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The helminth derived peptide
FhHDM-1 redirects macrophage
metabolism towards
glutaminolysis to regulate the
pro-inflammatory response

Susel Loli Quinteros1, Eliana von Krusenstiern2,
Nathaniel W. Snyder2, Akane Tanaka1, Bronwyn O’Brien1

and Sheila Donnelly1*

1School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia,
2Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
We have previously identified an immune modulating peptide, termed FhHDM-1,

within the secretions of the liver fluke, Fasciola hepatica, which is sufficiently

potent to prevent the progression of type 1 diabetes and multiple sclerosis in

murine models of disease. Here, we have determined that the FhHDM-1 peptide

regulates inflammation by reprogramming macrophage metabolism. Specifically,

FhHDM-1 switched macrophage metabolism to a dependence on oxidative

phosphorylation fuelled by fatty acids and supported by the induction of

glutaminolysis. The catabolism of glutamine also resulted in an accumulation of

alpha ketoglutarate (a-KG). These changes in metabolic activity were associated

with a concomitant reduction in glycolytic flux, and the subsequent decrease in

TNF and IL-6 production at the protein level. Interestingly, FhHDM-1 treated

macrophages did not express the characteristic genes of an M2 phenotype,

thereby indicating the specific regulation of inflammation, as opposed to the

induction of an anti-inflammatory phenotype per se. Use of an inactive derivative

of FhHDM-1, which did not modulate macrophage responses, revealed that the

regulation of immune responses was dependent on the ability of FhHDM-1 to

modulate lysosomal pH. These results identify a novel functional association

between the lysosome and mitochondrial metabolism in macrophages, and

further highlight the significant therapeutic potential of FhHDM-1 to

prevent inflammation.
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Introduction

The proliferation, differentiation, and function of immune cells

can be directly or indirectly modulated by reprogramming the

intrinsic metabolic pathways in immune cells. Thus, the concept of

immunometabolism has proposed that reprogramming the metabolic

activity of macrophages offers a mechanism to selectively and

specifically, regulate inflammation and immunity (1–4). In their

resting state, macrophages generally exhibit low biosynthetic

demands predominantly relying on highly efficient metabolic

pathways, such as mitochondrial oxidative phosphorylation

(OXPHOS). In response to stimulation with bacterial ligands,

such as LPS, the metabolic activity of macrophages switches

from OXPHOS to aerobic glycolysis, which facilitates the fast

ATP production required to support the pro-inflammatory,

antimicrobial activity of M1 macrophages (5, 6). Subsequently,

during the resolution of inflammatory responses or the onset of

immunosuppression, there is a reduction in glycolytic flux and a

metabolic shift back to OXPHOS (7, 8).

The induction of glycolytic activity in macrophages is not limited

to microbial ligands. Increased glycolytic flux, and functional

activation of an M1 phenotype, can also be induced by metabolites,

oxidized low-density lipoprotein, glucose, and signals released after

cellular damage (9–11). In these scenarios, and in contrast to the

beneficial effect of M1 macrophage induction during microbial

infection, the activation of glycolytic pathways by endogenous or

exogenous sterile stimuli leads to an enhanced pro-inflammatory

response, which mediates the deleterious effects associated with

immune-mediated disease (12–14). Thus, the selective modulation

of metabolic pathways offers a new therapeutic strategy to skew

macrophages towards a less inflammatory phenotype that would

prevent tissue damage and the initiation of the inflammatory

responses responsible for the progression of inflammatory/

autoimmune disease.

Compelling epidemiological evidence demonstrates a robust

inverse correlation between the prevalence of endemic helminth

infections and the incidence of immune-mediated disease globally

(15, 16). Multiple animal-based experimental studies and human

investigations have corroborated the potent ability of helminth

infection, and/or treatment with their excretory-secretory products,

to skew immune responses towards an anti-inflammatory/tolerogenic

profile to prevent/reverse inflammatory disease (17, 18). Further, it

has been shown that this protective effect can be simulated by the

adoptive transfer of macrophages that have been exposed to helminth

products and induced to undergo a functional modification (19–22).

Accordingly, understanding the mechanisms by which helminth

molecules modulate the functional phenotypes of macrophages

opens new avenues to prevent and treat human immune-

mediated disease.

Helminth infection is typically characterised by polarisation

towards a Th2 type immune response in which populations of anti-

inflammatory (alternatively activated) M2 macrophages predominate

and the differentiation of pro-inflammatory M1 is inhibited. These

macrophages display increased mitochondrial OXPHOS metabolism.

Maintenance of this metabolic pathway and the M2 phenotype was
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initially considered to be dependent on fatty acid oxidation (FAO),

fuelled by lysosomal lipolysis of fatty acids (23). However, it is now

evident that while the IL-4 induced expression of M2 genes simply

requires a threshold of ATP, which can be provided by OXPHOS or

glycolysis (24), the anti-inflammatory functional activity of

macrophages is mediated only by OXPHOS, which can be fuelled

by Acetyl-CoA or glutamine (25–27). The administration of IL-4 to

mice fails to fully replicate the metabolic reprogramming of

macrophages observed during helminth infection, suggesting that

additional host or parasite derived factors also have the capacity to

reprogram the metabolic signature of macrophages to induce a

functional phenotype beneficial to the prevention of inflammation

(28). In addition, it is possible that helminth induced reprogramming

of macrophage metabolic activity mediates the observed

improvement in overall whole-body metabolism seen during

chronic infection of humans (29), and experimental work in mouse

models of metabolic disease (30–33). Thus, exploiting the

mechanisms employed by parasites to reprogram macrophage

metabolism, represents an effective strategy for treatment of a range

of immune-mediated disease and metabolic disorders.

