
Improving the Efficiency of Graph-
Based Static Analysis

by Yuxiang Lei

Thesis submitted in fulfilment of the requirements for
the degree of

Doctor of Philosophy (Software Engineering)

under the supervision of Dr Yulei Sui

University of Technology Sydney
Faculty of Engineering and Information Technology

12/2022

Improving the Efficiency of Graph-Based Static Analysis

A thesis submitted in fulfilment of the requirements

for the degree of

Doctor of Philosophy
in

Software Engineering

by

Yuxiang Lei

to

School of Computer Science

Faculty of Engineering and Information Technology

University of Technology Sydney

NSW - 2007, Australia

December 2022

© 2022 by Yuxiang Lei
All Rights Reserved

CERTIFICATE OF ORIGINAL AUTHORSHIP

I , Yuxiang Lei declare that this thesis is submitted in fulfilment of the

requirements for the award of Doctor of Philosophy, in the School of

Computer Science, Faculty of Engineering and Information Technology at the

University of Technology Sydney. This thesis is wholly my own work unless

otherwise referenced or acknowledged. In addition, I certify that all informa-

tion sources and literature used are indicated in the thesis. This document

has not been submitted for qualifications at any other academic institution.

This research is supported by the Australian Government Research Training

Program.

SIGNATURE:

DATE: 30th December, 2022

PLACE: Sydney, Australia

i

Production Note:

Signature removed prior to publication.

ABSTRACT

Generally speaking, static program analysis is to figure out whether a

program can do whatever the program designers want it to do without

actually executing the program. From different perspectives, static analysis

studies various properties of a program, including correctness, robustness,

liveness, safety and efficiency. As contemporary programs usually tend to

be large and complex, developing efficient automatic program analysis tech-

niques while maintaining soundness and precision is desirable.

Transitivity extensively manifests in the executions of programs, where

controls and data are propagated and processed via flows. Taking data flow

as an example, two assignment instructions a = b and b = c imply a result

a = c, which means that the value of c flows into a via b. Static analyses

inevitably include the analysis of flows, which is usually conducted in the

form of solving dynamic transitive closure on the abstract graph of programs.

The inefficiency arises from not only the high complexity of transitive closure

itself but also the high redundancies of the analysis techniques.

This dissertation studies improving the efficiency of dynamic transitive

closures on graph-based static analysis. Specifically, it focuses on improving

the efficiencies of three popular static analysis frameworks: context-free

language reachability, recursive state machine reachability and set constraint

analysis. All the three frameworks are under the scope of graph analytics.

Namely, all the analyses operate on an abstract graph of the target program.

In this dissertation, the methodologies focus more on eliminating redun-

iii

dancy rather than theoretically lowering complexity.

For transitive redundancy that arises from the massive re-computations

and re-derivations during the analysis procedures, we design a hybrid data

structure and apply it to context-free language reachability. Based on this,

we propose a partially ordered algorithm, which significantly improves the

scalability of context-free language reachability analysis by eliminating most

re-computations and re-derivations.

For trivial nodes and edges in the abstract graphs of programs, which

cause extra computations in the analysis procedure, we develop a graph

folding technique to remove redundant nodes and edges in the preprocessing

stage and apply it to recursive state machine reachability. The graph folding

technique extends the applicability of some existing techniques from partic-

ular scenarios to general analysis as long as the recursive state machine is

given and is well compatible with other preprocessing techniques.

For set constraint analyses where the graph contains weighted edges, we

discover the derivation equivalence property and propose an approach that

avoids the infinite iterations caused by weighted cycles during constraint

solving. The derivation equivalence based constraint solving is highly efficient

while maintaining the precision.

Notably, the three dynamic transitive closure based program analysis

frameworks, i.e., context-free language reachability, recursive state machine

reachability and set constraint solving, are generally recognized as inter-

convertible. Accordingly, the three techniques proposed in this dissertation

are mutually compatible. The empirical study on real-world clients, includ-

ing value-flow analysis, alias analysis and pointer analysis, shows that our

approaches are practical and effective.

iv

ACKNOWLEDGMENTS

F irst, I would like to express my sincere gratitude to my supervisor, Prof.

Yulei Sui, for presenting me with a chance to study at the University

of Technology Sydney as a sponsored student. He told me how to improve

my communication, writing and programming skills. His wisdom, dedication,

scrupulousness and patience guided me throughout my PhD candidature and

continuously illuminated my future research.

Besides, I would like to thank Prof. Qirun Zhang and Prof. Shinhwei Tan.

Their deep insights and sweet suggestions inspired me when I got lost in my

research topics.

Moreover, I would like to thank my colleagues Dr. Pei Xu, Dr. Guanqin

Zhang and Dr. Xiao Cheng, who helped me with my school issues when I was

on leave of absence and not in Sydney due to COVID-19. I would also like to

thank Dr. Chandranath Adak, who provided this beautiful thesis template.

My greatest thankfulness is owed to my parents. They brought me up,

sharing knowledge with me and supporting me to pursue a higher education

degree from material and spiritual tiers. Without them, I would never have

had a chance to study and meet friendly people at UTS. When I was frustrated,

their encouragements were always the most powerful motivation to me.

v

TABLE OF CONTENTS

List of Publications xi

List of Figures xiii

List of Tables xvii

1 Introduction 1

1.1 Background . 1

1.1.1 Context-Free Language Reachability (CFL-Reachability) 3

1.1.2 Recursive Static Machine (RSM) . 4

1.1.3 Set Constraint Analysis . 5

1.2 Research Topics . 6

1.2.1 Eliminating Transitive Redundancy On-The-Fly 7

1.2.2 Simplifying the Input Graph in the Proprocessing Stage 9

1.2.3 Precise and Efficient Handling of Positive Weight Cycles 10

1.3 Contributions . 13

1.3.1 Eliminating Transitive Redundancy On-The-Fly 13

1.3.2 Recursive State Machine Guided Graph Folding 13

1.3.3 Fast and Precise Handling of Positive Weight Cycles 14

1.4 Thesis Organization . 15

2 Literature Review 17

2.1 Context-Free Language and CFL-reachability 17

vii

TABLE OF CONTENTS

2.2 Pushdown Automata and Recursive State Machines 18

2.3 Set Constraint Analysis . 19

2.4 Efficiency Study . 20

3 Taming Transitive Redundancy for Context-Free Language Reachability 23

3.1 Problem Formulation . 23

3.1.1 CFL-Reachability . 23

3.1.2 Redundant Derivations and Transitive Redundancy 26

3.1.3 Research Problem . 28

3.2 Our Solution . 30

3.2.1 Hybrid Graph Representation for Reducing Redundant Derivations 31

3.2.2 Dynamic Construction of Spanning Trees 35

3.2.3 POCR: A Fast Partially Ordered CFL-Reachability Algorithm for

All-Pairs Analyses . 41

3.3 Discussion: Effectiveness of POCR . 43

3.3.1 Grammars Benefiting from POCR . 43

3.3.2 Grammar-Driven Redundancy Reduction 44

3.4 Experimental Evaluation . 46

3.4.1 Experimental Setup . 47

3.4.2 RQ 1: Reduction of Redundant Derivations 49

3.4.3 RQ 2: Speedups Over Baselines . 54

3.4.4 RQ 3: POCR vs. Grammar Rewriting 56

3.4.5 Summary . 58

4 Recursive State Machine Guided Graph Folding 61

4.1 Problem Formulation . 61

4.1.1 Recursive Static Machine . 62

4.1.2 RSM-Reachability . 64

viii

TABLE OF CONTENTS

4.1.3 Research Problem . 65

4.2 Principle for Graph Folding . 67

4.2.1 Correspondences in Graph Folding and RSM-Reachability 68

4.2.2 Folding Principle . 71

4.2.3 Correctness of Folding Principle . 75

4.3 Graph-Folding Algorithm . 79

4.3.1 Identifying Foldable Node Pairs . 79

4.3.2 Overall Algorithm . 82

4.4 Experiment . 83

4.4.1 Experimental Setup . 84

4.4.2 Performance in Reducing Graph Sizes 85

4.4.3 Speedup and Memory Overhead . 89

4.4.4 Discussions . 92

4.4.5 Summary . 92

5 Derivation Equivalence Based Set Constraint Solving 95

5.1 Problem Formulation . 95

5.1.1 Pointer Analysis in Set Constraints 95

5.1.2 Field-Sensitivity and Positive Weight Cycles 97

5.1.3 Derivation Equivalence Based Constraint Solving 101

5.2 Our Solution . 103

5.2.1 Stride-based Field Representation 103

5.2.2 Inference Rules . 105

5.2.3 DEA: a Derivation Equivalence Algorithm 110

5.3 Implementation of Field-Sensitive Pointer Analysis for C/C++ 112

5.4 Experimental Evaluation . 114

5.4.1 Experimental Setup . 114

5.4.2 Results and Analysis . 115

ix

TABLE OF CONTENTS

5.4.3 Summary . 121

6 Conclusion and Future Works 123

A Appendix 125

A.1 Proof of the Soundness of Algorithm 2 . 125

A.2 Proof of Property 4.2 . 126

A.3 Proof of Property 4.3 . 127

Bibliography 133

x

LIST OF PUBLICATIONS

The following is a list of publications that are included in this thesis.

Chapter 3:

Yuxiang Lei, Yulei Sui, Shuo Ding, and Qirun Zhang. "Taming transitive redundancy for

context-free language reachability." Proceedings of the ACM on Programming Languages

6. OOPSLA2 (2022): 1556-1582. (SIPLAN 2022 Distinguished Artifact Award)

Chapter 4:

Yuxiang Lei, Yulei Sui, Qirun Zhang, and Shinhwei Tan. "Recursive State Machine

Guided Graph Folding for Context-Free Language Reachability." Proceedings of the ACM

on Programming Languages 7. PLDI (2023).

Chapter 5:

Yuxiang Lei and Yulei Sui. "Fast and Precise Handling of Positive Weight Cycles for

Field-sensitive Pointer Analysis." Static Analysis: 26th International Symposium, SAS

(2019), Proceedings 26 (pp. 27-47). (Radhia Cousot Young Researcher Best Paper Award)

xi

LIST OF FIGURES

FIGURE Page

1.1 A example of value-flow analysis, where the value-flow from p to r is unknown

unless the value-flow relations of the variables in the function foo is determined. 3

1.2 Transitive redundancy caused by two ways to derive v1
A−→ v4 from v1

A−→ v2
A−→

v3
A−→ v4. 8

1.3 Positive weight cycles and infinite derivations in CFL-reachability. 11

1.4 Positive weight cycles and infinite derivations in set constraint analysis. . . . 11

1.5 Main contributions of this thesis. 14

3.1 Redundant checks in partial transitive derivations, where A is a transitive

relation. 27

3.2 An example. 28

3.3 Predecessor trees and successor trees. The root of each spanning tree is circled. 32

3.4 Processing a new edge v2
A−→ v3 added to Figure 3.3(a) by NewTrEdge (A,v2,v3),

which traverses ptree(A,v2) and stree(A,v3), and updates the ptrees and strees

of the visited nodes. In each step, nodes being visited and newly added are

marked in red and blue, respectively. 38

3.5 CFG for context-sensitive value-flow analysis. 48

3.6 CFG for field-sensitive alias analysis. 48

xiii

LIST OF FIGURES

3.7 The computational redundancy of the three approaches in solving the two

clients. The value is computed by (#Deriv / #Add). The vertical axis is loga-

rithmic. The peak, valley and average values of each approach are marked in

the charts. 53

3.8 Extra memory overhead of POCR over the standard algorithm. Only the

benchmarks successfully solved by the standard algorithm are considered. . . 56

3.9 CFG modified from Figure 3.6 by removing the doubly recursive rules. 57

3.10 Results of context-sensitive value-flow analysis using the modified grammar

in Figure 3.9(a). 58

3.11 Results of field-sensitive alias analysis using the modified grammar in Fig-

ure 3.9(b). 59

4.1 An example of RSM-reachabililty and graph folding. 62

4.2 Correspondences between paths before and after folding. Without loss of

generality, we assume that y is merged into x in the xy-folded graph. 68

4.3 A path pG and its corresponding transition chain pR before and after folding

(x, y). Without loss of generality, we assume that y is merged into x in the

xy-folded graph. 70

4.4 Example of subsumption and equivalence relations of states and instances of

foldable pairs (x, y). 73

4.5 Rules for Cond. 2, where α ∈ {0,1,2}, Lxy, Lx_, L y̸x, and Nr(L_x) are defined in

Table 4.2 and Eq. 4.1. 73

4.6 For the problem running on the RSM in Figure 4.1(a), if v1 ∈ Vsrc and v2 ∈
Vsnk, folding (x, y) introduces an additional reachable pair (v1,v2) in G′ via

v1
(|−→ x |)−→ v2, which violates reachability equivalence. 76

4.7 Four basic types of xy-FEQ classes, where each type contains at most one

xy-subpath. For simplicity, we only draw one edge from x to y and one edge

from y to x. 77

xiv

LIST OF FIGURES

4.8 The CFG and RSM for C/C++ context-sensitive value-flow analysis. 84

4.9 The RSM for C/C++ field-sensitive alias analysis, where the nodes in double

circle denote the exits of the box. 84

4.10 Reduction rates of nodes and edges in the input graphs of value-flow analysis. 87

4.11 Reduction rates of nodes and edges in the input graphs of alias analysis,

where GF denotes graph folding, SCC denotes cycle elimination and InterDyck

denotes the InterDyck graph simplification. 88

4.12 Speedups of CFL-reachability by GF, SCC, InterDyck and their combinations. 90

4.13 Reduction rates of memory overhead by GF. 91

4.14 Two instances of foldable node pair (x, y) in the problem running upon the

RSM of Figure 4.4. 91

5.1 Flowchart of dynamic transitive closure algorithm for pointer analysis. 97

5.2 Rules for field-sensitive pointer analysis. 98

5.3 Positive weight cycle and infinite derivations. 100

5.4 An example. 102

5.5 SFR-based rules for field-sensitive pointer analysis. 106

5.6 Solving p1
Field2−−−−−→ p2, which resides in multiple cycles, with SFRs. 107

5.7 Solving q Store−−−−→ p and p Load−−−→ r for overlapping SFRs. 109

5.8 C code fragment and its LLVM IR. 113

5.9 Percentages of fields derived when solving PWCs out of the total number of

fields, i.e., #FieldByPWC
#Field * 100 . 117

5.10 Comparing the time distribution of the three analysis phases of DEA with

that of baseline (normalized with baseline as the base). 120

A.15 The above four rules holds if the rules in Figure 5 hold for all α ∈ {0,1,2}. . . 128

xv

LIST OF TABLES

TABLE Page

3.1 Benchmark info. #Node and #Edge respectively denote the number of nodes

and edges in the initial graphs. 49

3.2 Result of context-sensitive value-flow analysis. #Add(k) and #Deriv(k) denotes

the number of edges added to the graph and created when solving CFL-

reachability, measured in thousands. Reduction(%) denotes the reduction rate

of redundant derivations of GSA and POCR. Time(s) denotes the runtime of

each approach, measured in seconds. The baselines of both Reduction(%) and

speedup are the columns “Base”. 51

3.3 Result of field-sensitive alias analysis. #Add(k) and #Deriv(k) denotes the num-

ber of edges added to the graph and created when solving CFL-reachability,

measured in thousands. Reduction(%) denotes the reduction rate of redundant

derivations of GSA and POCR. Time(s) denotes the runtime of each approach,

measured in seconds. The baselines of both Reduction(%) and speedup are the

columns “Base”. 52

4.1 The solutions of the RSM-reachability problem in G and G′ of Figure 4.1(b). . 66

4.2 Edge label notations for discussing RSM-reachability. 71

xvii

LIST OF TABLES

4.3 Benchmark info and results of the baseline. #Node and #Edge denote the

number of nodes and edges of each input graph. P-Edge% denotes the per-

centage of parenthesis edges out of total edges of each input graph. Time/s

and Mem./GB denote the runtime and memory overhead of the baseline for

analyzing each program, measured in seconds and gigabytes, respectively. . . 86

4.4 Runtime of GF, SCC and InterDyck, measured in seconds. 89

5.1 Program instructions, constraints and edges. 96

5.2 Basic characteristics of the benchmarks (IR’s lines of code, number of pointers,

number of five types of instructions on the initial constraint graph, and

maximum number of fields of the largest struct in each program). 115

5.3 Comparing the results produced by DEA with those by baseline, including the

total number of address-taken variables, number of fields and the number of

fields derived when resolving PWCs, and the number of Copy edges connected

to/from the field object nodes derived when resolving PWCs 116

5.4 Constraint graph information (#NodeInPWC denotes the number of nodes

involving PWCs by baseline; #SFR denotes the number of stride-based field

representatives, generated by DEA; #CopyByPWC, denotes the number of

Copy edges flowing into and going out of fields derived when solving PWCs;

#CopyProcessed denotes the number of processing Copy edges.) 118

5.5 Total analysis times and the times of the three analysis stages, including

CycleDec cycle detection (Lines 5–6 of Algorithm 9), PtsProp, propagating

point-to information via Copy and Field edges (Lines 9–17), ProcessLdSt,

adding new Copy edges when processing Load/Store and update callgraph

(Lines 20–27). 119

xviii

C
H

A
P

T
E

R

1
INTRODUCTION

This dissertation, from the perspective of static analysis, provides three techniques

to optimize the dynamic transitive closure based program analysis. In this chapter,

we give a brief introduction about the background, research topics, contribution and

organization of this dissertation.

1.1 Background

Generally speaking, program analysis is to figure out whether a program can do what-

ever the program designers want it to do. From different perspectives and in different

ways, program analysis studies various properties of a program, including correctness,

robustness, liveness, safety and efficiency.

Static analysis, relative to dynamic analysis, operates without actually executing

a program. When developing real-world projects, the nature of static analysis allows

developers to use it before deployment and permits weaknesses to be found earlier in the

development life cycle. By detecting defects at an early stage, the cost for rework can be

reduced and more efficient development can be achieved. In recent years, a large variety

of (commercial/educational) static analysis tools were proposed and performing important

1

CHAPTER 1. INTRODUCTION

roles in better program understanding, vulnerability detection, compiler optimization,

etc. For example, for C/C++ analysis, there are Clang [83], CPAchecker [19], UTaipan

[35], SVF [124], etc; for Java analysis, there are PMD [98], Checkstyle [28], Findbugs

[39], etc.

Static analysis is usually performed based on the user’s requirements or design of

code. To satisfy different requirements, static analysis uses formal methods to carry

out semantics analysis, syntax analysis, control flow analysis, data flow analysis, etc,

among which a large proportion aims to determine specific relations among the elements

(e.g., variables/functions/classes) of a program and is carried out in the form of solving

dynamic transitive closures [10, 27, 105, 110, 143].

Dynamic transitive closure based program analysis usually operates on an abstract

graph, which is obtained from the source code, intermediate representation (after pre-

compilation) or bitcode (after compilation) by particular tools [19, 52, 73, 82, 124]. In

the abstract graph, the nodes represent the program elements, like functions in a call

graph [47, 48], variables in a value-flow graph [61, 126] and pointers in an Andersen’s

constraint graph [10, 58], and the edges describe the relations among the elements,

which are usually formal representations of the program instructions.

Transitivity is ubiquitous in static analysis. Consider a simple and common example,

which studies value flows among variables: given two assignment instructions b = a

and c = b, the transitivity of value flows indicates that c = a, meaning that the value

of the variable a flows into the variable c via the variable b through two assignment

instructions. In ordinary directed (or undirected) graphs where edges are not classified

into different types, transitive closure can be solved efficiently using ordered graph

traversal, e.g., depths-first traversal or width-first traversal.

The difficulty is that, in a real-world program, there are multiple types of relations

manifesting in different kinds of edges in the abstract graph, among which some are not

explicit until others are solved. The computation in such scenarios is terms as “dynamic

2

1.1. BACKGROUND

int foo(a) {
int b = a;
return b;

}
int p,q,r;
q = p;
r = foo(q);

(a) Code fragment. (b) Abstract graph.

Figure 1.1. A example of value-flow analysis, where the value-flow from p to r is unknown unless

the value-flow relations of the variables in the function foo is determined.

transitive closure” problem [10, 27, 105, 110, 143]. The naive graph-traversal approaches

can hardly solve the dynamic transitive closure of the abstract graphs of programs.

Consider the example in Figure 1.1. Whether the value of q flows to p is unknown unless

we make clear the value-flow relations of the variables in the function foo.

Formal methods for solving dynamic transitive closure based program analysis

includes formal languages [21, 46, 69, 141, 146], automata [6–8, 88, 115], constraint

analysis [10, 49, 122], etc. This dissertation involves three fundamental frameworks of

them, i.e., context-free language reachability [141], recursive state machine [6] and set

constraint analysis [10].

1.1.1 Context-Free Language Reachability (CFL-Reachability)

A context-free language (CFL) [11, 71] is a set of strings (words) which are comprised of

symbols (letters) belonging to an alphabet and are accepted by a context-free grammar

(CFG). The CFG contains a series of production rules describing how a symbol of the

alphabet generates a string comprised of multiple symbols. Judging whether a string

is accepted by the CFG is to determine whether the string can be derived from a start

symbol (a particular symbol of the alphabet) of the CFG via one or more production rules.

Given an edge-labeled directed graph, a context-free language reachability (CFL-

3

CHAPTER 1. INTRODUCTION

reachability) problem [141] determines whether specific source-sink pairs in the graph

are connected by a reachable path, i.e., a path whose edge labels form (in sequence) a

string accepted by the given context-free grammar. CFL-reachability is solved using

a dynamic programming algorithm [86], which exhaustively computes and records all

reachability relations of nodes in the input graph via a scheme called summarization

[105, 141], which summarizes new edges from existing ones and adds them into the

graph to represent the detected reachability relations. The mechanism of the algorithm

can be briefly described as following steps: (1) keep a worklist to hold all the unprocessed

edges; (2) iteratively select two adjacent edges, of which at least one is removed from the

worklist, to generate a new edge according to the production rules; (3) add the generated

edge to the graph and the worklist; (4) repeat steps (2)–(3) until the worklist is empty,

which means that there is not any new edge that can be added to the graph.

CFL-reachability extends ordinary graph reachability from unlabeled graphs to edge-

labeled graphs and allows reachability relations of nodes to be determined by particular

rules that describes semantics of specific applications. It has been widely applied to a

large variety of static analyses including shape analysis [106], polymorphic flow analysis

[104], data flow analysis [100, 105, 141, 146], typestate analysis [89, 132] and pointer

analysis [117, 147, 149].

1.1.2 Recursive Static Machine (RSM)

In real applications, context-free languages are also expressed using automata [6, 11].

As an alternative form of context-free languages, recursive state machines (RSMs)

[6, 8, 27, 149] are also widely used in program analysis. Recursive state machines

enhance the power of ordinary finite state machines by allowing them to recursively

invoke each other. An RSM is comprised of a series of component finite state machines

with each component containing one or more entrances and exits to accept the invocation

from other components. In an RSM constructed upon an alphabet, a state is reached

4

1.1. BACKGROUND

from another via a symbol of the alphabet according to a transition function. The state

transitions can either entering or exiting boxes, which naturally model the calls and

returns of interprocedural control flows.

By formulating CFL-reachability into RSM-reachability, special algorithms for par-

ticular clients are available. For example, based on the equivalent RSM of the context-

free grammar of alias analysis, Zheng and Rugina [149] proposed an algorithm for

demand-driven alias analysis for C. Zhang et al. [147] fine tuned the RSM and proposed

another algorithm to efficiently solve all-pair alias analysis for C. A large variety of

CFL-reachability problems are solved with the auxiliary of recursive state machines

[84, 105, 114, 116, 117, 132].

1.1.3 Set Constraint Analysis

A set constraint problem [49] is comprised of a graph and a series of rules describing how

the constraint is solved. In the graph, each node possesses a set holding the elements

subordinate to the node, and each edge denotes a set constraint relation between two

vertices, including union, intersection, complementation, equivalence, etc.

Solving set constraint analysis is to iteratively propagate the elements in the set

of nodes according to the descriptive rules until all the constraints in the graph are

satisfied. In general, set constraint is solved using a dynamic programming algorithm

[10, 51] which maintains a worklist holding the nodes whose set elements need to be

propagated to the set of other nodes along the edges, which is caused by unsatisfied

constraints. The algorithm terminates when the worklist is empty, which means that all

the constraint relations among the sets (of nodes) are satisfied.

The most popular application of set constraint analysis in static analysis is Andersen’s

pointer analysis [10, 51, 97, 117], where each node represents a variable (a pointer or

a memory object), and each edge is a constraint converted from instructions involving

pointer operations, such as address taken, reference/dereference, field access [96], etc.

5

CHAPTER 1. INTRODUCTION

Each node is assigned a point-to set, holding memory objects that may be pointed to by

the variable represented by the node during the execution of the program. By solving the

constraints, the result will reveal the potential pointee for all the pointers.

The three frameworks were claimed and proved to have equivalent expressiveness

in the literature [6, 86]. They can be used alternatively to solve the same problem from

different angles.

1.2 Research Topics

The efficiency of program analysis has been attracting researchers’ interest. In particular,

for dynamic transitive closure based program analysis, the large (cubic) complexity and

redundancy limit its scalability for analyzing large programs. Researchers have tried to

scale dynamic transitive closure based program analysis from two perspectives: lowing

complexity and reducing redundancy.

Due to the difficulty in implementation, existing subcubic dynamic transitive closure

algorithms [22, 75, 136, 138] were not widely applied in practice. Relatively, a large

variety of techniques were proposed to reduce redundancy in the preprocessing stage

[41, 51, 52, 57, 80, 111] or in the solving procedure [1, 65, 68, 90, 95, 133, 145, 147, 150]

for real-world program analysis clients.

This dissertation, from a more practical perspective, studies reducing redundancy for

the three interchangeable fundamental frameworks of dynamic transitive closure based

program analysis from three aspects: (1) reducing redundant computation on the fly, (2)

simplifying the input graph in the preprocessing stage, and (3) optimizing the solving of

weighted constraints.

6

1.2. RESEARCH TOPICS

1.2.1 Eliminating Transitive Redundancy On-The-Fly

Our empirical study (Section 3.4) shows that, in the solving procedure of context-free

language reachability (CFL-reachability), redundant computation is majorly caused by

transitive relations. Transitive relations can manifest in various forms, whereas the

essence is that new transitive relations can be derived from existing ones via concatena-

tion. Specifically, with A denoting a type of transitive relations, for any three nodes vi,

v j and vk in a graph, vi
A−→ v j

A−→ vk indicates vi
A−→ vk. Contemporary program analyses

extensively deal with transitive relations. For example, control/data/value flows [105]

are transitive. Besides, the widely applicable Dyck-relations [25, 114, 144, 145] are also

transitive.

Let us consider the example in Figure 1.2, for a path v1
A−→ v2

A−→ v3
A−→ v4, there are

two ways to derive the edge v1
A−→ v4, whereas v1

A−→ v4 only needs to be derived once to

make explicit the A-relation from v1 to v4. Intuitively, we can summarize v1
A−→ v4 from

the head, i.e., v1, to the tail, i.e., v4, so as to avoid the repeated derivation of v1
A−→ v4

caused by Figure 1.2(b). However, the standard, also most widely used, CFL-reachability

algorithm [86] does not have the ability to find a proper order to derive edges and avoid

repeated computations. Conversely, all ways to derive an edge will be triggered in most

cases, leading to the so-called transitive redundancy. And such transitive redundancy is

further amplified for longer paths with more transitive edges derived during the dynamic

CFL-reachability solving.

Unfortunately, transitive redundancy cannot be eliminated by simply contracting

transitive edge during solving because arbitrary contraction can lead to incorrect/im-

precise results, especially in the dynamically changing graph of CFL-reachability. For

example, given three edges vi
A−→ v j, vi

A−→ vk and vl
A−→ v j, merging vi and v j causes vl to

reach vk, which is incorrect.

The challenge for reducing transitive redundancy of whole-program (a.k.a., all-pair)

CFL-reachability analysis is to find the best possible edge derivation order. Obviously,

7

CHAPTER 1. INTRODUCTION

v1
A−→ v2

A−→ v3

v1
A−→ v3 v3

A−→ v4

v1
A−→ v4

v1
A−→ v2

v2
A−→ v3

A−→ v4

v2
A−→ v4

v1
A−→ v4

(a) (b)

Figure 1.2. Transitive redundancy caused by two ways to derive v1
A−→ v4 from v1

A−→ v2
A−→ v3

A−→ v4.

getting the best derivation order to avoid redundancy on a simple path (e.g., Figure 1.2)

is trivial. However, a node can reside in multiple paths and/or in cycles on a dynamically

updated graph. Identifying the derivation order in such dynamic graphs is non-trivial.

Intuitively, retrieving the topological order by traversing the graph can help determine

the order, so as to reduce redundancy. The problem is that, to maintain the precision and

correctness in the presence of resolving dynamic transitive closure, the analysis requires

repeatedly computing the topological order, which significantly increases the overheads

and defeats the purpose of improving the scalability of CFL-reachability.

In this dissertation, we address this challenge by introducing a hybrid graph rep-

resentation combining spanning trees and adjacency lists, together with a fast yet

effective dynamic construction algorithm, to on-the-fly infer the derivation order during

CFL-reachability solving. The acyclic property of spanning trees makes the traversals

for determining derivation orders efficient. Based on this representation, we propose

a partially ordered CFL-reachability algorithm POCR, which quickly solves all-pairs

reachability analysis by reducing the transitive redundancy. Compared to the standard

algorithm, POCR computes the same solution and is much more efficient. Our empirical

results show that POCR is over 20× faster than the standard algorithm in real-world

clients which need to solve transitive relations.

8

1.2. RESEARCH TOPICS

1.2.2 Simplifying the Input Graph in the Proprocessing Stage

Besides the solving procedure, the input graph of CFL-reachability also contains much

redundant information. Considering that the complexity of CFL-reachability analysis is

cubic with respect of the number of nodes in the input graph [86, 141], a smaller and

cleaner input graph is important to improve the efficiency.

In the literature [38, 51, 95, 97, 126], the technique of cycle elimination has been

widely applied to simplify the graph of particular clients. In such clients, nodes in cycle

comprised of particular types of edges can be easily identified as equivalent and hence be

merged to reduce the computation for the further solving procedure. However, equivalent

nodes do not necessarily form a cycle. In fact, there are also a large amount of equivalent

nodes not residing in the same cycle [52, 111]. Moreover, from the perspective of CFL-

reachability, simplifying the input graph is not restricted to merge equivalent nodes [80].

A graph simplification is correct as long as the simplified graph and the original graph

have identical/equivalent CFL-reachability solutions.

In this dissertation, we propose a preprocessing technique called graph folding, which

does not require the merged items to be equivalent. Different from cycle elimination,

we try to simplify the input graph by folding pairs of adjacent nodes, i.e., merging the

two nodes and removing all the edges joining them. The foldability of the graphs of

CFL-reachability originates from the existence of trivial edges, i.e., edges that do not

contribute to the CFL-reachability solution. If two nodes are joined by trivial edges, they

can be folded. Considering that the graphs of CFL-reachability are multigraphs, where

there can be multiple edges between two nodes, our graph folding technique surpasses

existing edge contraction technique [111] as it avoids introducing new self-cycles to the

multigraphs.

The challenge lies in identifying foldable node pairs. Essentially, after running a

whole-program CFL-reachability analysis, the foldable node pairs are naturally explicit.

However, this obviously defeats the purpose of improving scalability. We address this

9

CHAPTER 1. INTRODUCTION

challenge using an alternative form of CFL called recursive state machine (RSM). By

formulating CFL-reachability into RSM-reachability, the correspondences between paths

on the graph and state transition in the RSM reveals the essence of foldable node pairs.

In particular, we consider a node pair (x, y) as foldable if the corresponding transition

chains of each path are equivalent in the graphs before and after folding (x, y). By

exploiting the dependency of global state transitions on local ones, we propose a graph

folding principle for deterministic RSMs , which is able to determine whether two nodes

are foldable by examining only their incoming and outgoing edges.

On top of the graph folding principle, we establish a graph folding algorithm GF,

which has a linear time complexity with respect to the number of nodes in the input

graph. Working in the preprocessing stage, GF is generally applicable to CFL-reachability

problems whose CFLs can be formulate into deterministic RSMs, and is especially

effective when the size of the graph is far larger than the size of the RSM. By reducing the

input graph size, graph folding significantly improves the scalability of CFL-reachability

for both time and space.

1.2.3 Precise and Efficient Handling of Positive Weight Cycles

In dynamic transitive closure analysis, weighted constraints are usually involved with

offset arithmetic [96, 112, 135, 148]. Such offset usually manifests in weighted relations

(e.g., in Datalog [112, 135]) or weighted set elements (e.g., in set constraint problems

[15, 96]).

Cycles containing weighted edges often lead to severe extra computation. A typical

instance is called positive weight cycle, which causes infinite loops and limits the precision

and scalability of program analysis [76, 96]. Figures 1.3 and 1.4 illustrates positive weight

cycles in CFL-reachability 1 and set constraint analysis 2, where we use X[i] to denote a

1Section 3.1 details the definitions of CFL-reachability
2Section 5.1 details the definitions of set constraint analysis

10

1.2. RESEARCH TOPICS

(a) Rule for solving weighted edges. (b) Positive weight cycle. (c) Results.

Figure 1.3. Positive weight cycles and infinite derivations in CFL-reachability.

(a) Rule for solving weighted edges. (b) Positive weight cycle. (c) Results.

Figure 1.4. Positive weight cycles and infinite derivations in set constraint analysis.

symbol X with an offset i. We can see that infinite derivations of edges (in Figure 1.3) or

set elements (in Figure 1.4) occur when iteratively solving the positive weight cycles.

Notably, cycle elimination [38, 51, 92, 97, 127] is not applicable to collapse positive

weight cycles because the nodes in such cycles are not equivalent items, thus merging a

positive weight cycle into a node will cause incorrect/imprecise results.

To avoid infinite derivations, existing works [96, 121] manually set an upper bound

of the number of derivations for each weighted constraint. This trades off precision with

practicability and has two defects. First, if the upper bound is small, solving positive

weight cycles will be highly imprecise although it can possibly be quicker. Second, if the

upper bound is set to be large enough, solving positive weight cycles will be more precise

but very inefficient.

We observed that the derivations caused by positive weight cycles follow particular

11

v1 −A−[i→] v2 −
A−[j→] v3 ⇒ v1 −

A[−−−i+ j→] v3

v1
A−−→[1] v1

v1
A−−→[2] v1

v1
A−−→[3] v1

· · ·

v1
[−i→] v2

o[j] ∈ pts(v1)

⎫⎪⎪⎬
⎪⎪⎭

⇒ o[i+ j] ∈ pts(v2)

pts(v1)= { o[1],

o[2],

o[3],

· · · }

CHAPTER 1. INTRODUCTION

derivation equivalence patterns. Briefly, when iteratively processing the cycles, the items

are derived using a particular initial value with some constant strides, which depends

on the weights of the weighted edges. For example, the offsets of both results in Figures

1.3 and 1.4, i.e., edge labels in Figure 1.3(c) and set elements in Figure 1.4(c), follow an

initial value 1 with a constant stride 1. This property allows us to use a representative

item, which captures the initial value and the constant strides of the items derived from

the same positive weight cycle, to avoid infinite derivation while preserving the precision.

