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In intensive care units (ICUs), mortality prediction is performed by combining
information from these two sources of ICU patients by monitoring patient health.
Respectively, time series data generated from each patient admission to the ICU
and clinical records consisting of physician diagnostic summaries. However,
existing mortality prediction studies mainly cascade the multimodal features of
time series data and clinical records for prediction, ignoring thecross-modal
correlation between the underlying features in different modal data. To
address theseissues, we propose a multimodal fusion model for mortality
prediction that jointly models patients’ time-series data as well as clinical
records. We apply a fine-tuned Bert model (Bio-Bert) to the patient’s clinical
record to generate a holistic embedding of the text part, which is then combined
with the output of an LSTM model encoding the patient’s time-series data to
extract valid features. The global contextual information of each modal data is
extracted using the improved fusion module to capture the correlation between
different modal data. Furthermore, the improved fusion module can be easily
added to the fusion features of any unimodal network and utilize existing pre-
trained unimodal model weights. We use a real dataset containing 18904 ICU
patients to train and evaluate our model, and the research results show that the
representations obtained by themodel can achieve better prediction accuracy
compared to the baseline.
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1 Introduction

With the advancement of medical technology, patients in the Intensive Care Unit
(ICU) are monitored by different instruments at the bedside that measure different vital
signals Sun et al. (2021) about the patient’s health. Such as heart rate, systolic blood
pressure, temperature, etc. This type of data is called time series data. Time series data has
two characteristics of irregularity under the aspects of intra-series and inter-series. Intra-
series irregularity is the irregular time intervals between observations within a time series.
Inter-series irregularity is the different sampling rates among time series. During their
stay, doctors visit the patient intermittently for check-ups and make clinical record about
the patient’s health and physiological progress. These notes can be perceived as
summarized expert knowledge about the patient’s state. This type of data is called
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clinical record data. Researchers based on these data can be used
to make mortality predictions for patients, which facilitates
hospitals to allocate medical resources appropriately and
provide cost-effective resource services to patients who need
them most. However, the above data have their own unique
characteristics Niu et al. (2022b), such as temporality, high
dimensionality, and heterogeneity, so it is a challenge to
extract key features from the large amount of patient data for
prediction tasks.

In recent years, deep learning techniques have been widely used
in the medical field, enabling the task of extracting key features of
patients to achieve predictive modeling. In particular, Recurrent
Neural Networks (RNN) and its variants Long Short Term Memory
(LSTM) Hochreiter and Schmidhuber (1997) and Gated recurrent
Unit (GRU) Cho et al. (2014) have been used to process time series
data. Lipton et al. (2015) used LSTM tomodel patient clinical data to
classify 128 diagnoses. Che et al. (2018) used GRU-d Pei et al. (2021)
(GRU-based recurrent neural network) to model patient time series
data generated from ICU to analyze missing values in the time series.
Convolutional neural networks (CNN) and BERT models have also
been widely used in medical prediction tasks. Grnarova et al. (2016)
used convolutional neural networks (CNN) to construct document
representations for mortality prediction tasks. Lee et al. (2020)
proposed the BioBert model for use in various biomedical text
mining tasks. However, most previous work used a single data
source for mortality prediction without aggregating information
from multiple sources of data, making the representation learned by
the model incomplete.

Most previous work has used time series data for mortality
prediction tasks. For example, Zhu et al. (2018) combined a
bidirectional LSTM model with supervised learning to capture
temporal changes in time series data and used the extracted time
series features for ICU mortality prediction. Some researchers have
also attempted to use clinical records for mortality prediction tasks. For
example, Darabi et al. (2020) used transformer networks and the recently
proposed BERT language model to embed these clinical record data
streams into a unified vector representation for downstream mortality
prediction tasks. However, in a real-world clinical setting, time series data
can be missing due to different collection frequencies Sun et al. (2020),
and thus time series data may be incomplete. On the other hand, clinical
recordsmay suffer from spelling errors, non-standard abbreviations, and
different writing styles Qiao et al. (2019),making it difficult to use clinical
annotations for prediction.