We have previously identified the helminth defence molecule

secreted by the liver fluke Fasciola hepatica (FhHDM-1) as a peptide

with therapeutic efficacy in murine models of type 1 diabetes and

multiple sclerosis (34, 35). Interestingly, after injection FhHDM-1

preferentially interacted with macrophages in vivo and reduced their

capacity to secrete pro-inflammatory cytokines in response to

stimulation (34). This observation coupled with the central and

early role of pro-inflammatory macrophages in both diseases,

suggested that the protective effect of FhHDM-1 was mediated by

the modulation of macrophage phenotypes. Subsequent in vitro

analyses revealed that after interacting with the macrophage

membrane, FhHDM-1 was actively internalized and localized to

endolysosomes where it inhibited vacuolar ATPase (vATPase), an

enzyme central to the regulation of lysosomal pH (36). Consequently,

pro-inflammatory activities that are dependent upon an acidic

lysosomal pH, such as NOD-like-receptor (NLR)-P3 activation,

were inhibited (37). Given that the activation of NLRP3 is tightly

regulated by cellular metabolism (38), we hypothesised that changes

in the utilisation of specific metabolic pathways within macrophages

may underpin the biological activity of FhHDM-1. This presents a

significant therapeutic opportunity to specifically, and selectively,

regulate the inflammatory behaviour of macrophages.
Materials and methods

Production of parasite-derived peptides by
chemical synthesis

Synthetic peptides corresponding to the sequence of the mature

full-length native FhHDM-1 (39) and an inactive mutant derivative

[NHP (36);], were synthesised to 95% purity and verified to be

endotoxin free (GLBiochem, Shanghai, China). The peptides were

solubilised in sterile, endotoxin-free water (Baxter) aliquoted, and

stored at -80°C until use.
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Isolation and culture of bone marrow-
derived macrophages

Bone marrow was harvested from 6-week-old C57BL/6 mice and

cultured at 37°C/5% CO2 in RPMI 1640 Medium (Gibco) containing

10% v/v heat-inactivated FCS (Gibco), 2-mercaptoethanol (Sigma-

Aldrich) and 5% penicillin/streptavidin (Life Technology). The cells

were supplemented with 50ng/ml recombinant macrophage colony

stimulating factor (Miltenyi Biotec) on days 1 and 3 of culture to

stimulate the differentiation of monocytes to macrophages. At day 6,

differentiated BMDMs were harvested and used for experiments.

Culture and stimulation conditions for each experiment are described

in the respective figure legends. Ethical approval for these studies was

granted by the University of Technology Sydney (UTS) Animal Care

and Ethics Committee (Approval Number: ETH18-2257) and

experiments were conducted in accordance with the approved

guidelines to be compliant with The Australian Code for the Care

and Use of Animals for Scientific Purposes.
Isolation of murine peritoneal macrophages

C57BL/6 mice (6 weeks old) were administered either 10mg of

FhHDM-1 in 100ml sterile saline, or saline, by an intraperitoneal

injection. One hour post injection, peritoneal cells were harvested by

lavage with 5ml sterile saline, and peritoneal macrophages were

isolated by negative selection (Miltenyi Biotec). The purified

macrophages were seeded overnight at 1x105 cells per well before

analysis of metabolic activity. Ethical approval for these studies was

granted by the University of Technology Sydney (UTS) Animal Care

and Ethics Committee (Approval Number: ETH21-5823) and

experiments were conducted in accordance with the approved

guidelines to be compliant with The Australian Code for the Care

and Use of Animals for Scientific Purposes.
Quantification of cytokine secretion
by macrophages

The levels of cytokines secreted by BMDMs in response to

stimulation with LPS (20ng/mL) were quantified using ELISA kits

(BD Bioscience), according to the manufacturer’s instructions.

Absorbance at 450nm was quantified using a Tecan plate reader.

Absorbance readings were corrected for background absorbance, and

then used to calculate cytokine concentrations by extrapolation from

a standard curve.
RNA extraction, cDNA synthesis and qPCR

Total RNA was isolated from macrophages using the Isolate II

RNA mini kit (Bioline/Life Science), according to the manufacturer’s

instructions. cDNA was reverse transcribed using a mixture of

random hexamer (Life Technologies) and 10mM dNTP (Life

Technologies). After 5 min in an Eppendorf Mastercycler at 65°C,

10 µL of reverse transcriptase master mixture (10X RT buffer, 25mM
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MgCl2, 0.1M DTT, RNAse OUT™ and SuperScript III Reverse

Transcriptase - Superscript III First Strand Synthesis Kit

[Thermofisher Scientific]) was added to samples. qRT-PCR analysis

was performed using TaqMan gene expression master mixture and

TaqMan primers (Applied Biosystems; Supplementary Table S1). The

reaction was run on a Quant Studio™ 12K Flex machine for 40 cycles.

