
Efficient Substructure Mining in

Large Networks

by

YUXUAN QIU

A THESIS SUBMITTED IN FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

Doctor of Philosophy

Australian Artificial Intelligence Institute (AAII)

Faculty of Engineering and Information Technology (FEIT)

University of Technology Sydney (UTS)

February, 2023

CERTIFICATE OF ORIGINAL
AUTHORSHIP

I, Yuxuan Qiu, declare that this thesis is submitted in fulfilment of the require-

ments for the award of Doctor of Philosophy, in the Faculty of Engineering and

Information Technology at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise referenced or acknowledged.

In addition, I certify that all information sources and literature used are indi-

cated in the thesis.

This document has not been submitted for qualifications at any other academic

institution.

This research is supported by the Australian Government Research Training

Program.

Signature:

Date: 11/02/2023

ii

Production Note:

Signature removed prior to publication.

ACKNOWLEDGEMENTS

First of all, I am extremely grateful to my supervisor, A/Prof. Lu Qin, for his

unwavering guidance and support throughout my research career. He is a re-

sponsible and patient mentor who has effectively guided me into the realm of

academia. As an exceptionally intelligent and proficient researcher, he consis-

tently provides fresh insights and unique perspectives on my research topic in

each of our interactions. In addition to being my supervisor, A/Prof. Qin is

also a good friend who genuinely cares about my personal life. Whenever I face

challenges or setbacks, he is always there to offer a helping hand and words of

encouragement. Without his invaluable support, I would not have been able to

complete my PhD thesis to the high standard that it is today.

Secondly, I would like to extend my gratitude to my co-supervisors, Prof. Ying

Zhang and Dr. Dong Wen, for their invaluable assistance and guidance during

my PhD studies. Prof. Zhang has been instrumental in providing me with valu-

able advice and support for my research projects. Her expertise and insights

have been indispensable to my success in completing my PhD. Dr. Wen has also

played an essential role in my research journey. He has consistently encouraged

me to explore the core of research problems, allowing me to experience the joy

of conducting research. His patience in guiding me through acquiring research

skills, such as experiment designing and paper writing, has been greatly appre-

ciated. Moreover, I have gained a lot from his problem-solving approach and

iii

rigorous research attitude.

Thirdly, I would like to thank Prof. Xuemin Lin, Prof. Wenjie Zhang, A/Prof.

Lijun Chang, and Dr. Wentao Li for their invaluable support and guidance

throughout my research work and career. They have provided me with practical

advice and served as exemplary role models for me to become a good researcher.

Fourthly, I would like to express my gratitude to Prof. Rui Mao and Prof.

Rong-Hua Li, my supervisors at Shenzhen University, for their role in inspiring

my research interests and offering valuable advice during my studies.

I would also like to express my gratitude to a large number of individuals who

have supported me and made my journey through PhD study all the more en-

joyable. These individuals include Dr. Xin Cao, Dr. Xiaoyang Wang, Prof. Fan

Zhang, A/Prof. Yixiang Fang, A/Prof. Dian Ouyang, Dr.Junhua Zhang, Mr.

Rong Hu, Dr. Conggai Li, Dr. You Peng, Asst. Prof. Kai Wang, Dr. Hanchen

Wang, Ms. Yiqi Wang, Dr. Zhengyi Yang, Dr. Mingjie Li, Dr. Bohua Yang, Dr.

Xiaoshuang Chen, Dr. Longbin Lai, Dr. Xubo Wang, Dr. Yuren Mao, Dr. Yix-

ing Yang, Dr. Yu Hao, Dr. Qingyuan Linghu, Dr. Michael Ruisi Yu, Dr. Chenji

Huang, Mr. Yilun Huang, Mr. Yuanhang Yu, Mr. Kongzhang Hao, Mr. Lantian

Xu, Mr. Deming Chu, Mr. Jianwei Wang, Mr. Shiding Zhang, Mr. Yizhang

He, Mr. Qingqiang Sun, Mr. Shunyang Li, Mr. Gengda Zhao, Mr. Qingshuai

Feng, Mr. Zhuo Ma, Ms. Yuting Zhang, Ms. Yanping Wu, Mr. Guangxin Su,

Mr. Yufan Sheng, Mr. Kaiyu Chen, Dr. Mingshan Jia, Dr. Joakim Skarding,

Dr. Yanbin Liu, Dr. Xiaolin Zhang, Dr. Yiliao Song, Mr. Wenhao Ma, Dr.

Kai Yao, Dr. Guangxi Li, and Dr. Huaxi Huang. These individuals have all

provided their support and made significant contributions to my journey, and I

have enjoyed the time spent with each of them.

iv

Last but not least, I would like to express my heartfelt gratitude to my family

for their unwavering love and support throughout my academic journey. I am

deeply grateful to my father, Mr. Zhenghong Qiu, and my stepmother, Ms.

Ling Wang, for always being there for me and for their encouragement every

step of the way. I would also like to take a moment to remember my late

mother, Ms. Jiaying Xu, whose love and support were instrumental in shaping

the person I am today. Her memory and her profound impact on my life will

always be with me. I am also grateful to my girlfriend, Ms. Shuxin Zhong, for her

constant support, understanding, and encouragement. Her unwavering belief in

my abilities has been a great source of motivation throughout my studies. Lastly,

I want to thank my grandparents, sisters, relatives, and friends for their support

and encouragement in various ways. I am blessed to have them in my life.

v

ABSTRACT

Graph models have been widely applied to represent the relationships between

objects or entities. In graph models, the objects or entities are represented by

vertices, and their relationships are represented by edges. In graph analysis,

a subset of vertices and edges with distinct patterns form a substructure in

the graph. Cohesive subgraphs and the shortest paths are two typical types

of substructures that are widely used in many real-world applications. Given

the importance of these substructures, in this thesis, we study the problems of

mining them on large graphs.

Firstly, we study the cohesive subgraph substructures. We propose a novel

cohesive subgraph model named the statistically significant cliques to fill the gap

where most cohesive subgraph models do not consider the statistical significance.

We propose an efficient branch-and-bound method with carefully designed prun-

ing techniques to compute the maximal significant cliques.

Secondly, we investigate the shortest path substructures. We specifically

study the shortest path counting problem, which is an important closeness metric

and also serves as the building block for betweenness centrality. We observe

the limitations of the state-of-the-art method and the opportunities to improve.

A more advanced index structure based on tree decomposition is designed for

the shortest path count computation. We also provide efficient algorithms to

construct such an index.

Thirdly, we investigated the dynamic updating of our proposed index in re-

vi

sponse to graph updates. To achieve this, we developed a basic updating method

that identifies the affected area in the index and updates the labels without re-

quiring a complete recomputation. We then proposed enhanced algorithms to

expedite these updates.

We conduct extensive experiments, and the results validate the effectiveness

and efficiency of our proposed methods.

vii

PUBLICATIONS

• Yu-Xuan Qiu, Dong Wen, Rong-Hua Li, Lu Qin, Michael Yu, Xuemin

Lin. “Computing Significant Cliques in Large Labeled Networks.” In IEEE

Transactions on Big Data, vol 9(3):904-917, 2023(Chapter 3)

• Yu-Xuan Qiu, Dong Wen, Lu Qin, Wentao Li, Rong-Hua Li, Ying

Zhang. “Efficient Shortest Path Counting on Large Road Networks.” In

Proceedings of the 48th International Conference on Very Large Databases.

VLDB, vol 15(10):2098-2110, 2022. (Chapter 4)

• Yu-Xuan Qiu, Dong Wen, Lu Qin, Wentao Li, Rong-Hua Li, Ying

Zhang. “Efficient Shortest Path Counting with Dynamic Index Mainte-

nance on Large Road Networks”. In submission. (Chapter 5)

viii

TABLE OF CONTENT

CERTIFICATE OF AUTHORSHIP/ORGINALITY ii

ACKNOWLEDGEMENTS iii

ABSTRACT vi

PUBLICATIONS viii

TABLE OF CONTENT ix

LIST OF FIGURES xii

LIST OF TABLES xiv

1 INTRODUCTION 1
1.1 Significant Clique Computation 2
1.2 Shortest Path Counting . 7
1.3 TL-Index Maintenance . 12
1.4 Roadmap . 14

2 LITERATURE REVIEW 15
2.1 Techniques for Cohesive Subgraph Mining 15
2.2 Techniques for Shortest Path Queries 17

3 COMPUTING SIGNIFICANT CLIQUES IN LARGE LABELED
NETWORKS 21
3.1 Chapter Overview . 21
3.2 Preliminaries . 21

3.2.1 Problem Definition . 22
3.2.2 Hardness and Challenges. 24

3.3 A Branch-and-Bound Algorithm 26
3.3.1 Basic Structural Graph Reduction 26

ix

TABLE OF CONTENT

3.3.2 Computing Maximal Significant Cliques 28
3.4 Statistical Graph Reduction . 30

3.4.1 Pruning via Significant Core 30
3.4.2 Pruning via Colorful Significant Core 33
3.4.3 Pruning via Significant Truss 39

3.5 The Final Algorithm . 44
3.6 Experiments . 45

3.6.1 Efficiency Evaluation . 47
3.6.2 Case study on DBLP . 51

3.7 Chapter Summary . 53

4 EFFICIENT SHORTEST PATH COUNTING ON LARGE ROAD
NETWORKS 65
4.1 Chapter Overview . 65
4.2 Preliminaries . 66

4.2.1 Problem Statement . 66
4.2.2 The State of the Art: Hub Labeling 68
4.2.3 Opportunities . 70

4.3 Tree-based Shortest Path Counting 71
4.3.1 Tree Decomposition . 71
4.3.2 TL-Index . 73
4.3.3 Query Processing with TL-Index 77

4.4 Index Construction . 79
4.4.1 Basic Index Construction by Hub Pushing 79
4.4.2 A New Upward Computing Framework 82
4.4.3 Graph Reduction . 83
4.4.4 Relaxing Convex Shortest Path 86
4.4.5 The Final Algorithm . 88

4.5 Experiments . 90
4.6 Chapter Summary . 99

5 SHORTEST PATH COUNTING FOR DYNAMIC ROAD NET-
WORKS 101
5.1 Chapter Overview . 101
5.2 TL-Index Maintenance . 102

5.2.1 Problem Statement . 102
5.2.2 An Up-and-Down Framework 102

5.3 An Up-forward Updating Approach 106
5.3.1 Index Maintenance for Weight Decrease 107
5.3.2 Index Maintenance for Weight Increase 113
5.3.3 An Optimized Priority Queue 119

x

TABLE OF CONTENT

5.3.4 Local Graph Revisited . 120
5.4 Experiments . 121
5.5 Chapter Summary . 123

6 EPILOGUE 125

BIBLIOGRAPHY 127

xi

LIST OF FIGURES

1.1 A labeled graph G and maximal (k, θ)-significant cliques in G
given k = 4, θ = 6.0, pA = 0.8, and pB = 0.2 2

1.2 A road network G(V,E). 8

3.1 A coloring and the 3-core of the graph G 26
3.2 Pruning G via (3, 6)-significant core 32
3.3 Pruning G via colorful (3, 6)-significant core 35
3.4 The data structure for v15 to maintain fcn(v15) 38
3.5 Pruning G via (4, 6)-significant truss 41
3.6 Running time of different algorithms by varying θ and k 54
3.6 Running time of different algorithms by varying θ and k (continued) 55
3.7 Running time of SigClique∗ by varying θ and k 56
3.8 The number of vertices after pruning by varying parameters θ and k 57
3.8 The number of vertices after pruning by varying parameters θ and

k (continued) . 58
3.9 The number of maximal (θ, k)-cliques 59
3.9 The number of maximal (θ, k)-cliques (continued) 60
3.10 Scalability Testing. 61
3.10 Scalability Testing (continued). 62
3.11 The maximal (5, 500)-significant cliques of Prof. Jiawei Han on

DBLP graph . 63
3.12 The maximal cliques containing Prof. Jiawei Han on DBLP graph

with at least 5 vertices. (a) and (b) are 7-cliques. (c)-(f) are
6-cliques. (g) and (h) are 5-cliques 63

3.13 The chi-square statistic of all the maximal cliques containing Prof.
Jiawei Han with at least 5 vertices 64

4.1 A simple graph and its hub-labeling index given the vertex order
v1 ≤ v2 ≤ v3 ≤ v4 ≤ v5 ≤ v6. 69

4.2 Tree decomposition TG of G. 72
4.3 The TL-Index for G. 75

xii

LIST OF FIGURES

4.4 Examples of optimizations in index construction based on the
graph G in Fig. 1.2 and its tree decomposition in Fig. 4.2. For
each edge in the subfigures (a) and (c), the label means [the dis-
tance weight ϕ: the count weight ς]. For the subfigure (b), the
label means the distance of the edge. 84

4.5 An example of TL-Construct∗. 89
4.6 Query time. 92
4.7 TL-Query speedup over HL-Query. 93
4.8 Number of visited labels in query processing. 93
4.9 Query processing time varying query distance. 94
4.9 Query processing time varying query distance (continued). 95
4.10 Index construction time. 97
4.11 Index size (GB). 97
4.12 Scalability testing. 98
4.13 Shortest path count on different graphs. 99
4.14 Shortest path count varying distance. 99

5.1 Index Updating Time With Varying Weight Change Size 123
5.2 Changed Label Proportion With Vary Weight Change Size. 124

xiii

LIST OF TABLES

3.1 Frequent notations used in Chapter 3. 24
3.2 Network statistics (degmax is the maximum degree, c is the core

value) . 47
3.3 Overall running time of enumerating maximal significant cliques

on all datasets and the number of corresponding maximal signifi-
cant cliques . 48

4.1 Frequent notations used in Chapter 4. 66
4.2 Statistics of road networks. 92

5.1 Statistics of road networks. 122

xiv

Chapter 1

INTRODUCTION

Graph models have been used to capture the relationships among entities in a

wide spectrum of applications, such as social networks [44, 75], biological net-

works [85, 80], collaboration networks [98, 97], and road networks [76, 77]. The

surge of graph-based applications has shifted the focus of research toward ad-

dressing the difficulties of graph management and analysis.

In graph analysis, substructures play a crucial role. Substructures are smaller

components of a larger graph with specific patterns or structures. The usefulness

of these substructures extends to a range of applications, such as detecting social

network patterns [20] or scrutinizing the architecture of a protein [104]. By

studying these substructures, analysts can gain insights into the overall structure

of a graph and potentially uncover important relationships or trends.

Cohesive subgraphs and shortest paths are two representative substructures

in graph analysis. Cohesive subgraphs are subgraphs that are more strongly

connected than the rest of the graph. The shortest paths, on the other hand,

are paths between two vertices in a graph that have the smallest lengths. This

thesis will study the substructure mining problems from these two aspects.

1

Chapter 1 1.1. SIGNIFICANT CLIQUE COMPUTATION

1.1 Significant Clique Computation

Discovering cohesive subgraphs has been recognized as a fundamental problem

with numerous applications like detecting social communities [96, 35] and mining

protein complexes [65]. This report aims to mine statistically significant cohesive

subgraphs, which have never been considered in previous studies. Generally,

the task identifies a set of densely connected subgraphs with certain properties

beyond the standard distribution.

v3

v12

v5

v7
v6

v4

v8

v11 v9

v13

v14

v10

v15v1

v2
v16 v17

B

B AB
AB

AB

B

B

AAB

B

AB A A

B

AB
AB

Figure 1.1: A labeled graph G and maximal (k, θ)-significant cliques in G given
k = 4, θ = 6.0, pA = 0.8, and pB = 0.2

Many efforts have been made on extracting significant substructures [81, 49,

87, 110] among the studies for mining subgraph patterns. Several works study the

problem of frequent subgraph mining [87, 110], where a subgraph is considered

to be significant if its frequency exceeds a predefined threshold. However, the

subgraph frequency only considers the structural property, while vertices in a

tremendous amount of real-world graphs are always associated with a set of

labels or attributes. For example, in a protein-protein-interaction network, each

vertex represents a protein, and the labels may represent protein functionalities.

To capture the label statistics in significant subgraph mining, Arora et al. studied

the problem of computing statistically significant connected subgraphs [9].

2

1.1. SIGNIFICANT CLIQUE COMPUTATION Chapter 1

In statistics, the significance provides the evidence concerning the plausibil-

ity of the null hypothesis, which hypothesizes that the data distribution is only

affected by random chance. If we have evidence to reject the null hypothesis,

the corresponding result is considered statistically significant. In the statisti-

cally significant connected subgraph model, the null hypothesis is that the labels

on each vertex are assumed to be assigned independently and randomly from

a fixed probability distribution. The deviation between the actual labels and

the expected labels measures the statistical significance and is computed via a

function called chi-square statistic [88], which has also been used in many other

works [9, 38, 107, 111]. The higher the chi-square, the higher the statistical sig-

nificance [9, 87]. In this report, we also evaluate the significance by the chi-square

statistic. Given a set of vertices U and their labels, the chi-square statistic is

formally defined as follows.

f(U) =
l∑

i=1

(yi − ypi)
2

ypi
,

where l is the number of distinct labels, y is the total number of all labels in U ,

yi is the number of the i-th labels, and pi is the expected frequency of the i-th

label. A higher chi-square statistic means a higher deviation between the real

and expected label distributions which may indicate some intrinsic properties.

For example, the numbers of male and female staff are expected to be similar

in a company. Given the real numbers of them, a high chi-square statistic may

indicate some gender inequality in the company.

Clique is a fundamental and commonly used model for cohesive subgraph

detection [71]. An induced subgraph S is a clique if there exists an edge between

every pair of vertices in S. The clique model has drawn a great amount of

research attention, such as enumerating maximal cliques [26, 29, 5], computing

3

Chapter 1 1.1. SIGNIFICANT CLIQUE COMPUTATION

the maximum clique [67, 25], and mining clique-based subgraphs, e.g., signed

cliques [64, 53, 74]. Several other cohesive subgraph models are briefly introduced

in Section 2.1.

Our Model. Based on the concepts of chi-square statistic and clique, we pro-

pose a novel significant cohesive subgraph model, which is called (k, θ)-significant

cliques, in vertex-labeled graphs. Given a size constraint k, a significance thresh-

old θ, and a probability distribution P as the input, a (k, θ)-clique S satisfies the

following three properties: (i) S is a clique in which every pair of vertices is con-

nected; (ii) the chi-square statistic of S is at least equal to θ; and (iii) the number

of vertices in S is no smaller than k. The first two properties support us to find

significant cohesive subgraphs in the graph, and the third property helps us avoid

some small graphlets like edges and triangles. We study the problem of enumer-

ating all maximal (k, θ)-significant cliques in a graph. Given an integer k = 4,

a real value θ = 6 and a label probability distribution {pA = 0.8, pB = 0.2},

Fig. 1.1 shows an example of all maximal (k, θ)-significant cliques.

Applications. The problem of enumerating all maximal (k, θ)-significant cliques

has many applications, including but not limited to discovering influential re-

search groups in collaboration networks [57], detecting topic-centric communities

in social networks [34], and revealing important functional organizations in PPI

networks [66].

Research group discovery in co-author networks. In a co-author network (e.g.,

DBLP), two researchers are connected by an edge if they have a common pub-

lication. A researcher may have several labels or attributes, and each label

represents a conference or a journal where the researcher has a paper published.

Setting a relatively low expected frequency for some high-ranking conferences

or journals in a research domain leads to a higher chi-square statistic for groups

with more such publications. Our model can be applied to identify outstanding

4

1.1. SIGNIFICANT CLIQUE COMPUTATION Chapter 1

research groups with many high-quality publications. We have conducted a case

study on DBLP to discover such research groups. The details can be found in

Section 4.5.

Topic-centric community detection in social networks. In social networks, each

user may have several labels representing the followed topics, like soccer and

basketball. The model can help mine topic-centric communities that have a

strong association with some specific topics (or features) far beyond others.

For example, in sports marketing, it is crucial to locate the avid sports fans.

Assume that we would like to mine a set of pure “soccer” communities for recom-

mendations and advertisements. A straightforward method is to collect all the

vertices following “soccer” and compute cliques in the induced subgraph. How-

ever, this method does not consider other labels, and the resulting communities

may also be highly interested in other sports. By setting a suitable parameter,

our model can find a set of communities whose members care about “soccer” far

beyond other sports.

Organization mining in biological networks. In PPI networks, each protein is as-

signed several labels by its functionalities. By setting specific parameters, our

model can be used to identify a set of biological organizations (closely connected

proteins) with some particular statistics far beyond normal. The derived struc-

tures may play crucial roles in certain biological processes.

Note that there have been several keyword-based community models in la-

beled networks. However, they cannot easily cover our research problem and

techniques. First, existing works either cannot guarantee strong structural co-

hesion [72, 83] or focus on other cohesion models like k-core and k-truss [32]. To

the best of our knowledge, we are the first to study significant clique mining in

labeled graphs given the prevalence of the fundamental clique model. Our model

guarantees both the strongest structural cohesion and flexible keyword signifi-

5

Chapter 1 1.1. SIGNIFICANT CLIQUE COMPUTATION

cance. Second, several works only accept an input graph and cannot support

personalized keyword (distribution) queries [32, 15, 73, 72, 84]. For example,

Chu et al. [32] find cohesive subgraphs where the common pattern is frequent

in all vertices. The common pattern is generated by the algorithm. Third, sev-

eral keyword-based community detection models accept a set of keywords as the

input and only consider the existence of keywords[42, 54, 117]. Such models

compute cohesive subgraphs where each vertex covers as many given keywords

as possible. In these models, the importance of all input keywords is always

the same. By contrast, the statistical significance model provides an input of

keyword distribution. Thus, we can flexibly assign different strengths to input

keywords according to specific scenarios.

Challenges. It is challenging to compute all maximal (k, θ)-significant cliques.

First, the problem is NP-hard, which is proved in Section 3.2.2 by showing that

the maximal clique enumeration is a special case of our problem. Second, the

significance constraint in the model is not anti-monotonic. In other words, even

though we find a clique S with a chi-square statistic less than θ, a sub-clique of

S may still have a chi-square statistic larger than θ. As a result, we still need to

check every possible sub-clique of S further. Therefore, the technical challenges

include how to correctly output maximal (k, θ)-significant cliques without any

duplication and how to prune the search space effectively.

Our Solution. Based on the concept of k-core [94] and graph coloring [99] in

existing studies, we propose a basic branch-and-bound algorithm. However, the

integer k is normally small to only filter out some small motifs, which diminishes

the pruning effectiveness of basic structural rules. To improve the practical

efficiency, we observe an upper bound for the chi-square statistic of a given

vertex set (Theorem 2). Based on the upper bound, we combine the concepts of

k-core and graph coloring and derive a vertex reduction strategy with stronger

6

1.2. SHORTEST PATH COUNTING Chapter 1

structural pruning effectiveness and a statistical pruning rule. We further extend

the ideas from vertices to edges and propose an edge pruning strategy.

Contributions. We summarize the main contributions in this work as follows.

• An elegant significant cohesive subgraph model. We propose a novel subgraph

model, called (k, θ)-significant clique in labeled graphs. We prove that the

problem of computing all maximal (k, θ)-significant cliques is NP-hard.

• An algorithm for significant clique enumeration. We propose a novel branch-

and-bound algorithm to enumerate maximal (k, θ)-significant cliques without

any duplication.

• Several strategies to prune the search space. We propose two effective pruning

strategies from the perspectives of both vertex reduction and edge reduction,

which take O(m · log degmax) and O(m1.5) times, respectively. m is the number

of edges, and degmax is the maximum degree.

• Extensive performance studies. We conduct extensive experiments on seven

real-world datasets to evaluate the efficiency of our proposed algorithms. We

also conduct a case study to show the effectiveness of our model.

The details of this work are presented in Chapter 3.

1.2 Shortest Path Counting

Given the strong expressive power of the graph model, road maps are often

abstracted as graphs, aka road networks, in many real-world location-based ser-

vices and analytical tasks. In these applications, each road is represented by an

edge, and each intersection of roads is represented by a graph vertex. The real

distance of each road is modeled as a weight value for each edge in the graph.

7

Chapter 1 1.2. SHORTEST PATH COUNTING

v19

v20

v16 v15

v17

v18

v13

v14

v2

v1 v3

v5

v4

v6

v9
v8

v7
v10

v11
v12

1
2

2
3

2
1

1

2
1

2

2 2

1

2

1

21

3
4

1

2
2 2 2

2
1
2

2
2

Figure 1.2: A road network G(V,E).

In analyzing road networks, the concept of the shortest path is important and

lays the foundation of many complex location-based queries, like the shortest

distance [76], kNN [77] and betweenness centrality [10]. The distance or length

of a path is the sum of weights of all edges in the path. A path p is the shortest

path if there does not exist a path with the same terminal vertices and a distance

value smaller than p. The shortest distance between two vertices is the distance

of their shortest path. It is a standard metric to evaluate how close (or similar)

the two vertices are.

A great deal of research effort has been contributed to efficiently querying

the shortest distance between query vertices in graphs [76, 46, 4, 12, 108, 118].

However, a vertex may reach multiple other vertices with the same shortest

distance, which weakens the effectiveness of the shortest distance as a closeness

metric. A recent work [115] breaks the tie by formulating the shortest path

counting problem, which aims to compute the number of shortest paths between

two query vertices in a graph. In this thesis, we study the shortest path counting

problem on road networks, where the distance is rounded to a specific precision,

e.g., meters.

In real road network applications, more shortest paths indicate more traffic

8

1.2. SHORTEST PATH COUNTING Chapter 1

options and more flexibility for route planning from the start vertex to the des-

tination. For instance, top-k nearest neighbors search aims at finding k objects

close to the query vertex from a candidate set. It is a key operator in taxi-

hailing (e.g., Uber), restaurant (e.g., Tripadvisor), and hotel recommendation

(e.g., Booking) services. A candidate object can be more desirable than others

with the same or similar distance if many shortest paths lead to the object since

we have more backup routing plans and a higher probability of avoiding traffic

jams. For example, in a movie ticket application, there are two cinemas with

the similar shortest distance to the source location. We may prefer the one with

more shortest paths considering the traffic options.

In addition to serving as a closeness metric, the shortest path count has

been used as a building block of betweenness centrality computation [82, 86].

On road networks, the betweenness centrality is widely used as a static pre-

dictor of congestion and load, which helps predict the traffic flow [60]. Given

a vertex u, the betweenness centrality of u, denoted by CB(u), is the fraction

of shortest paths passing u, i.e., CB(u) =
∑

s̸=u̸=t∈V
spcu(s,t)
spc(s,t)

, where spc(s, t) is

the number of shortest paths between s and t, and spcu(s, t) is the number of

paths passing u in spc(s, t). [86] observes that spcu(s, t) = spc(s, u) · spc(u, t) if

sd(s, u)+ sd(u, t) = sd(s, t), where sd(s, t) is the shortest distance between s and

t. Based on this property, several works precompute the shortest distances and

the shortest path counts for a set of vertex pairs to approximately compute the

betweenness centrality [90, 86, 21, 11]. The techniques in this thesis can signifi-

cantly improve the efficiency of counting shortest paths and boost the efficiency

of betweenness centrality computation in practice. Apart from road networks,

the proposed method can also be applied to other infrastructure networks, like

power grid networks and public transportation networks, which have a small tree

height [69, 19].

9

Chapter 1 1.2. SHORTEST PATH COUNTING

The State-Of-The-Art Solution. The state-of-the-art algorithm for shortest

path counting is proposed in [115]. In [115], the authors devise a labeling-based

index by assigning a total order for all vertices. Specifically, for each vertex u,

they precompute the shortest distances and the shortest path counts to some

vertices with higher ranks than u in the order. To query the number of shortest

paths between two vertices u and v, they find every common vertex in the label

sets of these two vertices. Each common vertex p acts as a bridge to connect

two shortest sub-paths. The sum of two sub-paths’ distances is their distance,

and the product of two sub-paths’ counts is the number of the shortest paths

between u and v in terms of p in the index. They sum the counts for all common

vertices whose corresponding distances are the shortest between u and v.

Challenges. Their indexing scheme works well as a general method. However,

there still exist several challenges and room for improvement. First, based on

a total vertex order, a low-ranking vertex may have a large number of labels in

the index. More labels imply more index space usage and more comparisons in

the query processing. Second, they order the labels for each vertex and perform

a merge-sort-like strategy to find common vertices in query processing. Given

that the label size for each vertex is not well-bounded, the query strategy needs

to access all labels, thus incurring much time overhead. Third, to compute the

order-based labels, [115] searches every vertex in the induced subgraph of all

vertices with lower ranks. The search space can be the whole graph, which

makes the index construction inefficient in large graphs.

