −MLP 93 39 54 27.56 36.37 1074.87 1963.8 -888.93 -8.89 245.86 -289.77 -2.87 -45.56 41.94 -9.56 0.55 0.76 -888.93

Part V: Models derived using the spread obtained from DISTV 4 − SPRD100D

E1 DISTV 4 − ZSPRD100D
(3,2) 9 6 3 65.14 14.27 390.84 42.81 348.03 3.48 141.54 -22.08 -2.16 -34.29 66.67 38.67 9.13 4.56 -22.08

E1 DISTV 4 − ZSPRD100D
(3,1) 8 6 2 79.28 16.66 475.65 33.33 442.33 4.42 112.05 -29.7 -1.97 -31.27 75 55.29 14.27 4.76 -29.7

E1 DISTV 4 − ZSPRD100D
(3,0.5) 8 6 2 77.02 8.22 462.13 16.45 445.68 4.46 174.81 -14.31 -1.59 -25.24 75 55.71 28.1 9.37 -14.31

E1 DISTV 4 − ZSPRD100D
(2.7,2) 11 7 4 64.63 12.27 452.44 49.08 403.36 4.03 141.54 -22.08 -2.33 -36.99 63.64 36.67 9.22 5.27 -22.08

E1 DISTV 4 − ZSPRD100D
(2.7,1) 10 7 3 77.05 14.93 539.35 44.8 494.55 4.95 112.05 -29.7 -2.11 -33.5 70 49.45 12.04 5.16 -41.18

E1 DISTV 4 − ZSPRD100D
(2.7,0.5) 10 7 3 75.23 8.22 526.58 24.65 501.93 5.02 177.13 -14.31 -1.76 -27.94 70 50.19 21.36 9.16 -22.51

E2 DISTV 4 − SPRD100D − SMA(10,20) 19 7 12 138.3 53.2 968.12 638.34 329.77 3.3 343.54 -101.26 -1.12 -17.78 36.84 17.35 1.52 2.6 -522.68

E2 DISTV 4 − SPRD100D − EMA(10,20) 34 11 23 131.43 60.27 1445.69 1386.26 59.43 0.59 343.62 -139.46 -1.41 -22.38 32.35 1.74 1.04 2.18 -827.97

E2 DISTV 4 − SPRD100D −MACD(12,26,9) 34 12 22 61.52 64.03 738.19 1408.7 -670.51 -6.71 125.52 -213 -2.2 -34.92 35.29 -19.73 0.52 0.96 -694.25

E2 DISTV 4 − SPRD100D −RSI(14) 5 2 3 496.09 186.43 992.18 559.28 432.9 4.33 656.75 -192.54 -0.17 -2.7 40 86.58 1.77 2.66 -186.74

E2 DISTV 4 − SPRD100D −BB(20) 18 10 8 40.69 46.12 406.86 368.98 37.89 0.38 79.96 -153.08 -2.58 -40.96 55.56 2.11 1.1 0.88 -319.57

E3 DISTV 4 − SPRD100D −DECTREE 306 128 178 24.25 23.96 3103.6 4265.22 -1161.63 -11.62 212.9 -105.68 -4.39 -69.69 41.83 -3.8 0.73 1.01 -1679.2

E4 DISTV 4 − SPRD100D −MLP 93 39 54 27.56 36.37 1074.87 1963.8 -888.93 -8.89 245.86 -289.77 -2.87 -45.56 41.94 -9.56 0.55 0.76 -888.93

Part VI: Models derived using the spread obtained from JOHANSEN − SPRD100D

F1 JOHANSEN − ZSPRD100D
(3,2) 19 10 9 28.68 20.31 286.84 182.8 104.04 1.04 59.93 -65.4 -8.51 -135.09 52.63 5.47 1.57 1.41 -105.92

F1 JOHANSEN − ZSPRD100D
(3,1) 18 10 8 30.48 28 304.82 224.02 80.8 0.81 59.93 -88.57 -8.27 -131.28 55.56 4.49 1.36 1.09 -184.59

F1 JOHANSEN − ZSPRD100D
(3,0.5) 16 9 7 34.94 27.17 314.47 190.2 124.27 1.24 66.87 -65.4 -7.73 -122.71 56.25 7.77 1.65 1.29 -153.99

F1 JOHANSEN − ZSPRD100D
(2.7,2) 20 10 10 28.01 18.66 280.14 186.57 93.57 0.94 59.93 -65.4 -8.32 -132.08 50 4.68 1.5 1.5 -90.76

F1 JOHANSEN − ZSPRD100D
(2.7,1) 18 10 8 30.48 36.69 304.82 293.49 11.34 0.11 59.93 -93.46 -4.87 -77.31 55.56 0.63 1.04 0.83 -254.06

F1 JOHANSEN − ZSPRD100D
(2.7,0.5) 16 9 7 34.94 37.09 314.47 259.66 54.81 0.55 66.87 -93.46 -4.56 -72.39 56.25 3.43 1.21 0.94 -223.45

F2 JOHANSEN − SPRD100D − SMA(10,20) 15 11 4 234.01 120.84 2574.11 483.36 2090.74 20.91 721.83 -225.08 0.01 0.16 73.33 139.37 5.33 1.94 -363.03

F2 JOHANSEN − SPRD100D − EMA(10,20) 26 15 11 386.2 266.45 5792.98 2930.95 2862.03 28.62 3439.35 -755.58 -0.18 -2.86 57.69 110.06 1.98 1.45 -901.55

F2 JOHANSEN − SPRD100D −MACD(12,26,9) 32 20 12 110.73 392.93 2214.61 4715.11 -2500.5 -25 727.94 -2607.33 -0.15 -2.38 62.5 -78.14 0.47 0.28 -3764.81

F2 JOHANSEN − SPRD100D −RSI(14) 8 5 3 348.23 4256.68 1741.17 12770.04 -11028.88 -110.29 602.99 -9443.97 -0.57 -9.05 62.5 -1378.61 0.14 0.08 -12026.58

F2 JOHANSEN − SPRD100D −BB(20) 22 12 10 144.33 340.5 1731.92 3404.95 -1673.04 -16.73 504.77 -1382.43 0.06 0.95 54.55 -76.03 0.51 0.42 -3060.77

F3 JOHANSEN − SPRD100D −DECTREE 315 167 148 22.93 27.66 3829.84 4093.12 -263.28 -2.63 132.5 -123.14 -4.33 -68.74 53.02 -0.83 0.94 0.83 -569.55

F4 JOHANSEN − SPRD100D −MLP 265 128 137 23.81 24.25 3047.9 3321.83 -273.93 -2.74 101.3 -245.15 -4.41 -70.01 48.3 -1.03 0.92 0.98 -913.14

Part VII: Models derived using the spread obtained from ADF − SPRD100D

G1 ADF − ZSPRD100D
(3,2) 3 1 2 398.7 2255.55 398.7 4511.09 -4112.39 -41.12 398.7 -4017.88 -0.63 -10 33.33 -1370.89 0.09 0.18 -4511.09

G1 ADF − ZSPRD100D
(3,1) 3 1 2 64.11 2177.21 64.11 4354.43 -4290.32 -42.9 64.11 -3821.09 -0.72 -11.43 33.33 -1430.18 0.01 0.03 -4354.43

G1 ADF − ZSPRD100D
(3,0.5) 3 1 2 259.67 2764.49 259.67 5528.98 -5269.31 -52.69 259.67 -4822.41 -0.68 -10.79 33.33 -1756.54 0.05 0.09 -5528.98

G1 ADF − ZSPRD100D
(2.7,2) 3 1 2 398.7 3454.28 398.7 6908.57 -6509.87 -65.1 398.7 -6264.14 -0.63 -10 33.33 -2170.08 0.06 0.12 -6908.57

G1 ADF − ZSPRD100D
(2.7,1) 3 1 2 64.11 3386.94 64.11 6773.89 -6709.78 -67.1 64.11 -6089.93 -0.69 -10.95 33.33 -2236.71 0.01 0.02 -6773.89

G1 ADF − ZSPRD100D
(2.7,0.5) 3 1 2 259.67 3919.65 259.67 7839.31 -7579.64 -75.8 259.67 -6973.52 -0.67 -10.64 33.33 -2526.69 0.03 0.07 -7839.31

G2 ADF − SPRD100D − SMA(10,20) 19 12 7 1205 1416.6 14460.01 9916.19 4543.82 45.44 7325.13 -6353.48 0.04 0.63 63.16 239.2 1.46 0.85 -6353.48

G2 ADF − SPRD100D − EMA(10,20) 31 18 13 844.14 839.51 15194.44 10913.63 4280.81 42.81 6998.58 -6815.23 0.01 0.16 58.06 138.01 1.39 1.01 -7038.36

G2 ADF − SPRD100D −MACD(12,26,9) 36 20 16 761.9 498.88 15238 7982.08 7255.92 72.56 6763.1 -3143.02 0.07 1.11 55.56 201.61 1.91 1.53 -3785.23

G2 ADF − SPRD100D −RSI(14) 5 1 4 571.45 1307.2 571.45 5228.78 -4657.34 -46.57 571.45 -3989.18 -0.56 -8.89 20 -931.47 0.11 0.44 -4807.9

G2 ADF − SPRD100D −BB(20) 16 6 10 339.98 304.43 2039.89 3044.3 -1004.4 -10.04 765.73 -961.54 -0.35 -5.56 37.5 -62.78 0.67 1.12 -2121.74

G3 ADF − SPRD100D −DECTREE 299 124 175 27.67 24.7 3430.73 4322.02 -891.29 -8.91 289.77 -144.62 -4 -63.5 41.47 -2.98 0.79 1.12 -988.06

G4 ADF − SPRD100D −MLP 181 72 109 24.78 24.98 1783.94 2723.11 -939.18 -9.39 121.37 -166.32 -4.53 -71.91 39.78 -5.19 0.66 0.99 -1118.02

Part VIII: Models derived using the spread obtained from KALMAN − SPRD100D

H1 KALMAN − ZSPRD100D
(3,2) 2 2 - 360.34 - 720.68 - 720.68 7.21 692.86 - 0.54 8.57 100 360.34 720.68 360.34 -

H1 KALMAN − ZSPRD100D
(3,1) 2 1 1 1254.22 236.5 1254.22 236.5 1017.72 10.18 1254.22 -236.5 0.38 6.03 50 508.86 5.3 5.3 -236.5

H1 KALMAN − ZSPRD100D
(3,0.5) 2 2 - 795.03 - 1590.07 - 1590.07 15.9 1412.12 - 0.78 12.38 100 795.03 1590.07 795.03 -

H1 KALMAN − ZSPRD100D
(2.7,2) 5 3 2 433.86 159.51 1301.58 319.01 982.57 9.83 1062.69 -258.47 0.18 2.86 60 196.51 4.08 2.72 -258.47

H1 KALMAN − ZSPRD100D
(2.7,1) 4 2 2 1051.34 261.04 2102.68 522.08 1580.6 15.81 1657.91 -264.76 0.32 5.08 50 395.15 4.03 4.03 -264.76

H1 KALMAN − ZSPRD100D
(2.7,0.5) 4 3 1 812.69 0.64 2438.08 0.64 2437.45 24.37 1825.89 -0.64 0.61 9.68 75 609.36 3833.46 1277.24 -0.64

H2 KALMAN − SPRD100D − SMA(10,20) 7 6 1 437.95 72.49 2627.68 72.49 2555.19 25.55 1027.87 -72.49 0.65 10.32 85.71 365 36.25 6.04 -72.49

H2 KALMAN − SPRD100D − EMA(10,20) 18 8 10 474.54 197.59 3796.34 1975.93 1820.41 18.2 1699.82 -462.65 -0.01 -0.16 44.44 101.1 1.92 2.4 -822.19

H2 KALMAN − SPRD100D −MACD(12,26,9) 31 12 19 270.95 226.16 3251.45 4297.08 -1045.63 -10.46 1620.44 -550.37 -0.37 -5.87 38.71 -33.73 0.76 1.2 -2497.19

H2 KALMAN − SPRD100D −RSI(14) 3 1 2 1190.23 1889.17 1190.23 3778.34 -2588.12 -25.88 1190.23 -2942.45 -0.47 -7.46 33.33 -862.81 0.32 0.63 -2942.45

H2 KALMAN − SPRD100D −BB(20) 11 8 3 171.62 442.6 1372.93 1327.79 45.14 0.45 453.66 -1109.72 -0.25 -3.97 72.73 4.12 1.03 0.39 -1327.79

H3 KALMAN − SPRD100D −DECTREE 284 116 168 23.61 26.67 2738.9 4481.14 -1742.24 -17.42 117.95 -289.77 -4.1 -65.09 40.85 -6.13 0.61 0.89 -1849.53

H4 KALMAN − SPRD100D −MLP 229 85 144 24 29.4 2040.4 4233.52 -2193.12 -21.93 116.93 -289.77 -3.99 -63.34 37.12 -9.58 0.48 0.82 -2279.07

Part IX: Models derived using the spread obtained from RATIO − SPRD100D

I1 RATIO − ZSPRD100D
(3,2) 3 2 1 85.91 71.89 171.82 71.89 99.92 1 97.26 -71.89 -1.29 -20.48 66.67 33.31 2.39 1.19 -71.89

I1 RATIO − ZSPRD100D
(3,1) 3 2 1 120.53 73.56 241.06 73.56 167.5 1.68 177.13 -73.56 -0.77 -12.22 66.67 55.84 3.28 1.64 -73.56

I1 RATIO − ZSPRD100D
(3,0.5) 3 2 1 169.72 33.9 339.44 33.9 305.54 3.06 195.81 -33.9 -0.42 -6.67 66.67 101.85 10.01 5.01 -33.9

I1 RATIO − ZSPRD100D
(2.7,2) 4 3 1 124.96 58.81 374.86 58.81 316.06 3.16 289.77 -58.81 -0.49 -7.78 75 79.01 6.37 2.12 -58.81

I1 RATIO − ZSPRD100D
(2.7,1) 4 3 1 190.05 60.17 570.15 60.17 509.98 5.1 414.81 -60.17 -0.12 -1.9 75 127.5 9.48 3.16 -60.17

I1 RATIO − ZSPRD100D
(2.7,0.5) 4 3 1 291.03 20.81 873.08 20.81 852.27 8.52 620 -20.81 0.22 3.49 75 213.07 41.96 13.99 -20.81

I2 RATIO − SPRD100D − SMA(10,20) 14 6 8 167.26 127.61 1003.57 1020.91 -17.35 -0.17 364.83 -374.87 -0.8 -12.7 42.86 -1.23 0.98 1.31 -448.64

I2 RATIO − SPRD100D − EMA(10,20) 22 7 15 136.82 71.9 957.72 1078.56 -120.84 -1.21 248.67 -266.81 -1.3 -20.64 31.82 -5.49 0.89 1.9 -915.14

I2 RATIO − SPRD100D −MACD(12,26,9) 29 13 16 48.45 78.05 629.88 1248.77 -618.89 -6.19 156.26 -240.74 -1.95 -30.96 44.83 -21.34 0.5 0.62 -825.85

I2 RATIO − SPRD100D −RSI(14) 2 - 2 - 810.8 - 1621.6 -1621.6 -16.22 - -1429.06 -1.1 -17.46 - -810.8 - - -1429.06

I2 RATIO − SPRD100D −BB(20) 12 11 1 55.86 237 614.46 237 377.46 3.77 139 -237 -1.31 -20.8 91.67 31.46 2.59 0.24 -237

I3 RATIO − SPRD100D −DECTREE 329 112 217 22.53 20.66 2522.86 4483.32 -1960.46 -19.6 109.84 -92.19 -5.54 -87.94 34.04 -5.96 0.56 1.09 -2140.57

I4 RATIO − SPRD100D −MLP 259 93 166 24.78 22.2 2304.81 3685.15 -1380.34 -13.8 116.36 -86.24 -5.08 -80.64 35.91 -5.33 0.63 1.12 -1420.62

Part X: Models derived using the close price of SCHB.N

CLS-SYM-1 CLOSESCHB.N − SMA(10,20) 14 8 6 275.75 104.83 2206.01 628.98 1577.04 15.77 789.43 -230.52 0.13 2.06 57.14 112.63 3.51 2.63 -324.24

CLS-SYM-1 CLOSESCHB.N − EMA(10,20) 17 7 10 370.21 232.37 2591.45 2323.66 267.79 2.68 1083.32 -810.29 -0.15 -2.38 41.18 15.77 1.12 1.59 -630.81

CLS-SYM-1 CLOSESCHB.N −MACD(12,26,9) 37 14 23 144.19 101.44 2018.6 2333.05 -314.45 -3.14 604.53 -326.15 -0.5 -7.94 37.84 -8.49 0.87 1.42 -1087.87

CLS-SYM-1 CLOSESCHB.N −RSI(14) 5 2 3 313.96 850.97 627.91 2552.9 -1924.99 -19.25 584.15 -2050.03 -0.46 -7.3 40 -385 0.25 0.37 -2050.03

CLS-SYM-1 CLOSESCHB.N −BB(20) 11 9 2 83.74 413.03 753.64 826.06 -72.41 -0.72 239.73 -780.29 -0.31 -4.92 81.82 -6.57 0.91 0.2 -780.29

Part XI: Models derived using the close price of SCHF.N

CLS-SYM-2 CLOSESCHF.N − SMA(10,20) 20 7 13 314.26 125.66 2199.8 1633.59 566.2 5.66 1106.36 -575.54 -0.14 -2.22 35 28.31 1.35 2.5 -918.42

CLS-SYM-2 CLOSESCHF.N − EMA(10,20) 23 8 15 331.11 93.37 2648.86 1400.61 1248.24 12.48 911.97 -332.73 -0.07 -1.11 34.78 54.26 1.89 3.55 -643.72

CLS-SYM-2 CLOSESCHF.N −MACD(12,26,9) 30 10 20 221.35 120.16 2213.46 2403.27 -189.81 -1.9 1043.11 -326.35 -0.34 -5.4 33.33 -6.34 0.92 1.84 -1733.81

CLS-SYM-2 CLOSESCHF.N −RSI(14) 5 2 3 617.93 304.16 1235.87 912.48 323.39 3.23 959.27 -697.61 -0.02 -0.32 40 64.68 1.35 2.03 -697.61

CLS-SYM-2 CLOSESCHF.N −BB(20) 15 8 7 79.49 192.86 635.89 1349.99 -714.1 -7.14 252.09 -785.71 -0.51 -8.1 53.33 -47.62 0.47 0.41 -785.71
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Table D.2.13: This table presents the back-test metrics for the pair SCHF.N/V O.N based on a 30-day rolling window. The table is subdivided into eleven parts, and in each of these parts, we present the back-test metrics and the trading strategies which use the
spread derived from various models. In Part I, the spread is derived from the DIST V 1.1 model, in Part II from the DIST V 1.2 model, in Part III from the DIST V 2 model, in Part IV from the DIST V 3 model, in Part V from the DIST V 4 model, in Part VI from the
JOHANSEN − SPRD model, in Part VIII from the ADF − SPRD model, in from the DIST V 2 model, in Part VIII from the KALMAN − SPRD model, and in Part IX from the RATIO − SPRD model. In Part X and XI, we present the back-test metrics of
the trading strategies which use the close price of SCHF.N, and VO.N, respectively. All $ numbers reported below are in USD.

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X) (XI) (XII) (XIII) (XIV) (XV) (XVI) (XVII) (XVIII) (XIX) (XX)

Trading
Strategy
Code

Model
Name

Total
Number
of
Trades

Number
of

Winning
Trades

Number
of Loosing
Trades

Average
Profit

per Trade
($)

Average
Loss per
Trade
($)

Gross
Profit
($)

Gross
Loss
($)

Net Profit
($)

ROI (%) Max P&L
($)

Min P&L
($)

Daily
Sharpe
Ratio

Annualized
Sharpe
Ratio

Hit Ratio Expectancy Profit
Factor

Realized
Risk

Reward
Ratio

Max
Drawdown

($)

Part I: Models derived using the spread obtained from DISTV 1.1 − SPRD30D

A1.1 DISTV 1.1 − ZSPRD30D
(3,2) 1 - 1 - 73.97 - 73.97 -73.97 -0.74 - -73.97 - - - -73.97 - - -73.97

A1.2 DISTV 1.1 − ZSPRD30D
(3,1) 1 1 - 188.04 - 188.04 - 188.04 1.88 188.04 - - - 100 188.04 188.04 188.04 -

A1.3 DISTV 1.1 − ZSPRD30D
(3,0.5) 1 1 - 180.63 - 180.63 - 180.63 1.81 180.63 - - - 100 180.63 180.63 180.63 -

A1.4 DISTV 1.1 − ZSPRD30D
(2.7,2) 7 2 5 32.24 38.47 64.47 192.33 -127.85 -1.28 49.45 -77.81 -4.2 -66.67 28.57 -18.27 0.34 0.84 -154.23

A1.5 DISTV 1.1 − ZSPRD30D
(2.7,1) 5 3 2 105.6 57.53 316.8 115.06 201.73 2.02 281.97 -86.46 -0.79 -12.54 60 40.35 2.75 1.84 -86.46

A1.6 DISTV 1.1 − ZSPRD30D
(2.7,0.5) 5 2 3 139.12 95.5 278.24 286.49 -8.25 -0.08 273.77 -141.08 -0.94 -14.92 40 -1.65 0.97 1.46 -200.03

A2.1 DISTV 1.1 − SPRD30D − SMA(10,20) 14 3 11 54.94 90.2 164.81 992.22 -827.42 -8.27 86.55 -164.36 -2.76 -43.81 21.43 -59.1 0.17 0.61 -745.71

A2.2 DISTV 1.1 − SPRD30D − EMA(10,20) 20 10 10 105.8 84.1 1057.97 841.02 216.95 2.17 349.25 -322.26 -1.03 -16.35 50 10.85 1.26 1.26 -376.04

A2.3 DISTV 1.1 − SPRD30D −MACD(12,26,9) 30 19 11 55.94 93.15 1062.9 1024.65 38.25 0.38 121.82 -175.27 -1.79 -28.42 63.33 1.27 1.04 0.6 -487.28

A2.4 DISTV 1.1 − SPRD30D −RSI(14) 4 3 1 490.36 183.78 1471.09 183.78 1287.31 12.87 723.94 -183.78 0.42 6.67 75 321.83 8 2.67 -183.78

A2.5 DISTV 1.1 − SPRD30D −BB(20) 14 5 9 135.28 53.72 676.4 483.45 192.95 1.93 361.06 -143.98 -1.04 -16.51 35.71 13.77 1.4 2.52 -468.33

A3 DISTV 1.1 − SPRD30D −DECTREE 350 199 151 22.19 30.14 4416.75 4551.49 -134.74 -1.35 133.69 -151.34 -4.28 -67.94 56.86 -0.38 0.97 0.74 -1014.07

A4 DISTV 1.1 − SPRD30D −MLP 345 194 151 25.03 27 4855.9 4077.11 778.78 7.79 142.17 -125.32 -4.24 -67.31 56.23 2.26 1.19 0.93 -467.73

Part II: Models derived using the spread obtained from DISTV 1.2 − SPRD30D

B1.1 DISTV 1.2 − ZSPRD30D
(3,2) 11 3 8 15.93 44.82 47.8 358.55 -310.74 -3.11 29.94 -114.59 -4.54 -72.07 27.27 -28.25 0.13 0.36 -310.75

B1.2 DISTV 1.2 − ZSPRD30D
(3,1) 9 4 5 23.7 42.32 94.81 211.62 -116.81 -1.17 53.07 -83.83 -3.74 -59.37 44.44 -12.98 0.45 0.56 -169.88

B1.3 DISTV 1.2 − ZSPRD30D
(3,0.5) 9 3 6 43.56 75.79 130.68 454.74 -324.06 -3.24 68.29 -120.46 -2.82 -44.77 33.33 -36.01 0.29 0.57 -324.06

B1.4 DISTV 1.2 − ZSPRD30D
(2.7,2) 16 6 10 29.11 50 174.66 500 -325.34 -3.25 79.44 -114.59 -3.44 -54.61 37.5 -20.33 0.35 0.58 -325.34

B1.5 DISTV 1.2 − ZSPRD30D
(2.7,1) 12 8 4 42.32 42.25 338.58 169.01 169.57 1.7 101.97 -68.09 -2.57 -40.8 66.67 14.13 2 1 -101.3

B1.6 DISTV 1.2 − ZSPRD30D
(2.7,0.5) 12 8 4 62.57 96.32 500.59 385.27 115.32 1.15 100.91 -139.24 -1.66 -26.35 66.67 9.62 1.3 0.65 -157.02

B2.1 DISTV 1.2 − SPRD30D − SMA(10,20) 16 7 9 126.63 73.81 886.41 664.32 222.09 2.22 437.55 -187.05 -0.94 -14.92 43.75 13.88 1.33 1.72 -521.74

B2.2 DISTV 1.2 − SPRD30D − EMA(10,20) 26 10 16 58.37 102.95 583.69 1647.17 -1063.48 -10.63 202.7 -349.25 -1.69 -26.83 38.46 -40.91 0.35 0.57 -920.9

B2.3 DISTV 1.2 − SPRD30D −MACD(12,26,9) 33 13 20 34.54 65.26 448.96 1305.11 -856.15 -8.56 107.49 -195.27 -2.66 -42.23 39.39 -25.95 0.34 0.53 -973.46

B2.4 DISTV 1.2 − SPRD30D −RSI(14) 10 2 8 95.92 165.47 191.83 1323.78 -1131.94 -11.32 146.45 -342.19 -1.52 -24.13 20 -113.19 0.14 0.58 -955.33

B2.5 DISTV 1.2 − SPRD30D −BB(20) 15 9 6 51.88 84.36 466.9 506.15 -39.25 -0.39 89.33 -306.51 -1.54 -24.45 60 -2.62 0.92 0.61 -118.11

B3 DISTV 1.2 − SPRD30D −DECTREE 302 155 147 24.73 30.53 3833.3 4487.67 -654.38 -6.54 142.1 -417.26 -3.35 -53.18 51.32 -2.17 0.85 0.81 -1117.55

B4 DISTV 1.2 − SPRD30D −MLP 276 131 145 26.76 28.28 3505.45 4100.56 -595.11 -5.95 190.88 -224.6 -3.76 -59.69 47.46 -2.16 0.85 0.95 -891.36

Part III: Models derived using the spread obtained from DISTV 2 − SPRD30D

C1.1 DISTV 2 − ZSPRD30D
(3,2) 1 1 - 73.97 - 73.97 - 73.97 0.74 73.97 - - - 100 73.97 73.97 73.97 -

C1.2 DISTV 2 − ZSPRD30D
(3,1) 1 - 1 - 188.04 - 188.04 -188.04 -1.88 - -188.04 - - - -188.04 - - -188.04

C1.3 DISTV 2 − ZSPRD30D
(3,0.5) 1 - 1 - 180.63 - 180.63 -180.63 -1.81 - -180.63 - - - -180.63 - - -180.63

C1.4 DISTV 2 − ZSPRD30D
(2.7,2) 7 5 2 38.47 32.24 192.33 64.47 127.85 1.28 77.81 -49.45 -3.3 -52.39 71.43 18.27 2.98 1.19 -49.45

C1.5 DISTV 2 − ZSPRD30D
(2.7,1) 5 2 3 57.53 105.6 115.06 316.8 -201.73 -2.02 86.46 -281.97 -1.36 -21.59 40 -40.35 0.36 0.54 -281.97

C1.6 DISTV 2 − ZSPRD30D
(2.7,0.5) 5 3 2 95.5 139.12 286.49 278.24 8.25 0.08 141.08 -273.77 -0.92 -14.6 60 1.65 1.03 0.69 -273.77

C2.1 DISTV 2 − SPRD30D − SMA(10,20) 14 11 3 119.86 54.94 1318.46 164.81 1153.66 11.54 407.95 -86.55 -0.58 -9.21 78.57 82.4 8 2.18 -86.55

C2.2 DISTV 2 − SPRD30D − EMA(10,20) 20 10 10 84.1 105.8 841.02 1057.97 -216.95 -2.17 322.26 -349.25 -1.19 -18.89 50 -10.85 0.79 0.79 -234.57

C2.3 DISTV 2 − SPRD30D −MACD(12,26,9) 30 11 19 93.15 55.94 1024.65 1062.9 -38.25 -0.38 175.27 -121.82 -1.82 -28.89 36.67 -1.27 0.96 1.67 -403.72

C2.4 DISTV 2 − SPRD30D −RSI(14) 4 1 3 183.78 490.36 183.78 1471.09 -1287.31 -12.87 183.78 -723.94 -1.17 -18.57 25 -321.83 0.12 0.37 -733.03

C2.5 DISTV 2 − SPRD30D −BB(20) 14 9 5 53.72 135.28 483.45 676.4 -192.95 -1.93 143.98 -361.06 -1.25 -19.84 64.29 -13.77 0.71 0.4 -302.62

C3 DISTV 2 − SPRD30D −DECTREE 360 205 155 23.05 28.6 4726.14 4433.39 292.75 2.93 140.72 -153.49 -4.26 -67.63 56.94 0.81 1.07 0.81 -649.84

C4 DISTV 2 − SPRD30D −MLP 346 198 148 24.54 26.52 4859.52 3925.55 933.97 9.34 140.72 -121.04 -4.34 -68.9 57.23 2.7 1.24 0.93 -450.28

Part IV: Models derived using the spread obtained from DISTV 3 − SPRD30D

D1.1 DISTV 3 − ZSPRD30D
(3,2) 5 4 1 42.97 79.98 171.89 79.98 91.91 0.92 54.55 -79.98 -2.35 -37.31 80 18.38 2.15 0.54 -79.98

D1.2 DISTV 3 − ZSPRD30D
(3,1) 5 4 1 50.05 37.18 200.21 37.18 163.03 1.63 75.4 -37.18 -2.84 -45.08 80 32.61 5.39 1.35 -37.18

D1.3 DISTV 3 − ZSPRD30D
(3,0.5) 5 4 1 56.64 37.18 226.57 37.18 189.39 1.89 75.4 -37.18 -2.49 -39.53 80 37.88 6.09 1.52 -37.18

D1.4 DISTV 3 − ZSPRD30D
(2.7,2) 10 8 2 36.16 40.22 289.29 80.43 208.86 2.09 54.55 -79.98 -3.28 -52.07 80 20.89 3.6 0.9 -79.98

D1.5 DISTV 3 − ZSPRD30D
(2.7,1) 9 8 1 39.1 37.18 312.81 37.18 275.63 2.76 75.4 -37.18 -3.88 -61.59 88.89 30.63 8.41 1.05 -37.18

D1.6 DISTV 3 − ZSPRD30D
(2.7,0.5) 9 8 1 40.29 37.18 322.31 37.18 285.13 2.85 75.4 -37.18 -3.39 -53.81 88.89 31.68 8.67 1.08 -37.18

D2.1 DISTV 3 − SPRD30D − SMA(10,20) 24 6 18 59.21 78.84 355.29 1419.2 -1063.91 -10.64 161.61 -316.54 -1.91 -30.32 25 -44.33 0.25 0.75 -1192.37

D2.2 DISTV 3 − SPRD30D − EMA(10,20) 45 17 28 71.6 74.23 1217.24 2078.53 -861.28 -8.61 263.67 -223.25 -1.84 -29.21 37.78 -19.14 0.59 0.96 -1042.72

D2.3 DISTV 3 − SPRD30D −MACD(12,26,9) 47 17 30 58.43 47.23 993.25 1416.88 -423.63 -4.24 156.73 -349.25 -2.07 -32.86 36.17 -9.01 0.7 1.24 -432.82

D2.4 DISTV 3 − SPRD30D −RSI(14) 1 1 - 568.47 - 568.47 - 568.47 5.68 568.47 - - - 100 568.47 568.47 568.47 -

D2.5 DISTV 3 − SPRD30D −BB(20) 21 12 9 37.69 45.21 452.28 406.94 45.34 0.45 105.37 -132.69 -2.66 -42.23 57.14 2.16 1.11 0.83 -183.3

D3 DISTV 3 − SPRD30D −DECTREE 319 167 152 25.13 29.8 4197.18 4530.12 -332.94 -3.33 129.62 -188.58 -3.96 -62.86 52.35 -1.04 0.93 0.84 -1429.15

D4 DISTV 3 − SPRD30D −MLP 285 151 134 26.95 26.82 4069.92 3593.45 476.47 4.76 173.36 -191.68 -3.8 -60.32 52.98 1.67 1.13 1.01 -784.94

Part V: Models derived using the spread obtained from DISTV 4 − SPRD30D

E1.1 DISTV 4 − ZSPRD30D
(3,2) 5 4 1 42.97 79.98 171.89 79.98 91.91 0.92 54.55 -79.98 -2.35 -37.31 80 18.38 2.15 0.54 -79.98

E1.2 DISTV 4 − ZSPRD30D
(3,1) 5 4 1 50.05 37.18 200.21 37.18 163.03 1.63 75.4 -37.18 -2.84 -45.08 80 32.61 5.39 1.35 -37.18

E1.3 DISTV 4 − ZSPRD30D
(3,0.5) 5 4 1 56.64 37.18 226.57 37.18 189.39 1.89 75.4 -37.18 -2.49 -39.53 80 37.88 6.09 1.52 -37.18

E1.4 DISTV 4 − ZSPRD30D
(2.7,2) 10 8 2 36.16 40.22 289.29 80.43 208.86 2.09 54.55 -79.98 -3.28 -52.07 80 20.89 3.6 0.9 -79.98

E1.5 DISTV 4 − ZSPRD30D
(2.7,1) 9 8 1 39.1 37.18 312.81 37.18 275.63 2.76 75.4 -37.18 -3.88 -61.59 88.89 30.63 8.41 1.05 -37.18

E1.6 DISTV 4 − ZSPRD30D
(2.7,0.5) 9 8 1 40.29 37.18 322.31 37.18 285.13 2.85 75.4 -37.18 -3.39 -53.81 88.89 31.68 8.67 1.08 -37.18

E2.1 DISTV 4 − SPRD30D − SMA(10,20) 24 6 18 59.21 78.84 355.29 1419.2 -1063.91 -10.64 161.61 -316.54 -1.91 -30.32 25 -44.33 0.25 0.75 -1192.37

E2.2 DISTV 4 − SPRD30D − EMA(10,20) 45 17 28 71.6 74.23 1217.24 2078.53 -861.28 -8.61 263.67 -223.25 -1.84 -29.21 37.78 -19.14 0.59 0.96 -1042.72

E2.3 DISTV 4 − SPRD30D −MACD(12,26,9) 47 17 30 58.43 47.23 993.25 1416.88 -423.63 -4.24 156.73 -349.25 -2.07 -32.86 36.17 -9.01 0.7 1.24 -432.82

E2.4 DISTV 4 − SPRD30D −RSI(14) 1 1 - 568.47 - 568.47 - 568.47 5.68 568.47 - - - 100 568.47 568.47 568.47 -

E2.5 DISTV 4 − SPRD30D −BB(20) 21 12 9 37.69 45.21 452.28 406.94 45.34 0.45 105.37 -132.69 -2.66 -42.23 57.14 2.16 1.11 0.83 -183.3

E3 DISTV 4 − SPRD30D −DECTREE 313 158 155 26.6 29.93 4203.02 4639.24 -436.22 -4.36 155.74 -188.58 -3.84 -60.96 50.48 -1.39 0.91 0.89 -1276.53

E4 DISTV 4 − SPRD30D −MLP 285 151 134 26.95 26.82 4069.92 3593.45 476.47 4.76 173.36 -191.68 -3.8 -60.32 52.98 1.67 1.13 1.01 -784.94

Part VI: Models derived using the spread obtained from JOHANSEN − SPRD30D

F1.1 JOHANSEN − ZSPRD30D
(3,2) 23 13 10 67.28 44.53 874.63 445.29 429.34 4.29 417.42 -161.03 -0.41 -6.51 56.52 18.66 1.96 1.51 -242.96

F1.2 JOHANSEN − ZSPRD30D
(3,1) 22 12 10 140.76 52.91 1689.09 529.06 1160.03 11.6 1055.34 -161.03 0.07 1.11 54.55 52.74 3.19 2.66 -326.73

F1.3 JOHANSEN − ZSPRD30D
(3,0.5) 21 13 8 147.56 73.66 1918.22 589.31 1328.91 13.29 1055.34 -161.03 0.06 0.95 61.9 63.27 3.26 2 -321.07

F1.4 JOHANSEN − ZSPRD30D
(2.7,2) 30 15 15 60.06 47.87 900.85 718.07 182.78 1.83 417.42 -161.03 -0.58 -9.21 50 6.09 1.25 1.25 -395.99

F1.5 JOHANSEN − ZSPRD30D
(2.7,1) 28 14 14 124.91 53.02 1748.76 742.32 1006.44 10.06 1055.34 -161.03 -0.03 -0.48 50 35.94 2.36 2.36 -398.55

F1.6 JOHANSEN − ZSPRD30D
(2.7,0.5) 26 15 11 131.25 78.65 1968.72 865.2 1103.52 11.04 1055.34 -161.03 -0.03 -0.48 57.69 42.44 2.28 1.67 -455.51

F2.1 JOHANSEN − SPRD30D − SMA(10,20) 18 7 11 314.97 791.21 2204.82 8703.34 -6498.52 -64.99 1413.1 -3531.8 -0.13 -2.06 38.89 -361.02 0.25 0.4 -7639.61

F2.2 JOHANSEN − SPRD30D − EMA(10,20) 31 21 10 325.6 449.24 6837.5 4492.44 2345.06 23.45 1655.04 -3008.14 -0.06 -0.95 67.74 75.63 1.52 0.72 -3086.35

F2.3 JOHANSEN − SPRD30D −MACD(12,26,9) 34 17 17 300.4 223.35 5106.79 3796.98 1309.81 13.1 1130.96 -1639.77 0.21 3.33 50 38.52 1.34 1.34 -2569.09

F2.4 JOHANSEN − SPRD30D −RSI(14) 9 5 4 494.62 678.38 2473.09 2713.54 -240.44 -2.4 866.3 -2462.32 -0.04 -0.63 55.56 -26.66 0.91 0.73 -2538.88

F2.5 JOHANSEN − SPRD30D −BB(20) 15 9 6 1626.39 122.86 14637.55 737.14 13900.4 139 9177.14 -256.47 0.37 5.87 60 926.69 19.86 13.24 -410.94

F3 JOHANSEN − SPRD30D −DECTREE 315 152 163 30.17 27.44 4585.41 4473.35 112.06 1.12 271.41 -146.82 -3.58 -56.83 48.25 0.35 1.03 1.1 -1029.89

F4 JOHANSEN − SPRD30D −MLP 229 120 109 27.8 31.36 3336.34 3417.78 -81.43 -0.81 173.27 -390.3 -3.09 -49.05 52.4 -0.36 0.98 0.89 -1110.36

Part VII: Models derived using the spread obtained from ADF − SPRD30D

G1.1 ADF − ZSPRD30D
(3,2) 2 2 - 85.42 - 170.85 - 170.85 1.71 152.51 - -2.34 -37.15 100 85.42 170.85 85.42 -

G1.2 ADF − ZSPRD30D
(3,1) 2 2 - 94.11 - 188.22 - 188.22 1.88 152.51 - -2.44 -38.73 100 94.11 188.22 94.11 -

G1.3 ADF − ZSPRD30D
(3,0.5) 2 2 - 473.54 - 947.08 - 947.08 9.47 903.02 - 0.23 3.65 100 473.54 947.08 473.54 -

G1.4 ADF − ZSPRD30D
(2.7,2) 5 3 2 68.76 22.62 206.29 45.24 161.06 1.61 152.51 -42.2 -4 -63.5 60 32.21 4.56 3.04 -42.2

G1.5 ADF − ZSPRD30D
(2.7,1) 5 3 2 80.03 100.36 240.09 200.72 39.38 0.39 152.51 -188.44 -2.8 -44.45 60 7.88 1.2 0.8 -188.44

G1.6 ADF − ZSPRD30D
(2.7,0.5) 5 3 2 332.99 160.16 998.96 320.31 678.65 6.79 903.02 -188.44 -0.4 -6.35 60 135.73 3.12 2.08 -268.43

G2.1 ADF − SPRD30D − SMA(10,20) 20 8 12 253.27 210.24 2026.19 2522.9 -496.71 -4.97 559.4 -733.01 -1.03 -16.35 40 -24.84 0.8 1.2 -1308.67

G2.2 ADF − SPRD30D − EMA(10,20) 46 27 19 131.57 113.65 3552.36 2159.3 1393.06 13.93 957.7 -835.38 -1.48 -23.49 58.7 30.29 1.65 1.16 -835.38

G2.3 ADF − SPRD30D −MACD(12,26,9) 46 24 22 148.81 142.25 3571.36 3129.57 441.79 4.42 712.73 -612.61 -0.43 -6.83 52.17 9.59 1.14 1.05 -669.61

G2.4 ADF − SPRD30D −RSI(14) 3 1 2 1117.57 367.63 1117.57 735.26 382.32 3.82 1117.57 -371.22 -0.71 -11.27 33.33 127.39 1.52 3.04 -364.03

G2.5 ADF − SPRD30D −BB(20) 24 11 13 131.1 102.35 1442.09 1330.54 111.55 1.12 808.32 -276.24 -2.26 -35.88 45.83 4.64 1.08 1.28 -849.42

G3 ADF − SPRD30D −DECTREE 347 167 180 29.9 23.83 4992.98 4288.95 704.03 7.04 185.67 -115.91 -3.78 -60.01 48.13 2.03 1.16 1.25 -483.08

G4 ADF − SPRD30D −MLP 207 117 90 33.1 28.89 3872.98 2599.93 1273.05 12.73 215.83 -229.75 -3.04 -48.26 56.52 6.15 1.49 1.15 -479.07

Part VIII: Models derived using the spread obtained from KALMAN − SPRD30D

H1.1 KALMAN − ZSPRD30D
(3,2) 1 - 1 - 447.41 - 447.41 -447.41 -4.47 - -447.41 - - - -447.41 - - -447.41

H1.2 KALMAN − ZSPRD30D
(3,1) 1 - 1 - 153.63 - 153.63 -153.63 -1.54 - -153.63 - - - -153.63 - - -153.63

H1.3 KALMAN − ZSPRD30D
(3,0.5) 1 - 1 - 92 - 92 -92 -0.92 - -92 - - - -92 - - -92

H1.4 KALMAN − ZSPRD30D
(2.7,2) 4 2 2 104.59 384.78 209.18 769.56 -560.38 -5.6 104.66 -716.73 -1.56 -24.76 50 -140.1 0.27 0.27 -716.73

H1.5 KALMAN − ZSPRD30D
(2.7,1) 4 2 2 190.1 230.65 380.2 461.3 -81.09 -0.81 227.48 -444.9 -1.65 -26.19 50 -20.27 0.82 0.82 -444.9

H1.6 KALMAN − ZSPRD30D
(2.7,0.5) 4 3 1 131.37 388.08 394.12 388.08 6.03 0.06 227.48 -388.08 -1.73 -27.46 75 1.51 1.02 0.34 -388.08

H2.1 KALMAN − SPRD30D − SMA(10,20) 16 11 5 197.02 76.46 2167.19 382.32 1784.87 17.85 651.49 -185.19 -1.68 -26.67 68.75 111.55 5.67 2.58 -197.14

H2.2 KALMAN − SPRD30D − EMA(10,20) 15 6 9 319.59 116.07 1917.53 1044.6 872.93 8.73 571.76 -253.51 -1.66 -26.35 40 58.2 1.84 2.75 -568.03

H2.3 KALMAN − SPRD30D −MACD(12,26,9) 36 14 22 143.55 99.05 2009.64 2179.17 -169.53 -1.7 817.01 -296.54 -2.6 -41.27 38.89 -4.71 0.92 1.45 -701.38

H2.4 KALMAN − SPRD30D −RSI(14) 4 2 2 334.15 635.75 668.29 1271.49 -603.2 -6.03 592.73 -1262.48 -0.79 -12.54 50 -150.8 0.53 0.53 -1262.48

H2.5 KALMAN − SPRD30D −BB(20) 6 5 1 99.91 448.04 499.54 448.04 51.5 0.51 141.38 -448.04 -2.08 -33.02 83.33 8.56 1.11 0.22 -448.04

H3 KALMAN − SPRD30D −DECTREE 350 217 133 23.79 26.39 5163.33 3509.96 1653.37 16.53 130.13 -105.37 -4.45 -70.64 62 4.72 1.47 0.9 -263.6

H4 KALMAN − SPRD30D −MLP 295 172 123 24.32 25.98 4183.42 3195.59 987.84 9.88 191.33 -134.45 -4.29 -68.1 58.31 3.35 1.31 0.94 -225.63

Part IX: Models derived using the spread obtained from RATIO − SPRD30D

I1.1 RATIO − ZSPRD30D
(3,2) 2 1 1 69.74 74.62 69.74 74.62 -4.87 -0.05 69.74 -74.62 -1.51 -23.97 50 -2.44 0.93 0.93 -74.62

I1.2 RATIO − ZSPRD30D
(3,1) 2 1 1 111.79 31.73 111.79 31.73 80.06 0.8 111.79 -31.73 -1.1 -17.46 50 40.03 3.52 3.52 -31.73

I1.3 RATIO − ZSPRD30D
(3,0.5) 2 2 - 89.59 - 179.19 - 179.19 1.79 172.2 - -0.53 -8.41 100 89.59 179.19 89.59 -

I1.4 RATIO − ZSPRD30D
(2.7,2) 6 4 2 39.22 42.8 156.88 85.61 71.28 0.71 69.74 -74.62 -2.77 -43.97 66.67 11.88 1.83 0.92 -85.61

I1.5 RATIO − ZSPRD30D
(2.7,1) 5 4 1 100.42 120.42 401.69 120.42 281.27 2.81 157.26 -120.42 -0.86 -13.65 80 56.25 3.34 0.83 -120.42

I1.6 RATIO − ZSPRD30D
(2.7,0.5) 5 4 1 127.12 81.2 508.47 81.2 427.27 4.27 172.2 -81.2 -0.65 -10.32 80 85.45 6.26 1.57 -81.2

I2.1 RATIO − SPRD30D − SMA(10,20) 17 10 7 60.01 87.49 600.06 612.41 -12.35 -0.12 175 -235.53 -1.51 -23.97 58.82 -0.73 0.98 0.69 -474.23

I2.2 RATIO − SPRD30D − EMA(10,20) 27 10 17 52.95 101.02 529.55 1717.36 -1187.81 -11.88 107.77 -420.82 -1.83 -29.05 37.04 -43.99 0.31 0.52 -1002.12

I2.3 RATIO − SPRD30D −MACD(12,26,9) 40 12 28 55.12 59.46 661.47 1664.93 -1003.46 -10.03 252.14 -171.24 -2.47 -39.21 30 -25.09 0.4 0.93 -1188.88

I2.4 RATIO − SPRD30D −RSI(14) 4 2 2 253.84 439.5 507.68 879 -371.32 -3.71 305.68 -553.68 -0.59 -9.37 50 -92.83 0.58 0.58 -553.68

I2.5 RATIO − SPRD30D −BB(20) 20 14 6 79.56 56.68 1113.82 340.09 773.73 7.74 374.24 -175.71 -1.08 -17.14 70 38.69 3.28 1.4 -221.23

I3 RATIO − SPRD30D −DECTREE 402 151 251 25.04 20.92 3781.22 5250.85 -1469.64 -14.7 132.62 -142.17 -5.02 -79.69 37.56 -3.66 0.72 1.2 -1764.69

I4 RATIO − SPRD30D −MLP 378 143 235 25.98 23.23 3714.78 5459.61 -1744.84 -17.45 186.25 -142.17 -4.5 -71.44 37.83 -4.62 0.68 1.12 -1969.72

Part X: Models derived using the close price of SCHF.N

CLS-SYM-1.1 CLOSESCHF.N − SMA(10,20) 20 7 13 314.26 125.66 2199.8 1633.59 566.2 5.66 1106.36 -575.54 -0.14 -2.22 35 28.31 1.35 2.5 -918.42

CLS-SYM-1.2 CLOSESCHF.N − EMA(10,20) 23 8 15 331.11 93.37 2648.86 1400.61 1248.24 12.48 911.97 -332.73 -0.07 -1.11 34.78 54.26 1.89 3.55 -643.72

CLS-SYM-1.3 CLOSESCHF.N −MACD(12,26,9) 30 10 20 221.35 120.16 2213.46 2403.27 -189.81 -1.9 1043.11 -326.35 -0.34 -5.4 33.33 -6.34 0.92 1.84 -1733.81

CLS-SYM-1.4 CLOSESCHF.N −RSI(14) 5 2 3 617.93 304.16 1235.87 912.48 323.39 3.23 959.27 -697.61 -0.02 -0.32 40 64.68 1.35 2.03 -697.61

CLS-SYM-1.5 CLOSESCHF.N −BB(20) 15 8 7 79.49 192.86 635.89 1349.99 -714.1 -7.14 252.09 -785.71 -0.51 -8.1 53.33 -47.62 0.47 0.41 -785.71

Part XI: Models derived using the close price of VO.N

CLS-SYM-2.1 CLOSEV O.N − SMA(10,20) 15 5 10 407.5 131.94 2037.52 1319.42 718.1 7.18 1345.66 -357.26 -0.07 -1.11 33.33 47.86 1.54 3.09 -888.12

CLS-SYM-2.2 CLOSEV O.N − EMA(10,20) 20 6 14 305.56 123.3 1833.38 1726.2 107.17 1.07 700.63 -218.39 -0.27 -4.29 30 5.36 1.06 2.48 -812.37

CLS-SYM-2.3 CLOSEV O.N −MACD(12,26,9) 30 12 18 235.68 119.41 2828.19 2149.34 678.86 6.79 1213.06 -330.07 -0.19 -3.02 40 22.63 1.32 1.97 -845.26

CLS-SYM-2.4 CLOSEV O.N −RSI(14) 5 2 3 464.59 648.69 929.17 1946.08 -1016.91 -10.17 781.75 -1353.4 -0.35 -5.56 40 -203.38 0.48 0.72 -1353.4

CLS-SYM-2.5 CLOSEV O.N −BB(20) 15 13 2 85.35 600.28 1109.6 1200.56 -90.96 -0.91 190.76 -984.33 -0.29 -4.6 86.67 -6.04 0.92 0.14 -984.33
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Table D.2.14: This table presents the back-test metrics for the pair SCHF.N/V O.N based on a 50-day rolling window. The table is subdivided into eleven parts, and in each of these parts, we present the back-test metrics and the trading strategies which use the
spread derived from various models. In Part I, the spread is derived from the DIST V 1.1 model, in Part II from the DIST V 1.2 model, in Part III from the DIST V 2 model, in Part IV from the DIST V 3 model, in Part V from the DIST V 4 model, in Part VI from the
JOHANSEN − SPRD model, in Part VIII from the ADF − SPRD model, in from the DIST V 2 model, in Part VIII from the KALMAN − SPRD model, and in Part IX from the RATIO − SPRD model. In Part X and XI, we present the back-test metrics of
the trading strategies which use the close price of SCHF.N, and VO.N, respectively. All $ numbers reported below are in USD.