The software programmes GeNorm (40), NormFinder (41) and

Best-Keeper (42) were used to identify the optimal housekeeping gene

to calculate the relative expression levels of genes by qRT-PCR. For

this, the raw Ct values were transformed to different input formats for

GeNorm and NormFinder analyses. For analysis using BestKeeper

software, raw Ct values were used. Based on this analysis, differential

gene expression was calculated after normalization to the Stx5a

(Applied Biosystems) housekeeping gene.
Analyses of metabolic pathways by
measuring extracellular flux

The Seahorse XF24 Extracellular Flux Analyzer (Agilent

Technologies) was used to measure the extracellular acidification rate

(ECAR) and oxygen consumption rate (OCR). Following treatment

with LPS, IL-4, or HDM peptides (as described in the figure legends)

BMDMs (1x105 cells per well) were rinsed twice with either (i)

glycolysis stress test media [Seahorse Base Media w/o phenol red

(Agilent Technologies) supplemented with 2mM L-glutamine]; (ii)

mito stress test media [Seahorse Base Media w/o phenol red

supplemented with 10mM D-Glucose, 2mM L-glutamine and 2mM

Na-Pyruvate (life technologies)]; or (iii) XF-mito fuel stress test media

[Seahorse Base Media w/o phenol red supplemented 10mM D-

Glucose, 2mM L-glutamine and 1m Na-Pyruvate] before incubation

with assay medium for 1 h at 37°C in a non-CO2 incubator. Plates were

then treated and assessed using the XF Glycolysis Stress Test Kit

(Agilent, SEA103020100), the XF Cell Mito Stress Test Kit (Agilent,

SEA103015100) or the XFp Mito Fuel Flex Test Kit (Agilent,

SEA103260100), according to the manufacturers’ instructions.

Briefly, primary murine macrophages were analysed in response to

subsequent injections of 10mM glucose, 2µM oligomycin and 2-deoxy-

glucose (2-DG) for the glycolysis stress test (ECAR); and 2µM

oligomycin, 2µM fluoro-carbonyl cyanide phenylhydrazone (FCCP),

and 0.5µM Rotenone/Antimycin A (Rote/AA) for the mitochondrial

stress test (OCR). For the assessment of fatty acid oxidation

dependency, the OCR of macrophages were analysed in response to

subsequent injection of a fatty acid inhibitor (4µM Etomoxir, long

chain fatty acid inhibitor), and a combination of glutamine (3µM Bis-

2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl) ethyl sulfide, BPTES,

glutamate inhibitor) and glucose (2µM 2-Cyano-3-(1-phenyl-1H-

indol-3-yl)-2-propenoic acid, UK5099, pyruvate carrier blocker)

inhibitors. The percentage of maximal capacity that is dependent

upon FA oxidation was calculated from the maximal metabolic rate

from each treatment. For the determination of fatty acid oxidation

capacity, the OCR was measured from cells responding to a

combination of glucose (2µM UK5099) and glutamine (3µM BPTES)

inhibitors, followed by a long fatty acid inhibitor (4µM of Etomoxir).

The fuel oxidation capacity was determined by the dependency to

oxidize FA, and flexibility to use glucose (GLC) or glutamine (GLN).
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Normalization of cell number by CyQuant
cell proliferation assay

A CyQuant cell proliferation assay kit (Invitrogen) was used to

quantify cell numbers at the endpoint of live metabolic assays,

following the manufacturer’s instructions. XFe-24 microplates

containing cells were frozen at -800C for 24 h upon completion of

the metabolic flux assays. Prior to the quantification of cell numbers,

the plates were allowed to reach room temperature before 200µL of

CyQuant/cell-lysis buffer solution was added to each well.

Fluorescence intensity was then measured using the Infinity

M200 pro plate reader at ~480 nm excitation and ~520 nm

emission maxima.
Measurement of hexokinase activity

The hexokinase activity assay (Abcam-ab136957) was performed

according to the manufacturer’s instructions. BMDMs were treated

with FhHDM-1 (2.5µM or 15µM) for 1h, supernatants were

discarded, and cells were washed twice with in RPMI 1640 medium

(Gibco) containing 10% v/v heat-inactivated FCS (Gibco). Following

this, cells were stimulated with LPS (20ng/mL) for 18h and then

collected and homogenized in 100µL of ice-cold assay buffer. To allow

for the homogenization process to occur, cells were incubated for

10 min on ice before centrifugation (10,000xg for 5 min). The

supernatant was collected and assayed using the reaction mix,

according to the instructions provided. The development of colour

was then measured at 450 nm every 5 min for 30 min.
Acyl-CoA mass spectrometry

To assess TCA cycle fuel utilization, BMDMs were treated with

LPS (20ng/mL), IL-4 (20ng/mL), or FhHDM-1 (2.5µM) for 24h at

370C and 5% CO2 followed by 1h of treatment with nutrient labelled/

non-labelled media (100µM 13C16-potassium palmitate (Cambridge

Isotope Laboratories) + 5mM glucose (Chem-supply), 100µM

potassium palmitate (Sigma-Aldrich) + 5mM 13C6-glucose

(Cambridge Isotope Laboratories), 100µM potassium palmitate +

5mM glucose in DMEM no glucose, no glutamine, no phenol red).

Acyl-CoA analysis was performed by liquid chromatography- high

resolution mass spectrometry (LC-HRMS) as previously described

(43). Briefly, samples and calibration standards containing

commercially available acetyl-CoA (Sigma-Aldrich) in 10% (w/v)

trichloroacetic acid in water were spiked with 13C3
15N1-acyl-CoA

internal standards, sonicated for 12 × 0.5 s pulses, protein was pelleted

by centrifugation at 17,000 ×g from 10 min at 4°C, then supernatant

was extracted by solid-phase extraction using Oasis HLB 1cc (30 mg)

SPE columns (Waters). Columns were washed with 1 mL methanol,

equilibrated with 1 mL water, loaded with supernatant, desalted with

1 mL water, and eluted with 1 mL methanol containing 25 mM
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under nitrogen then resuspended in 55 mL 5% (w/v) 5-sulfosalicylic

acid in water. 5 µL of samples in 5% SSA were analyzed by injection of

an Ultimate 3000 Quaternary UHPLC coupled to a Q Exactive Plus

(Thermo Scientific) mass spectrometer in positive ESI mode using the

settings described previously (44). Quantification of acyl-CoAs was

via their predominant [(M-507) + H]+ product ions. Data were

integrated using Tracefinder v4.1 (Thermo Scientific) software.