In this dissertation, we use field-sensitive constraint-based pointer analysis [10, 12,

15, 74, 87, 93, 96] as a client to show how positive weight cycles limits the precision and

scalability of program analysis and demonstrate our strategy. Specifically, the weighted

edges are the abstractions of field accesses in a program, with the weight of each edge

denoting the index of an accessed field, and cycles containing such weighted edges

causes infinite abstract field derivations. Correspondingly, we propose a new stride-based

field representation to capture the derivation equivalence patterns of fields derived

by the same positive weight cycles, which avoids infinite derivations while preserving

the precision for constraint solving. On top of the stride-based field representation,

we provide a derivation equivalence algorithm, for precise and efficient field-sensitive

pointer analysis. By capturing derivation equivalence, our approach avoids redundant

field derivations with greatly reduced overhead during points-to propagation, making

constraint solving converge more quickly.

As set constraint analysis and CFL-reachability are intervertable, although our

derivation equivalence algorithm is proposed in the form of set constraint, it can be

converted into a version suitable to solve CFL-reachability using the method in [86].

12

1.3. CONTRIBUTIONS

1.3 Contributions

This dissertation improves the scalability of dynamic transitive closure based program

analysis from three aspects, as depicted in Figure 1.5.

1.3.1 Eliminating Transitive Redundancy On-The-Fly

• We offer a perspective that reduces transitive redundancy via ordered derivations,

and introduce a hybrid graph representation to efficiently infer the derivation order

during on-the-fly all-pairs CFL-Reachability analysis.

• We present POCR, a partially ordered CFL-reachability algorithm, which signif-

icantly accelerates the solving of CFL-reachability problems where transitive

redundancy dominates.

• We apply our technique to a context-sensitive value-flow analysis [149] and a field-

sensitive alias analysis for C/C++ [126]. The empirical results show that: (1) POCR

eliminates almost all redundant derivations. On average, the reduction rates of

value-flow analysis and alias analysis are 98.50% and 97.26%, respectively, and

(2) By eliminating redundant derivations, POCR achieves speedups of 21.48× and

19.57× over the standard algorithm [86], respectively, for value-flow analysis and

alias analysis. POCR is also over 3× faster than the two recent CFL-reachability

solvers Graspan [133] and Soufflé [68] in the two clients.

1.3.2 Recursive State Machine Guided Graph Folding

• We offer a perspective that utilizes recursive state machine to guide the simplifica-

tion of the input graph of CFL-reachability.

• For the CFL-reachability problems where the CFL can be expressed as a determin-

istic RSM, we propose a graph folding principle that is able to identify whether two

13

CHAPTER 1. INTRODUCTION

Figure 1.5. Main contributions of this thesis.

adjacent nodes are foldable by examining only their incoming and outgoing edges.

1.3.3 Fast and Precise Handling of Positive Weight Cycles

• We propose a new stride-based model to capture the initial value and strides of the

derivation equivalent items and avoid infinite derivation.

• Using field-sensitive Andersen’s pointer analysis as a client, we present a fast and

precise handling of positive weight cycles to significantly boost the performance by

capturing derivation equivalence when solving positive weight cycles.

14

• We provide a graph folding algorithm GF, whose time complexity is linear with

respect to the number of nodes of the input graph.

• We apply GF to context-sensitive value-flow analysis [126] and field-sensitive alias

analysis [149] of 10 open-source C/C++ programs to evaluate the performance of GF.

By reducing 60.96% nodes and 42.67% edges of the input graphs, GF accelerates

context-sensitive value-flow analysis by 3.16× with a memory reduction rate of

14.74%; by reducing 38.93% nodes and 35.61% edges, GF accelerates field-sensitive

alias analysis by 3.68× with a memory reduction rate of 16.93%.

1.4. THESIS ORGANIZATION

• We apply DEA to 11 real-world large C/C++ programs. The results show that

DEA on average is 7.1× faster than existing field-sensitive analysis with the best

speedup of 11.0×.

1.4 Thesis Organization

This thesis is organized as follows:

• Chapter 2 is a literature review, including existing techniques for improving dy-

namic transitive closure based program analysis.

• Chapter 3 details our partially ordered algorithm for taming transitive redundancy

in the dynamic solving procedure of CFL-reachability.

• Chapter 4 details our recursive state machine guided graph folding technique,

which is to simplify the input graph in the preprocessing stage.

• Chapter 5 details our stride-based model and derivation equivalence algorithm for

precisely and efficiently handle positive weight cycles.

• Chapter 6 concludes this thesis.

15

C
H

A
P

T
E

R

2
LITERATURE REVIEW

Dynamic transitive closure based program analysis has been studied for many years

[3, 11, 13, 29, 36, 45, 59, 60, 66, 78, 81, 91, 103, 128]. In this chapter, we briefly

review the literature which is most relevant to the works of this thesis.

2.1 Context-Free Language and CFL-reachability

Context-free language (CFL), as a power automatic sentence-generating device [30], has

been extensively studied and applied for many years [11, 18, 43, 71, 101]. Theoretically

studies on context-free language include its algebraic theory [30], semantics [71], expres-

siveness [11], relation to natural language [101], etc. Context-free languages have been

applied to many areas, including compiler design [2, 73], pattern recognition [31, 44, 85],

sentence generation [102, 140], program analysis [61, 106], etc.

In 1990, Yannakakis [141] formulated the context-free language reachability (CFL-

reachability) framework, which incorporates CFLs to extend the expressiveness of or-

dinary graph reachability [63, 130], to handle Datalog chain query evaluation. It soon

became a fundamental technique for program analysis and was applied to a large variety

of clients [105]. For example, Reps et al. [105] formulated interprocedural dataflow anal-

17

CHAPTER 2. LITERATURE REVIEW

ysis into CFL-reachability and applied it to finding possibly uninitialized variables for C

programs. Rehof and Fähndrich [104] used CFL-reachability to solve type-based poly-

morphic flow analysis, which supports context-sensitive, global flow summarization and

includes polymorphic recursion. Pratikakis et al. [100] used CFL-reachability to conduct

existential label flow inference. Sridharan et al. [116, 117] performed demand-driven

context-sensitive pointer analysis for Java via CFL-reachability. Zheng and Rugina

[149] proposed the context-free grammar for field-insensitive and field-sensitive alias

analysis and applied it to demand-driven alias analysis for C. Xu et al. [139] improved

the scalability of CFL-reachability based pointer analysis using context-sensitive must-

not-alise analysis. Shang et al. [114] improved the precision of on-demand dynamic

summary-based points-to analysis by performing partial point-to analysis. Wang et al.

[132] proposed a typestate-guided fuzzer for discovering use-after-free vulnerabilities

based on CFL-reachability framework. Zhang and Su [146] proposed linear conjunctive

language (LCL) reachability based on CFL-reachability, and improved the precision and

scalability of context-sensitive data-dependence analysis.

2.2 Pushdown Automata and Recursive State
Machines

Context-free languages are also studied in alternative forms like pushdown automata

[11, 40, 43, 88, 113] and recursive state machines [6]. Schützenberger et al. [113] and

Muller et al. [88] demonstrated the expressiveness of pushdown automata and the rela-

tion between pushdown automata and context-free languages. Ginsburg et al [43] studied

the determinacy of context-free languages from the perspective of pushdown automata

and formulated deterministic context-free languages, i.e., the languages accepted by

deterministic pushdown automata. Finkel et al. [40] proposed a simple and direct algo-

rithm for computing the always regular set of reachable states of a pushdown system.

Pushdown systems are widely applied to model checking and context-sensitive analysis

18

2.3. SET CONSTRAINT ANALYSIS

[20, 37, 107, 115, 131]. For example, Bouajjani et al. [20] used pushdown systems to

model multi-thread programs. bouajjani2005regular Reps et al. [108] used weighted

pushdown system to handle interprocedural dataflow analysis. Alur and Madhusudan

[7] proposed the class of visibly pushdown languages as embeddings of context-free lan-

guages that is rich enough to model program analysis questions and yet is tractable and

robust like the class of regular languages. Kumar et al. [72] studied visibly pushdown

automata (VPA) for processing XML documents. Späth et al. [115] performed control-,

flow- and field-sensitive dataflow analysis using synchronized pushdown systems.

Alur et al. [6] proposed recursive state machines, which naturally model the control

flow in sequential imperative programs containing recursive procedure calls. In the same

work, they also illuminated the equivalent expressiveness of recursive state machines

and context-free languages. Chaudhuri [27] proposed a subcubic algorithms for recursive

state machines. Benerecetti et al. [16] extended recursive state machines to timed

recursive state machines. A large variety of CFL-reachability analysis are solved with

the auxiliary of recursive state machines [84, 89, 104, 105, 114, 116, 117, 132, 147, 149].

Recursive state machines are also applied to semantic parsing for speech understanding

[99].

2.3 Set Constraint Analysis

Set constraint analysis has also been studied and applied for many years. The earlist

example can be tracked back to 1969, when Reynolds [109] proposed an analysis of

Lisp programs based on the resolution of inclusion constraints. Heintze and Jaffar [55]

first coined the term “set constraints” and recognized and formalized set constraints

in their full generality. An algorithm [4] were soon proposed to solve a subclass of set

constraints which excludes projections but includes all other operations. Bachmair et

al. [14] showed that set constraints without projections are equivalent to the monadic

class of predicate logic. There were several works proposed to show increasingly powerful

19

CHAPTER 2. LITERATURE REVIEW

systems of constraints to be decidable [14, 23, 42]. Charatonik and Pacholski [24] finally

showed that the full set constraint language is decidable. Melski and Reps [86] showed

that set constraint and CFL-reachability are interconvertible, and proposed algorithms

to convert a set constraint problem to an equivalent CFL-reachability and convert a

CFL-reachability problem to an equivalent set constraint problem.

Set constraint analysis is widely applied to program analysis such as dataflow anal-

ysis [70], abstract interpretation [34], model checking [32], invariant generation [33],

etc. One prominent application of set constraint analysis in recent years is pointer anal-

ysis [10, 51, 76, 77, 96, 97, 111, 119]. Andersen first formulated pointer analysis into

set constraints in his PhD thesis [10]. Then the constraint-based pointer analysis was

extensively studied and applied. Su et al. [119] proposed a project merging technique to

reduce path redundancy in constraint solving. Heintze and Tardieu [56] introduced a

new algorithm for computing the dynamic transitive closure for constraint-based pointer

analysis. Berndl et al. [17] described a field-sensitive inclusion-based pointer analysis

for Java, which uses BDDs to represent both the constraint graph and the points-to

solution. Considering the difference of C from Java that it permits the addresses of

fields to be taken, Pearce et al. [96] used weighted constraints to model field accesses

and proposed an algorithm for solving field-sensitive pointer analysis for C. Lhoták and

Chung [77] proposed an efficient flow-sensitive pointer analysis algorithm, which focuses

on handling the strong updates of singletons. Sui et al. [126] detected memory leak using

sparse value-flow analysis, which is based on constraint-based pointer analysis.

2.4 Efficiency Study

In view of the wide application and the high (cubic) complexity of CFL-reachability and

its alternative forms, improving efficiency has been a important research topic and was

extensively studied. Existing works improve the efficiency of CFL-reachability from two

20

2.4. EFFICIENCY STUDY

aspects: lowering the complexity of the algorithm [9, 26, 75, 118, 138, 145] and reducing

the redundant computation via preprocessing or on-the-fly [26, 51, 57, 80, 90, 111, 133].

Complexity study of CFL-reachability algorithm is an interesting topic and has at-

tracted researchers for many years. A series of works focusing on the O(n3−ε) upper

bound of matrix multiplication has reduced the theoretical time complexity of CFL-

reachability from O(n2.81) to O(n2.373) [9, 75, 118, 136–138]. Lowering the complexity of

the alternative forms of CFL-reachability has also been studied. For example, Chaudhuri

[27] proposed subcubic algorithms for recursive state machines, which solve all-pairs

reachability in bounded-stack RSMs in O(n3/log2n) time. Efficient algorithms for particu-

lar subclass of CFL-reachability have also been proposed. Zhang et al. [145] proposed an

algorithm that solves Dyck-reachability in O(n+m× log m) time, where n and m denotes

the number of nodes and edge. Chatterjee et al. [25] further reduce the time complexity

to O(m× log n).

The defect of the aforementioned lower complexity techniques is that they are either

difficult to implement or restricted to particular aspects. Thus, when solving real-world

problems, researchers also scales CFL-reachability from a more practical perspective:

reducing redundancy. For reducing redundant computations on-the-fly, Zhang et al.

[147] designed an efficient algorithm to accelerate all-pair alias analysis based on the

context-free grammar. Chatterjee et al. [26] proposed an algorithms for algebraic path

properties in recursive state machines with constant treewidth, which quickly answers

multiple-query problems. Nappa et al. [90] designed a parallel union-find data structure

for scalable equivalence relations. Recently, Zuo et al. [133, 150] proposed a generally

applicable edge-versioning algorithm for CFL-reachability, which reduces edge duplica-

tion during the solving procedure. It is interesting to note that, the above techniques

are either have strong performance but restricted to particular languages [145], or have

relatively weak performance because of not modifying the unordered solving process of

CFL-reachability. In this dissertation, we propose a partially ordered CFL-reachability

21

CHAPTER 2. LITERATURE REVIEW

algorithm (Chapter 3), which reduces over 90% of redundant computation in the solving

process of CFL-reachability.

Redundancy of CFL-reachability is also reduced in preprocessing stage. One per-

spective is to simplify the input context-free grammar or its alternative representations

[5, 41, 57, 62]. Heizmann et al. [57] proposed a technique to minimize pushdown au-

tomata using partial Max-SAT. Such technique can effectively improve the efficiency of

CFL-reachability when the input pushdown automata is improperly designed. Another

choice is to simplify the input graph [38, 51, 80, 95, 97, 111] based on the input grammar.

Such techniques are usually client-specific. Recently, Li et al [80] proposed an algorithm

for eliminating the “non-Dyck-contributing” edges for interleaved Dyck reachability, and

improved the speed and precision of context- and field-sensitive taint analysis. In the

literature, graph simplification is also widely applied to pointer analysis, in the form

of set constraint analysis [38, 51, 95, 97, 111]. Rountev and Chandra [111] proposed

an edge contraction technique based on equivalent variable substitution. And there

are several offline [51] and online [38, 51, 95, 97] cycle elimination techniques which

collapse equivalent strongly-connected components [92, 127]. It is interesting to note

that, all the above techniques are restricted to particular languages [80] or particular

real-world clients [51, 95, 97, 111]. In this dissertation, we proposed a general graph

folding technique for CFL-reachability (Chapter 4), which reduces the size of the input

graphs in the preprocessing stage under the guidance of recursive state machines.

22

C
H

A
P

T
E

R

3
TAMING TRANSITIVE REDUNDANCY FOR CONTEXT-FREE

LANGUAGE REACHABILITY

Section 1.2.1 has briefly introduced this topic, in this chapter, we start with the

formal definitions of context-free language reachability and transitive redundancy,

and then show our solution.

3.1 Problem Formulation

3.1.1 CFL-Reachability

A context-free language reachability (CFL-reachability) instance Reach〈CFG,G〉 is com-

prised of a context-free grammar CFG = 〈Σ, N,T,P, Nstart〉 and an edge-labeled graph

G = 〈V ,E〉. In CFG,

Σ= N ∪T is an alphabet containing two kinds of symbols: N a set of non-terminals

and T a set of terminals;

P is a set of production rules, with each rule describing how the non-

terminal on the left side produces the symbols on the right side, which

can be terminals or non-terminals;

Nstart ∈ N is the start symbol of the language.

23

CHAPTER 3. TAMING TRANSITIVE REDUNDANCY FOR CONTEXT-FREE
LANGUAGE REACHABILITY

The graph G is dynamically incremental, which means that edges are added into the

graph during CFL-reachability solving. In the graph, each edge vi
X−→ v j ∈ E labeled by a

symbol X ∈Σ. In general, the initial G contains only edges labeled by terminals.

Solving CFL-reachability is to summarize new edges from existing ones according to

the production rules, and make explicit reachability relations by adding the new edges

into the graph. In the graph G, a path v0
Y1−→ v1

Y2−→ . . .
Yn−−→ vn indicates an X-relation from

v0 to vn, if there is a non-terminal X ∈ N that can produce the string Y1Y2 · · ·Yn ∈ Σn,

which is formed by the sequence of edge labels of the path, via one or more production

rules. For any two nodes vi,v j ∈V , if there is a path from vi to v j implying an X -relation,

v j is said to be X-reachable from vi.

Reachability relations are made explicit in two steps – deriving new edges from

existing paths and adding the edges to the graph. Specifically,

• Edge Derivation: An X -edge vi
X−→ v j can be derived from a path vi

Y1−→ ·· · Yk−→ v j ∈G

if there is a production rule X ::=Y1 · · ·Yk ∈ P.

• Edge Addition: A newly derived X -edge vi
X−→ v j should be added to the graph to

make explicit the X -relation from vi to v j if it is not already in the graph.

CFL-reachability is solved using a standard dynamic programming algorithm [86].

The algorithm maintains a worklist W to hold all the unprocessed edges. Initially, all

the edges in the graph G and all underlying self-cycles caused by empty rules are

considered as unprocessed. The algorithm iteratively processes and removes the edges

in the worklist, generating new edges by consulting the edges and its neighbors based

on the grammar CFG. Any new edge that is not already in the graph will be added to

the graph and to the worklist, to make explicit a new discovered reachability relation.

The algorithm keeps solving until the worklist is empty, which means that there is

not any new edge that can be added to the graph, i.e., all the reachability relations

are explicit. The pseudocode of the algorithm is presented in Algorithm 1 for further

24

3.1. PROBLEM FORMULATION

Algorithm 1: Standard CFL-reachability algorithm.
P: the set of production rules in CFG.

1 Function Reach(CFG,G)

2 init (); /* Lines 11–15 */

3 while W ̸= ; do

4 select and remove an edge vi
Y−→ v j from W ;

5 for each production X ::=Y ∈ P do

6 if vi
X−→ v j ∉ E then add vi

X−→ v j to E and to W ;

7 for each production X ::=Y Z ∈ P do

8 CheckSucc (X , Z,vi,v j); /* Lines 19–21 */

9 for each production X ::= Z Y ∈ P do

10 CheckPred (X , Z,vi,v j); /* Lines 16–18 */

11 Procedure init()

12 add all edges of E to W ;

13 for each production X ::= ε ∈ P do

14 for each node vi ∈V do

15 if vi
X−→ vi ∉ E then add vi

X−→ vi to E and to W ;

16 Procedure CheckPred(X , Z,vi,v j);

17 for each edge vk
Z−→ vi ∈G do

18 if vk
X−→ v j ∉ E then add vk

X−→ v j to E and to W ;

19 Procedure CheckSucc(X , Z,vi,v j)

20 for each edge v j
Z−→ vk ∈G do

21 if vi
X−→ vk ∉ E then add vi

X−→ vk to E and to W ;

discussion. Notably, the algorithm accepts a normalized CFG, i.e., the right-hand side of

each production has at most two symbols. Lines 5–6 derive edges from paths containing

only one edge. And the two procedures CheckPred (Lines 16–18) and CheckSucc (Lines

19–21) derive edges from paths consisting of two edges.

25

CHAPTER 3. TAMING TRANSITIVE REDUNDANCY FOR CONTEXT-FREE
LANGUAGE REACHABILITY

3.1.2 Redundant Derivations and Transitive Redundancy

Identical to most existing techniques, we conservatively use adjacency lists to collect the

edges in the graph of CFL-reachability. Specifically, with respect to a label X and a node

vi, the X -predecessors and the X -successors of vi are stored in two sets pred(X ,vi)⊆V

and succ(X ,vi)⊆V such that

 pred(X ,vi)= {v′i | v′i
X−→ vi ∈ E}

succ(X ,vi)= {v′i | vi
X−→ v′i ∈ E}.

The adjacency lists are growing when solving CFL-reachability, e.g., adding an edge

vi
X−→ v j to E means to add vi to pred(X ,v j) and v j to succ(X ,vi).

Redundant Derivation. In Algorithm 1, redundant derivations mainly occur in

CheckPred and CheckSucc , where edge derivations are implied in the traversal of

predecessors/successors of nodes. For example, CheckPred (X , Z,vi,v j) naturally derives

|pred(Z,vi)| X -edges and each derived edge is checked to determine whether it is already

in the graph before addition. Thus, the shared predecessors or successors of nodes is a

major contributing factor in redundant derivations.

Example 3.1. While processing an edge vi
Y−→ v j, for any production rule X ::= Z Y ∈ P,

CheckPred (X , Z,vi,v j) traverses pred(Z,vi) to determine whether the derived vk
X−→ v j

is in the graph for all vk ∈ pred(Z,vi). Similarly, while processing another edge v′i
Y−→ v j,

CheckPred (X , Z,v′i,v j) traverses pred(Z,v′i) to determine whether the derived v′k
X−→ v j is

in the graph for all v′k ∈ pred(Z,v′i). The nodes in pred(Z,vi)∩pred(Z,v′i) are repeatedly

visited by CheckPred (X , Z,vi,v j) and CheckPred (X , Z,v′i,v j). Namely, there are at least

|pred(Z,vi)∩pred(Z,v′i)| repeated edge derivations.

Transitive Redundancy. In CFL-reachability, the transitivity of a relation A can

either manifest in a doubly recursive rule (Definition 3.1) A ::= A A or be implied in

other production rules such as A ::= A∗, A ::= A+, etc. Any edge vi
A−→ v j ∈ G denoting

26

3.1. PROBLEM FORMULATION

pred(A,vi−1)⊆ pred(A,vi) succ(A,vi)⊆ succ(A,vi−1)

(a) XProcessing vi−1 −→ Xvk and vi −→ vk based

on X ::= A X leads to |pred(A,vi−1)| re-

peated computations.

(b) XProcessing vk −→ Xvi−1 and vk −→ vi based

on X ::= X A leads to |succ(A,vi)| repeated

computations.

Figure 3.1. Redundant checks in partial transitive derivations, where A is a transitive relation.

Aa transitive relation implies a series of reachability relations vk −→ v′k for all (vk,v′k) ∈
pred(A,vi)×succ(A,vj).

Besides transitive relations, CFL-reachability also handles partial transitive relations

whose edges are derived via singly recursive rules (Definition 3.2). For example, the

production rule Fi ::= Fi A in our motivating example is left-recursive. Different from

transitive relations, partial transitive relations do not benefit from cycle elimination

since cycles consisting of partial transitive edges cannot be merged.

Definition 3.1 (Doubly Recursive Rules). A doubly recursive rule, also called a left-right-

recursive rule, is in form of A ::= A A.

Definition 3.2 (Singly Recursive Rules). The left-recursive rules, in the form of X ::= X A,

and the right-recursive rules, in the form of X ::= A X , are collectively called singly

recursive rules.

In CFL-reachability, both transitive and partial transitive relations suffer from
Atransitive redundancy. The property of transitive relations implies that for any path v0 −→

v1 −A→··· −A→ vn where A is transitive, there are pred(A,vi−1)⊆ pred(A,vi) and succ(A,vi)⊆
Xsucc(A,vi−1) for all i ∈ {1, . . . ,n}. Therefore, for any X ::= A X ∈ P, processing vi −→ vk

Xand vj −→ vk where i, j ∈ {0, . . . ,n} and i < j leads to |pred(A,vi)| repeated derivation.
XSimilarly, for any X ::= X A ∈ P, processing vk −→ Xvi and vk −→ vj where i, j ∈ {0, . . . ,n}

27

CHAPTER 3. TAMING TRANSITIVE REDUNDANCY FOR CONTEXT-FREE
LANGUAGE REACHABILITY

28

A ::= A A | a

Fi ::= Fi A | f i

(a) A context-free grammar.

struct T{int f1; int f2;}

struct T o; ...

int v1,v2,v3,v4,v5;

v1 = o. f1;

v5 = v4 = v3 = v2 = v1;

(b) C code fragment.

(c) G is the graph abstracted

from (a). G′ is transformed from

G via A ::= a and Fi ::= f i.

o F1−→ v5 ⇐

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

F1 Av1 −→o −→ v5
F1 Av2 −→o −→ v5
F1 Av3 −→o −→ v5
F1 Av4 −→

(d) o −F1→
o −→ v5 /* POCR */

v5 can be derived in four

ways by the standard algorithm

whereas our approach reduces

the four ways to one (in this ex-

ample, it is the last one).

Figure 3.2. An example.

and i < j leads to |succ(A,vj)| repeated derivation, as illustrated in Figure 3.1. Such

property greatly increase redundancy when the path to be derived is long.

3.1.3 Research Problem

We use an example to show transitive redundancy in real-world static analysis and

illustrate the key idea of our solution.

Example 3.2. The CFG in Figure 3.2(a) is often appears in field-sensitive analysis [149].

In the grammar, A denotes a value flow, Fi denotes the propagation of the value of the

i-th field, a denotes an assignment, and f i denotes the address of the i-the field. The two

production rules mean that an A-edge can be generated from an a-edge or two connected

A-edges in an edge labeled graph; and an Fi-edge can be generated from an f i-edge or a

path comprised of an Fi-edge and an A-edge. Obviously, A is a transitive relation, and Fi

is partially transitive because it can be transited via A relations. In Figure 3.2(c), graph

G is abstracted from the code fragment of Figure 3.2(b) and G′ is transformed from G by

applying A ::= a and Fi ::= f i.

The standard CFL-reachability algorithm (i.e., Algorithm 1) derives new edges from

3.1. PROBLEM FORMULATION

paths consisting of at most two edges, where redundant derivations can be triggered

in various ways. Here we illustrate one case. According to the productions A ::= A A

and Fi ::= Fi A in Figure 3.2(a), there will be vk
A−→ v5 for all k ∈ {1, . . . ,4} and o F1−→ v j for

all j ∈ {1, . . . ,5} in the graph after solving reachability. Then we focus on how o F1−→ v5 is

derived. Due to Fi ::= Fi A, o F1−→ v5 can be derived from o F1−→ v j and vk
A−→ v5 whenever

j = k. There are four paths (consisting of two edges) in total that can generate o F1−→ v5, as

shown in Figure 3.2(d). The traditional algorithm computes edges in an arbitrary order.

To ensure a correct reachability solution, it derives edges from each of the four paths at

least once. Thus, there are at least three redundant derivations of o F1−→ v5.

Our Insight and Goal. Our approach determines the computation order of the F1-

edges based on the order of the nodes on the path v1
A−→ v2

A−→ v3
A−→ v4

A−→ v5 in G′

of Figure 3.2(c). Specifically, we only derive F1-edges o F1−→ v j+1 from o F1−→ v j
A−→ v j+1,

where j ∈ {1, . . . ,4}, and always derive o F1−→ v j+1 immediately after adding o F1−→ v j to

the graph. This is a “head-to-tail” derivation order, and it only derives o F1−→ v5 by the

last line in Figure 3.2(d), avoiding the first three ways causing redundant derivations.

Similarly, the redundant derivations of o F1−→ v2, o F1−→ v3 and o F1−→ v4 are eliminated by

our approach. Moreover, if o F1−→ v1 is added to the graph again based on they other ways

described in Figure3.2(d), our approach can avoid the repeated derivation of o F1−→ vk

where k ∈ {2, . . . ,5} because we know that such edges have already been added to the

graph along with the first time adding o F1−→ v1. Compared to existing techniques, cycle

elimination has no effect in this example because there is no cycle in the graph. The

existing edge duplication reduction technique (Section 4.2 in [133]) which does not

exploit ordered derivations still introduces redundancy that o F1−→ v5 can be derived from

o F1−→ v1
A−→ v5 and o F1−→ v2

A−→ v5. Our experiment also confirms that the technique still

suffers from a lot of redundant derivations during CFL-reachability solving.

Our insight shows that our technique is to benefit the CFL-reachability problems

29

CHAPTER 3. TAMING TRANSITIVE REDUNDANCY FOR CONTEXT-FREE
LANGUAGE REACHABILITY

containing transitive relations, which manifest in doubly recursive rules, and partial

transitive relations, which manifest in left- or right-recursive rules. Similar to the

standard CFL-reachability algorithm, our technique also works on normalized context-

free grammars. Specifically, it requires the transitive relations to be explicit in the form

of doubly recursive rules, i.e., A ::= A A.

We formulate the research problem as follows:

Given a CFL-reachability instance containing transitive relations, use partially

ordered derivation to eliminate the redundant derivations caused by singly recursive

or doubly recursive rules.

Challenges. In the example of Figure 3.2, we can easily obtain the computation

order along the path v1
A−→ v2

A−→ v3
A−→ v4

A−→ v5. However, the graphs of real-world CFL-

reachability problems are large and complex, where multiple paths and/or cycles may

share vertices. Moreover, adding edges when solving CFL-reachability may also change

the transitive closure of the graph. Hence, the best derivation order is also changed

dynamically. These require an effective representation to maintain and infer the com-

putation order efficiently, and the representation can be updated accordingly with the

dynamic graph during CFL-reachability solving.

3.2 Our Solution

Example 3.2 shows that ordering computations based on the property of transitive rela-

tions can effectively reduce redundant derivations. The challenge lies in constructing

a proper representation of the transitive relations on top of the dynamically changed

graph and correctly updating the representation when solving CFL-reachability. This

section details our solution. Section 3.2.1 introduces a hybrid graph representation to

reduce redundant derivations. Section 3.2.2 provides a dynamic construction algorithm

30

3.2. OUR SOLUTION

to efficiently update the spanning-tree model in our hybrid graph representation. Sec-

tion 3.2.3 proposes the overall solution: a partially ordered CFL-reachability algorithm

POCR for all-pairs CFL-reachability analysis.

3.2.1 Hybrid Graph Representation for Reducing Redundant

Derivations

For any node vi ∈V , we can always construct a spanning tree rooted at vi to represent its

predecessors/successors associated with a transitive relation A [65]. Before introducing

our spanning-tree model, we first study the following property: In CFL-reachability, a

transitive A-edge can be created not only by using a doubly recursive rule A ::= A A

but also by other rules such as A ::= a or A ::= B C, etc. We classify the A-edges created

via different production rules into two categories: primary edges (Definition 3.3) and

secondary edges (Definition 3.4).

Definition 3.3 (Primary Edges). For a transitive relation A, a primary A-edge is created

via a production rule that is not in the form of A ::= A A.

Definition 3.4 (Secondary Edges). For a transitive relation A, a secondary A-edge is

created via the production rule A ::= A A.

We chose to define the notion of secondary edge because such edges derived by

A := A A do not change the set of reachable nodes. Conversely, primary edges may add to

the set of reachable nodes. Figure 3.2(c) in Example 3.2 illustrates this property: adding

the A-edges created via A ::= a increases the number of nodes that can be visited by

traversing along the A-edges, whereas adding the A-edges created via A ::= A A does

not. Thus, while constructing spanning trees, we do not consider the secondary edges.

Predecessor Trees and Successor Trees. We use the primary edges to construct

spanning trees to determine the computation order. Corresponding to the adjacency lists

31

CHAPTER 3. TAMING TRANSITIVE REDUNDANCY FOR CONTEXT-FREE
LANGUAGE REACHABILITY

(a) A graph. (b) (c)

(d) (e) (f)

Figure 3.3. Predecessor trees and successor trees. The root of each spanning tree is circled.

(Section 3.1.2), for each transitive relation A, we assign to each node vi a predecessor tree

ptree(A,vi) and a successor tree stree(A,vi). Both ptree(A,vi) and stree(A,vi) are rooted

at vi with the following properties:

ptree(A,vi): (1) for any node vj �= vi, vj ∈ ptree(A,vi) iff vj ∈ pred(A,vi);

(2) for any two nodes vk,vl such that vl is a child of vk in
Aptree(A,vi), there is a primary A-edge vl −→ vk ∈ E.

stree(A,vi): (1) for any node vj �= vi, vj ∈ stree(A,vi) iff vj ∈ succ(A,vi);

(2) for any two nodes vk,vl such that vl is a child of vk in
Astree(A,vi), there is a primary A-edge vk −→ vl ∈ E.

The above properties provide an efficient tree traversal to determine the computation

order of partial transitive relations. The benefit of the above properties is two-fold. On one

hand, the first property of ptree(A,vi) and stree(A,vi) ensures that the traversal can touch

32

3.2. OUR SOLUTION

all the A-predecessors and A-successors of vi, which ensures complete edge additions.

On the other hand, the tree structure provides an efficient traversal to determine

computation order. Specifically, traversing the A-predecessors (resp. A-successors) of a

node can be done in O(|pred(A,vi)|) (resp. O(|succ(A,vi)|)) time, as the number of edges

in a tree is always equal to the number of nodes minus one.

Example 3.3 (Predecessor Trees and Successor Trees). Figure 3.3(a) is a graph where A is

transitive and (b)–(f) display the predecessor trees and successor trees of nodes v0, . . . ,v4.

The root of each tree is marked by a circle, and the edges in the predecessor trees are

marked by dashed edges. Note that the two secondary edges v4
A−→ v0 and v0

A−→ v2 are

not included in any of the spanning trees.

Hybrid Graph Representation. We embed the spanning-tree model into the stan-

dard adjacency-list graph representation, constructing a hybrid graph representation. In

the hybrid graph representation, for a transitive relation A and a node vi, each element

v j ∈ pred(A,vi) is maintained as a pointer pointing to the node v j ∈ ptree(A,vi), and each

element vk ∈ succ(A,vi) is maintained as a pointer pointing to the node vk ∈ stree(A,vk).

This keeps good time efficiency for both lookups and traversals. Specifically, we perform

lookups of nodes in adjacency lists1, and traversals of predecessors and successors of

nodes in predecessor trees and successor trees, respectively.

Efficient Singly Recursive Edge Creations. Algorithm 2 performs efficient deriva-

tions based on singly recursive rules. Like CheckPred and CheckSucc in Algorithm 1,

CheckPtree (resp. CheckStree) create edges based on X ::= A Y ∈ P (resp. X ::=Y A ∈
P) for all transitive relations A. The difference is that CheckPtree traverses a pre-

decessor tree ptree(A,vt) (whose root vt is input as parameter), instead of traversing

the adjacency list pred(A,vx). Similarly, CheckStree traverses stree(A,vt) instead of

traversing succ(A,vt).
1Implementing the adjacency lists by hash tables can reduce the time complexity of lookups to O(1).

33

CHAPTER 3. TAMING TRANSITIVE REDUNDANCY FOR CONTEXT-FREE
LANGUAGE REACHABILITY

Algorithm 2: Singly recursive edge derivations.

