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ABSTRACT

Machine learning has been widely applied to handle big data. In real-world

applications, data are in the form of streams. Streaming data bring new challenges

to machine learning. Concept drift is a major problem in handling streaming data.

The newly arrived data have a different distribution from historical data. Hence,

machine learning models do not work on the newly arrived data. Many methods have

been proposed to detect whether concept drift occurs and to update the machine

learning models to the drift.

To date, the research on concept drift considers data streams separately. That

is, these methods handle data streams one by one, ignoring whether correlations

exist between data streams. However, in real-world applications, correlations be-

tween data streams are widespread. If the correlations between data streams were

available, this would support better decision making, rather than handling data

streams separately. There is currently no research on how to model the correlations

between data streams. Data streams are dynamic. Therefore, it is necessary to

develop methods to track the correlations between data streams and to adapt to

changes in correlations. In addition, after concept drift is detected, there is usually

insufficient data to train a new model, which can lead to the over-fitting problem.

How to deal with the over-fitting issue is still a challenge. Motivated by this, this

research proposes several methods to overcome the aforementioned challenges.

To alleviate the over-fitting problem, a concept drift adaptation method, Drift

Adaptation via Joint Distribution Alignment (DAJDA), is proposed. DAJDA per-

forms a linear transformation to the drift instances instead of modifying the model.

Instances are transformed into a common feature space, reducing the discrepancy of

distributions before and after drift. Using additional historical data to train a new

model can lead to better performance due to the increasing training set. Experi-

mental studies show that DAJDA has the ability to improve the performance of the

learning model under concept drift.
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To model the correlations between data streams, we propose a novel Multi-stream

Concept Drift Handling Framework via data sharing, containing fuzzy membership-

based drift detection (FMDD) and fuzzy membership-based drift adaptation (FMDA)

components, to train the new learning model for drifting streams by sharing weighted

data from other non-drifting streams. A stream fuzzy set is defined with member-

ship functions that measure the degree to which samples belong to a data stream.

Our Concept Drift Handling Framework can detect when and in which streams con-

cept drift occurs, and therefore, the over-fitting issue can be solved by adding the

weighted data from non-drifting streams to train new learning models. Synthetic

and real-world experiment results show that our method can help avoid the over-

fitting issue caused by a lack of data and thereby significantly improve the prediction

performance.

To track changes in correlations and adapt to correlation drift, we propose an

ensemble chain-structured model, Evolutionary Regressor Chains. To provide the

model with the ability to search the optimal order of the chain, we design a heuristic

order searching strategy to be incorporated as part of the model’s ongoing process.

The heuristic order searching strategy can also update the chains as time passes, to

track the dynamicity of the correlations. A diversity pruning method is also proposed

to reduce computation complexity while retaining the diversity of the ensemble. We

undertake a theoretical analysis, and give the dynamic regret bound of our method.

Our experiment results show that our Evolutionary Regressor Chains method can

track data stream correlations accurately. Chains can update themselves to adapt

to both concept drift and correlation drift. The performance of the machine learning

models on data streams is improved.

To learn meta knowledge across multiple data streams, a concept drift adaptation

strategy - Learning to Fast Adapt in the Evolving Environment - is proposed for

neural network classifiers in the non-stationary environment. A meta-level LSTM

recurrent neural network is used to learn a proper parameter updating rule instead

of updating methods that are traditional gradient descent-based (e.g. stochastic
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gradient descent) during fine-tuning. A suitable updating step will be generated

according to current loss and its gradient for the parameter of a neural network

classifier. Experiments on both synthetic and real-world data sets show that our

method can quickly adapt the neural network classifier to concept drift and help

improve the performance of the classifier in a dynamic environment.
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Chapter 1

Introduction

1.1 Background

It is witnessed that machine learning has achieved great success in handling big

data. Massive amounts of streaming data are generated by smart phones, social

networks, sensors, etc. Streaming data are different from other data, which are

generated in sequence. Data streams introduce new challenges for machine learning

models, including concept drift. Traditional machine learning algorithms are offline.

Once the models have been trained using the given historical data set, they do

not change after the training process ends. However, the world is dynamically

changing and streaming data are not always stationary. New data might have a

different distribution from historical data. Taking a recommender system as an

example, customer preferences change over time, depending on the availability of

alternatives, the inflation rate, and even personal emotions. It is impossible to

consider all these factors in machine learning models. New methods are needed to

recognize the patterns underlying these evolving streaming data. The phenomenon

where the distribution change over time in data streams was first defined as concept

drift in Widmer and Kubat (1996). Concept drift has been a major issue that

influences the behavior of real-world machine learning algorithms in a dynamic and

evolving environment. The phenomenon of concept drift is common in a number of

fields, such as computer or telecommunication systems, traffic monitoring, system

following personal interests, medical decision aiding, etc (Gama et al., 2014).

New challenges are introduced with the increased use of mobile devices and the
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rise of the Internet of Things (IoT). Multiple sensors and mobile devices generate

multiple data streams at the same time, known as multi-streams. The consequent

unavoidable, rapid change in environments inevitably results in changes in the un-

derlying data distribution in almost all data streams. These streams may be related.

For example, a large-scale forest is monitored in real time by multiple devices, e.g.

ground towers, unmanned aerial vehicles, and satellites. Multi-stream data is gen-

erated all the time. Each stream is composed of several channel signals. Significant

changes in device signals as a result of drift may be an indication of fire in the

monitored section, and the different sensitivities and the geographical relationships

of multiple devices may mean that fires have broken out either simultaneously or

sequentially. To quickly recognise drift in all devices and to generate early drift

warning before fires take hold would support timely decision making to reduce dam-

age to property and even save lives.

Most methods which handle concept drift in data streams follow a framework,

which is shown in Figure 1.1. To deal with concept drift problems in an evolving

environment, we first have to detect whether drift has occurred at all. Drift detection

is vitally important but not simple. On the one hand, detection algorithms are

supposed to be able to differentiate between concept drift and normal noise. On the

other hand, drift detection methods should be fast enough so that we can update

the model in a timely manner. Concept drift detection methods can be categorized

into three groups: error rate-based methods, data distribution-based methods and

multiple hypothesis test methods. Once drift has been detected, we have to update

our learning models to suit the changes to the incoming data, which is called concept

drift adaptation. Over the last few decades, several methods have been proposed to

handle learning adaptation under concept drift. Most methods reconstruct the whole

model when concept drift is detected. The whole model is eliminated and a new one

is established. However, global adaptation strategies are a waste of computation.
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Some methods leverage tree-based algorithms where each node separates the feature

space into several parts and each leaf node represents a hyper-rectangle in the feature

space. These methods identify the region where concept drift occurs and replace the

model only in the drift region. Though local adaptation methods have the flexibility

to adjust parts of rather than the whole model, they are restricted to a specific base

learner. Furthermore, the popular methodology of ensemble learning has been used

to address concept drift problems.

Figure 1.1 : Framework for handling concept drift

Although these methods have achieved great success in handling concept drift,

they can only be applied to single data streams. In real-world applications, data

streams exist concurrently. These methods handle streams separately. The corre-

lation between multiple data streams are ignored. Motivated by this, our research

aims to handle concept drift in a multi-stream scenario, tracking the correlation

between data streams and better adapting to concept drift using the correlation.

1.2 Research Questions and Objectives

In Section 1.1, we described the concept drift problem in data stream mining.

Motivated by the challenge of how to adapt machine learning models in a multi-

stream non-stationary environment, four research questions are posed. In this sec-

tion, we first list the four research questions that focus on the emergent problems

in machine learning under concept drift. Then, we identify the research objectives

corresponding to the research questions.
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1.2.1 Research Questions

This study seeks to answer the following four research questions (RQ):

RQ1: How to model the correlation between two data streams?

RQ2: How to model the correlation between multiple data streams?

RQ3: How to track changes to the correlation between multiple data streams?

RQ4: How to adapt a machine learning model according to the correlation between

multiple data streams?

1.2.2 Research Objectives

To answer these questions, we identified the following corresponding research

objectives (RO).

RO1: To develop a methodology to model the correlation between two

data streams. (to answer RQ1)

From a single stream to multi-streams, defining the correlation between data

streams is the first step of our research. The correlation between data streams need

to be investigated so it is possible to use knowledge from other data streams. Given

two data streams, it is obvious that they should be handled separately if there is

no correlation between them. Once the correlation is recognized, it is possible to

use knowledge from one data stream to help handle concept drift in the other data

stream. Therefore, how to model the correlation between two data streams is of

vital importance.
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RO2: To develop a network structure to model the correlation between

multiple data streams. (to answer RQ2)

If we have multiple data streams, knowing the correlation between each pair

of data streams is not enough. The correlation between each pair of data streams

should be maintained in a graph structure. The graph is fundamental to our re-

search. In the graph, each data stream is represented as a node. The edge of two

nodes indicates the correlation between the two respective data streams. An intu-

itive illustration of all correlation of each pair of data streams can be given in the

graph.

RO3: To develop an update strategy of the correlation graph between

multiple data streams. (to answer RQ3)

Data streams are unstable and the correlation between streams in real-world

scenarios is also unstable. The correlation between two data streams may disappear,

while isolated nodes in the correlation graph may be connected. If the correlation

become inaccurate, the corresponding drift adaptation consequences will start to

deteriorate. Therefore, the correlation graph should have the ability to adapt to

capture the new correlation.

RO4: To develop an adaption strategy for data streams using the cor-

relation between data streams. (to answer RQ4)

With RO1, RO2 and RO3, we can react to concept drift in one data stream

using information from other data streams. If concept drift occurs in one node of

the correlation graph, we can use information from the other connected nodes in

the graph to help drift adaptation. In particular, if recurrent drift occurs in one

data stream, i.e. an old concept reappears after a period of time when concept drift

occurs, the correlation can remind the other data stream to reuse the old model. In
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addition, since the two data streams are related, the newly arrived data of one data

stream may help to construct new models for the other data stream.

1.3 Research Significance

In this section, we explain the significance and innovation of this research from

the perspective of theory and application, based on the research contents.

1.3.1 Theoretical Significance

This research will make significant theoretical contributions to the concept drift

field by addressing a very challenging issue: how to learn the correlation between two

data streams. This is the fundamental component of this research. If this problem

can be solved, we can construct a correlation graph to maintain the correlation

between all data streams.

We also investigate how to react to concept drift using knowledge learnt from

other data streams. This will help concept drift adaptation in a situation where

newly arrived data do not have labels and will therefore save computation resources.

1.3.2 Practical Significance

In this research, we develop a correlation graph between multiple data streams.

Multi-stream data is common in the real world, such as sensor data or marketing

data. The correlation graph will help to quickly react to unavoidable drift in multiple

data streams and generate integrated decision support.

1.4 Research Contributions

The contributions of this research are summarized as follows:

• It proposes a novel concept drift adaptation method which can overcome the

insufficient training problem caused by scarce newly arrived data. We train
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the classifier on a latent feature space using knowledge learnt from historical

data to make predictions on the newly arrived data.

• It proposes a novel multi-stream Concept drift Handling Framework, which

considers the correlation between multiple data streams rather than handling

data streams separately.

– The advantage of the framework is that the parameters of the membership

functions are estimated using data from other streams. These data which

have different distributions help to reach higher concept drift detection

accuracy.

– A new drift detection method, FMDD, is designed to detect when and

in which streams concept drift occurs, dividing streams into drifting and

non-drifting streams at each time. The parameters of the fuzzy member-

ship functions are estimated using data from other data streams, which

lead to a remarkably high true positive rate.

– A new drift adaptation method, FMDA, is proposed using the correla-

tion of multiple data streams to train a new model after concept drift is

detected. By increasing the volume of training data, the over-fitting issue

due to a lack of data is alleviated.

• It proposes a chain-structured model, Evolutionary Regressor Chains, to track

the correlation among multiple data streams.

– We firstly take the correlation between more than two data streams into

account to improve the performance of the models in data stream regres-

sion, which has not been solved by existing research.

– To overcome the drawback that the randomly generated chain order can-

not track the correlation correctly, we design a heuristic order searching
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strategy. The method updates the order iteratively to find an optimal

order.

– We also design an online updating strategy to update the models in the

multi-stream regression scenario. This strategy can effectively adapt to

both concept drift and correlation drift.

– We propose a diversity pruning method to decrease the complexity of

our method while maximizing the diversity of the ensemble. It can also

increase the robustness of our method.

– We analyze some theoretical properties of our method and give its dy-

namic regret bound.

• It proposes a concept drift adaptation strategy for neural network classifiers

in the evolving environment. A parameter updating rule based on meta-level

LSTM recurrent neural network replaces traditional gradient descent-based

rules while rapidly adapting the classifier.

The publications related to this research are listed as follows:

Published

1. B. Zhang, J. Lu and G. Zhang, “Drift Adaptation via Joint Distribution

Alignment,” 2019 IEEE 14th International Conference on Intelligent Systems

and Knowledge Engineering (ISKE), pp. 498-504, 2019.

Under Review

2 B. Zhang, J. Lu, Y. Song, G. Zhang, “A Multi-stream Concept Drift Handling

Framework via Data Sharing,” IEEE Transactions on Cybernetics.

3 B. Zhang, J. Lu, G. Zhang, A. Liu, X. Yao, “Evolutionary Regressor Chains

for Multi-stream Regression,” IEEE Transactions on Cybernetics.
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4 B. Zhang, J. Lu, G. Zhang, “Learning to Fast Adapt in the Evolving Envi-

ronment,” Nurocomputing.

1.5 Thesis Organization

This thesis is organized as follows:

• Chapter 2: This chapter presents a literature review related to this research.

Current research can be divided into two categories: concept drift detection

and concept drift adaptation. In this chapter, concept drift detection methods

are reviewed first. Then we provide a survey about concept drift adaptation.

Finally, we review several related research areas, including transfer learning,

multi-output learning and meta learning.

• Chapter 3: This chapter proposes a concept drift adaptation method, Drift

Adaptation via Joint Distribution Alignment (DAJDA). The method performs

a linear transformation to the drift instances instead of modifying the model.

Instances are transformed into a common feature space, reducing the distri-

bution discrepancy before and after concept drift. Experimental studies show

that DAJDA has the ability to improve the performance of the learning model

under concept drift.

• Chapter 4: This chapter proposes a novel multi-stream Concept Drift Han-

dling Framework via data sharing. The framework contains fuzzy membership-

based drift detection (FMDD) and fuzzy membership-based drift adaptation

(FMDA) components, to train the new learning model for drifting streams by

sharing weighted data from other non-drifting streams. A stream fuzzy set is

defined with membership functions that measure the degree to which samples

belong to a data stream. Our Concept Drift Handling Framework can detect

when and in which streams concept drift occurs, and therefore, the over-fitting



10

issue can be solved by adding weighted data from non-drifting streams to train

new learning models. Synthetic and real-world experiment results show that

our method can help avoid the over-fitting issue caused by a lack of data and

thereby significantly improve the prediction performance.

• Chapter 5: This chapter reports on the development of an ensemble chain-

structured model, Evolutionary Regressor Chains, to track the correlation

among data streams. To provide the model with the ability to search for

the optimal order of the chain, we design a heuristic order searching strategy

to be incorporated as part of the model’s ongoing process. The heuristic or-

der searching strategy can also update the chains as time passes, to track the

dynamicity of the correlation. A diversity pruning method is also proposed

to reduce the computational complexity while retaining the diversity of the

ensemble. We undertake a theoretical analysis, and give the dynamic regret

bound of our method. Our experiment results show that our Evolutionary Re-

gressor Chains method can track data stream correlation accurately. Chains

can update themselves to adapt to both concept drift and correlation drift.

The performance of the machine learning models on data streams is improved.

• Chapter 6: In this chapter, a concept drift adaptation strategy - Learning

to Fast Adapt in the Evolving Environment (LFAEE) - is proposed for neural

network classifiers in the non-stationary environment. A meta-level LSTM

recurrent neural network is used to learn a proper parameter updating rule

instead of updating methods that are traditional gradient descent-based (e.g.

stochastic gradient descent) during fine-tuning. A suitable updating step is

generated according to current loss and its gradient for the parameter of a

neural network classifier. Experiments on both synthetic and real-world data

sets show that our method can quickly adapt the neural network classifier to
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concept drift and help to improve the performance of the classifier in a dynamic

environment.

• Chapter 7: A brief summary of the thesis contents and its contributions are

given in the final chapter. There is also a discussion about research issues for

further study.
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Figure 1.2 : The structure of the thesis.
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Chapter 2

Literature Review

This chapter presents a survey of literature related to this research. As shown in

Figure 1.1, Current literature focusing on concept drift can be divided into two

categories: concept drift detection and concept drift adaptation. In Section 2.1, we

give some setting and definitions. In Section 2.2, methods to detect concept drift

are reviewed. In Section 2.3, we give a review of previous concept drift adaptation

methods. Finally, other works related to this research are reviewed in Section 2.4,

including transfer learning, multi-output learning and meta learning.

2.1 Setting and Definitions

Data streams are non-stationary. Given a data stream S = {(X1, y1), (X2, y2), . . . ,

(Xt, yt), . . . }, concept drift refers to ∃t1, t2, such that the distributions

P (Xt1 , yt1) ̸= P (Xt2 , yt2).

The distribution of data has changed over time. Considering the conditional prob-

ability, we have

P (Xt, yt) = P (Xt)P (yt|Xt).

Therefore, two types of concept drift should be distinguished: real concept drift and

virtual concept drift Gama et al. (2014). The difference of two types of concept drift

is illustrated in Figure 2.1. The virtual concept drift refers to situations where only

the marginal probability P (Xt) changes. The real concept drift refers to situations

where the conditional probability P (yt|Xt) changes.
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Figure 2.1 : Illustration of two types of concept drift.

Figure 2.2 : Four patterns of changes in data distributions and outlier.

Changes in data distributions could be different. Four patterns of changes in

data distributions are given in Gama et al. (2014), which is shown in Figure 2.2.

The abrupt drift refers to that the change in data distribution is severe and rapid.

The incremental drift refers to that the change in data distribution is slight and lasts

for a period of time. The change in gradual drift is severe but data with changed

distribution coexistence with the old data in a period of time. The reoccuring

drift refers to the former distribution re-occurs after concept drift. It should be

distinguished that the outlier is not concept drift.
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2.2 Concept Drift Detection

Concept drift detection refers to the techniques and mechanisms to identify the

change points or change time intervals of the distribution of the data Basseville and

Nikiforov (1993). Next, we will introduce the famous algorithms of three kinds of

detection methods.

2.2.1 Detection Methods based on Error Rate

The idea of error rate-based detection algorithms is very simple. These methods

monitor the on-line error rate of the machine learning model and alarm once an

increase of error rate is proven to be statistically significant. The first error rate-

based algorithm, Drift Detection Method (DDM), was proposed in Gama et al.

(2004). DDM define a warning level and a drift level for the error rate. When new

instance is observed, if the error rate reaches the warning level, DDM will generate

a warning signal. The next incoming data will be stored in a time window. A new

model will be trained using data in the time window. If the error rate decreases

afterwards, this signal will be considered as a false alarm and the new model will be

discarded. If the error rate still increases and reaches the drift level, the new model

will replace the old one.

Some improved algorithms were proposed afterwards, such as Learning with Lo-

cal Drift Detection Gama and Castillo (2006), Early Drift Detection Method Baena-

Garcıa et al. (2006), Heoffding’s inequality based Drift Detection Method Fŕıas-

Blanco et al. (2015), Fuzzy Windowing Drift Detection Method Liu et al. (2017),

Dynamic Extreme Learning Machine Xu and Wang (2017), Dynamic Classifier Se-

lection Pinagé et al. (2020), etc.

Statistical Test of Equal Proportions Detection (STEPD), proposed in Nishida

and Yamauchi (2007), is another error rate-based drift detection algorithm. Different
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from DDM, STEPD compares incoming data with overall historical data using two

time windows. However, the size of time window is defined by the users. Different

sizes of time window may have different results. Bifet and Gavaldà (2007) developed

a mechanism, Adaptive Windowing (ADWIN), to determine the size of time window

adaptively. ADWIN does not require users to define the size of the time window. It

traverses all possible time window size and computes the optimal window size based

on the rate of change between two compared time windows.

STUDD Cerqueira et al. (2022) is proposed for the unsupervised setting. In

STUDD, a teacher-student learning paradigm is performed, and the mimicking loss

is monitored to detect whether concept drift occurs.

In addition, the robustness and efficacy of concept drift detection methods under

poisoning attacks are investigated in Korycki and Krawczyk (2022a). A robust

framework of concept drift detection is proposed and is evaluated under adversarial

and poisoning attacks.