Isotopic enrichment in tracing experiments was calculated by

normalization to unlabelled control samples using the FluxFix

calculator (45).
Measurement of intracellular metabolites

BMDMs were cultured overnight with either LPS (20ng/mL), IL-4

(20ng/mL) or FhHDM-1 (2.5µM). After removal of the supernatants,

cells were washed 3x with cold PBS. Cells were then harvested and snap

frozen. Pellets were extracted by 80/20 Methanol/Water polar

metabolite extraction. LC-HRMS was performed as previously

described with minor modifications (46). Briefly, an Ultimate 3000

UHPLC equipped with a refrigerated autosampler (at 6°C) and a

column heater (at 55°C) with a HSS C18 column (2.1 × 100 mm i.d.,

3.5 mm; Waters, Milford, MA) was used for separations. Solvent A was

5 mM N,N-diisopropylethylamine (DIPEA) and 200 mM hexafluoro-

2-propanol (HFIP) and solvent B was methanol with 5 mMDIPEA and

200 mM HFIP. The gradient was as follows: 100% A for 3 min at 0.18

mL/min, 100% A at 6 min with 0.2 mL/min, 98% A at 8 min with 0.2

mL/min, 86%A at 12 min with 0.2 mL/min, 40% A at 16min and 1%A

at 17.9 min-18.5 min with 0.3 mL/min then increased to 0.4 mL/min

until 20 min. Flow was ramped down to 0.18 mL/min back to 100% A

over a 5 min re-equilibration. For MS analysis, the UHPLC was coupled

to a Q Exactive HF mass spectrometer (Thermo Scientific, San Jose,

CA, USA) equipped with a HESI II source operating in negative mode.

The operating conditions were as follows: spray voltage 4000 V;

vaporizer temperature 200°C; capillary temperature 350°C; S-lens 60;

in-source CID 1.0 eV, resolution 60,000. The sheath gas (nitrogen) and

auxiliary gas (nitrogen) pressures were 45 and 10 (arbitrary units),

respectively. Single ion monitoring (SIM) windows were acquired

around the [M-H]- of each analyte with a 20 m/z isolation window, 4

m/z isolation window offset, 1e6 ACG target and 80 ms IT, alternating

with a Full MS scan from 70-950 m/z with 1e6 ACG, and 100 ms IT.
Statistical analysis

In all cases, data are presented as means ± standard error of the

means (SEMs) of a number of biological replicates (n). The

comparison of data was determined by either an unpaired, two

tailed Welch’s t-test or a one-way ANOVA with Tukey’s multiple

comparison test using GraphPad Prism 7 software (GraphPad).

Statistical significance was considered as a p-value<0.05.
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Results

FhHDM-1 directs macrophages to utilise
oxidative phosphorylation, fuelled by
fatty acids

To initially assess the effect of FhHDM-1, the metabolic activity of

macrophages was determined in comparison to stimulation with LPS

and IL-4. Bone marrow derived macrophages treated in vitro with
Frontiers in Immunology 05
FhHDM-1 displayed increased mitochondrial oxygen consumption

rates (OCR), indicating an enhanced use of oxidative metabolism

(Figure 1A) as compared to untreated cells, or cells treated with LPS.

Furthermore, the increase in maximum respiratory capacity (MRC)

observed in FhHDM-1 treated macrophages was equivalent to that

seen in IL-4 induced M2 macrophages (Figure 1B). In contrast,

examination of the extracellular acidification rate (ECAR) as a

measure of glycolysis, suggested that unlike IL-4, FhHDM-1 had no

effect on the glycolytic activity (Figure 1C), with FhHDM-1 treated
B

C
D

E F

A

FIGURE 1

Unlike IL-4, treatment of macrophages with FhHDM-1 enhances oxidative phosphorylation without modulating glycolytic activity. (A) BMDMs were either
untreated (UT) or treated with LPS (20ng/ml), IL-4 (20ng/ml), or FhHDM-1 (2.5µM) for 24h (n=5). The oxygen consumption rate (OCR) was measured at
basal levels and following sequential treatments with oligomycin, FCCP, and rotenone/antimycin A (Rot+AA) to determine (B) the maximum respiratory
capacity of cells. (C, D) BMDMs were cultured with media (UT), FhHDM-1 (2.5µM), LPS (20ng/mL) or IL-4 (20ng/mL) for 24h (n=5). Then glycolytic
activity was determined by measuring (C) the extracellular acidification rate (ECAR) and (D) maximum glycolytic activity as cells were treated with
glucose, oligomycin and 2-DG (2-deoxy-glucose). Statistical significance was determined by a one-way ANOVA with Tukey’s multiple comparison test.
Data is representative of five independent experiments and is presented as means ± SEMs. (E) OCR was measured at basal levels and following sequential
treatments with oligomycin, FCCP, and rotenone/antimycin A (Rot+AA) in peritoneal macrophages harvested from mice (n=10) that had received a single
i.p. injection of either FhHDM-1 or saline. This data was used to (F) determine the maximum respiratory capacity of cells. Data is presented as means ±
SEMs. Statistical significance was determined by an unpaired, two tailed Welch’s t-test.
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macrophages showing the same maximum glycolytic activity as

untreated cells, which was significantly less than values observed in

cells treated with either IL-4 or LPS (Figure 1D). Validating this

finding and verifying that the alteration to macrophage metabolism

by FhHDM-1 occurs in vivo, peritoneal macrophages isolated from

mice 1h after an intraperitoneal injection of FhHDM-1 also showed a

similarly significant increase in OCR as compared to macrophages

from mice that received saline (Figure 1E, F).