Our Approach. In this thesis, we propose a new labeling-based index structure

that is carefully defined for road networks and other sparse graphs. We adopt the

concept of tree decomposition [18] and propose a tree-based labeling structure,

given that real-world road networks normally have a low average degree and

small treewidth [76, 77]. Specifically, we organize all vertices in the graph into

10

1.2. SHORTEST PATH COUNTING Chapter 1

a tree structure such that there is a one-to-one correspondence between the

vertices and the tree nodes. By our indexing scheme, we only store a label for

each ancestor of a vertex in the tree, which bounds the label size of each vertex

well. In query processing, we derive several useful properties which enable us

to only consider the common ancestors of two query vertices in the tree. As

a result, we only check a small number of labels which significantly improves

the query efficiency. Our index is also a labeling-based structure and satisfies

the concept of exact shortest path covering defined in [115]. Their hub-pushing-

based index construction paradigm can be naturally adapted to construct our

tree-based index. In order to enhance indexing efficiency, we propose a new

index construction framework and avoid the costly graph search in [115]. A

crucial phase in the index construction process involves calculating the shortest

distance and path count from a vertex u to one of its ancestors v. We propose

several rules to reduce all the descendants of u in the tree while preserving the

correctness of all shortest paths in the small reduced graph. We compute the

result from u to v by utilizing the values derived in previous rounds and avoid

searching the graph by only scanning the neighbors of u in the reduced graph.

Contributions. We summarize our main contributions as follows.

• A novel tree-based index algorithm. We design a novel index structure called

TL-Index. Let n be the number of vertices, h be the treeheight, and w be

the treewidth. Our index size is bounded by O(nh), and the query time is

bounded by O(h). By contrast, the index size and the query processing time

of the state-of-the-art solution are bounded by O(nw log n) and O(w log n),

respectively [115]. As shown in our experiments (Section 4.5), h is much

smaller than w log n in real-world graphs. For instance of the New York City

map, we have h = 505 and w log n = 2412. Therefore, our solution achieves

higher query efficiency than the state-of-the-art method with smaller space

11

Chapter 1 1.3. TL-INDEX MAINTENANCE

usage.

• A new index construction paradigm. We propose a new paradigm to construct

the index and two optimizations to improve efficiency. Compared to the index

construction framework proposed in [115], we improve the time complexity of

index construction from O(nh2 + nh log n) to O(nhw + n log n), because w is

typically several times smaller than h in practice.

• Extensive experiments and evaluations. We conduct extensive experiments on

14 real-world networks, including the USA map with 24 million vertices and

58 million edges. The state-of-the-art method cannot finish indexing within

24 hours on the USA map, while our proposed method only takes one hour.

On other large real-world maps, our method achieves 20 times faster index-

ing and seven times faster querying than the state-of-the-art method. The

results validate the effectiveness of our index structure and the efficiency of

the indexing algorithm.

The details of this work are presented in Chapter 4.

1.3 TL-Index Maintenance

In real-world applications, the edge weight on road networks can change. For

example, assuming that the weight on each edge indicates the average traveling

time on each road segment, it may vary between rush hour and off-peak. As the

index size is typically very large, it would be inefficient to recompute the entire

index from scratch each time we have a weight change on the road network.

Therefore, we aim to find an efficient index maintenance method for updating

the index when the weight of some edges on the road network changes.

12

1.3. TL-INDEX MAINTENANCE Chapter 1

The problem of updating tree-decomposition-based index for shortest dis-

tance queries has been studied in some existing works [113, 116]. However, their

methods cannot be directly applied to update our index for several reasons.

• First, their methods only consider the updates of the shortest distances in

the index. In our index, apart from the shortest distances, there are also

labels for the shortest path counts. It is possible that the shortest distance

between two nodes in the tree remains unchanged, but the shortest path

count may vary when the index updates. Therefore, it is necessary to

consider more elements within the index that may be impacted by the

updates.

• Second, while the shortest distance values may always exhibit the minimal-

ity property, meaning that the updated value will always be the minimum

after multiple updates, the same property does not hold for the shortest

path count values. If the same edge is updated twice, the value may be-

come incorrect. Hence, we must design the updating process cautiously to

prevent repeat updates.

• Third, the shortest distance labels in their index differ from ours. In their

index, the shortest distance between two nodes is the global shortest dis-

tance, whereas, in our index, we use the local shortest distance as described

in Section 4.4.4. This means it is unnecessary to compute the global short-

est distances during the update process.

As a result, this work presents a novel up-and-down updating paradigm to iden-

tify nodes that may be affected by the updates. Additionally, we developed a

sophisticated label update strategy to maintain our index in the presence of an

increase and decrease in the weight of the road network, respectively. Further-

more, we explore the impact of the local distance labels in our index. Following

13

Chapter 1 1.4. ROADMAP

the setting of existing works [113, 116], we only consider the weight change as

the vertices and edges can be reasonably assumed to be stable since road con-

struction and destruction are rare in practice.

The details of this work are presented in Chapter 5.

1.4 Roadmap

The rest of this thesis is organized as follows. Chapter 2 discusses related works.

Chapter 3 introduces the significant clique model on large labeled graphs. Chap-

ter 4 presents the shortest-path count queries on large road networks. Chapter 5

proposes a maintenance framework for the TL-Index proposed in Chapter 4.

Chapter 6 concludes the whole thesis.

14

Chapter 2

LITERATURE REVIEW

Due to the wide applications of graph substructures like cohesive subgraphs and

shortest paths, efficient computation has drawn a lot of research work. In this

chapter, we first survey the literature on cohesive subgraph mining and then the

research on shortest path queries.

2.1 Techniques for Cohesive Subgraph Mining

Significant Sub-structures on Graphs. Many real-world applications rely

on exploiting statistically significant sub-structures on graphs, which include

significant paths [102], trees [50], and subgraphs [87, 110]. Zhang et al. propose

a sampling method based on modularity to detect significant communities on

graphs [114]. He et al. utilize the p-value bound to develop a local search

algorithm to find significant subgraphs[52]. A brief survey on significant sub-

structures can be found in [28]. However, most previous works are tailored to

unlabeled graphs that ignore the label information on vertices. Arora et al.

propose a statistically significant connected subgraph model, which depicts the

label figure with chi-square statistics [9]. This model may not be applicable to

15

Chapter 2 2.1. TECHNIQUES FOR COHESIVE SUBGRAPH MINING

our problem, as the connection between the nodes inside a connected subgraph

may be very loose.

Community Modeling. The community models over graphs have been ex-

tensively explored. Communities in a graph are often modeled by a group of

densely connected nodes. In the literature, various community models and algo-

rithms have been proposed, which include clique [30, 24, 25], k-core [94, 106],

k-truss [105], k-clan [70], k-plex [16], and so on. In recent years, more mod-

els for community detection that consider graph label information have also

been developed. Notable examples include the k-core-based attributed commu-

nity model [42], the truss-based attributed community model [54], the keyword-

centric attributed community searching model [117]. However, all the above

models never consider the statistical significance of the discovered community,

which cannot be directly applied to our problem.

Maximal Clique Enumeration. The clique model has a wide range of ap-

plications. The enumeration of all maximal cliques in a graph has long been

a popular problem in graph data mining. Many existing works have been put

forward to study the problem. Most of them are based on a backtracking di-

agram [24, 100, 41]. Tomita et al. [100] propose a pivoting technique which is

proved to be worst-case optimal. [41] further improves the time complexity of

maximal clique enumeration on sparse graphs. Jin et al. [58] propose an approach

combining a hybrid data structure and a new pivot selection rule to accelerate

the enumeration. [30] and [109] propose I/O efficient and distributed algorithms,

respectively. Chang et al. [26] proposes an algorithm to progressively compute

maximal cliques in polynomial delay. More recently, enumerating cliques with

additional information has been researched. For example, [112] investigates the

problem in the context of a spatial database. Li et al. [64] propose a signed

clique model on signed networks.

16

2.2. TECHNIQUES FOR SHORTEST PATH QUERIES Chapter 2

2.2 Techniques for Shortest Path Queries

Shortest Distance Query in Networks. Querying the shortest distance is

one of the most critical problems in graph data analysis as it has many real-

world applications like driving directions or network routing. The Dijkstra al-

gorithm [40] is one of the most renowned algorithms for this problem. However,

when the network is large, such online algorithms may not be efficient in solving

the shortest distance queries. Thus, existing research works mainly focus on pre-

computing an effective index to accelerate query processing. For example, Gold-

berg et al. proposed an A* search method accelerated by precomputed short-

est distances [48]. Gavoille et al. studied the labeling methods for undirected

graphs [45]. There is a class of algorithms that exploits the graph hierarchies

to accelerate the query. Sanders et al. designed the Highway Hierarchies, which

imitates the natural hierarchies of road network [93]. When answering the query,

it utilizes the highway to reduce the search space. Geisberger et al. proposed

another hierarchy-based algorithm named Contraction Hierarchies [46] which re-

lies on a pre-assigned total order. It removes the less important vertices along

the pre-assigned order and generates shortcuts between the remaining vertices.

Another important class of methods for shortest distance query is hub-labeling-

based algorithms [33]. The hub labeling is also named 2-hop labeling, which

assigns a 2-hop label for each vertex in the graph. To answer the shortest dis-

tance queries, it simply joins the 2-hop labels to compute the answers. Abraham

et al. studied efficient hub-labeling algorithms for road networks [1, 2]. Ouyang

et al. leveraged the advantages of both hub labeling and hierarchy to devise a

Hierarchical 2-Hop (H2H) labeling scheme for road networks [76]. This approach

organizes the hub-labels into a tree structure and utilizes the tree decomposition

to facilitate hop-link searches. The H2H-Index assigns a label for each vertex and

at the same time preserves a hierarchy among all vertices. When query the index

17

Chapter 2 2.2. TECHNIQUES FOR SHORTEST PATH QUERIES

for the shortest distance between two given vertices, H2H examines their labels

for the vertices recorded in their common ancestor node to get the result. The

time complexity of this approach is O(w), where w represents the treewidth,

which is equivalent to the number of vertices recorded in the ancestor node.

Nonetheless, despite the similar tree structure used by H2H, their method isn’t

directly applicable to our scenario since it is specifically engineered for querying

the shortest distance and falls short when computing shortest path count values.

Unlike shortest distance computations, the shortest path count displays a more

intricate property, which presents a challenge in designing refined structures to

circumvent repetition or omission. Chen et al. [27] proposed the P2H method

which improves the H2H labeling scheme by reducing the label size. Akiba et al.

presented the pruned highway labeling [3] and the pruned landmark labeling [4]

for road networks and scale-free networks, respectively.

In real-world networks, the weights of edges may fluctuate over time, thereby

affecting the resulting shortest distance between vertices. Consequently, several

algorithms have been introduced to update indexes for dynamic networks. For

instance, Geisberger et al. proposed a vertex-centric method for maintaining

Contraction Hierarchies (CH) based index [47]. This method identifies the af-

fected vertices and then re-contracts the shortcut index for updated networks.

In a similar vein, Delling et al. suggested a method for maintaining overlay

graphs for the CRP algorithm [37]. Ouyang et al., on the other hand, proposed

a shortcut-centric algorithm to update the CH [78]. For the H2H index, Zhang

et al. presented a method known as DTDH for updating the shortest distance

labels [113]. Despite its effectiveness in updating tree-decomposition-based index

for shortest distance queries, as discussed in Section 1.3, this method cannot be

directly applied to our index for shortest path counting. This limitation arises

because DTDHL only contemplates the shortest distance, which is simpler to

18

2.2. TECHNIQUES FOR SHORTEST PATH QUERIES Chapter 2

maintain during value changes compared to shortest path count values. More-

over, the information our index stores differs from theirs, making the application

of the DTDHL method to our index even more infeasible. On top of DTDHL,

Zhang and Yu have developed an improved method for updating the H2H in-

dex [116]. However, just like its predecessor, this method encounters significant

challenges when applied to our specific scenario.

Network Substructure Counting. Counting the occurrence of certain sub-

structures is also a fundamental problem in graph data analysis. In the liter-

ature, many research works have been done on counting small subgraphs like

motifs [23, 68] or graphlets [22]. Jain et al. proposed an elegant clique count-

ing algorithm based on classic pivoting techniques [56]. Shi et al. developed a

parallel clique counting algorithm [95]. A comparison between different k-clique

counting or listing algorithms can be found in [63].

Triangle counting has gained popularity in graph substructure counting due

to its fundamental significance in diverse fields, including social network analysis,

computational biology, and recommendation systems. The simplest method to

count triangles is a brute-force approach: enumerating all vertex triplets and

verifying if these three vertices constitute a triangle. The complexity of this

method is O(n3). However, for real-world graphs, a more efficient node-iterative

approach can be employed by examining the neighboring vertex pairs for each

vertex in the graph, reducing the time complexity to O(n · d2max).

In the literature, many methods boasting better runtime performance have

been proposed. Itai and Rodeh developed one of the earliest triangle enumer-

ation methods with a running time of O(m
3
2) [55]. Alon, Yuster, and Zwick

devised the AYZ method to count triangles by combining the node-iterator and

matrix multiplication [7]. Their method achieves a complexity of O(m
2γ
γ+1).

Due to its complex nature, researchers have sought ways to accelerate trian-

19

Chapter 2 2.2. TECHNIQUES FOR SHORTEST PATH QUERIES

gle counting. One such approach is approximation, with Tsourakakis et al.

proposing one of the earliest methods for approximating triangle counting named

DOULION[101].Recently, GPU-based acceleration has garnered increased inter-

est in academia. For instance, Pandey et al. proposed a vertex-centric hashing-

based method called TRUST that achieves over one trillion Traversed Edges Per

Second (TEPS) rate for triangle counting on GPUs [79]. A comprehensive survey

on triangle counting can be found in [6].

There are also many works study the counting of paths or cycles in the liter-

ature. Flum et al. proved that counting the cycles and paths of length k in both

directed and undirected graphs, parameterized by k, is #W[1]-complete [43].

Valiant proved that the s−t simple path counting problem is #P-complete [103].

Because of its #P-complete complexity, Roberts gave an estimating algorithm

to estimate the number of simple paths [91]. Given the specific query vertices

s and t, Bezakova et al. provided a shortest paths counting query method for

planar graphs [17]. Zhang et al. devised a hub-labeling-based method for short-

est path counting on large graphs [115]. There are also studies on other specific

graphs. Ren et al. studied the problem of shortest path counting in probabilistic

biological networks[89]. He et al. proposed a data structure for categorical path

counting queries, which asks the number of distinct categories on a path in a

given tree between two query nodes [51].

20

Chapter 3

COMPUTING SIGNIFICANT

CLIQUES IN LARGE LABELED

NETWORKS

3.1 Chapter Overview

In this chapter, we study the significant cliques computation in large labeled net-

works. This chapter is organized as follows. Section 3.2 introduces background

knowledge and defines the problem. Section 3.3 proposes a non-trivial baseline

algorithm. Section 3.4 gives several pruning strategies. Section 3.5 presents

the final algorithm. Section 3.6 reports the performance studies. Section 3.7

concludes this chapter.

3.2 Preliminaries

We first introduce the problem definition of maximal statistical significant clique

enumeration in Section 3.2.1. The problem has two main challenges, i.e., NP-

21

Chapter 3 3.2.1 Problem Definition

hard time complexity and non-monotonicity, which is illustrated in Section 3.2.2.

3.2.1 Problem Definition

We consider an undirected labeled graph G(V,E,L). V is the set of vertices.

E ⊆ (V × V) is the set of edges. L assigns one or more labels to each vertex

from a label set L, i.e. L : V →
⋃

v∈V,Lv⊆L Lv. We use n and m to represent

|V | and |E|, respectively. Given a vertex u, the neighbor set of u is denoted by

N(u), i.e., N(u) = {v ∈ V |(u, v) ∈ E}. The degree of u is denoted by deg(u),

i.e., deg(u) = |N(u)|. A subgraph S(VS, ES) is called an induced subgraph of G

if VS ⊆ V and ES = {(u, v) ∈ E|u ∈ VS, v ∈ VS}. A subgraph S of G is a clique

if every two vertices in S are connected, i.e., ∀u, v ∈ VS, (u, v) ∈ ES. The clique

S is called a k-clique if there are k vertices in S, i.e., |VS| = k.

Given a set of vertices U ⊆ V , assume that l is the number of distinct

labels in U , i.e., l = |
⋃

u∈U L(u)|. We have an observed frequency vector Y =

{y1, y2, ..., yl}, where y =
∑l

i=1 yi =
∑

u∈U |L(u)|. Given a fixed label probability

distribution P = {p1, p2, ..., pl}, the chi-square statistic [88] (also called statistical

significance [9]) of U is defined as follows.

f(U) =
l∑

i=1

(yi − ypi)
2

ypi
=

l∑
i=1

y2i
ypi
− y (3.1)

Example 1. Given the graph G in Fig. 1.1, we consider the induced subgraph

of {v5, v6, v8}. We have two A labels and two B labels. We have l = 2. The

observed frequency vector is Y = {yA = 2, yB = 2}, and y = 4. Assume that the

probability distribution of the labels is P = {pA = 0.8, pB = 0.2}. The chi-square

of {v5, v6, v8} is 4
4×0.8

+ 4
4×0.2

− 4 = 2.25.

The chi-square statistic of a subgraph represents the deviation of the observed

label frequency from the expected frequency distribution, which is a widely used

22

3.2.1 Problem Definition Chapter 3

metric to quantify the statistical significance [88, 38, 107, 111]. Arora et al.[9]

show that the subgraph with a large chi-square statistic is considered to be

highly significant. Based on Eq. 3.1, we define a new subgraph model, called

(k, θ)-significant clique, as follows.

Definition 1. (Significant Clique) Given a graph G, a probability distribu-

tion P = {p1, p2, ..., pl}, an integer k and a real value θ, a (k, θ)-significant clique

is an induced subgraph C that satisfies the following constraints:

• Clique constraint: C is a clique;

• Chi-square constraint: f(VC) ≥ θ;

• Size constraint: |VC | ≥ k.

In Definition 1, the clique constraint ensures that the subgraph is densely

connected and can be a cohesive pattern or a social community in real-world

graphs. The chi-square constraint ensures that the subgraph is highly significant

in the given graph. The size constraint filters out small resulting motifs in the

(k, θ)-significant cliques. The probability distribution P enables flexibility to

adjust the importance of the labels.

Definition 2. (Maximal Significant Clique) A subgraph C of G is a max-

imal (k, θ)-significant clique if (i) C is a (k, θ)-significant clique, and (ii) there

is no (k, θ)-significant clique C ′ in G which contains clique C.

A (k, θ)-significant clique may contain several subgraphs which are still (k, θ)-

significant cliques. The maximality of the model reduces the redundancy in

resulting subgraphs.

Example 2. Fig. 1.1 shows an example of the maximal significant cliques. Given

k = 4, θ = 6.0, pA = 0.8 and pB = 0.2, all maximal (4, 6)-significant cliques in G

23

Chapter 3 3.2.2 Hardness and Challenges.

are marked by gray. Note that if k = 3, we have f(v11, v12, v13) = 7.563. As a

result, the induced subgraph of {v11, v12, v13} is a (3, 6)-significant clique but not

maximal.

We use (k, θ)-clique to represent the maximal (k, θ)-significant clique for short

when the context is clear. Based on Definition 2, we define the research problem

as follows.

Problem Statement. Given a labeled graph G, a probability distribution P ,

an integer k and a real value θ, we aim to enumerate all maximal (k, θ)-significant

cliques in G.

Table 3.1: Frequent notations used in Chapter 3.

Notation Meaning
G = (V,E,L) undirected labeled graph

V the set of vertices
E ⊆ (V × V) the set of edges

L : V →
⋃

v∈V,Lv⊆L Lv label assigning function
N(u) the neighbor set of u
deg(u) the degree of vertex u
degc(u) colorful degree of a vertex u
f(U) chi-square significance of vertex set U
f(u) chi-square significance of a vertex u
fn(u) neighborhood significance of a vertex fn(u)
fcn(u) colorful neighborhood significance of a vertex u
fn(u, v) support significance of an edge (u, v)

3.2.2 Hardness and Challenges.

NP-hard Time Complexity

We prove the hardness of our problem by considering a closely related problem —

maximal clique enumeration, which has been widely studied in the literature [30,

24, 100, 41]. All maximal cliques are the results of a special case of our problem.

24

3.2.2 Hardness and Challenges. Chapter 3

Specifically, given k = 0 and θ = 0, the chi-square statistic of an arbitrary vertex

set is always no less than θ, and the problem of enumerating (0, 0)-significant

cliques is equivalent to the problem of maximal clique enumeration. Given that

the maximal clique enumeration problem is NP-hard, our problem is also NP-

hard.

Non-Monotonicity

Given a set S, an anti-monotonic constraint means that if S satisfies (or does

not satisfy) the constraint, any subset of S also satisfies (or does not satisfy) the

constraint. For example, the clique constraint in Definition 1 is anti-monotonic

since any subgraph of a clique is also a clique. The size constraint in Definition 1

is anti-monotonic since if a graph S has fewer than k vertices, any subgraph of S

also has fewer than k vertices. However, the chi-square constraint in Definition 1

is not anti-monotonic. In other words, given a graph S with f(VS) ≥ θ and an

arbitrary subgraph S ′ of S, we cannot derive f(VS′) ≥ θ and vise versa.

Example 3. Given the graph G in Fig. 1.1, assume that k = 4, θ = 6.0, pA = 0.8

and pB = 0.2. Considering the induced triangle of {v12, v13, v14}, we have the

chi-square value f(v12, v13, v14) = 5, which is less than the expected threshold

θ. However, we cannot remove the vertices since an induced supergraph of

{v11, v12, v13, v14} has a chi-square value 8.167. On the other hand, we consider

the vertex set {v1, v2, v10, v15, v17}, whose chi-square is 5 and less than θ. How-

ever, we still cannot remove the vertices since a subset {v1, v2, v10, v15} has a

chi-square value 7.563, which is larger than θ.

Without the anti-monotonicity, we cannot immediately borrow the idea of

existing algorithms for maximal clique enumeration. Specifically, once finding

a maximal clique C, even f(VC) < θ, it is possible that a sub-clique C ′ of C

satisfies f(VC′) ≥ θ. Consequently, we cannot filter out C and need to further

25

Chapter 3 3.3. A BRANCH-AND-BOUND ALGORITHM

v3

v12

v5

v7
v6

v4

v8

v11 v9

v13

v14

v10

v15v1

v2
v16 v17

B

B AB
AB

AB

B

B

AAB

B

AB A A

B

AB
AB

Figure 3.1: A coloring and the 3-core of the graph G

check every possible sub-clique of C with no fewer than k vertices. The method

works but produces numerous intermediate results since a (k, θ)-significant clique

may be involved in several maximal cliques. In addition, the number of cliques

can be extremely large (up to 3n/3 in the worst case [100]), which makes the naive

solution costly in big graphs. Therefore, the main challenges are how to avoid

outputting the duplicated results and how to prune the search space effectively.

3.3 A Branch-and-Bound Algorithm

3.3.1 Basic Structural Graph Reduction

To handle the challenges discussed in Section 3.2.2, we give a non-trivial baseline

algorithm in this section. We start by introducing several basic pruning rules,

which can be easily derived from existing clique studies, like k-clique enumeration

[36] and the maximum clique computation [25].

Core based Pruning. The first structural pruning rule is based on k-core,

which is formally defined as follows.

Definition 3. (k-Core) Given a graph G and an integer k, a k-core in G is a

maximal connected subgraph in which the degree of every vertex is at least k [94].

26

3.3.1 Basic Structural Graph Reduction Chapter 3

Lemma 1. Given a graph G and a vertex u, u is contained in a k-clique only if

it is contained in a (k − 1)-core [92].

Based on Lemma 1, all vertices not belonging to the (k−1)-core can be safely

removed before (k, θ)-clique computation. Given an integer k, we can compute

the (k − 1)-core by iteratively removing all vertices with degree less than k − 1.

The running time is bounded by O(m) [13]. An example of the 3-core in the

graph G of Fig. 1.1 is marked by gray in Fig. 3.1.

Graph Coloring-based Pruning. The second rule for structural pruning

utilizes graph coloring. In a graph G(V,E), a coloring is an arrangement of a

color number to each vertex u, denoted by color(u), such that adjacent vertices

have distinct colors; i.e., ∀(u, v) ∈ E, color(u) ̸= color(v). Given a colored graph

G and a subgraph S of G, we use colors(S) or colors(VS) to denote all distinct

color numbers in S, i.e., colors(S) = {C|∃u ∈ VS, color(u) = C}.

Lemma 2. A graph G contains a k-clique only if there are at least k distinct

colors in G, i.e., |colors(G)| ≥ k [99].

Based on Lemma 2, we avoid enumerating (k, θ)-significant cliques of a sub-

graph S if the number of distinct colors in VS is less than k, i.e., |colors(S)| < k.

The pruning effectiveness closely depends on the coloring result. The fewer dis-

tinct color numbers, the more subgraphs can be pruned. However, it is NP-hard

to color a graph with the minimum distinct color numbers [59]. Several heuristic

methods have been proposed for coloring graphs in practice, and a widely used

one is the greedy method following the graph degeneracy order [106]. Specifically,

a vertex permutation {v1, v2, ..., vn} is a degeneracy order if every vertex vi has

the smallest degree in the induced subgraph of {vi, vi+1, ..., vn}. Computing the

degeneracy order takes O(m) time. The coloring algorithm processes vertices in

the reverse degeneracy order and greedily assigns each vertex the smallest color

27

Chapter 3 3.3.2 Computing Maximal Significant Cliques

number that is not the same as that of any colored neighbor. The degeneracy-

order-based coloring can be conducted in O(m) time. A graph coloring for the

graph G in Fig. 1.1 is provided in Fig. 3.1.

3.3.2 Computing Maximal Significant Cliques

The Key Idea. We propose a branch-and-bound algorithm, called SigClique,

to enumerate all (k, θ)-significant cliques. Without loss of generality, we assume

that the input graph is connected. Given a set of vertices R initialized as V ,

we aim to compute all (k, θ)-significant cliques in the induced subgraph of R.

We first identify whether G[R] is a (k, θ)-significant clique. If G[R] is not a

valid (k, θ)-significant clique, SigClique randomly picks a vertex u and divides the

search space into two subspaces: (i) the subspace of all (k, θ)-cliques containing u,

and (ii) the subspace of all (k, θ)-cliques excluding u. Then SigClique recursively

performs the same strategy for each subspace. In each recursion, we use I to

denote the set of vertices that must be included in the (k, θ)-cliques in R. I is

initialized as ∅. Consequently, R consists of I and a set of candidate vertices,

which can be potentially included in the (k, θ)-clique. In each recursion, we pick

a vertex from the set R \ I. We immediately terminate the search if R = I since

R is not a (k, θ)-clique and no subspace can be further explored.

If R is a valid (k, θ)-significant clique, we check the maximality of R by adding

all possible common neighbors of R. No matter whether R is maximal or not,

we terminate the current search space since all following (k, θ)-significant cliques

are subsets of R and can never be maximal.

The Algorithm. The pseudocode of SigClique is provided in Algorithm 1. In

addition to R and I, we input k and θ to the procedure Enum. In Line 2 of

Enum, we reduce the graph by computing the (k − 1)-core based on Lemma 1.

