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ABSTRACT

Machine learning has been widely applied to handle big data. In real-world

applications, data are in the form of streams. Streaming data bring new challenges

to machine learning. Concept drift is a major problem in handling streaming data.

The newly arrived data have a different distribution from historical data. Hence,

machine learning models do not work on the newly arrived data. Many methods have

been proposed to detect whether concept drift occurs and to update the machine

learning models to the drift.

To date, the research on concept drift considers data streams separately. That

is, these methods handle data streams one by one, ignoring whether correlations

exist between data streams. However, in real-world applications, correlations be-

tween data streams are widespread. If the correlations between data streams were

available, this would support better decision making, rather than handling data

streams separately. There is currently no research on how to model the correlations

between data streams. Data streams are dynamic. Therefore, it is necessary to

develop methods to track the correlations between data streams and to adapt to

changes in correlations. In addition, after concept drift is detected, there is usually

insufficient data to train a new model, which can lead to the over-fitting problem.

How to deal with the over-fitting issue is still a challenge. Motivated by this, this

research proposes several methods to overcome the aforementioned challenges.

To alleviate the over-fitting problem, a concept drift adaptation method, Drift

Adaptation via Joint Distribution Alignment (DAJDA), is proposed. DAJDA per-

forms a linear transformation to the drift instances instead of modifying the model.

Instances are transformed into a common feature space, reducing the discrepancy of

distributions before and after drift. Using additional historical data to train a new

model can lead to better performance due to the increasing training set. Experi-

mental studies show that DAJDA has the ability to improve the performance of the

learning model under concept drift.
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To model the correlations between data streams, we propose a novel Multi-stream

Concept Drift Handling Framework via data sharing, containing fuzzy membership-

based drift detection (FMDD) and fuzzy membership-based drift adaptation (FMDA)

components, to train the new learning model for drifting streams by sharing weighted

data from other non-drifting streams. A stream fuzzy set is defined with member-

ship functions that measure the degree to which samples belong to a data stream.

Our Concept Drift Handling Framework can detect when and in which streams con-

cept drift occurs, and therefore, the over-fitting issue can be solved by adding the

weighted data from non-drifting streams to train new learning models. Synthetic

and real-world experiment results show that our method can help avoid the over-

fitting issue caused by a lack of data and thereby significantly improve the prediction

performance.

To track changes in correlations and adapt to correlation drift, we propose an

ensemble chain-structured model, Evolutionary Regressor Chains. To provide the

model with the ability to search the optimal order of the chain, we design a heuristic

order searching strategy to be incorporated as part of the model’s ongoing process.

The heuristic order searching strategy can also update the chains as time passes, to

track the dynamicity of the correlations. A diversity pruning method is also proposed

to reduce computation complexity while retaining the diversity of the ensemble. We

undertake a theoretical analysis, and give the dynamic regret bound of our method.

Our experiment results show that our Evolutionary Regressor Chains method can

track data stream correlations accurately. Chains can update themselves to adapt

to both concept drift and correlation drift. The performance of the machine learning

models on data streams is improved.

To learn meta knowledge across multiple data streams, a concept drift adaptation

strategy - Learning to Fast Adapt in the Evolving Environment - is proposed for

neural network classifiers in the non-stationary environment. A meta-level LSTM

recurrent neural network is used to learn a proper parameter updating rule instead

of updating methods that are traditional gradient descent-based (e.g. stochastic
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gradient descent) during fine-tuning. A suitable updating step will be generated

according to current loss and its gradient for the parameter of a neural network

classifier. Experiments on both synthetic and real-world data sets show that our

method can quickly adapt the neural network classifier to concept drift and help

improve the performance of the classifier in a dynamic environment.
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Nomenclature and Notation

X
(i)
t is the feature at time t of the ith stream.

y
(i)
t is the label at time t of the ith stream.

Si is the ith stream.

P (·) is the probability.

E(·) is the expect.
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