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ABSTRACT

AN INTELLIGENT BIBLIOMETRIC SYSTEM FOR KNOWLEDGE

ASSOCIATION AND HIERARCHY DISCOVERY

by

Mengjia Wu

Unravelling the intricate knowledge patterns and uncovering the underlying in-

telligence concealed within scientific literature constitutes a persistent objective for

the bibliometric and data mining research communities. The rapid proliferation of

scientific publications, coupled with the increasing prevalence of cross-/multi-/inter-

disciplinary collaborations and the expanding scope of knowledge, pose continuous

challenges for scholars seeking to remain abreast of the latest advancements and

attain a comprehensive comprehension of their respective domains. Present knowl-

edge mining methodologies encounter difficulties in flexibly accommodating diverse

emerging demands, often necessitating prior expertise from domain specialists to

achieve effective analysis, thereby impeding their practicality in real-world knowl-

edge analysis tasks.

Aiming to contribute more adaptive and feasible knowledge mining approaches,

this thesis incorporates bibliometric and management theories, data mining and nat-

ural language processing techniques (i.e., intelligent bibliometrics) to construct an

intelligent bibliometric system for 1) knowledge association analysis and inference

and 2) knowledge hierarchy extraction and characterisation. The system consists

of two methodologies, with the scientific literature corpora as the input and bioen-

tity rankings, bioentity association predictions and topic hierarchy visualisations as

the output. The first methodology is a heterogeneous bioentity analysis method-

ology (HBAM), which focuses on the biomedical domain and provides a literature-

based knowledge discovery approach that ranks extracted bioentities and predicts



undiscovered bioentity associations. This methodology leverages bioentities’ hetero-

geneity and latent semantic similarities to facilitate more comprehensive bioentity

ranking and more accurate entity association prediction. The second methodology

focuses on knowledge hierarchies and develops two hierarchical topic tree (HTT)

models to extract and visualise topic hierarchies from scientific literature data adap-

tively. The two models can generate consistent research topics and solid parent-child

topic relationships, with the latter refined as parameter-free and has better adaptiv-

ity. Lastly, the constructed intelligent bibliometric system integrates the proposed

methods and a work pipeline, a Python-developed graphical user interface is then

developed to provide an accessible for non-technical background users to conduct

customised analysis. Academic researchers, policymakers, and entrepreneurs in cer-

tain domains can benefit from the system’s ability to uncover knowledge associations

and profile knowledge hierarchies for informed decision-making.

Dissertation directed by Dr Yi Zhang and Distinguished Professor Jie Lu.

School of Computer Science, Faculty of Engineering and Information Technology
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Chapter 1

Introduction

1.1 Background

Scientific literature serves as the fundamental repository of human knowledge in

contemporary sciences. Since scientific knowledge is primarily presented in unstruc-

tured text, reading has traditionally been the principal method for researchers and

the general public to stay abreast of scientific advancements and emerging knowl-

edge. However, the exponential growth of literature and the rapid advancement

of data analytic techniques have brought about significant transformations. These

changes have presented two major implications: 1) scholars face considerable chal-

lenges in managing the overwhelming volume of research papers, and 2) novel oppor-

tunities have arisen for the bibliometric and computer science research communities.

In recent decades, the advent of natural language processing (NLP), machine learn-

ing, and network analytics techniques has empowered us to harness big data from

scientific literature for knowledge extraction and discovery (Tang et al., 2008; Chen

et al., 2021; Wang et al., 2019a; Sinha et al., 2015). Although the ever-expanding

depth and breadth of knowledge, coupled with ongoing knowledge interactions, dis-

ruptions, and recombination (Dan and Chieh, 2008; Kaplan and Vakili, 2015), pose

challenges in achieving this objective; scholars have endeavoured to address specific

tasks aimed at unravelling knowledge composition and development patterns, which

can subsequently be applied in downstream research and applications. Among these

tasks, knowledge association discovery and hierarchy extraction have emerged as

particularly significant and complex endeavours.
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Knowledge association discovery aims to identify and establish connections and

relationships between structured knowledge (Sun et al., 2020b). Despite some knowl-

edge association tasks being performed on knowledge bases and graphs (Hao et al.,

2019; Sun et al., 2020c; Guo et al., 2019), another crucial area of research, known as

literature-based discovery (LBD), focuses on leveraging scientific literature data to

uncover knowledge associations (Pyysalo et al., 2019; Crichton et al., 2020). LBD

entails the process of inferring novel, credible, and informative knowledge by explic-

itly or implicitly associating two or more disparate concepts found in the literature

(Bruza and Weeber, 2008). As scientific knowledge is primarily conveyed through

unstructured textual formats, the practical approach involves extracting entities as

knowledge units (Ding et al., 2013) and utilising these entities and their relation-

ships for further analysis. It is worth noting that most knowledge association tasks

are tailored to specific domains, with the biomedical field standing out as a promi-

nent domain of interest due to the extensive knowledge yet to be discovered and the

immense potential value of new findings in this area (Al-Aamri et al., 2019; Ding

et al., 2013; Shang et al., 2014). Therefore, this thesis focuses specifically on the

biomedicine field. The extracted entities derived from scientific texts in biomedicine

are referred to as bioentities, encompassing diseases, chemicals, genes, and other

relevant entities (Kim et al., 2004).

Hierarchy is another significant and intricate aspect of knowledge organisation

and advancement. Bernstein (2000) articulates that hierarchy is a common nature of

knowledge structure and describes natural sciences as behaving “explicit, coherent,

systematically principled and hierarchical organisation of knowledge”. Real-world

hierarchical knowledge structures exist in a broad range of knowledge domains, e.g.,

the Association for Computing Machinery (ACM) Computing Classification System1

1https://dl.acm.org/ccs
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in computer science, the International Classification of Diseases (ICD) in medicine2,

and the library classification system in information science3, etc. Those observa-

tions in real-world instances indicate that hierarchy is an innate structure rooted

in knowledge development and has been widely accepted by academic communities

(Ba et al., 2019; Qian et al., 2020; Song et al., 2016; Xu et al., 2018). Furthermore,

knowledge hierarchy can help domain newcomers and stakeholders quickly compre-

hend the knowledge components of a research field and benefit various downstream

applications, including knowledge recommendation and inference (Gao et al., 2019;

Yang et al., 2017; Dinneen et al., 2018). However, manually curated knowledge hi-

erarchy systems are not available in every segmented knowledge domain, especially

for the new emerging fields. Hence, data-driven approaches that can build such

hierarchies automatically are in urgent demand and of great practical value.

Despite the presence of methodologies for biomedical knowledge association dis-

covery and hierarchy extraction from scientific literature data, these current ap-

proaches are subject to common limitations.

• First, existing biomedical knowledge association discovery methods are de-

signed for a specific research case (for example, a specific gene or disease) and

rely on expertise interpretation or prior knowledge, which are not generalised

for a broad range of applications;

• Second, most biomedical knowledge association discovery methods concentrate

on one single entity type and ignore the interactions between heterogeneous

categories of entities;

• Third, current biomedical knowledge association inference methods ignore the

semantic relationships between bioentities, which can be used as a valuable

2https://www.who.int/standards/classifications/classification-of-diseases

3https://www.oclc.org/en/dewey.html
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feature in knowledge association inference;

• Fourth, existing knowledge hierarchy extraction techniques inevitably suffer

from an excessive number of parameters, including the hierarchy depth and

the number of topics, that need pre-defined or decided by prior knowledge,

making them less adaptable for cases from different domains.

To address the above concerns, this thesis constructs an intelligent bibliometric

system for biomedical knowledge association analysis and hierarchy extraction. The

constructed system consists of existing work as follows:

The heterogeneous bioentity analysis methodology (HBAM) develops a work

pipeline for processing biomedical literature data, sorting heterogeneous bioenti-

ties and predicting bioentity associations. It incorporates a heterogeneous entity

network construction procedure, a non-dominated sorting genetic algorithm-based

scoring scheme, a bioentity2vec training model and a semantics-enhanced link pre-

diction method to rank bioentity importance/specificity and predict unobserved

emerging entity associations. The semantic similarity between bioentities improves

the performance of link prediction tasks and facilitates more accurate predictions

validated by experimental and empirical evidence;

The hierarchical topic tree (HTT)-I model provides a feasible and handy ap-

proach for extracting topic hierarchies by inputting a term co-occurrence network.

It exploits the idea of density peak clustering to identify term nodes with high density

and relatively long distances from other high-density nodes as community centroids.

An overlapping community allocation algorithm then applies to complete the com-

munity partition. This process iterates until no density peak nodes can be found.

The values of three evaluation indicators on the HTT-I model demonstrate that it

can generate consistent topics, solid parent-child topic associations with reasonable

information loss;
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The HTT-II model presents a refined version of HTT that fits a broader range

of network inputs with different degrees of clustering tendency. Still using the term

co-occurrence network as the input, the HTT-II model adopts k-shell decomposition

and the Louvain algorithm to partition parent and child layers of terms and terms

belonging to different topics. Compared with the HTT-I model, the HTT-II model

is parameter-free and embraces a different design to partition terms into parent and

child topics. This design can better retain coupling knowledge and differentiate

terms in parent and child topics. The results from the comparison experiment

demonstrate that the HTT-II model can generate consistent topics, solid parent-

child topic associations and exclusive sibling topics;

Apart from the methodological contributions, this thesis covers multiple empir-

ical studies to validate the performance and practical effectiveness of the proposed

methods, with the case foci covering disciplines of biomedicine (investigations on ge-

netic factors of atrial fibrillation and COVID-19), management (digital transforma-

tion conceptualisation and AI ethical issues identification), and information sciences

(profiling research landscapes in the computer science and information science disci-

plines). Data sources of the empirical studies include academic papers from the Web

of Science (WoS)4, PubMed databases5, Open Academic Graph (OAG)6 and patents

from the Derwent World Patent Index (DWPI)7. The results derived from multiple

empirical studies generate insights into 1) research frontiers and foundations in rel-

evant academic research fields and 2) strategic management and decision-making in

relevant industrial sectors.

4https://www.webofscience.com

5https://pubmed.ncbi.nlm.nih.gov/

6https://www.aminer.cn/oag-2-1

7https://clarivate.com/products/ip-intelligence/ip-data-and-apis/derwent-world-patents-

index/
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1.2 Research Aim and Objectives

The overall aim of this thesis is;

to develop an intelligent bibliometric system for knowledge association

discovery and knowledge hierarchy characterisation.

This thesis blends bibliometrics, management theories, NLP and network ana-

lytic techniques to develop an intelligent bibliometric system that can infer knowl-

edge association and represent knowledge hierarchy from scientific literature data.

To achieve this aim, we focus on three concrete research questions:

Question 1: Is there a practical way to analyse and predict biomedical knowledge

association from scientific literature data?

Question 2: Is there a feasible way to extract and characterise knowledge hier-

archy from scientific literature data?

Question 3: Can an information system be constructed to analyse entity associ-

ations and extract knowledge hierarchy automatically?

To answer the above questions, the objectives of this thesis are to:

i. Research Objective 1 (RO1): Establish a heterogeneous bioentity analysis

methodology for knowledge association analysis and prediction.

LBD is an efficient and cost-effective approach to uncovering and inferring

unknown biomedical entity associations. However, existing biomedical knowl-

edge association studies are not adaptive enough for varying cases and overlook

bioentity semantic relationships. Aiming to fill those gaps, the first research

objective of this thesis is to develop an LBD methodology to support bioentity

association analysis and prediction. Specifically, the proposed methodology is

capable of 1) integrating heterogeneous categories of bioentities to conduct the

comprehensive analysis, 2) adapting to a broad range of research cases, and 3)
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leveraging the semantic features of biomedical entities to realise more accurate

bioentity association prediction.

ii. Research Objective 2 (RO2): Develop an adaptive hierarchical topic extraction

model to identify research topics from scientific literature data and uncover

the hidden hierarchical knowledge structures.

Hierarchy is a born characteristic of knowledge in its formation and develop-

ment. Scientific studies and discoveries expand newborn knowledge fields in

breadth and depth simultaneously to shape the hierarchical knowledge system,

which helps scholars understand the knowledge landscape, identify knowledge

frontiers, and detect cross-domain research opportunities. Considering that

most current hierarchical topic extraction modes require excessive parameters

to decide or fine-tune manually, the second objective of this thesis is to de-

velop a hierarchical topic extraction model that can 1) automatically extract

research themes/topics and organise knowledge hierarchy from scientific lit-

erature data, and 2) adaptively fit different real-world inputs and generate

decision-making insights into real-world cases.

iii. Research Objective 3 (RO3): Construct an intelligent bibliometric system that

realises knowledge association analysis, prediction and knowledge hierarchy

extraction.

