
Learning Architecture for Multiple
Tasks in Transfer Learning

by Zhixiong Yue

Thesis submitted in fulfilment of the requirements for
the degree of

Doctor of Philosophy

under the supervision of Prof. Yu Zhang and Dr. Christy
Liang

University of Technology Sydney
Faculty of Engineering and Information Technology

June 2023

CERTIFICATE OF ORIGINAL AUTHORSHIP

I, Zhixiong Yue, declare that this thesis is submitted in fulfilment of the requirements for the award of Doctor of
Philosophy, in the School of Computer Science at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise referenced or acknowledged. In addition, I certify that all
information sources and literature used are indicated in the thesis.

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as
part of the requirements for a degree at any other academic institution except as fully acknowledged within the
text. This thesis is the result of a Collaborative Doctoral Research Degree program with Southern University of
Science and Technology.

This research is supported by the Australian Government Research Training Program.

Signature:

Date: 2023/06/15

Production Note:

Signature removed prior to publication.

ACKNOWLEDGMENTS

I
want to express my deepest gratitude to my principal supervisor at Southern

University of Science and Technology, A./Professor Yu Zhang, and my principal

supervisor at the University of Technology Sydney, Professor Christy Liang.

Without their patience and encouragement, I would never complete this Ph.D. journey. I

also want to thank my colleagues and friends both at the Southern University of Science

and Technology and the University of Technology Sydney. Their company and help bring

me to the end of this journey.

i

LIST OF PUBLICATIONS

1. Zhixiong Yue, Yu Zhang, Jie Liang. Learning Conflict-Noticed Architecture for

Multi-Task Learning. Proceedings of the 2023 National Conference of the American
Association for Artificial Intelligence, Washington, USA, (AAAI 2023). [CORE Rank

A*]

2. Zhixiong Yue, Baijiong Lin, Yu Zhang, Jie Liang. Effective, Efficient and Robust

Neural Architecture Search. Proceedings of the 2022 International Joint Conference
on Neural Networks (IJCNN 2022), online, 2022. [CORA Rank B]

3. Zhixiong Yue, Pengxin Guo, Yu Zhang, Jie Liang. Learning Feature Alignment

Architecture for Domain Adaptation. Proceedings of the 2022 International Joint
Conference on Neural Networks (IJCNN 2022), online, 2022. [CORA Rank B]

4. Mao Lin Huang*, Zhixiong Yue*, Quang Vinh Nguyen, Jie Liang, Zongwei Luo.

Stroke Data Analysis through a HVN Visual Mining Platform. Proceedings of
the 2019 23rd International Conference in Information Visualization (IV 2019),

Adelaide, Australia, 2019. (*Equal Contribution) [CORA Rank B]

5. Feiyang Ye*, Baijiong Lin*, Zhixiong Yue, Pengxin Guo, Qiao Xiao, Yu Zhang.

Multi-Objective Meta Learning. Proceedings of the 2021 Advances in Neural Infor-
mation Processing Systems (NeurIPS 2021), online, 2021. (*Equal Contribution)

[CORA Rank A*]

Under review:

1. Zhixiong Yue, Feiyang Ye, Yu Zhang, Jie Liang. Deep Safe Multi-Task Learning.

Will submit to IEEE Transactions on Pattern Analysis and Machine Intelligence
(TPAMI, CORE Rank A*) in July 2022.

ii

ABSTRACT

R
ecent advance in transfer learning enables deep neural networks to share

knowledge between multiple tasks and objectives. However, designing an ef-

fective deep neural network for transfer learning relies heavily on human

expertise. Even though existing transfer learning methods exhaust their ability to im-

prove the efficiency of the model architecture, manually designing the model architecture

may not be realistic for challenging transfer learning problems in real-world scenarios.

To summarize, it remains an open question of how to effectively design the transfer

learning model architecture.

This thesis focuses on automatically learning the effective architecture of transfer

learning models. It addresses four research questions for realistic transfer learning

problems: 1) How to design a deep neural network architecture that satisfies multiple

objectives; 2) How to design a feature alignment architecture with varying difficulty

levels of domain adaptation tasks; 3) How to alleviate the gradient conflict in multi-task

learning; 4) How to guarantee that multi-task learning performance is no worse than its

single-task counterpart on each task.

To solve problem 1), this thesis presents an effective, efficient, and robust neural

architecture search method to design architecture by explicitly balancing the trade-off

between the performance, resource consumption, and robustness. We formulate the

objective function of the proposed method as a multi-objective bi-level optimization

problem and propose an efficient gradient-based algorithm to solve it.

To solve problem 2), this thesis presents a new similarity measure and correspond-

iii

ABSTRACT

ing alignment architecture search method to learn domain-alignment architecture and

domain-invariant feature representation. We further develop the first architecture learn-

ing framework for the distance-based domain adaptation method.

To solve problem 3), this thesis presents a compact architecture learning method

with good scalability to circumvent negative transfer in multi-task learning, which first

introduces purely-specific modules into the search space to mitigate the gradient conflict.

The proposed method automatically learns when to switch to purely-specific modules in

the tree-structured network architectures when the gradient conflict occurs.

To solve problem 4), this thesis presents a safe multi-task learning model, which

learns how to combine the private encoder and public encoder for the downstream private

decoder. The proposed method mitigates negative sharing in multi-task learning and

improves the performance of all tasks compared with single task learning.

To summarize, this thesis presents a series of architecture learning methods for

learning effective architecture that solves realistic transfer learning problems.

iv

TABLE OF CONTENTS

List of Publications ii

Abstract iii

List of Figures ix

List of Tables xii

1 Introduction 1
1.1 Background . 1

1.2 Motivation . 2

1.3 Research Questions and Objectives . 3

1.4 Research Contributions and Innovation . 7

1.4.1 Research Contributions . 7

1.4.2 Research Innovation . 9

1.5 Research Significance . 10

1.6 Thesis Organization . 11

2 Literature Review 14
2.1 Neural Architecture Search . 14

2.1.1 One-shot NAS . 15

2.1.2 One-stage and two-stage NAS . 16

2.1.3 Multi-Objective NAS . 16

2.1.4 Limitations . 18

2.2 Domain Adaptation . 19

2.2.1 Discrepancy-based methods . 20

2.2.2 Adversarial-based methods . 20

2.2.3 Limitations . 21

2.3 Multi-task Learning . 21

v

TABLE OF CONTENTS

2.3.1 Hard parameter sharing . 22

2.3.2 Soft parameter sharing . 22

2.3.3 Task routing . 23

2.3.4 Architecture learning . 23

2.3.5 Limitations . 24

2.4 Summary . 25

3 Effective, Efficient and Robust Neural Architecture Search 26
3.1 Introduction . 26

3.2 The E2RNAS Method . 29

3.2.1 Preliminary . 30

3.2.2 Objective Functions for Robustness 31

3.2.3 Objective Functions of Resource Constraints 32

3.2.4 Multi-Objective Bi-Level Formulation 34

3.3 Experiments . 37

3.3.1 Experimental Datasets . 37

3.3.2 Implementation Details . 38

3.3.3 Analysis on Experimental Results . 40

3.3.4 The Generalization of E2RNAS . 45

3.3.5 Ablation Study and Discussion . 46

3.4 Summary . 48

4 Learning Feature Alignment Architecture for Domain Adaptation 50
4.1 Introduction . 50

4.2 Population Correlation . 53

4.3 The AASPC method . 55

4.3.1 Cell-based Search Space . 55

4.3.2 Searching Alignment Architecture . 57

4.4 Experiments . 58

4.4.1 Setup . 59

4.4.2 Results . 60

4.4.3 Ablation Study . 61

4.4.4 Effectiveness of Population Correlation 62

4.4.5 Effectiveness of Alignment Architecture Search 63

4.4.6 Hyper-parameter Sensitivity . 65

4.4.7 Complexity Analysis . 65

vi

TABLE OF CONTENTS

4.4.8 Learned Architecture . 66

4.4.9 Feature Visualization . 67

4.5 Summary . 68

5 Learning Conflict-Noticed Architecture for Multi-Task Learning 69
5.1 Introduction . 69

5.2 The CoNAL Method . 73

5.2.1 Search Space . 73

5.2.2 Architecture Learning . 76

5.2.3 Retraining . 79

5.2.4 A Progressive Extension . 80

5.3 Experimental Setup . 81

5.3.1 Details of Datasets . 81

5.3.2 Implementation Details . 83

5.3.3 Evaluation Metrics . 88

5.4 Experiments . 90

5.4.1 Experiments on Multi-Task CV Benchmarks 90

5.4.2 Combination and Comparison with Gradient Manipulation Methods 92

5.4.3 Ablation Study . 94

5.4.4 Experiments on Multilingual Benchmark 95

5.4.5 Experiments on Multi-Task RL . 96

5.4.6 Experiments for the CoNAL-Pro Method 97

5.4.7 Experimental Results on PASCAL-Context and Taskonomy Datasets 98

5.4.8 Effectiveness of the Architecture Learning Algorithm in CoNAL . 99

5.4.9 Comparison under Similar Model Capacities 101

5.4.10 Analysis of Learned Architectures . 101

5.4.11 Experiments on Synthetic Datasets 104

5.5 Summary . 106

6 Deep Safe Multi-Task Learning 107
6.1 Introduction . 107

6.2 Related Work . 110

6.3 Definitions . 113

6.4 DSMTL . 116

6.4.1 The Architecture . 116

6.4.2 DSMTL-IL . 119

vii

TABLE OF CONTENTS

6.4.3 DSMTL-JL . 119

6.5 Analyses . 120

6.5.1 Preliminary . 120

6.5.2 Analysis on DSMTL-IL . 122

6.5.3 Analysis on DSMTL-JL . 123

6.6 Architecture Learning for DSMTL . 125

6.7 Experiments . 130

6.7.1 Datasets and Evaluation Metrics . 130

6.7.2 Experimental Setup . 134

6.7.3 Experimental Results . 135

6.7.4 Analysis on the Position of Gate . 136

6.7.5 Analysis on Learned Task Relevance 138

6.7.6 Ablation Study . 139

6.7.7 Combination and Comparison with Loss Weighting Strategies . . . 140

6.8 Summary . 142

6.9 Proofs . 143

6.9.1 Generalization Bound for Problem (6.4) 143

6.9.2 Proof of Theorem 6.5.1 . 147

6.9.3 Proof of Theorem 6.5.2 . 148

6.9.4 Proof of Theorem 6.5.3 . 149

6.9.5 Proof of Theorem 6.5.4 . 149

6.9.6 Proof of Theorem 6.5.5 . 150

7 Conclusion and Future Study 152
7.1 Conclusions . 152

7.2 Future Study . 154

Bibliography 156

viii

LIST OF FIGURES

FIGURE Page

1.1 Thesis structure overview . 13

3.1 Comparison of the architecture searching procedure between DARTS [77]

(top) and the proposed E2RNAS (bottom). We formulate E2RNAS as a multi-

objective bi-level optimization problem with two key differences with DARTS:

1) we train the model with both in- and out-of-distribution data samples to

improve the robustness. 2) we evaluate the E2RNAS model with five objectives,

including the validation loss Lval(θ,α) for effectiveness and the number

of parameters Lnop(α), the number of operations L f lops(α) for efficiency,

and the out-of-distribution robustness loss Lood(θ,α) and the adversarial

robustness loss Ladv(θ,α) for robustness. 27

3.2 The found normal cell (top) and reduction cell (bottom) on the CIFAR-10

dataset by the proposed E2RNAS method. This architecture corresponds to

“E2RNAS-S1" in Table 3.1. 41

4.1 Overview of the AASPC framework. Source and target data first go through

the feature extractor to extract hidden features. The controller samples cell

choices for each cell and connections between the cells from search space to

generate the architecture of the sampled network. Source and target data with

the extracted feature representation then go through the sampled network.

Finally, the cross-entropy loss is minimized and the PC is maximized. The

controller’s policy is updated by the reward of the negative overall loss. 53

4.2 The search space of the DAMPC-NAS method. Dashed lines represent pos-

sible search choices and numbered grey circles indicate the order of choices

generated from the controller. 55

4.3 Apply AAS to various distance functions. 64

ix

LIST OF FIGURES

4.4 Sensitivity of AASPC to batch size and λ on the Office-31 dataset. 65

4.5 Searched architecture for transfer task D→W of the Office-31 dataset. Left:

architecture within the three cells. Right: connections between the three cells,

PC, and classifier. 67

4.6 t-SNE visualization of different methods for the transfer task A→D in the

Office-31 dataset. 68

5.1 Illustration of the search space in various methods. (a), (b) and (c) represent

for the search space of the LTB, CoNAL, and CoNAL-Pro methods, respec-

tively. Blocks represent computational modules and edges between blocks

denote data flows. Blocks with the grey color stand for all-shared modules and

blocks with other colors are for task-specific modules. { f 1
S, . . . , f P−1

S } denotes

the all-shared modules for all the tasks. In figure (a), all-shared modules can

transform into partially-specific modules at the later stage of learning. In

figure (b) and (c), {1, . . . ,P} denotes possible branch points in the search space.

{h1
i , . . . ,hP−1

i }, {α1
i , . . . ,αP

i }, and g i (1≤ i ≤ m) denote the task-specific encoder,

task-specific architecture parameters, and task-specific decoder, respectively,

for task i. x and ŷi denote the input data and the prediction for task i. A soft-

max operation is represented as “∼" and “?" means to search within candidate

architectures. 73

5.2 Performance and model size of various MTL methods on the NYUv2 dataset. 93

5.3 The change of architecture parameters {αp
3 }P

p=1 learned in the CoNAL method

(Left) and the CoNALsl method (Right), respectively, over epochs for the

surface normal estimation task on the NYUv2 dataset. 99

5.4 The learned architecture of the proposed CoNAL method on four CV bench-

mark datasets. The number besides the branch indicates the index of the

branch point in the search space. “Seg.”, “Depth”, “Sur.”, “Hum.”, “Sal.”, “Key.”,

and “Edge” denote the semantic segmentation, depth estimation, surface

normal estimation, human part segmentation, saliency estimation, keypoint

detection, and edge detection tasks, respectively. 102

5.5 The mean success rate of each tasks in Meta-World MT10. 103

x

LIST OF FIGURES

5.6 The comparison of learned architecture on the synthetic dataset. {1,2,3}

denotes available branch points in the search space. { f 1
S, f 2

S} denotes the

shared encoder for all the tasks. {h1
1, . . . ,h2

3} and {g1, g2, g3} denote the task-

specific encoders and decoders, respectively, for the three tasks. Solid lines

indicate the final learned architecture and dotted lines indicate branches that

are not selected. 105

6.1 An illustration for the architecture of the DSMTL model with three tasks

(i.e., m = 3). Here without loss of generality, we assume different tasks share

the input data. For task t, an input x is first fed into both the public encoder

fS and private encoder f t, then it goes through the gate gt to obtain the

combined feature representation, and finally it is through the private decoder

ht to obtain the output ŷt. 117

6.2 An illustration for the architecture learning process in the DSMTL-AL model,

where without loss of generality, different tasks are assumed to share the

same input data. For simplicity, we assume that there are three modules

(i.e., P = 4) in each encoder. “∼" represents the convex combination. In the

retraining process, only the branch with the largest architecture parameter

whose index is denoted by p∗
t is preserved and the first (p∗

t −1) private modules

will be removed. 126

6.3 The performance of the DSMTL-JL model on the NYUv2 dataset when varying

the position of the gates, where p represents the position of the gate. 137

xi

LIST OF TABLES

TABLE Page

3.1 Comparison with gradient-based NAS methods on the CIFAR-10 dataset. †

represents training without the cutout augmentation. ‡ indicates the use of

the provided genotype in the original chapter. ↑ (↓) indicates a larger (lower)

value is better. The search cost is recorded on one single NVIDIA Tesla V100S

GPU and includes validation time while searching. We set L = 2.5 in Eq. (3.4)

for E2RNAS-S1 and L = 3.5 for E2RNAS-S2. 41

3.2 Comparison with various architecture on the CIFAR-10 dataset. ↑ (↓) indicates

a larger (lower) value is better. “RL”, “Evo.” and “SMBO” stand for reinforce-

ment learning-based, evolution-based and sequential model-based optimiza-

tion NAS method, respectively. “MO-G”, “MO-RL” and “MO-Evo.” stand for

multi-objective gradient-based, multi-objective reinforcement learning-based

and multi-objective evolution-based NAS method, respectively. “-” indicates

that the corresponding result is not reported. For E2RNAS-S2, we set L = 3.5

in Eq. (3.4). 42

3.3 Comparison with state-of-the-art NAS methods on the CIFAR-100 dataset.

‡ indicates the use of the provided genotype in the original chapter. ↑ (↓)

indicates a larger (lower) value is better. We set L = 2.5 in Eq. (3.4) for

E2RNAS-S1 and L = 3.5 for E2RNAS-S2. 44

3.4 Evaluation of the generalization ability of the proposed E2RNAS method on

the CIFAR-10 and CIFAR-100 datasets. “{E2RNAS on #method}" means the

architecture searched by combining “method" with E2RNAS. ‡ indicates the

provided genotype in the original paper. ↑ (↓) indicates a larger (lower) value

is better. The search cost is recorded on one single NVIDIA Tesla V100S GPU

and includes validation time while searching. 44

xii

LIST OF TABLES

3.5 Transfer searched architecture to the ImageNet-1K dataset. ‡ indicates the

use of the provided genotype in the original paper. ↑ (↓) indicates a larger

(lower) value is better. 46

3.6 Ablation study on the CIFAR-10 dataset under the same minimum constraints

L and F in Eq. (3.4) and Eq. (3.5), respectively. MGDA is applied to make a

trade-off among multiple objectives in UL subproblem and if without MGDA

(i.e. “E2RNAS w/o MGDA"), it means equal weights of the five objectives in

problem (3.6) are used. “E2RNAS w/ AT in LL" denotes using adversarial

training in LL subproblem and “E2RNAS w/o OoD in LL" represents that

we only minimize Ltr(θ,α) in LL subproblem. ↑ (↓) indicates a larger (lower)

value is better. 47

4.1 Accuracy (%) on the Office-31 dataset with ResNet-50 as the backbone. 57

4.2 Accuracy (%) on the VisDA-2017 dataset with ResNet-50 as the backbone. . . 61

4.3 Accuracy (%) on the Office-Home dataset with ResNet-50 as the backbone. . . 61

4.4 Ablation Study on the Office-31 dataset with ResNet-50 as the backbone. . . 62

4.5 Comparison of PC with other distance functions on the Office-31 dataset with

ResNet-50 as the backbone. 63

4.6 Comparison of PC with other distance functions on the Office-Home dataset

with ResNet-50 as the backbone. 63

4.7 Comparison of PC with other distance functions on the VisDA-2017 dataset

with ResNet-50 as the backbone. 64

4.8 Comparison of training complexity on Office-31 dataset. Training time per

epoch and GPU memory consumption are recorded on one single NVIDIA

Tesla V100S GPU with batch size 128. 66

5.1 The ratio of negative cosine similarities (%) between the gradient of different

tasks with respect to shared parameters. { f 1
S, . . . , f 5

S} denotes the modules in

the sharing architecture while learning architecture. Ratio is calculated by

going through all samples in the training set. 71

5.2 Performance on the CityScapes validation dataset, where the performance

difference between each method and STL is reported. ↑ (↓) indicates the higher

(lower) the result, the better the performance. The green color indicates that

the corresponding method performs better than the STL method and the red

color is defined oppositely. The number of parameters (abbreviated as Parms.)

is calculated in MB. 90

xiii

LIST OF TABLES

5.3 Performance on the NYUv2 dataset, where the performance difference be-

tween each method and STL is reported. ↑ (↓) indicates the higher (lower)

the result, the better the performance. The green color indicates that the

corresponding method performs better than the STL method and the red color

is defined oppositely. The number of parameters (i.e., Parms.) is calculated in

MB. 91

5.4 Combination with gradient manipulation methods on the NYUv2 dataset.

The training speedup is computed over the STL model. 93

5.5 Ablation study of the CoNAL method on the NYUv2 dataset. Search speedup

represents the relative time of the architecture learning computed over the

CoNAL. The number of parameters (abbreviated as Parms.) is the model size

of the learned architecture. 94

5.6 Performance on the XTREME benchmark in terms of the F1 score. POS and

NER denote two multilingual problems from the XTREME benchmark. ‘en’,

‘zh’, ‘te’, ‘vi’, ‘de’, and ‘es’ denote English, Mandarin, Telugu, Vietnamese,

German, and Spanish, respectively. Results are averaged across three inde-

pendent runs. 95

5.7 Comparison on mean success rates for MT10 tasks. Results are calculated for

three independent runs with different seeds. 96

5.8 Results on the CelebA 9-task dataset. The mean and standard deviation of

the total test error are calculated over three independent runs. 97

5.9 Performance of various models on the PASCAL-Context dataset, where the

performance difference between each method and STL is reported. ↑ (↓) in-

dicates the higher (lower) the result, the better the performance. The green

color indicates that the corresponding method performs better than the STL

method, and the red color is defined oppositely. The number of parameters

(abbreviated as Parms.) is calculated in MB. 98

5.10 Performance of various models on the Taskonomy dataset, where the perfor-

mance difference between each method and STL is reported. ↑ (↓) indicates the

higher (lower) the result, the better the performance. The green color indicates

that the corresponding method performs better than the STL method, and

the red color is defined oppositely. The number of parameters (abbreviated as

Parms.) is calculated in MB. 99

5.11 Comparison under similar model capacities on the NYUv2 dataset. 100

xiv

LIST OF TABLES

5.12 The learned architecture of the proposed CoNAL method on the POS and

NER problems from the XTREME benchmark. The total number of branch

points P is set to 6. ‘en’, ‘zh’, ‘te’, ‘vi’, ‘de’, and ‘es’ denote English, Mandarin,

Telugu, Vietnamese, German, and Spanish, respectively. 102

5.13 The learned architecture of the proposed CoNAL method on Meta-World MT10

challenge. The total number of branch points P is set to 2. 103

5.14 The learned architecture of the proposed CoNAL-Pro method on the CelebA

dataset, where the total number of branch points P is set to 6. 104

6.1 Performance of various models on the CityScapes validation dataset. ↑ (↓)

indicates the higher (lower) the result, the better the performance. The green

color indicates that the corresponding method performs better than the STL

method and the red color indicates oppositely. The number of parameters

(abbreviated as Parms.) is calculated in MB. 132

6.2 Performance of various models on the NYUv2 validation dataset. ↑ (↓) indi-

cates the higher (lower) the result, the better the performance. The green

color indicates that the corresponding method performs better than the STL

method and the red color indicates oppositely. The number of parameters

(abbreviated as Parms.) is calculated in MB. 133

6.3 Performance of various models on the PASCAL-Context validation dataset.

↑ (↓) indicates the higher (lower) the result, the better the performance. The

green color indicates that the corresponding method performs better than the

STL method and the red color indicates oppositely. The number of parameters

(abbreviated as Parms.) is calculated in MB. 133

6.4 Performance of various models on the Taskonomy validation dataset. ↑ (↓)

indicates the higher (lower) the result, the better the performance. The green

color indicates that the corresponding method performs better than the STL

method and the red color indicates oppositely. The number of parameters

(abbreviated as Parms.) is calculated in MB. 134

6.5 {αt} learned in the DSMTL models as well as branch points and {wt} learned

by the DSMTL-AL method on four CV datasets. ‘SS’ stands for the semantic

segmentation task, ‘DE’ denotes the depth estimation task, ‘SNP’ is for the

surface normal prediction task, ‘HPS’ corresponds to the human parts seg-

mentation task, ‘SE’ stands for the saliency estimation task, ‘KD’ stands for

the keypoint detection task, and ‘ED’ denotes the edge detection task. 136

6.6 Ablation study of the DSMTL models on the NYUv2 dataset. 138

xv

LIST OF TABLES

6.7 Combining DSMTL models with various loss weighting strategies on the

NYUv2 validation dataset. 141

xvi

C
H

A
P

T
E

R

1
INTRODUCTION

1.1 Background

Artificial intelligence has demonstrated successful attempts on many real-world problems.

Recently in the field’s development, deep learning techniques substantially improved

the performance of various tasks, such as image classification, image segmentation

and language modeling. One of the popular paradigms for deep learning is supervised

learning, which relies on labeled training data. However, labeled data may be limited in

many scenarios. Hence, transfer learning methods [144], which reduce the dependence

on large amount of target domain data by transferring knowledge across domains, stirred

a great deal of attention.

Subsequently, researchers extensively studied designing an effective deep learning

model to help transfer knowledge and improve generalization. For example, domain

1

CHAPTER 1. INTRODUCTION

adaptation methods [157] learn a deep learning model on a labeled source domain and

share its parameters to perform well on a related target domain. Multi-task learning

(MTL) methods [152] jointly learn a parameter sharing model where other tasks can

leverage the knowledge learned by a task.

1.2 Motivation

Since the architecture of deep neural networks tends to be very complex in the current

era, researchers cannot evaluate every architecture we could design. As a result, the

most architecture of transfer learning models is manually designed. However, designing

an effective deep neural network for transfer learning relies heavily on human expertise,

hindering its wide application. For example, multi-task learning models are hard to

design when the task number is enormous, and the task relationship is complicated.

To reduce the dependency of transfer learning models on human expertise, this thesis

concludes three unsolved challenges existing methods face and proposes corresponding

architecture learning methods to address the four challenges: 1) how to design a deep

neural network architecture that satisfies multiple objectives, 2) how to design a feature

alignment architecture with varying difficulty levels of domain adaptation tasks, 3) how

to alleviate the gradient conflict in multi-task learning, and 4) how to guarantee that

multi-task learning performance is no worse than its single-task counterpart on each

task. This thesis provides a comprehensive analysis and solutions to these challenges.

2

CHAPTER 1. INTRODUCTION

1.3 Research Questions and Objectives

This thesis aims to develop a set of methods towards learning architecture in transfer

learning and will answer the following research questions:

Research Question 1: How to design a deep neural network architecture that satisfies

multiple objectives?

Neural network architecture is typically only designed to optimize the accuracy while

neglecting other significant objectives, resulting in very limited application scenarios.

Performance is not the only factor to be considered in real-world applications. On the

contrary, resource consumption and robustness may be more critical. For example, a

deep neural network with high computational burden and storage demands is difficult to

be deployed to embedded devices (e.g. mobile phone and IoT device). Besides, it is well

known that the trained neural networks are easily misled by adversarial examples and

can not precisely distinguish in- and out-of-distribution samples, making them hard to

deploy in safety-sensitive applications such as autonomous driving.

However, it is challenging to balance those trade-offs manually because of the large

search space of neural network architecture design. Hence, an open problem exists: Can

we find an automatic way to design a robust architecture with competitive performance

to be deployed in resource-aware platforms?

Research Question 2: How to design a feature alignment architecture with varying

difficulty levels of domain adaptation tasks?

3

CHAPTER 1. INTRODUCTION

Model training is hard for a target domain of interest because collecting enough

labeled data is intolerably time-consuming and labor-expensive. One solution is to

transfer a deep neural network trained on a data-sufficient source domain to the target

domain where only unlabeled data is available. However, this learning paradigm suffers

from the shift in data distributions across different domains, which is an obstacle in

adapting predictive models for the target task.

Although numerous distance-based DA methods have been proposed, learning the

domain-invariant feature representation is still challenging. Distance alone in a high-

dimensional space may be challenging to reflect the domain discrepancy adequately

[68, 69]. The alignment of hidden feature representations also relies heavily on the

network architecture design. However, the network architecture of existing methods

is manually designed by experts, hence it is hard to guarantee that hidden feature

representations from different domains can be well aligned since the difficulty levels of

different DA tasks vary. For instance, a complex task may require a more sophisticated

network architecture than an easy task, making a hand-crafted network architecture fail

to align tasks with varying difficulty levels, limiting DA methods’ capacity and versatility.

Research Question 3: How to alleviate the gradient conflict in multi-task learning?

Multi-task learning has been widely used in many applications to enable more

efficient learning by sharing part of the architecture across multiple tasks. However, a

major challenge is the gradient conflict when optimizing the shared parameters, where

the gradients of different tasks could have opposite directions. Directly averaging those

4

CHAPTER 1. INTRODUCTION

gradients will impair the performance of some tasks and cause negative transfer.

Research Question 4: How to guarantee that multi-task learning performance is no

worse than its single-task counterpart on each task?

In recent years, multi-task learning attracts much attention due to its good perfor-

mance in many applications. However, many existing MTL models cannot guarantee that

its performance is no worse than its single-task counterpart on each task. Though this

phenomenon has been empirically observed by some works, little work aims to handle

the resulting problem.

Research Objective 1: To automatically design architecture by explicitly balancing

the trade-off among multiple objectives. (aims to answer Research Question 1)

Since effectiveness, robustness and computational demands are often considered

for deploying a neural network, we will choose the objectives including the validation

accuracy for the effectiveness, the number of parameters and FLOPs for the efficiency,

the out-of-distribution robustness, and adversarial robustness. We will formulate the

entire objective function as a multi-objective bi-level optimization problem where the

upper-level subproblem is a multi-objective optimization problem by considering the

effectiveness, efficiency, and robustness. To solve the resultant problem, we will propose

a gradient-based optimization algorithm by combining the multiple gradient descent

algorithm and the bi-level optimization algorithm.

5

CHAPTER 1. INTRODUCTION

Research Objective 2: To learn feature alignment architecture and domain-invariant

feature representations for domain adaptation tasks with varying difficulty levels (aims

to answer Research Question 2)

We will propose a new similarity function to measure the similarity between the

source and target domains. A learning model can learn a domain-invariant feature

representation by maximizing the population correlation between the source and target

domains. Specifically, maximizing population correlation can force the two domains to

have similar distributions since the population correlation is the maximum pairwise

correlation between source and target samples. To further align hidden feature represen-

tations between source and target domains, we will design a reinforcement-based neural

architecture search method to learn deep alignment architecture and domain-invariant

feature representations for different domain adaptation tasks.

Research Objective 3: To alleviate the gradient conflict in multi-task learning by

learning architectures (aims to answer Research Question 3)

Different from most existing works that manipulate gradients to mitigate the gradient

conflict, we will address gradient conflict from the perspective of architecture learning

and propose a conflict-noticed architecture learning method to alleviate the gradient

conflict by learning architectures. By introducing purely-specific modules specific to each

task in the search space, the CoNAL method can automatically learn when to switch to

purely-specific modules in the tree-structured network architectures when the gradient

conflict occurs. To handle multi-task problems with a large number of tasks, we will

6

CHAPTER 1. INTRODUCTION

propose a progressive extension of the CoNAL method.

Research Objective 4: To achieve safe multi-task learning where no negative sharing

occurs (aims to answer Research Question 4)

We will propose a safe multi-task learning model, which consists of a public encoder

shared by all the tasks, private encoders, gates, and private decoders. Specifically, each

task has a private encoder, a gate, and a private decoder, where the gate is to learn how

to combine the private encoder and public encoder for the downstream private decoder.

To improve the scalability, we will further propose an extension to learn a compact

architecture via neural architecture search.

1.4 Research Contributions and Innovation

1.4.1 Research Contributions

Contribution 1. An effective, efficient, and robust neural architecture search (E2RNAS)

method is proposed to design architecture by explicitly balancing the trade-off among

the performance, resource consumption, and robustness.

1) This study provides a practical gradient-based framework for multi-objective neural

architecture search and can be seamlessly combined with differentiable architecture

search algorithms.

2) This study formulates the objective function of the E2RNAS method as a multi-

objective bi-level optimization problem and proposes an efficient gradient-based algo-

7

CHAPTER 1. INTRODUCTION

rithm to solve it.

Contribution 2. An alignment architecture search with a new similarity measure

based on population correlation (AASPC) method is proposed to learn domain-alignment

architecture and domain-invariant feature representation.

1) This study proposes a new similarity measure, called population correlation, to

measure the domain similarity between the source and target domains.

2) This study provides the first architecture learning framework for distance-based

domain adaptation methods. It is also one of few works integrating neural architecture

search methods into domain adaptation methods.

Contribution 3. A conflict-noticed architecture learning (CoNAL) method is proposed

to alleviate the gradient conflict by learning architectures in multi-task learning.

1) This study first introduces the purely-specific modules in the search space of

multi-task architecture, which is different from partially-specific modules in existing

methods.

2) This study address the gradient conflict problem in multi-task learning from a new

perspective of architecture learning and provide extensive experiments on three challeng-

ing domains, including computer vision, natural language processing, and reinforcement

learning.

Contribution 4. A simple and effective deep safe multi-task learning (DSMTL) model

is proposed to achieve safe multi-task learning.

8

CHAPTER 1. INTRODUCTION

1) This study provides formal definitions for multi-task learning, including negative

sharing, safe multi-task learning, and partially safe multi-task learning.

2) This study theoretically proves that the generalization upper-bound of the DSMTL

model is lower than that of single-task counterpart.

1.4.2 Research Innovation

Innovation 1. This study is the first to propose a differentiable neural architecture

search algorithm that simultaneously optimizes many non-trivial objectives, including

robustness (out-of-distribution robustness and adversarial robustness), network per-

formance (accuracy) and network computational demands (number of parameters and

FLOPs). Compared to existing differentiable neural architecture search algorithms,

E2RNAS can automatically design a robust architecture with competitive performance

and balancing computational demands, which is useful to be deployed in resource-aware

platforms (e.g. mobile phone and IoT device).

Innovation 2. This study is the first to construct a neural architecture search frame-

work for distance-based domain adaptation methods and propose a new similarity

measure PC to measure the domain similarity. Compared to existing distance-based

domain adaptation methods which rely on distance metric alone to learn the domain-

invariant feature representation with limited capacity and versatility, AASPC can learn

deep alignment architecture with different distance metrics. AASPC can handle domain

adaption tasks with varying difficulty levels, which is useful in real world scenario.

9

CHAPTER 1. INTRODUCTION

Innovation 3. This study is the first to address gradient conflict from the perspective

of architecture learning and propose CoNAL method to alleviate the gradient conflict by

learning architectures. None of existing architecture learning methods for multi-task

learning considers to mitigate the gradient conflict during the architecture learning

process. CoNAL is the first to introduce purely-specific modules into the search space of

learnable architectures and along with conflict-aware learning algorithm to circumvent

gradient conflict, which is a major issue in multi-task learning.

Innovation 4. This study is the first to formalize the negative sharing problem and

propose safe multi-task learning. Compared to many existing MTL models cannot guar-

antee that its performance is no worse than its single-task counterpart on each task,

DSMTL can achieve safe multi-task learning, which is a valuable problem of how to stay

safe and avoid negative transfer in multi-task learning.

1.5 Research Significance

This section addresses the research significance of the thesis from both theoretical and

practical aspects.

Theoretical significance: This thesis investigates and formally defines the negative

sharing phenomenon in multi-task learning. It provides formal definitions for safe multi-

task learning and partially safe multi-task learning and builds theoretical foundations

for analyzing the generalization bound of multi-task learning model compared with

10

CHAPTER 1. INTRODUCTION

single-task counterpart. These theoretical results have the potential to inspire future

researchers to develop practical multi-task learning methods.

Practical significance: This thesis presents a series of architecture learning meth-

ods for learning effective architecture that solves realistic transfer learning problems.

Methods proposed in this thesis are validated by real-world datasets. The findings of

this research can guide the design of future neural network architecture. Research

practitioners can directly use the learned architecture to train models and solve real-

world problems. The proposed methods in this research have wild applications in many

challenging domains, such as computer vision, natural language processing and rein-

forcement learning.

1.6 Thesis Organization

Figure1.1 presents a conceptual map demonstrating the structure of this thesis. The

chapters of the thesis are organized as follows:

• CHAPTER 2 presents the literature review of three related fields of the thesis,

including neural architecture search, domain adaptation, and multi-task learning.

It further reveals the limitations of recent research in these fields.

• CHAPTER 3 presents an effective, efficient, and robust neural architecture search

method, called E2RNAS. The proposed method designs an architecture by explicitly

balancing the trade-off between performance, resource consumption, and robust-

11

CHAPTER 1. INTRODUCTION

ness. This chapter addresses Research Question 1 to achieve Research Objective 1

while optimizing performance, resource consumption, and robustness objectives.

• CHAPTER 4 presents an alignment architecture search method with population

correlation, called AASPC, for domain adaptation. The proposed method first

introduces neural architecture search techniques to distance-based domain adap-

tation methods. This chapter addresses Research Question 2 to achieve Research

Objective 2 with a neural architecture search framework.

• CHAPTER 5 presents a conflict-noticed architecture learning method, called

CoNAL, to alleviate the gradient conflict by learning architectures. By introduc-

ing purely-specific modules specific to each task in the search space, the CoNAL

method can automatically learn when to switch to purely-specific modules in

the tree-structured network architectures when the gradient conflict occurs. This

chapter addresses Research Question 3 to achieve Research Objective 3 from the

perspective of architecture learning.

• CHAPTER 6 presents a safe multi-task learning, called DSMTL, model which

consists of a public encoder shared by all the tasks, private encoders, gates, and

private decoders. Specifically, each task has a private encoder, a gate, and a private

decoder, where the gate is to learn how to combine the private encoder and public

encoder for the downstream private decoder. This chapter addresses Research

Question 4 to achieve Research Objective 4 with a simple and effective model.

• CHAPTER 7 summarises the findings of the studies in this thesis and reveals the

12

CHAPTER 1. INTRODUCTION

directions for future work.

Chapter 1 Introduction

Chapter 7 Conclusion and Future Study

Chapter 2 Literature Review

Research Objective 1

Chapter 6 Deep Safe Multi-Task Learning

Research Question 4: How to guarantee that multi-task learning
performance is no worse than its single-task counterpart on each task?

Research Objective 4

Chapter 5 Learning Conflict-Noticed
Architecture for Multi-Task Learning

Research Question 3: How to alleviate the gradient conflict in multi-task
learning?

Research Objective 3

Chapter 3 Effective, Efficient and Robust
Neural Architecture Search

Research Question 1: How to design a deep neural network architecture
that satisfies multiple objectives?