To investigate the underlying changes that were driving this

switch in metabolism, the fuel preferences and flexibilities of

macrophages were assessed. In FhHDM-1 treated macrophages the

OCR had a strong dependency for fatty acid oxidation (FAO)

(Supplementary Figure S1). In fact, FhHDM-1-treated macrophages

were significantly more dependent on FAO to drive OCR than IL-4

treated cells (Figure 2A). Tracing 13C incorporation into the central

metabolite acetyl-CoA supported the observation that FhHDM-1

treated cells did not display increased glucose metabolism

(Figure 2B). However, unexpectedly this analysis also indicated that

FhHDM-1 treated macrophages did not utilise the carbon provided

by exogenous fatty acids (Figures 2C). Furthermore, the addition of

exogenous palmitate did not augment metabolic respiration induced

by FhHDM-1 treatment (Figure 2D). Although seemingly

contradictory to the measure of enhanced OCR in response to

FhHDM-1, these results suggested that the metabolic activity of

macrophages induced by FhHDM-1 may be reliant on the

oxidation of endogenous fatty acids.
The FhHDM-1 induced metabolic switch to
oxidative phosphorylation in macrophages is
associated with an increase in fatty acid
synthesis concomitant with glutaminolysis

The carbon required for the de novo synthesis of fatty acids can be

derived from glutamine. Glutaminolysis leads to the production of a-
ketoglutarate (a-KG), which is converted to citrate either via the TCA
cycle or by reductive carboxylation. Cytoplasmic citrate is then

converted to acetyl-CoA for fatty acid synthesis (44, 47). The

observed increase in citrate abundance in macrophages treated with
Frontiers in Immunology 06
FhHDM-1, as compared to either LPS or IL-4 treatment (Figure 3A),

coupled with the increase in expression levels of two key enzymes

(fatty-acid synthase; FASN, ATP citrate lyase; ACLY) involved in fatty

acid synthesis (Figures 3B, C) supports the likelihood that

endogenous fatty acids were being synthesized for subsequent

oxidation. The possibility that glutaminolysis was driving this

pathway was confirmed by the observation that the increased

expression of FASN and ACLY by FhHDM-1 was reversed in

macrophages by the addition of the glutaminase inhibitor, bis-2-(5-

phenylacetamido-1,3,4-thiadiazol-2-yl) ethyl sulphide (BPTES

Figures 3D, E). The fact that FhHDM-1 was reprogramming

macrophages to utilize glutamine as a major carbon source to fuel

metabolic activity was further supported by the observation that the

OCR induced by FhHDM-1 in macrophages was significantly

enhanced under glutamine replete culturing conditions (Figures 3F,

G), and inhibited by the addition of the BPTES (Figures 3H, I).
FhHDM-1 induced glutaminolysis mediates a
reduction in glycolytic flux and a regulation
of pro-inflammatory responses

When pro-inflammatory cytokines are not required due to the

resolution of an inflammatory response or at the initiation of immune

tolerance, the metabolic activity of cells is typically switched from

glycolysis to predominantly OXPHOS. Thus, given the observed

redirection of metabolic activity in FhHDM-1 treated cells, we

hypothesised that FhHDM-1 may be hijacking this mechanism of

immune-regulation to prevent pro-inflammatory immune responses

in macrophages. In agreement with this, macrophages treated with

FhHDM-1 showed significantly lower glycolytic activity in response

to a subsequent stimulation with LPS (Figures 4A, B). Macrophages

treated with FhHDM-1 also displayed significantly lower levels of

hexokinase-1 activity and hypoxia-inducible factor 1a (HIF-1a)
expression (Supplementary Figure S2) after stimulation with LPS.

As both enzymes contribute to the initiation and regulation of the

glycolytic pathway (48), this finding corroborated the observed

reduction in glycolysis. This outcome was dependent on the ability

of FhHDM-1 to inhibit vATPase, as an inactive derivative of the
B C DA

FIGURE 2

Oxidative phosphorylation induced by FhHDM-1 has a greater dependency on fatty acids than IL-4 driven metabolic activity. (A) The dependency of cells
on fatty acids as fuel for mitochondrial respiration was determined by measuring the OCR in cells treated with either IL-4 (20ng/ml) or FhHDM-1 (2.5µM)
in the presence of inhibitors of fatty acid oxidation or glycolysis and glutamine. (B, C) The incorporation of 13C into acetyl-CoA was determined by mass
spectrometry analysis of BMDMs that had been untreated (UT) or cultured with FhHDM-1 (2.5µM), IL-4 (20ng/mL), or LPS (20ng/mL) for 24h followed by
1h in the presence of 13C16-potassium palmitate of 13C16-glucose (n=6). (D) The ability of cells to utilise exogenous fatty acids was determined by
measuring the OCR levels in BMDMs cultured with 2.5µM FhHDM-1 in the presence of BSA/Palmitate (n=4). Statistical significance was determined by
either an unpaired, two tailed Welch’s t-test or a one-way ANOVA with Tukey’s multiple comparison test. Data is representative of two-five independent
experiments and is presented as means ± SEMs.
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FhHDM-1 peptide [NHP-1 (36);] exerted no effect on the metabolic

activity of macrophages (Figures 4A, B).

