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ABSTRACT

Generally speaking, static program analysis is to figure out whether a

program can do whatever the program designers want it to do without

actually executing the program. From different perspectives, static analysis

studies various properties of a program, including correctness, robustness,

liveness, safety and efficiency. As contemporary programs usually tend to

be large and complex, developing efficient automatic program analysis tech-

niques while maintaining soundness and precision is desirable.

Transitivity extensively manifests in the executions of programs, where

controls and data are propagated and processed via flows. Taking data flow

as an example, two assignment instructions a = b and b = c imply a result

a = c, which means that the value of c flows into a via b. Static analyses

inevitably include the analysis of flows, which is usually conducted in the

form of solving dynamic transitive closure on the abstract graph of programs.

The inefficiency arises from not only the high complexity of transitive closure

itself but also the high redundancies of the analysis techniques.

This dissertation studies improving the efficiency of dynamic transitive

closures on graph-based static analysis. Specifically, it focuses on improving

the efficiencies of three popular static analysis frameworks: context-free

language reachability, recursive state machine reachability and set constraint

analysis. All the three frameworks are under the scope of graph analytics.

Namely, all the analyses operate on an abstract graph of the target program.

In this dissertation, the methodologies focus more on eliminating redun-
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dancy rather than theoretically lowering complexity.

For transitive redundancy that arises from the massive re-computations

and re-derivations during the analysis procedures, we design a hybrid data

structure and apply it to context-free language reachability. Based on this,

we propose a partially ordered algorithm, which significantly improves the

scalability of context-free language reachability analysis by eliminating most

re-computations and re-derivations.

For trivial nodes and edges in the abstract graphs of programs, which

cause extra computations in the analysis procedure, we develop a graph

folding technique to remove redundant nodes and edges in the preprocessing

stage and apply it to recursive state machine reachability. The graph folding

technique extends the applicability of some existing techniques from partic-

ular scenarios to general analysis as long as the recursive state machine is

given and is well compatible with other preprocessing techniques.

For set constraint analyses where the graph contains weighted edges, we

discover the derivation equivalence property and propose an approach that

avoids the infinite iterations caused by weighted cycles during constraint

solving. The derivation equivalence based constraint solving is highly efficient

while maintaining the precision.

Notably, the three dynamic transitive closure based program analysis

frameworks, i.e., context-free language reachability, recursive state machine

reachability and set constraint solving, are generally recognized as inter-

convertible. Accordingly, the three techniques proposed in this dissertation

are mutually compatible. The empirical study on real-world clients, includ-

ing value-flow analysis, alias analysis and pointer analysis, shows that our

approaches are practical and effective.
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