
Improving the Efficiency of Graph-
Based Static Analysis

by Yuxiang Lei

Thesis submitted in fulfilment of the requirements for
the degree of

Doctor of Philosophy (Software Engineering)

under the supervision of Dr Yulei Sui

University of Technology Sydney
Faculty of Engineering and Information Technology

12/2022

Improving the Efficiency of Graph-Based Static Analysis

A thesis submitted in fulfilment of the requirements

for the degree of

Doctor of Philosophy
in

Software Engineering

by

Yuxiang Lei

to

School of Computer Science

Faculty of Engineering and Information Technology

University of Technology Sydney

NSW - 2007, Australia

December 2022

© 2022 by Yuxiang Lei
All Rights Reserved

CERTIFICATE OF ORIGINAL AUTHORSHIP

I , Yuxiang Lei declare that this thesis is submitted in fulfilment of the

requirements for the award of Doctor of Philosophy, in the School of

Computer Science, Faculty of Engineering and Information Technology at the

University of Technology Sydney. This thesis is wholly my own work unless

otherwise referenced or acknowledged. In addition, I certify that all informa-

tion sources and literature used are indicated in the thesis. This document

has not been submitted for qualifications at any other academic institution.

This research is supported by the Australian Government Research Training

Program.

SIGNATURE:

DATE: 30th December, 2022

PLACE: Sydney, Australia

i

Production Note:

Signature removed prior to publication.

ABSTRACT

Generally speaking, static program analysis is to figure out whether a

program can do whatever the program designers want it to do without

actually executing the program. From different perspectives, static analysis

studies various properties of a program, including correctness, robustness,

liveness, safety and efficiency. As contemporary programs usually tend to

be large and complex, developing efficient automatic program analysis tech-

niques while maintaining soundness and precision is desirable.

Transitivity extensively manifests in the executions of programs, where

controls and data are propagated and processed via flows. Taking data flow

as an example, two assignment instructions a = b and b = c imply a result

a = c, which means that the value of c flows into a via b. Static analyses

inevitably include the analysis of flows, which is usually conducted in the

form of solving dynamic transitive closure on the abstract graph of programs.

The inefficiency arises from not only the high complexity of transitive closure

itself but also the high redundancies of the analysis techniques.

This dissertation studies improving the efficiency of dynamic transitive

closures on graph-based static analysis. Specifically, it focuses on improving

the efficiencies of three popular static analysis frameworks: context-free

language reachability, recursive state machine reachability and set constraint

analysis. All the three frameworks are under the scope of graph analytics.

Namely, all the analyses operate on an abstract graph of the target program.

In this dissertation, the methodologies focus more on eliminating redun-

iii

dancy rather than theoretically lowering complexity.

For transitive redundancy that arises from the massive re-computations

and re-derivations during the analysis procedures, we design a hybrid data

structure and apply it to context-free language reachability. Based on this,

we propose a partially ordered algorithm, which significantly improves the

scalability of context-free language reachability analysis by eliminating most

re-computations and re-derivations.

For trivial nodes and edges in the abstract graphs of programs, which

cause extra computations in the analysis procedure, we develop a graph

folding technique to remove redundant nodes and edges in the preprocessing

stage and apply it to recursive state machine reachability. The graph folding

technique extends the applicability of some existing techniques from partic-

ular scenarios to general analysis as long as the recursive state machine is

given and is well compatible with other preprocessing techniques.

For set constraint analyses where the graph contains weighted edges, we

discover the derivation equivalence property and propose an approach that

avoids the infinite iterations caused by weighted cycles during constraint

solving. The derivation equivalence based constraint solving is highly efficient

while maintaining the precision.

Notably, the three dynamic transitive closure based program analysis

frameworks, i.e., context-free language reachability, recursive state machine

reachability and set constraint solving, are generally recognized as inter-

convertible. Accordingly, the three techniques proposed in this dissertation

are mutually compatible. The empirical study on real-world clients, includ-

ing value-flow analysis, alias analysis and pointer analysis, shows that our

approaches are practical and effective.

iv

ACKNOWLEDGMENTS

F irst, I would like to express my sincere gratitude to my supervisor, Prof.

Yulei Sui, for presenting me with a chance to study at the University

of Technology Sydney as a sponsored student. He told me how to improve

my communication, writing and programming skills. His wisdom, dedication,

scrupulousness and patience guided me throughout my PhD candidature and

continuously illuminated my future research.

Besides, I would like to thank Prof. Qirun Zhang and Prof. Shinhwei Tan.