1 Function CheckPtree(X , A,vx,vy,vt)

2 for each vz child of vx in ptree(A,vt) do

3 if vz
X−→ vy ∉ E then

4 add vz
X−→ vy to E and to W ;

5 CheckPtree (X , A,vz,vy,vt);

6 Function CheckStree(X , A,vx,vy,vt)

7 for each vz child of vy in stree(A,vt) do

8 if vx
X−→ vz ∉ E then

9 add vx
X−→ vz to E and to W ;

10 CheckStree (X , A,vx,vz,vt);

While processing an edge vx
X−→ vy, for each X ::= A X where A is transitive, CheckPtree

(X , A,vx,vy,vx) is called (with vt specified as vx) to traverse ptree(A,vx) from the root to

the leaves to create and add the X -edges vz
X−→ vy to the graph, where vz ∈ pred(A,vx).

Similarly, for each X ::= X A, CheckStree (X , A,vx,vy,vy) is called to traverse stree(A,vy)

to create and add the X -edges vx
X−→ v′z to the graph, where v′z ∈ succ(A,vy).

Soundness of Algorithm 2. In Algorithm 1, while processing vi
X−→ v j, for all transi-

tive A, replacing CheckPred (X , A,vi,v j) (resp. CheckSucc (X , A,vi,v j)) by CheckPtree

(X , A,vi,v j,vi) (resp. CheckStree (X , A,vi,v j,v j)) yields identical results with respect to

the standard CFL-reachability solution (Algorithm 1).

Algorithm 2 preserves the above property from two aspects. Here we only discuss

CheckPtree as CheckStree is similar. On one hand, with respect to CheckPtree (X , A,

vx,vy,vx) which processes vx
X−→ vy, if the traversal on ptree(A,vx) is never truncated

by Line 3, this means that all the nodes vz ∈ ptree(A,vx) are visited and the edges vz
X−→ vy

are added to the graph and to the worklist. This is equivalent to what CheckPred (X , A,vx,

34

3.2. OUR SOLUTION

vy) does. On the other hand, if the traversal on ptree(A,vx) is truncated by Line 3, this

means that the edge vz
X−→ vy has already been added to the graph. The edge must also

have been previously added to the worklist and has been processed (or will be processed)

by other calls of CheckPtree , which add all v′z
X−→ vy to the graph and to the worklist,

where vz is an element of the subtree rooted at vz ∈ ptree(A,vx). Therefore, the final

result of CheckPtree (X , A,vx,vy,vx) is also equivalent to what CheckPred (X , A,vx,vy)

do (the detailed proof can be seen in Appendix A.1).

Algorithm 2 stops the redundant derivations at the first stage via the termination

criteria at Line 3 and Line 8. Specifically, with respect to CheckPtree , once visiting

a node vz ∈ ptree(A,vt) such that the associated edge vz
X−→ vy is already in the graph,

the algorithm stops traversing the subtree rooted at vz. This avoids the redundant

derivations of v′z
X−→ vy, where v′z is an element of the subtree. Such traversals stop

similarly in stree(A,vt).

Example 3.4 (Singly Recursive Edge Creations). In Figure 3.3(a), given X ::= A X ∈
P, while processing v0

X−→ v5, CheckPtree (X , A,v0,v5,v0) traverses ptree(A,v0) (Fig-

ure 3.3(b)) and adds v3
X−→ v5 and v4

X−→ v5 to the graph. While processing v2
X−→ v5,

CheckPtree (X , A,v2,v5,v2) traverses ptree(A,v2) (Figure 3.3(d)). While visiting v1, it

adds v1
X−→ v5 to the graph. Then it goes to v0 child of v1 in ptree(A,v2) and stops the

traversal. This is because v0
X−→ v5 is already in the graph (Line 3, Algorithm 2). Thus,

the redundant derivations of two edges v3
X−→ v5 and v4

X−→ v5 is avoided.

3.2.2 Dynamic Construction of Spanning Trees

Algorithm 2 utilizes the two properties of the spanning-tree model (presented in Section

3.2.1) to reduce the redundant derivations caused by singly recursive rules. The key

step in our CFL-reachability algorithm is to update the spanning trees representing the

transitive relations among nodes and maintain the two properties.

Adding an edge vi
A−→ v j, where A is transitive, to the graph changes succ(A,vk)

35

CHAPTER 3. TAMING TRANSITIVE REDUNDANCY FOR CONTEXT-FREE
LANGUAGE REACHABILITY

and pred(A,v′k) for all k ∈ pred(A,vi)∪ {vi} and k′ ∈ succ(A,v j)∪ {v j} via succ(A,vk) =
succ(A,vk)∪ succ(A,v j) and pred(A,v′k) = pred(A,v′k)∪pred(A,vi). Note that pred(A,vi)

and succ(A,v j) take constant time during the edge addition. Thus, the updates of the

spanning trees are similar to handling singly recursive rules.

We propose Algorithm 3, a dynamic construction algorithm, to update the predecessor

and successor trees when solving CFL-reachability. Algorithm 3 consists of a main

procedure NewTrEdge and three subprocedures TravPtree , TravStree and Update .

Given an edge vpt
A−→ vst where A is transitive, TravPtree and TravStree perform

a nested traversal. Namely, TravPtree that traverses ptree(A,vpt) is invoked from

TravStree that traverses stree(A,vst). During the nested traversal, Update updates the

spanning trees and the adjacency lists of the visited nodes simultaneously, ensuring that

for all (vk,v′k) ∈ ptree(A,vpt)×stree(A,vst) : (1) vk ∈ ptree(A,v′k) and v′k ∈ stree(A,vk), and

(2) vk ∈ pred(A,v′k) and v′k ∈ succ(A,vk).

We first illustrate Algorithm 3 using the following example:

Example 3.5 (Dynamic Construction of Spanning Trees). Adding a primary edge v2
A−→ v3

to Figure 3.3(a) means that for all (vk,v′k) ∈ pred(A,v2)× succ(A,v3), there will be vk ∈
ptree(A,v′k) and v′k ∈ stree(A,vk). NewTrEdge (A,v2,v3) realizes this by traversing ptree(A,v2)

and stree(A,v3), and updating the spanning trees (and adjacency lists simultaneously)

as shown in Figure 3.4(a)–(d).

Initially, the traversals of ptree(A,v2) and stree(A,v3) start at their roots v2 and v3

respectively, as marked in red in Figure 3.4(a). In this step, v2 is added to ptree(A,v3) as

a child of v3, and v3 is added to stree(A,v2) as a child of v2, as marked in blue in Figure

3.4(a). After this, the inner traversal of ptree(A,v2) visits v1, a child of v2, and the outer

traversal of stree(A,v3) stays at v3. This step adds v1 to ptree(A,v3) as a child of v2 and

adds v3 to stree(A,v1) as child of v2, as shown in Figure 3.4(b). This can be viewed as

copying the edge v2 to v1 from ptree(A,v2) to ptree(A,v3). Then the depth-first traversal

of ptree(A,v2) continues, as shown in Figure 3.4(c), updating the spanning trees rooted

36

3.2. OUR SOLUTION

Algorithm 3: Dynamic construction of the spanning-tree model.

1 Function NewTrEdge(A,vpt,vst)

2 TravStree (A,vpt,vst,vpt,vst,vpt,vst);

3 Procedure TravStree(A,vpt,vpx,vpy,vst,vsx,vsy)

4 TravPtree (A,vpt,vpx,vpy,vst,vsx,vsy);

5 for each vsz child of vsy in stree(A,vst) do

6 if vpy
A−→ vsz ∉ E then

7 TravStree (A,vpt,vpx,vpy,vst,vsy,vsz);

8 Procedure TravPtree(A,vpt,vpx,vpy,vst,vsx,vsy)

9 Update (A,vpx,vpy,vsx,vsy);

10 for each vpz child of vpy in ptree(A,vpt) do

11 if vpz
A−→ vsy ∉ E then

12 TravPtree (A,vpt,vpy,vpz,vst,vsx,vsy);

13 Procedure Update(A,vpx,vpy,vsx,vsy)

14 add vpy
A−→ vsy as a secondary edge to E and to W ;

15 if vpy ̸= vsy and vpy ∉ ptree(A,vsy) then

16 add a new node vpy pointed to by vpy ∈ pred(A,vsy) to ptree(A,vsy) as a

child of vpx;

17 add a new node vsy pointed to by vsy ∈ succ(A,vpy) to stree(A,vpy) as a

child of vsx;

at the visited nodes until the traversal finishes.

After finishing the inner traversal of ptree(A,v2), the outer traversal of stree(A,v3)

visits v0, a child of v3, and starts another inner traversal of ptree(A,v2), as Figure

3.4(d). The nested traversal terminates when for all (vk,v′k) ∈ ptree(A,v2)× stree(A,v3),

vk ∈ ptree(A,v′k) and v′k ∈ stree(A,vk).

The nested traversals and edge updates of Algorithm 3 work as follows:

37

CHAPTER 3. TAMING TRANSITIVE REDUNDANCY FOR CONTEXT-FREE
LANGUAGE REACHABILITY

traverse update

⇒

Step (1): NewTrEdge (A,v2,v3), i.e., Algorithm 3, starts with
TravPtree (v2,v3,v2,v3,v2,v3), i.e., Line 4, in TravStree (v2,v3,v2,v3,v2,v3), i.e.,
Line 2. v2 and v3 are added to ptree(A,v3) and stree(A,v2) respectively.

traverse update

⇒

Step (2): TravPtree (v2,v2,v1,v3,v2,v3). v1 and v3 are added to ptree(A,v3) and
stree(A,v1) respectively. In particular, v1 is added as a child of v2 in ptree(A,v3), which
is the same as in ptree(A,v2).

traverse update

⇒ ·· ·

Step (3): TravPtree (v2,v1,v0,v3,v2,v3). v0 and v3 are added to ptree(A,v3) and
stree(A,v0) respectively. Similar to Step (2), v0 is added as a child of v1 in ptree(A,v3),
which is the same as in ptree(A,v2).

traverse update

⇒ ·· ·

Step (6): TravPtree (v2,v3,v2,v3,v3,v0). After finishing the inner traversal of
ptree(A,v2), the outer traversal of stree(A,v3) visits v0. Similarly, v0 is added as a
child of v3 in stree(A,v2), which is the same as in stree(A,v3).

AFigure 3.4. Processing a new edge v2 −→ v3 added to Figure 3.3(a) by NewTrEdge (A,v2,v3), which

traverses ptree(A,v2) and stree(A,v3), and updates the ptrees and strees of the visited nodes. In

each step, nodes being visited and newly added are marked in red and blue, respectively.

38

3.2. OUR SOLUTION

Nested depth-first traversal. TravPtree and TravStree accept seven parameters:

A - the label of the transitive edges;

vpt - the root of ptree(A,vpt), i.e., the predecessor tree to be traversed;

vst - the root of stree(A,vst), i.e., the successor tree to be traversed;

vpy - the node currently visited in ptree(A,vpt);

vpx - the parent of vpy in ptree(A,vpt);

vsy - the node currently visited in stree(A,vst);

vsx - the parent of vsy in stree(A,vst).

With a new primary edge vpt
A−→ vst added to the graph, the traversal of ptree(A,vpt)

in TravPtree starts at its root vpt which does not have an actual parent. So the pseudo

parent of vpt is set as vst. Similarly, the traversal of stree(A,vst) in TravStree starts at

vst and the pseudo parent of vst is set as vpt, as shown in Line 2.

The traversal of ptree(A,vpt) is nested in the traversal of stree(A,vst), as shown in

Line 4. During the traversal of ptree(A,vpt), nodes vsx and vsy relevant to the outer

traversal remain constant. For each vpz child of vpy in ptree(A,vpt), the traversal steps

from vpy to vpz only if vpz
A−→ vsy is not in the graph, as shown in Lines 10–12. After

finishing the inner traversal of ptree(A,vpt), the outer traversal of stree(A,vst) steps to

vsz a child of vsy in stree(A,vst) only if vpy
A−→ vsz is not in the graph (Lines 5–7), and

starts another inner traversal of ptree(A,vpt) as shown in Line 4.

The nested depth-first traversal of Algorithm 3 is terminated when any one of the

following two constraints is satisfied:

• all the nodes pairs (vk,v′k) ∈ ptree(A,vpt)×stree(A,vst) are visited;

• all the attempts of visiting new tree nodes are stopped by Line 6 or Line 11.

Updating spanning trees and adjacency lists. When creating a new edge vpy
A−→ vsy

not in the graph, Algorithm 3 calls Update (A,vpx,vpy,vsx,vsy) at Line 9 to update the

spanning trees and the adjacency lists simultaneously. Update first adds vpy
A−→ vsy to

39

CHAPTER 3. TAMING TRANSITIVE REDUNDANCY FOR CONTEXT-FREE
LANGUAGE REACHABILITY

the graph at Line 14. In particular, the edge vpy
A−→ vsy is marked as a “secondary” edge so

that it will not be processed by the future calls of NewTrEdge . The updates of ptree(A,vsy)

and stree(A,vpy) by Lines 15–17 can be viewed as follows: (1) copying the edge from

vpx to vpy in ptree(A,vpt) and attaching the copy to the node vpx in ptree(A,vsy), and

(2) copying the edge from vsx to vsy in stree(A,vst) and attaching the copy to the node

vsx in stree(A,vpy). To avoid redundant tree edges, the above two steps are performed

only if vpy ̸= vsy and vpy ∉ ptree(A,vsy). The simultaneous updates of spanning trees and

adjacency lists of Update maintains the two properties of the spanning-tree model in

our hybrid graph representation (Section 3.2.1).

Executing Algorithm 3 can be viewed as updating stree(A,vk) and ptree(A,v′k) for

all (vk,v′k) ∈ pred(A,vpt)× succ(A,vst) using the following two steps: (1) pruning a copy

of stree(A,vst) (resp. ptree(A,vpt)) by eliminating the nodes already in stree(A,vk) (resp.

ptree(A,v′k)); and (2) attaching the pruned copy to the node vpt (resp. vst) in stree(A,vk)

(resp. ptree(A,v′k)). It is almost obvious that using Algorithm 3 to process the primary

A-edges maintains the transitive closure of the relation A. Similar to Algorithm 2, we

have the following property for Algorithm 3:

Soundness of Algorithm 3. In Algorithm 1, replacing CheckPred (A, A,vi,v j) and

CheckSucc (A, A,vi,v j) by NewTrEdge (A,vi,v j) for all primary edges vi
A−→ v j and omit-

ting CheckPred (A, A,vi,v j) and CheckSucc (A, A,vi,v j) for all secondary edges vi
A−→ v j

maintains the same CFL-reachability results with respect to the original algorithm.

Notably, CheckPred (A,vi,v j) and CheckSucc (A,vi,v j) can be omitted while process-

ing a secondary edge vi
A−→ v j because all the secondary edges are processed in the calls

of NewTrEdge for processing primary edges.

Algorithm 3 avoids redundancy by the termination criteria at Line 6 and Line 11.

In Line 6, vpy
A−→ vsz ∈ E avoids the repeated traversal of v′sz descendants of vsz in

stree(A,vst). Similarly, in Line 11, vpz
A−→ vsy ∈ E avoids the repeated traversal of v′pz

40

3.2. OUR SOLUTION

descendants of vpz in ptree(A,vpt).

3.2.3 POCR: A Fast Partially Ordered CFL-Reachability

Algorithm for All-Pairs Analyses

With Algorithms 2 and 3 running on top of the hybrid graph representation discussed in

Section 3.2.1, we propose POCR, a fast partially ordered CFL-reachability algorithm for

all-pairs analysis, as given in Algorithm 4.

POCR consists of two parts: initialization (Lines 2–5) and solving reachability (Lines

6–20). Initialization first follows the initialization scheme of the standard algorithm

(Lines 11–15, Algorithm 1) to initialize the graph and the worklist. Then, it initializes the

predecessor tree and successor tree for each node vi ∈V (Lines 3–5). Solving reachability

also follows the strategy of the standard algorithm, i.e., iteratively solving the edges in

the worklist and adding new edges to the graph and to the worklist until no new edges

can be added to the graph.

POCR differs from the standard algorithm in handling edge derivations based on

singly or doubly recursive rules. It uses NewTrEdge to deal with edge derivations based on

doubly recursive rules (Line 9) and replaces CheckPred (resp. CheckSucc) by TravPtree

(resp. TravStree) to create edges based on singly recursive rules when the derivation

needs to traverse the predecessors or successors of nodes associated with transitive rela-

tions (Lines 15 and 19). In particular, all transitive edges created during CFL-reachability

solving are marked “primary” by default except for those created in NewTrEdge (Line 14,

Algorithm 3), and NewTrEdge only accepts primary edges. The secondary edges created

in NewTrEdge are further used to create new edges based on non-doubly recursive rules

in the subsequent procedures (Lines 10–20, Algorithm 4).

In summary, when processing an edge vi
Y−→ v j, POCR only differs from the standard

algorithm in the following two aspects:

41

CHAPTER 3. TAMING TRANSITIVE REDUNDANCY FOR CONTEXT-FREE
LANGUAGE REACHABILITY

Algorithm 4: POCR: partially ordered CFL-reachability algorithm.

1 Function POCR(CFG,G)

2 init (); /* Lines 11–15, Algorithm 1 */

3 for each transitive relation A do

4 for each node vi ∈V do

5 set both ptree(A,vi) and stree(A,vi) a tree containing a single node vi as the

root.

6 while W ̸= ; do

7 select and remove an element vi
Y−→ v j from W ;

8 if vi
Y−→ v j is a primary edge then

9 NewTrEdge (Y ,vi,v j); /* Algorithm 3 */

10 else

11 for each production X ::=Y ∈ P do

12 if vi
X−→ v j ∉ E then add vi

X−→ v j to E and to W ;

13 for each X ::=Y Z ∈ P and ¬(X =Y = Z) do

14 if Z is transitive and X =Y then

15 CheckStree (X , Z,vi,v j,v j); /* Algorithm 2 */

16 else CheckSucc (X , Z,vi,v j); /* Lines 19–21, Algorithm 1 */

17 for each X ::= Z Y ∈ P and ¬(X =Y = Z) do

18 if Z is transitive and X =Y then

19 CheckPtree (X , Z,vi,v j,vi); /* Algorithm 2 */

20 else CheckPred (X , Z,vi,v j); /* Lines 16–18, Algorithm 1 */

1. replacing CheckPred (X , A,vi,v j) (resp. CheckSucc (X , A,vi,v j)) with CheckPtree (X ,

A,vi,v j,vi) (resp. CheckStree (X , A,vi,v j,v j)) when A is transitive and X =Y ;

2. replacing CheckPred (Y ,Y ,vi,v j) (resp. CheckSucc (Y ,Y ,vi,v j)) with NewTrEdge (Y ,vi,

v j) if vi
Y−→ v j is primary and omitting CheckPred (Y ,Y ,vi,v j) (resp. CheckSucc (Y ,Y ,vi,

v j)) if vi
Y−→ v j is secondary.

42

3.3. DISCUSSION: EFFECTIVENESS OF POCR

According to the properties of Algorithms 2 and 3, these replacements do not change

the CFL-reachability solution. Namely, for a CFL-reachability problem, POCR produces

an identical solution to the standard algorithm.

3.3 Discussion: Effectiveness of POCR

As demonstrated in Section 3.2, POCR uses ordered derivations based on the spanning

trees to reduce redundant derivations for singly and doubly recursive rules. It is called

“partially ordered” because it does not order the edge derivations through the produc-

tion rules where the right-hand side has no transitive relation. Hence, the redundant

derivations caused by such production rules are not eliminated by POCR. In particular,

given X ::= Y Z ∈ P, two paths v1
Y−→ v2

Z−→ v3 and v1
Y−→ v4

Z−→ v3 cause one redundant

derivation of v1
X−→ v3, which is not transitive redundancy and is not handled by POCR.

The effectiveness of POCR’s redundancy elimination is also related to the CFG of a

particular CFL-reachability problem. We further discuss two aspects of this issue as

below.

3.3.1 Grammars Benefiting from POCR

A comparison of Algorithm 4 and Algorithm 1 shows that for a CFL-reachability problem

where there is no transitive relation, the part of POCR which solves reachability is

identical to that of Algorithm 1, because Lines 8–9, 14–15 and 18–19 of Algorithm 4 will

never be executed. Therefore, POCR does not benefit the problems where there are no

transitive relations in the CFG.

However, in some CFL-reachability problems, the transitive relations are implicit.

We can rewrite the input grammars in CFL-reachability to utilize POCR. For example,

the following grammar

43

CHAPTER 3. TAMING TRANSITIVE REDUNDANCY FOR CONTEXT-FREE
LANGUAGE REACHABILITY

A ::= a B | ε
B ::= b A

can be rewritten as A ::= A A | a b | ε to be used by POCR. Conversely, for a CFL-

reachability problem that has no transitive relation, i.e., its CFG cannot be rewritten to

obtain any doubly recursive rule, we assume that it does not have transitive redundancy.

Moreover, some grammars containing doubly recursive rules can be rewritten using

only left- or right-recursive rules. For example, the CFG in Figure 3.2(a) can be rewritten

into

Fi ::= Fi a | f i.

Given this modified grammar, there will be no A-edge in the graph, and we will not

have the redundant derivations caused by the four cases in Figure 3.2(d). However,

transitive relations are prevalent in many popular real-world CFL-reachability problems,

and the input graphs are typically large. Existing techniques [86, 133] still suffer from

a large number of redundant derivations while solving with such modified grammars

because they do not exploit an effective computation order. This is also confirmed in our

experiment (Section 3.4.4).

3.3.2 Grammar-Driven Redundancy Reduction

Here we provide an optimization of POCR to further improve its efficiency given any

grammar with the following three properties:

1. the grammar has one or more transitive relations;

2. for any production rule X ::= Y A ∈ P and X ::= A Y ∈ P where A is transitive,

X =Y ;

3. there is no X ::= A ∈ P where A is transitive and X ̸= A.

44

3.3. DISCUSSION: EFFECTIVENESS OF POCR

For such type of grammars, while processing a primary edge vi
A−→ v j (Line 9, Algo-

rithm 4), we do not add the secondary edges created in NewTrEdge to the worklist as

in Line 14 of Algorithm 3 (we still add such edges to the graph). Instead, we only add

vi
A−→ v j itself as a secondary edge to the worklist. The insight is to use CheckPtree and

CheckStree to deal with derivations based on as many singly recursive rules as possible.

We briefly demonstrate the feasibility of the optimized POCR in handling grammars

with the aforementioned three properties. For singly recursive rules, we only discuss X ::=
X A because X ::= A X is similar. In a CFL-reachability instance where X ::= X A ∈ P

and A is transitive, adding a primary A-edge vi
A−→ v j to the graph results in vl

X−→ vk ∈ E

for all (vl ,vk) ∈ pred(X ,vi)× stree(A,v j). In the original POCR, NewTrEdge (A,vi,v j) is

first called to create and add all the new secondary edges v′k
A−→ vk to the graph, where

(v′k,vk) ∈ ptree(A,vi)×stree(A,v j). Then CheckPred (X , X ,v′k,vk) is called to process each

v′k
A−→ vk in the worklist (Line 20, Algorithm 4) so that for all vl ∈ pred(X ,v′k), vl

X−→ vk ∈ E.

Because X ::= X A, for all vl ∈ pred(X ,v′k), vl ∈ pred(X ,vi). Hence, all vl
X−→ vk such that

(vl ,vk) ∈ pred(X ,vi)×stree(A,v j) are added to the graph.

The optimized POCR handles this in a different way. First, NewTrEdge (Y ,vi,v j) only

adds vi
A−→ v j as a secondary edge to the graph and to the worklist. Then for each

X ::= X A ∈ P, CheckPred (X , X ,vi,v j) processes vi
A−→ v j, adding all the new vl

X−→ v j

such that vl ∈ pred(X ,vi) to the graph and to the worklist. Processing all the vl
X−→ v j

in the worklist via CheckStree (X , A,vl ,v j,v j) results in vl
X−→ vk ∈ E for all (vl ,vk) ∈

pred(X ,vi)×stree(A,v j).

The original POCR and the optimized POCR obtain the same results when dealing

with X ::= X A. Similarly, they also obtain the same results when dealing with X ::= A X .

Furthermore, the three properties listed at the beginning of the subsection mean that

there is no need to process X ::= A, X ::= Y A and X ::= A Y where X ̸= Y for all

transitive A. Therefore, the optimized POCR is applicable to CFL-reachability whose

grammar has the three properties.

45

CHAPTER 3. TAMING TRANSITIVE REDUNDANCY FOR CONTEXT-FREE
LANGUAGE REACHABILITY

Unlike the original POCR, CheckPred and CheckSucc in the optimized POCR are

only called to process the input primary edges of NewTrEdge . Most of the derivations

based on singly recursive rules are done by CheckPtree and CheckStree , instead of

CheckPred and CheckSucc . Note that CheckPtree and CheckStree reduce redundant

derivations whereas CheckPred and CheckSucc do not. So the optimized POCR further

improves the efficiency of solving CFL-reachability. It is also interesting to note that

there is a large variety of real-world static analyses that can be formulated into CFL-

reachability problems whose grammars have the aforementioned three properties, e.g.,

dataflow/valueflow analysis [105], typestate analysis [132], alias analysis [149], etc. Thus,

this grammar-driven optimization is worth incorporating.

3.4 Experimental Evaluation

In this section, we evaluate the performance of POCR by applying it to two popular

static analyses for C/C++: context-sensitive value-flow analysis [126] and field-sensitive

alias analysis [149], where transitive redundancy dominates. In our experiment, we

use cycle elimination [92] and variable substitution [111] for offline processing of the

graphs abstracts from the benchmark programs. The baseline of our experiment is

the standard CFL-reachability algorithm [86] accepting the preprocessed input graphs.

We also compare our approach with two open-source CFL-reachability/Datalog tools,

Graspan [133] (a multi-thread disk-based CFL-reachability solver which uses old-new

edge sets to avoid a proportion of redundant computation) and Soufflé [68] (a Datalog

analyzer which is able to automatically generate a CFL-reachability solver and compute

the result when the grammar and graph are provided.). We choose to compare with the

two tools because they are the most recent and integrate the state-of-the-art techniques

for CFL-reachability. We perform all-pairs CFL-reachability analysis in POCR and all

the baselines for both clients.

46

3.4. EXPERIMENTAL EVALUATION

Our experiments aim to answer the following research questions:

RQ 1. How many redundant derivations can POCR reduce in real-world CFL-reachability

problems based on the two popular clients?

RQ 2. How is the performance of CFL-reachability improved by eliminating transitive

redundancy via POCR?

RQ 3. How about the performance of POCR when comparing it with the grammar rewrit-

ing method which removes doubly recursive rules from the grammar?

3.4.1 Experimental Setup

We have conducted our experiment on a platform consisting of an eight-core 2.60GHz

Intel Xeon CPU with 128 GB memory, running Ubuntu 18.04.

Value-flow analysis Our context-sensitive value-flow analysis is conducted on the

sparse value-flow graphs (SVFG) [126]. We use the context-free grammar (CFG) in

Figure 3.5 for the value-flow analysis, where “calli” and “reti” denote, respectively, a

call and a return with a callsite index i, “a” denotes an assignment instruction, and

“A” denotes a value flow. Note that the grammar in Figure 3.5 only considers context-

sensitivity. However, each field object is represented as a single node in the field-sensitive

SVFG, so the analysis is also field-sensitive.

Alias analysis The CFG for C/C++ field-sensitive alias analysis is listed in Figure 3.6,

which is from [149]. In the grammar, a denotes an assignment, d denotes a pointer

dereference, f i denotes the address of the i-th field, A denotes a value flow, M denotes

memory aliasing, and V denotes value aliasing. The alias analysis is performed on the

program expression graph (PEG), which is bi-directed, i.e., for each edge vi
X−→ v j ∈ E,

there is a reverse edge v j
X−→ vi ∈ E.

47

CHAPTER 3. TAMING TRANSITIVE REDUNDANCY FOR CONTEXT-FREE
LANGUAGE REACHABILITY

A ::= A A | calli A reti | a | ε
(a) Context-free grammar.

A ::= A A | CA i reti | a | ε
CA i ::= calli A

(b) Normalized grammar.

Figure 3.5. CFG for context-

sensitive value-flow analysis.

M ::= d V d

V ::= A V A | f i V f i | M | ε
A ::= A A | a M? | ε
A ::= A A | M? a | ε

M ::= DV d

DV ::= d V

V ::= A V |V A |FVi f i | M | ε
FVi ::= f i V

A ::= A A | a M | a | ε
A ::= A A | M a | a | ε

(a) Context-free grammar. (b) Normalized grammar.

Figure 3.6. CFG for field-sensitive alias analysis.

Setup and Benchmarks The SVFG and PEG of each program are constructed from

the bitcode files compiled by Clang-12.0.0 and linked via WLLVM [129] for whole-program

all-pairs CFL-reachability analysis. The SVFG and PEG are preprocessed by cycle

elimination [127] which merges cycles comprised of a-edges and variable substitution

[111] which contracts particular a-edges. The preprocessing is to make sure the input

graph is compacted after applying the existing offline approach to make sure the input

does not favor our online approach undesirably. We used 10 SPEC 2017 C/C++ programs

for our evaluation. We did not include three small programs (lbm, mcf and deepsjeng

whose sizes are less than 1 MB). The other three C/C++ programs in SPEC 2017, i.e.,

xalancbmk, gcc and blender, failed to be linked by wllvm. Table 3.1 lists the size and

graph statistics of each program.

Implementation We have implemented our POCR on top of the LLVM compiler,

and the sub-project SVF [124]. To study the relationship between the improvement of

performance and the reduction of redundant derivations, we also implement the standard

algorithm [86] and the edge-reduction technique described in the paper of Graspan

(Section 4.2 in [133]) on top of SVF. Tables 3.2 and 3.3 list the main results of our

experiments, where “Base” and “GSA” denote, respectively, the standard algorithm and

the edge-reduction algorithm of Graspan. “POCR” denotes our approach with optimization

48

3.4. EXPERIMENTAL EVALUATION

Table 3.1. Benchmark info. #Node and #Edge respectively denote the number of nodes and edges

in the initial graphs.

Benchmark Size(MB)
SVFG PEG

Description
#Node #Edge #Node #Edge

xz 1.24 51666 65235 12425 26468 General data compression

nab 1.41 59253 76105 16261 34676 Molecular dynamics

leela 2.93 68250 92865 22186 49748 Monte Carlo tree search (Go)

x264 4.68 213943 347142 60956 136352 Video compression

cactus 5.88 563208 1026726 93557 212478 Physics: relativity

povray 7.38 555807 1059724 76405 174258 Ray tracing

imagick 13.68 601687 870107 119314 301846 Image manipulation

parest 16.20 325592 433217 117500 251436 Biomedical imaging

perlbench 18.69 1031348 2203010 156664 388564 Perl interpreter

omnetpp 21.81 703952 1897474 241916 509166 Discrete Event simulation

(Section 3.3.2) enabled. The columns “Graspan” and “Soufflé” list the results of the open-

source tools Graspan [134] and Soufflé [67], running with their default configurations.2

In particular, when running the mult-thread solver Graspan, 8 threads were used, which

aligns with [133]. The cases which failed to obtain results due to the time constraint (24

hours) are annotated with “−”.

3.4.2 RQ 1: Reduction of Redundant Derivations

The numbers of edges added to the graph and the numbers of edges created during

CFL-reachabilty solving of each benchmark are listed in Column 1 and Columns 2–4 of

Tables 3.2 and 3.3. The number of redundant derivations is obtained via (#Deriv - #Add).

The proportion of redundant derivations is computed via (#Deriv - #Add) / #Deriv.

In general, with regard to the standard CFL-reachability algorithm (listed in Col-

2We refer to [133] and https://souffle-lang.github.io/build#cmake-configuration-options
for the default configurations of Graspan and Soufflé, respectively.

49

https://souffle-lang.github.io/build#cmake-configuration-options

CHAPTER 3. TAMING TRANSITIVE REDUNDANCY FOR CONTEXT-FREE
LANGUAGE REACHABILITY

umn 2 of Tables 3.2 and 3.3), redundant derivations are prevalent in both value-flow

analysis and alias analysis. The average proportions for redundant derivations out of

all derivations are 98.03% and 97.89%, respectively, in value-flow analysis and alias

analysis when using the standard algorithm.

A comparison of Columns #Deriv(k) in Tables 3.2 and 3.3 shows that both GSA (the

edge-reduction technique of Graspan) and our POCR reduce redundant derivations but

POCR is more effective. The reduction rates of the redundant derivations are listed in

Columns Reductions(%) of the two tables, showing that, on average, POCR reduces 98.50%

and 97.26% of redundant derivations respectively for value-flow analysis and alias

analysis, which is much more than GSA. We also observe that the redundant derivations

of POCR are only 4.67% and 9.68% that of GSA respectively for value-flow analysis and

alias analysis. Namely, the redundant derivations of POCR are much fewer than GSA.

Interestingly, the set of redundant derivations captured by POCR is not always a superset

of those captured by Graspan because Graspan can also cover some non-transitive

relations. However, we can infer from the experiment results that the redundancy caused

by non-transitive relations has only a marginal impact on performance. Our approach,

which exploits a proper derivation order based on the property of transitive relations,

is much more effective in reducing redundant derivations than Graspan. We did not

include the numbers of derivations of Soufflé in the tables because it does not provide an

option to collect those numbers directly.

We show the computational redundancy of the three approaches in Figure 3.7, which

is based on the numbers in Columns #Add and #Deriv of Tables 3.2 and 3.3. Specifically,

the redundancy of each approach is represented by (#Deriv / #Add). The data shows

how many derivations are needed to actually add an edge to the graph on average.

From Figure 3.7(a) and Figure 3.7(b), we can see that there is a substantial amount of

redundancy in the standard algorithm in both value-flow analysis and alias analysis.

The redundancy in the value-flow analysis is more significant as most of its reachability

50

3.4.
E

X
P

E
R

IM
E

N
T

A
L

E
V

A
L

U
A

T
IO

N

Table 3.2. Result of context-sensitive value-flow analysis. #Add(k) and #Deriv(k) denotes the number of edges added to the graph and created

when solving CFL-reachability, measured in thousands. Reduction(%) denotes the reduction rate of redundant derivations of GSA and POCR.

Time(s) denotes the runtime of each approach, measured in seconds. The baselines of both Reduction(%) and speedup are the columns “Base”.

Benchmark #Add(k)
#Deriv(k) Reduction(%) Time(s)

Base GSA POCR GSA POCR Base Graspan Soufflé POCR

xz 732 145140 9544 807 93.90 99.95 11.86 2.43 4.31 0.88

nab 1341 2031555 81757 3582 96.04 99.89 662.73 69.92 71.78 39.60

leela 1518 513825 29330 1846 94.57 99.94 30.22 6.62 12.58 2.04

x264 60441 7537094 657053 72668 92.02 99.84 4915.96 656.69 1495.35 299.29

cactus 105114 2465484 705243 229347 74.57 94.74 42121.28 6285.94 6714.28 1754.60

povray 182537 3783718 1943433 281611 51.10 97.25 77651.60 9149.52 12796.00 3893.08

imagick 55561 1493419 683175 123044 56.35 95.31 31210.60 3645.31 5634.66 1043.20

parest 29749 1090633 491326 33441 56.49 99.65 14419.60 3746.12 2265.00 433.20

perlbench 834251 - 18662423 1042244 - - - 63737.24 - 13962.88

omnetpp 262480 49378518 5648505 302842 89.03 99.92 58454.40 9630.63 5496.90 2367.20

Mean 78.23 98.50 Speedup 21.48×

51

C
H

A
P

T
E

R
3.