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X) (XI) (XII) (XIII) (XIV) (XV) (XVI) (XVII) (XVIII) (XIX) (XX)

Trading
Strategy
Code

Model
Name

Total
Number
of
Trades

Number
of

Winning
Trades

Number
of Loosing
Trades

Average
Profit

per Trade
($)

Average
Loss per
Trade
($)

Gross
Profit
($)

Gross
Loss
($)

Net Profit
($)

ROI (%) Max P&L
($)

Min P&L
($)

Daily
Sharpe
Ratio

Annualized
Sharpe
Ratio

Hit Ratio Expectancy Profit
Factor

Realized
Risk

Reward
Ratio

Max
Drawdown

($)

Part I: Models derived using the spread obtained from DISTV 1.1 − SPRD50D

A1.1 DISTV 1.1 − ZSPRD50D
(3,2) 2 1 1 94.44 135.45 94.44 135.45 -41.01 -0.41 94.44 -135.45 -1.06 -16.83 50 -20.51 0.7 0.7 -135.45

A1.2 DISTV 1.1 − ZSPRD50D
(3,1) 1 1 - 127.2 - 127.2 - 127.2 1.27 127.2 - - - 100 127.2 127.2 127.2 -

A1.3 DISTV 1.1 − ZSPRD50D
(3,0.5) 1 - 1 - 63.95 - 63.95 -63.95 -0.64 - -63.95 - - - -63.95 - - -63.95

A1.4 DISTV 1.1 − ZSPRD50D
(2.7,2) 3 2 1 65.1 135.45 130.2 135.45 -5.25 -0.05 94.44 -135.45 -1.29 -20.48 66.67 -1.74 0.96 0.48 -135.45

A1.5 DISTV 1.1 − ZSPRD50D
(2.7,1) 2 2 - 78.88 - 157.76 - 157.76 1.58 127.2 - -1.07 -16.99 100 78.88 157.76 78.88 -

A1.6 DISTV 1.1 − ZSPRD50D
(2.7,0.5) 2 1 1 50.22 63.95 50.22 63.95 -13.73 -0.14 50.22 -63.95 -1.97 -31.27 50 -6.87 0.79 0.79 -63.95

A2.1 DISTV 1.1 − SPRD50D − SMA(10,20) 13 3 10 54.94 89.59 164.81 895.94 -731.14 -7.31 86.55 -164.36 -2.61 -41.43 23.08 -56.24 0.18 0.61 -719.95

A2.2 DISTV 1.1 − SPRD50D − EMA(10,20) 20 9 11 108.54 91.01 976.83 1001.14 -24.31 -0.24 266.07 -322.26 -1.15 -18.26 45 -1.22 0.98 1.19 -490.55

A2.3 DISTV 1.1 − SPRD50D −MACD(12,26,9) 31 20 11 55.02 87.94 1100.47 967.29 133.18 1.33 121.82 -175.27 -1.8 -28.57 64.52 4.3 1.14 0.63 -476.57

A2.4 DISTV 1.1 − SPRD50D −RSI(14) 4 3 1 490.36 183.78 1471.09 183.78 1287.31 12.87 723.94 -183.78 0.42 6.67 75 321.83 8 2.67 -183.78

A2.5 DISTV 1.1 − SPRD50D −BB(20) 14 5 9 135.28 53.72 676.4 483.45 192.95 1.93 361.06 -143.98 -1.04 -16.51 35.71 13.77 1.4 2.52 -468.33

A3 DISTV 1.1 − SPRD50D −DECTREE 351 195 156 23.91 30.03 4662.13 4684.15 -22.02 -0.22 166.02 -200.44 -3.92 -62.23 55.56 -0.06 1 0.8 -695.94

A4 DISTV 1.1 − SPRD50D −MLP 330 181 149 23.9 27.75 4326.36 4134.19 192.17 1.92 142.17 -125.32 -4.32 -68.58 54.85 0.58 1.05 0.86 -624.79

Part II: Models derived using the spread obtained from DISTV 1.2 − SPRD50D

B1.1 DISTV 1.2 − ZSPRD50D
(3,2) 5 1 4 6.94 37.13 6.94 148.53 -141.59 -1.42 6.94 -52.01 -6.63 -105.25 20 -28.32 0.05 0.19 -148.53

B1.2 DISTV 1.2 − ZSPRD50D
(3,1) 5 - 5 - 48.15 - 240.74 -240.74 -2.41 - -121.06 -4.44 -70.48 - -48.15 - - -240.74

B1.3 DISTV 1.2 − ZSPRD50D
(3,0.5) 4 2 2 41.34 193.37 82.69 386.75 -304.06 -3.04 64.74 -291.39 -1.44 -22.86 50 -76.02 0.21 0.21 -322.01

B1.4 DISTV 1.2 − ZSPRD50D
(2.7,2) 9 4 5 27.8 38.49 111.2 192.44 -81.24 -0.81 43.25 -76.75 -3.92 -62.23 44.44 -9.03 0.58 0.72 -141.32

B1.5 DISTV 1.2 − ZSPRD50D
(2.7,1) 9 4 5 54.35 62.35 217.39 311.73 -94.35 -0.94 107.84 -121.06 -2.22 -35.24 44.44 -10.49 0.7 0.87 -265.74

B1.6 DISTV 1.2 − ZSPRD50D
(2.7,0.5) 7 3 4 82.47 172.56 247.42 690.26 -442.83 -4.43 155.72 -291.39 -1.37 -21.75 42.86 -63.25 0.36 0.48 -460.78

B2.1 DISTV 1.2 − SPRD50D − SMA(10,20) 16 11 5 73.49 92.16 808.35 460.82 347.53 3.48 156.51 -173.36 -1.34 -21.27 68.75 21.72 1.75 0.8 -340.07

B2.2 DISTV 1.2 − SPRD50D − EMA(10,20) 15 7 8 117.1 109.14 819.7 873.11 -53.41 -0.53 288.05 -266.07 -1.05 -16.67 46.67 -3.55 0.94 1.07 -447.11

B2.3 DISTV 1.2 − SPRD50D −MACD(12,26,9) 29 12 17 75.62 62.1 907.48 1055.68 -148.19 -1.48 309.8 -141.13 -1.71 -27.15 41.38 -5.11 0.86 1.22 -707.74

B2.4 DISTV 1.2 − SPRD50D −RSI(14) 10 1 9 127.91 197.53 127.91 1777.75 -1649.84 -16.5 127.91 -427.21 -1.96 -31.11 10 -164.98 0.07 0.65 -1350.54

B2.5 DISTV 1.2 − SPRD50D −BB(20) 18 10 8 60.57 110.19 605.71 881.52 -275.81 -2.76 169.27 -291.38 -1.46 -23.18 55.56 -15.32 0.69 0.55 -224.45

B3 DISTV 1.2 − SPRD50D −DECTREE 272 147 125 25.55 28.25 3756.22 3530.66 225.57 2.26 146.01 -208.15 -3.85 -61.12 54.04 0.83 1.06 0.9 -1134.03

B4 DISTV 1.2 − SPRD50D −MLP 165 89 76 36.55 34.42 3252.68 2615.99 636.69 6.37 183.26 -182.17 -2.88 -45.72 53.94 3.86 1.24 1.06 -366.89

Part III: Models derived using the spread obtained from DISTV 2 − SPRD50D

C1.1 DISTV 2 − ZSPRD50D
(3,2) 2 1 1 135.45 94.44 135.45 94.44 41.01 0.41 135.45 -94.44 -0.81 -12.86 50 20.51 1.43 1.43 -94.44

C1.2 DISTV 2 − ZSPRD50D
(3,1) 1 - 1 - 127.2 - 127.2 -127.2 -1.27 - -127.2 - - - -127.2 - - -127.2

C1.3 DISTV 2 − ZSPRD50D
(3,0.5) 1 1 - 63.95 - 63.95 - 63.95 0.64 63.95 - - - 100 63.95 63.95 63.95 -

C1.4 DISTV 2 − ZSPRD50D
(2.7,2) 3 1 2 135.45 65.1 135.45 130.2 5.25 0.05 135.45 -94.44 -1.26 -20 33.33 1.74 1.04 2.08 -130.2

C1.5 DISTV 2 − ZSPRD50D
(2.7,1) 2 - 2 - 78.88 - 157.76 -157.76 -1.58 - -127.2 -3.38 -53.66 - -78.88 - - -157.76

C1.6 DISTV 2 − ZSPRD50D
(2.7,0.5) 2 1 1 63.95 50.22 63.95 50.22 13.73 0.14 63.95 -50.22 -1.8 -28.57 50 6.87 1.27 1.27 -50.22

C2.1 DISTV 2 − SPRD50D − SMA(10,20) 13 10 3 89.59 54.94 895.94 164.81 731.14 7.31 164.36 -86.55 -1.2 -19.05 76.92 56.24 5.44 1.63 -86.55

C2.2 DISTV 2 − SPRD50D − EMA(10,20) 20 11 9 91.01 108.54 1001.14 976.83 24.31 0.24 322.26 -266.07 -1.13 -17.94 55 1.22 1.02 0.84 -234.57

C2.3 DISTV 2 − SPRD50D −MACD(12,26,9) 31 11 20 87.94 55.02 967.29 1100.47 -133.18 -1.33 175.27 -121.82 -1.91 -30.32 35.48 -4.3 0.88 1.6 -403.72

C2.4 DISTV 2 − SPRD50D −RSI(14) 4 1 3 183.78 490.36 183.78 1471.09 -1287.31 -12.87 183.78 -723.94 -1.17 -18.57 25 -321.83 0.12 0.37 -733.03

C2.5 DISTV 2 − SPRD50D −BB(20) 14 9 5 53.72 135.28 483.45 676.4 -192.95 -1.93 143.98 -361.06 -1.25 -19.84 64.29 -13.77 0.71 0.4 -302.62

C3 DISTV 2 − SPRD50D −DECTREE 355 201 154 22.46 28 4514.11 4311.36 202.75 2.03 140.72 -178.53 -4.34 -68.9 56.62 0.57 1.05 0.8 -502.03

C4 DISTV 2 − SPRD50D −MLP 306 171 135 27.43 28.51 4691.15 3849.34 841.81 8.42 166.02 -125.32 -3.88 -61.59 55.88 2.75 1.22 0.96 -437.6

Part IV: Models derived using the spread obtained from DISTV 3 − SPRD50D

D1.1 DISTV 3 − ZSPRD50D
(3,2) 6 2 4 53.64 82.66 107.27 330.63 -223.36 -2.23 60.35 -216.86 -1.86 -29.53 33.33 -37.23 0.32 0.65 -317.92

D1.2 DISTV 3 − ZSPRD50D
(3,1) 6 2 4 97.04 51.78 194.07 207.12 -13.05 -0.13 120.79 -130.77 -1.74 -27.62 33.33 -2.18 0.94 1.87 -199

D1.3 DISTV 3 − ZSPRD50D
(3,0.5) 6 5 1 43.49 136.12 217.45 136.12 81.33 0.81 120.79 -136.12 -1.59 -25.24 83.33 13.55 1.6 0.32 -136.12

D1.4 DISTV 3 − ZSPRD50D
(2.7,2) 13 8 5 41.3 70.33 330.44 351.64 -21.2 -0.21 64.36 -216.86 -1.99 -31.59 61.54 -1.63 0.94 0.59 -294.5

D1.5 DISTV 3 − ZSPRD50D
(2.7,1) 11 6 5 44.88 50.94 269.26 254.68 14.59 0.15 120.79 -130.77 -2.29 -36.35 54.55 1.33 1.06 0.88 -210.88

D1.6 DISTV 3 − ZSPRD50D
(2.7,0.5) 11 9 2 30.93 95.35 278.34 190.7 87.64 0.88 120.79 -136.12 -2.2 -34.92 81.82 7.97 1.46 0.32 -136.12

D2.1 DISTV 3 − SPRD50D − SMA(10,20) 16 9 7 61.02 95.65 549.2 669.58 -120.38 -1.2 205 -149.34 -1.62 -25.72 56.25 -7.52 0.82 0.64 -342.28

D2.2 DISTV 3 − SPRD50D − EMA(10,20) 33 14 19 88.76 91.89 1242.64 1745.86 -503.22 -5.03 224.13 -309.8 -1.48 -23.49 42.42 -15.26 0.71 0.97 -704.25

D2.3 DISTV 3 − SPRD50D −MACD(12,26,9) 47 16 31 111.44 59.44 1782.98 1842.59 -59.61 -0.6 266.07 -200.76 -1.46 -23.18 34.04 -1.27 0.97 1.87 -752.04

D2.4 DISTV 3 − SPRD50D −RSI(14) 2 - 2 - 782.2 - 1564.4 -1564.4 -15.64 - -1257.89 -1.39 -22.07 - -782.2 - - -1257.89

D2.5 DISTV 3 − SPRD50D −BB(20) 21 14 7 47.83 39.6 669.63 277.21 392.41 3.92 110.89 -94.69 -2.54 -40.32 66.67 18.69 2.42 1.21 -94.69

D3 DISTV 3 − SPRD50D −DECTREE 303 161 142 22.15 29.51 3566.71 4189.96 -623.25 -6.23 114.85 -213.17 -4.17 -66.2 53.14 -2.05 0.85 0.75 -966.35

D4 DISTV 3 − SPRD50D −MLP 207 107 100 29.47 28.82 3153.41 2882.29 271.12 2.71 145.68 -186.25 -3.43 -54.45 51.69 1.31 1.09 1.02 -418.86

Part V: Models derived using the spread obtained from DISTV 4 − SPRD50D

E1.1 DISTV 4 − ZSPRD50D
(3,2) 6 2 4 53.64 82.66 107.27 330.63 -223.36 -2.23 60.35 -216.86 -1.86 -29.53 33.33 -37.23 0.32 0.65 -317.92

E1.2 DISTV 4 − ZSPRD50D
(3,1) 6 2 4 97.04 51.78 194.07 207.12 -13.05 -0.13 120.79 -130.77 -1.74 -27.62 33.33 -2.18 0.94 1.87 -199

E1.3 DISTV 4 − ZSPRD50D
(3,0.5) 6 5 1 43.49 136.12 217.45 136.12 81.33 0.81 120.79 -136.12 -1.59 -25.24 83.33 13.55 1.6 0.32 -136.12

E1.4 DISTV 4 − ZSPRD50D
(2.7,2) 13 8 5 41.3 70.33 330.44 351.64 -21.2 -0.21 64.36 -216.86 -1.99 -31.59 61.54 -1.63 0.94 0.59 -294.5

E1.5 DISTV 4 − ZSPRD50D
(2.7,1) 11 6 5 44.88 50.94 269.26 254.68 14.59 0.15 120.79 -130.77 -2.29 -36.35 54.55 1.33 1.06 0.88 -210.88

E1.6 DISTV 4 − ZSPRD50D
(2.7,0.5) 11 9 2 30.93 95.35 278.34 190.7 87.64 0.88 120.79 -136.12 -2.2 -34.92 81.82 7.97 1.46 0.32 -136.12

E2.1 DISTV 4 − SPRD50D − SMA(10,20) 17 10 7 87.9 90.81 879.05 635.67 243.38 2.43 329.85 -149.34 -1.11 -17.62 58.82 14.31 1.38 0.97 -342.28

E2.2 DISTV 4 − SPRD50D − EMA(10,20) 33 14 19 88.76 91.89 1242.64 1745.86 -503.22 -5.03 224.13 -309.8 -1.48 -23.49 42.42 -15.26 0.71 0.97 -704.25

E2.3 DISTV 4 − SPRD50D −MACD(12,26,9) 47 16 31 111.44 59.44 1782.98 1842.59 -59.61 -0.6 266.07 -200.76 -1.46 -23.18 34.04 -1.27 0.97 1.87 -752.04

E2.4 DISTV 4 − SPRD50D −RSI(14) 2 - 2 - 782.2 - 1564.4 -1564.4 -15.64 - -1257.89 -1.39 -22.07 - -782.2 - - -1257.89

E2.5 DISTV 4 − SPRD50D −BB(20) 21 14 7 47.83 39.6 669.63 277.21 392.41 3.92 110.89 -94.69 -2.54 -40.32 66.67 18.69 2.42 1.21 -94.69

E3 DISTV 4 − SPRD50D −DECTREE 311 169 142 27.88 23.22 4711.04 3297.41 1413.63 14.14 190.88 -148.99 -3.85 -61.12 54.34 4.55 1.43 1.2 -358.85

E4 DISTV 4 − SPRD50D −MLP 210 112 98 33.48 32.29 3749.6 3164.3 585.3 5.85 326.54 -316.56 -2.76 -43.81 53.33 2.78 1.18 1.04 -784.89

Part VI: Models derived using the spread obtained from JOHANSEN − SPRD50D

F1.1 JOHANSEN − ZSPRD50D
(3,2) 17 6 11 43.62 60.78 261.74 668.61 -406.87 -4.07 206.36 -213 -0.63 -10 35.29 -23.94 0.39 0.72 -438.73

F1.2 JOHANSEN − ZSPRD50D
(3,1) 17 6 11 46.25 69.97 277.49 769.72 -492.23 -4.92 196.99 -213 -0.61 -9.68 35.29 -28.96 0.36 0.66 -507.18

F1.3 JOHANSEN − ZSPRD50D
(3,0.5) 17 6 11 17.29 123.64 103.71 1360.04 -1256.33 -12.56 37.49 -683.94 -0.39 -6.19 35.29 -73.91 0.08 0.14 -1271.28

F1.4 JOHANSEN − ZSPRD50D
(2.7,2) 19 7 12 42.02 159.7 294.14 1916.39 -1622.25 -16.22 206.36 -1247.78 -0.14 -2.22 36.84 -85.39 0.15 0.26 -1686.51

F1.5 JOHANSEN − ZSPRD50D
(2.7,1) 19 7 12 59.1 168.13 413.71 2017.5 -1603.79 -16.04 196.99 -1247.78 0.13 2.06 36.84 -84.41 0.21 0.35 -1754.97

F1.6 JOHANSEN − ZSPRD50D
(2.7,0.5) 19 7 12 35.88 217.32 251.13 2607.83 -2356.7 -23.57 147.42 -1247.78 0.16 2.54 36.84 -124.04 0.1 0.17 -2519.07

F2.1 JOHANSEN − SPRD50D − SMA(10,20) 23 16 7 2026.47 184.28 32423.56 1289.96 31133.6 311.34 21375.57 -582.77 0.27 4.29 69.57 1353.74 25.14 11 -668.44

F2.2 JOHANSEN − SPRD50D − EMA(10,20) 29 15 14 387.62 763.15 5814.26 10684.09 -4869.82 -48.7 1734.37 -7142.58 0.17 2.7 51.72 -167.97 0.54 0.51 -8784.78

F2.3 JOHANSEN − SPRD50D −MACD(12,26,9) 35 17 18 203.4 262.23 3457.74 4720.08 -1262.34 -12.62 1639.04 -1398.5 -0.06 -0.95 48.57 -36.07 0.73 0.78 -2859.36

F2.4 JOHANSEN − SPRD50D −RSI(14) 7 6 1 1943.37 193.45 11660.24 193.45 11466.79 114.67 6863.33 -193.45 0.57 9.05 85.71 1638.02 60.28 10.05 -193.45

F2.5 JOHANSEN − SPRD50D −BB(20) 15 6 9 154.49 123.09 926.91 1107.85 -180.94 -1.81 502.64 -310.18 0.21 3.33 40 -12.06 0.84 1.26 -489.22

F3 JOHANSEN − SPRD50D −DECTREE 330 159 171 28.29 26.85 4497.6 4591.68 -94.08 -0.94 150.47 -133.59 -3.92 -62.23 48.18 -0.29 0.98 1.05 -763.58

F4 JOHANSEN − SPRD50D −MLP 216 112 104 32.41 24.78 3630.38 2577.18 1053.2 10.53 212.37 -114.66 -3.5 -55.56 51.85 4.87 1.41 1.31 -602.66

Part VII: Models derived using the spread obtained from ADF − SPRD50D

G1.1 ADF − ZSPRD50D
(3,2) 4 1 3 41.45 86.87 41.45 260.6 -219.15 -2.19 41.45 -244.21 -3.5 -55.56 25 -54.79 0.16 0.48 -260.6

G1.2 ADF − ZSPRD50D
(3,1) 3 2 1 113.44 305.06 226.89 305.06 -78.17 -0.78 139.78 -305.06 -2.08 -33.02 66.67 -26.04 0.74 0.37 -305.06

G1.3 ADF − ZSPRD50D
(3,0.5) 3 3 - 153.26 - 459.78 - 459.78 4.6 440.22 - -0.89 -14.13 100 153.26 459.78 153.26 -

G1.4 ADF − ZSPRD50D
(2.7,2) 7 2 5 156.95 53.35 313.89 266.73 47.16 0.47 272.44 -101.32 -3.09 -49.05 28.57 6.73 1.18 2.94 -225.28

G1.5 ADF − ZSPRD50D
(2.7,1) 6 3 3 183.17 133.15 549.5 399.45 150.05 1.5 322.61 -198.03 -2.12 -33.65 50 25.01 1.38 1.38 -211.02

G1.6 ADF − ZSPRD50D
(2.7,0.5) 5 3 2 190.31 181.89 570.92 363.79 207.13 2.07 551.35 -197.64 -0.89 -14.13 60 41.43 1.57 1.05 -197.64

G2.1 ADF − SPRD50D − SMA(10,20) 14 10 4 334.23 164.8 3342.28 659.18 2683.1 26.83 1290.27 -567.71 -0.78 -12.38 71.43 191.66 5.07 2.03 -570.9

G2.2 ADF − SPRD50D − EMA(10,20) 29 21 8 99.63 255.97 2092.27 2047.72 44.55 0.45 270.01 -546.88 -2.17 -34.45 72.41 1.52 1.02 0.39 -1300.34

G2.3 ADF − SPRD50D −MACD(12,26,9) 43 28 15 168.69 91.15 4723.37 1367.23 3356.14 33.56 608.5 -278.77 -0.51 -8.1 65.12 78.06 3.45 1.85 -363.98

G2.4 ADF − SPRD50D −RSI(14) 2 2 - 845.33 - 1690.65 - 1690.65 16.91 1412.65 - 0.38 6.03 100 845.33 1690.65 845.33 -

G2.5 ADF − SPRD50D −BB(20) 21 7 14 47.54 79.71 332.78 1115.89 -783.11 -7.83 125.8 -372.9 -4.71 -74.77 33.33 -37.3 0.3 0.6 -871.83

G3 ADF − SPRD50D −DECTREE 348 208 140 24.3 27.41 5054.87 3837.39 1217.48 12.17 162.73 -293.77 -4 -63.5 59.77 3.5 1.32 0.89 -479.73

G4 ADF − SPRD50D −MLP 284 159 125 23.15 23.53 3680.6 2941.51 739.09 7.39 114.84 -224.03 -4.37 -69.37 55.99 2.6 1.25 0.98 -445.74

Part VIII: Models derived using the spread obtained from KALMAN − SPRD50D

H1.1 KALMAN − ZSPRD50D
(3,2) 3 1 2 73 94.37 73 188.73 -115.74 -1.16 73 -128.63 -5.14 -81.59 33.33 -38.58 0.39 0.77 -128.63

H1.2 KALMAN − ZSPRD50D
(3,1) 2 1 1 105.99 91.98 105.99 91.98 14.01 0.14 105.99 -91.98 -3.48 -55.24 50 7 1.15 1.15 -91.98

H1.3 KALMAN − ZSPRD50D
(3,0.5) 2 2 - 163.64 - 327.28 - 327.28 3.27 194.3 - -6.1 -96.83 100 163.64 327.28 163.64 -

H1.4 KALMAN − ZSPRD50D
(2.7,2) 6 3 3 34.37 214.51 103.11 643.52 -540.41 -5.4 54.53 -421.69 -3.07 -48.73 50 -90.07 0.16 0.16 -540.41

H1.5 KALMAN − ZSPRD50D
(2.7,1) 5 3 2 140.98 201.81 422.93 403.62 19.31 0.19 252.62 -388.15 -2.01 -31.91 60 3.86 1.05 0.7 -403.62

H1.6 KALMAN − ZSPRD50D
(2.7,0.5) 5 3 2 82.83 150.9 248.5 301.8 -53.29 -0.53 114.64 -177.56 -3.87 -61.43 60 -10.66 0.82 0.55 -250.63

H2.1 KALMAN − SPRD50D − SMA(10,20) 12 7 5 266.55 143.66 1865.85 718.3 1147.54 11.48 952.83 -299.14 -1.14 -18.1 58.33 95.61 2.6 1.86 -363.07

H2.2 KALMAN − SPRD50D − EMA(10,20) 21 6 15 286.59 127.46 1719.57 1911.89 -192.33 -1.92 670.17 -287.31 -2.09 -33.18 28.57 -9.16 0.9 2.25 -1141.15

H2.3 KALMAN − SPRD50D −MACD(12,26,9) 34 12 22 156.65 117.97 1879.8 2595.42 -715.62 -7.16 487.89 -573.69 -2.66 -42.23 35.29 -21.06 0.72 1.33 -1068.97

H2.4 KALMAN − SPRD50D −RSI(14) 4 2 2 463.53 609.41 927.07 1218.82 -291.75 -2.92 850.64 -1209.81 -0.64 -10.16 50 -72.94 0.76 0.76 -1209.81

H2.5 KALMAN − SPRD50D −BB(20) 8 6 2 90.26 411.31 541.57 822.61 -281.04 -2.81 141.39 -774.65 -1.68 -26.67 75 -35.13 0.66 0.22 -774.65

H3 KALMAN − SPRD50D −DECTREE 325 196 129 23.35 25.78 4577.28 3325.19 1252.09 12.52 142.17 -105.63 -4.35 -69.05 60.31 3.85 1.38 0.91 -404.86

H4 KALMAN − SPRD50D −MLP 268 156 112 25.25 29.11 3939.65 3260.71 678.94 6.79 119.97 -191.93 -3.98 -63.18 58.21 2.53 1.21 0.87 -301.65

Part IX: Models derived using the spread obtained from RATIO − SPRD50D

I1.1 RATIO − ZSPRD50D
(3,2) 3 2 1 95.76 3 191.52 3 188.52 1.89 105.21 -3 -1.54 -24.45 66.67 62.84 63.82 31.91 -3

I1.2 RATIO − ZSPRD50D
(3,1) 2 1 1 172.2 20.54 172.2 20.54 151.66 1.52 172.2 -20.54 -0.56 -8.89 50 75.83 8.38 8.38 -20.54

I1.3 RATIO − ZSPRD50D
(3,0.5) 2 1 1 317.81 21.08 317.82 21.08 296.74 2.97 317.81 -21.08 -0.02 -0.32 50 148.37 15.08 15.08 -21.08

I1.4 RATIO − ZSPRD50D
(2.7,2) 6 5 1 54.32 3 271.58 3 268.58 2.69 105.21 -3 -2.88 -45.72 83.33 44.76 90.5 18.1 -3

I1.5 RATIO − ZSPRD50D
(2.7,1) 5 4 1 95.79 20.54 383.14 20.54 362.6 3.63 172.2 -20.54 -0.92 -14.6 80 72.52 18.65 4.66 -20.54

I1.6 RATIO − ZSPRD50D
(2.7,0.5) 5 3 2 195.91 52.89 587.74 105.78 481.96 4.82 317.81 -84.71 -0.35 -5.56 60 96.39 5.56 3.7 -105.78

I2.1 RATIO − SPRD50D − SMA(10,20) 16 9 7 64.58 139.2 581.22 974.42 -393.2 -3.93 175 -428.34 -1.19 -18.89 56.25 -24.57 0.6 0.46 -474.23

I2.2 RATIO − SPRD50D − EMA(10,20) 25 9 16 55.36 105.02 498.23 1680.37 -1182.14 -11.82 107.77 -407.62 -1.83 -29.05 36 -47.29 0.3 0.53 -1002.12

I2.3 RATIO − SPRD50D −MACD(12,26,9) 38 10 28 72.2 57.55 722 1611.37 -889.37 -8.89 252.14 -171.24 -2.22 -35.24 26.32 -23.4 0.45 1.25 -1188.88

I2.4 RATIO − SPRD50D −RSI(14) 3 1 2 11.43 430.09 11.43 860.19 -848.76 -8.49 11.43 -553.68 -1.54 -24.45 33.33 -282.93 0.01 0.03 -553.68

I2.5 RATIO − SPRD50D −BB(20) 20 14 6 79.56 56.68 1113.82 340.09 773.73 7.74 374.24 -175.71 -1.08 -17.14 70 38.69 3.28 1.4 -221.23

I3 RATIO − SPRD50D −DECTREE 377 144 233 26.93 20.95 3877.61 4881.76 -1004.15 -10.04 186.25 -112.67 -4.72 -74.93 38.2 -2.66 0.79 1.29 -1509.94

I4 RATIO − SPRD50D −MLP 308 118 190 27.74 21.16 3273.76 4021 -747.24 -7.47 186.25 -98.09 -4.6 -73.02 38.31 -2.43 0.81 1.31 -1128.42

Part X: Models derived using the close price of SCHF.N

CLS-SYM-1.1 CLOSESCHF.N − SMA(10,20) 20 7 13 314.26 125.66 2199.8 1633.59 566.2 5.66 1106.36 -575.54 -0.14 -2.22 35 28.31 1.35 2.5 -918.42

CLS-SYM-1.2 CLOSESCHF.N − EMA(10,20) 23 8 15 331.11 93.37 2648.86 1400.61 1248.24 12.48 911.97 -332.73 -0.07 -1.11 34.78 54.26 1.89 3.55 -643.72

CLS-SYM-1.3 CLOSESCHF.N −MACD(12,26,9) 30 10 20 221.35 120.16 2213.46 2403.27 -189.81 -1.9 1043.11 -326.35 -0.34 -5.4 33.33 -6.34 0.92 1.84 -1733.81

CLS-SYM-1.4 CLOSESCHF.N −RSI(14) 5 2 3 617.93 304.16 1235.87 912.48 323.39 3.23 959.27 -697.61 -0.02 -0.32 40 64.68 1.35 2.03 -697.61

CLS-SYM-1.5 CLOSESCHF.N −BB(20) 15 8 7 79.49 192.86 635.89 1349.99 -714.1 -7.14 252.09 -785.71 -0.51 -8.1 53.33 -47.62 0.47 0.41 -785.71

Part XI: Models derived using the close price of VO.N

CLS-SYM-2.1 CLOSEV O.N − SMA(10,20) 15 5 10 407.5 131.94 2037.52 1319.42 718.1 7.18 1345.66 -357.26 -0.07 -1.11 33.33 47.86 1.54 3.09 -888.12

CLS-SYM-2.2 CLOSEV O.N − EMA(10,20) 20 6 14 305.56 123.3 1833.38 1726.2 107.17 1.07 700.63 -218.39 -0.27 -4.29 30 5.36 1.06 2.48 -812.37

CLS-SYM-2.3 CLOSEV O.N −MACD(12,26,9) 30 12 18 235.68 119.41 2828.19 2149.34 678.86 6.79 1213.06 -330.07 -0.19 -3.02 40 22.63 1.32 1.97 -845.26

CLS-SYM-2.4 CLOSEV O.N −RSI(14) 5 2 3 464.59 648.69 929.17 1946.08 -1016.91 -10.17 781.75 -1353.4 -0.35 -5.56 40 -203.38 0.48 0.72 -1353.4

CLS-SYM-2.5 CLOSEV O.N −BB(20) 15 13 2 85.35 600.28 1109.6 1200.56 -90.96 -0.91 190.76 -984.33 -0.29 -4.6 86.67 -6.04 0.92 0.14 -984.33
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Table D.2.15: This table presents the back-test metrics for the pair SCHF.N/V O.N based on a 100-day rolling window. The table is subdivided into eleven parts, and in each of these parts, we present the back-test metrics and the trading strategies which use the
spread derived from various models. In Part I, the spread is derived from the DIST V 1.1 model, in Part II from the DIST V 1.2 model, in Part III from the DIST V 2 model, in Part IV from the DIST V 3 model, in Part V from the DIST V 4 model, in Part VI from the
JOHANSEN − SPRD model, in Part VIII from the ADF − SPRD model, in from the DIST V 2 model, in Part VIII from the KALMAN − SPRD model, and in Part IX from the RATIO − SPRD model. In Part X and XI, we present the back-test metrics of
the trading strategies which use the close price of SCHF.N, and VO.N, respectively. All $ numbers reported below are in USD.

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X) (XI) (XII) (XIII) (XIV) (XV) (XVI) (XVII) (XVIII) (XIX) (XX)

Trading
Strategy
Code

Model
Name

Total
Number
of
Trades

Number
of

Winning
Trades

Number
of Loosing
Trades

Average
Profit

per Trade
($)

Average
Loss per
Trade
($)

Gross
Profit
($)

Gross
Loss
($)

Net Profit
($)

ROI (%) Max P&L
($)

Min P&L
($)

Daily
Sharpe
Ratio

Annualized
Sharpe
Ratio

Hit Ratio Expectancy Profit
Factor

Realized
Risk

Reward
Ratio

Max
Drawdown

($)

Part I: Models derived using the spread obtained from DISTV 1.1 − SPRD100D

A1.1 DISTV 1.1 − ZSPRD100D
(3,2) 1 1 - 79.51 - 79.51 - 79.51 0.8 79.51 - - - 100 79.51 79.51 79.51 -

A1.2 DISTV 1.1 − ZSPRD100D
(3,1) 1 - 1 - 131.35 - 131.35 -131.35 -1.31 - -131.35 - - - -131.35 - - -131.35

A1.3 DISTV 1.1 − ZSPRD100D
(3,0.5) 1 - 1 - 231.06 - 231.06 -231.06 -2.31 - -231.06 - - - -231.06 - - -231.06

A1.4 DISTV 1.1 − ZSPRD100D
(2.7,2) 1 1 - 79.51 - 79.51 - 79.51 0.8 79.51 - - - 100 79.51 79.51 79.51 -

A1.5 DISTV 1.1 − ZSPRD100D
(2.7,1) 1 - 1 - 131.35 - 131.35 -131.35 -1.31 - -131.35 - - - -131.35 - - -131.35

A1.6 DISTV 1.1 − ZSPRD100D
(2.7,0.5) 1 - 1 - 231.06 - 231.06 -231.06 -2.31 - -231.06 - - - -231.06 - - -231.06

A2.1 DISTV 1.1 − SPRD100D − SMA(10,20) 12 3 9 54.94 98.07 164.81 882.62 -717.82 -7.18 86.55 -164.36 -2.57 -40.8 25 -59.82 0.19 0.56 -719.95

A2.2 DISTV 1.1 − SPRD100D − EMA(10,20) 20 10 10 109.46 92.42 1094.56 924.25 170.32 1.7 341.95 -322.26 -1.03 -16.35 50 8.52 1.18 1.18 -413.65

A2.3 DISTV 1.1 − SPRD100D −MACD(12,26,9) 29 18 11 55.22 96.53 993.92 1061.86 -67.94 -0.68 121.82 -175.27 -1.79 -28.42 62.07 -2.34 0.94 0.57 -487.28

A2.4 DISTV 1.1 − SPRD100D −RSI(14) 5 4 1 356.09 183.78 1424.37 183.78 1240.6 12.41 723.94 -183.78 0.29 4.6 80 248.12 7.75 1.94 -183.78

A2.5 DISTV 1.1 − SPRD100D −BB(20) 13 5 8 186.01 60.13 930.07 481.05 449.03 4.49 614.73 -143.98 -0.6 -9.52 38.46 34.54 1.93 3.09 -468.33

A3 DISTV 1.1 − SPRD100D −DECTREE 315 174 141 23.74 29.44 4130.18 4150.66 -20.48 -0.2 142.17 -146.01 -4.13 -65.56 55.24 -0.06 1 0.81 -688.32

A4 DISTV 1.1 − SPRD100D −MLP 266 152 114 27.19 29.78 4132.28 3395.05 737.23 7.37 142.17 -200.44 -3.79 -60.16 57.14 2.77 1.22 0.91 -348.48

Part II: Models derived using the spread obtained from DISTV 1.2 − SPRD100D

B1.1 DISTV 1.2 − ZSPRD100D
(3,2) 5 1 4 16.01 130.43 16.01 521.72 -505.71 -5.06 16.01 -204.67 -2.72 -43.18 20 -101.14 0.03 0.12 -521.72

B1.2 DISTV 1.2 − ZSPRD100D
(3,1) 4 - 4 - 131.56 - 526.22 -526.22 -5.26 - -206.08 -4.91 -77.94 - -131.56 - - -526.23

B1.3 DISTV 1.2 − ZSPRD100D
(3,0.5) 4 - 4 - 76.59 - 306.35 -306.35 -3.06 - -163.64 -3.52 -55.88 - -76.59 - - -306.35

B1.4 DISTV 1.2 − ZSPRD100D
(2.7,2) 7 1 6 16.01 110.58 16.01 663.48 -647.47 -6.47 16.01 -204.67 -3.04 -48.26 14.29 -92.49 0.02 0.14 -663.48

B1.5 DISTV 1.2 − ZSPRD100D
(2.7,1) 6 - 6 - 105.2 - 631.19 -631.19 -6.31 - -206.08 -4.23 -67.15 - -105.2 - - -631.19

B1.6 DISTV 1.2 − ZSPRD100D
(2.7,0.5) 6 1 5 63.98 117.85 63.98 589.24 -525.26 -5.25 63.98 -282.89 -1.97 -31.27 16.67 -87.54 0.11 0.54 -525.26

B2.1 DISTV 1.2 − SPRD100D − SMA(10,20) 10 5 5 109.47 82.28 547.36 411.41 135.94 1.36 238.66 -139.85 -1.09 -17.3 50 13.59 1.33 1.33 -262.24

B2.2 DISTV 1.2 − SPRD100D − EMA(10,20) 20 10 10 93.09 91.16 930.89 911.56 19.34 0.19 194.74 -341.95 -1.23 -19.53 50 0.97 1.02 1.02 -236.24

B2.3 DISTV 1.2 − SPRD100D −MACD(12,26,9) 28 12 16 109.97 59.54 1319.58 952.67 366.91 3.67 420.82 -210.22 -1.14 -18.1 42.86 13.11 1.39 1.85 -427.92

B2.4 DISTV 1.2 − SPRD100D −RSI(14) 9 6 3 83.63 345.48 501.81 1036.45 -534.64 -5.35 178.64 -597.49 -0.81 -12.86 66.67 -59.39 0.48 0.24 -404.91

B2.5 DISTV 1.2 − SPRD100D −BB(20) 8 2 6 20.6 152.27 41.2 913.64 -872.44 -8.72 28.34 -427.36 -1.53 -24.29 25 -109.05 0.05 0.14 -445.08

B3 DISTV 1.2 − SPRD100D −DECTREE 237 120 117 27.68 28.4 3322.19 3323.34 -1.16 -0.01 354.93 -261.77 -3.26 -51.75 50.63 -0.01 1 0.97 -781.09

B4 DISTV 1.2 − SPRD100D −MLP 153 88 65 24.57 32.38 2161.9 2104.82 57.08 0.57 110.62 -188.58 -3.95 -62.7 57.52 0.38 1.03 0.76 -468.53

Part III: Models derived using the spread obtained from DISTV 2 − SPRD100D

C1.1 DISTV 2 − ZSPRD100D
(3,2) 1 - 1 - 79.51 - 79.51 -79.51 -0.8 - -79.51 - - - -79.51 - - -79.51

C1.2 DISTV 2 − ZSPRD100D
(3,1) 1 1 - 131.35 - 131.35 - 131.35 1.31 131.35 - - - 100 131.35 131.35 131.35 -

C1.3 DISTV 2 − ZSPRD100D
(3,0.5) 1 1 - 231.06 - 231.06 - 231.06 2.31 231.06 - - - 100 231.06 231.06 231.06 -

C1.4 DISTV 2 − ZSPRD100D
(2.7,2) 1 - 1 - 79.51 - 79.51 -79.51 -0.8 - -79.51 - - - -79.51 - - -79.51

C1.5 DISTV 2 − ZSPRD100D
(2.7,1) 1 1 - 131.35 - 131.35 - 131.35 1.31 131.35 - - - 100 131.35 131.35 131.35 -

C1.6 DISTV 2 − ZSPRD100D
(2.7,0.5) 1 1 - 231.06 - 231.06 - 231.06 2.31 231.06 - - - 100 231.06 231.06 231.06 -

C2.1 DISTV 2 − SPRD100D − SMA(10,20) 12 9 3 98.07 54.94 882.62 164.81 717.82 7.18 164.36 -86.55 -1.12 -17.78 75 59.82 5.36 1.79 -86.55

C2.2 DISTV 2 − SPRD100D − EMA(10,20) 20 10 10 92.42 109.46 924.25 1094.56 -170.32 -1.7 322.26 -341.95 -1.16 -18.41 50 -8.52 0.84 0.84 -234.57

C2.3 DISTV 2 − SPRD100D −MACD(12,26,9) 29 11 18 96.53 55.22 1061.86 993.92 67.94 0.68 175.27 -121.82 -1.74 -27.62 37.93 2.34 1.07 1.75 -403.72

C2.4 DISTV 2 − SPRD100D −RSI(14) 5 1 4 183.78 356.09 183.78 1424.37 -1240.6 -12.41 183.78 -723.94 -1.21 -19.21 20 -248.12 0.13 0.52 -877.35

C2.5 DISTV 2 − SPRD100D −BB(20) 13 8 5 60.13 186.01 481.05 930.07 -449.03 -4.49 143.98 -614.73 -0.95 -15.08 61.54 -34.54 0.52 0.32 -302.62

C3 DISTV 2 − SPRD100D −DECTREE 322 181 141 23.97 27.05 4337.99 3813.94 524.05 5.24 142.17 -121.04 -4.36 -69.21 56.21 1.63 1.14 0.89 -387.68

C4 DISTV 2 − SPRD100D −MLP 260 149 111 27.49 28.4 4095.31 3151.94 943.38 9.43 142.17 -121.04 -3.95 -62.7 57.31 3.63 1.3 0.97 -263.03

Part IV: Models derived using the spread obtained from DISTV 3 − SPRD100D

D1.1 DISTV 3 − ZSPRD100D
(3,2) 5 3 2 88.06 41.61 264.18 83.22 180.96 1.81 120.79 -79.17 -1.46 -23.18 60 36.19 3.17 2.12 -83.22

D1.2 DISTV 3 − ZSPRD100D
(3,1) 4 2 2 144.55 46.04 289.1 92.08 197.01 1.97 185.53 -61.27 -0.89 -14.13 50 49.25 3.14 3.14 -92.08

D1.3 DISTV 3 − ZSPRD100D
(3,0.5) 4 3 1 102.66 61.27 307.99 61.28 246.72 2.47 188.32 -61.27 -0.84 -13.33 75 61.68 5.03 1.68 -61.27

D1.4 DISTV 3 − ZSPRD100D
(2.7,2) 8 6 2 53.93 41.61 323.55 83.22 240.33 2.4 120.79 -79.17 -2.1 -33.34 75 30.04 3.89 1.3 -83.22

D1.5 DISTV 3 − ZSPRD100D
(2.7,1) 7 4 3 96.09 31.69 384.38 95.08 289.29 2.89 185.53 -61.27 -1.29 -20.48 57.14 41.32 4.04 3.03 -92.08

D1.6 DISTV 3 − ZSPRD100D
(2.7,0.5) 7 6 1 84.76 61.27 508.56 61.28 447.28 4.47 188.32 -61.27 -1.09 -17.3 85.71 63.89 8.3 1.38 -61.27

D2.1 DISTV 3 − SPRD100D − SMA(10,20) 18 7 11 59.41 106.52 415.88 1171.73 -755.86 -7.56 162.32 -271.34 -1.83 -29.05 38.89 -41.99 0.35 0.56 -999.76

D2.2 DISTV 3 − SPRD100D − EMA(10,20) 31 10 21 90.77 98.26 907.66 2063.5 -1155.85 -11.56 226.97 -341.95 -1.63 -25.88 32.26 -37.28 0.44 0.92 -1083.52

D2.3 DISTV 3 − SPRD100D −MACD(12,26,9) 33 13 20 98.8 59.87 1284.42 1197.32 87.09 0.87 271.81 -200.29 -1.42 -22.54 39.39 2.63 1.07 1.65 -473.3

D2.4 DISTV 3 − SPRD100D −RSI(14) 3 1 2 46.88 207.84 46.88 415.68 -368.8 -3.69 46.88 -261.13 -1.76 -27.94 33.33 -122.94 0.11 0.23 -154.54

D2.5 DISTV 3 − SPRD100D −BB(20) 20 11 9 101.15 44.07 1112.64 396.63 716 7.16 429.56 -139.26 -0.99 -15.72 55 35.8 2.81 2.3 -192.23

D3 DISTV 3 − SPRD100D −DECTREE 302 170 132 27.53 28.17 4680.23 3718.26 961.97 9.62 148.85 -140.72 -3.87 -61.43 56.29 3.18 1.26 0.98 -505.03

D4 DISTV 3 − SPRD100D −MLP 218 118 100 26.3 28.33 3103.8 2832.68 271.12 2.71 182.25 -141.37 -3.91 -62.07 54.13 1.24 1.1 0.93 -857.11

Part V: Models derived using the spread obtained from DISTV 4 − SPRD100D

E1.1 DISTV 4 − ZSPRD100D
(3,2) 5 3 2 88.06 41.61 264.18 83.22 180.96 1.81 120.79 -79.17 -1.46 -23.18 60 36.19 3.17 2.12 -83.22

E1.2 DISTV 4 − ZSPRD100D
(3,1) 4 2 2 144.55 46.04 289.1 92.08 197.01 1.97 185.53 -61.27 -0.89 -14.13 50 49.25 3.14 3.14 -92.08

E1.3 DISTV 4 − ZSPRD100D
(3,0.5) 4 3 1 102.66 61.27 307.99 61.28 246.72 2.47 188.32 -61.27 -0.84 -13.33 75 61.68 5.03 1.68 -61.27

E1.4 DISTV 4 − ZSPRD100D
(2.7,2) 8 6 2 53.93 41.61 323.55 83.22 240.33 2.4 120.79 -79.17 -2.1 -33.34 75 30.04 3.89 1.3 -83.22

E1.5 DISTV 4 − ZSPRD100D
(2.7,1) 7 4 3 96.09 31.69 384.38 95.08 289.29 2.89 185.53 -61.27 -1.29 -20.48 57.14 41.32 4.04 3.03 -92.08

E1.6 DISTV 4 − ZSPRD100D
(2.7,0.5) 7 6 1 84.76 61.27 508.56 61.28 447.28 4.47 188.32 -61.27 -1.09 -17.3 85.71 63.89 8.3 1.38 -61.27

E2.1 DISTV 4 − SPRD100D − SMA(10,20) 18 7 11 59.41 106.52 415.88 1171.73 -755.86 -7.56 162.32 -271.34 -1.83 -29.05 38.89 -41.99 0.35 0.56 -999.76

E2.2 DISTV 4 − SPRD100D − EMA(10,20) 31 10 21 90.77 98.26 907.66 2063.5 -1155.85 -11.56 226.97 -341.95 -1.63 -25.88 32.26 -37.28 0.44 0.92 -1083.52

E2.3 DISTV 4 − SPRD100D −MACD(12,26,9) 33 13 20 98.8 59.87 1284.42 1197.32 87.09 0.87 271.81 -200.29 -1.42 -22.54 39.39 2.63 1.07 1.65 -473.3

E2.4 DISTV 4 − SPRD100D −RSI(14) 3 1 2 46.88 207.84 46.88 415.68 -368.8 -3.69 46.88 -261.13 -1.76 -27.94 33.33 -122.94 0.11 0.23 -154.54

E2.5 DISTV 4 − SPRD100D −BB(20) 20 11 9 101.15 44.07 1112.64 396.63 716 7.16 429.56 -139.26 -0.99 -15.72 55 35.8 2.81 2.3 -192.23

E3 DISTV 4 − SPRD100D −DECTREE 300 161 139 29.02 27.44 4671.44 3814.52 856.92 8.57 230.66 -140.72 -3.66 -58.1 53.67 2.86 1.22 1.06 -505.42

E4 DISTV 4 − SPRD100D −MLP 218 118 100 26.3 28.33 3103.8 2832.68 271.12 2.71 182.25 -141.37 -3.91 -62.07 54.13 1.24 1.1 0.93 -857.11

Part VI: Models derived using the spread obtained from JOHANSEN − SPRD100D

F1.1 JOHANSEN − ZSPRD100D
(3,2) 13 6 7 277.35 42.64 1664.11 298.48 1365.63 13.66 1499.82 -111.65 0.09 1.43 46.15 105.04 5.58 6.5 -171.31

F1.2 JOHANSEN − ZSPRD100D
(3,1) 12 5 7 348.91 60.46 1744.54 423.2 1321.34 13.21 1499.82 -111.65 0.11 1.75 41.67 110.13 4.12 5.77 -204.65

F1.3 JOHANSEN − ZSPRD100D
(3,0.5) 11 5 6 340.83 59.07 1704.16 354.42 1349.74 13.5 1499.82 -111.65 0.12 1.9 45.45 122.69 4.81 5.77 -181.13

F1.4 JOHANSEN − ZSPRD100D
(2.7,2) 13 7 6 255.25 46.22 1786.74 277.33 1509.41 15.09 1499.82 -111.65 0.04 0.63 53.85 116.12 6.44 5.52 -171.31

F1.5 JOHANSEN − ZSPRD100D
(2.7,1) 13 6 7 311.19 50.76 1867.16 355.29 1511.88 15.12 1499.82 -111.65 0.05 0.79 46.15 116.28 5.26 6.13 -182.42

F1.6 JOHANSEN − ZSPRD100D
(2.7,0.5) 12 6 6 304.46 48.57 1826.78 291.41 1535.37 15.35 1499.82 -111.65 0.06 0.95 50 127.95 6.27 6.27 -122.75

F2.1 JOHANSEN − SPRD100D − SMA(10,20) 18 10 8 3867.64 416.94 38676.38 3335.54 35340.84 353.41 34702.76 -946.2 0.28 4.44 55.56 1963.57 11.6 9.28 -1380.8

F2.2 JOHANSEN − SPRD100D − EMA(10,20) 26 12 14 870.75 864.33 10448.94 12100.66 -1651.72 -16.52 6409.74 -5279.43 0.09 1.43 46.15 -63.59 0.86 1.01 -7375.67

F2.3 JOHANSEN − SPRD100D −MACD(12,26,9) 26 10 16 2533.24 401.86 25332.45 6429.83 18902.62 189.03 21164.84 -1831.03 -0.14 -2.22 38.46 726.98 3.94 6.3 -3101.14

F2.4 JOHANSEN − SPRD100D −RSI(14) 4 1 3 2268.92 346.28 2268.92 1038.83 1230.09 12.3 2268.92 -866.25 -0.11 -1.75 25 307.52 2.18 6.55 -889.66

F2.5 JOHANSEN − SPRD100D −BB(20) 20 11 9 238.61 220.63 2624.7 1985.66 639.04 6.39 565.63 -487.43 0.08 1.27 55 31.95 1.32 1.08 -1335.53

F3 JOHANSEN − SPRD100D −DECTREE 308 161 147 29.25 27.68 4708.48 4068.29 640.19 6.4 167.02 -172.1 -3.71 -58.89 52.27 2.08 1.16 1.06 -808.84