With the proposed methods from Objectives 1 and 2, it remains a challenge

for non-technical background users to implement the developed functions and

obtain insights into their interests. Hence, our third objective is to integrate

the proposed methods into a systematic workflow and develop an accessible

graphic user interface (GUI) to access the designed functionalities, assisting

users in running the workflow on their customised issues of interest.
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1.3 Research Significance

1.3.1 Theoretical significance

Previous knowledge association discovery and hierarchy extraction studies de-

velop isolated methods or models targeting a specific research case or domain. This

thesis provides a one-stop system that integrates the literature data pre-processing

steps, bioentity analysis and knowledge hierarchy extraction. The theoretical signif-

icance of this thesis includes the following:

First, this thesis proposes a heterogeneous bioentity analysis methodology to

facilitate automatic bioentity extraction, sorting and association prediction from

biomedical literature. We devise a new heterogeneous network-based bioentity sort-

ing scheme in the methodology to quantify the importance/specificity of ranked

bioentities to the target entity. The ranking scheme comprehensively balances in-

fluence from four categories of bioentities and integrates multiple network influence

indicators via multiple-objective optimisation.

Second, this thesis develops a semantic-enhanced link prediction approach in

the HBAM to predict the undiscovered associations between bioentities. Semantic

similarities derived from the context of the bioentities are incorporated in the link

prediction score calculation. The empirical experiments demonstrate that semantics

can improve prediction accuracy.

Third, the HTT-I model devises an adaptable way to extract topic hierarchies

from term co-occurrence networks. The model exploits the idea of density peak

clustering to identify network community centroids, which does not require the

mandatory inputs of a pre-defined number of topics or topic tree depth as many

current approaches do. This characteristic of the proposed model makes it a feasible

solution for research cases with little prior knowledge available.
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Fourth, the HTT-II model further improves the adaptivity of this topic hier-

archy extraction method. It incorporates the k-shell decomposition and Louvain

community detection methods to automatically partition parent-child layer topics

and segment different topic directions recursively. The HTT-II model is parameter-

free and fits various networks with varying degrees of clustering tendency, especially

for data input from relatively narrow knowledge domains in which knowledge is

highly coupling and tangling.

Last, an intelligent bibliometric system and its graphical user interface (GUI)

are developed to provide accessible functions proposed above to provide a one-

stop platform for knowledge association analysis, hierarchy extraction, and further

bibliometrics-derived data analysing functions.

1.3.2 Practical significance

The practical significance can be summarised from three perspectives:

First, one of the practical uses of the proposed HBAM is to depict a disease’s

gene importance-specificity map and predict emerging gene-disease associations. As

reflected by the rise of precision medicine, taking individual genetic variability into

account for personal healthcare services is a frontier trend in modern medical re-

search. Awareness of a disease’s genetic bases can contribute much to better risk

assessment, diagnostics, and treatment strategies. The proposed methodology ex-

ploits scientific literature data to capture known associations between bioentities

and diseases and further incorporates semantics-enhanced link prediction to iden-

tify undiscovered emerging disease-gene associations. This part of the work can

provide a low-cost and efficient tool for scientific researchers and clinical doctors to

realise a target disease’s genetic factor analysis quickly.

Regarding the HTT models, topic hierarchies primarily assist stakeholders in

quickly comprehending the knowledge components of a research field of interest. Be-
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yond this, it can help academic researchers, policymakers, and entrepreneurs make

more informed decisions. For example, the topic hierarchies of a specific target dis-

cipline could empower individual researchers to better grasp the frontiers of research

in that field, supporting them to access more relevant literature via hierarchy-based

document retrieval. Additionally, creating topic hierarchies for multiple disciplines

may help policymakers map research resource distributions across different domains

or help to justify their funding allocation strategies. Topic hierarchies for emerging

subjects or technologies, like COVID-19 treatments or electric vehicles, could help

companies to chart major research pathways or be used to inform more reasonable

business strategies.

Furthermore, this thesis constructs a comprehensive one-stop system and devel-

ops a python-based GUI to analyse knowledge association and extract knowledge

hierarchy from scientific literature data. The system integrates the proposed func-

tions into a systematic workflow, and the GUI enables non-technical background

users to access the proposed functions efficiently and perform customised analysis.

Figure 1.1 : Research methodology
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1.4 Research Methodology and Process

Our research methodology framework is illustrated in Figure 1.1. We first identi-

fied knowledge association and hierarchy discovery as our research interests. Then we

conducted a literature review and reviewed relevant studies from a critical perspec-

tive. The review process helped us identify limitations in current studies and helped

us formulate the research questions. To address those limitations and propose an

integrated intelligent bibliometric system, we constructed three modules correspond-

ing to our research objectives: A heterogeneous bioentity analysis methodology that

can generate bioentity importance ranking and infer association prediction, two hi-

erarchical topic tree models that can adaptively extract topic hierarchies, and an

intelligent bibliometric system to integrate all the proposed functions and provide a

systematic scientific literature analysis pipeline. As indicated in Figure 1.1, all the

modules are linked and can be integrated, with methods proposed in each module

validated by at least one empirical case study.

1.5 Thesis Organisation

This thesis contains seven chapters, and they are organised as follows. The

structure of this thesis is shown in Figure 1.2.

• Chapter 1: This chapter introduces the research background, questions, ob-

jectives, significance, methodology, and structure of this thesis.

• Chapter 2: This chapter presents a literature review of relevant studies, in-

cluding network analytics in bibliometrics, literature-based discovery studies,

and existing flat/hierarchical topic extraction techniques.

• Chapter 3: This chapter proposes a literature-based discovery methodology

for bioentity association analysis and prediction in the biomedical domain.
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Figure 1.2 : Thesis structure

The methodology incorporates a heterogeneous entity network construction

procedure, a non-dominated sorting genetic algorithm-based scoring scheme, a

bioentity2vec training model and a semantics-enhanced link prediction method

to rank bioentity importance/specificity and predict unobserved emerging bioen-

tity associations. The pilot studies related to this chapter are published in the

Portland International Conference on Management of Engineering and Tech-

nology 2022 as C-1 and Extraction and Evaluation of Knowledge Entities from

Scientific Documents 2022 as C-2; The journal paper related to this chapter

is published in Technological Forecasting and Social Change as J-1.

• Chapter 4: This chapter presents the first version of the HTT model to iden-

tify topic structures from term co-occurrence networks. Using the term co-

occurrence network as the input, the proposed model exploits the ideas of
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k-nearest neighbour (KNN) density and density peak clustering to identify

term nodes with high density and relatively far distance to other high-density

nodes. The identifying process recursively runs on the partitioned network to

detect term groups, their overlaps and parent-child relationships, constructing

the finalised topic tree structure. Compared with existing hierarchical topic

extraction models, the proposed method demonstrates high adaptivity with

fewer parameters to be decided. The practical effectiveness of the proposed

model is validated by case studies on profiling the research landscape in the

computer science domain, conceptualising the definition of digital transfor-

mation and uncovering emerging AI ethical debating themes. The related

work of this methodology is published in the 18th International Conference

on Scientometrics and Informetrics Conference as C-3. The applied research

studies of the early version of the proposed model were published in Advanced

Engineering Informatics as J-2 and Knowledge-based Systems as J-4.

• Chapter 5: This chapter raises the refined non-parametric version of the HTT

model that is more adaptable for term co-occurrence networks with different

degrees of clustering tendency. The refined model incorporates k-shell decom-

position and the Louvain community detection methods to group scientific

term nodes as topics and extracts the hierarchical structure of topics based

on the core-periphery and community characteristics of term co-occurrence

networks. Compared with the HTT-I model, it is parameter-free and can

adaptively and automatically generate topic hierarchy results to fit the given

input network. The theoretical effectiveness of the proposed model is vali-

dated by a comparative analysis with five baseline approaches; Its practical

value is endorsed by case studies depicting research segmentation in infor-

mation sciences. The related work of this methodology is now under review

in the Journal of the Association for Information Science and Technology as
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Publication J-18.

• Chapter 6: This chapter introduces an intelligent bibliometric system that in-

tegrates the proposed methods and BiblioEngine, a Python-developed GUI for

intelligent bibliometric analysis. Further, it demonstrates the practical value

of the system through two empirical studies on COVID-19. Results through

the HBAM analysis highlight core genes and a group of candidate novel genes

that play a vital role in COVID-19. The HTT results profile an overall research

landscape of COVID-19 research progress and further uncover the knowledge

foundation for COVID-19 vaccination studies. The GUI development and ap-

plications pilot study was published in International Journal of Computational

Intelligence Systems as J-7. One of the empirical studies of COVID-19 liter-

ature is published in Frontiers in Research Metrics and Analytics as J-3; The

other is currently accepted by Scientometrics as J-19.

• Chapter 7: A summary of the thesis contents and its contributions are given

in the final chapter. Further study recommendations are presented as well.



15

Chapter 2

Literature Review

This chapter reviews relevant studies to this thesis. Section 2.1 details the appli-

cation of network analytics in bibliometrics, including the relevant theories, data

sources, algorithms and research trends. Section 2.2 presents literature-based dis-

covery and network medicine studies that uncover biomedical knowledge associa-

tions. Section 2.3 introduces topic extraction methods in bibliometrics and recent

application studies. The following summary of two primary modelling methods,

flat and hierarchical schemes, gives the methodological pathways of topic extraction

techniques. Section 2.4 wraps this chapter with the limitations of existing studies.

2.1 Network Analytics in Bibliometrics

Modern bibliometrics can be traced back to the observations of Derek Price on

the patterns of scientific activities (Price, 1986). Early definitions of bibliometrics

emphasise ”the application of mathematics and statistical methods to books and

other media of communication (Pritchard, 1969; Price, 1986)”, involving indica-

tors such as citation/co-citation statistics, word co-occurrence, and co-authorships

(Zhang et al., 2017c). It methodologically highlights the quantitative analysis of

scientific literature and other relevant data sources. The increasing diversity of

available data sources rapidly extends the scope of bibliometric data from books to

a wide range of information resources in science, technology and innovation, such as

research articles, patents, and academic proposals, as well as to social media data

(e.g., Facebook, Twitter) (Zhang et al., 2013). Information technologies, especially

artificial intelligence (AI) techniques, further strengthen the capabilities of biblio-
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metrics in analysing large-scale data with enhanced efficiency, effectiveness, and

robustness. Example pilot studies in this direction spearhead a cross-disciplinary

approach that develops computational models incorporating bibliometric indicators

with AI techniques, which we call intelligent bibliometrics (Zhang et al., 2020b; Wu

et al., 2021c; Zhang et al., 2017c, 2018b).

Network format data is increasingly attracting research interest in a broad range

of research fields, with intriguing scientific phenomena uncovered from analysis of

biological, social, textual and many other networks. Since the early 2000s, research

interests in complex network analysis have rapidly expanded from applied physics to

various domains (Borgatti et al., 2009; Palla et al., 2005). Now more widely known as

social network analysis, network analytics was a relative latecomer to bibliometrics.

Initially, network analytics in bibliometrics was exploited to investigate research

collaborations and disciplinary interactions through bibliographic couplings (Yan

and Ding, 2009; Yang et al., 2010). However, once network analytics began to be

combined with citation networks, co-citation networks, and co-authorship networks,

attention from the bibliometric community increased dramatically. Understanding

the topological structures of these networks has provided insights into a large vol-

ume of open research topics, such as collaboration and citation patterns (Ding, 2011;

Liu et al., 2005). More recently, the introduction of word co-occurrence networks

and natural language processing (NLP) techniques have provided more advanced

angles to discover knowledge structures and identify research domains (Ravikumar

et al., 2015; Zhang et al., 2012). Algorithms for community detection, link predic-

tion, random walks, and others are also lending novel tools to increase the scope of

traditional techniques and to undertake new types of analysis – for example, recom-

mending potential collaborators (Yan and Guns, 2014; Huang et al., 2018b), discov-

ering technological opportunities (Park and Yoon, 2018), and detecting/predicting

emerging topics and technologies (Érdi et al., 2013; Huang et al., 2018a).
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Previous studies incorporating bibliometric network analytics have 1) used topo-

logical indicators, such as centrality, to identify critical nodes and determine their

actual meanings –e.g., influential researchers in a co-authorship network (Li et al.,

2013; Yan and Ding, 2009); 2) used topology-based approaches, such as commu-

nity detection and link prediction, to recognise specific behaviours, relationships,

and patterns, e.g., collaborations (Yan and Guns, 2014), disciplinary interactions

(Huang et al., 2020b), or problem-solving patterns (Zhang et al., 2021b); 3) con-

nected bibliometric networks with a broad scenario of innovation paradigms, e.g.,

technology roadmaps (Jeong et al., 2021) and technology opportunity analysis (Park

and Yoon, 2018; Ren and Zhao, 2021). Very few studies use heterogeneous biblio-

metric networks, but two are worth highlighting. Aiming to understand the collabo-

rative/citing patterns of academic researchers, Ding (2011) applied an approach to a

citation network and a co-authorship network that incorporated topic models with a

random walk approach. Compared to typical network analytics, this work creatively

embedded topic models with two bibliometric indicators. The other study is our ad-

venture in applying heterogeneous bibliometric networks for measuring emerging

general-purpose technologies (Zhang et al., 2021c).