As expected, the amount of TNF protein secreted by macrophages

in response to stimulation with bacterial LPS was significantly

reduced by FhHDM-1, but not NHP-1, in a dose dependent

manner (Figure 4C). However, the expression levels of tnf mRNA

remained unchanged, even at the highest concentration of FhHDM-1

used (Figure 4D). Although apparently paradoxical, this result

upholds the hypothesis that FhHDM-1 treatment of macrophages is

reducing glycolysis, as this metabolic pathway mediates the post-

transcriptional regulation of TNF. When glycolytic flux is reduced,

glyceraldehyde-3-phosphate dehydrogenase (GAPDH), an enzyme in

the glycolytic pathway, remains bound to TNF mRNA thereby

repressing its translation (49) as observed in macrophages treated

with FhHDM-1. To demonstrate that this switch in metabolic activity

is not specifically associated with a reduction in TNF production,

levels of other pro-inflammatory cytokines were also quantified. This

analysis showed that the treatment of macrophages with FhHDM-1

also significantly reduced the secretion of IL-6, IL-1b, IL-12p70 and

MCP-1 (Supplementary Figure S3).
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It has been reported that the anti-inflammatory cytokine IL-10

has the capacity to regulate the expression of pro-inflammatory

responses by inhibiting inflammatory induced glycolysis and

promoting OXPHOS (26). However , FhHDM-1 treated

macrophages showed no significant increase in the production of

IL-10 in response to LPS stimulation compared to untreated cells

(Supplementary Figure S3). This observation further supported the

premise that FhHDM-1 was specifically targeting the pro-

inflammatory response in macrophages by altering their

metabolism, rather than exerting indirect effects through the

increased production of regulatory cytokines, such as IL-10.

To mechanistically link this regulation of glycolysis and pro-

inflammatory cytokines by FhHDM-1 to the metabolic conversion to

glutaminolysis, both ECAR and cytokine secretion were measured in

macrophages treated with FhHDM-1 and stimulated with bacterial

LPS in the presence of the glutaminase inhibitor, BPTES. The

presence of BPTES neither modulated the induction of glycolysis

nor the production of TNF or IL-6 in response to LPS stimulation.

However, the addition of BPTES to FhHDM-1 treated macrophages

completely reversed both the inhibition of glycolysis and the
B C D E

F G

H

A

I

FIGURE 3

Oxidative phosphorylation induced by FhHDM-1 is fuelled by endogenous fatty acids synthesised via glutaminolysis. (A) BMDMs were treated with LPS
(20ng/mL), IL-4 (20ng/mL) or FhHDM-1 (2.5µM and 15µM). The intracellular levels of citrate were quantified by mass spectrometry after metabolite
extraction (n=6), and (B–E) The differential expression of Acly and Fasn was quantified by qRT-PCR in lysates of cells (n=3) that were untreated, or
treated with IL-4, FhHDM-1(2.5µM), or a combination of FhHDM-1 and the glutamate inhibitor, BPTES (10µM), for 6h. (F) Glutamine dependency was
determined by measuring the OCR in BMDMs treated with FhHDM-1 (2.5µM) for 6h in glutamine replete (2mM or 8mM) or depleted media for 18h (n=4).
The basal oxygen consumption rate (OCR) was initially determined, and then measured following sequential treatments with oligomycin, FCCP, and
rotenone/antimycin A (Rot+AA) to determine (G) the maximum respiratory capacity of cells. (H, I) The requirement for glutamine by FhHDM-1 treated
cells was validated by measuring the (H) OCR and the (I) maximum respiratory capacity in BMDMs cultured in media (UT), or in the presence of FhHDM-
1 (2.5µM) or a combination of FhHDM-1 and the glutamate inhibitor, BPTES (10µM), for 18h. Statistical significance was determined by a one-way ANOVA
with Tukey’s multiple comparison test. Data is representative of three independent experiments and is presented as means ± SEMs.
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suppression of LPS-induced TNF and IL-6 production, with levels

of both restored to those observed in the LPS treated cells

(Figures 4E–H). This evidence supports the conclusion that

FhHDM-1 induced glutaminolysis is mediating the regulation of

inflammatory responses in macrophages.
The regulation of inflammation by FhHDM-1
is associated with an increased abundance
of a-KG, is dependent on fatty acid
oxidation, and is independent of
M2 polarization

Based on current understanding, the induction of glutaminolysis

in cells could be regulating the pro-inflammatory response in three

ways. Firstly, the simple switch of metabolic activity from glycolysis to

OXPHOS may be sufficient to prevent the synthesis of sufficient ATP

and metabolites to support the pro-inflammatory response (7, 8).
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Secondly, although the specific mechanisms are unknown, an increase

in FAO has been shown to reduce pro-inflammatory responses in

macrophages and to enhance the differentiation to an M2 phenotype

(23, 25, 50, 51). Finally, the accumulation of a-KG supports the

transcriptional activation of M2 gene expression, an outcome which

appears to be dependent on the ratio of a-KG:succinate. Independent
to this, the accumulation of a-KG also impairs pro-inflammatory

responses and promotes immune tolerance (52).