Since all vertices in I must be contained in the (k, θ)-clique, we terminate the

28

3.3.2 Computing Maximal Significant Cliques Chapter 3

Algorithm 1: SigClique(G(V,E), θ, k)

1 color G based on the degeneracy order;
2 Enum(V, ∅, θ, k);
1 Procedure Enum(R, I, θ, k) :
2 R← all vertices in (k − 1)-core of G[R];
3 if R ∩ I ̸= I then return;
4 if |colors(R)| < k then return;
5 if R is a (k, θ)-significant clique then
6 if IsMax(R,

⋂
v∈R N(v), θ) then output R;

// early termination
return;

7 if R = I then return;
8 pick a vertex u from R \ I;
9 Enum(I ∪NR(u) ∪ {u}, I ∪ {u}, θ, k);

10 Enum(R \ {u}, I, θ, k);
1 Procedure IsMax(R,C, θ) :
2 if C = ∅ then return true;
3 pick a vertex u from C;
4 if f(R ∪ {u}) ≥ θ then return false;
5 if !IsMax(R ∪ {u}, C ∩N(u), θ) then
6 return false;

7 if !IsMax(R,C \ {u}, θ) then return false;
8 return true;

current search space if a vertex in I is removed in the (k − 1)-core computation

in Line 3. Based on Lemma 2, we count the number of distinct colors in R and

terminate the search if R cannot be a k-clique. Line 5 identifies whether R is a

(k, θ)-significant clique by checking the degree of each vertex and the chi-square

statistic of R. Line 6 checks the maximality of R by invoking IsMax. Line 9

searches the subspace including u, where NR(u) represents the neighbors of u in

R. Line 10 searches the subspace excluding u.

In the procedure IsMax, R is the set of vertices to be checked, and C is all

common neighbors of vertices in R. In Line 2, C = ∅ means no candidate vertex

29

Chapter 3 3.4. STATISTICAL GRAPH REDUCTION

can be added to R, and R must be maximal. The maximality search is also

divided into two subspaces. Line 5 identifies whether R ∪ {u} is maximal. Line

7 checks whether R is maximal when excluding u from the candidate set.

Theorem 1. Algorithm 1 correctly computes all maximal (k, θ)-significant cliques

in the graph G.

Proof. We first prove the correctness. Based on Lemma 1, line 2 correctly prunes

the vertices that cannot be contained in a k-clique. Lines 3-4 judge whether R

contains k-cliques based on Lemma 2. Line 5 judges if R is a (θ, k)-significant

clique and line 5 ensures the maximality. Thus, the results are correct.

Next, we prove the completeness. Line 8 picks each vertex, and lines 9-10

search both the spaces with or without the vertex. Thus, it searches all the

possible space, and the theorem is proved.

3.4 Statistical Graph Reduction

Even though Algorithm 1 successfully computes (k, θ)-cliques without any re-

dundancy, the pruning effectiveness is still limited, especially in large graphs and

given a small size constraint. In this section, we study several pruning strategies

regarding the chi-square statistic. Section 3.4.1 formulates a new cohesive sub-

graph model called (k, θ)-significant core. Section 3.4.2 embeds the concept of

graph coloring to the (k, θ)-significant core, which improves the effectiveness of

both structural pruning and statistical pruning. Section 3.4.3 extends the idea

of (k, θ)-significant core to prune edges.

3.4.1 Pruning via Significant Core

To support the statistical pruning over the graph, we first give a key theorem as

follows.

30

3.4.1 Pruning via Significant Core Chapter 3

Theorem 2. Given a set of labeled vertices V , a probability distribution P ,

two arbitrary subsets V1 and V2 with V1 ∪ V2 = V and V1 ∩ V2 = ∅, we have

f(V1) + f(V2) ≥ f(V).

Proof. We prove the theorem by showing f = f(V1) + f(V2) − f(V) ≥ 0. We

expand f as follows based on Eq. 3.1.

f =
l∑

i=1

y21i
y1pi
− y1 +

l∑
i=1

y22i
y2pi
− y2 −

l∑
i=1

y2i
ypi

+ y

Given that y1+y2 = y and y1i+y2i = yi, we transform the formula as follows.

f =
l∑

i=1

1

y1y2ypi
· (y21iy22 + y22iy

2
1 − 2y1iy2iy1y2)

=
l∑

i=1

(y1iy2 − y2iy1)
2

y1y2ypi
≥ 0

We have f ≥ 0, and the proof is completed.

Based on Theorem 2, we formulate a new cohesive subgraph model, called

(k, θ)-significant core, to prune unpromising vertices in the problem of (k, θ)-

clique enumeration. Related definitions are given as follows.

Definition 4. (Neighborhood Significance) Given a vertex u, the neigh-

borhood significance of u, denoted by fn(u), is the sum of the significance of u

and all its neighbors, i.e., fn(u) = f(u) +
∑

v∈N(u) f(v).

Definition 5. (Significant Core) Given a graph G, an integer k and a pos-

itive real value θ, (k, θ)-Significant Core (SC for short) is a maximal connected

subgraph of G in which every vertex u satisfies (i) deg(u) ≥ k, and (ii) fn(u) ≥ θ.

Based on Definition 5, we can prune vertices supported by the following

lemma.

31

Chapter 3 3.4.1 Pruning via Significant Core

Lemma 3. A maximal (k, θ)-significant clique must be contained in a (k−1, θ)-

significant core.

Proof. We prove Lemma 3 by contradiction. Assume that we have a (k, θ)-

significant clique C which is not contained in any (k − 1, θ)-significant core.

Because C is a (k, θ)-significant clique, for each u ∈ VC , we have fn(u) ≥ f(C) ≥

θ, which satisfies Definition 5 (ii). As C is not contained in any (k − 1, θ)-

significant core, there must exist a vertex u ∈ VC whose degree is less than (k−1),

i.e. ∃u ∈ VC , deg(u) < (k − 1). Also, as we know that C is a (k, θ)-significant

clique, then for each u ∈ VC , we have deg(u) ≥ (k − 1). The contradiction

exists.

v3

v12

v5

v7
v6

v4

v8

v11 v9

v13

v14

v10

v15v1

v2
v17

B

B AB
AB

B

B

AAB

B

AB A A

B

AB
AB

f(A) = 0.25
f(B) = 4
f(AB) = 1.125

fn() = 5.625v7

v16

Figure 3.2: Pruning G via (3, 6)-significant core

Example 4. Fig. 3.2 gives an example of the pruning result via the (3, 6)-

significant core. The chi-square statistics of several required label sets are given

on the right of Fig. 3.2. After computing the (3, 6)-significant core, the vertices

v7 and v16 are removed. Specifically, v16 is removed since deg(v16) < 3. For the

vertex v7, we have fn(v7) = f(v7) + f(v3) + f(v8) + f(v9) = 5.625 < 6. All the

remaining vertices have degrees no less than 3 and neighborhood significance no

less than 6. For example, the neighborhood significance of the vertex v4 is 6.5.

32

3.4.2 Pruning via Colorful Significant Core Chapter 3

Given a graph G, we can compute all (k, θ)-significant cores by a method

similar to k-core computation. We recursively remove a vertex with degree less

than k or neighborhood significance less than θ. If a neighbor v of u is removed,

we update fn(u) to fn(u)− f(v). The time complexity is analyzed as follows.

Theorem 3. Computing all (k, θ)-cores takes O(m) time.

Proof. For each vertex u, it takes O(deg(u)) time to initialize fn(u). We remove

the vertex u if deg(u) < k or fn(u) < θ. Then, we update deg(v) and fn(v)

for each neighbor v of u, which takes constant time. Therefore, the overall time

complexity is O(m).

3.4.2 Pruning via Colorful Significant Core

In this subsection, we further improve the pruning effectiveness by embedding the

concept of graph coloring in (k, θ)-significant core. Compared with the significant

core model, we strictly prune more vertices in terms of both graph structure and

label statistics. From the structural perspective, we can combine the degree-

based bound (Lemma 1) and the coloring-based bound (Lemma 2) as follows.

Definition 6. (Colorful Degree) The colorful degree of a vertex u, de-

noted by degc(u), is the number of distinct colors in N(u), i.e., degc(u) =

|colors(N(u))|.

Lemma 4. For any (k, θ)-significant clique C, we have degc(u) ≥ k−1 for every

u ∈ VC.

Proof. We prove Lemma 4 by contradiction. We assume that there exists a

vertex u ∈ VC whose degree is less than k − 1. Then, we have |colors(N(u))| <

k − 1. According to Lemma 2, N(u) cannot contain a (k − 1)-clique, thus,

{u} ∪ N(u) cannot contain a k-clique. However, as C is a (k, θ)-significant

33

Chapter 3 3.4.2 Pruning via Colorful Significant Core

clique, for every vertex u ∈ VC , we have {u} ∪N(u) contains a k-clique. That is

a contradiction.

Example 5. We give an example in the colored graph G of Fig. 3.1. Considering

the vertex v6, the degree of v6 is 3. However, the colorful degree of v6 is only 2,

since there are only two distinct colors in the neighborhood of v6. According to

Lemma 4, v6 cannot be in any (4, θ)-significant clique.

From the statistical perspective, we combine the concepts of neighborhood

significance (Definition 4) and the coloring-based bound (Lemma 2) as follows.

Definition 7. (Colorful Neighborhood Significance) The colorful neigh-

borhood significance of a vertex u, denoted by fcn(u), is the sum of significance

of u and the maximum vertex significance for each color in N(u), i.e.,

fcn(u) = f(u) +
∑

C∈colors(N(u))

max
v∈N(u)|color(v)=C

f(v).

Lemma 5. Given a (k, θ)-significant clique C, we have fcn(u) ≥ θ for every

u ∈ VC.

Proof. Given a (k, θ)-significant clique C, we prove fcn(u) ≥ θ for every u ∈

VC . Because C is a (k, θ)-significant clique, for each u ∈ VC , we have f(u) +∑
v∈VC ,v ̸=u f(v) ≥ f(C) ≥ θ. Given an arbitrary vertex u ∈ VC , every vertex

v ∈ C (v ̸= u) has a distinct color(v). For each such a vertex v, we assume there

is a vertex v′ ∈ N(u) that satisfies color(v) = color(v′) and v′ has the maximum

vertex significance over all the vertices in N(u) who have the same color(v) (v′ can

be the same vertex as v). Obviously, we have
∑

v′ f(v
′) ≥

∑
v f(v). In terms of

the number of colors, we also have that |colors(N(u))| ≥ |colors(VC\{u})|. Thus,

we can get f(u) +
∑

C∈colors(N(u)) maxv∈N(u)|color(v)=C f(v) ≥ f(u) +
∑

v′ f(v
′) ≥

f(u) +
∑

v f(v) ≥ θ, i.e., fcn(u) ≥ θ.

34

3.4.2 Pruning via Colorful Significant Core Chapter 3

Example 6. We give an example to explain Definition 7. Considering the vertex

v17 in Fig. 3.1, we have three distinct colors in N(v17). For the yellow color, we

have two vertices v5 and v15 in N(v17). The labels of them are the same, and the

largest statistic for the yellow color is f(B) = 4. Each other color in N(v17) has

only one vertex. As a result, we have fcn(v17) = f(v17)+f(v5)+f(v10)+f(v3) =

5.625. By contrast, the neighborhood significance of v17 is fn(v17) = 9.625.

Based on Definition 6 and Definition 7, we give an extended version of (k, θ)-

significant core.

v3

v12

v5

v6

v4

v8

v11 v9

v13

v14

v10

v15v1

v2
v17

B

B AB
AB

B

B

AAB

B

AB A

B

AB
AB

f(A) = 0.25
f(B) = 4
f(AB) = 1.125

fcn() = 5.625v17

degc() = 2v6

Figure 3.3: Pruning G via colorful (3, 6)-significant core

Definition 8. (Colorful Significant Core) Given a colored graph G, an

integer k and a positive real value θ, a Colorful (k, θ)-Significant Core (CSC for

short) is a maximal connected subgraph of G in which every vertex u satisfies (i)

degc(u) ≥ k, and (ii) fcn(u) ≥ θ.

Example 7. We give an example of the (3, 6)-CSC in Fig. 3.3. Two vertices

v6 and v17 are removed from the graph. Based on Lemma 4 and Lemma 5, the

two vertices can never be in any (4, 6)-clique.

The following theorem shows that the pruning effectiveness of (k, θ)-CSC is

guaranteed to be stronger than that of (k, θ)-SC.

35

Chapter 3 3.4.2 Pruning via Colorful Significant Core

Theorem 4. A colorful (k, θ)-significant core must be contained in a (k, θ)-

significant core.

Proof. Given a colorful (k, θ)-significant core C, for each vertex u ∈ VC , we

have degc(u) ≥ k and fcn(u) ≥ θ. Obviously, deg(u) ≥ degc(u) ≥ k, and

f(u) ≥ fcn(u) ≥ θ, thus, C is contained in a (k, θ)-significant core.

Algorithm 2: CSC(G, θ, k)

// fn(u) = f(u) +
∑

v∈N(u) f(v), fcn(u) is colorful fn(u), degc(u)

is colorful deg(u)
1 Q← initialized an empty queue;
2 foreach u ∈ V do
3 compute fcn(u), and degc(u);
4 if invalid(u) then Q.push(u);

5 while Q ̸= ∅ do
6 u← Q.pop();
7 foreach v ∈ N(u) do
8 if invalid(v) then continue;
9 update degc(v);

10 update fcn(v);
11 if invalid(v) then Q.push(v);

12 remove u and all connected edges;

1 Procedure invalid(u) :
2 if degc(u) < k then return true;
3 if fcn(u) < θ then return true;
4 return false;

Colorful SC Computation. Algorithm 2 presents the pseudocode for colorful

(k, θ)-significant core computation. The strategy is similar to computing k-cores.

Line 3 initializes the colorful degree and the colorful neighborhood significance

for each vertex u. Line 4 adds u to the queue if it cannot be in the (k, θ)-CSC.

The procedure invalid() is used to identify the validity of a vertex according to

Lemma 4 and Lemma 5. After popping an invalid vertex u in Line 6, we update

36

3.4.2 Pruning via Colorful Significant Core Chapter 3

neighbors of u if necessary. Let the color of u be C. In Line 9, we decrease

degc(u) by one if no vertex has the color C in N(v) after removing u. In Line 10,

let NC(v) be the set of all neighbors of v with the color C. If u has the largest

chi-square statistic in NC(v), let s be the second largest chi-square statistic in

NC(v). We set s = 0 if there exists only u in NC(v). We update fcn(v) to

fcn(v)− f(u)+ s. We do not change fcn(v) if u is not the vertex with the largest

chi-square statistic in NC(v).

Implementation and Complexity Analysis. The key step in Algorithm 2

is to efficiently maintain the colorful degree (Line 9) and colorful neighborhood

significance (Line 10) of each vertex. For the colorful degree of a vertex u, we

use a hash table to store the number of vertices for each color in colors(N(u)).

Initializing the hash table for u takes O(deg(u)) time, and locating the value for

a specific color number takes constant average and amortized time.

Next, we discuss the implementation to update the colorful neighborhood

significance. For each color C ∈ colors(N(v)), we sort all vertices with the

color C in a non-increasing order of their chi-square statistics, which takes

O(deg(v) log deg(v)) time. Given an invalid neighbor u, we also use a hash table

to locate u in the sorted list and mark the position of u as empty. If u is not the

first vertex in the corresponding color, fcn(v) does not need to be updated. If u is

the first vertex, we iteratively search the following positions with the same color

until finding a nonempty vertex w. We update fcn(v) to fcn(v) − f(u) + f(w),

where f(w) = 0 if w does not exist. Note that it may take several movements

to find w. However, the total number of operations for each vertex v in Line 10

of Algorithm 2 is bounded by O(deg(v)) since we always move forward to locate

the second largest chi-square statistic.

Example 8. In Fig. 3.4, we give an example of the data structure to maintain

fcn(v15) in the graph of Fig. 3.1. v15 has six neighbors with three distinct colors.

37

Chapter 3 3.4.2 Pruning via Colorful Significant Core

v12 v6 v10 v1 v2 v17

1.1
25 0.2

5
0.2

5 44
1.1

25
hash table v15v6

Figure 3.4: The data structure for v15 to maintain fcn(v15)

fcn(v15) is initialized as the sum of f(v15) and the chi-square statistics of all the

first vertices of distinct colors. Assume that the vertex v6 is removed, and we

need to update fcn(v15). We first use the hash function to locate the position of

v6. By checking the previous vertex, v6 is not the first vertex in the table with

the same color. Therefore, we set the position of v6 as empty and do not change

fcn(v15).

The following theorem presents the theoretical analysis of Algorithm 2.

Theorem 5. The time complexity of Algorithm 2 is O(m · log degmax), where

degmax is the maximum degree in the graph. The space complexity of Algorithm 2

is O(m).

Proof. We first prove the time complexity. Line 1 takes O(1) time. We need

O(deg(u)) time to compute fcn(u) and degc(u) in line 3. Thus, Lines 2–4 take

O(m) time. With the data structure above, lines 9–10 cost O(deg(v)) time for

each vertex v, while the initialization costs O(deg(v) log deg(v)) time. Thus, the

time complexity of lines 5–12 is O(m·log deg(v) which is also the time complexity

of Algorithm 2.

As for each vertex u, we only store O(deg(u)) information for the data struc-

ture, the space complexity is O(m).

38

3.4.3 Pruning via Significant Truss Chapter 3

3.4.3 Pruning via Significant Truss

Recall that Section 3.4.2 extends (k, θ)-SC and strengthens the vertex pruning

rule. In this subsection, we will strengthen the (k, θ)-SC from the perspective of

edge reduction. In other words, we consider whether two connected vertices can

be in the same (k, θ)-clique or not. The lemma for the structural edge reduction

is given as follows, which further applies the k-core concept to the ego-network

of each vertex.

Lemma 6. Given a k-clique C and an arbitrary vertex u ∈ VC, for every vertex

v ∈ NC(u), the vertex v is contained in a (k − 2)-core of G[N(u)] [67].

Theorem 6. Two vertices u and v cannot be contained in the same (k, θ)-clique

if v is not in a (k − 2)-core of the neighborhood subgraph G[N(u)].

Proof. We can easily prove Theorem 6 by contradiction. Suppose that vertices

u and v are contained in the same (k, θ)-clique C, i.e., u, v ∈ C, according to

Lemma 6, the vertex v is contained in a (k − 2)-core of G[N(u)]. However, as v

is not in a (k−2)-core of the neighborhood subgraph G[N(u)], the contradiction

exists, thus the vertices u and v cannot be contained in the same (k, θ)-clique.

Based on Theorem 6, if the vertex v is not in a (k − 2)-core of G[N(u)], we

remove the edge (u, v), which guarantees that u and v cannot be enumerated

in the same clique. Given the O(m) time to compute the k-core, a straightfor-

ward method to recursively remove all unpromising edges in Theorem 6 takes

O(m · hmax) time, where hmax is the largest number of edges in neighborhood

subgraphs. To remedy the cost, we give the following lemma.

Lemma 7. Given a vertex u and a vertex v in N(u), the degree of v in G[N(u)]

is equivalent to the number of triangles that contain the edge (u, v).

39

Chapter 3 3.4.3 Pruning via Significant Truss

Proof. Given the vertex u ∈ G and v ∈ N(u), the degree of v in G[N(u)] is

degG[N(u)](v) = |{v′|(v′, v) ∈ G[N(u)]}|. As both v, v′ ∈ N(u), for each v′, the

edges (u, v′), (v, v′), and (u, v) constitute a triangle. Thus, the number of such

triangles made by (u, v) and v′ equals the degree of v in G[N(u)].

Based on Lemma 7, removing all the edges not satisfying the condition in

Theorem 6 is equivalent to computing the k-truss in graph, which is formally

defined as follows.

Definition 9. (k-Truss) Given a graph G and an integer k, a k-truss is a

maximal connected subgraph in which every edge is contained in at least k − 2

triangles [105].

Let S be the maximal subgraph such that for each pair of connected vertices

u and v in VS, v is in (k − 2)-core of G[N(u)]. Then, S is a k-truss of G.

Example 9. We consider the graph in Fig. 3.5. Given the vertex v12 and k = 4,

the degree of v15 in the neighborhood subgraph of v12 is 0. In other words, there

is no triangle containing the edge (v12, v15). Therefore, v12 and v15 cannot be in

the same (4, θ)-clique according to Theorem 6.

Similar to the concept of neighborhood significance, we define the support

significance for the statistical edge reduction.

Definition 10. (Support Significance) The support significance of an edge

(u, v), denoted by fn(u, v), is the sum of f(u, v) and the chi-square statistics of

all common neighbors of u and v, i.e., fn(u, v) = f(u, v) +
∑

w∈N(u)∩N(v) f(w).

Lemma 8. Given a (k, θ)-significant clique C, we have fn(u, v) ≥ θ for every

edge (u, v) ∈ EC.

40

3.4.3 Pruning via Significant Truss Chapter 3

v3

v12

v5 v4

v8

v11 v9

v13

v14

v10

v15v1

v2

B

B AB
AB

B

B

AB

B

A

B

AB
AB

f(A) = 0.25
f(B) = 4
f(AB) = 1.125

fn(,)=5.458v9v4

Figure 3.5: Pruning G via (4, 6)-significant truss

Proof. We prove Lemma 8 by contradiction. Given a (k, θ)-significant clique C,

suppose we have an edge (u, v) ∈ EC and fn(u, v) < θ. As u, v ∈ VC , all the other

vertices in VC are common neighbors of both u and v, i.e., C\{u, v} ⊆ N(u) ∩

N(v). Hence, we have f(u, v)+
∑

w∈C\{u,v} f(w) ≤ f(u, v)+
∑

w∈N(u)∩N(v) f(w) =

fn(u, v). As f(C) ≤
∑

w∈C\{u,v} f(w) and fn(u, v) < θ, we have f(C) < θ. This

contradicts with the (k, θ)-significant clique C.

Example 10. We consider the edge (v4, v9) in the graph of Fig. 3.5. There are

two common neighbors — v3 and v8. We have fn(v4, v9) = f(v4, v9) + 1.125 +

0.25 = 5.458. Based on Lemma 8, the edge (v4, v9) cannot be in any (k, θ)-

significant clique if θ > 5.458.

The support of an edge (u, v), denoted by sup(u, v), is the number of triangles

that contains (u, v). Based on Definition 10 and Definition 9, we define a new

statistical cohesive subgraph model as follows.

Definition 11. (Significant Truss) Given a graph G, an integer k and a

positive real value θ, (k, θ)-Significant Truss (ST for short) is a maximal con-

nected subgraph of G in which every edge (u, v) satisfies (i) sup(u, v) ≥ k − 2,

and (ii) fn(u, v) ≥ θ.

41

Chapter 3 3.4.3 Pruning via Significant Truss

Example 11. An example of the pruning result by applying (4, 6)-significant

truss is given in Fig. 3.5. The edge (v12, v15) and all the edges connected to v4

are removed.

The following theorem shows that (k, θ)-ST is guaranteed to have stronger

pruning effectiveness than (k, θ)-SC.

Theorem 7. A (k, θ)-significant truss must be contained in a (k−1, θ)-significant

core.

Proof. Given a (k, θ)-significant truss C and an arbitrary vertex u ∈ C, for each

neighbor v ∈ N(u) ∩ C, we have fn(u, v) ≥ θ (Lemma 8). Thus, fn(u) ≥ θ.

Also, we have sup(u, v) ≥ k − 2 by which we can get deg(u) ≥ k − 1. So, C is

contained in a (k − 1, θ)-significant core.

ST Computation. We give the pseudocode for computing (k, θ)-significant

truss in Algorithm 3. The idea is similar to that of truss decomposition [105].

The complexity of Algorithm 3 is summarized below.

Theorem 8. The time complexity and space complexity of Algorithm 3 are

O(αm) and O(m), respectively.

Proof. Lines 1–5 initialize the support and the support significance of each edge.

The time complexity of enumerating all triangles is O(
∑

(u,v)∈E min(deg(u), deg(v))),

i.e. O(α ·m), where α(α < m0.5) is the graph arboricity and equals the minimum

number of forests to cover all edges in the graph [31]. Lines 6–8 takes O(m) time.

We update necessary edges after (u, v) is removed in Line 10. We use a hash

set to maintain all neighbors of each vertex. As a result, the time complexity

for Lines 9–20 is O(α · m). The total time complexity is O(α · m). Note that

we never store any triangle during the algorithm, thus the space complexity is

O(m).

42

3.4.3 Pruning via Significant Truss Chapter 3

Algorithm 3: ST(G, θ, k)

1 sup(u, v)← 0, fn(u, v)← f(u, v);
2 foreach enumerated △u,v,w ∈ G do
3 sup(u, v)← sup(u, v) + 1;
4 fn(u, v)← fn(u, v) + f(w);
5 repeat two lines above for (u,w) and (v, w);

6 Q← initialized an empty queue;
7 foreach (u, v) ∈ EG : invalid(u, v, θ, k − 2) do
8 Q.push((u, v));

9 while Q ̸= ∅ do
10 (u, v)← Q.pop();
11 if deg(u) > deg(v) then swap u and v;
12 foreach w ∈ N(u) do
13 if w ∈ N(v) then
14 if invalid(u,w, θ, k) then continue;
15 sup(u,w)← sup(u,w)− 1;
16 fn(u,w)← fn(u,w)− f(v);
17 if invalid(u,w, θ, k) then
18 Q.push((u,w));

19 repeat five lines above for (v, w);

20 remove (u, v) from EG;

21 remove all isolated vertices from VG;
1 Procedure invalid(u, v, θ, k) :
2 if sup(u, v) < k − 2 then return true;
3 if fn(u, v) < θ then return true;
4 return false;

Remark: Similar to Section 3.4.2, we can further embed the color-based bound

in the concept of (k, θ)-significant truss and further improve the pruning effec-

tiveness. However, maintaining such colorful supports and statistics for each

edge incurs large space usage and processing time. Therefore, we only compute

(k, θ)-significant truss in our final algorithm.

43

Chapter 3 3.5. THE FINAL ALGORITHM

3.5 The Final Algorithm

Algorithm 4: RCSC(G, θ, k)

// fn(u) = f(u) +
∑

v∈N(u) f(v), fcn(u) is colorful fn(u), degc(u)

is colorful deg(u)
1 Q← initialized an empty queue;
2 foreach u ∈ V do
3 compute fn(u), fcn(u), and degc(u);
4 if invalid(u) then Q.push(u);

5 while Q ̸= ∅ do
6 u← Q.pop();
7 foreach v ∈ N(u) do
8 if invalid(v) then continue;
9 update degc(v);

10 update fn(v);
11 if invalid(v) then Q.push(v);

12 remove u and all connected edges;

1 Procedure invalid(u) :
2 if degc(u) < k then return true;
3 if fn(u) < θ then return true;
4 if fcn(u) < θ then return true;
5 return false;

Our final algorithm to enumerate maximal (k, θ)-significant cliques is given

in Algorithm 5. We reduce the input graph G by computing the (k− 1, θ)-CSC

and the (k, θ)-ST in Line 2 and Line 3, respectively. The order of CSC and

ST does not affect the result. However, as CSC requires less computation than

ST , we apply CSC first. Different from SigClique, the recursive enumeration

procedure Enum∗ in SigClique∗ computes relaxed colorful (k − 1, θ)-significant

cores (RCSC) in Line 3 instead of (k − 1)-cores (Line 2) and color numbers

(Line 4) of Enum.

Relaxed CSC. Given a graph G, an integer k and a real value θ, let S and S ′

be the vertices in (k, θ)-SC and (k, θ)-CSC, respectively. An induced subgraph

44

3.6. EXPERIMENTS Chapter 3

of S ′′ is called a relaxed colorful (k, θ)-significant core if S ′ ⊆ S ′′ ⊆ S. The

motivation of computing RCSCs is to hold the same O(m) time complexity as

k-core computation but bring stronger pruning effectiveness.

Recall that in Algorithm 2 to compute (k, θ)-CSCs, the dominating cost

is to sort the neighbors of each vertex, which is used to efficiently update the

colorful neighborhood significance (Fig. 3.4). To reduce the time complexity

from O(m · log degmax) to O(m), we do not update the colorful neighborhood

significance fcn for each vertex in the iteration but just remove all vertices u

with fcn(u) < k in the first round. Specifically, we modify Algorithm 2 to

compute RCSCs in the following three parts. First, in Line 3, we additionally

compute fn(u). Second, we replace Line 10 with “update fn(u)". Third, we

additionally check whether fn(u) < θ in the procedure invalid. As a result, we

derive a subgraph which satisfies the conditions of SC but possibly contains

some vertices u with fcn(u) < θ. We show the detailed pseudocode of RCSC in

Algorithm 4. Without the sorted data structure, the time complexity of RCSC

reduces to O(m), and the pruning effectiveness is at least the same as Line 2

and Line 4 in Enum.

3.6 Experiments

In this section, we evaluate the efficiency and effectiveness of our proposed algo-

rithms. We implement our algorithms with four versions according to the prun-

ing techniques, namely SigClique, SigClique-SC, SigClique-CSC, and SigClique∗.