The methodology of network medicine expands the application of network ana-

lytics within the biomedical field. Its predominant research paradigm involves con-

structing a network composed of biomedical entities and employing network analytic

approaches to investigate the interactions among these entities (Barabási et al.,

2011). Over time, numerous biomedical data sets and interaction networks have

been curated, encompassing protein-protein interaction (PPI) networks (RN52),

metabolic networks (Lawson et al., 2017; Schellenberger et al., 2010), regulatory net-

works (Clemente-Casares et al., 2016; Newburger and Bulyk, 2009), RNA networks

(Anastasiadou et al., 2018), gene co-expression networks (Van Dam et al., 2018),

among others. In addition to biological networks, there also exist self-constructed
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networks, such as entity similarity networks (Ravindra et al., 2020) and entity co-

occurrence networks (Xu et al., 2020). There are certain trade-offs associated with

using biological networks versus self-constructed networks for downstream analy-

sis. Self-constructed networks have the capacity to integrate diverse data sources

and offer more comprehensive relationships between biomedical entities. For exam-

ple, these networks can incorporate information from biomedical databases (Piñero

et al., 2016; Kanehisa and Goto, 2000), literature (Zhang et al., 2021c), and clinical

trials. However, it should be noted that the edges in self-constructed networks may

not entirely represent explicit biological relationships and could potentially contain

some noise. For instance, co-occurrence networks may inadvertently convert nega-

tive associations between two entities that appear in the same context into links,

thereby introducing a mixture of positive and a few negative links.

Further, research has been undertaken to unlock the knowledge within these

established networks using various approaches. As the representative studies of

this stream, Lei and Ruan (2013) proposed a topological similarity-based method

to reduce the sparsity of a protein-protein interaction network, reconstructing a

more condensed network for genetic analysis with better computational efficiency

and more accurate predictions. Ganegoda et al. (2014) developed a method for

constructing tissue-specific gene networks from a whole disease-gene network and

applied a path-based similarity measurement to validate its usefulness. Valdeolivas

et al. (2019) constructed a heterogeneous network containing diseases, genes, and

proteins as entities and further implemented a random walk on the network to

infer disease-gene interactions. However, despite all these successful explorations of

fundamental knowledge bases, only a narrow slice of the possible biomedical entities

is covered in each study. Plus, the results do not include very recent discoveries,

and the economic cost and human effort to establish and continue maintaining the

data sets that drive these solutions is enormous.
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In recent studies, COVID-19 stands out as a unique task because the unprece-

dented amount of emerging knowledge it brings is closely related to the established

knowledge foundation and rapidly reshaping a new knowledge structure. Hence,

identifying the links between ”new” and ”old” knowledge becomes a significant task

in COVID-19 knowledge profiling and retrieval. Along with the rapid accumulation

of COVID-19 studies, bibliometricians have started analysing relevant literature to

follow the latest research progress. The early-stage bibliometric analysis presents

descriptive analyses of country-level research productivity (Chahrour et al., 2020),

supporting sources (Nasab and Rahim, 2020), collaborating dynamics (Cai et al.,

2021; Fry et al., 2020), and citing patterns (Hossain, 2020; Kousha and Thelwall,

2020). Apart from these efforts to measure research activity, uncovering new knowl-

edge from the rapidly accumulating literature, i.e., literature-based discovery, is

becoming a more critical task as such insights can support research and clinical and

policy decisions (Hristovski et al., 2005; Swanson, 1986; Wu et al., 2021c). Follow-

ing the literature-based discovery stream, Pourhatami et al. (2021) adopt co-word

analysis to identify past coronavirus-related topics, pointing out promising research

gaps in antibody-virus interactions, emerging infectious diseases, and coronavirus

detection methods. Yu et al. (2021) apply entity metrics on an entity network ex-

tracted from the literature, highlighting ACE-2 and C-reactive protein as significant

biomarkers and chemicals in diagnosing and treating COVID-19. Similar findings

were reported by Wu et al. (2021b) through network analysis on biomedical entities

extracted from COVID-19 literature, with more significant biomarkers, drugs, and

complications identified. Ebadi et al. (2021) applied machine learning approaches

to different COVID-19 publication sources and compared the highlights and differ-

ences in research topics. These literature-based discovery studies provide substantial

evidence of explicit and implicit knowledge associations from extant research and

insights that inspire deeper explorations in the future.
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2.2 Literature-based Discovery

Literature-based discovery (LBD) is a workflow of inferring novel, credible and

informative knowledge by associating two or more disparate literature concepts ex-

plicitly or implicitly (Bruza and Weeber, 2008). Swanson (1986) first employed

this workflow and discovered the plausible association between fish oil and Raynaud

syndrome treatment. This research concretes the potential of LBD in real-world ap-

plications. It arouses LBD’s popularity in a variety of biomedical research issues: the

exploration of potential treatments for diseases (Kostoff and Briggs, 2008), uncov-

ering new therapeutic uses for existing drugs (Ding et al., 2013), revealing adverse

drug effects (Shang et al., 2014) and inferring gene association for diseases (Al-

Aamri et al., 2019), etc. The LBD expands its application into other domains such

as discovering new problems for electric vehicles (Vicente-Gomila, 2014), water pu-

rification (Kostoff et al., 2008), climate change (Marsi et al., 2014) and robotics (It-

tipanuvat et al., 2014), etc. Even though LBD’s usefulness has been proven in inter-

disciplinary research (Small, 2010), most LBD approaches are still problem-derived

and domain-specific. From a technical perspective, core methodologies and compu-

tational algorithms adopted in LBD research are continuously evolving. Statistical

distribution models and co-occurrence analysis are the primitive LBD approaches

used to quantify the concepts and relationships with the intention of knowledge

inference (Gordon et al., 2002; Lindsay and Gordon, 1999; Petriĕ et al., 2009).

As indicated by a large volume of existing studies, one of the most potential

applications that benefit from blending bibliometrics with network analytics is to

uncover entity associations in the biomedical field. Literature-based discovery pro-

vides a more widely accessible pathway to explore the genetic basis for disease in

the biomedical domain (Zhang et al., 2018c, 2016). One of the earliest attempts to

discover genetic knowledge from the literature by Stapley and Benoit (1999) was
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to extract terms from the articles based on a dictionary and use those terms in

conjunction with a set of rules to construct a gene co-occurrence network. Jenssen

et al. (2001) further validated the usefulness of co-occurring patterns by visualising a

global human genome network comprising millions of articles from three large-scale

data sets of biomedical literature. The resulting network revealed significant, mean-

ingful associations between co-occurring gene names at the document level. Adamic

et al. (2002) applied statistical analysis to disease-gene co-occurrences using the bi-

nomial distribution to ink genes with diseases through text analysis. They scored

the relevance of genes and diseases to discover novel associations, shedding light on

multiple biomedical entity analyses.

Though straightforward, those pioneer approaches still face multiple limitations,

such as neglecting concepts’ contextual information, the need for concept disam-

biguation and the lack of knowledge representation and visualisation. Different

efforts have been addressed in the following decades to improve this situation.

Incorporating structured knowledge bases/ontologies facilitates semantic augmen-

tation to fulfil the linkage information of concepts (Baker and Hemminger, 2010;

Cameron et al., 2013; Lever et al., 2018; Preiss et al., 2015). The involvement of

machine learning methods lifts concept extraction and data pre-processing in LBD

to an upper level. For example, supervised learning and natural language processing

unprecedentedly improve term extraction, disambiguation and consolidation (Mal-

lory et al., 2016; Song et al., 2015; Wei et al., 2019). Unsupervised approaches,

such as clustering algorithms, upgrade the concept profiling level from terms to

topics (Zhang et al., 2018b). The adoption of network/graph theory provides a

novel framework for literature knowledge representation and visualisation, along

with those global (e.g., network completeness, diameter), local (e.g., network path

or modularity-based communities) and node individual indicators (e.g., node prop-

erties such as centrality measures) measuring the literature knowledge structure and
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algorithms like link prediction inferring emerging knowledge associations (Al-Aamri

et al., 2019; Crichton et al., 2018; Kastrin et al., 2016). Besides, other knowledge

discovery models like subject-action-object (SAO) (Tsourikov et al., 2000) and the

Theory of Inventive Problem Solving (TRIZ) (Savransky, 2000) are also frequently

used knowledge representation paradigms for LBD research.

Natural language processing techniques have further improved the efficiency and

accuracy of biomedical entity extraction (Habibi et al., 2017; Mallory et al., 2016;

Pletscher-Frankild et al., 2015; Wei et al., 2013). Garten et al. (2010) employed a

text mining-based extractor to perform sentence-level drug and gene co-occurrence

analysis. The results show the superiority of using a text-derived network over a

manually-curated network of drug-gene relationships to make predictions. Özgür

et al. (2008) established a disease-specific gene interaction network and used net-

work centrality measures to infer genes with potential links to prostate cancer and

already-known seed genes. Al-Aamri et al. (2019) developed an approach based

on network centrality, where the classifier is trained using a bootstrapping method.

As a result, the model was able to parse the entire human genome. Some studies

also leverage the semantic similarity between entities. For example, Coulet et al.

(2010) built semantic networks of pharmacogenomic entities based on text data and

inferred their interactions. Schlicker et al. (2010) improved gene prioritisation accu-

racy by involving semantic similarities generated from an ontology of genetic terms.

With all the indicators in a basket, Heo et al. (2019) combined entity co-occurrence

with word embedding techniques to produce a comprehensive index to measure the

relationships between entities related to Alzheimer’s disease.

2.3 Topic Extraction in Bibliometrics

Topic extraction is the process of mining and labelling topics from documents

to represent the major themes or concepts from the document content, in which
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citation and textual features are heavily involved (Zhang et al., 2018b; Velden et al.,

2017; Blei, 2012). As one of the primary content analysis methods, topic extraction

is of significant interest to the bibliometric community. The extracted topics are

represented by either a sub-collection of scientific literature or a set of scientific

terms that hold recognised capabilities in knowledge interpretation and exploration,

e.g., profiling research disciplines and technological areas (Zhang et al., 2016, 2017a;

Ravikumar et al., 2015), identifying latent relationships (Zhang et al., 2021b, 2017c;

Guo et al., 2016), and predicting potential future changes in either collaborative

patterns or research interests (Huang et al., 2018b; Yan and Guns, 2014; Zhang

et al., 2018c). Further analysis of those topics can help clarify cross-/inter-/multi-

disciplinary interactions or predict future emerging research topics/interests (Zhang

et al., 2017a, 2018c).

The benefits and value of topic extraction in profiling the knowledge landscape

and facilitating knowledge discovery can be observed from numerous topic analy-

sis case studies (Begelman et al., 2006; Kajikawa et al., 2022; Mejia et al., 2021).

Scholars cluster semantically similar text (e.g., a collection of documents or similar

terms) as topics and develop topic analysis approaches with different emphases, in-

cluding topic identification (Small et al., 2014), tracking (Zhang et al., 2017c), and

visualisation (Huang et al., 2014). The following section reviews two different topic

extraction schemes that adopt different views in profiling extracted topic structures.

2.3.1 Flat topic extraction approaches

From the traditional bibliometric perspective, researchers have exploited various

bibliometric indicators to identify topics hiding in the literature, including (1) Co-

word analysis (Wartena and Brussee, 2008): assuming that words (referring to a

broad definition including words, phrases or entities etc.) co-occurring in the same

context (e.g., sentence, paragraph, document or keywords) tend to associate with
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the same theme, word co-occurrence is a plausible indicator to identify research

topics; (2) Citation analysis (Colavizza and Franceschet, 2016; Hou et al., 2018):

Citation relationships reflect the directed knowledge flow from one to another, ci-

tation analysis-based topic extraction mainly works under the assumption that the

citing and cited articles share similar research topics, bibliographic coupling (Li

et al., 2017) and co-citation (Shiau et al., 2017) analysis are also two prevailing

approaches in research topic analysis.