T
A

M
IN

G
T

R
A

N
S

IT
IV

E
R

E
D

U
N

D
A

N
C

Y
F

O
R

C
O

N
T

E
X

T-
F

R
E

E
L

A
N

G
U

A
G

E
R

E
A

C
H

A
B

IL
IT

Y

Table 3.3. Result of field-sensitive alias analysis. #Add(k) and #Deriv(k) denotes the number of edges added to the graph and created when

solving CFL-reachability, measured in thousands. Reduction(%) denotes the reduction rate of redundant derivations of GSA and POCR.

Time(s) denotes the runtime of each approach, measured in seconds. The baselines of both Reduction(%) and speedup are the columns “Base”.

Benchmark #Add(k)
#Deriv(k) Reduction(%) Time(s)

Base GSA POCR GSA POCR Base Graspan Soufflé POCR

xz 427 230356 4332 507 98.30 99.97 2.50 1.71 2.04 0.24

nab 472 278736 13017 635 95.49 99.94 3.40 1.47 3.00 0.38

leela 8797 1904077 524949 12875 72.77 99.78 340.52 38.26 41.72 13.96

x264 13167 2413368 341681 17290 86.31 99.83 537.85 140.11 112.12 25.65

cactus 81832 1360390 727621 184821 49.49 91.94 11156.20 1479.63 1039.05 591.39

povray 53698 3214220 313985 112872 91.76 98.13 17601.30 1393.13 1238.86 631.86

imagick 422916 - 2007956 462378 - - - 5733.14 4076.94 1309.51

parest 83800 1472666 485888 205702 71.05 91.22 15337.50 943.52 1713.89 604.04

perlbench 1226586 - 24686471 3797919 - - - 29548.05 15536.13 5400.19

omnetpp 485066 - 4721535 866541 - - - 14660.59 11235.29 1842.43

Mean 80.74 97.26 Speedup 19.57×

52

3.4. EXPERIMENTAL EVALUATION

1514.78

20.73

60.96

6.71

1.10
2.67

Avg. Base=274.68

Avg. GSA=19.43

Avg. POCR=1.57

1E+00

1E+01

1E+02

1E+03

1E+04

#D
er

iv
 /

#A
dd

Base GSA POCR

(a) Value-flow analysis.

590.07

16.62

59.68

4.75

1.09

3.10

Avg. Base=231.91

Avg. GSA=17.59

Avg. POCR=1.81

1E+00

1E+01

1E+02

1E+03

#D
er

iv
 /

#A
dd

Base GSA POCR

(b) Alias analysis.

Figure 3.7. The computational redundancy of the three approaches in solving the two clients.

The value is computed by (#Deriv / #Add). The vertical axis is logarithmic. The peak, valley and

average values of each approach are marked in the charts.

relations are transitive (i.e., the A-relations in the grammar of Figure 3.5).

A comparison between POCR and GSA in Figure 3.7 demonstrates that: (1) POCR

is much more effective than GSA in reducing computational redundancy. The average

values of the redundancy are only 1.57 and 1.81, respectively, in value-flow analysis

and alias analysis, which is much smaller than that of GSA. (2) Even in the worst

cases, POCR keeps the computational redundancy in very low values, with the largest

ones being only 1.54 and 3.10, respectively, in value-flow analysis and alias analysis. A

53

CHAPTER 3. TAMING TRANSITIVE REDUNDANCY FOR CONTEXT-FREE
LANGUAGE REACHABILITY

comparison of Figure 3.7(a) and Figure 3.7(b) shows that the performance of POCR is

slightly better for the value-flow analysis than the alias analysis. This is because there

are more non-transitive relations in alias analysis than those in value-flow analysis.

Another interesting observation is the significance of the grammar-based optimiza-

tion in POCR. We also run the original POCR on the two clients and compare the results

with the optimized ones in Tables 3.2 and 3.3. We find that compared with the original

POCR, the optimized POCR further reduces 78.72% and 83.56% redundant derivations, re-

spectively, for the two clients on average. Therefore, when handling real-world problems,

establishing a proper optimization (e.g. Section 3.3.2) to exploit the benefit of spanning

trees as much as possible is important to boost the performance of POCR.

3.4.3 RQ 2: Speedups Over Baselines

Columns 7–10 of Tables 3.2 and 3.3 list the runtime of the four approaches for the two

clients. We first focus on columns 7 and 10. A comparison between Base and POCR shows

that POCR significantly accelerates the analyses for both value-flow analysis and alias

analysis by eliminating transitive redundancy. The largest speedups of POCR over the

standard algorithm occur in parest and povray, which accords with relatively large

reduction rates of computational redundancy in Figure 3.7. The largest speedups do

not occur in the programs with the largest reduction rates of derivations because the

preprocessing time (e.g., constructing graphs and performing graph simplification) is

also included in the total runtime of POCR. Such preprocessing time can take a large

percent of runtime when handing small programs where the largest reduction rates of

derivations occur.

By reducing a large portion of redundant derivations, POCR successfully solves

the value-flow analysis for perlbench and the alias analyses for imagick, perlbench

and omnetpp, where the standard algorithm fails to solve within the time limit (24

hours). Therefore, taming redundant derivations plays an important role in scaling

54

3.4. EXPERIMENTAL EVALUATION

CFL-reachability analysis.

It is also interesting to note that the time consumed by an analysis depends not only

on the program size but also on the features of the graph abstracted from the program.

We found that perlbench, though not the largest graph, has a complex graph structure,

including extremely long value-flow chains and dynamically/incrementally formed large

transitive cycles. For example, in the PEG of perlbench after CFL solving, 83% of the

total nodes are in cycles consisting of "A"-edges, with the largest cycle containing over

43k nodes and the longest simple path (without any cycles) containing 3k nodes, which

are larger than those of other programs. This feature makes other CFL-reachability

solvers incur much more transitive redundancy while solving, which makes perlbench

arguably the most challenging program to solve.

To compare the analysis time, we further perform the experiments by running the

open-source Graspan and Soufflé tools using their default configurations. Their results

are listed in Columns 8 and 9 of Table 3.2 and Table 3.3. A comparison of Columns 8–10

of Tables 3.2 and 3.3 shows that Graspan and Soufflé can effectively accelerate the two

clients. Moreover, POCR is much more efficient. On average, POCR is 3.67× and 4.10×
faster than Graspan and Soufflé for value-flow analysis, and is 3.73× and 4.19× faster

than Graspan and Soufflé for alias analysis, respectively.

As POCR uses spanning trees to store transitive edges, we study the extra memory

overhead of POCR over the standard algorithm as shown in Figure 3.8. A comparison

between Figure 3.8(a) and Figure 3.8(b) shows that the extra memory overheads of POCR

in value-flow analysis are much larger than those in alias analysis. This reflects the

characteristics of the two clients: in value-flow analysis, most reachability relations

are transitive relations (the A-relations in Figure 3.5). In alias analysis, there is a

smaller proportion of transitive relations (the A-relations in Figure 3.6), whereas the

alias relations (the V -relations in Figure 3.6) are more prevalent.

55

CHAPTER 3. TAMING TRANSITIVE REDUNDANCY FOR CONTEXT-FREE
LANGUAGE REACHABILITY

Avg.=42.18%

43.01%
49.49%

40.95%
46.35% 46.53%

32.72%
44.33%

38.78% 37.46%

0%

20%

40%

60%

80%

100%

E
xt

ra
 M

em
.

(a) Value-flow analysis.

Avg.=8.92%

10.25% 7.13% 6.73% 5.09%

16.96% 14.42%

1.86%

0%

20%

40%

60%

80%

100%

E
xt

ra
 M

em
.

(b) Alias analysis.

Figure 3.8. Extra memory overhead of POCR over the standard algorithm. Only the benchmarks

successfully solved by the standard algorithm are considered.

3.4.4 RQ 3: POCR vs. Grammar Rewriting

As addressed in Section 3.3.1, some grammars can be rewritten to eliminate transitive

relations while maintaining correct solutions. The grammars in Figure 3.5 and Figure

3.6 of our example can be rewritten into Figure 3.9(a) and Figure 3.9(b) with the doubly-

recursive rules A ::= A A and A ::= A A removed. The modified grammar still has the

ability to compute the required relations (i.e., A for value-flow analysis and V for alias

analysis).

We study the performance impact of such grammar rewriting and compare it with

POCR. The experimental results of the modified grammars are shown in Figures 3.10

and 3.11, in which the reduction rate and speedup of each approach are computed based

56

3.4. EXPERIMENTAL EVALUATION

A ::= A a | A B | a | ε
B ::= CA i reti

CA i ::= call i A

M ::= DV d

DV ::= d V

V ::= A V |V A |FVi f i | M | ε
FVi ::= f i V

A ::= a M | a | ε
A ::= M a | a | ε

(a) Modified grammar for context-

sensitive value-flow analysis.

(b) Modified grammar for field-

sensitive alias analysis.

Figure 3.9. CFG modified from Figure 3.6 by removing the doubly recursive rules.

on the result obtained from the original grammar. POCR is not taken into consideration

as it does not benefit the modified grammar.

With respect to value-flow analysis (Figure 3.10), the values of the reduction rate of

the added edges are negative. This is because the modified grammar in Figure 3.9(a)

introduces an extra non-terminal B, leading to extra edges added to the graphs. However,

the reduction rate of derivations of the standard algorithm is large because of the removed

doubly-recursive rules. In contrast, the reduction rate of derivations of GSA is low because

it has already reduced redundant derivations for the original grammar. Accordingly,

the standard algorithm is accelerated much more than the other two techniques by

grammar rewriting as shown in Figure 3.10(b). Regarding alias analysis (Figure 3.11),

the total numbers of added edges are reduced because the modified grammar in Figure

3.9(b) removes doubly recursive rules and does not introduce any extra non-terminal.

However, the reduction rates of derivations of both the standard algorithm and GSA are

low. This confirms with the earlier observation that A- and A-edges only take a small

proportion in alias analysis. A comparison of Figure 3.10(b) and Figure 3.11(b) shows

that the accelerations brought by modifying the grammar are much smaller for all three

techniques in alias analysis.

Additionally, it can be computed from Figure 3.10(b) and 3.11(b) that all three

accelerated techniques through the modified grammars are still slower than POCR. We

57

CHAPTER 3. TAMING TRANSITIVE REDUNDANCY FOR CONTEXT-FREE
LANGUAGE REACHABILITY

‐78.15%

‐3.68%

Avg. = ‐42.82%

82.70%
63.81%

Avg. = 76.14%

44.27%

3.56%

Avg. = 25.43%

‐90%

‐60%

‐30%

0%

30%

60%

90%

R
ed

uc
tio

n
R

at
e

Add Deriv‐Base Deriv‐GSA

(a) Reduction rates of #Add and #Deriv.

Avg. speedup:
Base = 6.35
Graspan = 1.78
Souffle = 1.86

0

2

4

6

8

10

12

Sp
ee

du
p/
×

Base Graspan Souffle

(b) Speedups comparing to the original grammar.

Figure 3.10. Results of context-sensitive value-flow analysis using the modified grammar in

Figure 3.9(a).

analyze the reason as follows. Although the modified grammars appear to have the

“head-to-tail”, as illustrated in Section 3.1.3, both the standard worklist algorithm and

GSA do not strictly follow this derivation order. Hence, POCR is faster than the three

techniques in the presence of grammar rewriting.

3.4.5 Summary

We summarize our experimental results as follows: (1) POCR is highly effective in tam-

ing transitive redundancy with 98.50% and 97.26% of redundant derivations being

58

3.4. EXPERIMENTAL EVALUATION

15.12%

1.06%

23.90%

3.28%

34.55%

12.99%

Avg.=7.31%

Avg.=15.03%

Avg.=22.78%

0%

10%

20%

30%

40%

R
ed

uc
tio

n
R

at
e

Add Deriv‐Base Deriv‐GSA

(a) Reduction rates of #Add and #Deriv.

Avg. speedup:
Base = 1.24
Graspan = 1.27
Souffle = 1.25

1.0

1.2

1.4

1.6

1.8

2.0

Sp
ee

du
p/
×

Base Graspan Souffle

(b) Speedups comparing to the original grammar.

Figure 3.11. Results of field-sensitive alias analysis using the modified grammar in Figure 3.9(b).

eliminated for context-sensitive value-flow analysis and field-sensitive alias analysis,

respectively. (2) By eliminating redundant derivations, POCR significantly accelerates

the standard algorithm by 21.48× and 19.57× respectively for the value-flow and alias

analyses. (3) Though grammar rewriting can reduce some redundancy by removing dou-

bly recursive rules, POCR is still much more effective in reducing redundant derivations

than grammar rewriting.

59

C
H

A
P

T
E

R

4
RECURSIVE STATE MACHINE GUIDED GRAPH FOLDING

Popular static analyses, such as context-sensitive value-flow analysis and field-

sensitive alias analysis, are formulated using Context-Free Language Reachability

(CFL-Reachability), as expressed using Recursive State Machines (RSMs) [117, 149]. The

input graphs that are automatically generated by compilers contain redundant nodes

and edges with respect to particular RSMs. This chapter presents a novel graph folding

algorithm GF that takes a graph G and an RSM R and produces a substantially smaller

graph G′ which is equivalent to G with respect to reachability for R yet is solvable much

more efficiently.

4.1 Problem Formulation

In this Chapter, we describe graph folding in the context of RSM-reachability. We first

introduce the background and formulate the problem using an example in Figure 4.1,

where the grammar accepts a Dyck+linear language, which is widely used in context-

sensitive program analyses [50, 54, 105, 146]. In Figure 4.1, the RSM-reachability aims

to determine nodes that are reachable from v0 or v1 via a path whose edge labels contain

matched parentheses and an arbitrary number of “a”.

61

CHAPTER 4. RECURSIVE STATE MACHINE GUIDED GRAPH FOLDING

CFG: S = (| S |) | S S | a∗

(a) A context-free grammar and its

equivalent recursive state machine.
(b) G is the original graph. G′ is transformed from G

via graph folding.

Figure 4.1. An example of RSM-reachabililty and graph folding.

4.1.1 Recursive Static Machine

A recursive state machine over a finite alphabet Σ is defined as a tuple R= 〈M1, · · · , Mt〉
comprised of t component finite state machines, where each component Mi = 〈Ni,Bi,Yi,Eni,

Exi,δi〉 is a finite state machine consisting of the following:

Ni – a finite set of local states.

Bi – a finite set of boxes in Mi, with each of which mapped to a component state

machine.

Yi : Bi 7→ {1, · · · , t} – a mapping function assigning each box of Mi an index of one of

the components M1, · · · , Mt;

Eni ⊆ Ni – a set holding the entries of Mi;

Exi ⊆ Ni – a set holding the exits of Mi;

δi :
(
Ni ∪ ⋃

b∈Bi

ExYi(b)
)×Σ→ Ni ∪ ⋃

b∈Bi

EnYi(b) – a local transition function that maps

specific states and labels to specific target states.

Specifically, for a local transition in δi, denoted by ni1
ℓ−→ ni2 , (1) the source ni1 must be

either a local state or an exit of a box belonging in Mi, (2) the label ℓ is an element of Σ,

and (3) the target ni2 must be either a local state or an entry of a box in Mi.

62

4.1. PROBLEM FORMULATION

Example 4.1. Figure 4.1(a) gives an example RSM over an alphabet Σ= {(| ,a, |)}. There

is only one component M1 calling itself recursively. M1 is comprised of: (1) a local state

n1, which is also the entry and the exit of M1; (2) a box b1 which is mapped to M1; and (3)

three transition rules n1
(|−→〈b1,n1〉, n1

a−→ n1 and 〈b1,n1〉 |)−→ n1 where 〈b1,n1〉 denotes

the entry (also the exit) of the box b1, as the labeled edges in Figure 4.1(a).

The semantics of RSM is given by global states and transitions:

Global states. A global state s ∈ S, where S = B∗×N, B = ⋃
i Bi, N = ⋃

i Ni, can be

viewed as a local state nested in layers of boxes. Consider a sequence of boxes b1, · · · ,bk

such that bi ∈ B j i and B j i ,B j i+1 ∈ B for all i ∈ {1, · · · ,k}. A global state s = 〈b1, · · · ,bk,n〉
follows (1) Y j i (bi)= j i+1 for all i ∈ {1, · · · ,k}, i.e., bi+1 is nested in bi, and (2) n ∈ N jk+1 , i.e.,

n is nested in bk.

Intuitively, a global state denotes the current position of the initial state (usually not

nested in any box) after entering a series of boxes.

Global transitions ∆. The global transition function ∆ : S×Σ→ S maps specific global

states and labels to specific target global states. For a global transition rule s1
ℓ−→ s2 ∈∆,

s1, s2 ∈ S and ℓ ∈Σ. Global transitions are restricted by the local transition rules. Given

two global states s1, s2 ∈ S and s1 = 〈b1, · · · ,bk−1,bk,n1〉 where bk ∈ B jk , Y jk (bk) = jk+1

and n1 ∈ N jk+1 , s1
ℓ−→ s2 ∈ R iff one of the following four points holds:

1. s2 = 〈b1, · · · ,bk−1,bk,n2〉 and n1
ℓ−→ n2 ∈ δ jk+1 (local transition);

2. s2 = 〈b1, · · · ,bk−1,bk,bk+1,n2〉, bk+1 ∈ Bk+1, n2 ∈ EnY jk+1 (bk+1) and n1
ℓ−→ 〈bk+1,n2〉 ∈

δ jk+1 (entering a box);

3. s2 = 〈b1, · · · ,bk−1,n2〉, n1 ∈Ex jk+1 and 〈bk,n1〉 ℓ−→ n2 ∈ δ jk (exiting from a box);

4. s2 = 〈b1, · · · ,bk−1,b′
k,n2〉, n1 ∈Ex jk+1 , b′

k ∈ B jk , n2 ∈EnY jk (b′
k) and 〈bk,n1〉 ℓ−→〈b′

k,n2〉 ∈
δ jk (transiting across two boxes).

Property 4.1 (Dependency of Global Transitions on Local Transitions). A global tran-

sition can only change the innermost box (by entering/exiting) and the innermost local

63

CHAPTER 4. RECURSIVE STATE MACHINE GUIDED GRAPH FOLDING

state (by the local transition function of the component state machine, to which the

innermost box maps) of a global state.

For brevity, in the remainder of this paper, we refer to all the states and transitions

as the global ones unless specified.

Deterministic RSMs. In a deterministic RSM, given a state si and a label t, if ∃si
ℓ−→

s j ∈ R, s j is unique. In other words, for the transition function of a deterministic RSM,

when the input state and label are specified, we can always determine the output state.

In the remainder of this paper, all the demonstrations and conclusions are based on

deterministic RSMs.

Transition Chains. In an RSM R, a transition chain pR ∈ R from a source state s0

to a target state sk is a sequence of global transitions s0
ℓ1−→ s1

ℓ2−→ ·· · ℓk−→ sk such that

si−1
ℓi−→ si ∈∆ for all i ∈ {1, · · · ,k}. In a deterministic RSM, given a source state s0 and a

sequence of label ℓ1, · · · ,ℓk, the transition chain s0
ℓ1−→ s1

ℓ2−→ ·· · ℓk−→ sk ∈ R is unique if it

exists.

Acceptable Strings. Given an RSM R with a specified initial state sinit ∈ S and a set

of accepting states F ⊆ S, a string w ∈Σ∗ is accepted by R iff it takes a transition chain

from the initial state to one of the accepting states, i.e., ∃ sinit
ℓ1−→ ·· · ℓk−→ sk ∈ R such that

sk ∈ F and ℓ1 · · ·ℓk = w.

4.1.2 RSM-Reachability

In general, RSM-reachability is to check particular source-sink pairs whether the sink is

reachable from the source by a path whose edge labels forms, in sequence, an acceptable

string of the RSM.

Reachable Paths. Given an RSM-reachability instance Reach〈R,G〉 where R is an

RSM and G = 〈V ,E〉 is an edge-labeled directed graph, a path pG = vi
ℓ1−→ ·· · ℓk−→ v j ∈G is

a reachable path iff the string ℓ1 · · ·ℓk formed by the sequence of the edge labels of pG is

accepted by R.

64

4.1. PROBLEM FORMULATION

Reachable Pairs. In an RSM-reachability instance, a reachable pair (vi,v j)reach ∈V×V

is a node pair in G such that there exists at least one reachable path from vi to v j.

RSM-reachability. Formally, given an RSM R with specified initial state and accepting

states and a graph G with specified sources Vsrc ⊆ V and sinks Vsnk ⊆ V , an RSM-

reachability problem aims to determine for each source-sink pair (vi,v j) ∈ Vsrc ×Vsnk

whether it is a reachable pair.

Example 4.2. We formulate the example (Figure 4.1) as an RSM-reachability problem. In

this instance, R = 〈M1〉, sinit = 〈n1〉, F = {〈n1〉}, Vsrc = {v0,v1}, Vsnk = {v0, · · · ,v7}. For the

path v1
(|−→ v2

a−→ v3
|)−→ v5 ∈G, the sequence of edge labels forms a string “(| a |)” which

is accepted by R because there is a transition chain 〈n1〉 (|−→〈b1,n1〉 a−→〈b1,n1〉 |)−→〈n1〉 ∈
R. Therefore, (v1,v5) is a reachable pair. Similarly, (v0,v7), (v1,v6) and (v1,v7) are also

reachable pairs.

4.1.3 Research Problem

Given a directed multigraph G and two adjacent nodes (x, y) ∈V ×V , an xy-folded graph

G′ is constructed by removing all the edges joining x and y and collapsing (x, y) into a

representative node, e.g., z, such that Rep(x)=Rep(y)= z. Here we use Rep(vi) to denote

the representative node of vi. Namely, if vi is merged into another node z after graph

folding, Rep(vi)= z, Otherwise, Rep(vi)= vi.

Let us revisit the motivating example in Figure 4.1(b), where G′ is the graph folded

from the original version G. Specifically, the node pair (v2,v3) is folded into a represen-

tative node v′2 with v2
a−→ v3 removed. Likewise, (v2,v4) and (v5,v6) are folded into v′2

and v′5, respectively. The solutions on G and G′ are displayed in Table 4.1. Compare the

solutions, we can find that by expanding v′5 back into v5 and v6, we get two reachable

pairs (v1,v5) and (v1,v6) from (v1,v′5). In this way, we obtain identical solutions from G′

and G. This means that G and G′ are equivalent with respect to this CFL-reachability

problem. In view of the (sub)cubic complexity of CFL/RSM-reachabililty solving, reducing

65

CHAPTER 4. RECURSIVE STATE MACHINE GUIDED GRAPH FOLDING

Reachable pair Reachable path String

G

(v0,v7) v0
(|−→v1

(|−→v2
a−→v3

|)−→v5
|)−→v7 (| (| a |) |)

(v1,v5) v1
(|−→ v2

a−→ v3
|)−→ v5 (| a |)

(v1,v6) v1
(|−→ v2

a−→ v3
|)−→ v5

a−→ v6 (| a |)a

(v1,v7) v1
(|−→ v2

a−→ v4
a−→ v5

|)−→ v7 (| aa |)

G′

(v0,v7) v0
(|−→ v1

(|−→ v′2
|)−→ v′5

|)−→ v7 (| (| |) |)

(v1,v′5) v1
(|−→ v′2

|)−→ v′5 (| |)

(v1,v7) v1
(|−→ v′2

a−→ v′5
|)−→ v7 (| a |)

Table 4.1. The solutions of the RSM-reachability problem in G and G′ of Figure 4.1(b).

the size of the graph in the preprocessing stage can significantly boost the performance

of reachability solving.

Intuitively, an aggressive graph folding approach should fold as many node pairs

as possible. However, arbitrarily folding node pairs may change reachable pairs due to

removals of the original reachable paths or additions of new ones, resulting in an inconsis-

tent RSM-reachability solution. A correct graph folding approach ensures the equivalence

of reachable pairs in the original graph and the folded graph, as Definition 4.1.

Definition 4.1 (Reachability Equivalence). Let G = 〈V ,E〉 be the original graph with Vsrc

and Vsnk specified, and let G′ = 〈V ′,E′〉 be the folded graph, G and G′ are reachability

equivalent iff ∀(vi,v j) ∈Vsrc ×Vsnk, (vi,v j)reach ∈G ⇔ (Rep(vi),Rep(v j))reach ∈G′.

Definition 4.1 implies that a correct graph folding (1) preserves the information of

all the original reachable pairs, and (2) does not introduce any redundant reachable

pair. In another word, two graphs being reachability equivalent yields equivalent RSM-

reachability solutions. If folding a node pair (x, y) preserves reachability equivalence, we

66

4.2. PRINCIPLE FOR GRAPH FOLDING

say that (x, y) is foldable.

Example 4.3. In Figure 4.1(b), after folding the node pair (v2,v3) ∈ G into v′2 ∈ G′, the

reachable path v1
(|−→ v2

a−→ v3
|)−→ v5 becomes v1

(|−→ v′2
|)−→ v5, whose edge labels also form

an acceptable string of the RSM. Thus, the reachable pair (v1,v5) is preserved after the

folding. It can be computed that other reachable pairs in the original graph are also

preserved. Therefore, (v2,v3) is foldable. In contrary, (v3,v5) is not foldable. If we were

to fold (v3,v5) into v′3, the path v1
(|−→ v2

a−→ v3
|)−→ v5 would become v1

(|−→ v2
a−→ v′3 where

v′3 represents v3 and v5, which is no longer a reachable path. Moreover, as there is no

other reachable path from v1 to v′3 in the folded graph, (v1,v′3) is not a reachable pair,

indicating that the original reachable pair (v1,v5) in G is lost in the folded graph.

We formulate graph folding problem as follows:

Given an RSM-reachability instance Reach〈R,G〉, generate a smaller graph G′ by

folding node pairs in G and ensures that G and G′ are reachability equivalent.

4.2 Principle for Graph Folding

Identifying foldable node pairs based on Definition 4.1 requires figuring out all reachable

paths in the original graph G and the folded graph G′, which violates our purpose to

improve scalability. To effectively identify foldable node, we first study the correspon-

dences between the original graph and the folded graph and between the paths on the

graph and transition chains in the RSM, leading to a practical criteria for reachability

equivalence. Then, we further exploit the subsumption relations of states in RSMs, using

it to formulate our folding principle, which is able to identify whether a node pair is

foldable by examining only its incoming and outgoing edges.

67

CHAPTER 4. RECURSIVE STATE MACHINE GUIDED GRAPH FOLDING

(a) When x and y are joined by only one edge,

each path passing through x and y will be

folded into a distinct path after folding (x, y).

(b) When x and y are joined by multiple edges,

there will be multiple paths folded into the

same path after folding (x, y).

Figure 4.2. Correspondences between paths before and after folding. Without loss of generality,

we assume that y is merged into x in the xy-folded graph.

4.2.1 Correspondences in Graph Folding and RSM-Reachability

Folding-Equivalent Class and Criteria for Reachability Equivalence. In Fig-

ure 4.2(a), the path pG′ is obtained from pG by folding (x, y), i.e., contracting the edge

x
ℓxy−−→ y. In fact, the graph of RSM-reachability can be a multigraph, meaning that there

can be multiple edges between x and y, as shown in Figure 4.2(b). As folding (x, y) will

remove all the edges joining x and y, there can be multiple original paths folded into the

same xy-folded path. Such paths in the original graph G constitute folding-equivalent

classes based on their endpoints:

Definition 4.2 (xy-Folding-Equivalent (xy-FEQ) Classes, Pxy). Two paths pG1 , pG2 ∈G

are of the same xy-folding-equivalent class Pxy iff they have identical endpoints and

are folded into the same path pG′ in the xy-folded graph G′. In particular, a path is

xy-folding-equivalent to itself.

In Figure 4.2(b), all the paths starting with v1 and ending with v2 are of the same

xy-FEQ class. Based on xy-folded paths and their corresponding xy-FEQ classes, we

can refine the impractical reachable-pair oriented criteria for reachability equivalence

to practical reachable-path oriented criteria as Definition 4.3, which is sufficient to

guarantee reachability equivalence:

68

4.2. PRINCIPLE FOR GRAPH FOLDING

Definition 4.3 (Sufficient Condition for Reachability Equivalence). A xy-folded graph G′

is reachability equivalent to its original graph G if the following conditions are satisfied:

Cond. 1. Each source-sink path in G′ has a corresponding xy-FEQ class in G

(exclusiveness).

Cond. 2. For each xy-FEQ class Pxy in G, its corresponding xy-folded path in G′

is a reachable path iff Pxy contains a reachable path in G (consistency).

Satisfying Cond. 1 is simple. For example, we can avoid introducing extra source-sink

paths to G′ by not merging (x, y) when (1) there is no edge from y to x and (2) y is a

source or y has incoming edges not from x. To satisfy Cond. 2, we need to check the

corresponding transition chains of reachable paths. In Section 4.3, we will provide an

algorithm that identifies some foldable pairs that meet these conditions

Corresponding Transition Chains and Corresponding States. As addressed in

Section 4.1.1, given a specific initial state sinit and a string of labels ℓ1 · · ·ℓk, a determinis-

tic RSM has at most one transition chain leading sinit through ℓ1 · · ·ℓk to a deterministic

target state, e.g., sk. Notably, the corresponding transition chain is defined below:

Definition 4.4 (Corresponding Transition Chain). Given a RSM-reachability instance

Reach〈R,G〉 where R is deterministic, consider a path pG = v0
ℓ1−→ ·· · ℓk−→ vk ∈ G where

ℓ1 · · ·ℓk forms a string w ∈Σk. If there exists pR = sinit
ℓ1−→ ·· · ℓk−→ sk ∈ R such that ℓ1 · · ·ℓk =

w, we say that pR is the corresponding transition chain of pG . When the RSM R is

deterministic, a path pG ∈G has zero or one corresponding transition chain.

Figure 4.3(a) shows a path pG and its corresponding transition chain pR . Similarly,

Figure 4.3(b) depicts an xy-folded path pG′ ∈ G′ which has zero or one corresponding

transition chain p′
R ∈ R.

As depicted in Figure 4.3(a), with respect to the corresponding transition chain, each

node vi of a path pG ∈ G is mapped to exactly one state si in the RSM. We call si the

69

CHAPTER 4. RECURSIVE STATE MACHINE GUIDED GRAPH FOLDING

Before folding (x, y)

pG ∈G : v0
ℓ0−→ ·· · ℓ1−→ x

ℓxy−−→ y ℓ2−→ v2
ℓ3−→ ·· · ℓk−→ vk

pR ∈ R : sinit
ℓ0−→ ·· · ℓ1−→ sx

ℓxy−−→ sy
ℓ2−→ s2

ℓ3−→ ·· · ℓk−→ sk

(a) A path pG and its corresponding transition chain pR

After folding (x, y)

pG′ ∈G′ : v0
ℓ0−→ ·· · ℓ1−→ x ℓ2−→ v2

ℓ3−→ ·· · ℓk−→ vk

p′
R ∈ R : sinit

ℓ0−→ ·· · ℓ1−→ sx
ℓ2−→ s′2

ℓ3−→ ·· · ℓk−→ s′k

(b) The xy-folded path pG′ of pG and its corresponding transition chain p′
R .

Figure 4.3. A path pG and its corresponding transition chain pR before and after folding (x, y).

Without loss of generality, we assume that y is merged into x in the xy-folded graph.

corresponding state of vi in pG . In a graph, a node vi may belong to multiple paths

corresponding to different transition chains, leading to the notion of corresponding states:

Definition 4.5 (Qvi – the Corresponding States of vi). For a node vi ∈V , Qvi ⊆ S is the

set holding the target states of all the corresponding transition chains of paths ending at

vi. Taking empty paths into consideration, sinit ∈Qvi .

Similarly, a path pG ∈ G can be a subpath of other paths, which means that pG

can also correspond to one or more sub-transition chains which do not start with sinit.

Nevertheless, the starting states of the sub-transition chains are limited:

Remark (Sub-Transition Chain). While considering a path pG starting with vi as a

subpath of other paths, each corresponding sub-transition chain of pG must start with a

state belonging to Qvi .

Example 4.4 (Corresponding States and Reachability Equivalence). Consider an instance

in Figure 4.3 where v2, · · · ,vk do not contain any of x or y. According to Definition 4.5,

sx ∈Qx. By comparing Figures 4.3(a) and 4.3(b), we can see that s2 is obtained from sx

by two transitions sx
ℓxy−−→ sy

ℓ2−→ s2, while s′2 is obtained from sx by one transition sx
ℓ2−→ s′2.

70

4.2. PRINCIPLE FOR GRAPH FOLDING

Table 4.2. Edge label notations for discussing RSM-reachability.

Notation Description

Lxy = {ℓ | x ℓ−→ y ∈ E} the set of labels of the edges from x to y.

Lx_ = {ℓ | x ℓ−→ vi ∈ E,vi ∈V } the set of labels of the outgoing edges of x.

L_x = {ℓ | vi
ℓ−→ x ∈ E,vi ∈V } the set of labels of the incoming edges of x.

L ̸yx = {ℓ | vi
ℓ−→ x ∈ E,vi ∈V ,vi ̸= y} the set of labels of the edges ending with x and not

starting with y.

Lx ̸y = {ℓ | x ℓ−→ vi ∈ E,vi ∈V ,vi ̸= y} the set of labels of the edges starting with x and not

ending with y.

If s2 = s′2, then sk = s′k because the sequence of edge labels ℓ2,ℓ3, · · · ,ℓk is not changed

after folding (x, y). Moreover, if for any sx ∈Qx, s2 = s′2, then for any pG (Figure 4.3(a))

and its xy-folded pG′ (Figure 4.3(b)), their corresponding transition chains end at the

same state. This means that folding (x, y) keeps the paths passing through x
ℓxy−−→ y and

their xy-folded paths consistent with respect to whether they are reachable paths.

The above example shows that, with determined Qx and Q y, we are able to identify

whether folding (x, y) preserves reachability equivalence by computing at most two

transitions for each state of Qx and Q y.

4.2.2 Folding Principle

Precisely computing Qx and Q y is equivalent to solving RSM-reachability, which is too

expensive for graph folding. This section formulates our graph folding principle using

an alternative overapproximation of Qx, utilizing RSM properties, i.e., subsumption and

equivalence relations of states.

Overapproximating Qx. With determined labels of incoming edges of x, the local

states of the states in Qx are determined. To facilitate the discussion, Table 4.2 lists the

notations about the edge labels involving x and y. With all incoming edge labels L_x of a

71

CHAPTER 4. RECURSIVE STATE MACHINE GUIDED GRAPH FOLDING

node x in G, we collect a set of RSM local states n′ with transitions n ℓ−→ n′ and ℓ ∈ L_x.