2.2.2 Detection Methods based on Data Distribution

The second category of drift detection methods is data distribution based detec-

tion algorithms. The idea of data distribution based detection algorithms is quite

relevant to the two sample test problem. The two sample test is a classical problem

in statistic area. According to Gretton et al. (2006), two sample test refer to the

problem to determine that whether samples from two probability distributions are

from the same distribution actually. Data distribution based detection algorithms

deal with the same issue. Comparing the incoming data with the historical data, we

have to determine whether they are from the same distribution. If not, we say that

the concept has drifted. Data distribution based detection methods firstly define

a distance function to measure the distance between two distributions. Distance

functions used commonly include Chi-square distance, the Kullback-Leibler diver-
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gence, the Hellinger distance, the Kolmogorov-Smirnov distance, Maximum Mean

Discrepancy, etc Vayatis et al. (2009). Based on the distance function, a statistic

is constructed. If the divergence between two samples is proven to be statistically

significant, the concept drift is detected and the model need to be updated.

The first data distribution based detection algorithm was proposed in Kifer et al.

(2004). This paper measures the discrepancy of distributions by so called Relativized

Discrepancy. The distance of two distributions is defined as

d =

∫
|f1(X)− f2(x)|dx,

where f1 and f2 are the density functions of the two distributions. According

to Krawczyk et al. (2017), similar algorithms include Wald-Wolfowitz test, two-

sample Kolmogorov-Smirnov test, Wilcoxon rank sum test, two-sample t-test, etc.

Hellinger Distance Drift Detection Method Ditzler and Polikar (2011) uses his-

tograms to model the marginal distributions and compares the marginal distri-

butions of two groups of samples. Change Detection Test Bu et al. (2018) uses

RBF-networks to approximate the density functions. A fuzzy competence model is

used in Lu et al. (2014) to model the distributions. In Dasu et al. (2006), kdqTrees

are used to partion the feature space, then a Kullback-Leibler divergence is used

to test whether the two groups of data are different. Similar method is proposed

in Liu et al. (2018, 2021a), with a k-Means model to replace the kdqTrees. In Lobo

et al. (2021), a cellular automata is used to monitor the distribution of data. The

distribution is represented in the grid of the cellular automata. A paired student

test is used to test the distribution of two groups of samples in Wang et al. (2021).

In Hinder et al. (2020), a mathematical equivalence of the presence of concept drift

and the dependency of a specific random variable is given. Based on the distribu-

tion of the random variable, a non-parametric independence test is performed for

concept drift detection. Behavioral constraint templates are used in De Smedt et al.

(2020) to detect concept drift in sequence analysis. An unsupervised discriminative
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classifier Gözüaçık et al. (2019) is learned to discriminate whether the distribution

has changed. Based on how much modification of the models after updating, a novel

concept drift detection method is proposed in Yang et al. (2020). An adaptive mini-

max risk classifiers is proposed in Álvarez et al. (2022) for tracking multi-dimensional

change over time.

CNF Density Estimation test proposed in Dries and Rückert (2009) is another

data distribution based detection methods. Different from algorithms above, CNF

Density Estimation test map the data into a binary feature space. Every attribute

in the binary space only have two value, true and false. Each incoming instance is

also represented as a binary vector. A Mann-Whitney test is processed to determine

whether the difference between two samples is statistically significant. In Webb et al.

(2018), a new setting, concept drift mapping, is introduced. Several quantitative

concept drift mapping techniques are proposed for analysis of concept drift in data

streams.

Compared with error rate-based detection algorithms, detection algorithms based

on data distribution have its advantages and disadvantages. These algorithms ad-

dress the concept drift problem based on the data distribution itself. Hence they

are more accurate than error-based detection algorithms. However, error rate-based

detection algorithms focus only on the error rate, while data distribution based de-

tection algorithms need to calculate a new, complex statistic. As a consequence, the

latter has higher time complexity than the former. As we discussed in the Section

2.1.1, data distribution-based or error rate-based, this is also a trade-off between ac-

curacy and efficiency. In addition, it has been a problem in data distribution-based

algorithms that which data is supposed to be chosen as the new data and which to

be chosen as the historical data. In another word, how to construct the two samples

in the two-sample test problem is still an open question.
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2.2.3 Detection Methods based on Multiple Hypothesis Test

Multiple hypothesis test drift detection methods use similar techniques with

those mentioned in the above sections. The difference is that multiple hypothe-

sis test detection algorithms use multiple hypothesis tests to detect whether the

concept drift has occurred. These algorithms can be divided into two groups: par-

allel multiple hypothesis test algorithms and hierarchical multiple hypothesis test

algorithms.

The first parallel multiple hypothesis test algorithm, Just-In-Time adaptive clas-

sifier was proposed in Alippi and Roveri (2008). The authors gave four configura-

tions, the features extracted by Principle Component Analysis (PCA), PCA ex-

tracted features plus one generic component of the original features, drift in each

original feature and drift in all possible combinations of the feature space. Whether

the concept drift occur is determined by all the four configurations. A similar

algorithm is proposed in Wang and Abraham (2015). Linear Four Rate drift de-

tection. Zhang et al. (2017) detects the label drift, feature space drift and decision

boundary drift respectively based on Information value and Jaccard similarity.

Usually, the hierarchical multiple hypothesis test algorithms use an existing al-

gorithm to detect whether a drift occurs, called the detection layer. Then another

mechanism is developed to verify the detection process, called validation layer. Alippi

et al. (2017) proposed the first hierarchical multiple hypothesis test drift detection

algorithm, Hierarchical Change-Detection Trees. Existing drift detection algorithms

chosen in detection layer is supposed to have a low drift rate and low computational

cost. As we discussed above, error rate-based detection methods are competent.

Whether the validation layer is activated depends on the results returned by the de-

tection layer. Now that the accuracy is more import than efficiency in the validation

layer, data distribution-based algorithms have more advantages over error rate-based
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ones. The authors suggested two methods for validation layer: estimating the dis-

tribution of the test statistics by maximizing the likelihood or using an existing

algorithms such as the Kolmogorov-Smirnov test or Cramer-Von Mises test. Similar

algorithms include Two-Stage Multivariate Shift-Detection based on EWMA Raza

et al. (2015), Hierarchical Linear Four Rate Yu et al. (2019) and Request-and-

Reverify Yu et al. (2018). DriftSurf Tahmasbi et al. (2021) combine multiple drift

detection methods, and divide into two types, stable-state and reactive-state. Dif-

ferent states are applied with different strategies.

2.3 Concept Drift Adaptation

This section concentrates on the strategies of updating learning models according

to the drift.

2.3.1 Retraining Models

The most straightforward method to react to the concept drift is just to retrain

a new machine learning model with the new coming data. Once a drift signal has

been detected, a new model is supposed to be trained to replace the old models.

A window strategy is often utilized in these methods to preserve both the old data

and the new data for drift detection and models retraining. Paired Learners Bach

and Maloof (2008) followed this strategy and uses two learners, a stable learner for

predicting and a reactive learner. If a drift has been detected, the stable learner is

replaced by the reactive learner trained by the latest data. This method is simple and

easy to implement. However, Bach and Maloof (2008) did not give the answer that

how to determine the size of the window. A small size can reflect the information of

the latest data, while a large one provides more data for training a new model. A

popular window scheme approach is ADWIN Bifet and Gavaldà (2007). This paper

gives an adaptive method to determine the size of the window.



21

Instead of directly retraining the model, some methods integrate the detection

with the retraining process for some machine learning algorithms. DELM Xu and

Wang (2017) extends the traditional ELM algorithm to address the concept drift

by adaptively adjusting the number of the nodes of the hidden layer. When the

error rate increases significantly, more nodes are added to the hidden layer of the

network to improve the accuracy of the learning model. A parallel version of ELM-

based method Han et al. (2015) has been proposed to deal with the high speed

classification problems under concept drift.

Instance-based lazy learners for handling concept drift have also been investi-

gated. The Just-in-time adaptive classifier Alippi et al. (2017) removes the old

instance from the case base if a concept drift has been detected.

2.3.2 Adaptive Models

Rather than retraining the entire learner, adaptive models has abilities to par-

tially update themselves when the concept drift is detected. This kind of method

are more efficient when the drift occurs in only local region.

Numerous tree-based algorithms belong to this kind of adaptation methods be-

cause of the ability of tree model that could examine and adapt to each leaf node,

i.e. local region of the whole feature space, separately. Very Fast Decision Tree

classifier Domingos and Hulten (2000) uses Hoeffding bound to limit the number

of instances required for node splitting. This approach does not store instances in

memory and the cost of tree maintenance is very low. Hence VFDT is very popu-

lar. Hulten et al. (2001) extends the VFDT, develops a sliding window to maintain

the latest data. A sub-tree is trained based on the data in the sliding window. The

sub-tree will replace the nodes in the VFDT once the sub-tree outperforms its orig-

inal counterpart. VFDTc Gama et al. (2003) is another improved version of VFDT.

In VFDTc, when a drift is detected on a node, the node becomes a leaf node and its
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descending sub-tree is removed. In Losing et al. (2018), a local statistics is used to

predict the split time, rather than the global splitting scheme, which avoids unnec-

essary split-attempts. Usually, the global splitting scheme is of high computation

complexity. The enhanced VFDT shows advantage on run-time without a loss of pre-

diction performance. Another enhanced VFDT, Hoeffding Anytime Tree is proposed

in Manapragada et al. (2018). It shows significantly superior prequential accuracy

over the VFDT with only a small additional computation cost. Chordal Kernel

Decision Tree Krawczyk (2021) is proposed for tensor data stream. The Chordal

distance is used to calculate the similarities between tensors. A concept drift de-

tection method is proposed based on the tensor represention. ERulesD2S Cano and

Krawczyk (2019), a rule-based method, are proposed providing with more inter-

pretability. Like tree-based methods, new rules are generated to adapt to concept

drift.

Except for tree-based models, researchers proposed other adaptive models. KNN-

PAW Bifet et al. (2013) uses a probabilistic adaptive window to maintain both the

recent and older samples. SAM-kNN Losing et al. (2016) uses a long-term memory

to store historical data and a short-term memory to store rencent data. NEFCS Lu

et al. (2016) is a kNN-based adaptive model. NEFCS utilizes the output of the

competence model-based drift detection method to locate instances in the case base

that are affected by the concept drift, and a redundancy removal algorithm to remove

redundant instances in a uniform way. A drift region-based data sample filtering

method is propoed in Dong et al. (2022) to identify the region where concept drift

occurs, and update only parts of the models.

Two varieties of support vector Machines (SVM) are proposed in Gâlmeanu and

Andonie (2022); Yu et al. (2022a). The SVMs have ability to incrementally learn

from recent data to adapt to concept drift.
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In addition, the problem for learning discrete-time Markov chains under concept

drift is investigated in Roveri (2019). A framework containing both detection and

adaptation methods is proposed to address the problem.

Deep learning has achieved great success in various applications. The deep neu-

ral networks are updated by gradient descent-based optimization methods. It can

be extend to data stream setting to update themselves online. A pre-trained con-

volutional neural network is proposed in Soleymani and Paquet (2020), and the

parameters of the model is updated online to adapt to the concept drift. Then it

is preferred that to use a meta learner to accelerate the updating in Ryan et al.

(2019). A new online deep learning framework is proposed in Sahoo et al. (2018). A

novel hedge backpropagation method is used to adapt to concept drift and update

the parameters effectively. Other structure of deep models are also investigated to

adapt to concept drift, including recurrent neural networks Fekri et al. (2021) and

LSTM Yen et al. (2019). To avoid the high computation cost of updating the whole

deep models, some methods update only parts of the parameters. In Yang et al.

(2019); Kirkpatrick et al. (2017), a fisher information matrix is maintained to avoid

the catastrophic forgetting problem. In Disabato and Roveri (2019), a two-layer

hypothesis test is performed to test in which layer of the of the convolutional neural

network the concept drift occurs and update the layer only.

Besides updating parameters, some methods update the structure of the neural

networks to adapt to the concept drift. In Guo et al. (2021), a selective ensemble-

based online adaptive deep neural network is proposed, provided with adaptive

combination of shallow and deep features. In Rusu et al. (2016); Budiman et al.

(2016), new branches are added to networks when concept drift occurs. However,

this leads to high computational complexity. A Deep Evolving Denoising Autoen-

coder Ashfahani et al. (2020) has a flexible structure, where hidden units can be

deleted or added to adapt to concept drift. It is pointed out that the model show
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poor performance on unseen data. Thus it is assumed that the data follows the

Gaussian distribution. Situations where the assumption is relaxed by Autonomous

Gaussian Mixture Model are discussed in Pratama et al. (2019a,b). Some methods

even adjust the depth of the neural networks to adapt to the concept drift Ashfahani

and Pratama (2019); Pratama et al. (2020b). An overview of handling concept drift

in deep learning is given in Yuan et al. (2022).

Besides convention neural networks, a new generation of artificial neural network,

spiking neural network, is proposed. The spiking neural networks are considered

to have ability to easily and fast adapt to non-stationary environment. In Lobo

et al. (2018), Evolving Spiking Neural Networks are introduced for learning in non-

stationary data streams. An overview of applying spiking neural networks in online

learning is given in Lobo et al. (2020).

2.3.3 Adaptive Ensembles

Ensemble learning has received much attention in machine learning area in recent

years Gomes et al. (2017a). Ensemble methods comprise a set of base classifiers that

may have different types or different parameters. The output of each base classifier

is combined using certain voting rules to predict the newly arrived data. Many

adaptive ensemble methods have been developed that aim to deal with concept drift

by extending classical ensemble methods or by creating specific adaptive voting

rules.

Bagging, Boosting and Random Forests are classical ensemble methods used to

improve the performance of single classifiers. They have all been extended for han-

dling concept drift problems in streaming data. An online version of the bagging

method was first proposed in Oza and Russell (2001) which uses each instance only

once to simulate the batch mode bagging. In a later study Bifet et al. (2010a),

this method was combined with the ADWIN drift detection algorithm Bifet and
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Gavaldà (2007) to handle concept drift. When a concept drift is reported, the newly

proposed method, called Leveraging Bagging, trains a new classifier on the latest

data to replace the existing classifier with the worst performance. Similarly, an

adaptive boosting method was developed in Chu and Zaniolo (2004) which handles

concept drift by monitoring prediction accuracy using a hypothesis test, assuming

that classification errors on non-drifting data should follow Gaussian distribution.

In a recent work Gomes et al. (2017b), the Adaptive Random Forest (ARF) al-

gorithm was proposed, which extends the random forest algorithm with a concept

drift detection method, such as ADWIN Bifet and Gavaldà (2007), to decide when

to replace an old tree with a new one. A similar work can be found in Li et al.

(2015), which uses Hoeffding bound to distinguish concept drift from noise within

trees.

Besides extending classical methods, many new ensemble methods have been

developed to handle concept drift using novel voting techniques. Dynamic Weighted

Majority (DWM) Kolter and Maloof (2007) is such an ensemble method that is

capable of adapting to drifts with a simple set of weighted voting rules. It manages

base classifiers according to the performance of both the individual classifiers and

the global ensemble. If the ensemble misclassifies an instance, DWM will train a new

base classifier and add it to ensemble. If a base classifier misclassifies an instance,

DWM reduces its weight by a factor. When the weight of a base classifier drops

below a user defined threshold, DWM removes it from the ensemble. The drawback

of this method is that the adding classifier process may be triggered too frequently,

introducing performance issues on some occasions, such as when gradual drift occurs.

An Adaptive Chunk-based Dynamic Weighted Majority is proposed in Lu et al.

(2020) later. Different sizes of chunks are used for training to sovle the imbalanced

label problem. In order to deal with the imbalance problem, a very fast oversampling

strategy, VFC-SMOTE, is proposed in Bernardo and Della Valle (2021), and a novel
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Adaptive Rebalancing algorithm is proposed in Malialis et al. (2021). A well-known

ensemble method, Learn++.NSE Elwell and Polikar (2011), mitigates this issue by

weighting base classifiers according to their prediction error rate on the latest batch

of data. If the error rate of the youngest classifier exceeds 50%, a new classifier will be

trained based on the latest data. Learn++.NSE is a passive ensemble learning model

which does not identify when a drift occurs. It assumes that data are incrementally

received in batches. For each incoming data batch, this algorithm creates a new base

classifier, and then dynamically adjusts each existing classifier voting weight based

on its time-adjusted accuracy on the latest data batch. This method has several

other benefits: it can easily adopt almost any base classifier algorithm; it does not

store history data, only the latest batch of data, which it only uses once to train

a new classifier; and it can handle sudden drift, gradual drift, and recurrent drift

because underperforming classifiers can be reactivated or deactivated as needed by

adjusting their weights. In Kappa Updated Ensemble Cano and Krawczyk (2020),

A Kappa statistic is used for dynamic weighting the classifiers. The classifiers are

trained on different subset of features for higher diversity.

A patching strategy is proposed in Kauschke and Fürnkranz (2018). A new

classifier will be learned only on the region where the prediction performance is poor.

A novel repair algorithm is proposed in Halstead et al. (2022). The repair algorithm

detects the errors in concept drift adaptation and corrects them. The TORNADO

framework proposed in Pesaranghader et al. (2018) wraps not only classifiers, but

concept drift detectors into an ensemble. A CAR measure is introduced to select

best detector-classifier pair for predicting. An ensemble architecture is proposed

in Korycki and Krawczyk (2022b) for dealing with concept drift with sparse labeled

data. Diversity and Transfer-based Ensemble Learning Sun et al. (2018) maintains

ensemble of models according to not only performance but also diversity. Historical

data are reused via transfer learning. In Liu et al. (2021b), a new meausre of diversity
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is proposed to maintain the ensemble of classifiers. An active learning strategy is

proposed in Krawczyk and Cano (2019) in semi-supervised learning setting. Only

some models of the ensemble are accessed to label query. In Shan et al. (2019), the

threshold of label query change over time to fast adapt to the concept drift. Similar

methodology is performed in Pratama et al. (2020a), which reduces the complexity

of the ensemble while keeping the diversity. In Zhao et al. (2020), a model reuse

strategy is adopted to handle concept drift. In addition, the generalization error and

the regret bound are also given. A Robust Online Self-Adjusting Ensemble Cano

and Krawczyk (2022) is proposed to deal with the imbalance problem, by maintain

a sliding window for each class. In Zhang et al. (2022), a reinforcement model is

used for weighting the classifiers. A labeled data buffer is used to deal with the

imbalance problem. A drift-gradient is defined in Song et al. (2022) to measure the

increase of the distribution discrepancy. Then an adaptation method is proposed

with low delay.

A number of research efforts have been made that focus on developing ensem-

ble methods for handling concept drift of certain types. Accuracy Update Ensem-

ble Brzezinski and Stefanowski (2014) was proposed with an emphasis on handling

both sudden drift and gradual drift equally well. It is a batch mode weighted voting

ensemble method based on incremental base classifiers. By doing re-weighting, the

ensemble is able react quickly to sudden drift. All classifiers are also incrementally

trained with the latest data, which ensures that the ensemble evolves with grad-

ual drift. Two varieties of VIGO Nguyen et al. (2018) are proposed for abrupt and

gradual concept drift respectively. The Optimal Weights Adjustment method Zhang

et al. (2008) achieves the same goal by building ensembles using both weighted in-

stances and weighted classifiers for different concept drift types. Evolutionary al-

gorithms (Genetic Algorithm) are used in Ghomeshi et al. (2019) for adapting to

different types of concept drift. In Chiu and Minku (2022), the diversity of ensemble
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is used for dealing with different types of concept drift. A diversity ensemble can fast

adapt to different types of concept drift. A special case of concept drift is considered

in Sun et al. (2016), class evolution, the phenomenon of class emergence and disap-

pearance. Recurring concepts are handled in Gama and Kosina (2014) and Gomes

et al. (2014), which monitor concept information to decide when to reactivate pre-

viously stored obsolete models. Ahmadi and Kramer (2018) is another method that

handles recurring concepts by refining the concept pool to avoid redundancy.

2.4 Other Related Work

2.4.1 Transfer Learning

Transfer learning has been an attractive research field recent years. A detailed

review of transfer learning can be found in Pan and Yang (2010). The review

divided the existing transfer learning algorithms into four categories: transferring

knowledge of instances, transferring knowledge of feature representations, transfer-

ring knowledge of parameters and transferring relational knowledge. The feature-

representation methods constitute major competent of transfer learning. The idea

is to transfer data into a common space and training a common model. Thus, this

paper only focuses on the second type. Some methods embed distributions as points

in a Grassmann manifold, and generate a geodesic flow. This type of methods in-

clude Sampling Geodesic Flow Gopalan et al. (2011) and Geodesic Flow Kernel

Gong et al. (2012). Some methods minimize the discrepancy of the distributions.