Chapter 4 Learning Feature Alignment
Architecture for Domain Adaptation

Research Question 2: How to design a feature alignment architecture with
varying difficulty levels of domain adaptation tasks?

Research Objective 2

Figure 1.1: Thesis structure overview

13

C
H

A
P

T
E

R

2
LITERATURE REVIEW

This chapter reviews literature related to this thesis, which includes three main parts:

neural architecture search, multi-task learning, and domain adaptation.

2.1 Neural Architecture Search

Neural architecture search (NAS) aims to design the architecture of a neural network

in an automated way. Compared with the manually designed architecture of neural

networks, NAS has demonstrated the capability to find architecture with state-of-the-art

performance in various tasks [40, 77, 106]. For example, the NAS-FPN method [40]

leverages NAS to learn an effective architecture of the feature pyramid network for

object detection.

The architecture generation of NAS can be divided into two parts: the design of

14

CHAPTER 2. LITERATURE REVIEW

search space, and the architecture optimization. The search space of NAS contains all

possible candidate architecture and can be represented as a direct acyclic graph (DAG),

where each node and edge indicate a hidden feature and an operation, respectively. After

designing the search space, architecture optimization will search for the best architecture

from all candidates. There are three categories architecture optimization methods that

are commonly used: evolutionary algorithm (EA), reinforcement learning (RL), and

gradient descent. According to the category architecture optimization that NAS methods

used, NAS methods can be divided into EA-based [32, 72, 90, 108], RL-based [106, 159],

and gradient-based [76, 77, 143].

2.1.1 One-shot NAS

Although NAS can achieve satisfactory performance, the high computational cost of the

searching procedure makes NAS less attractive. The one-shot NAS methods leverage a

supernet to accelerate the search procedure, which contains all the candidate architecture

in the search space. In the supernet, weights of operations on edges are shared across

different candidate architecture. ENAS [106] employs a reinforcement-based method

to train a controller that samples architecture from a supernet with a weight sharing

mechanism. DARTS [77] search architecture with a differentiable objective function

based on a supernet that uses the softmax function to contain all candidate operations

on each edge. The final architecture is determined based on the weights corresponding

to the candidate operations on each edge.

15

CHAPTER 2. LITERATURE REVIEW

2.1.2 One-stage and two-stage NAS

According to the process of NAS, the NAS methods can be divided into one-stage NAS or

two-stage NAS. Two-stage NAS methods [77, 106] consist of the searching stage and the

retraining stage. The searching stage aims to find optimal network architecture for the

search objective and is evaluated on the training dataset. The retraining stage retrains

the parameters of the searched architecture from scratch on the training dataset and is

evaluated on the testing dataset.

One-stage NAS methods [54, 96] can directly output well-trained neural network

models of the searched architecture without retraining. Architecture parameters and

model parameters are trained simultaneously, which improves the efficiency of NAS.

However, simultaneously optimizing architecture and model parameters may lead to

sub-optimal performance since they are highly coupled. To solve this challenge, [10]

progressively fine-tuned the smaller networks that search from the shared weights

once-for-all network.

2.1.3 Multi-Objective NAS

Multi-objective optimization aims to optimize more than one objective function simultane-

ously. Among different techniques to solve multi-objective problems, we are interested in

gradient-based multi-objective optimization algorithms [27], which leverage the Karush-

Kuhn-Tucker (KKT) conditions [62] to find a common descent direction for all objectives.

In this paper, we utilize one such method, i.e. MGDA [27]. With n objective functions

{Li(θ)}n
i=1 to be minimized, MGDA is an iterative method by first solving the following

16

CHAPTER 2. LITERATURE REVIEW

quadratic programming problem as

min
γ1,··· ,γn

∥∥∥∥∥ n∑
i=1

γi∇θLi(θ)

∥∥∥∥∥
2

2

s.t. γi ≥ 0,
n∑

i=1
γi = 1,(2.1)

where ∥ ·∥2 denotes the ℓ2 norm of a vector and γi can be viewed as a weight for the ith

objective, and then minimizing
∑n

i=1γiLi(θ) with respect to θ. When convergent, the

MGDA can find a Pareto-stationary solution.

Due to the complex application scenarios in the real world, recent works on NAS

take multiple objectives instead of only accuracy one objective into consideration, which

implicitly indicates a multi-objective optimization problem. Specifically, to search an

efficient architecture to be deployed in resource-limited platforms, some workers take

the resource-constraint objectives such as the number of parameters, FLOPs, latency,

and energy consumption into consideration [5]. Among those works, different techniques

are applied to solve this multi-objective optimization problem. For example, some work

[32] apply evolutionary algorithms to approximate the entire Pareto front, but the search

cost is quite high. Some work [125] regard the combination of multiple targets like

accuracy and latency as rewards to optimize the controller sampling an architecture

from the search space using reinforcement learning algorithms. The most relevant to

our work is the gradient-based method [6, 11, 57], especially the DARTS-based method

[6, 57]. GOLD-NAS [6] regards the resource constraint like FLOPs as the regularization

terms, whose coefficients gradually increase to prune the architecture during the search

procedure. Built on DARTS [77], RC-DARTS [57] considers to search architecture with

high accuracy while constraining the model size and FLOPs of the searched architecture

within user-defined intervals. Therefore, the proposed objective function is formulated as

17

CHAPTER 2. LITERATURE REVIEW

a constrained optimization problem, and a projected gradient descent method is applied

to solve it.

To search a robust architecture, some works [28, 43] investigate the influence of

architecture on adversarial robustness from a NAS perspective and then discover a family

of adversarially robust architecture based on their observations. Different with [28, 43],

[78] consider adversarial robustness as an optimized objective to search architecture

that can defend multiple types of adversarial attacks. This problem is formulated as a

multi-objective optimization and solved by an evolutionary algorithm. Besides, similar

with [28, 43], [1] study what topology of neural network architecture is best for out-of-

distribution robustness.

2.1.4 Limitations

Performance is not the only factor to be considered in real-world applications. On the

contrary, resource consumption and robustness may be more critical. For example, a

deep neural network with high computational burden and storage demands is difficult to

be deployed to embedded devices (e.g. mobile phone and IoT device). Besides, it is well

known that the trained neural networks are easily misled by adversarial examples and

can not exactly distinguish in- and out-of-distribution samples, making them hard to

deploy in safety-sensitive applications such as autonomous driving. Hence, there exists

an open problem: Can we find an automatic way to design a robust architecture with

competitive performance to be deployed in resource-aware platforms? This open problem

implicitly indicates a trade-off among multiple objectives in NAS. Previous methods do

18

CHAPTER 2. LITERATURE REVIEW

not consider the trade-off between performance and robustness.

2.2 Domain Adaptation

Domain Adaptation (DA) aims to transfer the knowledge learned from a source domain

with labeled data to a target domain without labeled data. Specifically, we study DA

under the single source unsupervised setting. That is, there is one source domain and

one target domain. Let x and y denote the input data and output label, respectively. The

source domain Ds has labeled samples {(xs,ys)} and the target domain Dt has unlabeled

samples
{
xt} only. Single-source unsupervised DA methods aim to learn a model from

a source domain that can perform well on a different but related target domain. This

learning paradigm can cover the target domain without labeled training data, which

improves the efficiency of machine learning. However, the main challenge of unsupervised

DA is the domain shift between domains, where unreliable predictions may occur on

the target domain due to the difference between the source and target distributions

[130]. Recent works in unsupervised DA handle the domain shift by learning domain-

invariant representations. The basis of these works is justified by the theory of [3]. The

performance difference of a classifier between the source and target domain could be

bounded by the distance between the data distribution of two domains if the classifier

generalizes well from the source domain to the target domain. Recent DA methods

that learn domain-invariant representations can be mainly grouped into two categories:

discrepancy-based methods and adversarial-based methods.

19

CHAPTER 2. LITERATURE REVIEW

2.2.1 Discrepancy-based methods

Discrepancy-based methods, which minimize the domain discrepancy between the source

and target domains via some measures such as distance. [84] calculate the sum of the

multiple kernel variant of maximum mean discrepancies between the fully connected

layers and propose a deep adaptation network. [121] propose the correlation alignment

by calculating the second-order statistics of the source and target features in the last

federated learning layer to minimize the domain shift. [150] propose central moment

discrepancy by utilizing the equivalent representation of probability distributions by mo-

ment sequences. [132] introduce an adaptation layer and an additional domain confusion

loss to learn semantically meaningful and domain-invariant representations.

2.2.2 Adversarial-based methods

Discrepancy-based methods minimize the domain discrepancy between the source and

target domains via some measures such as distance. [84] calculate the sum of the multi-

ple kernel variant of maximum mean discrepancies between the fully connected layers

and propose a deep adaptation network. [121] propose the correlation alignment by cal-

culating the second-order statistics of the source and target features in the last federated

learning layer to minimize the domain shift. [150] propose central moment discrepancy

by utilizing the equivalent representation of probability distributions by moment se-

quences. [132] introduce an adaptation layer and an additional domain confusion loss to

learn semantically meaningful and domain-invariant representations.

20

CHAPTER 2. LITERATURE REVIEW

2.2.3 Limitations

Although numerous DA methods have been proposed, learning the domain-invariant

representations is still challenging. In a high-dimensional space, discrepancy measures

or adversarial discriminators may be difficult to truly reflect the domain discrepancy.

Moreover, all of these methods are developed by using hand-crafted network architecture.

Since the difficulty levels of different DA tasks are not the same, accomplishing complex

tasks may require a more sophisticated network architecture than easy tasks. Hence,

using the same hand-crafted network architecture may limit the capacity and versatility

of DA methods.

2.3 Multi-task Learning

MTL [13, 152] aims to improve the generalization performance of multiple learning

tasks. Compared with single-task learning, MTL can solve multiple tasks simultaneously,

reducing the overall training cost and sharing knowledge from different tasks. Moreover,

in some cases, MTL models could make multiple predictions in one forward propagation,

which reduces the inference latency of the entire learning model. Therefore, MTL has

drawn much attention in recent years. The performance of MTL strongly depends on

the use of a proper network architecture [134]. Contrary to the design of a single-task

network, the architecture design of multi-task problems often encounters many chal-

lenges. Various MTL architecture and parameter sharing schemes have been proposed

to improve the performance of the MTL model, which can be divided into four categories:

21

CHAPTER 2. LITERATURE REVIEW

hard parameter sharing, soft parameter sharing, task routing, and architecture learning.

2.3.1 Hard parameter sharing

In hard parameter sharing methods, the most popular model is the multi-head hard

sharing architecture [13], which shares the first several layers among all the tasks and

allows the subsequent layers to be specific to different tasks. Based on hard sharing

architecture, task balancing methods [18, 58, 139, 147] dynamically assign weights

between tasks to balance the loss scale and solve the gradient conflict. With a pre-defined

hard sharing network architecture, network capacity might limit these methods and

lead to sub-optimal solutions.

2.3.2 Soft parameter sharing

To better handle task relationships, soft parameter sharing methods are proposed. [97]

propose a cross-stitch network to combine hidden representations of different tasks

linearly. [80] propose a multi-task attention network, which consists of a shared network

and an attention module for each task so that both shared and task-specific feature

representations can be learned via the attention mechanism. [39] propose a neural

discriminative dimensionality reduction layer to enable automatic feature fusing at

every layer from different tasks. Such approaches often consist of multiple full-size

separate networks, leading to over-fitting on small datasets and too large a model size

for deployment.

22

CHAPTER 2. LITERATURE REVIEW

2.3.3 Task routing

Instead of choosing between soft sharing or hard sharing architecture, task routing

methods and other adaptive network methods are proposed. Multi-Agent Reinforcement

Learning (MARL) [111] allows the network to dynamically self-organize in response to

the input. Task Routing Layer (TRL) [119] allows a single model to fit many tasks with

task-specific masks. However, all of these routing-based methods only use one network,

which may limit the expressive power of those models. To alleviate this issue, [23]

propose an adaptive feature aggregation layer, where a dynamic aggregation mechanism

is designed to allow each task to determine the degree of the knowledge sharing between

tasks adaptively. [124] propose an adaptive sharing method to learn the sharing pattern

through a task-specific policy that selectively chooses which layers to be executed for

each task. [133] calculate task affinity scores to construct a branched multi-task network.

[34] determines task groupings by co-training all the tasks together and calculating

the inter-task affinity. These works dynamically allocate feature sharing or parameter

sharing to different tasks. Compared with manually designed architecture, they have

better generalization performance but require additional computation to determine task

relatedness.

2.3.4 Architecture learning

Instead of the hand-crafting architecture of deep neural networks, NAS [77, 106] can

design architecture with good performance automatically. There are some works to

leverage NAS to automatically search the architecture of multi-task neural networks

23

CHAPTER 2. LITERATURE REVIEW

to improve the overall performance of MTL. For example, [89] dynamically widens a

multi-layer network to create a tree-like deep architecture, where similar tasks reside in

the same branch. [72] propose an evolutionary architecture search algorithm to search

blueprints and modules that are assembled into an MTL network. [38] search inter-task

layers for better feature fusion across tasks. [45] propose a differentiable architecture

search algorithm to learn branching blocks to construct a tree-structured neural network

for MTL. [8] automatically determine the branching architecture for the encoder in a

multi-task neural network under resource constraints.

2.3.5 Limitations

An important goal in MTL is to improve the performance of all the tasks so that the

MTL model could perform no worse than its single-task counterpart on each task, which

is called safe multi-task learning [47]. However, most MTL models cannot achieve it

with some empirical evidence in [45, 66, 118, 126]. One reason is that some tasks are

not highly related to other tasks based on given network architecture. To the best of our

knowledge, the only exception is the SMTL model [47] which designs task-private and

public encoders for each task via a gating mechanism to achieve safe multi-task learning

possibly. However, the model size of the SMTL model grows linearly with respect to

the number of tasks, which makes its scalability not so good. The existing architecture

learning methods do not consider the negative sharing issue among tasks during the

searching process. The searched architecture by those methods may also suffer from

negative sharing and thus cannot achieve safe multi-task learning.

24

CHAPTER 2. LITERATURE REVIEW

2.4 Summary

This chapter comprehensively reviews the related works in the NAS, DA and MTL areas.

Notably, it introduces the related works of learning architecture methods in the context

of DA and MTL. It describes the advantages of these related works and summarizes the

limitations of current methods. In the following chapters, Chapters 3-6, these limitations

will be further described and addressed in the corresponding introduction section.

25

C
H

A
P

T
E

R

3
EFFECTIVE, EFFICIENT AND ROBUST NEURAL

ARCHITECTURE SEARCH

3.1 Introduction

Deep learning has achieved great successes in many areas, such as computer vision,

natural language processing, speech, gaming. The design of the neural network archi-

tecture is essential to such success. However, such design relies heavily on experts’

knowledge and experience, and even experienced experts cannot design the optimal

architecture. Therefore, NAS, which aims to design the architecture of neural networks

in an automated way, has attracted great attention in recent years.

Although NAS has demonstrated the capability to find neural network architecture

with state-of-the-art performance in various tasks [32, 77, 125], conventional NAS

26

CHAPTER 3. EFFECTIVE, EFFICIENT AND ROBUST NEURAL ARCHITECTURE
SEARCH

Architecture

Model

Evaluation

Multi-Objective
Optimization

Architecture

Model

Evaluation

Figure 3.1: Comparison of the architecture searching procedure between DARTS [77]
(top) and the proposed E2RNAS (bottom). We formulate E2RNAS as a multi-objective
bi-level optimization problem with two key differences with DARTS: 1) we train the
model with both in- and out-of-distribution data samples to improve the robustness. 2) we
evaluate the E2RNAS model with five objectives, including the validation loss Lval(θ,α)
for effectiveness and the number of parameters Lnop(α), the number of operations
L f lops(α) for efficiency, and the out-of-distribution robustness loss Lood(θ,α) and the
adversarial robustness loss Ladv(θ,α) for robustness.

methods are typically only designed to optimize the accuracy during the architecture

searching process while neglecting other significant objectives, resulting in very limited

application scenarios.

Actually, performance is not the only factor to be considered in real-world applications.

On the contrary, resource consumption and robustness may be more critical. For example,

a deep neural network with high computational burden and storage demands is difficult

to be deployed to embedded devices (e.g. mobile phone and IoT device). Besides, it is well

27

CHAPTER 3. EFFECTIVE, EFFICIENT AND ROBUST NEURAL ARCHITECTURE
SEARCH

known that the trained neural networks are easily misled by adversarial examples and

can not exactly distinguish in- and out-of-distribution samples, making them hard to

deploy in safety-sensitive applications such as autonomous driving. Hence, there exists

an open problem: Can we find an automatic way to design a robust architecture with

competitive performance to be deployed in resource-aware platforms?

This open problem implicitly indicates a trade-off among multiple objectives in NAS.

Recently, some studies have considered multiple objectives during the architecture

searching process. However, most of those works (e.g. [5, 57, 125]) only focus on the

hardware-aware NAS problem, i.e. designing an architecture that can be deployed in

resource-limited devices. There exist few studies [1, 28] that statistically investigate

the influence of architecture on the robustness, such as the adversarial robustness and

out-of-distribution robustness from a NAS perspective. However, they do not consider

the trade-off between the performance and robustness.

To answer the open problem, in this chapter, we propose an Effective, Efficient,

and Robust Neural Architecture Search method to design an architecture by explicitly

balancing the trade-off among the performance, resource consumption and robustness.

Specifically, we consider the validation accuracy for the effectiveness, the number of

parameters and FLOPs for the efficiency, and the out-of-distribution robustness and

adversarial robustness for the robustness. Built on DARTS, the proposed E2RNAS for-

mulates the entire objective function as a multi-objective bi-level optimization problem

where the upper-level subproblem is a multi-objective optimization problem by consid-

ering the effectiveness, efficiency, and robustness. To solve the resultant problem, we

28

CHAPTER 3. EFFECTIVE, EFFICIENT AND ROBUST NEURAL ARCHITECTURE
SEARCH

propose a gradient-based optimization algorithm by combining the Multiple Gradient

Descent Algorithm (MGDA) [27] and the bi-level optimization algorithm. In summary,

the contributions of this chapter are three-fold.

• We propose the E2RNAS method for searching effective, efficient, and robust

network architecture, a practical DARTS-based framework for multi-objective NAS

and can be seamlessly combined with DARTS and its variants.

• We formulate the objective function of the E2RNAS method as a multi-objective

bi-level optimization problem and propose an efficient gradient-based algorithm to

solve it.

• Experiments on benchmark datasets show that the proposed E2RNAS method can

find robust architecture with less resource consumption and comparable classifica-

tion accuracy.

3.2 The E2RNAS Method

In this section, we present the proposed E2RNAS method. We first give an overview of the

DARTS method and then introduce how to achieve two kinds of robustness and formulate

the objectives to constrain the resource cost, including the number of parameters and

FLOPs in the searched architecture. Finally, we present the multi-objective bi-level

formulation of the proposed E2RNAS method and its optimization.

29

CHAPTER 3. EFFECTIVE, EFFICIENT AND ROBUST NEURAL ARCHITECTURE
SEARCH

3.2.1 Preliminary

DARTS [77] aims to learn a Directed Acyclic Graph (DAG) called cell, which can be

stacked to form a neural network architecture. Each cell consists of N nodes {di}N−1
i=0 ,

each of which denotes a hidden representation. O denotes a discrete operation space.

The edge (di,d j) of the DAG represents an operation function o(·) (e.g. skip connection

or 3×3 pooling) from O with a probability α
(i, j)
o to perform at the node di. Therefore,

we can formulate each edge (di,d j) as a weighted sum function to combine all the

operations in O as f i, j(di) = ∑
o∈O

exp(α(i, j)
o)∑

o′∈O exp(α(i, j)
o′)

o(di). An intermediate node d j is the

sum of its predecessors, i.e. d j = ∑
i< j f i, j(di). The output of the cell, i.e. node dN−1, is

the concatenation of all the output of nodes excluding the two input nodes d0 and d1.

Therefore, α = {α(i, j)
o }(i, j)∈E, o∈O can parameterize the searched architecture, where E

denotes the set of all the edges from all the cells. Let Dtr and Dval denote the training

dataset and validation dataset, respectively. DARTS is to solve a bi-level optimization

problem as

min
α

Lval(θ∗(α),α)

s.t. θ∗(α)= argminθ Ltr(θ,α),(3.1)

where θ denotes all the weights of the neural network, the average training loss of

a neural network is represented by Ltr(θ,α) = 1
|Dtr |

∑
(x,y)∈Dtr ℓ(θ,x, y) with parameter

weight θ and an architecture α and ℓ(θ,x, y) denotes the loss function for each sample.

Lval(θ∗(α),α) is defined similarly. Here minαLval(θ∗(α),α) is called the Upper-Level

(UL) subproblem and minθ Ltr(θ,α) is called the Lower-Level (LL) subproblem. When

30

CHAPTER 3. EFFECTIVE, EFFICIENT AND ROBUST NEURAL ARCHITECTURE
SEARCH

the search procedure finishes, the final architecture can be determined by the operation

with the largest probability in each edge from each cell, i.e. , o(i, j) = argmaxo∈O α
(i, j)
o .

A well-known issue in using the gradient-based method is the local minima problem,

where a solution with a set of parameters gets stuck in a local minimum while the goal

is to get to the global minimum. Several techniques have been proposed to mitigate the

local minima problem. One common approach is to use stochastic gradient descent, which

introduces randomness to the optimization process, allowing the model to escape local

minima. Another method is to employ momentum-based optimizers like Momentum[107]

or adaptive learning rate algorithms such as Adam[59], which help the optimization

process navigate through the parameter space more effectively.

3.2.2 Objective Functions for Robustness

In E2RNAS, we expect the searched architecture to be robust, which means that the

trained model with the searched architecture can distinguish test samples whether from

in- or out-of-distribution, and its performance is stable when adding some perturbations

to the in-distribution samples. To improve the robustness of the searched architecture,

we consider both Out-of-Distribution (OoD) robustness and adversarial robustness as

objective functions in the UL subproblem.

3.2.2.1 Out-of-Distribution Robustness

Let C in denote the label distribution of the training dataset Dtr and the validation

dataset Dval . We use an OoD dataset Dood with its corresponding label distribution Cout

31

CHAPTER 3. EFFECTIVE, EFFICIENT AND ROBUST NEURAL ARCHITECTURE
SEARCH

and C in∩Cout =; to measure the OoD robustness of the neural network. Following [67],

we formulate the OoD robustness objective function as

Lood(θ,α)= 1
|Dood|

∑
x∈Dood

KL(U ∥S (x,θ)),(3.2)

where U represents a discrete uniform distribution, i.e. U = (1
k , · · · , 1

k) if the neural

network is a k-class classification model, S (x,θ) is the probability distribution of x

predicted by the neural network with weights in θ, and KL(·∥·) denotes the Kullback-

Leibler (KL) divergence to measure the distance between U and S (x,θ). Namely, the

predictive distributions of OoD samples are forced to be uniform distributions. In this

way, the maximum predictive probability of OoD samples is lower than in-distribution

samples so that the neural network can distinguish in- and out-of-distribution to avoid

the overconfidence in its predictions.

3.2.2.2 Adversarial Robustness

To evaluate the adversarial robustness of the neural network with the searched archi-

tecture α, we first perturb each data sample in the validation dataset Dval by PGD

adversarial attack [64] to generate a perturbed validation dataset denoted by Dadv
val . Then

we compute the average loss on this perturbed dataset as

Ladv(θ,α)= 1
|Dadv

val |
∑

(x,y)∈Dadv
val

ℓ(θ,x, y).(3.3)

3.2.3 Objective Functions of Resource Constraints

Architecture with less resource consumption have more application scenarios even in

resource-constrained mobile devices. Therefore, we regard resource constraints as the

32

CHAPTER 3. EFFECTIVE, EFFICIENT AND ROBUST NEURAL ARCHITECTURE
SEARCH

desired objectives and mainly focus on the number of parameters and multiply-add

operations (i.e. FLOPs).

3.2.3.1 Number of Parameters

By following DARTS [77], we determine the operation on each edge of each cell in the

final architecture as the one with the largest probabilities. So the number of para-

meters in an architecture can be computed as N (α) = ∑
(i, j)∈E nargmaxo∈O α

(i, j)
o

, where

no denotes the number of parameters corresponding to the operation o(·). Note that

argmax is a non-differentiable operation, making the computation of the gradient

of N (α) with respect to α infeasible. To make such operation differentiable, we use

the softmax function to approximate the argmax operation and then formulate it as

N̂ (α)=∑
(i, j)∈E

∑
o∈O

exp(α(i, j)
o)∑

o′∈O exp(α(i, j)
o′)

no. Furthermore, to prevent the model to search over-

simplified architecture (i.e. the one containing too many parameter-free operations) that

leads to unsatisfactory performance, we add a lower bound L to the parameter size N̂ (α).

Therefore, the objective function of the number of parameters can be formulated as

(3.4) Lnop(α)= |N̂ (α)−L|.

3.2.3.2 FLOPs

Similar to the number of parameters, FLOPs also only depend on the architecture α.

Thus we formulate the objective function of FLOPs similarly to the number of parameters

(i.e. Eq. (3.4)). First, we carefully compute the FLOPs fo of each operation o(·) in O . Then

we use the softmax function to approximate the argmax operation and calculate the

33

CHAPTER 3. EFFECTIVE, EFFICIENT AND ROBUST NEURAL ARCHITECTURE
SEARCH

total FLOPs F̂ (α)=∑
(i, j)∈E

∑
o∈O

exp(α(i, j)
o)∑

o′∈O exp(α(i, j)
o′)

fo. Finally we constrain F̂ (α) with a lower

bound F and formulate the objective function of FLOPs as

(3.5) L f lops(α)= |F̂ (α)−F|.

In practice, we can specify the minimum constraints L in Eq. (3.4) and F in Eq. (3.5)

to search an architecture with an expected model size. On the other hand, we can also

get a set of Pareto-optimal architecture by adjusting the minimum constraints as shown

in Table 3.1.

3.2.4 Multi-Objective Bi-Level Formulation

E2RNAS aims to search the architecture α to minimize the validation loss for the

effectiveness, the number of parameters and FLOPs for the efficiency, and the OoD

robustness and adversarial robustness for the robustness. Thus, we combine Eqs. (3.2),

(3.3), (3.4) and (3.5) to formulate the entire objective function as

min
α

U(θ∗(α),α)= (Lval(θ∗(α),α),Lood(θ∗(α),α),

Ladv(θ∗(α),α),Lnop(α),L f lops(α))

s.t. θ∗(α)= argminθ (Ltr(θ,α)+Lood(θ,α)).(3.6)

where θ∗(α) indicates that the network weights θ depends on the network architecture

α. Objective loss functions Lval ,Lood,Ladv depend on the network weights and archi-

tecture. Objective loss functions Lnop,L f lops only depend on the network architecture.

Problem (3.6) is similar to the bi-level optimization problem (3.1) in the original

DARTS, where the LL subproblem is similar, but there exists significant differences

34

CHAPTER 3. EFFECTIVE, EFFICIENT AND ROBUST NEURAL ARCHITECTURE
SEARCH

in that the UL subproblem contains five objectives, as shown in Figure 3.1. On the

other hand, different from RC-DARTS [57] that directly adds the resource constraint

into the original DARTS objective function (3.1) as a constraint and formulates the

objective function as a constrained optimization problem or GOLD-NAS [6] that regards

resource constraint as the regularization term and then optimizes as a single-objective

optimization problem, we evaluate all the objectives in the UL subproblem and cast it

as a multi-objective optimization problem solving by a gradient-based multi-objective

method, i.e. MGDA.

Therefore, problem (3.6) is a multi-objective bi-level optimization problem which is

also a generalization of problem (3.1) in the DARTS. It can be understood as a two-stage

optimization. Firstly, when given an architecture parameter α, we can learn a model

with optimal model weights θ∗ via the empirical risk minimization on both training

dataset and OoD dataset. Secondly, given θ∗, the architecture parameter α is updated

on the validation dataset by making a trade-off among its performance, robustness, and

resources consumption. Therefore, we can solve the problem (3.6) in two stages, which

are described as follows.

Updating θ Given the architecture parameter αt, θ can be simply updated as

(3.7) θt+1 = θt −ηθ∇θ(Ltr(θt,αt)+Lood(θt,αt)),

where t denotes the index of the iteration and ηθ denotes the learning rate.

Updating α After obtaining θt+1, we can optimize the UL subproblem to update

the architecture parameter α. As the UL subproblem is a multi-objective optimization

35

CHAPTER 3. EFFECTIVE, EFFICIENT AND ROBUST NEURAL ARCHITECTURE
SEARCH

problem, we adopt the MGDA to solve it. In MGDA, we first need to solve problem (2.1),

which requires the computation of the gradients of the five objectives with respect to

α. The gradient of Lnop(αt) and L f lops(αt) with respect to α is easy to compute, while

the gradient of the remaining three objectives with respect to α is a bit complicate as

θ∗(αt) is also a function of α and it is too expensive to obtain θ∗(αt). Therefore, we use a

second-order approximation as

∇αLval(θ∗(αt),αt)

≈∇αLval(θt+1 −ηθ∇θLtr(θt+1,αt),αt).(3.8)

where ξ denotes the learning rate for inner optimization. Obviously when ηθ = 0, θt+1

becomes an approximation of θ∗(αt) and Eq. (3.8) degenerates to the first-order approxi-

mation, which can speed up the gradient computation and reduce the memory cost but

lead to worse performance [77]. So we use the second-order approximation in Eq. (3.8).

Similarly, the gradient of Ladv(θ∗(αt),αt) and Lood(θ∗(αt),αt) can be computed ap-

proximately. Then we solve the problem (2.1) to get the weight Γ = (γ1, · · · ,γ5) for five

objectives, respectively. While the problem (2.1) has no analytical solution, we apply the

Frank-Wolfe algorithm to solve it.

After that, we can update αt as

(3.9) αt+1 =αt −ηα∇αt

(
U(θ∗(αt),αt)ΓT)

,

where ηα denotes the learning rate for α. The whole algorithm is summarized in Algo-

rithm 1.

36

CHAPTER 3. EFFECTIVE, EFFICIENT AND ROBUST NEURAL ARCHITECTURE
SEARCH

Algorithm 1 E2RNAS
Input: Dataset Dtr and Dval , OoD dataset Dood, batch size B, perturbation size ϵ,

minimum constraint L and F, learning rates ηα and ηθ

Output: Learned architecture parameter α

1: Randomly initialized α0 and θ0;
2: t := 0;
3: while not converged do
4: Sample a mini-batch of size B;
5: Update θt+1 according to Eq. (3.7);
6: Compute five objective functions and the corresponding gradients;
7: Compute weights Γ by solving problem (2.1);
8: Update αt according to Eq. (3.9);
9: t := t+1;

10: end while

3.3 Experiments

In this section, we empirically evaluate the E2RNAS method on CIFAR-10 [60], CIFAR-

100 [60] and ImageNet-1K [25] datasets.

3.3.1 Experimental Datasets

The CIFAR-10 dataset contains 50,000 training images and 10,000 testing images from

10 classes, each of which has 6,000 images with a 32×32 resolution in total. The CIFAR-

100 dataset contains 100 classes grouped into 20 super-classes, with 500 training images

and 100 testing images for each class. For the ImageNet dataset, we use the ImageNet-1K

benchmark, which contains 1K high-level categories from the original 22K categories. For

OoD test, we use the Street View House Numbers (SVHN) dataset [100], which consists

of the images of house numbers captured from the Google street view and contains 10

classes with 73,257 images used for training and 26,032 images for testing.

37

CHAPTER 3. EFFECTIVE, EFFICIENT AND ROBUST NEURAL ARCHITECTURE
SEARCH

3.3.2 Implementation Details

3.3.2.1 Search Space

The search space adopts the same setting as DARTS [77]. There are two types of cells, i.e.

the reduction cell and the normal cell. The reduction cells are located at the 1/3 and 2/3 of

the total depth of the network. Other cells in the network belong to the normal cell. There

are 7 nodes in each cell for both reduction and normal cells, including four intermediate

nodes, two input nodes, and one output node. In both normal and reduction cell, the

set of operations O contains eight operations, including 3×3 separable convolutions,

5×5 separable convolutions, 3×3 dilated separable convolutions, 5×5 dilated separable

convolutions, 3×3 max pooling, 3×3 average pooling, identity, zero. For the convolution

operator, the ReLU-Conv-BN order is used. Each separable convolution is applied twice.

3.3.2.2 Search Settings

In the search process, by following DARTS [77], half of the whole training set is used for

training a model and the other half for validation. A small network of 8 cells is trained

for 50 epochs with the batch size as 64 and initial channels as 16. For the adversarial

robustness objective, the adversarial examples are generated by the FGSM attack

follow the setting in [142] with the perturbation size ϵ = 2. For the OoD robustness

objective, we use the SVHN dataset [100] as the OoD dataset, which is introduced

in Section 3.3.1. For the FLOPs objective, we use a function fo to approximate the

FLOPs of the corresponding operation o(·). Let C denote the number of channels of input

and output channels for the operation. W and H denote the width and height of the

38

CHAPTER 3. EFFECTIVE, EFFICIENT AND ROBUST NEURAL ARCHITECTURE
SEARCH

feature map. Ignoring padding and bias, the FLOPs of an ω×ω separable convolution

is 2(CHW +C2HW +ω2CHW +2CHW) and the FLOPs of an ω×ω dilated separable

convolutions is CHW +C2HW +ω2CHW +2CHW with stride = 1. The FLOPs of a 3×3

average pooling is CHW. The FLOPs of a 3×3 max pooling, identity or none operation

is zero. The FLOPs of a skip connection is 0 if stride = 0 and is C2HW +2×CHW if

stride = 1. The ADAM optimizer [59] with the learning rate 3×10−4, the momentum

β= (0.5,0.999), and the weight decay 1×10−3 is used to update α in the UL subproblem.

The SGD optimizer with the momentum 0.9 and the weight decay 3×10−4 is used to

update θ in the LL subproblem. The proposed method is implemented in PyTorch 0.3.1,

and all the experiments are conducted on one single NVIDIA Tesla V100S GPU.

3.3.2.3 Retrain Settings

A large network of 20 cells is retrained on the full training set for 600 epochs, with the

batch size as 96, the initial number of channels 36, a cutout of length 16, the dropout

probability 0.2, and auxiliary towers of weight 0.4.

3.3.2.4 Evaluation Metrics

For the performance objective, the accuracy is tested on the full testing set. For the

adversarial robustness objective, adversarial examples are generated using the PGD

attack [64] with the perturbation size ϵ= 2/255 on the full testing set. The PGD attack

takes 10 iterative steps with the step size of 2.5ϵ as suggested in [92]. For the OoD

robustness objective, we evaluate the effectiveness of distinguishing between in- and

39

CHAPTER 3. EFFECTIVE, EFFICIENT AND ROBUST NEURAL ARCHITECTURE
SEARCH

out-of-distribution samples by measuring the Area Under the Precision-Recall (AUPR)

curve, which is a threshold-independent metric [52, 67] and the PR curve describes the

relationship between precision and recall, where precision is computed by TP/(TP+FP),

recall is computed by TP/(TP+FN), and TP, FP, TN, and FN denote true positive, true

negative, false positive, and false negative. We specify the OoD images as positives to

compute the AUPR in this chapter.

3.3.3 Analysis on Experimental Results

3.3.3.1 Searched Architecture on CIFAR-10

The normal and reduction cells searched by the E2RNAS on the CIFAR-10 dataset are

presented in Figure 3.2. The found reduction cell does not contain any operation with

parameters, which reduces the parameter size of the architecture. Moreover, it is notable

that both normal and reduction cells do not include the max pooling operation and begin

with the average pooling operation, which indicates the found architecture is potentially

OoD robust based on the observations in [1]. This also coincides with experimental

results in Table 3.1.

3.3.3.2 Architecture Evaluation on CIFAR-10

The comparison of the proposed E2RNAS method with state-of-the-art NAS methods

on the CIFAR-10 dataset is shown in Tables 3.1 and 3.2. Two variants of the E2RNAS

method denoted by E2RNAS-S1 and E2RNAS-S2 can obtain a set of Pareto-optimal

architecture by adjusting L in Eq. (3.4), Specifically, we set L = 2.5 in Eq. (3.4) for

40

CHAPTER 3. EFFECTIVE, EFFICIENT AND ROBUST NEURAL ARCHITECTURE
SEARCH

c_{k-2}

0
avg_pool_3x3

1avg_pool_3x3
2avg_pool_3x3

3avg_pool_3x3

c_{k-1} skip_connect sep_conv_3x3

sep_conv_5x5
c_{k}sep_conv_5x5

c_{k-2}

0

avg_pool_3x3 1
avg_pool_3x3

2

avg_pool_3x3 3

avg_pool_3x3

c_{k-1}
avg_pool_3x3
avg_pool_3x3

c_{k}skip_connect
skip_connect

Figure 3.2: The found normal cell (top) and reduction cell (bottom) on the CIFAR-10
dataset by the proposed E2RNAS method. This architecture corresponds to “E2RNAS-S1"
in Table 3.1.

Table 3.1: Comparison with gradient-based NAS methods on the CIFAR-10 dataset. †
represents training without the cutout augmentation. ‡ indicates the use of the provided
genotype in the original chapter. ↑ (↓) indicates a larger (lower) value is better. The search
cost is recorded on one single NVIDIA Tesla V100S GPU and includes validation time
while searching. We set L = 2.5 in Eq. (3.4) for E2RNAS-S1 and L = 3.5 for E2RNAS-S2.