While there are diverse choices available for constructing data sources for topic

extraction, there are distinct differences among these classic bibliographic data in-

puts. For instance, (Yan and Ding, 2012) compared the similarities among six

scholarly networks, namely citation networks, co-citation networks, bibliographic

coupling networks, co-word networks, co-authorship networks, and topical networks.

Their findings revealed that co-word networks exhibited the highest similarity to

topical networks compared to the other four alternatives. This can be attributed

to the fact that both co-word networks and topical networks primarily focus on the

research content of publications rather than the flow of citations, which may contain

substantial interdisciplinary or cross-disciplinary interactions.

Generally, those collected indicators will then be grouped to generate research

topics via clustering algorithms (K-means, hierarchical agglomerative clustering or

fuzzy c-means, etc.). Words, phrases or papers with high similarity are organ-

ised together, indicating separated research topics divided by their data character-

istics. Apart from clustering algorithms, the community detection method is also

an option for generating topics based on those indicators. Such algorithms group

topologically similar keywords/documents as topics based on their connectivity in

the keyword/term co-occurrence or citation networks(Huang et al., 2018a; Waltman

and Van Eck, 2013). In more recent works, incorporating community detection with

word embedding techniques has led to novel solutions for knowledge representation
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and topic extraction (Zhang et al., 2018b).

The blooming of text mining and NLP techniques enlarge the scope of topic

extraction sources to unstructured textual data like titles, abstracts and full texts.

Topic models represented by Latent Dirichlet Allocation (LDA) algorithm (Blei

et al., 2003) dominate the topic modelling methodologies, it leads the popularity of

topic extraction for the following years with various mutations and derivations (Jelo-

dar et al., 2019; Suominen and Toivanen, 2016; Yau et al., 2014). Topic modelling

provides a complementary approach for free text analysis in bibliometric research.

The combination of topic modelling with the traditional co-occurrence-based method

is also attracting attention (Shams and Baraani-Dastjerdi, 2017).

2.3.2 Hierarchical topic extraction approaches

Hierarchies are instinctive, basal structures to humans that naturally aid our

sense-making of scientific knowledge composition. Hierarchically organised research

topics could provide a fine-grained structure for the target knowledge system. The

last decade has witnessed the rapid growth of scientific literature and the increas-

ing challenges facing researchers in their attempts to quickly and precisely retrieve

knowledge from massive bodies of literature. With concisely profiling knowledge

structures as their aim, many studies have shown that organising research topics

into curated hierarchical structures is an excellent way of quickly conveying a great

deal of knowledge about the composition of a research field to those who are unfa-

miliar with it (Ba et al., 2019; Qian et al., 2020; Xu et al., 2018). But they also show

that constructing these topic hierarchies is nontrivial and highly challenging (Song

et al., 2016). While broad and flat overviews of a field are not particularly diffi-

cult to generate, creating science maps that show fields at different granularity and

disentangling the rising complexities of inter-/multi- disciplinary studies is another

story altogether (Borner, 2015; Kay et al., 2014; Leydesdorff and Rafols, 2009).
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There have been numerous attempts to identify topic hierarchies from scientific

documents, such as text-based approaches like hyponym detection (Ponzetto and

Strube, 2007; Seitner et al., 2016), hierarchical topic modelling (Blei et al., 2010),

term embedding and clustering (Zhang et al., 2018b), and network-based approaches,

including community detection (Shang et al., 2020; Wang et al., 2015a) and k-shell

decomposition (Xiao et al., 2016). Nevertheless, the currently existing approaches

always seem to have an adaptivity issue in that such techniques inevitably suffer

from an excessive number of parameters that need to be determined. Specifically,

existing clustering algorithms used in the studies above, like K-means, non-negative

matrix factorization, and topic modelling (Shang et al., 2020; Qian et al., 2020; Xu

et al., 2018; Zhang et al., 2018a), need to manually specify the appropriate number

of topics or the topic hierarchy depth based on prior knowledge or expertise. This

issue results in the fact that applying the method to a new field will require the

involvement of domain experts, which significantly adds to usage costs.

Blei et al. (2004) pioneer the automation of topic hierarchy identification by de-

veloping the two perhaps most renowned algorithms in identifying topic hierarchies:

The Chinese restaurant process (CRP) and hierarchical latent Dirichlet allocation

(hLDA) (Blei et al., 2010). Those algorithms eliminate the mandatory input of topic

numbers and theoretically enable infinite topic detection. However, in real-world

applications, the efficacy of the hLDA model largely depends on the pre-processing

quality and may generate unsatisfactory results otherwise (Qian et al., 2020; Xu

et al., 2018); Those models will not perform well if a volume of meaningless words

is allocated in the higher layer topics. The latter works pay efforts to modify topic

hierarchy identification from different perspectives, including introducing the idea

of recursive hierarchy detection (Wang et al., 2013), involving distance-dependent

discrepancies for the CRP (Song et al., 2016), adding external ancillary informa-

tion (Shang et al., 2020; Wang et al., 2015a; Xu et al., 2018), and using alternative
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topic partition methods like non-negative matrix factorisation (Qian et al., 2020).

But those studies either suffer from the need for a pre-defined tree structure or the

lack of a labelling strategy. In practical terms, hierarchical structures vary hugely

from discipline to discipline, especially for fields of vastly different forms, such as

biomedicine versus artificial intelligence. As for the topic labelling strategy, most

bibliometric approaches constitute topics as a set of semantically similar terms or

records (Colavizza and Franceschet, 2016; Hou et al., 2018; Porter et al., 2020).

With the heuristic hierarchical topic modelling algorithm, Wang et al. (2013)

developed an algorithm for recursively construing a hierarchy of topics from a doc-

ument set. Song et al. (2016) propose a hierarchical topic evolution model based on

the distance-dependent CRP, which is a mutation of CRP. Xu et al. (2018) modified

the hierarchical model by involving prior knowledge. A more recent work Qian et al.

(2020) utilised the document-term matrix to detect the hierarchical topic structure

by non-negative matrix factorisation. Their work pre-defined a three-layer design

for the artificial intelligence topic tree. A general limitation exposed in their studies

is the decision of dendrogram depth (i.e., the layer number of the hierarchical tree)

needs to be defined manually: In realistic cases, the hierarchical structure varies

hugely from discipline to discipline, three layers may fit relatively young domain

like artificial intelligence, but in some areas like biomedical domain, if we have a

look at the International Classification of Disease (ICD)1 or the Medical Subject

Headings2, the tree structure could be much deeper and more complicated.

Network analytics provides another research trajectory for hierarchical topic ex-

traction. Clauset et al. (2008) proposed that real-world networks often exhibit natu-

ral hierarchical structures that can reveal multilevel patterns. Typical examples can

be observed in ecological, biomedical and social science networks, for instance, eco-

1https://www.who.int/standards/classifications/classification-of-diseases

2https://www.nlm.nih.gov/mesh
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logical niches in food webs (Endrédi et al., 2018), phylogenetic trees in species evolu-

tionary networks (Schaub and Peel, 2020), and organisation hierarchies in business

management (Josephs et al., 2022). In the bibliometric field, leveraging hierarchical

network structures to reveal scientific knowledge landscape and research intelligence

is also a valuable research trajectory (Ba et al., 2019; Palla et al., 2015; Xiao et al.,

2016). The hierarchy structure in networks enlightens our model design; Clauset

et al. (2008) created a random dendrogram network to simulate the accurate graph

by maximum likelihood estimation; they assumed that each node has a probability

of p to connect with other nodes. Still, this model will not fit an existing real-world

network because edges in that network are not randomly linked.

To uncover such important hierarchical characteristics of networks, research

works have attempted to represent and characterise them from statistical or topo-

logical perspectives. The current approaches to discovering complex network hier-

archy exploit the random walk, stochastic block modelling and k-shell decompo-

sition.Rosvall and Bergstrom (2011) applied the random walk method to measure

network flow and identified the hierarchical clustering of networks by optimising the

shortest multilevel random walkers. Peixoto (2014) constructed a nested community

generative model to derive the multi-scale network hierarchy. Lyzinski et al. (2016)

modelled real-world networks with the hierarchical stochastic block model and re-

cursively run community detection to detect the structural similarity of multilevel

community subgraphs. K-shell decomposition is a heuristic method that decom-

poses a network into multiple shells of subgraphs from the connectivity from dense

to sparse. Among the current network hierarchy profiling approaches, k-shell de-

composition has a wide range of applications due to its robustness and algorithmic

simplicity (Fang et al., 2017; Lin et al., 2021; Xiao et al., 2016). Previous biblio-

metric studies have examined the effectiveness of revealing hierarchical knowledge

structures and landscapes (Ba et al., 2019; Xiao et al., 2016), yet some issues remain
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when generalising it to different cases.

2.4 Limitations of Previous Studies

Contemporary methods of biomedical LBD have some significant shortcomings.

The main problem is that most approaches are designed with a singular focus on

a specific disease, resulting in very few generalised models available. Addition-

ally, there is a tendency toward the imbalance between quantitative approaches and

expert knowledge. Too often, getting good results relies on substantial human in-

tervention and prior knowledge, which can be hard to access. These constraints are

particularly problematic for rare diseases and diseases where multiple genes may

contribute to a condition. Apart from that, most existing approaches omit semantic

features of bioentities that could be valuable in association analysis and prediction.

Regarding the existing topic extraction methods, both flat and hierarchical topic

extraction approaches are mainly based on clustering or classification algorithms,

which require the input of specific parameters like the pre-defined number of topics,

pre-defined hierarchy depth, or both. This may result in two significant limitations:

1) It will harm the method’s adaptivity to different cases, in which extra expert prior

knowledge will be needed for deciding those parameters and 2) An inappropriate

selection of those parameters may harm the topic extraction performance.
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Chapter 3

Heterogeneous Bioentity Analysis Methodology

3.1 Introduction

In modern medicine, deciphering the genetic basis of diseases plays a vital role in

their diagnosis, treatment, and prevention. However, for most disorders and abnor-

malities, it is not yet known whether genes, gene mutations, genetic variations, etc.,

play a pathogenetic role (Cookson et al., 2009; Goldstein, 2009). The high costs of

genetic linkage analysis (Ott, 1999) and genome-wide association studies (GWAS)

(Bush and Moore, 2012) have spawned an urgent need to prioritise candidate factors

for further investigation. Researchers have established medical ontologies and cu-

rated molecular networks in past decades to analyse and infer molecular interactions

for diseases based on accumulated experimental and clinical experience. Although

these curated knowledge bases provide structured data for genetic insights into dis-

eases, their use is still limited for 1) knowledge bases primarily focusing on a single

category of bioentity and 2) the high cost of establishing and maintaining these

knowledge bases.

Advanced text mining techniques combined with a fast-growing body of rich

biomedical texts may provide an accessible and economically-viable pathway to solv-

ing those issues (Opap and Mulder, 2017) via literature-based knowledge discovery.

Techniques such as co-occurrence analysis (Cohen et al., 2005), meta-analysis (Wang

et al., 2017), centrality measurement (Al-Aamri et al., 2019), text mining (Mallory

et al., 2016), and machine learning (Kim et al., 2017) have broadly enabled scientific

literature as a valuable data source of exploring the genetic basis of various diseases.
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Still, contemporary methods of scientific literature data analysis have some signifi-

cant shortcomings. The main problem is that most approaches are designed with a

singular focus on a specific disease, resulting in very few generalised models avail-

able. Additionally, there is a tendency toward the imbalance between quantitative

approaches and expert knowledge (Al-Aamri et al., 2019). Too often, getting good

results relies on substantial human intervention and prior knowledge, which can be

hard to access. These constraints are particularly problematic for rare diseases and

diseases where multiple genes may contribute to a condition.

Aiming to address these concerns, this chapter proposes a generalised and adapt-

able bibliometric methodology for investigating the bioentity association of target

diseases. Four categories of bioentities are considered in this methodology to provide

a comprehensive analysis: diseases, chemicals, genes, and genetic variations. The

methodology is data-driven and does not require human intervention, guaranteeing

its adaptability to different cases. Further, the proposed methodology exploits text

semantics to refine the weighted link prediction approach and has the predicting

capacity to infer likely associations that have yet to be identified.

The main components of this methodology include a heterogeneous bibliometric

network, a Bioentity2Vec model, a suite of network analytics indicators, and a link

prediction algorithm. The nodes of the bibliometric network represent the four types

of bioentities, and the edges represent sentence-level co-occurrences between nodes.