F4 JOHANSEN − SPRD100D −MLP 195 91 104 29.62 28.57 2695.47 2970.77 -275.3 -2.75 130.13 -224.42 -3.57 -56.67 46.67 -1.41 0.91 1.04 -834.07

Part VII: Models derived using the spread obtained from ADF − SPRD100D

G1.1 ADF − ZSPRD100D
(3,2) 4 2 2 166.38 136.81 332.76 273.62 59.14 0.59 169.42 -204.71 -2.25 -35.72 50 14.78 1.22 1.22 -273.62

G1.2 ADF − ZSPRD100D
(3,1) 2 1 1 53.19 379.81 53.19 379.81 -326.62 -3.27 53.19 -379.81 -2.47 -39.21 50 -163.31 0.14 0.14 -379.81

G1.3 ADF − ZSPRD100D
(3,0.5) 2 1 1 102.3 435.65 102.3 435.65 -333.35 -3.33 102.3 -435.65 -2.01 -31.91 50 -166.67 0.23 0.23 -435.65

G1.4 ADF − ZSPRD100D
(2.7,2) 7 2 5 202.12 221.15 404.24 1105.77 -701.53 -7.02 234.82 -632.42 -1.77 -28.1 28.57 -100.22 0.37 0.91 -1005.9

G1.5 ADF − ZSPRD100D
(2.7,1) 5 1 4 53.19 337.62 53.19 1350.49 -1297.3 -12.97 53.19 -674.67 -2.59 -41.11 20 -259.46 0.04 0.16 -1297.3

G1.6 ADF − ZSPRD100D
(2.7,0.5) 5 1 4 102.3 428.41 102.3 1713.63 -1611.33 -16.11 102.3 -849.2 -2.22 -35.24 20 -322.27 0.06 0.24 -1611.33

G2.1 ADF − SPRD100D − SMA(10,20) 18 15 3 157.51 76.71 2362.68 230.14 2132.54 21.33 421.28 -106.89 -2.69 -42.7 83.33 118.47 10.27 2.05 -156.31

G2.2 ADF − SPRD100D − EMA(10,20) 28 21 7 110.47 232.94 2319.96 1630.61 689.35 6.89 298.31 -703.22 -2.49 -39.53 75 24.62 1.42 0.47 -1001.18

G2.3 ADF − SPRD100D −MACD(12,26,9) 32 19 13 101.7 149.54 1932.35 1944.01 -11.66 -0.12 199.12 -664.73 -2.8 -44.45 59.38 -0.35 0.99 0.68 -1069.9

G2.4 ADF − SPRD100D −RSI(14) 2 1 1 355.04 51.85 355.04 51.85 303.19 3.03 355.04 -51.85 -0.74 -11.75 50 151.6 6.85 6.85 -51.85

G2.5 ADF − SPRD100D −BB(20) 18 7 11 59.15 93.93 414.07 1033.21 -619.14 -6.19 139.34 -204.58 -5.8 -92.07 38.89 -34.39 0.4 0.63 -509.69

G3 ADF − SPRD100D −DECTREE 309 176 133 26.77 26.68 4712.29 3548.95 1163.34 11.63 266.87 -167.02 -3.7 -58.74 56.96 3.77 1.33 1 -448.46

G4 ADF − SPRD100D −MLP 258 147 111 28.2 23.43 4145.38 2600.58 1544.8 15.45 439.49 -230.66 -3.23 -51.27 56.98 5.99 1.59 1.2 -274.46

Part VIII: Models derived using the spread obtained from KALMAN − SPRD100D

H1.1 KALMAN − ZSPRD100D
(3,2) 4 3 1 168.63 41.79 505.9 41.79 464.12 4.64 259.46 -41.79 -2.62 -41.59 75 116.03 12.11 4.04 -41.79

H1.2 KALMAN − ZSPRD100D
(3,1) 4 2 2 408.68 223.08 817.37 446.16 371.2 3.71 658.28 -348.64 -0.87 -13.81 50 92.8 1.83 1.83 -446.16

H1.3 KALMAN − ZSPRD100D
(3,0.5) 4 2 2 526.97 500.52 1053.95 1001.04 52.91 0.53 725.12 -800.22 -0.69 -10.95 50 13.23 1.05 1.05 -1001.04

H1.4 KALMAN − ZSPRD100D
(2.7,2) 6 5 1 151.12 58.21 755.62 58.21 697.42 6.97 259.46 -58.21 -3.08 -48.89 83.33 116.23 12.98 2.6 -58.21

H1.5 KALMAN − ZSPRD100D
(2.7,1) 5 3 2 203.21 227.07 609.63 454.13 155.5 1.56 272.05 -370.16 -1.82 -28.89 60 31.1 1.34 0.89 -454.13

H1.6 KALMAN − ZSPRD100D
(2.7,0.5) 4 2 2 284.06 504.99 568.11 1009.99 -441.88 -4.42 313.48 -823.28 -1.12 -17.78 50 -110.47 0.56 0.56 -1009.99

H2.1 KALMAN − SPRD100D − SMA(10,20) 15 6 9 259.88 105.99 1559.25 953.88 605.37 6.05 591.62 -290.19 -1.91 -30.32 40 40.36 1.63 2.45 -486.54

H2.2 KALMAN − SPRD100D − EMA(10,20) 21 8 13 332.29 101.78 2658.31 1323.17 1335.14 13.35 750.42 -188.38 -1.65 -26.19 38.1 63.6 2.01 3.26 -554.36

H2.3 KALMAN − SPRD100D −MACD(12,26,9) 29 4 25 335.53 103.94 1342.12 2598.56 -1256.44 -12.56 990.52 -355.04 -2.32 -36.83 13.79 -43.34 0.52 3.23 -2033.56

H2.4 KALMAN − SPRD100D −RSI(14) 3 1 2 1510.46 719.8 1510.46 1439.59 70.86 0.71 1510.46 -1317.14 -0.31 -4.92 33.33 23.55 1.05 2.1 -1317.14

H2.5 KALMAN − SPRD100D −BB(20) 9 6 3 104.53 298.29 627.18 894.87 -267.69 -2.68 159.91 -774.69 -1.75 -27.78 66.67 -29.73 0.7 0.35 -836.69

H3 KALMAN − SPRD100D −DECTREE 247 135 112 26.24 25.12 3542.43 2813.8 728.64 7.29 166.02 -120.79 -4.07 -64.61 54.66 2.95 1.26 1.04 -441.84

H4 KALMAN − SPRD100D −MLP 181 103 78 24.15 26.54 2487.02 2069.98 417.04 4.17 166.02 -125.32 -3.93 -62.39 56.91 2.31 1.2 0.91 -326.05

Part IX: Models derived using the spread obtained from RATIO − SPRD100D

I1.1 RATIO − ZSPRD100D
(3,2) 1 1 - 57.91 - 57.92 - 57.92 0.58 57.91 - - - 100 57.91 57.92 57.91 -

I1.2 RATIO − ZSPRD100D
(3,1) 1 1 - 112.67 - 112.66 - 112.66 1.13 112.67 - - - 100 112.67 112.66 112.67 -

I1.3 RATIO − ZSPRD100D
(3,0.5) 1 1 - 165.41 - 165.41 - 165.41 1.65 165.41 - - - 100 165.41 165.41 165.41 -

I1.4 RATIO − ZSPRD100D
(2.7,2) 3 3 - 30.51 - 91.54 - 91.54 0.92 60.35 - -4.08 -64.77 100 30.51 91.54 30.51 -

I1.5 RATIO − ZSPRD100D
(2.7,1) 3 3 - 82.83 - 248.5 - 248.5 2.48 173.36 - -0.87 -13.81 100 82.83 248.5 82.83 -

I1.6 RATIO − ZSPRD100D
(2.7,0.5) 3 3 - 130.07 - 390.21 - 390.21 3.9 178.43 - -0.52 -8.25 100 130.07 390.21 130.07 -

I2.1 RATIO − SPRD100D − SMA(10,20) 16 9 7 64.1 147.83 576.92 1034.84 -457.91 -4.58 175 -488.76 -1.13 -17.94 56.25 -28.62 0.56 0.43 -474.23

I2.2 RATIO − SPRD100D − EMA(10,20) 23 9 14 55.64 112.58 500.75 1576.17 -1075.42 -10.75 107.77 -425.67 -1.72 -27.3 39.13 -46.76 0.32 0.49 -1002.12

I2.3 RATIO − SPRD100D −MACD(12,26,9) 38 10 28 64.25 62.13 642.45 1739.73 -1097.28 -10.97 252.14 -171.24 -2.44 -38.73 26.32 -28.87 0.37 1.03 -1188.88

I2.4 RATIO − SPRD100D −RSI(14) 3 1 2 59.6 458.46 59.6 916.92 -857.32 -8.57 59.6 -553.68 -1.39 -22.07 33.33 -285.79 0.07 0.13 -553.68

I2.5 RATIO − SPRD100D −BB(20) 18 12 6 92.72 56.68 1112.7 340.09 772.61 7.73 429.56 -175.71 -0.9 -14.29 66.67 42.93 3.27 1.64 -221.23

I3 RATIO − SPRD100D −DECTREE 352 136 216 26.18 22.1 3560.32 4772.8 -1212.48 -12.12 190.88 -142.17 -4.55 -72.23 38.64 -3.44 0.75 1.18 -1380.97

I4 RATIO − SPRD100D −MLP 314 121 193 26.81 23.14 3244.35 4465.91 -1221.56 -12.22 190.88 -112.67 -4.48 -71.12 38.54 -3.89 0.73 1.16 -1326.82

Part X: Models derived using the close price of SCHF.N

CLS-SYM-1.1 CLOSESCHF.N − SMA(10,20) 20 7 13 314.26 125.66 2199.8 1633.59 566.2 5.66 1106.36 -575.54 -0.14 -2.22 35 28.31 1.35 2.5 -918.42

CLS-SYM-1.2 CLOSESCHF.N − EMA(10,20) 23 8 15 331.11 93.37 2648.86 1400.61 1248.24 12.48 911.97 -332.73 -0.07 -1.11 34.78 54.26 1.89 3.55 -643.72

CLS-SYM-1.3 CLOSESCHF.N −MACD(12,26,9) 30 10 20 221.35 120.16 2213.46 2403.27 -189.81 -1.9 1043.11 -326.35 -0.34 -5.4 33.33 -6.34 0.92 1.84 -1733.81

CLS-SYM-1.4 CLOSESCHF.N −RSI(14) 5 2 3 617.93 304.16 1235.87 912.48 323.39 3.23 959.27 -697.61 -0.02 -0.32 40 64.68 1.35 2.03 -697.61

CLS-SYM-1.5 CLOSESCHF.N −BB(20) 15 8 7 79.49 192.86 635.89 1349.99 -714.1 -7.14 252.09 -785.71 -0.51 -8.1 53.33 -47.62 0.47 0.41 -785.71

Part XI: Models derived using the close price of VO.N

CLS-SYM-2.1 CLOSEV O.N − SMA(10,20) 15 5 10 407.5 131.94 2037.52 1319.42 718.1 7.18 1345.66 -357.26 -0.07 -1.11 33.33 47.86 1.54 3.09 -888.12

CLS-SYM-2.2 CLOSEV O.N − EMA(10,20) 20 6 14 305.56 123.3 1833.38 1726.2 107.17 1.07 700.63 -218.39 -0.27 -4.29 30 5.36 1.06 2.48 -812.37

CLS-SYM-2.3 CLOSEV O.N −MACD(12,26,9) 30 12 18 235.68 119.41 2828.19 2149.34 678.86 6.79 1213.06 -330.07 -0.19 -3.02 40 22.63 1.32 1.97 -845.26

CLS-SYM-2.4 CLOSEV O.N −RSI(14) 5 2 3 464.59 648.69 929.17 1946.08 -1016.91 -10.17 781.75 -1353.4 -0.35 -5.56 40 -203.38 0.48 0.72 -1353.4

CLS-SYM-2.5 CLOSEV O.N −BB(20) 15 13 2 85.35 600.28 1109.6 1200.56 -90.96 -0.91 190.76 -984.33 -0.29 -4.6 86.67 -6.04 0.92 0.14 -984.33
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Table D.2.16: This table presents the back-test metrics for the pair USMV.N/XLE.N based on a 30-day rolling window. The table is subdivided into eleven parts, and in each of these parts, we present the back-test metrics and the trading strategies which use the
spread derived from various models. In Part I, the spread is derived from the DIST V 1.1 model, in Part II from the DIST V 1.2 model, in Part III from the DIST V 2 model, in Part IV from the DIST V 3 model, in Part V from the DIST V 4 model, in Part VI from the
JOHANSEN − SPRD model, in Part VIII from the ADF − SPRD model, in from the DIST V 2 model, in Part VIII from the KALMAN − SPRD model, and in Part IX from the RATIO − SPRD model. In Part X and XI, we present the back-test metrics of
the trading strategies which use the close price of USMV.N, and XLE.N, respectively. All $ numbers reported below are in USD.

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X) (XI) (XII) (XIII) (XIV) (XV) (XVI) (XVII) (XVIII) (XIX) (XX)

Trading
Strategy
Code

Model
Name

Total
Number
of
Trades

Number
of

Winning
Trades

Number
of Loosing
Trades

Average
Profit

per Trade

Average
Loss per
Trade

Gross
Profit

Gross
Loss

Net Profit ROI Max P&L Min P&L Daily
Sharpe
Ratio

Annualized
Sharpe
Ratio

Hit Ratio Expectancy Profit
Factor

Realized
Risk

Reward
Ratio

Max
Drawdown

Part I: Models derived using the spread obtained from DISTV 1.1 − SPRD30D

A1.1 DISTV 1.1 − ZSPRD30D
(3,2) 5 2 3 246.57 120.57 493.13 361.72 131.41 1.31 349.1 -241.34 -0.55 -8.73 40 26.28 1.36 2.04 -241.34

A1.2 DISTV 1.1 − ZSPRD30D
(3,1) 5 3 2 207.92 248.2 623.75 496.4 127.36 1.27 394.23 -255.05 -0.45 -7.14 60 25.47 1.26 0.84 -281.55

A1.3 DISTV 1.1 − ZSPRD30D
(3,0.5) 5 3 2 241.66 366.72 724.96 733.44 -8.48 -0.08 285.65 -439.62 -0.45 -7.14 60 -1.7 0.99 0.66 -485.57

A1.4 DISTV 1.1 − ZSPRD30D
(2.7,2) 10 6 4 179.71 120.35 1078.23 481.39 596.84 5.97 349.1 -241.34 -0.47 -7.46 60 59.68 2.24 1.49 -332.49

A1.5 DISTV 1.1 − ZSPRD30D
(2.7,1) 10 7 3 180.95 212.34 1266.67 637.01 629.66 6.3 394.23 -255.05 -0.38 -6.03 70 62.97 1.99 0.85 -255.05

A1.6 DISTV 1.1 − ZSPRD30D
(2.7,0.5) 9 5 4 582.56 227.14 2912.78 908.56 2004.21 20.04 1305.62 -439.62 0.13 2.06 55.56 222.73 3.21 2.56 -439.62

A2.1 DISTV 1.1 − SPRD30D − SMA(10,20) 14 9 5 295.99 709.59 2663.87 3547.93 -884.06 -8.84 1058.68 -1208.88 -0.35 -5.56 64.29 -63.1 0.75 0.42 -2628.02

A2.2 DISTV 1.1 − SPRD30D − EMA(10,20) 22 12 10 207.38 593.66 2488.61 5936.64 -3448.02 -34.48 658.13 -1409.16 -0.59 -9.37 54.55 -156.69 0.42 0.35 -3990.95

A2.3 DISTV 1.1 − SPRD30D −MACD(12,26,9) 29 19 10 217.72 418.39 4136.72 4183.92 -47.2 -0.47 483.62 -1406.3 -0.37 -5.87 65.52 -1.61 0.99 0.52 -1406.3

A2.4 DISTV 1.1 − SPRD30D −RSI(14) 5 2 3 1358.85 383.3 2717.69 1149.9 1567.79 15.68 2588.89 -648.17 0.12 1.9 40 313.56 2.36 3.55 -1118.6

A2.5 DISTV 1.1 − SPRD30D −BB(20) 17 6 11 661.03 158.99 3966.15 1748.88 2217.27 22.17 1220.04 -517.79 -0.05 -0.79 35.29 130.39 2.27 4.16 -1072.84

A3 DISTV 1.1 − SPRD30D −DECTREE 324 138 186 93.13 76.68 12852.03 14263.34 -1411.3 -14.11 640.08 -658.13 -1.24 -19.68 42.59 -4.36 0.9 1.21 -3655.43

A4 DISTV 1.1 − SPRD30D −MLP 292 110 182 124.91 72.84 13739.75 13257.46 482.3 4.82 1007.9 -625.8 -1.02 -16.19 37.67 1.65 1.04 1.71 -2929.98

Part II: Models derived using the spread obtained from DISTV 1.2 − SPRD30D

B1.1 DISTV 1.2 − ZSPRD30D
(3,2) 5 1 4 527.47 154.48 527.47 617.93 -90.46 -0.9 527.47 -297 -0.54 -8.57 20 -18.09 0.85 3.41 -357.26

B1.2 DISTV 1.2 − ZSPRD30D
(3,1) 5 2 3 600.22 206.48 1200.44 619.44 581.01 5.81 1118.36 -373.48 -0.06 -0.95 40 116.2 1.94 2.91 -373.48

B1.3 DISTV 1.2 − ZSPRD30D
(3,0.5) 5 2 3 644.73 292.71 1289.46 878.14 411.32 4.11 1118.36 -448.42 -0.11 -1.75 40 82.26 1.47 2.2 -691.53

B1.4 DISTV 1.2 − ZSPRD30D
(2.7,2) 12 7 5 139.03 147.86 973.24 739.29 233.95 2.34 527.47 -268.1 -0.65 -10.32 58.33 19.49 1.32 0.94 -292.1

B1.5 DISTV 1.2 − ZSPRD30D
(2.7,1) 12 5 7 573.48 266.16 2867.42 1863.12 1004.3 10.04 1118.36 -600.81 -0.13 -2.06 41.67 83.72 1.54 2.15 -807.37

B1.6 DISTV 1.2 − ZSPRD30D
(2.7,0.5) 12 7 5 538.24 533.07 3767.66 2665.34 1102.32 11.02 1118.36 -982.09 -0.09 -1.43 58.33 91.82 1.41 1.01 -1484.78

B2.1 DISTV 1.2 − SPRD30D − SMA(10,20) 18 3 15 229.24 411.24 687.72 6168.65 -5480.93 -54.81 413.82 -1199.47 -1.05 -16.67 16.67 -304.47 0.11 0.56 -5624.96

B2.2 DISTV 1.2 − SPRD30D − EMA(10,20) 25 11 14 322.66 392.43 3549.25 5494.01 -1944.76 -19.45 811.77 -2109.17 -0.39 -6.19 44 -77.79 0.65 0.82 -3541.09

B2.3 DISTV 1.2 − SPRD30D −MACD(12,26,9) 27 20 7 300.38 335.65 6007.51 2349.57 3657.95 36.58 1139.5 -614.21 -0.04 -0.63 74.07 135.45 2.56 0.89 -1265.49

B2.4 DISTV 1.2 − SPRD30D −RSI(14) 8 4 4 969.91 756.34 3879.64 3025.36 854.28 8.54 1540.74 -1220.72 -0.05 -0.79 50 106.79 1.28 1.28 -2593.03

B2.5 DISTV 1.2 − SPRD30D −BB(20) 13 6 7 245.53 295.88 1473.19 2071.15 -597.96 -5.98 1006.62 -799.4 -0.45 -7.14 46.15 -46.02 0.71 0.83 -1828.63

B3 DISTV 1.2 − SPRD30D −DECTREE 281 127 154 90.68 85.33 11516.33 13140.7 -1624.37 -16.24 579.3 -526.75 -1.22 -19.37 45.2 -5.77 0.88 1.06 -3082.52

B4 DISTV 1.2 − SPRD30D −MLP 236 121 115 102.4 114.51 12390.42 13168.25 -777.83 -7.78 906.07 -625.8 -0.97 -15.4 51.27 -3.3 0.94 0.89 -3261.91

Part III: Models derived using the spread obtained from DISTV 2 − SPRD30D

C1.1 DISTV 2 − ZSPRD30D
(3,2) 5 3 2 120.57 246.57 361.72 493.13 -131.41 -1.31 241.34 -349.1 -0.78 -12.38 60 -26.28 0.73 0.49 -349.1

C1.2 DISTV 2 − ZSPRD30D
(3,1) 5 2 3 248.2 207.92 496.4 623.75 -127.36 -1.27 255.05 -394.23 -0.63 -10 40 -25.47 0.8 1.19 -408.91

C1.3 DISTV 2 − ZSPRD30D
(3,0.5) 5 2 3 366.72 241.66 733.44 724.96 8.48 0.08 439.62 -285.65 -0.44 -6.98 40 1.7 1.01 1.52 -477.09

C1.4 DISTV 2 − ZSPRD30D
(2.7,2) 10 4 6 120.35 179.71 481.39 1078.23 -596.84 -5.97 241.34 -349.1 -1.07 -16.99 40 -59.68 0.45 0.67 -745.74

C1.5 DISTV 2 − ZSPRD30D
(2.7,1) 10 3 7 212.34 180.95 637.01 1266.67 -629.66 -6.3 255.05 -394.23 -0.93 -14.76 30 -62.97 0.5 1.17 -1025.32

C1.6 DISTV 2 − ZSPRD30D
(2.7,0.5) 9 4 5 227.14 582.56 908.56 2912.78 -2004.21 -20.04 439.62 -1305.62 -0.69 -10.95 44.44 -222.73 0.31 0.39 -2438.65

C2.1 DISTV 2 − SPRD30D − SMA(10,20) 14 5 9 709.59 295.99 3547.93 2663.87 884.06 8.84 1208.88 -1058.68 -0.14 -2.22 35.71 63.1 1.33 2.4 -1655.69

C2.2 DISTV 2 − SPRD30D − EMA(10,20) 22 10 12 593.66 207.38 5936.64 2488.61 3448.02 34.48 1409.16 -658.13 0.01 0.16 45.45 156.69 2.39 2.86 -857.67

C2.3 DISTV 2 − SPRD30D −MACD(12,26,9) 29 10 19 418.39 217.72 4183.92 4136.72 47.2 0.47 1406.3 -483.62 -0.36 -5.71 34.48 1.61 1.01 1.92 -1337.4

C2.4 DISTV 2 − SPRD30D −RSI(14) 5 3 2 383.3 1358.85 1149.9 2717.69 -1567.79 -15.68 648.17 -2588.89 -0.36 -5.71 60 -313.56 0.42 0.28 -2717.69

C2.5 DISTV 2 − SPRD30D −BB(20) 17 11 6 158.99 661.03 1748.88 3966.15 -2217.27 -22.17 517.79 -1220.04 -0.61 -9.68 64.71 -130.39 0.44 0.24 -2737.12

C3 DISTV 2 − SPRD30D −DECTREE 325 126 199 94.53 76.32 11911.11 15188.54 -3277.43 -32.77 614.64 -526.75 -1.4 -22.22 38.77 -10.08 0.78 1.24 -4843.37

C4 DISTV 2 − SPRD30D −MLP 251 101 150 117.84 82.38 11902.21 12356.41 -454.21 -4.54 1025.32 -527.47 -1 -15.87 40.24 -1.81 0.96 1.43 -3328.8

Part IV: Models derived using the spread obtained from DISTV 3 − SPRD30D

D1.1 DISTV 3 − ZSPRD30D
(3,2) 6 6 - 92.72 - 556.32 - 556.32 5.56 193.51 - -0.86 -13.65 100 92.72 556.32 92.72 -

D1.2 DISTV 3 − ZSPRD30D
(3,1) 6 4 2 135.08 599.62 540.31 1199.23 -658.93 -6.59 304.63 -668.73 -0.66 -10.48 66.67 -109.8 0.45 0.23 -1199.23

D1.3 DISTV 3 − ZSPRD30D
(3,0.5) 6 4 2 226.06 707.7 904.25 1415.39 -511.14 -5.11 337.68 -870.42 -0.48 -7.62 66.67 -85.16 0.64 0.32 -1415.39

D1.4 DISTV 3 − ZSPRD30D
(2.7,2) 12 10 2 87.38 61.33 873.76 122.66 751.1 7.51 193.51 -68.08 -1.15 -18.26 83.33 62.59 7.12 1.42 -68.08

D1.5 DISTV 3 − ZSPRD30D
(2.7,1) 11 8 3 126.61 664.84 1012.9 1994.51 -981.61 -9.82 304.63 -795.28 -0.63 -10 72.73 -89.22 0.51 0.19 -1957.25

D1.6 DISTV 3 − ZSPRD30D
(2.7,0.5) 11 8 3 293.92 611.4 2351.33 1834.21 517.12 5.17 1032.17 -870.42 -0.21 -3.33 72.73 47.04 1.28 0.48 -1515.8

D2.1 DISTV 3 − SPRD30D − SMA(10,20) 18 7 11 449.03 238.7 3143.21 2625.74 517.47 5.17 1120.69 -699.06 -0.29 -4.6 38.89 28.76 1.2 1.88 -1852.11

D2.2 DISTV 3 − SPRD30D − EMA(10,20) 37 12 25 668.64 241.1 8023.66 6027.44 1996.22 19.96 1569.48 -1256.72 -0.18 -2.86 32.43 53.93 1.33 2.77 -2509.03

D2.3 DISTV 3 − SPRD30D −MACD(12,26,9) 39 14 25 286.35 228.13 4008.86 5703.22 -1694.36 -16.94 746.2 -1304.02 -0.53 -8.41 35.9 -43.43 0.7 1.26 -3216.18

D2.4 DISTV 3 − SPRD30D −RSI(14) 4 2 2 40.88 646.43 81.76 1292.86 -1211.11 -12.11 50.45 -679.31 -1.14 -18.1 50 -302.78 0.06 0.06 -1242.41

D2.5 DISTV 3 − SPRD30D −BB(20) 22 13 9 183.28 347.39 2382.6 3126.48 -743.87 -7.44 1029.12 -653.35 -0.51 -8.1 59.09 -33.82 0.76 0.53 -2043.13

D3 DISTV 3 − SPRD30D −DECTREE 330 162 168 88.77 76.39 14381.19 12832.77 1548.41 15.48 415.22 -483.62 -1.3 -20.64 49.09 4.69 1.12 1.16 -1777.5

D4 DISTV 3 − SPRD30D −MLP 265 121 144 129.39 91.52 15655.91 13179.37 2476.54 24.77 989.86 -992.42 -0.82 -13.02 45.66 9.34 1.19 1.41 -1416.63

Part V: Models derived using the spread obtained from DISTV 4 − SPRD30D

E1.1 DISTV 4 − ZSPRD30D
(3,2) 6 6 - 92.72 - 556.32 - 556.32 5.56 193.51 - -0.86 -13.65 100 92.72 556.32 92.72 -

E1.2 DISTV 4 − ZSPRD30D
(3,1) 6 4 2 135.08 599.62 540.31 1199.23 -658.93 -6.59 304.63 -668.73 -0.66 -10.48 66.67 -109.8 0.45 0.23 -1199.23

E1.3 DISTV 4 − ZSPRD30D
(3,0.5) 6 4 2 226.06 707.7 904.25 1415.39 -511.14 -5.11 337.68 -870.42 -0.48 -7.62 66.67 -85.16 0.64 0.32 -1415.39

E1.4 DISTV 4 − ZSPRD30D
(2.7,2) 12 10 2 87.38 61.33 873.76 122.66 751.1 7.51 193.51 -68.08 -1.15 -18.26 83.33 62.59 7.12 1.42 -68.08

E1.5 DISTV 4 − ZSPRD30D
(2.7,1) 11 8 3 126.61 664.84 1012.9 1994.51 -981.61 -9.82 304.63 -795.28 -0.63 -10 72.73 -89.22 0.51 0.19 -1957.25

E1.6 DISTV 4 − ZSPRD30D
(2.7,0.5) 11 8 3 293.92 611.4 2351.33 1834.21 517.12 5.17 1032.17 -870.42 -0.21 -3.33 72.73 47.04 1.28 0.48 -1515.8

E2.1 DISTV 4 − SPRD30D − SMA(10,20) 18 7 11 449.03 238.7 3143.21 2625.74 517.47 5.17 1120.69 -699.06 -0.29 -4.6 38.89 28.76 1.2 1.88 -1852.11

E2.2 DISTV 4 − SPRD30D − EMA(10,20) 37 12 25 668.64 241.1 8023.66 6027.44 1996.22 19.96 1569.48 -1256.72 -0.18 -2.86 32.43 53.93 1.33 2.77 -2509.03

E2.3 DISTV 4 − SPRD30D −MACD(12,26,9) 39 14 25 286.35 228.13 4008.86 5703.22 -1694.36 -16.94 746.2 -1304.02 -0.53 -8.41 35.9 -43.43 0.7 1.26 -3216.18

E2.4 DISTV 4 − SPRD30D −RSI(14) 4 2 2 40.88 646.43 81.76 1292.86 -1211.11 -12.11 50.45 -679.31 -1.14 -18.1 50 -302.78 0.06 0.06 -1242.41

E2.5 DISTV 4 − SPRD30D −BB(20) 22 13 9 183.28 347.39 2382.6 3126.48 -743.87 -7.44 1029.12 -653.35 -0.51 -8.1 59.09 -33.82 0.76 0.53 -2043.13

E3 DISTV 4 − SPRD30D −DECTREE 351 165 186 82.32 72.93 13582.21 13565.71 16.5 0.16 390.72 -483.62 -1.44 -22.86 47.01 0.05 1 1.13 -1891.19

E4 DISTV 4 − SPRD30D −MLP 265 121 144 129.39 91.52 15655.91 13179.37 2476.54 24.77 989.86 -992.42 -0.82 -13.02 45.66 9.34 1.19 1.41 -1416.63

Part VI: Models derived using the spread obtained from JOHANSEN − SPRD30D

F1.1 JOHANSEN − ZSPRD30D
(3,2) 22 9 13 476.27 392.57 4286.43 5103.37 -816.94 -8.17 2526.74 -4420.61 -0.17 -2.7 40.91 -37.13 0.84 1.21 -4498.59

F1.2 JOHANSEN − ZSPRD30D
(3,1) 20 9 11 563.03 659.16 5067.26 7250.71 -2183.45 -21.83 2791.99 -6821.44 -0.16 -2.54 45 -109.17 0.7 0.85 -6880.07

F1.3 JOHANSEN − ZSPRD30D
(3,0.5) 19 9 10 307.97 718.89 2771.71 7188.91 -4417.2 -44.17 2173.26 -6821.44 -0.24 -3.81 47.37 -232.47 0.39 0.43 -6885.87

F1.4 JOHANSEN − ZSPRD30D
(2.7,2) 26 10 16 296.6 393.44 2965.98 6295.06 -3329.08 -33.29 2526.74 -4420.61 -0.27 -4.29 38.46 -128.05 0.47 0.75 -5778.75

F1.5 JOHANSEN − ZSPRD30D
(2.7,1) 22 10 12 374.27 831.61 3742.66 9979.37 -6236.72 -62.37 2791.99 -6821.44 -0.27 -4.29 45.45 -283.54 0.38 0.45 -9591.59

F1.6 JOHANSEN − ZSPRD30D
(2.7,0.5) 20 10 10 157.52 986.69 1575.16 9866.88 -8291.71 -82.92 765.54 -6821.44 -0.36 -5.71 50 -414.59 0.16 0.16 -9597.4

F2.1 JOHANSEN − SPRD30D − SMA(10,20) 28 16 12 359.33 4167.54 5749.32 50010.44 -44261.13 -442.61 1167.58 -39853.74 -0.22 -3.49 57.14 -1580.88 0.11 0.09 -46695.7

F2.2 JOHANSEN − SPRD30D − EMA(10,20) 40 22 18 815.86 1029.42 17949.02 18529.63 -580.61 -5.81 6821.44 -11170.21 -0.11 -1.75 55 -14.52 0.97 0.79 -12016.52

F2.3 JOHANSEN − SPRD30D −MACD(12,26,9) 35 13 22 1462.69 1866.05 19015.03 41053.15 -22038.13 -220.38 7229.2 -15616.47 -0.16 -2.54 37.14 -629.76 0.46 0.78 -22290.78

F2.4 JOHANSEN − SPRD30D −RSI(14) 9 5 4 8801.09 2485.05 44005.47 9940.2 34065.26 340.65 42305.6 -9633.7 0.27 4.29 55.56 3785.53 4.43 3.54 -9799.53

F2.5 JOHANSEN − SPRD30D −BB(20) 21 12 9 556.23 8627.88 6674.78 77650.9 -70976.12 -709.76 2090.53 -68021.6 -0.24 -3.81 57.14 -3380.08 0.09 0.06 -73196.74

F3 JOHANSEN − SPRD30D −DECTREE 318 162 156 91.14 95.52 14764.49 14900.7 -136.2 -1.36 432.22 -864.7 -1.14 -18.1 50.94 -0.43 0.99 0.95 -2864.83

F4 JOHANSEN − SPRD30D −MLP 310 173 137 88.09 101.95 15239.72 13967.77 1271.95 12.72 468.47 -515.16 -1.13 -17.94 55.81 4.11 1.09 0.86 -2297.8

Part VII: Models derived using the spread obtained from ADF − SPRD30D

G1.1 ADF − ZSPRD30D
(3,2) 4 4 - 455.83 - 1823.33 - 1823.33 18.23 1042.98 - 0.57 9.05 100 455.83 1823.33 455.83 -

G1.2 ADF − ZSPRD30D
(3,1) 4 2 2 1171.4 174.54 2342.79 349.09 1993.71 19.94 1555.85 -183.29 0.55 8.73 50 498.43 6.71 6.71 -183.29

G1.3 ADF − ZSPRD30D
(3,0.5) 4 4 - 881.19 - 3524.78 - 3524.78 35.25 1735.81 - 0.75 11.91 100 881.19 3524.78 881.19 -

G1.4 ADF − ZSPRD30D
(2.7,2) 11 6 5 535.45 85.58 3212.68 427.9 2784.78 27.85 1103.98 -105.73 0.37 5.87 54.55 253.19 7.51 6.26 -260.98

G1.5 ADF − ZSPRD30D
(2.7,1) 11 5 6 609.87 134.84 3049.35 809.04 2240.31 22.4 1555.85 -261.83 0.34 5.4 45.45 203.63 3.77 4.52 -371.59

G1.6 ADF − ZSPRD30D
(2.7,0.5) 11 7 4 708.25 251.38 4957.75 1005.53 3952.21 39.52 1735.81 -296.86 0.41 6.51 63.64 359.33 4.93 2.82 -558.69

G2.1 ADF − SPRD30D − SMA(10,20) 23 13 10 359.1 1043.04 4668.24 10430.42 -5762.18 -57.62 1080.56 -5384.55 -0.12 -1.9 56.52 -250.55 0.45 0.34 -6267.54

G2.2 ADF − SPRD30D − EMA(10,20) 39 22 17 278.76 1193.6 6132.81 20291.26 -14158.45 -141.58 910.58 -7094.5 -0.13 -2.06 56.41 -363.04 0.3 0.23 -14795.33

G2.3 ADF − SPRD30D −MACD(12,26,9) 35 20 15 277.81 511.34 5556.14 7670.13 -2113.99 -21.14 1077.25 -2841.05 0.08 1.27 57.14 -60.42 0.72 0.54 -3060.39

G2.4 ADF − SPRD30D −RSI(14) 3 - 3 - 839.08 - 2517.23 -2517.23 -25.17 - -1245.38 0.14 2.22 - -839.08 - - -2517.23

G2.5 ADF − SPRD30D −BB(20) 19 5 14 775.61 318.02 3878.04 4452.21 -574.17 -5.74 2963.39 -1592.1 -0.28 -4.44 26.32 -30.17 0.87 2.44 -3601.4

G3 ADF − SPRD30D −DECTREE 307 163 144 91.98 106.16 14992.46 15287.41 -294.95 -2.95 658.13 -873.21 -1.06 -16.83 53.09 -0.97 0.98 0.87 -2354.92

G4 ADF − SPRD30D −MLP 152 76 76 122.84 144.91 9335.51 11012.98 -1677.46 -16.77 640.28 -1037.64 -0.78 -12.38 50 -11.04 0.85 0.85 -3222.54

Part VIII: Models derived using the spread obtained from KALMAN − SPRD30D

H1.1 KALMAN − ZSPRD30D
(3,2) 6 4 2 220.96 129.13 883.83 258.27 625.56 6.26 384.67 -156.36 -0.08 -1.27 66.67 104.27 3.42 1.71 -258.27

H1.2 KALMAN − ZSPRD30D
(3,1) 6 3 3 272.56 143.49 817.67 430.46 387.21 3.87 425.41 -283.13 -0.22 -3.49 50 64.54 1.9 1.9 -417.39

H1.3 KALMAN − ZSPRD30D
(3,0.5) 6 3 3 280.16 105.66 840.48 316.97 523.51 5.24 389.74 -193.2 -0.14 -2.22 50 87.25 2.65 2.65 -193.2

H1.4 KALMAN − ZSPRD30D
(2.7,2) 7 3 4 332.39 123.58 997.16 494.32 502.84 5.03 367.69 -212.47 -0.19 -3.02 42.86 71.85 2.02 2.69 -470.74

H1.5 KALMAN − ZSPRD30D
(2.7,1) 7 4 3 237.23 153.51 948.93 460.52 488.42 4.88 411.17 -283.13 -0.19 -3.02 57.14 69.76 2.06 1.55 -417.39

H1.6 KALMAN − ZSPRD30D
(2.7,0.5) 7 4 3 244.18 115.16 976.73 345.48 631.25 6.31 507.49 -221.71 -0.11 -1.75 57.14 90.17 2.83 2.12 -221.71

H2.1 KALMAN − SPRD30D − SMA(10,20) 15 5 10 510.79 329.61 2553.94 3296.12 -742.17 -7.42 718.17 -1799.21 -0.29 -4.6 33.33 -49.51 0.77 1.55 -2438.11

H2.2 KALMAN − SPRD30D − EMA(10,20) 16 8 8 525.96 214.11 4207.64 1712.88 2494.76 24.95 1544.33 -418.34 0.07 1.11 50 155.92 2.46 2.46 -899.91

H2.3 KALMAN − SPRD30D −MACD(12,26,9) 26 15 11 429.49 226.12 6442.34 2487.32 3955.03 39.55 1122.79 -536.9 0.05 0.79 57.69 152.1 2.59 1.9 -877.36

H2.4 KALMAN − SPRD30D −RSI(14) 4 1 3 540.3 747.13 540.3 2241.4 -1701.1 -17.01 540.3 -1806.43 -0.56 -8.89 25 -425.27 0.24 0.72 -2241.4

H2.5 KALMAN − SPRD30D −BB(20) 12 6 6 175.67 375.91 1054 2255.44 -1201.45 -12.01 460.61 -783.19 -0.58 -9.21 50 -100.12 0.47 0.47 -1753.11

H3 KALMAN − SPRD30D −DECTREE 298 155 143 93 91.5 14414.7 13084.29 1330.41 13.3 1061.66 -451.43 -1.06 -16.83 52.01 4.46 1.1 1.02 -2412.37

H4 KALMAN − SPRD30D −MLP 207 109 98 108.15 120.62 11788.62 11821.07 -32.45 -0.32 711.29 -1058.38 -0.84 -13.33 52.66 -0.15 1 0.9 -2039.54

Part IX: Models derived using the spread obtained from RATIO − SPRD30D

I1.1 RATIO − ZSPRD30D
(3,2) 5 3 2 141.52 392.1 424.57 784.2 -359.62 -3.6 255.05 -640.17 -0.64 -10.16 60 -71.92 0.54 0.36 -640.17

I1.2 RATIO − ZSPRD30D
(3,1) 5 1 4 255.05 338.89 255.05 1355.56 -1100.51 -11.01 255.05 -873.11 -0.89 -14.13 20 -220.1 0.19 0.75 -1355.56

I1.3 RATIO − ZSPRD30D
(3,0.5) 5 1 4 293.82 316.12 293.82 1264.49 -970.67 -9.71 293.82 -589.06 -1.09 -17.3 20 -194.13 0.23 0.93 -1264.49

I1.4 RATIO − ZSPRD30D
(2.7,2) 11 5 6 179.02 186.87 895.1 1121.24 -226.14 -2.26 255.05 -606.32 -0.68 -10.79 45.45 -20.58 0.8 0.96 -868.08

I1.5 RATIO − ZSPRD30D
(2.7,1) 10 4 6 267.68 315.12 1070.73 1890.73 -820 -8.2 439.62 -873.11 -0.62 -9.84 40 -82 0.57 0.85 -1236.27

I1.6 RATIO − ZSPRD30D
(2.7,0.5) 9 4 5 267.8 504.15 1071.21 2520.75 -1449.54 -14.5 439.62 -1305.62 -0.58 -9.21 44.44 -161.09 0.42 0.53 -1883.97

I2.1 RATIO − SPRD30D − SMA(10,20) 13 6 7 482.54 344.76 2895.22 2413.34 481.88 4.82 927.14 -708.39 -0.22 -3.49 46.15 37.04 1.2 1.4 -1657.69

I2.2 RATIO − SPRD30D − EMA(10,20) 18 10 8 641.63 129.9 6416.26 1039.2 5377.06 53.77 1571.75 -331.28 0.3 4.76 55.56 298.76 6.17 4.94 -461.47

I2.3 RATIO − SPRD30D −MACD(12,26,9) 28 14 14 338.4 178.02 4737.63 2492.31 2245.32 22.45 939 -638.32 -0.2 -3.17 50 80.19 1.9 1.9 -802.7

I2.4 RATIO − SPRD30D −RSI(14) 5 3 2 265.57 970.55 796.72 1941.1 -1144.38 -11.44 703.34 -1812.29 -0.4 -6.35 60 -228.88 0.41 0.27 -1879.02

I2.5 RATIO − SPRD30D −BB(20) 15 12 3 159.71 583.47 1916.53 1750.4 166.13 1.66 372.67 -1050.16 -0.39 -6.19 80 11.08 1.09 0.27 -1182.56

I3 RATIO − SPRD30D −DECTREE 325 111 214 104.46 66.62 11594.65 14256.86 -2662.21 -26.62 640.08 -436.22 -1.37 -21.75 34.15 -8.2 0.81 1.57 -3852.36

I4 RATIO − SPRD30D −MLP 275 100 175 110.99 74.41 11099.34 13022.58 -1923.24 -19.23 640.08 -436.22 -1.24 -19.68 36.36 -7 0.85 1.49 -3456.52

Part X: Models derived using the close price of USMV.N

CLS-SYM-1.1 CLOSEUSMV.N − SMA(10,20) 14 5 9 226.06 114.48 1130.28 1030.32 99.95 1 369.68 -432.1 -0.32 -5.08 35.71 7.13 1.1 1.97 -666.67

CLS-SYM-1.2 CLOSEUSMV.N − EMA(10,20) 25 8 17 180.2 153.33 1441.59 2606.67 -1165.09 -11.65 590.3 -737.37 -0.52 -8.25 32 -46.6 0.55 1.18 -1124.97

CLS-SYM-1.3 CLOSEUSMV.N −MACD(12,26,9) 46 11 35 163.48 61.53 1798.3 2153.62 -355.32 -3.55 534.16 -198.94 -0.63 -10 23.91 -7.73 0.84 2.66 -1531.05

CLS-SYM-1.4 CLOSEUSMV.N −RSI(14) 4 1 3 1322.93 454.26 1322.93 1362.79 -39.86 -0.4 1322.93 -1093.72 -0.09 -1.43 25 -9.97 0.97 2.91 -1093.72

CLS-SYM-1.5 CLOSEUSMV.N −BB(20) 17 13 4 57.26 233.76 744.34 935.05 -190.71 -1.91 240.17 -683.01 -0.45 -7.14 76.47 -11.22 0.8 0.24 -871.88

Part XI: Models derived using the close price of XLE.N

CLS-SYM-2.1 CLOSEXLE.N − SMA(10,20) 19 9 10 492.93 337.96 4436.4 3379.63 1056.77 10.57 1969.29 -993.26 -0.03 -0.48 47.37 55.63 1.31 1.46 -2390.02

CLS-SYM-2.2 CLOSEXLE.N − EMA(10,20) 26 11 15 546.32 161.14 6009.56 2417.09 3592.47 35.92 2197.81 -326.2 0.12 1.9 42.31 138.19 2.49 3.39 -711.67

CLS-SYM-2.3 CLOSEXLE.N −MACD(12,26,9) 27 10 17 637.2 211.29 6372.04 3591.96 2780.08 27.8 1931.38 -613.01 0.05 0.79 37.04 102.99 1.77 3.02 -645.92

CLS-SYM-2.4 CLOSEXLE.N −RSI(14) 5 3 2 314.75 1213.82 944.26 2427.64 -1483.38 -14.83 365.04 -1229.73 -0.44 -6.98 60 -296.68 0.39 0.26 -2062.6

CLS-SYM-2.5 CLOSEXLE.N −BB(20) 20 17 3 198.62 500.07 3376.55 1500.22 1876.33 18.76 822.47 -1185.85 0.05 0.79 85 93.82 2.25 0.4 -1185.85
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Table D.2.17: This table presents the back-test metrics for the pair USMV.N/XLE.N based on a 50-day rolling window. The table is subdivided into eleven parts, and in each of these parts, we present the back-test metrics and the trading strategies which use the
spread derived from various models. In Part I, the spread is derived from the DIST V 1.1 model, in Part II from the DIST V 1.2 model, in Part III from the DIST V 2 model, in Part IV from the DIST V 3 model, in Part V from the DIST V 4 model, in Part VI from the
JOHANSEN − SPRD model, in Part VIII from the ADF − SPRD model, in from the DIST V 2 model, in Part VIII from the KALMAN − SPRD model, and in Part IX from the RATIO − SPRD model. In Part X and XI, we present the back-test metrics of
the trading strategies which use the close price of USMV.N, and XLE.N, respectively. All $ numbers reported below are in USD.