Architecture Multiple Test Err. Params FLOPs PGD Acc. OoD AUPR Search Cost
Objective (%) ↓ (M) ↓ (M) ↓ (%) ↑ (%) ↑ (GPU days) ↓

DARTS‡ [77] 2.59 3.3 539 25.68 31.44 0.6
P-DARTS‡ [17] 2.37 3.4 543 39.39 21.46 0.25
PC-DARTS‡ [143] 3.78 2.72 442 35.19 30.93 0.24

E2RNAS-S1
p

2.87 2.55 425 36.39 31.38 0.98
E2RNAS-S2

p
2.75 3.53 586 42.81 34.64 0.98

E2RNAS-S1 and L = 3.5 for E2RNAS-S2. Notably, E2RNAS outperforms NAS methods

[76, 108] by searching for a more lightweight architecture with lower search costs of

three or four orders of magnitude and a comparable test error rate. Moreover, although

ENAS [106] slightly outperforms E2RNAS in terms of the search time, it finds a much

41

CHAPTER 3. EFFECTIVE, EFFICIENT AND ROBUST NEURAL ARCHITECTURE
SEARCH

Table 3.2: Comparison with various architecture on the CIFAR-10 dataset. ↑ (↓) indi-
cates a larger (lower) value is better. “RL”, “Evo.” and “SMBO” stand for reinforcement
learning-based, evolution-based and sequential model-based optimization NAS method,
respectively. “MO-G”, “MO-RL” and “MO-Evo.” stand for multi-objective gradient-based,
multi-objective reinforcement learning-based and multi-objective evolution-based NAS
method, respectively. “-” indicates that the corresponding result is not reported. For
E2RNAS-S2, we set L = 3.5 in Eq. (3.4).

Architecture Test Err. Params Search Cost Search
(%) ↓ (M) ↓ (GPU days) ↓ Method

DenseNet-BC [55] 3.46 25.6 - manual

AmoebaNet-B [108] 2.55 2.8 3150 Evo.
PNAS [76] 3.41 3.2 225 SMBO
ENAS [106] 2.89 4.6 0.5 RL

LEMONADE [32] 3.05 4.7 80 MO-Evo.
Proxyless-R [11] 2.30 5.8 - MO-RL
RAPDARTS [41] 2.83 2.8 12 MO-G
GOLD-NAS-K [6] 2.57 3.3 1.1 MO-G
RC-DARTS-C42 [57] 2.81 3.3 1 MO-G
FPNASNet [24] 3.01 5.76 - MO-G

E2RNAS-S2 2.75 3.53 0.98 MO-G

larger architecture with a higher test error. Compared with the original DARTS in

[77], E2RNAS achieves a better trade-off among accuracy, efficiency, and robustness.

Specifically, although the test error of E2RNAS is slightly higher than DARTS, E2RNAS

can find more efficient and robust architecture. For example, compared with DARTS, the

E2RNAS-S1 architecture with only 2.55 MB model size and 425 MB FLOPs significantly

improves the PGD accuracy by 11.11%, while the corresponding AUPR slightly decreases

by 0.06%. Besides, although E2RNAS considers five objectives to trade-off, its search

process is slightly slower than DARTS with only one objective. On the inference latency,

DARTS is with 28.64 ms latency on a single NVIDIA Tesla V100S GPU, while E2RNAS-

S1 is only with 19.42 ms and E2RNAS-S2 is with 27.49 ms on the same device. Therefore,

42

CHAPTER 3. EFFECTIVE, EFFICIENT AND ROBUST NEURAL ARCHITECTURE
SEARCH

those results indicate the efficiency of E2RNAS.

Even E2RNAS can achieve comparable performance with variants of DARTS such

as P-DARTS [17], and PC-DARTS [143]. For example, compared E2RNAS-S2 with P-

DARTS and PC-DARTS, E2RNAS can find an architecture with a higher AUPR and

comparable performance on other objectives.

On the other hand, compared with multi-objective NAS methods, E2RNAS outper-

forms LEMONADE [32], RC-DARTS-C42 [57], RAPDARTS [41], and FPNASNet [24] by

finding more lightweight and effective architecture in a shorter search time. Moreover,

different from Proxyless-R [11] that searches for architecture with good performance

but a large model size, E2RNAS can make a better trade-off between the accuracy and

parameter size. Besides, E2RNAS achieves competitive performance with a faster search

process when compared with GOLD-NAS-K [6].

In summary, experimental results in Table 3.1 show that E2RNAS can efficiently

search a significantly robust architecture with a lower model size and comparable

classification accuracy, compared with state-of-the-art NAS methods.

3.3.3.3 Experimental Results on CIFAR-100

We also evaluate the proposed E2RNAS method on the CIFAR-100 dataset. The compari-

son of E2RNAS with DARTS [77], P-DARTS [17] and PC-DARTS [143] is presented in

Table 3.3. The experimental results on the CIFAR-100 dataset are similar to that on the

CIFAR-10 dataset in that E2RNAS can find a lightweight and robust architecture with a

slightly decreased test accuracy. For example, compared with DARTS, E2RNAS-S1 with

43

CHAPTER 3. EFFECTIVE, EFFICIENT AND ROBUST NEURAL ARCHITECTURE
SEARCH

only 2.3 MB model size and 375 MB FLOPs can significantly improve the PGD accuracy

and AUPR. Moreover, compared E2RNAS-S2 with P-DARTS and PC-DARTS, E2RNAS

also outperforms them in the robustness with a slight drop in the test accuracy. These

quantitative experiments indicate that E2RNAS can search robust architecture with

lower resource consumption and comparable performance.

Table 3.3: Comparison with state-of-the-art NAS methods on the CIFAR-100 dataset.
‡ indicates the use of the provided genotype in the original chapter. ↑ (↓) indicates a
larger (lower) value is better. We set L = 2.5 in Eq. (3.4) for E2RNAS-S1 and L = 3.5 for
E2RNAS-S2.

Architecture Test Acc. Params FLOPs PGD Acc. OoD AUPR
(%) ↑ (M) ↓ (M) ↓ (%) ↑ (%) ↑

DARTS‡ [77] 83.94 3.4 539 13.66 32.83
P-DARTS‡ [17] 83.54 3.5 543 17.34 32.43
PC-DARTS‡ [143] 83.06 3.7 568 18.44 32.75

E2RNAS-S1 79.39 2.3 375 22.26 32.88
E2RNAS-S2 81.70 3.9 643 21.21 33.30

Table 3.4: Evaluation of the generalization ability of the proposed E2RNAS method on
the CIFAR-10 and CIFAR-100 datasets. “{E2RNAS on #method}" means the architecture
searched by combining “method" with E2RNAS. ‡ indicates the provided genotype in the
original paper. ↑ (↓) indicates a larger (lower) value is better. The search cost is recorded
on one single NVIDIA Tesla V100S GPU and includes validation time while searching.

Dataset Architecture Test Err. Params FLOPs PGD Acc. OoD AUPR
(%) ↓ (M) ↓ (M) ↓ (%) ↑ (%) ↑

CIFAR-10

P-DARTS‡ [17] 2.37 3.4 543 39.39 21.46
E2RNAS on P-DARTS 3.37 3.2 509 47.85 29.82

PC-DARTS‡ [143] 2.72 3.6 568 35.19 26.07
E2RNAS on PC-DARTS 3.78 2.7 443 42.38 38.93

CIFAR-100

P-DARTS‡ [17] 16.46 3.5 543 17.34 32.43
E2RNAS on P-DARTS 17.51 3.0 480 24.45 33.38

PC-DARTS‡ [143] 16.94 3.7 568 18.44 32.75
E2RNAS on PC-DARTS 17.13 3.1 492 24.37 34.64

44

CHAPTER 3. EFFECTIVE, EFFICIENT AND ROBUST NEURAL ARCHITECTURE
SEARCH

3.3.4 The Generalization of E2RNAS

3.3.4.1 Combine with other gradient based NAS methods

A notable benefit of E2RNAS is its generalization ability, which means the proposed

E2RNAS method can be seamlessly combined with other NAS methods, especially

DARTS-based methods, to make a better trade-off among multiple objectives. To reveal

it, we combine E2RNAS with two variants of DARTS, i.e. P-DARTS [17] and PC-DARTS

[143], denoted by “E2RNAS on P-DARTS" and “E2RNAS on PC-DARTS", respectively.

Although these two methods improve the search process of DARTS from different

perspectives, their objective functions are still similar to the original DARTS, i.e. problem

(3.1). Therefore, built on their method and following their experimental settings, we can

adapt the proposed E2RNAS method to combine with them for further improvements,

i.e. taking resource constraint and robustness into consideration and then reformulating

their objective function as a multi-objective bi-level optimization problem similar to the

problem (3.6) to further balance a trade-off among performance, resource constraint and

robustness.

We evaluate those generalized methods and compare them with their corresponding

original method on both the CIFAR-10 and CIFAR-100 datasets. The corresponding

experimental results and comparison are presented in Table 3.4. The results show that

E2RNAS can make a better trade-off among multiple objectives, which is similar to

the results on DARTS, i.e. finding a more lightweight architecture with significantly

increased robustness and slightly decreased test accuracy. Besides, we find that the

45

CHAPTER 3. EFFECTIVE, EFFICIENT AND ROBUST NEURAL ARCHITECTURE
SEARCH

search time only slightly increases when combining E2RNAS with P-DARTS and PC-

DARTS, even by only 0.04 GPU days with P-DARTS on the CIFAR-10 dataset, which

indicates the efficiency of E2RNAS.

3.3.4.2 Transfer Architecture to ImageNet-1K

We further transfer the architecture searched by E2RNAS on the CIFAR-10 dataset to

the larger ImageNet-1K dataset. Table 3.5 shows that the E2RNAS-S2 method performs

better than DARTS in terms of the test error and PGD accuracy. The trade-off between

the accuracy and robustness is consistent with previous experiments. This experiment

shows that the architecture searched by E2RNAS on a smaller dataset is transferable to

a larger dataset while keeping the trade-off between different objectives.

Table 3.5: Transfer searched architecture to the ImageNet-1K dataset. ‡ indicates the
use of the provided genotype in the original paper. ↑ (↓) indicates a larger (lower) value
is better.

Architecture Test Err. Params FLOPs PGD Acc. OoD AUPR
(%) ↓ (M) ↓ (G) ↓ (%) ↑ (%) ↑

DARTS‡ 26.76 4.72 69.5 0.82 14.07
E2RNAS-S1 30.83 3.76 55.4 0.70 14.46
E2RNAS-S2 26.07 4.93 73.3 4.72 14.54

3.3.5 Ablation Study and Discussion

This section studies how each design in E2RNAS influences its performance on different

objectives. We first discuss the design of the LL subproblem of the problem (3.6) and

then investigate the effectiveness of MGDA in the UL subproblem. The corresponding

results are presented in Table 3.6.

46

CHAPTER 3. EFFECTIVE, EFFICIENT AND ROBUST NEURAL ARCHITECTURE
SEARCH

Table 3.6: Ablation study on the CIFAR-10 dataset under the same minimum constraints
L and F in Eq. (3.4) and Eq. (3.5), respectively. MGDA is applied to make a trade-off
among multiple objectives in UL subproblem and if without MGDA (i.e. “E2RNAS w/o
MGDA"), it means equal weights of the five objectives in problem (3.6) are used. “E2RNAS
w/ AT in LL" denotes using adversarial training in LL subproblem and “E2RNAS w/o
OoD in LL" represents that we only minimize Ltr(θ,α) in LL subproblem. ↑ (↓) indicates
a larger (lower) value is better.

Architecture Test Err. Params FLOPs PGD Acc. OoD AUPR
(%) ↓ (M) ↓ (M) ↓ (%) ↑ (%) ↑

E2RNAS 2.76 3.53 586 40.32 31.46
E2RNAS w/o MGDA 2.72 4.0 667 39.76 31.17
E2RNAS w/ AT in LL 3.34 3.0 476 52.40 32.53
E2RNAS w/o OoD in LL 3.26 2.7 439 39.22 31.37

3.3.5.1 Design of LL subproblem

E2RNAS aims to solve a multi-objective bi-level problem (3.6), where the UL subprob-

lem optimizes the architecture α by evaluating multiple objectives using the model θ

learned in the LL subproblem. Hence, a well-designed LL subproblem can improve the

performance of our proposed E2RNAS method.

It is well known that adversarial training can significantly improve the adversarial

robustness of the model but maybe result in a bad clean performance. Moreover, we

find that the trade-off between performance and adversarial robustness exists in the

NAS domain. The corresponding results are shown in Table 3.6. Comparing “E2RNAS

w/ AT in LL" with E2RNAS, despite the PGD accuracy significantly increasing, the

test accuracy also decreases, which fits the observation in [28]. Therefore, we do not

apply adversarial training in the E2RNAS method to achieve comparable performance

on classification accuracy.

Different from adversarial robustness, we find that training the model in the LL

47

CHAPTER 3. EFFECTIVE, EFFICIENT AND ROBUST NEURAL ARCHITECTURE
SEARCH

subproblem with OoD data samples (i.e. E2RNAS vs. “E2RNAS w/o OoD in LL" in Table

3.6) can not only improve the OoD metric but also make a better trade-off among other

objectives, especially test error vs. model size. Hence, we add the OoD loss in the LL

subproblem to achieve better performance.

3.3.5.2 Effectiveness of MGDA

The MGDA method is applied to solve the UL subproblem of the problem (3.6), which is

a multi-objective problem to minimize five objectives. If without the MGDA method, it

means that we solve the UL subproblem by minimizing an equally weighted sum of five

objectives (i.e. Γ= (0.2, · · · ,0.2) in Eq. (3.9)). We quantitatively compare the performance

of E2RNAS with and without MGDA (i.e. “E2RNAS" vs. “E2RNAS w/o MGDA" in Table

3.6) and find that solving with MGDA achieves much better results on the parameter size,

FLOPs, OoD metric (i.e. AUPR) and PGD accuracy. So instead of using equal weights,

applying MGDA can find a good solution of weights and make a trade-off among multiple

objectives.

3.4 Summary

This chapter proposes the E2RNAS method that optimizes multiple objectives simulta-

neously to search an effective, efficient, and robust architecture. The proposed objective

function is formulated as a multi-objective bi-level problem, and we design an algorithm

to integrate the MGDA with the bi-level optimization. Experiments demonstrate that

E2RNAS can find robust architecture with optimized model size and comparable classifi-

48

CHAPTER 3. EFFECTIVE, EFFICIENT AND ROBUST NEURAL ARCHITECTURE
SEARCH

cation accuracy on various datasets. In our future study, we are interested in extending

the proposed E2RNAS method to search for multiple Pareto-optimal architecture at one

time.

49

C
H

A
P

T
E

R

4
LEARNING FEATURE ALIGNMENT ARCHITECTURE FOR

DOMAIN ADAPTATION

4.1 Introduction

In the previous chapter, we introduced E2RNAS to search for efficient architecture opti-

mized for multiple objectives. It remains to question whether the searched architecture

can transfer to multiple domains. We address this issue by investigating the alignment

architecture in domain adaptation.

With access to large-scale labeled data, deep neural networks have achieved state-

of-the-art performance among a variety of machine learning problems and applications

[30, 50, 51, 61, 101, 109, 146]. However, with intolerably time-consuming and labor-

expensive costs, it is hard for a target domain of interest to collect enough labeled data

50

CHAPTER 4. LEARNING FEATURE ALIGNMENT ARCHITECTURE FOR DOMAIN
ADAPTATION

for model training. One solution is to transfer a deep neural network trained on a data-

sufficient source domain to the target domain where only unlabeled data is available.

However, this learning paradigm suffers from the shift in data distributions across

different domains, which brings a major obstacle in adapting predictive models for the

target task.

DA [102, 144] aims to learn a high-performance learner on a target domain via

utilizing the knowledge transferred from a source domain, which has a different but

related data distribution to the target domain. Many DA methods aim to bridge the gap

between source and target domains to apply the classifier learned in the source domain

to the target domain. To achieve this goal, recent DA works can be grouped into two

main categories: distance-based methods [3, 4, 14, 22, 84, 120, 122, 132, 150, 158] and

adversarial-based DA methods [37, 83, 104, 115, 131].

For distance functions adopted by DA, the first attempt is the Proxy A -distance [3],

which aims to minimize the generalization error by discriminating between source and

target samples. Maximum Mean Discrepancy is a popular distance measure between two

domains and it has been used in Deep Domain Confusion [132] and Deep Adaptation

Network [84].

Although numerous distance-based DA methods have been proposed, learning the

domain-invariant feature representation is still challenging. Distance alone in a high-

dimensional space may be difficult to reflect the domain discrepancy adequately [68, 69].

The alignment of hidden feature representations also relies heavily on the network

architecture design. However, the network architecture of existing methods is manually

51

CHAPTER 4. LEARNING FEATURE ALIGNMENT ARCHITECTURE FOR DOMAIN
ADAPTATION

designed by experts, hence it is hard to guarantee that hidden feature representations

from different domains can be well aligned since the difficulty levels of different DA tasks

vary. For instance, a complex task may require a more sophisticated network architecture

than an easy task, making a hand-crafted network architecture fail to do the alignment

for tasks with varying difficulty levels, limiting DA methods’ capacity and versatility.

To alleviate those limitations, in this chapter, we propose a new similarity function

called Population Correlation (PC) to measure the similarity between the source and

target domains. A learning model can learn a domain-invariant feature representation

by maximizing the PC between the source and target domains. Specifically, maximizing

PC can force the two domains to have similar distributions since the PC is the maximum

pairwise correlations between source and target samples. To further align hidden feature

representations between source and target domains, we design a reinforcement-based

NAS method called Alignment Architecture Search with Population Correlation to learn

deep alignment architecture. In this way, AASPC can better learn domain-invariant

feature representations for different DA tasks. To the best of our knowledge, the proposed

AASPC method is the first NAS framework designed for distance-based DA methods.

AASPC is also one of few works integrating NAS methods into deep DA methods. The

contributions of this chapter are summarized as follows:

• We propose a new similarity measure, i.e., PC, to measure the domain similarity.

By maximizing the PC between the source and target domains, our method can

learn domain-invariant feature representation.

• We design the AASPC framework to search an optimal network architecture to

52

CHAPTER 4. LEARNING FEATURE ALIGNMENT ARCHITECTURE FOR DOMAIN
ADAPTATION

align hidden features between the source and target domains.

• Experimental results on three benchmark datasets demonstrate the effectiveness

of the proposed methods.

Cross-Entropy
Loss

Overall LossPC

Sampled Network

Search Space

Feature Extractor

Cells

Controller
update policy

Sampling

Source Data

Target Data

Classifier

Figure 4.1: Overview of the AASPC framework. Source and target data first go through
the feature extractor to extract hidden features. The controller samples cell choices for
each cell and connections between the cells from search space to generate the architecture
of the sampled network. Source and target data with the extracted feature representation
then go through the sampled network. Finally, the cross-entropy loss is minimized and
the PC is maximized. The controller’s policy is updated by the reward of the negative
overall loss.

4.2 Population Correlation

We first present the definition of PC. Here we study DA under the unsupervised setting.

That is, the target domain has unlabeled data only. In DA, the source domain Ds =
{(

xs
i ,y

s
i

)}ns
i=1 has ns labeled samples and the target domain Dt =

{
xt

j

}nt

j=1
has nt unlabeled

samples. To adapt the classifier trained on the source domain to the target domain, one

solution is to minimize the domain discrepancy or equivalently maximize the domain

similarity. To achieve this, we propose the PC to measure the similarity between the

53

CHAPTER 4. LEARNING FEATURE ALIGNMENT ARCHITECTURE FOR DOMAIN
ADAPTATION

source and target domains. Specifically, suppose F(·) is the feature extraction network.

Then the PC between the source and target domains can be computed based on each pair

of source and target samples as

(4.1)

PC(Ds,D t)= 1
ns

ns∑
i=1

max
j∈[nt]

corr
(
F(xs

i),F(xt
j)
)

+ 1
nt

nt∑
j=1

max
i∈[ns]

corr
(
F(xs

i),F(xt
j)
)
,

where ∥·∥2 denotes the ℓ2 norm of a vector, corr(x1,x2)= xT
1 x2

∥x1∥2∥x2∥2
denotes the correlation

between two vectors, and [n] denotes a set of integers {1, . . . ,n} for an integer n. Here we

use the cosine similarity to calculate the correlation between two vectors, thus the larger

the PC value is, the more similar the two domains are.

For DA tasks, the hidden feature representations learned by the feature extraction

network should be not only discriminative to train a strong classifier but also domain-

invariant to both the source and target domains. Only maximizing the PC can help learn

a domain-invariant feature representation and only minimizing the classification loss is

to learn a discriminative feature representation. Therefore, we combine the classification

loss and the PC to obtain the final objective function, which is formulated as

(4.2) LPC = 1
ns

ns∑
i=1

l(C(F(xs
i)), ys

i)−λPC(Ds,D t),

where λ is a trade-off parameter, C(·) denotes the classification layer, and l(·, ·) denotes

the classification loss such as the cross-entropy loss.

By minimizing Eq. (4.2), the final learned feature representations are not only

discriminative for classification but also domain-invariant for the adaptation.

54

CHAPTER 4. LEARNING FEATURE ALIGNMENT ARCHITECTURE FOR DOMAIN
ADAPTATION

4.3 The AASPC method

+

1

42

3

1

2

Figure 4.2: The search space of the DAMPC-NAS method. Dashed lines represent possible
search choices and numbered grey circles indicate the order of choices generated from
the controller.

In this section, we introduce the proposed AASPC framework that finds an opti-

mal alignment architecture for source and target domains. An overview of the AASPC

framework is shown in Figure 4.1.

4.3.1 Cell-based Search Space

We design the search space on the top of the Resnet-50 backbone, whose architecture

is kept fixed, and hence we only search the architecture after the backbone. The search

space of the AASPC method consists of two parts: within cells and between cells. We

design the cell as the composition of the fully connected layer, batch-norm layer, dropout

layer, and the associated activation functions. Within the cell, we search for the size

of the fully connected layer and the location of the skip connection. Specifically, the

55

CHAPTER 4. LEARNING FEATURE ALIGNMENT ARCHITECTURE FOR DOMAIN
ADAPTATION

Algorithm 2 E2RNAS
Input: source data Ds, target data Dt, the number of training epochs nepochs
Output: The searched architecture with learned weights

1: initialize controller;
2: for i ← 0, nepochs do
3: sample Am from Aspace with policy π(m;θ);
4: fix controller policy π(m;θ);
5: for mini-batch in Ds and Dt do;
6: compute LPC in Eq. (4.2) with Am
7: update ωm in Aspace with LPC
8: end for
9: fix ω in Aspace;

10: calculate reward of Am as Rm =−LPC
11: update θ in π(m;θ) with reward Rm
12: end for
13: return Am with trained weights ωm

search choice of the fully connected layer in a cell can be ‘the same as input size’ or ‘the

half of input size’. The starting location of the skip connection can be chosen from the

cell input, the fully connected layer, and the batch-norm layer. We search for input and

output connections between the cells of the N cells. For example, if there are three cells

in the search space, i.e., N = 3, the input of “Cell 1” can be chosen from the outputs

of “Backbone” and “Cell 0”, and the input of “Cell 2” can be chosen from the outputs

of “Cell 0” and “Cell 1”, hence the input of a cell can be chosen from the outputs of the

previous two cells. The calculation of PC can be chosen from one of all cells’ outputs.

Moreover, One of the outputs from the N cells, i.e., “Cell 0”, “Cell 1” and “Cell 2”, can

connect to the classifier trained on source domain data. Hence, the total search space has

(2×3)N2N−1N2 configurations. An illustration of the search space in the AASPC method

is shown in Figure 4.2. In experiments, for efficiency, we use the search space with N = 3

cells for all experiments.

56

CHAPTER 4. LEARNING FEATURE ALIGNMENT ARCHITECTURE FOR DOMAIN
ADAPTATION

4.3.2 Searching Alignment Architecture

The searching algorithm for the AASPC method is described in Algorithm 2. AASPC is a

reinforcement-based NAS framework which leverages a controller network to sample

architecture from the search space. The controller network is a LSTM that samples

search choice via a softmax classifier. We denote by θ the learnable parameters of the

controller. The policy of the controller is denoted by π(m;θ).

Table 4.1: Accuracy (%) on the Office-31 dataset with ResNet-50 as the backbone.

Type Method A→D A→W D→A D→W W→A W→D Avg

Source Only ResNet-50 [51] 68.9 68.4 62.5 96.7 60.7 99.3 76.1

Dist. Based

JDA [85] 80.7 73.6 64.7 96.5 63.1 98.6 79.5
DDC [132] 76.5 75.6 62.2 96.0 61.5 98.2 78.3
DAN [84] 78.6 80.5 63.6 97.1 62.8 99.6 80.4
D-CORAL [122] 81.5 77.0 65.9 97.1 64.3 99.6 80.9
JAN [87] 84.7 85.4 68.6 97.4 70.0 99.8 84.3
MDDA [137] 86.3 86.0 72.1 97.1 73.2 99.2 85.7

Adv. Based

DANN [36] 79.7 82.0 68.2 96.9 67.4 99.1 82.2
ADDA [131] 77.8 86.2 69.5 96.2 68.9 98.4 82.9
CAN [151] 85.5 81.5 65.9 98.2 63.4 99.7 82.4
DDAN [137] 84.9 88.8 65.3 96.7 65.0 100.0 83.5

With NAS
ABAS [110] 87.6 89.4 64.1 98.4 69.3 99.8 84.8
AASPC (Ours) 90.8 93.1 70.4 98.7 69.1 100.0 87.0

In each epoch, the training procedure of AASPC consists of two phases. In the first

phase, we fix the parameters of the controller θ and train the shared weights ω in the

search space Aspace. Specifically, the controller samples an architecture Am from the

search space Aspace with policy π(m;θ). For each mini-batch from Ds and Dt, LPC is

computed according to Eq. (4.2) and the shared weights ωm of the sampled architecture

are updated by minimizing LPC. In the second phase, we fix all the shared weights ω in

57

CHAPTER 4. LEARNING FEATURE ALIGNMENT ARCHITECTURE FOR DOMAIN
ADAPTATION

the search space Aspace and update the parameter θ of the controller. Specifically, after

one epoch of training, −LPC is used as the reward to update the policy π(m;θ) in the

controller. The gradient is computed via the REINFORCE algorithm [140] with a moving

average baseline.

In summary, the AASPC method trains a supernet that contains all shared parame-

ters in the search space during the searching process. The AASPC method samples a

child network in each epoch to calculate the loss function defined in Eq. (4.2) and updates

its shared parameters in the search space. Parameters in the controller are updated by

the reward, which is the negative loss of the sampled child network. After searching,

all weights of the final architecture are retained for testing. Different from two-stage

one-shot NAS methods, there is no need for the AASPC method to retrain the final

architecture from scratch for testing since AASPC can directly optimize the objective in

Eq. (4.2), which is just the negative reward for the controller, in an end-to-end manner. In

this way, the architecture is optimized alongside child networks’ parameters. Therefore,

the final architecture derived from the AASPC method can be deployed directly without

parameter retraining, which improves the overall efficiency.

4.4 Experiments

In this section, we empirically evaluate the proposed method.

58

CHAPTER 4. LEARNING FEATURE ALIGNMENT ARCHITECTURE FOR DOMAIN
ADAPTATION

4.4.1 Setup

We conduct experiments on three benchmark datasets, including Office-31 [114], Office-

Home [136], and VisDA-2017 [105]. The Office-31 dataset has 4,652 images in 31 cate-

gories collected from three distinct domains: Amazon (A), Webcam (W) and DSLR (D).

We can construct six transfer tasks: A → W, D → W, W → D, A → D, D → A, and W

→ A. The Office-Home dataset consists of 15,500 images in 65 object classes under the

office and home settings, forming four extremely dissimilar domains: Artistic (Ar), Clip

Art (Cl), Product (Pr), and Real-World (Rw) and 12 transfer tasks. The VisDA-2017

dataset has over 280K images across 12 classes. It contains two very distinct domains:

Synthetic, which contains renderings of 3D models from different angles and with

different lighting conditions, and Real that are natural images. We study a transfer task:

Synthetic → Real on this dataset.

We compare the proposed AASPC method with state-of-the-art DA methods, includ-

ing Joint Distribution Adaptation (JDA) [85], Deep Domain Confusion (DDC) [132],

Deep Adaptation Network (DAN) [84], Domain Adversarial Neural Network (DANN)

[36], Correlation Alignment for Deep Domain Adaptation (D-CORAL) [122], Residual

Transfer Networks (RTN) [86], Joint Adaptation Networks (JAN) [87], Adversarial

Discriminative Domain Adaptation (ADDA) [131], Conditional Domain Adversarial

Networks (CDAN) [83], Collaborative and Adversarial Network (CAN) [151], Manifold

Dynamic Distribution Adaptation (MDDA) [137], and Dynamic Distribution Adaptation

Network (DDAN) [137]. The results of baseline methods are directly reported from

DDAN [137] and CDAN [83].

59

CHAPTER 4. LEARNING FEATURE ALIGNMENT ARCHITECTURE FOR DOMAIN
ADAPTATION

We leverage the ResNet-50 network [51] pretrained on the ImageNet dataset as the

backbone for the feature extraction. For optimization, we use the mini-batch SGD with

the Nesterov momentum 0.9. The learning rate is adjusted by ηp = η0(1+αp)−β, where

p is the index of training steps, η0 = 0.1, α = 0.001, and β = 0.75. The batch size is set to

128 for all the datasets.

4.4.2 Results

The classification results on the Office-31 dataset are shown in Table 4.1. As illustrated

in Table 4.1, the proposed AASPC method achieves the best average accuracy.

In four out of six transfer tasks, AASPC performs the best, especially on transfer

tasks A→D and A→W, which is transferring from a large source domain to a small target

domain and in the other two tasks, the AASPC method performs slightly worse than the

best baseline method, which implies that the proposed AASPC model works well when

the source data is sufficient and it can learn transferable feature representations for

effective domain adaptation.

Table 4.3 shows the classification results on the Office-Home dataset. According to

the results, AASPC achieves the best average accuracy and performs the best in eight

out of twelve transfer tasks, while transferring from a large source domain to a small

target domain (i.e., Cl→Ar, Pr→Ar, and Rw→Ar), AASPC achieves the best performance

and this phenomenon is similar to the Office-31 dataset, which again demonstrates that

the proposed AASPC model works well when the source data is sufficient.

According to experimental results on the most challenging VisDA-2017 dataset

60

CHAPTER 4. LEARNING FEATURE ALIGNMENT ARCHITECTURE FOR DOMAIN
ADAPTATION

Table 4.2: Accuracy (%) on the VisDA-2017 dataset with ResNet-50 as the backbone.

Type Method Synthetic→Real

Source Only ResNet-50 45.6

Dist. Based
DAN 53.0
RTN 53.6
JAN 61.6

Adv. Based
DANN 55.0
CDAN 66.8

With NAS AASPC (Ours) 68.75

Table 4.3: Accuracy (%) on the Office-Home dataset with ResNet-50 as the backbone.

Type Method Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg

Source Only ResNet-50 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1

Dist. Based

JDA 38.9 54.8 58.2 36.2 53.1 50.2 42.1 38.2 63.1 50.2 44.0 68.2 49.8
DAN 43.6 57.0 67.9 45.8 56.5 60.4 44.0 43.6 67.7 63.1 51.5 74.3 56.3
D-CORAL 42.2 59.1 64.9 46.4 56.3 58.3 45.4 41.2 68.5 60.1 48.2 73.1 55.3
JAN 45.9 61.2 68.9 50.4 59.7 61.0 45.8 43.4 70.3 63.9 52.4 76.8 58.3

Adv. Based
DANN 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6
CDAN 46.6 65.9 73.4 55.7 62.7 64.2 51.8 49.1 74.5 68.2 56.9 80.7 62.8
DDAN 51.0 66.0 73.9 57.0 63.1 65.1 52.0 48.4 72.7 65.1 56.6 78.9 62.5

With NAS AASPC (Ours) 46.53 68.42 75.24 58.3 66.3 67.48 56.94 44.77 75.33 69.26 51.94 80.33 63.4

shown in Table 4.2, the proposed AASPC method outperforms all the baseline methods

by improving by 1.9% over state-of-the-art baseline methods (i.e., CDAN) on this dataset,

which again demonstrates the effectiveness of the proposed method.

4.4.3 Ablation Study

To investigate the efficacy of key designs of the proposed AASPC method, we conduct

ablation study on the Office-31 dataset by comparing with variants of AASPC, including

Source Only (no distance calculation and architecture search), AAS (AASPC without

population correlation), and PC (AASPC without alignment architecture search). Accord-

ing to the results shown in Table 4.4, the AASPC method outperforms both AAS and

PC methods. AAS is inferior to AASPC with a drop of 3.26%, while it performs better

61

CHAPTER 4. LEARNING FEATURE ALIGNMENT ARCHITECTURE FOR DOMAIN
ADAPTATION

than Source Only by 2.1% in terms of the average accuracy. PC performs better than

Source Only by 5.36% on the average accuracy. AASPC further improves over PC by

2.41% and 1.76% on the A→D and A→W tasks in terms of the accuracy, respectively.

This experiment verifies the effectiveness of both the AAS and PC components in the

AASPC method.

Table 4.4: Ablation Study on the Office-31 dataset with ResNet-50 as the backbone.

Method A→D A→W D→A D→W W→A W→D Avg

Source Only 83.53 80.50 64.61 98.49 62.69 100.0 81.64
AAS (AASPC w/o PC) 86.35 89.18 64.75 98.24 63.90 100.0 83.74
PC (AASPC w/o AAS) 88.35 91.32 70.36 98.49 69.05 100.0 86.26
AASPC 90.76 93.08 70.36 98.74 69.05 100.0 87.0

4.4.4 Effectiveness of Population Correlation

To demonstrate the effectiveness of the proposed PC, we replace the measurement with

other widely used distance functions on the Office-31, Office-Home, and VisDA-2017

datasets. We then compare the performance of PC with these distance functions, includ-

ing Proxy A -distance, Kullback-Leibler divergence (KL-divergence), Maximum Mean

Discrepancies (MMD), CORrelation ALignmen (CORAL), and Central Moment Discrep-

ancy (CMD). For a fair comparison, we only replace the minus of the PC with these

distance functions in Eq. (4.2). Specifically, we adopt the ResNet-50 as the backbone,

following with the bottleneck layer (consisting of a fully connected layer, a batch normal-

ization layer, a ReLU activation function, and a dropout function) used for generating

hidden features and a fully connected layer used for prediction. According to experi-

mental results shown in Tables 4.5, 4.7 and 4.6, we can see that none of the distance

62

CHAPTER 4. LEARNING FEATURE ALIGNMENT ARCHITECTURE FOR DOMAIN
ADAPTATION

functions can obtain performance improvement compared with no distance function used

(i.e., ResNet-50). One possible reason is that the normalization layer used in the bottle-

neck layer has improved the performance of the ResNet-50 and adapting these distance

functions can not improve the performance further. However, the proposed PC can still

obtain performance improvement over ResNet-50, which indicates the effectiveness of

the proposed PC.

Table 4.5: Comparison of PC with other distance functions on the Office-31 dataset with
ResNet-50 as the backbone.

Measurement A→D A→W D→A D→W W→A W→D Avg

None 83.53 80.50 64.61 98.49 62.69 100.0 81.64
Proxy A -distance 82.73 81.01 64.04 98.11 61.77 100.0 81.28
KL-divergence 83.94 79.75 63.90 97.86 63.51 99.80 81.46
MMD 83.13 79.25 64.11 98.74 63.12 100.0 81.39
CORAL 84.34 80.25 64.61 98.24 62.80 99.80 81.67
CMD 82.93 79.50 64.29 98.62 63.10 100.0 81.41

PC 88.35 91.32 70.36 98.49 69.05 100.0 86.26

4.4.5 Effectiveness of Alignment Architecture Search

To demonstrate the effectiveness of the alignment architecture search (AAS) in the

AASPC method, we apply AAS to various distance functions on the Office-31 dataset.

Table 4.6: Comparison of PC with other distance functions on the Office-Home dataset
with ResNet-50 as the backbone.

Measurement Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg

None 43.41 66.55 74.64 56.61 63.98 65.32 53.36 39.36 72.64 64.73 46.30 76.55 60.29
Proxy A -distance 43.21 65.44 74.85 55.09 62.51 65.37 52.33 38.63 72.83 64.57 46.23 76.66 59.81
KL-divergence 44.01 66.75 74.50 55.75 63.42 66.51 52.74 38.14 73.43 65.84 44.79 77.13 60.25
MMD 43.78 66.28 74.48 55.62 64.07 66.19 53.40 38.30 73.15 64.89 45.52 77.43 60.26
CORAL 44.15 65.85 74.16 55.42 63.01 66.83 52.95 39.38 72.53 65.14 45.96 77.07 60.20
CMD 44.40 65.92 74.50 54.68 63.37 67.07 52.78 38.88 72.94 65.64 45.29 77.36 60.24

PC 46.19 66.03 73.7 57.89 63.48 65.80 56.94 44.19 75.58 69.02 51.11 78.89 62.24

63

CHAPTER 4. LEARNING FEATURE ALIGNMENT ARCHITECTURE FOR DOMAIN
ADAPTATION

64

Table 4.7: Comparison of PC with other distance functions on the VisDA-2017 dataset
with ResNet-50 as the backbone.

Measurement Synthetic→Real

57.68
56.36
56.27
58.76
56.66

None
Proxy A -distance
KL-divergence
MMD
CORAL
CMD 56.65

PC (Ours) 65.25

Specifically, we modify Algorithm 2 to search alignment architecture for other measure-

ments by replacing the minus of the PC with other distance functions in LPC. According

to experimental results shown in Figure 4.3, AAS can improve the performance of various

distance functions on the Office-31 dataset, which demonstrates the effectiveness and

generalization ability of the alignment architecture search.

No
ne

Pr
ox
y
A-d

ist
an
ce

KL
-d
ive
rg
en
ce

M
M
D

CO
RA
L

CM
D PC

Distance Functions

75.0

77.5

80.0

82.5

85.0

87.5

90.0

A
ve
ra
ge

A
cc
u
ra
cy

(%
)

81
.6

81
.3 81

.5
81
.4 81

.7
81
.4

86
.3

83
.7

82
.7

82
.4

81
.9

83
.2

82
.2

87

Apply AAS to various distance functions

Distance only

AAS+Distance

Figure 4.3: Apply AAS to various distance functions.