SigClique is the Algorithm 1 with basic k-core and graph coloring reduction

techniques. SigClique-SC utilizes the significant core technique to prune the un-

promising vertices. SigClique-CSC is the algorithm with the colorful significant

core pruning rule. SigClique∗ contains all the pruning techniques. We also im-

45

Chapter 3 3.6. EXPERIMENTS

Algorithm 5: SigClique∗(G(V,E), θ, k)

1 color G based on the degeneracy order;
2 CSC(G, θ, k − 1);
3 ST(G, θ, k);
4 Enum∗(V, ∅, θ, k);
1 Procedure Enum∗(R, I, θ, k) :
2 RCSC(R, θ, k − 1);
3 if R ∩ I ̸= I then return;
4 if R is a (k, θ)-significant clique then
5 if IsMax(R,

⋂
v∈R N(v), θ) then output R;

6 return;

7 if R = I then return;
8 pick a vertex u from R \ I;
9 Enum∗(I ∪NR(u) ∪ {u}, I ∪ {u}, θ, k);

10 Enum∗(R \ {u}, I, θ, k);

plement kClist, a variation of the k-clique listing algorithm[36]. We add our

significance computation and maximality testing to make it able to enumerate

sigcliques. All the algorithms are implemented in C++, and all the experiments

are conducted on a Linux machine with 3.7 GHz Xeon CPU and 64GB memory.

Datasets. We evaluate our algorithms with seven real-world datasets as showed

in Table 3.2. EUmail is a communication network that contains the email sending

and receiving information from a large European research institution. In EUmail,

each vertex denotes an email address, and the edge between two vertices repre-

sents that at least one mail was sent between them. Amazon is a co-purchasing

network from Amazon.com, where the vertices represent products, and the edges

between them mean the two products are frequently purchased together. DBLP

is a co-authorship network in which each vertex represents an author, and there

will be an edge between two vertices if they have co-authored at least three

papers. Both Youtube and Hyves are social networks. CiteSeer and Patent are

citation networks. To generate the labels of the vertices on each graph, we ran-

46

3.6.1 Efficiency Evaluation Chapter 3

Table 3.2: Network statistics (degmax is the maximum degree, c is the core value)

Dataset n m degmax c

EUmail 265,214 420,045 7,636 37
Amazon 334,863 925,872 549 6
CiteSeer 384,413 1,751,463 1739 15
DBLP 556,533 1,311,766 373 25
Youtube 1,134,890 2,987,624 28,754 51
Hyves 1,402,673 2,777,419 31,883 39
Patent 3,774,768 16,518,948 793 64

domly assign each vertex with 1-3 labels chosen from a 4-label alphabet. EUmail,

Amazon, Youtube, and Patent are downloaded from the Stanford Large Network

Dataset Collection 1. CiteSeer and Hyves are downloaded from the website of

the Koblenz Network Collection 2. DBLP is extracted from the computer science

bibliography DBLP 3.

Parameters. Our algorithms have two parameters, namely θ and k. The pa-

rameter θ is selected from the set {8, 10, 12, 14} with the default value θ = 10,

and the parameter k is ranging from {3, 5, 7, 9} with a default value k = 5. Unless

otherwise specified, a parameter is set as the default value when we vary the other

one. Regarding the efficiency evaluation, we prepare four labels Σ = {A,B,C,D}.

We randomly and independently assign a set of labels in Σ for each vertex in

the graph. We assign the same proportion for all labels, and the expected label

distribution is P = {0.25, 0.25, 0.25, 0.25}.

3.6.1 Efficiency Evaluation

Exp-1: Overall Efficiency of maximal significant clique enumeration.

Table 3.3 compares the running time of SigClique∗ with SigClique and kClist under
1https://snap.stanford.edu/
2http://konect.cc/networks/
3https://dblp.uni-trier.de/

47

https://snap.stanford.edu/
http://konect.cc/networks/
https://dblp.uni-trier.de/

Chapter 3 3.6.1 Efficiency Evaluation

Table 3.3: Overall running time of enumerating maximal significant cliques on
all datasets and the number of corresponding maximal significant cliques

Dataset SigClique SigClique∗ kClist # sigcliques
EUmail 8s 7s 13s 1198
Amazon 362s 2s 1s 31
CiteSeer 340s 8s 2s 137
DBLP 224s 74s 204s 1388
Youtube 469s 86s 138s 6036
Hyves 1605s 219s 525s 998
Patent - 151s 177s 1790

the default parameter setting. On the right side, we also show the number of

corresponding maximal significant cliques. We can see that SigClique∗ is the

fastest on most datasets. Compared to SigClique, the speedup in EUmail is small

(from 8 seconds to 7 seconds) for the following reasons. First, EUmail has the

smallest size in all datasets, and the improvement room is limited. Second,

the average degree in EUmail is relatively small, which means the basic k-core

pruning has been very effective. On Patent, SigClique∗ takes about 151 seconds

while SigClique cannot finish in 5 hours. kClist is faster on Amazon and CiteSeer

as both datasets have small core values and numbers of cliques, which means

the listing can be fast. On other datasets with larger core values and numbers

of cliques, our SigClique∗ is much faster.

Exp-2: Running time of different pruning strategies with varying pa-

rameters. We evaluate the running time of our algorithms by varying the input

parameter k and θ. Given the default k = 5, we vary θ from 8 to 14 in Fig. 3.6

(a) and Fig. 3.6 (b). We only have the line for SigClique∗ on Patent since the

algorithms cannot finish in 5 hours under other settings. We can see a down-

ward trend for the algorithms on both Youtube and Patent when θ increases. On

Patent, the running time of SigClique∗ is about 1.25 hours when θ = 8 and drops

to 25 seconds when θ = 14. Fig. 3.6 (b) also reveals the effectiveness of our

48

3.6.1 Efficiency Evaluation Chapter 3

several pruning techniques. SigClique is the slowest algorithm under all θ values

since it only uses the basic k-core and the graph coloring pruning rules to reduce

the search space. SigClique-SC starts to consider statistical pruning, which is a

little faster than SigClique. When θ is small, the running time of SigClique-SC

is similar to SigClique, because the degree pruning dominates in the algorithm.

The gap between SigClique-SC and SigClique proves the effectiveness of the sig-

nificant core model. SigClique-CSC is the second fastest algorithm in the figure

since it adopts a stronger pruning model than SigClique-SC. The gap between

SigClique-CSC and SigClique-SC proves the effectiveness of the colorful significant

core model. SigClique∗ contains all optimizations, which is the fastest. The gap

between SigClique∗ and SigClique-CSC proves the effectiveness of the significant

truss model.

Given the default θ = 10, we vary k from 3 to 9 in Fig. 3.6 (c) and Fig. 3.6

(d). The results are similar to those when varying θ. For example, on Patent,

SigClique∗ takes 175 seconds and 12 seconds when k = 3 and k = 9, respectively.

In Fig. 3.6 (d), the running time of SigClique is almost the same as that of

SigClique-SC when k is large, because θ does not change and the degree pruning

is the dominating rule. Fig. 3.7 shows the running time of SigClique∗ on Patent

and Youtube while varying the θ and k .

Exp-3: Number of vertices after reduction. To further evaluate the ef-

fectiveness of our pruning techniques, we report the number of vertices after

performing the reduction rules (e.g., core, significant core, colorful significant

core, and significant truss) and before invoking the Enum procedure. The result

can be found in Fig. 3.8, where Fig. 3.8 (a) and (c) show the results when varying

θ. Fig. 3.8 (b) and (d) show the results when varying k. When varying θ, we can

see that the number of vertices for SigClique never changes since only the struc-

tural pruning is performed in SigClique. Note that even though the significant

49

Chapter 3 3.6.1 Efficiency Evaluation

truss is an edge pruning model, many vertices become isolated and are removed

during the edge removal. The results show that our final pruning techniques are

extremely effective. For example, in Fig. 3.8 (a), the number of vertices is about

194 thousand when θ = 8 but drops to only about 17 thousand when θ = 14.

We do not show the result for Amazon when k = 9 as there remain no vertices

under that setting.

Exp-4: Number of maximal significant cliques. We report the number of

maximal significant cliques under different parameters in Fig. 3.9. The number

of results gradually decreases when θ increases from 8 to 14 on all datasets. For

example, in Fig. 3.9 (a), we have over 12 thousand maximal (5, 8)-significant

cliques and 154 maximal (5, 14)-significant cliques on Patent. In Fig. 3.9 (b),

we see a sharp drop from k = 7 to k = 9. That is because there exist a larger

number of (7, 10)-cliques or (8, 10)-cliques on Patent.

On Amazon, we do not show the results when k is 7 or 9 because there are

zero cliques under such settings.

Exp-5: Scalability testing. We evaluate the scalability of our final algorithm

SigClique∗ with the baseline SigClique as a comparison.

We generate a range of graph sizes and densities by randomly selecting ver-

tices and edges, respectively, from 20% to 100%. To sample vertices, we generate

the induced subgraph of the selected vertices, while for edges, we consider the

vertex set of the corresponding incident edges. The outcomes of our experiments

are depicted in Fig. 3.10. We do not have results of SigClique under several set-

tings since it cannot finish in 5 hours. The results show that our algorithm is

scalable to large graphs. In Fig. 3.10 (a), the time of SigClique∗ is 0.5 second

when sampling 20% vertices and increases to 151 seconds finally.

50

3.6.2 Case study on DBLP Chapter 3

3.6.2 Case study on DBLP

To evaluate the effectiveness of our model, we conduct a case study on DBLP and

compare it with the maximal clique model. We generate a collaboration network

for the DBLP, where an edge connects two researchers if they have at least three

co-authored publications. Regarding the vertex labels, we select the publication

data for each researcher from three major conferences in the database area —

SIGMOD, PVLDB, and ICDE over the last decade. We assign each vertex

the label that indicates the author has a published paper on the corresponding

conference. Specifically, for each conference every year, given a researcher u,

we assign u a conference name if u has a publication in the conference and an

empty value ∅ otherwise. Note that the assigned labels can be repeated for each

researcher.

For example, assume that u has one SIGMOD publication, two PVLDB

publications, and no ICDE publication in one year. The added labels in such a

year for u are {SIGMOD,PVLDB,PVLDB, ∅}. Given the impact factor of these

conferences, we expect the proportion of label frequencies for SIGMOD, PVLDB,

ICDE, and ∅ (no paper published) as 1 : 2 : 3 : 30. The rationale is that we

give a relatively low expected frequency for the highest-ranked conference. If

a researcher does not have any publication in the last decade, they will have

thirty ∅ labels. Intuitively, a significant clique with a large chi-square value in

our setting may represent a research group with many high-ranked conference

publications.

In Fig. 3.11 (a)-(c), we show all the maximal significant cliques containing

the Prof. Jiawei Han with the parameters k = 5 and θ = 500. The parameter

setting is application-oriented, where generally, the larger the k or θ, the fewer

the resulting subgraphs. As we can see, there are three (5, 500)-cliques reported

by our model. The chi-square statistics of the results in Fig. 3.11 (a), (b), and

51

Chapter 3 3.6.2 Case study on DBLP

(c) are 828.639, 589.864, and 722.331, respectively.

In comparison, we also enumerate all the maximal cliques containing Prof.

Jiawei Han with at least 5 vertices. There are 33 resulting subgraphs, including

two 7-cliques, four 6-cliques, and 27 5-cliques. Due to the large result size, we

show some representatives of them in Fig. 3.12. We can see that the number

of maximal cliques is much more than that of the (5, 500)-cliques. We find that

the main research interests of many resulting authors do not lay in the database

area. For example, Prof. Tarek F. Abdelzaher, Prof. Su Lu, and Dr. Shaohan

Hu may be mainly interested in the Internet of Things, Cyber-Physical Systems,

and Mobile Computing since they have contributed a lot to the corresponding

research area. However, they all have co-authored only one PVLDB paper in

the past decade. According to historical publications, they should be excluded

if we want to find significant database communities.

We have a consistent conclusion when considering the chi-square statistics of

the resulting maximal cliques. In Fig. 3.13, we group all the 33 maximal cliques

(with size at least 5) containing Prof. Han into five groups by corresponding

chi-square statistics. We can see that the chi-square statistics of most results are

relatively low, which means the resulting communities have rather less signifi-

cance in the database area. For example, there are 25 results whose chi-square

statistics lay in the interval (0, 200]. By contrast, all the resulting three (5, 500)-

significant cliques reported by our model have much higher chi-square statistics.

Note that the three maximal (5, 500)-significant cliques are also included in the

results of maximal cliques.

52

3.7. CHAPTER SUMMARY Chapter 3

3.7 Chapter Summary

In this chapter, we formulate a new model, called maximal (k, θ)-significant

clique, to capture statistically significant cohesive subgraphs in large labeled

graphs. We propose a novel branch-and-bound algorithm and several effective

pruning rules to enumerate all maximal (k, θ)-significant clique. Extensive exper-

iments are conducted to show the efficiency of our algorithms. In future works,

we are interested in extending our model to handle the graphs with both vertex

labels and edge weights and explore certain parallel frameworks to enhance the

scalability for large graphs.

53

Chapter 3 3.7. CHAPTER SUMMARY

SigClique* SigClique−CSC SigClique−SC SigClique

10

100

1K

10K

8 10 12 14

T
im

e
 (

se
c
)

θ

(a) Patent (vary θ)

10

100

1K

10K

3 5 7 9

T
im

e
 (

se
c
)

k

(b) Patent (vary k)

100

1K

8 10 12 14

T
im

e
 (

se
c
)

θ

(c) Youtube (vary θ)

100

1K

3 5 7 9

T
im

e
 (

se
c
)

k

(d) Youtube (vary k)

0.1

1

10

100

1K

8 10 12 14

T
im

e
 (

se
c
)

θ

(e) Amazon (vary θ)

0.1

1

10

100

1K

3 5 7 9

T
im

e
 (

se
c
)

k

(f) Amazon (vary k)

0.1

1

10

100

1K

8 10 12 14

T
im

e
 (

se
c
)

θ

(g) CiteSeer (vary θ)

0.1

1

10

100

1K

3 5 7 9

T
im

e
 (

se
c
)

k

(h) CiteSeer (vary k)

Figure 3.6: Running time of different algorithms by varying θ and k
54

3.7. CHAPTER SUMMARY Chapter 3

1K

8 10 12 14

T
im

e
 (

se
c
)

θ

(i) DBLP (vary θ)

100

1K

3 5 7 9

T
im

e
 (

se
c
)

k

(j) DBLP (vary k)

10

100

8 10 12 14

T
im

e
 (

se
c
)

θ

(k) EUmail (vary θ)

10

100

3 5 7 9

T
im

e
 (

se
c
)

k

(l) EUmail (vary k)

100

1K

10K

8 10 12 14

T
im

e
 (

se
c
)

θ

(m) Hyves (vary θ)

100

1K

3 5 7 9

T
im

e
 (

se
c
)

k

(n) Hyves (vary k)

Figure 3.6: Running time of different algorithms by varying θ and k (continued)

55

Chapter 3 3.7. CHAPTER SUMMARY

 8 9 10 11 12 13 14 3
 4

 5
 6

 7
 8

 9

5K

10K

15K

20K

θ

k

T
im

e
 (

S
e
c
)

(a) Patent

 8 9 10 11 12 13 14 3
 4

 5
 6

 7
 8

 9

5K

10K

15K

20K

θ

k

T
im

e
 (

S
e
c
)

(b) Youtube

Figure 3.7: Running time of SigClique∗ by varying θ and k

56

3.7. CHAPTER SUMMARY Chapter 3

SigClique* SigClique−CSC SigClique−SC SigClique

10K

100K

1M

10M

8 10 12 14

V
e
rt

ic
e
s

θ

(a) Patent (vary θ)

1K

10K

100K

1M

10M

3 5 7 9

V
e
rt

ic
e
s

k

(b) Patent (vary k)

10K

100K

8 10 12 14

V
e
rt

ic
e
s

θ

(c) Youtube (vary θ)

10K

100K

1M

3 5 7 9

V
e
rt

ic
e
s

k

(d) Youtube (vary k)

100

1K

10K

100K

1M

8 10 12 14

V
e
rt

ic
e
s

θ

(e) Amazon (vary θ)

10

100

1K

10K

100K

1M

3 5 7 9

V
e
rt

ic
e
s

k

(f) Amazon (vary k)

1K

10K

100K

8 10 12 14

V
e
rt

ic
e
s

θ

(g) CiteSeer (vary θ)

100

1K

10K

100K

1M

3 5 7 9

V
e
rt

ic
e
s

k

(h) CiteSeer (vary k)

Figure 3.8: The number of vertices after pruning by varying parameters θ and k
57

Chapter 3 3.7. CHAPTER SUMMARY

10K

100K

8 10 12 14

V
e
rt

ic
e
s

θ

(i) DBLP (vary θ)

10K

100K

1M

3 5 7 9

V
e
rt

ic
e
s

k

(j) DBLP (vary k)

100

1K

10K

100K

8 10 12 14

V
e
rt

ic
e
s

θ

(k) EUmail (vary θ)

1K

10K

100K

3 5 7 9

V
e
rt

ic
e
s

k

(l) EUmail (vary k)

1K

10K

100K

8 10 12 14

V
e
rt

ic
e
s

θ

(m) Hyves (vary θ)

1K

10K

100K

1M

3 5 7 9

V
e
rt

ic
e
s

k

(n) Hyves (vary k)

Figure 3.8: The number of vertices after pruning by varying parameters θ and
k (continued)

58

3.7. CHAPTER SUMMARY Chapter 3

SigClique* SigClique−CSC SigClique−SC SigClique

10

100

1K

10K

100K

8 10 12 14

R
e
su

lt
s

θ

(a) Patent (vary θ)

1

10

100

1K

10K

100K

3 5 7 9

R
e
su

lt
s

k

(b) Patent (vary k)

100

1K

10K

100K

8 10 12 14

R
e
su

lt
s

θ

(c) Youtube (vary θ)

1K

10K

3 5 7 9

R
e
su

lt
s

k

(d) Youtube (vary k)

1

10

100

1K

8 10 12 14

R
e
su

lt
s

θ

(e) Amazon (vary θ)

0.1

1

10

100

1K

3 5 7 9

R
e
su

lt
s

k

(f) Amazon (vary k)

1

10

100

1K

10K

8 10 12 14

R
e
su

lt
s

θ

(g) CiteSeer (vary θ)

0.1

1

10

100

1K

10K

3 5 7 9

R
e
su

lt
s

k

(h) CiteSeer (vary k)

Figure 3.9: The number of maximal (θ, k)-cliques
59

Chapter 3 3.7. CHAPTER SUMMARY

100

1K

10K

100K

8 10 12 14

R
e
su

lt
s

θ

(i) DBLP (vary θ)

1K

10K

3 5 7 9

R
e
su

lt
s

k

(j) DBLP (vary k)

10

100

1K

10K

8 10 12 14

R
e
su

lt
s

θ

(k) EUmail (vary θ)

100

1K

3 5 7 9

R
e
su

lt
s

k

(l) EUmail (vary k)

10

100

1K

10K

100K

8 10 12 14

R
e
su

lt
s

θ

(m) Hyves (vary θ)

10

100

1K

10K

3 5 7 9

R
e
su

lt
s

k

(n) Hyves (vary k)

Figure 3.9: The number of maximal (θ, k)-cliques (continued)

60

3.7. CHAPTER SUMMARY Chapter 3

SigClique* SigClique

0.1

1

10

100

1K

10K

20% 40% 60% 80% 100%

T
im

e
 (

se
c
)

(a) Patent Vary |V |

0.1

1

10

100

1K

10K

20% 40% 60% 80% 100%

T
im

e
 (

se
c
)

(b) Patent Vary |E|

0.01

0.1

1

10

100

1K

20% 40% 60% 80% 100%

T
im

e
 (

se
c
)

(c) Amazon Vary |V |

0.01

0.1

1

10

100

1K

20% 40% 60% 80% 100%

T
im

e
 (

se
c
)

(d) Amazon Vary |E|

0.01

0.1

1

10

100

1K

20% 40% 60% 80% 100%

T
im

e
 (

se
c
)

(e) CiteSeer Vary |V |

0.1

1

10

100

1K

20% 40% 60% 80% 100%

T
im

e
 (

se
c
)

(f) CiteSeer Vary |E|

0.1

1

10

100

1K

20% 40% 60% 80% 100%

T
im

e
 (

se
c
)

(g) DBLP Vary |V |

0.1

1

10

100

1K

20% 40% 60% 80% 100%

T
im

e
 (

se
c
)

(h) DBLP Vary |E|

Figure 3.10: Scalability Testing.
61

Chapter 3 3.7. CHAPTER SUMMARY

0.01

0.1

1

10

100

20% 40% 60% 80% 100%

T
im

e
 (

se
c
)

(i) EUmail Vary |V |

0.01

0.1

1

10

100

20% 40% 60% 80% 100%

T
im

e
 (

se
c
)

(j) EUmail Vary |E|

0.1

1

10

100

1K

10K

20% 40% 60% 80% 100%

T
im

e
 (

se
c
)

(k) Hyves Vary |V |

0.1

1

10

100

1K

10K

20% 40% 60% 80% 100%

T
im

e
 (

se
c
)

(l) Hyves Vary |E|

0.1

1

10

100

1K

10K

20% 40% 60% 80% 100%

T
im

e
 (

se
c
)

(m) Youtube Vary |V |

0.1

1

10

100

1K

10K

20% 40% 60% 80% 100%

T
im

e
 (

se
c
)

(n) Youtube Vary |E|

Figure 3.10: Scalability Testing (continued).

62

3.7. CHAPTER SUMMARY Chapter 3

(a) (b) (c)

Jiawei Han

Jeffrey Xu Yu
Haixun Wang

Hong ChengPhilip S. Yu

Jiawei Han

Jeffrey Xu Yu Philip S.Yu

Ada Wai-Chee Fu

Jian PeiKe Wang

Haixun Wang

Jiawei Han

Philip S. Yu Jian Pei

Jeffrey Xu Yu

Figure 3.11: The maximal (5, 500)-significant cliques of Prof. Jiawei Han on
DBLP graph

(a) (b) (c)

(d) (e) (f)

(g) (h)

……

Xifeng Yan

Jiawei HanJing Gao

Philip S. Yu Yizhou Sun

Jiawei Han

Xiang RenJialu Liu

Heng Ji Chi Wang

Chao Zhang

Tarek F. Abdelzaher

Shuochao Yao

Lance M. Kaplan

Jiawei Han

Lu Su

Ada Wai-Chee Fu
Ke Wang

Jian Pei

Jeffrey Xu Yu
Jiawei Han

Philip S. Yu

Jing Gao
YaliangLi

Lu Su

Bo Zhao

Bolin Ding
Jiawei Han

Qi LiJing Gao

Wei Fan
Lu Su

Bo Zhao

Yaliang Li

Jiawei Han

Tarek F. Abdelzaher

Jing Gao

Lu Su

Lance M. Kaplan
Jiawei Han

Shaohan Hu

Charu C. Aggarwal

Lu Su

Shuochao Yao

Shaohan Hu Jiawei Han

Tarek F. Abdelzaher

Lance M. Kaplan

Figure 3.12: The maximal cliques containing Prof. Jiawei Han on DBLP graph
with at least 5 vertices. (a) and (b) are 7-cliques. (c)-(f) are 6-cliques. (g) and
(h) are 5-cliques

63

Chapter 3 3.7. CHAPTER SUMMARY

 0

 5

 10

 15

 20

 25

(0,200]

(200,400]

(400,600]

(600,800]

(800,1000]

N
u
m

b
er

 o
f

C
li

q
u
es

Figure 3.13: The chi-square statistic of all the maximal cliques containing Prof.
Jiawei Han with at least 5 vertices

64

Chapter 4

EFFICIENT SHORTEST PATH

COUNTING ON LARGE ROAD

NETWORKS

4.1 Chapter Overview

In this chapter, we study the shortest-path counting query on road networks.

This chapter is structured as follows. Section 4.2 provides the problem definition

and the state-of-the-art algorithms. In Section 4.3, we show a novel index-based

approach and its querying methods. Theoretical analysis confirms the advances

of the new approach compared to the state-of-the-art methods. Section 4.4 first

provides a non-trivial baseline index construction method to construct our index

and then proposes an improved approach with optimization techniques which is

much faster than the non-trivial baseline. Section 4.5 evaluates the proposed

algorithms and Section 4.6 concludes this chapter.

65

Chapter 4 4.2. PRELIMINARIES

4.2 Preliminaries

We first introduce the problem definition of shortest path counting in Sec-

tion 4.2.1. We also provide a basic online method for the query. Section 4.2.2

describes the state-of-the-art method for shortest path counting. We analysis

the limitation of the state-of-the-art method and discuss on the opportunities in

Section 4.2.3. Table 4.1 lists the frequent notations used in this chapter.

Table 4.1: Frequent notations used in Chapter 4.

Notation Meaning
G = (V,E, ϕ) a road network

V (G) the set of vertices
E(G) the set of edges
ϕ(e) the weight of an edge e
ϕ(p) the length of a path p
NG(u) the neighbor set of u in G
sd(u, v) the shortest distance between u and v
spc(u, v) the shortest path count between u and v
cspc(u, v) the convex shortest path count between u and v
X(u) the tree node of u
A(u) the ancestor set of u

CA(u, v) the common ancestors of u and v
T(u) the subtree set of u

4.2.1 Problem Statement

We consider a road network G = (V,E, ϕ) which is usually a degree-bounded,

connected, and weighted graph. V (G) is a set of vertices, E(G) is a set of edges,

and ϕ : e ∈ E(G) 7→ N+ is a weight function for each edge. We mainly focus

on undirected graphs in this thesis. Our techniques can be easily extended to

directed graphs and other sparse graphs. When it is clear from the context,

we use V and E to denote V (G) and E(G), and use n = |V | and m = |E| to

denote the numbers of vertices and edges, respectively. We denote all neighbors

66

4.2.1 Problem Statement Chapter 4

of a vertex v in G as NG(v) = {u|(u, v) ∈ E(G)}. We use N(v) to denote

NG(v) when the context is obvious. We use ϕ(e) to denote the weight of an

edge e ∈ E. On road networks, the edge weight may represent the actual length

or the travel time of a road segment. A (simple) path1 p = (v1, v2, . . . , vk) is a

sequence of distinct vertices where (vi, vi+1) ∈ E for all 1 ≤ i < k. The length

of a path p, denoted by ϕ(p), is the sum of weights of all edges on the path,

i.e., ϕ(p) =
∑k−1

i=1 ϕ(e(vi, vi+1)). Given two vertices s and t, the shortest distance

between s and t, denoted by sd(s, t), is the smallest length of all paths between s

and t. A path p between s and t is a shortest path if ϕ(p) = sd(s, t). We denote

the set of all the shortest paths between s and t in the graph G by PG(s, t), and

we use P (s, t) when context is obvious. The number of shortest paths is denoted

by spc(s, t), i.e., spc(s, t) = |P (s, t)|.

Problem Definition Given a road network G and two query vertices q = (s, t),

the shortest path counting problem aims to efficiently compute the number of

shortest paths between s and t.

Example 12. Fig. 1.2 shows an example of a road network G(V,E, ϕ) with 20

vertices and 29 edges. The weight is marked on each edge. Considering vertices

v6 and v16, there are many paths between them, such as p1 = (v6, v8, v14, v16) and

p2 = (v6, v4, v3, v1, v13, v14, v16). We have ϕ(p1) = 9 and ϕ(p2) = 10, and p2 is

not a shortest path. Given that there is no other path p with length less than p1,

p1 is a shortest path, and the shortest distance between v6 and v16 is 9. There

are also 5 other paths with the same length 9 between v6 and v16. Therefore, the

number of shortest paths between v6 and v16 is 6 in G.

A Basic Online Method. The shortest path count can be straightforwardly

derived as a byproduct of the Dijkstra’s algorithm in computing the shortest

1In this thesis, the term "path" always means a simple path.

67

Chapter 4 4.2.2 The State of the Art: Hub Labeling

distance. Specifically, we use a queue to maintain all visited vertices with a pri-

ority of distance to the source vertex. For each visited vertex during the search,

in addition to maintaining the distance from the source vertex, we store the

corresponding shortest path count. Given a vertex v, let D[v] and C[v] be inter-

mediate shortest distance and shortest path count, respectively. When exploring

v from a neighbor u of v, if a shorter distance (i.e., D[u] + ϕ(u, v) < D[v]) is

found, we replace D[v] and C[v] with D[u] + ϕ(u, v) and C[u], respectively. If

D[u] + ϕ(u, v) = D[v], we add C[u] to C[v]. We do not update C[v] and D[v]

if D[u] + ϕ(u, v) > D[v]. The online method works but may suffer from weak

scalability in large graphs since all edges in the graph will be scanned in the

worst case.