We define the set Nr(L_x) as

Nr(L_x)= {n′ | n ℓ−→ n′ ∈⋃
i
δi, ℓ ∈ L_x}. (4.1)

Intuitively, Nr(L_x) holds the target RSM states whose transition labels belong to the

incoming edge label set L_x of x. In particular, if x ∈ Vsrc, we let sinit ∈ Nr(L_x). Obvi-

ously, the local states of the states in Qx belong to Nr(L_x). Computing Nr(L_x) is very

inexpensive because given L_x, Nr(L_x) can be directly determined by checking the local

transition functions of the RSM. As global states are local states wrapped by layers of

boxes, we have:

Qx ⊆ B∗×Nr(L_x). (4.2)

Example 4.5 (Computing Nr(L_x)). Given an RSM in Figure 4.4(a), Figure 4.4(c) is a

graph segment of an RSM-reachability instance running on the RSM. In the graph

segment, L_x = {ℓ3}. In the RSM, there is only one transition n1
ℓ3−→〈b,n0〉 labeled by ℓ3.

Thus, in Figure 4.4(c), Nr(L_x) = {〈b,n0〉}. Moreover, there is only one box in the RSM,

i.e., B = {b}. Thus, Qx ⊆ {b}∗× {〈b,n0〉}.

In Section 4.2.1, we use Example 4.4 to show that we can determine whether folding

(x, y) preserves reachability equivalence by computing at most two transitions for each

state of Qx and Q y. According to Property 4.1, each transition can exit at most one box.

Namely, for Qx and Q y, examining the states with two layers of boxes is sufficient to

cover all states, as outer boxes are never affected by the two transitions. Correspondingly,

while replacing Qx by B∗×Nr(L_x) and B∗×Nr(L_y), examining the states of Bα×Nr(L_x)

and Bα×Nr(L_y) where α≤ 2 is enough.

Rules for Consistency. In Section 4.2.1, we show that ensuring reachability equiv-

alence is to satisfy the two conditions of Definition 4.3, among which satisfying the

exclusiveness condition (Cond. 1) is simple and addressed immediately after Definition

72

4.2. PRINCIPLE FOR GRAPH FOLDING

(a) An RSM.

〈n0〉 ∉ F 〈n1〉 ∉ F

L1 = {�2} L2 = {�1,�2}

〈n0〉 L1� 〈n1〉 〈n1〉
L2� 〈n0〉 〈n0〉 �

L2� 〈n1〉

(b) � and � relations.

(c) Pair (x, y) is foldable.

(d) Pair (x, y) is not foldable.

Figure 4.4. Example of subsumption and equivalence relations of states and instances of foldable

pairs (x, y).

�xyRule [x-x]: ∀sx −−→
�yxsy −−→ ∧

�xy ∈ Lxy
∧

Rule [y-y]: ∀sy
� �−−yx→ sx −−xy→

s′x ∈ R s.t. sx ∈ Bα×Nr(L_x)

s′y ∈ R s.t. sy ∈ Bα×Nr(L_y)
∧
�xy ∈ Lxy

∧
�yx ∈ L yx , s′x

L
�x_

sx .

�yx ∈ L yx , s′y
L
�y_

sy .

∧∀�xy ∈ Lxy ,
�xy∃sx −−→ sy ∈ R s.t. sx

L�yx�
sy .Rule [x-y]: ∀sx ∈ Bα×Nr(L_x)

Rule [y-x]: ∀sy ∈ Bα×Nr(L_y)
∧∀�yx ∈ L yx ,

�yx∃sy −−→ sx ∈ R s.t. sy
L�xy�

sx .

L

Figure 4.5. Rules for Cond. 2, where α ∈ {0,1,2}, Lxy, Lx_, L y�x, and Nr(L_x) are defined in

Table 4.2 and Eq. 4.1.

4.3. Here, we provide four rules in Figure 4.5 for satisfying the consistency condition

(Cond. 2). The four rules exploit subsumption and equivalence relations of states (Defini-

tion 4.6). Basically, the two relations are used to measure and compare the capabilities

of states being transited by edge labels involving x and y.

Definition 4.6 (Subsumption � and Equivalence � Relations of States). Given a set of

labels L⊆Σ and two states si, s j ∈ S, si is subsumed by s j with respect to L, denoted by

si � s j, iff

(1) ∀� ∈ L, ∀sk ∈ S, si −�→ sk ∈Δ⇒ s j −�→ sk ∈Δ, and (2) si ∈ F ⇒ s j ∈ F.

Specifically, si is equivalent to s j with respect to L, denoted by si �L s j, iff si �
L

s j
∧

s j �
L

si.

Example 4.6. Figure 4.4(b) gives an example of subsumption and equivalence relations

of states in the RSM of Figure 4.4(a). 〈n0〉 L1� 〈n1〉 because both 〈n0〉 and 〈n1〉 can transit

to 〈n2〉 via �2. 〈n1〉
L2� 〈n0〉 because 〈n1〉 can transit to 〈n2〉 via �2 and 〈n0〉 can not only

73

CHAPTER 4. RECURSIVE STATE MACHINE GUIDED GRAPH FOLDING

transit to 〈n2〉 via ℓ2 but also transit to 〈n1〉 via ℓ1. In contrast, 〈n0〉 ̸
L2⪯ 〈n1〉 because 〈n0〉

can transit to 〈n1〉 via ℓ1 whereas 〈n1〉 cannot.

Based on the two relations in Definition 4.6, we briefly discuss the rules in Figure 4.5.

By examining the states of Bα×Nr(L_x) and the labels of incoming and outgoing edges

of x and y, Rule [x-x] ensures the consistency of the corresponding transition chains of

paths passing through x and y by starting and ending both with x. Rule [x-y] ensures

the consistency of the corresponding transition chains of paths passing through an edge

from x to y. Rules [y-y] and [y-x] are symmetric to Rules [x-x] and [x-y] with respect

to x and y.

Graph Folding Principle. We provide our principle for identifying foldable (x, y)

in Theorem 4.1, where Principles ① and ② are used to satisfy Cond. 1 and Cond. 2 of

Definition 4.3, respectively. Notably, in our folding principle, each rule in Figure 4.5

contains no more than two transitions, and the value of α, i.e., the layers of boxes, is no

more than two.

Theorem 4.1 (Graph Folding Principle). Consider an RSM-reachability instance Reach〈R,G〉.
Without loss of generality, assume that there is always at least one edge from node x to y

in G. The node pair (x, y) ∈G is foldable if both ① and ② hold:

① When there is no edge from y to x, y ∉Vsrc and all the incoming edges of y starts at x;

② The four rules in Figure 4.5 hold for all α ∈ {0,1,2}.

Example 4.7 (Identifying Foldable Node Pairs). Figure 4.4(a) is an RSM, and Figures 4.4

(c) and (d) are two graph segments based on the RSM. Assume that neither x nor

y is a source. In Figure 4.4(c), there is no edge from y to x, and the only incoming

edge of y starts at x, so ① is satisfied. And for ②, we only need to consider Rule

[x-y]. It can be observed that Nr(L_x) = {〈b,n0〉}, Lxy = {ℓ1} and L y̸x = {ℓ2}. We have

74

4.2. PRINCIPLE FOR GRAPH FOLDING

〈b,n0〉
ℓxy=ℓ1−−−−−→〈b,n1〉 ∈ R and 〈b,n0〉

L y̸x≃ 〈b,n1〉. Therefore, the node pair (x, y) in Figure 4.4(c)

is foldable.

In Figure 4.4(d), Nr(L_x) = {〈b,n0〉}, Lxy = {ℓ1}, L yx = {ℓ3} and L y̸x = {ℓ2}. We have

〈b,n0〉
ℓxy=ℓ1−−−−−→ 〈b,n1〉

ℓyx=ℓ3−−−−−→ 〈b,b,n0〉 ∈ R and 〈b,b,n0〉 ̸
L_x⪯ 〈b,n0〉. This means that Rule

[x-x] of ② is not satisfied. Therefore, the node pair (x, y) in Figure 4.4(d) is not foldable.

The soundness of our graph folding principle manifests in that folding any node pair

preserves reachability equivalence. Besides, since the states of Nr(L yx) in Rule [x-y]

are doubly checked by Rules [x-x] and [y-x], Nr(L_x) in Rule [x-y] can be replaced by

Nr(L ̸yx) for simplicity. Similarly, in Rule [y-x], Nr(L_y) can be replaced by Nr(L ̸xy). The

principle decides foldability via only local information (i.e., incoming and outgoing edges

of a node pair in graph G). Therefore, it does not exhaustively detect all foldable node

pairs. For example, in Figure 4.1(b), if we only consider v0 as the source and v7 as the

sink, folding (v1,v2) does not affect CFL-reachability result, whereas we do not consider

it as foldable because it violates Rule [x-y] in Figure 4.5.

4.2.3 Correctness of Folding Principle

We demonstrate the correctness of our graph folding by showing that Principles ① and

② in Theorem 4.1 satisfies Cond. 1 and Cond. 2 in Definition 4.3, respectively. The

proof is separated into proving Lemma 4.1 and Lemma 4.2, where the former is simple

and intuitive. To prove Lemma 4.2, we first categorize the paths involving x and y into

four basic types, as in Figure 4.7, and show how each rule in Figure 4.5 ensures the

consistency of each type, respectively. This gives rise to two properties, i.e., Property 4.2

and Property 4.3, which are further used to prove Lemma 4.2.

Lemma 4.1. Principle ① in Theorem 4.1 implies the exclusiveness condition (Cond. 1) of

Definition 4.3.

75

CHAPTER 4. RECURSIVE STATE MACHINE GUIDED GRAPH FOLDING

1Given two nodes x and y in a graph, an xy-path is a path comprised of edges joining x and y.

76

(a) Original graph. (b) Incorrectly folded (x, y).

Figure 4.6. For the problem running on the RSM in Figure 4.1(a), if v1 ∈ Vsrc and v2 ∈ Vsnk,

folding (x, y) introduces an additional reachable pair (v1,v2) in G′ via v1 −(|→ x −|)→ v2, which

violates reachability equivalence.

Proof. A source-sink path in G′ that does not have an xy-FEQ class in G can only be

introduced when there is no edge from y to x, as shown in Figure 4.6. In this case, when

y ∈Vsrc or y has an incoming edge from a node other than x, folding (x, y) may introduce

new source-sink paths from y or the predecessors of y to x or the successors of x. Such

new paths do not have any xy-FEQ class in G and can lead to spurious reachable pairs.

Principle � avoids such incorrect foldings.

Lemma 4.2. Principle � in Theorem 4.1 implies the exclusiveness condition (Cond. 2) of

Definition 4.3.

We first illustrate the objectives to which the four rules take effect. Figure 4.7

categorizes all paths containing at most one xy-subpath1 into four basic types of xy-FEQ

classes, and shows the corresponding rules for ensuring consistency for each type. Briefly,

Rule [x-x] ensures the consistency of the corresponding transition chains of paths where

the xy-subpath starts and ends both with x (Type 1). Rule [x-x] and Rule [x-y] together

ensure the consistency of the corresponding transition chains of paths where the xy-

subpath starts with x and ends with y (Type 2). Correspondingly, [y-y] and [y-x] ensure

the consistency of Type 3, where xy-subpath starts and ends both with y, and Type 4,

where xy-subpath starts with y and ends with x.

Principle � preserves the consistency for the four basic types as it has Property 4.2

and Property 4.3, among which Property 4.2 is the realization of Property 4.1 in the

corresponding states of nodes, and it indicates that Bα×Nr(L_x) and Bα×Nr(L_y) where

4.2. PRINCIPLE FOR GRAPH FOLDING

Type 1 Type 2 Type 3 Type 4

Original

Folded

Involved
rules

[x-x] [x-x] and [x-y] [y-y] [y-y] and [y-x]

77

Figure 4.7. Four basic types of xy-FEQ classes, where each type contains at most one xy-subpath.

For simplicity, we only draw one edge from x to y and one edge from y to x.

α= 0,1,2 is enough to cover all cases (states) in Qx and Qy. Property 4.3 guarantees the

consistency of the endpoints of transition chains corresponding to the four basic types of

xy-FEQ classes, which further ensures the satisfaction of Cond. 2. The detailed proofs of

Property 4.2 and Property 4.3 are provided in our supplementary material.

Property 4.2. If the four rules in Figure 4.5 hold when α≤ 2, they also hold for all α> 2.

Property 4.3. With Pxy denoting an xy-FEQ class belonging to the four basic types of

Figure 4.7 and pG′ denoting the xy-folded path of Pxy, if the four rules in Figure 4.5 hold,

then (i) pG′ is a reachable path iff Pxy contains a reachable path, and (ii) when the paths

of Pxy do not end with x or y, pG′ corresponds to a sub-transition chain from s0 to sk iff

Pxy also contains a path corresponding to a sub-transition chain from s0 to sk.

Proof of Lemma 4.2. We use the four basic types and the two properties to prove Lemma 4.2.

In the original graph G, any path pG can be seen as the concatenation of subpaths

pG1 pG2 · · · pGk such that (1) for each i ∈ {1, · · · ,k}, pGi is either a path belonging to the

four basic types of Figure 4.7 or a path not containing any xy-subpath, and (2) for all

i < k, pGi does not end with either x or y. Discussing k = 1 is trivial as it either belongs

to the four basic types, which is covered by Property 4.3, or is a path not containing any

xy-subpath, which is never changed by folding (x, y).

CHAPTER 4. RECURSIVE STATE MACHINE GUIDED GRAPH FOLDING

Next, we consider k > 1 and start from pG1. For the case that pG1 does not belong to

the four basic types, the corresponding transition chain is never changed by folding (x, y),

i.e., the corresponding states of nodes are not changed. For the case that pG1 belongs to

Pxy1 one of the four basic types in Figure 4.7, according to Definition 4.2, the xy-folded

path pG1′ is exactly Pxy. Property 4.3 ensures that pG1′ corresponds to a transition chain

from sinit to s1 iff Pxy1 also contains a path corresponding to a transition chain from sinit

to s1.

Analogously, for the concatenation pG1 pG2 · · · pGk−1 that belongs to Pxyk−1, Prop-

erty 4.3 ensures that the xy-folded path of pG1 pG2 · · · pGk−1 (i.e., of Pxyk−1) corresponds

to a transition chain from sinit to sk−1 iff Pxyk−1 also contains a path corresponding to a

transition chain from sinit to sk−1.

Finally, we consider the whole path pG , which belongs to Pxy and is folded into pG′ . (1)

For the case that pGk does not end with x nor y, it can be inferred that pG′ corresponds

to a transition chain from sinit to sk iff Pxy also contains a path corresponding to a

transition chain from sinit to sk. (2) For the case that pG ends with x or y, Property 4.3

also ensures that pG′ corresponds to a transition chain from sinit to sk such that sk ∈ F

iff Pxy also contains a path corresponding to a transition chain from sinit to s′k such that

s′k ∈ F. Therefore, for any xy-FEQ class Pxy in G and its xy-folded path pG′ in G′, the

four rules of Figure 4.5 ensures that pG′ is a reachable path iff Pxy contains a reachable

path, which indicates the satisfaction of Cond. 2.

Putting Lemmas 4.1, 4.2 and Definition 4.3 together, folding a node pair (x, y) satisfy-

ing ① and ② in Theorem 4.1 preserves reachability equivalence. Namely, Theorem 4.1 is

correct.

78

4.3. GRAPH-FOLDING ALGORITHM

4.3 Graph-Folding Algorithm

We then give an efficient graph-folding algorithm GF that traverses and folds the input

graphs for CFL-reachability. Our algorithm implements the graph folding principle

(Theorem 4.1). GF has a linear time complexity with respect to the number of nodes in

input graphs.

4.3.1 Identifying Foldable Node Pairs

4.3.1.1 Implementation of Graph Folding Principle

Algorithm 5 describes a practical realization of the folding principle in Theorem 4.1. The

characteristic is that it only needs to compute the transitions involving the incoming

and outgoing edges of a pair of adjacent nodes x and y. Specifically, in lines 2–3, we set

the values of Qx and Q y as their overapproximate supersets according to Principle ② in

Theorem 4.1. lines 4–5 and lines 6–7 verify the foldability of the input node pair based

on Principles ① and ②, respectively.

Time Complexity. Algorithm 5 has a time complexity of O(|B|2 ×|N|× |Σ|3), where

N =∪i∈{1,··· ,t}Ni is the collection of all local states of the RSM. In Algorithm 5, the time

complexity of lines 2–5 can be regarded as O(1) as they can be considered as lookups

of hash tables. Then, the time complexity of Algorithm 5 depends on the subprocedure

Check . We can first assume that a state transition si
t−→ s j ∈ R can be performed in

O(1) time. According to Definition 4.6, given a set of label L and two states s1 and

s2, checking s1
L≃ s2 and s1

L⪯ s2 needs to perform O(|L|) transitions. Thus, the loops

in lines 10–16 cost (|Qv1 |× |Lv1v2 |× |Lv2 ̸v1 |+ |Qv1 |× |Lv1v2 |× |Lv2v1 |× |Lv1_|) time, where

the value of Qv1 is given in line 2 or line 3. We can find that O(|Qv1 |) = O(|B|2 × |N|),
|Lv1v2 | ≤ |Σ|, |Lv2 ̸v1 | ≤ |Σ|, |Lv2v1 | ≤ |Σ| and |Lv1_| ≤ |Σ|. Therefore, the time complexity of

Algorithm 5 is O(|B|2 ×|N|× |Σ|3).

79

CHAPTER 4. RECURSIVE STATE MACHINE GUIDED GRAPH FOLDING

Algorithm 5: Implementation of Graph Folding Principle

1 Function Identify(x, y)

2 Qx :=Nr(L_x)∪ (
B×Nr(L_x)

)∪ (
B2 ×Nr(L_x)

)
;

3 Q y :=Nr(L_y)∪ (
B×Nr(L_y)

)∪ (
B2 ×Nr(L_y)

)
;

4 if L yx =; and
(
y ∈Vsrc or L ̸xy ̸= ;)

then /* Theorem 4.1: ① */

5 return false;

6 if Check(x, y) and Check(y, x) then /* Theorem 4.1: ② */

7 return true;

8 return false;

9 Procedure Check(v1,v2)

10 for each sv1 ∈Qv1 do

11 for each ℓ1 ∈ Lv1v2 do

12 if not exists
(
sv1

ℓ1−→ sv2 ∈ R s.t. sv1

Lv2 ̸v1≃ sv2

)
then

13 return false; /* Rules [x-y] and [y-x] of Figure 4.5 */

14 for each ℓ2 ∈ Lv2v1 do

15 if exists
(
sv1

ℓ1−→ sv2

ℓ2−→ s′v1
∈ R s.t. ¬(s′v1

Lv1_⪯ sv1)
)

then

16 return false; /* Rules [x-x] and [y-y] of Figure 4.5 */

17 return true;

4.3.1.2 Efficient Identification for Foldable Node Pairs

Algorithm 5 runs fast for small RSMs, but the overall runtime increases when the RSMs

become more complex. For real-world problems, we need a more efficient identification

strategy. In fact, real-world CFL-reachability problems usually have an important trait—

many node pairs share the same “pattern” of incoming and outgoing edges. Specifically,

we define the “pattern” of a node pair (x, y) as a tuple:

Pattern(x,y) = 〈isSrc (x), isSrc (y), L ̸yx, L ̸xy, Lxy, L yx, Lx ̸y, L y̸x〉 (4.3)

80

4.3. GRAPH-FOLDING ALGORITHM

Algorithm 6: Efficient Identification of Foldable Node Pairs

Ω⊕: a set holding the patterns of foldable node pairs.

Ω⊖: a set holding the patterns of non-foldable node pairs.

1 Function IsFoldable(x, y)

2 consult the incoming and outgoing edges to determine Pattern(x,y);

3 if Pattern(x,y) ∈Ω⊕ then return true ;

4 if Pattern(x,y) ∈Ω⊖ then return false ;

5 if Identify(x, y) then /* Algorithm 5 */

6 Ω⊕ :=Ω⊕∪ {Pattern(x,y)}

7 return true;

8 Ω⊖ :=Ω⊖∪ {Pattern(x,y)}

9 return false;

where isSrc (x) and isSrc (y) are two boolean variables denoting whether x ∈ Vsrc and

whether y ∈Vsrc. The value of Pattern(x,y) can be predefined or determined by consulting

x and y and their incoming and outgoing edges. Obviously, for two node pairs (x1, y1)

and (x2, y2), checking whether Pattern(x1,y1) = Pattern(x2,y2) is much faster than calling

Algorithm 5 twice.

For the node pairs sharing the same pattern Pattern(x,y), we do not need to repeatedly

invoke Algorithm 5 to check whether they are foldable. We use a set denoted by Ω⊕ to

collect the patterns of node pairs that are already identified as foldable by Algorithm 5.

When Ω⊕ is fully filled, we can identify whether a node pair is foldable by checking

whether the pattern of the node pair is already in Ω⊕. Ω⊕ can be filled by verifying each

possible pattern through Algorithm 5, where the number of invocation depends only on

the size of the alphabet Σ. Besides, we provide another strategy in Algorithm 6, which

dynamically constructs Ω⊕ during the process of graph folding with a set Ω⊖ holding

patterns of non-foldable node pairs.

81

CHAPTER 4. RECURSIVE STATE MACHINE GUIDED GRAPH FOLDING

Algorithm 7: Graph-Folding Algorithm GF

Vvisited: a set holding visited nodes.

Evisited: a set holding visited edges.

1 Function GF(G,R)

2 set Ω⊕, Ω⊖, Vvisited and Evisited as ;;

3 for each x ∈V do

4 if x ∉Vvisited then Visit (x); ;

5 return G;

6 Procedure Visit(x)

7 Vvisited :=Vvisited ∪ {x}

8 for each x ℓ−→ y ∈ E s.t. y ∉Vvisited and x ℓ−→ y ∉ Evisited do

9 add all edges joining x and y into Evisited;

10 if IsFoldable(x, y) then

11 Fold (x, y);

12 Visit (y)

13 Procedure Fold(x, y)

14 Remove all edges joining x and y;

15 for each z ∈V s.t. Rep(z)= y do /* Update representative nodes */

16 Rep(z) := x;

17 Remove node y; /* Merge y into x */

4.3.2 Overall Algorithm

Algorithm 7 describes the overall graph-folding algorithm GF. In addition to Ω⊕ and

Ω⊖ in Algorithm 6, Algorithm 7 maintains two sets Vvisited and Evisited to collect the

visited nodes and edges. The procedures GF and Visit scan the input graph via a depth-

first traversal. When visiting a node x, the algorithm calls the identification procedure

isFoldable for each unvisited direct successor y of x to check whether (x, y) is foldable.

If (x, y) is foldable, the algorithm uses Fold (x, y) in lines 13–17 to fold (x, y) and update

82

4.4. EXPERIMENT

representative nodes.

Complexity. Algorithm 7 has a linear time complexity with respect to the number of

nodes in the input graph. For real-world problems where the RSM is far smaller than the

graph, the cost for identifying and folding a node pair (lines 10–11) can be considered as

O(1) time. The ordinary depth-first traversal costs O(|V |+ |E|) time. However, different

from the ordinary depth-first traversal, line 9 ensures that each node should not be

visited twice through different edges. Lines 8–12 show that the number of method

invocations for IsFoldable (x, y) and Fold (x, y) does not exceed the number of visited

nodes. In Algorithm 7, each node is visited once, hence the time complexity of Algorithm 7

is O(k|V |) where k is a constant representing the time for identifying and folding a node

pair. Namely, GF has a linear time complexity with respect to the number of nodes of the

input graph.

4.4 Experiment

We evaluate our graph folding technique by applying it to two popular clients on C/C++

static analysis: value-flow analysis and alias analysis. In particular, we study the perfor-

mance of GF from two aspects: (1) the performance of GF in reducing the input graph

sizes and (2) the speedups and memory overhead reductions of CFL-reachability solving,

with the input graphs simplified by GF.

We use a recent algorithm proposed in Graspan [133] as the CFL-reachability solver.

We compare the effectiveness of GF with the baseline and two state-of-the-art graph

simplification techniques: (1) “Base” (a baseline approach that solves CFL-reachability

on the graph without any simplification), (2) “SCC” (cycle elimination [92, 127]), and (3)

“InterDyck” (InterDyck graph simplification [80]).

83

CHAPTER 4. RECURSIVE STATE MACHINE GUIDED GRAPH FOLDING

CFG: S ::= calli S reti | S S | a∗

Figure 4.8. The CFG and RSM

for C/C++ context-sensitive value-flow

analysis.

Figure 4.9. The RSM for C/C++ field-sensitive alias

analysis, where the nodes in double circle denote the

exits of the box.

4.4.1 Experimental Setup

We have implemented GF on top of LLVM-12.0.0, and conducted our experiment on

a platform consisting of an eight-core 2.60GHz Intel Xeon CPU with 128 GB memory,

running Ubuntu 18.0.4. In our experiment, the patterns of foldable node pairs, i.e., Ω⊕

in Section 4.3.1, are precomputed.

Value-flow analysis. We conduct context-sensitive value-flow analyses on sparse

value-flow graphs (SVFGs) [126] abstracted of our benchmarking programs. The CFG

and the RSM for context-sensitive value-flow analysis are displayed in Figure 4.8, where

“calli” and “reti” denote call and return of a callsite, whose index is i; and “a” denotes

an assignment instruction. In the RSM, the initial state and the final state are both

〈n1〉, and the unique box b has a subscript i matching the index of calli and reti. In this

problem, nodes denoting the allocation/deallocation sites are marked as sources/sinks.

calli-reti forms matched parentheses. It is worthwhile to point out that although the

CFG in Figure 4.8 only focuses on context-sensitivity, since each field object in SVFG is

84

4.4. EXPERIMENT

already represented as a distinct node, the analysis is also field-sensitive.

Alias analysis. We conduct all-pair field-sensitive alias analyses based on the RSM in

Figure 4.9, which is constructed from the CFG proposed in [149]. a denotes assignment,

d denotes dereference and f i denotes the address of the i-th field. The RSM contains

three boxes b1,b2 and b3, which are all mapped to M1. b3 has a subscript i matching the

field index of f i and f i. The RSM has an initial state 〈n1〉 and four accepting states 〈n1〉,
〈n2〉, 〈n3〉 and 〈n4〉. The alias analysis is conducted on a program expression graph (PEG),

which is bi-directed, i.e., for each vi
t−→ v j ∈ E where t ∈Σ, there is a reverse v j

t−→ vi ∈ E.

d-d and f i- f i form matched parentheses.

Benchmarks. We use 10 popular GitHub open-source C/C++ programs to benchmark

our analysis as listed in Table 4.3. We select these programs because they are diverse

in terms of functionalities as they include: development (astyle, nvim), version control

(git-checkout), compiler (janet, mruby), database (psql, redis_cli), computer vision

(opencv_test_video), window manager (i3) and terminal multiplexer (tmux). The SVFG

and PEG of each program are generated by the open-source tool SVF [125] from the

bitcode files compiled by Clang-12.0.0 from source code with the -O3 flag and integrated

by Whole Program LLVM2. For each input graph, cycle elimination detects and collapses

cycles comprised of a-edges, and the InterDyck algorithm detects and eliminates the

non-Dyck-contributing [80] parenthesis edges. Table 4.3 displays the graph statistics

and the results of the baseline approach.

4.4.2 Performance in Reducing Graph Sizes

Figures 4.10 and 4.11 depict the reduction rates of nodes and edges in the input graphs

of value-flow analysis and alias analysis, respectively. As the InterDyck algorithm never

removes nodes from a graph, the node reduction charts (Figure 4.10(a) and Figure
2https://github.com/travitch/whole-program-llvm

85

C
H

A
P

T
E

R
4.

R
E

C
U

R
S

IV
E

S
T

A
T

E
M

A
C

H
IN

E
G

U
ID

E
D

G
R

A
P

H
F

O
L

D
IN

G

Table 4.3. Benchmark info and results of the baseline. #Node and #Edge denote the number of nodes and edges of each input graph. P-Edge%

denotes the percentage of parenthesis edges out of total edges of each input graph. Time/s and Mem./GB denote the runtime and memory

overhead of the baseline for analyzing each program, measured in seconds and gigabytes, respectively.

Bench.
Value-flow analysis Alias analysis

#Node #Edge P-Edge% Time/s Mem./GB #Node #Edge P-Edge% Time/s Mem./GB

1.astyle 227140 394839 16.58% 14287 17.82 70906 150090 45.84% 6327 7.08

2.git_checkout 488092 919390 37.65% 48807 26.60 78801 184734 42.05% 51024 10.26

3.i3 145259 212761 29.96% 809 3.41 39894 95620 43.57% 8383 7.50

4.janet 227081 359552 33.10% 7879 11.19 43837 99292 43.17% 19085 37.14

5.mruby 226528 340374 19.18% 26938 23.63 71265 176888 43.17% 26368 27.93

6.nvim 332733 402753 21.75% 880 3.73 99826 224170 43.18% 49600 20.17

7.opencv_test_video 385060 509439 10.47% 785 1.67 132068 279528 40.13% 24638 8.27

8.psql 157014 228604 27.43% 2486 8.40 40145 99164 44.59% 8808 12.54

9.redis-cli 231372 367291 34.59% 1802 5.59 55250 129528 45.45% 20459 17.70

10.tmux 243828 390084 29.11% 15218 8.77 76522 186808 45.63% 61168 25.52

86

4.4. EXPERIMENT

Avg. reduction:
GF:60.96% SCC:3.77% GF+SCC: 64.29%

0%

10%

20%

30%

40%

50%

60%

70%

80%

1 2 3 4 5 6 7 8 9 10

N
od

e
R

ed
uc

ti
on

 R
at

e

Benchmark Number

GF SCC GF+SCC

(a) Node reduction.

Avg. reduction:
GF: 42.67% SCC: 6.76% InterDyck: 12.08%
GF+SCC: 52.67% GF+SCC+InterDyck: 61.22%

72.26%

0%

10%

20%

30%

40%

50%

60%

70%

80%

1 2 3 4 5 6 7 8 9 10

E
dg

e
R

ed
uc

ti
on

 R
at

e

Benchmark Number

GF SCC InterDyck GF+SCC GF+SCC+InterDyck

(b) Edge reduction.

Figure 4.10. Reduction rates of nodes and edges in the input graphs of value-flow analysis.

4.11(a)) do not include the information of InterDyck. A comparison of SCC, InterDyck

and GF shows that GF is more powerful than SCC and InterDyck in reducing the size of

the input graphs for both clients. Specifically, by comparing GF with SCC, we find that

cycle elimination reduces only a small number of nodes and edges in the preprocessing

stage. In contrast, prior work shows that cycle elimination behaves well in particular

clients, e.g., constraint-based pointer analysis because it detects and collapses cycles

dynamically in the solving procedure [51, 97]. This is beyond the topic of this paper, and

hence is not discussed. By comparing GF with InterDyck, we find that InterDyck can

reduce the number of parenthesis edges. But since the proportions taken by parenthesis

87

CHAPTER 4. RECURSIVE STATE MACHINE GUIDED GRAPH FOLDING

Avg. reduction:
GF: 38.93% SCC: 0.91% GF+SCC: 39.37%

0%

10%

20%

30%

40%

50%

1 2 3 4 5 6 7 8 9 10

N
od

e
R

ed
uc

ti
on

 R
at

e

Benchmark Number

GF SCC GF+SCC

(a) Node reduction.

Avg. reduction:
GF: 35.61% SCC: 1.57% InterDyck: 5.86%
GF+SCC: 36.59% GF+SCC+InterDyck: 42.35%

58.82%

0%

10%

20%

30%

40%

50%

60%

1 2 3 4 5 6 7 8 9 10

E
dg

e
R

ed
uc

ti
on

 R
at

e

Benchmark Number

GF SCC InterDyck GF+SCC GF+SCC+InterDyck

(b) Edge reduction.

Figure 4.11. Reduction rates of nodes and edges in the input graphs of alias analysis, where

GF denotes graph folding, SCC denotes cycle elimination and InterDyck denotes the InterDyck

graph simplification.

edges are not large (see Columns 4 and 9 of Table 4.3) in these two real-world clients,

whereby the effectiveness of the InterDyck algorithm is limited. Besides, a comparison

between node reduction rates and edge reduction rates of GF shows that folding tends to

increase the density (#Edge/#Node) of the graph.

We also study the combinations GF+SCC and GF+SCC+InterDyck, which are depicted

as the dashed lines in Figures 4.10 and 4.11. The result shows that GF complements

other approaches (e.g., SCC and InterDyck) well (i.e., they can be used together to further

improve the performance of CFL-reachability). Table 4.4 shows the runtime of GF, SCC

88

4.4. EXPERIMENT

Table 4.4. Runtime of GF, SCC and InterDyck, measured in seconds.

Bench.
SVFG PEG

GF SCC InterDyck GF SCC InterDyck

1.astyle 3.70 0.69 273.04 0.29 0.13 19.82

2.git_checkout 15.29 2.09 1625.84 0.40 0.21 337.87

3.i3 2.63 0.27 177.74 0.54 0.05 45.96

4.janet 4.01 0.80 464.37 0.19 0.07 27.41

5.mruby 15.74 0.82 718.08 0.44 0.15 257.75

6.nvim 16.72 0.94 152.02 0.44 0.31 122.89

7.opencv_test_video 57.80 2.35 541.36 0.55 0.47 22.54

8.psql 2.39 0.30 130.31 0.29 0.05 37.56

9.redis-cli 7.34 0.64 143.18 0.21 0.14 85.16

10.tmux 10.13 0.75 1040.18 0.32 0.16 216.08

and InterDyck when they are applied separately to the graphs. The results show that

SCC is the fastest, followed by GF, and InterDyck is much slower. This is because

implementing InterDyck in these two clients needs to (1) detect and contract all non-

parenthesis edges, (2) use the FastDyck algorithm [145] to find Dyck-contributing edges

and mark the “anchor” nodes and (3) detect and remove non-Dyck-contributing edges,

where (1) costs O(|V |2) time, (2) costs O(|V |+ |E|log|E|) time and (3) costs O(|E|log|E|)
time. Hence, to effectively combine the three graph simplification techniques, we suggest

running SCC first, then GF and finally InterDyck, using the simplified graph to reduce

the runtime of InterDyck.

4.4.3 Speedup and Memory Overhead

Figure 4.12 shows the speedups of CFL-reachability in the two clients by GF, SCC, Inter-

Dyck and their combinations. Taking the edge reduction rate (Figure 4.10(b) and Figure

4.11(b)) into consideration and comparing the speedups among different graph simplifi-

89

CHAPTER 4. RECURSIVE STATE MACHINE GUIDED GRAPH FOLDING

Avg. speedup:
GF: 3.16× SCC: 1.41× InterDyck: 1.70×
GF+SCC: 3.34× GF+SCC+InterDyck: 3.56×

4.10

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10

S
pe

ed
up

/×

Benchmark Number

GF SCC InterDyck GF+SCC GF+SCC+InterDyck

(a) Context-sensitive value-flow analysis.