To address the above issues, time series data and clinical records can
be combined for mortality prediction, and these prediction tasks can
benefit from complementary relationships in multimodal data Su et al.
(2020). Huang et al. (2021) demonstrated mathematically that the
quality of the latent representation space directly determines the
effectiveness of multimodal learning models. And with sufficient
training data, the richer the variety of modalities, the more accurate
the estimation of the representation space and thus the better the
multimodal learningmodel. Recently, several researchers have modeled
both kinds of data for mortality prediction. For example, Yang et al.
(2021) proposed amultimodal deep neural network that considers both
time series data andmore clinical records. In addition, chronic and non-
chronic patients are classified when dealing with clinical records.
Khadanga et al. (2019) proposed a multimodal neural network
model that extracts features from both time series data and clinical

records and derives multimodal features. For better processing of
textual data information, Deznabi et al. (2021) proposed a fine-
tuned Bert model to process textual data. Experiments showed that
the model combining the two could improve the prediction accuracy
compared to using only time series data or only clinical records.

However, existing multimodal models still have some limitations.
Most models utilize different deep neural networks to model the modal
data and then output feature representations of the modal data by
connecting each modal feature representation Song et al. (2019) at the
feature level, which is then used to predict the final outcome. Since
different modal data usually have different properties, resulting in
inconsistent spatial and temporal dimensions, this poses an obstacle
to capturing potential interrelationships in the low-level feature space.
The inclusion of the fusionmodule after extracting the data features also
increases the complexity Yu et al. (2019) of the network and makes
training more difficult.

To address the above issues and challenges, we propose a
multimodal fusion neural network model that combines time-
series data as well as textual information from clinical
annotations for predicting mortality. This task is defined as
predicting whether a patient will die before discharge from the
hospital based on data from the first 2 days. Our model uses a
fine-tuned Bert model Devlin et al. (2018) to process the text part
and generate textual feature vectors, and feeds the time series
data into a Long Short Term Memory (LSTM) network and
generates time series feature vectors. We improve a
lightweight fusion module Su et al. (2020) by allowing the
feature vectors of two equal feature blocks to enter the fusion
module before cascading the prediction, thus capturing the
correlation and important feature information between the
underlying modal data. Correlations and important feature
information between features, and finally, the obtained
multimodal features are modeled through the GRU layer to
capture the dependencies of multimodal features.

To sum up, the main contributions of this paper are as follows:

1) We introduce a fusion module to fuse multimodal features to
improve the performance of the model. It can capture individual
modal contextual information as well as the underlying feature
correlation between different modalities.

2) We propose an end-to-end model, to accurately predict patient
mortality risk based on multimodal fusion features in time series
data and clinical records.

3) We conducted experiments on the mortality prediction task
using a real dataset and showed that the proposed model
outperformed all comparative methods.

The rest of this paper is organized as follows: Section 2 reviews
the related work. Section 3 then presents the details of our model. In
Section 4, we present the results of experiments performed on real
datasets. Finally, we conclude our work in Section 5.

2 Related works

There are three main areas of related work: time series data
mining and clinical record mining and multimodal learning, and we
briefly discuss the latest work in this area.
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2.1 Clinical time series data mining

In the area of mortality prediction for critically ill patients,
most of the previous work has focused on using time series data of
patients for prediction. Due to the long-term dependency
problem among time series data, the most advanced results
have been achieved since the PhysioNet Challenge Silva et al.
(2012) in 2012 for long short term memory (LSTM) networks to
process medical data. Harutyunyan et al. (2019) provided a
preprocessing standard for the MIMIC III Johnson et al.
(2016) database using LSTM models to handle in-hospital
mortality prediction, loss of compensation prediction, length
of stay prediction and phenotypic typing for four tasks. In this
paper, recurrent neural networks are used for prediction. Other
models also use different forms of recurrent neural networks to
predict mortality outcomes. Liu and Chen (2019) proposed a
novel selective recurrent neural network with randomly
connected gating units (SRCGUs), which not only reduces the
number of parameters and saves time, but also dynamically
adjusts their importance weights Niu et al. (2022a) to select a
more appropriate neural network for prediction.

2.2 Natural language processing in medical
text

For clinical records, researchers have attempted to apply natural
language processing (NLP) to medical prediction tasks. Grnarova
et al. (2016) proposed a convolutional document embedding
method based on the unstructured textual content of clinical
records and evaluated the mortality prediction task against the
clinical records of MIMIC III. The open set of biomedical word
vectors/embeddings proposed by Zhang et al. (2019) (BioWordVec)
that integrates biomedical domain knowledge to better capture the
semantics of specialized terms and concepts, and also improves the
quality of word embeddings Zhang et al. (2020). However, one
drawback of word embedding is that it cannot address multiple
meanings because each word is represented by only one vector.
Peters et al. (2018) proposed a context-based pre-training model
(ELMO) that dynamically adjusts word embedding according to the
context, which can address the problem of multiple meanings Liu
et al. (2019) of a word. However, this model uses LSTM to extract
features instead of Transformer, and many studies have
demonstrated that Transformer is far more capable of extracting
features than LSTM.