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X) (XI) (XII) (XIII) (XIV) (XV) (XVI) (XVII) (XVIII) (XIX) (XX)

Trading
Strategy
Code

Model
Name

Total
Number
of
Trades

Number
of

Winning
Trades

Number
of Loosing
Trades

Average
Profit

per Trade

Average
Loss per
Trade

Gross
Profit

Gross
Loss

Net Profit ROI Max P&L Min P&L Daily
Sharpe
Ratio

Annualized
Sharpe
Ratio

Hit Ratio Expectancy Profit
Factor

Realized
Risk

Reward
Ratio

Max
Drawdown

Part I: Models derived using the spread obtained from DISTV 1.1 − SPRD50D

A1.1 DISTV 1.1 − ZSPRD50D
(3,2) 6 3 3 230.19 200.22 690.56 600.67 89.89 0.9 299.08 -392.42 -0.5 -7.94 50 14.98 1.15 1.15 -585.66

A1.2 DISTV 1.1 − ZSPRD50D
(3,1) 6 3 3 613.05 77.16 1839.14 231.5 1607.64 16.08 1305.62 -137.34 0.22 3.49 50 267.94 7.94 7.94 -196.99

A1.3 DISTV 1.1 − ZSPRD50D
(3,0.5) 6 3 3 554.46 147.19 1663.38 441.58 1221.8 12.22 1282.1 -307.35 0.09 1.43 50 203.63 3.77 3.77 -407.07

A1.4 DISTV 1.1 − ZSPRD50D
(2.7,2) 8 6 2 213.42 315.09 1280.49 630.17 650.32 6.5 396.35 -363.66 -0.25 -3.97 75 81.29 2.03 0.68 -630.17

A1.5 DISTV 1.1 − ZSPRD50D
(2.7,1) 8 5 3 445.43 151.04 2227.15 453.12 1774.03 17.74 1366.91 -313.01 0.14 2.22 62.5 221.75 4.92 2.95 -418.62

A1.6 DISTV 1.1 − ZSPRD50D
(2.7,0.5) 8 5 3 578.94 136.22 2894.71 408.67 2486.04 24.86 1351.01 -277.43 0.29 4.6 62.5 310.76 7.08 4.25 -374.16

A2.1 DISTV 1.1 − SPRD50D − SMA(10,20) 14 9 5 309.1 694.85 2781.91 3474.23 -692.32 -6.92 1058.68 -1208.88 -0.33 -5.24 64.29 -49.41 0.8 0.44 -2554.32

A2.2 DISTV 1.1 − SPRD50D − EMA(10,20) 22 12 10 207.19 585.93 2486.22 5859.29 -3373.07 -33.73 658.13 -1409.16 -0.58 -9.21 54.55 -153.29 0.42 0.35 -3990.95

A2.3 DISTV 1.1 − SPRD50D −MACD(12,26,9) 28 17 11 232.75 385.94 3956.73 4245.32 -288.59 -2.89 483.62 -1406.3 -0.38 -6.03 60.71 -10.33 0.93 0.6 -1406.3

A2.4 DISTV 1.1 − SPRD50D −RSI(14) 5 3 2 921.31 559.3 2763.94 1118.6 1645.34 16.45 2588.89 -648.17 0.14 2.22 60 329.07 2.47 1.65 -1118.6

A2.5 DISTV 1.1 − SPRD50D −BB(20) 17 6 11 661.03 151.74 3966.15 1669.11 2297.04 22.97 1220.04 -517.79 -0.04 -0.63 35.29 135.09 2.38 4.36 -1072.84

A3 DISTV 1.1 − SPRD50D −DECTREE 281 120 161 94.36 75.95 11323.09 12228.28 -905.2 -9.05 656.46 -436.22 -1.3 -20.64 42.7 -3.23 0.93 1.24 -3016.33

A4 DISTV 1.1 − SPRD50D −MLP 221 93 128 129.76 69.17 12067.49 8853.35 3214.14 32.14 864.7 -363.66 -0.93 -14.76 42.08 14.54 1.36 1.88 -1256.56

Part II: Models derived using the spread obtained from DISTV 1.2 − SPRD50D

B1.1 DISTV 1.2 − ZSPRD50D
(3,2) 5 3 2 487.15 316.6 1461.44 633.21 828.23 8.28 1091.45 -632.61 0.02 0.32 60 165.65 2.31 1.54 -633.21

B1.2 DISTV 1.2 − ZSPRD50D
(3,1) 4 2 2 670.36 254.71 1340.72 509.42 831.31 8.31 1091.45 -347.57 0.09 1.43 50 207.83 2.63 2.63 -509.42

B1.3 DISTV 1.2 − ZSPRD50D
(3,0.5) 4 2 2 677.6 297.19 1355.19 594.38 760.81 7.61 1091.45 -412.71 0.06 0.95 50 190.2 2.28 2.28 -412.71

B1.4 DISTV 1.2 − ZSPRD50D
(2.7,2) 7 4 3 420.02 268.31 1680.08 804.92 875.16 8.75 1118.36 -632.61 -0.05 -0.79 57.14 125 2.09 1.57 -633.21

B1.5 DISTV 1.2 − ZSPRD50D
(2.7,1) 5 3 2 487.78 254.71 1463.33 509.42 953.91 9.54 1118.36 -347.57 0.07 1.11 60 190.78 2.87 1.92 -509.42

B1.6 DISTV 1.2 − ZSPRD50D
(2.7,0.5) 5 2 3 691.05 369.54 1382.11 1108.61 273.5 2.74 1118.36 -514.23 -0.15 -2.38 40 54.7 1.25 1.87 -695.9

B2.1 DISTV 1.2 − SPRD50D − SMA(10,20) 17 9 8 357.56 437.46 3218.07 3499.69 -281.62 -2.82 865.34 -1369.75 -0.3 -4.76 52.94 -16.58 0.92 0.82 -1621.59

B2.2 DISTV 1.2 − SPRD50D − EMA(10,20) 21 11 10 309.67 396.05 3406.41 3960.48 -554.07 -5.54 948.4 -971.96 -0.37 -5.87 52.38 -26.39 0.86 0.78 -1305.75

B2.3 DISTV 1.2 − SPRD50D −MACD(12,26,9) 31 19 12 255.32 336 4851.01 4031.94 819.07 8.19 1080.08 -1088.96 -0.28 -4.44 61.29 26.42 1.2 0.76 -1992.61

B2.4 DISTV 1.2 − SPRD50D −RSI(14) 7 3 4 848.84 874.46 2546.52 3497.84 -951.32 -9.51 1578.52 -1852.66 -0.25 -3.97 42.86 -135.85 0.73 0.97 -3200.32

B2.5 DISTV 1.2 − SPRD50D −BB(20) 12 4 8 225.46 236.09 901.82 1888.76 -986.94 -9.87 519.35 -650.95 -0.76 -12.06 33.33 -82.26 0.48 0.95 -1626.22

B3 DISTV 1.2 − SPRD50D −DECTREE 278 144 134 111.19 91.57 16011.67 12271 3740.67 37.41 912.91 -541.2 -0.89 -14.13 51.8 13.46 1.3 1.21 -1977.15

B4 DISTV 1.2 − SPRD50D −MLP 220 108 112 109.43 114.1 11818.59 12779.02 -960.43 -9.6 994.5 -790.05 -0.91 -14.45 49.09 -4.37 0.92 0.96 -2829.76

Part III: Models derived using the spread obtained from DISTV 2 − SPRD50D

C1.1 DISTV 2 − ZSPRD50D
(3,2) 6 3 3 200.22 230.19 600.67 690.56 -89.89 -0.9 392.42 -299.08 -0.61 -9.68 50 -14.98 0.87 0.87 -391.48

C1.2 DISTV 2 − ZSPRD50D
(3,1) 6 3 3 77.16 613.05 231.5 1839.14 -1607.64 -16.08 137.34 -1305.62 -0.78 -12.38 50 -267.94 0.13 0.13 -1607.64

C1.3 DISTV 2 − ZSPRD50D
(3,0.5) 6 3 3 147.19 554.46 441.58 1663.38 -1221.8 -12.22 307.35 -1282.1 -0.63 -10 50 -203.63 0.27 0.27 -1447.78

C1.4 DISTV 2 − ZSPRD50D
(2.7,2) 8 2 6 315.09 213.42 630.17 1280.49 -650.32 -6.5 363.66 -396.35 -0.84 -13.33 25 -81.29 0.49 1.48 -773.82

C1.5 DISTV 2 − ZSPRD50D
(2.7,1) 8 3 5 151.04 445.43 453.12 2227.15 -1774.03 -17.74 313.01 -1366.91 -0.73 -11.59 37.5 -221.75 0.2 0.34 -1774.03

C1.6 DISTV 2 − ZSPRD50D
(2.7,0.5) 8 3 5 136.22 578.94 408.67 2894.71 -2486.04 -24.86 277.43 -1351.01 -0.84 -13.33 37.5 -310.76 0.14 0.24 -2486.04

C2.1 DISTV 2 − SPRD50D − SMA(10,20) 14 5 9 694.85 309.1 3474.23 2781.91 692.32 6.92 1208.88 -1058.68 -0.17 -2.7 35.71 49.41 1.25 2.25 -1655.69

C2.2 DISTV 2 − SPRD50D − EMA(10,20) 22 10 12 585.93 207.19 5859.29 2486.22 3373.07 33.73 1409.16 -658.13 - - 45.45 153.29 2.36 2.83 -857.67

C2.3 DISTV 2 − SPRD50D −MACD(12,26,9) 28 11 17 385.94 232.75 4245.32 3956.73 288.59 2.89 1406.3 -483.62 -0.33 -5.24 39.29 10.33 1.07 1.66 -1337.4

C2.4 DISTV 2 − SPRD50D −RSI(14) 5 2 3 559.3 921.31 1118.6 2763.94 -1645.34 -16.45 648.17 -2588.89 -0.37 -5.87 40 -329.07 0.4 0.61 -2717.69

C2.5 DISTV 2 − SPRD50D −BB(20) 17 11 6 151.74 661.03 1669.11 3966.15 -2297.04 -22.97 517.79 -1220.04 -0.62 -9.84 64.71 -135.09 0.42 0.23 -2737.12

C3 DISTV 2 − SPRD50D −DECTREE 282 111 171 83.8 79.86 9302.26 13656.45 -4354.19 -43.54 583.4 -436.22 -1.48 -23.49 39.36 -15.44 0.68 1.05 -5316.83

C4 DISTV 2 − SPRD50D −MLP 207 81 126 108.89 99.51 8819.84 12538.7 -3718.86 -37.19 744.48 -1631.85 -0.94 -14.92 39.13 -17.97 0.7 1.09 -5729.93

Part IV: Models derived using the spread obtained from DISTV 3 − SPRD50D

D1.1 DISTV 3 − ZSPRD50D
(3,2) 6 1 5 116.08 208.17 116.08 1040.83 -924.76 -9.25 116.08 -586.92 -1.27 -20.16 16.67 -154.12 0.11 0.56 -1024.74

D1.2 DISTV 3 − ZSPRD50D
(3,1) 6 1 5 158.72 302.4 158.72 1512 -1353.27 -13.53 158.72 -752.63 -1.21 -19.21 16.67 -225.53 0.1 0.52 -1491.9

D1.3 DISTV 3 − ZSPRD50D
(3,0.5) 6 1 5 183.66 379.69 183.66 1898.45 -1714.79 -17.15 183.66 -793.74 -1.28 -20.32 16.67 -285.78 0.1 0.48 -1714.79

D1.4 DISTV 3 − ZSPRD50D
(2.7,2) 12 6 6 93.72 280.18 562.32 1681.1 -1118.78 -11.19 200.66 -668.73 -1.01 -16.03 50 -93.23 0.33 0.33 -1162.31

D1.5 DISTV 3 − ZSPRD50D
(2.7,1) 10 2 8 143.75 325.56 287.5 2604.51 -2317.01 -23.17 146.89 -837.82 -1.27 -20.16 20 -231.7 0.11 0.44 -2465.31

D1.6 DISTV 3 − ZSPRD50D
(2.7,0.5) 10 2 8 156.17 373.55 312.33 2988.37 -2676.04 -26.76 171.72 -880.24 -1.22 -19.37 20 -267.6 0.1 0.42 -2816.65

D2.1 DISTV 3 − SPRD50D − SMA(10,20) 14 7 7 716.82 282.17 5017.72 1975.21 3042.51 30.43 2103 -909.88 0.09 1.43 50 217.32 2.54 2.54 -1523.51

D2.2 DISTV 3 − SPRD50D − EMA(10,20) 32 15 17 417.28 340.44 6259.26 5787.54 471.72 4.72 1283.51 -1238.39 -0.27 -4.29 46.88 14.78 1.08 1.23 -3108.1

D2.3 DISTV 3 − SPRD50D −MACD(12,26,9) 34 14 20 352.69 248.43 4937.61 4968.54 -30.93 -0.31 846.3 -925.84 -0.38 -6.03 41.18 -0.89 0.99 1.42 -3576.72

D2.4 DISTV 3 − SPRD50D −RSI(14) 7 2 5 692.31 537 1384.62 2685.02 -1300.4 -13 1263.17 -921.83 -0.46 -7.3 28.57 -185.79 0.52 1.29 -2638.77

D2.5 DISTV 3 − SPRD50D −BB(20) 18 10 8 283.94 196.6 2839.37 1572.83 1266.54 12.67 1029.12 -341.2 -0.24 -3.81 55.56 70.38 1.81 1.44 -860.61

D3 DISTV 3 − SPRD50D −DECTREE 297 132 165 104.55 90.95 13800.66 15006.68 -1206.03 -12.06 645.39 -864.7 -1.09 -17.3 44.44 -4.07 0.92 1.15 -3621.11

D4 DISTV 3 − SPRD50D −MLP 247 117 130 113.13 92.36 13236.77 12006.87 1229.9 12.3 884.66 -872.17 -0.95 -15.08 47.37 4.98 1.1 1.22 -1874.8

Part V: Models derived using the spread obtained from DISTV 4 − SPRD50D

E1.1 DISTV 4 − ZSPRD50D
(3,2) 6 1 5 116.08 208.17 116.08 1040.83 -924.76 -9.25 116.08 -586.92 -1.27 -20.16 16.67 -154.12 0.11 0.56 -1024.74

E1.2 DISTV 4 − ZSPRD50D
(3,1) 6 1 5 158.72 302.4 158.72 1512 -1353.27 -13.53 158.72 -752.63 -1.21 -19.21 16.67 -225.53 0.1 0.52 -1491.9

E1.3 DISTV 4 − ZSPRD50D
(3,0.5) 6 1 5 183.66 379.69 183.66 1898.45 -1714.79 -17.15 183.66 -793.74 -1.28 -20.32 16.67 -285.78 0.1 0.48 -1714.79

E1.4 DISTV 4 − ZSPRD50D
(2.7,2) 12 6 6 93.72 280.18 562.32 1681.1 -1118.78 -11.19 200.66 -668.73 -1.01 -16.03 50 -93.23 0.33 0.33 -1162.31

E1.5 DISTV 4 − ZSPRD50D
(2.7,1) 10 2 8 143.75 325.56 287.5 2604.51 -2317.01 -23.17 146.89 -837.82 -1.27 -20.16 20 -231.7 0.11 0.44 -2465.31

E1.6 DISTV 4 − ZSPRD50D
(2.7,0.5) 10 2 8 156.17 373.55 312.33 2988.37 -2676.04 -26.76 171.72 -880.24 -1.22 -19.37 20 -267.6 0.1 0.42 -2816.65

E2.1 DISTV 4 − SPRD50D − SMA(10,20) 14 7 7 716.82 282.17 5017.72 1975.21 3042.51 30.43 2103 -909.88 0.09 1.43 50 217.32 2.54 2.54 -1523.51

E2.2 DISTV 4 − SPRD50D − EMA(10,20) 32 15 17 417.28 340.44 6259.26 5787.54 471.72 4.72 1283.51 -1238.39 -0.27 -4.29 46.88 14.78 1.08 1.23 -3108.1

E2.3 DISTV 4 − SPRD50D −MACD(12,26,9) 34 14 20 352.69 248.43 4937.61 4968.54 -30.93 -0.31 846.3 -925.84 -0.38 -6.03 41.18 -0.89 0.99 1.42 -3576.72

E2.4 DISTV 4 − SPRD50D −RSI(14) 7 2 5 692.31 537 1384.62 2685.02 -1300.4 -13 1263.17 -921.83 -0.46 -7.3 28.57 -185.79 0.52 1.29 -2638.77

E2.5 DISTV 4 − SPRD50D −BB(20) 18 10 8 283.94 196.6 2839.37 1572.83 1266.54 12.67 1029.12 -341.2 -0.24 -3.81 55.56 70.38 1.81 1.44 -860.61

E3 DISTV 4 − SPRD50D −DECTREE 297 127 170 102.64 90.34 13035.5 15357.19 -2321.69 -23.22 645.39 -864.7 -1.14 -18.1 42.76 -7.82 0.85 1.14 -4426.59

E4 DISTV 4 − SPRD50D −MLP 247 117 130 113.13 92.36 13236.77 12006.87 1229.9 12.3 884.66 -872.17 -0.95 -15.08 47.37 4.98 1.1 1.22 -1874.8

Part VI: Models derived using the spread obtained from JOHANSEN − SPRD50D

F1.1 JOHANSEN − ZSPRD50D
(3,2) 19 11 8 393.94 67.87 4333.29 543 3790.29 37.9 3108.41 -207.56 0.28 4.44 57.89 199.47 7.98 5.8 -272.39

F1.2 JOHANSEN − ZSPRD50D
(3,1) 18 9 9 631.58 61.23 5684.25 551.05 5133.2 51.33 3108.41 -207.56 0.33 5.24 50 285.18 10.32 10.32 -289.1

F1.3 JOHANSEN − ZSPRD50D
(3,0.5) 17 7 10 904.74 64.17 6333.18 641.66 5691.52 56.92 3108.41 -207.56 0.35 5.56 41.18 334.83 9.87 14.1 -432.47

F1.4 JOHANSEN − ZSPRD50D
(2.7,2) 22 12 10 368.9 254.46 4426.84 2544.57 1882.27 18.82 3108.41 -1997.89 0.01 0.16 54.55 85.59 1.74 1.45 -1997.89

F1.5 JOHANSEN − ZSPRD50D
(2.7,1) 20 9 11 631.55 245.02 5683.97 2695.25 2988.72 29.89 3108.41 -2140.51 0.08 1.27 45 149.44 2.11 2.58 -2148.57

F1.6 JOHANSEN − ZSPRD50D
(2.7,0.5) 18 8 10 619.26 64.17 4954.08 641.66 4312.42 43.12 3108.41 -207.56 0.31 4.92 44.44 239.55 7.72 9.65 -432.47

F2.1 JOHANSEN − SPRD50D − SMA(10,20) 20 9 11 1949.28 2750.07 17543.52 30250.74 -12707.22 -127.07 5539.41 -13031.84 -0.11 -1.75 45 -635.36 0.58 0.71 -13092.25

F2.2 JOHANSEN − SPRD50D − EMA(10,20) 31 15 16 1418.05 1352.81 21270.82 21645.03 -374.21 -3.74 13416.11 -8649.62 - - 48.39 -11.99 0.98 1.05 -15465.67

F2.3 JOHANSEN − SPRD50D −MACD(12,26,9) 29 17 12 6727.5 1117.83 114367.58 13413.99 100953.59 1009.54 87009.64 -5510.93 0.22 3.49 58.62 3481.1 8.53 6.02 -5768.87

F2.4 JOHANSEN − SPRD50D −RSI(14) 7 4 3 1961.95 309.04 7847.79 927.13 6920.66 69.21 4092.79 -731.37 0.32 5.08 57.14 988.6 8.46 6.35 -927.13

F2.5 JOHANSEN − SPRD50D −BB(20) 24 13 11 765.87 14441.9 9956.35 158860.89 -
148904.54

-1489.05 4818.44 -149282.93 -0.2 -3.17 54.17 -6203.85 0.06 0.05 -151973.53

F3 JOHANSEN − SPRD50D −DECTREE 299 142 157 83.89 97.04 11912.51 15235.13 -3322.62 -33.23 630.64 -880.56 -1.16 -18.41 47.49 -11.12 0.78 0.86 -4215.63

F4 JOHANSEN − SPRD50D −MLP 287 143 144 83.04 95.99 11875.26 13822.68 -1947.43 -19.47 393.7 -704.09 -1.19 -18.89 49.83 -6.78 0.86 0.87 -2659.82

Part VII: Models derived using the spread obtained from ADF − SPRD50D

G1.1 ADF − ZSPRD50D
(3,2) 4 2 2 154.27 63.31 308.54 126.62 181.92 1.82 293.21 -72.68 -0.85 -13.49 50 45.48 2.44 2.44 -72.68

G1.2 ADF − ZSPRD50D
(3,1) 4 2 2 962.94 67.55 1925.88 135.11 1790.77 17.91 1911.92 -128.51 -0.61 -9.68 50 447.69 14.25 14.25 -128.51

G1.3 ADF − ZSPRD50D
(3,0.5) 4 2 2 1310.49 71.16 2620.99 142.32 2478.66 24.79 2581.79 -128.51 -0.57 -9.05 50 619.67 18.42 18.42 -128.51

G1.4 ADF − ZSPRD50D
(2.7,2) 9 4 5 249.67 424.27 998.68 2121.33 -1122.65 -11.23 638.96 -1407.92 -0.25 -3.97 44.44 -124.77 0.47 0.59 -1688.92

G1.5 ADF − ZSPRD50D
(2.7,1) 9 5 4 600.25 1356.66 3001.23 5426.66 -2425.42 -24.25 1911.92 -4676.35 -0.43 -6.83 55.56 -269.4 0.55 0.44 -5118.59

G1.6 ADF − ZSPRD50D
(2.7,0.5) 9 4 5 854.57 1078.23 3418.29 5391.14 -1972.85 -19.73 2581.79 -4654.35 -0.46 -7.3 44.44 -219.29 0.63 0.79 -4927.77

G2.1 ADF − SPRD50D − SMA(10,20) 16 8 8 350.29 746.27 2802.31 5970.16 -3167.85 -31.68 1147.47 -2063.12 -0.12 -1.9 50 -197.99 0.47 0.47 -4323.13

G2.2 ADF − SPRD50D − EMA(10,20) 35 23 12 494.11 669.46 11364.57 8033.56 3331.01 33.31 4153.17 -2665.07 0.06 0.95 65.71 95.12 1.41 0.74 -3125.57

G2.3 ADF − SPRD50D −MACD(12,26,9) 34 16 18 175.96 649.89 2815.32 11698.08 -8882.76 -88.83 508.37 -2581.79 -0.2 -3.17 47.06 -261.25 0.24 0.27 -8985.9

G2.4 ADF − SPRD50D −RSI(14) 4 2 2 1815.78 1509.57 3631.55 3019.14 612.41 6.12 1986.93 -2546.77 0.36 5.71 50 153.1 1.2 1.2 -2546.77

G2.5 ADF − SPRD50D −BB(20) 19 8 11 685.48 146.98 5483.85 1616.8 3867.05 38.67 3195.93 -518.14 0.15 2.38 42.11 203.57 3.39 4.66 -518.14

G3 ADF − SPRD50D −DECTREE 277 138 139 108.59 92.02 14985.67 12791.35 2194.32 21.94 835.7 -739.88 -0.94 -14.92 49.82 7.92 1.17 1.18 -3134.25

G4 ADF − SPRD50D −MLP 196 99 97 118.88 122.87 11768.87 11918.82 -149.95 -1.5 923.66 -625.8 -0.81 -12.86 50.51 -0.77 0.99 0.97 -4352.14

Part VIII: Models derived using the spread obtained from KALMAN − SPRD50D

H1.1 KALMAN − ZSPRD50D
(3,2) 6 3 3 167.96 250.09 503.89 750.28 -246.39 -2.46 384.65 -393.34 -0.57 -9.05 50 -41.06 0.67 0.67 -496.33

H1.2 KALMAN − ZSPRD50D
(3,1) 6 1 5 178.81 459.25 178.81 2296.25 -2117.44 -21.17 178.81 -1283.98 -0.98 -15.56 16.67 -352.89 0.08 0.39 -2123.98

H1.3 KALMAN − ZSPRD50D
(3,0.5) 6 2 4 200.62 358.7 401.24 1434.82 -1033.58 -10.34 267.89 -947.67 -0.72 -11.43 33.33 -172.28 0.28 0.56 -1221.5

H1.4 KALMAN − ZSPRD50D
(2.7,2) 10 4 6 203.43 161.12 813.73 966.75 -153.02 -1.53 384.65 -393.34 -0.57 -9.05 40 -15.3 0.84 1.26 -650.92

H1.5 KALMAN − ZSPRD50D
(2.7,1) 9 3 6 208.2 515.23 624.6 3091.39 -2466.79 -24.67 313.44 -1283.98 -0.82 -13.02 33.33 -274.11 0.2 0.4 -2466.79

H1.6 KALMAN − ZSPRD50D
(2.7,0.5) 9 3 6 204.17 311.03 612.5 1866.17 -1253.66 -12.54 313.44 -947.67 -0.7 -11.11 33.33 -139.31 0.33 0.66 -1253.66

H2.1 KALMAN − SPRD50D − SMA(10,20) 15 9 6 452.76 433.46 4074.83 2600.78 1474.05 14.74 1332.14 -683.9 -0.09 -1.43 60 98.27 1.57 1.04 -1340.13

H2.2 KALMAN − SPRD50D − EMA(10,20) 28 12 16 366.68 200.13 4400.17 3202.03 1198.14 11.98 922.8 -490.8 -0.22 -3.49 42.86 42.81 1.37 1.83 -1668.21

H2.3 KALMAN − SPRD50D −MACD(12,26,9) 25 15 10 467.5 213.77 7012.42 2137.74 4874.69 48.75 1202.81 -495.32 0.15 2.38 60 194.99 3.28 2.19 -495.32

H2.4 KALMAN − SPRD50D −RSI(14) 3 2 1 667.46 2728.2 1334.92 2728.2 -1393.28 -13.93 1136.38 -2728.2 -0.23 -3.65 66.67 -464.31 0.49 0.24 -2728.2

H2.5 KALMAN − SPRD50D −BB(20) 13 8 5 271.19 277.6 2169.52 1388 781.52 7.82 750.23 -724.32 -0.14 -2.22 61.54 60.13 1.56 0.98 -724.32

H3 KALMAN − SPRD50D −DECTREE 260 125 135 90.03 86.42 11253.13 11666.89 -413.76 -4.14 636 -588.79 -1.16 -18.41 48.08 -1.59 0.96 1.04 -3444.12

H4 KALMAN − SPRD50D −MLP 29 12 17 292.43 314 3509.16 5337.94 -1828.77 -18.29 660.97 -1641.03 -0.45 -7.14 41.38 -63.06 0.66 0.93 -2781.11

Part IX: Models derived using the spread obtained from RATIO − SPRD50D

I1.1 RATIO − ZSPRD50D
(3,2) 6 2 4 104.12 271.2 208.24 1084.79 -876.55 -8.77 193.24 -394.23 -1.33 -21.11 33.33 -146.1 0.19 0.38 -891.55

I1.2 RATIO − ZSPRD50D
(3,1) 5 1 4 197.15 474.94 197.16 1899.74 -1702.58 -17.03 197.15 -1305.62 -0.86 -13.65 20 -340.52 0.1 0.42 -1702.59

I1.3 RATIO − ZSPRD50D
(3,0.5) 5 2 3 67.12 536.17 134.23 1608.52 -1474.29 -14.74 99.72 -1275.49 -0.8 -12.7 40 -294.86 0.08 0.13 -1474.29

I1.4 RATIO − ZSPRD50D
(2.7,2) 12 5 7 182.02 208.79 910.1 1461.53 -551.43 -5.51 363.66 -394.23 -0.84 -13.33 41.67 -45.94 0.62 0.87 -1038.45

I1.5 RATIO − ZSPRD50D
(2.7,1) 9 3 6 282.91 432.72 848.72 2596.33 -1747.61 -17.48 408.11 -1305.62 -0.69 -10.95 33.33 -194.2 0.33 0.65 -1964.66

I1.6 RATIO − ZSPRD50D
(2.7,0.5) 9 3 6 291.35 345.88 874.04 2075.3 -1201.26 -12.01 340.08 -1275.49 -0.59 -9.37 33.33 -133.49 0.42 0.84 -1613.92

I2.1 RATIO − SPRD50D − SMA(10,20) 13 6 7 469.65 344.76 2817.93 2413.34 404.59 4.05 927.14 -708.39 -0.24 -3.81 46.15 31.09 1.17 1.36 -1657.69

I2.2 RATIO − SPRD50D − EMA(10,20) 18 10 8 627.68 129.9 6276.78 1039.2 5237.58 52.38 1571.75 -331.28 0.28 4.44 55.56 291.01 6.04 4.83 -461.47

I2.3 RATIO − SPRD50D −MACD(12,26,9) 28 14 14 329.61 221.6 4614.57 3102.42 1512.15 15.12 939 -638.32 -0.26 -4.13 50 54.01 1.49 1.49 -824.92

I2.4 RATIO − SPRD50D −RSI(14) 5 2 3 382.71 653.49 765.42 1960.46 -1195.04 -11.95 703.34 -1785.41 -0.42 -6.67 40 -239.01 0.39 0.59 -1852.14

I2.5 RATIO − SPRD50D −BB(20) 15 12 3 159.71 583.47 1916.53 1750.4 166.13 1.66 372.67 -1050.16 -0.39 -6.19 80 11.08 1.09 0.27 -1182.56

I3 RATIO − SPRD50D −DECTREE 294 105 189 97.12 68.23 10197.48 12895.94 -2698.46 -26.98 561.98 -359 -1.44 -22.86 35.71 -9.19 0.79 1.42 -3560.81

I4 RATIO − SPRD50D −MLP 255 92 163 103.2 74.49 9494.07 12141.32 -2647.25 -26.47 536.77 -282.75 -1.39 -22.07 36.08 -10.38 0.78 1.39 -3265.45

Part X: Models derived using the close price of USMV.N

CLS-SYM-1.1 CLOSEUSMV.N − SMA(10,20) 14 5 9 226.06 114.48 1130.28 1030.32 99.95 1 369.68 -432.1 -0.32 -5.08 35.71 7.13 1.1 1.97 -666.67

CLS-SYM-1.2 CLOSEUSMV.N − EMA(10,20) 25 8 17 180.2 153.33 1441.59 2606.67 -1165.09 -11.65 590.3 -737.37 -0.52 -8.25 32 -46.6 0.55 1.18 -1124.97

CLS-SYM-1.3 CLOSEUSMV.N −MACD(12,26,9) 46 11 35 163.48 61.53 1798.3 2153.62 -355.32 -3.55 534.16 -198.94 -0.63 -10 23.91 -7.73 0.84 2.66 -1531.05

CLS-SYM-1.4 CLOSEUSMV.N −RSI(14) 4 1 3 1322.93 454.26 1322.93 1362.79 -39.86 -0.4 1322.93 -1093.72 -0.09 -1.43 25 -9.97 0.97 2.91 -1093.72

CLS-SYM-1.5 CLOSEUSMV.N −BB(20) 17 13 4 57.26 233.76 744.34 935.05 -190.71 -1.91 240.17 -683.01 -0.45 -7.14 76.47 -11.22 0.8 0.24 -871.88

Part XI: Models derived using the close price of XLE.N

CLS-SYM-2.1 CLOSEXLE.N − SMA(10,20) 19 9 10 492.93 337.96 4436.4 3379.63 1056.77 10.57 1969.29 -993.26 -0.03 -0.48 47.37 55.63 1.31 1.46 -2390.02

CLS-SYM-2.2 CLOSEXLE.N − EMA(10,20) 26 11 15 546.32 161.14 6009.56 2417.09 3592.47 35.92 2197.81 -326.2 0.12 1.9 42.31 138.19 2.49 3.39 -711.67

CLS-SYM-2.3 CLOSEXLE.N −MACD(12,26,9) 27 10 17 637.2 211.29 6372.04 3591.96 2780.08 27.8 1931.38 -613.01 0.05 0.79 37.04 102.99 1.77 3.02 -645.92

CLS-SYM-2.4 CLOSEXLE.N −RSI(14) 5 3 2 314.75 1213.82 944.26 2427.64 -1483.38 -14.83 365.04 -1229.73 -0.44 -6.98 60 -296.68 0.39 0.26 -2062.6

CLS-SYM-2.5 CLOSEXLE.N −BB(20) 20 17 3 198.62 500.07 3376.55 1500.22 1876.33 18.76 822.47 -1185.85 0.05 0.79 85 93.82 2.25 0.4 -1185.85
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Table D.2.18: This table presents the back-test metrics for the pair USMV.N/XLE.N based on a 100-day rolling window. The table is subdivided into eleven parts, and in each of these parts, we present the back-test metrics and the trading strategies which use
the spread derived from various models. In Part I, the spread is derived from the DIST V 1.1 model, in Part II from the DIST V 1.2 model, in Part III from the DIST V 2 model, in Part IV from the DIST V 3 model, in Part V from the DIST V 4 model, in Part VI from
the JOHANSEN − SPRD model, in Part VIII from the ADF − SPRD model, in from the DIST V 2 model, in Part VIII from the KALMAN − SPRD model, and in Part IX from the RATIO− SPRD model. In Part X and XI, we present the back-test metrics
of the trading strategies which use the close price of USMV.N, and XLE.N, respectively. All $ numbers reported below are in USD.

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X) (XI) (XII) (XIII) (XIV) (XV) (XVI) (XVII) (XVIII) (XIX) (XX)

Trading
Strategy
Code

Model
Name

Total
Number
of
Trades

Number
of

Winning
Trades

Number
of Loosing
Trades

Average
Profit

per Trade

Average
Loss per
Trade

Gross
Profit

Gross
Loss

Net Profit ROI Max P&L Min P&L Daily
Sharpe
Ratio

Annualized
Sharpe
Ratio

Hit Ratio Expectancy Profit
Factor

Realized
Risk

Reward
Ratio

Max
Drawdown

Part I: Models derived using the spread obtained from DISTV 1.1 − SPRD100D

A1.1 DISTV 1.1 − ZSPRD100D
(3,2) 3 3 - 385.13 - 1155.39 - 1155.39 11.55 580.91 - 1.16 18.41 100 385.13 1155.39 385.13 -

A1.2 DISTV 1.1 − ZSPRD100D
(3,1) 2 1 1 1244.75 34.51 1244.75 34.51 1210.24 12.1 1244.75 -34.51 0.5 7.94 50 605.12 36.07 36.07 -34.51

A1.3 DISTV 1.1 − ZSPRD100D
(3,0.5) 2 1 1 1038.07 145.18 1038.07 145.18 892.88 8.93 1038.07 -145.18 0.35 5.56 50 446.44 7.15 7.15 -145.18

A1.4 DISTV 1.1 − ZSPRD100D
(2.7,2) 4 3 1 385.13 208.25 1155.39 208.25 947.14 9.47 580.91 -208.25 0.25 3.97 75 236.78 5.55 1.85 -208.25

A1.5 DISTV 1.1 − ZSPRD100D
(2.7,1) 3 1 2 1244.75 70.93 1244.75 141.85 1102.9 11.03 1244.75 -107.34 0.28 4.44 33.33 367.59 8.78 17.55 -107.34

A1.6 DISTV 1.1 − ZSPRD100D
(2.7,0.5) 3 1 2 1038.07 218.61 1038.07 437.23 600.84 6.01 1038.07 -292.04 0.07 1.11 33.33 200.24 2.37 4.75 -292.04

A2.1 DISTV 1.1 − SPRD100D − SMA(10,20) 12 7 5 373.56 575.51 2614.92 2877.53 -262.62 -2.63 1058.68 -1208.88 -0.27 -4.29 58.33 -21.92 0.91 0.65 -2421.93

A2.2 DISTV 1.1 − SPRD100D − EMA(10,20) 24 15 9 214.66 610.35 3219.92 5493.12 -2273.2 -22.73 663.13 -1409.16 -0.47 -7.46 62.5 -94.72 0.59 0.35 -3990.95

A2.3 DISTV 1.1 − SPRD100D −MACD(12,26,9) 27 17 10 230.41 419.17 3917 4191.71 -274.71 -2.75 483.62 -1406.3 -0.38 -6.03 62.96 -10.19 0.93 0.55 -1406.3

A2.4 DISTV 1.1 − SPRD100D −RSI(14) 4 2 2 1644.95 559.3 3289.9 1118.6 2171.3 21.71 3161.09 -648.17 0.22 3.49 50 542.83 2.94 2.94 -1118.6

A2.5 DISTV 1.1 − SPRD100D −BB(20) 15 7 8 663.74 181.37 4646.19 1450.97 3195.22 31.95 1220.04 -517.79 0.12 1.9 46.67 213.04 3.2 3.66 -1072.84

A3 DISTV 1.1 − SPRD100D −DECTREE 280 100 180 137.8 76.51 13779.61 13771.16 8.45 0.08 1058.38 -630.64 -0.97 -15.4 35.71 0.02 1 1.8 -2753.38

A4 DISTV 1.1 − SPRD100D −MLP 277 108 169 113.94 72.44 12305.07 12242.06 63 0.63 864.7 -499.66 -1.14 -18.1 38.99 0.23 1.01 1.57 -2299.17

Part II: Models derived using the spread obtained from DISTV 1.2 − SPRD100D

B1.1 DISTV 1.2 − ZSPRD100D
(3,2) 4 2 2 94.54 642.46 189.08 1284.93 -1095.84 -10.96 142 -684.87 -0.99 -15.72 50 -273.96 0.15 0.15 -1284.93

B1.2 DISTV 1.2 − ZSPRD100D
(3,1) 4 1 3 37.05 726.67 37.05 2180.01 -2142.96 -21.43 37.05 -1059.34 -1.19 -18.89 25 -535.74 0.02 0.05 -2180.01

B1.3 DISTV 1.2 − ZSPRD100D
(3,0.5) 4 3 1 698.55 1007.77 2095.64 1007.77 1087.87 10.88 1824.18 -1007.77 0.1 1.59 75 271.97 2.08 0.69 -1007.77

B1.4 DISTV 1.2 − ZSPRD100D
(2.7,2) 5 2 3 94.54 458.5 189.08 1375.49 -1186.41 -11.86 142 -717.26 -0.99 -15.72 40 -237.28 0.14 0.21 -1375.49

B1.5 DISTV 1.2 − ZSPRD100D
(2.7,1) 5 1 4 37.05 565.99 37.05 2263.94 -2226.9 -22.27 37.05 -1059.34 -1.08 -17.14 20 -445.38 0.02 0.07 -2263.94

B1.6 DISTV 1.2 − ZSPRD100D
(2.7,0.5) 5 3 2 698.55 700.59 2095.64 1401.18 694.46 6.94 1824.18 -1033.52 -0.01 -0.16 60 138.89 1.5 1 -1033.52

B2.1 DISTV 1.2 − SPRD100D − SMA(10,20) 11 5 6 684.75 599.84 3423.76 3599.03 -175.27 -1.75 1142.81 -1606.42 -0.2 -3.17 45.45 -15.99 0.95 1.14 -2371.2

B2.2 DISTV 1.2 − SPRD100D − EMA(10,20) 18 9 9 516.08 585 4644.68 5265.04 -620.36 -6.2 1449.11 -1442.49 -0.25 -3.97 50 -34.46 0.88 0.88 -3549.3

B2.3 DISTV 1.2 − SPRD100D −MACD(12,26,9) 20 11 9 295.45 265.87 3249.94 2392.83 857.11 8.57 724.18 -931.6 -0.27 -4.29 55 42.86 1.36 1.11 -1380.02

B2.4 DISTV 1.2 − SPRD100D −RSI(14) 7 4 3 844.65 1383.49 3378.58 4150.46 -771.88 -7.72 1712.94 -1884.75 -0.2 -3.17 57.14 -110.33 0.81 0.61 -3039.72

B2.5 DISTV 1.2 − SPRD100D −BB(20) 15 5 10 567.79 407.57 2838.93 4075.69 -1236.76 -12.37 1006.62 -1148.22 -0.37 -5.87 33.33 -82.48 0.7 1.39 -1980.61

B3 DISTV 1.2 − SPRD100D −DECTREE 251 111 140 96.67 93.33 10730 13066.03 -2336.04 -23.36 506.25 -560.86 -1.27 -20.16 44.22 -9.31 0.82 1.04 -2968.49

B4 DISTV 1.2 − SPRD100D −MLP 172 88 84 88.23 85.96 7764.04 7220.55 543.49 5.43 459.81 -437.47 -1.18 -18.73 51.16 3.15 1.08 1.03 -1150.32

Part III: Models derived using the spread obtained from DISTV 2 − SPRD100D

C1.1 DISTV 2 − ZSPRD100D
(3,2) 3 - 3 - 385.13 - 1155.39 -1155.39 -11.55 - -580.91 -2.68 -42.54 - -385.13 - - -1155.39

C1.2 DISTV 2 − ZSPRD100D
(3,1) 2 1 1 34.51 1244.75 34.51 1244.75 -1210.24 -12.1 34.51 -1244.75 -0.84 -13.33 50 -605.12 0.03 0.03 -1244.75

C1.3 DISTV 2 − ZSPRD100D
(3,0.5) 2 1 1 145.18 1038.07 145.18 1038.07 -892.88 -8.93 145.18 -1038.07 -0.72 -11.43 50 -446.44 0.14 0.14 -1038.07

C1.4 DISTV 2 − ZSPRD100D
(2.7,2) 4 1 3 208.25 385.13 208.25 1155.39 -947.14 -9.47 208.25 -580.91 -1.15 -18.26 25 -236.78 0.18 0.54 -1155.39

C1.5 DISTV 2 − ZSPRD100D
(2.7,1) 3 2 1 70.93 1244.75 141.85 1244.75 -1102.9 -11.03 107.34 -1244.75 -0.68 -10.79 66.67 -367.59 0.11 0.06 -1244.75

C1.6 DISTV 2 − ZSPRD100D
(2.7,0.5) 3 2 1 218.61 1038.07 437.23 1038.07 -600.84 -6.01 292.04 -1038.07 -0.48 -7.62 66.67 -200.24 0.42 0.21 -1038.07

C2.1 DISTV 2 − SPRD100D − SMA(10,20) 12 5 7 575.51 373.56 2877.53 2614.92 262.62 2.63 1208.88 -1058.68 -0.2 -3.17 41.67 21.92 1.1 1.54 -1655.69

C2.2 DISTV 2 − SPRD100D − EMA(10,20) 24 9 15 610.35 214.66 5493.12 3219.92 2273.2 22.73 1409.16 -663.13 -0.11 -1.75 37.5 94.72 1.71 2.84 -970.37

C2.3 DISTV 2 − SPRD100D −MACD(12,26,9) 27 10 17 419.17 230.41 4191.71 3917 274.71 2.75 1406.3 -483.62 -0.33 -5.24 37.04 10.19 1.07 1.82 -1337.4

C2.4 DISTV 2 − SPRD100D −RSI(14) 4 2 2 559.3 1644.95 1118.6 3289.9 -2171.3 -21.71 648.17 -3161.09 -0.39 -6.19 50 -542.83 0.34 0.34 -128.81

C2.5 DISTV 2 − SPRD100D −BB(20) 15 8 7 181.37 663.74 1450.97 4646.19 -3195.22 -31.95 517.79 -1220.04 -0.73 -11.59 53.33 -213.04 0.31 0.27 -2737.12

C3 DISTV 2 − SPRD100D −DECTREE 283 106 177 116.22 72.94 12319.46 12910.11 -590.65 -5.91 857.81 -499.66 -1.16 -18.41 37.46 -2.08 0.95 1.59 -2761.43

C4 DISTV 2 − SPRD100D −MLP 198 69 129 120.73 73.9 8330.37 9533.64 -1203.27 -12.03 818.31 -314.26 -1.2 -19.05 34.85 -6.07 0.87 1.63 -2356.3

Part IV: Models derived using the spread obtained from DISTV 3 − SPRD100D

D1.1 DISTV 3 − ZSPRD100D
(3,2) 4 2 2 167.93 294.93 335.86 589.87 -254.01 -2.54 188.97 -372.87 -0.78 -12.38 50 -63.5 0.57 0.57 -589.87

D1.2 DISTV 3 − ZSPRD100D
(3,1) 4 2 2 278.35 784.53 556.7 1569.06 -1012.36 -10.12 331.9 -839.62 -0.66 -10.48 50 -253.09 0.35 0.35 -1569.06

D1.3 DISTV 3 − ZSPRD100D
(3,0.5) 4 2 2 347.75 784.8 695.49 1569.6 -874.11 -8.74 470.69 -840.15 -0.56 -8.89 50 -218.53 0.44 0.44 -1569.6

D1.4 DISTV 3 − ZSPRD100D
(2.7,2) 4 2 2 105.81 353.28 211.62 706.56 -494.94 -4.95 146.89 -372.87 -1.03 -16.35 50 -123.74 0.3 0.3 -706.56

D1.5 DISTV 3 − ZSPRD100D
(2.7,1) 4 2 2 218.51 839.87 437.02 1679.74 -1242.73 -12.43 224.8 -950.3 -0.75 -11.91 50 -310.68 0.26 0.26 -1679.74

D1.6 DISTV 3 − ZSPRD100D
(2.7,0.5) 4 2 2 289.92 839.76 579.84 1679.52 -1099.68 -11 355.04 -950.07 -0.65 -10.32 50 -274.92 0.35 0.35 -1679.51

D2.1 DISTV 3 − SPRD100D − SMA(10,20) 16 5 11 653.05 290.89 3265.27 3199.78 65.49 0.65 1182.8 -587.51 -0.28 -4.44 31.25 4.09 1.02 2.25 -1048.74

D2.2 DISTV 3 − SPRD100D − EMA(10,20) 21 9 12 768.98 290.51 6920.8 3486.13 3434.67 34.35 1381.34 -711.29 0.02 0.32 42.86 163.59 1.99 2.65 -2117.66

D2.3 DISTV 3 − SPRD100D −MACD(12,26,9) 28 11 17 410.99 267.6 4520.85 4549.16 -28.31 -0.28 1001.67 -1294.77 -0.33 -5.24 39.29 -0.98 0.99 1.54 -3193.01

D2.4 DISTV 3 − SPRD100D −RSI(14) 7 4 3 686.18 1069.77 2744.72 3209.3 -464.58 -4.65 970.71 -1132.94 -0.23 -3.65 57.14 -66.42 0.86 0.64 -2152.88

D2.5 DISTV 3 − SPRD100D −BB(20) 16 10 6 257.41 423.41 2574.1 2540.49 33.62 0.34 1004.06 -751.51 -0.33 -5.24 62.5 2.1 1.01 0.61 -751.51

D3 DISTV 3 − SPRD100D −DECTREE 291 137 154 111.48 94.29 15273.08 14520.98 752.1 7.52 645.39 -835.7 -0.96 -15.24 47.08 2.59 1.05 1.18 -2296.29

D4 DISTV 3 − SPRD100D −MLP 250 114 136 117.06 86.79 13345.38 11802.97 1542.41 15.42 890.6 -387.91 -1.01 -16.03 45.6 6.17 1.13 1.35 -3970.92

Part V: Models derived using the spread obtained from DISTV 4 − SPRD100D

E1.1 DISTV 4 − ZSPRD100D
(3,2) 4 2 2 167.93 294.93 335.86 589.87 -254.01 -2.54 188.97 -372.87 -0.78 -12.38 50 -63.5 0.57 0.57 -589.87

E1.2 DISTV 4 − ZSPRD100D
(3,1) 4 2 2 278.35 784.53 556.7 1569.06 -1012.36 -10.12 331.9 -839.62 -0.66 -10.48 50 -253.09 0.35 0.35 -1569.06

E1.3 DISTV 4 − ZSPRD100D
(3,0.5) 4 2 2 347.75 784.8 695.49 1569.6 -874.11 -8.74 470.69 -840.15 -0.56 -8.89 50 -218.53 0.44 0.44 -1569.6

E1.4 DISTV 4 − ZSPRD100D
(2.7,2) 4 2 2 105.81 353.28 211.62 706.56 -494.94 -4.95 146.89 -372.87 -1.03 -16.35 50 -123.74 0.3 0.3 -706.56

E1.5 DISTV 4 − ZSPRD100D
(2.7,1) 4 2 2 218.51 839.87 437.02 1679.74 -1242.73 -12.43 224.8 -950.3 -0.75 -11.91 50 -310.68 0.26 0.26 -1679.74

E1.6 DISTV 4 − ZSPRD100D
(2.7,0.5) 4 2 2 289.92 839.76 579.84 1679.52 -1099.68 -11 355.04 -950.07 -0.65 -10.32 50 -274.92 0.35 0.35 -1679.51

E2.1 DISTV 4 − SPRD100D − SMA(10,20) 16 5 11 653.05 290.89 3265.27 3199.78 65.49 0.65 1182.8 -587.51 -0.28 -4.44 31.25 4.09 1.02 2.25 -1048.74

E2.2 DISTV 4 − SPRD100D − EMA(10,20) 21 9 12 768.98 290.51 6920.8 3486.13 3434.67 34.35 1381.34 -711.29 0.02 0.32 42.86 163.59 1.99 2.65 -2117.66

E2.3 DISTV 4 − SPRD100D −MACD(12,26,9) 28 11 17 410.99 267.6 4520.85 4549.16 -28.31 -0.28 1001.67 -1294.77 -0.33 -5.24 39.29 -0.98 0.99 1.54 -3193.01

E2.4 DISTV 4 − SPRD100D −RSI(14) 7 4 3 686.18 1069.77 2744.72 3209.3 -464.58 -4.65 970.71 -1132.94 -0.23 -3.65 57.14 -66.42 0.86 0.64 -2152.88

E2.5 DISTV 4 − SPRD100D −BB(20) 16 10 6 257.41 423.41 2574.1 2540.49 33.62 0.34 1004.06 -751.51 -0.33 -5.24 62.5 2.1 1.01 0.61 -751.51

E3 DISTV 4 − SPRD100D −DECTREE 288 134 154 116.53 92.53 15614.48 14249.68 1364.8 13.65 645.39 -842.6 -0.94 -14.92 46.53 4.74 1.1 1.26 -2251.45

E4 DISTV 4 − SPRD100D −MLP 250 114 136 117.06 86.79 13345.38 11802.97 1542.41 15.42 890.6 -387.91 -1.01 -16.03 45.6 6.17 1.13 1.35 -3970.92

Part VI: Models derived using the spread obtained from JOHANSEN − SPRD100D

F1.1 JOHANSEN − ZSPRD100D
(3,2) 14 10 4 103.51 428.78 1035.15 1715.14 -679.99 -6.8 546.84 -1022.46 -0.5 -7.94 71.43 -48.56 0.6 0.24 -1217

F1.2 JOHANSEN − ZSPRD100D
(3,1) 13 9 4 159.42 311.77 1434.82 1247.1 187.72 1.88 546.84 -1022.46 -0.5 -7.94 69.23 14.44 1.15 0.51 -1156.94

F1.3 JOHANSEN − ZSPRD100D
(3,0.5) 10 5 5 289.34 250.51 1446.72 1252.55 194.17 1.94 546.84 -1022.46 -0.43 -6.83 50 19.42 1.16 1.16 -1249.25

F1.4 JOHANSEN − ZSPRD100D
(2.7,2) 15 10 5 103.51 348.33 1035.15 1741.64 -706.5 -7.06 546.84 -1022.46 -0.5 -7.94 66.67 -47.08 0.59 0.3 -1243.51

F1.5 JOHANSEN − ZSPRD100D
(2.7,1) 13 9 4 159.42 311.77 1434.82 1247.1 187.72 1.88 546.84 -1022.46 -0.5 -7.94 69.23 14.44 1.15 0.51 -1156.94

F1.6 JOHANSEN − ZSPRD100D
(2.7,0.5) 10 5 5 289.34 250.51 1446.72 1252.55 194.17 1.94 546.84 -1022.46 -0.43 -6.83 50 19.42 1.16 1.16 -1249.25

F2.1 JOHANSEN − SPRD100D − SMA(10,20) 16 12 4 1268.56 3113.74 15222.78 12454.97 2767.81 27.68 10906.72 -7067.41 -0.01 -0.16 75 172.99 1.22 0.41 -12349.33

F2.2 JOHANSEN − SPRD100D − EMA(10,20) 21 7 14 449.64 1201.95 3147.45 16827.36 -13679.92 -136.8 1555.53 -7614.1 -0.18 -2.86 33.33 -651.48 0.19 0.37 -14537.55

F2.3 JOHANSEN − SPRD100D −MACD(12,26,9) 31 11 20 740.76 1426.84 8148.38 28536.84 -20388.46 -203.88 2985.85 -18578.48 -0.19 -3.02 35.48 -657.78 0.29 0.52 -20426.23

F2.4 JOHANSEN − SPRD100D −RSI(14) 8 3 5 5453.69 586.38 16361.06 2931.88 13429.19 134.29 10420.23 -2087.99 0.49 7.78 37.5 1678.65 5.58 9.3 -2484.81

F2.5 JOHANSEN − SPRD100D −BB(20) 17 8 9 44193.22 1675.1 353545.75 15075.92 338469.84 3384.7 344648.17 -12541.14 0.24 3.81 47.06 19910.53 23.45 26.38 -12935.69

F3 JOHANSEN − SPRD100D −DECTREE 292 156 136 88.99 89.32 13882.03 12147.23 1734.79 17.35 550.19 -499.66 -1.14 -18.1 53.42 5.93 1.14 1 -2486.4

F4 JOHANSEN − SPRD100D −MLP 249 122 127 93.81 93.38 11444.66 11859.78 -415.12 -4.15 579.3 -1251.83 -1.04 -16.51 49 -1.66 0.96 1 -2556.19

Part VII: Models derived using the spread obtained from ADF − SPRD100D

G1.1 ADF − ZSPRD100D
(3,2) 3 2 1 1959.31 96.13 3918.62 96.13 3822.49 38.22 3610.92 -96.13 0.62 9.84 66.67 1274.23 40.76 20.38 -96.13

G1.2 ADF − ZSPRD100D
(3,1) 3 2 1 2332.99 47.59 4665.98 47.59 4618.39 46.18 3876.55 -47.59 0.69 10.95 66.67 1539.54 98.05 49.02 -47.59

G1.3 ADF − ZSPRD100D
(3,0.5) 3 2 1 2205.09 189.77 4410.18 189.76 4220.41 42.2 3876.55 -189.77 0.65 10.32 66.67 1406.88 23.24 11.62 -189.77

G1.4 ADF − ZSPRD100D
(2.7,2) 6 3 3 1377.94 456.1 4133.83 1368.3 2765.53 27.66 3610.92 -760.08 0.26 4.13 50 460.92 3.02 3.02 -1272.17

G1.5 ADF − ZSPRD100D
(2.7,1) 6 3 3 1642.9 688.07 4928.7 2064.21 2864.49 28.64 3876.55 -1444.03 0.27 4.29 50 477.42 2.39 2.39 -2016.62

G1.6 ADF − ZSPRD100D
(2.7,0.5) 6 2 4 2311.95 617.46 4623.9 2469.85 2154.06 21.54 3876.55 -1444.03 0.24 3.81 33.33 358.91 1.87 3.74 -2091.63

G2.1 ADF − SPRD100D − SMA(10,20) 17 12 5 414.76 484.94 4977.11 2424.7 2552.41 25.52 1473.02 -789.43 0.1 1.59 70.59 150.16 2.05 0.86 -789.43

G2.2 ADF − SPRD100D − EMA(10,20) 31 18 13 534.36 695.29 9618.47 9038.77 579.7 5.8 2094.41 -3785.18 0.03 0.48 58.06 18.64 1.06 0.77 -4224.75

G2.3 ADF − SPRD100D −MACD(12,26,9) 27 12 15 262.5 619.06 3150.03 9285.96 -6135.93 -61.36 809.17 -3610.92 -0.23 -3.65 44.44 -227.3 0.34 0.42 -6729.51

G2.4 ADF − SPRD100D −RSI(14) 5 2 3 2417.19 611.24 4834.39 1833.73 3000.66 30.01 2514.26 -1315.34 0.45 7.14 40 600.13 2.64 3.95 -1794.8

G2.5 ADF − SPRD100D −BB(20) 13 5 8 1062.15 209.46 5310.78 1675.64 3635.13 36.35 3784.45 -391.94 0.18 2.86 38.46 279.61 3.17 5.07 -745.98

G3 ADF − SPRD100D −DECTREE 316 139 177 93.01 89.97 12928.06 15924 -2995.94 -29.96 881.67 -422.9 -1.23 -19.53 43.99 -9.48 0.81 1.03 -3957.17