CHAPTER 4. LEARNING FEATURE ALIGNMENT ARCHITECTURE FOR DOMAIN
ADAPTATION

4.4.6 Hyper-parameter Sensitivity

We investigate the sensitivity with respect to two hyper-parameters: the training batch

size and trade-off parameter λ in Eq. (4.2). We set the value of batch size from 32 to 256

and λ ∈ {0.1,1,10} to obtain the performance change of AASPC. According to Figure 4.4,

when the batch size is small, the performance becomes worse. This is because minimizing

the loss in Eq. (4.1) may make samples in different classes close to each other, especially

when λ is relatively large. The performance of AASPC is stable when the batch size is

larger than 128 for both λ = 0.1 and λ = 1, which indicates that AASPC is relatively

insensitive to a large batch size when λ is not so large, i.e., 0.1 or 1.

32 64 96 128 160 192 224 256

Batch Size

30

40

50

60

70

80

90

A
ve
ra
ge

A
cc
u
ra
cy

(%
)

Sensitivity of AASPC to batch size and λ

λ =0.1

λ =1

λ =10

Figure 4.4: Sensitivity of AASPC to batch size and λ on the Office-31 dataset.

4.4.7 Complexity Analysis

In Table 4.8, we compare the training time and performance of AASPC and PC with

the source only baseline, which does not compute any distance functions during the

65

CHAPTER 4. LEARNING FEATURE ALIGNMENT ARCHITECTURE FOR DOMAIN
ADAPTATION

training process. Compared with the source only baseline, the training time per epoch

and occupied GPU memory slightly increase for PC and AASPC while the average accu-

racy dramatically improves. Hence, both PC and AASPC methods introduce negligibly

additional computation costs for considerable performance improvement.

Table 4.8: Comparison of training complexity on Office-31 dataset. Training time per
epoch and GPU memory consumption are recorded on one single NVIDIA Tesla V100S
GPU with batch size 128.

Method Time per Epoch (s) GPU memory (M) Avg Acc. (%)

Source Only 11.4 24865 65.3

PC 12.9 25085 86.3
AASPC 13.6 25185 87.0

4.4.8 Learned Architecture

Figure 4.5 shows the architecture found by AASPC for the transfer task D→W con-

structed on the Office-31 dataset. The left part of Figure 4.5 shows the search choice

within the three cells found by the AASPC method and the right part of Figure 4.5

shows the connections among the three cells, PC and classifier. In Cell 0, the AASPC

method chooses the FC layer with the same size as the input and the skip connection is

connected to the batch-norm layer. In Cell 1, the choice of FC is the same as Cell 0 but

the skip connection starts from the cell input. In Cell 2, the skip connection is the same

as Cell 2 but the FC layer is of half size of the input. For connections between cells, the

AASPC method chooses to use the output of Cell 0 to calculate the PC and the output of

Cell 1 to calculate the classification loss. For a simple transfer task D→W, the searched

architecture only has two cells, which indicates that the AASPC method can adaptively

66

CHAPTER 4. LEARNING FEATURE ALIGNMENT ARCHITECTURE FOR DOMAIN
ADAPTATION

learn architecture depending on the complexity of the DA task. Moreover, the location

of the skip connection moves forward in Cell 1 and Cell 2 when compared with Cell 0,

which helps reduce the network depth and alleviates the vanishing gradient problem.

+ ++

Figure 4.5: Searched architecture for transfer task D→W of the Office-31 dataset. Left:
architecture within the three cells. Right: connections between the three cells, PC, and
classifier.

4.4.9 Feature Visualization

In Figure 4.6, we visualize the hidden feature representations of the transfer task A→D

constructed on the Office-31 dataset learned by source samples only, source and target

samples with PC, and source and target samples with AASPC, respectively. According to

Figure 4.6, we can see that samples with the representations learned by PC are more

distinguishable than those by source only. The representations learned by AASPC are

more separable than those by PC, which implies that the proposed AASPC method can

learn discriminative and transferable feature representations for DA.

67

CHAPTER 4. LEARNING FEATURE ALIGNMENT ARCHITECTURE FOR DOMAIN
ADAPTATION

(a) Source Only (b) PC (c) AASPC (Ours)

Figure 4.6: t-SNE visualization of different methods for the transfer task A→D in the
Office-31 dataset.

4.5 Summary

In this chapter, we propose a new PC function that can measure domain similarity. We

further design the AASPC framework that searches deep alignment architecture for

DA tasks. Experiments results on the Office-31, Office-Home, and VisDA-2017 datasets

demonstrate the effectiveness of the proposed method. Moreover, the proposed AASPC

framework has shown its potential to search alignment architecture for various DA

methods. In our future studies, we try to extend the proposed AASPC framework to learn

architecture for other DA methods and settings.

68

C
H

A
P

T
E

R

5
LEARNING CONFLICT-NOTICED ARCHITECTURE FOR

MULTI-TASK LEARNING

5.1 Introduction

In the last chapter, we investigate how to learn feature alignment architecture that can

transfer knowledge across different domains. Moreover, MTL trains a model to perform

multiple tasks simultaneously, involving knowledge sharing between multiple tasks. In

this chapter, we introduce the conflict-noticing architecture learning method that learns

architecture sharing knowledge across different tasks.

MTL [13, 152] aims to improve the generalization performance of a model on multiple

learning tasks. Compared with single-task learning, MTL can learn multiple tasks

simultaneously to reduce the overall training cost and gain knowledge sharing from

69

CHAPTER 5. LEARNING CONFLICT-NOTICED ARCHITECTURE FOR MULTI-TASK
LEARNING

different tasks. Moreover, in some cases, MTL models could make multiple predictions

in one forward propagation, which reduces the inference latency. Therefore, MTL has

drawn much attention in recent years.

However, learning multiple tasks simultaneously can be challenging because pa-

rameter sharing may lead to negative transfer [112] with some empirical evidence

in [66, 118, 126]. As empirically analyzed in [19, 26, 147], one main reason for this

issue is the conflicting gradients of different tasks with respect to shared model para-

meters, which will be updated in opposite directions, leading to unsatisfactory per-

formance. To mitigate the gradient conflict, several gradient manipulation methods

[18, 75, 79, 139, 147] are proposed to manipulate task gradients by adjusting gradient

magnitudes or gradient directions or both of them for all the tasks.

The occurrence of gradient conflict reflects that all the tasks are not strongly related

to each other, given the adopted architecture. All the aforementioned works to alleviate

the gradient conflict adopt the hard parameter sharing (HPS) architecture that uses a

shared encoder for all the tasks with task-specific decoders for each task. Though the

HPS architecture has been proven to be effective for many MTL problems and is widely

used in MTL, it implicitly requires that all the tasks should be highly related to each

other. For some complicated datasets such as the NYUv2 dataset [116], such requirement

cannot be satisfied and the HPS architecture does not work well on this dataset [9, 123].

Hence, the gradient conflict issue could be the consequence of the use of an improper

architecture for a given MTL problem.

To verify that, we compare the HPS architecture with the Learning to Branch (LTB)

70

CHAPTER 5. LEARNING CONFLICT-NOTICED ARCHITECTURE FOR MULTI-TASK
LEARNING

Table 5.1: The ratio of negative cosine similarities (%) between the gradient of different
tasks with respect to shared parameters. { f 1

S, . . . , f 5
S} denotes the modules in the sharing

architecture while learning architecture. Ratio is calculated by going through all samples
in the training set.

Module f 1
S f 2

S f 3
S f 4

S f 5
S

HPS 59.26 51.68 42.22 39.36 49.49

LTB 41.08 38.86 39.65 47.05 24.44
CoNAL 0.34 0.19 0.14 0.13 0.00

method [45], which is to learn an architecture for a given MTL problem, on the NYUv2

dataset. We follow [31, 147] to calculate the cosine similarity between gradients of

different tasks with respect to shared parameters and put detailed settings of this

experiment in Section 5.3.2. According to Table 5.1, the gradient conflict in each module

of the learned architecture in LTB is alleviated compared with the fixed HPS architecture.

This suggests that architecture learning could be another way to mitigate the gradient

conflict.

To the best of our knowledge, none of existing architecture learning methods for MTL

considers to mitigate the gradient conflict during the architecture learning process, which

is what we aim to do in this work. According to Table 5.1, we can see that the gradient

conflict still severely affects the learned architecture in the LTB model. One possible

reason is that LTB and other branch-based architecture learning methods include only

partially-specific modules, which are first shared by all the tasks and then become specific

for one or more tasks, in the search space. Based on its definition, during the architecture

learning process, partially-specific modules will be affected by gradients of all the tasks

and so weakly-related or even unrelated tasks will affect the learning of both parameters

and architectures, leading to a suboptimal architecture which may suffer from gradient

71

CHAPTER 5. LEARNING CONFLICT-NOTICED ARCHITECTURE FOR MULTI-TASK
LEARNING

conflict.

To kill two birds with one stone, we propose a Conflict-Noticed Architecture Learning

method, which is to handle the gradient conflict during the architecture learning process.

Different from existing architecture learning methods [8, 45, 89, 133, 156] for MTL,

we are the first to introduce purely-specific modules into the search space of learnable

architectures which also have all-shared modules shared by all the tasks. During the

architecture learning process, the proposed CoNAL method could adaptively choose

to use purely-specific modules when the gradient conflict is detected in the all-shared

modules. As demonstrated in Table 5.1, the proposed CoNAL method achieves a very low

ratio of the gradient conflict. Moreover, to efficiently handle MTL problems with a large

number of tasks, we propose a progressive version of CoNAL called CoNAL-Pro, which

can reduce the storage cost and find task subgroups during the architecture learning

process. Experiments on Computer Vision (CV), Natural Language Processing (NLP),

and Reinforcement Learning (RL) benchmark datasets demonstrate the effectiveness of

the proposed methods. The main contributions of this paper are three-fold.

1. We propose the CoNAL method to mitigate the gradient conflict from the perspective

of architecture learning.

2. In the CoNAL method, we firstly introduce the purely-specific modules in the search

space of multi-task architecture.

3. Extensive experiments on three challenging domains demonstrate the effectiveness of

the proposed methods.

72

CHAPTER 5. LEARNING CONFLICT-NOTICED ARCHITECTURE FOR MULTI-TASK
LEARNING

5.2 The CoNAL Method

In this section, we introduce the proposed CoNAL method.

Figure 5.1: Illustration of the search space in various methods. (a), (b) and (c) represent
for the search space of the LTB, CoNAL, and CoNAL-Pro methods, respectively. Blocks
represent computational modules and edges between blocks denote data flows. Blocks
with the grey color stand for all-shared modules and blocks with other colors are for
task-specific modules. { fS

1, . . . , fS
P−1} denotes the all-shared modules for all the tasks.

In figure (a), all-shared modules can transform into partially-specific modules at the
later stage of learning. In figure (b) and (c), {1, . . . ,P} denotes possible branch points in
the search space. {hi

1, . . . ,hi
P−1}, {αi

1, . . . ,αi
P }, and gi (1 ≤ i ≤ m) denote the task-specific

encoder, task-specific architecture parameters, and task-specific decoder, respectively, for
task i. x and ŷi denote the input data and the prediction for task i. A softmax operation
is represented as “∼" and “?" means to search within candidate architectures.

5.2.1 Search Space

As an architecture learning method, the CoNAL method defines a search space consisting

of modules, each of which could be a fully connected layer or a sophisticated ResNet

block/layer depending on the MTL problem under investigation. Different from existing

architecture learning methods [8, 45, 89, 133, 156], which learn a tree-structured network

architecture with partially-specific modules, all the modules in CoNAL are classified into

two types: all-shared module and purely-specific module, which are defined as follows.

73

CHAPTER 5. LEARNING CONFLICT-NOTICED ARCHITECTURE FOR MULTI-TASK
LEARNING

Definition 5.2.1 (Partially-specific module). When a module in the search space is

updated by the gradient back-propagated from the loss of all tasks first and later from a

fixed set of tasks during the search process, this module is said to be a partially-specific

module.

Definition 5.2.2 (All-shared module). When a module in the search space is always

updated by the gradient back-propagated from losses of all the tasks during the search

process, this module is said to be an all-shared module.

Definition 5.2.3 (Purely-specific module). When a module in the search space is only

updated by the gradient back-propagated from the loss of a fixed task during the search

process, this module is said to be a purely-specific module for that task.

According to Definition 5.2.3, we can see that parameters in a purely-specific module

are only updated by the loss of one task, which is different from the partially-specific

module defined in Definition 5.2.1. Purely-specific modules are a key ingredient for

CoNAL to mitigate gradient conflict. Specifically, when the gradient of a task is detected

to be conflicting in the all-shared module, this task could use purely-specific modules to

form the encoder without affecting the learning of other tasks.

Formally, the search space of CoNAL is represented as a directed acyclic graph. For m

learning tasks {Ti}m
i=1, the CoNAL method have a shared encoder network fS consisting

of (P −1) all-shared modules for all the tasks, m task-specific architecture parameters

{αt}m
t=1 to decide branch points for m tasks, and m task-specific encoder networks {ht}m

t=1

consisting of purely-specific modules for the m tasks. Hence, for task t, its model consists

74

CHAPTER 5. LEARNING CONFLICT-NOTICED ARCHITECTURE FOR MULTI-TASK
LEARNING

of all-shared modules from fS, purely-specific modules in ht, αt = (α1
t , . . . ,αP

t), and a

decoder network gt. Here P is equal to the total number of all possible branch points

before or after each module in fS. As a binary parameter, αp
t ∈ {0,1} indicates whether

task t branches at the branch point p from fS to ht. When α
p
t equals 1, there will be a

branch to feed the output of the (p−1)-th module in fS to the p-th module in ht to form

a network for task t, which is illustrated in Figure 5.1(b). Moreover, the sum of entries

in αt should be 1 for any t, indicating that there is only one branch point for each task.

Figure 5.1 illustrates the difference between search spaces of some existing archi-

tecture learning works (i.e., LTB [45] and BMTAS [8]), and the CoNAL method. The

search space of existing methods only has partially-specific modules. If task i is totally

unrelated to other tasks, all the partially-specific modules will be updated by the gradient

of the loss of task i, which can be detrimental to the performance of some other tasks.

Differently, the CoNAL method could choose hi for task i, making the learning of other

tasks unaffected by task i. The proposed search space in the CoNAL method includes

both single-task learning and HPS architectures as two extremes. When all the tasks are

unrelated to each other, the network architecture in the CoNAL method could become

separate networks by choosing {ht} for each task. For highly related or even identical

tasks, the network architecture of the CoNAL method could become the HPS network

by choosing fS only. In most cases, the learned architecture by the CoNAL method is

between the two extremes and more complex than them.

75

CHAPTER 5. LEARNING CONFLICT-NOTICED ARCHITECTURE FOR MULTI-TASK
LEARNING

5.2.2 Architecture Learning

The CoNAL method is to find an architecture that circumvents gradient conflict for m

tasks {Ti}m
i=1 by learning architecture parameters {αt}m

t=1.

Branch searching If task t branches at the branch point p of fS to ht, α
p
t is set to 1

and αi
t is set to 0 for 1≤ i ≤ P, i ̸= p. Then in this case, the output of the entire encoder

network for task t consisting of the first (p−1) all-shared modules in fS and the last

(P − p) purely-specific modules in ht is ht(fS(x, p), p), where fS(·, p) denotes the output

of the (p−1)-th module in fS and ht(·, p) denotes the output of ht starting from the p-th

module. We can design some loss to learn {αt} but the discrete nature of {αt} will make

stochastic gradient descent methods incapable to learn them. Here we relax {αt} to be

continuous and use them to define the probability of branching at each branch point

via the softmax function. Hence the output of the entire encoder network for task t is

formulated as

ot(x,αt)=
P∑

p=1

exp(αp
t)∑P

p′ exp(αp′
t)

ht(fS(xt, p), p),

where xt denotes the data for task t. Here ot(x,αt) is just a convex combination of

outputs of all possible branching architectures weighted by probabilities based on αt.

Then ot(x,αt) is fed into the decoder gt to generate the prediction and hence the loss for

task t is formulated as

Lt(θt,αt)= l t(yt, gt(ot(x,αt)))

where θt includes all the parameters in fS, ht, and gt, yt denotes the label of xt in task t,

and l t denotes the loss function for task t. Then the total loss over m tasks is formulated

76

CHAPTER 5. LEARNING CONFLICT-NOTICED ARCHITECTURE FOR MULTI-TASK
LEARNING

as

(5.1) L (θ,α)=
m∑

t=1
Lt(θt,αt),

where θ denotes all the model parameters and α= (α1, . . . ,αm).

Conflict noticing To mitigate the gradient conflict between tasks, we only update the

purely-specific modules when the gradient conflict of any two tasks is detected. That

is, we zero out the gradients on the current and successive all-shared modules if the

cosine similarity of any two task gradients on this module is negative. Specifically, the

conflict-noticed gradient of all-shared module p at each training iteration is formulated

as

gradt =∇θS Lt(θt,αt)(5.2)

∇θ
p
S
L (θ,α)=

m∑

t=1
gradp

t , if cos(gradp′
i ,gradp′

j)≥ 0,∀i, j ∀p′ ≤ p

0, otherwise

(5.3)

where cos(·, ·) computes the cosine similarity between two vectors, θS denotes parameters

in all-shared modules, θ
p
S denotes parameters in the p-th all-shared module, gradt

denotes the gradient of the loss in task t with respect to θS, and gradp
t denotes the

gradient of the loss in task t with respect to θ
p
S. Different from existing methods [75,

147] which manipulate gradients of all the shared parameters as a whole, we split

gradients of the shared encoder into fine-grained modules. According to Eq. (5.3), when

there exist a pair of tasks (e.g., tasks i and j) such that cos(gradp
i ,gradp

j) < 0, then

∇θ
p
S
L (θ,α), . . . ,∇θP−1

S
L (θ,α) will be set to zero. In this case, only the all-shared modules

before the conflicting all-shared module (i.e., { f 1
S, . . . , f p−1

S }) and task-specific encoders

77

CHAPTER 5. LEARNING CONFLICT-NOTICED ARCHITECTURE FOR MULTI-TASK
LEARNING

{ht} will be updated with unchanged gradients. Note that the conflict noticing operation

needs to include purely-specific modules in the search space. Since the total gradient

on the all-shared module is zero when conflict detected, no parameter after the conflict

module will be updated without purely-specific module.

Algorithm 3 Learning Conflict-Noticed Architectures
Input: Dataset Dtr and Dval
Output: Learned architecture parameter α

1: Uniformly initialized α0, Pre-trained initialized θ0;
2: t := 0;
3: while not converged do
4: Sample a mini-batch from Dval ;
5: Update αt by minimizing the upper-level subproblem of problem (5.4);
6: Sample a mini-batch from Dtr;
7: Compute all task loss functions and the corresponding gradients according to Eq.

(5.2); ;
8: Compute conflict-noticed gradient for all-shared modules according to Eq. (5.3);
9: Update θt+1 according to by minimizing the lower-level subproblem of problem

(5.4);
10: t := t+1;
11: end while

Architecture determining Here architecture parameters α are viewed as hyper-

parameters and we adopt a bi-level formulation to learn both model and architecture

parameters as

min
α

Lval(θ∗(α),α)

s.t. θ∗(α)= argminθ Ltr(θ,α),(5.4)

where Ltr(·, ·) denotes the total loss defined in Eq. (5.1) on the training dataset and

Lval(·, ·) denotes the total loss on the validation dataset. We adopt the gradient-based

hyperparameter optimization algorithm with the efficient first-order approximation as

78

CHAPTER 5. LEARNING CONFLICT-NOTICED ARCHITECTURE FOR MULTI-TASK
LEARNING

in [35, 77] to solve problem (5.4). The architecture learning algorithm for the CoNAL

method is summarized in Algorithm 3.

After solving problem (5.4), we can learn the branching architecture for task t by

determining the branch point as

α∗
t = argmaxp({αp

t }P
p=1),

where α∗
t is a P-dimensional one-hot vector with the maximum position being 1.

5.2.3 Retraining

After determining the branching architecture, the entire model is trained from scratch to

obtain the final model. One noticeable advantage of our learned architecture is no need to

manually-tune the weights between different tasks as in the prior architecture learning

methods [45, 124]. This is because our model can balance the training of different tasks

via the better architecture design rather than relies on the pre-setting weights to change

the gradient magnitudes of different tasks. Inspired by [73], we randomly sample loss

weights for task t from a uniform distribution in each iteration and the objective function

is formulated as

(5.5) min
θ

L (θ,α∗)=
T∑

i=1

m∑
t=1

wi
tLt(θt,α∗

t),

where wi
t is a sampled loss weight from the uniform distribution over [0,1] for task t in

the i-th iteration after normalizing to satisfy
∑m

t=1 wi
t = 1, and T is the total number of

iterations.

The retraining process of the CoNAL method can be straightforwardly combined with

gradient manipulation strategies, which is further studied in Section 5.4.2.

79

CHAPTER 5. LEARNING CONFLICT-NOTICED ARCHITECTURE FOR MULTI-TASK
LEARNING

5.2.4 A Progressive Extension

In the original search space of the proposed CoNAL method, m+1 separate networks

in the full size need to be trained, where m is the number of tasks. The entire model

size during the architecture learning process grows linearly with the number of tasks,

which is computationally demanding when m is large. Another limitation of the CoNAL

method is that the largest subgroup among multiple tasks could likely dominate the

learning of the shared encoder in the training process. If multiple subgroups exist in the

MTL problem, tasks in a smaller subgroup would not be effectively learned and utilized.

To effectively handle the aforementioned issues, we propose a progressive version of

the CoNAL method called CoNAL-Pro, which can progressively learn the architecture for

a large number of tasks with multiple subgroups. Specifically, the CoNAL-Pro method

starts the architecture learning process from the last all-share module p−1. In the

first stage, the search space only contains two branch points: p and p−1, for each task.

For task t where 1 ≤ t ≤ m, it either chooses to use the all-shared module f p−1
S or use

purely-specific module hp−1
t . If task t chooses f p−1

S , it will branch at branch point p and

be removed from the search space in the following stages.

In this case, only the gradient conflict of the last all-share module needs to be

calculated, which highly reduces the memory cost and enables the flexibility to handle a

large number of tasks. Tasks branching out at this stage are considered as one subgroup

and the number of tasks in the search space reduces after each stage. In the second

stage, only tasks that use purely-specific modules are included in the search space, which

contains two branch points: p−1 and p−2. Another shared module hp−1
S is added after

80

CHAPTER 5. LEARNING CONFLICT-NOTICED ARCHITECTURE FOR MULTI-TASK
LEARNING

the branch point p−1 for the second subgroup and it is shared by all the tasks in current

search space. Figure 5.1(c) illustrates the second stage of the CoNAL-Pro method. This

process repeats until all the tasks have been allocated to a certain branch. In the last

stage, the search space will include purely-specific modules after branch point 1 for the

remaining tasks, which indicates that similar to the CoNAL method, the CoNAL-Pro

method could learn separate networks for those tasks.

5.3 Experimental Setup

In this section, we introduce experiment datasets in detail and provide all hyper-

parameters used in the experiments.

5.3.1 Details of Datasets

CityScapes. The CityScapes dataset [21] consists of high resolution outside street-

view images, which contains 2,975 images for training and 500 images for validation.

This dataset contains 19 classes for pixel-wise semantic segmentation, together with

ground-truth inverse depth labels. By following [80], we evaluate the performance on the

7-class semantic segmentation and depth estimation tasks. All the images are resized to

128×256.

NYUv2. The NYUv2 dataset [116] consisting of RGB-D indoor scene images has 795

images for training and 654 images for validation. We evaluate the performance on three

learning tasks: 13-class semantic segmentation, depth estimation, and surface normal

81

CHAPTER 5. LEARNING CONFLICT-NOTICED ARCHITECTURE FOR MULTI-TASK
LEARNING

estimation. By following [80], all the images are resized to 288×384.

PASCAL-Context. The PASCAL-Context dataset [99] is an annotation extension of

the PASCAL VOC 2010 challenge and it contains 4,998 images for training and 5,105

images for validation. We evaluate the performance on four tasks: 21-class semantic

segmentation, 7-class human part segmentation, saliency estimation, and surface normal

estimation, where the last two tasks are generated by [93].

Taskonomy. The Taskonomy dataset [149] which contains over 4.5 million indoor

images from over 5,000 buildings with 26 tasks. By following [118], we sample five

learning tasks, including 17-class semantic segmentation, depth estimation, keypoint

detection, edge detection, and surface normal estimation. We select 5 building images (i.e.,

“allensville”, “collierville”, “mifflinburg”, “noxapater”, and “onaga”) from the standard

tiny benchmark as the dataset, which contains 13,286 images for training and 3,794

images for validation.

CelebA. The CelebA dataset [82] is a large-scale face attributes dataset with 202,599

face images, each of which has 40 attribute annotations. It is split into three parts:

162,770, 19,867, and 19,962 images for training, validation, and testing, respectively.

Hence, this dataset contains 40 tasks and each task is a binary classification problem

for one attribute. The 9-tasks split includes 5oClockShadow, BlackHair, BlondHair,

BrownHair, Goatee, Mustache, NoBeard, RosyCheeks, and WearingHat tasks.

XTREME benchmark. The XTREME benchmark [53] is a large-scale multilingual

multi-task benchmark for cross-lingual generalization evaluation, which covers fifty

languages and contains nine tasks. We conduct experiments on two tasks, i.e., Named

82

CHAPTER 5. LEARNING CONFLICT-NOTICED ARCHITECTURE FOR MULTI-TASK
LEARNING

Entity Recognition (NER) and Part-Of-Speech (POS) tagging, from this benchmark.

Following [73, 139], we construct a multilingual problem on each task by choosing the

four languages with the largest numbers of data.

Meta-World. The Meta-World environment contains 50 different robotics continuous

control and manipulation tasks. For multi-task learning, we choose MT10 challenge

for learning 10 manipulation tasks simultaneously. The MT10 evaluation contains 10

tasks: reach, push, pick and place, open door, open drawer, close drawer, press button

top-down, insert peg side, open window, and close window, where positions of objects and

goal positions are fixed.

5.3.2 Implementation Details

Experiment of gradient conflict For the gradient conflict investigation in Table

5.1, we use the ratio of negative cosine similarities between the gradients of all pairs of

tasks at each module for all the data as the metric to measure the magnitude of gradient

conflict. We use ImageNet-1k [61] pretrained the Deeplab-ResNet50 [15] as encoders

and the ASPP architecture [16] as decoders for the hard parameter sharing model. We

follow [45] to setup the search space for the LTB model and train with warm-up and

temperature. We train all methods for 200 epochs. Both LTB and CoNAL use the same

initialization as HPS for all the modules in the search space. For LTB and HPS, we use

the Adam optimizer with a learning rate as 10−4 and with weight decay 10−5. While

learning architecture, LTB relaxes the architecture parameters to be continuous and use

them to define the probability of using different partially-specific modules at each branch

83

CHAPTER 5. LEARNING CONFLICT-NOTICED ARCHITECTURE FOR MULTI-TASK
LEARNING

point via the Gumbel-softmax trick. We follow the [45] to warm-up the network for 20

epochs (i.e., only training model parameters) before learning architecture parameters and

use the same optimizer to train architecture parameters with a temperature parameter

τ= 2 that decay exponentially with respect to the training epoch. For the CoNAL method,

we relax architecture parameters to be continuous and use them to define the probability

of branching at each branch point via the softmax function. We train model parameters

and architecture parameters with the bi-level formulation in Eq. (5.4). We use the Adam

optimizer with the learning rate as 10−4 and the weight decay 10−5 to train model

parameters on half of the training data and another Adam optimizer with a learning

rate of 5×10−5 and the weight decay 10−5 for optimizing architecture parameters on the

other half of the training data.

Experiments on Multi-Task CV Benchmarks For the multi-task CV datasets used

in Section 5.4.1, we employ the Deeplab-ResNet [15] pretrained on the ImageNet-1k

dataset [61] with atrous convolutions as encoders and the ASPP architecture [16] as

decoders. We use the Deeplab-ResNet50 for the CityScapes and NYUv2 datasets. We use

the smaller Deeplab-ResNet18 for the larger PASCAL-Context and Taskonomy datasets

for training efficiency. We set branch points before and after each ResNet layer. We use

the cross-entropy loss for the semantic segmentation, human part segmentation, and

saliency estimation tasks, the cosine similarity loss for the surface normal estimation

task, and the L1 loss for other tasks.

Architecture learning. For the architecture learning process of CoNAL on the four

84

CHAPTER 5. LEARNING CONFLICT-NOTICED ARCHITECTURE FOR MULTI-TASK
LEARNING

multi-task CV datasets, we use the Adam optimizer with the learning rate as 10−4 with

weight decay 10−5 for model parameters on half of the training data. We use another

Adam optimizer with a learning rate of 5×10−5 with weight decay 10−5 for optimizing

architecture parameters on the other half of the training data. We train for 200 epochs

and use the batch size of 2, 2, 16, and 64 for the CityScapes, NYUv2, PASCAL-Context

and Taskonomy datasets, respectively. We use the architecture parameters obtained in

the last epoch to determine the learned architecture for retraining.

Retraining. For the retraining process of CoNAL, we use the Adam optimizer with

the learning rate as 10−4 with weight decay 10−5 for training on the four multi-task CV

datasets. We train for 200 epochs and use the batch size of 8, 8, 32, and 128 for on the

CityScapes, NYUv2, PASCAL-Context, and Taskonomy datasets, respectively. We use

the model parameters obtained the last epoch for the evaluation.

Settings for baselines. We follow the official implementation provided in the original

paper for Cross-stitch [97], MTAN [80], NDDR-CNN [39], AFA [23], RotoGrad [56],

MaxRoam [103], TSN [123], MTL-NAS [38], and BMTAS [8]. For methods that do not

provide public implementation (i.e., LTB), we implement by ourselves and follow the

settings described in the original paper. For each baseline method, we use a similar

training setup to the CoNAL method and perform a grid search on the learning rate to

report the best result.

Experiments on Multilingual Benchmark For the XTREME benchmark used in

Section 5.4.4, we adopt a pretrained multilingual BERT (mBERT) [29] implemented

85

CHAPTER 5. LEARNING CONFLICT-NOTICED ARCHITECTURE FOR MULTI-TASK
LEARNING

via the open-source transformers library [141] followed by five fully connected layers as

the encoder and one fully connected layer as decoders. We set branch points before and

after each fully connected layer in the encoder. The cross-entropy loss is used for these

multilingual problems.

Architecture learning. For both NER and POS multilingual problems, the AdamW

optimizer [88] with a learning rate as 2×10−5 is adopted for training model parameters

on half of the training data. Another AdamW optimizer with a learning rate of 10−5 is

adopted for learning architecture parameters on the other half of the training data. We

use a batch size of 8 to train for 100 epochs. We use the architecture parameters obtained

in the last epoch to determine the learned architecture for retraining.

Retraining. For both NER and POS multilingual problems, we use the AdamW

optimizer with a learning rate as 2×10−5 for retraining. We use a batch size of 32 to train

for 100 epochs. We use the model parameters obtained in the last epoch for evaluation.

Settings for baselines. We follow the official implementation in the original paper

for the Uncertainty Weighting (UW) [58], PCGrad [147], and CAGrad [75] methods. We

combine these methods with the HPS architecture and use a similar training setup to

the CoNAL method.

Experiments on Multi-Task RL For the Meta-World environment, we use a policy

network consisting of 2 module layers and one fully connected layer for the multi-head

output. Each module layer contains one fully connected layer with 400 neurons. We set

branch points before and after each module layer. We train all methods with 20 million

86

CHAPTER 5. LEARNING CONFLICT-NOTICED ARCHITECTURE FOR MULTI-TASK
LEARNING

samples.

Architecture learning. We use the Adam optimizer with a learning rate 3× 10−4

and a batch size of 4 to train model parameters. We use the Adam optimizer with a

learning rate 3×10−4 and a batch size of 4 to train architecture parameters. We use

the architecture parameters after training to determine the learned architecture for

retraining.

Retraining. We use the Adam optimizer with a learning rate 3×10−4 and a batch size

of 8 to train with 20 million samples. We use the model parameters after training for

evaluation.

Settings for baselines. We follow the official implementation in the original paper of

methods Soft Modularization [145], PCGrad and CAGrad methods. We combine PCGrad

and CAGrad with HPS architecture and use a similar training setup for these methods

as the one described for our method. We use equal weights for all task weighting.

Experiments for the CoNAL-Pro Method We use the ResNet-18 network as a

shared feature extractor and a fully connected layer with two output units as a task-

specific head for each task, which is different from the VGG-16 backbone in LTB. All the

images are resized to 64×64. For the 9-task split, we follow [34] to filter the 40 annotated

attributes to a set of 9 attributes. The cross-entropy loss is used for all methods.

Architecture learning. We use the Adam optimizer with the learning rate as 5×10−4

to train model parameters on half of the training data. We use the Adam optimizer with a

learning rate of 2.5×10−5 to train architecture parameters on the other half of the train-

87

CHAPTER 5. LEARNING CONFLICT-NOTICED ARCHITECTURE FOR MULTI-TASK
LEARNING

ing data. We use a batch size of 16 to train for 10 epochs and the architecture parameters

obtained in the last epoch to determine the learned architecture for retraining.

Retraining. We use the Adam optimizer with a learning rate 5×10−4 and a batch size

of 16 to train for 10 epochs. We use the model parameters obtained in the last epoch for

evaluation.

Settings for baselines. The UW, PCGrad and CAGrad methods adopt the HPS archi-

tecture. For those methods, we use a similar training setup to the CoNAL method.

5.3.3 Evaluation Metrics

Training speedup and search speedup We compare the average training time for

each method with the same batch size on a single NVIDIA Tesla V100 GPU. The training

speedup is relative to the STL baseline. The search speedup is relative to the CoNAL

method.

Multi-Task CV Benchmarks In the following, we introduce detailed evaluation

metrics for all the tasks on the four CV datasets. For the semantic segmentation

(Segmentation) task, we use pixel-wise labels to calculate the mean intersection over

union (mIoU) and pixel accuracy (Pix Acc) as the evaluation metrics. For the depth

estimation (Depth) task, we use the absolute error (Abs Err) and real error (Rel Err) in

terms of the L1 norm as evaluation metrics. For the surface normal estimation (Surface

Normal) task, we calculate angle distances between the prediction and ground truth

of all pixels and use the mean and median of the angle distances as the evaluation

88

CHAPTER 5. LEARNING CONFLICT-NOTICED ARCHITECTURE FOR MULTI-TASK
LEARNING

metrics for the NYUv2 and Taskonomy datasets. We use the mean and root mean square

error (RMSE) of the angle distances as evaluation metrics for the PASCAL-Context

dataset. The percentages of pixels’ prediction within the angles (Within t◦) of 11.25◦,

22.5◦, and 30◦ to the ground truth are used as another type of evaluation metrics for

the surface normal estimation task. For the human part segmentation (Human Part)

and saliency estimation (Saliency) tasks, we use the mIOU and maximal F-measure

(maxF) as evaluation metrics, respectively. For the keypoint detection (Keypoint) and

edge detection (Edge) tasks, we use the absolute error as the evaluation metric.

Multilingual Benchmark For the experiments on the XTREME benchmark, by

following [73] we calculate the F1 score on each language of the multilingual problem.

Then, we average the F1 scores across four different languages in the multilingual

problem as the performance. We run each method three times with different random

seeds and report the average result with the standard deviation.

Multi-Task RL For the RL experiment on the Meta-World MT10 challenge, we eval-

uate each methods based on the mean success rate for executing tasks defined in the

Meta-World environment [148]. By following [145], we evaluate the policy for 10 episodes

per task per seed and report the average results with the standard deviation. Note

that this is different from [75], which reports the highest average test performance of a

method over 10 random seeds during the entire training stage.

89

CHAPTER 5. LEARNING CONFLICT-NOTICED ARCHITECTURE FOR MULTI-TASK
LEARNING

Table 5.2: Performance on the CityScapes validation dataset, where the performance
difference between each method and STL is reported. ↑ (↓) indicates the higher (lower)
the result, the better the performance. The green color indicates that the corresponding
method performs better than the STL method and the red color is defined oppositely. The
number of parameters (abbreviated as Parms.) is calculated in MB.

Method
Segmentation Depth

∆I ↑ Parms. (M)↓
mIoU ↑ Pix Acc ↑ Abs Err ↓ Rel Err↓

STL 68.13 91.28 0.0133 45.039 0 79.27

HPS −0.73 −0.36 +0.0009 +0.3872 −2.3334 55.76
Cross-stitch −0.12 +0.01 +0.0002 −0.6144 −0.1335 79.26
MTAN +0.84 +0.31 +0.0003 −1.2882 +0.4866 72.04
NDDR-CNN −0.11 −0.03 +0.0004 −0.1728 −0.7627 101.58
AFA +0.79 +0.24 +0.0025 +2.1253 −5.5905 87.09
RotoGrad +0.04 +0.09 +0.0002 −0.0612 −0.3034 57.86

MaxRoam −1.41 +0.05 +0.0009 −2.7490 −0.7298 55.76
TSN +1.62 +0.57 −0.0005 +0.8070 +1.2442 50.58
MTL-NAS −2.78 −1.08 +0.0011 +2.8903 −5.0490 87.26
BMTAS +1.44 +0.54 −0.0011 −0.7830 +3.1907 79.04
LTB +1.58 +0.54 −0.0008 +1.6607 +1.2708 70.73
CoNAL +1.54 +0.51 −0.0010 −2.3906 +3.8870 77.82

5.4 Experiments

In this section, we empirically evaluate the proposed CoNAL method. Details on the

experimental setup are put in Section 5.3.