4.2.2 The State of the Art: Hub Labeling

Zhang and Yu [115] proposed a hub-labeling-based algorithm to count shortest

paths efficiently. They first introduce the exact shortest path covering (ESPC)

that guarantees to cover all shortest paths without redundancy and then propose

a corresponding hub pushing algorithm to build the index. More specifically, for

each vertex u, they precompute a collection of labels L(u), and each label is a

triplet (w, sd(u,w), δu,w), where sd(u,w) is the shortest distance between u and

w, and δu,w is the number of a subset of shortest paths between u and w in the

graph (i.e., δu,w ≤ spc(u,w)). Given two query vertices u and v, the shortest

path count is computed based on the following equation.

spc(u, v) =
∑

w∈L(u),w∈L(v),sd(u,w)+sd(v,w)=sd(u,v)

δu,w · δv,w (4.1)

In Eq. 4.1, the shortest distance sd(u, v) can be derived by the formula

minw∈L(u),w∈L(v) sd(u,w) + sd(v, w).

68

4.2.2 The State of the Art: Hub Labeling Chapter 4

v1

v3

v5

v4

v2

v6

Vertex L(·)
v1 (v1, 0, 1)
v2 (v2, 0, 1), (v1, 1, 1)
v3 (v3, 0, 1), (v2, 2, 1), (v1, 1, 1)
v4 (v4, 0, 1), (v3, 1, 1), (v2, 1, 1), (v1, 2, 2)
v5 (v5, 0, 1), (v2, 2, 1), (v1, 1, 1)
v6 (v6, 0, 1), (v5, 1, 1), (v2, 1, 1), (v1, 2, 2)

Figure 4.1: A simple graph and its hub-labeling index given the vertex order
v1 ≤ v2 ≤ v3 ≤ v4 ≤ v5 ≤ v6.

For index construction, Zhang and Yu [115] assign a total order ≤ for all

vertices. They process vertices in descending order. For each vertex w ∈ V ,

they perform a search from w in the induced subgraph of all the vertices whose

orders are not higher than w. The shortest distance and shortest path count

from w to each vertex v are collected in the search, and a corresponding label

is added to L(v). During the search, if a shorter distance between w and v is

found based on the existing labels of w and v (i.e., a vertex with a high order

than w covers the shortest path of w and v), they prune the search space and

stop to search the neighbors of v. The algorithm finishes in n iterations.

Example 13. We use a simple graph in Fig. 4.1 to illustrate the index structure

of [115]. We assume that the total order is v1 ≤ v2 ≤ v3 ≤ v4 ≤ v5 ≤ v6.

The labels of all six vertices are presented on the right. Give a pair of query

vertices v4 and v5, we have the shortest distance sd(v4, v5) = min{sd(v4, v2) +

sd(v5, v2), sd(v4, v1)+sd(v5, v1)} = 3, and the number of shortest paths spc(v4, v5) =

δ(v4, v2) · δ(v5, v2) + δ(v4, v1) · δ(v5, v1) = 1× 1 + 2× 1 = 3.

Several optimizations are also developed in [115] to reduce the index size.

Given that both query efficiency and index size are closely related to the label

size, they also analyze the maximum label size for each vertex for several types

of graphs. We will compare their theoretical results with our method on road

69

Chapter 4 4.2.3 Opportunities

networks in Section 4.3.2.

4.2.3 Opportunities

We first analyze the limitations of the state-of-the-art method. In [115], the

label size for a vertex can be very large, and we need to scan all the labels of

two query vertices in the worst case. To precompute the labels for each vertex,

their method scans the induced subgraph of all vertices with lower ranks. When

processing the first vertex, the entire graph is scanned, and searching a large

graph is costly.

The key to improving the efficiency of counting shortest paths is to reduce

the number of label comparisons in query processing. To this end, we organize

vertices in a tree structure called tree decomposition [39] and proposed a tree-

based index structure. Even though tree decomposition has been used in existing

works to compute the shortest distance on road networks, the main technical

challenge in our problem is to avoid the redundancy of query results, which is

quite different from existing studies.

A straightforward idea to construct our index is to adopt a similar frame-

work in the hub-labeling method, where high-ranking vertices are first processed.

We significantly improve the efficiency of index construction by adopting a re-

verse framework. We first process low-ranking vertices so that all intermediate

information can be fully utilized when high-ranking vertices are processed. We

propose graph reduction techniques to guarantee the correctness of our new com-

puting framework. We also propose a rule to relax the index definition, which

reduces the computational cost but still guarantees correctness.

70

4.3. TREE-BASED SHORTEST PATH COUNTING Chapter 4

4.3 Tree-based Shortest Path Counting

We propose a new labeling-based index carefully defined based on a tree structure

of all vertices in the graph. Compared to the state of the art, our solution achieves

higher efficiency for both query processing and index construction with a more

compact index.

4.3.1 Tree Decomposition

Tree Decomposition has been used in many applications to speed up certain

graph computational problems [39]. We give the formal definition as follows.

Definition 12. (Tree Decomposition) Given a graph G(V,E), a tree de-

composition of G, denoted as TG, is a tree in which every tree node X ∈ TG is a

subset of V (i.e., X ⊆ V) such that the following conditions hold:

1.
⋃

X∈TG
X = V ;

2. for every (u, v) ∈ E, there exists X ∈ TG such that u ∈ X and v ∈ X;

3. for every u ∈ V , {X|u ∈ X} forms a connected subtree of TG.

Definition 13. (Treewidth and Treeheight) Given a tree decomposition

TG of a graph G, the treewidth of TG, denoted by w(TG), is one less than the

maximum cardinality of all nodes in TG, i.e., w(TG) = maxX∈TG
|X| − 1. The

treeheight, denoted by h(TG), is the maximum depth of all nodes in TG where the

depth of a node X is the distance from X to the root node in TG.

We use w and h to denote treewidth and treeheight, respectively, when it

is clear from the context. It is important to note that we can derive a tree

decomposition of a road network with low treewidth and low treeheight values.

For example, on the road network of New York City with 264,346 vertices and

71

Chapter 4 4.3.1 Tree Decomposition

72

X(v8)
v14

v6 v14

v8 v6 v14

v12 v8 v9 v10 v7 v17 v13 v16

v13 v6 v14

v3 v2 v6 v13

v9 v6 v8

v20 v16 v17v5 v2 v3 v6

v4 v3 v5 v6

v16 v13 v14

v11 v8 v12

v7 v8 v14 v2 v6 v13 v14

v1 v2 v3 v13

v15 v14 v16

v18 v13 v17

v19 v17 v20

Figure 4.2: Tree decomposition TG of G.

733,846 edges, we can construct a tree decomposition with a treeheight of 505

and a treewidth of 134. Detailed statistics for other datasets can be found in

Table 4.2.

Tree Decomposition Construction. Given a graph G, there could be mul-

tiple tree decompositions, and it is NP-Complete to determine the minimized

treewidth of all tree decompositions of G [8]. In this thesis, we adopt a sub-

optimal tree decomposition method proposed in [61] with a time complexity of

O(n · (w2 + log n)). The method is relatively efficient in practice and has been

used in several research works on road networks [76, 77, 27]. It processes each

vertex in a greedy way. Specifically, in each iteration, the algorithm picks the

vertex v with the smallest degree and creates a corresponding tree node X(v)

with all neighbors of v in the graph. Then, it removes v and updates the graph

by adding an edge between every pair of unconnected neighbors of v. Assume u

is the first removed neighbor of v after removing v, we set X(u) as the parent

of X(v) in the tree decomposition. The algorithm terminates after removing all

vertices, and we get the tree decomposition of the given graph.

It is straightforward to see that the derived tree decomposition contains n

4.3.2 TL-Index Chapter 4

nodes, and there is a one-to-one correspondence from graph vertices to tree

nodes. In the rest, we assume this property holds, and tree decomposition is

computed using the method in [61].

We always refer to each v ∈ V in graphs as a vertex and refer to each X ∈ TG

as a (tree) node. We use the vertex v instead of the tree node X(v) for simplicity

when it is clear from the context. The depth of a vertex v, denoted by Depth(v),

is the number of edges from the tree node X(v) to the root node. The ancestor

set of a vertex v, denoted by A(v) is the set of vertices u such that X(u) is

an ancestor of X(v) in the tree decomposition. The subtree set of a vertex v,

denoted by T(v), is the set of vertices u such that X(u) is in the subtree rooted

by X(v) in the tree decomposition.

Example 14. Fig. 4.2 shows a tree decomposition TG for the road network in

Fig. 1.2. To construct such a tree decomposition, we first pick the vertex with

the lowest degree. Suppose we pick v19 and create a tree node X(v19) with its

neighbors v20 and v17. We then remove v19 and add an edge between v17 and v20.

We repeat the above process until all the vertices are removed. Assume v20 is the

first removed neighbor of v19, we set X(v20) as the parent of X(v19). We repeat

the process and get a tree with 20 tree nodes.

The corresponding tree node of the vertex v3 is X(v3) = {v3, v2, v6, v13}. The

ancestors of v3 are A(v3) = {v14, v6, v13, v2}, and the subtree set of v3 is T(v3) =

{v3, v5, v1, v4}. For the vertex v13, all tree nodes containing v13 form a connected

subtree and are marked in the red area in Fig. 4.2.

4.3.2 TL-Index

We propose a new index structure, named TL-Index, to count shortest paths

based on tree decomposition. Compared to the state-of-the-art hub-labeling-

based index, the only similar part in TL-Index is, conceptually, to store a set

73

Chapter 4 4.3.2 TL-Index

of labeling vertices with corresponding distance and count values to each vertex

v. We carefully pick the labeling values by utilizing tree decomposition. We

organize the labels in a structure that can avoid the merge-sort-like style query

mechanism in [61] and achieve higher query efficiency. The details of query

processing can be found in Section 4.3.3. Below, we introduce an important

definition which is crucial to guarantee the correctness of the index.

Definition 14. (Convex Path) Given a tree decomposition TG of graph G(V,E),

a path p = (s, v1, v2, . . . , vk, t) between two vertices s and t is a convex path if for

every 1 ≤ i ≤ k, the depth of X(vi) is larger than the smaller one of X(s) and

X(t), i.e., ∀1 ≤ i ≤ k,Depth(vi) > min(Depth(s),Depth(t)).

Example 15. Given the graph G in Fig. 1.2 and its tree decomposition TG in

Fig. 4.2, the path (v6, v8, v7, v10) is a convex path. This is because Depth(v7) >

Depth(v8) > min(Depth(v6),Depth(v10)). The path (v6, v8, v14, v16) is not a con-

vex path, as Depth(v14) < min(Depth(v6),Depth(v16)).

Let ⊙ be the concatenation of two paths. We provide a support lemma

followed by the key theorem motivating our index below.

Lemma 9. Given a tree decomposition TG and an arbitrary path p in G, there

exists only one vertex in p with the lowest depth.

Proof. We prove Lemma 9 by contradiction. Given a path p, suppose we have

u, v ∈ p, and both u and v have the lowest depth in p. Thus, T (u) and T (v)

must be two disjoint sub-trees in TG. We denote the sub-path between u and

v by (u,w1, w2, . . . , wi−1, wi, v). We first consider the u side. As (u,w1) ∈ E,

based on Definition 12 (2), we know ∃X ∈ TG, u ∈ X,w1 ∈ X. Based on

Definition 12 (3), X(u) and X should be in the same sub-tree, X(w1) and X

should also be in the same sub-tree, i.e., X(u) and X(w1) should be in the same

74

4.3.2 TL-Index Chapter 4

1
1

6
1

2
1

4
2

3
0

3
2

9
0

4
0

4
1

3
1

3
1

3
3

1
1

7
0

2
0

2
1

4
1

9
1

3
1

2
1

3
1

4
1

2
1

2
1

1
1

2
1

7
1

1
1

4
1

2
1

6
3

11
1

5
1

3
1

2
1

1
1

4
1

2
1

4
1

2
1

1
1

1
1

…

5
2

11
0

6
1

2
1

3
1

v14

v17

v13

v16v2

v18

v19

v20

v3

v5

v4

v1

v15

6
3

3
1

3
2

4
0

1
1

2
2

 sd = 9, cspc = 1

v17 v6

v6

Figure 4.3: The TL-Index for G.

sub-tree. As u has the minimum depth, we have w1 ∈ T (u). We similarly have

w2 ∈ T (u), . . . , wi ∈ T (u). On the v side, we also have wi ∈ T (v) where the

contradiction exists.

Theorem 9. Given an arbitrary path p(v1, v2, . . . , vk), either p is a convex path

or there exists one and only one pair of convex paths p1 and p2 such that p =

p1 ⊙ p2.

Proof. Based on Lemma 9, given a non-convex path p between two vertices s

and t, assume that v is the vertex with the smallest depth in p. We have v ̸= s

and v ̸= t. Otherwise, p is a convex path. Therefore, p can be divided to two

sub-paths from v, and both sub-paths are convex paths.

Based on Theorem 9, each shortest path is either a convex shortest path or a

concatenation of two convex shortest paths, given that any sub-path of a shortest

path is also a shortest path. Here, a convex shortest path is a convex path that

has the same length as the shortest path between two terminal vertices in the

graph. To compute the shortest path count for any pair of vertices, our idea is

75

Chapter 4 4.3.2 TL-Index

to precompute the distance and the count of all convex shortest paths between

each possible pair of vertices. Note that the number of convex shortest paths is

significantly smaller than that of all shortest paths, which is supported by the

following lemma.

Lemma 10. Given a tree decomposition TG of a graph G and an arbitrary path

p, let v be the vertex with the smallest depth in p. v is the ancestor of all other

vertices in p.

The shortest paths between two vertices s and t can be divided into two

types. The first is the convex shortest path between s and t, and the other is

the concatenation of two convex shortest paths from s and t, respectively. It is

easy to see that for a non-convex shortest path p, two convex sub-paths join at

the vertex with the smallest depth in p. Therefore, our index stores the count

of each precomputed convex shortest path as a label of the terminal vertex with

a larger depth. We formally define the index as follows.

Definition 15. Given a road network G,TL-Index precomputes:

1. a tree structure of all vertices by tree decomposition;

2. the shortest distance from each vertex to all its ancestors;

3. the convex shortest path count from each vertex to all its ancestors.

Note that by a tree structure in Definition 15, we discard all vertices except

v in each tree node X(v) and use v as a tree node instead of the original vertex

set X(v).

Example 16. We show the TL-Index for the road network G (Fig. 1.2) in

Fig. 4.3 based on the tree decomposition TG in Fig. 4.2. For simplicity, we

only show a part of the index. The index is based on the tree structure of the tree

76

4.3.3 Query Processing with TL-Index Chapter 4

decomposition. For each vertex (index tree node), we store the shortest distance

and the corresponding convex shortest path count to each ancestor. The label for

the ancestor close to the root is arranged in the front. We take the vertex v17 as

an example. As we mark in Fig. 4.3, the shortest distance between v17 and v6

is 9, and there is only 1 convex shortest path. The shortest distance between v17

and v14 is 4, and its corresponding convex shortest path count is 1. Note that in

the labels of v20, the count value for v6 is 0 since there is no convex path between

them whose length is less than or equal to 11.

Theorem 10. The space complexity of TL-Index is O(n · h).

Zhang and Yu [115] also analyze the space usage of their proposed hub-

labeling index for graphs with small treewidth. They show that their index size

can be bounded by O(wn log n) if the vertex order is carefully arranged, where w

is the treewidth, and n is the number of vertices. Our index size is much smaller

given that h is much smaller than w log n. The statistics (e.g., w, h and n) of

each dataset evaluated in experiments is provided in Table 4.2. We also compare

the practical index size in Fig. 4.11.

4.3.3 Query Processing with TL-Index

We propose the query processing algorithm in this section. Our TL-Index is also

a labeling-based index that satisfies the criteria of exact shortest path covering

(ESPC) defined in [115]. Given two query vertices s and t, the general idea is

to identify all common labeling vertices as shown in Eq. 4.1. We utilize the tree

structure to bound the common labels of query vertices. In this way, we avoid

the merge-sort-like strategy to process labels of two query vertices in Eq. 4.1 and

speed up the query processing by visiting a limited number of common vertices

directly. We reduce the visited labels in query processing by the following lemma.

77

Chapter 4 4.3.3 Query Processing with TL-Index

Lemma 11. Given two query vertices s and t, let CA(s, t) be the set of vertices

v such that X(v) is a common ancestor2 of X(s) and X(t). For each shortest

path p between s and t, let u be the vertex with the lowest depth in p. We have

u ∈ CA(s, t).

Based on Lemma 11, the shortest distance path count between s and t can

be computed using the following equation.

spc(s, t) =
∑

v∈CA(s,t),sd(s,v)+sd(v,t)=sd(s,t)

cspcs,v · cspcv,t, (4.2)

where cspcs,v denotes the number of all convex shortest paths between vertices

s and v. The shortest distance between s and t can be computed as follows.

sd(s, t) = min
v∈CA(s,t)

sd(s, v) + sd(v, t) (4.3)

We provide the query processing algorithm based on TL-Index in Algo-

rithm 6. We first compute the LCA of s and t in line 1. Then, for each common

ancestor of s and t, we initialize the shortest path count if a shorter distance is

found (lines 5–7). We increase the existing count if the same distance value is

found (lines 8–9).

Theorem 11. The time complexity of Algorithm 6 is O(h), where h is the

treeheight of the tree decomposition TG.

Proof. In line 1 of Algorithm 6, it takes O(1) time to find the LCA [14]. In line

3, the size of A(v) ∪ {v} is bounded by the treeheight h of TG.

2Each tree node is also regarded as an ancestor of itself in Lemma 11.

78

4.4. INDEX CONSTRUCTION Chapter 4

Algorithm 6: TL-Query
Input: the TL-Index and two query vertices s, t
Output: the shortest distance sd(s, t), and corresponding count spc(s, t)

1 v ← the LCA of s and t in the tree;
2 d←∞, c← 0;
3 foreach u ∈ A(v) ∪ {v} do
4 d′ ← sd(s, u) + sd(u, t);
5 if d′ < d then
6 d← d′;
7 c← cspcs,u · cspcu,t;
8 else if d′ = d then
9 c← c+ cspcs,u · cspcu,t;

10 return d and c

4.4 Index Construction

We propose algorithms for index construction in this section. Section 4.4.1 ex-

tends the framework in the state of the art and presents a non-trivial indexing

algorithm. Sections 4.4.2, 4.4.3, 4.4.4, and 4.4.5 propose optimizations and our

improved algorithm for index construction.

4.4.1 Basic Index Construction by Hub Pushing

In [115], the authors propose a hub-pushing algorithm to construct an order-

based labeling index. We introduce a non-trivial baseline named TL-Construct

by extending their framework.

The pseudocode of TL-Construct is provided in Algorithm 7. Given the tree

decomposition, TL-Construct processes vertices in a top-down manner in the tree.

The algorithm runs in n rounds. In each round (lines 2–20), we pick the vertex

u with the smallest depth in the tree and break the tie by picking an arbitrary

one. We search from u with a distance priority. The arrays D[·] and C[·] store

the distance and the shortest path count, respectively, from u to each vertex

79

Chapter 4 4.4.1 Basic Index Construction by Hub Pushing

Algorithm 7: TL-Construct
Input: A road network G(V,E, ϕ)
Output: The TL-Index of G

1 TG ← TreeDecomposition(G);
2 foreach X(u) ∈ TG in a top-down manner do
3 foreach v ∈ T(u) do D[v] =∞;
4 D[u] = 0, C[u] = 1;
5 Q← an empty queue prioritized by D[·];
6 Q.enqueue(u);
7 while Q is not empty do
8 v ← Q.dequeue();
9 d← minp∈A(u) sd(u, p) + sd(p, v);

10 if d < D[v] then
11 sd(u, v)← d, cspc(u, v)← 0;
12 continue

13 else sd(u, v)← D[v], cspc(u, v)← C[v] ;
14 foreach v′ ∈ N(v) do
15 nd← D[v] + ϕ(v, v′);
16 if D[v′] > nd ∧ Depth(v′) > Depth(u) then
17 D[v′]← nd, C[v′]← C[v];
18 Q.enqueue(v′)

19 else if D[v′] = nd then
20 C[v′]← C[v′] + C[v];

during the search.

The distance and the shortest path count to the source vertex u itself are

initialized by 0 and 1 respectively in line 4. In each iteration, we pop the top

vertex v from the priority queue in line 8, and v is the nearest unprocessed vertex

to u.

Line 9 computes the distance between u and v based on the information

computed in earlier rounds. For each common ancestor p of u and v, we compute

the distance by using p as a bridging vertex given that the shortest distances

from p to u and from p to v have been computed. If the distance based on earlier

80

4.4.1 Basic Index Construction by Hub Pushing Chapter 4

information is shorter than the current distance, we store the shorter distance

and terminate further exploration from v in lines 10–12. Otherwise, we store the

shortest distance sd(u, v) and the convex shortest path count cspc(u, v) for the

TL-Index.

We extend the search space from v to each neighbor of v. In line 16, D[v′] >

nd means we find shorter distance from u to v′. In this case, we replace the

existing distance and the convex shortest path count to v′. Note that D[v′] can

be∞ if v′ is not visited in the search. If the distance is the same as that computed

in earlier iterations (line 19), we increase the number of convex shortest paths

in line 20. Lines 16 and 19 also guarantee that we only process vertices with a

larger depth than the source vertex u.

Example 17. We show a running example for Algorithm 7. Given a graph G

(Fig. 1.2) and its tree decomposition TG (Fig. 4.2), let us consider the shortest

distance and the shortest path count between the vertices v14 and v16. Algorithm 7

starts from v14 and adds all its neighbors into Q in lines 14–18. It also updates

D[·] and C[·] in line 17. For instance, we have D[v15] = 1, C[v15] = 1, D[v16] =

3, and C[v16] = 1 after scanning all the neighbors of v14. In the next iteration,

suppose Q pops v15 in line 8, and Algorithm 7 expands its neighbor, i.e., v16 in

line 15-20. We have nd = D[v15] + ϕ(v16, v15) = 1 + 2 = 3 which equals D[v16].

Thus, we add C[v16] and C[v15] in line 20. When Q pops v16, we store D[v16]

and C[v16] to sd(v14, v16) and cspc(v14, v16), respectively. When Q is empty in

line 7, we have computed the shortest distance and the shortest path count from

v14 to each other vertex. The next vertex is v6 in line 2. Consider a case that

u = v6 when Q pops v16 in line 8. We find D[v16] = 11 which is greater than

sd(v6, v14) + sd(v14, v16) = 9 (lines 9-10). Therefore, we set sd(v6, v16) = 9,

cspc(v6, v16) = 0 (line 11) and terminate the exploration in line 12.

Theorem 12. The time complexity of Algorithm 7 is O(nh2 + nh log n).

81

Chapter 4 4.4.2 A New Upward Computing Framework

Algorithm 8: Operator ⊖
Input: A road network G and a vertex u ∈ V (G)
Output: The graph G⊖ u

1 foreach v, w ∈ N(u) do
2 if (v, w) /∈ E ∨ ϕ(v, w) > ϕ(v, u) + ϕ(u,w) then
3 E ← E ∪ {(v, w)};
4 ϕ(v, w)← ϕ(v, u) + ϕ(u,w);
5 ς(v, w)← ς(v, u)× ς(u,w);
6 else if ϕ(v, w) = ϕ(v, u) + ϕ(u,w) then
7 ς(v, w)← ς(v, w) + ς(v, u)× ς(u,w);

8 remove u and all incident edges from G;

Proof. For each vertex u ∈ G, we only visit the vertices v ∈ T (u). Thus, we

visit O(n · h) times in total. In each visit, we query O(h) times in line 9. The

maintenance of the priority queue Q costs O(h ·m+ h · n log n) using Fibonacci

heap. Thus, the time complexity of Algorithm 7 is O(nh2 + nh log n).

4.4.2 A New Upward Computing Framework

The index construction algorithm proposed in Section 4.4.1 essentially computes

a distance value and a count value for each pair of vertices with an ancestor-

descendant relationship. For each vertex u in each round, Algorithm 7 performs

a priority-queue-based search for all vertices in the subtree rooted from u and

computes values between u and all its descendants. However, the search space

can be the whole graph in the worse case. In addition, for each visited vertex

v, the algorithm scans all the ancestors of u to check if a shorter distance value

exists, which incurs significant extra cost.

To improve the efficiency of index construction, we propose a novel index

construction algorithm, which is called TL-Construct∗. TL-Construct∗ adopts an

upward computing framework. Specifically, for each vertex u in each round, we

82

4.4.3 Graph Reduction Chapter 4

compute the distance value and the count value between u and all its ancestors in

the tree. We propose a graph reduction technique in Section 4.4.3 to support the

correctness of the upward computing framework. We relax the index definition

in Section 4.4.4 to speed up the upward computation of the shortest distance

and the shortest path count while guaranteeing the correctness simultaneously.

We show the final index construction algorithm in Section 4.4.5.

4.4.3 Graph Reduction

Preserving Shortest Path Count. For simplicity, we first introduce the

DC-Graph, which is denoted by G(V,E, ϕ, ς). Compared with the conventional

road network, the DC-Graph contains an additional function ς to assign a count

weight for each edge. Given a path p in a DC-Graph, we define the count value

of p, denoted by ς(p), as the following equation.

ς(p) =
∏
e∈p

ς(e) (4.4)

Given two vertices u and v in a DC-Graph G′, to count the number of shortest

paths spcG′(u, v), we sum the count values of all their shortest paths instead of

just calculating the number of paths. The DC-Graph is a generalized version of

conventional road networks. Given ς(e) = 1 for all edges e, counting paths in

a DC-Graph is equivalent to counting those in the corresponding conventional

graph with the same vertices and edges. Next, we define the DCP-Graph as

follows.

Definition 16. (DCP-Graph) Given a road network G(V,E, ϕ), a DC-Graph

G′(V ′, E ′, ϕ′, ς) is a DCP-Graph if V ′ ⊆ V and for every pair u, v ∈ V ′, sdG(u, v) =

sdG′(u, v) and spcG(u, v) = spcG′(u, v).

83

Chapter 4 4.4.3 Graph Reduction

v3

v13 v2

v14

v6
[3:1]

[3:1]

[3:2]

[4:1]

[1:1] [2:1]

[4:2]

[6:1]

(a) A reduced graph
G′ of G

v19v20

v16v15 v17

v18

v13 v2

v1 v3

v5

v4
1

2

2

2 1

2

2 2
1

2

1

1
1

2

(b) Local graph for v3 and v13 in
the original graph G.

v3

v13 v2

[3:1] [3:2]

[4:1]

(c) Local graph
for v3 and v13
in the reduced
graph G′.

Figure 4.4: Examples of optimizations in index construction based on the graph
G in Fig. 1.2 and its tree decomposition in Fig. 4.2. For each edge in the
subfigures (a) and (c), the label means [the distance weight ϕ: the count weight
ς]. For the subfigure (b), the label means the distance of the edge.

Example 18. Fig. 4.4 (a) shows a DCP-graph with five vertices from G in

Fig. 1.2. All other vertices are reduced. Each edge has two weights namely ϕ

and ς, we denote them by [ϕ : ς]. The reduced graph G′ preserves the shortest

distance and the shortest path count of all pairs of vertices in G′. For example,

we have sdG(v2, v6) = sdG′(v2, v6) = 4 and spcG(v2, v6) = spcG′(v2, v6) = 2. We

also have sdG(v14, v6) = sdG′(v14, v6) = 6 and spcG(v14, v6) = spcG′(v14, v6) = 3.

Based on Definition 16, we propose a reduction operation for each vertex in

a graph G and transform G to a DCP-Graph as shown in Algorithm 8. Note

that for any edge e whose count weight ς(e) is not defined, we initialize it as 1

in the algorithm. For every pair of neighbors v, w of u in G, if 1) the edge (v, w)

does not exist earlier, or 2) the edge (v, w) exists but a shorter edge appears

(line 2), we create the edge and replace the edge distance weight and the edge

count weight by ϕ(v, u) + ϕ(u,w) and ς(v, u) × ς(u,w), respectively. If there is

an existing edge (v, w) and the distances are the same (line 6), we increase the

corresponding edge count weight in line 7.