Recently, BERT-based models have been used in the medical
field due to their phenomenal success in natural language
processing (NLP). Many studies are based on BERT models
for clinical applications. Darabi et al. (2020) trained BERT
models on clinical records and produced results with
timestamps. The obtained patient embeddings verified the
validity of unstructured text data. Lee et al. (2020)
investigated how the recently introduced pre-trained language
model BERT can be applied to biomedical corpora and proposed
a pre-trained biomedical language representation model
(BioBERT) for biomedical text mining. The analysis results
show that the pre-training of biomedical corpus helps BERT
to understand complex biomedical texts.

2.3 Multi-modal learning

All these models use only one data source when making
mortality predictions. However, Khadanga et al. (2019) showed
that the combination of time series and clinical record is useful
for ICU mortality prediction. They used a convolutional neural
network (CNN) on top of the pre-trained word embedding Zhang
et al. (2019) of to obtain a representation of clinical record and a long
short term memory network (LSTM) to embed the time-series
portion of the data. The two representations were then connected
for prediction. Deznabi et al. (2021) also showed the usefulness of
combining time series data with clinical record information. They
used the LSTM model for the time series portion of the data and a
fine-tuned BioBERT Lee et al. (2020) for the clinical record. The
multimodal segmentation attention module proposed by Su et al.
(2020) is able to fuse blocks of features in each channel direction and
capture correlations Ilievski and Feng (2017) between feature
vectors. The fusion module is designed to be compatible with
features of various spatial dimensions and sequence lengths for
both cnn and rnn. thus, the fusion module can be easily added to the
fusion features of any unimodal network and utilize existing pre-
trained unimodal model weights. Therefore, We will use a
representation of the clinical record in conjunction with the time
series portion of the patient data and incorporate the fusion module
to improve the performance of in-hospital mortality prediction. In
the next section, we will define the notation and method
architecture.

3 Methods

In this section, we first define some notations to describe both
data and mortality prediction tasks. Then we will describe in detail
the composition of the model, which consists of three parts:
unimodal feature modeling, multimodal feature fusion, and
mortality prediction module. Figure 1 shows an overview of the
model.

3.1 Notations

Each patient has a number of clinical records during his
hospitalization, and the data are in the format of time t
corresponding to one clinical record. For a patient p with k
clinical records, we denote C(p) = Ct1, Ct2, . . ., Ctk, We also
have time-series data collected during the patient’s stay as X(p) =
X1, X2, X3, . . ., Xt.

3.2 The overview of model

As shown in Figure 1, the model consists of a unimodal
feature modeling module, a fusion module, and a mortality
prediction module. We model the clinical records using a
BERT-based fine-tuning model, and then feed each clinical
record of the patient into the textual part of our model
separately, and then combine the resulting embeddings to
obtain a final representation of the textual part of the data.
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We use a Long Short Term Memory (LSTM) network to model
the pre-processed time series data and generate time series
embeddings Shi et al. (2021). We then propose an improved
fusion module for fusing features of single modalities, which
partitions each modality into equal blocks of features on a
channel and creates a joint representation for generating soft
attention across feature blocks for each channel. The correlation
information and important feature information between
different modal data is captured through the attention
mechanism. The unimodal features are passed through the
fusion module to generate a multimodal feature matrix.
Finally, the multimodal feature representation is modeled
through the GRU layer to capture the dependencies between
multimodal features. To more comprehensively represent the
medical information of patients, we combine the modeled
multimodal feature representation with the time series
representation for prediction.

3.3 Single-modal feature modeling

The multimodal feature fusion module integrates different
types of inputs. The feature extraction module of model includes
time series data feature extraction and clinical record feature
extraction.