5.4.1 Experiments on Multi-Task CV Benchmarks

To demonstrate the effectiveness of the proposed CoNAL method, we conduct experiments

on four CV benchmark datasets: CityScapes [21], NYUv2 [116], PASCAL-Context [99],

and Taskonomy [149]. The baseline methods in comparison include the Single-Task

Learning (STL) that trains each task separately, the HPS architecture, manual archi-

tecture designed methods including Cross-stitch [97], MTAN [80], NDDR-CNN [39],

AFA [23], and RotoGrad [56], and architecture learning methods such as MaxRoam

90

CHAPTER 5. LEARNING CONFLICT-NOTICED ARCHITECTURE FOR MULTI-TASK
LEARNING

[103], TSN [123], MTL-NAS [38], BMTAS [8], and LTB. For fair comparison, we use

the same backbone (with details in Section 5.3.2) for all the models in comparison.

In the four datasets, each task has multiple metrics for a thorough evaluation, where

definitions of those metrics are put in Section 5.3.3. To better show the comparison

among all the methods in comparison, we report the overall relative performance of each

method over the STL baseline as

∆I = 100%× 1
m

m∑
t=1

1
mt

mt∑
j=1

(−1)pt, j (Mt, j −STLt, j)
STLt, j

,

where for a method M, Mt, j denotes its performance in terms of the jth evaluation metric

for task t, STLt, j is defined similarly, pt, j equals 1 if a lower value represents a better

performance in terms of the jth metric in task t and 0 otherwise, and mt denotes the

number of evaluation metrics in task t.

Table 5.3: Performance on the NYUv2 dataset, where the performance difference between
each method and STL is reported. ↑ (↓) indicates the higher (lower) the result, the better
the performance. The green color indicates that the corresponding method performs
better than the STL method and the red color is defined oppositely. The number of
parameters (i.e., Parms.) is calculated in MB.

Method
Segmentation Depth Surface Normal

∆I ↑ Parms. (M)↓
mIoU ↑ Pix Acc ↑ Abs Err ↓ Rel Err↓ Angle Distance Within t◦ ↑

Mean ↓ Median ↓ 11.25 22.5 30

STL 53.98 75.38 0.3945 0.1631 22.25 15.63 38.12 64.38 74.81 0 118.91

HPS +0.50 +0.44 −0.0106 −0.0083 +1.25 +1.43 −2.81 −3.28 −2.67 -0.5088 71.89
CrossStitch −0.52 +0.11 −0.0141 −0.0076 +0.76 +0.70 −1.11 −1.96 −1.79 +0.1493 118.89
MTAN +0.76 +0.40 −0.0149 −0.0082 +0.72 +0.67 −1.21 −1.75 −1.49 +0.7658 92.35
NDDR-CNN −0.14 −0.15 −0.0074 −0.0071 +0.35 +0.44 −0.45 −0.95 −0.89 +0.4106 169.10
AFA −2.44 −1.47 +0.0085 +0.0061 +1.98 +1.77 −3.05 −4.16 −3.85 -4.7187 136.88
RotoGrad +0.11 −0.13 −0.0145 −0.0061 +0.80 +0.87 −2.14 −2.51 −1.89 -0.1745 75.03

MaxRoam +0.55 +0.23 −0.0066 +0.0069 −0.35 −0.65 −1.54 −1.50 −2.58 -0.4803 71.89
TSN +0.35 +0.61 −0.0172 −0.0068 +1.51 +1.87 −3.68 −4.33 −3.40 -0.9746 50.58
MTL-NAS −0.06 −0.17 −0.0098 −0.0101 +0.16 +0.38 +0.03 −0.17 −2.23 +0.9666 183.40
BMTAS −0.14 +0.04 −0.0055 −0.0016 +0.00 −0.11 +0.49 −0.03 −0.12 +0.4793 116.04
LTB −0.56 +0.05 −0.0040 −0.0095 −0.01 +0.08 −0.37 −0.29 −0.07 +0.8511 86.85
CoNAL +0.08 +0.27 −0.0095 −0.0069 −0.26 −0.43 +1.20 +0.69 +0.34 +1.7586 93.96

Tables 5.2 and 5.3 as well as Tables 5.9 and 5.10 in Section 5.4.7 show the performance

of all methods in comparison on the four CV benchmark datasets. Compared with the

91

CHAPTER 5. LEARNING CONFLICT-NOTICED ARCHITECTURE FOR MULTI-TASK
LEARNING

STL counterpart, the proposed CoNAL method improves the performance of all tasks

in terms of all the evaluation metrics, while having smaller numbers of parameters in

the learned architectures. This indicates that the CoNAL method circumvent negative

transfer on those four CV datasets.

Although some manually designed architecture methods (e.g., MTAN) can also cir-

cumvent negative transfer on the CityScapes dataset, those methods perform worse than

STL in some tasks of the other three larger datasets. For example, on the NYUv2 dataset,

existing architecture learning methods (e.g., MTL-NAS) mitigate the negative transfer

when compared with HPS but still exhibit inferior performance to the STL method on

the surface norm prediction task. Moreover, the proposed CoNAL method achieves the

best ∆I on the four datasets when compared with baseline methods, which demonstrates

the effectiveness of the proposed CoNAL method. Figure 5.2 visualizes the model size (in

terms of the number of parameters) and the performance (in terms of ∆I) of various MTL

methods. The proposed CoNAL method learns an architecture with a medium model size

and the best performance.

5.4.2 Combination and Comparison with Gradient Manipulation

Methods

The retraining process of the CoNAL method can straightforwardly incorporate various

gradient manipulation methods based on Eq. (5.5). To demonstrate that the performance

of the CoNAL method can be improved even further, we combine the proposed CoNAL

model with the PCGrad [147] and CAGrad [75] methods, which manipulate task gra-

92

CHAPTER 5. LEARNING CONFLICT-NOTICED ARCHITECTURE FOR MULTI-TASK
LEARNING

60 80 100 120 140 160 180

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0
Δ

I
↑

STL

CoNAL

HPS

MaxRoam

TSN

MTL-NAS

BMTAS

LTB

NDDR-CNN

MTAN

CrossStitch

RotoGrad

Number of Parameters (MB)

Figure 5.2: Performance and model size of various MTL methods on the NYUv2 dataset.

Table 5.4: Combination with gradient manipulation methods on the NYUv2 dataset. The
training speedup is computed over the STL model.

Method Train Speedup ↑ ΔI ↑
STL 1.0x 0

1.69x -0.5088
0.78x -0.1205

HPS
HPS-PCGrad
HPS-CAGrad 0.61x -0.1817

1.18x +1.7586
0.42x +2.5271

CoNAL
CoNAL-PCGrad
CoNAL-CAGrad 0.38x +1.8932

dients to alleviate the gradient conflict. According to experimental results shown in

Table 5.4, combining with PCGrad and CAGrad can further improve the performance

of the proposed CoNAL model. Compared with the HPS-PCGrad method that improves

about 0.4 over HPS in terms of ΔI , CoNAL-PCGrad improves about 0.8 over CoNAL,

which indicates that the architecture learned by the CoNAL method is more preferred

than HPS while combining with the PCGrad method. Moreover, as the PCGrad and

CAGrad methods are built on the HPS architecture, we can see that the CoNAL method

93

CHAPTER 5. LEARNING CONFLICT-NOTICED ARCHITECTURE FOR MULTI-TASK
LEARNING

performs better than the PCGrad and CAGrad methods, which are just HPS-PCGrad and

HPS-CAGrad in Table 5.4, and this result indicates that learning a suitable architecture

could be more important to the performance improvement.

5.4.3 Ablation Study

We provide the ablation study for CoNAL in Table 5.5. For “w/o conflict-notice”, we

simply add purely-specific modules into the search space without the gradient noticing

operation. For “w/o conflict-notice and pure”, we replace purely-specific modules with

partially-specific modules in the search space and does not conduct the gradient noticing

operation. Compared with the original CoNAL method, the performance of those two

variants degrades, which verifies the usefulness of the pure-specific modules and the

gradient noticing operation.

Table 5.5: Ablation study of the CoNAL method on the NYUv2 dataset. Search speedup
represents the relative time of the architecture learning computed over the CoNAL.
The number of parameters (abbreviated as Parms.) is the model size of the learned
architecture.

Method ∆I ↑ Search Speedup↑ Parms. (M)↓
CoNAL +1.7586 1.0x 93.96
-w/o conflict-notice +1.1647 1.44x 86.85
-w/o conflict-notice and pure -0.6773 1.46x 71.89
-w/o module splitting +0.9729 1.07x 95.40
-w/o random loss weighting +1.6494 1.00x 93.96

For “w/o module splitting”, we replace all-shared and purely-specific modules with

the entire all-shared and purely-specific encoders in the search space of CoNAL. This

variant has a larger model size and worse performance than the CoNAL method, which

verifies the usefulness of fine-grained modules. For “w/o random loss weighting”, we

94

CHAPTER 5. LEARNING CONFLICT-NOTICED ARCHITECTURE FOR MULTI-TASK
LEARNING

replace randomly sampled task loss weights with the same fixed weights as in LTB. This

variant has slightly worse performance than the CoNAL method, which verifies that the

random loss weighting can improve the performance a bit, and this strategy can reduce

the tedious cost to tune loss weights.

5.4.4 Experiments on Multilingual Benchmark

Table 5.6: Performance on the XTREME benchmark in terms of the F1 score. POS and
NER denote two multilingual problems from the XTREME benchmark. ‘en’, ‘zh’, ‘te’,
‘vi’, ‘de’, and ‘es’ denote English, Mandarin, Telugu, Vietnamese, German, and Spanish,
respectively. Results are averaged across three independent runs.

Method
POS (F1 Score)

en zh te vi Avg. F1 Score ↑
STL 94.91±0.09 88.63±0.06 91.28±0.47 86.74±0.09 90.39±0.14

HPS 94.89±0.08 88.44±0.04 90.95±0.37 86.89±0.23 90.29±0.13
UW 94.54±0.48 88.60±0.21 90.82±0.20 87.50±0.27 90.36±0.20

PCGrad 94.71±0.27 88.46±0.30 90.71±0.06 86.82±0.23 90.18±0.05
CAGrad 94.69±0.25 88.73±0.12 91.30±0.88 86.86±0.20 90.39±0.24
CoNAL 95.01±0.08 88.78±0.09 91.99±0.03 86.89±0.16 90.67±0.04

Method
NER (F1 Score)

en zh de es Avg. F1 Score ↑
STL 84.70±0.12 82.56±0.22 90.23±0.23 92.62±0.17 87.53±0.08

HPS 85.10±0.12 82.69±0.23 90.55±0.05 92.70±0.04 87.76±0.03
UW 84.36±0.17 84.35±0.05 90.37±0.17 92.34±0.23 87.85±0.05

PCGrad 84.69±0.13 82.44±0.16 90.38±0.24 92.70±0.02 87.55±0.09
CAGrad 84.50±0.25 83.19±0.59 90.59±0.13 92.99±0.20 87.82±0.13
CoNAL 84.94±0.16 83.10±0.18 90.70±0.16 93.04±0.18 87.95±0.10

To show that the proposed CoNAL method works for NLP problems, we conduct

experiments on two multilingual problems: Named Entity Recognition (NER) and Part-

Of-Speech (POS) from the XTREME benchmark [53]. Different from heterogeneous

MTL problems in CV datasets where different tasks share the same input data but

are of different types with respective loss functions, each language/task in multilingual

95

CHAPTER 5. LEARNING CONFLICT-NOTICED ARCHITECTURE FOR MULTI-TASK
LEARNING

Table 5.7: Comparison on mean success rates for MT10 tasks. Results are calculated for
three independent runs with different seeds.

Method Train Speedup ↑ Mean Success Rate ↑
Single-task policy 1.0x 0.78±0.042

Multi-task SAC 7.50x 0.44±0.060
Multi-head SAC 6.98x 0.58±0.069
Soft Modularization 5.36x 0.68±0.088
PCGrad 3.09x 0.65±0.092
CAGrad 3.28x 0.73±0.068
CoNAL 6.25x 0.76±0.049

problems has its own input data but is of the same type with the same loss function

(i.e., the cross-entropy loss for classification tasks), which is just the homogeneous MTL

problem [152]. The evaluation measure is the F1 score.

We also compare with the uncertainty weighting (UW) [58] method, which is to

learn loss weighting for different tasks. Experimental results in Table 5.6 show that

the CoNAL method performs better than STL on all the tasks, which demonstrates the

effectiveness of the CoNAL method on NLP problems. Moreover, the CoNAL method

achieves the best performance in terms of the average F1 score.

5.4.5 Experiments on Multi-Task RL

To further exam the proposed CoNAL method for RL tasks, we evaluate it on the MT10

challenge from the Meta-World environment [148]. By following [117, 145], we train the

policy with Soft Actor-Critic (SAC) [48] and compare with multi-task SAC (i.e., SAC

with a shared model), multi-head SAC (i.e., SAC with a shared policy network and

task-specific head), Soft Modularization [145], PCGrad [147] and CAGrad [75].

According to the results shown in Table 5.7, the proposed CoNAL method outperforms

96

CHAPTER 5. LEARNING CONFLICT-NOTICED ARCHITECTURE FOR MULTI-TASK
LEARNING

Table 5.8: Results on the CelebA 9-task dataset. The mean and standard deviation of the
total test error are calculated over three independent runs.

Method Parms. (M) ↓ Train Speedup ↑ Total Test Error ↓
STL 100.56 1.0x 49.59±0.12

HPS 11.21 8.84x 49.78±0.26
UW 11.21 8.34x 49.47±0.86
PCGrad 11.21 2.59x 48.66±0.48
CAGrad 11.21 2.44x 48.75±0.71
TAG-2 22.37 1.29x 49.23±0.05
LTB 77.39 2.10x 49.47±0.45
CoNAL 57.86 2.51x 49.02±0.45
CoNAL-Pro 30.58 3.18x 48.63±0.40

most baseline methods and the significant t-test with 95% confidence shows that the

CoNAL method performs better than PCGrad, CAGrad and Soft Modularization. Though

the single-task policy performs slightly better on one task (i.e., the pick-place task), the

CoNAL method achieves comparable performance with the single-task policy in terms of

the mean success rate and has a much faster training speed.

5.4.6 Experiments for the CoNAL-Pro Method

To evaluate the proposed CoNAL-Pro method, we conduct experiments on the CelebA

dataset [82]. We follow [34] to filter the 40 tasks down to 9 tasks, leading to CelebA

9-task dataset, which has a larger number of tasks with multiple task subgroups.

On the CelebA 9-task dataset, we compare the proposed CoNAL and CoNAL-Pro

methods with the HPS method, the TAG-2 method [34] that performs the two-split task

grouping, LTB [45], PCGrad, and CAGrad. According to experimental results shown in

Table 5.8, the CoNAL-Pro methods has the lowest total test error, which demonstrates

97

CHAPTER 5. LEARNING CONFLICT-NOTICED ARCHITECTURE FOR MULTI-TASK
LEARNING

the effectiveness of the proposed method. The model architecture learned by the CoNAL-

Pro method has fewer parameters but better performance than the LTB method as it

learns more subgroups. This demonstrates that the CoNAL-Pro method can obtain an

architecture that can learn task grouping for better knowledge sharing among tasks.

According to grouping results of the CoNAL-Pro method in Section 5.4.10, we can see

that some tasks such as BrownHair and WearingHat are grouped into one subgroup and

other tasks such as BlondHair and NoBread are in another subgroup, which matches

our intuition.

Table 5.9: Performance of various models on the PASCAL-Context dataset, where the
performance difference between each method and STL is reported. ↑ (↓) indicates the
higher (lower) the result, the better the performance. The green color indicates that the
corresponding method performs better than the STL method, and the red color is defined
oppositely. The number of parameters (abbreviated as Parms.) is calculated in MB.

Method
Segmentation Human Part Saliency Surface Normal

∆I ↑ Parms (M)↓
mIoU↑ mIoU↑ mIoU↑ maxF↑

Angle Distance Within t◦ ↑
Mean ↓ RMSE ↓ 11.25 22.5 30

STL 65.16 59.08 64.94 76.91 16.44 24.97 47.56 80.29 89.81 0 63.60

HPS −0.07 +0.05 −0.26 +0.53 +1.00 +0.98 −4.67 −3.58 −2.20 -1.3038 34.79
Cross-stitch −0.19 −0.45 −0.48 +0.16 +0.12 +0.35 −1.50 −2.18 −0.82 -0.7758 79.46
MTAN −0.60 +0.00 −0.37 +0.33 +0.70 +0.79 −3.72 −2.81 −1.82 -1.2867 36.61
NDDR-CNN +0.12 +0.10 +0.15 +0.56 −0.02 +0.14 −0.64 −0.44 −0.37 +0.0706 69.25
AFA +2.10 +1.61 −1.87 −3.40 +1.24 +1.18 +6.54 +4.92 +3.10 +1.1272 199.14

TSN +1.61 −1.17 +0.16 +0.05 +0.23 +0.19 −4.57 −3.36 −1.80 -0.7368 26.85
BMTAS −0.16 −0.11 −0.28 +0.41 −0.33 −0.04 +0.52 +0.22 +0.11 +0.0935 45.28
CoNAL +0.80 +0.78 +0.44 +0.87 −0.43 −0.11 +0.78 +0.42 +0.21 +1.1388 63.15

5.4.7 Experimental Results on PASCAL-Context and Taskonomy

Datasets

The results on the PASCAL-Context and Taskonomy datasets are shown in Tables 5.9

and 5.10. The proposed CoNAL method achieves the best ∆I on these two datasets

when compared with baseline methods, which demonstrates the effectiveness of the

98

CHAPTER 5. LEARNING CONFLICT-NOTICED ARCHITECTURE FOR MULTI-TASK
LEARNING

Table 5.10: Performance of various models on the Taskonomy dataset, where the perfor-
mance difference between each method and STL is reported. ↑ (↓) indicates the higher
(lower) the result, the better the performance. The green color indicates that the cor-
responding method performs better than the STL method, and the red color is defined
oppositely. The number of parameters (abbreviated as Parms.) is calculated in MB.

Method
Segmentation Depth Keypoint Edge Surface Normal

ΔI ↑ Parms (M)↓
mIoU ↑ Pix Acc ↑ Abs Err ↓ Rel Err↓ Abs Err ↓ Abs Err ↓ Angle Distance Within t◦ ↑

Mean ↓ Median ↓ 11.25 22.5 30

STL 65.49 97.56 0.0069 0.0115 0.1303 0.1341 10.62 4.26 73.46 85.4 90.17 0 79.50

HPS +0.26 +0.12 +0.0014 +0.0020 −0.0215 +0.0012 +0.46 +0.38 −1.73 −0.28 −0.44 -2.7039 34.79
Cross-stitch +0.80 +0.74 −0.0002 −0.0007 −0.0300 −0.0011 −1.73 −0.24 +0.63 +1.19 +0.65 +4.1831 79.46
MTAN +0.27 +0.76 +0.0014 +0.0021 +0.0048 +0.0119 −1.22 +0.11 +2.51 +3.70 +2.76 +0.6377 36.61
NDDR-CNN +0.57 +0.76 +0.0001 +0.0030 −0.0333 −0.0035 −2.09 −0.54 +0.69 +1.23 +0.68 +3.9309 88.32
AFA +0.77 +0.64 +0.0019 +0.0029 −0.0665 −0.0516 −1.31 +0.10 +0.51 +1.14 +0.62 +3.0849 242.1

LTB +0.23 +0.08 −0.0012 −0.0022 −0.0238 +0.0007 −0.69 −0.76 +1.01 +1.04 +0.48 +5.1795 43.19
CoNAL +0.31 +0.07 −0.0010 −0.0019 −0.0240 −0.0004 −0.80 −0.85 +1.26 +1.19 +0.58 +5.4030 54.36

proposed CoNAL method. Note that some baseline methods (e.g., LTB) did not report

their performance on some datasets (e.g., PASCAL-Context dataset) in their original

paper and hence we did not include them in comparison. Detail of the hyper-parameters

used in the experiments are provided in Section 5.3.2.

5.4.8 Effectiveness of the Architecture Learning Algorithm in

CoNAL

Figure 5.3: The change of architecture parameters {αp
3 }P

p=1 learned in the CoNAL method
(Left) and the CoNALsl method (Right), respectively, over epochs for the surface normal
estimation task on the NYUv2 dataset.

99

CHAPTER 5. LEARNING CONFLICT-NOTICED ARCHITECTURE FOR MULTI-TASK
LEARNING

Table 5.11: Comparison under similar model capacities on the NYUv2 dataset.

Method Parms (M) ↓ ∆I ↑
STL 118.91 0
CoNAL+ 118.53 +2.6966

HPS+ 94.23 +1.1551
CoNAL 93.94 +1.7586

To show the usefulness of problem (5.4) in the architecture learning process, we

compare with a variant of CoNAL called CoNALsl that use a single-level optimization

problem to utilize all the data, including both training and validation data, to learn

both model parameters and architecture parameters. That is, the CoNALsl method

minimizes Ltr(θ,α)+Lval(θ,α) with respect to both θ and α. Figure 5.3 shows the

change of architecture parameters {αp
3 }P

p=1 for the surface normal estimation task on the

NYUv2 dataset for the CoNAL and CoNALsl methods. According to the results, in the

first 100 epochs for the CoNAL method, α5
3 has the largest value, which means task 3

tends to split at branch point 5. Then, α4
3 overpasses α5

3, which means that task 3 splits

one module earlier. This inspires us that the architecture learning process could proceed

in a progressive way, which motivates the proposal of the CoNAL-Pro method in Section

5.2.4. Differently, in the CoNALsl method, α6
3 has the largest value and has little change

during the architecture learning process. In this case, the CoNALsl method is more

likely to update model parameters of all-shared modules instead of choosing a better

architecture to reduce the overall loss, which indicates that the bi-level formulation is

more preferred.

100

CHAPTER 5. LEARNING CONFLICT-NOTICED ARCHITECTURE FOR MULTI-TASK
LEARNING

5.4.9 Comparison under Similar Model Capacities

To compare the performance under comparable model capacity, we try to match the

number of parameters of different models. For the CoNAL+ and HPS+ models, we

enlarge their network capacities by adding additional residual blocks. Specifically, we

add three additional residual blocks after the fourth module for the HPS+ model to match

the model size of the CoNAL model. For the CoNAL+ model, we add four additional

residual blocks after the fourth module (i.e., branch point 5) to match the model size of

the STL model. According to the results shown in Table 5.11, we can see that with a

similar network capacity to the STL model, CoNAL+ performs even better with +2.6966

for ∆I . Moreover, with a similar network capacity to the CoNAL model, HPS+ performs

better than HPS, whose performance is reported in Table 5.3, but inferior to CoNAL. This

experiment shows that the good performance of CoNAL is due to not only the increased

model capacity but also the better architecture.

5.4.10 Analysis of Learned Architectures

The learned architectures in all the experiments are shown in Figure 5.4 and Tables 5.12,

5.13, and 5.14. For the CityScapes dataset, two tasks split at branch point 4. For the

NYUv2 dataset, the architecture found by CoNAL splits the surface normal estimation

task at branch point 4, which is after the third module in the shared encoder. The

semantic segmentation task and depth estimation task share all modules in the encoder.

For the PASCAL-Context dataset, the surface normal estimation task is also split from

the shared encoder at branch point 4, which is similar to the architecture on the NYUv2

101

CHAPTER 5. LEARNING CONFLICT-NOTICED ARCHITECTURE FOR MULTI-TASK
LEARNING

Figure 5.4: The learned architecture of the proposed CoNAL method on four CV bench-
mark datasets. The number besides the branch indicates the index of the branch point
in the search space. “Seg.”, “Depth”, “Sur.”, “Hum.”, “Sal.”, “Key.”, and “Edge” denote
the semantic segmentation, depth estimation, surface normal estimation, human part
segmentation, saliency estimation, keypoint detection, and edge detection tasks, respec-
tively.

dataset. The saliency estimation task is split at branch point 1, which means it uses a

separate network. For the Taskonomy dataset, the surface normal estimation task is

split at branch point 1 to use a separate network and the keypoint detection task is split

at branch point 4. All other tasks share all the modules in the shared encoder.

Table 5.12: The learned architecture of the proposed CoNAL method on the POS and
NER problems from the XTREME benchmark. The total number of branch points P is
set to 6. ‘en’, ‘zh’, ‘te’, ‘vi’, ‘de’, and ‘es’ denote English, Mandarin, Telugu, Vietnamese,
German, and Spanish, respectively.

Branch Point p = 1 p = 2 p = 3 p = 4

POS vi zh en, te
NER es en, de zh

In the XTREME benchmark, the Mandarin tasks share the first two modules and

split at branch point 3 for both POS and NER problems. Vietname and Spanish tasks

split at branch point 1, which indicates that they use separate networks.

102

CHAPTER 5. LEARNING CONFLICT-NOTICED ARCHITECTURE FOR MULTI-TASK
LEARNING

103

0.0 0.2 0.4 0.6 0.8 1.0

CoNAL

window-close

window-open

peg-insert-side

button-press-topdown

drawer-close

drawer-open

door-open

pick-place

push

reach

0.0 0.2 0.4 0.6 0.8 1.0

Single-task policy

Figure 5.5: The mean success rate of each tasks in Meta-World MT10.

For Meta-World MT10 challenge in the RL experiment, tasks such as window-open

and window-close share all modules while complex tasks such as button-press-topdown

split at branch point 1. Figure 5.5 shows the performance of the CoNAL method and the

single-task policy on each task. Though the single-task policy performs slightly better

on the pick-place task, the CoNAL method achieves comparable performance with the

single-task policy in terms of the mean success rate.

Table 5.13: The learned architecture of the proposed CoNAL method on Meta-World
MT10 challenge. The total number of branch points P is set to 2.

Branch Point Name of task

p = 1
p = 2

reach, pick-place, drawer-close, button-press-topdown
push, door-open, drawer-open, peg-insert-side, window-open, window-close

For the CelebA 9-task dataset, in the CoNAL-Pro method, some tasks such as Brown-

Hair, Goatee and WearingHat are grouped into one subgroup which is at branch 4. Other

tasks such as BlondHair and NoBread are in different subgroups at different branches.

CHAPTER 5. LEARNING CONFLICT-NOTICED ARCHITECTURE FOR MULTI-TASK
LEARNING

Table 5.14: The learned architecture of the proposed CoNAL-Pro method on the CelebA
dataset, where the total number of branch points P is set to 6.

Branch Point 9-task

p = 0 NoBeard
p = 2 BlondHair, RosyCheeks
p = 4 BrownHair, Goatee, WearingHat
p = 5 5oClockShadow, BlackHair, Mustache

5.4.11 Experiments on Synthetic Datasets

To demonstrate that the proposed CoNAL method can circumvent negative transfer, we

design a synthetic dataset with controllable task relatedness. Inspired by [18, 45], we

construct a regression task Tr,t by generating target value as

yr,t =Ar[(x+δt)∗Z/ϕ],

where Ar ∈ {sinc,bent,square} stands for different element-wise activation functions that

control the task relatedness, x ∈ R100×200 denotes the 200-dimensional input data for

all the tasks with each feature randomly sampled from a normal distribution N (0,10),

δt ∈ R100×200 is the task-specific noise randomly sampled from N (0,2), Z ∈ R200 is a

constant vector with its entries randomly sampled from a normal distribution N (0,1),

and ϕ equals the input dimension 200 for normalization. Tasks generated by the same

activation function are considered highly related since they only differ in the noises and

tasks generated by different activation functions are considered more unrelated.

We compare the proposed CoNAL method with the LTB and BMTAS methods

which have partially-specific modules and behave similarly in this dataset. The shared,

partially-specific and purely-specific encoders, i.e., fS and ht, have two modules, each

104

CHAPTER 5. LEARNING CONFLICT-NOTICED ARCHITECTURE FOR MULTI-TASK
LEARNING

of which is a fully connected layer with five neurons followed by the ReLU activation

function. The search space has three branch points for each task and they are located

before the first module, after the first module, and after the second module, respectively.

Another fully connected layer with one neuron is used as a task-specific decoder for each

task. The mean square loss is used as the loss function, which is optimized by the SGD

optimizer. Both model and architecture parameters are trained for 30 epochs with a

learning rate 0.02.

5.4.11.1 Purely-Specific Modules Really Help

Figure 5.6: The comparison of learned architecture on the synthetic dataset. {1,2,3} de-
notes available branch points in the search space. { f 1

S, f 2
S} denotes the shared encoder for

all the tasks. {h1
1, . . . ,h2

3} and {g1, g2, g3} denote the task-specific encoders and decoders,
respectively, for the three tasks. Solid lines indicate the final learned architecture and
dotted lines indicate branches that are not selected.

In the first experiment, we generate three dissimilar tasks with the three activation

functions, i.e., sinc, bent, and square. Figure 5.6(a) shows the learned architecture by

the LTB and BMTAS methods, where all the modules in the search space are partially-

specific modules. In the learned architecture, the first two tasks corresponding to the

sinc and bent activation functions share the same encoder while the last task is learned

separately. As shown in Figure 5.6(b), the learned architecture by the CoNAL method

105

CHAPTER 5. LEARNING CONFLICT-NOTICED ARCHITECTURE FOR MULTI-TASK
LEARNING

only has three independent task-specific encoders for the three tasks, which indicates

that it is better to learn these three tasks separately, which matches our expectation

as the three tasks are dissimilar. This result shows that purely-specific modules can

help identify the expected task relationship on this dataset even when negative transfer

possibly occurs.

5.4.11.2 CoNAL Helps Find Compact Architecture

In the second experiment, we generate three tasks by using the same activation function

(i.e., sinc) but with different scale multipliers 1, 2, and 3 (i.e., multiplying ysinc by 1, 2,

and 3, respectively). In this case, these three tasks are very similar. According to Figure

5.6(c), the learned architecture by the CoNAL method uses the shared encoder for all the

tasks and this result indicates these three tasks are highly related and better learned

together, which matches our intuition.

5.5 Summary

In this chapter, we propose the CoNAL method to learn multi-task network architectures

to alleviate the gradient conflict issue. We first introduce purely-specific modules to the

design of the search space and propose a conflict-noticed algorithm to mitigate gradient

conflict. We further propose an extension of the CoNAL method to enable the learning on

many tasks and the identification of multiple subgroups. We validate the CoNAL method

on multiple MTL benchmarks across three challenging domains.

106

C
H

A
P

T
E

R

6
DEEP SAFE MULTI-TASK LEARNING

6.1 Introduction

In the last chapter, CoNAL handles the gradient conflict during the architecture learning

process to alleviate gradient conflict. However, it cannot guarantee to improve the

performance of all the tasks compared with single-task learning. We introduce the deep

safe multi-task learning method in this chapter to address this issue.

MTL has been widely used in many Computer Vision (CV) applications, such as

human action recognition [74], face attribute estimation [49], age estimation [154], and

dense prediction tasks [135]. Although MTL has demonstrated its usefulness in many

applications, MTL cannot guarantee to improve the performance of all the tasks compared

with single-task learning. Specifically, as empirically observed in [46, 66, 118, 124, 126],

when learning multiple tasks together, many existing MTL models can achieve better

107

CHAPTER 6. DEEP SAFE MULTI-TASK LEARNING

performance on some tasks than their single-task counterparts but underperform on the

other tasks. Such phenomenon is called the negative sharing phenomenon in this chapter,

which is similar to the ‘negative transfer’ phenomenon [138] in transfer learning [144]

but with some differences as discussed later. One reason for the occurrence of negative

sharing is that there are partially related or even unrelated tasks among tasks under

the investigation, making jointly learning those tasks impair the performance of some

tasks.

To the best of our knowledge, there is little work to study the negative sharing

problem for MTL. To fill this gap, in this chapter, we firstly give a formal definition for

negative sharing that could occur in MTL. Then we formally define an ideal and also basic

situation for MTL called safe multi-task learning, where the generalization performance

of an MTL model is no worse than its single-task counterpart on each task. That is, there

is no negative sharing occurred. According to the definition of MTL [13, 152], we can

see that every MTL model is required to achieve safe multi-task learning. Otherwise,

single-task learning is more preferred than MTL, since an unsafe MTL model may bring

the risk of worsening the generalization performance of some or even all the tasks. As

true data distributions in multiple tasks are usually unknown so that safe multi-task

learning is hardly to measure, we formally define empirically safe multi-task learning

and probably safe multi-task learning, which are measurable.

To achieve empirically/probably safe multi-task learning, we propose a Deep Safe

Multi-Task Learning (DSMTL) model whose architecture consists of a public encoder

shared by all the tasks and a private encoder for each task. The public encoder and a

108

CHAPTER 6. DEEP SAFE MULTI-TASK LEARNING

private encoder of a task are combined via a gating mechanism to form the entire encoder

for that task. To train the DSMTL model, we propose two learning strategies: individual

learning (denoted by DSMTL-IL) and joint learning (denoted by DSMTL-JL), which

learn model parameters separately and jointly, respectively. For those two strategies,

we provide theoretical analyses to show that they can achieve some versions of both

empirically safe multi-task learning and probably safe multi-task learning.

To improve the scalability of the DSMTL model with respect to the number of tasks,

we propose an extension called DSMTL with Architecture Learning (DSMTL-AL), which

leverages neural architecture search to learn a more compact architecture with fine-

grained modular splitting. Specifically, we allow the DSMTL-AL model to learn where

to switch to the private encoder while forwarding in the public encoder. In this way, the

DSMTL-AL model can save the first few modules in the private encoders and hence

improve the scalability.

Extensive experiments on benchmark datasets, including CityScapes, NYUv2, PASCAL-

Context, and Taskonomy, demonstrate the effectiveness of the proposed DSMTL-IL,

DSMTL-JL, and DSMTL-AL methods.

The main contributions of this chapter are summarized as follows.

• We provide formal definitions for MTL, including negative sharing, safe multi-

task learning, empirically safe multi-task learning, and probably safe multi-task

learning.

• We propose the simple and effective DSMTL model with two learning strategies,

which is guaranteed to achieve some versions of empirically/probably safe multi-

109

CHAPTER 6. DEEP SAFE MULTI-TASK LEARNING

task learning.

• We propose the DSMTL-AL method, which is an extension of the DSMTL methods,

to learn a compact architecture with good scalability.

• Extensive experiments demonstrate that empirically the proposed methods can

achieve safe multi-task learning and that they outperform state-of-the-art baseline

models.

6.2 Related Work

MTL has been extensively studied in recent years [33, 44, 63, 153, 155]. How to design

a good network architecture for MTL is an important issue. The most widely used

architecture is the multi-head hard sharing architecture [13, 81, 113], which shares

the first several layers among all the tasks and allows the subsequent layers to be

specific to different tasks. Then, to better handle task relationships, different MTL

architectures have been proposed. For example, [97] proposes a cross-stitch network to

learn to linearly combine hidden representations of different tasks. [91] proposes a multi-

gate mixture-of-experts model which adopts the mixture-of-experts model by sharing

expert submodels across all tasks, while having a gating network trained to optimize

each task. [80] proposes a Multi-Task Attention Network (MTAN), which consists of a

shared network and an attention module for each task so that both shared and private

feature representations can be learned via the attention mechanism. [39] proposes a

Neural Discriminative Dimensionality Reduction (NDDR) layer to enable automatic

110

CHAPTER 6. DEEP SAFE MULTI-TASK LEARNING

feature fusing at every layer for different tasks. [124] proposes an Adaptive Sharing

(AdaShare) method to learn the sharing pattern through a policy that selectively chooses

which layers to be executed for each task. [23] proposes an Adaptive Feature Aggregation

(AFA) layer, where a dynamic aggregation mechanism is designed to allow each task to

adaptively determine the degree of the knowledge sharing between tasks. PS-MCNN [12]

adopts both shared network and task-specific network by performing the concatenation

operation after each block to learn shared and task-specific representations. PLE [126]

separates shared components and task-specific components explicitly and adopts a

progressive routing mechanism to extract semantic knowledge gradually for MTL. Some

routing-based methods are proposed, including Multi-Agent Reinforcement Learning

(MARL) [111] that allows the MTL network to dynamically self-organize its architecture

in response to the input, Stochastic Filter Groups (SFG) [7] that assigns convolution

kernels in each layer to the “specialist” or “generalist” group, and Task Routing Layer

(TRL) [119] that allows for a single model to fit to many tasks within its parameter space

with task-specific masking.

Instead of hand-crafting architectures for MTL, there are some works to leverage tech-

niques in NAS [77] to automatically search MTL architectures with good performance.

For example, [89] dynamically widens a multi-layer network to create a tree-like deep ar-

chitecture, where similar tasks reside in the same branch. [72] proposes an evolutionary

architecture search algorithm to search blueprints and modules that are assembled into

an MTL network. [38] searches inter-task layers for better feature fusion across tasks.

[45] proposes a differentiable architecture search algorithm to learn branching blocks to

111

CHAPTER 6. DEEP SAFE MULTI-TASK LEARNING

construct a tree-structured neural network for MTL. [8] automatically determines the

branching architecture for the encoder in a multi-task neural network under resource

constraints. [46] aims to learn where to share or branch within a network for multiple

tasks. [123] designs a task switching network that can learn to switch between tasks

with a constant number of parameters which is independent of the number of tasks. All

the aforementioned works do not study how to achieve safe multi-task learning, which is

the focus of this chapter.

The safeness of machine learning methods has drawn attention in recent years

[42, 70, 71, 127, 128, 129]. [71] proposes a safe semi-supervised support vector machine

that performs no worse than the supervised counterpart, leading to the safeness in

the use of unlabeled data. [70] addresses the safe weakly supervised learning problem

by integrating multiple weakly supervised learners, which is guaranteed to derive

a safe prediction under a mild condition. [42] proposes a safe deep semi-supervised

learning method to alleviate the harm caused by class distribution mismatch. Moreover,

there are some works [127, 128, 129] to address the safeness in multi-view clustering.