Their deep insights and sweet suggestions inspired me when I got lost in my

research topics.

Moreover, I would like to thank my colleagues Dr. Pei Xu, Dr. Guanqin

Zhang and Dr. Xiao Cheng, who helped me with my school issues when I was

on leave of absence and not in Sydney due to COVID-19. I would also like to

thank Dr. Chandranath Adak, who provided this beautiful thesis template.

My greatest thankfulness is owed to my parents. They brought me up,

sharing knowledge with me and supporting me to pursue a higher education

degree from material and spiritual tiers. Without them, I would never have

had a chance to study and meet friendly people at UTS. When I was frustrated,

their encouragements were always the most powerful motivation to me.

v

TABLE OF CONTENTS

List of Publications xi

List of Figures xiii

List of Tables xvii

1 Introduction 1

1.1 Background . 1

1.1.1 Context-Free Language Reachability (CFL-Reachability) 3

1.1.2 Recursive Static Machine (RSM) . 4

1.1.3 Set Constraint Analysis . 5

1.2 Research Topics . 6

1.2.1 Eliminating Transitive Redundancy On-The-Fly 7

1.2.2 Simplifying the Input Graph in the Proprocessing Stage 9

1.2.3 Precise and Efficient Handling of Positive Weight Cycles 10

1.3 Contributions . 13

1.3.1 Eliminating Transitive Redundancy On-The-Fly 13

1.3.2 Recursive State Machine Guided Graph Folding 13

1.3.3 Fast and Precise Handling of Positive Weight Cycles 14

1.4 Thesis Organization . 15

2 Literature Review 17

2.1 Context-Free Language and CFL-reachability 17

vii

TABLE OF CONTENTS

2.2 Pushdown Automata and Recursive State Machines 18

2.3 Set Constraint Analysis . 19

2.4 Efficiency Study . 20

3 Taming Transitive Redundancy for Context-Free Language Reachability 23

3.1 Problem Formulation . 23

3.1.1 CFL-Reachability . 23

3.1.2 Redundant Derivations and Transitive Redundancy 26

3.1.3 Research Problem . 28

3.2 Our Solution . 30

3.2.1 Hybrid Graph Representation for Reducing Redundant Derivations 31

3.2.2 Dynamic Construction of Spanning Trees 35

3.2.3 POCR: A Fast Partially Ordered CFL-Reachability Algorithm for

All-Pairs Analyses . 41

3.3 Discussion: Effectiveness of POCR . 43

3.3.1 Grammars Benefiting from POCR . 43

3.3.2 Grammar-Driven Redundancy Reduction 44

3.4 Experimental Evaluation . 46

3.4.1 Experimental Setup . 47

3.4.2 RQ 1: Reduction of Redundant Derivations 49

3.4.3 RQ 2: Speedups Over Baselines . 54

3.4.4 RQ 3: POCR vs. Grammar Rewriting 56

3.4.5 Summary . 58

4 Recursive State Machine Guided Graph Folding 61

4.1 Problem Formulation . 61

4.1.1 Recursive Static Machine . 62

4.1.2 RSM-Reachability . 64

viii

TABLE OF CONTENTS

4.1.3 Research Problem . 65

4.2 Principle for Graph Folding . 67

4.2.1 Correspondences in Graph Folding and RSM-Reachability 68

4.2.2 Folding Principle . 71

4.2.3 Correctness of Folding Principle . 75

4.3 Graph-Folding Algorithm . 79

4.3.1 Identifying Foldable Node Pairs . 79

4.3.2 Overall Algorithm . 82

4.4 Experiment . 83

4.4.1 Experimental Setup . 84

4.4.2 Performance in Reducing Graph Sizes 85

4.4.3 Speedup and Memory Overhead . 89

4.4.4 Discussions . 92

4.4.5 Summary . 92

5 Derivation Equivalence Based Set Constraint Solving 95

5.1 Problem Formulation . 95

5.1.1 Pointer Analysis in Set Constraints 95

5.1.2 Field-Sensitivity and Positive Weight Cycles 97

5.1.3 Derivation Equivalence Based Constraint Solving 101

5.2 Our Solution . 103

5.2.1 Stride-based Field Representation 103

5.2.2 Inference Rules . 105

5.2.3 DEA: a Derivation Equivalence Algorithm 110

5.3 Implementation of Field-Sensitive Pointer Analysis for C/C++ 112

5.4 Experimental Evaluation . 114

5.4.1 Experimental Setup . 114

5.4.2 Results and Analysis . 115

ix

TABLE OF CONTENTS

5.4.3 Summary . 121

6 Conclusion and Future Works 123

A Appendix 125

A.1 Proof of the Soundness of Algorithm 2 . 125

A.2 Proof of Property 4.2 . 126

A.3 Proof of Property 4.3 . 127

Bibliography 133

x

LIST OF PUBLICATIONS

The following is a list of publications that are included in this thesis.