3.3.1 Time-series feature modeling
For the time series part of the model, our preprocessing followed

the work of Harutyunyan and Khadanga et al. We limited the
collection of time series data to 48 h after admission, for which
we used untimed sampling. If a variable had a missing value Tan
et al. (2019) at the collection node, we used the preset value of the
feature given by Harutyunyan et al. (2019) After preprocessing the
time series data, we used the LSTM network. We input the whole
time series data of the patient into the LSTM model. LSTM is an
RNN for capturing long-term dependencies Yoon et al. (2018) in
serial data. It takes a sequence of {xt}

T of length T as input and
outputs a sequence of {ht}

T say hidden state vectors of length T using
the following equation.

it � σ(xtW
(xi) + ht−1W(hi)) (1)

f t � σ(xtW
(xf) + ht−1W(hf)) (2)

ct � f t ⊙ ct−1 + it ⊙ tanh(xtW
(xc) + ht−1W(hc) + b(c)) (3)

ot � σ(xtW
(xo) + ht−1W(ho) + b(o)) (4)

ht � ot ⊙ σh(ct) (5)
In each step, the LSTM combines the current input xt with the

previous hidden state ht−1 to generate the current hidden state ht;
ht = LSTM(xt, ht−1) for t = 1 to t = T.

3.3.2 Clinical record feature modeling
Modeling clinical records requires capturing the interactions

between different words Huang et al. (2021), and the Word2vec
Church (2017) approach was previously used to model text,
which is no longer considered the most effective approach
with the advent of BERT. Bert-based models started to be
used to capture word interactions, and these models also
outperformed traditional NLP models in the field of text
modeling. So we use Bert-based models to fine-tune the
clinical records to obtain embeddings Peng et al. (2019) of
each clinical record of a patient. Specifically, we used the
BioBert model proposed by Alsentzer et al. (2019) for the text
part, which fine-tunes the clinical records in the MIMIC III
dataset.

After initializing the text model to BioBert, we used the original
BERT’s sentence classifier, which uses a classification token (CLS) to
classify relationships. We added a softmax layer to the output of the
classification token (CLS) for each clinical record separately and
further adjusted the parameters of the model to predict the in-
hospital mortality rate of the patients. Finally, we took the average
embedding value of all clinical records of the patient to obtain the
overall textual embedding value of the patient. This is shown in
Eq. 6.

HC � 1
N

∑
N

i�1
BCB(cti) (6)

3.4 Multi-modal feature fusion

In this section, we will detail the key part of the model, the
multimodal feature fusionmodule. The flow chart of the algorithm is
shown in Algorithm 1.

First, the time series and clinical record representations
obtained in the modeling module are transformed into the
same dimensions, and then their feature representations are

FIGURE 1
The overall architecture of the model.
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input to the intermediate fusion module. The feature matrix of a
single modality is divided into equal channel feature blocks. The
number of channels in each block is C. We denote the set of
feature blocks of time series modality t as Rt, and we denote the
set of feature blocks of clinical record modality c as Rc. That is,
Rc = (Rc1, Rc2, . . ., Rcn) and Rt = (Rt1, Rt2, . . ., Rtn), and n is the
number of characteristic blocks.

The intermediate fusion module performs a concatenation
operation on the modal features of each channel block to learn
the global contextual information inside each modality. Taking the
modal feature Rc as an example, we perform a summation operation
on the modal feature Rc level to generate a shared representation Hc,
and then perform global average pooling in spatial dimension:

Hc � ∑
(Rc1 ,Rc2 ...,,Rcn)

S(Rc1,Rc2, ...,Rcn) (7)

Hc is the global representation of the clinical record, which
summarizes the feature blocks of the clinical record. Then in the
same way, we obtain the global representation of the time series data
Ht. To obtain multimodal contextual information, we compute the
sum of the elements of the global representation for each modality,
which generates the multimodal global representation Kg:

Kg � elem(∑(Hc,Ht)) (8)

The multimodal feature representation contains rich global
contextual knowledge. Then, we apply a ReLU activation
function on Kg to capture the dependencies between the
multimodal features and map Kg to the joint representation Z,
which helps the generalization of the model:

Z � wzKg + bz (9)

where wz and bz are the weights and biases. We generate the
corresponding logits Ui

m by linearly transforming Z and obtain the
block-level attention weights Ai

m by softmax activation. Wi
m and bim

are weights and bias of the corresponding fully connected layer.