Lemma 12. Algorithm 8 returns a DCP-Graph of G.

Proof. Let G′ be G⊖w. For any vertices u ∈ V (G′) and v ∈ V (G′), we consider

84

4.4.3 Graph Reduction Chapter 4

the following two cases:

• Case 1: the shortest path from u to v in G does not pass through w. Thus, we

know sdG(u, v) = sdG′(u, v) and spcG(u, v) = spcG′(u, v) as the shortest path

in G is also the shortest path in G′.

• Case 2: the shortest path from u to v in G passes through w. In this case,

suppose that the shortest path between u and v is (u, . . . , wi, w, wj, . . . , v).

As Algorithm 8 eliminates w in G′, and inserts a new edge (wi, wj) with

ϕ(wi, wj) = ϕ(wi, w)+ϕ(w,wj) and ς(wi, wj) = ς(wi, w)× ς(w,wj) (if there is

no edge (wi, wj) ∈ G or ϕ(wi, wj) > ϕ(wi, w) + ϕ(w,wj) in G) or ς(wi, wj)←

ς(wi, wj)+ς(wi, w)×ς(w,wj) (if there is already ϕ(wi, wj) = ϕ(wi, w)+ϕ(w,wj)

in G).

Hence, both the distance and the corresponding edge count are preserved, and

Algorithm 8 returns a DCP-Graph of G.

Graph Reduction in Tree Decomposition. We can reduce the graph in

tree decomposition in a natural way, given that we need to connect every pair of

neighbors when eliminating each vertex in tree decomposition. The revised tree

decomposition is called DCP-Tree Decomposition and is shown in Algorithm 9.

Lines 4–10 iteratively reduce each vertex from the graph. The vertex u is removed

from G in line 8. π(·) is an array to record the removing order of all vertices.

Performing the operator ⊖ for all vertices would not increase the time complexity

of tree decomposition.

Lemma 13. The time complexity of Algorithm 9 is O(n · w2 + n log n).

Proof. In Algorithm 9, the dominant cost for each vertex is maintaining and

selecting the vertex with the smallest degree in V ′, which costs O(n · log n) time.

In line 8, the ⊖ operator costs O(w2) time. Thus, the overall time complexity of

Algorithm 9 is O(n · w2 + n log n).

85

Chapter 4 4.4.4 Relaxing Convex Shortest Path

Algorithm 9: DCP-TreeDecomposition

Input: G(V,E, ϕ)
Output: Tree decomposition TG

1 TG ← ∅
2 foreach e ∈ E do ς(e) = 1;
3 V ′ ← V, i← 1;
4 while V ̸= ∅ do
5 u← the vertex with the smallest degree in V ;
6 X(u)← {u} ∪N(u);
7 create a tree node X(u) in TG;
8 G← G⊖ u;
9 π(u) = i;

10 i← i+ 1;

11 foreach u ∈ V ′ do
12 if |X(u)| > 1 then
13 v ← argminv∈X(u)\{u} π(v);
14 set X(v) be the parent of X(u) in TG;

15 return TG

4.4.4 Relaxing Convex Shortest Path

In this section, we focus on the phase of computing convex shortest path count.

We simplify the logic of index construction by relaxing the convex shortest path

count in the index definition. Given a graph G, its tree decomposition TG and

two vertices u, v with Depth(u) ̸= Depth(v), the local graph of u and v is the

induced subgraph of T(u) ∪ T(v) in G. That is to say, the local graph contains

all the vertices who have tree depths no smaller than both u and v.

Example 19. Given graph G in Fig. 1.2 and the tree decomposition in Fig. 4.2,

the local graph for v2 and v13 in V (G) is shown in Fig. 4.4 (b). As we can see

from the figure, all the vertices are from the subtree rooted by v13, given that

T(v2) ⊂ T(v13).

Based on the concept of the local graph, we relax the definition of the convex

86

4.4.4 Relaxing Convex Shortest Path Chapter 4

shortest path as follows.

Definition 17. (Local Shortest Distance and Local Shortest Path

Count) Given a tree decomposition TG of graph G(V,E), the local shortest

distance (resp. shortest path count) between two vertices u and v, denoted by

sd(u, v)− (resp. cspc(u, v)−), is the shortest distance (resp. shortest path count)

of u and v in their local graph.

Example 20. Let us continue Example 19. In the local graph (Fig. 4.4(b)), for

vertices v2 and v13, we can find the shortest path p1 = (v2, v1, v13). The shortest

distance sd(v2, v13)
− = 4, and the local shortest path count is cspc(v2, v13)

− = 1.

By contrast, When we look at the full graph G in Fig. 1.2, we find the shortest

path p2 = (v2, v14, v13) which has a smaller distance than the local shortest path

p1. We can also see that Depth(v14) < min(Depth(v2),Depth(v13)) in TG and p2

is not a convex shortest path. Therefore, the shortest distance between v2 and

v13 in the full graph G is sd(v2, v13) = 3, and the convex shortest path count is

cspc(v2, v13) = 0,

Lemma 14. Given a convex shortest path p between two vertices u and v, p is

a local shortest path in the local graph of u and v.

Lemma 15. Algorithm 6 is correct if we replace the shortest distance and the

convex shortest path count in TL-Index (Definition 15) by the local shortest dis-

tance and the local shortest path count, respectively.

Proof. Given vertices u and v, w ∈ CA(u, v). We first consider the short-

est paths between u and w. If there is any convex shortest path between u

and w, we have sd(u,w) = sd(u,w)− and cspc(u,w) = cspc(u,w)− based on

Lemma 14. If there is no convex shortest paths between u and w, we have

sd(u,w) < sd(u,w)−. Based on Theorem 9, there must be at least one ver-

tex w′ ∈ A(w) that satisfies sd(u,w) = sd(u,w′)− + sd(w′, w)− and spc(u,w) =

87

Chapter 4 4.4.5 The Final Algorithm

∑
w′ cspc(u,w′)− · cspc(w′, w)−. We have the same result for the shortest paths

between w and v. Thus, Algorithm 6 is correct.

Based on Lemma 15, we compute the local shortest distance and the local

shortest path count from each vertex to its ancestors. Compared to computing

the exact shortest distance and convex shortest path count, the local values re-

duce significant search space in the index construction. Recall that based on the

graph reduction techniques in Section 4.4.3, we have a reduced graph preserving

the shortest distance and the shortest path count during the index construction.

By combing the reduction and the local computation ideas, computing the local

shortest distance and local shortest path count is conducted in a local reduced

subgraph.

Example 21. An example to compute values from v3 to v13 is provided in Fig. 4.4

(c). When processing v3, many other vertices have been reduced as shown in G′

of Fig. 4.4 (a). Based on Lemma 15, we only care the induced subgraph of all

vertices in G′ without a depth smaller than v13. The final search space is shown

in Fig. 4.4 (c).

4.4.5 The Final Algorithm

As shown in Algorithm 10, we first compute the tree decomposition and the

count weight for all new edges (shortcuts) inserted to the graph. Then, for each

vertex u, we compute the local shortest distance and the local shortest path

count from u to its ancestors in lines 3–12. Specifically, X(u) \ {u} in line 4

are neighbors of u in the DCP-Graph after performing the reduction operation

⊖ for all subtree vertices of u. Note that for every vertex u′ in X(u) \ {u}, the

values have been computed in earlier rounds. Therefore, we use each neighbor u′

to compute the distance and the count from u to each v (line 6 and line 7), since

88

4.4.5 The Final Algorithm Chapter 4

Algorithm 10: TL-Construct∗

Input: A road network G(V,E, ϕ)
Output: The TL-Index of G

1 TG ← DCP-TreeDecomposition(G);
2 foreach X(u) ∈ TG in a top-down manner do
3 foreach v ∈ A(u) do
4 foreach u′ ∈ X(u) \ {u} do
5 if Depth(u′) < Depth(v) then continue;
6 d← ϕ(u, u′) + sd(u′, v)−;
7 c← ς(u, u′) · cspc(u′, v)−;
8 if d < sd(u, v)− then
9 sd(u, v)− ← d;

10 cspc(u, v)− ← c;
11 else if d = sd(u, v)− then
12 cspc(u, v)− ← cspc(u, v)− + c;

1
1

6
1

3
2

11
1

5
1

v14

v13

v16

6
3v6 v14 [6, 3]X(v6)/{v6}:

v6 [6, 1]X(v13)/{v13}: v14 [1, 1]

X(v16)/{v16}: v13 [5, 1] v14 [3, 2]

Different from the values by basic index construction.

Figure 4.5: An example of TL-Construct∗.

the shortest path from u to v must pass at least one of the neighbors. We do not

need to consider the neighbor u′ with a smaller depth than the target vertex v in

line 5 since u′ is not in the local graph. During computing distance via neighbors,

we replace the shortest distance and shortest path count if a shorter distance is

found (lines 8–10). We increase the count if the same shortest distance is found

(lines 11–12).

Example 22. We show a running example with a partial TL-Index in Fig. 4.5.

89

Chapter 4 4.5. EXPERIMENTS

On the right side, we list the distance weight and the corresponding count weight

derived by the DCP-TreeDecomposition (Algorithm 9). Given u = v6 in line

2, we need to check its ancestor v14. In line 6 and 7, we have d = ϕ(v6, v14) +

sd(v14, v14)
− = 6+0 = 6 and c = ς(v6, v14)·cspc(v14, v14)− = 1×1 = 1. Given that

sd(v6, v14)
− is initialized as ∞, we update sd(v6, v14)

− = 6 and cspc(v6, v14)
− =

1. For the iteration of u = v16 in line 2, when v = v14 in line 3, we update

sd(v16, v14)
− = 3 and cspc(v16, v14)

− = 2, which is straightforwardly derived by

DCP-TreeDecomposition. Then, for the labels from v16 to v6 (v = v6 in line 3),

we calculate d = ϕ(v16, v13) + sd(v13, v6)
− = 5 + 6 = 11 and c = ς(v16, v13) ·

cspc(v13, v6)
− = 1 in lines 6–7. Then, we update the labels correspondingly in

line 9-10. Note that the labels from v16 to v6 and v13 differ from those in the

TL-index in Fig. 4.3. This is because we only store the local shortest distance

and the local shortest path count by our final algorithm.

Theorem 13. The time complexity of Algorithm 10 is O(n log n+ nhw), where

n is the number of vertices, h is the treeheight, and w is the treewidth.

Proof. In line 1, Algorithm 9 takes O(n · w2 + n log n). From line 2 to line

12, there are three loops and the time complexity is O(nhw). The overall time

complexity is O(n log n+ nhw).

4.5 Experiments

We conduct extensive experiments to evaluate our methods against the state-of-

the-art approach. All the algorithms are implemented in C++ with -O3 opti-

mization, and the experiments are conducted on a Linux machine with an Intel

Xeon Gold 6248 2.5GHz CPU and 768GB RAM. We evaluate all the algorithms

90

4.5. EXPERIMENTS Chapter 4

on fourteen real-world graphs as shown in Table 4.2. GRD is the power grid net-

work of the western states in the USA3. SYD is a public transportation network

containing all the public transportation stops in Sydney [62]. All the rest are

road networks from DIMACS 4. The statistics are reported in Table 4.2.

Compared Algorithms. In our experiments, we compare our algorithms with

the state-of-the-art solution HL-Index [115] for the shortest path counting query

processing on real-world networks. We obtain the C++ code from the authors

and revise their index construction algorithm to handle weighted graphs by re-

placing the Breadth-First Search with the Dijkstra’s Search, given that only

unweighted graphs are considered in their implementation. We compare the

following algorithms in experiments.

• HL-Index: The hub-labeling index in [115].

• HL-Query: The query processing algorithm in [115].

• HL-Construct: The index construction algorithm in [115].

• TL-Index: Our index structure (Definition 15).

• TL-Query: Our query processing algorithm (Algorithm 6).

• TL-Construct: Our basic indexing algorithm (Algorithm 7).

• TL-Construct∗: Our optimized indexing algorithm (Algorithm 10).

Note that the hub-labeling method cannot finish indexing the USA dataset

within 24 hours, thus we do not report the results.

Exp-1: Query Time. We compare the average query time between TL-Query

and HL-Query. For each dataset, we randomly generate one million queries. We
3http://konect.cc/
4http://www.diag.uniroma1.it//challenge9/download.shtml

91

http://konect.cc/
http://www.diag.uniroma1.it//challenge9/download.shtml

Chapter 4 4.5. EXPERIMENTS

Table 4.2: Statistics of road networks.

Name Description n m h w
GRD US Power Grid 4,941 6,594 72 25
SYD Public Transport 24,063 28,695 194 79
NY NYC 264,346 733,846 505 134
BAY Bay Area 321,270 800,172 403 108
COL Colorado 435,666 1,057,066 465 146
FLA Florida 1,070,376 2,712,798 520 136
NW Northwest US 1,207,945 2,840,208 548 146
NE Northeast US 1,524,453 3,897,636 828 219

CAL CA and NV 1,890,815 4,657,742 713 215
LKS Great Lakes 2,758,119 6,885,658 1325 370
EUS Eastern US 3,598,623 8,778,114 1022 272
WUS Western US 6,262,104 15,248,146 1041 326
CUS Central US 14,081,816 34,292,496 2433 660
USA Full US 23,947,347 58,333,344 2564 693

0

5

10

15

20

G
R
D

SY
D

N
Y

B
A

Y
C
O

L
FLA

N
W

N
E

C
A

L
LK

S
EU

S
W

U
S

C
U

S
U

SA

34.6

T
im

e
(µ

s)

TL−Query HL−Query

Figure 4.6: Query time.

record the query time of each algorithm and report the average time in Fig. 4.6.

We also show the speedup of TL-Query over HL-Query in Fig. 4.7. As we can see

from Fig. 4.6 and Fig. 4.7, TL-Query is significantly faster than HL-Query on all

datasets. This is mainly because TL-Query only needs to visit a small number

of labels compared with HL-Query in counting shortest paths. For example, in

the CUS dataset, TL-Query takes 5.14 µs on average while HL-Query requires

34.59 µs. TL-Query is 6.73 times faster than HL-Query.

92

4.5. EXPERIMENTS Chapter 4

0

1

2

3

4

5

6

7

G
R
D

SY
D

N
Y

B
A

Y
C
O

L
FLA

N
W

N
E

C
A

L
LK

S
EU

S
W

U
S

C
U

S
U

SA

S
p
ee

d
u
p

Figure 4.7: TL-Query speedup over HL-Query.

0

1000

2000

3000

G
R
D

SY
D

N
Y

B
A

Y
C
O

L
FLA

N
W

N
E

C
A

L
LK

S
EU

S
W

U
S

C
U

S
U

SA

#
 o

f
V

is
it

ed
 L

ab
el

s

TL−Query HL−Query

Figure 4.8: Number of visited labels in query processing.

Exp-2: Visited Label Size in Query Processing. When processing queries,

both TL-Query and HL-Query need to check and compare a number of labels

to derive the final result. We evaluate the number of visited labels in query

processing in this evaluation. Similar to the query processing time, we report the

average value of one million random queries. The results are shown in Fig. 4.8.

We can see that the average label size of TL-Query is significantly smaller than

HL-Query on all the datasets. For example, on the NE dataset, the average size

of TL-Query is 240, and that of HL-Query is 1164. That means, on average,

HL-Query needs to visit 1164 labels to finish the query, while TL-Index only

needs to visit 240 labels. This result is consistent with our query performance

evaluation in Fig. 4.6.

93

Chapter 4 4.5. EXPERIMENTS

TL−Query HL−Query

0

1

2

3

4

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

T
im

e
 (

µ
s)

(a) NY

0

1

2

3

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

T
im

e
 (

µ
s)

(b) BAY

0

1

2

3

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

T
im

e
 (

µ
s)

(c) COL

0

1

2

3

4

5

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

T
im

e
 (

µ
s)

(d) FLA

0

2

4

6

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

T
im

e
 (

µ
s)

(e) NW

0

5

10

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

T
im

e
 (

µ
s)

(f) NE

0

2

4

6

8

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

T
im

e
 (

µ
s)

(g) CAL

0

2

4

6

8

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

T
im

e
 (

µ
s)

(h) LKS

Figure 4.9: Query processing time varying query distance.

94

4.5. EXPERIMENTS Chapter 4

0

5

10

15

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

T
im

e
 (

µ
s)

(i) EUS

0

5

10

15

20

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

T
im

e
 (

µ
s)

(j) WUS

0

20

40

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

T
im

e
 (

µ
s)

(k) CUS

6

8

10

12

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

T
im

e
 (

µ
s)

(l) USA

Figure 4.9: Query processing time varying query distance (continued).

Exp-3: Varying Query Distance. We further test the query efficiency of the

algorithms by varying the query distance. Following Ouyang et al.’s experimenatl

setting [76], we generate ten groups of queries, Q1, Q2, . . . , Q10, by distances for

each dataset. Specifically, we set lmin to be 1,000 (1 kilometer) and lmax to

be the maximum resulting distance of any pair of vertices in the graph. Let

x = (lmax/lmin)
1/10. A randomly generated query belongs to Qi if its distance

between the source and target vertices falls in the range (lmin × xi−1, lmin × xi].

We randomly generate 10,000 queries for each group and each dataset. We record

the average time of TL-Query and HL-Query for the 10,000 queries and report

the results by varying query distance from Q1 to Q10 in Fig. 4.9.

We can see that our solution TL-Query outperforms HL-Query in all cases.

We also make the following observations. First, when the query distance in-

creases, the time cost of HL-Query increases. For example, on the BAY dataset,

HL-Query takes 1.869 µs on average to process Q1 queries. When handling Q10

queries, HL-Query takes 2.256 µs. This is because, in HL-Index, two faraway

95

Chapter 4 4.5. EXPERIMENTS

vertices may have more common labels than two close vertices. Second, in con-

trast to HL-Query, when the query distance increases, the time cost of TL-Query

decreases. On Q1 queries, TL-Index takes 1.447 µs. While on Q10 queries, it only

requires 0.776 µs. This is because, in TL-Query, the dominant cost is querying

the label from the LCA to the root. Intuitively, when the distance between two

vertices is long, their LCA is more likely to have a lower Depth in the tree de-

composition. Therefore, our proposed method visits fewer labels when the query

distance is longer. Third, when the distance between the source and the tar-

get vertices is relatively large, our method TL-Query is significantly faster than

HL-Query.

Exp-4: Index Construction. The index construction time for the algo-

rithms HL-Construct, TL-Construct∗, and TL-Construct is shown in Fig. 4.10.

When the dataset size increases, the indexing time of all the algorithms also

increases. Among all three algorithms, our TL-Construct∗ is the most efficient in

indexing. Our solution TL-Construct∗ is 8–20 times faster than HL-Construct on

large road networks. For example, on EUS, WUS, and CUS, our TL-Construct∗

is 19.41, 15.98, and 20.19 times faster than HL-Construct, respectively. Note

that HL-Construct cannot finish indexing USA within 24 hours. Compared to

TL-Construct, our proposed TL-Construct∗ is also several times faster. For exam-

ple, on EUS, WUS, CUS, and USA, our TL-Construct∗ is 9.34, 11.61, 14.27, and

13.92 times faster than TL-Construct. Meanwhile, our baseline algorithm is also

faster than HL-Construct for most datasets, thanks to the tree structure. The

results show the advance of our indexing algorithm.

Exp-5: Index Size. We report the index size for the HL-Index and our pro-

posed TL-Index. The results are shown in Fig. 4.11. When the size of the

network increases, the size of the index also increases for both algorithms. The

index size of our TL-Index is smaller than that of HL-Index on most datasets.

96

4.5. EXPERIMENTS Chapter 4

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

G
R
D

SY
D

N
Y

B
A

Y
C
O

L
FLA

N
W

N
E

C
A

L
LK

S
EU

S
W

U
S

C
U

S
U

SA

T
im

e
(s

)

TL−Construct* HL−Construct TC−Construct

Figure 4.10: Index construction time.

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

G
R
D

SY
D

N
Y

B
A

Y
C
O

L
FLA

N
W

N
E

C
A

L
LK

S
EU

S
W

U
S

C
U

S
U

SA

In
d
ex

 S
iz

e
(G

B
)

TL−Index HL−Index

Figure 4.11: Index size (GB).

Specifically, on most of the datasets, the index size of TL-Index is 20%–40%

smaller than that of HL-Index. This is because HL-Index is designed based on

a total vertex order. Many labels are precomputed for each vertex.

Exp-6: Indexing Scalability. We test the indexing time and the index size

when varying the dataset size (the number of vertices in the road networks)

from 106 to 24× 106, following Ouyang et al.’s work [76]. To conduct the study,

we partition the map of the United States into 10 × 10 grids, from which we

generate ten road networks (G1 to G10) by using the 1 × 1, 2 × 2, . . . , 10 × 10

grids situated in the central region of the map. We report the indexing time

and the index size in Fig. 4.12 (a) and Fig. 4.12 (b), respectively. When the

dataset increases from 106 to 24 × 106, the indexing time increases stably for

97

Chapter 4 4.5. EXPERIMENTS

10
1

10
2

10
3

10
4

10
5

10
6

4×10
6

8×10
6

12×10
6

16×10
6

20×10
6

24×10
6

T
im

e
(s

)
TL−Construct* TL−Construct HL−Construct

(a) Indexing time.

10
0

10
1

10
2

10
3

10
6

4×10
6

8×10
6

12×10
6

16×10
6

20×10
6

24×10
6

In
d
ex

 S
iz

e
(G

B
)

TL−Index HL−Index

(b) Index size.

Figure 4.12: Scalability testing.

all algorithms. Our TL-Construct∗ always outperforms the other two algorithms.

HL-Construct cannot finish the datasets whose sizes are greater than 18 × 106

within 24 hours. Therefore, they are not reported in the figure.

Exp-7: The Number of Shortest Paths. We report the average and the

maximum shortest path count in Fig. 4.13 and Fig. 4.14. Fig. 4.13 shows that

the larger the road network, the greater the shortest paths count. This is because

the shortest paths on larger road networks may have more hops, and we are

more likely to get the shortest paths with the same shortest distance. Generally,

for small networks, like NY, BAY, and COL, the average shortest path count is

around 1.5. For medium networks, like FLA and WUS, the average shortest path

count is about 3–7. For large networks, like CUS and USA, the average shortest

path count is 52 and 97, respectively. Fig. 4.14 shows the average and maximum

98

4.6. CHAPTER SUMMARY Chapter 4

1

10
1

10
2

10
4

10
6

G
R
D

SY
D

N
Y

B
A

Y
C
O

L
FLA

N
W

N
E

C
A

L
LK

S
EU

S
W

U
S

C
U

S
U

SA

C
o
u
n
t

#

Average Count# Maximum Count#

Figure 4.13: Shortest path count on different graphs.

1

10
1

10
2

10
4

10
6

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

Q
8

Q
9

Q
10

C
o
u
n
t

#

Average Count# Maximum Count#

Figure 4.14: Shortest path count varying distance.

shortest path count number varying the shortest distance on the USA graph.

The results on other graphs show a similar trend. The ten groups of queries are

the same as those in Exp-3. The shortest path count number increases with the

increase of the shortest distance, which is in accordance with the results above.

4.6 Chapter Summary

In this chapter, we study the shortest path counting query problem on road

networks. We devise a novel index structure named TL-Index based on the tree

decomposition method. The TL-Index supports efficient shortest path counting

queries that outperform the state-of-the-art method. Moreover, we also present

efficient index construction algorithms. The experimental results demonstrate

99

Chapter 4 4.6. CHAPTER SUMMARY

the efficiency of our proposed algorithms.

100

Chapter 5

SHORTEST PATH COUNTING

FOR DYNAMIC ROAD

NETWORKS

5.1 Chapter Overview

In this chapter, we continue our study on the shortest-path counting query on

road networks. Specifically, we aim to analyze the index maintenance issue in the

index proposed in Chapter 4 when the weight on the road network changes. This

chapter is structured as follows. Section 5.2 provides the problem definition and

a general updating framework. Then, in Section 5.3, we show improved updating

techniques for weight decreasing and increasing, respectively. We also discuss the

design and impact of the local distance in TL-Index. Section 5.4 evaluates the

proposed algorithms and Section 5.5 concludes this chapter.

101

Chapter 5 5.2. TL-INDEX MAINTENANCE

5.2 TL-Index Maintenance

We first introduce the problem definition of TL-Index maintenance in Section 5.2.1.

We then provide a general framework that locates the elements impacted by the

updates in the TL-Index.

5.2.1 Problem Statement

Following Chapter 4, we still consider a road network G = (V,E, ϕ) which is

a degree-bounded, connected, and weighted graph. V (G) is a set of vertices,

E(G) is a set of edges, and ϕ : e ∈ E(G) 7→ N+ is a weight function for each

edge. We also have a TL-Index T which is already built by the construction

methods proposed in Chapter 4. For each vertex v ∈ V in graph G, there

is a corresponding tree node X(v) in T (G) that holds the distance and count

information from v to all its ancestors in T (G). When changes are made to the

weights on some edges in G, the task is to determine which nodes in T have

labels that are impacted by the updates and update the corresponding label

values. The problem of maintaining the TL-Index is formally defined as follows.

Problem Definition Given a road network G and its corresponding TL-Index

T , the TL-Index maintenance problem aims to efficiently update the labels in T

when G is dynamically updated.

5.2.2 An Up-and-Down Framework

In this section, we first review the TL-Index construction process, and then

propose an up-and-down updating framework.

In Chapter 4, the tree decomposition TG of a graph G is constructed by

removing the vertex with the smallest degree. This construction method ensures

that the structure of TG is dependent solely on the graph structure, and not on

102

5.2.2 An Up-and-Down Framework Chapter 5

the weights of the edges in G. Therefore, any changes made to the weights of

the edges in G will not affect the structure of TG. Instead, only the labels on the

nodes of TG, specifically the shortest distance and convex shortest path count

labels, need to be updated.

Let us first reconsider the graph reduction process in Section 4.4.3. Given

a road network G, a DCP-graph G′ of G, which is a reduced graph of G, is

generated in the graph reduction process. In each reduction step, we eliminate

a vertex W from the DCP-graph G′. When a vertex w is removed from G′, the

tree node X(w) is generated in TG that contains all the edges connecting w to

its neighbors in G′ before the removal. Suppose the vertices u and v are w’s two

arbitrary neighbors before removing w, i.e., u, v ∈ N(w), there are two possible

conditions after removing w. First, if there is no edge between u and v in G′,

i.e., (u, v) /∈ G′, we generate a new edge (u, v) with ϕ(u, v) and ς(u, v) according

to the ϕ and ς values of (u,w) and (w, v), and insert (u, v) to the reduced graph.

Second, if there is already the edge between u and v in G′, we compare the

weights of ϕ(u, v) and ς(u, v) between the current (u, v) and the newly generated

values according to the ϕ and ς values of (u,w) and (w, v), and update ϕ(u, v)

and ς(u, v) accordingly.

In the index maintenance process, whenever the values of (w, u) or (w, v)

change, we need to update ϕ(u, v) and ς(u, v) for edge (u, v). This is because

ϕ(u, v) and ς(u, v) are dependent on the values of (u,w) and (w, v). Additionally,

changes to ϕ(u, v) or ς(u, v) will also affect other edges that depend on (u, v),

leading to a chain of updates that continues until no further updates are neces-

sary. In the following, we denote the edges on the DCP-graph G′ as shortcuts

for clearer illustration. Thus, when an edge in G changes its weight, our aim is

to iteratively update shortcuts in G′, until 1. there is no more change of ϕ and

ς of all the affected nodes; 2. there is no more edge dependent on the changed

103

Chapter 5 5.2.2 An Up-and-Down Framework

edge, which means either node of the changed edge reaches the root of TG.

During such an iterative update process, it is necessary to locate and re-

compute the values of the affected shortcuts. To facilitate the recalculation, we

define the following shortcut table ST.

Definition 18. Given two vertices u and v, the shortcut table ST records the

eliminated vertices that affect the shortcut between u and v, i.e., ST(u, v) =

{w1, w2, . . . , wn}, where wi affects (u, v) when it is eliminated in the DCP-Tree

Decomposition.

We can efficiently include the construction of the shortcut table ST into

the DCP-Tree Decomposition process by inserting the eliminated vertex w into

ST(u, v) for each pair of its neighbors u, v ∈ N(w), at the time of vertex elimi-

nation.