G4 ADF − SPRD100D −MLP 244 95 149 121.25 86.29 11519.09 12857.88 -1338.79 -13.39 835.7 -372.68 -1.05 -16.67 38.93 -5.5 0.9 1.41 -3639.48

Part VIII: Models derived using the spread obtained from KALMAN − SPRD100D

H1.1 KALMAN − ZSPRD100D
(3,2) 2 - 2 - 638.27 - 1276.53 -1276.53 -12.77 - -1082.55 -1.22 -19.37 - -638.27 - - -1276.53

H1.2 KALMAN − ZSPRD100D
(3,1) 2 1 1 18.9 948.37 18.9 948.37 -929.47 -9.29 18.9 -948.37 -0.89 -14.13 50 -464.74 0.02 0.02 -948.37

H1.3 KALMAN − ZSPRD100D
(3,0.5) 2 1 1 133.03 928.4 133.03 928.4 -795.37 -7.95 133.03 -928.4 -0.72 -11.43 50 -397.69 0.14 0.14 -928.4

H1.4 KALMAN − ZSPRD100D
(2.7,2) 4 2 2 166.82 750.94 333.65 1501.87 -1168.23 -11.68 254.33 -1173.39 -0.64 -10.16 50 -292.06 0.22 0.22 -1501.87

H1.5 KALMAN − ZSPRD100D
(2.7,1) 4 1 3 335.38 719.17 335.38 2157.52 -1822.13 -18.22 335.38 -1041.64 -0.86 -13.65 25 -455.53 0.16 0.47 -2157.52

H1.6 KALMAN − ZSPRD100D
(2.7,0.5) 4 1 3 492.6 526.37 492.6 1579.1 -1086.49 -10.86 492.6 -1021.96 -0.63 -10 25 -271.62 0.31 0.94 -1579.1

H2.1 KALMAN − SPRD100D − SMA(10,20) 12 5 7 780.07 111.56 3900.34 780.89 3119.45 31.19 1652.8 -336.76 0.25 3.97 41.67 259.98 4.99 6.99 -362.92

H2.2 KALMAN − SPRD100D − EMA(10,20) 22 10 12 547.6 213.59 5475.98 2563.08 2912.89 29.13 1634.45 -519.36 - - 45.45 132.37 2.14 2.56 -711.52

H2.3 KALMAN − SPRD100D −MACD(12,26,9) 23 9 14 414.84 162.52 3733.6 2275.22 1458.38 14.58 774.07 -439.14 -0.18 -2.86 39.13 63.41 1.64 2.55 -787.2

H2.4 KALMAN − SPRD100D −RSI(14) 5 2 3 572.08 620.54 1144.16 1861.62 -717.46 -7.17 1043.7 -1027.32 -0.3 -4.76 40 -143.49 0.61 0.92 -1861.62

H2.5 KALMAN − SPRD100D −BB(20) 12 9 3 128.5 407.68 1156.47 1223.05 -66.58 -0.67 269.33 -849.2 -0.42 -6.67 75 -5.55 0.95 0.32 -849.2

H3 KALMAN − SPRD100D −DECTREE 271 125 146 91.54 89.15 11442.36 13015.7 -1573.34 -15.73 568.31 -464.51 -1.24 -19.68 46.13 -5.8 0.88 1.03 -3907.41

H4 KALMAN − SPRD100D −MLP 189 74 115 114.35 100.14 8461.79 11515.66 -3053.87 -30.54 646.58 -350.19 -1.19 -18.89 39.15 -16.17 0.73 1.14 -3993.73

Part IX: Models derived using the spread obtained from RATIO − SPRD100D

I1.1 RATIO − ZSPRD100D
(3,2) 2 - 2 - 821.13 - 1642.25 -1642.25 -16.42 - -1462 -1.07 -16.99 - -821.13 - - -1642.25

I1.2 RATIO − ZSPRD100D
(3,1) 2 1 1 34.51 1282.1 34.51 1282.1 -1247.6 -12.48 34.51 -1282.1 -0.83 -13.18 50 -623.8 0.03 0.03 -1282.1

I1.3 RATIO − ZSPRD100D
(3,0.5) 2 1 1 145.18 1055.62 145.18 1055.62 -910.44 -9.1 145.18 -1055.62 -0.72 -11.43 50 -455.22 0.14 0.14 -1055.62

I1.4 RATIO − ZSPRD100D
(2.7,2) 4 2 2 292.81 889.01 585.62 1778.01 -1192.39 -11.92 377.37 -1462 -0.54 -8.57 50 -298.1 0.33 0.33 -1778.01

I1.5 RATIO − ZSPRD100D
(2.7,1) 4 2 2 367.05 694.38 734.1 1388.76 -654.66 -6.55 626.76 -1282.1 -0.39 -6.19 50 -163.66 0.53 0.53 -1388.76

I1.6 RATIO − ZSPRD100D
(2.7,0.5) 4 3 1 353.23 1055.62 1059.7 1055.62 4.08 0.04 764.87 -1055.62 -0.2 -3.17 75 1.02 1 0.33 -1055.62

I2.1 RATIO − SPRD100D − SMA(10,20) 12 6 6 353.98 405.29 2123.88 2431.72 -307.84 -3.08 927.14 -708.39 -0.36 -5.71 50 -25.65 0.87 0.87 -1657.69

I2.2 RATIO − SPRD100D − EMA(10,20) 18 9 9 647.69 124.55 5829.21 1120.98 4708.23 47.08 1571.75 -331.28 0.22 3.49 50 261.57 5.2 5.2 -461.47

I2.3 RATIO − SPRD100D −MACD(12,26,9) 25 13 12 391.52 208.83 5089.78 2505.9 2583.88 25.84 939 -638.32 -0.13 -2.06 52 103.36 2.03 1.87 -802.7

I2.4 RATIO − SPRD100D −RSI(14) 4 2 2 382.71 1215.43 765.42 2430.85 -1665.43 -16.65 703.34 -2302.04 -0.44 -6.98 50 -416.36 0.31 0.31 -128.81

I2.5 RATIO − SPRD100D −BB(20) 14 11 3 165.19 583.47 1817.06 1750.4 66.66 0.67 372.67 -1050.16 -0.4 -6.35 78.57 4.75 1.04 0.28 -1182.56

I3 RATIO − SPRD100D −DECTREE 296 102 194 110.18 69.3 11238.15 13445.17 -2207.01 -22.07 640.08 -282.75 -1.35 -21.43 34.46 -7.46 0.84 1.59 -3028.34

I4 RATIO − SPRD100D −MLP 216 84 132 117.71 76.27 9887.33 10067.61 -180.28 -1.8 640.08 -603.9 -1.16 -18.41 38.89 -0.83 0.98 1.54 -1831.53

Part X: Models derived using the close price of USMV.N

CLS-SYM-1.1 CLOSEUSMV.N − SMA(10,20) 14 5 9 226.06 114.48 1130.28 1030.32 99.95 1 369.68 -432.1 -0.32 -5.08 35.71 7.13 1.1 1.97 -666.67

CLS-SYM-1.2 CLOSEUSMV.N − EMA(10,20) 25 8 17 180.2 153.33 1441.59 2606.67 -1165.09 -11.65 590.3 -737.37 -0.52 -8.25 32 -46.6 0.55 1.18 -1124.97

CLS-SYM-1.3 CLOSEUSMV.N −MACD(12,26,9) 46 11 35 163.48 61.53 1798.3 2153.62 -355.32 -3.55 534.16 -198.94 -0.63 -10 23.91 -7.73 0.84 2.66 -1531.05

CLS-SYM-1.4 CLOSEUSMV.N −RSI(14) 4 1 3 1322.93 454.26 1322.93 1362.79 -39.86 -0.4 1322.93 -1093.72 -0.09 -1.43 25 -9.97 0.97 2.91 -1093.72

CLS-SYM-1.5 CLOSEUSMV.N −BB(20) 17 13 4 57.26 233.76 744.34 935.05 -190.71 -1.91 240.17 -683.01 -0.45 -7.14 76.47 -11.22 0.8 0.24 -871.88

Part XI: Models derived using the close price of XLE.N

CLS-SYM-2.1 CLOSEXLE.N − SMA(10,20) 19 9 10 492.93 337.96 4436.4 3379.63 1056.77 10.57 1969.29 -993.26 -0.03 -0.48 47.37 55.63 1.31 1.46 -2390.02

CLS-SYM-2.2 CLOSEXLE.N − EMA(10,20) 26 11 15 546.32 161.14 6009.56 2417.09 3592.47 35.92 2197.81 -326.2 0.12 1.9 42.31 138.19 2.49 3.39 -711.67

CLS-SYM-2.3 CLOSEXLE.N −MACD(12,26,9) 27 10 17 637.2 211.29 6372.04 3591.96 2780.08 27.8 1931.38 -613.01 0.05 0.79 37.04 102.99 1.77 3.02 -645.92

CLS-SYM-2.4 CLOSEXLE.N −RSI(14) 5 3 2 314.75 1213.82 944.26 2427.64 -1483.38 -14.83 365.04 -1229.73 -0.44 -6.98 60 -296.68 0.39 0.26 -2062.6

CLS-SYM-2.5 CLOSEXLE.N −BB(20) 20 17 3 198.62 500.07 3376.55 1500.22 1876.33 18.76 822.47 -1185.85 0.05 0.79 85 93.82 2.25 0.4 -1185.85
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Table D.2.19: This table presents the back-test metrics for the pair V O.N/V XUS.N based on a 30-day rolling window. The table is subdivided into eleven parts, and in each of these parts, we present the back-test metrics and the trading strategies which use the
spread derived from various models. In Part I, the spread is derived from the DIST V 1.1 model, in Part II from the DIST V 1.2 model, in Part III from the DIST V 2 model, in Part IV from the DIST V 3 model, in Part V from the DIST V 4 model, in Part VI from the
JOHANSEN − SPRD model, in Part VIII from the ADF − SPRD model, in from the DIST V 2 model, in Part VIII from the KALMAN − SPRD model, and in Part IX from the RATIO − SPRD model. In Part X and XI, we present the back-test metrics of
the trading strategies which use the close price of VO.N, and VXUS.N, respectively. All $ numbers reported below are in USD.

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X) (XI) (XII) (XIII) (XIV) (XV) (XVI) (XVII) (XVIII) (XIX) (XX)

Trading
Strategy
Code

Model
Name

Total
Number
of
Trades

Number
of

Winning
Trades

Number
of Loosing
Trades

Average
Profit

per Trade
($)

Average
Loss per
Trade
($)

Gross
Profit
($)

Gross
Loss
($)

Net Profit
($)

ROI (%) Max P&L
($)

Min P&L
($)

Daily
Sharpe
Ratio

Annualized
Sharpe
Ratio

Hit Ratio Expectancy Profit
Factor

Realized
Risk

Reward
Ratio

Max
Drawdown

($)

Part I: Models derived using the spread obtained from DISTV 1.1 − SPRD30D

A1.1 DISTV 1.1 − ZSPRD30D
(3,2) 1 - 1 - 109.23 - 109.23 -109.23 -1.09 - -109.23 - - - -109.23 - - -109.23

A1.2 DISTV 1.1 − ZSPRD30D
(3,1) 1 1 - 117.28 - 117.28 - 117.28 1.17 117.28 - - - 100 117.28 117.28 117.28 -

A1.3 DISTV 1.1 − ZSPRD30D
(3,0.5) 1 1 - 110.89 - 110.89 - 110.89 1.11 110.89 - - - 100 110.89 110.89 110.89 -

A1.4 DISTV 1.1 − ZSPRD30D
(2.7,2) 4 - 4 - 60.45 - 241.8 -241.8 -2.42 - -90.39 -8.92 -141.6 - -60.45 - - -241.8

A1.5 DISTV 1.1 − ZSPRD30D
(2.7,1) 2 1 1 145.11 33.51 145.11 33.51 111.6 1.12 145.11 -33.51 -0.76 -12.06 50 55.8 4.33 4.33 -33.51

A1.6 DISTV 1.1 − ZSPRD30D
(2.7,0.5) 2 1 1 138.65 67.69 138.65 67.69 70.96 0.71 138.65 -67.69 -0.8 -12.7 50 35.48 2.05 2.05 -67.69

A2.1 DISTV 1.1 − SPRD30D − SMA(10,20) 17 7 10 91.49 88.61 640.45 886.11 -245.66 -2.46 216.07 -168.73 -1.47 -23.34 41.18 -14.44 0.72 1.03 -466.55

A2.2 DISTV 1.1 − SPRD30D − EMA(10,20) 20 11 9 56.99 92.23 626.86 830.1 -203.24 -2.03 159.89 -171.1 -1.75 -27.78 55 -10.16 0.76 0.62 -382.48

A2.3 DISTV 1.1 − SPRD30D −MACD(12,26,9) 31 20 11 57.94 88.12 1158.85 969.31 189.54 1.9 108.8 -244.03 -1.74 -27.62 64.52 6.12 1.2 0.66 -649.89

A2.4 DISTV 1.1 − SPRD30D −RSI(14) 3 2 1 713.67 236.17 1427.34 236.17 1191.17 11.91 736.97 -236.17 0.45 7.14 66.67 397.09 6.04 3.02 -236.17

A2.5 DISTV 1.1 − SPRD30D −BB(20) 17 9 8 91.57 26.85 824.09 214.81 609.28 6.09 222.43 -78.92 -1.45 -23.02 52.94 35.84 3.84 3.41 -145.98

A3 DISTV 1.1 − SPRD30D −DECTREE 385 181 204 27.08 22.44 4900.71 4578.23 322.48 3.22 163.09 -133.03 -4.31 -68.42 47.01 0.84 1.07 1.21 -778.42

A4 DISTV 1.1 − SPRD30D −MLP 335 144 191 30.56 25.56 4400.02 4882.35 -482.33 -4.82 120.53 -183.49 -3.99 -63.34 42.99 -1.44 0.9 1.2 -1164.63

Part II: Models derived using the spread obtained from DISTV 1.2 − SPRD30D

B1.1 DISTV 1.2 − ZSPRD30D
(3,2) 8 5 3 27.08 19.48 135.38 58.44 76.95 0.77 61.44 -44.65 -4.43 -70.32 62.5 9.62 2.32 1.39 -45.09

B1.2 DISTV 1.2 − ZSPRD30D
(3,1) 8 6 2 49.22 46.55 295.33 93.1 202.23 2.02 92.18 -47.93 -2.4 -38.1 75 25.28 3.17 1.06 -60.74

B1.3 DISTV 1.2 − ZSPRD30D
(3,0.5) 8 4 4 53.08 40.19 212.34 160.77 51.57 0.52 87.26 -91.84 -2.39 -37.94 50 6.45 1.32 1.32 -91.84

B1.4 DISTV 1.2 − ZSPRD30D
(2.7,2) 10 5 5 27.08 55.82 135.38 279.09 -143.71 -1.44 61.44 -146.58 -2.87 -45.56 50 -14.37 0.49 0.49 -191.23

B1.5 DISTV 1.2 − ZSPRD30D
(2.7,1) 10 7 3 47.28 90.69 330.97 272.08 58.88 0.59 92.18 -187.96 -1.79 -28.42 70 5.89 1.22 0.52 -239.73

B1.6 DISTV 1.2 − ZSPRD30D
(2.7,0.5) 10 3 7 70.22 47.44 210.65 332.1 -121.45 -1.21 87.26 -127.07 -2.39 -37.94 30 -12.14 0.63 1.48 -210.45

B2.1 DISTV 1.2 − SPRD30D − SMA(10,20) 14 2 12 153.73 87.96 307.46 1055.51 -748.05 -7.48 221.71 -195.41 -1.95 -30.96 14.29 -53.42 0.29 1.75 -710.07

B2.2 DISTV 1.2 − SPRD30D − EMA(10,20) 20 7 13 110.09 147.57 770.62 1918.42 -1147.8 -11.48 337.9 -304.77 -1.33 -21.11 35 -57.39 0.4 0.75 -1535.42

B2.3 DISTV 1.2 − SPRD30D −MACD(12,26,9) 25 11 14 87.74 83.66 965.15 1171.21 -206.06 -2.06 307.15 -201.72 -1.43 -22.7 44 -8.24 0.82 1.05 -665.5

B2.4 DISTV 1.2 − SPRD30D −RSI(14) 11 3 8 212.85 142.65 638.55 1141.22 -502.67 -5.03 333.05 -374.2 -0.98 -15.56 27.27 -45.71 0.56 1.49 -1059.54

B2.5 DISTV 1.2 − SPRD30D −BB(20) 14 10 4 88.64 45.64 886.4 182.57 703.82 7.04 168.06 -87.14 -1.31 -20.8 71.43 50.28 4.86 1.94 -87.14

B3 DISTV 1.2 − SPRD30D −DECTREE 319 171 148 28.81 22.51 4925.66 3331.04 1594.62 15.95 163.09 -122.88 -4.07 -64.61 53.61 5 1.48 1.28 -381.47

B4 DISTV 1.2 − SPRD30D −MLP 300 161 139 30.01 28.29 4831.02 3932.1 898.92 8.99 251.22 -174.86 -3.57 -56.67 53.67 3 1.23 1.06 -366.33

Part III: Models derived using the spread obtained from DISTV 2 − SPRD30D

C1.1 DISTV 2 − ZSPRD30D
(3,2) 1 1 - 109.23 - 109.23 - 109.23 1.09 109.23 - - - 100 109.23 109.23 109.23 -

C1.2 DISTV 2 − ZSPRD30D
(3,1) 1 - 1 - 117.28 - 117.28 -117.28 -1.17 - -117.28 - - - -117.28 - - -117.28

C1.3 DISTV 2 − ZSPRD30D
(3,0.5) 1 - 1 - 110.89 - 110.89 -110.89 -1.11 - -110.89 - - - -110.89 - - -110.89

C1.4 DISTV 2 − ZSPRD30D
(2.7,2) 4 4 - 60.45 - 241.8 - 241.8 2.42 90.39 - -3.84 -60.96 100 60.45 241.8 60.45 -

C1.5 DISTV 2 − ZSPRD30D
(2.7,1) 2 1 1 33.51 145.11 33.51 145.11 -111.6 -1.12 33.51 -145.11 -1.65 -26.19 50 -55.8 0.23 0.23 -145.11

C1.6 DISTV 2 − ZSPRD30D
(2.7,0.5) 2 1 1 67.69 138.65 67.69 138.65 -70.96 -0.71 67.69 -138.65 -1.28 -20.32 50 -35.48 0.49 0.49 -138.65

C2.1 DISTV 2 − SPRD30D − SMA(10,20) 17 10 7 88.61 91.49 886.11 640.45 245.66 2.46 168.73 -216.07 -1.22 -19.37 58.82 14.44 1.38 0.97 -343.07

C2.2 DISTV 2 − SPRD30D − EMA(10,20) 20 9 11 92.23 56.99 830.1 626.86 203.24 2.03 171.1 -159.89 -1.53 -24.29 45 10.16 1.32 1.62 -268.45

C2.3 DISTV 2 − SPRD30D −MACD(12,26,9) 31 11 20 88.12 57.94 969.31 1158.85 -189.54 -1.9 244.03 -108.8 -1.89 -30 35.48 -6.12 0.84 1.52 -728.55

C2.4 DISTV 2 − SPRD30D −RSI(14) 3 1 2 236.17 713.67 236.17 1427.34 -1191.17 -11.91 236.17 -736.97 -1 -15.87 33.33 -397.09 0.17 0.33 -690.36

C2.5 DISTV 2 − SPRD30D −BB(20) 17 8 9 26.85 91.57 214.81 824.09 -609.28 -6.09 78.92 -222.43 -2.34 -37.15 47.06 -35.84 0.26 0.29 -532.84

C3 DISTV 2 − SPRD30D −DECTREE 384 174 210 26.6 23.51 4628.68 4937.6 -308.92 -3.09 133.78 -133.03 -4.38 -69.53 45.31 -0.81 0.94 1.13 -972.86

C4 DISTV 2 − SPRD30D −MLP 353 152 201 30.58 24.56 4648.24 4936.44 -288.19 -2.88 240.22 -95.42 -4.06 -64.45 43.06 -0.82 0.94 1.25 -1062.18

Part IV: Models derived using the spread obtained from DISTV 3 − SPRD30D

D1.1 DISTV 3 − ZSPRD30D
(3,2) 8 6 2 36.3 61.09 217.79 122.19 95.6 0.96 84.26 -69.6 -2.77 -43.97 75 11.95 1.78 0.59 -69.6

D1.2 DISTV 3 − ZSPRD30D
(3,1) 8 5 3 72.38 73.85 361.92 221.55 140.37 1.4 97.67 -165.49 -1.51 -23.97 62.5 17.55 1.63 0.98 -165.49

D1.3 DISTV 3 − ZSPRD30D
(3,0.5) 8 5 3 79.78 75.82 398.92 227.45 171.46 1.71 97.67 -165.49 -1.42 -22.54 62.5 21.43 1.75 1.05 -165.49

D1.4 DISTV 3 − ZSPRD30D
(2.7,2) 13 10 3 35.07 40.78 350.74 122.33 228.41 2.28 84.26 -69.6 -3.25 -51.59 76.92 17.57 2.87 0.86 -69.6

D1.5 DISTV 3 − ZSPRD30D
(2.7,1) 13 9 4 67.44 59.1 607 236.42 370.59 3.71 107.94 -165.49 -1.64 -26.03 69.23 28.51 2.57 1.14 -165.49

D1.6 DISTV 3 − ZSPRD30D
(2.7,0.5) 12 7 5 76.48 60.59 535.35 302.98 232.38 2.32 107.94 -165.49 -1.63 -25.88 58.33 19.36 1.77 1.26 -165.6

D2.1 DISTV 3 − SPRD30D − SMA(10,20) 24 9 15 77.08 80 693.74 1200.07 -506.33 -5.06 189.54 -225.92 -1.85 -29.37 37.5 -21.1 0.58 0.96 -768.43

D2.2 DISTV 3 − SPRD30D − EMA(10,20) 47 17 30 95.39 56.21 1621.71 1686.41 -64.7 -0.65 240.87 -167.33 -1.69 -26.83 36.17 -1.38 0.96 1.7 -738.52

D2.3 DISTV 3 − SPRD30D −MACD(12,26,9) 41 14 27 76.4 66.21 1069.64 1787.71 -718.07 -7.18 333.05 -201.72 -1.8 -28.57 34.15 -17.51 0.6 1.15 -1325.8

D2.4 DISTV 3 − SPRD30D −RSI(14) 4 2 2 358.82 177.42 717.64 354.85 362.8 3.63 647.23 -343.8 -0.15 -2.38 50 90.7 2.02 2.02 -354.85

D2.5 DISTV 3 − SPRD30D −BB(20) 21 15 6 64.89 79.67 973.32 478.04 495.28 4.95 357.65 -131.57 -1.28 -20.32 71.43 23.59 2.04 0.81 -300.67

D3 DISTV 3 − SPRD30D −DECTREE 344 158 186 26.14 26.68 4129.68 4961.76 -832.07 -8.32 135.86 -254.08 -4.11 -65.24 45.93 -2.42 0.83 0.98 -1375.83

D4 DISTV 3 − SPRD30D −MLP 218 91 127 31.18 28.99 2837.82 3681.78 -843.96 -8.44 212.18 -140.79 -3.62 -57.47 41.74 -3.87 0.77 1.08 -1168.93

Part V: Models derived using the spread obtained from DISTV 4 − SPRD30D

E1.1 DISTV 4 − ZSPRD30D
(3,2) 8 6 2 36.3 61.09 217.79 122.19 95.6 0.96 84.26 -69.6 -2.77 -43.97 75 11.95 1.78 0.59 -69.6

E1.2 DISTV 4 − ZSPRD30D
(3,1) 8 5 3 72.38 73.85 361.92 221.55 140.37 1.4 97.67 -165.49 -1.51 -23.97 62.5 17.55 1.63 0.98 -165.49

E1.3 DISTV 4 − ZSPRD30D
(3,0.5) 8 5 3 79.78 75.82 398.92 227.45 171.46 1.71 97.67 -165.49 -1.42 -22.54 62.5 21.43 1.75 1.05 -165.49

E1.4 DISTV 4 − ZSPRD30D
(2.7,2) 13 10 3 35.07 40.78 350.74 122.33 228.41 2.28 84.26 -69.6 -3.25 -51.59 76.92 17.57 2.87 0.86 -69.6

E1.5 DISTV 4 − ZSPRD30D
(2.7,1) 13 9 4 67.44 59.1 607 236.42 370.59 3.71 107.94 -165.49 -1.64 -26.03 69.23 28.51 2.57 1.14 -165.49

E1.6 DISTV 4 − ZSPRD30D
(2.7,0.5) 12 7 5 76.48 60.59 535.35 302.98 232.38 2.32 107.94 -165.49 -1.63 -25.88 58.33 19.36 1.77 1.26 -165.6

E2.1 DISTV 4 − SPRD30D − SMA(10,20) 24 9 15 77.08 80 693.74 1200.07 -506.33 -5.06 189.54 -225.92 -1.85 -29.37 37.5 -21.1 0.58 0.96 -768.43

E2.2 DISTV 4 − SPRD30D − EMA(10,20) 47 17 30 95.39 56.21 1621.71 1686.41 -64.7 -0.65 240.87 -167.33 -1.69 -26.83 36.17 -1.38 0.96 1.7 -738.52

E2.3 DISTV 4 − SPRD30D −MACD(12,26,9) 41 14 27 76.4 66.21 1069.64 1787.71 -718.07 -7.18 333.05 -201.72 -1.8 -28.57 34.15 -17.51 0.6 1.15 -1325.8

E2.4 DISTV 4 − SPRD30D −RSI(14) 4 2 2 358.82 177.42 717.64 354.85 362.8 3.63 647.23 -343.8 -0.15 -2.38 50 90.7 2.02 2.02 -354.85

E2.5 DISTV 4 − SPRD30D −BB(20) 21 15 6 64.89 79.67 973.32 478.04 495.28 4.95 357.65 -131.57 -1.28 -20.32 71.43 23.59 2.04 0.81 -300.67

E3 DISTV 4 − SPRD30D −DECTREE 328 153 175 29.45 26.93 4506.05 4712.14 -206.09 -2.06 145.6 -254.08 -3.84 -60.96 46.65 -0.63 0.96 1.09 -1244.25

E4 DISTV 4 − SPRD30D −MLP 218 91 127 31.18 28.99 2837.82 3681.78 -843.96 -8.44 212.18 -140.79 -3.62 -57.47 41.74 -3.87 0.77 1.08 -1168.93

Part VI: Models derived using the spread obtained from JOHANSEN − SPRD30D

F1.1 JOHANSEN − ZSPRD30D
(3,2) 21 9 12 74 20.92 666.04 251.04 415 4.15 421.03 -119.75 -0.32 -5.08 42.86 19.76 2.65 3.54 -136.81

F1.2 JOHANSEN − ZSPRD30D
(3,1) 21 9 12 81.91 24.75 737.2 296.97 440.23 4.4 421.03 -119.75 -0.32 -5.08 42.86 20.97 2.48 3.31 -182.59

F1.3 JOHANSEN − ZSPRD30D
(3,0.5) 21 9 12 87.75 27.21 789.73 326.53 463.2 4.63 421.03 -119.75 -0.32 -5.08 42.86 22.06 2.42 3.22 -189.15

F1.4 JOHANSEN − ZSPRD30D
(2.7,2) 25 11 14 93.56 28.96 1029.2 405.44 623.76 6.24 421.03 -130.04 -0.26 -4.13 44 24.95 2.54 3.23 -266.86

F1.5 JOHANSEN − ZSPRD30D
(2.7,1) 24 11 13 220.16 29.93 2421.81 389.12 2032.69 20.33 1621.5 -130.04 0.04 0.63 45.83 84.69 6.22 7.36 -250.39

F1.6 JOHANSEN − ZSPRD30D
(2.7,0.5) 23 11 12 270.36 32.31 2973.92 387.77 2586.15 25.86 2040.55 -130.04 0.08 1.27 47.83 112.45 7.67 8.37 -250.39

F2.1 JOHANSEN − SPRD30D − SMA(10,20) 26 15 11 226.66 142.5 3399.89 1567.46 1832.43 18.32 772.66 -436.6 -0.27 -4.29 57.69 70.47 2.17 1.59 -436.6

F2.2 JOHANSEN − SPRD30D − EMA(10,20) 29 16 13 295.76 227.58 4732.2 2958.55 1773.65 17.74 918.25 -800.52 0.18 2.86 55.17 61.15 1.6 1.3 -1365.5

F2.3 JOHANSEN − SPRD30D −MACD(12,26,9) 40 25 15 202.35 239.21 5058.68 3588.21 1470.47 14.7 2099.09 -652.27 -0.34 -5.4 62.5 36.76 1.41 0.85 -1130.56

F2.4 JOHANSEN − SPRD30D −RSI(14) 8 5 3 1319.72 662.16 6598.6 1986.49 4612.11 46.12 5338.3 -1622.95 0.26 4.13 62.5 576.51 3.32 1.99 -1622.95

F2.5 JOHANSEN − SPRD30D −BB(20) 21 13 8 240.79 538.51 3130.32 4308.11 -1177.79 -11.78 1223.09 -2065.71 -0.11 -1.75 61.9 -56.12 0.73 0.45 -3424.52

F3 JOHANSEN − SPRD30D −DECTREE 338 160 178 25.5 27.79 4080.33 4946.92 -866.58 -8.67 174.23 -144.36 -4.15 -65.88 47.34 -2.56 0.82 0.92 -1154.62

F4 JOHANSEN − SPRD30D −MLP 266 117 149 28.33 29.59 3314.44 4409.49 -1095.05 -10.95 145.74 -165.24 -3.7 -58.74 43.98 -4.12 0.75 0.96 -1659.48

Part VII: Models derived using the spread obtained from ADF − SPRD30D

G1.1 ADF − ZSPRD30D
(3,2) 3 1 2 100.01 1281.34 100.01 2562.67 -2462.66 -24.63 100.01 -1394.95 -1.13 -17.94 33.33 -820.93 0.04 0.08 -2462.66

G1.2 ADF − ZSPRD30D
(3,1) 3 1 2 276.45 1929.92 276.45 3859.83 -3583.39 -35.83 276.45 -2267.13 -0.99 -15.72 33.33 -1194.54 0.07 0.14 -3583.39

G1.3 ADF − ZSPRD30D
(3,0.5) 3 1 2 321.35 1929.92 321.35 3859.83 -3538.49 -35.38 321.35 -2267.13 -0.97 -15.4 33.33 -1179.57 0.08 0.17 -3538.49

G1.4 ADF − ZSPRD30D
(2.7,2) 8 3 5 99.7 603.32 299.11 3016.62 -2717.51 -27.18 147.99 -1394.95 -0.71 -11.27 37.5 -339.69 0.1 0.17 -2768.62

G1.5 ADF − ZSPRD30D
(2.7,1) 8 3 5 387.38 1098.49 1162.13 5492.45 -4330.32 -43.3 669.71 -2267.13 -0.65 -10.32 37.5 -541.29 0.21 0.35 -4546.29

G1.6 ADF − ZSPRD30D
(2.7,0.5) 8 3 5 279.8 1294.11 839.4 6470.55 -5631.15 -56.31 433.74 -2267.13 -0.83 -13.18 37.5 -703.89 0.13 0.22 -5715.47

G2.1 ADF − SPRD30D − SMA(10,20) 25 14 11 881.96 1948.26 12347.38 21430.9 -9083.51 -90.84 3775.11 -14377.72 -0.15 -2.38 56 -363.34 0.58 0.45 -14377.72

G2.2 ADF − SPRD30D − EMA(10,20) 45 26 19 874.31 634.04 22732.18 12046.85 10685.33 106.85 6900.25 -2385.22 0.1 1.59 57.78 237.49 1.89 1.38 -6199.66

G2.3 ADF − SPRD30D −MACD(12,26,9) 41 24 17 588.59 761.33 14126.22 12942.61 1183.61 11.84 2764.77 -2544.89 -0.05 -0.79 58.54 28.91 1.09 0.77 -4376.09

G2.4 ADF − SPRD30D −RSI(14) 1 1 - 145.76 - 145.76 - 145.76 1.46 145.76 - - - 100 145.76 145.76 145.76 -

G2.5 ADF − SPRD30D −BB(20) 22 8 14 828.18 558.65 6625.45 7821.04 -1195.59 -11.96 2572.44 -1442.81 -0.15 -2.38 36.36 -54.4 0.85 1.48 -3552.45

G3 ADF − SPRD30D −DECTREE 319 149 170 25.58 30.64 3811.66 5208.52 -1396.87 -13.97 131.85 -344.11 -3.62 -57.47 46.71 -4.38 0.73 0.83 -1976.13

G4 ADF − SPRD30D −MLP 243 117 126 28.88 30.28 3379.42 3815.32 -435.9 -4.36 234.61 -214.61 -3.53 -56.04 48.15 -1.79 0.89 0.95 -1170.23

Part VIII: Models derived using the spread obtained from KALMAN − SPRD30D

H1.1 KALMAN − ZSPRD30D
(3,2) 3 2 1 533.21 2007.16 1066.43 2007.16 -940.73 -9.41 737.81 -2007.16 -0.28 -4.44 66.67 -313.49 0.53 0.27 -2007.16

H1.2 KALMAN − ZSPRD30D
(3,1) 3 2 1 674.69 1159.49 1349.37 1159.49 189.88 1.9 931.66 -1159.49 -0.03 -0.48 66.67 63.35 1.16 0.58 -1159.49

H1.3 KALMAN − ZSPRD30D
(3,0.5) 2 1 1 417.71 1896.92 417.71 1896.92 -1479.22 -14.79 417.71 -1896.92 -0.51 -8.1 50 -739.61 0.22 0.22 -1896.92

H1.4 KALMAN − ZSPRD30D
(2.7,2) 7 4 3 327.86 733.8 1311.46 2201.39 -889.93 -8.9 737.81 -2007.16 -0.26 -4.13 57.14 -127.16 0.6 0.45 -2007.16

H1.5 KALMAN − ZSPRD30D
(2.7,1) 6 4 2 398.6 615.49 1594.4 1230.99 363.41 3.63 931.66 -1159.49 -0.05 -0.79 66.67 60.6 1.3 0.65 -1159.49

H1.6 KALMAN − ZSPRD30D
(2.7,0.5) 4 2 2 364.56 1116.88 729.11 2233.76 -1504.65 -15.05 417.71 -1896.92 -0.44 -6.98 50 -376.16 0.33 0.33 -1922.36

H2.1 KALMAN − SPRD30D − SMA(10,20) 15 5 10 773.43 349.08 3867.14 3490.79 376.35 3.76 1046.49 -1505.59 -0.11 -1.75 33.33 25.05 1.11 2.22 -2789.5

H2.2 KALMAN − SPRD30D − EMA(10,20) 24 8 16 708.82 316.59 5670.56 5065.45 605.12 6.05 1411.63 -543.9 -0.13 -2.06 33.33 25.18 1.12 2.24 -2450.34

H2.3 KALMAN − SPRD30D −MACD(12,26,9) 32 13 19 425.81 309.63 5535.55 5882.9 -347.35 -3.47 3176.12 -773.01 -0.17 -2.7 40.62 -10.89 0.94 1.38 -4809.62

H2.4 KALMAN − SPRD30D −RSI(14) 2 1 1 1671.43 5545.02 1671.43 5545.02 -3873.59 -38.74 1671.43 -5545.02 -0.4 -6.35 50 -1936.79 0.3 0.3 -5545.02

H2.5 KALMAN − SPRD30D −BB(20) 14 10 4 345.34 1109.81 3453.42 4439.25 -985.83 -9.86 600.06 -2443.16 -0.19 -3.02 71.43 -70.4 0.78 0.31 -3596.06

H3 KALMAN − SPRD30D −DECTREE 366 168 198 26.29 23.15 4416.54 4584.63 -168.09 -1.68 240.86 -85.25 -4.3 -68.26 45.9 -0.46 0.96 1.14 -839.84

H4 KALMAN − SPRD30D −MLP 307 130 177 29.59 22.95 3847.29 4062.29 -215 -2.15 240.86 -93.25 -4.06 -64.45 42.35 -0.7 0.95 1.29 -942.1

Part IX: Models derived using the spread obtained from RATIO − SPRD30D

I1.1 RATIO − ZSPRD30D
(3,2) 2 1 1 56.54 19.76 56.54 19.76 36.78 0.37 56.54 -19.76 -2.48 -39.37 50 18.39 2.86 2.86 -19.76

I1.2 RATIO − ZSPRD30D
(3,1) 2 1 1 107.94 41.53 107.94 41.53 66.4 0.66 107.94 -41.53 -1.12 -17.78 50 33.2 2.6 2.6 -41.53

I1.3 RATIO − ZSPRD30D
(3,0.5) 2 1 1 107.94 1.49 107.94 1.49 106.44 1.06 107.94 -1.49 -1.28 -20.32 50 53.22 72.29 72.29 -1.49

I1.4 RATIO − ZSPRD30D
(2.7,2) 3 2 1 69.75 16.59 139.5 16.59 122.91 1.23 82.96 -16.59 -2.15 -34.13 66.67 40.97 8.41 4.2 -16.59

I1.5 RATIO − ZSPRD30D
(2.7,1) 3 2 1 132.86 38.51 265.72 38.51 227.21 2.27 157.78 -38.51 -0.75 -11.91 66.67 75.74 6.9 3.45 -38.51

I1.6 RATIO − ZSPRD30D
(2.7,0.5) 3 3 - 102.38 - 307.15 - 307.15 3.07 197.47 - -0.51 -8.1 100 102.38 307.15 102.38 -

I2.1 RATIO − SPRD30D − SMA(10,20) 16 6 10 58.78 83.41 352.65 834.05 -481.4 -4.81 133.25 -207.84 -2 -31.75 37.5 -30.09 0.42 0.7 -799.95

I2.2 RATIO − SPRD30D − EMA(10,20) 26 5 21 98.66 74.86 493.3 1572.07 -1078.77 -10.79 204.53 -352.24 -1.89 -30 19.23 -41.49 0.31 1.32 -937.75

I2.3 RATIO − SPRD30D −MACD(12,26,9) 40 16 24 71.76 73.47 1148.18 1763.18 -615 -6.15 268.59 -204.97 -1.7 -26.99 40 -15.37 0.65 0.98 -659.29

I2.4 RATIO − SPRD30D −RSI(14) 3 1 2 311.76 581.02 311.76 1162.04 -850.28 -8.5 311.76 -828.99 -0.76 -12.06 33.33 -283.46 0.27 0.54 -828.99

I2.5 RATIO − SPRD30D −BB(20) 19 12 7 44.95 51.94 539.43 363.55 175.87 1.76 83.48 -70.04 -2.62 -41.59 63.16 9.26 1.48 0.87 -146.53

I3 RATIO − SPRD30D −DECTREE 388 138 250 28.6 19.67 3947.48 4917.65 -970.18 -9.7 214.61 -93.46 -4.54 -72.07 35.57 -2.5 0.8 1.45 -1515.42

I4 RATIO − SPRD30D −MLP 360 125 235 29.75 20.57 3719.05 4834.56 -1115.51 -11.16 214.61 -93.46 -4.56 -72.39 34.72 -3.1 0.77 1.45 -1489.52

Part X: Models derived using the close price of VO.N

CLS-SYM-1.1 CLOSEV O.N − SMA(10,20) 15 5 10 407.5 131.94 2037.52 1319.42 718.1 7.18 1345.66 -357.26 -0.07 -1.11 33.33 47.86 1.54 3.09 -888.12

CLS-SYM-1.2 CLOSEV O.N − EMA(10,20) 20 6 14 305.56 123.3 1833.38 1726.2 107.17 1.07 700.63 -218.39 -0.27 -4.29 30 5.36 1.06 2.48 -812.37

CLS-SYM-1.3 CLOSEV O.N −MACD(12,26,9) 30 12 18 235.68 119.41 2828.19 2149.34 678.86 6.79 1213.06 -330.07 -0.19 -3.02 40 22.63 1.32 1.97 -845.26

CLS-SYM-1.4 CLOSEV O.N −RSI(14) 5 2 3 464.59 648.69 929.17 1946.08 -1016.91 -10.17 781.75 -1353.4 -0.35 -5.56 40 -203.38 0.48 0.72 -1353.4

CLS-SYM-1.5 CLOSEV O.N −BB(20) 15 13 2 85.35 600.28 1109.6 1200.56 -90.96 -0.91 190.76 -984.33 -0.29 -4.6 86.67 -6.04 0.92 0.14 -984.33

Part XI: Models derived using the close price of VXUS.N

CLS-SYM-2.1 CLOSEVXUS.N − SMA(10,20) 15 6 9 314.7 147.73 1888.19 1329.58 558.62 5.59 928.16 -483.97 -0.12 -1.9 40 37.24 1.42 2.13 -710.8

CLS-SYM-2.2 CLOSEVXUS.N − EMA(10,20) 23 6 17 500.43 151.67 3002.58 2578.36 424.22 4.24 1067.79 -550.04 -0.15 -2.38 26.09 18.46 1.16 3.3 -1087.54

CLS-SYM-2.3 CLOSEVXUS.N −MACD(12,26,9) 32 11 21 188.51 103.43 2073.65 2171.98 -98.33 -0.98 939.15 -336.67 -0.37 -5.87 34.38 -3.06 0.95 1.82 -1391.6

CLS-SYM-2.4 CLOSEVXUS.N −RSI(14) 6 3 3 309.07 270.45 927.22 811.36 115.86 1.16 384.77 -577.08 -0.16 -2.54 50 19.31 1.14 1.14 -577.08

CLS-SYM-2.5 CLOSEVXUS.N −BB(20) 19 12 7 67.21 145.66 806.56 1019.65 -213.09 -2.13 191.4 -832.35 -0.42 -6.67 63.16 -11.21 0.79 0.46 -832.35
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Table D.2.20: This table presents the back-test metrics for the pair V O.N/V XUS.N based on a 50-day rolling window. The table is subdivided into eleven parts, and in each of these parts, we present the back-test metrics and the trading strategies which use the
spread derived from various models. In Part I, the spread is derived from the DIST V 1.1 model, in Part II from the DIST V 1.2 model, in Part III from the DIST V 2 model, in Part IV from the DIST V 3 model, in Part V from the DIST V 4 model, in Part VI from the
JOHANSEN − SPRD model, in Part VIII from the ADF − SPRD model, in from the DIST V 2 model, in Part VIII from the KALMAN − SPRD model, and in Part IX from the RATIO − SPRD model. In Part X and XI, we present the back-test metrics of
the trading strategies which use the close price of VO.N, and VXUS.N, respectively. All $ numbers reported below are in USD.

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X) (XI) (XII) (XIII) (XIV) (XV) (XVI) (XVII) (XVIII) (XIX) (XX)

Trading
Strategy
Code

Model
Name

Total
Number
of
Trades

Number
of

Winning
Trades

Number
of Loosing
Trades

Average
Profit

per Trade
($)

Average
Loss per
Trade
($)

Gross
Profit
($)

Gross
Loss
($)

Net Profit
($)

ROI (%) Max P&L
($)

Min P&L
($)

Daily
Sharpe
Ratio

Annualized
Sharpe
Ratio

Hit Ratio Expectancy Profit
Factor

Realized
Risk

Reward
Ratio

Max
Drawdown

($)

Part I: Models derived using the spread obtained from DISTV 1.1 − SPRD50D

A1.1 DISTV 1.1 − ZSPRD50D
(3,2) 3 1 2 49.37 99.81 49.37 199.62 -150.26 -1.5 49.37 -109.23 -2.33 -36.99 33.33 -50.09 0.25 0.49 -150.26

A1.2 DISTV 1.1 − ZSPRD50D
(3,1) 1 1 - 110.89 - 110.89 - 110.89 1.11 110.89 - - - 100 110.89 110.89 110.89 -

A1.3 DISTV 1.1 − ZSPRD50D
(3,0.5) 1 - 1 - 92.22 - 92.22 -92.22 -0.92 - -92.22 - - - -92.22 - - -92.22

A1.4 DISTV 1.1 − ZSPRD50D
(2.7,2) 4 2 2 27.19 80.69 54.39 161.38 -107 -1.07 49.37 -109.23 -2.59 -41.11 50 -26.75 0.34 0.34 -109.23

A1.5 DISTV 1.1 − ZSPRD50D
(2.7,1) 2 2 - 59.5 - 119.01 - 119.01 1.19 110.89 - -1.27 -20.16 100 59.5 119.01 59.5 -

A1.6 DISTV 1.1 − ZSPRD50D
(2.7,0.5) 2 1 1 17.98 92.22 17.98 92.22 -74.24 -0.74 17.98 -92.22 -2.43 -38.58 50 -37.12 0.19 0.19 -92.22

A2.1 DISTV 1.1 − SPRD50D − SMA(10,20) 17 7 10 91.49 74.16 640.45 741.58 -101.13 -1.01 216.07 -168.73 -1.47 -23.34 41.18 -5.94 0.86 1.23 -432.58

A2.2 DISTV 1.1 − SPRD50D − EMA(10,20) 21 12 9 55.76 120.29 669.06 1082.65 -413.59 -4.14 159.89 -201.45 -1.65 -26.19 57.14 -19.7 0.62 0.46 -474.04

A2.3 DISTV 1.1 − SPRD50D −MACD(12,26,9) 33 21 12 60.41 87.92 1268.63 1055.02 213.61 2.14 110.59 -244.03 -1.71 -27.15 63.64 6.48 1.2 0.69 -738.52

A2.4 DISTV 1.1 − SPRD50D −RSI(14) 4 3 1 460.16 236.17 1380.47 236.17 1144.3 11.44 690.36 -236.17 0.35 5.56 75 286.07 5.85 1.95 -236.17

A2.5 DISTV 1.1 − SPRD50D −BB(20) 16 8 8 115.86 26.85 926.9 214.81 712.09 7.12 438.49 -78.92 -0.88 -13.97 50 44.51 4.31 4.32 -145.98

A3 DISTV 1.1 − SPRD50D −DECTREE 354 152 202 30.12 21.25 4578.67 4292.67 286 2.86 144.03 -133.03 -4.23 -67.15 42.94 0.81 1.07 1.42 -1010.39

A4 DISTV 1.1 − SPRD50D −MLP 320 144 176 30.75 23.44 4427.39 4125.79 301.6 3.02 133.78 -133.03 -4.07 -64.61 45 0.94 1.07 1.31 -847.72

Part II: Models derived using the spread obtained from DISTV 1.2 − SPRD50D

B1.1 DISTV 1.2 − ZSPRD50D
(3,2) 7 2 5 14.36 45.06 28.73 225.3 -196.57 -1.97 20.97 -59.82 -5.77 -91.6 28.57 -28.08 0.13 0.32 -204.33

B1.2 DISTV 1.2 − ZSPRD50D
(3,1) 7 3 4 32.94 68.24 98.83 272.95 -174.12 -1.74 78.06 -91.18 -2.92 -46.35 42.86 -24.87 0.36 0.48 -272.95

B1.3 DISTV 1.2 − ZSPRD50D
(3,0.5) 7 3 4 50.42 141.97 151.27 567.88 -416.62 -4.17 84.92 -266.33 -1.74 -27.62 42.86 -59.51 0.27 0.36 -432.65

B1.4 DISTV 1.2 − ZSPRD50D
(2.7,2) 10 4 6 28.51 50.15 114.03 300.9 -186.86 -1.87 76.08 -76.54 -3.66 -58.1 40 -18.69 0.38 0.57 -277.16

B1.5 DISTV 1.2 − ZSPRD50D
(2.7,1) 10 5 5 44.08 103.68 220.39 518.38 -297.99 -2.98 84.19 -226.55 -1.91 -30.32 50 -29.8 0.43 0.43 -518.38

B1.6 DISTV 1.2 − ZSPRD50D
(2.7,0.5) 9 4 5 58.96 139.83 235.83 699.15 -463.32 -4.63 84.92 -266.33 -1.72 -27.3 44.44 -51.49 0.34 0.42 -547.51

B2.1 DISTV 1.2 − SPRD50D − SMA(10,20) 15 7 8 147.1 127.91 1029.71 1023.24 6.47 0.06 426.94 -522.38 -0.75 -11.91 46.67 0.44 1.01 1.15 -556.24

B2.2 DISTV 1.2 − SPRD50D − EMA(10,20) 19 12 7 72.28 97.75 867.33 684.27 183.06 1.83 227.3 -233.22 -1.3 -20.64 63.16 9.64 1.27 0.74 -458.56

B2.3 DISTV 1.2 − SPRD50D −MACD(12,26,9) 22 10 12 75.97 99.51 759.72 1194.11 -434.39 -4.34 337.9 -287.03 -1.36 -21.59 45.45 -19.75 0.64 0.76 -863.02

B2.4 DISTV 1.2 − SPRD50D −RSI(14) 10 3 7 101 170.5 303 1193.48 -890.49 -8.9 153.41 -440.87 -1.36 -21.59 30 -89.05 0.25 0.59 -752.61

B2.5 DISTV 1.2 − SPRD50D −BB(20) 17 12 5 55.85 88.73 670.22 443.64 226.57 2.27 159.73 -307.24 -1.39 -22.07 70.59 13.33 1.51 0.63 -105.59

B3 DISTV 1.2 − SPRD50D −DECTREE 266 134 132 27.95 28.25 3745.13 3729.13 16 0.16 131.29 -212.18 -3.8 -60.32 50.38 0.06 1 0.99 -676.45

B4 DISTV 1.2 − SPRD50D −MLP 253 135 118 31.92 31.74 4309.78 3745.35 564.44 5.64 227.97 -226.41 -3.12 -49.53 53.36 2.23 1.15 1.01 -630.93

Part III: Models derived using the spread obtained from DISTV 2 − SPRD50D

C1.1 DISTV 2 − ZSPRD50D
(3,2) 3 2 1 99.81 49.37 199.62 49.37 150.26 1.5 109.23 -49.37 -1.18 -18.73 66.67 50.09 4.04 2.02 -49.37

C1.2 DISTV 2 − ZSPRD50D
(3,1) 1 - 1 - 110.89 - 110.89 -110.89 -1.11 - -110.89 - - - -110.89 - - -110.89

C1.3 DISTV 2 − ZSPRD50D
(3,0.5) 1 1 - 92.22 - 92.22 - 92.22 0.92 92.22 - - - 100 92.22 92.22 92.22 -

C1.4 DISTV 2 − ZSPRD50D
(2.7,2) 4 2 2 80.69 27.19 161.38 54.39 107 1.07 109.23 -49.37 -1.82 -28.89 50 26.75 2.97 2.97 -54.39

C1.5 DISTV 2 − ZSPRD50D
(2.7,1) 2 - 2 - 59.5 - 119.01 -119.01 -1.19 - -110.89 -2.91 -46.19 - -59.5 - - -119.01

C1.6 DISTV 2 − ZSPRD50D
(2.7,0.5) 2 1 1 92.22 17.98 92.22 17.98 74.24 0.74 92.22 -17.98 -1.47 -23.34 50 37.12 5.13 5.13 -17.98

C2.1 DISTV 2 − SPRD50D − SMA(10,20) 17 10 7 74.16 91.49 741.58 640.45 101.13 1.01 168.73 -216.07 -1.36 -21.59 58.82 5.94 1.16 0.81 -343.07