[129] proposes reliable multi-view clustering, which empirically performs no worse

than its single-view counterpart and proves that its performance will not significantly

degrade under some assumptions. [128] proposes deep safe multi-view clustering to

reduce the risk of performance degradation caused by view increasing and hence to

guarantee to achieve the safeness in multi-view clustering. [127] proposes a bi-level

optimization framework to achieve safe incomplete multi-view clustering. Different from

the aforementioned works that address the safeness in semi-supervised learning, weakly

112

CHAPTER 6. DEEP SAFE MULTI-TASK LEARNING

supervised learning, and multi-view clustering, our work focuses on the safeness in

multi-task learning.

6.3 Definitions

In this section, we formally introduce some definitions to measure the safeness in MTL.

We first define the negative sharing phenomena.

Definition 6.3.1 (Negative Sharing). For an MTL model which is trained on multiple

learning tasks jointly, if its generalization performance on some tasks is inferior to the

generalization performance of the corresponding single-task counterpart that is trained

on each task separately, then negative sharing occurs.

Remark 1. Negative sharing could occur when some tasks are partially or totally

unrelated to other tasks. In this case, manually enforcing all the tasks to have some

forms of sharing will impair the performance of some or even all the tasks. In Definition

6.3.1, the MTL model and its single-task counterpart usually have similar architectures,

since totally different architectures could bring additional confounding factors. Moreover,

negative sharing is similar to negative transfer [138] in transfer learning [144]. However,

knowledge transfer in transfer learning is directed as it is from a source domain to a

target domain, while knowledge sharing in MTL is among all the tasks, making it usually

undirected. From this perspective, negative sharing is different from negative transfer.

Definition 6.3.2 (Safe Multi-Task Learning). When negative sharing does not occur for

an MTL model on a dataset, this MTL model is said to achieve safe multi-task learning

113

CHAPTER 6. DEEP SAFE MULTI-TASK LEARNING

on this dataset.

Remark 2. Safe multi-task learning is an ideal situation for an MTL model to achieve.

However, the generalization performance is hard to evaluate during the learning process,

so it is hard to determine whether an MTL model can achieve safe multi-task learning.

As the empirical/training loss is easy to compute during the learning process, we

present the following definition based on the empirical loss to measure the empirical

safeness of MTL models.

Definition 6.3.3 (Empirically Safe Multi-Task Learning).

(1) If the empirical loss of an MTL model on each task is no larger than that of its

single-task counterpart, this MTL model is said to achieve empirically individual safe

multi-task learning.

(2) If the average of empirical losses of an MTL model on all the tasks is no larger than

that of its single-task counterpart, this MTL model is said to achieve empirically average

safe multi-task learning.

Remark 3. In Definition 6.3.3, we define two versions of empirically safe multi-task

learning. It is easy to see that an MTL model satisfying empirically individual safe

multi-task learning can achieve empirically average safe multi-task learning but not vice

versa, which indicates that empirically individual safe multi-task learning is weaker than

empirically individual safe multi-task learning. Even though empirically safe multi-task

learning is easy to measure based on the empirical loss of each task, an MTL model

that achieves empirically safe multi-task learning cannot have guarantee to achieve safe

114

CHAPTER 6. DEEP SAFE MULTI-TASK LEARNING

multi-task learning, since there is a gap between the empirical loss and the expected loss

that is to measure the generalization performance. Hence, empirically safe multi-task

learning is a loose version of safe multi-task learning.

With m learning tasks in an MTL problem, E t and E STL
t denote the expected losses of

an MTL model and its single-task counterpart on task t, respectively. The corresponding

average expected losses are denoted by E and E STL, respectively. n denotes the average

number of samples in all the tasks. With the above notations, we can define probably

safe multi-task learning as follows.

Definition 6.3.4 (Probably Safe Multi-Task Learning).

(1) For an MTL model trained on m tasks, if for 0< δ< 1, there exist m constants ϵt ≥ 0

such that E t +ϵt ≤ E STL
t +ρt

n holds with at least probability 1−δ for any t ∈ [1,m], where

ρt
n is a function of n satisfying limn→+∞ρt

n = 0, then this MTL model is said to achieve

probably individual safe multi-task learning.

(2) If for 0< δ< 1, there exists a constant ϵ≥ 0 such that E +ϵ≤ E STL +ρn holds with at

least probability 1−δ, where ρn is a function of n satisfying limn→+∞ρn = 0, then this

MTL model is said to achieve probably average safe multi-task learning.

Remark 4. Different from empirically safe multi-task learning which is measured based

on empirical losses, probably safe multi-task learning is based on expected losses, making

it a tighter approximation of safe multi-task learning than empirically safe multi-task

learning. Compared with safe multi-task learning, probably safe multi-task learning is

easy to be measured based on some analysis tool as verified in Section 6.5. According to

115

CHAPTER 6. DEEP SAFE MULTI-TASK LEARNING

Definition 6.3.4, it is easy to see when n is large enough, probably individual safe multi-

task learning could become safe multi-task learning in a large probability. Between the

two versions of probably safe multi-task learning, similar to empirically safe multi-task

learning, probably average safe multi-task learning is weaker.

As discussed above, empirically safe multi-task learning and probably safe multi-task

learning are two measures for an MTL model to achieve but few works can guarantee to

achieve that. In the next section, we will propose the DSMTL model with such guarantees

under mild conditions.

6.4 DSMTL

In this section, we present the proposed DSMTL model. Beside the network architecture,

we introduce two strategies to learn model parameters, leading to two variants (i.e.,

DSMTL-IL and DSMTL-JL).

6.4.1 The Architecture

As shown in Figure 6.1, the architecture of the DSMTL model can be divided into four

parts: a public encoder fS shared by all the tasks, m private encoders { f t}m
t=1 for m tasks,

m gates {gt}m
t=1 for m tasks, and m private decoders {ht}m

t=1 for m tasks. For task t, its

model consists of the public encoder fS, the private encoder f t, the gate gt, and the

private decoder ht, where fS and f t are combined by gt. Specifically, given a data sample

x, the gate gt in task t receives two inputs: fS(x) and f t(x), and outputs gt(fS(x), f t(x)),

116

CHAPTER 6. DEEP SAFE MULTI-TASK LEARNING

...

...

...

...

public encoder

private encoder

private encoder

private encoder

m
t

Figure 6.1: An illustration for the architecture of the DSMTL model with three tasks (i.e.,
m = 3). Here without loss of generality, we assume different tasks share the input data.
For task t, an input x is first fed into both the public encoder fS and private encoder
ft, then it goes through the gate gt to obtain the combined feature representation, and
finally it is through the private decoder ht to obtain the output ŷt.

which is fed into ht to obtain the final prediction ht(gt(fS(x), ft(x))), which is used to

define a loss for x. Here the public encoder fS and private encoders { ft} =1 usually have

the same network structure. The private decoders are designed to be task-specific as

different tasks may have different types of loss functions.

Here the gate gt is to determine the contributions of fS and ft. Ideally, when task

t is unrelated to other tasks, gt should choose ft only. On another extreme where all

the tasks have the same data distribution, all the tasks should use the same model and

hence gt should choose fS only. In cases between those two extremes, gt can combine

fS and ft in proportion. To achieve the aforementioned effects, we use a simple convex

117

CHAPTER 6. DEEP SAFE MULTI-TASK LEARNING

combination function for gt as

(6.1) gt(fS(x), f t(x))=αt fS(x)+ (1−αt) f t(x),

where αt ∈M = [0,1] defines the weight of fS(x) for task t and it is a learnable param-

eter. When αt equals 0, only the private encoder f t will be used, which corresponds to

the unrelated case. When αt equals 1, only the public encoder fS will be used, which

corresponds to the case that all the tasks follow identical or similar distributions. When

αt is between 0 and 1, fS and f t are combined with proportions αt and 1−αt, respectively,

and αt can be adaptively learned to minimize the training loss on task t.

The average empirical loss of all the tasks is defined as

1
mn

m∑
t=1

n∑
i=1

Lt(yi
t,ht(gt(fS(xi

t), f t(xi
t)))),(6.2)

where xi
t denotes the ith data point in task t, yi

t denotes the label of xi
t in task t,

without loss of generality, different tasks are assumed to have the same number of data

samples, which is denoted by n, and Lt denotes the loss function for task t (e.g., the

pixel-wise cross-entropy loss for the semantic segmentation task, the L1 loss for the

depth estimation task, and the element-wise dot product loss for the surface normal

prediction task). The DSMTL model is to minimize the average empirical loss in Eq.

(6.2) to learn its model parameters. In the following sections, we provide two learning

strategies (e.g., individual learning and joint learning) to learn model parameters, leading

to two variants of DSMTL, including DSMTL with Individual Learning (DSMTL-IL) and

DSMTL with Joint Learning (DSMTL-JL).

118

CHAPTER 6. DEEP SAFE MULTI-TASK LEARNING

6.4.2 DSMTL-IL

The set of all the parameters in the DSMTL model is denoted by Θ. We divide Θ into ΘS

and ΘH , where ΘS includes all the parameters in { f t}m
t=1 and {ht}m

t=1, and ΘH includes

the parameters in fS and {gt}m
t=1. The individual learning strategy consists of two stages.

The first stage is to optimize ΘH by fixing each αt to 0. Then by fixing the learned ΘH

in the first stage, the second stage is to learn ΘH . As the single-task model for each

task consists of an encoder and a decoder whose structures are identical to f t and ht,

respectively, the first stage is equivalent to learning a single-task model for each task,

and after that, the second stage can learn the shared encoder fS and the gate {gt}m
t=1.

Formally, the objective function of the DSMTL-IL model is formulated as

(6.3) min
ΘH

[
min
ΘS

1
mn

m∑
t=1

n∑
i=1

Lt(yi
t,ht(gt(fS(xi

t), f t(xi
t))))

]
.

The DSMTL-IL model can be proved to achieve both empirically individual safe

multi-task learning and probably individual safe multi-task learning as shown in Section

6.5.2 due to its two-stage optimization process.

6.4.3 DSMTL-JL

Different from the DSMTL-IL model which optimizes two partitions of model parameters

sequentially, the DSMTL-JL model adopts a joint learning strategy to learn Θ together.

Formally, the objective function of the DSMTL-JL model is formulated as

(6.4) min
Θ

1
mn

m∑
t=1

n∑
i=1

Lt(yi
t,ht(gt(fS(xi

t), f t(xi
t)))).

119

CHAPTER 6. DEEP SAFE MULTI-TASK LEARNING

The joint learning strategy allows the DSMTL model to learn all the model parame-

ters, which is more flexible for deep neural networks in an end-to-end learning manner.

Different from the DSMTL-IL model, the DSMTL-JL model can achieve both empirically

average safe multi-task learning and probably average safe multi-task learning as proven

in Section 6.5.3.

6.5 Analyses

In this section, we provide theoretical analyses to analyze the safeness of both the

DSMTL-IL and DSMTL-JL methods.

6.5.1 Preliminary

With m tasks, the probability measure for the data distribution in task t is denoted by µt

and the data in all the tasks take the form of (X̄,Ȳ) ∼∏m
t=1(µt)n, where Xt = (x1

t , . . . ,xn
t)

denotes the data in task t, X̄= (X1, . . . ,Xm), and Ȳ denotes labels for X̄. Here we consider

the encoders f1, . . . , fm, fS : X →Rq as mapping functions chosen from a hypothesis class

F and the decoders h1, . . . ,hm as mapping functions chosen from a hypothesis class H .

To facilitate the analysis, we introduce following assumption.

Assumption 1. Assume that (i) Lt(·, ·) ∈ [0,1] for t = 1, . . . ,m is 1-Lipschitz w.r.t the

second argument; (ii) The hypothesis class F is uniformly bounded; (iii) The functions

in hypothesis class H are Lipschitz continuous; (iv) 0 ∈F and h(0)= 0 holds for all the

120

CHAPTER 6. DEEP SAFE MULTI-TASK LEARNING

functions h in H .1

To analyze the safeness of the DSMTL variants, we compare with the correspond-

ing Single-Task Learning (STL) model, which consists of an encoder and a decoder

with identical structures to f t and ht, respectively, for task t. We also compare with

the widely-used Hard Parameter Sharing (HPS) model, which consists of a shared

encoder and task-specific decoders with the network structures identical to fS and

{ht}m
t=1, respectively. Then the empirical loss of the STL model on task t is formulated as

LSTL
t = 1

n
∑n

i=1 Lt(yi
t,h

STL
t (f STL

t (xi
t))) and the expected loss of the STL model on task t is

formulated as E STL
t = E(x,y)∼µt[Lt(y,hSTL

t (f STL
t (x)))], where f STL

t and hSTL
t have identical

network structures to f t and ht in DSMTL, respectively. The average empirical loss of

the STL model is computed as LSTL = 1
m

∑m
t=1 LSTL

t , and the average expected loss of the

STL model is as E STL = 1
m

∑m
t=1 E STL

t . Similarly, the average empirical loss of the HPS

model is formulated as

LHPS = 1
mn

m∑
t=1

n∑
i=1

Lt(yi
t,h

HPS
t (f HPS

S (xi
t))),

where hHPS
t and f HPS

S have identical network structures to ht and fS in DSMTL, respec-

tively.

The expected loss of DSMTL on task t is formulated as

E t = E(x,y)∼µt[Lt(y,ht(gt(fS(x), f t(x))].

Then the average expected loss of the DSMTL model is computed as E = 1
m

∑m
t=1 E t.

1The last assumption in Assumption 1 is not essential but it can help give simpler theoretical results
as verified by the proofs in the appendix.

121

CHAPTER 6. DEEP SAFE MULTI-TASK LEARNING

6.5.2 Analysis on DSMTL-IL

In DSMTL-IL, since αt is set to zero for each task in the first stage, the objective function

of the first stage is equivalent to the following problem as

(6.5) min
ΘS

1
mn

m∑
t=1

n∑
i=1

Lt(yi
t,ht(g0

t (;, f t(xi
t)))),

where g0
t denotes the gate of task t with αt as 0 and ; denotes a null network. Thus

the first stage is to train the STL model with the empirical loss LSTL
t for task t. As gt is

a learnable gate, after sufficient training in the second stage, the empirical loss of the

DSMTL-IL model on each task is no larger than that of the first stage. Based on this

observation, we have the following theorem.2

Theorem 6.5.1. Let L∗ be the optimal value of problem (6.3) and L∗
t the corresponding

empirical loss for task t. Then we have L∗
t ≤ LSTL

t for all 1≤ t ≤ m.

Theorem 6.5.1 shows that the DSMTL-IL model can achieve empirically individual

safe multi-task learning in Definition 6.3.3. Moreover, in the following theorem, we show

that it also achieves probably individual safe multi-task learning.

Theorem 6.5.2. Suppose Assumption 1 is satisfied. Let L∗ be the optimal value of

problem (6.3) and the corresponding solution is denoted by f̂S, { f̂ t}, {ĥt}, { ĝt}. Let Ê t =

E t(f̂S, f̂ t, ĥt, ĝt). Then for (Xt,Yt)∼µn
t , with probability at least 1−δ, we have

Ê t +ϵt ≤ E STL
t +ρn,t,

where ϵt is formulated as ϵt = LSTL
t − L∗

t , ρn,t is defined as ρn,t = C1G(F ′(Xt))
n + C2Qp

n +√
18ln 2

δ

n , F ′(Xt)= {(f (xi
t)) : f ∈F }, C1 and C2 are two constants, G(·) denotes the Gaussian

2The proofs for all the theorems are put in the appendix.

122

CHAPTER 6. DEEP SAFE MULTI-TASK LEARNING

average [2], and Q is defined as Q = supz ̸=z̃∈Rnq Esuph∈H
〈γ,h(zi)−h(z̃i)〉

∥z−z̃∥ with γ as a vector of

independent standard normal variables.

Remark 5. For many classes of interest, the Gaussian average G(F ′(Xt)) is O(
p

n) accord-

ing to [94]. For reasonable classes H , one can find a bound on Q, which is independent of

n [95]. Therefore, ρn,t is O(1/
p

n) for 1≤ t ≤ m and hence ρn,t satisfies limn→+∞ρn,t = 0.

Moreover, according to Theorem 6.5.1, we have ϵt ≥ 0. Thus, Theorem 6.5.2 proves that the

proposed DSMTL-IL model can achieve probably individual safe multi-task learning in

Definition 6.3.4.

6.5.3 Analysis on DSMTL-JL

In this section, we analyze the safeness and excess risk bound of the DSMTL-JL model.

For the safeness of the DSMTL-JL model, we have the following theorems.

Theorem 6.5.3. Let L∗ be the optimal value of problem (6.4). Then we have L∗ is no

higher than the minimun of LSTL and LHPS, i.e., L∗ ≤min{LSTL,LHPS}.

Remark 6. Theorem 6.5.3 shows that the DSMTL-JL model can achieve empirically

average safe multi-task learning in Definition 6.3.3. Moreover, it also implies that it can

achieve a lower average empirical loss compared with the corresponding HPS model. To

see that, the HPS model for task t can be represented as ht(g1
t (fS(x),;)), where g1

t denotes

the gate of task t with αt as 1. As g1
t is a feasible solution for the DSMTL-JL model, it

is easy to see that the empirical loss of the DSMTL-JL model after sufficient training is

123

CHAPTER 6. DEEP SAFE MULTI-TASK LEARNING

lower than that of the HPS model, which could be one reason why the DSMTL-JL model

outperforms the HPS model as shown in experiments.

Theorem 6.5.4. Suppose Assumption 1 is satisfied. Let L∗ be the optimal value of

problem (6.4) and the corresponding solution is denoted by f̂S, { f̂ t}, {ĥt}, { ĝt}. Let Ê =

E (f̂S, { f̂ t}, {ĥt}, { ĝt}). Then for (X̄,Ȳ)∼∏m
t=1(µt)n, with probability at least 1−δ, we have

Ê +ϵ≤ E STL +ρn,

where ρn = C1G(F (X̄))
nm + C2Qp

n +
√

18ln 2
δ

mn , F (X̄)= {(f1(xi
t), . . . , fm(xi

t)) : f t ∈F }, C1 and C2 are

two constants, ϵ is formulated as ϵ= LSTL −L∗, and Q is defined in Theorem 6.5.2.

Remark 7. According to [94], the Gaussian average G(F (X̄)) is O(
p

mn) for many classes

of interest. Therefore, ρn is O(1p
n) and it satisfies limn→+∞ρn = 0. According to Theorem

6.5.3, ϵ≥ 0. Thus, Theorem 6.5.4 implies that the proposed DSMTL-JL model can achieve

probably average safe multi-task learning in Definition 6.3.4.

To analyze the excess risk bound for the DSMTL-JL model, we define the minimal

expected risk as

E ∗ = min
fS , f t∈F ,ht∈H ,αt∈M

E .

Then we have the following result.

Theorem 6.5.5. Suppose Assumption 1 is satisfied. The solution of the optimization

problem in Eq. (6.4) is denoted by f̂S, { f̂ t}, {ĥt}, { ĝt}. Let Ê = E (f̂S, { f̂ t}, {ĥt}, { ĝt}). Then for

(X̄,Ȳ)∼∏m
t=1(µt)n, with probability at least 1−δ, we have

(6.6) Ê −E ∗ ≤ C1G(F (X̄))
nm

+ C2Qp
n

+
√

8ln 4
δ

mn
,

124

CHAPTER 6. DEEP SAFE MULTI-TASK LEARNING

where F (X̄) is defined in Theorem 6.5.4, C1 and C2 are two constants, and Q is defined

in Theorem 6.5.2.

Theorem 6.5.5 provides an upper bound on the error of this DSMTL-JL model. In the

bound (6.6), the first term of the right-hand side can be regarded as the cost to estimate

all the feature mappings { f t} and fS, and it decreases with respect to the number of tasks.

The order of this term is O(1p
mn). The second term of the right-hand side corresponds to

the cost to estimate task-specific functions {gt} and {ht}, and it is of order O(1p
n). The

third term defines the confidence of the bound. The convergence rate of this bound is as

tight as typical generalization bounds [95] for MTL.

6.6 Architecture Learning for DSMTL

A limitation of the DSMTL model is that its model size grows linearly with respect to

the number of tasks, which makes its scalability not so good. To address this issue, we

propose the DSMTL-AL model to not only achieve comparable or even better performance

than the DSMTL-IL and DSMTL-JL models but also learn a more compact architecture

via techniques in neural architecture search [77].

Inspired by the architecture of the DSMTL model introduced in Section 6.4.1, the

supernet in the DSMTL-AL method has a public encoder fS, m private encoders { f t}m
t=1,

and m private decoders {ht}m
t=1. Instead of treating the public and private encoders

as a whole, we divide them into modules, which could be a fully connected layer or a

sophisticated ResNet block/layer, depending on the MTL problem under investigation.

125

CHAPTER 6. DEEP SAFE MULTI-TASK LEARNING

Without loss of generality, we assume that both the public and private encoders have the

same number of modules, i.e., (P −1).

~

~

...
t

t

m
t

Figure 6.2: An illustration for the architecture learning process in the DSMTL-AL model,
where without loss of generality, different tasks are assumed to share the same input
data. For simplicity, we assume that there are three modules (i.e., P = 4) in each encoder.
“∼" represents the convex combination. In the retraining process, only the branch with
the largest architecture parameter whose index is denoted by p∗ is preserved and the
first (p∗−1) private modules will be removed.

As illustrated in Figure 6.2, the DSMTL-AL method is to learn a branching archi-

tecture to combine public modules in the public encoder and private modules in the

corresponding private encoder for each task to reduce the model size. The search space

for the architecture in the DSMTL-AL method consists of m architecture parameters

{βt} =1 to decide branch positions for m tasks, where βt = (βt
1, . . . ,βt

P). As a binary param-

eter, βt
p ∈ {0,1} indicates whether task t branches at the branch position p from fS to ft.

Specifically, when βt
p equals 1, there will be a branch to feed the output of the (p−1)-th

module in fS to the p-th module in ft to form a combined encoder for task t. Moreover,

126

CHAPTER 6. DEEP SAFE MULTI-TASK LEARNING

the sum of entries in βt should be 1 for any t, indicating that there is only one branch

position for each task. In this sense, only part of the private/public modules in all the

encoders will be used for each task. Hence the model size is smaller than the entire

supernet, which is used in the DSMTL-IL and DSMTL-JL models.

The search space in the DSMTL-AL method includes both STL and HPS architectures

as two extremes. When all the tasks are unrelated to each other, the architecture in the

DSMTL-AL method could become the STL architecture by choosing { f t} for each task

(i.e., β1
t = 1 for t = 1, . . . ,m). For highly related or even identical tasks, the architecture

of the DSMTL-AL method could become the HPS architecture by choosing fS only (i.e.,

βP
t = 1 for t = 1, . . . ,m).

The DSMTL-AL method is to find the best branching architecture in the search space

for all the m tasks by learning architecture parameters {βt}
m
t=1. If task t branches at the

branch position p of fS to connect to the corresponding next module in f t, β
p
t is set to

1 and all the βi
t ’s (i ̸= p) are set to 0. In this case, the output of the combined encoder

for task t consisting of the first (p−1) public modules in fS and the last (P − p) private

modules in f t is f t(fS(x, p−1), p,P −1), where fS(·, p) denotes the output of the p-th

module in fS and f t(·, p, q) denotes the output of the q-th module in f t starting from

the p-th module. Here fS(x,0) is defined to be x, corresponding to the input to the first

module, and f t(x,P,P −1) is defined as x. Since {βt} are binary variables, this discrete

nature makes stochastic gradient descent methods incapable of learning them. Here

we relax {βt} to be continuous and define them as the probability of branching at each

branch position. Specifically, the output of the combined encoder for task t is formulated

127

CHAPTER 6. DEEP SAFE MULTI-TASK LEARNING

as

ot(x,βt)=
P∑

p=1
β

p
t f t(fS(x, p−1), p,P −1),

where βt is in the (P −1)-dimensional simplex set denoted by SP , satisfying that β
p
t ≥

0 and
∑P

p=1β
p
t = 1. Here ot(x,βt) is a convex combination of outputs of all possible

branching architectures weighted by probabilities based on βt. Then ot(x,αt) is fed

into the decoder ht to generate the prediction and hence the empirical loss for task t is

formulated as

L t(Θt,βt)=
1
n

n∑
i=1

Lt(yi
t,ht(ot(xi

t,βt)))

where Θt includes all the parameters in fS, f t, and ht. Then the weighted empirical loss

over m tasks is formulated as

(6.7) L(Θ,β,w)=
m∑

t=1
wtL t(Θt,βt),

where Θ = {Θt}m
t=1, w = (w1, . . . ,wm) is in Sm satisfying wt ≥ 0 and

∑m
t=1 wt = 1, and

β= (β1, . . . ,βm). w specifies the weighting among all the tasks. Setting them to 1
m as in

the DSMTL-IL and DSMTL-JL models may lead to suboptimal performance and hence

we aim to learn them directly.

Here Θ is viewed as model parameters, while β and w are hyperparameters. To learn

all of them, we adopt a bi-level formulation as

min
β∈SP ,w∈Sm

Lval(Θ̂,β,w)

s.t. Θ̂= argminΘ L tr(Θ,β,w),(6.8)

where the entire training dataset is divided into a training set and a validation set,

Ltr(·, ·, ·) denotes the weighted empirical loss defined in Eq. (6.7) on the training set, and

128

CHAPTER 6. DEEP SAFE MULTI-TASK LEARNING

Lval(·, ·, ·) denotes the weighted empirical loss defined in Eq. (6.7) on the validation set.

Here the constraints on β and w can be alleviated via the reparameterization based

on the softmax function. We adopt the gradient-based hyperparameter optimization

algorithm in [35, 77] to solve problem (6.8) with the first-order approximation. After

solving the problem (6.8), we can learn architecture for task t by determining the branch

position as

β∗
t = argmaxp({βp

t }P
p=1).

With the learned architecture, we can use the entire training dataset to retrain the

model parameters Θ. Inspired by the gating mechanism in the DSMTL-IL and DSMTL-

JL models, the final encoder for task t consists of the shared encoder and the combined

encoder determined by β∗
t . One reason for that is that the shared encoder fS could be

fully used to improve the performance with little increase or even no increase in the

model size, which is due to that all the modules in fS will usually be chosen by at least

one task during the architecture learning process. Formally, the final encoder for task t

is formulated as

ĝt(x,β∗
t)=αt fS(x)+ (1−αt) f t(fS(x,β∗

t −1),β∗
t ,P −1),(6.9)

where with abuse of notations, αt ∈ M = [0,1] is a learnable parameter to measure

the weight of fS(x) and acts similarly to αt in the DSMTL-IL and DSMTL-JL models.

Mathematically, the objective function of the retraining process is formulated as

(6.10) min
Θ,α∈M

m∑
t=1

wt

n

n∑
i=1

Lt(yi
t,ht(ĝt(xi

t,β
∗
t))),

129

CHAPTER 6. DEEP SAFE MULTI-TASK LEARNING

where Θ denotes all the model parameters, α = (α, . . . ,αm), and wt is the loss weight

learned from problem (6.8) for task t. After the retraining process, we can use the learned

model parameters to make prediction for each task.

Though the DSMTL-AL model cannot be theoretically proved to achieve some version

of safe multi-task learning, as shown in the next section, empirically it not only achieves

good performance but also learns compact architectures.

6.7 Experiments

In this section, we evaluate the proposed models.

6.7.1 Datasets and Evaluation Metrics

Experiments are conducted on four MTL CV datasets, including CityScapes [21], NYUv2

[116], PASCAL-Context [99], and Taskonomy [149].

The CityScapes dataset consists of high resolution outside street-view images. By

following [80], we evaluate the performance on the 7-class semantic segmentation and

depth estimation tasks. The NYUv2 dataset consists of RGB-D indoor scene images from

three learning tasks: 13-class semantic segmentation, depth estimation, and surface

normal prediction. The PASCAL-Context dataset is an annotation extension of the

PASCAL VOC 2010 challenge with four learning tasks: 21-class semantic segmentation,

7-class human parts segmentation, saliency estimation, and surface normal estimation,

where the last two tasks are generated by [93]. The Taskonomy dataset contains indoor

130

CHAPTER 6. DEEP SAFE MULTI-TASK LEARNING

images. By following [118], we sample five learning tasks, including 17-class semantic

segmentation, depth estimation, keypoint detection, edge detection, and surface normal

prediction.

The semantic segmentation task on the PASCAL-Context dataset is evaluated by the

mean Intersection over Union (mIoU) by following [93]. On the other three CV datasets,

this task is additionally evaluated in terms of the Pixel Error (abbreviated as ‘Pix Err’)

by following [124]. For the depth estimation task, the absolute error (abbreviated as ‘Abs

Err’) and relative error (abbreviated as ‘Rel Err’) are used as the evaluation metrics.

For the surface normal prediction task, the mean and median angle distances between

the prediction and ground truth of all pixels are used as measures. For this task, the

percentage of pixels, whose prediction is within the angles of 11.25◦, 22.5◦, and 30◦ to the

ground truth, is used as another measure. For the keypoint detection and edge detection

tasks, the absolute error (abbreviated as ‘Abs Err’) is used as the evaluation metric. For

the human parts segmentation task, the mIoU is used as the measure. For the saliency

estimation task, the mIoU and max F-measure (maxF) are adopted as the evaluation

metrics.

As introduced above, for each task, we use one or more evaluation metrics to thor-

oughly evaluate the performance. To better show the comparison between each method

and STL, we compute the relative performance of each method over STL in terms of the

jth evaluation metric on task t as ∆t, j = (−1)pt, j (Mt, j −STLt, j), where for a method M,

Mt, j denotes its performance in terms of the jth evaluation metric for task t, STLt, j is

defined similarly, pt, j equals 1 if a lower value represents better performance in terms

131

CHAPTER 6. DEEP SAFE MULTI-TASK LEARNING

of the jth metric in task t and 0 otherwise. So positive relative performance indicates

better performance than STL. The overall relative improvement of a method M over

STL is defined as ∆I = 1
m

∑m
t=1

1
mt

∑mt
j=1

∆t, j
STLt, j

, where mt denotes the number of evaluation

metrics in task t.

To empirically measure the safeness of each model, we define the safeness coefficient

η for a model as the proportion of tasks on which this model empirically performs no

worse than the STL model. Formally, η is formulated as η= 1
m

∑m
t=1

1
mt

∑mt
j=1δ(∆t, j)×100,

where δ(x) is the delta function that outputs 0 when x < 0 and otherwise 1. Obviously, η,

whose maximum is 100, is expected to be as large as possible.

Table 6.1: Performance of various models on the CityScapes validation dataset. ↑ (↓)
indicates the higher (lower) the result, the better the performance. The green color
indicates that the corresponding method performs better than the STL method and the
red color indicates oppositely. The number of parameters (abbreviated as Parms.) is
calculated in MB.

Method
Segmentation Depth

∆I ↑ η ↑ Parms. (M)↓
mIoU ↑ Pix Err ↓ Abs Err ↓ Rel Err↓

STL 67.48 9.00 0.0139 46.2507 0 - 79.27

HPS −0.08 −0.08 −0.0003 +0.8245 −0.0035 25 55.76
Cross-stitch +0.53 +0.29 +0.0004 +1.8261 +0.0271 100 79.26
MTAN +1.49 +0.59 +0.0003 +2.4999 +0.0408 100 72.04
NDDR-CNN +0.54 +0.25 +0.0002 +1.3845 +0.0200 100 101.58
AFA +1.44 +0.52 −0.0019 −0.9136 −0.0193 50 87.09
RotoGrad +0.69 +0.37 +0.0004 +1.2729 +0.0274 100 57.86

MaxRoam −0.76 +0.33 −0.0003 +3.9607 +0.0224 50 55.76
MTL-NAS −2.13 −0.80 −0.0005 −1.6786 −0.0482 0 87.26
BMTAS +2.09 +0.81 +0.0017 +1.9947 +0.0723 100 79.04
TSN +2.27 +0.85 +0.0011 +0.4047 +0.0544 100 50.58
LTB +2.24 +0.82 +0.0014 −0.4489 +0.0539 75 70.73

DSMTL-IL +2.94 +1.13 +0.0015 +0.4879 +0.0715 100 102.78
DSMTL-JL +1.50 +0.62 +0.0005 +3.3886 +0.0501 100 102.78
DSMTL-AL +3.07 +1.18 +0.0017 +4.3300 +0.0988 100 79.04

132

CHAPTER 6. DEEP SAFE MULTI-TASK LEARNING

Table 6.2: Performance of various models on the NYUv2 validation dataset. ↑ (↓) indicates
the higher (lower) the result, the better the performance. The green color indicates that
the corresponding method performs better than the STL method and the red color
indicates oppositely. The number of parameters (abbreviated as Parms.) is calculated in
MB.

Method
Segmentation Depth Surface Normal

∆I ↑ η Parms. (M)↓
mIoU ↑ Pix Err ↓ Abs Err ↓ Rel Err↓ Angle Distance ↓ Within t◦ ↑

Mean Median 11.25 22.5 30

STL 53.11 4.80 0.3957 0.1632 22.26 15.49 38.61 64.43 74.69 0 - 118.91

HPS +1.37 +0.62 +0.0118 +0.0084 −1.24 −1.57 −3.30 −3.33 −2.55 +0.0001 67 71.89
Cross-stitch +0.35 +0.29 +0.0153 +0.0077 −0.75 −0.84 −1.60 −2.01 −1.68 +0.0051 67 118.89
MTAN +1.63 +0.58 +0.0161 +0.0083 −0.71 −0.81 −1.70 −1.80 −1.38 +0.0127 67 92.35
NDDR-CNN +0.73 +0.03 +0.0086 +0.0072 −0.34 −0.58 −0.94 −1.00 −0.77 +0.0066 67 169.10
AFA −1.57 −1.29 −0.0073 −0.0060 −1.97 −1.91 −3.54 −4.21 −3.73 −0.0507 0 136.88
RotoGrad +0.98 +0.05 +0.0157 +0.0062 −0.79 −1.01 −2.63 −2.56 −1.77 +0.0009 67 75.03

MaxRoam +1.42 +0.41 +0.0078 −0.0068 +0.36 +0.51 −2.03 −1.55 −2.46 −0.0005 63 71.89
MTL-NAS +0.81 +0.01 +0.0110 +0.0102 −0.15 −0.52 −0.46 −0.22 −2.11 +0.0121 67 183.40
BMTAS +0.73 +0.22 +0.0067 +0.0017 +0.01 −0.03 −0.00 −0.08 −0.00 +0.0082 73 116.04
TSN −0.87 −0.75 −0.0221 −0.0067 +0.50 +0.30 +1.35 +1.22 +0.90 −0.0167 33 50.58
LTB +0.31 +0.23 +0.0052 +0.0096 +0.02 −0.22 −0.86 −0.33 +0.04 +0.0119 80 86.85

DSMTL-IL +0.60 +0.30 +0.0007 +0.0005 +0.26 +0.06 +0.14 +0.33 +0.41 +0.0067 100 142.41
DSMTL-JL +0.75 +0.36 +0.0114 +0.0051 +0.48 +0.47 +1.27 +1.00 +0.73 +0.0221 100 142.41
DSMTL-AL +1.25 +0.71 +0.0144 +0.0070 +0.45 +0.40 +0.83 +0.99 +0.74 +0.0281 100 93.96

Table 6.3: Performance of various models on the PASCAL-Context validation dataset. ↑
(↓) indicates the higher (lower) the result, the better the performance. The green color
indicates that the corresponding method performs better than the STL method and the
red color indicates oppositely. The number of parameters (abbreviated as Parms.) is
calculated in MB.

Method
Segmentation Human Parts Saliency Surface Normal

∆I ↑ η ↑ Parms. (M)↓
mIoU↑ mIoU↑ mIoU↑ maxF↑

Angle Distance ↓ Within t◦ ↑
Mean Median 11.25 22.5 30

STL 65.14 58.58 65.02 77.47 15.94 24.87 48.42 80.79 90.03 0 - 63.60

HPS −0.37 −0.67 −0.92 −0.51 −1.73 −1.29 −6.43 −4.86 −3.02 −0.0262 0 30.07
Cross-stitch −0.17 +0.05 −0.56 −0.40 −0.62 −0.45 −2.36 −2.68 −1.04 −0.0096 25 79.46
MTAN −0.58 +0.50 −0.45 −0.23 −1.20 −0.89 −4.58 −3.31 −2.04 −0.0147 25 36.61
NDDR-CNN +0.14 +0.60 +0.07 +0.00 −0.37 −0.24 −1.50 −0.94 −0.59 −0.0008 75 69.25
AFA +2.12 +2.11 −1.95 −3.96 −1.63 −1.28 −5.68 −4.42 −2.88 −0.0108 50 199.1
RotoGrad −1.57 −0.23 +0.34 +0.35 +0.11 +0.05 +0.14 +0.13 +0.07 −0.0051 50 33.22

MaxRoam −1.33 +0.71 −0.99 −3.42 +0.16 +0.10 +0.35 +0.23 +0.15 −0.0082 50 30.07
MTL-NAS −0.68 +0.18 −0.67 −0.20 +0.68 +0.47 +2.56 +1.58 +0.87 +0.0037 50 41.24
BMTAS −0.14 +0.39 −0.36 −0.15 −0.06 −0.06 −0.34 −0.29 −0.10 -0.0006 12 45.28
TSN +1.63 −0.67 +0.08 −0.51 −0.62 −0.29 −5.43 −3.86 −2.02 -0.0089 25 26.85
LTB −0.65 +1.55 −0.93 −3.59 +0.58 +0.39 +2.03 +1.36 +0.74 +0.0025 75 62.60

DSMTL-IL +0.01 +1.05 +0.20 +0.13 +0.26 +0.22 +1.08 +0.74 +0.39 +0.0082 100 74.78
DSMTL-JL +0.18 +1.87 +0.44 +0.47 +0.41 +0.27 +1.21 +0.86 +0.50 +0.0142 100 74.78
DSMTL-AL +0.82 +1.28 +0.37 +0.31 +0.04 +0.02 +0.01 +0.01 +0.09 +0.0106 100 63.15

133

CHAPTER 6. DEEP SAFE MULTI-TASK LEARNING

Table 6.4: Performance of various models on the Taskonomy validation dataset. ↑ (↓)
indicates the higher (lower) the result, the better the performance. The green color
indicates that the corresponding method performs better than the STL method and the
red color indicates oppositely. The number of parameters (abbreviated as Parms.) is
calculated in MB.