Transfer Component Analysis (TCA) Pan et al. (2011) minimizes the distance of

marginal distribution. Joint Distribution Adaptation (JDA) Long et al. (2013) im-

proved the TCA and minimize both the marginal distribution and the conditional

distribution jointly. Similar methods include Transfer Subspace Learning (TSL) Si

et al. (2010) which replaces the Maximum Mean Discrepancy (MMD) by a Bregman

divergences-based discrepancy.
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Some methods reuse the data to train the models in target domain, which is

named instance-transfer methods. Although the data from source domain cannot

be used directly, parts of the data can be reused together with data in target domain.

In TrAdaBoost Dai et al. (2007b), it is assumed that the source and target data use

the same feature space, but the distributions are different. The data from source

domain are weighted to reduce the effect of the “bad” source data and increase the

effect of the “good” source data. Other instance-transfer methods include Liao et al.

(2005); Dai et al. (2007a); Jiang and Zhai (2007).

Parameter-transfer methods make an assumption that models of related domains

share the same parameters. Based on Gaussian Processes, MT-IVM Bonilla et al.

(2007) aims to learn the parameters from multiple tasks. It is assumed that the

prior distributions of Gaussian Processes of different tasks are the same. Other

parameter-transfer methods include Schwaighofer et al. (2004); Evgeniou and Pontil

(2004); Gao et al. (2008).

Relational-knowledge-transfer methods used prior knowledge to transfer across

domains. The knowledge transferred is called relationship. TAMAR Mihalkova

et al. (2007) assume that the source and target domains are related. A Markove

Logic Network learned from source domain is used for learning in the target domain.

Then two varieties Mihalkova and Mooney (2009); Davis and Domingos (2009) are

proposed.

2.4.2 Fuzzy Systems in Machine Learning

Fuzzy systems have been widely used in machine learning research Deng et al.

(2017); Lei et al. (2018, 2019, 2020). A small portion of information implies impre-

cision and vagueness. There exists clear correlation between the level of certainty

and the amount of information Lu et al. (2015). Therefore, fuzzy systems have been

applied in transfer learning research recently. In Behbood et al. (2011, 2013), a
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fuzzy similarity measure is used to measure the distance between source and target

domain. A survey of fuzzy systems in transfer learning is given in Lu et al. (2015).

Another area where fuzzy systems are used widely is clustering Song et al. (2020);

Yu et al. (2022b). Fuzzy clustering is clustering methods where samples belong to

two or more clusters. Because of its effectiveness and robustness, Fuzzy C-Means

(FCM) Bezdek (2013) has been one of the most popular clustering methods. Com-

pared with traditional nearest neighbors-based clustering methods, a sample belongs

to all clusters rather than only a single cluster. Membership is used to measure how

the sample belongs to the cluster. Some variants Zhou et al. (2021) are then devel-

oped to accelerate convergence or increase robustness. FRFCM proposed in Yang

and Nataliani (2018), handling the fuzzy clustering problem in the high dimensional

scenario using feature reduction. An ensemble fuzzy clustering method proposed

in Rathore et al. (2018), EFCA, is designed for high dimensional clustering prob-

lem. In Shirkhorshidi et al. (2021), a data pruning technique is introduced for

feature reduction in high dimensional fuzzy clustering. Besides FCM, new types of

fuzzy clustering, such as anchor-based methods Nie et al. (2022) are attracting more

attention recently.

2.4.3 Multi-Output Learning

Multi-output learning addresses the problem that the outputs of machine learn-

ing models are multiple. It can be divided into two categories according to tasks,

multi-label classification and multi-target regression. A survey of multi-output learn-

ing is given in Zhang and Zhou (2014).

The key point of the multi-output learning problem is to track the correlation be-

tween multiple outputs, which is similar to tracking the correlation between multiple

data streams. The idea of using a chain-structured model to track the correlation

is first proposed in Read et al. (2011), and is more commonly referred to as Clas-



31

sifier Chains. The chain structure is very simple but useful nevertheless. The first

label is predicted as per usual. Then the predicted label is used as a feature to

predict the second label, and so on. All labels are predicted in sequence like a chain.

Then two varieties, Probabilistic Classifier Chains Dembczyński et al. (2010) and

Bayesian Classifier Chains Zaragoza et al. (2011), are proposed. The predicting of

Classifier Chains is considered in a probabilistic and a Bayesian aspect respectively.

It is pointed out that the order of chains is important in Read et al. (2011), but the

solution to find a proper order is not given. It is suggested that using an ensemble

of multiple chains will avoid obtaining a poorly ordered chain. No research has since

focused on how to find the optimal order of the Classifier Chains.

As for the regression problem, the chain-structure method is adopted to address

the multi-target regression problem in Spyromitros-Xioufis et al. (2016), known

as the Regressor Chain. Notably, that both Probabilistic Classifier Chains and

Bayesian Classifier Chains are feasible because the number of labels is finite. It is

different from the regression problem because the target there is continuous. These

two methods cannot be adopted directly to the regression problem. In Spyromitros-

Xioufis et al. (2020); Read and Martino (2020), quantization strategies are used to

constrain the continuous target to discrete values to transfer the problem into a

discrete one.

2.4.4 Meta Learning

Another related research field is meta learning. In Schmidhuber (1987) it is

firstly studied whether or not neural networks have the ability to modify their pa-

rameters automatically, which is considered as the first use of the term, meta learn-

ing, in computer science literature. Another common term refer to meta learning is

“learning-to-learn” Thrun and Pratt (1998). Meta learning can be divided into three

categories: model-based methods, optimization-based methods and metric learning



32

methods. A comprehensive survey about meta learning is given in Hospedales et al.

(2022).

Optimization-based methods treat learning process as an optimization problem.

A meta learner is used to improve part of the optimization procedure. A state-of-the-

art example is Model-Agnostic Meta-Learning (MAML) Finn et al. (2017), using a

neural network to generate proper initial parameters for very limited data, such that

training from the generated parameters can converge quickly. Two improvement

works Li et al. (2017); Antoniou et al. (2019) are proposed to learn proper step

sizes, where a novelty parameter updating mechanism was proposed without using

gradient. A more comprehensive of MAML is investigated in Li and Malik (2017).

In Andrychowicz et al. (2016) a LSTM recurrent neural network is employed to

generate proper parameter updating steps in batch learning. Then it is extended

the application of this work to few shot learning problems in Ravi and Larochelle

(2017).

Model-based methods, also known as black box methods, aim to embed the

dataset into activation state with prediction for test data. Memory-augmented

model, such as Neural Turing Machine Graves et al. (2014) and MANN Santoro

et al. (2016) can rapidly encode new information, and make accurate predictions

using the information. Compared with optimization-based methods, model-based

methods have simple training procedure. However, model-based methods show poor

performance on unseen tasks, and are efficient only when the size of datasets is

small Finn and Levine (2018).

Metric learning methods refer to comparing the training points and the vali-

dation points and then predicting the matching training points. These methods

include Koch et al. (2015); Vinyals et al. (2016); Sung et al. (2018).

The idea of meta learning was first introduced in few shot research in Lake
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et al. (2016). A number of meta learning methods were proposed afterwards, in-

cluding Vinyals et al. (2016); Finn et al. (2017); Ravi and Larochelle (2017).

2.5 Summary

In summary, although lots of methods have been proposed to handling concept

drift in data streams, there are still the following research gaps exist in the previous

research:

1. After concept drift is detected, the data is insufficient to train a good enough

new model. Lots of methods are developed to solve the issue, but they are

limited to specific model such as trees Bifet and Gavaldà (2009), kNN Losing

et al. (2016) or ensemble models Sun et al. (2018). Few research concentrate

on the general strategy.

2. Current research consider data streams separately, ignoring the correlation

between multiple data streams. The correlation between data streams can

improve the performance of machine learning models. However, no research

focus on modeling the correlation between data streams.

3. Due to the dynamics of data streams, the correlation between data streams

can change over time. Previous methods to handle concept drift cannot well

tracking and handling the dynamic correlation between multiple data streams.

To fill the research gaps mentioned above, this research develop four methods. A

drift adaptation method is proposed, in which historical data are used to augment

the training set to train a better learning model. A fuzzy stream set is defined,

with a fuzzy membership function to measure the correlation between data streams.

The fuzzy membership is also used as weight of data to augment the training set to

alleviate the over-fitting issue. An ensemble of regressor chains is proposed to track
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the correlation between data streams and update itself to adapt to the correlation

drift. A meta learning method is proposed to learn meta knowledge when data

streams are absolutely different.
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Chapter 3

Drift Adaptation via Joint Distribution

Alignment

3.1 Introduction

Large-scale streaming data are generated as the development of the Internet.

Statistical learning methods have shown advantages in recognizing the pattern hid-

den behind the data, and been applied in variety of fields, including email filtering,

recommender systems, etc. Traditional statistical learning methods are under the

stationary distribution assumption. which is not established in data stream cases.

The distribution of the data changes by time, known as concept drift Widmer and

Kubat (1996).

In the last decades, lots of concept drift adaptation methods have been proposed.

A clear taxonomy of existing concept drift adaptation methods is given in Gama

et al. (2014). Most methods reconstruct the classifier when concept drift is detected.

However, drift only occurs in some regions rather than the whole feature space.

Global adaptation strategies are waste of computation. Some methods leverage

the property of tree-based algorithms that the feature space is separated as several

hyper-rectangle and each one is represented by a leaf node. These methods identify

the region where concept drift occurs and replace the classifier only in the drift

region. Though local adaptation methods have flexibility to adjust rather than

retrain the classifier, they are restricted to a specific base learner. You cannot have

your cake and eat it too.

To break the learner limits of current local drift adaptation method, we divert the
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focus from adjusting classifiers to transforming instances, and proposed a concept

drift adaptation method based on JDA Long et al. (2013), named Drift Adapta-

tion via Joint Distribution Alignment (DAJDA). JDA is well-known as an effective

transfer learning method. Transfer learning hope to improve the learning model in

a specific domain, which is usually noted as target domain, using the knowledge in

a related source domain Pan and Yang (2010). Concept drift adaptation can be

considered as to improve the learning model for newly arrived data using knowledge

learnt from historical data.

JDA trains a classifier based on instances of source domain firstly and generates

pseudo label on the instances of target domain. The discrepancy of different distri-

butions is measured by Maximum Mean Discrepancy (MMD) Gretton et al. (2006).

By jointly minimizing the MMD of both marginal distribution and conditional dis-

tribution, JDA gives the representation of instances from both domains in a new

latent feature space. Different from transfer learning, concept drift adaptation usu-

ally assumes that the real label of the instance can be obtained a few moment after

the prediction. As a consequence, DAJDA estimates the conditional distribution

using real label. DAJDA reacts to the drift by transforming the data rather than

modifying the model.

Our main contribution is to propose a novel concept drift adaptation method

which can overcome the insufficient training problem caused by scarce newly arrived

data. We train the classifier on a latent feature space using knowledge learnt from

historical data to help predict on the newly arrived data. The rest of the chapter

is organized as follows. In Section 3.2 we give a briefly reviews of concept drift

adaptation and transfer learning. In Section 3.3, the detail of our method is given.

In Section 3.4, we conducted several experiments to evaluate our approach. In

Section 3.5, we summarized our proposed method.
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3.2 Preliminaries

3.2.1 Maximum Mean Discrepancy

To measure the discrepancy of distributions of two groups of instances, MMD

is introduced. MMD embeds each distribution into a Reproducing Kernel Hilbert

Space. Let a linear transformation A be the kernel-induced map. Then we have the

empirical estimate of MMD between P (X) and P (Y),

dMMD = || 1
n1

n1∑
i=1

AXi −
1

n2

n2∑
j=1

AYj||2H

where || · ||H is the RKHS norm.

3.3 Proposed Method

We refer to the idea of the JDA to handle concept drift adaptation. We hope to

find a linear transformation matrix A ∈ Rk×k, such that though the distributions

have changed, i.e.

P (S(t1,t)) ̸= P (S(t+1,t2)).

the transformed data stream S̄(t1,t2) = (x̄(t1,t2), y(t1,t2)) , where x̄(t1,t2) = {Axt1 , Axt1+1,

. . . , Axt2} has the property that,

P (S̄(t1,t)) ≈ P (S̄(t+1,t2))

That is,

min
A

dMMS(P (S̄(t1,t)), P (S̄(t+1,t2))) (3.1)

Solving the optimization problem in Equation (3.1) directly is not trivial. According

to the definition of the conditional probability, P (S(t1,t2)) = P (x(t1,t2))P (y|x(t1,t2)).

We separate the marginal distribution discrepancy and conditional distribution dis-

crepancy. The optimization problem in Equation (3.1) is modified as follows,

min
A

dMMD(P (x̄(t1,t)), P (x̄(t+1,t2)))

+ dMMD(P (y|x̄(t1,t)), P (y|x̄(t+1,t2))).

(3.2)
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3.3.1 Marginal Distribution Discrepancy

Denote X = [xt1 ,xt1+1, . . . ,xt2 ], We calculate the marginal distribution discrep-

ancy firstly,

dMMD(P (x̄(t1,t)), P (x̄(t+1,t2)))

= || 1
n1

t∑
i=t1

Axi −
1

n2

t2∑
j=t+1

Axj||2

= tr
(
AXM0X

TAT
)

(3.3)

where n1 = t− t1 + 1, n2 = t2 − t, M0 can be calculated as follows

(M0)ij =


1
n2
1

if xi,xj ∈ x(t1,t),

1
n2
2

if xi,xj ∈ x(t+1,t2),

− 1
n1n2

otherwise.

(3.4)

3.3.2 Conditional Distribution Discrepancy

Note that in classification problems, all the labels is discrete. The empirical

estimate of MMD calculates the discrepancy of average kernel embedding of each

instance. However, the averaging discrete label does not make sense. In JDA,

P (x̄(t1,t2)|y) is used to replace P (y|x̄(t1,t2)) in Equation (3.2). We calculate condi-

tional distribution P (x̄(t1,t2)|y = c) for each label in {1, 2, . . . , C} and then add all the

class-conditional distribution discrepancies up as the total conditional distribution

discrepancy,

dMMD(P (x̄(t1,t)|y), P (x̄(t,t2)|y))

=
C∑
c=1

dMMD(P (x̄(t1,t)|y = c), P (x̄(t+1,t2)|y = c))

=
C∑
c=1

|| 1

n1,c

∑
xi∈S1,c

Axi −
1

n2,c

∑
xj∈S2,c

Axj||2

=
C∑
c=1

tr
(
AXMcX

TAT
)

= tr

(
AX

C∑
c=1

McX
TAT

)
,

(3.5)
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where S1,c = {xi : yi = c and t1 ≤ i ≤ t}, S2,c = {xj : yj = c and t + 1 ≤ j ≤ t2},

and n1,c = |S1,c|, n2,c = |S2,c| are the cardinals of S1,c, S2,c respectively. The elements

in MMD matrix Mc for c ∈ {1, 2, . . . , C} can be computed as follows

(Mc)ij =



1
n2
1,c

if xi,xj ∈ S1,c,

1
n2
2,c

if xi,xj ∈ S2,c,

− 1
n1,cn2,c

 if xi ∈ S1,c,xj ∈ S2,c

or xi ∈ S2,c,xj ∈ S1,c,

0 otherwise.

(3.6)

Incorporating Equations (3.3) and (3.5), we have the total distribution discrepancy

tr

(
AX

C∑
c=0

McX
TAT

)

and the matrix form of Equation (3.2) is,

min
A

tr

(
AX

C∑
c=0

McX
TAT

)
+ λ||A||2F (3.7)

Note that a regularization term ||A||2F is added in Equation (3.7), where λ controls

the impact of the regularization term.

3.3.3 Preserve Data Variance

However, only minimizing the distribution discrepancy is not enough. SEA Mov-

ing Hyperplane Concepts (SEA) Street and Kim (2001) is a widely used synthetic

dataset in concept drift area. Instances in SEA have three features x1, x2 and x3.

The label is determined by an inequality

ax1 + bx2 ≤ θ,

where a, b, θ are parameters. The third feature x3 is a noisy feature and obeys

uniform distribution. When concept drift occurs, i.e. some parameters changed, to

reduce the discrepancy of distributions, the linear transformation matrix might give
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the third feature higher weight. An extreme case is that if

A =


0 0 1

0 0 1

0 0 1


we have

P (D̄(t1,t)) = P (D̄(t,t2)).

Instances before and after drift have the same distribution after transformed, but

we lose all the information.

Hence, while minimizing the distribution discrepancy, the properties of data

that contain the classification information have to been preserved. Both TCA and

JDA adopt the idea of Principal Component Analysis (PCA) to maximize the data

variance. Let the centering matrix H = I − 1
n
1, where I is the identity matrix, 1

is matrix of ones, and n is the quantity of samples. Now we have the covariance

matrix AXHXTAT . The aim of PCA is to maximize the variance,

max
A

tr
(
AXHXTAT

)
(3.8)

We adopt the same optimization aim, to minimize the Equation (3.7) while preserve

Equation (3.8) as much as possible. Generalized Rayleigh quotient theory shows

that minimizing Equation (3.7) while maximizing Equation (3.8) is equivalent to

the problem that minimizes Equation (3.7) with Equation (3.8) fixed. Now we have

the final form of the optimization problem,

min
A

tr
(
AX

∑C
c=0 McX

TAT
)
+ λ||A||2F

s.t. AXHXTAT = I
(3.9)
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3.3.4 Learning Algorithm

In this section, we state the procedure of DAJDA. Denote Φ ∈ Rk×k as the

Lagrange multiplier matrix, where

Φ =



ϕ1 0 · · · 0

0 ϕ2 · · · 0

...
...

. . .
...

0 0 · · · ϕk


.

Then we have the Lagrange function

L(A,Φ) = tr

(
A

(
X

C∑
c=0

McX
T + λI

)
AT

)

+ tr
((
I − AXHXTAT

)
Φ
)
.

The optimization problem with an equality constraint in Equation (3.9) is converted

into an unconstrained optimization problem

min
A,Φ

tr

(
A

(
X

C∑
c=0

McX
T + λI

)
AT

)

+ tr
((
I − AXHXTAT

)
Φ
)
.

(3.10)

To find the local minimum of L, let ∂L
∂A

= 0, and we have

A

(
X

C∑
c=0

McX
T + λI

)
= ΦAXHXT . (3.11)

Equation (3.11) shows that the proper linear transformation matrix A consists of

the left generalized eigenvectors of (X
∑C

c=0 McX
T , XHXT ). Thus, we can find the

matrix A via applying generalized eigendecomposition to Equation (3.11).

To handle concept drift adaptation problem in data stream, we adopt a fixed-

size window technique. Two fixed-size windows are maintained in our algorithm. A

window, denoted as W1 holds historical instances and another window, denoted as

W2 holds newly arrived instances. When new instance comes, the instance is added
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into W2 until W2 is full. Then a linear transformation matrix A is learned by solving

the generalized eigendecomposition problem in Equation (3.11). Both historical

instance and new instances are transformed into a latent feature space. The labels

of newly coming instances can be predicted via the knowledge learned from historical

instance. The procedure of the DAJDA is summarized in Algorithm 1.
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Algorithm 1 Drift Adaptation via Joint Distribution Alignment

Input: Training dataset D(0,t), Data stream X(t+1,∞), window size m,

regularization parameter λ

Output: Labels y(t+1,∞) of data stream X(t+1,∞)

1: Train a base learner based on D(0,t)

2: Predict the label ŷi of the new arrived instance xi

3: Initial window W1 = D(0,t), add the newly arrived instance xi in window W2

after the true label yi is obtained

4: while the size of W2 reach m do

5: Initial X as the the combine of instances in windows W1 and W2

6: Initial the MMD matrix M0 and {Mc}Cc=1 by Equations (3.4) and (3.6)

7: Solve Equation (3.11) to construct the transformation matrix A

8: Train a new model based on the transformed data Z = AX

9: Let W1 = W2 and W2 be empty

10: Transform the newly coming instance zj = Axj and predict the label ŷjby the

new model

11: Add the newly arrived instance xj in window W2 after the true label yj is

obtained

12: end while
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3.4 Experimental Study

We conducted several experimental studies to evaluate our method. We firstly

verified the effectiveness of DAJDA. Then the performance is evaluated on some

widely used real-world datasets.