C2.2 DISTV 2 − SPRD50D − EMA(10,20) 21 9 12 120.29 55.76 1082.65 669.06 413.59 4.14 201.45 -159.89 -1.27 -20.16 42.86 19.7 1.62 2.16 -268.45

C2.3 DISTV 2 − SPRD50D −MACD(12,26,9) 33 12 21 87.92 60.41 1055.02 1268.63 -213.61 -2.14 244.03 -110.59 -1.86 -29.53 36.36 -6.48 0.83 1.46 -728.55

C2.4 DISTV 2 − SPRD50D −RSI(14) 4 1 3 236.17 460.16 236.17 1380.47 -1144.3 -11.44 236.17 -690.36 -1.14 -18.1 25 -286.07 0.17 0.51 -833.74

C2.5 DISTV 2 − SPRD50D −BB(20) 16 8 8 26.85 115.86 214.81 926.9 -712.09 -7.12 78.92 -438.49 -1.61 -25.56 50 -44.51 0.23 0.23 -421.92

C3 DISTV 2 − SPRD50D −DECTREE 361 161 200 28.44 24.27 4578.82 4853.3 -274.47 -2.74 133.78 -133.03 -4.22 -66.99 44.6 -0.76 0.94 1.17 -941.17

C4 DISTV 2 − SPRD50D −MLP 316 136 180 30.05 25.57 4086.3 4603.49 -517.19 -5.17 165.81 -130.21 -4.04 -64.13 43.04 -1.64 0.89 1.17 -1068.82

Part IV: Models derived using the spread obtained from DISTV 3 − SPRD50D

D1.1 DISTV 3 − ZSPRD50D
(3,2) 6 5 1 41.09 192.93 205.43 192.93 12.5 0.12 58.41 -192.93 -1.54 -24.45 83.33 2.08 1.06 0.21 -192.93

D1.2 DISTV 3 − ZSPRD50D
(3,1) 6 3 3 59.97 49.55 179.91 148.66 31.25 0.31 98.6 -101.59 -2.1 -33.34 50 5.21 1.21 1.21 -101.59

D1.3 DISTV 3 − ZSPRD50D
(3,0.5) 6 3 3 88.28 45.6 264.83 136.8 128.03 1.28 103.23 -105.73 -1.6 -25.4 50 21.34 1.94 1.94 -105.73

D1.4 DISTV 3 − ZSPRD50D
(2.7,2) 11 6 5 40.88 74.3 245.29 371.48 -126.19 -1.26 58.41 -257.74 -1.76 -27.94 54.55 -11.47 0.66 0.55 -317.65

D1.5 DISTV 3 − ZSPRD50D
(2.7,1) 9 3 6 73.89 56.56 221.66 339.36 -117.7 -1.18 98.6 -167.16 -2.05 -32.54 33.33 -13.08 0.65 1.31 -167.16

D1.6 DISTV 3 − ZSPRD50D
(2.7,0.5) 9 4 5 72.69 41.83 290.74 209.16 81.58 0.82 103.23 -170.37 -1.72 -27.3 44.44 9.06 1.39 1.74 -170.37

D2.1 DISTV 3 − SPRD50D − SMA(10,20) 20 11 9 68.7 32.46 755.73 292.12 463.62 4.64 187.75 -62.39 -1.96 -31.11 55 23.18 2.59 2.12 -88.35

D2.2 DISTV 3 − SPRD50D − EMA(10,20) 37 13 24 92.41 75.77 1201.36 1818.53 -617.17 -6.17 391.35 -317.45 -1.46 -23.18 35.14 -16.67 0.66 1.22 -553.42

D2.3 DISTV 3 − SPRD50D −MACD(12,26,9) 45 11 34 91.52 58.8 1006.67 1999.33 -992.66 -9.93 271.58 -136.81 -2.05 -32.54 24.44 -22.07 0.5 1.56 -1291.05

D2.4 DISTV 3 − SPRD50D −RSI(14) 3 - 3 - 313.64 - 940.92 -940.92 -9.41 - -569.05 -1.83 -29.05 - -313.64 - - -630.36

D2.5 DISTV 3 − SPRD50D −BB(20) 20 13 7 79.48 73.46 1033.22 514.2 519.02 5.19 389.4 -182.97 -1.09 -17.3 65 25.95 2.01 1.08 -259.81

D3 DISTV 3 − SPRD50D −DECTREE 291 126 165 29.17 25.58 3675.48 4220.5 -545.02 -5.45 313.53 -145.17 -3.8 -60.32 43.3 -1.87 0.87 1.14 -1202.19

D4 DISTV 3 − SPRD50D −MLP 275 130 145 31.78 26.41 4131.89 3830.11 301.78 3.02 212.18 -168.31 -3.47 -55.08 47.27 1.1 1.08 1.2 -926.44

Part V: Models derived using the spread obtained from DISTV 4 − SPRD50D

E1.1 DISTV 4 − ZSPRD50D
(3,2) 6 5 1 41.09 192.93 205.43 192.93 12.5 0.12 58.41 -192.93 -1.54 -24.45 83.33 2.08 1.06 0.21 -192.93

E1.2 DISTV 4 − ZSPRD50D
(3,1) 6 3 3 59.97 49.55 179.91 148.66 31.25 0.31 98.6 -101.59 -2.1 -33.34 50 5.21 1.21 1.21 -101.59

E1.3 DISTV 4 − ZSPRD50D
(3,0.5) 6 3 3 88.28 45.6 264.83 136.8 128.03 1.28 103.23 -105.73 -1.6 -25.4 50 21.34 1.94 1.94 -105.73

E1.4 DISTV 4 − ZSPRD50D
(2.7,2) 11 6 5 40.88 74.3 245.29 371.48 -126.19 -1.26 58.41 -257.74 -1.76 -27.94 54.55 -11.47 0.66 0.55 -317.65

E1.5 DISTV 4 − ZSPRD50D
(2.7,1) 9 3 6 73.89 56.56 221.66 339.36 -117.7 -1.18 98.6 -167.16 -2.05 -32.54 33.33 -13.08 0.65 1.31 -167.16

E1.6 DISTV 4 − ZSPRD50D
(2.7,0.5) 9 4 5 72.69 41.83 290.74 209.16 81.58 0.82 103.23 -170.37 -1.72 -27.3 44.44 9.06 1.39 1.74 -170.37

E2.1 DISTV 4 − SPRD50D − SMA(10,20) 20 11 9 68.7 32.46 755.73 292.12 463.62 4.64 187.75 -62.39 -1.96 -31.11 55 23.18 2.59 2.12 -88.35

E2.2 DISTV 4 − SPRD50D − EMA(10,20) 37 13 24 92.41 75.77 1201.36 1818.53 -617.17 -6.17 391.35 -317.45 -1.46 -23.18 35.14 -16.67 0.66 1.22 -553.42

E2.3 DISTV 4 − SPRD50D −MACD(12,26,9) 45 11 34 91.52 58.8 1006.67 1999.33 -992.66 -9.93 271.58 -136.81 -2.05 -32.54 24.44 -22.07 0.5 1.56 -1291.05

E2.4 DISTV 4 − SPRD50D −RSI(14) 3 - 3 - 313.64 - 940.92 -940.92 -9.41 - -569.05 -1.83 -29.05 - -313.64 - - -630.36

E2.5 DISTV 4 − SPRD50D −BB(20) 20 13 7 79.48 73.46 1033.22 514.2 519.02 5.19 389.4 -182.97 -1.09 -17.3 65 25.95 2.01 1.08 -259.81

E3 DISTV 4 − SPRD50D −DECTREE 309 131 178 31.02 24.44 4064.19 4350.96 -286.78 -2.87 313.53 -145.17 -3.77 -59.85 42.39 -0.93 0.93 1.27 -1228.63

E4 DISTV 4 − SPRD50D −MLP 275 130 145 31.78 26.41 4131.89 3830.11 301.78 3.02 212.18 -168.31 -3.47 -55.08 47.27 1.1 1.08 1.2 -926.44

Part VI: Models derived using the spread obtained from JOHANSEN − SPRD50D

F1.1 JOHANSEN − ZSPRD50D
(3,2) 13 8 5 99.96 76.55 799.66 382.74 416.92 4.17 282.26 -297.82 -0.65 -10.32 61.54 32.07 2.09 1.31 -315.69

F1.2 JOHANSEN − ZSPRD50D
(3,1) 11 6 5 113.38 76.55 680.29 382.74 297.55 2.98 329.23 -297.82 -0.56 -8.89 54.55 27.06 1.78 1.48 -315.69

F1.3 JOHANSEN − ZSPRD50D
(3,0.5) 11 6 5 130.33 76.55 781.98 382.74 399.24 3.99 407.69 -297.82 -0.51 -8.1 54.55 36.3 2.04 1.7 -315.69

F1.4 JOHANSEN − ZSPRD50D
(2.7,2) 15 6 9 75.07 89.99 450.42 809.9 -359.48 -3.59 161.14 -297.82 -1.07 -16.99 40 -23.97 0.56 0.83 -609.86

F1.5 JOHANSEN − ZSPRD50D
(2.7,1) 13 4 9 66.69 85.87 266.78 772.8 -506.03 -5.06 102.05 -297.82 -1 -15.87 30.77 -38.92 0.35 0.78 -670.75

F1.6 JOHANSEN − ZSPRD50D
(2.7,0.5) 13 5 8 93.98 100.34 469.9 802.72 -332.82 -3.33 182.67 -297.82 -0.84 -13.33 38.46 -25.6 0.59 0.94 -497.55

F2.1 JOHANSEN − SPRD50D − SMA(10,20) 17 10 7 363.66 426.33 3636.65 2984.32 652.33 6.52 1499.37 -1281.4 -0.09 -1.43 58.82 38.34 1.22 0.85 -1302.64

F2.2 JOHANSEN − SPRD50D − EMA(10,20) 30 17 13 352.1 302.91 5985.71 3937.86 2047.86 20.48 1362.29 -873.98 -0.2 -3.17 56.67 68.28 1.52 1.16 -1338.52

F2.3 JOHANSEN − SPRD50D −MACD(12,26,9) 32 15 17 192.06 290.84 2880.9 4944.33 -2063.43 -20.63 1085.34 -1924.07 0.02 0.32 46.88 -64.46 0.58 0.66 -2969.84

F2.4 JOHANSEN − SPRD50D −RSI(14) 7 2 5 347.97 173.7 695.94 868.51 -172.57 -1.73 685.71 -305.6 0.21 3.33 28.57 -24.66 0.8 2 -374.77

F2.5 JOHANSEN − SPRD50D −BB(20) 20 10 10 1089.2 139.63 10891.98 1396.31 9495.67 94.96 9709.63 -405.36 0.15 2.38 50 474.78 7.8 7.8 -526.45

F3 JOHANSEN − SPRD50D −DECTREE 336 155 181 25.47 26.32 3948.56 4764.15 -815.59 -8.16 132.9 -226.41 -4.19 -66.51 46.13 -2.43 0.83 0.97 -1088.57

F4 JOHANSEN − SPRD50D −MLP 260 118 142 27.61 26.48 3258.47 3759.63 -501.16 -5.01 132.49 -170.65 -4.09 -64.93 45.38 -1.93 0.87 1.04 -694.34

Part VII: Models derived using the spread obtained from ADF − SPRD50D

G1.1 ADF − ZSPRD50D
(3,2) 5 3 2 599.25 9103.61 1797.76 18207.22 -16409.46 -164.09 1515.53 -16687.35 -0.45 -7.14 60 -3281.89 0.1 0.07 -18162.94

G1.2 ADF − ZSPRD50D
(3,1) 5 2 3 698.97 5724.25 1397.94 17172.76 -15774.82 -157.75 1305.55 -16053.35 -0.45 -7.14 40 -3154.96 0.08 0.12 -17080.38

G1.3 ADF − ZSPRD50D
(3,0.5) 5 1 4 1305.55 4293.04 1305.55 17172.17 -15866.62 -158.67 1305.55 -16053.35 -0.45 -7.14 20 -3173.32 0.08 0.3 -17172.17

G1.4 ADF − ZSPRD50D
(2.7,2) 7 3 4 472.48 4664.79 1417.45 18659.15 -17241.71 -172.42 1135.21 -16687.35 -0.4 -6.35 42.86 -2462.95 0.08 0.1 -18614.87

G1.5 ADF − ZSPRD50D
(2.7,1) 7 4 3 791.73 5724.25 3166.91 17172.76 -14005.85 -140.06 1656.16 -16053.35 -0.34 -5.4 57.14 -2001.02 0.18 0.14 -16243.16

G1.6 ADF − ZSPRD50D
(2.7,0.5) 7 2 5 1479.3 3535.77 2958.6 17678.84 -14720.23 -147.2 2031.71 -16053.35 -0.35 -5.56 28.57 -2102.96 0.17 0.42 -16221.9

G2.1 ADF − SPRD50D − SMA(10,20) 25 14 11 1488.98 490.06 20845.71 5390.71 15455 154.55 9918.92 -1565.55 0.24 3.81 56 618.2 3.87 3.04 -1565.55

G2.2 ADF − SPRD50D − EMA(10,20) 37 20 17 919.15 1137.85 18382.92 19343.54 -960.62 -9.61 8180.68 -8615.1 -0.04 -0.63 54.05 -26.05 0.95 0.81 -13413.75

G2.3 ADF − SPRD50D −MACD(12,26,9) 43 25 18 1172.57 645.23 29314.35 11614.17 17700.18 177 16053.35 -1924.29 0.13 2.06 58.14 411.64 2.52 1.82 -2875.27

G2.4 ADF − SPRD50D −RSI(14) 2 2 - 2558.15 - 5116.29 - 5116.29 51.16 4275.86 - 0.98 15.56 100 2558.15 5116.29 2558.15 -

G2.5 ADF − SPRD50D −BB(20) 16 7 9 481.62 572.4 3371.37 5151.59 -1780.22 -17.8 972.21 -2455.1 -0.26 -4.13 43.75 -111.26 0.65 0.84 -3947.7

G3 ADF − SPRD50D −DECTREE 296 146 150 27.76 28.62 4053.17 4292.79 -239.62 -2.4 183.92 -254.08 -3.59 -56.99 49.32 -0.81 0.94 0.97 -1026.28

G4 ADF − SPRD50D −MLP 235 106 129 27.12 35.93 2874.39 4635.2 -1760.81 -17.61 182.12 -182.06 -3.59 -56.99 45.11 -7.49 0.62 0.75 -2073.33

Part VIII: Models derived using the spread obtained from KALMAN − SPRD50D

H1.1 KALMAN − ZSPRD50D
(3,2) 2 - 2 - 1078.25 - 2156.49 -2156.49 -21.56 - -2007.52 -0.9 -14.29 - -1078.25 - - -2156.49

H1.2 KALMAN − ZSPRD50D
(3,1) 1 - 1 - 1253.2 - 1253.2 -1253.2 -12.53 - -1253.2 - - - -1253.2 - - -1253.2

H1.3 KALMAN − ZSPRD50D
(3,0.5) 1 - 1 - 621.01 - 621.01 -621.01 -6.21 - -621.01 - - - -621.01 - - -621.01

H1.4 KALMAN − ZSPRD50D
(2.7,2) 5 3 2 347.71 1325.39 1043.14 2650.78 -1607.64 -16.08 737.89 -2007.52 -0.4 -6.35 60 -321.53 0.39 0.26 -2345.54

H1.5 KALMAN − ZSPRD50D
(2.7,1) 3 1 2 284.44 1136.07 284.44 2272.15 -1987.71 -19.88 284.44 -1897.16 -0.68 -10.79 33.33 -662.62 0.13 0.25 -1987.71

H1.6 KALMAN − ZSPRD50D
(2.7,0.5) 3 2 1 356.29 1297.66 712.57 1297.66 -585.08 -5.85 585.61 -1297.66 -0.29 -4.6 66.67 -194.97 0.55 0.27 -1297.66

H2.1 KALMAN − SPRD50D − SMA(10,20) 19 8 11 612.81 369.1 4902.51 4060.13 842.38 8.42 1546.79 -909.53 -0.09 -1.43 42.11 44.38 1.21 1.66 -1954.46

H2.2 KALMAN − SPRD50D − EMA(10,20) 22 8 14 831.32 295.33 6650.59 4134.65 2515.94 25.16 1530.75 -658.69 0.02 0.32 36.36 114.32 1.61 2.81 -1382.57

H2.3 KALMAN − SPRD50D −MACD(12,26,9) 31 9 22 744.76 291.12 6702.88 6404.64 298.23 2.98 3493.93 -819.68 -0.12 -1.9 29.03 9.6 1.05 2.56 -2190.9

H2.4 KALMAN − SPRD50D −RSI(14) 3 1 2 2025.15 2699.04 2025.15 5398.08 -3372.93 -33.73 2025.15 -4364.57 -0.38 -6.03 33.33 -1124.47 0.38 0.75 -4364.57

H2.5 KALMAN − SPRD50D −BB(20) 13 10 3 159.01 831.68 1590.12 2495.05 -904.93 -9.05 367.33 -2443.69 -0.23 -3.65 76.92 -69.64 0.64 0.19 -2443.69

H3 KALMAN − SPRD50D −DECTREE 354 156 198 26.61 24 4151.38 4752.83 -601.45 -6.01 144.03 -120.96 -4.39 -69.69 44.07 -1.7 0.87 1.11 -1022.55

H4 KALMAN − SPRD50D −MLP 291 111 180 30.93 27.63 3433.78 4972.63 -1538.85 -15.39 144.03 -212.18 -3.93 -62.39 38.14 -5.29 0.69 1.12 -1789.56

Part IX: Models derived using the spread obtained from RATIO − SPRD50D

I1.1 RATIO − ZSPRD50D
(3,2) 3 3 - 67.76 - 203.27 - 203.27 2.03 97.33 - -2.14 -33.97 100 67.76 203.27 67.76 -

I1.2 RATIO − ZSPRD50D
(3,1) 2 2 - 147.59 - 295.18 - 295.18 2.95 197.51 - -0.06 -0.95 100 147.59 295.18 147.59 -

I1.3 RATIO − ZSPRD50D
(3,0.5) 2 2 - 213.16 - 426.33 - 426.33 4.26 328.66 - 0.37 5.87 100 213.16 426.33 213.16 -

I1.4 RATIO − ZSPRD50D
(2.7,2) 6 5 1 41.05 65.06 205.25 65.06 140.19 1.4 82.96 -65.06 -2.53 -40.16 83.33 23.36 3.15 0.63 -65.06

I1.5 RATIO − ZSPRD50D
(2.7,1) 5 4 1 122.24 46.86 488.94 46.86 442.08 4.42 197.51 -46.86 -0.73 -11.59 80 88.42 10.43 2.61 -46.86

I1.6 RATIO − ZSPRD50D
(2.7,0.5) 5 5 - 130.92 - 654.6 - 654.6 6.55 328.66 - -0.18 -2.86 100 130.92 654.6 130.92 -

I2.1 RATIO − SPRD50D − SMA(10,20) 16 5 11 67.27 79.36 336.36 872.93 -536.57 -5.37 133.25 -207.84 -2.06 -32.7 31.25 -33.54 0.39 0.85 -799.95

I2.2 RATIO − SPRD50D − EMA(10,20) 26 6 20 100.98 70.78 605.88 1415.61 -809.73 -8.1 204.53 -271.58 -1.9 -30.16 23.08 -31.14 0.43 1.43 -770.53

I2.3 RATIO − SPRD50D −MACD(12,26,9) 39 14 25 85.75 75.11 1200.52 1877.83 -677.31 -6.77 268.59 -204.97 -1.65 -26.19 35.9 -17.36 0.64 1.14 -784.22

I2.4 RATIO − SPRD50D −RSI(14) 3 - 3 - 426.66 - 1279.97 -1279.97 -12.8 - -863.31 -1.48 -23.49 - -426.66 - - -969.41

I2.5 RATIO − SPRD50D −BB(20) 18 11 7 42.53 51.94 467.87 363.55 104.32 1.04 83.48 -70.04 -2.71 -43.02 61.11 5.79 1.29 0.82 -146.53

I3 RATIO − SPRD50D −DECTREE 370 127 243 27.27 19.57 3463.09 4755.42 -1292.33 -12.92 214.61 -84.26 -4.81 -76.36 34.32 -3.49 0.73 1.39 -1629.69

I4 RATIO − SPRD50D −MLP 334 115 219 30.28 20.79 3482.04 4553.28 -1071.24 -10.71 214.61 -93.46 -4.47 -70.96 34.43 -3.21 0.76 1.46 -1372.7

Part X: Models derived using the close price of VO.N

CLS-SYM-1.1 CLOSEV O.N − SMA(10,20) 15 5 10 407.5 131.94 2037.52 1319.42 718.1 7.18 1345.66 -357.26 -0.07 -1.11 33.33 47.86 1.54 3.09 -888.12

CLS-SYM-1.2 CLOSEV O.N − EMA(10,20) 20 6 14 305.56 123.3 1833.38 1726.2 107.17 1.07 700.63 -218.39 -0.27 -4.29 30 5.36 1.06 2.48 -812.37

CLS-SYM-1.3 CLOSEV O.N −MACD(12,26,9) 30 12 18 235.68 119.41 2828.19 2149.34 678.86 6.79 1213.06 -330.07 -0.19 -3.02 40 22.63 1.32 1.97 -845.26

CLS-SYM-1.4 CLOSEV O.N −RSI(14) 5 2 3 464.59 648.69 929.17 1946.08 -1016.91 -10.17 781.75 -1353.4 -0.35 -5.56 40 -203.38 0.48 0.72 -1353.4

CLS-SYM-1.5 CLOSEV O.N −BB(20) 15 13 2 85.35 600.28 1109.6 1200.56 -90.96 -0.91 190.76 -984.33 -0.29 -4.6 86.67 -6.04 0.92 0.14 -984.33

Part XI: Models derived using the close price of VXUS.N

CLS-SYM-2.1 CLOSEVXUS.N − SMA(10,20) 15 6 9 314.7 147.73 1888.19 1329.58 558.62 5.59 928.16 -483.97 -0.12 -1.9 40 37.24 1.42 2.13 -710.8

CLS-SYM-2.2 CLOSEVXUS.N − EMA(10,20) 23 6 17 500.43 151.67 3002.58 2578.36 424.22 4.24 1067.79 -550.04 -0.15 -2.38 26.09 18.46 1.16 3.3 -1087.54

CLS-SYM-2.3 CLOSEVXUS.N −MACD(12,26,9) 32 11 21 188.51 103.43 2073.65 2171.98 -98.33 -0.98 939.15 -336.67 -0.37 -5.87 34.38 -3.06 0.95 1.82 -1391.6

CLS-SYM-2.4 CLOSEVXUS.N −RSI(14) 6 3 3 309.07 270.45 927.22 811.36 115.86 1.16 384.77 -577.08 -0.16 -2.54 50 19.31 1.14 1.14 -577.08

CLS-SYM-2.5 CLOSEVXUS.N −BB(20) 19 12 7 67.21 145.66 806.56 1019.65 -213.09 -2.13 191.4 -832.35 -0.42 -6.67 63.16 -11.21 0.79 0.46 -832.35
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Table D.2.21: This table presents the back-test metrics for the pair V O.N/V XUS.N based on a 100-day rolling window. The table is subdivided into eleven parts, and in each of these parts, we present the back-test metrics and the trading strategies which use the
spread derived from various models. In Part I, the spread is derived from the DIST V 1.1 model, in Part II from the DIST V 1.2 model, in Part III from the DIST V 2 model, in Part IV from the DIST V 3 model, in Part V from the DIST V 4 model, in Part VI from the
JOHANSEN − SPRD model, in Part VIII from the ADF − SPRD model, in from the DIST V 2 model, in Part VIII from the KALMAN − SPRD model, and in Part IX from the RATIO − SPRD model. In Part X and XI, we present the back-test metrics of
the trading strategies which use the close price of VO.N, and VXUS.N, respectively. All $ numbers reported below are in USD.

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X) (XI) (XII) (XIII) (XIV) (XV) (XVI) (XVII) (XVIII) (XIX) (XX)

Trading
Strategy
Code

Model
Name

Total
Number
of
Trades

Number
of

Winning
Trades

Number
of Loosing
Trades

Average
Profit

per Trade
($)

Average
Loss per
Trade
($)

Gross
Profit
($)

Gross
Loss
($)

Net Profit
($)

ROI (%) Max P&L
($)

Min P&L
($)

Daily
Sharpe
Ratio

Annualized
Sharpe
Ratio

Hit Ratio Expectancy Profit
Factor

Realized
Risk

Reward
Ratio

Max
Drawdown

($)

Part I: Models derived using the spread obtained from DISTV 1.1 − SPRD100D

A1.1 DISTV 1.1 − ZSPRD100D
(3,2) 1 1 - 20.7 - 20.7 - 20.7 0.21 20.7 - - - 100 20.7 20.7 20.7 -

A1.2 DISTV 1.1 − ZSPRD100D
(3,1) 1 - 1 - 202.77 - 202.78 -202.78 -2.03 - -202.77 - - - -202.77 - - -202.77

A1.3 DISTV 1.1 − ZSPRD100D
(3,0.5) 1 - 1 - 257.42 - 257.42 -257.42 -2.57 - -257.42 - - - -257.42 - - -257.42

A1.4 DISTV 1.1 − ZSPRD100D
(2.7,2) 1 1 - 20.7 - 20.7 - 20.7 0.21 20.7 - - - 100 20.7 20.7 20.7 -

A1.5 DISTV 1.1 − ZSPRD100D
(2.7,1) 1 - 1 - 202.77 - 202.78 -202.78 -2.03 - -202.77 - - - -202.77 - - -202.77

A1.6 DISTV 1.1 − ZSPRD100D
(2.7,0.5) 1 - 1 - 257.42 - 257.42 -257.42 -2.57 - -257.42 - - - -257.42 - - -257.42

A2.1 DISTV 1.1 − SPRD100D − SMA(10,20) 15 7 8 91.49 76.43 640.45 611.44 29 0.29 216.07 -168.73 -1.34 -21.27 46.67 1.94 1.05 1.2 -428.41

A2.2 DISTV 1.1 − SPRD100D − EMA(10,20) 21 13 8 56.15 104.33 729.9 834.68 -104.78 -1.05 159.89 -171.1 -1.67 -26.51 61.9 -5 0.87 0.54 -382.48

A2.3 DISTV 1.1 − SPRD100D −MACD(12,26,9) 31 19 12 57.51 91.64 1092.76 1099.68 -6.92 -0.07 108.8 -244.03 -1.77 -28.1 61.29 -0.22 0.99 0.63 -738.52

A2.4 DISTV 1.1 − SPRD100D −RSI(14) 4 3 1 449.54 236.17 1348.61 236.17 1112.44 11.12 690.36 -236.17 0.32 5.08 75 278.11 5.71 1.9 -236.17

A2.5 DISTV 1.1 − SPRD100D −BB(20) 15 8 7 141.95 30.35 1135.63 212.46 923.17 9.23 647.23 -78.92 -0.52 -8.25 53.33 61.54 5.35 4.68 -145.98

A3 DISTV 1.1 − SPRD100D −DECTREE 324 141 183 29.27 21.57 4127.11 3946.58 180.53 1.81 133.78 -133.03 -4.4 -69.85 43.52 0.56 1.05 1.36 -751.57

A4 DISTV 1.1 − SPRD100D −MLP 298 129 169 29.15 25.78 3760.28 4357.01 -596.73 -5.97 189.24 -133.03 -4.12 -65.4 43.29 -2 0.86 1.13 -798.13

Part II: Models derived using the spread obtained from DISTV 1.2 − SPRD100D

B1.1 DISTV 1.2 − ZSPRD100D
(3,2) 2 - 2 - 115.78 - 231.56 -231.56 -2.32 - -195.82 -2.37 -37.62 - -115.78 - - -231.56

B1.2 DISTV 1.2 − ZSPRD100D
(3,1) 2 - 2 - 33.74 - 67.48 -67.48 -0.67 - -49.6 -8.28 -131.44 - -33.74 - - -67.48

B1.3 DISTV 1.2 − ZSPRD100D
(3,0.5) 2 - 2 - 72.08 - 144.16 -144.16 -1.44 - -94.56 -7.05 -111.92 - -72.08 - - -144.16

B1.4 DISTV 1.2 − ZSPRD100D
(2.7,2) 4 - 4 - 89.32 - 357.3 -357.3 -3.57 - -195.82 -2.68 -42.54 - -89.32 - - -357.3

B1.5 DISTV 1.2 − ZSPRD100D
(2.7,1) 4 - 4 - 36.21 - 144.82 -144.82 -1.45 - -72.38 -6.97 -110.65 - -36.21 - - -144.82

B1.6 DISTV 1.2 − ZSPRD100D
(2.7,0.5) 4 1 3 50.74 75.66 50.74 227 -176.25 -1.76 50.74 -94.56 -2.89 -45.88 25 -44.06 0.22 0.67 -226.99

B2.1 DISTV 1.2 − SPRD100D − SMA(10,20) 14 9 5 93.93 149.44 845.41 747.18 98.23 0.98 212.48 -481.93 -0.87 -13.81 64.29 7.03 1.13 0.63 -481.93

B2.2 DISTV 1.2 − SPRD100D − EMA(10,20) 21 16 5 73.93 87.29 1182.86 436.43 746.42 7.46 190.94 -151.78 -1.3 -20.64 76.19 35.54 2.71 0.85 -151.78

B2.3 DISTV 1.2 − SPRD100D −MACD(12,26,9) 27 18 9 90.77 100.02 1633.87 900.2 733.67 7.34 413.21 -267.4 -0.94 -14.92 66.67 27.18 1.82 0.91 -457.38

B2.4 DISTV 1.2 − SPRD100D −RSI(14) 9 4 5 133.1 197.75 532.41 988.77 -456.37 -4.56 282.72 -485.69 -0.88 -13.97 44.44 -50.72 0.54 0.67 -248.72

B2.5 DISTV 1.2 − SPRD100D −BB(20) 11 3 8 41.33 32.49 124 259.91 -135.91 -1.36 48.65 -81.74 -4.1 -65.09 27.27 -12.36 0.48 1.27 -239.02

B3 DISTV 1.2 − SPRD100D −DECTREE 294 137 157 30.37 29.83 4160.98 4683.54 -522.56 -5.23 170.39 -300.74 -3.31 -52.54 46.6 -1.78 0.89 1.02 -938.15

B4 DISTV 1.2 − SPRD100D −MLP 91 45 46 40.52 45.51 1823.2 2093.29 -270.09 -2.7 288.94 -192.26 -2.29 -36.35 49.45 -2.97 0.87 0.89 -679.99

Part III: Models derived using the spread obtained from DISTV 2 − SPRD100D

C1.1 DISTV 2 − ZSPRD100D
(3,2) 1 - 1 - 20.7 - 20.7 -20.7 -0.21 - -20.7 - - - -20.7 - - -20.7

C1.2 DISTV 2 − ZSPRD100D
(3,1) 1 1 - 202.77 - 202.78 - 202.78 2.03 202.77 - - - 100 202.77 202.78 202.77 -

C1.3 DISTV 2 − ZSPRD100D
(3,0.5) 1 1 - 257.42 - 257.42 - 257.42 2.57 257.42 - - - 100 257.42 257.42 257.42 -

C1.4 DISTV 2 − ZSPRD100D
(2.7,2) 1 - 1 - 20.7 - 20.7 -20.7 -0.21 - -20.7 - - - -20.7 - - -20.7

C1.5 DISTV 2 − ZSPRD100D
(2.7,1) 1 1 - 202.77 - 202.78 - 202.78 2.03 202.77 - - - 100 202.77 202.78 202.77 -

C1.6 DISTV 2 − ZSPRD100D
(2.7,0.5) 1 1 - 257.42 - 257.42 - 257.42 2.57 257.42 - - - 100 257.42 257.42 257.42 -

C2.1 DISTV 2 − SPRD100D − SMA(10,20) 16 9 7 137.4 91.49 1236.6 640.45 596.16 5.96 607.23 -216.07 -0.62 -9.84 56.25 37.26 1.93 1.5 -343.07

C2.2 DISTV 2 − SPRD100D − EMA(10,20) 21 8 13 104.33 56.15 834.68 729.9 104.78 1.05 171.1 -159.89 -1.56 -24.76 38.1 5 1.14 1.86 -268.45

C2.3 DISTV 2 − SPRD100D −MACD(12,26,9) 31 12 19 91.64 57.51 1099.68 1092.76 6.92 0.07 244.03 -108.8 -1.77 -28.1 38.71 0.22 1.01 1.59 -728.55

C2.4 DISTV 2 − SPRD100D −RSI(14) 4 1 3 236.17 449.54 236.17 1348.61 -1112.44 -11.12 236.17 -690.36 -1.11 -17.62 25 -278.11 0.18 0.53 -699.23

C2.5 DISTV 2 − SPRD100D −BB(20) 15 7 8 30.35 141.95 212.46 1135.63 -923.17 -9.23 78.92 -647.23 -1.23 -19.53 46.67 -61.54 0.19 0.21 -421.92

C3 DISTV 2 − SPRD100D −DECTREE 326 136 190 28.38 24.6 3859.51 4674.8 -815.29 -8.15 133.78 -120.01 -4.34 -68.9 41.72 -2.5 0.83 1.15 -1073.42

C4 DISTV 2 − SPRD100D −MLP 306 132 174 30.51 25.63 4027.32 4458.93 -431.61 -4.32 175.8 -84.91 -4.01 -63.66 43.14 -1.41 0.9 1.19 -1134.66

Part IV: Models derived using the spread obtained from DISTV 3 − SPRD100D

D1.1 DISTV 3 − ZSPRD100D
(3,2) 4 2 2 42.34 84.37 84.69 168.75 -84.06 -0.84 58.31 -151.27 -1.88 -29.84 50 -21.02 0.5 0.5 -151.27

D1.2 DISTV 3 − ZSPRD100D
(3,1) 3 2 1 109.64 18.8 219.28 18.8 200.48 2 180.36 -18.8 -0.83 -13.18 66.67 66.83 11.67 5.83 -18.8

D1.3 DISTV 3 − ZSPRD100D
(3,0.5) 3 2 1 137.18 18.8 274.35 18.8 255.56 2.56 211.72 -18.8 -0.57 -9.05 66.67 85.19 14.6 7.3 -18.8

D1.4 DISTV 3 − ZSPRD100D
(2.7,2) 10 8 2 30.18 84.37 241.46 168.75 72.71 0.73 58.31 -151.27 -2.42 -38.42 80 7.27 1.43 0.36 -151.27

D1.5 DISTV 3 − ZSPRD100D
(2.7,1) 7 5 2 67.05 32.29 335.25 64.58 270.68 2.71 180.36 -45.78 -1.5 -23.81 71.43 38.67 5.19 2.08 -45.78

D1.6 DISTV 3 − ZSPRD100D
(2.7,0.5) 7 5 2 89.84 25.14 449.19 50.29 398.9 3.99 211.72 -31.49 -1.14 -18.1 71.43 56.99 8.93 3.57 -31.49

D2.1 DISTV 3 − SPRD100D − SMA(10,20) 21 11 10 51.28 67.9 564.03 679.02 -114.99 -1.15 125.01 -188.27 -1.94 -30.8 52.38 -5.48 0.83 0.76 -485.26

D2.2 DISTV 3 − SPRD100D − EMA(10,20) 34 9 25 103.6 85.98 932.42 2149.54 -1217.12 -12.17 199.43 -418.01 -1.67 -26.51 26.47 -35.8 0.43 1.2 -829.44

D2.3 DISTV 3 − SPRD100D −MACD(12,26,9) 35 8 27 79.74 69.24 637.93 1869.5 -1231.57 -12.32 173.72 -215.13 -2.32 -36.83 22.86 -35.18 0.34 1.15 -1202.18

D2.4 DISTV 3 − SPRD100D −RSI(14) 4 1 3 119.99 224.35 120 673.05 -553.05 -5.53 119.99 -413.21 -1.32 -20.95 25 -138.26 0.18 0.53 -167.05

D2.5 DISTV 3 − SPRD100D −BB(20) 23 14 9 94.07 40.01 1317.01 360.05 956.97 9.57 496.85 -112.92 -0.94 -14.92 60.87 41.61 3.66 2.35 -133.55

D3 DISTV 3 − SPRD100D −DECTREE 288 130 158 30.59 23.79 3976.46 3759.02 217.44 2.17 277.59 -145.17 -3.61 -57.31 45.14 0.76 1.06 1.29 -506.15

D4 DISTV 3 − SPRD100D −MLP 268 119 149 28.48 24.47 3389.62 3646.22 -256.6 -2.57 139.29 -180.36 -4.02 -63.82 44.4 -0.96 0.93 1.16 -680.24

Part V: Models derived using the spread obtained from DISTV 4 − SPRD100D

E1.1 DISTV 4 − ZSPRD100D
(3,2) 4 2 2 42.34 84.37 84.69 168.75 -84.06 -0.84 58.31 -151.27 -1.88 -29.84 50 -21.02 0.5 0.5 -151.27

E1.2 DISTV 4 − ZSPRD100D
(3,1) 3 2 1 109.64 18.8 219.28 18.8 200.48 2 180.36 -18.8 -0.83 -13.18 66.67 66.83 11.67 5.83 -18.8

E1.3 DISTV 4 − ZSPRD100D
(3,0.5) 3 2 1 137.18 18.8 274.35 18.8 255.56 2.56 211.72 -18.8 -0.57 -9.05 66.67 85.19 14.6 7.3 -18.8

E1.4 DISTV 4 − ZSPRD100D
(2.7,2) 10 8 2 30.18 84.37 241.46 168.75 72.71 0.73 58.31 -151.27 -2.42 -38.42 80 7.27 1.43 0.36 -151.27

E1.5 DISTV 4 − ZSPRD100D
(2.7,1) 7 5 2 67.05 32.29 335.25 64.58 270.68 2.71 180.36 -45.78 -1.5 -23.81 71.43 38.67 5.19 2.08 -45.78

E1.6 DISTV 4 − ZSPRD100D
(2.7,0.5) 7 5 2 89.84 25.14 449.19 50.29 398.9 3.99 211.72 -31.49 -1.14 -18.1 71.43 56.99 8.93 3.57 -31.49

E2.1 DISTV 4 − SPRD100D − SMA(10,20) 21 11 10 51.28 67.9 564.03 679.02 -114.99 -1.15 125.01 -188.27 -1.94 -30.8 52.38 -5.48 0.83 0.76 -485.26

E2.2 DISTV 4 − SPRD100D − EMA(10,20) 34 9 25 103.6 85.98 932.42 2149.54 -1217.12 -12.17 199.43 -418.01 -1.67 -26.51 26.47 -35.8 0.43 1.2 -829.44

E2.3 DISTV 4 − SPRD100D −MACD(12,26,9) 35 8 27 79.74 69.24 637.93 1869.5 -1231.57 -12.32 173.72 -215.13 -2.32 -36.83 22.86 -35.18 0.34 1.15 -1202.18

E2.4 DISTV 4 − SPRD100D −RSI(14) 4 1 3 119.99 224.35 120 673.05 -553.05 -5.53 119.99 -413.21 -1.32 -20.95 25 -138.26 0.18 0.53 -167.05

E2.5 DISTV 4 − SPRD100D −BB(20) 23 14 9 94.07 40.01 1317.01 360.05 956.97 9.57 496.85 -112.92 -0.94 -14.92 60.87 41.61 3.66 2.35 -133.55

E3 DISTV 4 − SPRD100D −DECTREE 298 132 166 32.29 23.6 4262.17 3917.62 344.55 3.45 277.59 -120.96 -3.62 -57.47 44.3 1.16 1.09 1.37 -624.2

E4 DISTV 4 − SPRD100D −MLP 268 119 149 28.48 24.47 3389.62 3646.22 -256.6 -2.57 139.29 -180.36 -4.02 -63.82 44.4 -0.96 0.93 1.16 -680.24

Part VI: Models derived using the spread obtained from JOHANSEN − SPRD100D

F1.1 JOHANSEN − ZSPRD100D
(3,2) 6 2 4 84.54 38.13 169.08 152.51 16.57 0.17 163.9 -121.97 -4.79 -76.04 33.33 2.76 1.11 2.22 -142.2

F1.2 JOHANSEN − ZSPRD100D
(3,1) 6 2 4 84.54 38.13 169.08 152.51 16.57 0.17 163.9 -121.97 -4.79 -76.04 33.33 2.76 1.11 2.22 -142.2

F1.3 JOHANSEN − ZSPRD100D
(3,0.5) 6 2 4 84.54 38.13 169.08 152.51 16.57 0.17 163.9 -121.97 -4.79 -76.04 33.33 2.76 1.11 2.22 -142.2

F1.4 JOHANSEN − ZSPRD100D
(2.7,2) 8 4 4 45.64 49.72 182.57 198.88 -16.31 -0.16 163.9 -121.97 -5.17 -82.07 50 -2.04 0.92 0.92 -184.9

F1.5 JOHANSEN − ZSPRD100D
(2.7,1) 8 4 4 47.57 49.72 190.3 198.88 -8.58 -0.09 163.9 -121.97 -5.12 -81.28 50 -1.07 0.96 0.96 -184.9

F1.6 JOHANSEN − ZSPRD100D
(2.7,0.5) 7 4 3 49.08 61.14 196.32 183.42 12.9 0.13 163.9 -121.97 -4.85 -76.99 57.14 1.84 1.07 0.8 -173.1

F2.1 JOHANSEN − SPRD100D − SMA(10,20) 16 8 8 492.33 191.65 3938.67 1533.22 2405.44 24.05 2454.54 -747.4 -0.34 -5.4 50 150.34 2.57 2.57 -932.18

F2.2 JOHANSEN − SPRD100D − EMA(10,20) 27 13 14 287.2 7113.15 3733.57 99584.05 -95850.48 -958.5 1242.9 -94749.63 -0.08 -1.27 48.15 -3549.88 0.04 0.04 -97620.43

F2.3 JOHANSEN − SPRD100D −MACD(12,26,9) 33 15 18 299.69 163.7 4495.42 2946.64 1548.78 15.49 1335.08 -497.17 -0.17 -2.7 45.45 46.91 1.53 1.83 -995.51

F2.4 JOHANSEN − SPRD100D −RSI(14) 3 1 2 263.11 716.91 263.12 1433.82 -1170.7 -11.71 263.11 -1379.63 -0.13 -2.06 33.33 -390.27 0.18 0.37 -1433.82

F2.5 JOHANSEN − SPRD100D −BB(20) 13 5 8 176.32 207.65 881.59 1661.17 -779.58 -7.8 426.36 -822.31 0.38 6.03 38.46 -59.97 0.53 0.85 -1200.6

F3 JOHANSEN − SPRD100D −DECTREE 311 153 158 27.66 26.6 4231.32 4202.49 28.84 0.29 163.09 -153.85 -3.93 -62.39 49.2 0.09 1.01 1.04 -768.97

F4 JOHANSEN − SPRD100D −MLP 265 111 154 26.82 28.44 2976.69 4379.05 -1402.36 -14.02 153.96 -200.22 -3.99 -63.34 41.89 -5.29 0.68 0.94 -1618.65

Part VII: Models derived using the spread obtained from ADF − SPRD100D

G1.1 ADF − ZSPRD100D
(3,2) 1 1 - 654.55 - 654.55 - 654.55 6.55 654.55 - - - 100 654.55 654.55 654.55 -

G1.2 ADF − ZSPRD100D
(3,1) 1 - 1 - 222.44 - 222.44 -222.44 -2.22 - -222.44 - - - -222.44 - - -222.44

G1.3 ADF − ZSPRD100D
(3,0.5) 1 - 1 - 71.31 - 71.31 -71.31 -0.71 - -71.31 - - - -71.31 - - -71.31

G1.4 ADF − ZSPRD100D
(2.7,2) 2 1 1 452.11 960.24 452.1 960.24 -508.14 -5.08 452.11 -960.24 -0.33 -5.24 50 -254.07 0.47 0.47 -960.24

G1.5 ADF − ZSPRD100D
(2.7,1) 2 - 2 - 2431.5 - 4863 -4863 -48.63 - -4404.15 -0.92 -14.6 - -2431.5 - - -4863

G1.6 ADF − ZSPRD100D
(2.7,0.5) 2 - 2 - 3503.36 - 7006.72 -7006.72 -70.07 - -6705.69 -0.8 -12.7 - -3503.36 - - -7006.72

G2.1 ADF − SPRD100D − SMA(10,20) 16 6 10 1297.73 1428.24 7786.38 14282.42 -6496.04 -64.96 2226.21 -9400.64 -0.21 -3.33 37.5 -406 0.55 0.91 -13547.92

G2.2 ADF − SPRD100D − EMA(10,20) 29 15 14 847.72 2205.43 12715.77 30876.03 -18160.26 -181.6 2490.71 -12059.13 -0.27 -4.29 51.72 -626.34 0.41 0.38 -27322.54

G2.3 ADF − SPRD100D −MACD(12,26,9) 33 19 14 518.14 1140.42 9844.67 15965.81 -6121.14 -61.21 2198.97 -6259.82 -0.2 -3.17 57.58 -185.42 0.62 0.45 -9824.56

G2.4 ADF − SPRD100D −RSI(14) 3 2 1 365.29 5488.24 730.59 5488.24 -4757.65 -47.58 719.86 -5488.24 -0.5 -7.94 66.67 -1585.69 0.13 0.07 -5488.24

G2.5 ADF − SPRD100D −BB(20) 18 5 13 779.27 748.26 3896.32 9727.38 -5831.05 -58.31 2724.97 -2924.97 -0.33 -5.24 27.78 -323.91 0.4 1.04 -9161.85

G3 ADF − SPRD100D −DECTREE 317 141 176 28.11 27.01 3964.02 4754.1 -790.08 -7.9 201.25 -170.39 -3.85 -61.12 44.48 -2.49 0.83 1.04 -1021

G4 ADF − SPRD100D −MLP 251 114 137 31.05 23.88 3539.4 3271.75 267.65 2.68 201.25 -178.13 -3.64 -57.78 45.42 1.07 1.08 1.3 -451.12

Part VIII: Models derived using the spread obtained from KALMAN − SPRD100D

H1.1 KALMAN − ZSPRD100D
(3,2) 2 1 1 258.34 1159.73 258.34 1159.73 -901.39 -9.01 258.34 -1159.73 -0.55 -8.73 50 -450.7 0.22 0.22 -1159.73

H1.2 KALMAN − ZSPRD100D
(3,1) 2 1 1 10.25 216.19 10.25 216.2 -205.94 -2.06 10.25 -216.19 -1.26 -20 50 -102.97 0.05 0.05 -216.19

H1.3 KALMAN − ZSPRD100D
(3,0.5) 2 2 - 99.46 - 198.92 - 198.92 1.99 188.67 - - - 100 99.46 198.92 99.46 -

H1.4 KALMAN − ZSPRD100D
(2.7,2) 2 1 1 217.97 1159.73 217.96 1159.73 -941.77 -9.42 217.97 -1159.73 -0.59 -9.37 50 -470.88 0.19 0.19 -1159.73

H1.5 KALMAN − ZSPRD100D
(2.7,1) 2 - 2 - 122.66 - 245.33 -245.33 -2.45 - -216.19 -1.68 -26.67 - -122.66 - - -245.33

H1.6 KALMAN − ZSPRD100D
(2.7,0.5) 2 1 1 188.67 29.13 188.67 29.14 159.54 1.6 188.67 -29.13 -0.13 -2.06 50 79.77 6.48 6.48 -29.13

H2.1 KALMAN − SPRD100D − SMA(10,20) 13 6 7 564.26 220.36 3385.58 1542.5 1843.08 18.43 1276.43 -356.95 0.09 1.43 46.15 141.74 2.19 2.56 -737.86

H2.2 KALMAN − SPRD100D − EMA(10,20) 22 11 11 618.51 283.38 6803.56 3117.18 3686.37 36.86 1531.34 -493.31 0.11 1.75 50 167.56 2.18 2.18 -1754.85

H2.3 KALMAN − SPRD100D −MACD(12,26,9) 31 8 23 744.17 313.52 5953.32 7211 -1257.68 -12.58 3175.98 -1054.37 -0.2 -3.17 25.81 -40.53 0.83 2.37 -5001.15

H2.4 KALMAN − SPRD100D −RSI(14) 3 1 2 2025.2 2201.2 2025.2 4402.41 -2377.2 -23.77 2025.2 -3915.1 -0.3 -4.76 33.33 -792.54 0.46 0.92 -3915.1

H2.5 KALMAN − SPRD100D −BB(20) 11 9 2 257.07 1276.52 2313.61 2553.04 -239.43 -2.39 447.12 -2443.19 -0.14 -2.22 81.82 -21.74 0.91 0.2 -2553.04

H3 KALMAN − SPRD100D −DECTREE 298 139 159 26.2 24.83 3641.12 3947.36 -306.23 -3.06 200.51 -123.2 -4.25 -67.47 46.64 -1.03 0.92 1.06 -996.14

H4 KALMAN − SPRD100D −MLP 259 113 146 24.99 24.63 2823.56 3595.62 -772.07 -7.72 128.79 -183.49 -4.44 -70.48 43.63 -2.98 0.79 1.01 -875.39

Part IX: Models derived using the spread obtained from RATIO − SPRD100D

I1.1 RATIO − ZSPRD100D
(3,2) 3 2 1 46.61 55.84 93.22 55.84 37.38 0.37 62.08 -55.84 -2.28 -36.19 66.67 12.46 1.67 0.83 -55.84

I1.2 RATIO − ZSPRD100D
(3,1) 3 3 - 61.11 - 183.32 - 183.32 1.83 109.73 - -1.74 -27.62 100 61.11 183.32 61.11 -

I1.3 RATIO − ZSPRD100D
(3,0.5) 3 2 1 109.95 235.91 219.91 235.91 -16.01 -0.16 152.22 -235.91 -0.77 -12.22 66.67 -5.32 0.93 0.47 -235.91

I1.4 RATIO − ZSPRD100D
(2.7,2) 7 5 2 66.77 34.49 333.87 68.98 264.89 2.65 183.49 -66.53 -1.49 -23.65 71.43 37.84 4.84 1.94 -66.53

I1.5 RATIO − ZSPRD100D
(2.7,1) 7 6 1 105.04 28.58 630.22 28.58 601.64 6.02 260.13 -28.58 -0.75 -11.91 85.71 85.94 22.05 3.67 -28.58

I1.6 RATIO − ZSPRD100D
(2.7,0.5) 6 5 1 163.85 326.93 819.24 326.93 492.31 4.92 430.66 -326.93 -0.29 -4.6 83.33 82.04 2.51 0.5 -326.93

I2.1 RATIO − SPRD100D − SMA(10,20) 15 5 10 70.14 83.41 350.7 834.05 -483.35 -4.83 133.25 -207.84 -1.95 -30.96 33.33 -32.23 0.42 0.84 -799.95

I2.2 RATIO − SPRD100D − EMA(10,20) 26 6 20 100.98 78.1 605.88 1562.04 -956.15 -9.56 204.53 -418.01 -1.66 -26.35 23.08 -36.77 0.39 1.29 -770.53

I2.3 RATIO − SPRD100D −MACD(12,26,9) 39 16 23 80.72 84.2 1291.49 1936.62 -645.13 -6.45 268.59 -204.97 -1.58 -25.08 41.03 -16.53 0.67 0.96 -777.07

I2.4 RATIO − SPRD100D −RSI(14) 3 1 2 156.02 621.1 156.02 1242.2 -1086.19 -10.86 156.02 -828.99 -1.04 -16.51 33.33 -362.09 0.13 0.25 -828.99

I2.5 RATIO − SPRD100D −BB(20) 16 10 6 40.9 55.74 409.01 334.44 74.57 0.75 83.48 -70.04 -2.68 -42.54 62.5 4.66 1.22 0.73 -146.53

I3 RATIO − SPRD100D −DECTREE 287 103 184 29.03 19.99 2990.36 3678.99 -688.63 -6.89 313.53 -82.96 -4.19 -66.51 35.89 -2.4 0.81 1.45 -828.99

I4 RATIO − SPRD100D −MLP 261 89 172 32.75 21.63 2914.56 3719.69 -805.13 -8.05 214.61 -183.49 -3.97 -63.02 34.1 -3.08 0.78 1.51 -1023.74

Part X: Models derived using the close price of VO.N

CLS-SYM-1.1 CLOSEV O.N − SMA(10,20) 15 5 10 407.5 131.94 2037.52 1319.42 718.1 7.18 1345.66 -357.26 -0.07 -1.11 33.33 47.86 1.54 3.09 -888.12

CLS-SYM-1.2 CLOSEV O.N − EMA(10,20) 20 6 14 305.56 123.3 1833.38 1726.2 107.17 1.07 700.63 -218.39 -0.27 -4.29 30 5.36 1.06 2.48 -812.37

CLS-SYM-1.3 CLOSEV O.N −MACD(12,26,9) 30 12 18 235.68 119.41 2828.19 2149.34 678.86 6.79 1213.06 -330.07 -0.19 -3.02 40 22.63 1.32 1.97 -845.26

CLS-SYM-1.4 CLOSEV O.N −RSI(14) 5 2 3 464.59 648.69 929.17 1946.08 -1016.91 -10.17 781.75 -1353.4 -0.35 -5.56 40 -203.38 0.48 0.72 -1353.4

CLS-SYM-1.5 CLOSEV O.N −BB(20) 15 13 2 85.35 600.28 1109.6 1200.56 -90.96 -0.91 190.76 -984.33 -0.29 -4.6 86.67 -6.04 0.92 0.14 -984.33

Part XI: Models derived using the close price of VXUS.N

CLS-SYM-2.1 CLOSEVXUS.N − SMA(10,20) 15 6 9 314.7 147.73 1888.19 1329.58 558.62 5.59 928.16 -483.97 -0.12 -1.9 40 37.24 1.42 2.13 -710.8

CLS-SYM-2.2 CLOSEVXUS.N − EMA(10,20) 23 6 17 500.43 151.67 3002.58 2578.36 424.22 4.24 1067.79 -550.04 -0.15 -2.38 26.09 18.46 1.16 3.3 -1087.54

CLS-SYM-2.3 CLOSEVXUS.N −MACD(12,26,9) 32 11 21 188.51 103.43 2073.65 2171.98 -98.33 -0.98 939.15 -336.67 -0.37 -5.87 34.38 -3.06 0.95 1.82 -1391.6

CLS-SYM-2.4 CLOSEVXUS.N −RSI(14) 6 3 3 309.07 270.45 927.22 811.36 115.86 1.16 384.77 -577.08 -0.16 -2.54 50 19.31 1.14 1.14 -577.08

CLS-SYM-2.5 CLOSEVXUS.N −BB(20) 19 12 7 67.21 145.66 806.56 1019.65 -213.09 -2.13 191.4 -832.35 -0.42 -6.67 63.16 -11.21 0.79 0.46 -832.35
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Table D.2.22: This table presents the back-test metrics for the pair VWO.N/XLE.N based on a 30-day rolling window. The table is subdivided into eleven parts, and in each of these parts, we present the back-test metrics and the trading strategies which use the
spread derived from various models. In Part I, the spread is derived from the DIST V 1.1 model, in Part II from the DIST V 1.2 model, in Part III from the DIST V 2 model, in Part IV from the DIST V 3 model, in Part V from the DIST V 4 model, in Part VI from the
JOHANSEN − SPRD model, in Part VIII from the ADF − SPRD model, in from the DIST V 2 model, in Part VIII from the KALMAN − SPRD model, and in Part IX from the RATIO − SPRD model. In Part X and XI, we present the back-test metrics of
the trading strategies which use the close price of VWO.N, and XLE.N, respectively. All $ numbers reported below are in USD.