Avg. speedup:
GF: 3.68× SCC: 1.29× InterDyck: 1.44×
GF+SCC: 3.77× GF+SCC+InterDyck: 4.01×

5.39

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10

S
pe

ed
up

/×

Benchmark Number

GF SCC InterDyck GF+SCC GF+SCC+InterDyck

(b) Field-sensitive alias analysis.

Figure 4.12. Speedups of CFL-reachability by GF, SCC, InterDyck and their combinations.

cation approaches, we observe that the reduction of more edges from the graphs helps to

accelerate CFL-reachability solving. Comparing the speedups of a graph simplification

approach among different programs, we see that larger edge reduction rates usually, but

not always, result in larger speedups. This is because the runtime of CFL-reachability

solving depends not only on the size of the input graph but also on other graph traits

such as density, edge types, etc.

Figure 4.13 shows the reduction rates of memory overheads by GF in the two clients.

We see that by reducing the size of the input graphs, GF effectively reduces the memory

overhead of CFL-reachability analysis for both clients. Comparing Figure 4.12 and

90

4.4. EXPERIMENT

16.96%

8.96%

14.83%
12.93%

19.34%20.24%

15.87%16.53%

10.61%11.11%

0%

5%

10%

15%

20%

25%

30%

1 2 3 4 5 6 7 8 9 10

M
em

or
y

U
sa

ge
 R

ed
uc

tio
n

Benchmark Number

Avg.: 14.74%

(a) Context-sensitive value-flow analysis.

15.80%
14.33%

12.12%

21.59%

18.06%

14.56%

23.14%

17.21%
15.77%16.75%

0%

5%

10%

15%

20%

25%

30%

1 2 3 4 5 6 7 8 9 10

M
em

or
y

U
sa

ge
 R

ed
uc

tio
n

Benchmark Number

Avg.: 16.93%

(b) Field-sensitive alias analysis.

Figure 4.13. Reduction rates of memory overhead by GF.

(a) Instance 1. (b) Instance 2.

Figure 4.14. Two instances of foldable node pair (x, y) in the problem running upon the RSM of

Figure 4.4.

Figure 4.13, we see that the largest/smallest speedups correspond to the largest/smallest

reduction rates of memory overhead. What lies behind this correlation is that solving

CFL-reachability is a procedure that uses existing edges to create and add new edges

to the graph. Such edges are stored in memory. For solving CFL-reachability, a larger

speedup means a larger reduction rate of edges that need to be created and stored, hence

means a larger reduction rate of memory overhead.

91

CHAPTER 4. RECURSIVE STATE MACHINE GUIDED GRAPH FOLDING

4.4.4 Discussions

Graph Folding and Domain-Specific Edge Contraction Perhaps the best-known

domain-specific edge contraction technique in static analysis is the offline variable

substitution (OVS) for pointer analysis [111]. Specifically, OVS can contract a copy-edge

from a node x to another node y if y does not have its address taken and y does not

have any other incoming copy-edge. In our evaluated alias analyses, GF folds a node pair

(x, y) where there is an a-edge from x to y if y does not have any incoming d-edge and

f i-edge, and does not have any incoming a-edge not from x. The intrinsic meaning of the

folding condition of GF is equivalent to that of OVS.3 Thus, OVS can be viewed as an

instantiation of graph folding in pointer/alias analysis.

Foldability of Node Pairs v.s. Self-Loops in the RSM By observing the RSMs of the

two clients of our experiments (Figures 4.8 and 4.9), a common feature is that both RSMs

contain self-loops, e.g., n1
a−→ n1 in the RSM of Figure 4.8. It is interesting to note that a

foldable node pair does not necessarily need to be joined by an edge that corresponds to

a self-loop in the RSMs. Consider the node pair (x, y) in Figure 4.4(c), whose foldability

is discussed in Example 4.7. In the example, the edge x ℓ1−→ y does not correspond to a

self-loop in the RSM of Figure 4.4(a). In fact, the RSM in this example does not contain

any self-loop.

4.4.5 Summary

The results from the empirical evaluation of GF are promising. On average, by reduc-

ing node counts by 60.96% and edge counts by 42.67% on benchmark input graphs,

GF accelerates context-sensitive value-flow analysis by 3.16× with a memory usage

reduction of 14.74%. By reducing node counts by 38.93% and edge counts by 35.61% on

benchmark input graphs, GF accelerates field-sensitive alias analysis by 3.68× with a

3In particular, an f i-edge is regarded as a copy-edge with an offset i in field-sensitive analysis [96].

92

4.4. EXPERIMENT

memory usage reduction of 16.93%. GF is also compatible with existing techniques. The

combination of GF with SCC and InterDyck reduces up to 72.26% and 58.85% edges

from the input graph of context-sensitive value-flow analysis and field-sensitive alias

analysis, respectively, empirically accelerate those analyses by up to 4.10× and 5.39×.

Furthermore, GF subsumes some existing client-based edge contraction techniques and

is more expressive than SCC and InterDyck.

93

C
H

A
P

T
E

R

5
DERIVATION EQUIVALENCE BASED SET CONSTRAINT

SOLVING

In this chapter, we demonstrate our derivation equivalent algorithm in the form of

set constraint analysis and on the client of field-sensitive pointer analysis [10, 96],

where positive weight cycles arose and extensively studied [76, 96, 97, 121].

5.1 Problem Formulation

5.1.1 Pointer Analysis in Set Constraints

Andersen first formulated pointer analysis as the form of set constraint problem in his

PhD thesis [10]. So constraint-based pointer analysis is also called Andersen’s pointer

analysis. In the constraint graph G = 〈V ,E〉 of Andersen’s pointer analysis, pointers

and abstract memory objects are modeled as nodes with each node vi ∈V assigned with

a point-to set pts(vi) holding the possible point-to targets (pointees) of vi at runtime.

The program instructions involving pointers are formulated as constraints among the

point-to sets of the nodes, with each constraint represented by an edge. The early version

of Andersen’s pointer analysis contains four types of constraints [51, 56], as shown in

95

CHAPTER 5. DERIVATION EQUIVALENCE BASED SET CONSTRAINT SOLVING

Table 5.1. Program instructions, constraints and edges.

Instruction Constraint Edge Type Meaning

Base p = &o {o}⊆ p o Addr−−−→ p o ∈ pts(p)

Direct
q = p p ⊆ q p

Copy−−−→ q pts(p)⊆ pts(q)

q = &p → fi p+ i ⊆ q p
Fieldi−−−−→ q ∀o ∈ pts(p) : o[i] ∈ pts(q)

Indirect
*q = p p ⊆ *q p Store−−−−→ q ∀o ∈ pts(q) : pts(p)⊆ pts(o)

q = *p *p ⊆ q p Load−−−→ q ∀o ∈ pts(p) : pts(o)⊆ pts(q)

Table 5.1 except for the third one (p+ i)⊆ q.

Among the four types of constraints, Addr directly put a node into the point-to set

of another; Copy is a direct constraint as it directly propagate the point-to set from a

node to another; Store and Load are indirect constraints as they involve the propagation

of the point-to sets of the pointees of nodes and such constraints are usually solved by

adding direct edges, i.e., Copy edges, into the graph. Specifically, p Store−−−−→ q is handled by

adding p
Copy−−−→ o to the graph for all o ∈ pts(q); p Load−−−→ q is handled by adding o

Copy−−−→ q to

the graph for all o ∈ pts(p).

Complex program instructions are transformed into the four basic ones in Table 5.1

using auxiliary variables. For example, *q = *p is transformed into v1 = *p and *q =

v1 and then be represented by a Load a Store edge in the constraint graph.

Constraint-based pointer analysis is solving using a dynamic transitive closure algo-

rithm [17, 38, 56, 95]. The algorithm maintains a worklist W holding nodes which need

to propagate their point-to set via their outgoing direct edges. The algorithm iteratively

processes and removes the nodes in the worklist, propagating point-to sets among nodes

and adding edges to the graph based on the rules for solving constraints, until the

worklist is empty, which means that there is not any new point-to set propagation to do,

i.e., all the constraints in the graph are satisfied. Figure 5.1 is a flowchart of the dynamic

transitive closure algorithm.

96

5.1. PROBLEM FORMULATION

Figure 5.1. Flowchart of dynamic transitive closure algorithm for pointer analysis.

5.1.2 Field-Sensitivity and Positive Weight Cycles

The prominent constraint-based field-sensitive pointer analysis was proposed by Pearce

et al. [96], who used weighted constraints to model field accesses in C/C++. In the

literature, the instruction q = &p → fi – where fi denotes the i-th field of the point-to

object of p – is formulated into a constraint (p+ i) ⊆ q and is represented by an edge

p −−−−Field→i q in the constraint graph.

In field-sensitive analysis, the constraint (p+ i)⊆ q means that

∀o ∈ pts(p) : o[i] ∈ pts(q),

where o[i] denotes the base location o with an offset i.

In the classical field modeling by Pearce et al. [95], o[i] represents the i-th field

of o. Besides, in the ANSI-compliant [64] field modeling, the fields of nested structs

flattened, i.e., (o[i])[j] is represented by o[i+ j]. Figure 5.2 displays the five rules for

97

CHAPTER 5. DERIVATION EQUIVALENCE BASED SET CONSTRAINT SOLVING

[Addr]
o Addr−−−→ p ∈ E

o ∈ pts(p)
[Copy]

p
Copy−−−→ q ∈ E

pts(p)⊆ pts(q)

[Store]
p Store−−−−→ q ∈ E o ∈ pts(q)

p
Copy−−−→ o ∈ E

[Load]
p Load−−−→ q ∈ E o ∈ pts(p)

o
Copy−−−→ q ∈ E

[Field-1]
p

Fieldi−−−−→ q ∈ E o ∈ pts(p)

o[i] ∈ pts(q)
[Field-2]

p
Fieldi−−−−→ q ∈ E o[j] ∈ pts(p)

o[i+ j] ∈ pts(q)

Figure 5.2. Rules for field-sensitive pointer analysis.

solving constraints in field-sensitive pointer analysis, where the rule for processing

Field is written in two parts to explicitly handle pointees without offsets and with

offsets, respectively.

Algorithm 8 is the dynamic transitive closure algorithm for solving field-sensitive

constraint-based pointer analysis. It differs from the original field-insensitive version by

adding Lines 17–21 to process Field constraints. In general, Field edges are regarded

as direct edges as processing them do not add any new edge to the graph. It is notable

that processing Field generates new nodes from existing pointees to represent abstract

fields (Line 19). This causes infinite derivations when Field edges are in the cycles of

direct edges, which makes positive weight cycles, as seen in Definition 5.1.

Definition 5.1 (Positive Weight Cycle (PWC)). In field-sensitive constraint-based pointer

analysis, a positive weight cycle is a cycle comprised of Copy and Field edges.

Figure 5.3 is an example illustrating a PWC that incurs infinite derivations during

constraint solving. Figure 5.3(b) gives the constraints transformed from the code ac-

cording to Pearce et al.’s modeling [96]. Figure 5.3(c) shows its corresponding constraint

graph with a PWC containing a positive weighted edge p Field1−−−−−→ q (representing the

constraint p+1⊆ q) and a simple copy edge from q
Copy−−−→ p (representing the constraint

q ⊆ p). An abstract object o allocated at line 3 is initially added to p’s points-to set. Each

98

5.1. PROBLEM FORMULATION

Algorithm 8: Field-sensitive Andersen’s pointer analysis

1 Function PTA(G = 〈V ,E〉)
2 for each o Addr−−−→ p ∈ E do

3 add o to pts(p); add p to W ;

4 while W ̸= ; do

5 select and remove an node p from W ;

6 for each o ∈ pts(p) do /* Process indirect edges */

7 for each p Load−−−→ q ∈ E do

8 if o
Copy−−−→ q ∉ E then

9 add o
Copy−−−→ q to E and add o to W ;

10 for each q Store−−−−→ p ∈ E do

11 if q
Copy−−−→ o ∉ E then

12 add q
Copy−−−→ o to E and add q to W ;

13 for each p
Copy−−−→ q ∈ E do /* Process direct edges */

14 pts(q)← pts(p)∪pts(q);

15 if pts(q) is changed then

16 add q to W ;

17 for each p
Fieldi−−−−→ q ∈ E do

18 for each o ∈ pts(p) do

19 add o[i] to pts(q);

20 if pts(q) is changed then

21 add q to W ;

time processing the edge p Field1−−−−−→ q, a new field object is generated from existing one

and propagated from pts(p) to pts(q), then propagated back to pts(p) via q
Copy−−−→ p for a

new round of field derivation, resulting in infinitely deriving fields o[1], o[2], · · · from the

base object o. As the point-to sets of p and q is continuously changing, such loops will

not terminate.

99

CHAPTER 5. DERIVATION EQUIVALENCE BASED SET CONSTRAINT SOLVING

(a) C code (b) Constraints (c) Solving a PWC on the constraint graph

Figure 5.3. Positive weight cycle and infinite derivations.

To avoid infinite derivations, existing works [15, 96] manually set an upper bound

of the number of derivations for each abstract object. This trades off precision with

practicality. For a stack and global object, its number of fields can be statically determined

based on its declared types. However, the number of fields of a dynamically allocated heap

object may be unknown without actually running the program. Thus, on one hand, if the

upper bound is small, solving positive weight cycles will be highly imprecise although it

can possibly be quicker. On the other hand, if the upper bound is set to be large enough,

solving positive weight cycles will be more precise but very inefficient.

As a special instance of CFL-reachability, Andersen’s pointer analysis has its prop-

erties which makes a large variety of offline/online graph simplification techniques

[38, 51, 52, 95, 97, 111] available. An important property is that nodes in a cycle com-

prised of Copy edges are equivalent. Such equivalence manifests in that nodes in the

cycle take part in identical point-to set propagation, and such nodes will have identical

point-to sets after the overall constraint solving. Thus, collapsing a cycle consisting of

Copy edges into a node will not change the pointer analysis result, hence is safe. In

the literature, there are many existing techniques to detect and collapse cycles in the

preprocessing stage [51] or during the constraint solving [38, 51, 95, 97].

However, in field-sensitive analysis, nodes in a PWC are not equivalent as they do

100

typedef struct A {int idx; /* f0 */ A* next; /* f1 */ } A;

1 A* p, q;

2 for(...){

3

4

5

p=malloc(...);//o

q=&p->next;

p=q;

6 }

{o} ⊆ p

p+1 ⊆ q

q ⊆ p

5.1. PROBLEM FORMULATION

not have identical point-to sets. This is obvious Figure 5.3(c). Moreover, contemporary

programs contain a large amount of field accesses and nodes in PWCs usually occupy a

large property of all nodes. Only merging cycles comprised of Copy edges while leaving

PWCs without any optimization cannot effectively improve the efficiency. To achieve

higher efficiency, some existing works [97, 121] treat Field edges in cycle the same as

Copy edges and collapse PWCs. This obviously discounts the precision of field-sensitive

analysis. Similarly, other graph simplification techniques like edge contraction [52, 111]

are not suitable for handling Field edges in field-sensitive analysis.

5.1.3 Derivation Equivalence Based Constraint Solving

This chapter present a derivation equivalence algorithm DEA, a fast and precise approach

to handle positive weight cycles. Rather than cycle elimination and edge contractions

which merges equivalent original nodes in the graph, our technique collapses items

dynamically derived during constraint solving by capturing derivation equivalence. Our

insight is that two items derived from the same base object are derivation equivalent if

they are always contained by the sets of the same nodes. When iteratively processing the

cycles, such derivation equivalent items are produced using a particular initial value

with some constant strides, which depends on the weights of the weighted edges. Based

on this property, we propose a new stride-based field representation to capture the initial

value and the constant strides of the items derived from the same positive weight cycle

and avoid infinite derivation while preserving the precision, upon which, our DEA is

constructed.

For the convenience of demonstration, our DEA is presented in the form of set con-

straint analysis under the client of field-sensitive Andersen’s pointer analysis. According

to the interconvertability between set constraint analysis and CFL-reachability [86], our

technique is also applicable to CFL-reachability. The following part of this section uses

an exmple to illustrate our solution.

101

CHAPTER 5. DERIVATION EQUIVALENCE BASED SET CONSTRAINT SOLVING

pts(r)= {o}

pts(p1)= {o[1], o[3], o[5], · · · , o[m]}

pts(p2)= { o[3], o[5], · · · , o[m]}

(a) Traditional PWC solving.

pts(r)= {o}

pts(p1)= {o1}∪ {o[3+2k]}

pts(p2)= {o[3+2k]}

(b) Our approach.

Figure 5.4. An example.

Figure 5.4 is an example showing the redundant derivations when solving a PWC

on the constraint graph by the traditional approach [96] based on the inference rules in

Figure 5.2. The example consists of five types of constant edges corresponding to the five

types of instructions in Table 5.1. There is a PWC comprised of two edges p1 −−−−−Field2→ p2

and p2 −−−Copy→ p1. Pointer r initially points to o because of o −−−Addr→ r (Rule [Addr]). The

point-to set of p1 has the field o[1] derived from the object o after solving r −−−−−Field1→ p1

(Rule [Field-1]). In the traditional PWC solving (Figure 5.4(a)), since the PWC formed

by p1 −−−−−Field2→ p2 and p2 −−−Copy→ p1 has a positive weight 2, a sequence of field objects

starting from o[3] with a stride 2 are iteratively derived and added into the point-to set

of p2 (Rule [Field-2]) and then propagated back to the point-to set of p1 (Rule [Copy]),

until the upper bound of derivation number, e.g., m, is reached. These field objects are

derivation equivalent because all of them are always pointed to by both p1 and p2 in

this PWC, incurring redundant derivations. Even worse, handling the edge q1 −−−−Store→ p2

102

5.2. OUR SOLUTION

that flowing into this PWC and the edge p2
Load−−−→ q2 that flowing out of this PWC adds

redundant Copy edges (e.g., q1
Copy−−−→ o[3] and o[3]

Copy−−−→ q2) via Rules [Store] and [Load],

which means that the point-to set of q1 will be repeatly propagated to such field nodes

and then to q2 multiple times, as also illustrated in Figure 5.4(a).

In fact, such redundant field derivations and unnecessary point-to set propagations

is avoidable. We achieve this by merging derivation equivalent fields into a stride-

based polynomial representation o[i+k×s], where i is the starting field, s is the stride

corresponding to the weight of the PWC, and k denotes a non-negative integer. Figure

5.4(b) illustrates the new representation o[3+2k] for collapsing derivation equivalent fields

{o[3], {o[5], · · · } in Figure 5.4(a). After the first time traversing the PWC, the stride of the

fields is determined. Once the field representation o[i+k×s] is derived and propagated into

the point-to sets of p1 and p2, there is not any more iteration for processing the PWC is

needed as the point-to information involving the PWC is determined. As a result, this

field representation successfully reduces the number of points-to targets during points-to

propagation and the number of Copy edges added into the constraint graph when solving

Store/Load edges, while preserving the precision.

5.2 Our Solution

Our technique includes a stride-based field representation for collapsing derivation

equivalent point-to targets, a series of rules for solving set constraints involving the field

representation, and an efficient derivation equivalent algorithm DEA.

5.2.1 Stride-based Field Representation

Definition 5.2 (Stride-based Field Representation (SFR)). We use σ= 〈o, i,S〉 to denote a

single object or a sequence of fields in classical modeling starting from i-th field following

103

CHAPTER 5. DERIVATION EQUIVALENCE BASED SET CONSTRAINT SOLVING

the strides in the set S. 〈o, i,S〉 represents objects or fields as follows:

FieldExpansion(〈o, i,S〉)=

{o} if S =;∧ i = 0

{o[j]

∣∣∣ j = i+
|S|∑

n=1
knsn, j ≤max,kn ∈N, sn ∈ S} otherwise

where

max denotes the upper bound of field number [95] of object o;

sn ∈ S is the n-th element of the stride set S which models precisely field

derivations when a Field edge resides in one or multiple PWC; and

k ∈N is a non-negative integer.

We use 〈o,0,;〉 to represent the entire object o and its single field o[i] is denoted by

〈o, i, {0}〉. Stride-based field representation unifies the notations of an object and its fields.

The expansion of an stride-based field representation fully represents the objects and

fields in the classical modeling, while it reduces the number of points-to targets during

constraint solving. With the upper bound of field number max set, stride-based field

representation is at least as precise as the classical modeling.

From the perspective of field expansion (Definition 5.3), two stride-based field repre-

sentations can be disjointed or overlapping (Definition 5.4).

Definition 5.3 (Field Expansion). The field expansion of a stride-based field representa-

tion, denoted by FieldExpand(σ), is to expand the field representation σ back into a set

holding the objects or fields that σ represents.

Definition 5.4 (Overlapping and Disjointed SFRs). Two stride-based field representa-

tions σ and σ′ are overlapping, denoted as σ⊓σ′ ̸= ;, if

FieldExpand(σ)∩FieldExpand(σ′) ̸= ;.

We say that two stride-based field representations are disjointed if σ⊓σ′ =;. A special

case is the subset relation, denoted as σ⊑σ′, which means that

FieldExpand(σ)⊆ FieldExpand(σ′).

104

5.2. OUR SOLUTION

Example 5.1. Given two stride-based field representations σ= 〈o,1, {2}〉 and σ′ = 〈o,1, {5,6}〉,
FieldExpand(σ)= {o[j]

∣∣ j = 1+2k, k ∈N}= {o[1], o[3], o[5], · · · } and FieldExpand(σ′)= {o[j]
∣∣

j = 1+5k1 +6k2, k1,k2 ∈N}= {o[1], o[6], o[7], o[11], o[12], · · · }.
Since FieldExpand(σ)∪FieldExpand(σ′) ̸= ;, σ⊓σ′ ̸= ;, i.e., σ and σ′ are overlapping.

5.2.2 Inference Rules

Figure 5.5 gives the inference rules for solving set constraints of field-sensitive points-to

analysis based on the stride-based field representation. Object and field nodes on the

constraint graph are now represented by the unified SFRs.

Addr and Copy. Rule [E-Addr] initializes the points-to set of p with object o repre-

sented by 〈o,0,;〉 for each o Addr−−−→ p. Similar to [Copy] in Figure 5.2, [E-Copy] simply

propagates the points-to set of p to that of q when analyzing p
Copy−−−→ q.

Field. After the first time traversing a positive weight cycle, the weight of the cycle

can be determined. Our approach needs to collect the weights of positive weight cycles as

the strides of the derivation equivalent fields.

Definition 5.5 (Path and cycle). A path p
∗=⇒ q on the constraint graph G = 〈V ,E〉 is a

sequence of edges leading from p to q. A path p
∗=⇒ p is a cycle if all its edges are distinct

and the only node occurring twice in this path is p.

Definition 5.6 (Weight of a PWC). A PWC, denoted as C , is a cycle containing only Copy

and Field edges and at least one edge is a Field with a positive weight. The weight of C

is WC =∑
e∈C wte, where e is a Field or Copy edge and wte is the weight of e (wte is 0 if e

is a Copy edge). The set of weights of all the PWCs containing e is {WC | ∀C ⊆ E : e ∈C }.

Unlike rule [Field-1] and [Field-2] in Figure 5.2 which generate a single field object

when processing p
Fieldi−−−−→ q, [E-Field] generates an SFR σ= 〈o, i+ j,S∪S′〉 representing

105

CHAPTER 5. DERIVATION EQUIVALENCE BASED SET CONSTRAINT SOLVING

[E-AddrOf]
o Addr−−−→ p ∈ E σ= 〈o,0,;〉

σ ∈ pts(p)
[E-Copy]

p
Copy−−−→ q ∈ E

pts(p)⊆ pts(q)

[E-Field]

p
Fieldi−−−−→ q ∈ E 〈o, j,S〉 ∈ pts(p) S′ =Strides(p

Fieldi−−−−→ q)

σ= 〈o, i+ j,S∪S′〉 ̸ ∃ σ′ ∈ pts(q) : σ⊑σ′

σ ∈ pts(q)

[E-Store]
p Store−−−−→ q ∈ E σ ∈ pts(q)

p
Copy−−−→σ ∈ E

[E-Load]
p Load−−−→ q ∈ E σ ∈ pts(p)

∀σ′ : σ⊓σ′ ̸= ;⇒σ′ Copy−−−→ q ∈ E

Strides(e)=

{0} if edge e is not in any PWC

{WC | ∀C ⊆ E : e ∈C } otherwise (Definition 5.6)

Figure 5.5. SFR-based rules for field-sensitive pointer analysis.

a sequence of fields starting from the (i+ j)-th field following strides S∪S′, where (1)

S′ = {0} if p
Fieldi−−−−→ q does not reside in any PWC and (2) S′ = {WC | ∀C ⊆ E : p

Fieldi−−−−→ q ∈
C } otherwise. Here S′ denotes a set holding the weights of all the positive weight cycles

with each C containing p
Fieldi−−−−→ q on the constraint graph (Definitions 5.5 and 5.6). If

p
Fieldi−−−−→ q is involved in multiple PWCs, σ is derived to collapse as many equivalent

fields as possible by combining S and S′.

The premise of [E-Field] ensures that σ represents the derivation equivalent fields

such that the targets added to the points-to sets of all these fields are always identical

when solving each cycle C . The conclusion of [E-Field] ensures early termination and

avoids redundant derivations, since an SFR σ can only be generated and added to pts(p)

if there no SFR σ′ already exists in pts(p) such that the expressiveness of σ′ can cover σ,

i.e., σ⊑ σ′ (Definition 5.4). Examples 5.2 and 5.3 give two scenarios in which a Field

edge resides in single and multiple PWCs.

Example 5.2 ([e-field] for a single PWC). Let us revisit the example in Figure 5.4 to

106

5.2. OUR SOLUTION

(a) Constraint graph.

σ1 = 〈o,1, {0}〉
σ2 = 〈o,3, {0,2,3}〉
σ3 = 〈o,4, {0,2,3}〉
σ2 �σ3 �=

pts(r)= {σ1}
pts(p1)= {σ1,σ2,σ3}
pts(p2)= {σ2}
pts(q1)= {σ3}
pts(q2)= {σ2}

(b) Solution in SFR.

pts(r)= {o[1]}
pts(p1)= {o[1], o[3], o[4], o[5], o[6], o[7], o[8], · · · }
pts(p2)= {o[3], o[5], o[6], o[7], o[8], · · · }
pts(q1)= {o[4], o[6], o[7], o[8], o[9], · · · }
pts(q2)= {o[3], o[5], o[6], o[7], o[8], · · · }

Figure 5.6. Solving p1 −−−−−Field2→

(c) Solution in classical field modeling.

p2, which resides in multiple cycles, with SFRs.

explain [E-Field]. The Field edge r −−−−−Field1→ p1 is not involved in any PWC, therefore,

[E-Field] generates an SFR σ= 〈o,1, {0}〉 with S′ = {0}, representing only field o[1] and

then adds σ into pts(p1). Together with p2 −−−Copy→ p1, the second Field edge p1 −−−−−Field2→ p2 ∈
C forms a positive weight cycle C with its weight WC = 2. Given pts(p1) = {〈o,1, {0}〉},
a new SFR σ = 〈o,1+2,{0}∪ {2}〉 = 〈o,3, {0,2}〉 is derived and added into pts(p2) after

processing p1 −−−−Field→ p2. The SFR 〈o,3, {0,2}〉 is then propagated back to p1 via p2 −−−Copy→ p1.

In the second iteration for solving p1 −−−−−Field2→ p2, the newly derived SFR 〈o,5, {0,2}〉 is

discarded and not added into pts(p1) since the expressiveness of 〈o,5, {0,2}〉 is covered

by 〈o,3, {0,2}〉, i.e., 〈o,5, {0,2}〉 � 〈o,3, {0,2}〉 (Definition 5.4).

Example 5.3 ([E-Field] for multiple PWCs). Figure 5.6 compares our stride-based field

representation (Figure 5.6(b)) with the classical modeling (Figure 5.6(c)) to show that

[E-Field] requires significantly fewer field derivations to resolve p1 −−−−−Field2→ p2 when it is

involved in two PWCs, i.e., C1 formed by p1 −−−−−Field2→ p2 and p2 −−−Copy→ p1, and C2 formed

by p1 −−−−−Field2→ p2, p2 −−−Copy→ q2, q2 −−−−−Field1→ q1 and q1 −−−Copy→ p1. The weights of C1 and C2

are 2 and 3, respectively. Thus, S′ = {2,3}. Initially, r points to σ1 = 〈o,1, {0}〉, which is

107

CHAPTER 5. DERIVATION EQUIVALENCE BASED SET CONSTRAINT SOLVING

propagated to p1 along r
Copy−−−→ p1.

We first consider resolving C1. A new SFR σ2 = 〈o,1+2, {0}∪ {2,3}〉 = 〈o,3, {0,2,3}〉 is

derived and added to pts(p2) after processing p1
Field2−−−−−→ p2. σ2 is then propagated back

and added to pts(p1) along p2
Copy−−−→ p1. The second iteration for processing p1

Field2−−−−−→ p2

avoids adding 〈o,5, {0,2,3}〉 into pts(p2) because 〈o,5, {0,2,3}〉 is a subset of σ2, resulting

in early termination.

Similarly, when resolving C2 which contains two Field edges, our approach generates

σ3 = 〈o,3+1, {0,2,3}〉 after processing q2
Field1−−−−−→ q1 and then propagates σ3 to p1 via

q1
Copy−−−→ p1. Given this new σ3 in pts(p1), 〈o,4+2, {0,2,3}〉 is derived when processing

p1
Field2−−−−−→ p2 again. However, 〈o,4+2, {0,2,3}〉 is a subset of σ2, hence is not added to

pts(p2). Note that though σ2 and σ3 are overlapping due to the intersecting PWCs, σ2

successfully captures the equivalent fields that are always pointed by p1, p2, q2 and σ3

captures the equivalent fields that are always pointed by p1, q1, avoiding redundant

derivations. For each PWC, our approach generates only one SFR, requiring at most two

iterations to converge the analysis. In contrast, the classical field modeling performs

redundant derivations until it reaches the maximum number of fields of this object, as

shown in Figure 5.6(c).

Store and Load. Unlike [Store] and [Load] in Figure 5.2, our handling of Store and

Load is asymmetric for both efficiency and precision purposes. For each σ ∈ pts(q), while

processing p Store−−−−→ q, [E-Store] is similar to [Store] by adding a Copy edge from p to

σ to the graph, which propagates pts(p) to pts(σ) afterward. For each SFR σ ∈ pts(p),

while processing p Load−−−→ q, [E-Load] adds copy edges from σ′ to q for all σ′ overlapping

with σ (Definition 5.4), which propagates pts(σ′) to pts(q) afterward.

In [E-Load], we consider σ′ on top of σ because a field o[i] in the classical field

modeling may belong to one or multiple SFRs. For example, in Figure 5.6, o[6] belongs to

σ2 and σ3 when resolving a Field edge which is involved in multiple PWCs or in one

108

5.2. OUR SOLUTION

σ1 = 〈o,1, {3}〉
σ2 = 〈o,2, {2}〉
σ1�σ2 = {o[4], o[10], · · · } �=

[E-Store]

q −−−−Store→ p ⇒ q −−−Copy→σ1

⇒ pts(σ1)= {σ3}

[E-Load]

p −−−Load→ r ⇒
⎧⎨
⎩

σ1 −−−Copy→ r

σ2 −−−Copy→ r

⇒ pts(r)= {σ3,σ4}

(b) Constraint solving.(a) Constraint graph.

Figure 5.7. Solving q −−−−Store→ p and p −−−Load→ r for overlapping SFRs.

PWC containing multiple Field edges. We use Mo[i] to denote a set of all SFRs containing

o[i], i.e., any two SFRs in Mo[i] share common fields including at least o[i]. According

to Definition 5.2, any change to the point-to sets of σ ∈ Mo[i] also applies to those of

o[i] during our constraint resolution. If *q at a Load refers to an SFR σ ∈Mo[i] , it also

refers to σ′ ∈Mo[i] that overlaps with σ for each field o[i] ∈ FieldExpand(σ) (Definition

5.4). Therefore, [E-Load] maintains the correctness that pts(o[i]) obtains the union of

the points-to sets of all SFRs in Mo[i] . Since a points-to target in pts(σ) must be in the

points-to set of every field in FieldExpand(σ) (i.e, for any σ ∈Mo[i] , pts(σ) is always a

subset of pts(o[i])), ensuring that no spurious points-to targets other than pts(o[i]) will

be propagated to p at the Load. Thus, our handling of PWCs is precision preserving, i.e.,

the points-to set of a variable after field expansion resolved under SFRs is the same as

that the classical field representation.

Example 5.4 ([E-Load] and [E-Store]). Figure 5.7 illustrates the resolving of q −−−−Store→ p

and p −−−Load→ r with the initial points-to sets pts(p)= {σ1}, pts(q)= {σ3}, pts(σ2)= {σ4} and

pts(r) = pts(σ1) =
. σ1 and σ2 are both derived from object o with overlapping fields,

e.g., o[4] and o[10]. When resolving q −−−−Store→ p, [E-Store] adds a new Copy edge from q to

σ1, propagating σ3 ∈ pts(q) to pts(σ1), but not pts(σ2) though σ1 �σ2 �=
, as illustrated

109

CHAPTER 5. DERIVATION EQUIVALENCE BASED SET CONSTRAINT SOLVING

in Figure 5.7(b). This avoids, for example, introducing the spurious point-to target σ3

to the points-to set of o[2] which only resides in σ2 but not in σ1. In contrast, [E-Load]

resolves p Load−−−→ r by adding two Copy edges σ1
Copy−−−→ r and σ2

Copy−−−→ r, as also depicted in

Figure 5.7(b). Since σ1 ⊓σ2 = {o[4], o[10], · · · } and σ1 ∈ pts(p), if *p at Load r =∗p refers

to an overlapping field e.g., o[4] shared by σ1 and σ2, the points-to set of r is the union of

pts(σ1) and pts(σ2), i.e., pts(r)= {σ3,σ4}, achieving the precise field-sensitive results.

5.2.3 DEA: a Derivation Equivalence Algorithm

Our precision-preserving handling of PWCs (i.e., the inference rules in Figure 5.5) can

be integrated into existing constraint solving algorithms for field-insensitive Andersen’s

analysis, e.g., the state-of-the-art cycle elimination approaches [38, 51, 56, 95, 97]. This

section presents an overall derivation equivalence algorithm DEA, which is constructed

by instantiating our inference rules on top of wave propagation [97]. We choose wave

propagation as the dynamic-programming constraint solving strategy as it is the most

competitive one over the existing techniques [38, 51, 56, 95] for analyzing large size

programs. In Algorithm 9, all the Addr edges are processed only once to initialize the

worklist W (line 3), followed by a while loop for the main phase of constraint solving,

which has three phases.