3.4.1 Verification of the Effectiveness

To verify the effectiveness of DAJDA, we generate some synthetic data stream,

and two strategies are conducted as the baseline:

• Baseline 1: The model trained from training set is used all the time.

• Baseline 2: Retrain the model in every time window.

To investigate the effectiveness of DAJDA, three types of synthetic data streams are

gendered. Several types of synthetic data streams have been used in the previous

research. Data streams used in this chapter is described as follows.

SEA

SEA was introduced firstly in Street and Kim (2001). Each instance has three

features, x1, x2, and x3, all of which obey Uniform distribution from 0 to 10. The

label is determined by

y =

 1 if ax1 + bx2 ≤ θ,

0 otherwise,

where a, b, θ are parameters.

ROT

ROT is introduced in Brzezinski and Stefanowski (2014) to simulate the concept

drift in which the decision boundary is rotated. Each instance has two features,
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x1 and x2. ROT rotates the instance to simulate the decision boundary rotation.

Each instance is rotated a certain angle

x = (x− a) cos θ − (y − b) sin θ + a,

y = (x− a) cos θ + (y − b) sin θ + b,

where a, b, θ are parameters.

CIR

CIR is introduced in Gama et al. (2004) to generate the concept drift in which the

decision boundary is a sphere in the feature space. Considering the 2-dimensional

case, each instance has two features, x1 and x2. The label is given by

y =

 1 if (x1 − a)2 + (x2 − b)2 ≤ θ,

0 otherwise,

where a, b, θ are parameters.

In our simulation, some parameters are fixed and others are changed to simulate

the concept drift. For SEA, we fixed a = b = 1 and changed θ every 1000 instances to

simulate the movement of the decision boundary. For ROT, we fixed a = b = 0 and

changed θ every 1000 instances to simulate the rotation of the decision boundary.

For CIR, we fixed the radius of the ball θ and changed the center of the ball (a, b)

every 1000 instances. The statistics of generated synthetic data stream are shown

in Table 3.1. The value of parameters which have been changed to simulate concept

drift are shown in Table 3.2.

We set the window size m = 20 and the regularization parameter λ = 1. And

naive Bayes classifier is chosen as the base model. The experiment results are listed

in Table 3.3. The results show that DAJDA performed steadily and obtained highest

score for all metrics on all data stream except the precision score on data stream
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Table 3.1 : Synthetic Data Streams to Evaluate DAJDA

Data Stream #Example #Feature #Label

SEA1 10000 3 2

SEA2 10000 3 2

ROT1 10000 2 2

ROT2 10000 2 2

CIR1 10000 2 2

CIR2 10000 2 2

Table 3.2 : Parameters of the Synthetic Data Streams to Evaluate DAJDA

Stream Value of Drift Parameters

SEA1 10 → 5 → 13 → 5 → 11 → 12 → 14 → 14 → 8 → 7

SEA2 10 → 12 → 9 → 14 → 14 → 14 → 12 → 11 → 9 → 9

ROT1 0.78 → 1.06 → 1.38 → 1.49 → 1.80 → 1.93 → 2.14

→ 2.13 → 2.41 → 2.32

ROT2 0.78 → 1.04 → 1.22 → 1.26 → 1.18 → 1.41 → 1.42

→ 1.71 → 1.78 → 1.87

CIR1 (0, 0) → (−1.03, 0.01) → (1.18, 0.49) → (1.81,−2.08)

→ (1.85,−4.21) → (1.47,−3.78) → (1.47,−2.20)

→ (0.64,−3.08) → (3.38,−1.14) → (3.92,−2.01)

CIR2 (0, 0) → (−0.02, 0.63) → (−0.17, 1.75) → (2.12, 2.93)

→ (3.36, 2.09) → (3.26, 1.83) → (3.64, 3.02)

→ (3.76, 2.80) → (5.13, 1.90) → (6.10, 1.51)



47

SEA2 and CIR2. It can be concluded that DAJDA has abilities to improve the

performance of learning model under concept drift.

3.4.2 Evaluation on Real-world Datasets

In this section, we evaluated our proposed method in some real-world datasets.

Three real-world datasets are included. The statistics of three datasets are shown

in Table 3.4.

Several state-of-the-art concept drift methods are compared with DAJDA in

the experiment: Drift Detection Method (DDM) Gama et al. (2004), EWMA for

Concept Drift Detection (ECDD) Ross et al. (2012), Hoeffding’s inequality based

Drift Detection Method (HDDM) Fŕıas-Blanco et al. (2015) and Heoffding Adaptive

Tree (HAT) Bifet and Gavaldà (2009). All the algorithms are implemented in MOA

framework Bifet et al. (2010b). For the sake of fairness, tree models are adopted as

base learner for DDM, ECDD, HDDM and DAJDA. According to the experimental

results, the window sizem in DAJDA is set as 1000 and the regularization parameter

λ is set as 1. The experiment results are listed in Table 3.6 and the average rank

of performance on all datasets is listed in Table 3.5. Experiment results show that

DAJDA has advantages over other methods on datasets Covertype Blackard (1998)

and Weather Elwell and Polikar (2011). HAT obtained the highest scores on dataset

Electricity Harries (1999). However, Table 3.5 shows that DAJDA has the best

performance considering all three datasets and all metrics. We can conclude that

DAJDA improve the precision significantly.
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Table 3.3 : Experiment Results of Verification of the Effectiveness of DAJDA

Metrics Stream baseline 1 baseline 2 DAJDA

Accuracy

SEA1 0.7356 0.8739 0.9079

SEA2 0.8133 0.8518 0.9074

ROT1 0.5643 0.8800 0.9232

ROT2 0.6674 0.8997 0.9222

CIR1 0.9078 0.9310 0.9431

CIR2 0.8990 0.9372 0.9466

F1 score

SEA1 0.7313 0.8742 0.9082

SEA2 0.7852 0.7945 0.8746

ROT1 0.5680 0.8806 0.9236

ROT2 0.6713 0.9003 0.9225

CIR1 0.9512 0.9632 0.9699

CIR2 0.9462 0.9672 0.9719

Precision

SEA1 0.7187 0.8689 0.9037

SEA2 0.8974 0.7539 0.8495

ROT1 0.5688 0.8791 0.9221

ROT2 0.6774 0.9038 0.9233

CIR1 0.9767 0.9966 0.9971

CIR2 0.9598 0.9983 0.9969

Recall

SEA1 0.7443 0.8796 0.9128

SEA2 0.6979 0.8398 0.9014

ROT1 0.5672 0.8822 0.9252

ROT2 0.6652 0.8968 0.9217

CIR1 0.9269 0.9329 0.9442

CIR2 0.9331 0.9379 0.9481
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Table 3.4 : Real-world Data Streams to Evaluate DAJDA

Data Stream #Example #Feature #Label

Covertype 581012 54 7

Electricity 45312 8 2

Weather 18159 8 2

Table 3.5 : Average Rank of DAJDA on All Three Datasets

Method Accuracy F1 score Precision Recall

DAJDA 1.67 2 2 1.33

DDM 2.67 3 2.67 4

ECDD 6 6 6 6

HDDM-A 4.67 4.33 3.33 5

HDDM-W 3.67 4 4 5

HAT 2 1.67 2 2.67
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Table 3.6 : Experiment Results of Evaluation of DAJDA on Real-world Dataset

Dataset Method Accuracy F1 score Precision Recall

Covertype

DAJDA 0.8457 0.6286 0.6424 0.6181

DDM 0.5974 0.4473 0.5106 0.3983

ECDD 0.5321 0.3811 0.4305 0.3427

HDDM-A 0.6068 0.4574 0.5290 0.4030

HDDM-W 0.6403 0.4580 0.5251 0.4062

HAT 0.7887 0.6381 0.6341 0.6040

Electricity

DAJDA 0.6860 0.6790 0.6786 0.6793

DDM 0.6727 0.6837 0.6822 0.6082

ECDD 0.4784 0.5105 0.5069 0.5014

HDDM-A 0.6228 0.6401 0.6407 0.6036

HDDM-W 0.6600 0.6624 0.6684 0.6051

HAT 0.7557 0.7502 0.7484 0.7051

Weather

DAJDA 0.7255 0.6826 0.6816 0.6836

DDM 0.7435 0.6710 0.6900 0.6054

ECDD 0.6434 0.5936 0.5908 0.5094

HDDM-A 0.6846 0.6540 0.6448 0.6064

HDDM-W 0.7033 0.6431 0.6445 0.6049

HAT 0.7160 0.6665 0.6654 0.6068
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3.5 Summary

In this chapter, a concept drift adaptation method, Drift Adaptation via Joint

Distribution Alignment (DAJDA), is proposed. The method transforms the data

into common feature space. The Maximum Mean Discrepancy (MMD) is used to

measure the distance of two groups of data on both marginal distribution discrepancy

and conditional distribution discrepancy. The transform should satisfy minimum

MMD of two groups of data after transformation. To preserve the classification

information, the data variance is retained. The optimization problem is solved by

generalized eigendecomposition. In addition, the proposed method is model-free.

Experimental studies show that DAJDA has the ability to improve the performance

of learning model in evolving environment.
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Chapter 4

A Multi-stream Concept Drift Handling

Framework via Data Sharing

4.1 Introduction

Concept drift, a phenomenon where data distribution changes over time, is one

of the key challenges in data stream mining research Lu et al. (2019). When concept

drift occurs, the model trained with previous data cannot make accurate prediction

for the current case. For example, in a recommender system, a car advertisement

could be a good recommendation when the user wants to buy a car, but a bad one

after the user has bought a car. Formally, concept drift is defined as ∃t1, t2, such that

P (Xt1 , yt1) ̸= P (Xt2 , yt2). An offline learning model cannot obtain steady accuracy

when applied to predict a data stream with concept drift Gama et al. (2014).

Currently, most methods handling concept drift follow a fixed paradigm as

shown in Figure 4.1. Once concept drift is detected, the learning model will be

updated. Many concept drift adaptation methods are developed in the previous

literature Gama et al. (2014); Lu et al. (2019). Most methods proposed focus on

updating part of the model to adapt to concept drift quickly, rather than updat-

ing the whole model. Therefore, these methods have advantages in that they can

save computation resources. But these methods are all limited to being applied to

one specific type of learning model, such as decision tree models Bifet and Gavaldà

(2009), kNN-based models Losing et al. (2016) and gradient descend-based meth-

ods Ng et al. (2017). It is difficult for these methods to be migrated to other learning

models. The most general strategy to handle concept drift is re-training, which is a
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Figure 4.1 : The paradigm of handling concept drift for single data stream. After new

data arrives, the learning model gives its prediction. The true label is then available.

A concept drift detection procedure is conducted to detect whether concept drift

occurs. If yes, a concept drift adaptation method is used to update the old learning

model.

.

default option in lots of concept drift detection research Fŕıas-Blanco et al. (2015);

Liu et al. (2021a). That is to train a new learning model after concept drift is

detected, which can be applied to all learning models.

A drawback of the re-training schema in Figure 4.1 is that it suffers from the over-

fitting problem. Namely, a learned model will be over-fitted on the local pattern due

to a limited amount of new data. This is because when concept drift is detected, data

before drift should not be used for learning models intuitively, considering the data

distribution has changed. In the recommender system example, recommendation of

the same product to the same user can change to a complete opposite before and

after concept drift occurs. If only using the newly arrived data after drift which is of

a limited amount to re-train the model, the new model usually has pool performance.

According to the PAC learnable theory Valiant (1984), the generalization error has
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a negative correlation to the sample size. Usually, there exists bias between the

distributions of samples and population. In addition, the noise of samples cannot

be ignored when the size of sample is small. When the learned model is over-fitted on

a local pattern, the performance of the learned model deteriorates when predicting

labels due to the bias and noise.

To fix the over-fitting issue, using data from other data streams can be a solution.

So far, the design and testing of most concept drift methods are conducted in a

single stream scenario Song et al. (2021). However, practical applications often

handle massive and correlated data streams. For example, Harris et al. Harries

(1999) recorded the electricity price in both NSW and VIC in Australia, which has

become a widely used dataset in concept drift research. The price trend is shown in

Figure 4.2, where there is a significant correlation between the changing in prices.

When concept drift is detected in one data stream, similar concept drift might have

occurred in another correlated data stream a while ago, which means that data from

these correlated data streams can reflect the new concept of the data after concept

drift. But few research works leverage the information of the correlation between

data streams to address the concept drift problem.

To alleviate the over-fitting problem when re-training the models, a stream fuzzy

set is defined, and based on this stream fuzzy set, we develop a Multi-stream Concept

Drift Handling Framework in this work. The developed framework contains a fuzzy

membership-based Drift Detection (FMDD) component and a fuzzy membership-

based Drift Adaptation (FMDA) component. Rather than handling data streams

separately, the method is designed to also consider the correlation between streams in

the multi-stream scenario. For each newly arrived batch of data, we first compute the

fuzzy membership in the stream fuzzy set to present the correlation between streams.

After that, FMDD uses the computed fuzzy membership to determine whether one

data stream is a drifting stream. After separating streams into non-drifting and
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Figure 4.2 : Electricity price trend of NSW and VIC. The change in price in the two

states shows a significant correlation. Negative data exist because the data set has

been normalized

.

drifting streams, FMDA re-trains models for drifting streams by adding training

samples from non-drifting streams. While, the models for non-drifting streams stay

the same.

The defined stream fuzzy set measures how a sample belongs to a data stream.

A large membership of a sample from stream A belonging to stream B means that

these two data streams are highly correlated. FMDD identifies concept drift by

comparing the membership of historical data with the membership of newly arrived

data. If the membership of a newly arrived sample to the stream that this sample

is from decreases significantly, meaning that this sample does not belong to this

stream anymore, concept drift occurs in this stream. This is because if drift does

not occurs, i.e., the data distribution does not change, the newly arrived sample

should still belong to the stream that this sample is from. A Mann-Whitey U Rank

Test Mann and Whitney (1947) is used in FMDD to test whether the membership



56

is significantly decreased. Given the non-drifting and drifting streams, FMDA en-

larges the training data to re-train models for the drifting streams by using samples

from both drifting and non-drifting streams. The non-drifting streams samples are

weighted by the fuzzy membership. A larger membership means a larger weight.

Though the distributions of these data are not completely the same, the new learning

model can benefit from the proper weights.

From this, our contributions are summarized as follows:

• A novel multi-stream Concept drift Handling Framework is proposed which

considers the correlation between multiple data streams rather than handling

data streams separately. The advantage of the framework is that, the parame-

ters of the membership functions are estimated using data from other streams.

These data which have different distribution help to reach higher concept drift

detection accuracy.

• A new drift detection method, FMDD is designed to detect when and in which

streams concept drift occurs, dividing streams into drifting and non-drifting

streams at each time. The parameters of fuzzy membership functions are

estimated using data from other data streams, which lead to a remarkable

high true pasitive rate.

• A new drift adaptation method, FMDA is proposed, using the correlation of

multiple data streams to train a new model after concept drift is detected.

By increasing the volume of training data, the over-fitting issue due to lack of

data is alleviated.

• Experimental studies are conducted on both synthetic and real-world data

sets, which show that when the batch size is small, i.e., the learners suffer

from the over-fitting issue, our framework can successfully alleviate the issue

and significantly improve prediction accuracy.
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The rest of this chapter is organized as follows. In Section 4.2, we present an

overview of related work. Section 4.3 demonstrates the details of our proposed

method. In Section 4.4, we conduct an experimental study to evaluate our method.

Our conclusions are presented in Section 4.5.

4.2 Proposed Method

In this section, we provide the details of our method. We give the problem setting

in Section 4.2.1. The basic assumptions of this chapter are listed in Section 4.2.2. In

Section 4.2.3, we define the stream fuzzy set. Then FMDD and FMDA are proposed

in Section 4.2.4 and Section 4.2.5 respectively.

4.2.1 Problem Settings

We preface our discussion of concept drift, with a formal definition of data

streams.

Definition 1 (Data Stream). A data stream S = {(X1, y1), (X2, y2), . . . ,

(Xt, yt), . . . } is a real-time, dynamic and infinite data sequence, where (Xt, yt) is an

instance at time t, Xt ∈ X is the feature and yt ∈ Y is the target variable to be

predicted.

Then we have the first problem.

Problem 1. Given m data streams S = {Si}mi=1, where Si = {(X(i)
1 , y

(i)
1 ), (X

(i)
2 , y

(i)
2 ),

. . . , (X
(i)
t , y

(i)
t ), . . . }. How do we recognize the correlation between data streams S

automatically?

Concept drift refers to the phenomenon where the distribution of data changes

in the data streams over time Gama et al. (2014). Next, we re-state the formal

definition of concept drift.
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Definition 2 (Concept Drift). Concept drift occurs if ∃t1, t2, such that the distri-

butions

P (Xt1 , yt1) ̸= P (Xt2 , yt2).

We mark the distribution of data before the concept drift as the old distribution,

and the distribution of data after the concept drift as the new distribution. Now we

have the second problem.

Problem 2. Given m data streams S = {Si}mi=1, where Si = {(X(i)
1 , y

(i)
1 ), (X

(i)
2 , y

(i)
2 ),

. . . , (X
(i)
t , y

(i)
t ), . . . }, a concept drift is detected at time t on Si. Only few data

{(X(i)
s , y

(i)
s ), . . . , (X

(i)
t , y

(i)
t )} are marked as data from the new distribution. Lack of

data can lead to an over-fitting issue when re-training a new learning model. Based

on the correlation recognized in Problem 1, how is it possible to solve the over-fitting

issue using data from correlated data streams?

4.2.2 Basic Assumptions

In this work, we make two assumptions:

• We assume that the data arrive batch after batch. If the data arrive one by

one, we wait until the data constitute a batch. Samples of the ith stream

{(X(i)
tj−1+1, y

(i)
tj−1+1), . . . , (X

(i)
tj , y

(i)
tj )} arrive at the same time. The size of the

batch tj − tj−1 remains the same in the stream.

• We assume that the true label is available soon after predictions are made, such

that the drift detection method can identify whether concept drift occurs.

4.2.3 Stream Fuzzy Set

In this section, we define the stream fuzzy sets. To measure the degree of any

data sample belonging to a data stream, an intuitive method is to use distance, such

as MMD Gretton et al. (2006), which measures the distance between distributions
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of two groups of samples. However, the drawback of these methods is the high

computation complexity, which is not suitable for a data stream mining scenario.

Therefore, in this work, to measure the degree of how sample X
(i)
t belongs to stream

Sj, the membership is calculated based on the performance of the learning model,

thereby simplifying the computation. If it produces a good prediction when using

the learning model of Sj to predict X
(i)
t , the degree of that X

(i)
t belongs to stream

Sj should be large.

For Stream Si, and a new batch of data of Stream Si′ , {X(i′)
tj−1+1, . . . , X

(i′)
tj } arrive

at time tj. The learning model of Stream Si makes its predictions {ŷ(i,i
′)

tj−1+1, . . . , ŷ
(i,i′)
tj }.

After the true labels {y(i
′)

tj−1+1, . . . , y
(i′)
tj } are available, the prediction error is obtained.

The type of error depends on tasks, such as mean squared error for regression tasks,

L(i,i′)
tj =

1

tj − tj−1

tj∑
τ=tj−1

(
y(i)τ − ŷ(i,i

′)
τ

)2
.

Then we define the stream fuzzy set.

Definition 3 (Stream Fuzzy Set). Mi = {X , fi} is a stream fuzzy set of stream Si,

where fi : X → [0, 1] is its membership function. The membership function of a

stream fuzzy set is defined as,

fi(X
(i′)
t ) = fM(L(i,i′)

t ; θi),

where fM : R → [0, 1] is monotonically decreasing function, and θi is its parameters.

For X
(i)
t of Stream Si, the prediction error L(i,i)

t should be small if there is no

concept drift occurring. Therefore, its membership calculated by fi(X
(i)
t ) is large.

This is intuitive because X
(i)
t is from Stream i. For X

(i′)
t of Stream Si′ , if the

distribution of Si′ is different from that of Stream Si, the prediction error using

learning model of Stream Si to predict samples of Stream Si′ should be large, which
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leads to a small membership. Conversely, if the distribution of Si′ is similar with

that of Stream Si, the membership calculated by fi(X
(i′)
t ) should be large.

However, we do not know the correlation between data streams in advance.