Method
Segmentation Depth Keypoints Edges Surface Normal

∆I ↑ η ↑ Parms. (M)↓
mIoU ↑ Pix Err ↓ Abs Err ↓ Rel Err↓ Abs Err ↓ Abs Err ↓ Angle Distance ↓ Within t◦ ↑

Mean Median 11.25 22.5 30

STL 65.42 2.37 0.0072 0.0117 0.1103 0.1349 10.39 4.19 73.67 86.21 90.52 0 - 79.50

HPS +0.33 +0.05 −0.0011 −0.0018 +0.0015 −0.0004 −0.69 −0.45 −1.94 −1.09 −0.79 −0.0348 40 34.79
Cross-stitch +0.87 +0.67 +0.0005 +0.0009 +0.0100 +0.0019 +1.50 +0.17 +0.42 +0.38 +0.30 +0.0603 100 79.46
MTAN +0.34 +0.69 −0.0011 −0.0019 −0.0248 −0.0111 +0.99 −0.18 +2.30 +2.89 +2.41 +0.0240 36 36.61
NDDR-CNN +0.64 +0.69 +0.0002 −0.0028 +0.0133 +0.0043 +1.86 +0.47 +0.48 +0.42 +0.33 +0.0593 90 88.32
AFA +0.84 +0.57 −0.0016 −0.0027 +0.0465 +0.0524 +1.08 −0.17 +0.30 +0.33 +0.27 +0.0476 76 242.1
RotoGrad +0.01 −0.03 +0.0012 +0.0019 +0.0028 +0.0003 +0.13 +0.27 +0.20 +0.05 +0.02 +0.0213 90 37.94

MaxRoam −0.61 −0.10 +0.0013 +0.0021 +0.0028 +0.0015 +0.06 +0.22 +0.06 −0.04 −0.05 +0.0164 72 34.79
MTL-NAS +0.01 −0.04 +0.0014 +0.0022 +0.0027 +0.0014 +0.16 +0.30 +0.35 +0.13 +0.04 +0.0253 90 45.97
BMTAS −0.53 −0.10 +0.0019 +0.0031 +0.0048 +0.0005 +0.03 +0.17 +0.01 −0.08 −0.10 +0.0217 72 66.27
TSN −0.07 −0.02 +0.0012 +0.0019 +0.0020 +0.0001 +0.03 +0.24 −0.12 −0.20 −0.19 +0.0184 68 26.85
LTB +0.30 +0.01 +0.0015 +0.0024 +0.0038 +0.0001 +0.46 +0.69 +0.80 +0.23 +0.13 +0.0426 100 43.19

DSMTL-IL +0.67 +0.01 +0.0034 +0.0055 +0.0056 +0.0014 +0.97 +1.06 +2.00 +0.95 +0.65 +0.0844 100 90.68
DSMTL-JL +0.89 +0.03 +0.0035 +0.0057 +0.0056 +0.0014 +0.98 +1.08 +2.00 +0.95 +0.66 +0.0872 100 90.68
DSMTL-AL +0.45 +0.02 +0.0012 +0.0019 +0.0038 +0.0013 +0.59 +0.83 +1.11 +0.39 +0.22 +0.0455 100 54.36

6.7.2 Experimental Setup

The baseline methods in comparison include the Single-Task Learning (STL) that trains

each task separately, popular MTL architectures including the HPS model that adopts

the multi-head hard sharing architecture, Cross-stitch [97], MTAN [80], NDDR-CNN

[39], RotoGrad [56], and AFA [23], and popular architecture learning methods for MTL

such as MaxRoam [103], TSN [123], MTL-NAS [38], BMTAS [8], and LTB [45]. For fair

comparison, we use the same backbone for all the models. Similar to [80], we use the

Deeplab-ResNet [15] with atrous convolutions as encoders and the ASPP architecture

[15] as decoders. We adopt the ResNet-50 pretrained on ImageNet for the CityScapes and

NYUv2 datasets to implement the the Deeplab-ResNet, and use the pretrained ResNet-

18 on the larger PASCAL-Context and Taskonomy datasets for training efficiency. We

use the cross-entropy loss for the semantic segmentation, human parts segmentation

and saliency estimation tasks, the cosine similarity loss for the surface normal prediction

134

CHAPTER 6. DEEP SAFE MULTI-TASK LEARNING

task, and the L1 loss for other tasks. For the DSMTL-AL method, a module is defined as

a layer in the Deeplab-ResNet model and the branch position is set before and after each

layer. Therefore, we have five layers (including conv1) and have six branch positions.

For optimization, we use the Adam method [59] with the learning rate as 10−4. All the

experiments are conducted on Tesla V100 GPUs.

6.7.3 Experimental Results

Tables 6.1-6.4 show the performance of all the models in comparison on different datasets.

On the CityScapes dataset, the proposed DSMTL-IL, DSMTL-JL, DSMTL-AL and some

baseline methods (i.e., Cross-stitch, MTAN, RotoGrad, BMTAS, TSN, and NDDR-CNN)

perform no worse than the STL model on each metric and hence under such setting,

they achieve safe multi-task learning (i.e., η= 100). In addition, the proposed DSMTL-AL

model achieves the best ∆I , which demonstrates its effectiveness. On the NYUv2 and

PASCAL-Context datasets, none of the baselines can achieve safe multi-task learning,

while the proposed methods (i.e., DSMTL-IL, DSMTL-JL, and DSMTL-AL) can achieve

that, which again shows the effectiveness of the proposed methods. On the Taskonomy

dataset, only the cross-stitch network, LTB and the proposed methods can achieve safe

multi-task learning and among them, the proposed DSMTL-JL method performs the best

in terms of ∆I . According to results shown in Table 6.4, we can see that the AFA method

achieves the best performance on the keypoint detection and edge detection tasks for

the Taskonomy dataset, but it does not achieve safe multi-task learning, which is the

focus of the proposed methods. Moreover, the number of parameters in the AFA model is

135

CHAPTER 6. DEEP SAFE MULTI-TASK LEARNING

2.66 times over that of the DSMTL-IL and DSMTL-JL models, which may explain the

improvement of the AFA model on some tasks.

For the proposed three methods, all of them achieve safeness on the four datasets,

which demonstrates their effectiveness. The proposed DSMTL-JL method performs

better than the DSMTL-IL method on the NYUv2, PASCAL-Context, and Taskonomy

datasets in terms of ∆I . One reason is that the DSMTL-JL model can learn a better model

by optimizing all the model parameters together, while the DSMTL-IL model adopts

a two-stage optimization strategy. Compared with those two models, the DSMTL-AL

method can achieve a better trade-off between the performance and the model size as it

performs comparable or even better than the better one in DSMTL-IL and DSMTL-JL

and its model size is much smaller than those in DSMTL-IL and DSMTL-JL, which

matches the design goal of the DSMTL-AL method.

Table 6.5: {αt} learned in the DSMTL models as well as branch points and {wt} learned by
the DSMTL-AL method on four CV datasets. ‘SS’ stands for the semantic segmentation
task, ‘DE’ denotes the depth estimation task, ‘SNP’ is for the surface normal prediction
task, ‘HPS’ corresponds to the human parts segmentation task, ‘SE’ stands for the
saliency estimation task, ‘KD’ stands for the keypoint detection task, and ‘ED’ denotes
the edge detection task.

Method
CityScapes NYUv2 PASCAL-Context Taskonomy

SS DE SS DE SNP SS HPS SE SNP SE DE KD ED SNP

DSMTL-IL 0.5539 0.4470 0.5624 0.5083 0.4745 0.3823 0.3899 0.4426 0.3100 0.4256 0.3162 0.3143 0.3768 0.3056
DSMTL-JL 0.5002 0.4960 0.4383 0.5188 0.1997 0.4739 0.5529 0.3701 0.2304 0.4886 0.4565 0.4504 0.4578 0.2584

DSMTL-AL − 0.3675 − − 0.3931 − 0.5651 0.5545 0.3952 − − 0.3565 − 0.3438
- branch point p = 6 p = 4 p = 6 p = 6 p = 4 p = 6 p = 2 p = 1 p = 4 p = 6 p = 6 p = 4 p = 6 p = 1
- learned wt 0.3274 0.6726 0.0283 0.0568 0.9149 0.0574 0.0649 0.8032 0.0745 0.0012 0.0033 0.4932 0.4932 0.0091

6.7.4 Analysis on the Position of Gate

In this section, we study how the position of the gate affects the performance of the

proposed models and we use the DSMTL-JL model as an example. As there are P −1

136

CHAPTER 6. DEEP SAFE MULTI-TASK LEARNING

p=1 p=2 p=3 p=4 p=5

Gate Position

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

0.0225
Δ

I
↑

gate

w/o gate

Figure 6.3: The performance of the DSMTL-JL model on the NYUv2 dataset when
varying the position of the gates, where p represents the position of the gate.

possible positions for each gate by excluding the position before the first layer, we try

each of them to see which one is the best in terms of the performance. To avoid the

exponential complexity, we assume that gate positions of different tasks are the same.

Specifically, we put a gate gt(·, p) after the p-th module of the private encoder in task

t and the entire encoder for task t is formulated as

gt(x, p)= ft(αt
p fS(x, p)+ (1−αt

p) ft(x,1, p), p+1,P −1),

where as defined in Section 6.6, fS(·, p) denotes the output of the p-th module in fS and

ft(·, p, q) denotes the output of the q-th module in ft starting from its p-th module.

According to Figure 6.3, when changing the gate position from p = 2 to p = 5, the

performance of the DMTL-JL model becomes better, and p = 5 gives the best performance,

which justifies the choice of the gate position in the DSMTL-IL and DSMTL-JL models

and also inspires the design of the final encoder in the DSMTL-AL method as defined in

Eq. (6.9).

137

CHAPTER 6. DEEP SAFE MULTI-TASK LEARNING

Table 6.6: Ablation study of the DSMTL models on the NYUv2 dataset.

Method ∆I ↑ η ↑
DSMTL-IL +0.0067 100
-w/o learnable gate +0.0034 77

DSMTL-JL +0.0221 100
-w/o learnable gate +0.0035 83

DSMTL-AL +0.0281 100
-w/o learnable gate +0.0220 100
-w/o learnable task weighting +0.0166 80

6.7.5 Analysis on Learned Task Relevance

We show the learned {αt} of the proposed methods in Table 6.5. According to the results,

we can see that some αt’s are closed to 0.5, which implies that in those cases, the public

encoder and the private encoder are both important to the corresponding tasks. Thus,

only using the public encoder (i.e., HPS) and only using the private encoder (i.e., STL)

cannot achieve good performance, while the proposed models can take the advantages

of these two methods to achieve better performance in most cases. Moreover, some of

the learned αt’s have relatively small values (i.e., values smaller than 0.3), which are

shown in box. These small values indicate that for the surface normal prediction task on

the NYUv2, PASCAL-Context, and Taskonomy datasets, the public encoder is relatively

unimportant, and this is consistent with the architecture learned by the DSMTL-AL

method, where the surface normal prediction task branches out at the first several public

modules and switches to the private modules. This may imply that the surface normal

prediction task is not strongly related to other tasks on these datasets, which aligns

with the task relationship founded in [123]. On the other hand, this observation may

explain why HPS performs much worse than STL and why the proposed methods have

138

CHAPTER 6. DEEP SAFE MULTI-TASK LEARNING

good performance on those datasets (refer to Tables 6.2-6.4). For the DSMTL-AL method,

we can see that in each dataset, at least one task choose to use the entire shared encoder,

which corresponds to the choice of the branch point p = 6 and hence indicates that there

is no need to learn the corresponding αt defined in Eq. (6.9), and hence including the

public encoder in the design of the final encoder defined in Eq. (6.9) for the DSMTL-AL

method will not increase the model size.

As the loss scales and converge speed of different tasks vary a lot, using identical

loss weighting (i.e., wt = 1
m for t = 1, . . . ,m) may lead to suboptimal performance. The

learned wt’s in DSMTL-AL at the bottom of Table 6.5 show that loss weights are uneven.

For example, the surface normal prediction task has a larger loss weight than the other

two tasks in the NYUv2 dataset, while this task has a smaller loss weight than some

other tasks in the PASCAL-Context and Taskonomy datasets, which indicates that the

proposed DSMTL-AL method could learn adaptive loss weighting strategies in different

datasets.

6.7.6 Ablation Study

In Table 6.6, we provide the ablation study for the proposed DSMTL models. For “w/o

learnable gate”, we replace the learnable gates in Eq. (6.1) or (6.9) with simply compute

the average of outputs of both public and private encoders. Compared with the original

DSMTL methods, the performance of those variants degrades in terms of ∆I , which

verifies the usefulness of the learnable gates. The safeness coefficient decreases in

both DSMTL-IL and DSMTL-JL cases, which indicates that learnable gates are a key

139

CHAPTER 6. DEEP SAFE MULTI-TASK LEARNING

ingredient for the DSMTL-IL and DSMTL-JL models to achieve the safeness. The

safeness coefficient still keeps as 100 in the variant of the DSMTL-AL method, which

implies that the DSMTL-AL method can learn a reliable architecture to achieve the

safeness.

For “w/o learning task weighting”, we replace the learned task weights in the DSMTL-

AL method with identical loss weights during the retraining process. This variant without

the learnable task weighting has inferior performance to the DSMTL-AL method, which

indicates that learning task weighting in the DSMTL-AL method can not only reduce

tedious costs to tune loss weights but also improve the performance of the DSMTL-AL

method.

6.7.7 Combination and Comparison with Loss Weighting

Strategies

The loss weighting scheme adopted in the DSMTL-IL and DSMTL-JL methods is the

commonly used Equally Weighting (EW) strategy (i.e., all the loss weights are equal to

1
m in problems (6.3) and (6.4)). The loss weighting scheme adopted in the DSMTL-AL

method is a Learnable Weighting (LW) strategy as in Eq. (6.7). In this section, we show

that the proposed DSMTL models could be combined with some loss weighting methods

in MTL, including Uncertainty Weights (UW) [58], Dynamic Weight Average (DWA) [80],

Geometric Loss Strategy (GLS) [20], PCGrad [147], and CAGrad [75].

According to experimental results shown in Table 6.7, the combination of the DSMTL-

IL method and other methods than the EW strategy has inferior performance and a

140

CHAPTER 6. DEEP SAFE MULTI-TASK LEARNING

Table 6.7: Combining DSMTL models with various loss weighting strategies on the
NYUv2 validation dataset.

Architecture Methods Train Speedup ↑ ∆I ↑ η ↑
STL - 1.0x 0 100

HPS

EW 1.69x +0.0001 67
UW 1.66x -0.0040 67

DWA 1.68x +0.0029 67
GLS 1.68x +0.0158 67

PCGrad 0.78x +0.0037 67
CAGrad 0.61x +0.0023 67

DSMTL-IL

EW 1.18x +0.0067 100
UW 1.15x +0.0035 53

DWA 1.17x +0.0038 60
GLS 1.16x +0.0041 67

PCGrad 0.43x -0.0397 0
CAGrad 0.36x -0.0399 0

DSMTL-JL

EW 0.89x +0.0221 100
UW 0.83x +0.0134 100

DWA 0.84x +0.0191 100
GLS 0.88x +0.0269 100

PCGrad 0.34x +0.0164 100
CAGrad 0.30x +0.0237 100

DSMTL-AL

LW 1.18x +0.0281 100
EW 1.18x +0.0166 100
UW 1.14x +0.0163 100

DWA 1.16x +0.0204 93
GLS 1.17x +0.0203 80

PCGrad 0.42x +0.0299 100
CAGrad 0.38x +0.0243 100

lower safeness coefficient η, which verifies the usefulness of the EW strategy adopted in

the DSMTL-IL method. Differently, the performance of the DSMTL-JL method could be

improved in terms of ∆I when combining with some loss weighting strategies (i.e., GLS

and CAGrad), and all the combinations have the largest safeness coefficients. One reason

for the aforementioned difference between the DSMTL-IL and DSMTL-JL methods is

that the DSMTL-IL method fixes all parameters of the private encoders and decoders

141

CHAPTER 6. DEEP SAFE MULTI-TASK LEARNING

in the second stage of the training process, making the corresponding parameters not

fully updated and therefore leading to the inferior performance. For the DSMTL-AL

method, replacing LW with PCGrad can further improve the performance while other

loss weighting strategies degrade the performance.

In terms of computational cost or the training speedup over the STL, the PCGrad and

CAGrad methods have large computational overhead since they need to project huge-

dimensional gradients of different tasks on each training step. The UW, DWA and GLS

methods have relatively small computational overhead but with limited performance

improvement. The LW strategy in DSMTL-AL has no computational overhead during

the retraining process and have competitive performance compared with various loss

weighting strategy, which demonstrate the effectiveness of the LW strategy.

6.8 Summary

In this chapter, we formally define the problem of safe multi-task learning, and propose

a simple and effective DSMTL method that can learn to combine the shared and task-

specific representations. We theoretically analyze the proposed models and prove that the

proposed DSMTL-IL and DSMTL-JL methods are guarantee to achieve some versions of

safe multi-task learning. To solve the scalability issue of the proposed DSMTL-IL and

DSMTL-JL methods, we further propose the DMSTL-AL method to learn a compact

architecture via techniques in neural architecture search. Extensive experiments demon-

strate the effectiveness of the proposed methods. In the future work, we are interested

142

CHAPTER 6. DEEP SAFE MULTI-TASK LEARNING

in generalizing the DSMTL methods to other learning problems.

6.9 Proofs

In this section, we provide proofs for all the theorems.

6.9.1 Generalization Bound for Problem (6.4)

To help analyze the generalization bound of the DSMTL method, we first introduce a

useful theorem in terms of Gaussian averages [2, 95].

Theorem 6.9.1. Let G be a class of functions ϑ : X → [0,1]⊤, and µ1, ...,µm be the

probability measure on X with X̄ = (X1, ...,Xm) ∼ ∏m
t=1(µt)n, where Xt = (x1

t , . . . ,xn
t). Let

and γ be a vector of independent standard normal variables and Z be the random set

{(ϑt(xi
t)) : ϑ ∈G } where ϑt are functions chosen from hypothesis class G . Then for all ϑ ∈G ,

with probability at least 1−δ, we have

1
m

∑
t

(
Ex∼µt [ϑt(x)]− 1

n

∑
i
ϑt(xi

t)

)
≤

p
2πG(Z)

mn
+

√
9ln 2

δ

2mn
,

where G(Z)= E[supz∈Z 〈γ, z〉] is the Gaussian average of the random set Z.

Based on Theorem 6.9.1, we first establish the following uniform bound for problem

(6.4).

Theorem 6.9.2. Suppose Assumption 1 is satisfied. Then for (X̄,Ȳ) ∼ ∏m
t=1(µt)n, with

143

CHAPTER 6. DEEP SAFE MULTI-TASK LEARNING

probability at least 1−δ, we have

(6.11)

E− 1
mn

∑
t,i

Lt(yi
t,ht(gt(fS(xi

t), f t(xi
t))))

≤ C1G(F (X̄))
mn

+ C2Qp
n

+
√

9ln 2
δ

2mn
,

where C1, C2 are two constants, the quantity Q is defined as

Q = sup
z ̸=z̃∈Rnq

1
∥z− z̃∥E sup

ht∈H

n∑
i=1

γi(ht(zi)−ht(z̃i)),

and γ is a vector of independent standard normal variables.

Proof. According to Theorem 6.9.1, for ht ∈H , f t, fS ∈F , and αt ∈M , with probability

at least 1−δ, we have

E− 1
mn

∑
t,i

Lt(yi
t,ht(gt(fS(xi

t), f t(xi
t))))

≤
p

2πG(S)
mn

+
√

9ln 2
δ

2mn
,

where S = {Lt(yi
t,ht(gt(fS(xi

t), f t(xi
t))))}⊆Rmn and G(S) represents the Gaussian average

of the set S. Then by using the Lipschitz property of Lt and Slepian’s Lemma [65], we

have G(S)≤G(S′), where S′ = {ht(gt(fS(xi
t), f t(xi

t))) : ht ∈H ,αt ∈M , f t, fS ∈F }.

Note that the input data X̄ ∈X mn and the encoders f1, . . . , fm, fS : X →Rq are map-

ping functions chosen from F , the random set K (X̄) ⊆ Rmnq is defined as K (X̄) =

{gt(fS(xi
t), f t(xi

t)) : αt ∈ M , f t, fS ∈ F }. We define a class of functions H ′ = {z ∈ Rmnq 7→

ht(zi
t) : ht ∈H }. Therefore, we have S ′(X̄)=H ′(K (X̄)).

By using Theorem 2 in [94], we obtain

G(S′)≤ c1L(H ′)G(K (X̄))+ c2D(K (X̄))Q(H ′)

+ min
z∈K (X̄)

G(H ′(z)),

144

CHAPTER 6. DEEP SAFE MULTI-TASK LEARNING

where c1 and c2 are two constants, L(H ′) denotes the Lipschitz constant of the functions

in H ′, D(K (X̄))= 2supϕ∈K ∥ϕ(X̄)∥ denotes the Euclidean diameter of the set F (X̄), and

Q(H ′)= sup
z ̸=z̃∈Rmnq

1
∥z− z̃∥E sup

ψ∈H ′
〈γ,ψ(z)−ψ(z̃)〉 .

Let z, z̃ ∈Rmnq, where z = (zi
t), z̃ = (z̃i

t) and zi
t, z̃i

t ∈Rq. Then for any functions ψ ∈H ′,

we have

E sup
ψ∈H ′

〈γ,ψ(z)−ψ(z̃)〉

=
m∑

t=1
E sup

h∈H

n∑
i=1

γi(h(zi
t)−h(z̃i

t))

≤pm

(
m∑

t=1
(E sup

h∈H

n∑
i=1

γi(h(zi
t)−h(z̃i

t)))
2

)1/2

≤pm

(
m∑

t=1
Q2

n∑
i=1

∥zi
t − z̃i

t∥2

)1/2

=pm Q∥z− z̃∥,

where the first inequality is due to the Cauchy-Schwarz inequality and the second

inequality is due to the inequality ∥z− z̃∥ ≤ sup∥z− z̃∥ holds for all z ̸= z̃ ∈Rnq. Therefore,

Q(H ′)≤p
m Q. Moreover, suppose the functions in hypothesis classes H are M-Lipschitz

continuous, we have

∥ψ(z)−ψ(z̃)∥2 =∑
t,i

(ht(zi
t)−ht(z̃i

t))
2 ≤ M2∥z− z̃∥2

where the inequality is due to the Lipschitz property. So we obtain L(H ′) ≤ M. Since

0 ∈F , we have 0 ∈K (X̄). Note that h(0)= 0, and hence minz∈F (X̄) G(H ′(z))= 0 by setting

z = 0. Therefore, we have

(6.12) G(S)≤ c1MG(K (X̄))+2c2
p

m Q sup
ϕ∈K

∥ϕ(X̄)∥.

145

CHAPTER 6. DEEP SAFE MULTI-TASK LEARNING

Recall that the random set F (X̄)⊆Rmnq is defined as F (X̄)= {(f t(xi
t)) : f t ∈F }. Denote

the jth entry of the vectors fS(xi
t) and f t(xi

t) by fS, j(xi
t) and f t, j(xi

t), respectively, and let

γ j,t,i be the corresponding independent standard normal variable. Then we have

G(K (X̄))= E

[
sup

f t, fS ,αt

q∑
j=1

∑
t,i

γ j,t,i gt(fS, j(xi
t), f t, j(xi

t))
∣∣∣xi

t

]

= E

[
sup
f t∈F

q∑
j=1

∑
t,i

γ j,t,i f t, j(xi
t))

∣∣∣xi
t

]
=G(F (X̄)),

where the first and third equality are due to the definition of the Gaussian average, and

the second equality holds since f t and fS are chosen from the same class F and F is

uniformly bounded.

Since the hypothesis classes F is uniformly bounded, suppose that ∥ f (xi
t)∥ ≤ R for all

f ∈F and we have

sup
ϕ∈K

∥ϕ(X̄)∥ =p
mn sup

f t, fS ,αt

max
i,t

∥gt(fS(xi
t), f t(xi

t))∥

≤p
mn sup

f ∈F
max

i,t
∥ f (xi

t)∥ ≤
p

mn R,

where the first inequality holds since f t and fS are chosen from the same class F , and

the second inequality holds since ∥ f (xi
t)∥ ≤ R. Therefore, we get

E− 1
mn

∑
t,i

Lt(yi
t,ht(gt(fS(xi

t), f t(xi
t))))

≤ c1M
p

2πG(F (X̄))
mn

+ 2c2R
p

2πQp
n

+
√

9ln 2
δ

2mn
.

By setting C1 = c1M
p

2π and C2 = 2c2R
p

2π , we reach the conclusion. ■

Remark 8. According to the McDiarmid inequality [98], the upper bound in Theorem

6.9.1 also holds for the sum of ϑt(xi
t) minus its expectation. Thus following the same proof

146

CHAPTER 6. DEEP SAFE MULTI-TASK LEARNING

as above, we can verify that the following inequality holds under the same assumption in

Theorem 6.9.1:

(6.13)

1
mn

∑
t,i

Lt(yi
t,ht(gt(fS(xi

t), f t(xi
t))))−E

≤ C1G(F (X̄))
mn

+ C2Qp
n

+
√

9ln 2
δ

2mn
.

6.9.2 Proof of Theorem 6.5.1

Proof. The STL model aims to solve the following optimization problem as

min
hSTL

t ∈H , f STL
t ∈F

1
mn

n∑
i=1

m∑
t=1

Lt(yi
t,h

STL
t (f STL

t (xi
t))),

where its solution is denoted by {ĥSTL
t } and { f̂ STL

t }. Therefore, the minimal empirical loss

of the STL model on task t is computed as

L̂STL
t = 1

n

n∑
i=1

Lt(yi
t, ĥ

STL
t (f̂ STL

t (xi
t))).

For the DSMTL-IL model, we set αt = 0 for all tasks in the first training stage, thus the

corresponding objective function is the same as that of the STL model. Therefore, the

solution of the first stage in the DSMTL-IL model, i.e., {ĥt} and { f̂ t}, satisfies ĥt = ĥSTL
t

and f̂ t = f̂ STL
t . In the second training stage of the DSMTL-IL model, for any public

encoder fS in task t, we have

min
αt∈M

1
n

n∑
i=1

Lt(yi
t, ĥt(αt fS(xi

t)+ (1−αt) f̂ t(xi
t)))

≤ 1
n

n∑
i=1

Lt(yi
t, ĥ

STL
t (f̂ STL

t (xi
t)))= L̂STL

t .

Therefore, L∗
t ≤ L̂STL

t ≤ LSTL
t holds for all 1≤ t ≤ m. This finishes the proof. ■

147

CHAPTER 6. DEEP SAFE MULTI-TASK LEARNING

6.9.3 Proof of Theorem 6.5.2

Proof. According to Theorem 6.9.2, with m tasks and data X̄, we have following inequal-

ity

(6.14)

1
m

m∑
t=1

E t− 1
mn

∑
t,i

Lt(yi
t,ht(gt(fS(xi

t), f t(xi
t))))

≤ c1G(F (X̄))
mn

+ c2Qp
n

+
√

9ln 2
δ

2mn
,

holds with probability at least 1−δ. Thus, for one single task such as task t and its

corresponding data Xt, setting the number of tasks in the above inequality to be 1 gives

(6.15)

E t−1
n

∑
i

Lt(yi
t,ht(gt(fS(xi

t), f t(xi
t))))

≤ c1G(F ′(Xt))
n

+ c2Qp
n

+
√

9ln 2
δ

2n
.

By substituting the solution of problem (6.3) into inequality (6.15), we have following

inequality as

(6.16) Ê t −L∗
t ≤

c1G(F ′(Xt))
n

+ c2Qp
n

+
√

9ln 2
δ

2n
.

Moreover, since the STL model can be considered as a special case of the DSMTL-IL

model where gt adopts g0
t defined in Eq. (6.5), substituting it into the inequality (6.13)

gives

(6.17) LSTL −E STL ≤ c′1G(F (X̄))
nm

+ c′2Qp
n

+
√

9ln 2
δ

2mn
.

Therefore, for the STL model in task t, setting m to 1 in the above inequality gives

(6.18) LSTL
t −E STL

t ≤ c′1G(F ′(Xt))
n

+ c′2Qp
n

+
√

9ln 2
δ

2n
.

148

CHAPTER 6. DEEP SAFE MULTI-TASK LEARNING

Add the inequalities (6.16) and (6.18) we get

Ê t −L∗
t +LSTL

t −E STL
t ≤ C1G(F ′(Xt))

n
+ C2Qp

n
+

√
18ln 2

δ

n
,

where C1 and C2 are two constants and F ′(X̄t) = { f (xi
t) : f ∈ F } ⊆ Rnq. According to

Theorem 6.5.1, there exists a constant εt ≥ 0 such that L̂∗
t +εt = LSTL

t . Therefore, we have

Ê t +ϵt ≤ E STL
t + C1G(F ′(Xt))

n
+ C2Qp

n
+

√
18ln 2

δ

n
,

which completes the proof. ■

6.9.4 Proof of Theorem 6.5.3

Proof. It is easy to see that the STL model can be considered as a special case of the

DSMTL-JL model when αt = 0 holds for 1≤ t ≤ m and the HPS model is also a special

case of the DSMTL-JL model when αt = 1 holds for 1≤ t ≤ m.

The empirical loss of the DSMTL model is formulated as

L = 1
mn

n∑
i=1

m∑
t=1

Lt(yi
t,ht(gt(fS(xi

t), f t(xi
t)))).

We have LSTL = L(Θ) |αt=0 and LHPS = L(Θ) |αt=1. Since L∗ ≤ L, we can get L∗ ≤min{LSTL,LHPS}

and hence we reach the conclusion. ■

6.9.5 Proof of Theorem 6.5.4

Proof. Let L∗ be the optimal value of problem (6.4). Substituting the solution of problem

(6.4) into inequality (6.11) gives

(6.19) Ê −L∗ ≤ c1G(F (X̄))
mn

+ c2Qp
n

+
√

9ln 2
δ

2mn
.

149

CHAPTER 6. DEEP SAFE MULTI-TASK LEARNING

Based on inequalities (6.19) and (6.17), with probability 1−δ, we have

Ê −L∗+LSTL −E STL ≤ C1G(F (X̄))
nm

+ C2Qp
n

+
√

18ln 2
δ

mn
,

where C1 and C2 are two constants. According to Theorem 6.5.3, there exists a constant

ε≥ 0 such that L∗+ε= LSTL. Therefore, we have

Ê +ϵ≤ E STL + C1G(F (X̄))
nm

+ C2Qp
n

+
√

18ln 2
δ

mn
,

where we reach the conclusion. ■

6.9.6 Proof of Theorem 6.5.5

Proof. Let { f t}∗, f ∗S , {ht}∗, {gt}∗ be the minimizer in E ∗. We can decompose Ê −E ∗ as

Ê −E ∗ =
(
Ê − 1

mn

∑
t,i

Lt(yi
t,ht(gt(fS(xi

t), f t(xi
t))

)
+

(1
mn

∑
t,i

Lt(yi
t,ht(gt(fS(xi

t), f t(xi
t))

− 1
mn

∑
t,i

Lt(yi
t,h

∗
t (g∗

t (f ∗S (xi
t), f ∗t (xi

t))
)

+
(1

mn

∑
t,i

Lt(yi
t,h

∗
t (g∗

t (f ∗S (xi
t), f ∗t (xi

t))−E ∗
)
,

where the first term can be bounded by substituting inequality (6.11) and the last term

can be regarded as mn random variables Lt(yi
t,h

∗
t (g∗

t (f ∗S (xi
t), f ∗t (xi

t)) with values in [0,1].

By using Hoeffding’s inequality, with probability at least 1−δ, we have

1
mn

∑
ti

Lt(yi
t,h

∗
t (ω∗T

t ϕ∗(xi
t)))−E ∗ ≤

√
ln 1

δ

2mn
.

The second term is non-positive due to the definition of minimizers. Therefore, we have

150

CHAPTER 6. DEEP SAFE MULTI-TASK LEARNING

Ê −E ∗ ≤ C1G(F (X̄))
mn

+ C2Qp
n

+
√

8ln 4
δ

mn
,

where we reach the conclusion. ■

151

C
H

A
P

T
E

R

7
CONCLUSION AND FUTURE STUDY

7.1 Conclusions

This thesis focuses on how to learn the effective architecture of transfer learning models

automatically. Specifically, this thesis addresses four research questions for transfer

learning problems in real-world: 1) How to design a deep neural network architecture

that satisfies multiple objectives; 2) How to design a feature alignment architecture with

varying difficulty levels of domain adaptation tasks; 3) How to alleviate the gradient

conflict in multi-task learning; 4) How to guarantee that multi-task learning performance

is no worse than its single-task counterpart on each task.

To solve these challenges, this thesis proposes three corresponding research objectives

to conduct studies: 1) To automatically design an architecture by explicitly balancing

152

CHAPTER 7. CONCLUSION AND FUTURE STUDY

the trade-off among multiple objectives; 2) To learn feature alignment architecture and

domain-invariant feature representations for domain adaptation tasks with varying

difficulty levels; 3) To alleviate the gradient conflict in multi-task learning by learning

architectures; and 4) To achieve safe multi-task learning where no negative sharing

occurs. The findings of these studies are summarized as follows:

To achieve research objective 1, we propose an effective, efficient, and robust neural

architecture search method to design architecture by explicitly balancing the trade-

off among the performance, resource consumption, and robustness. We formulate the

objective function of the proposed method as a multi-objective bi-level optimization

problem and propose an efficient gradient-based algorithm to solve it.

To achieve research objective 2, we propose a new similarity measure and corre-

sponding alignment architecture search method to learn domain-alignment architecture

and domain-invariant feature representation. We further develop the first architecture

learning framework designed for the distance-based domain adaptation method.

To achieve research objective 3, we propose a compact architecture learning method

with good scalability to circumvent negative transfer in multi-task learning, which first

introduces purely-specific modules into the search space to mitigate the gradient conflict.

The proposed method automatically learns when to switch to purely-specific modules in

the tree-structured network architectures when the gradient conflict occurs.

To achieve research objective 4, we propose a safe multi-task learning model, which

learns how to combine the private encoder and public encoder for the downstream private

decoder. The proposed method mitigates negative sharing in multi-task learning and

153

CHAPTER 7. CONCLUSION AND FUTURE STUDY

improves the performance of all tasks compared with single task learning.

7.2 Future Study

This thesis identifies the following directions for future study:

• Multi-domain multi-task problem Existing multi-task learning methods mostly

focus on homogeneous-feature and heterogeneous-task problems [152], where

different tasks share the same input data but are of different types with respective

loss functions. The feature space is heterogeneous in multi-domain multi-task

problems, and each task has its own input data. Under this scenario, each task

requires its own feature extraction module, which complicates the design of multi-

task network architecture. We aim to propose an architecture search technique to

solve this challenge in future work.

• Adaptive architecture for continues learning In real-world applications of deep

learning, new tasks can arrive over time from a data stream. Continual learning

enables deep learning models to learn and adapt to new tasks over time without

forgetting previously learned knowledge. We are interested in extending the CoNAL

method to the continual learning setting and learning incremental architecture

for newly arrived tasks without mitigating the performance of previously learned

tasks.

• Multi-modal multi-task learning Real-world scenarios usually provide complemen-

tary information about the same group of tasks. Multi-modal multi-task learning

154

CHAPTER 7. CONCLUSION AND FUTURE STUDY

involves training a single model to perform multiple tasks using multiple input data

modalities. Multi-task learning methods can potentially train more efficient and

effective multi-modal models by sharing parameters and leveraging the knowledge

from multiple modalities.

155

BIBLIOGRAPHY

[1] R. ARDYWIBOWO, S. BOLUKI, X. GONG, Z. WANG, AND X. QIAN, NADS: neural
architecture distribution search for uncertainty awareness, in Proceedings of the

37th International Conference on Machine Learning, vol. 119, 2020, pp. 356–

366.

[2] P. L. BARTLETT AND S. MENDELSON, Rademacher and gaussian complexities:
Risk bounds and structural results, Journal of Machine Learning Research, 3

(2002), pp. 463–482.

[3] S. BEN-DAVID, J. BLITZER, K. CRAMMER, A. KULESZA, F. PEREIRA, AND J. W.

VAUGHAN, A theory of learning from different domains, Machine learning, 79

(2010), pp. 151–175.

[4] S. BEN-DAVID, J. BLITZER, K. CRAMMER, F. PEREIRA, ET AL., Analysis of repre-
sentations for domain adaptation, Advances in neural information processing

systems, 19 (2007), p. 137.

[5] H. BENMEZIANE, K. E. MAGHRAOUI, H. OUARNOUGHI, S. NIAR, M. WISTUBA,

AND N. WANG, A comprehensive survey on hardware-aware neural architecture
search, arXiv preprint arXiv:2101.09336, (2021).

[6] K. BI, L. XIE, X. CHEN, L. WEI, AND Q. TIAN, Gold-nas: Gradual, one-level,
differentiable, arXiv preprint arXiv:2007.03331, (2020).

[7] F. J. BRAGMAN, R. TANNO, S. OURSELIN, D. C. ALEXANDER, AND J. CARDOSO,

Stochastic filter groups for multi-task cnns: Learning specialist and generalist
convolution kernels, in Proceedings of the IEEE/CVF International Conference

on Computer Vision, 2019, pp. 1385–1394.

[8] D. BRUGGEMANN, M. KANAKIS, S. GEORGOULIS, AND L. V. GOOL, Automated
search for resource-efficient branched multi-task networks, in 31st British Ma-

156

BIBLIOGRAPHY

chine Vision Conference 2020, BMVC 2020, Virtual Event, UK, September

7-10, 2020, BMVA Press, 2020.