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X) (XI) (XII) (XIII) (XIV) (XV) (XVI) (XVII) (XVIII) (XIX) (XX)

Trading
Strategy
Code

Model
Name

Total
Number
of
Trades

Number
of

Winning
Trades

Number
of Loosing
Trades

Average
Profit

per Trade
($)

Average
Loss per
Trade
($)

Gross
Profit
($)

Gross
Loss
($)

Net Profit
($)

ROI (%) Max P&L
($)

Min P&L
($)

Daily
Sharpe
Ratio

Annualized
Sharpe
Ratio

Hit Ratio Expectancy Profit
Factor

Realized
Risk

Reward
Ratio

Max
Drawdown

($)

Part I: Models derived using the spread obtained from DISTV 1.1 − SPRD30D

A1.1 DISTV 1.1 − ZSPRD30D
(3,2) 7 3 4 150.52 124.14 451.57 496.56 -44.99 -0.45 243.09 -338.73 -0.85 -13.49 42.86 -6.42 0.91 1.21 -481.62

A1.2 DISTV 1.1 − ZSPRD30D
(3,1) 5 3 2 472.71 247.17 1418.13 494.35 923.78 9.24 971.96 -338.73 0.07 1.11 60 184.76 2.87 1.91 -338.73

A1.3 DISTV 1.1 − ZSPRD30D
(3,0.5) 5 3 2 392.16 278.29 1176.49 556.59 619.9 6.2 817.16 -338.73 -0.06 -0.95 60 123.98 2.11 1.41 -338.73

A1.4 DISTV 1.1 − ZSPRD30D
(2.7,2) 14 5 9 127.78 128.59 638.92 1157.35 -518.42 -5.18 243.09 -428.48 -1.13 -17.94 35.71 -37.04 0.55 0.99 -715.99

A1.5 DISTV 1.1 − ZSPRD30D
(2.7,1) 12 4 8 438.77 226.88 1755.09 1815.01 -59.91 -0.6 971.96 -435.14 -0.39 -6.19 33.33 -5.02 0.97 1.93 -863.61

A1.6 DISTV 1.1 − ZSPRD30D
(2.7,0.5) 12 5 7 350.62 224.06 1753.11 1568.4 184.71 1.85 817.16 -428.48 -0.39 -6.19 41.67 15.41 1.12 1.56 -657.59

A2.1 DISTV 1.1 − SPRD30D − SMA(10,20) 20 15 5 194.38 426.32 2915.68 2131.62 784.06 7.84 411.98 -1255.4 -0.3 -4.76 75 39.2 1.37 0.46 -1538.4

A2.2 DISTV 1.1 − SPRD30D − EMA(10,20) 27 20 7 145.04 471.82 2900.74 3302.71 -401.98 -4.02 414.96 -1146.37 -0.47 -7.46 74.07 -14.91 0.88 0.31 -2257

A2.3 DISTV 1.1 − SPRD30D −MACD(12,26,9) 37 29 8 156.42 488.72 4536.06 3909.79 626.27 6.26 474.78 -993.95 -0.41 -6.51 78.38 16.94 1.16 0.32 -993.95

A2.4 DISTV 1.1 − SPRD30D −RSI(14) 4 1 3 1213.31 649.77 1213.31 1949.31 -736 -7.36 1213.31 -1267.67 -0.32 -5.08 25 -184 0.62 1.87 -1801.61

A2.5 DISTV 1.1 − SPRD30D −BB(20) 14 4 10 225.16 291.64 900.64 2916.39 -2015.75 -20.16 572.77 -650.1 -0.89 -14.13 28.57 -143.99 0.31 0.77 -2296.48

A3 DISTV 1.1 − SPRD30D −DECTREE 312 165 147 71.3 93.17 11764.34 13695.76 -1931.41 -19.31 495.14 -1065.21 -1.22 -19.37 52.88 -6.2 0.86 0.77 -2221.92

A4 DISTV 1.1 − SPRD30D −MLP 275 159 116 76.48 103.38 12160.32 11992.48 167.83 1.68 830.64 -565.95 -1.16 -18.41 57.82 0.61 1.01 0.74 -1930.33

Part II: Models derived using the spread obtained from DISTV 1.2 − SPRD30D

B1.1 DISTV 1.2 − ZSPRD30D
(3,2) 7 2 5 76.96 64.1 153.92 320.48 -166.57 -1.67 138.83 -98.24 -2.12 -33.65 28.57 -23.8 0.48 1.2 -320.48

B1.2 DISTV 1.2 − ZSPRD30D
(3,1) 7 3 4 54.73 114.05 164.2 456.19 -291.98 -2.92 81.48 -207.19 -1.62 -25.72 42.86 -41.71 0.36 0.48 -385.41

B1.3 DISTV 1.2 − ZSPRD30D
(3,0.5) 7 3 4 54.73 144.52 164.2 578.09 -413.89 -4.14 81.48 -233.1 -1.72 -27.3 42.86 -59.12 0.28 0.38 -507.31

B1.4 DISTV 1.2 − ZSPRD30D
(2.7,2) 15 6 9 117.21 94.72 703.24 852.5 -149.26 -1.49 218.82 -226.93 -1.25 -19.84 40 -9.95 0.82 1.24 -546.09

B1.5 DISTV 1.2 − ZSPRD30D
(2.7,1) 14 8 6 155.68 95.49 1245.41 572.94 672.47 6.72 694.28 -280.45 -0.47 -7.46 57.14 48.03 2.17 1.63 -494.68

B1.6 DISTV 1.2 − ZSPRD30D
(2.7,0.5) 14 7 7 224.76 135.94 1573.32 951.58 621.74 6.22 848.49 -411.12 -0.36 -5.71 50 44.41 1.65 1.65 -806.1

B2.1 DISTV 1.2 − SPRD30D − SMA(10,20) 21 12 9 285.3 236.68 3423.63 2130.12 1293.51 12.94 963.01 -992.39 -0.23 -3.65 57.14 61.58 1.61 1.21 -1199.69

B2.2 DISTV 1.2 − SPRD30D − EMA(10,20) 25 13 12 241.36 261.61 3137.65 3139.28 -1.63 -0.02 1150.76 -778.62 -0.36 -5.71 52 -0.07 1 0.92 -1273.76

B2.3 DISTV 1.2 − SPRD30D −MACD(12,26,9) 32 17 15 191.84 231.9 3261.24 3478.56 -217.32 -2.17 1350.54 -488.88 -0.48 -7.62 53.12 -6.81 0.94 0.83 -1749.33

B2.4 DISTV 1.2 − SPRD30D −RSI(14) 5 3 2 432.76 538.52 1298.28 1077.04 221.25 2.21 1210.36 -781.09 -0.15 -2.38 60 44.25 1.21 0.8 -781.09

B2.5 DISTV 1.2 − SPRD30D −BB(20) 14 10 4 173.07 113.77 1730.66 455.08 1275.59 12.76 590.13 -186.92 -0.27 -4.29 71.43 91.12 3.8 1.52 -222.96

B3 DISTV 1.2 − SPRD30D −DECTREE 314 162 152 101.4 78.5 16426.87 11931.72 4495.14 44.95 797.43 -429.98 -1 -15.87 51.59 14.31 1.38 1.29 -1900.95

B4 DISTV 1.2 − SPRD30D −MLP 220 121 99 123.43 101.49 14935.54 10047.55 4887.99 48.88 983.88 -602.64 -0.77 -12.22 55 22.22 1.49 1.22 -1254.59

Part III: Models derived using the spread obtained from DISTV 2 − SPRD30D

C1.1 DISTV 2 − ZSPRD30D
(3,2) 7 4 3 124.14 150.52 496.56 451.57 44.99 0.45 338.73 -243.09 -0.78 -12.38 57.14 6.42 1.1 0.82 -299.1

C1.2 DISTV 2 − ZSPRD30D
(3,1) 5 2 3 247.17 472.71 494.35 1418.13 -923.78 -9.24 338.73 -971.96 -0.67 -10.64 40 -184.76 0.35 0.52 -1079.4

C1.3 DISTV 2 − ZSPRD30D
(3,0.5) 5 2 3 278.29 392.16 556.59 1176.49 -619.9 -6.2 338.73 -817.16 -0.59 -9.37 40 -123.98 0.47 0.71 -837.75

C1.4 DISTV 2 − ZSPRD30D
(2.7,2) 14 9 5 128.59 127.78 1157.35 638.92 518.42 5.18 428.48 -243.09 -0.69 -10.95 64.29 37.04 1.81 1.01 -299.1

C1.5 DISTV 2 − ZSPRD30D
(2.7,1) 12 8 4 226.88 438.77 1815.01 1755.09 59.91 0.6 435.14 -971.96 -0.37 -5.87 66.67 5.02 1.03 0.52 -971.96

C1.6 DISTV 2 − ZSPRD30D
(2.7,0.5) 12 7 5 224.06 350.62 1568.4 1753.11 -184.71 -1.85 428.48 -817.16 -0.48 -7.62 58.33 -15.41 0.89 0.64 -1095.47

C2.1 DISTV 2 − SPRD30D − SMA(10,20) 20 5 15 426.32 194.38 2131.62 2915.68 -784.06 -7.84 1255.4 -411.98 -0.51 -8.1 25 -39.2 0.73 2.19 -1305

C2.2 DISTV 2 − SPRD30D − EMA(10,20) 27 7 20 471.82 145.04 3302.71 2900.74 401.98 4.02 1146.37 -414.96 -0.39 -6.19 25.93 14.91 1.14 3.25 -1323.02

C2.3 DISTV 2 − SPRD30D −MACD(12,26,9) 37 8 29 488.72 156.42 3909.79 4536.06 -626.27 -6.26 993.95 -474.78 -0.52 -8.25 21.62 -16.94 0.86 3.12 -1233.83

C2.4 DISTV 2 − SPRD30D −RSI(14) 4 3 1 649.77 1213.31 1949.31 1213.31 736 7.36 1267.67 -1213.31 0.03 0.48 75 184 1.61 0.54 -1213.31

C2.5 DISTV 2 − SPRD30D −BB(20) 14 10 4 291.64 225.16 2916.39 900.64 2015.75 20.16 650.1 -572.77 -0.02 -0.32 71.43 143.99 3.24 1.3 -572.77

C3 DISTV 2 − SPRD30D −DECTREE 332 161 171 70.2 89.56 11302.58 15315.06 -4012.48 -40.12 495.14 -776.54 -1.39 -22.07 48.49 -12.09 0.74 0.78 -4712.82

C4 DISTV 2 − SPRD30D −MLP 223 129 94 78.43 101.27 10117.36 9519.68 597.68 5.98 409.19 -666.35 -1.11 -17.62 57.85 2.68 1.06 0.77 -2254.25

Part IV: Models derived using the spread obtained from DISTV 3 − SPRD30D

D1.1 DISTV 3 − ZSPRD30D
(3,2) 6 4 2 141.54 83.73 566.16 167.46 398.7 3.99 274.83 -138.93 -0.61 -9.68 66.67 66.46 3.38 1.69 -138.93

D1.2 DISTV 3 − ZSPRD30D
(3,1) 6 3 3 136.47 228.23 409.42 684.68 -275.27 -2.75 150.02 -569.46 -0.72 -11.43 50 -45.88 0.6 0.6 -606

D1.3 DISTV 3 − ZSPRD30D
(3,0.5) 6 3 3 253.82 259.44 761.47 778.33 -16.86 -0.17 417.7 -569.46 -0.45 -7.14 50 -2.81 0.98 0.98 -699.65

D1.4 DISTV 3 − ZSPRD30D
(2.7,2) 11 8 3 118.91 98.74 951.25 296.21 655.04 6.55 316.1 -138.93 -0.73 -11.59 72.73 59.55 3.21 1.2 -138.93

D1.5 DISTV 3 − ZSPRD30D
(2.7,1) 11 8 3 164.56 290.82 1316.48 872.46 444.02 4.44 316.1 -569.46 -0.45 -7.14 72.73 40.38 1.51 0.57 -569.46

D1.6 DISTV 3 − ZSPRD30D
(2.7,0.5) 11 8 3 218.3 323.7 1746.41 971.1 775.32 7.75 417.7 -569.46 -0.28 -4.44 72.73 70.5 1.8 0.67 -576.31

D2.1 DISTV 3 − SPRD30D − SMA(10,20) 22 5 17 577.6 248.45 2887.99 4223.61 -1335.61 -13.36 1740.81 -1276.21 -0.39 -6.19 22.73 -60.69 0.68 2.32 -2773.62

D2.2 DISTV 3 − SPRD30D − EMA(10,20) 43 9 34 452.85 195.53 4075.69 6647.91 -2572.22 -25.72 836.21 -1320.2 -0.58 -9.21 20.93 -59.82 0.61 2.32 -3061.49

D2.3 DISTV 3 − SPRD30D −MACD(12,26,9) 48 12 36 211.2 169.21 2534.41 6091.69 -3557.28 -35.57 702.55 -730.55 -0.93 -14.76 25 -74.11 0.42 1.25 -4173.66

D2.4 DISTV 3 − SPRD30D −RSI(14) 2 1 1 227.48 2319 227.48 2319 -2091.51 -20.92 227.48 -2319 -0.67 -10.64 50 -1045.76 0.1 0.1 -2319

D2.5 DISTV 3 − SPRD30D −BB(20) 24 17 7 96.26 184.93 1636.46 1294.53 341.94 3.42 202.93 -494.63 -0.82 -13.02 70.83 14.24 1.26 0.52 -618.57

D3 DISTV 3 − SPRD30D −DECTREE 338 164 174 83.74 82.89 13733.32 14422.58 -689.26 -6.89 981.37 -429.05 -1.26 -20 48.52 -2.04 0.95 1.01 -3743.39

D4 DISTV 3 − SPRD30D −MLP 298 127 171 93.18 72.69 11833.54 12430.59 -597.05 -5.97 1062.21 -526.04 -1.09 -17.3 42.62 -2 0.95 1.28 -2730.59

Part V: Models derived using the spread obtained from DISTV 4 − SPRD30D

E1.1 DISTV 4 − ZSPRD30D
(3,2) 6 4 2 141.54 83.73 566.16 167.46 398.7 3.99 274.83 -138.93 -0.61 -9.68 66.67 66.46 3.38 1.69 -138.93

E1.2 DISTV 4 − ZSPRD30D
(3,1) 6 3 3 136.47 228.23 409.42 684.68 -275.27 -2.75 150.02 -569.46 -0.72 -11.43 50 -45.88 0.6 0.6 -606

E1.3 DISTV 4 − ZSPRD30D
(3,0.5) 6 3 3 253.82 259.44 761.47 778.33 -16.86 -0.17 417.7 -569.46 -0.45 -7.14 50 -2.81 0.98 0.98 -699.65

E1.4 DISTV 4 − ZSPRD30D
(2.7,2) 11 8 3 118.91 98.74 951.25 296.21 655.04 6.55 316.1 -138.93 -0.73 -11.59 72.73 59.55 3.21 1.2 -138.93

E1.5 DISTV 4 − ZSPRD30D
(2.7,1) 11 8 3 164.56 290.82 1316.48 872.46 444.02 4.44 316.1 -569.46 -0.45 -7.14 72.73 40.38 1.51 0.57 -569.46

E1.6 DISTV 4 − ZSPRD30D
(2.7,0.5) 11 8 3 218.3 323.7 1746.41 971.1 775.32 7.75 417.7 -569.46 -0.28 -4.44 72.73 70.5 1.8 0.67 -576.31

E2.1 DISTV 4 − SPRD30D − SMA(10,20) 22 4 18 708.68 247.89 2834.71 4462.03 -1627.32 -16.27 1740.81 -1276.21 -0.42 -6.67 18.18 -73.99 0.64 2.86 -3066.25

E2.2 DISTV 4 − SPRD30D − EMA(10,20) 43 9 34 452.85 195.53 4075.69 6647.91 -2572.22 -25.72 836.21 -1320.2 -0.58 -9.21 20.93 -59.82 0.61 2.32 -3061.49

E2.3 DISTV 4 − SPRD30D −MACD(12,26,9) 48 12 36 211.2 169.21 2534.41 6091.69 -3557.28 -35.57 702.55 -730.55 -0.93 -14.76 25 -74.11 0.42 1.25 -4173.66

E2.4 DISTV 4 − SPRD30D −RSI(14) 2 1 1 227.48 2319 227.48 2319 -2091.51 -20.92 227.48 -2319 -0.67 -10.64 50 -1045.76 0.1 0.1 -2319

E2.5 DISTV 4 − SPRD30D −BB(20) 24 17 7 96.26 184.93 1636.46 1294.53 341.94 3.42 202.93 -494.63 -0.82 -13.02 70.83 14.24 1.26 0.52 -618.57

E3 DISTV 4 − SPRD30D −DECTREE 316 146 170 88.52 76.29 12923.65 12970 -46.35 -0.46 595.44 -338.73 -1.32 -20.95 46.2 -0.15 1 1.16 -3004.46

E4 DISTV 4 − SPRD30D −MLP 265 115 150 114.08 81.18 13119.6 12177.64 941.96 9.42 1247.92 -726.55 -0.85 -13.49 43.4 3.56 1.08 1.41 -2899.25

Part VI: Models derived using the spread obtained from JOHANSEN − SPRD30D

F1.1 JOHANSEN − ZSPRD30D
(3,2) 24 10 14 44 497.56 440 6965.79 -6525.79 -65.26 90.78 -5456.16 -0.27 -4.29 41.67 -271.89 0.06 0.09 -6729.23

F1.2 JOHANSEN − ZSPRD30D
(3,1) 21 9 12 58.16 289.79 523.41 3477.48 -2954.08 -29.54 112.36 -2411.92 -0.35 -5.56 42.86 -140.66 0.15 0.2 -3257.39

F1.3 JOHANSEN − ZSPRD30D
(3,0.5) 20 9 11 58.16 284.13 523.41 3125.45 -2602.04 -26.02 112.36 -2048.27 -0.36 -5.71 45 -130.1 0.17 0.2 -2905.35

F1.4 JOHANSEN − ZSPRD30D
(2.7,2) 27 12 15 41.74 689.38 500.89 10340.72 -9839.83 -98.4 90.78 -5456.16 -0.32 -5.08 44.44 -364.47 0.05 0.06 -10042.51

F1.5 JOHANSEN − ZSPRD30D
(2.7,1) 23 11 12 54.48 569.17 599.23 6830.06 -6230.83 -62.31 112.36 -3486.36 -0.4 -6.35 47.83 -270.88 0.09 0.1 -6570.66

F1.6 JOHANSEN − ZSPRD30D
(2.7,0.5) 22 11 11 54.48 588.91 599.23 6478.02 -5878.8 -58.79 112.36 -3486.36 -0.41 -6.51 50 -267.22 0.09 0.09 -6218.63

F2.1 JOHANSEN − SPRD30D − SMA(10,20) 33 19 14 703.85 901.65 13373.09 12623.16 749.92 7.5 6869.33 -6944.93 -0.19 -3.02 57.58 22.79 1.06 0.78 -8287.38

F2.2 JOHANSEN − SPRD30D − EMA(10,20) 36 18 18 830.24 354.08 14944.32 6373.39 8570.93 85.71 7389.51 -1273.58 -0.12 -1.9 50 238.08 2.34 2.34 -2864.52

F2.3 JOHANSEN − SPRD30D −MACD(12,26,9) 40 24 16 510.21 12193.98 12244.95 195103.6 -
182858.65

-1828.59 3486.36 -191555.27 -0.16 -2.54 60 -4571.47 0.06 0.04 -192178.79

F2.4 JOHANSEN − SPRD30D −RSI(14) 6 2 4 391.52 681.22 783.04 2724.88 -1941.84 -19.42 513.94 -1083.69 -0.6 -9.52 33.33 -323.68 0.29 0.57 -2062.31

F2.5 JOHANSEN − SPRD30D −BB(20) 23 6 17 227.87 702.37 1367.22 11940.29 -10573.08 -105.73 493.4 -4300.55 -0.34 -5.4 26.09 -459.67 0.11 0.32 -11208.86

F3 JOHANSEN − SPRD30D −DECTREE 325 148 177 96.37 84.83 14262.17 15014.86 -752.7 -7.53 776.54 -350.69 -1.19 -18.89 45.54 -2.31 0.95 1.14 -2275.77

F4 JOHANSEN − SPRD30D −MLP 236 126 110 96.88 100.04 12206.54 11004.38 1202.17 12.02 649.12 -795.12 -0.97 -15.4 53.39 5.09 1.11 0.97 -2395.9

Part VII: Models derived using the spread obtained from ADF − SPRD30D

G1.1 ADF − ZSPRD30D
(3,2) 8 4 4 98.31 81.85 393.23 327.39 65.84 0.66 197.68 -109.55 -1.28 -20.32 50 8.23 1.2 1.2 -182.37

G1.2 ADF − ZSPRD30D
(3,1) 7 3 4 277.44 214.38 832.31 857.53 -25.22 -0.25 394.19 -497.67 -0.32 -5.08 42.86 -3.59 0.97 1.29 -857.53

G1.3 ADF − ZSPRD30D
(3,0.5) 7 3 4 196.2 226.93 588.6 907.72 -319.12 -3.19 344.19 -372.31 -0.78 -12.38 42.86 -45.58 0.65 0.86 -907.72

G1.4 ADF − ZSPRD30D
(2.7,2) 11 7 4 93.12 92.25 651.86 369 282.86 2.83 197.68 -131.39 -0.99 -15.72 63.64 25.72 1.77 1.01 -131.39

G1.5 ADF − ZSPRD30D
(2.7,1) 10 3 7 364.24 191.72 1092.73 1342.07 -249.34 -2.49 558.04 -497.67 -0.48 -7.62 30 -24.93 0.81 1.9 -1176.46

G1.6 ADF − ZSPRD30D
(2.7,0.5) 10 4 6 439.09 191.78 1756.34 1150.66 605.68 6.06 908.71 -372.31 0.16 2.54 40 60.57 1.53 2.29 -956.34

G2.1 ADF − SPRD30D − SMA(10,20) 23 14 9 330.27 486.78 4623.75 4381.04 242.71 2.43 759.86 -1176.23 -0.13 -2.06 60.87 10.56 1.06 0.68 -1917

G2.2 ADF − SPRD30D − EMA(10,20) 39 27 12 183.03 447.09 4941.68 5365.12 -423.44 -4.23 1399.57 -1148.31 -0.21 -3.33 69.23 -10.86 0.92 0.41 -2428.93

G2.3 ADF − SPRD30D −MACD(12,26,9) 42 29 13 167.15 458.24 4847.27 5957.07 -1109.8 -11.1 682.74 -1372.14 -0.43 -6.83 69.05 -26.41 0.81 0.36 -2955.67

G2.4 ADF − SPRD30D −RSI(14) 3 2 1 1554.13 567.26 3108.27 567.26 2541 25.41 2817.41 -567.26 0.32 5.08 66.67 847.07 5.48 2.74 -567.26

G2.5 ADF − SPRD30D −BB(20) 17 5 12 357.27 1003.08 1786.36 12036.92 -10250.56 -102.51 755.58 -10627.21 0.23 3.65 29.41 -603 0.15 0.36 -11040.62

G3 ADF − SPRD30D −DECTREE 326 157 169 85.06 86.14 13354.76 14557.35 -1202.59 -12.03 787.62 -429.98 -1.26 -20 48.16 -3.69 0.92 0.99 -3152.5

G4 ADF − SPRD30D −MLP 251 126 125 123.96 76.89 15618.61 9611.77 6006.84 60.07 660.34 -429.98 -0.86 -13.65 50.2 23.93 1.62 1.61 -1266.05

Part VIII: Models derived using the spread obtained from KALMAN − SPRD30D

H1.1 KALMAN − ZSPRD30D
(3,2) 7 3 4 97.36 278.65 292.07 1114.61 -822.54 -8.23 150.63 -919.22 -0.75 -11.91 42.86 -117.5 0.26 0.35 -988.09

H1.2 KALMAN − ZSPRD30D
(3,1) 6 2 4 237.78 405.15 475.56 1620.61 -1145.05 -11.45 385.22 -1017.29 -0.7 -11.11 33.33 -190.86 0.29 0.59 -1620.61

H1.3 KALMAN − ZSPRD30D
(3,0.5) 5 3 2 232.54 768.44 697.63 1536.89 -839.26 -8.39 452.85 -1492.87 -0.41 -6.51 60 -167.85 0.45 0.3 -1536.89

H1.4 KALMAN − ZSPRD30D
(2.7,2) 11 5 6 183.38 250.03 916.91 1500.2 -583.29 -5.83 331.9 -991.26 -0.6 -9.52 45.45 -53.05 0.61 0.73 -994.57

H1.5 KALMAN − ZSPRD30D
(2.7,1) 10 5 5 302.9 435.71 1514.5 2178.55 -664.05 -6.64 548.37 -1081.65 -0.43 -6.83 50 -66.4 0.7 0.7 -1473.15

H1.6 KALMAN − ZSPRD30D
(2.7,0.5) 9 6 3 274.42 616.06 1646.49 1848.18 -201.68 -2.02 535.79 -1492.87 -0.29 -4.6 66.67 -22.38 0.89 0.45 -1492.87

H2.1 KALMAN − SPRD30D − SMA(10,20) 15 7 8 625.58 80.27 4379.03 642.16 3736.87 37.37 1458.92 -306.21 0.2 3.17 46.67 249.15 6.82 7.79 -323.6

H2.2 KALMAN − SPRD30D − EMA(10,20) 16 5 11 764.87 217.94 3824.37 2397.38 1426.99 14.27 1334.19 -404.4 -0.12 -1.9 31.25 89.19 1.6 3.51 -876.92

H2.3 KALMAN − SPRD30D −MACD(12,26,9) 32 13 19 336.06 157.8 4368.74 2998.15 1370.59 13.71 1063.65 -541.68 -0.31 -4.92 40.62 42.81 1.46 2.13 -1194.27

H2.4 KALMAN − SPRD30D −RSI(14) 4 1 3 997.09 967.41 997.08 2902.24 -1905.15 -19.05 997.09 -1478.92 -0.58 -9.21 25 -476.29 0.34 1.03 -2902.24

H2.5 KALMAN − SPRD30D −BB(20) 12 7 5 127.02 385.44 889.11 1927.18 -1038.07 -10.38 219.66 -1135.39 -0.7 -11.11 58.33 -86.52 0.46 0.33 -1697.06

H3 KALMAN − SPRD30D −DECTREE 318 197 121 73.48 98.86 14476.07 11961.66 2514.42 25.14 429.98 -1291 -1.04 -16.51 61.95 7.91 1.21 0.74 -1450.86

H4 KALMAN − SPRD30D −MLP 228 135 93 76.16 117.78 10282.13 10953.28 -671.15 -6.71 1080.93 -1248.76 -0.95 -15.08 59.21 -2.94 0.94 0.65 -2881.89

Part IX: Models derived using the spread obtained from RATIO − SPRD30D

I1.1 RATIO − ZSPRD30D
(3,2) 5 3 2 132.33 571.98 396.99 1143.96 -746.96 -7.47 197.18 -1024.58 -0.6 -9.52 60 -149.39 0.35 0.23 -1024.58

I1.2 RATIO − ZSPRD30D
(3,1) 4 3 1 274.37 971.96 823.11 971.96 -148.85 -1.49 409.19 -971.96 -0.3 -4.76 75 -37.21 0.85 0.28 -971.96

I1.3 RATIO − ZSPRD30D
(3,0.5) 4 3 1 300.6 817.16 901.8 817.16 84.64 0.85 409.19 -817.16 -0.23 -3.65 75 21.16 1.1 0.37 -817.16

I1.4 RATIO − ZSPRD30D
(2.7,2) 10 7 3 76.2 390.67 533.38 1172.01 -638.63 -6.39 118.63 -1024.58 -0.63 -10 70 -63.86 0.46 0.2 -1024.58

I1.5 RATIO − ZSPRD30D
(2.7,1) 9 5 4 207.86 439.84 1039.3 1759.34 -720.04 -7.2 338.73 -971.96 -0.56 -8.89 55.56 -79.98 0.59 0.47 -1313.17

I1.6 RATIO − ZSPRD30D
(2.7,0.5) 9 5 4 223.6 363.7 1117.99 1454.8 -336.81 -3.37 338.73 -817.16 -0.51 -8.1 55.56 -37.4 0.77 0.61 -1095.47

I2.1 RATIO − SPRD30D − SMA(10,20) 20 7 13 236.66 215.45 1656.59 2800.88 -1144.28 -11.44 543.12 -436.01 -0.75 -11.91 35 -57.21 0.59 1.1 -1328.45

I2.2 RATIO − SPRD30D − EMA(10,20) 21 8 13 495.73 167.89 3965.85 2182.55 1783.31 17.83 1242 -374.54 -0.16 -2.54 38.1 84.95 1.82 2.95 -975.81

I2.3 RATIO − SPRD30D −MACD(12,26,9) 37 7 30 406.01 184.43 2842.08 5532.84 -2690.76 -26.91 971.96 -529.01 -0.73 -11.59 18.92 -72.72 0.51 2.2 -2978.05

I2.4 RATIO − SPRD30D −RSI(14) 3 2 1 399.54 2389.11 799.08 2389.11 -1590.04 -15.9 571.59 -2389.11 -0.42 -6.67 66.67 -529.92 0.33 0.17 -2389.11

I2.5 RATIO − SPRD30D −BB(20) 14 11 3 201.04 403.41 2211.45 1210.23 1001.22 10.01 644.1 -814.22 -0.23 -3.65 78.57 71.51 1.83 0.5 -814.22

I3 RATIO − SPRD30D −DECTREE 332 138 194 90.91 62.82 12546.02 12186.49 359.53 3.6 565.95 -371.56 -1.32 -20.95 41.57 1.09 1.03 1.45 -2793.18

I4 RATIO − SPRD30D −MLP 283 118 165 103.16 71.94 12173.33 11869.41 303.92 3.04 565.95 -410.93 -1.17 -18.57 41.7 1.08 1.03 1.43 -3457.3

Part X: Models derived using the close price of VWO.N

CLS-SYM-1.1 CLOSEVWO.N − SMA(10,20) 15 6 9 230.99 239.78 1385.96 2158.06 -772.1 -7.72 679.96 -536.93 -0.43 -6.83 40 -51.47 0.64 0.96 -853.38

CLS-SYM-1.2 CLOSEVWO.N − EMA(10,20) 26 6 20 586.9 150.62 3521.39 3012.49 508.9 5.09 1242.77 -650.86 -0.14 -2.22 23.08 19.6 1.17 3.9 -1491.05

CLS-SYM-1.3 CLOSEVWO.N −MACD(12,26,9) 29 11 18 238.08 143.51 2618.9 2583.23 35.67 0.36 884.37 -347.88 -0.3 -4.76 37.93 1.23 1.01 1.66 -1298.22

CLS-SYM-1.4 CLOSEVWO.N −RSI(14) 6 3 3 205.52 522.84 616.55 1568.52 -951.97 -9.52 310.49 -1337.12 -0.39 -6.19 50 -158.66 0.39 0.39 -1337.12

CLS-SYM-1.5 CLOSEVWO.N −BB(20) 17 11 6 70.92 230.58 780.12 1383.47 -603.35 -6.03 100.93 -491.85 -0.63 -10 64.71 -35.48 0.56 0.31 -689.89

Part XI: Models derived using the close price of XLE.N

CLS-SYM-2.1 CLOSEXLE.N − SMA(10,20) 19 9 10 492.93 337.96 4436.4 3379.63 1056.77 10.57 1969.29 -993.26 -0.03 -0.48 47.37 55.63 1.31 1.46 -2390.02

CLS-SYM-2.2 CLOSEXLE.N − EMA(10,20) 26 11 15 546.32 161.14 6009.56 2417.09 3592.47 35.92 2197.81 -326.2 0.12 1.9 42.31 138.19 2.49 3.39 -711.67

CLS-SYM-2.3 CLOSEXLE.N −MACD(12,26,9) 27 10 17 637.2 211.29 6372.04 3591.96 2780.08 27.8 1931.38 -613.01 0.05 0.79 37.04 102.99 1.77 3.02 -645.92

CLS-SYM-2.4 CLOSEXLE.N −RSI(14) 5 3 2 314.75 1213.82 944.26 2427.64 -1483.38 -14.83 365.04 -1229.73 -0.44 -6.98 60 -296.68 0.39 0.26 -2062.6

CLS-SYM-2.5 CLOSEXLE.N −BB(20) 20 17 3 198.62 500.07 3376.55 1500.22 1876.33 18.76 822.47 -1185.85 0.05 0.79 85 93.82 2.25 0.4 -1185.85
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Table D.2.23: This table presents the back-test metrics for the pair VWO.N/XLE.N based on a 50-day rolling window. The table is subdivided into eleven parts, and in each of these parts, we present the back-test metrics and the trading strategies which use the
spread derived from various models. In Part I, the spread is derived from the DIST V 1.1 model, in Part II from the DIST V 1.2 model, in Part III from the DIST V 2 model, in Part IV from the DIST V 3 model, in Part V from the DIST V 4 model, in Part VI from the
JOHANSEN − SPRD model, in Part VIII from the ADF − SPRD model, in from the DIST V 2 model, in Part VIII from the KALMAN − SPRD model, and in Part IX from the RATIO − SPRD model. In Part X and XI, we present the back-test metrics of
the trading strategies which use the close price of VWO.N, and XLE.N, respectively. All $ numbers reported below are in USD.

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X) (XI) (XII) (XIII) (XIV) (XV) (XVI) (XVII) (XVIII) (XIX) (XX)

Trading
Strategy
Code

Model
Name

Total
Number
of
Trades

Number
of

Winning
Trades

Number
of Loosing
Trades

Average
Profit

per Trade
($)

Average
Loss per
Trade
($)

Gross
Profit
($)

Gross
Loss
($)

Net Profit
($)

ROI (%) Max P&L
($)

Min P&L
($)

Daily
Sharpe
Ratio

Annualized
Sharpe
Ratio

Hit Ratio Expectancy Profit
Factor

Realized
Risk

Reward
Ratio

Max
Drawdown

($)

Part I: Models derived using the spread obtained from DISTV 1.1 − SPRD50D

A1.1 DISTV 1.1 − ZSPRD50D
(3,2) 9 4 5 317.46 160.54 1269.86 802.71 467.15 4.67 494.81 -369.05 -0.36 -5.71 44.44 51.88 1.58 1.98 -369.05

A1.2 DISTV 1.1 − ZSPRD50D
(3,1) 8 4 4 132.72 297.4 530.87 1189.61 -658.74 -6.59 331.49 -409.19 -0.89 -14.13 50 -82.34 0.45 0.45 -990.22

A1.3 DISTV 1.1 − ZSPRD50D
(3,0.5) 8 1 7 247 214.79 247 1503.55 -1256.54 -12.57 247 -559.07 -1.24 -19.68 12.5 -157.07 0.16 1.15 -1503.55

A1.4 DISTV 1.1 − ZSPRD50D
(2.7,2) 10 7 3 320.38 57.9 2242.67 173.71 2068.96 20.69 999.81 -96.64 0.16 2.54 70 206.9 12.91 5.53 -173.71

A1.5 DISTV 1.1 − ZSPRD50D
(2.7,1) 9 6 3 266.51 160.99 1599.08 482.96 1116.12 11.16 747.63 -170.75 -0.09 -1.43 66.67 124.03 3.31 1.66 -326.37

A1.6 DISTV 1.1 − ZSPRD50D
(2.7,0.5) 8 3 5 497.41 125.57 1492.23 627.83 864.4 8.64 1058.74 -217.86 -0.11 -1.75 37.5 108.05 2.38 3.96 -408.86

A2.1 DISTV 1.1 − SPRD50D − SMA(10,20) 18 13 5 209.13 426.32 2718.68 2131.62 587.06 5.87 411.98 -1255.4 -0.3 -4.76 72.22 32.6 1.28 0.49 -1538.4

A2.2 DISTV 1.1 − SPRD50D − EMA(10,20) 27 21 6 136.87 545.53 2874.21 3273.16 -398.95 -3.99 414.96 -1146.37 -0.47 -7.46 77.78 -14.76 0.88 0.25 -2257

A2.3 DISTV 1.1 − SPRD50D −MACD(12,26,9) 37 28 9 156.02 448.02 4368.47 4032.14 336.33 3.36 474.78 -993.95 -0.44 -6.98 75.68 9.12 1.08 0.35 -993.95

A2.4 DISTV 1.1 − SPRD50D −RSI(14) 5 2 3 611.82 669.01 1223.63 2007.02 -783.39 -7.83 1209.91 -1267.67 -0.34 -5.4 40 -156.68 0.61 0.91 -1801.61

A2.5 DISTV 1.1 − SPRD50D −BB(20) 14 4 10 225.16 291.64 900.64 2916.39 -2015.75 -20.16 572.77 -650.1 -0.89 -14.13 28.57 -143.99 0.31 0.77 -2296.48

A3 DISTV 1.1 − SPRD50D −DECTREE 291 154 137 74.22 74.96 11429.87 10269.34 1160.54 11.61 420.74 -381.88 -1.37 -21.75 52.92 3.99 1.11 0.99 -1457.67

A4 DISTV 1.1 − SPRD50D −MLP 261 159 102 79.66 108.15 12666.51 11030.94 1635.57 16.36 525.48 -756.98 -1.09 -17.3 60.92 6.27 1.15 0.74 -2847.02

Part II: Models derived using the spread obtained from DISTV 1.2 − SPRD50D

B1.1 DISTV 1.2 − ZSPRD50D
(3,2) 8 3 5 396.97 93.93 1190.91 469.67 721.24 7.21 591.99 -132.92 -0.22 -3.49 37.5 90.16 2.54 4.23 -246.18

B1.2 DISTV 1.2 − ZSPRD50D
(3,1) 8 6 2 271.72 1064.55 1630.32 2129.1 -498.78 -4.99 448.04 -1179 -0.33 -5.24 75 -62.35 0.77 0.26 -1234.61

B1.3 DISTV 1.2 − ZSPRD50D
(3,0.5) 8 6 2 301.32 1094.58 1807.92 2189.16 -381.24 -3.81 644.1 -1206.14 -0.29 -4.6 75 -47.66 0.83 0.28 -1206.14

B1.4 DISTV 1.2 − ZSPRD50D
(2.7,2) 12 6 6 201.48 78.72 1208.89 472.35 736.54 7.37 591.99 -132.92 -0.41 -6.51 50 61.38 2.56 2.56 -246.18

B1.5 DISTV 1.2 − ZSPRD50D
(2.7,1) 11 8 3 211.54 722.88 1692.31 2168.65 -476.34 -4.76 448.04 -1179 -0.37 -5.87 72.73 -43.28 0.78 0.29 -1326.09

B1.6 DISTV 1.2 − ZSPRD50D
(2.7,0.5) 11 9 2 207.46 1094.58 1867.12 2189.16 -322.04 -3.22 644.1 -1206.14 -0.32 -5.08 81.82 -29.25 0.85 0.19 -1206.14

B2.1 DISTV 1.2 − SPRD50D − SMA(10,20) 22 14 8 341.78 299.56 4784.88 2396.5 2388.38 23.88 1121.35 -734.3 -0.1 -1.59 63.64 108.59 2 1.14 -1205.24

B2.2 DISTV 1.2 − SPRD50D − EMA(10,20) 28 16 12 312.29 222.54 4996.68 2670.54 2326.14 23.26 1698.66 -821.18 -0.14 -2.22 57.14 83.06 1.87 1.4 -962.76

B2.3 DISTV 1.2 − SPRD50D −MACD(12,26,9) 29 13 16 280.97 215.55 3652.63 3448.87 203.76 2.04 1945.91 -510.19 -0.33 -5.24 44.83 7.04 1.06 1.3 -1726.42

B2.4 DISTV 1.2 − SPRD50D −RSI(14) 6 3 3 741.82 869.48 2225.46 2608.45 -382.99 -3.83 1220.09 -1734.88 -0.2 -3.17 50 -63.83 0.85 0.85 -1734.88

B2.5 DISTV 1.2 − SPRD50D −BB(20) 14 7 7 319.26 67.74 2234.83 474.2 1760.62 17.61 1257.81 -188.02 -0.07 -1.11 50 125.76 4.71 4.71 -262.7

B3 DISTV 1.2 − SPRD50D −DECTREE 288 146 142 103.84 74.31 15160.22 10552.14 4608.08 46.08 756.98 -435.05 -0.99 -15.72 50.69 15.99 1.44 1.4 -1636.5

B4 DISTV 1.2 − SPRD50D −MLP 222 126 96 95.38 94.46 12018.23 9068.1 2950.13 29.5 444.59 -777.03 -0.94 -14.92 56.76 13.3 1.33 1.01 -1345.55

Part III: Models derived using the spread obtained from DISTV 2 − SPRD50D

C1.1 DISTV 2 − ZSPRD50D
(3,2) 9 5 4 160.54 317.46 802.71 1269.86 -467.15 -4.67 369.05 -494.81 -0.73 -11.59 55.56 -51.88 0.63 0.51 -703.63

C1.2 DISTV 2 − ZSPRD50D
(3,1) 8 4 4 297.4 132.72 1189.61 530.87 658.74 6.59 409.19 -331.49 -0.27 -4.29 50 82.34 2.24 2.24 -331.49

C1.3 DISTV 2 − ZSPRD50D
(3,0.5) 8 7 1 214.79 247 1503.55 247 1256.54 12.57 559.07 -247 0.02 0.32 87.5 157.07 6.09 0.87 -247

C1.4 DISTV 2 − ZSPRD50D
(2.7,2) 10 3 7 57.9 320.38 173.71 2242.67 -2068.96 -20.69 96.64 -999.81 -1.06 -16.83 30 -206.9 0.08 0.18 -2242.67

C1.5 DISTV 2 − ZSPRD50D
(2.7,1) 9 3 6 160.99 266.51 482.96 1599.08 -1116.12 -11.16 170.75 -747.63 -0.93 -14.76 33.33 -124.03 0.3 0.6 -1442.49

C1.6 DISTV 2 − ZSPRD50D
(2.7,0.5) 8 5 3 125.57 497.41 627.83 1492.23 -864.4 -8.64 217.86 -1058.74 -0.62 -9.84 62.5 -108.05 0.42 0.25 -1273.26

C2.1 DISTV 2 − SPRD50D − SMA(10,20) 19 5 14 426.32 199.96 2131.62 2799.42 -667.8 -6.68 1255.4 -411.98 -0.48 -7.62 26.32 -35.12 0.76 2.13 -1305

C2.2 DISTV 2 − SPRD50D − EMA(10,20) 27 6 21 545.53 136.87 3273.16 2874.21 398.95 3.99 1146.37 -414.96 -0.39 -6.19 22.22 14.76 1.14 3.99 -1326.04

C2.3 DISTV 2 − SPRD50D −MACD(12,26,9) 37 9 28 448.02 156.02 4032.14 4368.47 -336.33 -3.36 993.95 -474.78 -0.49 -7.78 24.32 -9.12 0.92 2.87 -1233.83

C2.4 DISTV 2 − SPRD50D −RSI(14) 5 3 2 669.01 611.82 2007.02 1223.63 783.39 7.83 1267.67 -1209.91 0.01 0.16 60 156.68 1.64 1.09 -1209.91

C2.5 DISTV 2 − SPRD50D −BB(20) 14 10 4 291.64 225.16 2916.39 900.64 2015.75 20.16 650.1 -572.77 -0.02 -0.32 71.43 143.99 3.24 1.3 -572.77

C3 DISTV 2 − SPRD50D −DECTREE 305 150 155 90.02 93.34 13503.73 14467.65 -963.92 -9.64 535.17 -776.54 -1.14 -18.1 49.18 -3.16 0.93 0.96 -3078.24

C4 DISTV 2 − SPRD50D −MLP 210 120 90 91.15 98.08 10938.17 8827.16 2111.01 21.11 535.17 -604.47 -1.02 -16.19 57.14 10.05 1.24 0.93 -1433.83

Part IV: Models derived using the spread obtained from DISTV 3 − SPRD50D

D1.1 DISTV 3 − ZSPRD50D
(3,2) 5 2 3 249.44 287.92 498.89 863.76 -364.87 -3.65 417.7 -555.01 -0.63 -10 40 -72.97 0.58 0.87 -863.76

D1.2 DISTV 3 − ZSPRD50D
(3,1) 5 3 2 272.96 328.13 818.89 656.27 162.62 1.63 635.07 -427.57 -0.3 -4.76 60 32.52 1.25 0.83 -656.27

D1.3 DISTV 3 − ZSPRD50D
(3,0.5) 5 3 2 272.58 263.76 817.74 527.51 290.23 2.9 635.07 -274.03 -0.25 -3.97 60 58.05 1.55 1.03 -527.51

D1.4 DISTV 3 − ZSPRD50D
(2.7,2) 10 5 5 154.42 227.2 772.09 1136 -363.91 -3.64 417.7 -555.01 -0.71 -11.27 50 -36.39 0.68 0.68 -1056.64

D1.5 DISTV 3 − ZSPRD50D
(2.7,1) 9 4 5 267.21 219.89 1068.84 1099.43 -30.59 -0.31 635.07 -427.57 -0.48 -7.62 44.44 -3.42 0.97 1.22 -1034.27

D1.6 DISTV 3 − ZSPRD50D
(2.7,0.5) 9 4 5 285.76 217.91 1143.04 1089.54 53.5 0.53 635.07 -364.43 -0.46 -7.3 44.44 5.92 1.05 1.31 -1024.38

D2.1 DISTV 3 − SPRD50D − SMA(10,20) 22 4 18 827.67 282.65 3310.67 5087.67 -1777 -17.77 1970.85 -1043.1 -0.4 -6.35 18.18 -80.79 0.65 2.93 -2145.44

D2.2 DISTV 3 − SPRD50D − EMA(10,20) 45 10 35 370.91 204.3 3709.08 7150.66 -3441.58 -34.42 924.93 -1217.39 -0.68 -10.79 22.22 -76.49 0.52 1.82 -3983.94

D2.3 DISTV 3 − SPRD50D −MACD(12,26,9) 38 8 30 113.32 178.47 906.52 5354.07 -4447.55 -44.48 280.9 -659.47 -1.46 -23.18 21.05 -117.05 0.17 0.63 -4369.96

D2.4 DISTV 3 − SPRD50D −RSI(14) 5 2 3 221.16 676.03 442.32 2028.08 -1585.76 -15.86 435.16 -1012.49 -0.72 -11.43 40 -317.15 0.22 0.33 -2014.35

D2.5 DISTV 3 − SPRD50D −BB(20) 19 16 3 252.64 485.29 4042.32 1455.88 2586.44 25.86 1073.22 -1083.96 -0.04 -0.63 84.21 136.12 2.78 0.52 -1083.96

D3 DISTV 3 − SPRD50D −DECTREE 325 154 171 66.68 77.56 10268.09 13262 -2993.9 -29.94 414.08 -436.03 -1.58 -25.08 47.38 -9.22 0.77 0.86 -5235.91