Ui
m � Wi

mZ + bim (10)

Ai
m � exp(Ui

m)
∑M

k ∑
|Bk |
j exp(Uj

k)
(11)

The soft attention in the original MSAF depends on the total
number of feature blocks, and the extracted features are
suppressed. In particular, the suppression effect is more
pronounced in complex tasks. By analogy with the medical
field, there is a close correlation between the change process
of patients’ health conditions and the clinical data generated
during hospitalization, but soft attention suppresses this
correlation and thus prevents accurate prediction. Therefore,
we apply the soft attention mechanism at the modal data level
to strengthen this correlation by weighting the average, while
giving more weight to the more important parts of each block:

Bi
m � [λ + (1 − λ) × Ai

m] ⊙ Bi
m (12)

Fg � [B1
m,B

2
m, ...,B

|Bm |
m ] (13)

λ ∈ (0,1) can be interpreted as a hyperparameter with control
weights. We obtain an optimized feature block Bi

m using attention

signals Ai
m and λ. Finally, the feature blocks belonging to modality m

are merged by channel-wise concatenation to produce Fg.

1: Initialize clinical record, time series data, and

feature blocks of clinical records and time series Rc, Rt

2: for i = 1; i < n; i + + do

3: Rc = (Rc1, Rc2, . . ., Rcn) # clinical record embedding

4: Rt = (Rt1, Rt2, . . ., Rtn) # time series embedding

5: The multimodal fusion module associated with Rc and Rt

6: The attention mechanisms learns to emphasize the

important feature blocks

7: end for

8: Process the multimodal fusion matrix Fg

9: Fusion state information, Fg and Rt

10: Calculate the final risk score for death11: Perform

prediction for test set and observe prediction

performance

Algorithm 1: The multimodal fusion model.

3.5 Mortality prediction

To be able to further capture the dependencies between
modalities, we input the multimodal fusion representation Fg
to the GRU layer to obtain the feature representation F0g.
However, data offset may occur when data fusion is
performed on different modal data. To compensate for this
lost information and to represent patient information more
comprehensively, the low-level feature representation extracted
from the time series data is used for prediction along with the
multimodal fusion features.

To fuse the multimodal features, we first connect the
features p = concat (Rt, F0g) to obtain a final multimodal
fusion matrix for the patient. This matrix is then passed
through a fully connected layer to predict the patient’s
mortality using sigmoid as the activation function. Finally
the predicted results are output.

4 Experiment

In this section, we conduct experiments on the real-world
medical dataset MIMIC III to evaluate the performance of
model. Compared with the baseline prediction model, the
model achieves better results under different evaluation
strategies.

4.1 Data description

4.1.1 Dataset
We use a free and open, publicly available resource for

intensive care unit research databases, MIMIC-III published
on PhysioNet. The dataset includes 46,520 patients and
contains identified comprehensive clinical monitoring device
waveform data and rich clinical text records from the
Intensive Care Unit (ICU) at Beth Israel Deaconess Medical
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Center between 2001 and 2012. The content of MIMIC-III
includes vital signs, laboratory and radiology reports,
treatment information, and more.

4.1.2 Pre-processing
To prepare our in-hospital mortality dataset, we start with the

root cohort and further exclude all ICU stays with unknown
length of stay, length of stay less than 48 h, or no observed length
of stay within 48 h. This yields a final training set and test set of
17,903 and 3,236 ICU stays, respectively. We determined in-
hospital mortality by comparing the date of patient death with
the time of admission and discharge. The resulting mortality rate
was 13.23 (2,797 of 21,139 ICU stays). Because time-series data
need to be combined with clinical records, clinical records
collected within 48 h of the patient’s admission are required.
After these steps, our dataset consisted of 11,579 records in the
training set, 2,570 records in the validation set, and 2,573 records
in the test set.

For the time series part of the model, we first restricted the
time series data to the first 48 h of the patient’s hospitalization,
and then we resampled the time series data to a 1-h interval. We
performed forward imputation on the missing values if they
were generated. If no previous values were recorded, we used the
pre-set values of the features given in Harutyunyan et al. (2019).
After preprocessing the time series data, we used the LSTM
network. We input the entire time series data of the patient into
the LSTM model. For the clinical record part of the model, we
use a fine-tuned BERT-based model for modeling clinical record,
then we feed each clinical record of a patient separately to the
text part of our model, and then combine the resulting
embeddings to get the final representation of text part of
the data.