The Bioentity2Vec model follows the algorithmic design of Word2Vec (Mikolov et al.,

2013), where all the entities are embedded as vector representations and then used

to generate an adjacency matrix of pairwise semantic similarities. The network

indicators include a series of centrality measures that characterise the importance

of each entity, plus a novel indicator called intersection ratio that measures the

specificity of an entity to the disease under study. The link prediction algorithm

incorporates the semantic similarity of entities to modify the resource allocation
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algorithm and achieves better performance.

To validate our processes and demonstrate the effectiveness of the proposed

framework, we conducted a case study on a corpus of 54,219 academic papers related

to atrial fibrillation (AF). In a comparison test with a divided dataset designed to

provide ground truth, our link prediction method identified 74% of the factor associ-

ations that would come to emerge spanning genes and genetic variants. In the same

test on data up to 2020, we discovered strong evidence for five potential undiscovered

associations and mediocre evidence for another five.

There are several novel aspects of this work. First, the literature-based method

in our work does not rely on prior biomedical knowledge. Further, our methodology

uses heterogeneous networks to analyse bioentity interactions. Lastly, the combina-

tion of contextual semantics and topological similarity enhanced with link prediction

is a powerful new technique with broad applications in information science.

The rest of this chapter is organised as follows. Section 3.2 presents the details

of the proposed methodology. The case study on AF appears in Section 3.3, along

with the results. Section 3.4 wraps up the study with a discussion and conclusions.

3.2 Heterogeneous Bioentity Analysis Methodology (HBAM)

The methodology of this chapter is illustrated in Figure 3.1. The five blocks

of the methodology include bioentity extraction, heterogeneous network construc-

tion, Bioentity2Vec training, core entity identification, and semantic-enhanced link

prediction.

3.2.1 Bioentity extraction and heterogeneous network construction

As mentioned, the methodology covers four types of bioentities: Diseases, chem-

icals, genes, and genetic variations. 1) Diseases include disorders, symptoms, risk

factors, and complications. 2) Chemicals cover chemical elements, clinical medica-
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Figure 3.1 : Research framework of the HBAM
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tions, and other compounds. 3) Genes are the basic unit of heredity, occupying a

fixed position on the chromosome. 4) Genetic variants include DNA mutations (i.e.,

a permanent change in a DNA sequence), protein mutations (i.e., proteins encoded

with a mutated gene) and single nucleotide polymorphisms (SNPs) (i.e., normal

variations of a single nucleotide in a gene sequence) (Arias et al., 1991).

Heterogeneous networks refer to networks that incorporate multiple categories

of nodes and edges. Compared with homogeneous networks, leveraging heteroge-

neous for network analysis can integrate and fuse information from various sources

and domains and further enable more accurate context-aware (the relationships and

characteristics of entities) analysis. These four entities are represented as nodes in

the weighted heterogeneous network. Working under the hypothesis that sentence-

level co-occurrences indicate a stronger association between pairwise entities than

document-level co-occurrence, the edges reflect co-occurrence frequency at the sen-

tence level. The weights are derived from an adjacency matrix A, in which V m
i is

the mth node in the ith category and

AV m
i V n

j
=

 CF (V m
i , V n

j ) if V m
i and V n

j co-occur in a sentence

0 otherwise
(3.1)

CF (V m
i , V n

j ) is the sentence co-occurrence frequency between V m
i and V n

j .

This network can also be denoted as a graph representation:

G = (VK , EK(K+1)/2) (3.2)

where V is the set of K entity categories and E is the set of K(K + 1)/2 types

of edges connecting the different categories of nodes. An illustration of the network

is provided in Figure 3.2.
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Figure 3.2 : Illustration of the heterogeneous network

3.2.2 Bioentity2Vec modelling

Sparked by the idea of the well-regarded Word2Vec natural language model

(Mikolov et al., 2013), our semantic similarity measures are taken from a context-

based perspective using a model we developed called Bioentity2Vec. Like Word2Vec,

Bioentity2Vec converts bioentities into vectors by projecting one-hot representations

into a lower dimension while mainly preserving the semantic meaning of the content.

In our case, the bioentities are treated as words, and those words placed in sequence

constitute the training corpus. We selected Skip-Gram as our training algorithm

since it better fits small datasets. A summary of the Skip-Gram training process

follows.

Given an entity E(i) in a corpus, the probabilities of other entities in a certain

window size w are predicted based on the given central entity E(i) (Rong, 2014). The

global objective is to maximize the average conditional probability for all windows

in the corpus, which is formulated as:
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LF =
1

n

n∑
i=1

(
∑

−w≤j≤w,i ̸=0

log2 P (E(i+ j)E(i))) (3.3)

The first step is to calculate the pairwise similarity of entities via cosine similarity

and then generate a semantic adjacency similarity matrix SV m
i V n

j
:

SV m
i V n

j
= cos(vV m

i
, vV n

j
) =

vV m
i
vV n

j

|vV m
i
||vV n

j
|

(3.4)

where vV m
i

is the corresponding vector of entity node V m
i . Applying this formula

to all entity pairs produces a pairwise adjacency matrix SV m
i V n

j
of semantic similarity

for all entities.

3.2.3 Network analytic measures

Centrality measures

Centrality measures comprise three indicators, degree centrality, closeness cen-

trality, and betweenness centrality (Freeman et al., 1979; Zhang et al., 2021c), reflect-

ing the node’s capacity to aggregate, disseminate, and transfer information across

a network. All three centrality measures have been proven efficient in revealing key

nodes in biomedical networks (Al-Aamri et al., 2019). Their formal definitions are

given below.

Degree Centrality (DC): This indicator measures the direct influence of a

node on other nodes by calculating the proportion of its degree. An entity with a

high value of degree centrality indicates that it has direct interactions with many

other entities. It is calculated as:

DC(V m
i ) =

∑K
j=1

∑|Vj |
n=1 AV m

i V n
j

|VK | − 1
(3.5)

where |VK | is the number of all K categories of nodes in the network and |Vj| is
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the node number in the jth category.

Closeness Centrality (CC): This indicates a node’s topological distance from

all other nodes in the network, reflecting the global impact of a node towards all

other nodes within the network. It is calculated as follows:

CC(V m
i ) =

|VK | − 1∑K
j=1

∑|Vj |
n=1 dV m

i V n
j

(3.6)

where dV m
i V n

j
is the topological distance from node V m

i to node V n
j .

Betweenness Centrality (BC): This indicator measures a node’s capability

of connecting any other two nodes. In a network, a high betweenness centrality

indicates that the node has a solid potential to be a crucial connector or transmitter.

It is calculated by the sum of possibilities that any shortest paths connecting two

other nodes go through the target node:

BC(V m
i ) =

2
∑K

x,y=1

∑|Vx|
a=1

∑|Vy |
b=1

σ(V a
x V b

y )V m
i

σ(V a
x V b

y )

(|VK | − 1)(|VK | − 2)
(3.7)

where σ(V a
x V

b
y ) is the number of all shortest paths from node V a

x to V b
y and

σ(V a
x V

b
y )V m

i
is the number of these paths that pass through node V m

i .

Intersection ratio

The intersection ratio is an indicator we designed to distinguish entities specifi-

cally associated with the target disease. While all centrality indicators reflect some

aspect of a node’s significance in the global network, some entities with high central-

ity measures may not be associated with the target disease at an exceptionally high

level. Those entities are usually general terms representing fundamental chemicals

or genetic factors related to a relatively broad range of conditions. Thus, we aim to

distinguish the general entities from those highly relevant to the target disease. To
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this end, we develop an indicator based on the Jaccard coefficient (Wartena et al.,

2010) and call it the intersection ratio. This indicator reflects an entity’s specificity

as the rate of a node’s interaction with the target disease over all other diseases:

IR(V m
i ) =

w(V m
i , V t

disease)∑|Vdisease|
a=1 w(V m

i , V a
disease)

(3.8)

where V t
disease represents the node of the target disease, and w(V m

i , V t
disease) refers

to the weight of the edge connecting V m
i and V t

disease.

Traditionally, bibliometrics-based indicators are combined by specific strategies

(e.g., entropy) into a unique value or are pairwise visualised based on diverse actual

requirements (Zhang et al., 2017b). However, we aim to build a general method-

ology; Therefore, we introduced the non-dominated sorting algorithm to rank the

entities based on a combination of the four metrics. Technically, non-dominated sort-

ing is a multi-objective optimization procedure that compares samples containing

multiple objectives or dimensions and ranks them according to their “dominance”

over each other (Yuan et al., 2014). An entity A would dominate an entity B if A

was better than B according to at least one of the four indicators but was no worse

than B in any of the others. Once sorted, the items are divided into several consecu-

tive Pareto fronts according to their domination counts. For example, if entity A is

better than entity B in all four measures, it will be assigned to the dominant Pareto

front. With top ranks in all metrics, the entities on this front have the strongest

associations with the disease under study.

The pseudo-code for the non-dominated sorting algorithm is shown in Algorithm

1. This set of measurements outputs four lists of entities related to the target disease,

i.e., core diseases, chemicals, genes, and genetic variations ranked in non-dominated

order.
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Algorithm 1: Non-dominated sorting algorithm

1 for Vi in VK do

2 for node V m
i in Vi do

3 Domination[V m
i ] = 0;

4 for node V n
i in category i do

5 if ∀x ∈ [1, d], Mx(V
m
i ) ≥Mx(V

n
i ) (m ̸= n) then

6 Domination[V m
i ]+ = 1;

7 // Md(V
m
i ) refers to the dth dimensional

measurement of V m
i

8 end

9 end

10 end

11 end

Semantic similarity-enhanced link prediction

Link prediction describes approaches that estimate the probability of particular

links emerging in a network in the future (Liben-Nowell and Kleinberg, 2007). The

results from our pilot study show that, of all the neighbour-based comparison meth-

ods, resource allocation (RA) (Zhou et al., 2009) is the most accurate (Zhang et al.,

2021b,c). The original RA algorithm follows the assumption that every node in a

network has one unit of a resource, and a common neighbour to two nodes will act

as a transmitter, evenly distributing its resource to the connected nodes. The RA

index of an unconnected pair of nodes is the sum of all resources obtained from all

the neighbours common to the two nodes. In simple terms, it reflects the potential

for a direct link emerging between the nodes. The higher the value, the greater the

possibility is for a future link.
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Inspired by Lü and Zhou (2010), who developed a weighted version of this al-

gorithm, we conjecture that assessing the semantic similarity between two nodes

and using that to weight to the RA index will increase the link prediction accuracy.

Hence, we incorporated an additional procedure into the algorithm that involves

the semantic matrix of bioentities generated by the Bioentity2Vec model. Thus, the

final refined RA index is calculated as:

MRAV m
i V n

j
= SV m

i V n
j

∑
V t∈Γ(V m

i )
⋂

Γ(V n
j )

CF (V m
i , V t)|SV m

i V t |+ CF (V t, V n
j )|SV tV n

j
|∑

Vk∈Γ(V t) CF (V k, V t)SVkV t

(3.9)

where V m
i is the target disease, and V n

j belongs to the set of genetic factors that

have never before co-occurred with the target disease.

Applying the modified link prediction approach in a pairwise manner (V m
i , V n

j )

generates the final output, which is a ranked list of genetic factors and their corre-

sponding modified RA index scores. The assumption underlying the prediction that

a genetic factor is associated with a disease is: if the target disease node V m
i and

the genetic factor node V n
j do not co-occur, but they share at least one common

neighbour, then they have the potential to be directly associated. The modified RA

score tells us how strong that potential is. The common neighbour could be any one

of the four entities. For example, they may both be associated with another genetic

factor, or they may both be reactive to the same chemical.

3.3 Case Study: Knowledge Association Analysis for Atrial

Fibrillation

Atrial fibrillation (AF) is one of the most common forms of cardiac arrhythmia.

The disease progress of AF is closely related to atrial size and the extent of atrial

fibrosis, both of which are affected by genetic factors. Although several gene groups
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and genetic mutations have been linked to AF, clinical evidence and mechanistic

explanations are still far from sufficient to begin integrating our knowledge of these

genetic risk factors into clinical practice (Feghaly et al., 2018). For these reasons,

exploring the associations between genes and AF as our case study can assess the

proposed method and have practical significance for advancing research frontiers in

the AF area.

3.3.1 Data collection

PubMed is the largest global biomedical literature database, comprising more

than 30 million citations across the MEDLINE database, life science journals, and

other online book resources. We used the term “atrial fibrillation” with a MeSH

search strategy limited to the “species” human across PubMed titles to guarantee

precise AF-related search results. No restrictions were placed on the publication

date. In all, 54,219 records were retrieved from the following search query:

”(”Atrial Fibrillation”[Mesh] AND Humans[Mesh])”

Search Date: 28 April 2020

3.3.2 Bioentity extraction and network construction

The high error rate is a common challenge in gene name recognition tasks. To

lessen this problem, we assembled the extractor’s vocabulary list by combining terms

from three different biomedical dictionaries:

• Medical Subject Headings (MeSH)1 is a medical thesaurus provided by PubMed

that contains the standardised concepts of diseases and chemicals.