D4 DISTV 3 − SPRD50D −MLP 252 106 146 120.91 85.75 12816.53 12519.73 296.8 2.97 827.73 -756.98 -0.91 -14.45 42.06 1.17 1.02 1.41 -2999.97

Part V: Models derived using the spread obtained from DISTV 4 − SPRD50D

E1.1 DISTV 4 − ZSPRD50D
(3,2) 5 2 3 249.44 287.92 498.89 863.76 -364.87 -3.65 417.7 -555.01 -0.63 -10 40 -72.97 0.58 0.87 -863.76

E1.2 DISTV 4 − ZSPRD50D
(3,1) 5 3 2 272.96 328.13 818.89 656.27 162.62 1.63 635.07 -427.57 -0.3 -4.76 60 32.52 1.25 0.83 -656.27

E1.3 DISTV 4 − ZSPRD50D
(3,0.5) 5 3 2 272.58 263.76 817.74 527.51 290.23 2.9 635.07 -274.03 -0.25 -3.97 60 58.05 1.55 1.03 -527.51

E1.4 DISTV 4 − ZSPRD50D
(2.7,2) 10 5 5 154.42 227.2 772.09 1136 -363.91 -3.64 417.7 -555.01 -0.71 -11.27 50 -36.39 0.68 0.68 -1056.64

E1.5 DISTV 4 − ZSPRD50D
(2.7,1) 9 4 5 267.21 219.89 1068.84 1099.43 -30.59 -0.31 635.07 -427.57 -0.48 -7.62 44.44 -3.42 0.97 1.22 -1034.27

E1.6 DISTV 4 − ZSPRD50D
(2.7,0.5) 9 4 5 285.76 217.91 1143.04 1089.54 53.5 0.53 635.07 -364.43 -0.46 -7.3 44.44 5.92 1.05 1.31 -1024.38

E2.1 DISTV 4 − SPRD50D − SMA(10,20) 21 4 17 827.67 294.52 3310.67 5006.82 -1696.14 -16.96 1970.85 -1043.1 -0.39 -6.19 19.05 -80.74 0.66 2.81 -2154.47

E2.2 DISTV 4 − SPRD50D − EMA(10,20) 45 10 35 370.91 204.3 3709.08 7150.66 -3441.58 -34.42 924.93 -1217.39 -0.68 -10.79 22.22 -76.49 0.52 1.82 -3983.94

E2.3 DISTV 4 − SPRD50D −MACD(12,26,9) 38 8 30 113.32 178.47 906.52 5354.07 -4447.55 -44.48 280.9 -659.47 -1.46 -23.18 21.05 -117.05 0.17 0.63 -4369.96

E2.4 DISTV 4 − SPRD50D −RSI(14) 5 2 3 221.16 676.03 442.32 2028.08 -1585.76 -15.86 435.16 -1012.49 -0.72 -11.43 40 -317.15 0.22 0.33 -2014.35

E2.5 DISTV 4 − SPRD50D −BB(20) 19 16 3 252.64 485.29 4042.32 1455.88 2586.44 25.86 1073.22 -1083.96 -0.04 -0.63 84.21 136.12 2.78 0.52 -1083.96

E3 DISTV 4 − SPRD50D −DECTREE 319 139 180 75.45 87.45 10487.26 15740.83 -5253.57 -52.54 471.16 -565.95 -1.41 -22.38 43.57 -16.47 0.67 0.86 -7216.1

E4 DISTV 4 − SPRD50D −MLP 229 98 131 122.6 93.7 12014.35 12274.56 -260.21 -2.6 827.09 -745.34 -0.86 -13.65 42.79 -1.15 0.98 1.31 -2878.36

Part VI: Models derived using the spread obtained from JOHANSEN − SPRD50D

F1.1 JOHANSEN − ZSPRD50D
(3,2) 17 8 9 42.01 179.34 336.08 1614.03 -1277.95 -12.78 120.07 -749.65 -0.25 -3.97 47.06 -75.17 0.21 0.23 -1430.91

F1.2 JOHANSEN − ZSPRD50D
(3,1) 15 6 9 177.87 197.98 1067.2 1781.78 -714.58 -7.15 686.56 -749.65 0.22 3.49 40 -47.64 0.6 0.9 -1279.15

F1.3 JOHANSEN − ZSPRD50D
(3,0.5) 15 7 8 186.83 243.56 1307.82 1948.5 -640.68 -6.41 778.04 -749.65 0.23 3.65 46.67 -42.7 0.67 0.77 -1279.15

F1.4 JOHANSEN − ZSPRD50D
(2.7,2) 17 8 9 43.52 178.68 348.18 1608.13 -1259.95 -12.6 120.07 -749.65 -0.44 -6.98 47.06 -74.11 0.22 0.24 -1412.91

F1.5 JOHANSEN − ZSPRD50D
(2.7,1) 15 6 9 190.9 197.32 1145.39 1775.88 -630.48 -6.3 764.75 -749.65 0.08 1.27 40 -42.03 0.64 0.97 -1273.25

F1.6 JOHANSEN − ZSPRD50D
(2.7,0.5) 15 7 8 199.79 242.82 1398.56 1942.6 -544.03 -5.44 868.78 -749.65 0.11 1.75 46.67 -36.25 0.72 0.82 -1273.25

F2.1 JOHANSEN − SPRD50D − SMA(10,20) 20 9 11 2737.83 512.08 24640.45 5632.83 19007.62 190.08 14057 -1926.9 0.26 4.13 45 950.38 4.37 5.35 -3657.62

F2.2 JOHANSEN − SPRD50D − EMA(10,20) 33 16 17 2882.5 603.03 46119.96 10251.45 35868.51 358.69 38418.19 -2264.55 0.06 0.95 48.48 1086.76 4.5 4.78 -4513.69

F2.3 JOHANSEN − SPRD50D −MACD(12,26,9) 33 17 16 1546.28 530.05 26286.75 8480.81 17805.94 178.06 12641.89 -2215.91 0.1 1.59 51.52 539.67 3.1 2.92 -3902.46

F2.4 JOHANSEN − SPRD50D −RSI(14) 8 3 5 346.81 1735.64 1040.44 8678.19 -7637.75 -76.38 608.83 -5946.02 -0.28 -4.44 37.5 -954.72 0.12 0.2 -8010.5

F2.5 JOHANSEN − SPRD50D −BB(20) 15 8 7 738.64 16100.04 5909.16 112700.3 -
106791.14

-1067.91 3350.16 -105357.19 -0.2 -3.17 53.33 -7119.97 0.05 0.05 -111537.46

F3 JOHANSEN − SPRD50D −DECTREE 316 176 140 71.42 105.86 12569.2 14820.84 -2251.64 -22.52 362.12 -839.77 -1.2 -19.05 55.7 -7.12 0.85 0.67 -3230.06

F4 JOHANSEN − SPRD50D −MLP 265 136 129 99.19 97.9 13489.73 12628.5 861.24 8.61 675.91 -525.98 -1.06 -16.83 51.32 3.25 1.07 1.01 -1551.5

Part VII: Models derived using the spread obtained from ADF − SPRD50D

G1.1 ADF − ZSPRD50D
(3,2) 9 4 5 177.2 307.98 708.81 1539.91 -831.1 -8.31 325.94 -1108.22 -0.44 -6.98 44.44 -92.37 0.46 0.58 -1214.79

G1.2 ADF − ZSPRD50D
(3,1) 8 2 6 248.26 531.65 496.52 3189.91 -2693.39 -26.93 420.41 -2016.56 -0.48 -7.62 25 -336.67 0.16 0.47 -2693.39

G1.3 ADF − ZSPRD50D
(3,0.5) 8 2 6 144.72 609.89 289.44 3659.35 -3369.92 -33.7 213.32 -2439.01 -0.5 -7.94 25 -421.24 0.08 0.24 -3369.92

G1.4 ADF − ZSPRD50D
(2.7,2) 10 3 7 221.43 339.53 664.3 2376.7 -1712.4 -17.12 574.58 -1108.22 -0.64 -10.16 30 -171.24 0.28 0.65 -2311.79

G1.5 ADF − ZSPRD50D
(2.7,1) 9 1 8 324.79 1082.17 324.79 8657.34 -8332.55 -83.33 324.79 -5394.77 -0.5 -7.94 11.11 -925.85 0.04 0.3 -8469.97

G1.6 ADF − ZSPRD50D
(2.7,0.5) 9 1 8 324.79 1219.78 324.79 9758.2 -9433.41 -94.33 324.79 -5806.04 -0.52 -8.25 11.11 -1048.17 0.03 0.27 -9570.83

G2.1 ADF − SPRD50D − SMA(10,20) 16 11 5 1270.28 368.98 13973.12 1844.88 12128.23 121.28 11196.9 -803.26 0.23 3.65 68.75 758.01 7.57 3.44 -1119.66

G2.2 ADF − SPRD50D − EMA(10,20) 29 20 9 306.95 787.29 6138.91 7085.64 -946.73 -9.47 1633.56 -3124.56 -0.25 -3.97 68.97 -32.6 0.87 0.39 -5662.6

G2.3 ADF − SPRD50D −MACD(12,26,9) 29 17 12 190.41 493.1 3236.9 5917.25 -2680.35 -26.8 1212.03 -1465.43 -0.54 -8.57 58.62 -92.43 0.55 0.39 -5222.71

G2.4 ADF − SPRD50D −RSI(14) 3 3 - 1872.89 - 5618.68 - 5618.68 56.19 3084.41 - 1.92 30.48 100 1872.89 5618.68 1872.89 -

G2.5 ADF − SPRD50D −BB(20) 16 4 12 615.74 240.58 2462.98 2886.93 -423.95 -4.24 1180.75 -1443.16 -0.29 -4.6 25 -26.5 0.85 2.56 -1957.39

G3 ADF − SPRD50D −DECTREE 331 160 171 83.38 81.78 13341.18 13984.43 -643.26 -6.43 571.13 -387.7 -1.33 -21.11 48.34 -1.94 0.95 1.02 -2792.54

G4 ADF − SPRD50D −MLP 246 104 142 124.03 84.75 12898.8 12034.56 864.24 8.64 748.82 -429.16 -0.93 -14.76 42.28 3.52 1.07 1.46 -1948.39

Part VIII: Models derived using the spread obtained from KALMAN − SPRD50D

H1.1 KALMAN − ZSPRD50D
(3,2) 8 4 4 102.38 344.04 409.51 1376.15 -966.64 -9.67 130.46 -575.45 -1.04 -16.51 50 -120.83 0.3 0.3 -1376.15

H1.2 KALMAN − ZSPRD50D
(3,1) 6 3 3 175.88 665.79 527.64 1997.38 -1469.74 -14.7 224.48 -1463.16 -0.69 -10.95 50 -244.96 0.26 0.26 -1997.38

H1.3 KALMAN − ZSPRD50D
(3,0.5) 6 3 3 212.8 595.93 638.41 1787.79 -1149.38 -11.49 272.29 -1314.83 -0.65 -10.32 50 -191.56 0.36 0.36 -1787.79

H1.4 KALMAN − ZSPRD50D
(2.7,2) 12 6 6 121.03 268.54 726.21 1611.27 -885.06 -8.85 216.7 -575.45 -0.92 -14.6 50 -73.75 0.45 0.45 -1243.9

H1.5 KALMAN − ZSPRD50D
(2.7,1) 9 5 4 236.5 519.44 1182.52 2077.76 -895.23 -8.95 385.18 -1463.16 -0.48 -7.62 55.56 -99.44 0.57 0.46 -1755.39

H1.6 KALMAN − ZSPRD50D
(2.7,0.5) 9 5 4 256.62 466.82 1283.1 1867.28 -584.18 -5.84 385.18 -1314.83 -0.45 -7.14 55.56 -64.88 0.69 0.55 -1628.18

H2.1 KALMAN − SPRD50D − SMA(10,20) 17 5 12 978.25 160.5 4891.24 1926 2965.24 29.65 1467.68 -396.68 0.05 0.79 29.41 174.41 2.54 6.1 -1051.7

H2.2 KALMAN − SPRD50D − EMA(10,20) 26 7 19 633.6 160.92 4435.19 3057.49 1377.7 13.78 1455.66 -404.81 -0.23 -3.65 26.92 52.96 1.45 3.94 -1169.06

H2.3 KALMAN − SPRD50D −MACD(12,26,9) 29 7 22 413.32 245.48 2893.24 5400.55 -2507.32 -25.07 1140.47 -789.49 -0.55 -8.73 24.14 -86.45 0.54 1.68 -3062.34

H2.4 KALMAN − SPRD50D −RSI(14) 1 - 1 - 2457.54 - 2457.54 -2457.54 -24.58 - -2457.54 - - - -2457.54 - - -2457.54

H2.5 KALMAN − SPRD50D −BB(20) 10 5 5 165.09 732.44 825.43 3662.2 -2836.77 -28.37 424.51 -1535.4 -0.72 -11.43 50 -283.68 0.23 0.23 -3182.44

H3 KALMAN − SPRD50D −DECTREE 291 166 125 71.51 89.69 11870.06 11211.82 658.23 6.58 429.98 -769.57 -1.24 -19.68 57.04 2.25 1.06 0.8 -1784.19

H4 KALMAN − SPRD50D −MLP 223 122 101 76.03 87.27 9276.11 8814.21 461.89 4.62 459.76 -583.16 -1.19 -18.89 54.71 2.07 1.05 0.87 -1974.36

Part IX: Models derived using the spread obtained from RATIO − SPRD50D

I1.1 RATIO − ZSPRD50D
(3,2) 10 5 5 132.86 368.16 664.29 1840.81 -1176.52 -11.77 197.18 -986.4 -0.76 -12.06 50 -117.65 0.36 0.36 -1472.23

I1.2 RATIO − ZSPRD50D
(3,1) 8 4 4 234.79 356.23 939.17 1424.92 -485.75 -4.86 409.19 -787.27 -0.55 -8.73 50 -60.72 0.66 0.66 -1065.59

I1.3 RATIO − ZSPRD50D
(3,0.5) 7 5 2 249.22 648.87 1246.11 1297.73 -51.63 -0.52 409.19 -1050.73 -0.31 -4.92 71.43 -7.36 0.96 0.38 -1050.73

I1.4 RATIO − ZSPRD50D
(2.7,2) 13 6 7 101.81 322.83 610.85 2259.8 -1648.95 -16.49 187.97 -1002.74 -0.84 -13.33 46.15 -126.86 0.27 0.32 -2071.83

I1.5 RATIO − ZSPRD50D
(2.7,1) 10 4 6 148.53 366.85 594.11 2201.1 -1606.99 -16.07 197.65 -817.16 -0.96 -15.24 40 -160.7 0.27 0.4 -2044.51

I1.6 RATIO − ZSPRD50D
(2.7,0.5) 9 5 4 153.46 430.87 767.31 1723.47 -956.16 -9.56 232.84 -1050.73 -0.64 -10.16 55.56 -106.21 0.45 0.36 -1507.56

I2.1 RATIO − SPRD50D − SMA(10,20) 19 7 12 236.66 229.06 1656.59 2748.67 -1092.08 -10.92 543.12 -436.01 -0.73 -11.59 36.84 -57.49 0.6 1.03 -1276.25

I2.2 RATIO − SPRD50D − EMA(10,20) 21 7 14 548.31 173.87 3838.14 2434.16 1403.98 14.04 1242 -374.54 -0.2 -3.17 33.33 66.83 1.58 3.15 -1227.42

I2.3 RATIO − SPRD50D −MACD(12,26,9) 37 7 30 406.01 196.36 2842.08 5890.94 -3048.86 -30.49 971.96 -529.01 -0.75 -11.91 18.92 -82.4 0.48 2.07 -3303.46

I2.4 RATIO − SPRD50D −RSI(14) 4 2 2 365.81 1088.32 731.61 2176.64 -1445.04 -14.45 571.59 -2162.92 -0.42 -6.67 50 -361.26 0.34 0.34 -2162.92

I2.5 RATIO − SPRD50D −BB(20) 14 11 3 196.85 403.41 2165.39 1210.23 955.17 9.55 644.1 -814.22 -0.24 -3.81 78.57 68.22 1.79 0.49 -814.22

I3 RATIO − SPRD50D −DECTREE 293 125 168 85.68 63.93 10709.95 10740.37 -30.42 -0.3 514.22 -315.15 -1.45 -23.02 42.66 -0.11 1 1.34 -2389.53

I4 RATIO − SPRD50D −MLP 277 111 166 102.05 64.88 11328.05 10769.82 558.22 5.58 514.22 -315.15 -1.3 -20.64 40.07 2.01 1.05 1.57 -2333.61

Part X: Models derived using the close price of VWO.N

CLS-SYM-1.1 CLOSEVWO.N − SMA(10,20) 15 6 9 230.99 239.78 1385.96 2158.06 -772.1 -7.72 679.96 -536.93 -0.43 -6.83 40 -51.47 0.64 0.96 -853.38

CLS-SYM-1.2 CLOSEVWO.N − EMA(10,20) 26 6 20 586.9 150.62 3521.39 3012.49 508.9 5.09 1242.77 -650.86 -0.14 -2.22 23.08 19.6 1.17 3.9 -1491.05

CLS-SYM-1.3 CLOSEVWO.N −MACD(12,26,9) 29 11 18 238.08 143.51 2618.9 2583.23 35.67 0.36 884.37 -347.88 -0.3 -4.76 37.93 1.23 1.01 1.66 -1298.22

CLS-SYM-1.4 CLOSEVWO.N −RSI(14) 6 3 3 205.52 522.84 616.55 1568.52 -951.97 -9.52 310.49 -1337.12 -0.39 -6.19 50 -158.66 0.39 0.39 -1337.12

CLS-SYM-1.5 CLOSEVWO.N −BB(20) 17 11 6 70.92 230.58 780.12 1383.47 -603.35 -6.03 100.93 -491.85 -0.63 -10 64.71 -35.48 0.56 0.31 -689.89

Part XI: Models derived using the close price of XLE.N

CLS-SYM-2.1 CLOSEXLE.N − SMA(10,20) 19 9 10 492.93 337.96 4436.4 3379.63 1056.77 10.57 1969.29 -993.26 -0.03 -0.48 47.37 55.63 1.31 1.46 -2390.02

CLS-SYM-2.2 CLOSEXLE.N − EMA(10,20) 26 11 15 546.32 161.14 6009.56 2417.09 3592.47 35.92 2197.81 -326.2 0.12 1.9 42.31 138.19 2.49 3.39 -711.67

CLS-SYM-2.3 CLOSEXLE.N −MACD(12,26,9) 27 10 17 637.2 211.29 6372.04 3591.96 2780.08 27.8 1931.38 -613.01 0.05 0.79 37.04 102.99 1.77 3.02 -645.92

CLS-SYM-2.4 CLOSEXLE.N −RSI(14) 5 3 2 314.75 1213.82 944.26 2427.64 -1483.38 -14.83 365.04 -1229.73 -0.44 -6.98 60 -296.68 0.39 0.26 -2062.6

CLS-SYM-2.5 CLOSEXLE.N −BB(20) 20 17 3 198.62 500.07 3376.55 1500.22 1876.33 18.76 822.47 -1185.85 0.05 0.79 85 93.82 2.25 0.4 -1185.85
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Table D.2.24: This table presents the back-test metrics for the pair VWO.N/XLE.N based on a 100-day rolling window. The table is subdivided into eleven parts, and in each of these parts, we present the back-test metrics and the trading strategies which use the
spread derived from various models. In Part I, the spread is derived from the DIST V 1.1 model, in Part II from the DIST V 1.2 model, in Part III from the DIST V 2 model, in Part IV from the DIST V 3 model, in Part V from the DIST V 4 model, in Part VI from the
JOHANSEN − SPRD model, in Part VIII from the ADF − SPRD model, in from the DIST V 2 model, in Part VIII from the KALMAN − SPRD model, and in Part IX from the RATIO − SPRD model. In Part X and XI, we present the back-test metrics of
the trading strategies which use the close price of VWO.N, and XLE.N, respectively. All $ numbers reported below are in USD.

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X) (XI) (XII) (XIII) (XIV) (XV) (XVI) (XVII) (XVIII) (XIX) (XX)
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Part I: Models derived using the spread obtained from DISTV 1.1 − SPRD100D

A1.1 DISTV 1.1 − ZSPRD100D
(3,2) 4 2 2 579.2 114.02 1158.41 228.05 930.36 9.3 965.26 -120.27 0.16 2.54 50 232.59 5.08 5.08 -228.05

A1.2 DISTV 1.1 − ZSPRD100D
(3,1) 3 1 2 783.36 78.24 783.36 156.48 626.89 6.27 783.36 -98.54 0.11 1.75 33.33 208.93 5.01 10.01 -98.54

A1.3 DISTV 1.1 − ZSPRD100D
(3,0.5) 3 1 2 539.59 145.51 539.59 291.01 248.58 2.49 539.59 -192.47 -0.17 -2.7 33.33 82.84 1.85 3.71 -192.47

A1.4 DISTV 1.1 − ZSPRD100D
(2.7,2) 6 4 2 353.57 72.11 1414.29 144.22 1270.07 12.7 1077.67 -96.64 0.14 2.22 66.67 211.69 9.81 4.9 -96.64

A1.5 DISTV 1.1 − ZSPRD100D
(2.7,1) 4 1 3 934.6 113.68 934.6 341.04 593.56 5.94 934.6 -209.18 -0.01 -0.16 25 148.39 2.74 8.22 -267.12

A1.6 DISTV 1.1 − ZSPRD100D
(2.7,0.5) 3 1 2 711.73 133.2 711.73 266.4 445.33 4.45 711.73 -192.47 -0.01 -0.16 33.33 148.42 2.67 5.34 -192.47

A2.1 DISTV 1.1 − SPRD100D − SMA(10,20) 16 10 6 203.58 370.07 2035.85 2220.42 -184.57 -1.85 411.98 -1255.4 -0.4 -6.35 62.5 -11.54 0.92 0.55 -1593.91

A2.2 DISTV 1.1 − SPRD100D − EMA(10,20) 25 19 6 120.63 545.53 2291.89 3273.16 -981.27 -9.81 414.96 -1146.37 -0.54 -8.57 76 -39.25 0.7 0.22 -2257

A2.3 DISTV 1.1 − SPRD100D −MACD(12,26,9) 35 27 8 164.11 484.48 4430.91 3875.85 555.06 5.55 474.78 -993.95 -0.41 -6.51 77.14 15.84 1.14 0.34 -993.95

A2.4 DISTV 1.1 − SPRD100D −RSI(14) 3 1 2 1456.32 900.8 1456.32 1801.61 -345.29 -3.45 1456.32 -1267.67 -0.19 -3.02 33.33 -115.18 0.81 1.62 -1801.61

A2.5 DISTV 1.1 − SPRD100D −BB(20) 13 4 9 225.16 318.81 900.64 2869.25 -1968.61 -19.69 572.77 -650.1 -0.88 -13.97 30.77 -151.43 0.31 0.71 -2296.48

A3 DISTV 1.1 − SPRD100D −DECTREE 287 161 126 78.32 88.23 12610.18 11117.18 1493 14.93 390.54 -540.62 -1.28 -20.32 56.1 5.21 1.13 0.89 -1524.94

A4 DISTV 1.1 − SPRD100D −MLP 171 106 65 83.08 90.97 8806.06 5913.02 2893.04 28.93 1253.73 -489.57 -0.93 -14.76 61.99 16.92 1.49 0.91 -1185.24

Part II: Models derived using the spread obtained from DISTV 1.2 − SPRD100D

B1.1 DISTV 1.2 − ZSPRD100D
(3,2) 4 1 3 44.63 201.68 44.63 605.05 -560.43 -5.6 44.63 -321.95 -1.71 -27.15 25 -140.11 0.07 0.22 -605.05

B1.2 DISTV 1.2 − ZSPRD100D
(3,1) 3 - 3 - 698.58 - 2095.74 -2095.74 -20.96 - -1274.15 -1.65 -26.19 - -698.58 - - -2095.74

B1.3 DISTV 1.2 − ZSPRD100D
(3,0.5) 2 - 2 - 506.72 - 1013.44 -1013.44 -10.13 - -556.31 -9.39 -149.06 - -506.72 - - -1013.44

B1.4 DISTV 1.2 − ZSPRD100D
(2.7,2) 5 - 5 - 208 - 1040.01 -1040.01 -10.4 - -412.12 -2.09 -33.18 - -208 - - -1040.01

B1.5 DISTV 1.2 − ZSPRD100D
(2.7,1) 4 - 4 - 641.1 - 2564.41 -2564.41 -25.64 - -1274.15 -1.8 -28.57 - -641.1 - - -2564.41

B1.6 DISTV 1.2 − ZSPRD100D
(2.7,0.5) 3 1 2 107.25 532.22 107.25 1064.43 -957.18 -9.57 107.25 -607.3 -1.25 -19.84 33.33 -319.08 0.1 0.2 -1064.43

B2.1 DISTV 1.2 − SPRD100D − SMA(10,20) 14 9 5 545.4 488.48 4908.63 2442.38 2466.26 24.66 1000.15 -933.46 0.04 0.63 64.29 176.21 2.01 1.12 -1831.95

B2.2 DISTV 1.2 − SPRD100D − EMA(10,20) 14 7 7 630.72 156.89 4415.04 1098.26 3316.78 33.17 1400.71 -647.64 0.15 2.38 50 236.91 4.02 4.02 -647.64

B2.3 DISTV 1.2 − SPRD100D −MACD(12,26,9) 37 12 25 237.82 161.79 2853.89 4044.73 -1190.84 -11.91 1526.89 -726.38 -0.55 -8.73 32.43 -32.19 0.71 1.47 -2259.98

B2.4 DISTV 1.2 − SPRD100D −RSI(14) 4 2 2 716.65 754.55 1433.3 1509.11 -75.81 -0.76 1147.19 -964.11 -0.18 -2.86 50 -18.95 0.95 0.95 -545

B2.5 DISTV 1.2 − SPRD100D −BB(20) 10 4 6 81.67 374.5 326.67 2247.03 -1920.35 -19.2 194.51 -1039.71 -0.9 -14.29 40 -192.04 0.15 0.22 -2165.17

B3 DISTV 1.2 − SPRD100D −DECTREE 233 127 106 91.61 74.39 11633.96 7884.92 3749.05 37.49 797.43 -444.57 -0.99 -15.72 54.51 16.1 1.48 1.23 -1838.27

B4 DISTV 1.2 − SPRD100D −MLP 46 25 21 68.17 41.74 1704.2 876.45 827.74 8.28 326.7 -94.97 -1.71 -27.15 54.35 18 1.94 1.63 -216.55

Part III: Models derived using the spread obtained from DISTV 2 − SPRD100D

C1.1 DISTV 2 − ZSPRD100D
(3,2) 4 2 2 114.02 579.2 228.05 1158.41 -930.36 -9.3 120.27 -965.26 -0.75 -11.91 50 -232.59 0.2 0.2 -1158.41

C1.2 DISTV 2 − ZSPRD100D
(3,1) 3 2 1 78.24 783.36 156.48 783.36 -626.89 -6.27 98.54 -783.36 -0.73 -11.59 66.67 -208.93 0.2 0.1 -783.36

C1.3 DISTV 2 − ZSPRD100D
(3,0.5) 3 2 1 145.51 539.59 291.01 539.59 -248.58 -2.49 192.47 -539.59 -0.59 -9.37 66.67 -82.84 0.54 0.27 -539.59

C1.4 DISTV 2 − ZSPRD100D
(2.7,2) 6 2 4 72.11 353.57 144.22 1414.29 -1270.07 -12.7 96.64 -1077.67 -0.83 -13.18 33.33 -211.69 0.1 0.2 -1414.29

C1.5 DISTV 2 − ZSPRD100D
(2.7,1) 4 3 1 113.68 934.6 341.04 934.6 -593.56 -5.94 209.18 -934.6 -0.57 -9.05 75 -148.39 0.36 0.12 -934.6

C1.6 DISTV 2 − ZSPRD100D
(2.7,0.5) 3 2 1 133.2 711.73 266.4 711.73 -445.33 -4.45 192.47 -711.73 -0.61 -9.68 66.67 -148.42 0.37 0.19 -711.73

C2.1 DISTV 2 − SPRD100D − SMA(10,20) 16 6 10 389.38 196.33 2336.27 1963.28 373 3.73 1255.4 -411.98 -0.31 -4.92 37.5 23.31 1.19 1.98 -1305

C2.2 DISTV 2 − SPRD100D − EMA(10,20) 25 6 19 545.53 120.63 3273.16 2291.89 981.27 9.81 1146.37 -414.96 -0.32 -5.08 24 39.25 1.43 4.52 -961.28

C2.3 DISTV 2 − SPRD100D −MACD(12,26,9) 35 8 27 484.48 164.11 3875.85 4430.91 -555.06 -5.55 993.95 -474.78 -0.5 -7.94 22.86 -15.84 0.87 2.95 -1233.83

C2.4 DISTV 2 − SPRD100D −RSI(14) 3 2 1 900.8 1456.32 1801.61 1456.32 345.29 3.45 1267.67 -1456.32 -0.03 -0.48 66.67 115.18 1.24 0.62 -

C2.5 DISTV 2 − SPRD100D −BB(20) 13 9 4 318.81 225.16 2869.25 900.64 1968.61 19.69 650.1 -572.77 - - 69.23 151.43 3.19 1.42 -572.77

C3 DISTV 2 − SPRD100D −DECTREE 282 142 140 81.03 88.74 11506.39 12423.12 -916.72 -9.17 547.93 -787.62 -1.21 -19.21 50.35 -3.26 0.93 0.91 -2035.88

C4 DISTV 2 − SPRD100D −MLP 182 96 86 100.89 96.76 9685.17 8321.64 1363.53 13.64 619.57 -436.58 -1 -15.87 52.75 7.5 1.16 1.04 -1505.19

Part IV: Models derived using the spread obtained from DISTV 3 − SPRD100D

D1.1 DISTV 3 − ZSPRD100D
(3,2) 3 3 - 142.14 - 426.42 - 426.42 4.26 220.07 - -0.09 -1.43 100 142.14 426.42 142.14 -

D1.2 DISTV 3 − ZSPRD100D
(3,1) 3 1 2 409.19 66.31 409.19 132.63 276.57 2.77 409.19 -78.87 -0.22 -3.49 33.33 92.17 3.09 6.17 -132.63

D1.3 DISTV 3 − ZSPRD100D
(3,0.5) 3 1 2 409.19 892.38 409.19 1784.75 -1375.56 -13.76 409.19 -1271.98 -0.73 -11.59 33.33 -458.56 0.23 0.46 -1784.75

D1.4 DISTV 3 − ZSPRD100D
(2.7,2) 8 5 3 124.63 82.45 623.15 247.36 375.78 3.76 220.07 -128.75 -0.84 -13.33 62.5 46.97 2.52 1.51 -128.75

D1.5 DISTV 3 − ZSPRD100D
(2.7,1) 6 3 3 165.41 67.28 496.22 201.83 294.39 2.94 273.41 -160.11 -0.68 -10.79 50 49.07 2.46 2.46 -169.99

D1.6 DISTV 3 − ZSPRD100D
(2.7,0.5) 6 4 2 168 826.82 671.99 1653.64 -981.66 -9.82 273.41 -1077.2 -0.58 -9.21 66.67 -163.58 0.41 0.2 -1653.65

D2.1 DISTV 3 − SPRD100D − SMA(10,20) 24 9 15 401.46 226.92 3613.15 3403.87 209.28 2.09 816.15 -872.25 -0.37 -5.87 37.5 8.72 1.06 1.77 -1801.07

D2.2 DISTV 3 − SPRD100D − EMA(10,20) 39 11 28 421.64 166.6 4638.06 4664.84 -26.78 -0.27 1091.18 -813.16 -0.42 -6.67 28.21 -0.66 0.99 2.53 -1983.16

D2.3 DISTV 3 − SPRD100D −MACD(12,26,9) 30 8 22 395.69 241.47 3165.53 5312.35 -2146.82 -21.47 1198.67 -1216.71 -0.54 -8.57 26.67 -71.54 0.6 1.64 -3489.9

D2.4 DISTV 3 − SPRD100D −RSI(14) 3 1 2 325.89 1354.39 325.89 2708.78 -2382.89 -23.83 325.89 -1960.81 -0.83 -13.18 33.33 -794.35 0.12 0.24 -747.97

D2.5 DISTV 3 − SPRD100D −BB(20) 19 16 3 145.58 230.86 2329.36 692.57 1636.79 16.37 345.12 -454.62 -0.36 -5.71 84.21 86.14 3.36 0.63 -454.62

D3 DISTV 3 − SPRD100D −DECTREE 295 132 163 83.1 77.71 10969.8 12666.7 -1696.89 -16.97 455.57 -394.77 -1.36 -21.59 44.75 -5.75 0.87 1.07 -2314.33

D4 DISTV 3 − SPRD100D −MLP 158 74 84 121.74 81.74 9008.65 6866.07 2142.57 21.43 1472.38 -378.48 -0.77 -12.22 46.84 13.57 1.31 1.49 -897.21

Part V: Models derived using the spread obtained from DISTV 4 − SPRD100D

E1.1 DISTV 4 − ZSPRD100D
(3,2) 3 3 - 142.14 - 426.42 - 426.42 4.26 220.07 - -0.09 -1.43 100 142.14 426.42 142.14 -

E1.2 DISTV 4 − ZSPRD100D
(3,1) 3 1 2 409.19 66.31 409.19 132.63 276.57 2.77 409.19 -78.87 -0.22 -3.49 33.33 92.17 3.09 6.17 -132.63

E1.3 DISTV 4 − ZSPRD100D
(3,0.5) 3 1 2 409.19 892.38 409.19 1784.75 -1375.56 -13.76 409.19 -1271.98 -0.73 -11.59 33.33 -458.56 0.23 0.46 -1784.75

E1.4 DISTV 4 − ZSPRD100D
(2.7,2) 8 5 3 124.63 82.45 623.15 247.36 375.78 3.76 220.07 -128.75 -0.84 -13.33 62.5 46.97 2.52 1.51 -128.75

E1.5 DISTV 4 − ZSPRD100D
(2.7,1) 6 3 3 165.41 67.28 496.22 201.83 294.39 2.94 273.41 -160.11 -0.68 -10.79 50 49.07 2.46 2.46 -169.99

E1.6 DISTV 4 − ZSPRD100D
(2.7,0.5) 6 4 2 168 826.82 671.99 1653.64 -981.66 -9.82 273.41 -1077.2 -0.58 -9.21 66.67 -163.58 0.41 0.2 -1653.65

E2.1 DISTV 4 − SPRD100D − SMA(10,20) 24 9 15 401.46 226.92 3613.15 3403.87 209.28 2.09 816.15 -872.25 -0.37 -5.87 37.5 8.72 1.06 1.77 -1801.07

E2.2 DISTV 4 − SPRD100D − EMA(10,20) 39 11 28 421.64 166.6 4638.06 4664.84 -26.78 -0.27 1091.18 -813.16 -0.42 -6.67 28.21 -0.66 0.99 2.53 -1983.16

E2.3 DISTV 4 − SPRD100D −MACD(12,26,9) 30 8 22 395.69 241.47 3165.53 5312.35 -2146.82 -21.47 1198.67 -1216.71 -0.54 -8.57 26.67 -71.54 0.6 1.64 -3489.9

E2.4 DISTV 4 − SPRD100D −RSI(14) 3 1 2 325.89 1354.39 325.89 2708.78 -2382.89 -23.83 325.89 -1960.81 -0.83 -13.18 33.33 -794.35 0.12 0.24 -747.97

E2.5 DISTV 4 − SPRD100D −BB(20) 19 16 3 145.58 230.86 2329.36 692.57 1636.79 16.37 345.12 -454.62 -0.36 -5.71 84.21 86.14 3.36 0.63 -454.62

E3 DISTV 4 − SPRD100D −DECTREE 292 133 159 82.66 81.08 10994.12 12891.9 -1897.78 -18.98 455.57 -486.57 -1.31 -20.8 45.55 -6.5 0.85 1.02 -2192.78

E4 DISTV 4 − SPRD100D −MLP 158 74 84 121.74 81.74 9008.65 6866.07 2142.57 21.43 1472.38 -378.48 -0.77 -12.22 46.84 13.57 1.31 1.49 -897.21

Part VI: Models derived using the spread obtained from JOHANSEN − SPRD100D

F1.1 JOHANSEN − ZSPRD100D
(3,2) 10 7 3 166.52 85.57 1165.63 256.7 908.93 9.09 486.23 -232.12 -0.29 -4.6 70 90.89 4.54 1.95 -232.12

F1.2 JOHANSEN − ZSPRD100D
(3,1) 9 6 3 124.54 12.48 747.25 37.43 709.82 7.1 486.23 -16.35 0.29 4.6 66.67 78.87 19.96 9.98 -16.35

F1.3 JOHANSEN − ZSPRD100D
(3,0.5) 9 6 3 137.9 12.48 827.41 37.43 789.98 7.9 486.23 -16.35 0.29 4.6 66.67 87.78 22.11 11.05 -16.35

F1.4 JOHANSEN − ZSPRD100D
(2.7,2) 11 7 4 166.04 77.9 1162.26 311.61 850.65 8.51 486.23 -232.12 -0.3 -4.76 63.64 77.34 3.73 2.13 -232.12

F1.5 JOHANSEN − ZSPRD100D
(2.7,1) 10 7 3 125.65 17.83 879.57 53.5 826.07 8.26 486.23 -28.92 0.36 5.71 70 82.61 16.44 7.05 -28.92

F1.6 JOHANSEN − ZSPRD100D
(2.7,0.5) 10 7 3 137.1 17.83 959.73 53.5 906.23 9.06 486.23 -28.92 0.36 5.71 70 90.62 17.94 7.69 -28.92

F2.1 JOHANSEN − SPRD100D − SMA(10,20) 19 6 13 2153.07 1871.56 12918.43 24330.22 -11411.79 -114.12 7670.16 -11811.22 -0.23 -3.65 31.58 -600.58 0.53 1.15 -21060.55

F2.2 JOHANSEN − SPRD100D − EMA(10,20) 22 11 11 2691.8 159.17 29609.77 1750.84 27858.94 278.59 12079.79 -849.68 0.52 8.25 50 1266.32 16.91 16.91 -849.68

F2.3 JOHANSEN − SPRD100D −MACD(12,26,9) 32 16 16 8221.39 8094.48 131542.29 129511.7 2030.59 20.31 123504.36 -116005.92 - - 50 63.46 1.02 1.02 -116258.75

F2.4 JOHANSEN − SPRD100D −RSI(14) 4 2 2 1031.04 990.64 2062.07 1981.29 80.79 0.81 1833.09 -1953.43 -0.5 -7.94 50 20.2 1.04 1.04 -1953.43

F2.5 JOHANSEN − SPRD100D −BB(20) 21 12 9 722.8 704.33 8673.61 6338.93 2334.68 23.35 3109.57 -2889.43 0.26 4.13 57.14 111.13 1.37 1.03 -4722.46

F3 JOHANSEN − SPRD100D −DECTREE 295 160 135 92.18 101.74 14749.19 13735.28 1013.91 10.14 591.06 -871.18 -1.03 -16.35 54.24 3.44 1.07 0.91 -2896.08

F4 JOHANSEN − SPRD100D −MLP 150 76 74 106.83 88.71 8119.04 6564.42 1554.62 15.55 704.94 -526.04 -0.94 -14.92 50.67 10.37 1.24 1.2 -2042.14

Part VII: Models derived using the spread obtained from ADF − SPRD100D

G1.1 ADF − ZSPRD100D
(3,2) 5 2 3 430.09 178.82 860.18 536.47 323.71 3.24 536.12 -351.15 - - 40 64.74 1.6 2.41 -388.44

G1.2 ADF − ZSPRD100D
(3,1) 5 2 3 177.05 342.81 354.09 1028.43 -674.34 -6.74 280.37 -375.71 -0.68 -10.79 40 -134.87 0.34 0.52 -724.59

G1.3 ADF − ZSPRD100D
(3,0.5) 4 - 4 - 399.32 - 1597.3 -1597.3 -15.97 - -730.94 -1.37 -21.75 - -399.32 - - -1597.3

G1.4 ADF − ZSPRD100D
(2.7,2) 7 3 4 306.4 149.22 919.21 596.86 322.35 3.22 536.12 -201.54 0.47 7.46 42.86 46.06 1.54 2.05 -268.8

G1.5 ADF − ZSPRD100D
(2.7,1) 6 3 3 495.82 297.98 1487.46 893.95 593.5 5.94 1249.09 -433.48 -0.43 -6.83 50 98.92 1.66 1.66 -590.11

G1.6 ADF − ZSPRD100D
(2.7,0.5) 5 2 3 441.86 452.72 883.72 1358.16 -474.44 -4.74 866.02 -592.14 -0.5 -7.94 40 -94.89 0.65 0.98 -895.98

G2.1 ADF − SPRD100D − SMA(10,20) 18 12 6 521.84 610.35 6262.07 3662.13 2599.94 26 1513.79 -1107.52 0.22 3.49 66.67 144.48 1.71 0.85 -1703.34

G2.2 ADF − SPRD100D − EMA(10,20) 26 18 8 362.41 7879.96 6523.39 63039.7 -56516.31 -565.16 2323.99 -57423.85 -0.14 -2.22 69.23 -2173.77 0.1 0.05 -59374.86

G2.3 ADF − SPRD100D −MACD(12,26,9) 28 17 11 145.61 572.57 2475.4 6298.25 -3822.86 -38.23 574.8 -1339.23 -0.47 -7.46 60.71 -136.56 0.39 0.25 -5430.75

G2.4 ADF − SPRD100D −RSI(14) 1 1 - 2979.79 - 2979.79 - 2979.79 29.8 2979.79 - - - 100 2979.79 2979.79 2979.79 -

G2.5 ADF − SPRD100D −BB(20) 14 6 8 701.45 433.25 4208.71 3466.02 742.69 7.43 1359.62 -1945.89 0.22 3.49 42.86 53.08 1.21 1.62 -2531.64

G3 ADF − SPRD100D −DECTREE 304 140 164 95.55 81.35 13376.81 13341.89 34.91 0.35 779.49 -439.03 -1.14 -18.1 46.05 0.11 1 1.17 -1649.61

G4 ADF − SPRD100D −MLP 203 97 106 105.84 98.75 10266.78 10467.04 -200.26 -2 597.49 -526.04 -1.06 -16.83 47.78 -0.99 0.98 1.07 -3023.62

Part VIII: Models derived using the spread obtained from KALMAN − SPRD100D

H1.1 KALMAN − ZSPRD100D
(3,2) 4 2 2 61.52 677.31 123.04 1354.63 -1231.59 -12.32 89.08 -1009.9 -0.93 -14.76 50 -307.9 0.09 0.09 -1265.55

H1.2 KALMAN − ZSPRD100D
(3,1) 4 2 2 293.08 317.64 586.17 635.28 -49.12 -0.49 344.11 -554.87 -0.43 -6.83 50 -12.28 0.92 0.92 -554.87

H1.3 KALMAN − ZSPRD100D
(3,0.5) 3 2 1 227.71 380.71 455.41 380.71 74.7 0.75 242.06 -380.71 -0.4 -6.35 66.67 24.92 1.2 0.6 -380.71

H1.4 KALMAN − ZSPRD100D
(2.7,2) 6 2 4 82.57 474.89 165.15 1899.57 -1734.42 -17.34 158.44 -1073.33 -1.08 -17.14 33.33 -289.09 0.09 0.17 -1899.57

H1.5 KALMAN − ZSPRD100D
(2.7,1) 5 3 2 154.39 633.2 463.18 1266.4 -803.22 -8.03 232.57 -1185.99 -0.58 -9.21 60 -160.64 0.37 0.24 -1249.3

H1.6 KALMAN − ZSPRD100D
(2.7,0.5) 3 1 2 213.5 696.28 213.5 1392.56 -1179.06 -11.79 213.5 -1272.63 -0.75 -11.91 33.33 -393.05 0.15 0.31 -1392.56

H2.1 KALMAN − SPRD100D − SMA(10,20) 15 9 6 471.98 190.23 4247.86 1141.38 3106.48 31.06 1652.81 -464.35 0.06 0.95 60 207.1 3.72 2.48 -852.8

H2.2 KALMAN − SPRD100D − EMA(10,20) 24 8 16 553.94 160.16 4431.55 2562.54 1869.01 18.69 1573.1 -386.01 -0.17 -2.7 33.33 77.85 1.73 3.46 -981.11

H2.3 KALMAN − SPRD100D −MACD(12,26,9) 28 7 21 574.02 219.22 4018.14 4603.68 -585.53 -5.86 1202.57 -753.63 -0.37 -5.87 25 -20.91 0.87 2.62 -2635.7

H2.4 KALMAN − SPRD100D −RSI(14) 1 - 1 - 14.89 - 14.89 -14.89 -0.15 - -14.89 - - - -14.89 - - -14.89

H2.5 KALMAN − SPRD100D −BB(20) 7 5 2 154.29 405.06 771.46 810.13 -38.66 -0.39 246.28 -424.03 -0.52 -8.25 71.43 -5.52 0.95 0.38 -810.13

H3 KALMAN − SPRD100D −DECTREE 258 151 107 75.87 107.48 11456.88 11500.49 -43.61 -0.44 477.36 -769.57 -1.12 -17.78 58.53 -0.16 1 0.71 -2612.48

H4 KALMAN − SPRD100D −MLP 150 87 63 88.96 94.74 7739.91 5968.33 1771.58 17.72 500.06 -713.81 -1.02 -16.19 58 11.81 1.3 0.94 -2155.25

Part IX: Models derived using the spread obtained from RATIO − SPRD100D

I1.1 RATIO − ZSPRD100D
(3,2) 2 1 1 122.53 965.26 122.53 965.26 -842.72 -8.43 122.53 -965.26 -0.75 -11.91 50 -421.36 0.13 0.13 -965.26

I1.2 RATIO − ZSPRD100D
(3,1) 1 - 1 - 775.74 - 775.74 -775.74 -7.76 - -775.74 - - - -775.74 - - -775.74

I1.3 RATIO − ZSPRD100D
(3,0.5) 1 - 1 - 562.48 - 562.48 -562.48 -5.62 - -562.48 - - - -562.48 - - -562.48

I1.4 RATIO − ZSPRD100D
(2.7,2) 6 4 2 76.06 515.21 304.26 1030.41 -726.15 -7.26 123.37 -965.26 -0.65 -10.32 66.67 -121.01 0.3 0.15 -965.26

I1.5 RATIO − ZSPRD100D
(2.7,1) 4 3 1 167.37 950.67 502.1 950.67 -448.58 -4.49 209.18 -950.67 -0.47 -7.46 75 -112.14 0.53 0.18 -950.67

I1.6 RATIO − ZSPRD100D
(2.7,0.5) 2 1 1 173.83 1031.32 173.83 1031.32 -857.49 -8.57 173.83 -1031.32 -0.68 -10.79 50 -428.74 0.17 0.17 -1031.32

I2.1 RATIO − SPRD100D − SMA(10,20) 17 7 10 236.66 217.22 1656.59 2172.16 -515.56 -5.16 543.12 -326.39 -0.64 -10.16 41.18 -30.31 0.76 1.09 -1107.21

I2.2 RATIO − SPRD100D − EMA(10,20) 19 8 11 481.19 159.68 3849.53 1756.49 2093.04 20.93 1242 -374.54 -0.1 -1.59 42.11 110.19 2.19 3.01 -903.25

I2.3 RATIO − SPRD100D −MACD(12,26,9) 35 8 27 374.2 193.3 2993.6 5219.08 -2225.48 -22.25 971.96 -529.01 -0.68 -10.79 22.86 -63.57 0.57 1.94 -2762.73

I2.4 RATIO − SPRD100D −RSI(14) 2 1 1 571.59 2506.6 571.6 2506.6 -1935.01 -19.35 571.59 -2506.6 -0.51 -8.1 50 -967.5 0.23 0.23 -

I2.5 RATIO − SPRD100D −BB(20) 12 8 4 233.46 347.49 1867.65 1389.97 477.68 4.78 644.1 -814.22 -0.3 -4.76 66.67 39.83 1.34 0.67 -814.22

I3 RATIO − SPRD100D −DECTREE 282 114 168 93.16 64.41 10620.67 10821.48 -200.82 -2.01 525.98 -315.15 -1.35 -21.43 40.43 -0.71 0.98 1.45 -2149.88

I4 RATIO − SPRD100D −MLP 202 82 120 108.16 75.88 8868.72 9105.72 -237.01 -2.37 732.39 -315.15 -1.17 -18.57 40.59 -1.18 0.97 1.43 -1986.86

Part X: Models derived using the close price of VWO.N

CLS-SYM-1.1 CLOSEVWO.N − SMA(10,20) 15 6 9 230.99 239.78 1385.96 2158.06 -772.1 -7.72 679.96 -536.93 -0.43 -6.83 40 -51.47 0.64 0.96 -853.38

CLS-SYM-1.2 CLOSEVWO.N − EMA(10,20) 26 6 20 586.9 150.62 3521.39 3012.49 508.9 5.09 1242.77 -650.86 -0.14 -2.22 23.08 19.6 1.17 3.9 -1491.05

CLS-SYM-1.3 CLOSEVWO.N −MACD(12,26,9) 29 11 18 238.08 143.51 2618.9 2583.23 35.67 0.36 884.37 -347.88 -0.3 -4.76 37.93 1.23 1.01 1.66 -1298.22

CLS-SYM-1.4 CLOSEVWO.N −RSI(14) 6 3 3 205.52 522.84 616.55 1568.52 -951.97 -9.52 310.49 -1337.12 -0.39 -6.19 50 -158.66 0.39 0.39 -1337.12

CLS-SYM-1.5 CLOSEVWO.N −BB(20) 17 11 6 70.92 230.58 780.12 1383.47 -603.35 -6.03 100.93 -491.85 -0.63 -10 64.71 -35.48 0.56 0.31 -689.89

Part XI: Models derived using the close price of XLE.N

CLS-SYM-2.1 CLOSEXLE.N − SMA(10,20) 19 9 10 492.93 337.96 4436.4 3379.63 1056.77 10.57 1969.29 -993.26 -0.03 -0.48 47.37 55.63 1.31 1.46 -2390.02

CLS-SYM-2.2 CLOSEXLE.N − EMA(10,20) 26 11 15 546.32 161.14 6009.56 2417.09 3592.47 35.92 2197.81 -326.2 0.12 1.9 42.31 138.19 2.49 3.39 -711.67

CLS-SYM-2.3 CLOSEXLE.N −MACD(12,26,9) 27 10 17 637.2 211.29 6372.04 3591.96 2780.08 27.8 1931.38 -613.01 0.05 0.79 37.04 102.99 1.77 3.02 -645.92

CLS-SYM-2.4 CLOSEXLE.N −RSI(14) 5 3 2 314.75 1213.82 944.26 2427.64 -1483.38 -14.83 365.04 -1229.73 -0.44 -6.98 60 -296.68 0.39 0.26 -2062.6

CLS-SYM-2.5 CLOSEXLE.N −BB(20) 20 17 3 198.62 500.07 3376.55 1500.22 1876.33 18.76 822.47 -1185.85 0.05 0.79 85 93.82 2.25 0.4 -1185.85
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