[9] D. BRÜGGEMANN, M. KANAKIS, A. OBUKHOV, S. GEORGOULIS, AND

L. VAN GOOL, Exploring relational context for multi-task dense prediction,

in Proceedings of the IEEE/CVF International Conference on Computer Vision,

2021, pp. 15869–15878.

[10] H. CAI, C. GAN, T. WANG, Z. ZHANG, AND S. HAN, Once-for-all: Train one network
and specialize it for efficient deployment, in Proceedings of the 8th International

Conference on Learning Representations, 2020.

[11] H. CAI, L. ZHU, AND S. HAN, Proxylessnas: Direct neural architecture search on
target task and hardware, in Proceedings of the 7th International Conference

on Learning Representations, 2019.

[12] J. CAO, Y. LI, AND Z. ZHANG, Partially shared multi-task convolutional neural
network with local constraint for face attribute learning, in Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 4290–

4299.

[13] R. CARUANA, Multitask learning, Machine Learning, 28 (1997), pp. 41–75.

[14] C. CHEN, Z. CHEN, B. JIANG, AND X. JIN, Joint domain alignment and dis-
criminative feature learning for unsupervised deep domain adaptation, in

Proceedings of the AAAI conference on artificial intelligence, vol. 33, 2019,

pp. 3296–3303.

[15] L.-C. CHEN, G. PAPANDREOU, I. KOKKINOS, K. MURPHY, AND A. L. YUILLE,

Deeplab: Semantic image segmentation with deep convolutional nets, atrous
convolution, and fully connected crfs, IEEE transactions on pattern analysis

and machine intelligence, 40 (2017), pp. 834–848.

[16] L.-C. CHEN, G. PAPANDREOU, F. SCHROFF, AND H. ADAM, Rethinking atrous
convolution for semantic image segmentation, arXiv preprint arXiv:1706.05587,

(2017).

[17] X. CHEN, L. XIE, J. WU, AND Q. TIAN, Progressive differentiable architecture
search: Bridging the depth gap between search and evaluation, in Proceedings of

the IEEE International Conference on Computer Vision, 2019, pp. 1294–1303.

157

BIBLIOGRAPHY

[18] Z. CHEN, V. BADRINARAYANAN, C.-Y. LEE, AND A. RABINOVICH, Gradnorm:
Gradient normalization for adaptive loss balancing in deep multitask networks,

in International Conference on Machine Learning, PMLR, 2018, pp. 794–803.

[19] Z. CHEN, J. NGIAM, Y. HUANG, T. LUONG, H. KRETZSCHMAR, Y. CHAI, AND

D. ANGUELOV, Just pick a sign: Optimizing deep multitask models with gra-
dient sign dropout, Advances in Neural Information Processing Systems, 33

(2020), pp. 2039–2050.

[20] S. CHENNUPATI, G. SISTU, S. YOGAMANI, AND S. A RAWASHDEH, Multinet++:
Multi-stream feature aggregation and geometric loss strategy for multi-task
learning, in Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition Workshops, 2019, pp. 0–0.

[21] M. CORDTS, M. OMRAN, S. RAMOS, T. REHFELD, M. ENZWEILER, R. BENENSON,

U. FRANKE, S. ROTH, AND B. SCHIELE, The cityscapes dataset for semantic
urban scene understanding, in Proceedings of the IEEE conference on computer

vision and pattern recognition, 2016, pp. 3213–3223.

[22] N. COURTY, R. FLAMARY, D. TUIA, AND A. RAKOTOMAMONJY, Optimal transport
for domain adaptation, IEEE transactions on pattern analysis and machine

intelligence, 39 (2016), pp. 1853–1865.

[23] C. CUI, Z. SHEN, J. HUANG, M. CHEN, M. XU, M. WANG, AND Y. YIN, Adaptive
feature aggregation in deep multi-task convolutional neural networks, IEEE

Transactions on Circuits and Systems for Video Technology, (2021).

[24] J. CUI, P. CHEN, R. LI, S. LIU, X. SHEN, AND J. JIA, Fast and practical neural
architecture search, in Proceedings of the IEEE International Conference on

Computer Vision, 2019, pp. 6509–6518.

[25] J. DENG, W. DONG, R. SOCHER, L.-J. LI, K. LI, AND L. FEI-FEI, Imagenet: A
large-scale hierarchical image database, in 2009 IEEE conference on computer

vision and pattern recognition, Ieee, 2009, pp. 248–255.

[26] L. M. DERY, Y. DAUPHIN, AND D. GRANGIER, Auxiliary task update decompo-
sition: The good, the bad and the neutral, arXiv preprint arXiv:2108.11346,

(2021).

158

BIBLIOGRAPHY

[27] J.-A. DÉSIDÉRI, Multiple-gradient descent algorithm (MGDA) for multiobjective
optimization, Comptes Rendus Mathematique, 350 (2012), pp. 313–318.

[28] C. DEVAGUPTAPU, D. AGARWAL, G. MITTAL, AND V. N. BALASUBRAMANIAN, On
adversarial robustness: A neural architecture search perspective, arXiv preprint

arXiv:2007.08428, (2020).

[29] J. DEVLIN, M.-W. CHANG, K. LEE, AND K. TOUTANOVA, Bert: Pre-training of
deep bidirectional transformers for language understanding, in Proceedings

of the 2019 Conference of the North American Chapter of the Association for

Computational Linguistics: Human Language Technologies, Volume 1 (Long

and Short Papers), 2019, pp. 4171–4186.

[30] J. DONAHUE, Y. JIA, O. VINYALS, J. HOFFMAN, N. ZHANG, E. TZENG, AND

T. DARRELL, Decaf: A deep convolutional activation feature for generic visual
recognition, in International conference on machine learning, PMLR, 2014,

pp. 647–655.

[31] Y. DU, W. M. CZARNECKI, S. M. JAYAKUMAR, M. FARAJTABAR, R. PASCANU, AND

B. LAKSHMINARAYANAN, Adapting auxiliary losses using gradient similarity,

arXiv preprint arXiv:1812.02224, (2018).

[32] T. ELSKEN, J. H. METZEN, AND F. HUTTER, Efficient multi-objective neural archi-
tecture search via lamarckian evolution, in Proceedings of the 7th International

Conference on Learning Representations, 2019.

[33] T. EVGENIOU AND M. PONTIL, Regularized multi–task learning, in Proceedings of

the tenth ACM SIGKDD international conference on Knowledge discovery and

data mining, 2004, pp. 109–117.

[34] C. FIFTY, E. AMID, Z. ZHAO, T. YU, R. ANIL, AND C. FINN, Efficiently identify-
ing task groupings for multi-task learning, Advances in Neural Information

Processing Systems, 34 (2021).

[35] L. FRANCESCHI, P. FRASCONI, S. SALZO, R. GRAZZI, AND M. PONTIL, Bilevel
programming for hyperparameter optimization and meta-learning, in Interna-

tional Conference on Machine Learning, PMLR, 2018, pp. 1568–1577.

159

BIBLIOGRAPHY

[36] Y. GANIN AND V. LEMPITSKY, Unsupervised domain adaptation by backpropaga-
tion, in International conference on machine learning, PMLR, 2015, pp. 1180–

1189.

[37] Y. GANIN, E. USTINOVA, H. AJAKAN, P. GERMAIN, H. LAROCHELLE, F. LAVIO-

LETTE, M. MARCHAND, AND V. LEMPITSKY, Domain-adversarial training of
neural networks, The journal of machine learning research, 17 (2016), pp. 2096–

2030.

[38] Y. GAO, H. BAI, Z. JIE, J. MA, K. JIA, AND W. LIU, MTL-NAS: task-agnostic
neural architecture search towards general-purpose multi-task learning, in 2020

IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR

2020, Seattle, WA, USA, June 13-19, 2020, Computer Vision Foundation / IEEE,

2020, pp. 11540–11549.

[39] Y. GAO, J. MA, M. ZHAO, W. LIU, AND A. L. YUILLE, Nddr-cnn: Layerwise feature
fusing in multi-task cnns by neural discriminative dimensionality reduction,

in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, 2019, pp. 3205–3214.

[40] G. GHIASI, T.-Y. LIN, AND Q. V. LE, Nas-fpn: Learning scalable feature pyramid
architecture for object detection, in Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, 2019, pp. 7036–7045.

[41] S. GREEN, C. M. VINEYARD, R. HELINSKI, AND Ç. K. KOÇ, RAPDARTS: resource-
aware progressive differentiable architecture search, in Proceedings of the

International Joint Conference on Neural Networks, 2020, pp. 1–7.

[42] L.-Z. GUO, Z.-Y. ZHANG, Y. JIANG, Y.-F. LI, AND Z.-H. ZHOU, Safe deep semi-
supervised learning for unseen-class unlabeled data, in ICML, 2020.

[43] M. GUO, Y. YANG, R. XU, Z. LIU, AND D. LIN, When NAS meets robustness: In
search of robust architectures against adversarial attacks, in Proceedings of the

IEEE International Conference on Computer Vision, 2020, pp. 628–637.

[44] P. GUO, C. DENG, L. XU, X. HUANG, AND Y. ZHANG, Deep multi-task augmented
feature learning via hierarchical graph neural network, in Joint European

Conference on Machine Learning and Knowledge Discovery in Databases,

Springer, 2021, pp. 538–553.

160

BIBLIOGRAPHY

[45] P. GUO, C. LEE, AND D. ULBRICHT, Learning to branch for multi-task learning,

in Proceedings of the 37th International Conference on Machine Learning,

ICML 2020, 13-18 July 2020, Virtual Event, vol. 119 of Proceedings of Machine

Learning Research, PMLR, 2020, pp. 3854–3863.

[46] P. GUO, C.-Y. LEE, AND D. ULBRICHT, Learning to branch for multi-task learning,

in International Conference on Machine Learning, PMLR, 2020, pp. 3854–3863.

[47] P. GUO, F. YE, AND Y. ZHANG, Safe multi-task learning, arXiv preprint

arXiv:2111.10601, (2021).

[48] T. HAARNOJA, A. ZHOU, P. ABBEEL, AND S. LEVINE, Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor, in Inter-

national conference on machine learning, PMLR, 2018, pp. 1861–1870.

[49] H. HAN, A. K. JAIN, F. WANG, S. SHAN, AND X. CHEN, Heterogeneous face at-
tribute estimation: A deep multi-task learning approach, IEEE TPAMI, (2017).

[50] K. HE, G. GKIOXARI, P. DOLLÁR, AND R. GIRSHICK, Mask r-cnn, in Proceedings

of the IEEE international conference on computer vision, 2017, pp. 2961–2969.

[51] K. HE, X. ZHANG, S. REN, AND J. SUN, Deep residual learning for image recogni-
tion, in Proceedings of the IEEE conference on computer vision and pattern

recognition, 2016, pp. 770–778.

[52] D. HENDRYCKS AND K. GIMPEL, A baseline for detecting misclassified and out-of-
distribution examples in neural networks, in Proceedings of the 5th Interna-

tional Conference on Learning Representations, 2017.

[53] J. HU, S. RUDER, A. SIDDHANT, G. NEUBIG, O. FIRAT, AND M. JOHNSON, Xtreme:
A massively multilingual multi-task benchmark for evaluating cross-lingual
generalisation, in International Conference on Machine Learning, PMLR, 2020,

pp. 4411–4421.

[54] S. HU, S. XIE, H. ZHENG, C. LIU, J. SHI, X. LIU, AND D. LIN, Dsnas: Direct
neural architecture search without parameter retraining, in Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020,

pp. 12084–12092.

161

BIBLIOGRAPHY

[55] G. HUANG, Z. LIU, L. VAN DER MAATEN, AND K. Q. WEINBERGER, Densely
connected convolutional networks, in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 2017, pp. 4700–4708.

[56] A. JAVALOY AND I. VALERA, Rotograd: Gradient homogenization in multitask
learning, in International Conference on Learning Representations, 2022.

[57] X. JIN, J. WANG, J. SLOCUM, M.-H. YANG, S. DAI, S. YAN, AND J. FENG, Rc-
darts: Resource constrained differentiable architecture search, arXiv preprint

arXiv:1912.12814, (2019).

[58] A. KENDALL, Y. GAL, AND R. CIPOLLA, Multi-task learning using uncertainty
to weigh losses for scene geometry and semantics, in Proceedings of the IEEE

conference on computer vision and pattern recognition, 2018, pp. 7482–7491.

[59] D. P. KINGMA AND J. BA, Adam: A method for stochastic optimization, in 3rd Inter-

national Conference on Learning Representations, ICLR 2015, San Diego, CA,

USA, May 7-9, 2015, Conference Track Proceedings, Y. Bengio and Y. LeCun,

eds., 2015.

[60] A. KRIZHEVSKY, G. HINTON, ET AL., Learning multiple layers of features from
tiny images, Technical Report TR-2009, (2009).

[61] A. KRIZHEVSKY, I. SUTSKEVER, AND G. E. HINTON, Imagenet classification with
deep convolutional neural networks, Advances in neural information processing

systems, 25 (2012), pp. 1097–1105.

[62] H. W. KUHN AND A. W. TUCKER, Nonlinear programming, in Traces and Emer-

gence of Nonlinear Programming, Springer, 2014, pp. 247–258.

[63] A. KUMAR AND H. DAUME III, Learning task grouping and overlap in multi-task
learning, arXiv preprint arXiv:1206.6417, (2012).

[64] A. KURAKIN, I. J. GOODFELLOW, AND S. BENGIO, Adversarial examples in the
physical world, in Proceedings of the 5th International Conference on Learning

Representations, 2017.

[65] M. LEDOUX AND M. TALAGRAND, Probability in Banach Spaces: isoperimetry and
processes, Springer Science & Business Media, 2013.

162

BIBLIOGRAPHY

[66] G. LEE, E. YANG, AND S. HWANG, Asymmetric multi-task learning based on task
relatedness and loss, in International conference on machine learning, PMLR,

2016, pp. 230–238.

[67] K. LEE, H. LEE, K. LEE, AND J. SHIN, Training confidence-calibrated classifiers
for detecting out-of-distribution samples, in Proceedings of the 6th International

Conference on Learning Representations, 2018.

[68] S. LI, C. LIU, Q. LIN, B. XIE, Z. DING, G. HUANG, AND J. TANG, Domain
conditioned adaptation network, in Proceedings of the AAAI Conference on

Artificial Intelligence, vol. 34, 2020, pp. 11386–11393.

[69] S. LI, M. XIE, K. GONG, C. H. LIU, Y. WANG, AND W. LI, Transferable semantic
augmentation for domain adaptation, in Proceedings of the IEEE/CVF Confer-

ence on Computer Vision and Pattern Recognition, 2021, pp. 11516–11525.

[70] Y.-F. LI, L.-Z. GUO, AND Z.-H. ZHOU, Towards safe weakly supervised learning,

IEEE TPAMI, (2019).

[71] Y.-F. LI AND Z.-H. ZHOU, Towards making unlabeled data never hurt, IEEE

TPAMI, (2014).

[72] J. Z. LIANG, E. MEYERSON, AND R. MIIKKULAINEN, Evolutionary architecture
search for deep multitask networks, in Proceedings of the Genetic and Evo-

lutionary Computation Conference, GECCO 2018, Kyoto, Japan, July 15-19,

2018, H. E. Aguirre and K. Takadama, eds., ACM, 2018, pp. 466–473.

[73] B. LIN, F. YE, AND Y. ZHANG, A closer look at loss weighting in multi-task learning,

arXiv preprint arXiv:2111.10603, (2021).

[74] A.-A. LIU, Y.-T. SU, W.-Z. NIE, AND M. KANKANHALLI, Hierarchical clustering
multi-task learning for joint human action grouping and recognition, IEEE

TPAMI, (2016).

[75] B. LIU, X. LIU, X. JIN, P. STONE, AND Q. LIU, Conflict-averse gradient descent
for multi-task learning, Advances in Neural Information Processing Systems,

34 (2021).

[76] C. LIU, B. ZOPH, M. NEUMANN, J. SHLENS, W. HUA, L.-J. LI, L. FEI-FEI,

A. YUILLE, J. HUANG, AND K. MURPHY, Progressive neural architecture

163

BIBLIOGRAPHY

search, in Proceedings of the European Conference on Computer Vision, 2018,

pp. 19–34.

[77] H. LIU, K. SIMONYAN, AND Y. YANG, DARTS: differentiable architecture search,

in 7th International Conference on Learning Representations, ICLR 2019, New

Orleans, LA, USA, May 6-9, 2019, OpenReview.net, 2019.

[78] J. LIU AND Y. JIN, Multi-objective search of robust neural architectures against
multiple types of adversarial attacks, arXiv preprint arXiv:2101.06507, (2021).

[79] L. LIU, Y. LI, Z. KUANG, J. XUE, Y. CHEN, W. YANG, Q. LIAO, AND W. ZHANG, To-
wards impartial multi-task learning, in International Conference on Learning

Representations, 2021.

[80] S. LIU, E. JOHNS, AND A. J. DAVISON, End-to-end multi-task learning with
attention, in Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, 2019, pp. 1871–1880.

[81] W. LIU, T. MEI, Y. ZHANG, C. CHE, AND J. LUO, Multi-task deep visual-semantic
embedding for video thumbnail selection, in Proceedings of IEEE Conference

on Computer Vision and Pattern Recognition, 2015, pp. 3707–3715.

[82] Z. LIU, P. LUO, X. WANG, AND X. TANG, Deep learning face attributes in the wild,

in Proceedings of the IEEE international conference on computer vision, 2015,

pp. 3730–3738.

[83] M. LONG, Z. CAO, J. WANG, AND M. I. JORDAN, Conditional adversarial domain
adaptation, Advances in neural information processing systems, 31 (2018).

[84] M. LONG AND J. WANG, Learning multiple tasks with deep relationship networks,

arXiv preprint arXiv:1506.02117, 2 (2015).

[85] M. LONG, J. WANG, G. DING, J. SUN, AND P. S. YU, Transfer feature learning
with joint distribution adaptation, in Proceedings of the IEEE international

conference on computer vision, 2013, pp. 2200–2207.

[86] M. LONG, H. ZHU, J. WANG, AND M. I. JORDAN, Unsupervised domain adaptation
with residual transfer networks, arXiv preprint arXiv:1602.04433, (2016).

[87] M. LONG, H. ZHU, J. WANG, AND M. I. JORDAN, Deep transfer learning with joint
adaptation networks, in Proceedings of the 34th International Conference on

164

BIBLIOGRAPHY

Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017,

D. Precup and Y. W. Teh, eds., vol. 70 of Proceedings of Machine Learning

Research, PMLR, 2017, pp. 2208–2217.

[88] I. LOSHCHILOV AND F. HUTTER, Decoupled weight decay regularization, in Inter-

national Conference on Learning Representations, 2018.

[89] Y. LU, A. KUMAR, S. ZHAI, Y. CHENG, T. JAVIDI, AND R. S. FERIS, Fully-
adaptive feature sharing in multi-task networks with applications in person
attribute classification, in 2017 IEEE Conference on Computer Vision and

Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017, IEEE

Computer Society, 2017, pp. 1131–1140.

[90] Z. LU, K. DEB, E. D. GOODMAN, W. BANZHAF, AND V. N. BODDETI, Nsganetv2:
Evolutionary multi-objective surrogate-assisted neural architecture search, in

Proceedings of the European Conference on Computer Vision, vol. 12346, 2020,

pp. 35–51.

[91] J. MA, Z. ZHAO, X. YI, J. CHEN, L. HONG, AND E. H. CHI, Modeling task relation-
ships in multi-task learning with multi-gate mixture-of-experts, in Proceedings

of the 24th ACM SIGKDD International Conference on Knowledge Discovery

& Data Mining, 2018, pp. 1930–1939.

[92] A. MADRY, A. MAKELOV, L. SCHMIDT, D. TSIPRAS, AND A. VLADU, Towards
deep learning models resistant to adversarial attacks, in Proceedings of the 6th

International Conference on Learning Representations, 2018.

[93] K. MANINIS, I. RADOSAVOVIC, AND I. KOKKINOS, Attentive single-tasking of
multiple tasks, in Proceedings of IEEE Conference on Computer Vision and

Pattern Recognition, 2019, pp. 1851–1860.

[94] A. MAURER, A chain rule for the expected suprema of gaussian processes, Theoreti-

cal Computer Science, 650 (2016), pp. 109–122.

[95] A. MAURER, M. PONTIL, AND B. ROMERA-PAREDES, The benefit of multitask
representation learning, Journal of Machine Learning Research, 17 (2016),

pp. 1–32.

165

BIBLIOGRAPHY

[96] J. MEI, Y. LI, X. LIAN, X. JIN, L. YANG, A. L. YUILLE, AND J. YANG, Atomnas:
Fine-grained end-to-end neural architecture search, in Proceedings of the 8th

International Conference on Learning Representations, 2020.

[97] I. MISRA, A. SHRIVASTAVA, A. GUPTA, AND M. HEBERT, Cross-stitch networks
for multi-task learning, in Proceedings of the IEEE conference on computer

vision and pattern recognition, 2016, pp. 3994–4003.

[98] M. MOHRI, A. ROSTAMIZADEH, AND A. TALWALKAR, Foundations of machine
learning, MIT press, 2018.

[99] R. MOTTAGHI, X. CHEN, X. LIU, N. CHO, S. LEE, S. FIDLER, R. URTASUN, AND

A. L. YUILLE, The role of context for object detection and semantic segmentation
in the wild, in Proceedings of IEEE Conference on Computer Vision and Pattern

Recognition, 2014, pp. 891–898.

[100] Y. NETZER, T. WANG, A. COATES, A. BISSACCO, B. WU, AND A. Y. NG, Reading
digits in natural images with unsupervised feature learning, Proceedings of the

24rd Advances in Neural Information Processing Systems, (2011).

[101] M. OQUAB, L. BOTTOU, I. LAPTEV, AND J. SIVIC, Learning and transferring mid-
level image representations using convolutional neural networks, in Proceedings

of the IEEE conference on computer vision and pattern recognition, 2014,

pp. 1717–1724.

[102] S. J. PAN AND Q. YANG, A survey on transfer learning, IEEE Transactions on

knowledge and data engineering, 22 (2009), pp. 1345–1359.

[103] L. PASCAL, P. MICHIARDI, X. BOST, B. HUET, AND M. A. ZULUAGA, Maximum
roaming multi-task learning, arXiv preprint arXiv:2006.09762, (2020).

[104] Z. PEI, Z. CAO, M. LONG, AND J. WANG, Multi-adversarial domain adaptation,

in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32, 2018.

[105] X. PENG, B. USMAN, N. KAUSHIK, J. HOFFMAN, D. WANG, AND

K. SAENKO, Visda: The visual domain adaptation challenge, arXiv preprint

arXiv:1710.06924, (2017).

[106] H. PHAM, M. GUAN, B. ZOPH, Q. LE, AND J. DEAN, Efficient neural architec-
ture search via parameters sharing, in International Conference on Machine

Learning, PMLR, 2018, pp. 4095–4104.

166

BIBLIOGRAPHY

[107] N. QIAN, On the momentum term in gradient descent learning algorithms, Neural

networks, 12 (1999), pp. 145–151.

[108] E. REAL, A. AGGARWAL, Y. HUANG, AND Q. V. LE, Regularized evolution for
image classifier architecture search, in Proceedings of the AAAI Conference on

Artificial Intelligence, vol. 33, 2019, pp. 4780–4789.

[109] S. REN, K. HE, R. GIRSHICK, AND J. SUN, Faster r-cnn: Towards real-time object
detection with region proposal networks, arXiv preprint arXiv:1506.01497,

(2015).

[110] L. ROBBIANO, M. R. U. RAHMAN, F. GALASSO, B. CAPUTO, AND F. M. CARLUCCI,

Adversarial branch architecture search for unsupervised domain adaptation,

arXiv preprint arXiv:2102.06679, (2021).

[111] C. ROSENBAUM, T. KLINGER, AND M. RIEMER, Routing networks: Adaptive
selection of non-linear functions for multi-task learning, in 6th International

Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada,

April 30 - May 3, 2018, Conference Track Proceedings, OpenReview.net, 2018.

[112] S. RUDER, An overview of multi-task learning in deep neural networks, arXiv

preprint arXiv:1706.05098, (2017).

[113] S. RUDER, J. BINGEL, I. AUGENSTEIN, AND A. SØGAARD, Latent multi-task
architecture learning, in Proceedings of the AAAI Conference on Artificial

Intelligence, vol. 33, 2019, pp. 4822–4829.

[114] K. SAENKO, B. KULIS, M. FRITZ, AND T. DARRELL, Adapting visual category
models to new domains, in European conference on computer vision, Springer,

2010, pp. 213–226.

[115] K. SAITO, K. WATANABE, Y. USHIKU, AND T. HARADA, Maximum classifier
discrepancy for unsupervised domain adaptation, in Proceedings of the IEEE

conference on computer vision and pattern recognition, 2018, pp. 3723–3732.

[116] N. SILBERMAN, D. HOIEM, P. KOHLI, AND R. FERGUS, Indoor segmentation
and support inference from rgbd images, in European conference on computer

vision, Springer, 2012, pp. 746–760.

[117] S. SODHANI, A. ZHANG, AND J. PINEAU, Multi-task reinforcement learning with
context-based representations, arXiv preprint arXiv:2102.06177, (2021).

167

BIBLIOGRAPHY

[118] T. STANDLEY, A. ZAMIR, D. CHEN, L. GUIBAS, J. MALIK, AND S. SAVARESE,

Which tasks should be learned together in multi-task learning?, in International

Conference on Machine Learning, PMLR, 2020, pp. 9120–9132.

[119] G. STREZOSKI, N. V. NOORD, AND M. WORRING, Many task learning with task
routing, in Proceedings of the IEEE/CVF International Conference on Com-

puter Vision, 2019, pp. 1375–1384.

[120] B. SUN, J. FENG, AND K. SAENKO, Return of frustratingly easy domain adaptation,

in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 30, 2016.

[121] B. SUN, J. FENG, AND K. SAENKO, Correlation alignment for unsupervised domain
adaptation, in Domain Adaptation in Computer Vision Applications, G. Csurka,

ed., Advances in Computer Vision and Pattern Recognition, Springer, 2017,

pp. 153–171.

[122] B. SUN AND K. SAENKO, Deep coral: Correlation alignment for deep domain adap-
tation, in European conference on computer vision, Springer, 2016, pp. 443–450.

[123] G. SUN, T. PROBST, D. P. PAUDEL, N. POPOVIĆ, M. KANAKIS, J. PATEL, D. DAI,

AND L. VAN GOOL, Task switching network for multi-task learning, in Pro-

ceedings of the IEEE/CVF International Conference on Computer Vision, 2021,

pp. 8291–8300.

[124] X. SUN, R. PANDA, R. FERIS, AND K. SAENKO, Adashare: Learning what to share
for efficient deep multi-task learning, in Proceedings of the 33rd Advances in

Neural Information Processing Systems, 2020.

[125] M. TAN, B. CHEN, R. PANG, V. VASUDEVAN, M. SANDLER, A. HOWARD, AND Q. V.

LE, MnasNet: Platform-aware neural architecture search for mobile, in Pro-

ceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

2019, pp. 2820–2828.

[126] H. TANG, J. LIU, M. ZHAO, AND X. GONG, Progressive layered extraction (ple):
A novel multi-task learning (mtl) model for personalized recommendations, in

Fourteenth ACM Conference on Recommender Systems, 2020, pp. 269–278.

[127] H. TANG AND Y. LIU, Deep safe incomplete multi-view clustering: Theorem and
algorithm, in ICML, 2022.

168

BIBLIOGRAPHY

[128] , Deep safe multi-view clustering: Reducing the risk of clustering performance
degradation caused by view increase, in CVPR, 2022.

[129] H. TAO, C. HOU, X. LIU, T. LIU, D. YI, AND J. ZHU, Reliable multi-view clustering,

in AAAI, 2018.

[130] A. TORRALBA AND A. A. EFROS, Unbiased look at dataset bias, in CVPR 2011,

IEEE, 2011, pp. 1521–1528.

[131] E. TZENG, J. HOFFMAN, K. SAENKO, AND T. DARRELL, Adversarial discriminative
domain adaptation, in Proceedings of the IEEE conference on computer vision

and pattern recognition, 2017, pp. 7167–7176.

[132] E. TZENG, J. HOFFMAN, N. ZHANG, K. SAENKO, AND T. DARRELL, Deep domain
confusion: Maximizing for domain invariance, arXiv preprint arXiv:1412.3474,

(2014).

[133] S. VANDENHENDE, S. GEORGOULIS, L. V. GOOL, AND B. D. BRABANDERE,

Branched multi-task networks: Deciding what layers to share, in 31st British

Machine Vision Conference 2020, BMVC 2020, Virtual Event, UK, September

7-10, 2020, BMVA Press, 2020.

[134] S. VANDENHENDE, S. GEORGOULIS, W. VAN GANSBEKE, M. PROESMANS, D. DAI,

AND L. VAN GOOL, Multi-task learning for dense prediction tasks: A survey,

IEEE Transactions on Pattern Analysis and Machine Intelligence, (2021).

[135] , Multi-task learning for dense prediction tasks: A survey, IEEE TPAMI, (2021).

[136] H. VENKATESWARA, J. EUSEBIO, S. CHAKRABORTY, AND S. PANCHANATHAN,

Deep hashing network for unsupervised domain adaptation, in Proceedings

of the IEEE conference on computer vision and pattern recognition, 2017,

pp. 5018–5027.

[137] J. WANG, Y. CHEN, W. FENG, H. YU, M. HUANG, AND Q. YANG, Transfer learn-
ing with dynamic distribution adaptation, ACM Transactions on Intelligent

Systems and Technology (TIST), 11 (2020), pp. 1–25.

[138] Z. WANG, Z. DAI, B. PÓCZOS, AND J. CARBONELL, Characterizing and avoiding
negative transfer, in Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, 2019, pp. 11293–11302.

169

BIBLIOGRAPHY

[139] Z. WANG, Y. TSVETKOV, O. FIRAT, AND Y. CAO, Gradient vaccine: Investigating
and improving multi-task optimization in massively multilingual models, in

International Conference on Learning Representations, 2020.

[140] R. J. WILLIAMS, Simple statistical gradient-following algorithms for connectionist
reinforcement learning, Machine learning, 8 (1992), pp. 229–256.

[141] T. WOLF, J. CHAUMOND, L. DEBUT, V. SANH, C. DELANGUE, A. MOI, P. CISTAC,

M. FUNTOWICZ, J. DAVISON, S. SHLEIFER, ET AL., Transformers: State-of-
the-art natural language processing, in Proceedings of the 2020 Conference on

Empirical Methods in Natural Language Processing: System Demonstrations,

2020, pp. 38–45.

[142] E. WONG, L. RICE, AND J. Z. KOLTER, Fast is better than free: Revisiting adver-
sarial training, in Proceedings of the 8th International Conference on Learning

Representations, 2020.

[143] Y. XU, L. XIE, X. ZHANG, X. CHEN, G.-J. QI, Q. TIAN, AND H. XIONG, Pc-
darts: Partial channel connections for memory-efficient architecture search, in

Proceedings of the 7th International Conference on Learning Representations,

2019.

[144] Q. YANG, Y. ZHANG, W. DAI, AND S. J. PAN, Transfer learning, Cambridge

University Press, 2020.

[145] R. YANG, H. XU, Y. WU, AND X. WANG, Multi-task reinforcement learning with
soft modularization, arXiv preprint arXiv:2003.13661, (2020).

[146] J. YOSINSKI, J. CLUNE, Y. BENGIO, AND H. LIPSON, How transferable are features
in deep neural networks?, arXiv preprint arXiv:1411.1792, (2014).

[147] T. YU, S. KUMAR, A. GUPTA, S. LEVINE, K. HAUSMAN, AND C. FINN, Gradient
surgery for multi-task learning, Advances in Neural Information Processing

Systems, 33 (2020).

[148] T. YU, D. QUILLEN, Z. HE, R. JULIAN, K. HAUSMAN, C. FINN, AND S. LEVINE,

Meta-world: A benchmark and evaluation for multi-task and meta reinforcement
learning, in Conference on Robot Learning, PMLR, 2020, pp. 1094–1100.

170

BIBLIOGRAPHY

[149] A. R. ZAMIR, A. SAX, W. SHEN, L. J. GUIBAS, J. MALIK, AND S. SAVARESE,

Taskonomy: Disentangling task transfer learning, in Proceedings of the IEEE

conference on computer vision and pattern recognition, 2018, pp. 3712–3722.

[150] W. ZELLINGER, T. GRUBINGER, E. LUGHOFER, T. NATSCHLÄGER, AND

S. SAMINGER-PLATZ, Central moment discrepancy (cmd) for domain-invariant
representation learning, arXiv preprint arXiv:1702.08811, (2017).

[151] W. ZHANG, W. OUYANG, W. LI, AND D. XU, Collaborative and adversarial network
for unsupervised domain adaptation, in Proceedings of the IEEE conference on

computer vision and pattern recognition, 2018, pp. 3801–3809.

[152] Y. ZHANG AND Q. YANG, A survey on multi-task learning, IEEE Transactions on

Knowledge and Data Engineering, 34 (2022), pp. 5586–5609.

[153] Y. ZHANG AND D.-Y. YEUNG, A convex formulation for learning task relationships
in multi-task learning, in Proceedings of the Twenty-Sixth Conference on

Uncertainty in Artificial Intelligence, 2010, pp. 733–742.

[154] , Multi-task warped gaussian process for personalized age estimation, in 2010

IEEE Computer Society Conference on Computer Vision and Pattern Recogni-

tion, 2010, pp. 2622–2629.

[155] Y. ZHANG, Y. ZHANG, AND W. WANG, Multi-task learning via generalized tensor
trace norm, in Proceedings of the 27th ACM SIGKDD Conference on Knowledge

Discovery & Data Mining, 2021, pp. 2254–2262.

[156] J. ZHAO, W. LV, B. DU, J. YE, L. SUN, AND G. XIONG, Deep multi-task learning
with flexible and compact architecture search, International Journal of Data

Science and Analytics, (2021), pp. 1–13.

[157] S. ZHAO, X. YUE, S. ZHANG, B. LI, H. ZHAO, B. WU, R. KRISHNA, J. E. GON-

ZALEZ, A. L. SANGIOVANNI-VINCENTELLI, S. A. SESHIA, ET AL., A review of
single-source deep unsupervised visual domain adaptation, IEEE Transactions

on Neural Networks and Learning Systems, (2020).

[158] F. ZHUANG, X. CHENG, P. LUO, S. J. PAN, AND Q. HE, Supervised representa-
tion learning: Transfer learning with deep autoencoders, in Twenty-Fourth

International Joint Conference on Artificial Intelligence, 2015.

171

BIBLIOGRAPHY

[159] B. ZOPH AND Q. V. LE, Neural architecture search with reinforcement learning,

arXiv preprint arXiv:1611.01578, (2016).

172

	List of Publications
	Abstract
	List of Figures
	List of Tables
	Introduction
	Background
	Motivation
	Research Questions and Objectives
	Research Contributions and Innovation
	Research Contributions
	Research Innovation

	Research Significance
	Thesis Organization

	Literature Review
	Neural Architecture Search
	One-shot NAS
	One-stage and two-stage NAS
	Multi-Objective NAS
	Limitations

	Domain Adaptation
	Discrepancy-based methods
	Adversarial-based methods
	Limitations

	Multi-task Learning
	Hard parameter sharing
	Soft parameter sharing
	Task routing
	Architecture learning
	Limitations

	Summary

	Effective, Efficient and Robust Neural Architecture Search
	Introduction
	The E2RNAS Method
	Preliminary
	Objective Functions for Robustness
	Objective Functions of Resource Constraints
	Multi-Objective Bi-Level Formulation

	Experiments
	Experimental Datasets
	Implementation Details
	Analysis on Experimental Results
	The Generalization of E2RNAS
	Ablation Study and Discussion

	Summary

	Learning Feature Alignment Architecture for Domain Adaptation
	Introduction
	Population Correlation
	The AASPC method
	Cell-based Search Space
	Searching Alignment Architecture

	Experiments
	Setup
	Results
	Ablation Study
	Effectiveness of Population Correlation
	Effectiveness of Alignment Architecture Search
	Hyper-parameter Sensitivity
	Complexity Analysis
	Learned Architecture
	Feature Visualization

	Summary

	Learning Conflict-Noticed Architecture for Multi-Task Learning
	Introduction
	The CoNAL Method
	Search Space
	Architecture Learning
	Retraining
	A Progressive Extension

	Experimental Setup
	Details of Datasets
	Implementation Details
	Evaluation Metrics

	Experiments
	Experiments on Multi-Task CV Benchmarks
	Combination and Comparison with Gradient Manipulation Methods
	Ablation Study
	Experiments on Multilingual Benchmark
	Experiments on Multi-Task RL
	Experiments for the CoNAL-Pro Method
	Experimental Results on PASCAL-Context and Taskonomy Datasets
	Effectiveness of the Architecture Learning Algorithm in CoNAL
	Comparison under Similar Model Capacities
	Analysis of Learned Architectures
	Experiments on Synthetic Datasets

	Summary

	Deep Safe Multi-Task Learning
	Introduction
	Related Work
	Definitions
	DSMTL
	The Architecture
	DSMTL-IL
	DSMTL-JL

	Analyses
	Preliminary
	Analysis on DSMTL-IL
	Analysis on DSMTL-JL

	Architecture Learning for DSMTL
	Experiments
	Datasets and Evaluation Metrics
	Experimental Setup
	Experimental Results
	Analysis on the Position of Gate
	Analysis on Learned Task Relevance
	Ablation Study
	Combination and Comparison with Loss Weighting Strategies

	Summary
	Proofs
	Generalization Bound for Problem (6.4)
	Proof of Theorem 6.5.1
	Proof of Theorem 6.5.2
	Proof of Theorem 6.5.3
	Proof of Theorem 6.5.4
	Proof of Theorem 6.5.5

	Conclusion and Future Study
	Conclusions
	Future Study

	Bibliography