1https://www.ncbi.nlm.nih.gov/mesh/
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• NCBI Homo Sapiens Gene Dictionary2 provided by the United States National

Institute of Health (NIH), covers the known genes of Homo sapiens.

• dbSNP database3 is a register of known sequence variants in the human genome,

established in 1999. It contains the discovered DNA mutations, protein mu-

tations and SNPs. Each SNP record is associated with a unique SNP ID.

We selected Pubtator4 as the extractor. Pubtator is a deep learning-based bioen-

tity extraction tool developed by the National Library of Medicine (NLM) (Wei

et al., 2019). It can automatically extract categorised biomedical concepts from the

titles and abstracts of PubMed articles.

The extraction process resulted in 577,809 raw biomedical concepts with ac-

companying text locations and unique identifiers. The concepts included diseases,

chemicals, genes, DNA and protein mutations, SNPs, and species. We excluded the

species concepts since our focus is on humans and restricted the genetic factors to

the scope of the human genome using dbSNP. We then mapped every concept to

its corresponding dictionary, removing noisy concepts (see Step 1, Table 3.1) and

consolidating all synonyms (Step 2, Table 3.1). After these two steps, 6,318 unique

bioentities remained. We further excluded 480 concepts that did not co-occur with

any other concept (i.e., isolated nodes) to result in a final set of 5,838 entities. The

stepwise pre-processing tallies are given in Table 3.1.

The co-occurrence network construction process revealed 48,988 edges reflecting

sentence-level co-occurrence across the 5,838 nodes of the network. Among the four

types of entities, there can be ten types of edges; their counts are provided in Table

3.2.

2ftp://ftp.ncbi.nih.gov/gene/DATA/GENE INFO/Mammalia/

3https://www.ncbi.nlm.nih.gov/snp/

4https://www.ncbi.nlm.nih.gov/research/pubtator/api.html
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Table 3.1 : Stepwise results of the pre-processing procedure

Raw Step 1 Cleaned Step 2 All nodes Del. Nodes

Disease 440,610 434,198 MeSH 2,239 -199 2,040

Chemical 104,702

Removed noisy concepts

like “cardioembolic”,

“JAGS”, “nonvitamin”,

etc. that could not be

mapped to MeSH

101,512 MeSH 2,187 -183 2,004

Gene 31,209
Exclude genes that do not

belong to Homo Sapiens
26,948 NCBI Gene 1,506 -93 1,413

Genetic variant

- DNA mutation 223 161 386 -5 381

- Protein mutation 770 555 dbSNP

- SNP 925

Removed variants with un-

clear loci (i.e., could not be

mapped to an SNP ID) 217

Total 577,809 - 563,235 6,318 -180 5,838

Table 3.2 : Counts of the different types of edges

Disease (2,040) Chemical (2,004) Gene (1,413) Genetic variant (215)

Disease (2,040) 19,181 10,977 5,318 469

Chemical (2,004) 10,977 5,248 2,463 123

Gene (1,413) 5,318 2,463 3,477 654

Genetic variant (215) 469 123 654 495
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Table 3.3 : Centrality measures and intersection ratio statistics

Disease Chemical Gene Genetic variant

Degree centrality

Max. 0.668 0.106 0.050 0.006

Min. 0.668 0.106 0.050 0.006

Min. 0.668 0.106 0.050 0.006

Avg. 0.668 0.106 0.050 0.006

Closeness centrality

Max. 0.739 0.493 0.471 0.433

Min. 0.0001 0.0001 0.0001 0.0001

Avg. 0.397 0.381 0.382 0.378

Std. 0.063 0.068 0.085 0.074

Betweenness centrality

Max. 0.630 0.020 0.005 0.002

Min. 0 0 0 0

Avg. 0.0005 0.0001 0 0

Std. 0.014 0.0007 0.0003 0.0001

Intersection ratio

Max. 1 1 1 1

Min. 0 0 0 0

Avg. 0.276 0.364 0.459 0.555

Std. 0.280 0.363 0.377 0.443

3.3.3 Identifying core bioentities associated with AF

Core entities (i.e., highly-relevant entities) have high values on degree, closeness

and betweenness centrality measures, plus a high intersection ratio value. We cal-

culated these metrics for all 5,838 entities. A summary of the pertinent statistics by

entity type is provided in Table 3.3.

Core genes

Following the steps described in the methodology, we began with gene nodes

to apply the non-dominated sorting algorithm to the three centrality measures and

normalise the domination counts to reflect their global importance. We then juxta-
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Figure 3.3 : Gene map in an importance-specificity coordinate system
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posed this against normalised intersection ratios, which reflect the gene’s specificity

to AF. This produced a 2-D gene scatter map of importance v.s. specificity, as

shown in Figure 3.3. Global importance is plotted on the X-axis and specificity

is plotted on the Y-axis. The genes of most concern to us are those in the top

right corner – i.e., the genes with both high centrality domination and a high in-

tersection ratio, which means they are not only essential but also specific to AF.

However, part of the purpose of this case study is to evaluate this framework. Hence,

we corroborated these results with a manual review of three biomedical knowledge

bases: Online Mendelian Inheritance in Man (OMIM)5, the Kyoto Encyclopedia of

Genes and Genomes (KEGG)6, and the Genetics Home Reference-NIH7. Through-

out the investigation, we divided the core genes into two loci: seed genes – genes

with known functions associated with the incidence of AF; and suspected correlated

genes – genes with unknown functions that are possibly related to AF but yet to be

explored):

i. Seed genes (in black boxes): Nine genes with direct associations to AF

are documented in knowledge bases. According to OMIM, most of the dif-

ferent subtypes of AF8 are caused by mutations or variations in these nine

genes. The noted gene and subtype correlations are as follows: KCNQ1 -AF

subtype 3, KCNE2 -AF subtype 4, KCNA5 -AF subtype 7, KCNJ2 -AF sub-

type 9, NPPA-AF subtype 6, GJA5 -AF subtype 11, and SCN3B -AF subtype

17. Although OMIM does not explicitly state associations with particular AF

subtypes for the other two genes in this group, KCNH2 and NKX2–5, the Ge-

netic Home Reference-NIH lists them as significant genes in AF’s progression.

5More information could be found at https://www.omim.org/

6More information could be found at https://www.genome.jp/kegg/

7More information could be found at https://ghr.nlm.nih.gov/

8More information can be found at https://omim.org/entry/608583
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In examining the significance of those genes from the literature, we found that

Sinner et al. (2008) identified a positive correlation between mutation K897T

in KCNH2 and a higher incidence of AF. Similarly, Xie et al. (2013) associated

the NKX2–5 loss-of-function mutations p.N19D and p.F186S with AF via a

cohort study on 136 patients with idiopathic atrial fibrillation. It is worth

highlighting that our framework placed all seed genes prominently; 36%, i.e.,

SCN5A,MYL4, SCN1B, SCN2B, had either lower IR or centrality domination,

pushing them out of the top right corner toward the left or bottom.

ii. Suspected gene loci (in white boxes): Fourteen genes in the list are fre-

quently studied because their mutations or variations are statistically proven

to be associated with AF. Hence, they are suspected genetic factors, but the

underlying mechanisms as to why are less understood than with the seed

genes. The 14 genes are KCNE1, KCNN2, KCNN3, KCNJ5, KCND3, CAV1,

SCN10A, TBX5, PITX2, ZFHX3, GJA1, HCN4, CYP11B2, and TRPM4.

The literature review revealed the following mutation/variation associations:

G25V and G60D in KCNE1 (Olesen et al., 2012), rs337711 in KCCN2 and

rs75190942 in KCNJ5 (Christophersen et al., 2017), rs13376333 to KCNN3

(Ellinor et al., 2010), rs12044963 in KCND3, rs11773845 in CAV1, rs6790396

in SCN10A, rs883079 in TBX5, rs2129977 in PITX2, rs2359171 in ZFHX3,

rs13191450 in GJA1, rs74022964 in HCN4 (Roselli et al., 2020), T-344C in

CYP11B2 (Li et al., 2012).Düzen et al. (2017) found that TRM4 expression

was significantly upregulated in leukocytes of non-valvular AF patients.

Other core entities

We then applied non-dominated sorting to the other three entity categories and

generated the corresponding core entity lists. The top 20 diseases, chemicals, genes,

and genetic variants are given in Table 3.4. To evaluate the quality of the sorted
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genetic factors, we compared our results with data from the authoritative disease-

gene association discovery database DisGeNET (Piñero et al., 2016). DisGeNET

integrates data from various sources, including curated knowledge bases, modelled

data, inferred data, and the literature9. Users can also rank the associations between

diseases and genetic factors according to several provided metrics. We chose the

gene-disease association score (GDA) and variant-disease association score (VDA)10

as the best comparison to our results.

In the disease category, terms in normal type are the most common physiolog-

ical or pathological phenomenon relevant to the presence or treatment of AF. The

terms in italics are symptoms, complications, and risk factors. Awareness of these

concepts is critical to understanding the treatment of AF. One noticeable term in

the list is gastroesophageal reflux, frequently reported in AF patients. However,

judging from current research progress, any association between the two is still in-

conclusive (Huang et al., 2019). Further studies to supplement the literature may

reveal gastroesophageal reflux has underlying significance to this research area.

In the chemicals list, terms in roman are treatments, while terms in italics are

critical receptors and ion channels in the pathogenesis of AF. Caffeine and Omega-3

fatty acids are two noticeable chemicals on the list. Over years of research, the as-

sociation between caffeine and AF has intriguingly been reversed from a risk factor

(Curatolo and Robertson, 1983) to one with potential preventive benefits (Abdelfat-

tah et al., 2018). The inconsistency of these results warrants further research to

provide clear evidence on the issue. The same turnabout is true of Omega-3. Once

lauded as a health supplement to reduce cardiovascular disease (Abdelhamid et al.,

2018), Sheikh et al. (2019) now report that Omega-3 might increase the incidence of

AF. The controversy has yet to be settled. These two results show that the proposed

9More information can be found at https://www.disgenet.org/dbinfo

10More information about the metrics could be found at https://www.disgenet.org/dbinfo
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method can identify debated chemicals for further exploration.

To validate the identified genetic variants, we used ClinVar (Landrum et al.,

2016), SNPedia (Cariaso and Lennon, 2012), rankings from DisGeNET, and com-

plementary evidence from the literature. The variants in italics are variants of seed

genes. We found most of the factors identified have known associations with AF,

indicating their importance or specificity to AF. One exception is rs3789678, which

does not appear in DisGeNET but is noted as having a significant association with

AF in the literature (Zhao et al., 2015). Additionally, there was a notable mutation

rs121912507, which refers to the G628 gene transfer in KCNH2. This SNP is not

directly related to the occurrence of AF but is an adenovirus-mediated transgene

expression that could be used as an effective gene therapy to prevent postoperative

AF.

From this analysis, we are confident in concluding that our approach can identify,

with relatively good accuracy, a list of bioentities strongly related to a given target

disease. Compared to traditional approaches, such as term frequency or TF-IDF

value-based sorting algorithms, this strategy produces a list of relevant, specific,

and frontier entities that are not biased by the popularity of research topics.

3.3.4 Link prediction validation

Before running the link prediction algorithm, we validated its usefulness on

rolled-back data. The experiment was designed as follows:

We divided the dataset into five-year brackets and constructed a network for

each. k AF-linked genes or SNPs identified in the last five years were used as the

true-labelled samples in the test set. We then tested our semantics-enhanced version

of the RA algorithm (SERA) along with four other methods on the remaining data

and compared the results. The link predictions were output as a mixed list of

genes, and SNPs were ranked according to their RA index scores. Any gene or SNP
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predicted in the top n that was also in the true label set was counted as a true

positive (TP) and a false negative (FN) otherwise. n is a threshold we initially set

to k. The four methods chosen for comparison were:

i. RA: The original version of the resource allocation approach (Zhou et al.,

2009).

ii. WRA (Lü and Zhou, 2010): The weighted version of the resource allocation

algorithm. The assumption of this algorithm is the same as RA, but the

diffusing rate is measured as a weight ratio instead of as a proportion of degree

centrality.

iii. LPI (Lü et al., 2009): Local path index is a local similarity-based index cal-

culated by the weighted sum of the number of paths of lengths two and three.