To estimate the parameters θi of fi, we assume that the distribution of sample

from other data streams is different. Therefore the empirical estimated membership

function fi should satisfy that, fi(X
(j)
t ) is closed to 1 if i = j, and fi(X

(j)
t ) is closed

to 0 if i ̸= j. Therefore, we have the membership function’s parameter estimation

algorithm. Let {X(i)
tj−1+1, . . . , X

(i)
tj } be a batch of Stream Si. Let {X(i′)

tj−1+1, . . . , X
(i′)
tj }

be a batch of data randomly sampled from other data streams. The parameters of

fi are solutions of the following optimization problem,

θi = argmin
θ

tj∑
τ=tj−1

(fi(X
i
τ )− 1)2 +

tj∑
τ=tj−1

(fi(X
i′

τ )− 0)2 (4.1)

The parameter estimation algorithm using gradient descent is summarized in Algo-

rithm 2.

4.2.4 Fuzzy Membership-based Drift Detection Method

In this section, we state our proposed method FMDD. Let {X(i)
tj−2+1, . . . , X

(i)
tj−1

}

be a historical batch of stream Si. Their membership is denoted as C
(i)
tj−1

. Let

{X(i)
tj−1+1, . . . , X

(i)
tj } be a newly arrived batch of streams Si. Their membership is

denoted as C
(i)
tj . If C

(i)
tj is significantly smaller than C

(i)
tj−1

, it is alerted that concept

drift occurs. This is because C
(i)
tj is smaller than C

(i)
tj−1

, means that L(i,i)
tj is larger

than L(i,i)
tj−1

. The increasing prediction error implies the distribution of newly arrived

samples has changed, and the learning model needs to be updated.

A Mann-Whitney U Rank Test Mann and Whitney (1947) is performed to detect

whether there are significant differences between C
(i)
tj−1

and C
(i)
tj . The U statistic is

defined as

U =

tj−1∑
τ1=tj−2+1

tj∑
τ2=tj−1+1

µ(C(i)
τ1
, C(i)

τ2
), (4.2)
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Algorithm 2 Parameter Estimation using Gradient descent

Input: batch of data {X(i)
tj−1+1, . . . , X

(i)
tj } and {X(i′)

tj−1+1, . . . , X
(i′)
tj }

Parameter: learning rate α, iteration number T , terminating bound ϵ

Output: parameter θi

1: Initialize θi randomly.

2: for t = 1 to T do

3: Let J =
∑tj

τ=tj−1
(fi(X

i
τ )− 1)2 + (fi(X

i′
τ )− 0)2

4: G = ∂J
∂θi

5: if G < ϵ then

6: Break

7: end if

8: Update θi = θ − αG

9: end for

10: return θi

where

µ(x, y) =


1 if x > y

0.5 if x = y

0 if x < y

The U statistic’s distribution approximates to Normal distribution. Whether the

null hypothesis is rejected or not depends on the p value.

The fuzzy membership-based Drift Detection Method is summarized in Algo-

rithm 3.

4.2.5 Fuzzy Membership-based Drift Adaptation Method

In this section, we state our proposed method FMDA. Let {Si}mi=1 be m data

streams. New batches of data arrive at time tj. Then these data streams are di-

vided into two groups after the drift detection procedure, {Si1}i1∈ID and {Si2}i2∈IN ,
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Algorithm 3 Fuzzy Membership-based Drift Detection Method

Input: membership of historical batch of data C
(i)
tj−1

, membership of newly arrived

batch of data C
(i)
tj

Parameter: significant level α

Output: drifting state

1: Calculate U by Equation (4.2).

2: Calculate the p value of U .

3: if p < 1
2
α or p > 1− 1

2
α then

4: return 1

5: else

6: return 0

7: end if

where ID is the index set of drifting streams and IN is the index set of non-

drifting streams. In traditional single-stream methods, data streams are handled

separately. For Streams in {Si2}i2∈IN , nothing happen. For Streams in {Si1}i1∈ID , a

new learner is trained. To re-train a new learner to adapt to the concept drift, only

{(X(i)
tj−1+1, y

(i)
tj−1+1), . . . , (X

(i)
tj , y

(i)
tj )} are used. Usually, the batch size of Z

(i)
j is small.

Lack of data leads to the problem of over-fitting and a large generalization error.

To manage this issue, we hope to use additional data from {Si2}i2∈IN to train a

new learning model. However, the data distribution of streams is different. Using

data directly from other data streams, which have different distributions, can lead

to the low performance of the new learning model. The intuitive idea is to assign

weights to data from other data streams. If the data distribution is similar, the

weights should be large. Conversely, if the data distribution is different, the weights

should be small, or zero if the data distribution is irrelevant. Then the weight of

data from Si2 in re-training of Si1 is the average membership that Z
(i1)
j belong to
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Algorithm 4 Fuzzy Membership-based Drift Adaptation Method

Input: new batch of data

Output: weights

1: Drift detection for all data streams using FMDD.

2: Divide streams into two groups

{Si1}i1∈ID and {Si2}i2∈IN .

3: for Si1 ∈ {Si1}i1∈ID do

4: for Si2 ∈ {Si2}i2∈IN do

5: Calculate weights by Equation (4.3).

6: end for

7: end for

8: return w(i1,i2)

stream Si2 .

w(i1,i2) =
1

N

tj∑
τ=tj−1+1

fi2(X
(i1)
τ ). (4.3)

where N = tj − tj−1. The fuzzy membership-based Drift Adaptation is summarized

in Algorithm 4. The weights are used to re-train a new learning model. For exam-

ple, in some gradient descent-based methods, such as linear regression and neural

networks, the weights are used as the amplification factor of learning rate in gradient

descent.

The entire procedure of Multi-stream Concept Drift Handling Framework is il-

lustrated in Figure 4.3.
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Figure 4.3 : Flow chart of Multi-stream Concept drift Handling Framework

.

4.3 Experimental Study

In this section, we conduct a series of experimental studies to evaluate our Multi-

stream Concept Drift Handling Framework. We give a comprehensive evaluation

from the following aspects.

1. We investigate the correlation between the fuzzy membership and distribution

discrepancy. The results are shown in Figure 4.4.

2. Next, we evaluate the detection accuracy of our drift detection method FMDD.



65

The results are summarized in Table 4.2.

3. We compare the prediction accuracy of learners trained by adding weighted

data from different data streams on twelve synthetic data sets. The results

are shown in Figure 4.5.

4. We evaluate prediction accuracy of learners using FMDA on two real-world

data sets. The results are summarized in Table 4.3 and Table 4.4.

5. Next, we conduct a batch size study to investigate the effect of the batch size.

The results are summarized in Figure 4.6 and Figure 4.7.

6. Finally, we give a visualization explanation of stream correlation. The visual-

ization is shown in Figure 4.8.

All experiments were conducted on a computing cluster with an INTEL Xeon

Gold 6126 CPU @ 2.60GHz and 192G memory, and the operating system is Red

Hat Enterprise Linux∗.

4.3.1 Data Sets

Our method is evaluated on both synthetic and real-world data sets. A synthetic

data set Synthetic00 is generated to evaluate FMDD. and twelve synthetic data sets

Synthetic01-Synthetic12 are generated to evaluate FMDA. Then two real-world data

sets are used in our experimental study.

Synthetic01

In Synthetic01, we generated 100 streams of samples. The feature x ∈ R10 is

generated from a 10-dimension multivariate standard Gaussian distribution. The

∗https://www.redhat.com
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label y ∈ R is generated by a linear model,

y = ωx+ b+ ϵ,

where ϵ ∼ N (0, 0.1) is noise. Each stream contains 1000 samples, which are split into

two subgroups. The first 500 samples and the last 500 samples are generated from

different distributions, which means that the concept drift occurs between the first

and the last 500 samples. The differences are parameters ω and b. The parameters

satisfy

ω2 − ω1 ∼ N (0, 1), b2 − b1 ∼ N (0, 1).

Synthetic02

The generation method of Synthetic02 is similar to Synthetic01’s. In Synthetic02,

we generate ten synthetic data streams. Different from Synthetic01, to simulate

different degree of concept drift, the parameters ω and β before and after concept

drift satisfy

ω2 − ω1 ∼ N (0, δ), b2 − b1 ∼ N (0, δ),

where δ represent the degree of concept drift, which varies from 0.1 of Stream 1 to

1 of Stream 10.

Synthetic03-14

The generation methods of Synthetic03 to Synthetic14 are the same. Each data

set includes four data streams, one major stream and three auxiliary streams. Each

stream has 1000 samples and the feature is 10-dimension. In the major stream, the

feature x1 ∈ R10 is generated from a 10-dimension multivariate standard Gaussian

distribution. The label y1 ∈ R is generated by a linear model,

y = ωx+ b+ ϵ,
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where ϵ ∼ N (0, 0.1) is noise. For the other three auxiliary streams, the generation

methods are similar. The differences are parameters ω and b. The parameters satisfy

ω2 − ω1 ∼ N (0, 0.1), b2 − b1 ∼ N (0, 0.1),

ω3 − ω1 ∼ N (0, 0.1), b3 − b1 ∼ N (0, 0.1),

ω4 − ω1 ∼ N (0, 1), b4 − b1 ∼ N (0, 1),

and ∃1 ≤ i ≤ d, such that ω3[i] − ω1[i] ∼ N (0, 3). The first auxiliary stream has

approximate distribution with the major stream. The second is similar except for a

feature with different distribution. The difference between the third and the major

stream is significant.

Synthetic15

The generation method of Synthetic15 is similar to Synthetic03-14’s. In Syn-

thetic15, we generate five synthetic data streams. Different from Synthetic03-14,

Stream 1-3 are generated from the same distribution, and Stream 4 and 5 are gen-

erated from the same distribution. The difference of the two distributions are the

parameters ω and β, which satisfy

ω2 − ω1 ∼ N (0, 1), b2 − b1 ∼ N (0, 1).

Real-world Data sets

The two real-world data sets are used in our experimental study.

Train The Train data set Yu et al. (2020) records train dwelling information of

eight stations in New South Wales. There are eight data streams in the data set.

Each data stream is corresponding to a train station. The task is to predict the

load change of carriages during the train dwelling time, so that staff can organize

the crowd and avoid congestion.
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Table 4.1 : Summary of Datasets to Evaluate the Multi-stream Concept Drift Han-

dling Framework

Dataset #streams #sample #feature

Synthetic01 100 1000 10

Synthetic02 10 1000 10

Synthetic03-Synthetic14 4 1000 10

Synthetic15 5 1000 10

Train 8 373327 18

Weather 10 49728 8

Weather The Weather data set Wang et al. (2019) records weather data from ten

weather stations near Beijing China. There are ten data streams in the data set.

Each data stream is corresponding to a weather station. The weather data includes

temperature, pressure, humidity, etc.. The task is to predict the accumulated rainfall

in one hour.

The details of synthetic data sets and both real-world data sets are summarized

in Table 4.1.

4.3.2 Evaluation of Stream Fuzzy Set

We use Synthetic00 to show how our proposed Stream Fuzzy Set can measure

the degree to which samples belong to a data streams. For each stream, we use

the first 500 samples to build the stream fuzzy set and estimate the parameters

of the responding membership function. We calculate the fuzzy membership of

the last 500 samples. Then the MMD of two group of samples are also calculated.

The correlation between fuzzy membership and MMD are shown in Figure 4.4. Each

point represent a stream in Synthetic01. The x-axis of points represent the reciprocal
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of fuzzy membership. The y-axis of points represent the MMD. The orange dashed

line is the linear least-squares regression estimated from the data.

It is clear that there exists a positive correlation between the reciprocal of our

proposed fuzzy membership and MMD. However, the average computing time of

fuzzy membership is 1.039e-4 seconds, while the average computing time of MMD

is 2.419e-2 seconds.

Thus, there exists a correlation between the fuzzy membership and the distribu-

tion discrepancy. The fuzzy membership stand out due to its low computing time,

which is suitable in the data stream mining scenario.

4.3.3 Evaluation of FMDD

In this section we evaluate the drift detection accuracy of our drift detection

method FMDD on Synthetic02. FMDD determine whether concept drift occurs

on streams in Synthetic02. The ground truth of concept drift occurring or not is

available in Synthetic02. Then the detection accuracy is obtained based on the

ground truth.

First a learner is built for each stream. All learners are linear models with an

L2 regularization term on ω and b, implemented in Scikit-Learn† of version 0.24.2.

The used data are randomly sampled from the former 500 samples. There are two

ways to generate a testing set: sample from the former 500 samples, which means no

concept drift occurs, or from the latter 500 samples, which implies a concept drift.

Once FMDD determine the result, concept drift occurring or not, we can then know

whether the result is correct or not. Two state-of-the-art drift detection methods,

DDM Gama et al. (2004) and HDDM Fŕıas-Blanco et al. (2015) are used as the

baseline. There are two varieties of HDDM, HDDM-a and HDDM-w. The results

†https://scikit-learn.org
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are listed in Table 4.2.

Table 4.2 : Results of evaluation of FMDD on Synthetic Streams

Metrics Stream FMDD DDM HDDM-a HDDM-w

True positive

1 0.644 0.28 0.257 0.305

2 1.0 0.25 0.276 0.28

3 1.0 0.223 0.232 0.244

4 1.0 0.194 0.204 0.215

5 1.0 0.191 0.184 0.214

6 1.0 0.184 0.175 0.21

7 1.0 0.168 0.182 0.194

8 1.0 0.179 0.165 0.195

9 1.0 0.188 0.186 0.206

10 1.0 0.174 0.165 0.191

True negative

1 0.832 0.794 0.9 0.828

2 0.811 0.806 0.91 0.825

3 0.813 0.814 0.889 0.829

4 0.801 0.792 0.893 0.825

5 0.796 0.81 0.912 0.863

6 0.804 0.796 0.893 0.821

7 0.788 0.805 0.896 0.814

8 0.815 0.795 0.905 0.821

9 0.795 0.798 0.88 0.818

10 0.781 0.787 0.897 0.836

False positive 1 0.168 0.206 0.1 0.172

Continued on next page
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Continued from previous page

Metrics Stream FMDD DDM HDDM-a HDDM-w

2 0.189 0.194 0.09 0.175

3 0.187 0.186 0.111 0.171

4 0.199 0.208 0.107 0.175

5 0.204 0.19 0.088 0.137

False positive 6 0.196 0.204 0.107 0.179

7 0.212 0.195 0.104 0.186

8 0.185 0.205 0.095 0.179

9 0.205 0.202 0.12 0.182

10 0.219 0.213 0.103 0.164

False negative

1 0.356 0.72 0.743 0.695

2 0.0 0.75 0.724 0.72

3 0.0 0.777 0.768 0.756

4 0.0 0.806 0.796 0.785

5 0.0 0.809 0.816 0.786

6 0.0 0.816 0.825 0.79

7 0.0 0.832 0.818 0.806

8 0.0 0.821 0.835 0.805

9 0.0 0.812 0.814 0.794

10 0.0 0.826 0.835 0.809

1 0.793 0.576 0.720 0.639

Accuracy 2 0.841 0.563 0.754 0.615

3 0.842 0.545 0.676 0.588

Continued on next page
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Continued from previous page

Metrics Stream FMDD DDM HDDM-a HDDM-w

4 0.834 0.483 0.656 0.551

5 0.831 0.501 0.676 0.610

6 0.836 0.474 0.621 0.540

Accuracy 7 0.825 0.463 0.636 0.511

8 0.844 0.466 0.635 0.521

9 0.830 0.482 0.608 0.531

10 0.820 0.450 0.616 0.538

As shown in the table, our method FMDD has a remarkably high true positive

rate, especially when the distribution changes dramatically (stream 2-10), and all

concept drifts are detected. On the other hand, our method also has a high false

positive rate, which means that when there is no concept drift, a concept drift is

still alerted. Nevertheless, the overall accuracy still stands out from other methods.

A probable reason is that data from other data streams are used to estimate the

parameters of fuzzy membership functions. Other methods only monitor the per-

formance of learners. Once this decreases, other methods cannot determine whether

the decrease is affected by concept drift or noise. Thus these methods favor notifying

the presence of a concept drift when the decrease is dramatic, while our method can

properly recognize the difference. At last, we can conclude the effectiveness of our

drift detection method FMDD and its superior performance.
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4.3.4 Evaluation of FMDA on Synthetic Data Sets

In this section, we evaluate the average mean absolute percentage error of learners

using FMDA on Synthetic03 to Synthetic14.

In each stream, all 1000 samples are split into two sets: the first 900 samples

are used to train and the last 100 samples are used to test. Learners trained with

and without data from auxiliary streams are evaluated. The first learner (withn)

is trained using only data from the major stream. Then three learners (withi) are

trained by employing data from one of the auxiliary streams. The last learner

(witha) is trained using data from all auxiliary streams. Specifically, the learners

are evaluated under the varied size of the training set. All learners are linear models

with an L2 regularization term on ω and b, implemented in Scikit-Learn‡ of version

0.24.2. The used data are randomly sampled from the training set. The experiment

is conducted 5 times. To avoid effect of different scales from different data streams,

we choose mean absolute percentage error to measure learners’ performance. The

average mean absolute percentage errors are listed in Figure 4.5

As shown in Figure 4.5, the average mean absolute percentage error decreases

as the the size of training set grows. The over-fitting problem only exists when the

training size is small. It is exactly the situation where concept drift occurs. Only

a few data can be used to train a new learner. When the size exceeds 50, there

is no significant difference between the prediction performance of learners. This is

because the data are sufficient for training a new learner, so the influence is minor in

determining whether to use data from auxiliary streams or not. When the training

size is less than 50, it is obvious that learners trained using data from the first,

second, and that all three auxiliary streams have advantages over the learner that

only uses data from the major stream. The learner trained using data from the

‡https://scikit-learn.org
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third auxiliary stream has approximate performance or even worse. This is because

the distribution of the major stream is significantly different from that of the third

auxiliary stream. Rather than being beneficial, using data from the third auxiliary

stream is harmful in training a new learner. Specifically, a learner trained using

data from all three auxiliary streams has the best prediction performance. Using

data with a similar distribution can offset the negative impact of using data with a

different distribution.

We can conclude that our method of using weighted data from other data streams

can effectively reduce the prediction errors and solve the over-fitting problem when

training a new learner after concept drift occurs. The result shows that if the

distribution of the drifting stream is completely different from that of other streams,

it does not help to use data from other streams to train a new learner.

4.3.5 Evaluation of FMDA on Real-world Data Sets

In this section, we evaluate the average mean squared error of learners using

FMDA on two real-world data sets, Train and Weather.

To evaluate the effectiveness of FMDA on real-world data sets, we choose four

concept drift adaptation methods: re-training the whole model (Re-train), two tree-

based methods as per the Hoeffding Tree (HT) Domingos and Hulten (2000), and

Hoeffding Adaptive Tree (HAT) Bifet and Gavaldà (2009), which can update part of

the model, and an ensemble method Adaptive Random Forest (ARF) Gomes et al.

(2017b). All the methods are implemented in scikit-multiflow§ of version 0.5.3, and

all are conducted on the two real-world data sets independently. FMDD is used to

detect whether concept drift occurs. Once alerted that a concept drift has occurred,

the model is re-trained or partially trained on the new data. Then FMDA is used

to support these four methods. In re-training or partial training, FMDA determines

§https://scikit-multiflow.readthedocs.io
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the correlation of data streams and gives corresponding fuzzy membership. The

membership is used as the training weight of data from other data streams. The

batch size is set as 50. The batch size is a very important parameter in our method.

If the amount of data is sufficient for re-training, the over-fitting problem does not

exists. We give a detail batch size study in the following section. The results are

summarized in Table 4.3 and Table 4.4.

The results show that our method can significantly improve the prediction ac-

curacy of Re-train and ARF. However, the effectiveness of two tree-based methods,

HT and HAT, is noteworthy. For Hoeffding Tree, on Streams 3, 6, 7 and 8 of the

Train data set, Streams 1, 3, 4, 6, 9 and 10 of the Weather data set, FMDA leads

to larger errors. For Hoeffding Adaptive Tree, only on Stream 4 and 8 of the Train

data set, Stream 1, 6 and 10 of the Weather data set, FMDA shows its advantages.

This is because, in these two tree-based methods, new data are only used to train a

new sub-tree. The complexity of the sub-tree is usually small, and the over-fitting

problem is not obvious. Data from other streams can lead to negative effects instead.

The result validates the mechanism of our method again. FMDA uses data from

other data streams to solve the over-fitting problem. If the problem is not obvious,

our method still shows few advantages, even negative effects.

In summary, the efficiency of FMDA is validated by the experiments.
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Figure 4.4 : Correlation between the MMD and the reciprocal of fuzzy membership.