Although FhHDM-1 induced an increase in OXPHOS

metabolism in resting/unstimulated macrophages (Figure 1A), a

similar effect was not observed in FhHDM-1 treated macrophages

that were also stimulated with LPS (Figures 5A, B). This outcome

suggests that the inhibition of glycolysis, and the subsequent

reduction in inflammatory cytokine production in response to LPS

stimulation, was independent of OXPHOS metabolism induced by

FhHDM-1. However, the inhibition of FAO by Etomoxir in FhHDM-

1 treated macrophages restored the levels of both TNF and IL-6

produced in response to LPS stimulation (Figures 5C, D).
B C

D E F

G H

A

FIGURE 4

FhHDM-1 induced glutaminolysis mediates a reduced inflammatory response and decreased glycolysis, (A) BMDMs were treated 20ng/mL LPS or a
combination of FhHDM-1 (2.5µM) or NHP (2.5µM), and LPS for 24h (n=4). Then glycolytic activity was determined by measuring the extracellular
acidification rate (ECAR) and (B) maximum glycolytic activity as cells were treated with glucose, oligomycin and 2-deoxy-glucose (2-DG). (C, D)
Macrophages derived from the bone marrow of C57BL/6 mice were either untreated (UT) or cultured for 1h with FhHDM-1 (2.5µM, 10µM and 15µM) or
NHP (15µM), and then washed and stimulated with 20ng/ml LPS (n=3). (C) The levels of TNF secreted after an overnight incubation were quantified by
ELISA, and (D) the levels of TNF gene expression at 6h after LPS treatment were determined by qRT-PCR. (E) BMDMs were either untreated (UT) or
treated with LPS (20ng/mL), the glutamate inhibitor BPTES (10µM)/LPS, FhHDM-1 (2.5µM)/LPS or FhHDM-1/BPTES/LPS for 18h (n=4). The glycolytic
activity was determined by measuring the extracellular acidification rate (ECAR) and (F) the maximum glycolytic capacity of cells after subsequent
treatment with glucose, oligomycin and 2-deoxy-glucose (2-DG). (G, H) BMDMs were cultured overnight with LPS (20ng/mL), BPTES (10µM)/LPS,
FhHDM-1 (15µM)/LPS, or FhHDM-1/BPTES/LPS. (G)The secreted TNF, (H) or IL-6 protein was quantified in the culture media by ELISA (n=3). Data is
representative of two-five independent experiments and is presented as means ± SEMs. Statistical significance was determined by a one-way ANOVA
with Tukey’s multiple comparison test.
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In addition, and supporting the evidence of increased

glutaminolysis, treatment of macrophages with FhHDM-1 resulted

in an increased ratio of a-KG:succinate (Figure 5E). However, in

contrast to IL-4 stimulation, no significant increase in the expression

of the M2 markers arginase 1 (Arg1), Retnla or chitinase 3-like-3 was

observed in macrophages treated either with FhHDM-1 alone, or in
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combination with LPS (Figure 5F). Unlike the treatment of

macrophages with IL-4, in which the abundance of both a-KG and

succinate are altered, the increased ratio of a-KG:succinate in

FhHDM-1 treated macrophages is solely attributable to an increase

in the levels of a-KG, with no significant change in the levels of

succinate, in comparison to cells stimulated with LPS (Figure 5G, H).
B

C D E

F
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A

FIGURE 5

The regulation of inflammatory response by FhHDM-1 is associated with an increased aKetoglutarate : Succinate ratio, is dependent on FAS, and is
independent of a switch to an M2 phenotype. (A) BMDMs were either untreated (UT) or treated with LPS (20ng/ml), FhHDM-1 (2.5µM), FhHDM/LPS or
NHP (2.5µM)/LPS for 18h (n=5). The oxygen consumption rate (OCR) was measured at basal levels and following sequential treatments with oligomycin,
FCCP, and rotenone/antimycin A (Rot+AA) to determine (B) the maximum respiratory capacity of cells. (C) BMDMs were treated with LPS (20ng/mL), LPS
and Etomoxir (ETO) the inhibitor of fatty acid oxidation (5µM), FhHDM-1 (2.5µM)/LPS or FhHDM-1/ETO/LPS for 18h (n=3). The quantity of TNF, and
(D) IL-6 released into the culture media was quantified by ELISA. (E) The intracellular ratio of a-ketoglutarate(a-KG):succinate in BMDMs treated
overnight with LPS (20ng/mL), IL-4 (20ng/mL), FhHDM-1 (15µM), or a combination of FhHDM-1 and LPS (n=6) was calculated from the abundance of the
individual metabolites as quantified by mass spectroscopy. (F) The differential expression of Arg1, Retnla, and Ym1 was measured by qRT-PCR in cell
lysates of BMDMs that were either untreated (UT) or cultured with LPS (20ng/mL), IL-4 (20ng/mL), FhHDM-1 (15µM), or a combination of FhHDM-1 and
LPS for 6h (n=3). (G) Intracellular levels of a-KG and (H) succinate in BMDMs treated overnight with LPS (20ng/mL), IL-4 (20ng/mL), FhHDM-1 (15µM) or
FhHDM-1 and LPS (n=6) was measured by mass spectrometry after metabolite extraction. Data is representative of three independent experiments and is
presented as means ± SEMs. Statistical significance was determined by a one-way ANOVA with Tukey’s multiple comparison test. ns, not significant.
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These observations demonstrate that the regulation of inflammatory

responses induced by FhHDM-1 is mediated by an increase in a-KG
via glutaminolysis, and an increase in FAO, independent of

polarization to an M2 phenotype.
Discussion

Emerging evidence indicates that mitochondrial metabolism has a

defining role in regulating the balance of inflammatory versus tolerant

macrophages (53, 54). In this study, we have shown that the parasite

derived peptide, FhHDM-1, reprograms the metabolic activity of

macrophages to regulate the production of TNF and IL-6 in response

to simulation with an inflammatory ligand. Specifically, macrophages

treated with FhHDM-1 were reliant upon OXPHOS fuelled by fatty acids

and supported by elevated levels of a-KG produced by glutaminolysis. In

contrast to IL-4 treated macrophages, the FhHDM-1 induced increase in

FAO dependent OXPHOS metabolism was not associated with the

induction of an M2 phenotype. However, the switch to glutamine

metabolism prevented the induction of glycolysis and inhibited the

activation of a pro-inflammatory M1 phenotype in response to

subsequent stimulation with LPS.