We used the default settings of 1 and 0.01 respectively for the paths of lengths

two and three.

iv. RWR (Tong et al., 2008): Random walk with restart is based on a global

similarity measurement for pairwise nodes. The idea of the random walk is

that a particle starts from a seed node and randomly jumps to a connected

node with a probability of p. The ultimate probability of the particle reaching

a target node after a certain number of iterations is the possibility of forming

a direct link between the seed and target node (Lovász, 1993).

To fairly evaluate the performance of all algorithms, we used the top n hit rate

as the assessment metric, defined as:

Top n hit rate =
TP

TP + FN
(3.10)

TP is the correct results in the top n predictions, and FN is the number of other

samples in k true-labelled samples but not in top n predictions.
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Table 3.5 : Experimental results

RWR LPI RA WRA SERA (proposed)

Top k hit rate 0.183 0.132 0.205 0.212 0.283

Top 100 hit rate 0.445 0.181 0.436 0.392 0.502

Top 200 hit rate 0.621 0.576 0.714 0.632 0.742

The outcomes are provided in Table 3.5. SERA had a better hit rate than the

other four baselines, validating its effectiveness. The top 200 predictions covered

74% of the genetic factor associations that would appear in the next five years, ac-

cording to the true label set. This promising result demonstrates that our strategy

can substantially reduce the heavy workload of manually seeking new candidate fac-

tors. However, the low hit rate for the complete list of predictions (top k) is less than

optimal. We can conclude four reasons for this result: 1) Our experiment effectively

simulates data streaming over time, which is a strict standard from the validation

perspective. 2) Our approach is purely data-driven without any human intervention

or supervision. 3) The network is co-occurrence-based and cannot distinguish be-

tween positive and negative associations, such as “A is not associated with B”. 4)

The community’s awareness of AF molecular mechanisms is still at a relatively early

stage, and not all possible discoveries were made in the last five years. Therefore,

it is reasonable to assume that some predicted associations may exist but require

more time to uncover.

3.3.5 Predicting the future emerging genetic factors

The top 15 genes and SNPs from the link prediction procedure with the entire

network are in Table 3.6. The results were validated against the DisGeNET database

and the literature. Detailed explanations of the identified evidence are given below.
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• #1 BGLAP and #10 MGP : These are associations to treatments for AF as

opposed to AF’s cause. Sato et al. (2010) and Yamagishi (2019) discovered

that long-term use of Warfarin, a regular treatment used in non-rheumatic

atrial fibrillation, significantly reduces the activity of osteocalcin (BGLAP)

which protects bones from fracture and inhibits the effectiveness of matrix

Gla-protein (MGP) in preventing vascular calcification. Those discoveries have

led to alternative recommended treatments for AF patients with a high risk

of fracture or vascular calcification, such as non-vitamin K oral anticoagulants

(NOACs).

• #2 rs4762 : Despite Zhao et al. (2015) finding that this mutation is not sig-

nificantly associated with AF, Kuken et al. (2020) recently published a study

showing that AGTT 174 M (rs4762 ) is associated with the occurrence of AF

in the Han and Uyghur ethnic groups in Xinjiang, China. These conflicting

results suggest that this SNP may perform differently for different ethnicities.

• #3 rs337711 : A large-scale genome-wide association study identified a corre-

lation between rs337711 and AF with a significant statistical P-value (Christo-

phersen et al., 2017). However, another experiment based on vitro electrophys-

iology analysis and animal models failed to capture the association of this SNP

with any atrial or ventricular changes in KCNN2 mRNA expression (Bentzen

et al., 2020). These contrasting results may lead to further exploration of the

molecular mechanism of this SNP.

• #4 rs11264280 : Wang et al. (2018) conducted a clinical case study in the Chi-

nese Han population but did not identify any significant correlation between

rs11264280 and AF. However, a later Mendelian randomisation study con-

ducted by Pan et al. (2020) indicates a notable correlation between this SNP

and AF at a P-value of 3.07 × 10−79, which is far smaller than the universal
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conspicuous level. Again, the conflicting results may suggest that this SNP

performs differently for different ethnicity.

• #5 HP : Eryd et al. (2011) conducted a cohort study to identify the associa-

tion of haptoglobin (HP) level with AF and identified an insignificant level of

correlation.

• #6 PKP2 : Several studies mention a potential association between the gene

PKP2 and AF. Bourfiss et al. (2016) discovered that mutation in desmosomal

PKP2 could result in a significantly smaller atrial size in AF patients, which

suggests a different arrhythmogenic mechanism of AF. Alhassani et al. (2018)

reported a family case with large pathogenic PKP2 deletion, resulting in car-

diac arrhythmias, including persistent lone AF. These researchers also claim

that AF occurring as genetic ventricular cardiomyopathy could be a secondary

phenotype of a common underlying genetic variant.

• #9 rs3907 : The associations between AF and rs3907 have barely been investi-

gated at the current stage. According to the minimal existing evidence (Zhao

et al., 2015), this SNP is not significantly correlated with AF.

• #11 S100A6 and #14 TFF-3 : A few studies have been conducted on the

potential associations between these two genes and AF. The limited evidence

suggests that the genetic combinations of TFF-3 and P3NP, S100A6 and

RETN may be biomarkers for AF (Doulamis et al., 2019).

• #15 NOX4 : Mounting evidence is revealing an association between NOX4

and AF. Chen et al. (2019) evaluated the mediation of CD44/NOX4 signals in

atrial tachycardia-induced oxidative stress and Ca2+-handling abnormalities,

providing a possible explanation for the onset/progression of AF. Yang et al.

(2020a) identified elevated expressions of NOX4 in an ibrutinib-induced AF
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mice group and proposed inhibiting NOX as a potential novel AF therapy for

ibrutinib-induced AF.

• We could not find supporting evidence for the other four predictions. However,

in conversations with several domain experts, we were advised that the field

is in a relatively early stage of research progress, and more time is needed

to examine such associations. These empirical insights can provide a clear

direction for future research undertakings.

3.4 Summary

Considering individual genetic variability in contemporary medical research has

become a research frontier. The recognition of disease-specific genetic foundations

has proven to be invaluable for enhancing risk assessment, diagnostics, and treat-

ment strategies. To address this, our framework leverages scientific literature data

to identify known associations between bioentities and diseases, integrating these

findings with network analytics and link prediction techniques. In this modified link

prediction algorithm, we utilize the Bioentity2Vec model to obtain semantic simi-

larities between entities. Although pre-trained language models, such as BERT and

GloVe, have exhibited impressive performance in various downstream tasks, includ-

ing text classification and named entity recognition, their effectiveness often relies

on fine-tuning with labelled datasets tailored to specific domains. However, in the

context of the HBAM framework, the lack of labelled datasets poses a challenge to

the fine-tuning process. As suggested by Reimers and Gurevych (2019), the inherent

design of BERT makes it less suitable for text-unsupervised tasks such as semantic

similarity search or clustering, which aligns with the nature of our HBAM research

problem. Consequently, we have opted to employ the bioentity2vec model on a lim-

ited dataset to derive contextual embeddings for further investigation. The results

of a comprehensive case study indicate that our strategy offers promising potential
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as a solution for entity association prediction and recommendation.

Our empirical study focused on atrial fibrillation. The results of the case analysis

presented some critical bioentities associated with AF. However, they also revealed

controversial findings, such as the association between AF and gastroesophageal

reflux, Omega-3 fatty acids, and caffeine. Therefore, from one perspective, the

framework can be seen as a tool for generating a data-driven, bird’s eye view of car-

diovascular research. From another perspective, it is a decision support system that

produces insights into prior research that may need to be re-examined or pointers

toward future research that is likely to prove fruitful.
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Chapter 4

Hierarchical Topic Tree - I Model

4.1 Introduction

The last decades have witnessed a significant accumulation of scientific docu-

ments, resulting in information overload for researchers. Aiming to improve this

situation, a substantial number of bibliometric studies on topic extraction, knowl-

edge mining, and text analytics have been undertaken, each looking for efficient

ways to extract information from textual data and concise ways of presenting the

knowledge found (Ba et al., 2019; Qian et al., 2020; Song et al., 2016). What many

of those studies have shown is that organising research topics into curated hierar-

chical structures is an excellent way of quickly conveying a great deal of knowledge

about the composition of a research field to those who are unfamiliar with it. While

very broad overviews of a field are not particularly difficult to generate, creating

interactive topic maps that show fields at different levels of granularity and disen-

tangling the rising complexities of inter-/multi- disciplinary studies is another story

altogether. To our knowledge, current rudimentary techniques still rely heavily on

expert knowledge.

That said, advancements in natural language processing (NLP) are reducing this

dependence, with methods capable of automatically identifying and stratifying the

thematic concepts found in a literature dataset. Among these methods, hierarchi-

cal latent Dirichlet allocation (hLDA) (Blei et al., 2010) is especially well-known.

However, a couple of aspects of hLDA could be improved. These include occasional

weak associations between the generated parent and child topics; internal unigram
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incoherence within topics (Qian et al., 2020; Xu et al., 2018); a propensity to repre-

sent each topic as a conglomeration of unigrams and probabilities; and a tendency

to label topics with appropriate names, which reduces the interpretability of the

results. There are also alternative approaches to building topic hierarchies, such as

taxonomy identification (Shang et al., 2018), ontology construction (Wong et al.,

2012), and knowledge graphs (Yang et al., 2017). But, despite substantial efforts

to the contrary, these techniques inevitably suffer from an excessive number of pa-

rameters that need to be fine-tuned or issues with creating clean partitions between

topics. Current hard clustering algorithms like K-means or non-negative matrix fac-

torization (Qian et al., 2020; Zhang et al., 2018b), which most of these techniques

are based on, struggle to find clear divisions between topics with high levels of over-

lap, convergence or interactivity – characteristics that typify the process of scientific

development.

Aiming to solve these issues, we propose a hierarchical topic extraction model

called Hierarchical Topic Tree - I(HTT-I). The model comprises a term co-occurrence

network and two algorithms: DPS, a density peak search algorithm modified to work

with networks, and OCA, an overlapping community allocation algorithm. We as-

sume every topic consists of a core term, which becomes the topic’s label, and a

set of affiliated terms. Applying the density peak search algorithm to a term co-

occurrence network reveals the density peak terms that meet specific criteria for

being used as a topic’s label. The terms associated with every core topic term, i.e.,

the affiliated terms, are then determined and partitioned by the overlapping com-

munity allocation algorithm, which means terms can be assigned to multiple topics.

These two steps run recursively on partitioned subnetworks to identify deeper hier-

archies in the term co-occurrence network until no core topic terms (topic labels)

are found. To demonstrate the practical workings of the HTT-I framework, we con-

ducted three case studies on computer science, AI ethics and digital transformation
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literature datasets. The main contributions our work makes include: 1) a density

peak search algorithm that identifies and labels the topics in a corpus; 2) an over-

lapping community allocation algorithm that recognises topic overlaps, which may

indicate knowledge convergence; and 3) a model that requires two hyperparameters

– a density threshold and an overlap threshold, which makes the process of tuning

parameters easy and the model adaptable to a variety of cases.

The rest of this chapter is organised as follows. Section 4.2 sets out the details of

our proposed methodology. Sections 4.3, 4.4, 4.5 follow, presenting the data, results,

and empirical insights derived from three case studies. We then wrap up our study

with a conclusion, the study’s limitations, and future research directions.

4.2 HTT-I Methodology

4.2.1 Concept definitions and problem formulation

Definitions of the main concepts referred to in the methodology are as follows.

i. Topic term: Nominal words and phrases extracted from scientific literature

textual data. The terms can come from data sources or be extracted from

titles, abstracts, or full texts via NLP and cleaning steps.

ii. Topic: A set of topic terms with their corresponding probabilities headed by

a core topic term. Term overlaps under the same parent topic are allowed for

different topics.

iii. Hierarchical topic tree - I (HTT-I): HTT-I is both the name of our proposed

method and the final output. As an output, an HTT-I is a tree structure

consisting of topic nodes residing on different tree layers, as illustrated in

Figure 4.1. The length from the root node to the nodes on the deepest layer is

called the tree depth. A higher-layer topic is a parent topic, and its connected
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Figure 4.1 : Illustration of an HTT-I example

topics in lower layers are called child topics. Child topics under the same

parent topic are siblings. The associations between a parent and child topic

are assumed to be stronger than associations between siblings.

iv. Problem formulation: The methodology aims to: 1) identify research topics

with different granularity and construct a topic tree automatically from a

collection of scientific documents; 2) label every topic with an appropriate

name; and 3) detect topic overlaps.