There exists a positive correlation between the reciprocal of our proposed fuzzy

membership and MMD. However, the average computing time of fuzzy membership

is 1.039e-4 seconds, while the average computing time of MMD is 2.419e-2 seconds.
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Figure 4.5 : Results of evaluation of FMDA on synthetic data sets. The x-axis is

the size of training set and the y-axis is the average mean absolute percentage error.

The box plot show the medians and quartiles of average mean absolute percentage

errors of twelve data sets. The medians are connected by dashed lines.
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4.3.6 Batch Size Study on Real-world Data Sets

As shown in the above section, the over-fitting problem exists when the data to

train a new learner are insufficient. Under our assumption, data arrive batch by

batch. When drift is detected, only the current batch of data can be used to re-

train. Hence the size of batch is key to our method. If the the batch is large enough,

the over-fitting problem does not exist. Data in the current batch is sufficient to

train a new learner. It is not necessary to use data from other data streams. Like

the situation in Figure 4.5 when the training set size is greater than 50, there is no

significant difference in whether or not to use data from auxiliary streams. Therefore,

in this section, we conduct a study of the impact of the batch size on two real-world

data sets.

Two methods are compared in this section:

• Baseline: Only data in the current batch of drifting streams are used to train

new learners after concept drift is detected.

• FMDA: Once concept drift is detected, both data of drifting streams and

weighted data of non-drifting streams are used to train new learners.

The learners in both methods are decision trees implemented in Scikit-Learn of

version 0.24.2. The batch size varies from 20 to 500. The experiment is conducted

5 times. The results are shown in Figure 4.6 and Figure 4.7.
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As shown in Figure 4.6, in the Train data set, the prediction errors decrease

as the batch size grows. When the batch size is small, the improvement of our

method is significant. Just like results on synthetic data sets, when the batch size is

small, there are not sufficient data to train new learners. The over-fitting problem

is encountered. Our method uses weighted data from non-drifting streams to solve

the over-fitting problem. With the increase in the amount of data, the prediction

performance of new learners is improved. Currently, data from other streams lead

to poor performance due to the different distribution. Note that in Stream 1 and

Stream 7, the prediction errors are significantly smaller than in our method when

the batch size is 20. This is because the batch size is too small. There exists

some noise in data, which cannot be ignored in this situation. The maximum mean

squared error of Stream 1 is 922.2667, while 0.1028 of average mean squared error.

Occasional extreme values cause the results.

In Figure 4.7, all ten data streams show the same pattern. Reduction in pre-

diction errors is also shown compared with the baseline. And the prediction errors

decrease as the batch size increases. When the batch size is large, data from other

streams show a disadvantage compared with the baseline. When the batch size is

larger than 200, the curves become flat, which means that the over-fitting problem

does not exist. This is different from the Train data set.

This experiment provides a reference for us to choose a proper batch size for

these two real-world data sets. It also validates the effectiveness of FMDA when

the batch size is small. Therefore, we can conclude when the batch size of the data

stream is small, the over-fitting problem can be alleviated by our method, using

weighted data from non-drifting data streams to train a new learner. Meanwhile,

the situation of Stream 1 and Stream 7 in the Train data set implies that FMDA is

not suitable when the batch size is extremely small, smaller than 20 in Train data set

for example. The occasional extreme values can cover the improvement of FMDA.
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4.3.7 Visualization of the Correlation between Data Streams

In this section, we give a visualization study of fuzzy membership.

One of advantages of fuzzy technique is its interpretability. Machine learning

models are usually considered as a black box lack of interpretability. In our Multi-

stream Concept Drift Handling Framework, the membership can interpret the cor-

relation between data streams to support decision making. We first visualize the

correlation between five data streams in Synthetic15, which is shown in Figure 4.8a.

Each block reflects the correlation of two streams. The lighter the block is, the more

significant the correlation is. In Synthetic15, all Stream 1-3 are generated from a

distribution, and both Stream 4 and Stream 5 are generated from another distri-

bution. The Figure 4.8a show that the nine blocks of the top left corner are light,

which implies the correlation of Stream 1-3 are significant. The four blocks of the

lower right corner are light, which implies the correlation of Stream 4 and Stream

5 is significant. This is consistent with the true correlation. As for real-world data

sets, we do not know the real correlation between data streams, the visualization

of batches of samples in Train and Weather data sets are shown in Figure 4.8b and

Figure 4.8c. The visualization is clear for recognize the correlation between data

streams and to trace the changes of the correlation, which is useful for artificial

decision making.
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(a) Synthetic15 (b) Train (c) Weather

Figure 4.8 : Visualization of the correlation between data streams. The color of block

means the correlation between two data streams represented by fuzzy membership.

4.4 Summary

In this chapter, we propose a Multi-stream Concept Drift Handling Framework,

to alleviate the over-fitting issue in the re-training procedure after concept drift.

We design a stream fuzzy set with membership to measure the degree to which the

samples belong to a data stream. Based on the membership of samples, a Mann-

Whitney U Rank Test is used to detect when and in which stream concept drift

occurs. To manage the over-fitting issue due to a lack of data when re-training a

new learning model after concept drift occurs, we design a weighting method based

on the membership. Weighted data from other non-drifting data streams are added

to the training set. By increasing the volume of data in the training set, the over-

fitting problem is alleviated. Experiments on both synthetic and real-world data

sets show that our method can improve the performance of the new learning model

being re-trained after concept drift occurs.
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Chapter 5

Evolutionary Regressor Chains for Multi-stream

Regression

5.1 Introduction

Currently, most data stream regression researchers treat each data stream in-

dependently. However, in many real-world scenarios, data streams exist simulta-

neously. There are usually some correlation between multiple data streams. For

instance, Harries et al. Harries (1999) recorded the electricity price in both NSW

and VIC in Australia. The trend of price is shown in Figure 4.2. It is obvious

that there exists a significant correlation between the electricity prices of the two

states. However, traditional methods for data stream regression always build an

exclusive model for each single data stream. The exclusive model has no ability to

receive information from other correlational data streams to utilize the correlation

between data streams. This lack of information from other data streams leads to

poor performance.

Chandra et al. Chandra et al. (2016) are the first to take the correlation into

account. It is assumed that in one data stream, called the target data stream, the

labels are not available in time. Another labeled data stream, called the source

data stream, is needed to help train a model on the target data stream and update

it. However, in many real-world applications, more than two data streams exist

simultaneously. In this situation, all data streams are target data streams. It is

hard to determine which data streams should be chosen as source data streams for

other data streams. Hence the correlation of data streams should be considered
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in an overall view. An intuitive idea is to treat the output of the model on one

data stream as the input of the model on another data stream. If these two data

streams are correlational, this method introduces information from one data stream

to a correlational data stream in the form of additional features in the model, which

can lead to improvement in the performance of the model. However, it is an O(m2)

problem to track all pair-wise correlation between data streams, which is impossible

when the number of data streams m is large.

Another challenge of data stream regression is its dynamicity compared with

traditional regression problems. The properties of data streams can change over

time. The dynamicity is manifested in two main aspects: data dynamicity and

correlation dynamicity.

• Data dynamicity refers to the fact that the distribution of data is non-stationary.

Models built on historical data do not work on newly arriving data when the

distribution of the data has changed. This phenomenon is usually referred to

as concept drift Lu et al. (2019) in the literature.

• In the multi-stream regression scenario, the correlation of data streams can

also change, which reflects the dynamicity of the correlation. We call this

phenomenon correlation drift.

Thus, we should not only recognize the correlation between data streams, but also

track the changes in the correlation and adapt to them.

Now we have three problems to solve: 1) how to recognize the correlation between

data streams in an overall view; 2) how to track the changes in the correlation in

data streams; and 3) how to adapt to concept drift. To solve these three problems

in the multi-stream regression scenario, we propose an ensemble chain-structured

model named Evolutionary Regressor Chains.
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Regressor Chains As mentioned above, it is impossible to track all correlation

when the number of data streams is large. A similar dilemma is faced in multi-target

regression. Xioufis et al. Spyromitros-Xioufis et al. (2016) proposed a chain struc-

ture, named Regressor Chains, to track the correlation between multiple targets.

Inspired by Regressor Chains, we also use a chain structure to track the correlation

between data streams. All data streams are shuffled into a chain structure in a ran-

dom order. The corresponding machine learning models are built in sequence. The

model of the first data stream is built as per usual. Predictions of the first model

are treated as additional features for the model of the second data stream. The

second model treats both its original features and the additional features, i.e., the

predictions from the first model, as input. Information from the first data stream

can be tracked by the second model through the additional feature if the first two

data streams are correlational. The third model is built with an additional feature,

which is the predictions of the model of the second data stream, and so on, with all

models being organized in a chain structure in the same order as the data streams.

Heuristic Order Searching The main drawback of Regressor Chains is that the

performance is sensitive to the order of the chain. The order of the chain is key

to tracking the correlation, and the method suffers from a poorly ordered chain.

However, the order is generated randomly; it should not be expected to track the

correlation correctly. It is impossible to search all possible order and choose the

best order because it is an O(m!) problem. We design a heuristic order searching

strategy to find the optimal order of the chain. Multiple chains are generated as

part of the initialization procedure. The initial order is generated randomly as in

Regressor Chains. The performance of the models under the order is recorded. Then

a new order of the chain is iteratively generated based on the performance of the

models. If the performance of the model on Stream i, which treats the output of the
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model on Stream j as input, is high, it is more likely that Stream j follows Stream

i in the new order. A better order can be obtained after several iterations. All the

chains constitute an ensemble and the average prediction is considered as the final

prediction. We name the Regressor Chains with heuristic order searching strategy

as Evolutionary Regressor Chains.

Adaptation to Dynamicity To adapt to the dynamicity in data streams, the

models are updated online. Once new data arrive, a gradient descent-based method

is utilized to update the parameters of the models in the Evolutionary Regressor

Chains. The model is updated online to adapt to the change in data distribution, i.e.

concept drift. The order of chains is also updated online. Heuristic order searching

is utilized to update the order of the chains once new data arrive, which enables

Evolutionary Regressor Chains to adapt to correlation drift.

Diversity Pruning In addition, we propose a diversity pruning method. A large

number of chains are generated to search for the optimal order; However, it is unwise

to use all these chains, as it would lead to high computation complexity. Diversity is

important in ensemble learning, because nothing can be obtained if all members of

an ensemble are the same. Thus, we prune the chains according to diversity. In our

method, not all chains in the model, but chains with maximum diversity are used

when predicting. This also makes the model more robust in resisting the potential

impact from minor drift.

The main contributions of our work in this sphere can be summarized as follows:

• We propose a chain-structured model, Evolutionary Regressor Chains, to track

the correlation among multiple data streams. We firstly take the correlation

between more than two data streams into account to improve the performance

of the models in data stream regression, which has not been solved by existing
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research.

• To overcome the drawback that the randomly generated chain order cannot

track the correlation correctly, we design a heuristic order searching strategy.

The method updates the order iteratively to find an optimal order.

• We design an online updating strategy to update the models in the multi-

stream regression scenario. This strategy can effectively adapt to both concept

drift and correlation drift.

• We propose a diversity pruning method to decrease the complexity of our

method while maximizing the diversity of the ensemble. It can also increase

the robustness of our method.

• We analyze some theoretical properties of our method and give its dynamic

regret bound.

• We conduct an experimental study on some real-world data sets. The re-

sults show the efficiency of our method compared with other state-of-the-art

methods.

The rest of this chapter is organized as follows: in Section 5.2, we give a brief review

of the related work. The problem settings of multi-stream mining are presented

in Section 5.3. The detail of our method is given in Section 5.4. We describe

some theoretical analysis in Section 5.5. In Section 5.6, we discuss the experimental

results. Our conclusions are put forward in Section 5.7.

5.2 Problem Settings

Firstly, we re-state the formal definition of data streams give in Definition 1.
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Definition 4. A data stream S = {(X1, y1), (X2, y2), . . . , (Xt, yt), . . . } is a real-time,

dynamic and infinite data sequence, where (Xt, yt) is an instance at time t, Xt ∈ X

is the feature and yt ∈ Y is the target variable to be predicted.

In a supervised learning setting, given a data stream S, Xt and yt obey a specific

distribution P (Xt, yt). A machine learning model is a map f : X → Y . Given

the feature Xt of an instance, f(Xt) is to approximate the conditional expectation

E(yt|Xt).

Next we give the definition of correlational data streams.

Definition 5. Given two data streams, S1 = {(X(1)
1 , y

(1)
1 ), (X

(1)
2 , y

(1)
2 ), . . . ,

(X
(1)
t , y

(1)
t ), . . . } and S2 = {(X(2)

1 , y
(2)
1 ), (X

(2)
2 , y

(2)
2 ), . . . , (X

(2)
t , y

(2)
t ), . . . }, S1 and S2

are correlational at time t, if

P (y
(1)
t , y

(2)
t ) ̸= P (y

(1)
t )P (y

(2)
t ).

The correlation of data streams must be taken into account to enable the ma-

chine learning model to predict more precisely. If S1 and S2 are correlational, the

machine learning model of S1 must be to approximate the conditional expectation

E(y
(1)
t |X(1)

t , y
(2)
t ).

Given m data streams, based on the correlation of each two data streams, we

obtain the correlation graph of all m data streams.

Definition 6. Given m data streams S = {Si}mi=1, where some data streams are

correlational, the correlation graph at time t is a graph Gt = (S, E), where the vertex

Si ∈ S is a data stream, and the edge ei,j ∈ E means that the two corresponding data

streams Si and Sj are correlational at time t.

Remark 1. Given m data streams S = {Si}mi=1 with the correlation graph Gt =

(S, E), the challenge of the multi-stream mining problem is how can the model of Si
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take as much information as possible into account from Sj ∈ S that is connected

with S in Gt.

Dynamicity is a distinctive feature of data streams. That is to say, the properties

of data streams can change over time. The phenomenon that P (Xt, yt) change over

time is called concept drift Gama et al. (2014). Likewise, the correlation of data

streams can also be non-stationary, which we name correlation drift.

Definition 7. Given m data streams S = {Si}mi=1, where some data streams are

correlational, correlation drift occurs if ∃ t1, t2, such that

Gt1 ̸= Gt2 .

Remark 2. Given m data streams S = {Si}mi=1 with the correlation graph Gt =

(S, E), the multi-stream mining model must be adaptive, such that the model can

update itself when Gt1 ̸= Gt2.

5.3 Proposed Method

This section details our method, Evolutionary Regressor Chains.

5.3.1 Regressor Chains

Inspired by the Regressor Chains Spyromitros-Xioufis et al. (2016), we pro-

pose a chain structure to model as much stream correlation as possible. Given

m data streams {Si}mi=1, a Regressor Chain is defined as C = {F,O}, where F =

{f (i)}mi=1 is a collection of machine learning models, and O = (o1, o2, . . . , om) is

an m-permutation. An m-permutation is a permutation from 1 to m. For ex-

ample, (5, 2, 1, 3, 4) and (1, 4, 3, 5, 2) are two 5-permutations. All data streams are

sorted in order of O at initialization, {So1 , So2 , . . . , Som}. Then m machine learn-

ing models {f (i)}mi=1 are built in sequence. The first model f (1) is trivial, and

takes X
(o1)
t as input and y

(o1)
t as output. After this, the predictions of f (1) are
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Figure 5.1 : An illustration of a basic chain structure built on four data streams

obtained as ŷ
(o1)
t = f (1)(X

(o1)
t ). The aim of the second model f (2) is to approximate

P (y
(o2)
t |X(o2)

t , y
(o1)
t ). Therefore both X

(o2)
t and ŷ

(o1)
t are considered as the input of

f (2). Let X
′(o2)
t = {X(o2)

t , ŷ
(o1)
t }. f (2) takes X

′(o2)
t as input and y

(o2)
t as output. The

third model f (3) treats ŷ
(o2)
t as an additional features. Let X

′(o3)
t = {X(o3)

t , ŷ
(o2)
t }.

Then f (3) takes X
′(o3)
t as input and y

(o3)
t as output, and so on. The last model

f (m) treats ŷ
(om−1)
t as an additional feature. Let X

′(om)
t = {X(om)

t , ŷ
(om−1)
t }. Then

f (m) takes X
′(om)
t as input and y

(om)
t as output. Finally, m models {f (i)}mi=1 are

constructed, organized as a chain. Figure 5.1 demonstrates how the models are

organized in a chain structure.

5.3.2 Heuristic Order Searching

It is obvious that the order of the chain is essential to our model. If models of

two data streams with no correlation are adjacent in the chain, the additional input

from the former irrelevant data stream does not help the prediction of the latter
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model. Moreover, the models of two related data streams must be adjacent in the

chain for the latter model to take advantage of information from the former. A

proper order means that it can learn as much correlation as possible from all data

streams. Hence, the next important step is to find a proper order for our model.

In Spyromitros-Xioufis et al. (2016) one suggested solution is to generate multiple

chains randomly and aggregate them into an ensemble. The averaging prediction of

a randomly generated ensemble can improve the results of chains with a bad order,

but it also weakens the result of those with a proper order. To find the proper chain

order, an optimization problem needs to be solved,

C = {F, argmin
O∈Pm

m∑
i=1

L(f (i))}, (5.1)

where Pm is the set of all m-permutations, and L(f (i)) is the loss of model f (i). For

a chain of length m, there are m! different orders. It is impossible to enumerate

all possible orders to find the best when m is large. It becomes an NP-complete

problem.

As a consequence, we turn our attention to heuristic algorithms. Inspired by the

Max-Min Ant System Stützle and Hoos (2000), a variant of Ant Colony Optimization

(ACO) Dorigo et al. (1996), we propose a heuristic order searching strategy to find

a suitable order for our model. First, we generate m×m machine learning models

{gi,j}mi,j=1, where gi,j takes both X
(j)
t and y

(i)
t as input and y

(j)
t as output, and

gi,i takes only X
(i)
t as input without additional features and y

(i)
t as output. Let

C = {F,O} be a Regressor Chain. The order O = (o1, o2, . . . , om) is generated

randomly. The first model f (1) is assigned to go1,o1 . The jth model f (j) is assigned

to goj−1,oj . Note that we use two kinds of symbols to refer to machine learning

models. The symbol f (i) refers to the ith model of the chain, while the symbol

gi,j refers to the model which takes X
(j)
t and y

(i)
t as input and y

(j)
t as output. It

should not be too difficult to distinguish them. An m×m table Q is maintained to
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record the performance of these m × m models, and all values in Q are initialized

as 1. The role of the values in the Q table is similar to the pheromone in an ant

colony system. For iteration t, for the convenience of the demonstration, we denote

the Evolutionary Regressor Chain as Ct = {Ft, Ot}, where Ft = {f (i)
t }mi=1. The

ith model of the chain f
(i)
t can give the prediction ŷ

(oi)
t = f

(i)
t (X

(oi)
t ), and the loss

L(f (i)
t ) is obtained. Then a new order O′

t = (o′1, o
′
2, . . . , o

′
m) is generated. Firstly o′1

is chosen from a multinomial distribution MN (p1). The probability of choosing i

is calculated by

p1[i] =
Q[i, i]∑m

k=1 Q[k, k]
.

The rest element o′i is generated from a multinomial distribution MN (pi). The

probability of choosing j as oi is calculated by

pi[j] =
Q[oi−1, j]∑

k ̸=oi′ ,i
′<i Q[oi−1, k]

.

Then all the models are assigned to new ones by f
′(1)
t = go′1,o′1 and f

′(j)
t = go′j−1,o

′
j

for j > 1. With the new order, the loss of models L(f ′(i)
t ) can be obtained. In this

iteration, the order of Evolutionary Regressor Chain Ot+1 will be updated to O′
t if

the new order O′
t takes advantage of the old one Ot,

Ot+1 =

 O′
t if

∑m
i=1 L(f

(i)
t ) >

∑m
i=1 L(f ′(i)

t ),

Ot otherwise.
(5.2)

Then we can update the Q table by

Qt+1[i, j] =

 min{(1− ρ)Qt[i, j] + ρ, qmax} ifgi,j ∈ Ft

max{(1− ρ)Qt[i, j], qmin} otherwise.
(5.3)

where ρ is the evaporation factor that controls the evaporation speed of the values

in the Q table. In addition, the values in the Q table are bounded in the interval

[qmin, qmax], which is introduced in Stützle and Hoos (2000) to make the algorithm
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more robust. For the first model of the chain, the Q table is updated by

Qt+1[i, i] =

 min{(1− ρ)Qt[i, i] + ρ, qmax} iff
(1)
t = gi,i

max{(1− ρ)Qt[i, i], qmin} otherwise.
(5.4)

According to Equation (5.2), the performance is always increased or at least the

same after updating the order. Thus, for gi,j ∈ Ft, the corresponding value in Q the

table should increase, so that it is more likely to be chosen in the next iteration. The

other values in the Q table all evaporate according to ρ. The random choice enables

the Evolutionary Regressor Chain to explore other unseen models with lower loss.