Chapter 3:

Yuxiang Lei, Yulei Sui, Shuo Ding, and Qirun Zhang. "Taming transitive redundancy for

context-free language reachability." Proceedings of the ACM on Programming Languages

6. OOPSLA2 (2022): 1556-1582. (SIPLAN 2022 Distinguished Artifact Award)

Chapter 4:

Yuxiang Lei, Yulei Sui, Qirun Zhang, and Shinhwei Tan. "Recursive State Machine

Guided Graph Folding for Context-Free Language Reachability." Proceedings of the ACM

on Programming Languages 7. PLDI (2023).

Chapter 5:

Yuxiang Lei and Yulei Sui. "Fast and Precise Handling of Positive Weight Cycles for

Field-sensitive Pointer Analysis." Static Analysis: 26th International Symposium, SAS

(2019), Proceedings 26 (pp. 27-47). (Radhia Cousot Young Researcher Best Paper Award)

xi

LIST OF FIGURES

FIGURE Page

1.1 A example of value-flow analysis, where the value-flow from p to r is unknown

unless the value-flow relations of the variables in the function foo is determined. 3

1.2 Transitive redundancy caused by two ways to derive v1
A−→ v4 from v1

A−→ v2
A−→

v3
A−→ v4. 8

1.3 Positive weight cycles and infinite derivations in CFL-reachability. 11

1.4 Positive weight cycles and infinite derivations in set constraint analysis. . . . 11

1.5 Main contributions of this thesis. 14

3.1 Redundant checks in partial transitive derivations, where A is a transitive

relation. 27

3.2 An example. 28

3.3 Predecessor trees and successor trees. The root of each spanning tree is circled. 32

3.4 Processing a new edge v2
A−→ v3 added to Figure 3.3(a) by NewTrEdge (A,v2,v3),

which traverses ptree(A,v2) and stree(A,v3), and updates the ptrees and strees

of the visited nodes. In each step, nodes being visited and newly added are

marked in red and blue, respectively. 38

3.5 CFG for context-sensitive value-flow analysis. 48

3.6 CFG for field-sensitive alias analysis. 48

xiii

LIST OF FIGURES

3.7 The computational redundancy of the three approaches in solving the two

clients. The value is computed by (#Deriv / #Add). The vertical axis is loga-

rithmic. The peak, valley and average values of each approach are marked in

the charts. 53

3.8 Extra memory overhead of POCR over the standard algorithm. Only the

benchmarks successfully solved by the standard algorithm are considered. . . 56

3.9 CFG modified from Figure 3.6 by removing the doubly recursive rules. 57

3.10 Results of context-sensitive value-flow analysis using the modified grammar

in Figure 3.9(a). 58

3.11 Results of field-sensitive alias analysis using the modified grammar in Fig-

ure 3.9(b). 59

4.1 An example of RSM-reachabililty and graph folding. 62

4.2 Correspondences between paths before and after folding. Without loss of

generality, we assume that y is merged into x in the xy-folded graph. 68

4.3 A path pG and its corresponding transition chain pR before and after folding

(x, y). Without loss of generality, we assume that y is merged into x in the

xy-folded graph. 70

4.4 Example of subsumption and equivalence relations of states and instances of

foldable pairs (x, y). 73

4.5 Rules for Cond. 2, where α ∈ {0,1,2}, Lxy, Lx_, L y̸x, and Nr(L_x) are defined in

Table 4.2 and Eq. 4.1. 73

4.6 For the problem running on the RSM in Figure 4.1(a), if v1 ∈ Vsrc and v2 ∈
Vsnk, folding (x, y) introduces an additional reachable pair (v1,v2) in G′ via