With the help of the shortcut table ST, the process of recalculating the values

of potentially impacted shortcuts is made more efficient. The table enables us

to promptly recompute the values of ϕ(u, v) or ς(u, v) for a shortcut (u, v) when

it is affected by the previous iteration by examining the eliminated vertices in

ST that have an impact on (u, v).

In the updating process, when the weight of an edge (u, v) is changed, we

utilize the shortcut table ST to recompute the ϕ and ς values of the shortcut

between u and v, denoted as ϕ′(u, v) and ς ′(u, v), and compare them to the

original values of ϕ(u, v) and ς(u, v). If the distance or count values of the

shortcut (u, v) are changed, then it is possible that the shortcuts between each

vertex w ∈ X(u) and v, supposing π(u) < π(v), may be impacted. In such

cases, we mark the shortcut between v and w that needs to be checked for each

w ∈ X(u). Then, following a bottom-up order along the tree structure, we check

and update the marked shortcut iteratively.

After updating all the shortcuts that need to be checked, we have the nodes

104

5.2.2 An Up-and-Down Framework Chapter 5

that have been affected by the update and the up-to-date distance and count

values for all the shortcuts. The next step is to recompute the shortest distance

labels and the convex shortest path count labels for each node that was impacted

by the update and any further nodes that may have been affected as a result.

This process is also performed iteratively.

Following the update order of shortcuts and labels, we propose an up-and-

down maintenance framework, which is shown in Algorithm 11.

Algorithm 11: TL-Update
Input: Graph G and the TL-Index T , the edge (u, v) with π(u) < π(v),

and its new weight ϕ′
G(u, v)

Output: The updated TC-index
1 ϕG(u, v)← the original weight of edge (u, v) ∈ G;
2 AFF← ∅
3 Q← an empty priority queue
4 push (u, v) into Q
5 while Q is not empty do
6 (u,w)← Q.pop() with minimal π(u)
7 AFF← AFF ∪ {u}
8 recompute ϕ(u,w) and ς(u,w) with ST
9 if ϕ(u,w) or ς(u,w) changes then

10 foreach v ∈ X(u) do
11 if π(v) > π(w) then
12 push (w, v) into Q

13 else if π(v) < π(w) then
14 push (v, w) into Q

15 Let p ∈ AFF s.t. π(p) = max π(v)∀v ∈ AFF, UpdateLabels(p)
16 Procedure UpdateLabels(p)
17 Update sd(p, a) and cspc(p, a) for each a ∈ A(p)
18 foreach child Xc of Xp do
19 UpdateLabels(c);

In Algorithm 11, we first initialize an empty priority queue Q that prioritizes

the minimal π(u). We utilize the priority queue to realize the bottom-up updates

105

Chapter 5 5.3. AN UP-FORWARD UPDATING APPROACH

of the shortcuts. Each time we pop up and check the shortcut with the minimal

π, which indicates the shortcut is at the bottom of all the possibly affected

shortcuts. In line 3, we push the edge (u,v) whose weight has changed into Q.

Lines 4-12 show the bottom-up process of updating shortcuts. Each time,

Q pops the shortcut that could be affected with the lowest π(u). We mark u

affected by putting it into AFF in line 7. Then, we recompute the ϕ(u,w) and

ς(u,w) with ST in line 8. If either ϕ(u,w) or ς(u,w) changes, then for each

v ∈ X(u), the values between v and w need to be checked. Hence, we push them

into Q.

Finally, we update the shortest distance and convex shortest path count labels

of all the affected nodes with the help of ϕ, ς and AFF. The process starts from

the vertex p ∈ AFF with the largest π in TG. We iterate over the sub-tree rooted

at N(p) in a top-down manner. For each N(v) ∈ TG(p), we recompute the sd

and cspc labels from v to all its ancestors.

5.3 An Up-forward Updating Approach

Although Algorithm 11 avoids recomputing the TL-Index from scratch, it may

still be inefficient due to excessive, unnecessary computations.

Firstly, in real-world applications, we may have multiple edge changes, and

it is inefficient to update the whole index every time an edge is changed. Sup-

pose updating one edge costs O(update) time, and then it costs k × O(update)

time when we update k edges. When k is large, such an updating process may

cost a large amount of time. However, during the k times’ updating process,

there could be many overlapping areas that are repeatedly updated. Thus, to

avoid redundant computation, we can devise a batched updating algorithm that

updates the index only once with a batch of edge changes.

106

5.3.1 Index Maintenance for Weight Decrease Chapter 5

Secondly, for the shortcut updates, we first record the impacted shortcuts and

check them one by one by recomputing the ϕ and ς values with ST. However,

it is unnecessary to recompute each shortcut with ST. For many cases, each

time we judge whether a shortcut could be affected, we can derive its values

after imposing the change by carefully designing the value updating strategy

and up-forward the values to the check step.

Thirdly, for the label updates, Algorithm 11 updates the labels of the whole

subtree of the highest found node in the tree, which is inefficient. When the

found node is high up in the tree, the whole tree will be examined. To avoid

such redundant calculations, it is advisable to adopt an up-forward updating

technique for the label values.

Considering the updating framework depicted in Algorithm 11, the updating

process involves the transmission of change information among edges, shortcuts,

and labels. Changes in edges lead to changes in some shortcuts, which in turn

affect further shortcuts. The changes in all shortcuts result in alterations to

some labels, and ultimately, changes in some labels trigger changes in other

labels. This updating process can be divided into four steps.

Based on this process, we propose the optimized index update methods.

To differentiate between the effects of weight increase and decrease, we have

developed separate methods for each case. The term shortcut is also referred to

as super edge. In the following, these two terms will be used interchangeably.

5.3.1 Index Maintenance for Weight Decrease

To address the edge weight decrease case, we introduce an index maintenance

technique consisting of four steps: Edge-Super Decrease, Super-Super Decrease,

Super-Label Decrease, and Label-Label Decrease.

Edge-Super Decrease The algorithm Algorithm 12 presents a method for

107

Chapter 5 5.3.1 Index Maintenance for Weight Decrease

batch edge weight decrease processing. It takes as input a list of edges whose

weights have decreased and handles them collectively. Similar to Algorithm 11,

the algorithm utilizes a priority queue P to record the shortcuts whose weights

have changed. This difference is that we store the edge along with the original

distance and count values, and if a shortcut (u, v) has already been added to P ,

we do not add it again.

Each time it pops an edge whose weight has decreased in line 3. Then it

compares the new weight to the distance value ϕ of the shortcut between them.

If the new weight is smaller, which means we find the shortest path with a

shorter distance. We update the shortcut and mark it as updated by pushing it

as well as its old distance and count values into the priority queue P . If the new

weight is found to be equal to the distance value of the shortcut, it indicates the

existence of a new route with an equivalent shortest distance. In this scenario,

the previous count value is incremented by one, and the shortcut is marked as

updated by inserting the previous distance and count values into the priority

queue P . As the distance remains unchanged, it is straightforward to deduce

that only the count value has been altered when processing this shortcut. Note

that for an edge (u, v), we always assume π(u) < π(v).

Super-Super Decrease After executing Algorithm 12, all the shortcuts that

are affected by the list of edges whose weights have decreased are stored in

the priority queue P . Subsequently, the algorithm Algorithm 13 calculates the

impact of the change in these shortcuts on other related shortcuts. This pro-

cess continues until no more shortcuts require modification, with each iteration

adding further influenced shortcuts to the priority queue P . Additionally, an-

other priority queue Q is utilized to keep track of all the changes made to the

shortcuts, which will later have an impact on the changes to the labels. In line

3, a shortcut with its original distance and count values is extracted from the

108

5.3.1 Index Maintenance for Weight Decrease Chapter 5

Algorithm 12: EdgeSuperDec
1 P ← an empty priority queue, minimizes π
2 while ∆G is not empty do
3 (u, v, ϕ′

G(u, v), 1)← ∆G.pop()
4 if ϕ′

G(u, v) < ϕ(u, v) then
5 P .insert(u, v, ϕ(u, v), ς(u, v))
6 ϕ(u, v)← ϕ′

G(u, v)
7 ς(u, v)← 1

8 else if ϕ′
G(u, v) = ϕ(u, v) then

9 P .insert(u, v, ϕ(u, v), ς(u, v))
10 ς(u, v)← ς(u, v) + 1

11 return P

priority queue. Subsequently, for each vertex w that belongs to X(u), it is de-

termined if the values of shortcut (v, w) will be impacted. Here, it is assumed

that π(w) > π(v), indicating that node X(w) is higher than node X(v). If

π(w) < π(v), the vertices w and v are simply swapped and the process is carried

out accordingly. This swap has been omitted for the sake of simplicity in the

illustration.

Line 6 checks if the shortcut (u,w) has already been added to the priority

queue P . If it has, we store the previous count value of (u, v) and leave the

update process for (v, w) to be handled by (u,w). This is a crucial step to avoid

double updates to the count value of (v, w), which could lead to incorrect count

values. Each time a shortcut’s count value is updated, it may be altered once, so

it is important to ensure that each shortcut is updated only once. This technique

of deferring the update skips the first shortcut and delegates the update to the

second shortcut when both shortcuts have been changed. The old count value

of (u, v) is stored so that it can be used to update the values of (v, w) at a later

stage. This information is recorded for (u,w) for later use.

In lines 7 and 8, we calculate the new distance and count values of the shortcut

109

Chapter 5 5.3.1 Index Maintenance for Weight Decrease

(v, w) by considering u as an intermediate node and denote them as d and c,

respectively, Line 9 judges whether the distance value of (u, v) has decreased. If

it decreases, we treat it as a weight-decreasing case and handle it accordingly.

On the other hand, if the distance value remains the same, it means that only

the count value of (u, v) has changed, and we handle it as a count-change case.

In the weight-decrease case, the new distance value is checked against ϕ(v, w).

If the new distance is smaller, the distance and count values are updated. If the

new distance is equal to ϕ(v, w), the count value of ς(v, w) is updated by adding

the count value through u in line 18.

For the count-change case, the presence of the shortest paths passing through

u is evaluated in line 19. If so, the count value ς(v, w) is updated by adding the

new count value through u and subtracting the old count value through u, as

shown in line 23. Line 22 ensures that ςu,w always holds the previous count value

for the shortcut (u,w).

Every time we discover updates to either the distance or count values, we push

the altered shortcuts into both P and Q. We repeat the process of examining

the shortcuts in P until it is empty and keep track of all the changed shortcuts

by storing them in Q.

Super-Label Decrease The next step after generating Q with Algorithm 13 is

to compute the labels that are impacted by the edge changes. This is done by

using the Algorithm 14 algorithm. At the beginning of Algorithm 14, we initialize

an empty priority queue R to record the labels that have been impacted by the

weight changes of the shortcuts. Then, in line 3, we retrieve the shortcut changes

one by one from Q. Note that Q maximizes π, which means we start from the

top of the tree. From line 4 to line 19, we check for each ancestor a of u. We

suppose π(a) > π(v), which means X(a) is on top of X(v). When π(a) < π(v),

we simply swap the vertices a and v and carry out the process accordingly. This

110

5.3.1 Index Maintenance for Weight Decrease Chapter 5

Algorithm 13: SuperSuperDec
1 Q← P , Q maximizes π, S ← ∅
2 while P is not empty do
3 (u, v, ϕ, ς)← P.pop()
4 foreach w ∈ X(u) do
5 suppose π(w) > π(v);
6 if (u,w) ∈ P then S ← S ∪ (u, v, ς) and continue ;
7 d← ϕ(u, v) + ϕ(u,w)
8 c← ς(u, v) · ς(u,w)
9 if ϕ(u, v) < ϕ then

10 if d < ϕ(v, w) then
11 P.insert(v, w, ϕ(v, w), ς(v, w))
12 Q.insert(v, w, ϕ(v, w), ς(v, w))
13 ϕ(v, w)← d
14 ς(v, w)← c

15 else if d = ϕ(v, w) then
16 P.insert(v, w, ϕ(v, w), ς(v, w))
17 Q.insert(v, w, ϕ(v, w), ς(v, w))
18 ς(v, w)← ς(v, w) + c

19 else if ϕ(u, v) = ϕ and d = ϕ(v, w) then
20 P.insert(v, w, ϕ(v, w), ς(v, w))
21 Q.insert(v, w, ϕ(v, w), ς(v, w))
22 get ςu,w from S otherwise ςu,w ← ς(u,w)
23 ς(v, w)← ς(v, w) + c− ς · ςu,w

24 return Q

111

Chapter 5 5.3.1 Index Maintenance for Weight Decrease

swap has been omitted for simplicity in the illustration.

If both the shortcut (u, v) and the label (v, a) have changed, we may en-

counter a similar double-update issue. Therefore, in line 6, we record the short-

cut (u, v) and postpone the update to avoid the double-update. Next, in lines

7 and 8, we compute the new distance label value and the count label value.

We then check the weight-decrease case and count-change case for the shortcut

(u, v). Depending on the case, we update sd(u, a) and spc(u, a) accordingly.

Whenever a label (u, a) is changed, we add the update to R, which will be de-

livered to Algorithm 15 to further check other labels that would be affected by

the labels in R.

Algorithm 14: SuperLabelDec
1 R← an empty priority queue, maximizes π, S ← ∅
2 while Q.is not empty do
3 (u, v, ϕ, ς)← Q.pop()
4 foreach a ∈ A(u) do
5 suppose π(a) > π(v);
6 if (v, a) ∈ R then S ← S ∪ (u, v, ς) and continue ;
7 d← ϕ(u, v) + sd(v, a)
8 c← ς(u, v) · spc(v, a)
9 if ϕ(u, v) < ϕ then

10 if d < sd(u, a) then
11 R.insert(u, a, sd(u, a), spc(u, a))
12 sd(u, a)← d
13 spc(u, a)← c

14 else if d = sd(u, a) then
15 R.insert(u, a, sd(u, a), spc(u, a))
16 spc(u, a)← spc(u, a) + c

17 else if ϕ(u, v) = ϕ and d = sd(u, a) then
18 R.insert(u, a, sd(u, a), spc(u, a))
19 spc(u, a)← spc(u, a) + (ς(u, v)− ς) · spc(v, a)

20 return R, S

112

5.3.2 Index Maintenance for Weight Increase Chapter 5

Label-Label Decrease To calculate the influence between labels, we first give

the definition of reverse tree node as follows.

Definition 19. (Reverse Tree Node) Given a graph G(V,E) and its tree

decomposition TG, a vertex u ∈ V is said to be in a reverse tree node for a vertex

v ∈ V , denoted by u ∈ X−1(v), if v ∈ X(u).

The use of the reverse tree node X−1(v) facilitates the identification of the

shortcut (x, u) and enables the determination of whether (x, v) requires updating.

The algorithm Algorithm 15 provides a detailed procedure for checking and

updating the labels that are possibly affected by the updates made to the labels

in R.

Each time, we fetch a label pair (u, v) from R, and check for each vertex x in

v’s reverse tree node if we need to update the labels between x and v. We still

assume π(u) > π(x) to simplify the illustration. Lines 5 and 6 calculate the new

label values for x, v via u. We judge if the new distance label is smaller. If so,

we update the sd and spc label values. If the new distance value equals the old

one, we update the spc value accordingly.

5.3.2 Index Maintenance for Weight Increase

To maintain the index with the edge weight increase case, we similarly have

four steps, including Edge-Super Increase, Super-Super Increase, Super-Label

Increase, and Label-Label Increase.

Edge-Super Increase Similar to the algorithm in Algorithm 12, we also use

a priority queue to store the shortcuts that are affected by the weight increase

of the edges. In line 4, we compare the original weight of edge (u, v) and the

distance value of its shortcut ϕ(u, v). If they have the same length, it means

that after the increase in weight, the edge (u, v) is no longer the shortest path

113

Chapter 5 5.3.2 Index Maintenance for Weight Increase

Algorithm 15: LabelLabelDec
1 while R is not empty do
2 (u, v, ϕ, ς)← R.pop()
3 foreach x ∈ X−1(v) do
4 suppose π(u) > π(x)
5 d← ϕ(x, u) + sd(u, v)
6 c← ς(x, u) · spc(u, v)
7 if sd(u, v) < ϕ then
8 if d < sd(x, v) then
9 R.insert(x, v, sd(x, v), spc(x, v))

10 sd(x, v)← d
11 spc(x, v)← c

12 else if d = sd(x, v) then
13 R.insert(x, v, sd(x, v), spc(x, v))
14 spc(x, v)← spc(x, v) + c

15 else if sd(u, v) = ϕ and d = sd(x, v) then
16 R.insert(x, v, sd(x, v), spc(x, v))
17 get ςx,u from S otherwise ςx,u ← ς(x, u)
18 spc(x, v)← spc(x, v) + c− ςx,u · ς)

114

5.3.2 Index Maintenance for Weight Increase Chapter 5

between u and v. Therefore, in line 6, we subtract one from ς(u, v) to account

for this change. In lines 7-8, if ς(u, v) has become zero, we recompute ϕ(u, v)

and ς(u, v) with the help of ST.

Algorithm 16: EdgeSuperInc
1 P ← an empty priority queue, minimizes π
2 while ∆G is not empty do
3 (u, v, ϕ′

G(u, v), ς)← ∆G.pop()
4 if ϕG(u, v) = ϕ(u, v) then
5 P .insert(u, v, ϕ(u, v), ς(u, v))
6 ς(u, v)← ς(u, v)− 1
7 if ς(u, v) = 0 then
8 recompute ϕ(u, v) and ς(u, v) with ST

9 return P

Super-Super Increase

After executing Algorithm 16, we have recorded all shortcuts that are directly

influenced by the weight increase of edges in the priority queue P . Then, for

each shortcut in P , we compute the shortcuts that may be indirectly affected by

it.

In line 3, we extract the shortcut (u, v) from P , and for each w ∈ X(u), we

check if the paths passing through u were the shortest paths before the edge

weight was increased. If they were, we judge if ϕ(u, v) increases or simply the

count changes and adjust the count values accordingly. If ς(v, w) becomes zero

in line 15, we recompute the labels with the help of ST.

Similar to Algorithm 13, we add all the changed shortcuts to both P and

Q. The priority queue P is used to iterate over the affected shortcuts, while

the queue Q records all the shortcuts that are affected for the label influence

computation.

Super-Label Increase

115

Chapter 5 5.3.2 Index Maintenance for Weight Increase

Algorithm 17: SuperSuperInc
1 Q← P , Q maximizes π, S ← ∅
2 while P is not empty do
3 (u, v, ϕ, ς)← P.pop()
4 foreach w ∈ X(u) do
5 suppose π(w) > π(v);
6 if (u,w) ∈ P then S ← S ∪ (u, v, ϕ, ς) and continue ;
7 get ϕu,w, ςu,w from S otherwise ϕu,w ← ϕ(u,w), ςu,w ← ς(u,w)
8 d← ϕ+ ϕu,w

9 c← ς · ςu,w
10 if d = ϕ(v, w) then
11 if ϕ(u, v) > ϕ then
12 P.insert(v, w, ϕ(v, w), ς(v, w))
13 Q.insert(v, w, ϕ(v, w), ς(v, w))
14 ς(v, w)← ς(v, w)− c
15 if ς(v, w) = 0 then
16 recompute ϕ(v, w) and ς(v, w) with ST

17 else if ϕ(v, w) = ϕ then
18 P.insert(v, w, ϕ(v, w), ς(v, w))
19 Q.insert(v, w, ϕ(v, w), ς(v, w))
20 ς(v, w)← ς(v, w)− c+ ς(u,w) · ς(u, v)

21 return Q

116

5.3.2 Index Maintenance for Weight Increase Chapter 5

Algorithm 18 computes the labels that are affected by the weight increase

of shortcuts in Q. The algorithm first checks the shortcuts from Q one by one,

and for each ancestor a of u, it checks if the weight change of the shortcut (u, v)

affects the distance and count labels between u and a.

In lines 7-8, the algorithm computes the original distance and count values of

u, a via v, and compares them with sd(u, a). If they are equal, then the weight

change of shortcut (u, v) will affect the weight of the labels between u and a. The

algorithm then updates the labels between u and a according to the change in

the shortcut weight. If the count value spc(u, a) becomes zero after the update,

the algorithm recomputes the labels between u and a by visiting all the ancestors

of u.

After iterating over all the shortcuts in Q, the label pairs that have been

changed are stored in R.

Label-Label Increase After computing all the label pairs that are directly

affected by the changes of the shortcuts, we calculate the further affected label

pairs. For each label pair (u, v), we check each vertex x in v’s reverse tree node

X−1(v) to see if the labels for (x, v) will be affected by the changes of the label

for (u, v). If it is affected, we update the labels accordingly.

To calculate the further affected label pairs, we first iterate through all the

label pairs in R, and for each pair (u, v), we examine all the vertices x in X−1(v)

and check whether the label pair (x, v) needs to be updated.

If the shortest distance between x and v equals the sum of the shortest

distances between x and u and between u and v, then the label pair (x, v) needs

to be updated. We update the labels and check if any further label pairs need to

be updated as a result. If the shortest path count of the label pair (x, v) becomes

zero, we recompute the labels between x and v by visiting all the ancestors of x.

117

Chapter 5 5.3.2 Index Maintenance for Weight Increase

Algorithm 18: SuperLabelInc
1 R← an empty priority queue, maximizes π
2 while Q.is not empty do
3 (u, v, ϕ, ς)← Q.pop()
4 foreach a ∈ A(u) do
5 suppose π(a) > π(v);
6 if (v, a) ∈ R then S ← S ∪ (u, v, ϕ, ς) and continue ;
7 d← ϕ+ sd(v, a)
8 c← ς · spc(v, a)
9 if d = sd(u, a) then

10 if ϕ(u, v) > ϕ then
11 R.insert(u, a, sd(u, a), spc(u, a))
12 spc(u, a)← spc(u, a)− c
13 if spc(u, a) = 0 then
14 recompute sd(u, a) and spc(u, a) with A(u)

15 else if ϕ(u, v) = ϕ then
16 R.insert(u, a, sd(u, a), spc(u, a))
17 spc(u, a)← spc(u, a)− c+ ς(u, v) · spc(v, a)

18 return R, S

118

5.3.3 An Optimized Priority Queue Chapter 5

Algorithm 19: LabelLabelInc
1 while R is not empty do
2 (u, v, ϕ, ς)← R.pop()
3 foreach x ∈ X−1(v) do
4 suppose π(u) > π(x)
5 get ϕx,u, ςx,u from S otherwise ϕx,u ← ϕ(x, u), ςx,u ← ς(x, u)
6 d← ϕx,u + ϕ
7 c← ςx,u · ς
8 if d = sd(x, v) then
9 if sd(u, v) > ϕ then

10 R.insert(x, v, sd(x, v), spc(x, v))
11 spc(x, v)← spc(x, v)− c
12 if spc(x, v) = 0 then
13 recompute sd(x, v) and spc(x, v) with A(x)

14 else if sd(u, v) = ϕ then
15 R.insert(x, v, sd(x, v), spc(x, v))
16 spc(x, v)← spc(x, v)− c+ ς(x, u) · spc(u, v)

5.3.3 An Optimized Priority Queue

Although the algorithms presented in Section 5.3.1 and Section 5.3.2 significantly

reduce unnecessary recomputations of shortcuts and labels, the update process

is still computationally intensive. This is because we use a priority queue that

prioritizes π to record and arrange the update order of the changed shortcuts

and labels. Since many shortcuts and labels will be affected during the mainte-

nance process, managing the priority queue becomes a significant computational

bottleneck.

To address this issue, we can leverage the tree decomposition property and

the updating order to devise an optimized priority queue. Specifically, our up-

dating order follows a top-down order along the tree branch. For example, in

Algorithm 19, we need to ensure that the labels between u and v are updated

before we update the labels from x to v. The priority queue R uses π(u) to en-

119

Chapter 5 5.3.4 Local Graph Revisited

sure this order. However, since the label change only affects nodes on the same

branch, the processing order of nodes on different branches does not matter.

Therefore, we can use a relaxed order Depth to arrange the updating order

within each branch. The Depth order only considers nodes on the same branch,

and it is always bounded by the tree height h of the tree decomposition. We

can use a bucket-like structure to store all affected label pairs according to the

Depth of their lower nodes. When we push a changed label pair, we store it in

the corresponding Depth. When we pop a changed label pair, we start from the

smallest Depth. Both the push and pop operations can be done in O(1) time,

which is much faster than using a traditional priority queue.

5.3.4 Local Graph Revisited

In Section 4.4.4, we relaxed the convex shortest path to the local shortest path,

which reduces unnecessary computation while maintaining query result correct-

ness. This property not only benefits construction efficiency but also facilitates

index updating, as we only need to check the local shortest paths in our index

maintenance.

To compute updates of the local shortest distance and path count, we only

need to modify the Super-Label and Label-Label updating strategies to consider

only vertices in the local graph.

Specifically, in Algorithm 14 and Algorithm 18, we replace a ∈ A(u) with

a ∈ A(v) in line 4. This ensures that we only update (u, a) when X(a) is on top

of X(v) in the tree.

Similarly, in Algorithm 15 and Algorithm 19, we modify line 3 to change

x ∈ X−1(v) to x ∈ X−1(u). This ensures that node X(x) is always under node

X(u) in the tree.

120

5.4. EXPERIMENTS Chapter 5

5.4 Experiments

We conduct experiments to evaluate the proposed updating methods. All the

algorithms are implemented in C++ with -O3 optimization, and the experiments

are conducted on a Linux machine with an Intel Xeon Gold 6248 2.5GHz CPU

and 768GB RAM. We evaluate all the algorithms on twelve real-world road

networks as shown in Table 5.1. All the datasets are from DIMACS 1. For each

dataset, we randomly select 100 to 500 edges and change the weight of these

edges. In the edge weight increase case, we double the edge weight for each

selected edge, i.e., change the weight from ϕ(e) to 2 × ϕ(e). In the edge weight

decrease case, we half the edge weight for each selected edge, i.e., change the

weight from ϕ(e) to ϕ(e)/2.

Compared Algorithms. We compare the following algorithms in experiments.

• TL-Dec: Our basic index updating algorithm (Algorithm 11) with edge weight

decrease.

• TL-Inc: Our basic index updating algorithm (Algorithm 11) with edge weight

increase.

• TL-Dec∗: Our optimized index updating algorithm for edge weight decrease.

• TL-Inc∗: Our optimized index updating algorithm for edge weight increase.

Exp-1: Updating Time. We compare the average updating time between the

proposed maintenance algorithms. For each dataset, we execute the proposed

methods in the edge weight decreasing and increasing cases, respectively.

We measured the update time of each algorithm and presented the results in

Fig. 5.1. The graph shows that all algorithms experience an increase in updating

1http://www.diag.uniroma1.it//challenge9/download.shtml

121

http://www.diag.uniroma1.it//challenge9/download.shtml

Chapter 5 5.4. EXPERIMENTS

Table 5.1: Statistics of road networks.

Name Description n m h w
NY NYC 264,346 733,846 505 134
BAY Bay Area 321,270 800,172 403 108
COL Colorado 435,666 1,057,066 465 146
FLA Florida 1,070,376 2,712,798 520 136
NW Northwest US 1,207,945 2,840,208 548 146
NE Northeast US 1,524,453 3,897,636 828 219

CAL CA and NV 1,890,815 4,657,742 713 215
LKS Great Lakes 2,758,119 6,885,658 1325 370
EUS Eastern US 3,598,623 8,778,114 1022 272
WUS Western US 6,262,104 15,248,146 1041 326
CUS Central US 14,081,816 34,292,496 2433 660
USA Full US 23,947,347 58,333,344 2564 693

time as the number of changed edges increases. However, our optimized updat-

ing methods, TL-Dec∗ and TL-Inc∗, consistently outperform the basic updating

methods. For instance, in the CAL dataset, when 500 edges have changed,

TL-Dec and TL-Inc take 1385 seconds and 457 seconds on average, respectively,

while TL-Dec∗ only requires 81 seconds and TL-Inc∗ costs 155 seconds. The sig-

nificant improvement is attributed to the reduced computation of unnecessary

labels in our optimized updating methods. Moreover, we observed that TL-Dec∗

is faster than TL-Inc∗. This is because, during updating, TL-Inc∗ needs to visit

other labels to compute the changed label, whereas TL-Dec∗ can directly deduce

its value.

Exp-2: Proportion of Changed Labels. To gain a better understanding

of the index maintenance process during updates, we recorded the proportion

of labels that were updated for each dataset. We selected four representative

graphs for clear illustration, and similar results were obtained for other graphs.