This can avoid the problem of being trapped in the local optimum.

To find the optimum as soon as possible, like most heuristic optimization algo-

rithms, we generate multiple Evolutionary Regressor Chains {Ci}ni=1. All chains are

with the heuristic order searching procedure at the same time.

5.3.3 Online Training Procedure

To deal with both concept drift and correlation drift, the training procedure is

processed in an online way. After new data arrived at time t, the predictions can be

obtained by

ŷ
(oi)
t = f

(i)
t (X

(oi)
t ),

and the loss L(f (i)
t ) is obtained by

L(f (i)
t ) = ||ŷ(oi)t − y

(oi)
t ||.

The parameters ω
(i)
t of model f

(i)
i are updated as follows,

ω
(i)
t+1 = ω

(i)
t − η∇L(f (i)

t ), (5.5)

where ∇L(f (i)
t ) is the gradient, and η is the learning rate to control the step

length towards the direction of the gradient descent. The whole training proce-

dure is summarized in Algorithm 6. The time complexity of every training step is
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Algorithm 5 Procedure to generate a new order for an Evolutionary Regressor

Chain based on table Q

Require: m, table Q

Ensure: O′ = (o′1, o
′
2, . . . , o

′
m)

1: Initialize an array p of size m with 1s

2: for i = 1 to m do

3: for j = 1 to m do

4: if p[j] ̸= 0 then

5: if i == 1 then

6: Let p[j] = Q[j,j]∑m
k=1 Q[k,k]

7: else

8: Let pi[j] =
Q[o′i−1,j]∑

k ̸=o′
i′
,i′<i Q[o′i−1,k]

9: end if

10: end if

11: end for

12: Update o′i with a random number from a multinomial distribution MN (p)

13: Let p[o′i] = 0

14: end for

Θ(MN(D + P +M2)), where M is the number of data streams, N is the number

of chains, D is the number of data features, and P is the number of parameters in

a machine learning model.

In our method both the training procedure and heuristic order searching are

processed online. The former deals with concept drift, while the latter handles both

optimal order searching and correlation drift.
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5.3.4 Diversity Pruning

In the training procedure, n chains are generated. The more chains that are

produced, the higher the probability of finding the optimal order. However, in the

predicting procedure, it is not necessary to use all the n chains. Thus, we design

a pruning method based on the diversity of the ensemble of chains. There are two

main reasons for choosing diversity:

• Diversity is an important measure in ensemble learning. It loses its significance

if all chains in the ensemble make the same predictions; in that case it makes

no difference if only one chain in the ensemble is used. The diversity is key to

improving the performance of an ensemble of chains.

• Diversity can make the model more robust. If the diversity is not large enough,

all chains make similar predictions. A minor correlation drift will lead to a

significant reduction in performance. Increasing diversity can avoid this.

Given n Evolutionary Regressor Chains {Ci}ni=1, and new data (X
(1)
t , y

(1)
t ), . . . ,

(X
(m)
t , y

(m)
t ) at time t, let Ŷ

(i)
t be the prediction of the ith chain Ci. We use the

norm of difference between two predictions as the measure of the diversity of two

chains

Diversityt(i, j) = ||Ŷ (i)
t − Ŷ

(j)
t ||. (5.6)

If the norm of the difference between two predictions is large, i.e. the two models

give totally different predictions, it is obvious that the diversity is large. If it is

small, the two models are similar. Then we can calculate Diversityt(i, j) for all

1 ≤ i < j ≤ n. To choose n′ chains in n Evolutionary Regressor Chains, two chains

with maximum diversity Cn1 and Cn2 are chosen firstly.

Diversityt(n1, n2) = max
1≤i<j≤n

Diversityt(i, j). (5.7)



99

Let Cchosen = {Cn1 , Cn2} be the set of all chosen chains. The next chain Cn3 is chosen

by

n3 = argmax
Ci /∈Cchosen

Diversityt(n1, i) + Diversityt(n2, i). (5.8)

Add Cn3 to Cchosen, and so on until the n′th chain is chosen. Then n′ chains with

maximum diversity are chosen. Only these chains are used in the predicting proce-

dure. The procedure of diversity pruning is summarized in Algorithm 7. The time

complexity of the pruning procedure is Θ(M2N2).
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Algorithm 6 The Online Training Procedure of Evolutionary Regressor Chains

Require: m data streams {Si}mi=1, learning rate η, evaporation factor ρ, Q bounds

qmin and qmax

1: Initialize m×m machine learning models {gi,j}mi,j=1

2: Initialize n Evolutionary Regressor Chains {Ci}ni=1

3: Initialize a m×m table Q with 1s

4: loop

5: Get data (X
(1)
t , y

(1)
t ), . . . , (X

(m)
t , y

(m)
t )

6: for all Ct = {Ft, Ot} in Ci do

7: for i = 1 to m do

8: Calculate the prediction by ŷ
(oi)
t = f

(i)
t (X

(oi)
t )

9: Calculate the loss by L(f (i)
t ) = ||ŷ(oi)t − y

(oi)
t ||

10: end for

11: Generate O′
t using the procedure in Algorithm 5

12: for i = 1 to m do

13: Calculate the prediction by ŷ
(o′i)
t = f ′(i)

t (X
(o′i)
t )

14: Calculate the loss by L(f ′(i)
t ) = ||ŷ(o

′
i)

t − y
(o′i)
t ||

15: end for

16: Update the order using Equation (5.2)

17: for i = 1 to m do

18: Update the parameter of f
(i)
t using Equation (5.5)

19: end for

20: Update the Q table using Equation (5.3) and (5.4)

21: end for

22: end loop
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Algorithm 7 The procedure of diversity pruning

Require: n Evolutionary Regressor Chains {Ci}ni=1, data

(X
(1)
t , y

(1)
t ), . . . , (X

(m)
t , y

(m)
t ), n′

Ensure: Cn1 , Cn2 , . . . , Cn′
n

1: Initialize an array p of size m with 1s

2: for i = 1 to n do

3: for j = 1 to n do

4: Calculate Diversityt(i, j) by Equation (5.6)

5: end for

6: end for

7: Choose Cn1 and Cn2 by Equation (5.7)

8: for i = 3 to n′ do

9: Choose Cni
by Equation (5.8)

10: end for
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5.4 Theoretical Analysis

In this section we give some theoretical analysis of our heuristic order searching

strategy.

5.4.1 Metrics

Our heuristic order searching strategy is performed in an online fashion. The

most commonly used metric in the area of online learning is regret Hazan (2016).

Given a machine learning model ft at time t, the loss of ft is Lt(ft). Regret is

defined as

RegretT =
T∑
t=1

Lt(ft)−
T∑
t=1

Lt(f
∗),

where f ∗ = argminf∈F
∑T

t=1 Lt(f), and F is the set of all feasible models f . As

described in previous sections, the challenge of data stream mining is its dynamicity.

This means the optimal f ∗ change over time. The fixed optimal f ∗ is not suitable

in this situation. A new metric, dynamic regret, is introduced in Zinkevich (2003)

to solve this problem. Dynamic regret is defined as

RegretdT =
T∑
t=1

Lt(ft)−
T∑
t=1

Lt(f
′
t),

where f ′
t is any feasible model. Most research focuses on the worst-case dynamic

regret

RegretdT =
T∑
t=1

Lt(ft)−
T∑
t=1

Lt(f
∗
t ),

where f ∗
t = argminft∈Ft

Lt(ft), and Ft is the set of all feasible models ft at time

t. It is well-known that it is impossible to obtain a bound, unless in terms of

some regularities, such as path-length Zhang (2020). The path-length introduced

in Mokhtari et al. (2016), is defined as the cumulative variance of the parameters

ω∗
t of the optimal model f ∗

t ,

P ∗
T =

T∑
t=2

||ω∗
t − ω∗

t−1||2.
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5.4.2 Dynamic Regret Analysis

Let Ct = {Ft, Ot} be an Evolutionary Regressor Chain at time t, where Ft =

{f (i)
t }mi=1 and f

(i)
t is the ith model in the chain. Since order Ot is optimized heuris-

tically and generated probabilistically, we consider the expected dynamic regret of

our model.

RegretdT = E

(
T∑
t=1

m∑
i=1

Lt(f
(i)
t )

)
−

T∑
t=1

m∑
i=1

Lt(f
∗∗(i)
t ).

where f
∗(i)
t is the optimal ith model in the chain at time t. We would like to

distinguish two types of optimal model. Let C∗
t = {F ∗

t , O
∗
t } be the Evolutionary

Regressor Chain with optimal order O∗
t at time t, However f

∗(i)
t ∈ F ∗

t is updated

online, so it would not be optimal for f
∗(i)
t . Hence we denote the optimal model as

f
∗∗(i)
t .

The following Lemma by Zhou Zhou (2009) give the upper bound of the expected

runtime of the heuristic order searching strategy.

Lemma 1. The expected runtime of the heuristic order searching strategy satisfy,

T∑
τ=1

τP (tc = τ) ≤ m6 +
1

ρ
m lnm.

The following Lemma is by Mokhtari et al. Mokhtari et al. (2016).

Lemma 2. Let the domain set of parameters w
(i)
t be convex. The update rule in

Equation (5.5) is correspondingly adjusted to

ω
(i)
t+1 = Π(ω

(i)
t − η∇Lt),

where Π is the projection onto the nearest point in the convex set. If the loss function

Lt is α-strongly convex, i.e.

Lt(x) ≥ Lt(y) +∇Lt(y)(x− y) +
α

2
||x− y||2,
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for all x, y, the gradient ∇Lt is L-Lipschitz continuous, i.e.

||∇Lt(x)−∇Lt(y)|| ≤ L||x− y||,

for all x, y, and η < 1/L, there exist constants K1 and K2, such that(
T∑
t=1

m∑
i=1

Lt(f
∗(i)
t )−

T∑
t=1

m∑
i=1

Lt(f
∗∗(i)
t )

)

≤ K1

m∑
i=1

P
∗(i)
T +K2,

where P
∗(i)
T =

∑T
t=2 ||ω

∗∗(i)
t − ω

∗∗(i)
t−1 ||2 is the ith path-length.

The dynamic regret bound of proposed heuristic order searching strategy is given

in the following theorem.

Theorem 1. If all conditions in Lemma 2 are satisfied, and the variance of models

on the same data stream are bounded by

Lt(gi1,j)− Lt(gi2,j) ≤ G,

for all 1 ≤ i1 < i2 ≤ m, we have the upper bound of the dynamic regret,

RegretdT = O(
m∑
i=1

P
∗(i)
T ),

where P
∗(i)
T =

∑T
t=2 ||ω

∗∗(i)
t − ω

∗∗(i)
t−1 ||2 is the ith path-length.

Proof. We first partition the expected dynamic regret into two parts,

RegretdT = E

(
T∑
t=1

m∑
i=1

Lt(f
(i)
t )

)
−

T∑
t=1

m∑
i=1

Lt(f
∗∗(i)
t )

=

(
E

(
T∑
t=1

m∑
i=1

Lt(f
(i)
t )

)
−

T∑
t=1

m∑
i=1

Lt(f
∗(i)
t )

)
(5.9)

+

(
T∑
t=1

m∑
i=1

Lt(f
∗(i)
t )−

T∑
t=1

m∑
i=1

Lt(f
∗∗(i)
t )

)
, (5.10)
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where f
∗(i)
t and f

∗∗(i)
t are two types of optimal model we have described above. Let

tc be the time when the heuristic order searching converges. Then term (9) can be

expanded as,

E

(
T∑
t=1

m∑
i=1

Lt(f
(i)
t )

)
−

T∑
t=1

m∑
i=1

Lt(f
∗(i)
t )

=
T∑

τ=1

P (tc = τ)

(
τ∑

t=1

m∑
i=1

Lt(f
(i)
t )−

τ∑
t=1

m∑
i=1

Lt(f
∗(i)
t )

)

=
T∑

τ=1

P (tc = τ)

(
τ∑

t=1

m∑
i=1

(Lt(f
(i)
t )− Lt(f

∗(i)
t ))

)

≤ mG
T∑

τ=1

τP (tc = τ)

According to Lemma 1, we have

term (9) ≤ m2G(m5 +
1

ρ
lnm). (5.11)

In the term (10), the order of the chain is consistent. Let the ith path-length

P
∗(i)
T =

∑T
t=2 ||ω

∗∗(i)
t −ω

∗∗(i)
t−1 ||2. According to Lemma 2, there exist constants K1 and

K2, such that

term (10) =
m∑
i=1

T∑
t=1

(
Lt(f

∗(i)
t )− Lt(f

∗∗(i)
t )

)
,

≤ K1

m∑
i=1

P
∗(i)
T +K2 (5.12)

Combining Equation (5.11) and Equation (5.12), we have

RegretdT ≤ m2G(m5 +
1

ρ
lnm) +K1

m∑
i=1

P
∗(i)
T +K2.

Them, ρ,G,K1 andK2 are all constants, which implies that RegretdT = O(
∑m

i=1 P
∗(i)
T ).

This completes the proof of Theorem 1.

Remark 3. Convexity is important in optimization theory. Here we assume the

domain set of parameters is convex, while there is no restriction in the algorithm in

Figure 6. The assumption still holds if we select a large enough hyper-sphere in the

parameter space as the domain set.
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Remark 4. The assumption that, the variance of models on the same data stream

are bounded by G for all 1 ≤ i1 < i2 ≤ m, is reasonable. The only difference between

gi1,j and gi1,j is that, the former takes y
(i1)
t as an additional feature, while the latter

takes y
(i2)
t as an additional feature. The variance between them should not be too

large.

Remark 5. The analysis of term (11) is based on the runtime analysis of the Ant

Colony System in Gutjahr and Sebastiani (2008); Zhou (2009). Correlation drift

is not taken into account, because if correlation drift occurs the convergence of the

order search procedure cannot be guaranteed. The analysis with correlation drift will

be our future work.

5.5 Experimental Study

As our point of departure, we conduct parameter studies experiment of the evap-

oration factor and the number of chains respectively. Next, we assessed the efficiency

of the heuristic order searching strategy. Then we conduct an experiment to verify

the efficiency of the diversity pruning technique and determine how many chains

should be left after pruning. Finally, we evaluate our method on three real-world

multi-stream datasets.

5.5.1 Data Sets

We use three real-world, multi-stream datasets to evaluate the performance of

our proposed method Evolutionary Regressor Chains. Current research only focus

on correlations between two data streams. There are no datasets include more than

two data streams. To evaluate our method, we collect raw multi-stream data from

different applications and compose four datasets. The descriptions of the three

multi-stream datasets are as follows:
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Table 5.1 : Real-world datasets

Dataset #sample #feature #streams

Train 62682 12 8

Weather 49728 8 10

Sensor 20844 3 6

Train The Train dataset Yu et al. (2020) records train operating data from Trans-

port for NSW. All data are divided into eight streams according to the carriage

number. The task is to predict the change of load of each carriage during the dwell

time.

Weather The Weather dataset Wang et al. (2019) records weather data from ten

weather stations around Beijing. Data from each station constitute a data stream.

The task is to predict the wind at 10 meters.

Sensor Sensor dataset∗ records data from 54 sensors deployed in the Intel Berkeley

Research Lab from February 28th to April 5th, 2004. We selected 6 sensors with

few missing data as 6 data streams. The feature include the temperature, humidity

and light. The task is to predict the voltage of the sensor.

The detail of the real-world datasets is summarized in Table 5.1.

5.5.2 Experiment Setting

In all our experiments, a linear regression model is chosen as the base learner

because of its simple structure and the ease of training. For datasets with category

∗http://db.csail.mit.edu/labdata/labdata.html
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features, such as station names in the Train dataset, an embedding layer is utilized

to transfer the category feature to a continuous feature in an embedding space.

An L2 norm of parameters is added to the loss as a regularity, to prevent over-

fitting while conducting gradient descent. That is the regularized loss,

RL = L+ λ||ω||2,

where λ is the factor to control the effect of regularity. It is important to be careful

to select a proper learning rate η and a proper factor λ. If the learning rate η is

large, or the factor λ is small, the trainin pgrocess is unstable and leads to exploding

gradients. On the other hand, if η is small, or λ is large, it can lead to low converge

rate and influence the performance of the machine learning models. In all our

experiments, the choices of η and λ are based on the experiment results.

All our experiments were conducted on an RHEL server with a 24-core Intel

Xeon Gold 6126 CPU, 187GB of memory, and two NVIDIA Tesla V100 GPUs.

Our method is implemented in PyTorch. The NVIDIA driver version is 440.59, the

CUDA version is 10.2 and the PyTorch version is 1.8.1.

5.5.3 Parameter Study of the Number of Chains

In this section, we give a parameter study of the number of chains. To find a

proper chain order as soon as possible, it is reasonable to generate multiple chains

to search together. It is also the custom in heuristic optimization scenario.

The problem now is how many chains should be generated. We generated differ-

ent numbers of Evolutionary Regressor Chains. The results are shown in Figure 5.2.
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As shown in the figure, the more chains are generated, the less error they yield.

However, as the number of chains increases, the time complexity increases as well. It

is a trade-off between accuracy and running time. According to Figure 5.2, for more

than 10 chains, the improvement of performance is little, while the extra running

time is large. The gains do not make up for the losses. In the following experiments,

we only generate 10 chains.

5.5.4 Evaluation of the Diversity Pruning

In this section, we evaluate the efficiency of the diversity pruning technique.

The aim is to inspect whether the diversity pruning technique can really improve

the performance via increasing diversity. Another problem is that how many chains

should be left after pruning.

We compare the performance of Evolutionary Regressor Chains with 3, 5 and 7

chains left after pruning and without pruning. on three multi-stream datasets. The

results are shown in Figure 5.3.
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Just like the choice of parameter ρ, it is hard to choose a uniform optimal number

of chains left after pruning for all situations. The choice depends on the data. For

the Train dataset, we set 7 chains left after pruning; for the Weather dataset, we set

3 chains left after pruning; for the Sensor dataset, we set 5 chains left after pruning.

5.5.5 Evaluation of the Evolutionary Regressor Chains

We evaluate the efficiency of our proposed Evolutionary Regressor Chains on

the three multi-stream datasets. The aim is to evaluate whether treating the pre-

dictions from other data streams as additional feature can really help improve the

performance of models.

Previous research only focus on the correlation between two data stream, which

is not suitable in this setting. We extend some multi-target regression method, in-

cluding Multi-target Regression Stacking (MTRS) Spyromitros-Xioufis et al. (2020),

Regressor Chains (RC) and Ensemble Regressor Chains (ERC) Spyromitros-Xioufis

et al. (2016), into the data stream setting to track the correlation between data

streams. We also use the trivial idea that building a single model for each data

stream as baseline (Baseline), in which all models are independent and non-connective.

Each model is online updated when new instance arrived. The results are summa-

rized in Table 5.2. Seconds means the average running time to process one data. It

measures the time complexity of the method.

As seen in the tables, with information from other correlational data streams,

which is learnt via the chain structure, the performance of the models are improved

significantly on all three datasets. Hence, our proposed Evolutionary Regressor

Chains which can learn the correlation between data streams, provides significant

improvement to the performance of machine learning models.
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Table 5.2 : Evaluation of Evolutionary Regressor Chains on Three Multi-Stream

dataset

Dataset method λ mean squared error seconds

Train

Baseline 1 502.713 0.0154

MTRS 1 66.364 0.0243

RC 1 66.274 0.0157

ERC 1 9.217 0.0430

Our method 1 0.414 0.3567

Weather

Baseline 1 100.126 0.0070

MTRS 1 2.611 0.0174

RC 1 3.517 0.0073

ERC 1 1.366 0.0163

Our method 1 0.497 0.1587

Sensor

Baseline 1 12.304 0.0041

MTRS 1 2.181 0.0089

RC 1 2.349 0.0048

ERC 1 0.431 0.0055

Our method 1 0.051 0.0525
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5.6 Summary

In this chapter, we propose an ensemble chain-structured model, Evolutionary

Regressor Chains, with a heuristic order searching strategy and a diversity pruning

technique to track the correlation between multiple data streams. The chain struc-

ture can track correlation correctly, and information from other data streams can

improve the performance of the models. The heuristic order searching strategy is

used to search the optimal order of the chain and to update the chains to adapt to

correlation drift. Finding the optimal chain order can ensure that the learnt corre-

lation are correct, and ensure improvement in performance. The diversity pruning

technique is used to prune some unnecessary chains, which reduces the computation

complexity and increases the diversity of the ensemble. The experiment results show

the efficiency of our method.
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Chapter 6

Learning to Fast Adapt in the Evolving

Environment

6.1 Introduction

We have witnessed the popularity of deep learning in a wide variety of areas,

including computer vision, natural language processing and speech recognition Yuan

et al. (2022). The stacked hierarchical structure of a deep neural network makes it

more powerful and flexible in learning complicated representations of knowledge

from data. Each coin has two sides. The complicated structure brings about large-

scale parameters. Thus, training a deep neural network requires both huge amounts

of data and high-performance computation resources.