v1
(|−→ x |)−→ v2, which violates reachability equivalence. 76

4.7 Four basic types of xy-FEQ classes, where each type contains at most one

xy-subpath. For simplicity, we only draw one edge from x to y and one edge

from y to x. 77

xiv

LIST OF FIGURES

4.8 The CFG and RSM for C/C++ context-sensitive value-flow analysis. 84

4.9 The RSM for C/C++ field-sensitive alias analysis, where the nodes in double

circle denote the exits of the box. 84

4.10 Reduction rates of nodes and edges in the input graphs of value-flow analysis. 87

4.11 Reduction rates of nodes and edges in the input graphs of alias analysis,

where GF denotes graph folding, SCC denotes cycle elimination and InterDyck

denotes the InterDyck graph simplification. 88

4.12 Speedups of CFL-reachability by GF, SCC, InterDyck and their combinations. 90

4.13 Reduction rates of memory overhead by GF. 91

4.14 Two instances of foldable node pair (x, y) in the problem running upon the

RSM of Figure 4.4. 91

5.1 Flowchart of dynamic transitive closure algorithm for pointer analysis. 97

5.2 Rules for field-sensitive pointer analysis. 98

5.3 Positive weight cycle and infinite derivations. 100

5.4 An example. 102

5.5 SFR-based rules for field-sensitive pointer analysis. 106

5.6 Solving p1
Field2−−−−−→ p2, which resides in multiple cycles, with SFRs. 107

5.7 Solving q Store−−−−→ p and p Load−−−→ r for overlapping SFRs. 109

5.8 C code fragment and its LLVM IR. 113

5.9 Percentages of fields derived when solving PWCs out of the total number of

fields, i.e., #FieldByPWC
#Field * 100 . 117

5.10 Comparing the time distribution of the three analysis phases of DEA with

that of baseline (normalized with baseline as the base). 120

A.15 The above four rules holds if the rules in Figure 5 hold for all α ∈ {0,1,2}. . . 128

xv

LIST OF TABLES

TABLE Page

3.1 Benchmark info. #Node and #Edge respectively denote the number of nodes

and edges in the initial graphs. 49

3.2 Result of context-sensitive value-flow analysis. #Add(k) and #Deriv(k) denotes

the number of edges added to the graph and created when solving CFL-

reachability, measured in thousands. Reduction(%) denotes the reduction rate

of redundant derivations of GSA and POCR. Time(s) denotes the runtime of

each approach, measured in seconds. The baselines of both Reduction(%) and

speedup are the columns “Base”. 51

3.3 Result of field-sensitive alias analysis. #Add(k) and #Deriv(k) denotes the num-

ber of edges added to the graph and created when solving CFL-reachability,

measured in thousands. Reduction(%) denotes the reduction rate of redundant

derivations of GSA and POCR. Time(s) denotes the runtime of each approach,

measured in seconds. The baselines of both Reduction(%) and speedup are the

columns “Base”. 52

4.1 The solutions of the RSM-reachability problem in G and G′ of Figure 4.1(b). . 66

4.2 Edge label notations for discussing RSM-reachability. 71

xvii

LIST OF TABLES

4.3 Benchmark info and results of the baseline. #Node and #Edge denote the

number of nodes and edges of each input graph. P-Edge% denotes the per-

centage of parenthesis edges out of total edges of each input graph. Time/s

and Mem./GB denote the runtime and memory overhead of the baseline for

analyzing each program, measured in seconds and gigabytes, respectively. . . 86

4.4 Runtime of GF, SCC and InterDyck, measured in seconds. 89

5.1 Program instructions, constraints and edges. 96

5.2 Basic characteristics of the benchmarks (IR’s lines of code, number of pointers,

number of five types of instructions on the initial constraint graph, and

maximum number of fields of the largest struct in each program). 115

5.3 Comparing the results produced by DEA with those by baseline, including the

total number of address-taken variables, number of fields and the number of

fields derived when resolving PWCs, and the number of Copy edges connected

to/from the field object nodes derived when resolving PWCs 116

5.4 Constraint graph information (#NodeInPWC denotes the number of nodes

involving PWCs by baseline; #SFR denotes the number of stride-based field

representatives, generated by DEA; #CopyByPWC, denotes the number of

Copy edges flowing into and going out of fields derived when solving PWCs;

#CopyProcessed denotes the number of processing Copy edges.) 118

5.5 Total analysis times and the times of the three analysis stages, including

CycleDec cycle detection (Lines 5–6 of Algorithm 9), PtsProp, propagating

point-to information via Copy and Field edges (Lines 9–17), ProcessLdSt,

adding new Copy edges when processing Load/Store and update callgraph

(Lines 20–27). 119

xviii

	Title Page
	Certificate of Original Authorship
	Abstract
	Acknowledgments
	Table of Contents
	List of Publications
	List of Figures
	List of Tables