As shown in Fig. 5.2, the proportion of labels that were updated increases with

the number of changed edges, which is consistent with the increase in time cost

122

5.5. CHAPTER SUMMARY Chapter 5

1

10

100

100 200 300 400 500

T
im

e
(s

ec
)

TL−Dec* TL−Dec TL−Inc* TL−Inc

(a) NY

1

10

100

100 200 300 400 500

T
im

e
(s

ec
)

TL−Dec* TL−Dec TL−Inc* TL−Inc

(b) BAY

10

100

100 200 300 400 500

T
im

e
(s

ec
)

TL−Dec* TL−Dec TL−Inc* TL−Inc

(c) COL

10

100

1000

100 200 300 400 500
T

im
e

(s
ec

)

TL−Dec* TL−Dec TL−Inc* TL−Inc

(d) CAL

Figure 5.1: Index Updating Time With Varying Weight Change Size

shown in Exp-1. Additionally, we observed that the proportion of changed labels

is relatively high when more edges’ weights have changed. For instance, on the

BAY dataset, when 500 edges’ weights changed, more than half of the labels

in the index also changed. This nature of high proportions of changed labels

makes the index maintenance process more challenging and limits the potential

acceleration.

5.5 Chapter Summary

In this chapter, we study the index maintenance problem for the index intro-

duced in Chapter 4 for efficiently counting the shortest paths in road networks

in the presence of changes in the weight of road segments. We start by devel-

oping a comprehensive updating framework that identifies the tree nodes whose

labels may have changed and updates them accordingly. Next, we examine op-

123

Chapter 5 5.5. CHAPTER SUMMARY

10%

20%

30%

40%

50%

100 200 300 400 500

C
h

an
g

ed
 P

ro
p

o
rt

io
n

NY
BAY
COL
CAL

Figure 5.2: Changed Label Proportion With Vary Weight Change Size.

timized strategies for handling decreases and increases in road segment weights

separately. The experimental results showcase the effectiveness of the proposed

updating algorithms.

124

Chapter 6

EPILOGUE

In this thesis, we provide a comprehensive study of the problems relating to two

special substructures in two types of large graphs. We first study the cohesive

subgraph structure and the problem of mining statistically significant cliques

in large labelled graphs. Then, we study the shortest path structure and the

shortest path counting problem in large road networks.

For the significant clique mining problem, we propose an efficient branch-and-

bound algorithm with sophisticated pruning technologies to efficiently enumerate

all the maximal statistically significant cliques. We conduct extensive experi-

ments to evaluate the proposed algorithms. The results show the effectiveness

and efficiency of our algorithms.

For the shortest path counting problem, we devise a novel index structure

based on the tree decomposition method. We provide efficient construction and

query algorithms for the index structure. Extensive experiments are conducted

to evaluate the efficiency of our proposed methods.

Real-world graphs are dynamic and constantly changing. To address this,

we have developed efficient methods for maintaining the index when the graph

updates. Our basic updating approach locates the changed region in the index

125

Chapter 6

and updates the labels without recomputing from scratch. To further accelerate

the computation, we propose improved algorithms. To evaluate the effectiveness

of our proposed methods, we conduct experiments on various graphs.

The following are the open problems that need further studies in our future

research.

• Pair-wise Shortest Path Enumeration on Road Networks. In this

study, we present a method for computing the shortest distance and path

count between two nodes in a road network. Once these values are ob-

tained, a natural follow-up task is to enumerate all the shortest paths

between the nodes.

• Parallel and distributed index construction for large graphs. While

our proposed index and construction methods outperform the state-of-the-

art approach, constructing the index on large graphs can still be time-

consuming. In our future work, we aim to investigate parallel or distributed

index construction methods to address this issue for large graphs.

• Other types of significant substructures computation on labeled

graphs. In addition to the clique model, there exist other cohesive sub-

graph models such as cores and trusses, which can effectively capture com-

munity structures in graphs. In our future work, we plan to investigate the

statistical significance of these models for improved community modeling.

126

BIBLIOGRAPHY

[1] I. Abraham, D. Delling, A. V. Goldberg, and R. F. Werneck. A hub-based

labeling algorithm for shortest paths in road networks. In International

Symposium on Experimental Algorithms, pages 230–241, 2011.

[2] I. Abraham, D. Delling, A. V. Goldberg, and R. F. Werneck. Hierarchical

hub labelings for shortest paths. In European Symposium on Algorithms,

pages 24–35, 2012.

[3] T. Akiba, Y. Iwata, K.-i. Kawarabayashi, and Y. Kawata. Fast shortest-

path distance queries on road networks by pruned highway labeling. In

Proceedings of the sixteenth workshop on algorithm engineering and exper-

iments (ALENEX), pages 147–154, 2014.

[4] T. Akiba, Y. Iwata, and Y. Yoshida. Fast exact shortest-path distance

queries on large networks by pruned landmark labeling. In SIGMOD,

pages 349–360, 2013.

[5] E. A. Akkoyunlu. The enumeration of maximal cliques of large graphs.

SIAM J. Comput., 2(1):1–6, 1973.

[6] M. Al Hasan and V. S. Dave. Triangle counting in large networks: a review.

Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery,

8(2):e1226, 2018.

127

Chapter 7 BIBLIOGRAPHY

[7] N. Alon, R. Yuster, and U. Zwick. Finding and counting given length

cycles. Algorithmica, 17(3):209–223, 1997.

[8] S. Arnborg, D. G. Corneil, and A. Proskurowski. Complexity of finding

embeddings in a k-tree. SIAM Journal on Algebraic Discrete Methods,

8(2):277–284, 1987.

[9] A. Arora, M. Sachan, and A. Bhattacharya. Mining statistically significant

connected subgraphs in vertex labeled graphs. In SIGMOD, pages 1003–

1014, 2014.

[10] D. A. Bader, S. Kintali, K. Madduri, and M. Mihail. Approximating be-

tweenness centrality. In Algorithms and Models for the Web-Graph, volume

4863, pages 124–137, 2007.

[11] D. A. Bader and K. Madduri. Parallel algorithms for evaluating centrality

indices in real-world networks. In ICPP, pages 539–550, 2006.

[12] H. Bast, D. Delling, A. V. Goldberg, M. Müller-Hannemann, T. Pajor,

P. Sanders, D. Wagner, and R. F. Werneck. Route planning in transporta-

tion networks. In Algorithm Engineering - Selected Results and Surveys,

pages 19–80. Springer, 2016.

[13] V. Batagelj and M. Zaversnik. An o(m) algorithm for cores decomposition

of networks. CoRR, cs.DS/0310049, 2003.

[14] M. A. Bender and M. Farach-Colton. The lca problem revisited. In Latin

American Symposium on Theoretical Informatics, pages 88–94, 2000.

[15] M. Berlingerio, F. Pinelli, and F. Calabrese. ABACUS: frequent pattern

mining-based community discovery in multidimensional networks. DMKD,

27(3):294–320, 2013.

128

BIBLIOGRAPHY Chapter 7

[16] D. Berlowitz, S. Cohen, and B. Kimelfeld. Efficient enumeration of maxi-

mal k-plexes. In SIGMOD, pages 431–444, 2015.

[17] I. Bezáková and A. Searns. On counting oracles for path problems. In

International Symposium on Algorithms and Computation, volume 123,

pages 56:1–56:12, 2018.

[18] H. L. Bodlaender. Treewidth: characterizations, applications, and compu-

tations. In International Workshop on Graph-Theoretic Concepts in Com-

puter Science, pages 1–14, 2006.

[19] H. L. Bodlaender, J. R. Gilbert, H. Hafsteinsson, and T. Kloks. Approx-

imating treewidth, pathwidth, and minimum elimination tree height. In

International Workshop on Graph-Theoretic Concepts in Computer Sci-

ence, pages 1–12. Springer, 1991.

[20] A. S. Bozkır, S. Güzin Mazman, and E. Akçapınar Sezer. Identification of

user patterns in social networks by data mining techniques: Facebook case.

In International symposium on information management in a changing

world, pages 145–153. Springer, 2010.

[21] U. Brandes. On variants of shortest-path betweenness centrality and their

generic computation. Soc. Networks, 30(2):136–145, 2008.

[22] M. Bressan, F. Chierichetti, R. Kumar, S. Leucci, and A. Panconesi.

Counting graphlets: Space vs time. In WSDM, pages 557–566, 2017.

[23] M. Bressan, S. Leucci, and A. Panconesi. Motivo: Fast motif counting via

succinct color coding and adaptive sampling. PVLDB, 12(11):1651–1663,

2019.

129

Chapter 7 BIBLIOGRAPHY

[24] C. Bron and J. Kerbosch. Finding all cliques of an undirected graph (al-

gorithm 457). Commun. ACM, 16(9):575–576, 1973.

[25] L. Chang. Efficient maximum clique computation over large sparse graphs.

In KDD, pages 529–538. ACM, 2019.

[26] L. Chang, J. X. Yu, and L. Qin. Fast maximal cliques enumeration in

sparse graphs. Algorithmica, 66(1):173–186, 2013.

[27] Z. Chen, A. W. Fu, M. Jiang, E. Lo, and P. Zhang. P2H: efficient distance

querying on road networks by projected vertex separators. In SIGMOD,

pages 313–325, 2021.

[28] H. Cheng, X. Yan, and J. Han. Mining graph patterns. In Frequent pattern

mining, pages 307–338. Springer, 2014.

[29] J. Cheng, Y. Ke, A. W. Fu, J. X. Yu, and L. Zhu. Finding maximal cliques

in massive networks by h*-graph. In SIGMOD, pages 447–458. ACM, 2010.

[30] J. Cheng, Y. Ke, A. W. Fu, J. X. Yu, and L. Zhu. Finding maximal cliques

in massive networks. ACM Trans. Database Syst., 36(4):21:1–21:34, 2011.

[31] N. Chiba and T. Nishizeki. Arboricity and subgraph listing algorithms.

SIAM J. Comput., 14(1):210–223, 1985.

[32] L. Chu, Z. Wang, J. Pei, Y. Zhang, Y. Yang, and E. Chen. Finding theme

communities from database networks. PVLDB, 12(10):1071–1084, 2019.

[33] E. Cohen, E. Halperin, H. Kaplan, and U. Zwick. Reachability and distance

queries via 2-hop labels. SIAM Journal on Computing, 32(5):1338–1355,

2003.

130

BIBLIOGRAPHY Chapter 7

[34] A. Conte, R. De Virgilio, A. Maccioni, M. Patrignani, and R. Torlone.

Finding all maximal cliques in very large social networks. In EDBT, volume

2016, pages 173–184. OpenProceedings. org, 2016.

[35] W. Cui, Y. Xiao, H. Wang, and W. Wang. Local search of communities in

large graphs. In SIGMOD, pages 991–1002. ACM, 2014.

[36] M. Danisch, O. D. Balalau, and M. Sozio. Listing k-cliques in sparse real-

world graphs. In WWW, pages 589–598. ACM, 2018.

[37] D. Delling, A. V. Goldberg, T. Pajor, and R. F. Werneck. Customizable

route planning in road networks. Transportation Science, 51(2):566–591,

2017.

[38] A. Denise, M. Régnier, and M. Vandenbogaert. Assessing the statistical

significance of overrepresented oligonucleotides. In WABI, volume 2149 of

Lecture Notes in Computer Science, pages 85–97. Springer, 2001.

[39] R. Diestel. Graph theory. Springer, 2016.

[40] E. W. Dijkstra et al. A note on two problems in connexion with graphs.

Numerische mathematik, 1(1):269–271, 1959.

[41] D. Eppstein, M. Löffler, and D. Strash. Listing all maximal cliques in

large sparse real-world graphs. ACM Journal of Experimental Algorith-

mics, 18:3.1–3.21, 2013.

[42] Y. Fang, R. Cheng, S. Luo, and J. Hu. Effective community search for

large attributed graphs. PVLDB, 9(12):1233–1244, 2016.

[43] J. Flum and M. Grohe. The parameterized complexity of counting prob-

lems. SIAM Journal on Computing, 33(4):892–922, 2004.

131

Chapter 7 BIBLIOGRAPHY

[44] L. Freeman. The Development of Social Network Analysis: A Study in the

Sociology of Science. Empirical Press, 2004.

[45] C. Gavoille, D. Peleg, S. Pérennes, and R. Raz. Distance labeling in graphs.

Journal of Algorithms, 53(1):85–112, 2004.

[46] R. Geisberger, P. Sanders, D. Schultes, and D. Delling. Contraction hi-

erarchies: Faster and simpler hierarchical routing in road networks. In

International Workshop on Experimental and Efficient Algorithms, pages

319–333, 2008.

[47] R. Geisberger, P. Sanders, D. Schultes, and C. Vetter. Exact routing in

large road networks using contraction hierarchies. Transportation Science,

46(3):388–404, 2012.

[48] A. V. Goldberg and C. Harrelson. Computing the shortest path: A search

meets graph theory. In SODA, volume 5, pages 156–165, 2005.

[49] H. He and A. K. Singh. Graphrank: Statistical modeling and mining of

significant subgraphs in the feature space. In ICDM, pages 885–890. IEEE,

2006.

[50] H. He and A. K. Singh. Efficient algorithms for mining significant sub-

structures in graphs with quality guarantees. In ICDM, pages 163–172.

IEEE, 2007.

[51] M. He and S. Kazi. Data structures for categorical path counting queries.

In 32nd Annual Symposium on Combinatorial Pattern Matching (CPM

2021), pages 15:1–15:17, 2021.

[52] Z. He, H. Liang, Z. Chen, C. Zhao, and Y. Liu. Computing exact p-values

132

BIBLIOGRAPHY Chapter 7

for community detection. Data Mining and Knowledge Discovery, pages

1–37, 2020.

[53] A. Himmel, H. Molter, R. Niedermeier, and M. Sorge. Enumerating max-

imal cliques in temporal graphs. In ASONAM, pages 337–344, 2016.

[54] X. Huang and L. V. Lakshmanan. Attribute-driven community search.

PVLDB, 10(9):949–960, 2017.

[55] A. Itai and M. Rodeh. Finding a minimum circuit in a graph. In Proceed-

ings of the ninth annual ACM symposium on Theory of computing, pages

1–10, 1977.

[56] S. Jain and C. Seshadhri. The power of pivoting for exact clique counting.

In WSDM, pages 268–276, 2020.

[57] M. B. Jdidia, C. Robardet, and E. Fleury. Communities detection and

analysis of their dynamics in collaborative networks. In 2007 2nd Inter-

national Conference on Digital Information Management, volume 2, pages

744–749. IEEE, 2007.

[58] Y. Jin, B. Xiong, K. He, Y. Zhou, and Y. Zhou. On fast enumeration

of maximal cliques in large graphs. Expert Systems with Applications,

187:115915, 2022.

[59] R. M. Karp. Reducibility among combinatorial problems. In CCC, The

IBM Research Symposia Series, pages 85–103. Plenum Press, New York,

1972.

[60] A. Kirkley, H. Barbosa, M. Barthelemy, and G. Ghoshal. From the be-

tweenness centrality in street networks to structural invariants in random

planar graphs. Nature communications, 9(1):1–12, 2018.

133

Chapter 7 BIBLIOGRAPHY

[61] A. M. C. A. Koster, H. L. Bodlaender, and S. P. M. van Hoesel. Treewidth:

Computational experiments. Electron. Notes Discret. Math., 8:54–57,

2001.

[62] R. Kujala, C. Weckström, R. K. Darst, M. N. Mladenović, and J. Saramäki.

A collection of public transport network data sets for 25 cities. Scientific

data, 5(1):1–14, 2018.

[63] R. Li, S. Gao, L. Qin, G. Wang, W. Yang, and J. X. Yu. Ordering heuristics

for k-clique listing. PVLDB, 13(11):2536–2548, 2020.

[64] R.-H. Li, Q. Dai, L. Qin, G. Wang, X. Xiao, J. X. Yu, and S. Qiao. Efficient

signed clique search in signed networks. In ICDE, pages 245–256. IEEE,

2018.

[65] X. Li, M. Wu, C.-K. Kwoh, and S.-K. Ng. Computational approaches for

detecting protein complexes from protein interaction networks: a survey.

BMC genomics, 11(1):S3, 2010.

[66] G. Liu, L. Wong, and H. N. Chua. Complex discovery from weighted ppi

networks. Bioinformatics, 25(15):1891–1897, 2009.

[67] C. Lu, J. X. Yu, H. Wei, and Y. Zhang. Finding the maximum clique in

massive graphs. PVLDB, 10(11):1538–1549, 2017.

[68] C. Ma, R. Cheng, L. V. Lakshmanan, T. Grubenmann, Y. Fang, and

X. Li. Linc: a motif counting algorithm for uncertain graphs. PVLDB,

13(2):155–168, 2019.

[69] S. Maniu, P. Senellart, and S. Jog. An experimental study of the treewidth

of real-world graph data. In ICDT, volume 127, pages 12:1–12:18. Schloss

Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

134

BIBLIOGRAPHY Chapter 7

[70] R. J. Mokken et al. Cliques, clubs and clans. Quality & Quantity,

13(2):161–173, 1979.

[71] J. W. Moon and L. Moser. On cliques in graphs. Israel journal of Mathe-

matics, 3(1):23–28, 1965.

[72] S. A. Moosavi, M. Jalali, N. Misaghian, S. Shamshirband, and M. H. Anisi.

Community detection in social networks using user frequent pattern min-

ing. KAIS, 51(1):159–186, 2017.

[73] F. Moser, R. Colak, A. Rafiey, and M. Ester. Mining cohesive patterns

from graphs with feature vectors. In SDM, pages 593–604, 2009.

[74] A. P. Mukherjee, P. Xu, and S. Tirthapura. Mining maximal cliques from

an uncertain graph. In ICDE, pages 243–254. IEEE Computer Society,

2015.

[75] E. Otte and R. Rousseau. Social network analysis: a powerful strategy, also

for the information sciences. Journal of information Science, 28(6):441–

453, 2002.

[76] D. Ouyang, L. Qin, L. Chang, X. Lin, Y. Zhang, and Q. Zhu. When

Hierarchy Meets 2-Hop-Labeling: Efficient Shortest Distance Queries on

Road Networks. In SIGMOD, pages 709–724, 2018.

[77] D. Ouyang, D. Wen, L. Qin, L. Chang, Y. Zhang, and X. Lin. Progressive

top-k nearest neighbors search in large road networks. In SIGMOD, pages

1781–1795, 2020.

[78] D. Ouyang, L. Yuan, L. Qin, L. Chang, Y. Zhang, and X. Lin. Efficient

shortest path index maintenance on dynamic road networks with theoret-

ical guarantees. PVLDB, 13(5):602–615, Jan. 2020.

135

Chapter 7 BIBLIOGRAPHY

[79] S. Pandey, Z. Wang, S. Zhong, C. Tian, B. Zheng, X. Li, L. Li, A. Hoisie,

C. Ding, D. Li, et al. Trust: Triangle counting reloaded on gpus. IEEE

Transactions on Parallel and Distributed Systems, 32(11):2646–2660, 2021.

[80] G. A. Pavlopoulos, M. Secrier, C. N. Moschopoulos, T. G. Soldatos, S. Kos-

sida, J. Aerts, R. Schneider, and P. G. Bagos. Using graph theory to

analyze biological networks. BioData mining, 4(1):1–27, 2011.

[81] J. Pei, D. Jiang, and A. Zhang. Mining cross-graph quasi-cliques in gene

expression and protein interaction data. In ICDE, pages 353–354. IEEE

Computer Society, 2005.

[82] M. Pontecorvi and V. Ramachandran. A faster algorithm for fully dynamic

betweenness centrality. CoRR, abs/1506.05783, 2015.

[83] A. Prado, M. Plantevit, C. Robardet, and J. Boulicaut. Mining graph topo-

logical patterns: Finding covariations among vertex descriptors. TKDE,

25(9):2090–2104, 2013.

[84] A. Prateek, A. Khan, A. Goyal, and S. Ranu. Mining top-k pairs of corre-

lated subgraphs in a large network. PVLDB, 13(9):1511–1524, 2020.

[85] N. Pržulj. Biological network comparison using graphlet degree distribu-

tion. Bioinformatics, 23(2):e177–e183, 2007.

[86] R. Puzis, Y. Elovici, and S. Dolev. Fast algorithm for successive compu-

tation of group betweenness centrality. Physical Review E, 76(5):056709,

2007.

[87] S. Ranu and A. K. Singh. Graphsig: A scalable approach to mining signif-

icant subgraphs in large graph databases. In ICDE, pages 844–855. IEEE,

2009.

136

BIBLIOGRAPHY Chapter 7

[88] T. R. Read and N. A. Cressie. Goodness-of-fit statistics for discrete mul-

tivariate data. Springer Science & Business Media, 2012.

[89] Y. Ren, A. Ay, and T. Kahveci. Shortest path counting in probabilistic

biological networks. BMC bioinformatics, 19(1):1–19, 2018.

[90] M. Riondato and E. M. Kornaropoulos. Fast approximation of betweenness

centrality through sampling. In WSDM, pages 413–422, 2014.

[91] B. Roberts and D. P. Kroese. Estimating the number of st paths in a

graph. J. Graph Algorithms Appl., 11(1):195–214, 2007.

[92] R. A. Rossi, D. F. Gleich, and A. H. Gebremedhin. Parallel maximum

clique algorithms with applications to network analysis. SIAM J. Scientific

Computing, 37(5), 2015.

[93] P. Sanders and D. Schultes. Highway hierarchies hasten exact shortest path

queries. In European Symposium on Algorithms, pages 568–579, 2005.

[94] S. B. Seidman. Network structure and minimum degree. Social networks,

5(3):269–287, 1983.

[95] J. Shi, L. Dhulipala, and J. Shun. Parallel clique counting and peeling

algorithms. In SIAM Conference on Applied and Computational Discrete

Algorithms, pages 135–146, 2021.

[96] M. Sozio and A. Gionis. The community-search problem and how to plan

a successful cocktail party. In KDD, pages 939–948. ACM, 2010.

[97] D. Surian, N. Liu, D. Lo, H. Tong, E.-P. Lim, and C. Faloutsos. Recom-

mending people in developers’ collaboration network. In 2011 18th Working

Conference on Reverse Engineering, pages 379–388. IEEE, 2011.

137

Chapter 7 BIBLIOGRAPHY

[98] M. Tomassini and L. Luthi. Empirical analysis of the evolution of a sci-

entific collaboration network. Physica A: Statistical Mechanics and its

Applications, 385(2):750–764, 2007.

[99] E. Tomita. Efficient algorithms for finding maximum and maximal cliques

and their applications. In WALCOM, volume 10167 of Lecture Notes in

Computer Science, pages 3–15, 2017.

[100] E. Tomita, A. Tanaka, and H. Takahashi. The worst-case time complexity

for generating all maximal cliques and computational experiments. Theor.

Comput. Sci., 363(1):28–42, 2006.

[101] C. E. Tsourakakis, U. Kang, G. L. Miller, and C. Faloutsos. Doulion:

counting triangles in massive graphs with a coin. In Proceedings of the

15th ACM SIGKDD international conference on Knowledge discovery and

data mining, pages 837–846, 2009.

[102] K. Tsuda. Entire regularization paths for graph data. In ICML, pages

919–926, 2007.

[103] L. G. Valiant. The complexity of enumeration and reliability problems.

SIAM Journal on Computing, 8(3):410–421, 1979.

[104] S. Vishveshwara, K. Brinda, and N. Kannan. Protein structure: insights

from graph theory. Journal of Theoretical and Computational Chemistry,

1(01):187–211, 2002.

[105] J. Wang and J. Cheng. Truss decomposition in massive networks. PVLDB,

5(9):812–823, 2012.

[106] D. Wen, L. Qin, Y. Zhang, X. Lin, and J. X. Yu. I/o efficient core graph

138

BIBLIOGRAPHY Chapter 7

decomposition: Application to degeneracy ordering. IEEE Trans. Knowl.

Data Eng., 31(1):75–90, 2018.

[107] K. Wongpanya, K. Sripimanwat, and K. Jenjerapongvej. Simplification

of frequency test for random number generation based on chi-square. In

AICT, pages 305–308. IEEE Computer Society, 2008.

[108] L. Wu, X. Xiao, D. Deng, G. Cong, A. D. Zhu, and S. Zhou. Shortest

path and distance queries on road networks: An experimental evaluation.

PVLDB, 5(5):406–417, 2012.

[109] Y. Xu, J. Cheng, A. W.-C. Fu, and Y. Bu. Distributed maximal clique com-

putation. In International Congress on Big Data, pages 160–167. IEEE,

2014.

[110] X. Yan, H. Cheng, J. Han, and P. S. Yu. Mining significant graph patterns

by leap search. In SIGMOD, pages 433–444, 2008.

[111] N. Ye and Q. Chen. An anomaly detection technique based on a chi-

square statistic for detecting intrusions into information systems. Quality

and Reliability Engineering International, 17(2):105–112, 2001.

[112] C. Zhang, Y. Zhang, W. Zhang, L. Qin, and J. Yang. Efficient maximal

spatial clique enumeration. In ICDE, pages 878–889. IEEE, 2019.

[113] M. Zhang, L. Li, W. Hua, R. Mao, P. Chao, and X. Zhou. Dynamic Hub

Labeling for Road Networks. In ICDE, pages 336–347, Chania, Greece,

Apr. 2021.

[114] P. Zhang and C. Moore. Scalable detection of statistically significant com-

munities and hierarchies, using message passing for modularity. Proceed-

ings of the National Academy of Sciences, 111(51):18144–18149, 2014.

139

Chapter 7 BIBLIOGRAPHY

[115] Y. Zhang and J. X. Yu. Hub labeling for shortest path counting. In

SIGMOD, pages 1813–1828, 2020.

[116] Y. Zhang and J. X. Yu. Relative subboundedness of contraction hierarchy

and hierarchical 2-hop index in dynamic road networks. In Proceedings of

the 2022 International Conference on Management of Data, pages 1992–

2005, 2022.

[117] Z. Zhang, X. Huang, J. Xu, B. Choi, and Z. Shang. Keyword-centric

community search. In ICDE, pages 422–433. IEEE, 2019.

[118] A. D. Zhu, H. Ma, X. Xiao, S. Luo, Y. Tang, and S. Zhou. Shortest

path and distance queries on road networks: towards bridging theory and

practice. In SIGMOD, pages 857–868, 2013.

140

	TITLE PAGE
	CERTIFICATE OF AUTHORSHIP/ORGINALITY
	ACKNOWLEDGEMENTS
	ABSTRACT
	PUBLICATIONS
	TABLE OF CONTENT
	LIST OF FIGURES
	LIST OF TABLES
	INTRODUCTION
	Significant Clique Computation
	Shortest Path Counting
	TL-Index Maintenance
	Roadmap

	LITERATURE REVIEW
	Techniques for Cohesive Subgraph Mining
	Techniques for Shortest Path Queries

	Computing Significant Cliques in Large Labeled Networks
	Chapter Overview
	Preliminaries
	Problem Definition
	Hardness and Challenges.

	A Branch-and-Bound Algorithm
	Basic Structural Graph Reduction
	Computing Maximal Significant Cliques

	Statistical Graph Reduction
	Pruning via Significant Core
	Pruning via Colorful Significant Core
	Pruning via Significant Truss

	The Final Algorithm
	Experiments
	Efficiency Evaluation
	Case study on DBLP

	Chapter Summary

	Efficient Shortest Path Counting on Large Road Networks
	Chapter Overview
	Preliminaries
	Problem Statement
	The State of the Art: Hub Labeling
	Opportunities

	Tree-based Shortest Path Counting
	Tree Decomposition
	TL-Index
	Query Processing with TL-Index

	Index Construction
	Basic Index Construction by Hub Pushing
	 A New Upward Computing Framework
	Graph Reduction
	Relaxing Convex Shortest Path
	The Final Algorithm

	Experiments
	Chapter Summary

	Shortest Path Counting For Dynamic Road Networks
	Chapter Overview
	TL-Index Maintenance
	Problem Statement
	An Up-and-Down Framework

	An Up-forward Updating Approach
	Index Maintenance for Weight Decrease
	Index Maintenance for Weight Increase
	An Optimized Priority Queue
	Local Graph Revisited

	Experiments
	Chapter Summary

	EPILOGUE
	BIBLIOGRAPHY