4.2 Experiment setup

In this section, we first describe the state-of-the-art methods
used for mortality prediction as a baseline, and then outline the
metrics used for evaluation. Finally, we detail the implementation
details. Baseline models. We compare our method with the
baseline method for mortality prediction. The baseline model
is as follows:

1) LSTM: Time series data processing with LSTM.
2) Bert: Clinical record processing with Bert.
3) CNN + LSTM: Clinical record processing with CNN, time series

data processing with LSTM.
4) CNN + GRU: Clinical record processing with CNN, time series

data processing with GRU.
5) Bert + LSTM: Clinical record processing with Bert, time series

data processing with LSTM.
6) BioBert + LSTM: Clinical record processing with BioBert, time

series data processing with LSTM.

These unimodal baseline models were selected for LSTM, and
Bert processed the time series and text separately. These multi-

modal baseline models are all combined for mortality prediction by
replacing the unimodal data processing methods, and all use the
commonly concat method for fusion and prediction before entering
the fully connected layer.

4.2.1 Evaluation strategies
Since in-hospital mortality prediction is a binary classification

task with unbalanced categories (only about 10 of patients in this
dataset suffered death), the area under subject working
characteristics (AUC) was used to evaluate our model. We also
report the area under the precision-recall curve (AUC-PR) metric
because it can be more informative when dealing with highly skewed
datasets.

4.2.2 Implementation details
We implemented all baselines andmodels using pytorch. For the

training model, we used Adam with a batch size of 5, an initial
learning rate of 2e-5 for training, and a weight decay of 0.01.
Training was terminated after 10 epochs because the evaluation
value no longer improved as the number of epochs increased. We
randomly divided the dataset into a training set, a test set, and a
validation set in the ratio of 7:1.5:1.5.

4.3 Performance evaluation

4.3.1 Overall performance
Table 1 demonstrates the performance of the proposed model

and the baseline of predicted mortality in the MIMIC-III dataset.
The results show that the model outperforms all baselines. We note
that in the real public dataset, the AUCPR of LSTM is lower than
other models and the AUCROC values are slightly lower, mainly
because LSTM uses a model with padding for missing values, so it
does not capture the dependencies and correlations between
different time series. CNN, Bert, BioBert and our model can
capture the dependencies between medical texts and take into
account all patient visits.

TABLE 1 Performance comparison on MIMIC-III data.

Model type Model AUCROC AUCPR

Single-modal LSTM 0.8333 0.4418

GRU 0.8151 0.4931

CNN 0.8374 0.4862

Bert 0.8386 0.465

BioBert 0.8553 0.5031

Multi-modal CNN + LSTM 0.8486 0.5274

CNN + GRU 0.8358 0.5136

Bert + LSTM 0.8458 0.5215

BioBert + LSTM 0.8724 0.5404

BioBert + LSTM + Fusion 0.8835 0.5632
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In the multi-modal fusion method, early fusion may contain
a large number of redundant input vectors, while late fusion
cannot capture the correlation between the underlying features
of different modes. As can be seen from Table 1, compared with
CNN + LSTM, CNN + LSTM and Bert + LSTM models that use
concat to concatenate the data of the two modes before the
decision, the middle fusion module we use makes the model
perform better. Compared to the best-performing BioBert +
LSTM, AUCROC improved by 1.1%, AUCPR improved by
2.28%. This is because the heterogeneity of multi-modal data
makes the parameter space too complex to be determined by
simple heterogeneous splicing. Our model can model different
types of input and use different types of data to learn important
characteristics, and the fusion module used can capture the
correlation between different modes to help prediction.
Compared with the simple splicing of multi-modal data for
prediction (CNN + LSTM), our fusion method significantly
improves the prediction performance of the model.

In order to prove the effectiveness of the performance
improvement brought by multi-modal feature fusion, we also
conducted experiments based on the original single-modal
feature used by each model. It can be seen from Table 1 that
the model performance is improved after the data of other modes
are introduced. For example, in the BioBert + LSTM model, the
ARUROC, AUCPR were improved by 2.8%, 3.7% respectively,
after the clinical records were combined with the time-series data
for prediction. This proves that information complementarity
between multi-modal features can indeed enable models to better
understand patient health and achieve higher predictive
performance. This is also verified by the model based on
GRU. The performance of the model proposed by us is

significantly improved compared with that of GRU based on a
single mode.