New challenges are encountered in the scenario of data stream classification

brought on by concept drift. Concept drift refers to the phenomenon that the

distribution of data changes over time. Current research handling concept drift fol-

low a fix paradigm Lu et al. (2019), which is shown in Figure 4.1. Classifiers in

non-stationary environment are supposed to be adaptable to suit dynamic data dis-

tribution. In this setting, on the one hand, the parameters will be updated numerous

times using only reduced data. It is very easy to be trapped into over-fitting. On the

other hand, the adaptation to concept drift has to be quick enough to deal efficiently

with newly arrived data. However, vast quantities of iterations before convergence

spends plenty of time, which can hardly meet the restricted time requirement. It

is necessary to design an adaptation strategy for neural network classifier in the

evolving environment to adapt to the concept drift.
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Meta learning Schmidhuber (1987) has drawn more attractions recently. The

idea is to learn the learning procedure using a meta learner. Though machine

learning models can acquire knowledge from historical data automatically, manual

intervention is still necessary for hyper-parameter selection, network architecture

search, etc. In meta learning, a meta-level model can learn how to train a valid model

from an enormous amount of training procedure. For this reason, meta learning is

also known as learning to learn. Usually there are two learning procedures in the

meta learning setting. In the base learning, a base learner is used to solve a specific

task. Then a meta learner learns to improve the performance of the base learner. In

particular, meta learning show its advantage in the few-shot problems Hospedales

et al. (2022). Usually the parameters of a deep neural network are updated by

a gradient descent based method. The optimization using gradient descent based

parameter updating rules show poor performance in the few-shot problems due to

lack of training data. Several methods that learn a proper parameter updating rule

from former training procedure are proposed. One of the most famous methods

is Model-Agnostic Meta-Learning (MAML) Finn et al. (2017), which learns proper

initialization parameters. The network could converge rapidly with small training

set. In Andrychowicz et al. (2016), a meta learner is used to learn the proper update

rules to deal with the few-shot problems.

It is obvious that the same problem is encountered in both concept drift adap-

tation and few-shot problem. The same solution can be applied that using a meta

learner to learn how to adapt to concept drift. Therefore, we proposed a concept

drift adaptation strategy, Learning to Fast Adapt in the Evolving Environment

(LFAEE). Traditional gradient descent based parameter updating rules are in the

form

θt = θt−1 − αt∇θL,

where αt is manually setting the learning rate. In our strategy, a LSTM recurrent
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neural network m is used for parameter updating. Given the current loss L and

its gradient ∇θL, the output of m is used as the next updating step. That is,

parameters are updated as following,

θt = θt−1 −m(L,∇θL;ϕ).

The model can adapt to concept drift rapidly with this updating step.

The main contributions of this work can be summarized as follows:

• We design a concept drift adaptation strategy for neural network classifiers

in the evolving environment. A parameter updating rule based on meta-level

LSTM recurrent neural network replaces traditional gradient descent based

rules while updating the classifier.

• Experiments on several real-world datasets have shown the effectiveness of our

strategy. The classifier can react to concept drift rapidly.

The rest of this chapter is organized as follows. In Section 6.2, we give a brief

review of previous related work. In Section 6.3, the details of the proposed strategy,

Learning to Fast Adapt in the Evolving Environment is given. In Section 6.4, we

conducted several experiments to evaluate our strategy. In Section 6.5, we summa-

rized our work.

6.2 Proposed Method

We begin this section by describing the meta-level LSTM recurrent neural net-

work used for generating parameter updating step. This led to the adoption of some

advice from Andrychowicz et al. (2016) to simplify our model. Finally, the detail of

training procedure of the meta-level neural network is given.
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6.2.1 Model Description

Let S = {X1, X2, . . . , Xt, . . . } be a data stream, where Xt is a batch of data at

time point t. Let f(X; θ) be a neural network classifier for a data stream classifi-

cation task with parameter θ. Let D be historical data collected from S. A initial

neural network classifier, f(X; θ0) can be trained from historical data D.

As new data batch Xt arrives, the neural network classifier f makes its prediction

ȳt = f(Xt; θt−1). We assume that the true label yt is available after predicting.

We choose the negative log likelihood loss to evaluate the prediction ȳt. Let m

be a LSTM recurrent neural network with parameter ϕ, which takes the loss Lt

of f on Xt, and its gradient ∇θLt as input and generates a proper updating step

m(Lt,∇θtLt;ϕ). Then the parameter θ is updated as following,

ȳ
(i)
t = f(Xt; θ

(i−1)
t−1 ),

L(i)
t = loss(ȳ

(i)
t , yt),

θ
(i)
t−1 = θ

(i−1)
t−1 −m(L(i)

t ,∇θL(i)
t ;ϕ).

(6.1)

After a T -time updating, we have the final updated parameter θt = θ
(T )
t−1. The

updated model f(X; θt) is used for predicting on next batch of data Xt+1. Given

a batch of data Xt, the T -time parameter updating procedure described above is

called an episode of our meta learning framework, denoted as Et. Our meta learning

framework is illustrated in Figure 6.1.

6.2.2 Coordinate-wise Parameter Sharing

As we discussed in Section 6.1, the neural network classifier f(X; θ) usually

consists of large-scale parameters. To generate updating steps for all coordinates

of parameter θ, vast quantities of parameters are needed in the LSTM recurrent

neural network m. To avoid this issue, Andrychowicz et al. (2016) suggested a

coordinate-wise parameter sharing strategy. Each coordinate of θ shares the same
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Figure 6.1 : The framework of our strategy

parameters in m, including weights and bias, but not the hidden states and cell

states. As a consequence, we have a compact and easy-to-train meta-level LSTM

recurrent neural network. Meanwhile, different hidden states and cell states mean

that updating for each coordinate only depends on its own historical information

respectively. Figure 6.2 demonstrates the mechanism of coordinate-wise parameter

sharing.

6.2.3 Preprocessing

Different coordinates of gradient ∇θL are of various scale. Data normalization is

an important preprocessing technique in traditional feature engineering. However,

widely used normalization methods, such as mean removal and variance scaling,

can destroy the structure in the gradient. We adopted the robust and powerful

preprocessing technique proposed in Andrychowicz et al. (2016). Each coordinate

of gradient ∇θL will be transferred by the map g,

g(x) =




(
log(|x|)

p
, sign(x)

)
if |x| ≥ e−p

(−1, epx) otherwise
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Figure 6.2 : The mechanism of coordinatewise parameter sharing

6.2.4 Training Procedure

Our first step was to collect several data streams, S1, S2, . . . , Sk, and their histor-

ical data sets, D1, D2, . . . , Dk. We hope to learn the proper parameter updating rule

from training procedures on these data streams. An initial neural network classifier

fj is built on Dj. For each batch of data Xj,t in Sj, we have an episode Ej,t described

in Section 6.2.1.

We then define the loss of the episode Ej,t. The most intuitive criterion in

assessing the effect of the parameter updating is to evaluate the performance of the

updated model on the next batch of data. That is,

L(Ej,t) = loss(fj(Xt+1; θt), yt+1).

Note that θt can be considered as a function of parameter φ. To make the expression
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clearer, we write θt in the form of

θt = h(θt−1, ϕ).

The loss of episode Ej,t can be rewritten in the form of

L(Ej,t) = loss(fj(Xt+1;h(θt−1, ϕ)), yt+1). (6.2)

We noticed that θt = h(θt−1, ϕ) is of recursive form. For the sake of training simplifi-

cation, we adopt the advice in Ravi and Larochelle (2017) and ignore the derivative

of θt−1 when calculating the gradient during training. Figure 6.3 show the computa-

tional graph for calculating the loss of an episode. The dashed arrow in Figure 6.3

means that the derivative will be ignored when calculating the gradient.

We have the total loss

L =
k∑

j=1

nj∑
t=1

loss(fj(Xt+1;h(θt−1, ϕ)), yt+1),

and the parameter of m is acquired as

ϕ = argmin
ϕ

k∑
j=1

nj∑
t=1

loss(fj(Xt+1;h(θt−1, ϕ)), yt+1).

In practice, the parameter ϕ is updated episode by episode by Equation (2) using

gradient descent based methods such as SGD.

The training procedure of Learning to Fine-Tuning in the Evolving Environment

is summarized in Algorithm 8.
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Algorithm 8 Learning to Fine-Tuning in the Evolving Environment
Input: Data streams S1, S2, . . . , Sk,

Historical data sets D1, D2, . . . , Dk,

Parameter: training epoch n, updating step T

Output: ϕ

1: Initialize ϕ

2: for e = 1 to n do

3: for j = 1 to k do

4: Train f(X; θ0) on Dj

5: for all Xj,t in Sj do

6: for i = 1 to T do

7: Update θi by Equation (1)

8: end for

9: Calculate the loss L by Equation (2)

10: Update ϕ to minimize L

11: end for

12: end for

13: end for

14: return ϕ
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6.3 Experimental Study

We conducted several experiments to evaluate our proposed method. We first

evaluate our method on four real-world datasets. Then we evaluate our method with

meta learner trained on other data streams.

6.3.1 Datasets

We use four real-world datasets to evaluate our method. In this section, we give

a brief review of the datasets ∗.

• Airlines The task is to predict whether the flight will delay.

• Covtype The dataset is collected from US Forest Service Region 2 Resource

Information System. The task is to predict the type of forest cover.

• Kddcup99 The task is to detect the intrusion and predict the type.

• Pokerhand The dataset record hands drawn from a standard deck of 52. The

task is to predict the type of the poker hand.

The statistics of four datasets are shown in Table 6.1. The starting 10% data of the

streams are used as training set and remain 90% data are used for evaluation.

6.3.2 Experiment Settings

In this work, a two-layer LSTM RNN is performed as our meta learner. The

length of LSTM is set as 10. The parameters of the meta learner is estimated by a

stochastic gradient descent with momentum. The learning rate is set as 0.001 and

the momentum is set as 0.9. The epoch is set as 10.

∗The datasets Airlines, Covtype and Pokerhand are available at

https://moa.cms.waikato.ac.nz/datasets/. The dataset Kddcup99 is available at

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
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Table 6.1 : Real-world Data Stream to Evaluate LFAEE

Data Stream #Example #Feature #Label

Airlines 539383 7 2

Covtype 581012 54 7

Kddcup99 494021 41 23

Pokerhand 1000000 10 10

The base learner is a two-layer full connected network. The base learner is

updated following the output of the meta learner.

All experiments were conducted on a computing cluster with an INTEL Xeon

Gold 6126 CPU @ 2.60GHz and 192G memory, and two NVIDIA Tesla V100 GPUs.

and the operating system is Red Hat Enterprise Linux†. Our method is implemented

in PyTorch. The NVIDIA driver version is 440.59, the CUDA version is 10.2 and

the PyTorch version is 1.8.1.

6.3.3 Evaluation of LFAEE

In this section, we evaluate our method, LFAEE, on four real-world datsets. We

choose stochastic gradient descent with momentum as baseline. First we use only

one stream to train the meta learner. The starting 10% data of the stream are used

to train both the base learner and the meta learner. The remaining 90% data are

used for evaluation. The experimental results are listed in Table 6.2. As shown

in the table, our method overperform than baseline on all four datasets. That is

the updating step learned by the meta learner is better than the updating step

calculated by gradient. Therefore the efficiency of LFAEE is validated.

†https://www.redhat.com
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Table 6.2 : Evaluation of LFAEE on Four Real-world Datasets

Data Stream Baseline LFAEE

Airlines 0.6081 0.6287

Covtype 0.7841 0.8221

Kddcup99 0.6728 0.7278

Pokerhand 0.7226 0.7410

Table 6.3 : Evaluation of LFAEE with Cross-stream Meta Learners

Data Stream t.o. Airlines t.o. Covtype t.o. Kddcup99 t.o. Pokerhand

Airlines - 0.6284 0.6287 0.6293

Covtype 0.8186 - 0.8203 0.8201

Kddcup99 0.7296 0.7085 - 0.7282

Pokerhand 0.7393 0.7382 0.7431 -

6.3.4 Evaluation of LFAEE with Cross-stream Meta Learners

In this section, we evaluate our method where the meta learner is trained from

other data streams. We would like to investigate whether the meta learner can learn

cross-streams knowledge and hence the meta learner trained on one data stream

can be used for other data streams. The meta learner trained on dataset Airlines

is denoted as t.o. Airlines, for example. The experiment results are shown in

Table 6.3. The results show than there are no significant differences if using meta

learner trained on other data streams. The tasks of the four datasets are totally

different. We can conclude that the meta learner can learn cross-streams knowledge

and be used for other data streams.
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6.4 Summary

In this work, we have proposed Learning to Fast Adapt in the Evolving Envi-

ronment, a concept drift adaptation strategy for neural network classifiers in non-

stationary environments. A meta-level LSTM recurrent neural network is used to

generate proper updating step for parameters of the neural network classifier accord-

ing to current loss and its gradient to react to the concept drift. The classifier can be

updated in limited iteration times to fulfill the limited time requirement in the data

stream classification scenario. In our experiments, our strategy was evaluated on

both synthetic and real-world data sets with concept drift. It show that classifiers

with our updating strategy are more robust in an environment with concept drift.
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Chapter 7

Conclusions and Future Study

This chapter concludes the thesis. In addition, recommendation for future study is

given.

7.1 Conclusions

Many methods have been developed to handle concept drift in data streams.

However, these methods consider data streams separately, ignoring the correlation

between data streams. This research concentrates on answering the following four

questions: 1) How to model the correlation between two data streams; 2) How to

model the correlation between multiple data streams; 3) How to track changes to

the correlation between multiple data streams; 4) How to adapt a machine learning

model according to the correlation between multiple data streams. This research

conducted a comprehensive analysis of these questions and proposed several meth-

ods.

The main contributions of this research are as follows:

1. It proposes a novel concept drift adaptation method which can overcome the

insufficient training problem caused by scarce newly arrived data. We train

the classifier on a latent feature space using knowledge learnt from historical

data to make predictions on the newly arrived data.

2. It proposes a novel multi-stream Concept drift Handling Framework, which

considers the correlation between multiple data streams rather than handling
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data streams separately. The advantage of the framework is that the parame-

ters of the membership functions are estimated using data from other streams.

These data which have different distributions help to reach higher concept drift

detection accuracy. A new drift detection method, FMDD, is designed to de-

tect when and in which streams concept drift occurs, dividing streams into

drifting and non-drifting streams at each time. The parameters of the fuzzy

membership functions are estimated using data from other data streams, which

lead to a remarkably high true positive rate. A new drift adaptation method,

FMDA, is proposed using the correlation of multiple data streams to train a

new model after concept drift is detected. By increasing the volume of training

data, the over-fitting issue due to a lack of data is alleviated.

3. It proposes a chain-structured model, Evolutionary Regressor Chains, to track

the correlation among multiple data streams. We firstly take the correlation

between more than two data streams into account to improve the performance

of the models in data stream regression, which has not been solved by existing

research. To overcome the drawback that the randomly generated chain order

cannot track the correlation correctly, we design a heuristic order searching

strategy. The method updates the order iteratively to find an optimal order.

We also design an online updating strategy to update the models in the multi-

stream regression scenario. This strategy can effectively adapt to both concept

drift and correlation drift. We propose a diversity pruning method to decrease

the complexity of our method while maximizing the diversity of the ensemble.

It can also increase the robustness of our method. We analyze some theoretical

properties of our method and give its dynamic regret bound.

4. It proposes a concept drift adaptation strategy for neural network classifiers

in the evolving environment. A parameter updating rule based on meta-level
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LSTM recurrent neural network replaces traditional gradient descent-based

rules while rapidly adapting the classifier.

7.2 Future Study

Although several methods are proposed in this research, the questions on which

this research focuses are still challenging and further investigation is needed. This

thesis identifies the following as future study:

• In this research, we propose a novel concept drift adaptation method, Drift

Adaptation via Joint Distribution Alignment (DAJDA). The main drawback of

DAJDA is that a generalized eigendecomposition problem needs to be solved,

so the time complexity might be costly for an online learning case. In addition,

DAJDA is only able to perform linear transformation on the instances. Some

non-linearity is needed. This is a problem remaining to be solved in the future.

• In this research, we propose a Concept Drift Handling Framework. However,

in our framework, all data streams share the same feature space. Therefore,

data from other streams can be directly added to the training set. In many

real-world applications, the feature space of multiple streams is different. How

to use data from other data streams when the feature space is different will be

our next target.

• In this research, we propose an ensemble of Evolutionary Regressor Chains.

Our method is limited by the chain structure. The chain structure is simple

and easy to implement. However, the correlation in the real world are not

always linear. Replacing the chain structure with a more complex structure,

like trees or graphs, will be our next direction for future research.
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Álvarez, V., Mazuelas, S. & Lozano, J. A., 2022, ‘Minimax Classification under

Concept Drift with Multidimensional Adaptation and Performance Guarantees’,

Chaudhuri, K., Jegelka, S., Song, L., Szepesvari, C., Niu, G. & Sabato, S. (eds.)

Proceedings of the 39th International Conference on Machine Learning, , vol.

162 of Proceedings of Machine Learning ResearchPMLR, pp. 486–499.


	Title Page
	Certificate of Original Authorship
	Abstract
	Dedication
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Abbreviation
	Nomenclature and Notation
	Introduction
	Background
	Research Questions and Objectives
	Research Questions
	Research Objectives

	Research Significance
	Theoretical Significance
	Practical Significance

	Research Contributions
	Thesis Organization

	Literature Review
	Setting and Definitions
	Concept Drift Detection
	Detection Methods based on Error Rate
	Detection Methods based on Data Distribution
	Detection Methods based on Multiple Hypothesis Test

	Concept Drift Adaptation
	Retraining Models
	Adaptive Models
	Adaptive Ensembles

	Other Related Work
	Transfer Learning
	Fuzzy Systems in Machine Learning
	Multi-Output Learning
	Meta Learning

	Summary

	Drift Adaptation via Joint Distribution Alignment
	Introduction
	Preliminaries
	Maximum Mean Discrepancy

	Proposed Method
	Marginal Distribution Discrepancy
	Conditional Distribution Discrepancy
	Preserve Data Variance
	Learning Algorithm

	Experimental Study
	Verification of the Effectiveness
	Evaluation on Real-world Datasets

	Summary

	A Multi-stream Concept Drift Handling Framework via Data Sharing
	Introduction
	Proposed Method
	Problem Settings
	Basic Assumptions
	Stream Fuzzy Set
	Fuzzy Membership-based Drift Detection Method
	Fuzzy Membership-based Drift Adaptation Method

	Experimental Study
	Data Sets
	Evaluation of Stream Fuzzy Set
	Evaluation of FMDD
	Evaluation of FMDA on Synthetic Data Sets
	Evaluation of FMDA on Real-world Data Sets
	Batch Size Study on Real-world Data Sets 
	Visualization of the Correlation between Data Streams

	Summary

	Evolutionary Regressor Chains for Multi-stream Regression
	Introduction
	Problem Settings
	Proposed Method
	Regressor Chains
	Heuristic Order Searching
	Online Training Procedure
	Diversity Pruning

	Theoretical Analysis
	Metrics
	Dynamic Regret Analysis

	Experimental Study
	Data Sets
	Experiment Setting
	Parameter Study of the Number of Chains
	Evaluation of the Diversity Pruning
	Evaluation of the Evolutionary Regressor Chains

	Summary

	Learning to Fast Adapt in the Evolving Environment
	Introduction
	Proposed Method
	Model Description
	Coordinate-wise Parameter Sharing
	Preprocessing
	Training Procedure

	Experimental Study
	Datasets
	Experiment Settings
	Evaluation of LFAEE
	Evaluation of LFAEE with Cross-stream Meta Learners

	Summary

	Conclusions and Future Study
	Conclusions
	Future Study

	Bibliography