We have previously shown that FhHDM-1 localizes to macrophage

endolysosomes where it inhibits vATPase (36, 37). In the current study,

treatment of macrophages with an inactive variant of FhHDM-1 (NHP)

exerted no effect on the inflammatory response or the metabolic activity,

thereby indicating that inhibition of lysosomal vATPase is required. This

central role for the lysosome explains the difference in metabolic activity

observed between FhHDM-1 and IL-4 treated macrophages, as the

OXPHOS induced by IL-4 was reportedly dependent on lysosomal

lipolysis of exogenous fatty acids (23). As the lysosomes of FhHDM-1

treated macrophages would be less acidic (due to inhibition of vATPase

activity), lipolysis would be inhibited, and consequently the macrophages

becomemore metabolically reliant on endogenous fatty acids synthesized

from glutamine.

The premise that FhHDM-1 induced vATPase inhibition is

modulating macrophage metabolism is corroborated by comparison to

the biological activity of the vATPase inhibitor, bafilomycin A1 (BafA1).

Like FhHDM-1, macrophages treated with BafA1 displayed a metabolic

preference for OXPHOS, which was attributable to protons being

rechannelled to the mitochondria due to impaired acidification of

lysosomes (55). While the fuel source supporting this metabolic switch

was not identified, Huh7 liver cells treated with the vATPase inhibitor,

Archazolid-A, also displayed a metabolic shift to OXPHOS, which was

shown to be glutamine dependent (56). Furthermore, increased cytosolic

acidification in human fibroblasts was shown to induce the expression of

glutaminase-1 and drive a switch towards glutaminolysis (57). It has been

proposed that this alteration in metabolic activity is required in response

to the change in cellular pH, as the ammonia produced by glutaminoysis

neutralises the cytosolic pH to prevent cell death (57).

It has now been established that a-KG, another product of

glutaminolysis, functions as a metabolic checkpoint for the

reprogramming of macrophage phenotype and functional activity (52,

58, 59). Although the mechanism by which a-KG induces immune

tolerance has not been fully elucidated, it has been shown that as a co-

factor for the histone demethylase KDM5, it mediates the demethylation

of active histone marks (H3K4me1/3) to reduce the expression of pro-
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inflammatory cytokines in macrophages (58). However, FhHDM-1

treated cells did not show any change in the expression of TNF,

suggesting an alternative mechanism. An increased abundance of a-
KG has also been shown to reduce the expression of DNMT3B, a DNA

methyltransferase which mediates the differentiation of M1macrophages

(60, 61). In addition, the reduced expression of DNMT3B leads to a

correlative reduction in the expression levels of dynamin-1-like protein

(Drp1) (60). This is notable as Drp1 is an enzyme that catalyzes

mitochondrial fission, a morphology that is associated with

inflammation and enhanced glycolysis (55, 62). Consistent with this

scenario, Drp1 is enriched on mitochondria in LPS-activated

macrophages and is required for the induction of glycolysis, and the

selective expression and/or secretion of pro-inflammatory cytokines. Like

the outcome from FhHDM-1 treatment, silencing Drp1 in macrophages

resulted in the translational, but not transcriptional, regulation of TNF

expression (62, 63). This pathway proposes an intriguing link between

glutaminolysis, mitochondrial dynamics, and the regulation of

inflammatory responses.

The induction of glutaminolysis by FhHDM-1 also promoted an

enhanced OXPHOS with a dependency on FAO. While the data

presented here indicated that FAO was reliant on the synthesis of

endogenous fatty acids, future inhibitory studies will be required to

definitively connect FAS to FAO in FhHDM-1 treated cells.

Nevertheless, a central functional role for FAO was established, as

the inhibition of FAO in FhHDM-1 treated macrophages reduced the

peptide’s regulatory effect, restoring the production of TNF and IL-6

in response to LPS stimulation. This outcome may suggest that the

accumulation of a-KG is mediating the synthesis of endogenous fatty

acids for subsequent oxidation, and it is in fact this pathway that is

regulating the induction of glycolysis and production of pro-

inflammatory cytokines, rather than a direct role for a-KG.
However, a switch in mitochondrial dynamics from fission to

fusion promoted by an increase in a-KG (60), is also required to

support FAO and OXPHOS. Thus, additional studies will be required

to elucidate the functional activity of the FhHDM-1 induced

abundance of a-KG, and to tease apart the relative contributions of

a-KG and FAO in mediating the FhHDM-1 regulation of the pro-

inflammatory response of macrophages.

Nonetheless, the current literature combined with the data

presented in this study suggest a mechanism by which the

inhibition of lysosomal vATPase by FhHDM-1 causes a metabolic

switch to glutaminolysis, resulting in the accumulation of a-KG and

an increase in FAO. Consequently, the activation of an inflammatory

response, mediated by glycolysis, is selectively regulated and the

production of pro-inflammatory cytokines is inhibited. By

impacting upon these innate regulatory mechanisms of

mitochondrial metabolism, FhHDM-1 utilises a novel strategy for

the regulation of inflammatory responses.

It is becoming widely acknowledged that metabolic

reprogramming offers a unique strategy to fine-tune the functional

activities of macrophages to limit inflammation, as opposed to

globally suppressing inflammatory responses (1). This approach

would allow for the targeted inhibition of pro-inflammatory

pathologies, without compromising the ability to mount immune

responses necessary for infection clearance and immunity after

vaccination. Such a strategy represents a significant advantage over

current immune therapeutic regimes, which are less targeted and
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accordingly induce undesirable global immune suppression. The

demonstration that FhHDM-1 preferentially targets macrophages in

vivo to metabolically reprogram them towards immune tolerance

rather than an anti-inflammatory phenotype, makes this peptide an

attractive therapeutic candidate for the multitude of conditions

mediated by dysregulated or chronic inflammation.
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