Cycle Elimination and Weights of PWCs. In Line 5, we use Nuutilia et al.’s al-

gorithm [92] to detect and merge strongly connected components (SCCs), which is an

improvement over the original algorithm developed by Tarjan et al. [127]. Then, the

weight WC of each PWC C can be calculated from the detected SCCs (Line 6).

Points-to Set Propagation via Direct Edges. We propagate points-to information

along each Copy edge based on [E-Copy] (Lines 9–11). New SFRs are derived and added

to the points-to sets of the destination node of each Field edge based on [E-Field] (Lines

12–16). A variable p is pushed into a new worklist Wind if there exists an incoming Store

110

5.2. OUR SOLUTION

Algorithm 9: An Algorithm

1 Function DEA(G = 〈V ,E〉)
2 W ←;; Wind ←;;

3 for each o Addr−−−→ p ∈ E do pts(p)← pts(p)∪ {〈o,0,;〉}; W .push(p) ; /* [E-Addr] */

4 while W ̸= ; do

5 Detect and collapse cycles comprised of Copy edges using the algorithm in [92];

6 Calculate the weight of each PWC in G;

7 while W ̸= ; do

8 p ←W .pop_front();

9 for each p
Copy−−−→ q ∈ E do /* [E-Copy] */

10 pts(q)← pts(q)∪ pts(p);

11 if pts(q) is changed then W .push(q) ;

12 for each p
Fieldi−−−−→ q ∈ E do /* [E-Field] */

13 S′ ← Strides(p
Fieldi−−−−→ q)

14 for each 〈o, j,S〉 ∈ pts(p) do

15 σ←〈o, i+ j,S∪S′〉
16 if ∄ σ′ ∈ pts(q) : σ⊑σ′ then pts(q)← pts(q)∪ {σ}; W .push(q) ;

17 if ∃ q Store−−−−→ p ∈ E or ∃ p Load−−−→ q ∈ E then push p into Wind ;

18 while Wind ̸= ; do

19 p ←Wind.pop_front();

20 for each q Store−−−−→ p ∈ E do /* [E-Store] */

21 for each σ ∈ pts(p) do

22 if q
Copy−−−→σ ∉ E then E ← E∪ {q

Copy−−−→σ}; W .push(q) ;

23 for each p Load−−−→ q ∈ E do /* [E-Load] */

24 for each σ′ ∈ {σ′⊓σ ̸= ;|σ ∈ pts(p)} do

25 if σ′ Copy−−−→ q ∉ E then E ← E∪ {σ′ Copy−−−→ q}; W .push(σ′) ;

26 for each p
Copy−−−→ q added by UpdateCallgraph do

27 W .push(p)

111

CHAPTER 5. DERIVATION EQUIVALENCE BASED SET CONSTRAINT SOLVING

edge to p or an outgoing Load edge from p for later handling of Load and Store edges

(lines 17).

Processing Indirect Edges. Lines 20–25 handle Store and Load edges via [E-Store]

and [E-Load]. New Copy edges are added to G, and the source node of each newly added

Copy edge is added to worklist W for points-to propagation in the next iteration. Lines

26–27 update the callgraph according to the literature [96, 121], which creates new

Copy edges (e.g., p
Copy−−−→ q) for parameter/retval passings when a new callee function is

discovered at a callsite using the points-to results of function pointers obtained from

this points-to resolution round. The source node v of the Copy edge is added to W to be

processed in the next iteration until a fixed point is reached, i.e., no changes are made

to the points-to set of any node. Other field-sensitive analyses (e.g., [96]) can also be

implemented under the same constraint solving algorithm by simply replacing the lines

for handling the five types of constraints with the inference rules in Figure 5.2.

5.3 Implementation of Field-Sensitive Pointer

Analysis for C/C++

We perform our pointer analysis on top of the LLVM-IR of a program, as in [15, 77, 79,

123, 142]. The set of all variables V is separated into two subsets, A which contains

all possible abstract objects and their fields, i.e., address-taken variables, and P which

contains all top-level variables, including stack virtual registers (symbols starting with

“%") and global variables (symbols starting with “@") which are explicit, i.e., directly

accessed. Address-taken variables in A are implicit, i.e., accessed indirectly at LLVM’s

Load or Store instructions via top-level variables.

After the SSA conversion, a program is represented by five types of instructions:

Addr, Copy, Field, Store and Load (Table 5.1). Top-level variables are put directly in

112

5.3. IMPLEMENTATION OF FIELD-SENSITIVE POINTER ANALYSIS FOR C/C++

p = &a;
a = &b;

q = &c;
*p = *q;

p = &a;
t1 = &b;
*p = t1;

q = &c;
t2 = *q;
*p = t2;

C code LLVM IR

Figure 5.8. C code fragment and its LLVM IR.

SSA form, while address-taken variables are only accessed indirectly via Load or Store.

For an Addr p = &o, known as an allocation site, o is a stack or global variable with

its address taken or a dynamically created abstract heap object (e.g., via malloc()).

Parameter passings and returns are treated as Copy constraints. A field object denoted

by o[i] is derived from o when analyzing Field q = &p → fi (LLVM’s getelementptr

instruction), where fi denotes the i-th field of o and i is a constant integer.

Figure 5.8 shows a code fragment and its corresponding partial SSA form, where

p,q,t1,t2 ∈P and a,b,c ∈A . Note that a is indirectly accessed at a store ∗p= t1 by

introducing a top-level pointer t1 in the partial SSA form. Complex statements such as

∗p=∗q are decomposed into basic instructions by introducing a top-level pointer t2.

Our approach is implemented on top of LLVM-12.0.0 and its sub-project SVF [123,

124, 126]. A state-of-the-art constraint resolution strategy, wave propagation [97] is

incorporated for cycle detection and computing dynamic transitive closures on top of the

same constraint graph for both DEA and the baseline (i.e., constraint solving using rules

in Figure 5.2). Indirect calls via function pointers are resolved on-the-fly during points-

to resolution. A C++ virtual call p → foo() is translated into four low-level LLVM

instructions for our pointer analysis. (1) a Load vtptr = *p, obtaining virtual table

pointer vtptr by dereferencing pointer p to the object; (2) a Field vfn = &vtptr→idx,

obtaining the entry in the vtable at a designated offset idx for the target function; (3)

113

CHAPTER 5. DERIVATION EQUIVALENCE BASED SET CONSTRAINT SOLVING

a Load fp = *vfn, obtaining the address of the function, and (4) a function call fp(p).

Following [53, 94, 124], an allowlist is maintained to summarize all the side-effects of

external calls (e.g., memcpy, xmalloc and _Znwm for C++ new) [120].

5.4 Experimental Evaluation

We compare DEA with the state-of-the-art field-sensitive pointer analysis for C/C++

using 11 open-source programs. The experimental result shows that DEA significantly

accelerates field-sensitive pointer analysis while preserving precision.

5.4.1 Experimental Setup

To evaluate the effectiveness of our implementation, we chose 11 large-scale open-source

C/C++ projects downloaded from Github, including git-checkout (a sub project of Git

for version control), json-conversions and json-ubjson (two main Json libraries for

modern C++ environment), llvm-as-new and llvm-dwp (tools in LLVM-12.0.0 compiler),

opencv_perf_core and opencv_test_dnn (two main libraries in OpenCV), python and

redis-server (a distributed database server). The source code of each program is

compiled into bit code files Clang-12.0.0 [83] and then linked together using WLLVM [129]

to produce whole program bc files.

Table 5.2 collects the basic characteristics about the 11 programs before the main

pointer analysis phase. The statistics include the LLVM IR’s lines of code (LOC) of a

program, the number of pointers (#Pointers), the number of fields of the largest struct in

the program, also known as the maximum number of fields using the upper bound for

deriving fields of a heap object, and the number of each of the five types of constraint

edges in the initial constraint graph. The reason that #Field is not much smaller than

#Copy is twofold (1) Field refers to LLVM’s getelementptr instruction, which is used to

get the addresses of subelements of aggregates, including not only structs but also arrays

114

5.4. EXPERIMENTAL EVALUATION

Table 5.2. Basic characteristics of the benchmarks (IR’s lines of code, number of pointers, number

of five types of instructions on the initial constraint graph, and maximum number of fields of the

largest struct in each program).

Benchmark LOC #Pointers MaxFields #Field #Copy #Store #Load #AddrOf

git-checkout 1253K 624K 302 93201 88406 41620 60723 33380

json-conversions 355K 264K 64 27685 36557 37960 36872 43448

json-ubjson 330K 233K 64 24064 35813 34577 26288 34165

llvm-as-new 729K 597K 121 307167 77944 287634 41960 17435

llvm-dwp 1796K 897K 632 100877 101849 116205 142943 121541

llvm-objdump 728K 353K 121 61117 57743 56493 40314 16767

opencv_perf_core 1014K 715K 64 122744 192419 59599 79466 24450

opencv_test_dnn 889K 635K 64 105550 174080 52304 70332 22786

python 539K 420K 171 84779 74524 49215 56434 18340

redis-server 706K 374K 332 52178 60111 24542 39205 13175

Xalan 2192K 807K 133 110184 181804 35940 68812 53926

and nested aggregates. (2) In low-level LLVM IR, a Copy only refers to an assignment

between two virtual registers, such as casting or parameter passing. An assignment "p

= q" in high-level C/C++ is not translated into a Copy, but a Store/Load manipulated

indirectly through registers on LLVM’s partial SSA form.

All our experiments were conducted on a platform consisting of a 3.50GHz Intel Xeon

Quad Core CPU with 128 GB memory, running Ubuntu Linux 18.04. The baseline is

the constraint solving using rules in Figure 5.2 and running within the same dynamic

programming strategy, i.e., wave propagation [97], as DEA.

5.4.2 Results and Analysis

Table 5.3 compares DEA with baseline for each of the 11 programs evaluated in terms

of the following three analysis results after constraint resolution, the total number

of address-taken variables (#AddrTakenVar), the total number of fields derived when

115

CHAPTER 5. DERIVATION EQUIVALENCE BASED SET CONSTRAINT SOLVING

Table 5.3. Comparing the results produced by DEA with those by baseline, including the total

number of address-taken variables, number of fields and the number of fields derived when

resolving PWCs, and the number of Copy edges connected to/from the field object nodes derived

when resolving PWCs

Benchmark
#AddrTakenVar #Field #FieldByPWC

Baseline DEA Baseline DEA Baseline DEA

git-checkout 135576 73967 121574 59965 68045 6436

json-conversions 62397 40993 40943 19539 22330 926

json-ubjson 60721 34987 49211 23477 27000 1266

llvm-as-new 24427 16124 19304 11001 9770 1467

llvm-dwp 145247 91945 109650 56348 62383 9081

llvm-objdump 16130 12007 11235 7112 5119 996

opencv_perf_core 60625 44061 40196 23632 18894 2330

opencv_test_dnn 53064 37957 35177 20070 17366 2259

python 30848 23713 21530 14395 9531 2396

redis-server 13109 9581 8165 4637 4234 706

Xalan 90314 62859 61466 34011 32226 4771

Max reduction 45.4% 52.3% 95.9%

Average reduction 32.4% 44.4% 86.6%

resolving all Field edges (#Field), and the number of fields derived only when resolving

Field edges involving PWCs (#FieldByPWC). Both DEA and baseline use LLVM Sparse

Bitvectors as the points-to set implementation. The peak memory usage by DEA is

7.33G observed in git-checkout. DEA produces identical points-to results to those by

baseline, confirming that DEA’s precision is preserved.

From the results produced by baseline, we can see that the number of fields (Column 4

in Table 5.3) occupies a large proportion of the total address-taken variables (Column 2)

in modern large-scale C/C++ programs. On average, 72.5% of the address-taken variables

are field objects. In programs git-checkout (written in C) and json-ubjson (written in

C++) with heavy use of structs and classes, the percentages for both are higher than 80%.

116

5.4. EXPERIMENTAL EVALUATION

Figure 5.9. Percentages of fields derived when solving PWCs out of the total number of fields,

i.e., #FieldByPWC
#Field * 100

In 8 of the 11 programs, over 50% of the fields are derived from PWCs.

Columns 4-5 of Table 5.3 compare the total number of field objects produced by

baseline and DEA respectively. Columns 6-7 give more information about the number

of fields derived only when resolving PWCs by baseline and DEA, we can see that

these fields are significantly reduced by DEA with an average reduction rate of 86.6%,

demonstrating that DEA successfully captured the derivation equivalence to collapse a

majority of fields into SFRs when resolving PWCs.

Figure 5.9 further compares DEA with baseline in terms of percentages of fields

derived from resolving PWCs out of the total number of fields for the 11 programs. The

average percentage of 51.1% in baseline (blue line) is reduced to only 11.7% (orange line)

in DEA with a reduction of 39.4%.

In git-checkout, json-conversions and json-ubjson, DEA achieves over 90%

reduction in solving PWCs because these programs have relatively large numbers of

address-taken variables (Table 5.3) and relatively more nodes involving PWCs (Table 5.4).

On average, over 85% of redundant field derivations involving PWCs are avoided with the

maximum reduction rate of 95.9% in json-conversions, confirming the effectiveness of

our field collapsing in handling PWCs.

Table 5.4 gives the constraint graph information after points-to resolution. Column 2

117

CHAPTER 5. DERIVATION EQUIVALENCE BASED SET CONSTRAINT SOLVING

Table 5.4. Constraint graph information (#NodeInPWC denotes the number of nodes involving

PWCs by baseline; #SFR denotes the number of stride-based field representatives, generated

by DEA; #CopyByPWC, denotes the number of Copy edges flowing into and going out of fields

derived when solving PWCs; #CopyProcessed denotes the number of processing Copy edges.)

Benchmark
#NodeInPWC #SFR #CopyByPWC #CopyProcessed

Baseline DEA Baseline DEA Baseline DEA

git-checkout 2840 2172 12372 2046 3868834 1128617

json-conversions 3631 1641 13490 2622 2253266 319960

json-ubjson 4271 1753 4311 1037 5621768 575884

llvm-as-new 1752 2085 9739 2789 2513940 688238

llvm-dwp 7263 1463 15062 2128 2802988 779424

llvm-objdump 1581 1761 7105 2013 2177990 647582

opencv_perf_core 1373 2030 4948 1973 4800563 655095

opencv_test_dnn 1007 777 4008 1577 5095795 460127

python 3817 1942 8530 3854 3495769 971376

redis-server 2783 1405 3380 1408 1288753 390783

Xalan 4874 2909 21935 7671 5143418 1554627

Max reduction 85.9% 91.0%

Avg. reduction 70.3% 77.3%

lists the number of nodes involving PWCs by baseline. For each SFR Rep() generated

by DEA, Column 3 gives the numbers of SFRs generated by DEA. The average numbers

of overlapping SFRs for the 11 programs evaluated are all below 1, which means that

the majority of the SFRs either represent a single object/field or represent a sequence of

fields that do not overlap with one another.

Columns 4-5 give the numbers of Copy edges flowing into and going out of field nodes

derived when resolving PWCs by baseline and DEA respectively. DEA on average reduces

the Copy edges in Column 4 by 70.3% with a maximum reduction rate of 85.9% Columns

6-7 give the number of processing times of Copy edges during points-to propagation by

the two approaches. Since the number of Copy edges is significantly reduced by DEA,

118

5.4.
E

X
P

E
R

IM
E

N
T

A
L

E
V

A
L

U
A

T
IO

N

Table 5.5. Total analysis times and the times of the three analysis stages, including CycleDec cycle detection (Lines 5–6 of Algorithm 9),

PtsProp, propagating point-to information via Copy and Field edges (Lines 9–17), ProcessLdSt, adding new Copy edges when processing

Load/Store and update callgraph (Lines 20–27).

Benchmark
CycleDec PtsProp ProcessLdSt TotalTime

speedup
Baseline DEA Baseline DEA Baseline DEA Baseline DEA

git-checkout 3117.8 4600.0 138233.5 26668.1 3870.2 1472.5 145221.6 32740.6 4.4

json-conversions 4436.2 561.6 12248.2 939.2 17.6 11.5 16702.0 1512.3 11.0

json-ubjson 25.1 6.0 18635.2 1817.3 52.4 23.2 18712.7 1846.6 10.1

llvm-as-new 22.6 11.9 10920.4 1728.9 541.9 221.2 11484.9 1962.0 5.9

llvm-dwp 3134.1 1457.7 120654.4 22177.2 1671.2 747.5 125459.8 24382.4 5.1

llvm-objdump 22.2 22.2 10617.3 2158.4 254.8 109.7 10894.4 2290.2 4.8

opencv_perf_core 338.5 299.3 30049.9 3018.5 2125.5 991.7 32513.9 4309.5 7.5

opencv_test_dnn 67.0 64.2 3145.5 248.8 366.1 122.2 3578.6 435.2 8.2

python 51.6 18.8 167556.9 22674.4 939.9 474.8 168548.3 23168.0 7.3

redis-server 525.1 428.6 11088.3 1315.2 99.8 49.8 11713.2 1793.5 6.5

Xalan 412.3 118.1 146617.8 21729.4 352.5 218.1 147382.7 22065.6 6.7

Average speedup 7.1

119

CHAPTER 5. DERIVATION EQUIVALENCE BASED SET CONSTRAINT SOLVING

Figure 5.10. Comparing the time distribution of the three analysis phases of DEA with that of

baseline (normalized with baseline as the base).

the processing times of Copy edges are reduced accordingly with an average/maximum

reduction rate of 77.3%/91.0%.

Table 5.5 compares DEA with baseline in terms of the overall analysis times and the

times collected for each of the three analysis phases. The total pointer analysis time

consists of three major parts, as also discussed in Algorithm 9, and comprises (1) cycle

detection, (2) propagating point-to sets via Copy and Field edges, and (3) processing

Store and Load by adding new Copy edges into the constraint graph. Overall, DEA has

a best speed up of 11.0× (observed in json-conversions) with an average speed up of

7.1× among the 11 programs.

Figure 5.10 gives the analysis time distributions of the three analysis phases in

Table 5.5 for both baseline and DEA, where the phases are highlighted in different

colors. The time cost of PtsProp (Columns 4-5) occupies a large percentage in resolution

time by baseline. This is because PtsProp in field-sensitive pointer analysis needs to

perform heavy set union operations for handling both Copy and Field edges. Worse,

PWCs which need to be fully resolved by baseline incur a large number of redundant

field derivations and unnecessary Copy edges until a pre-defined maximum number

120

5.4. EXPERIMENTAL EVALUATION

is reached, resulting in high analysis overhead in the PtsProp phase. In contrast, as

depicted in Figure 5.10, the analysis overhead introduced by PtsProp is greatly reduced

by DEA, though it occupies a noticeable portion of the total analysis time, showing that

DEA effectively cuts down the overhead introduced by PWCs (i.e., redundant points-to

propagation, and unnecessary Copy edges connecting to/from derivation equivalent fields)

to help constraint resolution converge more quickly.

5.4.3 Summary

Our derivation algorithm DEA significantly boost the performance of solving positive

weight cycles. By capturing derivation equivalence, DEA avoids infinite derivations and

greatly reduces overhead during constraint solving, making the analysis converge more

quickly. By applying it to field-sensitive Andersen’s pointer analysis for C/C++, DEA on

average achieves a speed up of 7.1× over state-of-the-art field-sensitive analysis [96]

equipped with a popular cycle elimination technique wave propagation [97] for analyzing

11 open-source large-scale C/C++ programs.

121

C
H

A
P

T
E

R

6
CONCLUSION AND FUTURE WORKS

This dissertation focuses on scaling dynamic transitive closure based program anal-

ysis. Our works improve three fundamental static analysis frameworks, i.e., CFL-

reachability, recursive state machine and set constraint analysis. We develop three

techniques to handle three factors causing inefficiency: (1) a partially ordered CFL-

reachability algorithm POCR for eliminating transitive redundancy in the dynamic

solving procedure; (2) an RSM-guided graph folding GF for reducing redundant nodes

and edges in the input graph; and (3) a derivation equivalence algorithm DEA for pre-

cisely and efficiently solving positive weight cycles whilst avoiding infinite derivations.

Experimental results on benchmarks including SPEC 2017 and real-world open-source

programs show the effectiveness of our techniques. In particular, the three techniques

scale dynamic transitive closure based program analysis by reducing on-the-fly redun-

dant derivations (POCR and DEA) or redundant input information (GF). Moreover, the

three static analysis frameworks are interchangeable, which provides the feasibility of

combining the three techniques to deal with particular real-world problems in the future.

Upon this dissertation, our future works will still center around precise and efficient

program analysis. First, in view that CFL-reachability and set constraint are interchange-

able and the implementations our optimization techniques are only for CFL-reachability

123

CHAPTER 6. CONCLUSION AND FUTURE WORKS

(Chapters 3 and 4) or set constraint (Chapter 5), it is worth design a transformer that can

automatically transform our optimization techniques and make them suitable to both

frameworks. Second, elegant analysis techniques/tools are desirable. This includes the

optimization and extension of existing frameworks, algorithms and data structures and

the development of new frameworks. Third, adapting the proposed techniques to complex

real-world end-to-end applications, such as compiler optimization, code summarization,

bug detection and model checking, is also pursuable.

124

A
P

P
E

N
D

I
X

A
APPENDIX

A.1 Proof of the Soundness of Algorithm 2

We only prove the case for CheckStree , as the other case is similar. Specifically, let

succ(A,v j) denote the final set of successors of v j in the gound trouth (i.e., vk ∈ succ(A,v j))

if and only if there exists a path between v j and vk such that the path string is derivable

from A. We show that CheckStree (X , A,vi,v j,v j) ensures that for all vk ∈ succ(A,v j),

vi
X−→ vk will have been added to G at the end of the algorithm execution.

Throughout this proof, we assume that the predecessor trees and successor trees are

automatically maintained to satisfy the properties discussed in Section 3.2.1. Moreover,

since the updates of the trees involve adding new (transitive) edges, we assume that

those edges will be properly processed by the original algorithm (Algorithm 1).

Since vi
X−→ v j is popped out from the worklist, this edge must already be in the

graph, since for each edge, we always push it into the worklist and add it into the graph

simultaneously. Let’s consider two versions of the successor tree: stree(A,v j)0 denoting

the successor tree at the time of adding vi
X−→ v j into the graph, and stree(A,v j) denoting

the successor tree at the end of the algorithm execution.

If vi ∈ stree(A,v j)\stree(A,v j)0, then vk is added to the successor tree after the inser-

125

APPENDIX A. APPENDIX

tion of the edge vi
X−→ v j to the graph. Since we assume that when the successor trees are

updated, the corresponding edges will be processed by Algorithm 1, this ensures that

vi
X−→ vk will be added to the graph since the edge vi

X−→ v j is already in the graph.

If vk ∈ stree(A,v j)0, then consider the successor tree stree(A,v j)1 at the time of pro-

cessing the edge vi
X−→ v j. We have stree(A,v j)0 ⊂ stree(A,v j)1 since the successor trees

are non-shrinking and processing the edge happens after adding the edge to the graph.

We prove that CheckStree (X , A,vi,v j,v j) ensures for all vk ∈ stree(A,v j)1, vi
X−→ vk will

eventually be added to the graph, and this naturally ensures that for all vk ∈ stree(A,v j)0,

vi
X−→ vk will eventually be added to the graph.

For proving this, we consider two cases. If CheckStree (X , A,vi,v j,v j) traverses all

vertices in stree(A,v j)1, then the proof is completed. Otherwise, CheckStree (X , A,vi,v j,v j)

stops the traversal at vertices u1, · · · ,ut ∈ stree(A,v j)1. From this we know that the edges

vi
X−→ u1, · · · ,vi

X−→ ut has already been added to the graph, and they may or may not have

been popped out from the worklist and processed. Then we can do similar reasoning to

the processing of those edges. This recursive reasoning must eventually stop because

each edge is processed only once. So the proof is completed.

A.2 Proof of Property 4.2

The dependency of global transition on local ones (Property 3.1) indicates that ∀wB =
〈bi, · · · ,b j〉 ∈ B∗, ∀s1 ∈ B×N and ∀L ⊆Σ,

(i) s1
ℓ−→ s2 ∈∆ ⇔ 〈wB, s1〉 ℓ−→〈wB, s2〉 ∈∆,

(ii) s1
L⪯ s2 ⇔ 〈wB, s1〉

L⪯ 〈wB, s2〉,
(iii) s1

L≃ s2 ⇔ 〈wB, s1〉 L≃ 〈wB, s2〉.

Analogously, ∀s1 ∈ B2 ×N,

s1
ℓ1−→ s2

ℓ2−→ s3 ∈ R ⇔ ∀〈wB, s1〉 ∈ S, 〈wB, s1〉 ℓ1−→〈wB, s2〉 ℓ2−→〈wB, s3〉 ∈ R.

126

A.3. PROOF OF PROPERTY 4.3

Thus, given ℓ1,ℓ2 ∈Σ, L ⊆Σ, and N1 ⊆ N,

∀s1 ∈ B2 ×N, ∃s1
ℓ1−→ s2 ∈ R s.t. s1

L≃ s2

indicates

(iv) ∀s1 ∈ Bα′ ×N, s.t. α′ > 2, ∃s1
ℓ1−→ s2 ∈ R s.t. s1

L≃ s2,

and

∀s1
ℓ1−→ s2

ℓ2−→ s3 ∈ R s.t. s1 ∈ B2 ×N, s3
L⪯ s1

indicates

(v) ∀s1
ℓ1−→ s2

ℓ2−→ s3 ∈ R s.t. s1 ∈ Bα′ ×N ∧α′ > 2, s3
L⪯ s1.

Comparing (iv) and (v) with the four rules in Figure 5, we can conclude that if the

four rules in Figure 5 hold when α= 2, they also hold whenever α> 2. Thus, Principle ②

has Property 4.1.

A.3 Proof of Property 4.3

Property 4.1 indicates that the four rules in Figure A.15 hold if the rules in Figure 5 hold

for all α ∈ {0,1,2}. Then the problem is reduced to proving the following lemma:

Lemma A.1. With Pxy denoting an xy-FEQ class that each path passes through x and y

via at most one xy-subpath and pG′ denoting the xy-folded path of Pxy, the four rules in

Figure A.15 ensures that (i) pG′ is a reachable path iff Pxy contains a reachable path, and

(ii) when the paths of Pxy do not end with x or y, pG′ has a corresponding sub-transition

chain from s0 to sk iff Pxy also contains a path corresponding to a sub-transition chain

from s0 to sk.

127

APPENDIX A. APPENDIX

Rule [x-x]’: ∀sx
ℓxy−−→ sy

ℓyx−−→ s′x ∈ R s.t. sx ∈ B∗×Nr(L_x)
∧

ℓxy ∈ Lxy
∧

ℓyx ∈ L yx , s′x
Lx_⪯ sx .

Rule [y-y]’: ∀sy
ℓyx−−→ sx

ℓxy−−→ s′y ∈ R s.t. sy ∈ B∗×Nr(L_y)
∧

ℓxy ∈ Lxy
∧

ℓyx ∈ L yx , s′y
L y_⪯ sy .

Rule [x-y]’: ∀sx ∈ B∗×Nr(L_x)
∧∀ℓxy ∈ Lxy , ∃sx

ℓxy−−→ sy ∈ R s.t. sx
L y̸x≃ sy .

Rule [y-x]’: ∀sy ∈ B∗×Nr(L_y)
∧∀ℓyx ∈ L yx , ∃sy

ℓyx−−→ sx ∈ R s.t. sy
Lx ̸y≃ sx .

Figure A.15. The above four rules holds if the rules in Figure 5 hold for all α ∈ {0,1,2}.

Notably, according to Equation 2 (in Section 4.1), Qx ⊆ B∗×Nr(L_x) and Q y ⊆ B∗×
Nr(L_y).

Figure 7 displays the four basic types of xy-FEQ classes where each path contains at

most one xy-subpath. It is obvious that the four basic types are mutually exclusive and

cover all paths containing at most one xy-subpath. The following proves Lemma A.1 by

cases.

Type 1 (Figure 7(a)) Each xy-FEQ classes of this type has an invariant element,

which does not contain any edge joining x and y. Notably, the invariant element and its

corresponding sub-transition chains are never changed by folding (x, y).

Type 1.1 First, we consider the subtype where the Pxy is comprised of paths starting

and ending both with x, which is folded into a single node pG′ = x. Each corresponding

sub-transition chain of pG′ can be denoted by p′
R = s0 where s0 ∈ B∗×Nr(L_x). (1) In this

subtype, the invariant element is the path consisting of a single node x. (2) Then we

consider the path x
ℓxy1−−−→ y

ℓyx1−−−→ x
ℓxy2−−−→ ·· · ℓyxk−−−→ x, which is comprised of at least two edges

joining x and y. For the case x
ℓxy1−−−→ y

ℓyx1−−−→ x, which corresponds to s0
ℓxy1−−−→ sy1

ℓyx1−−−→ sx1 (if

exists) where s0 ∈ B∗×Nr(L_x), rule [x-x]’ ensures that sx1

Lx_⪯ s0. Similarly, for the case

x
ℓxy1−−−→ y

ℓyx1−−−→ x
ℓxy2−−−→ y

ℓyx2−−−→ x, which corresponds to s0
ℓxy1−−−→ sy1

ℓyx1−−−→ sx1

ℓxy2−−−→ sy2

ℓyx2−−−→ sx2 (if

exists), rule [x-x]’ ensures that sx1

Lx_⪯ s0 and sx2

Lx_⪯ sx1 . According to Definition 4.5,
L⪯ is

a transitive relation, i.e., sx2

Lx_⪯ sx1 and sx1

Lx_⪯ s0 indicates that sx2

Lx_⪯ s0. Analogously, for

the case x
ℓxy1−−−→ y

ℓyx1−−−→ x
ℓxy2−−−→ ·· · ℓyxk−−−→ x corresponding to s0

ℓxy1−−−→ sy1

ℓyx1−−−→ sx1

ℓxy2−−−→ ·· · ℓyxk−−−→

128

A.3. PROOF OF PROPERTY 4.3

sxk (if exists), Rule [x-x]’ ensures that sxk

Lx_⪯ s0, which means that s0 ∈ F whenever

sxk ∈ F. Taking the invariant element into consideration, for each sub-transition chain

p′
R = s0 of pG′ , (i) Pxy always contains path corresponding to a sub-transition chain from

s0 to s0, and (ii) for any path of Pxy corresponding to sub-transition chain from s0 to sxk ,

sxk

Lx_⪯ s0.

Type 1.2 Second, we consider the subtype where each Pxy is comprised of paths ending

but not starting with x, and use pG′ to denote the xy-folded path of Pxy. (1) In this

subtype, the invariant element of Pxy is the path vi
ℓ1−→ ·· · ℓ2−→ x not containing any edge

joining x and y. (2) Then we consider the path pG = vi
ℓ1−→ ·· · ℓ2−→ x

ℓxy1−−−→ y
ℓyx1−−−→ x

ℓxy2−−−→
·· · ℓyxk−−−→ x, where the xy-subpath is comprised of at least two edges joining x and y (back

and forth). pG can always be seen as the concatenation of two subpaths pG1 pG2, where

pG1 = vi
ℓ1−→ ·· · ℓ2−→ x is exactly the invariant element, and pG2 = x

ℓxy1−−−→ y
ℓyx1−−−→ x

ℓxy2−−−→
·· · ℓyxk−−−→ x is a path belonging to Type 1.1. Then, for pG , each corresponding pR = s0

ℓ1−→
·· · ℓ2−→ sx

ℓxy1−−−→ sy
ℓyx1−−−→ sx1

ℓxy2−−−→ ·· · ℓyxk−−−→ sxk can be seen as the concatenation of pR1 = s0
ℓ1−→

·· · ℓ2−→ sx and pR2 = sx
ℓxy1−−−→ sy

ℓyx1−−−→ sx1

ℓxy2−−−→ ·· · ℓyxk−−−→ sxk , where pR1 corresponds to pG1,

pR2 corresponds to pG2, s0 ∈ B∗×Nr(L_vi) and sx ∈ B∗×Nr(L_x).

Obviously, for the case that pR1 does not exist, pR2 does not exist, either. For the case

that pR1 exists, as discussed in Type 1.1, there is always sxk

Lx_⪯ sx in pR2. Moreover, pR1

is invariant as pG1 is invariant, which means that the xy-folded path of pG2 corresponds

to p′
R2 = sx. Therefore, pG′ has a corresponding sub-transition chain from s0 to sx iff (i)

Pxy has a path corresponding to a sub-transition chain from s0 to sx and (ii) for any path

of Pxy having a corresponding sub-transition chain from s0 to sxk , sxk

Lx_⪯ sx.

Notably, it is valid that s0 = sinit and sx ∈ F. Thus, for each Pxy of Type 1.1 and Type

1.2, whose xy-folded path is pG′ , Rule [x-x]’ ensures that pG′ is a reachable path iff Pxy

contains a reachable path.

129

APPENDIX A. APPENDIX

Type 1.3 Finally, we consider the subtype where each Pxy is comprised of paths not

ending with x, and use pG′ to denote the xy-folded path of Pxy. Each path pG belonging to

Pxy can be seen as the concatenation of two subpaths pG1 pG2 where pG1 ∈Pxy1 belongs

to Type 1.1 or Type 1.2 and pG2 = x ℓ3−→ ·· · ℓ4−→ vk is a path not containing any edge joining

x and y, which is invariant before and after folding (x, y). Correspondingly, pG′ can be

seen as the concatenation of two subpaths pG1′ pG2′ where pG1′ is the invariant element

of Pxy1 and pG2′ = pG2.

As discussed in Type 1.1 and 1.2, pG1′ has a corresponding sub-transition chain

from s0 to sx iff (i) Pxy1 has a path corresponding to a sub-transition chain from s0

to sx and (ii) for any path of Pxy having a corresponding sub-transition chain from s0

to sxk , sxk

Lx_⪯ sx. This means that the corresponding pR2 of pG2 starts with sx or sxk ,

while the corresponding p′
R2 of pG2 only starts with sx. (1) For the case that pR2 and

p′
R2 both start with sx, pR2 = p′

R2 as pG2′ = pG2. (2) For the case that pR2 starts with

sxk while p′
R2 starts with sx, Definition 4.5 ensures that if pR2 ends with sk, p′

R2 also

ends with sk. Thus, pG′ has a corresponding sub-transition chain from s0 to sx then to

sk iff Pxy1 has a path corresponding to a sub-transition chain from s0 to sx then to sk.

Therefore, for each Pxy of Type 1.3, whose xy-folded path is pG′ , Rule [x-x]’ ensures that

pG′ has a corresponding sub-transition chain from s0 to sk iff Pxy also contains a path

corresponding to a sub-transition chain from s0 to sk.

Type 2 (Figure 7(b)). For each xy-FEQ class Pxy belonging to Type 2, we use pG′ to

denote the xy-folded path of Pxy. A path pG of Pxy can always be seen as the concatena-

tion of two subpaths pG1 and pG2, where pG1 ∈Pxy1 belongs to Type 1.1 or Type 1.2, and

pG2 = x
ℓxy−−→ y ℓ3−→ ·· · ℓ4−→ vk contains only one edge joining x and y. Correspondingly, pG′

can be seen as the concatenation of two subpaths pG1′ pG2′ where pG1′ is the invariant

element of Pxy1 and pG2′ = x ℓ3−→ ·· · ℓ4−→ vk.