4.3.2 Robustness for number of clinical-
record

Tables 2–5 show the prediction results of mortality for four
different numbers of clinical records. Compared with the baseline
model, our proposed model performed best in terms of
AUCROC, AUCPR performance indicators. The multimodal
model always works better than the unimodal model in
different numbers of clinical records.

To assess the value of using multiple clinical records for each
patient, we tried including a different number of clinical records for
each patient in the different model. Figure 2 and Figure 3 shows the
experimental results of the model when predicting different
numbers of clinical records. It can be observed that the
performance of the model in terms of both AUCROC and
AUCPR rises as the number of clinical records increases, with
the best performance being achieved when all clinical records
are used.

4.3.3 Data ablation study

We conducted data ablation experiments based on the
proposed model to examine the contribution of various data
to the prediction task. First, as seen in Table 6, it is higher than a
single model in all two evaluation metrics, suggesting that
combining multiple models yields richer information about

TABLE 2 Performance of each model in the one clinical record.

Model AUCROC AUCPR

CNN + LSTM 0.8124 0.5026

CNN + GRU 0.8058 0.4847

Bert + LSTM 0.8186 0.5034

BioBert + LSTM 0.8327 0.5138

BioBert + LSTM + Fusion 0.8432 0.5256

TABLE 3 Performance of each model in the 4 clinical record.

Model AUCROC AUCPR

CNN + LSTM 0.8236 0.5095

CNN + GRU 0.8135 0.493

Bert + LSTM 0.8227 0.5089

BioBert + LSTM 0.8485 0.5214

BioBert + LSTM + Fusion 0.8637 0.5362

TABLE 4 Performance of each model in the 7 clinical record.

Model AUCROC AUCPR

CNN + LSTM 0.8367 0.5168

CNN + GRU 0.8287 0.5057

Bert + LSTM 0.8365 0.5136

BioBert + LSTM 0.8683 0.5367

BioBert + LSTM + Fusion 0.8752 0.5485

TABLE 5 Performance of each model in the 10 clinical record.

Model AUCROC AUCPR

CNN + LSTM 0.8486 0.5274

CNN + GRU 0.8358 0.5136

Bert + LSTM 0.8454 0.5215

BioBert + LSTM 0.8725 0.5404

BioBert + LSTM + Fusion 0.8835 0.5632
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the patient and allows better monitoring of the patient’s
condition. It is logical that the combination of different kinds
of data can be complementary information. However, the
predictive performance of the pure time series model is low
because time series data have many missing values due to
irregular sampling. This can have some impact on model
learning. Clinical records are highly correlated with the
patient’s physical condition, and models based on clinical
records perform better than time series.

5 Conclusion

Clinical records written by healthcare professionals include
important information about the patient’s history and current
status in the hospital, which can be used to significantly improve
mortality prediction. In this work, this paper utilizes time series
data and clinical records for mortality prediction to improve the

monitoring of patients’ clinical health status. To overcome the
drawbacks of unimodal data, We propose a multimodal fusion
model that integrates multimodal data into the same architecture
by improving the fusion module. Our proposed improved
module partitions the features of each modal channel into
feature blocks of equal size and then learns to emphasize the
important feature blocks by generating attention values.
Subsequently, the augmented feature blocks are reconnected
for each modality to obtain an optimized feature space for
understanding multimodal contexts. It captures the global
information of a single modality and the relationship between
multiple modalities, which helps to improve the predictive
performance of the model. The performance of the model is
validated on a real electronic medical record dataset, and the
results show that our proposed model has good performance.

Semantic conflict repetition in current deep learning
multimodal fusion models. The problems such as noise are
still unresolved. Although attention mechanisms can solve
part of the problem. But they work implicitly. Not actively
controlled. Studying an active control can better combine
logical reasoning and deep learning. How to solve the problem
of unobstructed interoperability of information across
modalities? How to solve the model generalization ability?
These questions are the shortcomings of current multimodal
models.

In the future, we want to solve the semantic conflict repetition,
noise problem in deep learning multimodal fusion models.

FIGURE 3
Models’ robustness comparison of AUCPR.

TABLE 6 Data Ablation Results (T for time-series, C for clinical records).

Model AUCROC AUCPR

BioBert + LSTM + Fusion-T 0.8257 0.5048

BioBert + LSTM + Fusion-C 0.8465 0.5283

BioBert + LSTM + Fusion 0.8835 0.5632

FIGURE 2
Models’ robustness comparison of AUCROC.
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