As discussed in Type 1.1 and 1.2, pG1′ has a corresponding sub-transition chain from

130

A.3. PROOF OF PROPERTY 4.3

s0 to sx iff (ii) Pxy1 has a path corresponding to a sub-transition chain from s0 to sx

and (ii) for any path of Pxy having a corresponding sub-transition chain from s0 to sxk ,

sxk

Lx_⪯ sx. This means that the corresponding pR2 of pG2 starts with sx or sxk , while

the corresponding p′
R2 of pG2′ only starts with sx. According to Definition 4.5, for all

ℓxy ∈ Lxy, sxk

ℓxy−−→ sy ∈∆ indicates that sx
ℓxy−−→ sy ∈∆. Moreover, Rule [x-y]’ ensures that

sy
L y_≃ sx and sy

L y_≃ sxk .

Thus, (1) for the case that pG2 is comprised of only one edge, i.e., pG2 = x
ℓxy−−→ y and

pG2′ = x corresponds to p′
R2 = sx, no matter pR2 start with sx or sxk , pR2 ends with

sy such that sy
L y_≃ sx, which means that sx ∈ F iff sy ∈ F; (2) for the case that pG2 is

comprised of multiple edges, i.e., pG2 = x
ℓxy−−→ y ℓ3−→ ·· · ℓ4−→ vk and pG2′ = x ℓ3−→ ·· · ℓ4−→ vk,

pG2′ corresponds to a sub-transition chain from sx to sk iff pG2 corresponds to a sub-

transition chain from sx or sxk to sk. Therefore, for each Pxy of Type 2, whose xy-folded

path is pG′ , Rule [x-x]’ and Rule [x-y]’ ensures that (i) pG′ is a reachable path iff Pxy

contains a reachable path, and (ii) when the paths of Pxy do not end with x or y, pG′ has

a corresponding sub-transition chain from s0 to sk iff Pxy contains a path corresponding

to a sub-transition chain from s0 to sk.

Type 3 and Type 4 (Figure 7(c) and Figure 7(d)) These two types are symmetric

to Type 1 and Type 2 with respect to x and y. Hence, similar to Type 1 and Type 2,

Rule [y-y]’ and Rule [y-x]’ ensures that for each xy-FEQ class Pxy of Type 3 and Type

4, whose xy-folded path is pG′ , (i) pG′ is a reachable path iff Pxy contains a reachable

path, and (ii) when the paths of Pxy do not end with x or y, pG′ has a corresponding sub-

transition chain from s0 to sk iff Pxy contains a path corresponding to a sub-transition

chain from s0 to sk.

Putting the discussions of Types 1–4 together, Lemma A.1 is proved, which means

that Principle ② has Property 4.2.

131

BIBLIOGRAPHY

[1] R. AGRAWAL, A. BORGIDA, AND H. V. JAGADISH, Efficient management of transitive

relationships in large data and knowledge bases, ACM SIGMOD Record, 18 (1989),

pp. 253–262.

[2] A. V. AHO, M. S. LAM, R. SETHI, AND J. D. ULLMAN, Compilers: principles, techniques, &

tools, Pearson Education India, 2007.

[3] A. AIKEN, Introduction to set constraint-based program analysis, Science of Computer

Programming, 35 (1999), pp. 79–111.

[4] A. AIKEN AND E. L. WIMMERS, Solving systems of set constraints, in LICS, vol. 92, Citeseer,

1992, pp. 329–340.

[5] J. ALBERT, D. GIAMMARRESI, AND D. WOOD, Normal form algorithms for extended

context-free grammars, Theoretical Computer Science, 267 (2001), pp. 35–47.

[6] R. ALUR, M. BENEDIKT, K. ETESSAMI, P. GODEFROID, T. REPS, AND M. YANNAKAKIS,

Analysis of recursive state machines, ACM Transactions on Programming Languages

and Systems (TOPLAS), 27 (2005), pp. 786–818.

[7] R. ALUR AND P. MADHUSUDAN, Visibly pushdown languages, in Proceedings of the thirty-

sixth annual ACM symposium on Theory of computing, 2004, pp. 202–211.

[8] , Adding nesting structure to words, Journal of the ACM (JACM), 56 (2009), pp. 1–43.

[9] A. AMBAINIS, Y. FILMUS, AND F. LE GALL, Fast matrix multiplication: limitations of

the coppersmith-winograd method, in Proceedings of the forty-seventh annual ACM

symposium on Theory of Computing, 2015, pp. 585–593.

[10] L. O. ANDERSEN, Program analysis and specialization for the C programming language,

PhD thesis, University of Cophenhagen, 1994.

[11] J.-M. AUTEBERT, J. BERSTEL, AND L. BOASSON, Context-free languages and pushdown

automata, in Handbook of formal languages, Springer, 1997, pp. 111–174.

[12] D. AVOTS, M. DALTON, V. B. LIVSHITS, AND M. S. LAM, Improving software security with

a C pointer analysis, in ICSE ’05, ACM, 2005, pp. 332–341.

133

BIBLIOGRAPHY

[13] N. AYEWAH, W. PUGH, D. HOVEMEYER, J. D. MORGENTHALER, AND J. PENIX, Using

static analysis to find bugs, IEEE software, 25 (2008), pp. 22–29.

[14] L. BACHMAIR, H. GANZINGER, AND U. WALDMANN, Set constraints are the monadic class,

in [1993] Proceedings Eighth Annual IEEE Symposium on Logic in Computer Science,

IEEE, 1993, pp. 75–83.

[15] G. BALATSOURAS AND Y. SMARAGDAKIS, Structure-sensitive points-to analysis for C and

C++, in SAS ’16, Springer, 2016, pp. 84–104.

[16] M. BENERECETTI, S. MINOPOLI, AND A. PERON, Analysis of timed recursive state ma-

chines, in 2010 17th International Symposium on Temporal Representation and Rea-

soning, IEEE, 2010, pp. 61–68.

[17] M. BERNDL, O. LHOTÁK, F. QIAN, L. HENDREN, AND N. UMANEE, Points-to analysis

using bdds, in PLDI ’03, vol. 38, ACM, 2003, pp. 103–114.

[18] J. BERSTEL, Transductions and context-free languages, Springer-Verlag, 2013.

[19] D. BEYER AND M. E. KEREMOGLU, Cpachecker: A tool for configurable software verification,

in Proceedings of the 23rd International Conference on Computer Aided Verification,

2011.

[20] A. BOUAJJANI, M. MÜLLER-OLM, AND T. TOUILI, Regular symbolic analysis of dynamic

networks of pushdown systems, in International Conference on Concurrency Theory,

Springer, 2005, pp. 473–487.

[21] S. CERI, G. GOTTLOB, L. TANCA, ET AL., What you always wanted to know about data-

log(and never dared to ask), IEEE transactions on knowledge and data engineering, 1

(1989), pp. 146–166.

[22] T. M. CHAN AND R. WILLIAMS, Deterministic apsp, orthogonal vectors, and more: Quickly

derandomizing razborov-smolensky, in Proceedings of the twenty-seventh annual ACM-

SIAM symposium on Discrete algorithms, SIAM, 2016, pp. 1246–1255.

[23] W. CHARATONIK AND L. PACHOLSKI, Negative set constraints with equality, in Proceedings

Ninth Annual IEEE Symposium on Logic in Computer Science, IEEE, 1994, pp. 128–

136.

[24] , Set constraints with projections are in nexptime, in Proceedings 35th Annual Sympo-

sium on Foundations of Computer Science, IEEE, 1994, pp. 642–653.

[25] K. CHATTERJEE, B. CHOUDHARY, AND A. PAVLOGIANNIS, Optimal dyck reachability for

data-dependence and alias analysis, Proc. ACM Program. Lang., 2 (2018), pp. 30:1–

30:30.

134

BIBLIOGRAPHY

[26] K. CHATTERJEE, R. IBSEN-JENSEN, A. PAVLOGIANNIS, AND P. GOYAL, Faster algorithms

for algebraic path properties in recursive state machines with constant treewidth, in

Proceedings of the 42Nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, 2015, pp. 97–109.

[27] CHAUDHURI AND SWARAT, Subcubic algorithms for recursive state machines, in Pro-

ceedings of the 35th annual ACM SIGPLAN-SIGACT symposium on Principles of

programming languages, 2008, pp. 159–169.

[28] CHECKSTYLE, Checkstyle, https://checkstyle.sourceforge.io, (2022).

[29] B. CHESS AND G. MCGRAW, Static analysis for security, IEEE security & privacy, 2 (2004),

pp. 76–79.

[30] N. CHOMSKY AND M. P. SCHÜTZENBERGER, The algebraic theory of context-free languages,

in Studies in Logic and the Foundations of Mathematics, vol. 26, Elsevier, 1959, pp. 118–

161.

[31] P. A. CHOU, Recognition of equations using a two-dimensional stochastic context-free

grammar, in Visual Communications and Image Processing IV, vol. 1199, SPIE, 1989,

pp. 852–865.

[32] E. M. CLARKE, Model checking, in Foundations of Software Technology and Theoret-

ical Computer Science: 17th Conference Kharagpur, India, December 18–20, 1997

Proceedings 17, Springer, 1997, pp. 54–56.

[33] M. COLÓN, S. SANKARANARAYANAN, AND H. SIPMA, Linear invariant generation using

non-linear constraint solving, in CAV, vol. 3, Springer, 2003, pp. 420–432.

[34] P. COUSOT AND R. COUSOT, Abstract interpretation: a unified lattice model for static

analysis of programs by construction or approximation of fixpoints, in Proceedings of

the 4th ACM SIGACT-SIGPLAN symposium on Principles of programming languages,

1977, pp. 238–252.

[35] D. DIETSCH, M. HEIZMANN, A. NUTZ, C. SCHATZLE, AND F. SCHUSSELE, Ultimate taipan

with symbolic interpretation and fluid abstractions, 2020.

[36] J. EREMONDI, Set constraints, pattern match analysis, and smt, in International Sympo-

sium on Trends in Functional Programming, Springer, 2020, pp. 121–141.

[37] J. ESPARZA, D. HANSEL, P. ROSSMANITH, AND S. SCHWOON, Efficient algorithms for

model checking pushdown systems, in International Conference on Computer Aided

Verification, Springer, 2000, pp. 232–247.

135

BIBLIOGRAPHY

[38] M. FÄHNDRICH, J. S. FOSTER, Z. SU, AND A. AIKEN, Partial online cycle elimination in

inclusion constraint graphs, in Proceedings of the ACM SIGPLAN 1998 conference on

Programming language design and implementation, 1998, pp. 85–96.

[39] FINDBUGS, Findbugs, https://findbugs.sourceforge.net/findbugs2.html, (2022).

[40] A. FINKEL, B. WILLEMS, AND P. WOLPER, A direct symbolic approach to model checking

pushdown systems, Electronic Notes in Theoretical Computer Science, 9 (1997), pp. 27–

37.

[41] O. GAUWIN, A. MUSCHOLL, AND M. RASKIN, Minimization of visibly pushdown automata

is np-complete, arXiv preprint arXiv:1907.09563, (2019).

[42] R. GILLERON, S. TISON, AND M. TOMMASI, Solving systems of set constraints with

negated subset relationships, in Proceedings of 1993 IEEE 34th Annual Foundations of

Computer Science, IEEE, 1993, pp. 372–380.

[43] S. GINSBURG AND S. GREIBACH, Deterministic context free languages, in 6th Annual

Symposium on Switching Circuit Theory and Logical Design (SWCT 1965), IEEE, 1965,

pp. 203–220.

[44] R. C. GONZALEZ AND M. G. THOMASON, Syntactic pattern recognition: an introduction,

(1978).

[45] A. GOSAIN AND G. SHARMA, Static analysis: A survey of techniques and tools, in Intelligent

Computing and Applications, Springer, 2015, pp. 581–591.

[46] T. J. GREEN, S. S. HUANG, B. T. LOO, W. ZHOU, ET AL., Datalog and recursive query

processing, Foundations and Trends® in Databases, 5 (2013), pp. 105–195.

[47] D. GROVE AND C. CHAMBERS, A framework for call graph construction algorithms, ACM

Transactions on Programming Languages and Systems (TOPLAS), 23 (2001), pp. 685–

746.

[48] D. GROVE, G. DEFOUW, J. DEAN, AND C. CHAMBERS, Call graph construction in object-

oriented languages, in Proceedings of the 12th ACM SIGPLAN conference on Object-

oriented programming, systems, languages, and applications, 1997, pp. 108–124.

[49] S. GULWANI, S. SRIVASTAVA, AND R. VENKATESAN, Program analysis as constraint solv-

ing, in Proceedings of the 29th ACM SIGPLAN Conference on Programming Language

Design and Implementation, 2008, pp. 281–292.

[50] T. HAO, X. WANG, L. ZHANG, X. BING, Z. LU, AND M. HONG, Summary-based context-

sensitive data-dependence analysis in presence of callbacks, in Acm Sigplan-sigact

Symposium on Principles of Programming Languages, 2015.

136

BIBLIOGRAPHY

[51] B. HARDEKOPF AND C. LIN, The ant and the grasshopper: fast and accurate pointer analysis

for millions of lines of code, in Proceedings of the 28th ACM SIGPLAN Conference on

Programming Language Design and Implementation, 2007, pp. 290–299.

[52] , Exploiting pointer and location equivalence to optimize pointer analysis, in Interna-

tional Static Analysis Symposium, Springer, 2007, pp. 265–280.

[53] , Semi-sparse flow-sensitive pointer analysis, in POPL ’09, vol. 44, ACM, 2009, pp. 226–

238.

[54] D. L. HEINE AND M. S. LAM, A practical flow-sensitive and context-sensitive c and c++

memory leak detector, (2003), p. 168.

[55] N. HEINTZE AND J. JAFFAR, A decision procedure for a class of set constraints, in [1990]

Proceedings. Fifth Annual IEEE Symposium on Logic in Computer Science, IEEE,

1990, pp. 42–51.

[56] N. HEINTZE AND O. TARDIEU, Ultra-fast aliasing analysis using cla: A million lines of c

code in a second, in PLDI ’01, vol. 36, ACM, 2001, pp. 254–263.

[57] M. HEIZMANN, C. SCHILLING, AND D. TISCHNER, Minimization of visibly pushdown

automata using partial max-sat, in International Conference on Tools and Algorithms

for the Construction and Analysis of Systems, Springer, 2017, pp. 461–478.

[58] M. HIND, Pointer analysis: Haven’t we solved this problem yet?, in Proceedings of the

2001 ACM SIGPLAN-SIGSOFT workshop on Program analysis for software tools and

engineering, 2001, pp. 54–61.

[59] J. E. HOPCROFT, R. MOTWANI, AND J. D. ULLMAN, Automata theory, languages, and

computation, International Edition, 24 (2006), pp. 171–183.

[60] J. E. HOPCROFT AND J. D. ULLMAN, Formal languages and their relation to automata,

Addison-Wesley Longman Publishing Co., Inc., 1969.

[61] S. HORWITZ, T. REPS, AND M. SAGIV, Demand interprocedural dataflow analysis, ACM

SIGSOFT Software Engineering Notes, 20 (1995), pp. 104–115.

[62] G. HOTZ, Normal-form transformations of context-free grammars, Acta Cybernetica, 4

(1978), pp. 65–84.

[63] Y. E. IOANNIDIS AND R. RAMAKRISHNAN, Efficient transitive closure algorithms, tech.

rep., University of Wisconsin-Madison Department of Computer Sciences, 1988.

[64] ISO90, ISO/IEC. international standard ISO/IEC 9899, programming languages - C,

(1990).

137

BIBLIOGRAPHY

[65] G. F. ITALIANO, Amortized efficiency of a path retrieval data structure, Theoretical Com-

puter Science, 48 (1986), pp. 273–281.

[66] R. JOHNSON AND K. PINGALI, Dependence-based program analysis, in Proceedings of the

ACM SIGPLAN 1993 conference on Programming language design and implementation,

1993, pp. 78–89.

[67] H. JORDAN, B. SCHOLZ, AND P. SUBOTIĆ, Soufflé, (2016).

[68] , Soufflé: On synthesis of program analyzers, in International Conference on Computer

Aided Verification, Springer, 2016, pp. 422–430.

[69] A. K. JOSHI AND Y. SCHABES, Tree-adjoining grammars, in Handbook of formal languages,

Springer, 1997, pp. 69–123.

[70] G. A. KILDALL, A unified approach to global program optimization, in Proceedings of

the 1st annual ACM SIGACT-SIGPLAN symposium on Principles of programming

languages, 1973, pp. 194–206.

[71] D. E. KNUTH, Semantics of context-free languages, Mathematical systems theory, 2 (1968),

pp. 127–145.

[72] V. KUMAR, P. MADHUSUDAN, AND M. VISWANATHAN, Visibly pushdown automata for

streaming xml, in Proceedings of the 16th international conference on World Wide Web,

2007, pp. 1053–1062.

[73] C. LATTNER AND V. ADVE, Llvm: A compilation framework for lifelong program analysis

& transformation, in International Symposium on Code Generation and Optimization,

2004. CGO 2004., IEEE, 2004, pp. 75–86.

[74] C. LATTNER, A. LENHARTH, AND V. ADVE, Making context-sensitive points-to analysis with

heap cloning practical for the real world, in PLDI’07, vol. 42, ACM, 2007, pp. 278–289.

[75] F. LE GALL, Powers of tensors and fast matrix multiplication, in Proceedings of the 39th

international symposium on symbolic and algebraic computation, 2014, pp. 296–303.

[76] Y. LEI AND Y. SUI, Fast and precise handling of positive weight cycles for field-sensitive

pointer analysis, in International Static Analysis Symposium, Springer, 2019, pp. 27–

47.

[77] O. LHOTÁK AND K.-C. A. CHUNG, Points-to analysis with efficient strong updates, in POPL

’11, 2011, pp. 3–16.

138

BIBLIOGRAPHY

[78] L. LI, T. F. BISSYANDÉ, M. PAPADAKIS, S. RASTHOFER, A. BARTEL, D. OCTEAU, J. KLEIN,

AND L. TRAON, Static analysis of android apps: A systematic literature review, Infor-

mation and Software Technology, 88 (2017), pp. 67–95.

[79] L. LI, C. CIFUENTES, AND N. KEYNES, Boosting the performance of flow-sensitive points-to

analysis using value flow, in FSE ’11, 2011, pp. 343–353.

[80] Y. LI, Q. ZHANG, AND T. REPS, Fast graph simplification for interleaved dyck-reachability,

in Proceedings of the 41st ACM SIGPLAN Conference on Programming Language

Design and Implementation, 2020, pp. 780–793.

[81] P. LINZ AND S. H. RODGER, An introduction to formal languages and automata, Jones &

Bartlett Learning, 2022.

[82] P. LIU, Y. LI, B. SWAIN, AND J. HUANG, Pus: A fast and highly efficient solver for inclusion-

based pointer analysis, in International Conference on Software Engineering (ICSE’22),

2022.

[83] LLVM, Clang static analyzer, https://clang-analyzer.llvm.org, (2022).

[84] Y. LU, L. SHANG, X. XIE, AND J. XUE, An incremental points-to analysis with cfl-

reachability, in International Conference on Compiler Construction, Springer, 2013,

pp. 61–81.

[85] J. MANTAS, Methodologies in pattern recognition and image analysis—a brief survey,

Pattern Recognition, 20 (1987), pp. 1–6.

[86] D. MELSKI AND T. REPS, Interconvertibility of a class of set constraints and context-free-

language reachability, Theoretical Computer Science, 248 (2000), pp. 29–98.

[87] A. MINÉ, Field-sensitive value analysis of embedded c programs with union types and

pointer arithmetics, in LCTES ’06, vol. 41, ACM, 2006, pp. 54–63.

[88] D. E. MULLER AND P. E. SCHUPP, The theory of ends, pushdown automata, and second-

order logic, Theoretical Computer Science, 37 (1985), pp. 51–75.

[89] N. A. NAEEM AND O. LHOTÁK, Typestate-like analysis of multiple interacting objects, ACM

Sigplan Notices, 43 (2008), pp. 347–366.

[90] P. NAPPA, D. ZHAO, P. SUBOTIĆ, AND B. SCHOLZ, Fast parallel equivalence relations in a

datalog compiler, in 2019 28th International Conference on Parallel Architectures and

Compilation Techniques (PACT), IEEE, 2019, pp. 82–96.

[91] F. NIELSON, H. R. NIELSON, AND C. HANKIN, Principles of program analysis, springer,

2015.

139

BIBLIOGRAPHY

[92] E. NUUTILA AND E. SOISALON-SOININEN, On finding the strongly connected components

in a directed graph, Information Processing Letters, 49 (1994), pp. 9–14.

[93] E. M. NYSTROM, H.-S. KIM, AND W.-M. W. HWU, Importance of heap specialization in

pointer analysis, in PASTE ’04, ACM, 2004, pp. 43–48.

[94] OPEN64, Implementing next generation points-to in open64.

www.affinic.com/documents/open64workshop/2010/slides/8_Ravindran.ppt.

[95] D. J. PEARCE, P. H. KELLY, AND C. HANKIN, Online cycle detection and difference prop-

agation for pointer analysis, in Proceedings Third IEEE International Workshop on

Source Code Analysis and Manipulation, IEEE, 2003, pp. 3–12.

[96] , Efficient field-sensitive pointer analysis of C, TOPLAS, 30 (2007), p. 4.

[97] F. M. Q. PEREIRA AND D. BERLIN, Wave propagation and deep propagation for pointer

analysis, in 2009 International Symposium on Code Generation and Optimization,

IEEE, 2009, pp. 126–135.

[98] PMD, Pmd, https://pmd.github.io/latest, (2022).

[99] A. POTAMIANOS AND H.-K. J. KUO, Statistical recursive finite state machine parsing for

speech understanding., in INTERSPEECH, Citeseer, 2000, pp. 510–513.

[100] P. PRATIKAKIS, J. S. FOSTER, AND M. HICKS, Existential label flow inference via cfl

reachability, in International Static Analysis Symposium, Springer, 2006, pp. 88–106.

[101] G. K. PULLUM AND G. GAZDAR, Natural languages and context-free languages, Linguistics

and Philosophy, 4 (1982), pp. 471–504.

[102] P. PURDOM, A sentence generator for testing parsers, BIT Numerical Mathematics, 12

(1972), pp. 366–375.

[103] R. C. READ, Graph theory and computing, Academic Press, 2014.

[104] J. REHOF AND M. FÄHNDRICH, Type-base flow analysis: from polymorphic subtyping to

cfl-reachability, ACM SIGPLAN Notices, 36 (2001), pp. 54–66.

[105] REPS, THOMAS, HORWITZ, SUSAN, SAGIV, AND MOOLY, Precise interprocedural dataflow

analysis via graph reachability, in Proceedings of the 22nd ACM SIGPLAN-SIGACT

symposium on Principles of programming languages, 1995, pp. 49–61.

[106] T. REPS, Shape analysis as a generalized path problem, in Proceedings of the 1995 ACM

SIGPLAN symposium on Partial evaluation and semantics-based program manipula-

tion, 1995, pp. 1–11.

140

www.affinic.com/documents/open64workshop/2010/slides/8_Ravindran.ppt

BIBLIOGRAPHY

[107] T. REPS, A. LAL, AND N. KIDD, Program analysis using weighted pushdown systems,

in International Conference on Foundations of Software Technology and Theoretical

Computer Science, Springer, 2007, pp. 23–51.

[108] T. REPS, S. SCHWOON, S. JHA, AND D. MELSKI, Weighted pushdown systems and their

application to interprocedural dataflow analysis, Science of Computer Programming,

58 (2005), pp. 206–263.

[109] J. C. REYNOLDS, Automatic computation of data set definitions, (1969).

[110] L. RODITTY AND U. ZWICK, A fully dynamic reachability algorithm for directed graphs

with an almost linear update time, in Proceedings of the thirty-sixth annual ACM

symposium on Theory of computing, 2004, pp. 184–191.

[111] A. ROUNTEV AND S. CHANDRA, Off-line variable substitution for scaling points-to analysis,

Acm Sigplan Notices, 35 (2000), pp. 47–56.

[112] B. SCHOLZ, H. JORDAN, P. SUBOTIĆ, AND T. WESTMANN, On fast large-scale program

analysis in datalog, in Proceedings of the 25th International Conference on Compiler

Construction, 2016, pp. 196–206.

[113] M. P. SCHÜTZENBERGER, On context-free languages and push-down automata, Information

and control, 6 (1963), pp. 246–264.

[114] L. SHANG, X. XIE, AND J. XUE, On-demand dynamic summary-based points-to analy-

sis, in Proceedings of the Tenth International Symposium on Code Generation and

Optimization, 2012, pp. 264–274.

[115] J. SPÄTH, K. ALI, AND E. BODDEN, Context-, flow-, and field-sensitive data-flow analysis

using synchronized pushdown systems, Proceedings of the ACM on Programming

Languages, 3 (2019), pp. 1–29.

[116] M. SRIDHARAN AND R. BODÍK, Refinement-based context-sensitive points-to analysis for

java, ACM SIGPLAN Notices, 41 (2006), pp. 387–400.

[117] M. SRIDHARAN, D. GOPAN, L. SHAN, AND R. BODÍK, Demand-driven points-to analysis

for java, ACM SIGPLAN Notices, 40 (2005), pp. 59–76.

[118] V. STRASSEN ET AL., Gaussian elimination is not optimal, Numerische mathematik, 13

(1969), pp. 354–356.

[119] Z. SU, M. FÄHNDRICH, AND A. AIKEN, Projection merging: Reducing redundancies in

inclusion constraint graphs, in Proceedings of the 27th ACM SIGPLAN-SIGACT Sym-

posium on Principles of Programming Languages, 2000, pp. 81–95.

141

BIBLIOGRAPHY

[120] Y. SUI, Side-effects of external apis.

https://github.com/SVF-tools/SVF/blob/master/lib/Util/ExtAPI.cpp.

[121] Y. SUI, X. FAN, H. ZHOU, AND J. XUE, Loop-oriented array-and field-sensitive pointer

analysis for automatic SIMD vectorization, in LCTES ’16, ACM, 2016, pp. 41–51.

[122] Y. SUI, Y. LI, AND J. XUE, Query-directed adaptive heap cloning for optimizing compilers,

in Proceedings of the 2013 IEEE/ACM International Symposium on Code Generation

and Optimization (CGO), IEEE, 2013, pp. 1–11.

[123] Y. SUI AND J. XUE, On-demand strong update analysis via value-flow refinement, in FSE

’16, ACM, 2016, pp. 460–473.

[124] Y. SUI AND J. XUE, Svf: Interprocedural static value-flow analysis in LLVM, in CC ’16,

2016, pp. 265–266.

[125] Y. SUI AND J. XUE, Svf: interprocedural static value-flow analysis in llvm, in Proceedings

of the 25th international conference on compiler construction, 2016, pp. 265–266.

[126] Y. SUI, D. YE, AND J. XUE, Detecting memory leaks statically with full-sparse value-flow

analysis, IEEE Transactions on Software Engineering, 40 (2014), pp. 107–122.

[127] R. TARJAN, Depth-first search and linear graph algorithms, SIAM journal on computing, 1

(1972), pp. 146–160.

[128] W. THOMAS, Languages, automata, and logic, in Handbook of formal languages, Springer,

1997, pp. 389–455.

[129] TRAVITCH, Whole-program llvm, https://github.com/travitch/whole-program-llvm, (2022).

[130] W. T. TUTTE AND W. T. TUTTE, Graph theory, vol. 21, Cambridge university press, 2001.

[131] I. WALUKIEWICZ, Model checking ctl properties of pushdown systems, in International

Conference on Foundations of Software Technology and Theoretical Computer Science,

Springer, 2000, pp. 127–138.

[132] H. WANG, X. XIE, Y. LI, C. WEN, Y. LI, Y. LIU, S. QIN, H. CHEN, AND Y. SUI, Typestate-

guided fuzzer for discovering use-after-free vulnerabilities, in 42nd International Con-

ference on Software Engineering, ACM, 2020.

[133] K. WANG, A. HUSSAIN, Z. ZUO, G. XU, AND A. AMIRI SANI, Graspan: A single-machine

disk-based graph system for interprocedural static analyses of large-scale systems code,

ACM SIGARCH Computer Architecture News, 45 (2017), pp. 389–404.

[134] , Graspan-cpp, https://github.com/Graspan/graspan-cpp, (2020).

142

https://github.com/SVF-tools/SVF/blob/master/lib/Util/ExtAPI.cpp

BIBLIOGRAPHY

[135] J. WHALEY, D. AVOTS, M. CARBIN, AND M. S. LAM, Using datalog with binary decision

diagrams for program analysis, in Asian Symposium on Programming Languages and

Systems, Springer, 2005, pp. 97–118.

[136] R. WILLIAMS, Faster all-pairs shortest paths via circuit complexity, in Proceedings of the

forty-sixth annual ACM symposium on Theory of computing, 2014, pp. 664–673.

[137] V. V. WILLIAMS, Multiplying matrices faster than coppersmith-winograd, in Proceedings of

the forty-fourth annual ACM symposium on Theory of computing, 2012, pp. 887–898.

[138] V. V. WILLIAMS AND R. R. WILLIAMS, Subcubic equivalences between path, matrix, and

triangle problems, J. ACM, 65 (2018), pp. 27:1–27:38.

[139] G. XU, A. ROUNTEV, AND M. SRIDHARAN, Scaling cfl-reachability-based points-to analysis

using context-sensitive must-not-alias analysis, in European Conference on Object-

Oriented Programming, Springer, 2009, pp. 98–122.

[140] Z. XU, L. ZHENG, AND H. CHEN, A toolkit for generating sentences from context-free

grammars, in 2010 8th IEEE International Conference on Software Engineering and

Formal Methods, IEEE, 2010, pp. 118–122.

[141] M. YANNAKAKIS, Graph-theoretic methods in database theory, in Proceedings of the ninth

ACM SIGACT-SIGMOD-SIGART symposium on Principles of database systems, 1990,

pp. 230–242.

[142] S. YE, Y. SUI, AND J. XUE, Region-based selective flow-sensitive pointer analysis, in SAS

’14, 2014, pp. 319–336.

[143] D. M. YELLIN, Speeding up dynamic transitive closure for bounded degree graphs, Acta

Informatica, 30 (1993), pp. 369–384.

[144] H. YUAN AND P. EUGSTER, An efficient algorithm for solving the dyck-cfl reachability

problem on trees, in European Symposium on Programming, Springer, 2009, pp. 175–

189.

[145] Q. ZHANG, M. R. LYU, H. YUAN, AND Z. SU, Fast algorithms for dyck-cfl-reachability with

applications to alias analysis, in Proceedings of the 34th ACM SIGPLAN conference on

Programming language design and implementation, 2013, pp. 435–446.

[146] Q. ZHANG AND Z. SU, Context-sensitive data-dependence analysis via linear conjunctive

language reachability, in Proceedings of the 44th ACM SIGPLAN Symposium on

Principles of Programming Languages, 2017, pp. 344–358.

143

BIBLIOGRAPHY

[147] Q. ZHANG, X. XIAO, C. ZHANG, H. YUAN, AND Z. SU, Efficient subcubic alias analysis

for c, in Proceedings of the 2014 ACM International Conference on Object Oriented

Programming Systems Languages & Applications, 2014, pp. 829–845.

[148] D. ZHAO, P. SUBOTIC, M. RAGHOTHAMAN, AND B. SCHOLZ, Towards elastic incremen-

talization for datalog, in 23rd International Symposium on Principles and Practice of

Declarative Programming, 2021, pp. 1–16.

[149] X. ZHENG AND R. RUGINA, Demand-driven alias analysis for c, in Proceedings of the 35th

annual ACM SIGPLAN-SIGACT symposium on Principles of programming languages,

2008, pp. 197–208.

[150] Z. ZUO, K. WANG, A. HUSSAIN, A. A. SANI, Y. ZHANG, S. LU, W. DOU, L. WANG, X. LI,

C. WANG, ET AL., Systemizing interprocedural static analysis of large-scale systems code

with graspan, ACM Transactions on Computer Systems (TOCS), 38 (2021), pp. 1–39.

144

	Title Page
	Certificate of Original Authorship
	Abstract
	Acknowledgments
	Table of Contents
	List of Publications
	List of Figures
	List of Tables
	Introduction
	Background
	Context-Free Language Reachability (CFL-Reachability)
	Recursive Static Machine (RSM)
	Set Constraint Analysis

	Research Topics
	Eliminating Transitive Redundancy On-The-Fly
	Simplifying the Input Graph in the Proprocessing Stage
	Precise and Efficient Handling of Positive Weight Cycles

	Contributions
	Eliminating Transitive Redundancy On-The-Fly
	Recursive State Machine Guided Graph Folding
	Fast and Precise Handling of Positive Weight Cycles

	Thesis Organization

	Literature Review
	Context-Free Language and CFL-reachability
	Pushdown Automata and Recursive State Machines
	Set Constraint Analysis
	Efficiency Study

	Taming Transitive Redundancy for Context-Free Language Reachability
	Problem Formulation
	CFL-Reachability
	Redundant Derivations and Transitive Redundancy
	Research Problem

	Our Solution
	Hybrid Graph Representation for Reducing Redundant Derivations
	Dynamic Construction of Spanning Trees
	Pocr: A Fast Partially Ordered CFL-Reachability Algorithm for All-Pairs Analyses

	Discussion: Effectiveness of Pocr
	Grammars Benefiting from Pocr
	Grammar-Driven Redundancy Reduction

	Experimental Evaluation
	Experimental Setup
	RQ 1: Reduction of Redundant Derivations
	RQ 2: Speedups Over Baselines
	RQ 3: Pocr vs. Grammar Rewriting
	Summary

	Recursive State Machine Guided Graph Folding
	Problem Formulation
	Recursive Static Machine
	RSM-Reachability
	Research Problem

	Principle for Graph Folding
	Correspondences in Graph Folding and RSM-Reachability
	Folding Principle
	Correctness of Folding Principle

	Graph-Folding Algorithm
	Identifying Foldable Node Pairs
	Overall Algorithm

	Experiment
	Experimental Setup
	Performance in Reducing Graph Sizes
	Speedup and Memory Overhead
	Discussions
	Summary

	Derivation Equivalence Based Set Constraint Solving
	Problem Formulation
	Pointer Analysis in Set Constraints
	Field-Sensitivity and Positive Weight Cycles
	Derivation Equivalence Based Constraint Solving

	Our Solution
	Stride-based Field Representation
	Inference Rules
	Dea: a Derivation Equivalence Algorithm

	Implementation of Field-Sensitive Pointer Analysis for C/C++
	Experimental Evaluation
	Experimental Setup
	Results and Analysis
	Summary

	Conclusion and Future Works
	Appendix
	Proof of the Soundness of Algorithm 2
	Proof of Property 4.2
	Proof of Property 4.3

	Bibliography