4.2.2 Data pre-processing and network construction

The process begins by extracting topic terms from a corpus of documents. This

is done with VantagePoint1 and a term clumping process (Zhang et al., 2014b)

or any other term extraction workflow. With the extracted terms, the next step

is constructing a weighted co-occurrence network of topic terms, denoted as G =

(V,E). V is the set of nodes representing the extracted topic terms, and E is the

1More details could be found at www.vantagepoint.com.
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set of edges representing term co-occurrence. The graph is formulated according to

the following equation:

wViVj ,i ̸=j =


1

CF (Vi,Vj)
if Vi and Vj co-occur in at least one document

0 otherwise
(4.1)

where wViVj ,i ̸=j is the edge weight of wViVj ,i ̸=j and CF (Vi, Vj) is the co-occurring

frequency of Vi and Vj.

4.2.3 Density peak search (DPS)

Density peak clustering was first proposed by a paper on Science by Rodriguez

and Laio (2014). It is based on the premise that the centre of a cluster is more

densely packed than the surrounding regions and that areas of high density tend to

be relatively far apart. As a one-off clustering method, the density peak clustering

method is more straightforward and computationally efficient than traditional K-

means or density-based clustering algorithms like DBSCAN. There are no additional

parameters and multiple iterations, meaning the clustering process is highly robust

to parameter selection. Du et al. (2016) have since improved this method by using

average K-nearest neighbour (KNN) density to emphasise the importance of local

density instead of the original circle radius approach. This notion of density accords

with the characteristics a topic label should have in that a highly representative

topic label will be strongly connected to its related terms but as different as possible

from other topic labels. This parallel motivated our idea to name topics through a

KNN-modified density peak-based clustering algorithm automatically.

This algorithm is also designed to identify core terms for topic labels. When

applying density peak clustering to network data, the primary concern is finding

appropriate proxies for the distance and density measurements. Bai et al. (2017)

use r-step topological distance as a proxy. However, this strategy necessitates a
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redundancy parameter r and a weighted parameter t, both of which need to be fine-

tuned and reduce the model’s adaptability. Therefore, we opted to develop a new

distance proxy, although still based on the topological distance between nodes:

dViVj ,i ̸=j =


wViVj ,i ̸=j if Vi and Vj are connected

SPLViVj ,i ̸=j if Vi and Vj are unconnected but a path exists between them

NA if no path exists between Vi and Vj

(4.2)

where SPLViVj
is the length of the shortest path from node Vi to Vj.

Generally, the co-occurrence network of high-frequency terms is fully connected,

which means there will be at least one path from Vi to Vj. Hence, using the proposed

new distance proxy, the kernel local KNN density and distance to the nearest denser

point of every term can be calculated as:

ρVi
= exp(− 1

K

∑
j∈KNN(Vj)

d2ViVj
) (4.3)

δVi
=


max
Vj

d(Vi, Vj) if Vi and Vj co-occur in at least one document

min
Vj∈VρVj

>ρVi

d(Vi, Vj) otherwise

(4.4)

In the few cases where the co-occurrence network includes several unconnected

components, we will generate a virtual root node for the final HTT-I. Then each

component will be processed separately as a branch of the virtual root node.

The original DPC algorithm identifies the cluster centroids with higher values of

ρ and δ by observing the ρ − δ plot. However, when applying this algorithm to a

real-world dataset, the boundaries of centroids and other terms are not always that

clear. Therefore, in HTT-I, these selection criteria are quantitative. Vc denotes the
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potential centroids of all the communities, and the criteria for selecting the final

centroids are formulated as follows:

i. Density peak: The selected centroids should be density peaks, denoted as:

ρVc = max
Vi∈KNN(Vc)

ρVi
(4.5)

where KNN(Vc) denotes the K-nearnest neighbour nodes of Vc.

ii. Centroid sparsity: To guarantee the identified centroids are sparse to each

other, we set the node’s distance to its parent node as a quantitative minimum

threshold, which also indicates the associations of child nodes are weaker than

the associations with their common parent node. This criterion is expressed

as follows:

σVc > dVrVc (4.6)

in which Vr denotes the parent node of Vc.

Initially, there is no root node to measure whether a node meets Criterion 2.

Hence, we will only use Criterion 1 to identify root nodes. If only one node meets

Criterion 1, it will automatically become the root node. Otherwise, a virtual root

node will be generated, and the n identified nodes will become children of the virtual

root.

4.2.4 Overlapping community allocation (OCA)

The next step is to distinguish overlapping topics between communities and

ensure they are given multiple proper assignments. Thus, every node is assigned a

probability vector pVi
= {pi,1, pi,2, pi,3, . . . , pi,n}, which reflects the probabilities that

Vi belongs to core terms identified. Specifically, the probability that node Vi belongs

to a community (topic) with the core term Vc is calculated as follows:
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In disjoint community allocation, node Vi will be exclusively allocated to its

closest centroid c if c = argmaxt{pi,t, t = 1, 2, 3, . . . , n}. However, we aim to allocate

a term node to more than one potential community with high probabilities. Hence,

we employ an overlap threshold σ to decide multiple communities to which the node

Vi could belong. The rule applied is that if
pi,t
pi,c

> σ, node Vi will be assigned to both

community t and c. The output of this step is n overlapping communities with their

assigned terms and probabilities.

4.2.5 Recursive hierarchy detection

The previous steps partition the network into n subnetworks, with each sub-

network comprising a core topic term and a set of affiliated terms. To extend the

hierarchy into deeper layers, new subcommunities are detected by recursively apply-

ing the modified DPS and OCA algorithms to the partitioned subnetworks. When

partitioning the parent networks into subnetworks, terms that belong to more than

one topic, i.e., community overlaps, are excluded. This is because our approach aims

at revealing hierarchies that exclusively belong to the parent topic. The recursive

loop ends when no further core topic terms are detected in any subnetwork or the

number of terms in the subnetwork is less than K.

The output of this step is the finalised HTT, with each node represented by a

core topic term and linked to a set of terms. Topic overlaps containing terms shared

by sibling topics are detected as well. This recursive process is illustrated in Figure

4.2, where each colour represents a different stratum in the hierarchy. From top to

bottom, the HTT-I has a root topic and one or multiple layers of topics generated by

the iterations of DPS and OCA algorithms. Topics generated in the same iteration

are siblings to each other and share a mutual parent topic.
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Figure 4.2 : The recursive process of hierarchy construction

4.2.6 Evaluation indicators

According to criteria from previous studies, a well-curated hierarchical topic

structure should meet at least two characteristics: semantically coherent topics and

high-quality parent-child topic relationships (Qian et al., 2020; Shang et al., 2020;

Xu et al., 2018). Hence, we designed two indicators - topic coherence and parent-

child topic association (PCTA) to quantify the two characteristics. Additionally, we

calculated the weight loss ratio of network edges to measure the information loss in

the HTT-I process. Please note that the topics mentioned in this section contain

overlapping terms. The association strength between two topics means the sum

of the edge weight’s reciprocal of the pairwise terms from the two topics, and the

internal topic association of a topic strength refers to the sum of the edge weight’s

reciprocal of pairwise terms from the topic itself.

i. Topic coherence: Previous studies employ pointwise mutual information (PWI)

to measure the topic coherence, but we consider it does not provide an intu-

itive and universal measure of topic coherence because its value range is −∞
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to +∞ and its values vary hugely in multiple studies (Qian et al., 2020; Xu

et al., 2018; Wang et al., 2013). Hence, in this study, we measure the coher-

ence of a topic by calculating the proportion of its total internal association

strength against its total association strength with itself and its siblings. The

calculating formula is as follows:

CoherenceTi
=

1

|Ti|
∑

VM∈Ti

∑
Vn∈Ti,m ̸=n CF (Vm, Vn)∑

Tj∈children(parent(Ti))

∑
Vk∈Tj

CF (Vm, Vk)
(4.7)

ii. Parent-child topic association (PCTA): This indicator is only applied to parent

nodes in the final HTT-I (including the virtual root node if it exists). For

every parent node, the PCTA equals the ratio of the total pairwise association

strength among its children topics over the total association strength of itself

and all children topics subtracted by 1. It proxies how strongly the parent

topics are associated with their corresponding child topics.

PCTATi
= 1−

∑
Tm,Tn∈children(Ti),m ̸=n

∑
Vp∈TK

m ,Vq∈TK
n
CF (Vp, Vq)∑

Tj∈children(Ti)

∑
Vx∈TK

j ,Vy∈TK
i
CF (Vx, Vy)

(4.8)

iii. Information loss index: This index measures the overall information loss when

the term co-occurrence network is transformed into a hierarchical tree struc-

ture. The smaller value of information loss reflects the model’s better perfor-

mance in retaining information.

Information loss indexTi
=

∑
Tm,Tn∈children(Ti),m ̸=n

∑
Vp∈Tm,Vq inTn

CF (Vp, Vq)∑
Vx∈Ti,Vy∈Ti,x̸=y CF (Vx, Vy)

(4.9)
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4.3 Case Study I: Topic Hierarchies in the Computer Science

Discipline

4.3.1 Data collection and pre-processing

To demonstrate the proposed methodology, we conducted a case study on the

field of computer science, decomposing its many and varied research interests into

topic hierarchies. The corpus in this case study comprised 6,267 highly-cited papers

published between 2010 and 2021 retrieved from the Web of Science (WoS) core

collection database. WoS is a well-curated multidisciplinary database with 74.8

million scientific publications from over 21,100 journals. Category information is

assigned to every journal, and articles with the top 1% of citations received per field

are flagged2. The search strategy used to assemble the corpus was as follows:

(WC = ”Computer Science”) AND LANGUAGE: (English) AND DOCUMENT

TYPES: (Article)

Refined by: ESI Top Papers: ( Highly Cited in Field )

IC Timespan=2010-2021.

WC: Web of Science Category.

Before applying our methods to the dataset, we ran VantagePoint’s natural lan-

guage processing (NLP) function to extract the raw words and phrases from the

titles and abstracts. We then executed a term clumping process that removes noise

and consolidates synonyms to arrive at a final list of topic terms. From this list, we

selected terms with a frequency greater than 5. The stepwise cleaning results are

given in Table 4.1. The final output was a term co-occurrence network consisting of

2,134 terms.

2HTT-Ips://clarivate.com/webofsciencegroup/solutions/essential-science-indicators/
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Table 4.1 : Step-wise results of the pre-processing procedure

Step Description # Terms

1 Raw terms retrieved with NLP 132,846

2
Consolidated terms with the same stem, e.g., “information

system” and “information systems”
116,898

3

Removed spelling variations and removed terms start-

ing/ending with non-alphabetic characters, e.g., “Step 1”

or “1.5 m/s”, removed meaningless terms, e.g., pronouns,

prepositions, and conjunctions

114,459

4 Removed general single-word terms, e.g., “information” * 96,245

5
Consolidated synonyms based on expert knowledge, e.g.,

“co-word analysis” and “word co-occurrence analysis”
84,828

6 Eliminated all terms occurring less than five times 2,134

Note: Given that most single-word terms take on additional context when used in multi-word phrases, e.g., “information” vs. “information

systems”, we opted to remove generic single-word terms. Further, some multi-word terms were consolidated into a single-word form in

Step 2 (e.g., “classification method” became “classification”). Non-general single-word terms were retained.
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Figure 4.3 : K against the number of identified core topic terms plot

4.3.2 HTT-I result and interpretation

Before generating the HTT-I, we selected appropriate values for the KNN density

parameter K and the overlap threshold σ. Optimal values of K were determined

through sensitivity analysis by monitoring the number of initially identified core

topic terms against K. The corresponding plot is presented in Figure 4.3.

The first round of tests returned six initial core topic terms at every setting of

K between 10 and 17. Therefore, to detect as many topics as possible, we set K to

10 and the overlap threshold σ to 0.8.

With the term co-occurrence network as input to the DPS and OCA algorithms,

the graph was recursively partitioned into subnetworks of topics in different lay-

ers. The overlaps between topics were evaluated and assigned accordingly. The

algorithms stopped at the eighth iteration, yielding a nine-level HTT-I of computer
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science research. Figures 4.43 and 4.5 illustrate the HTT-I result and detailed terms

in topics and their overlaps, respectively.

To evaluate the performance of HTT-I in this case, we calculated the average

topic coherence, PCTA, and information loss of the final HTT-I, with their values

as 0.619, 0.847, and 6%, respectively. The high PCTA value indicates our methods

yield solid and reliable relationships between parent and their corresponding child

topics. The low average information loss index suggests that the HTT-I evenly

retains more than 93% of the information in every hierarchy construction process.

The topic coherence is above 0.6, which is acceptable in partitioning the tangling

research topics in the computer science domain that includes many multi-disciplinary

interactions and knowledge convergence.

In Figure 4.4, the six topics in the first tier reflect six relatively separate re-

search directions, which result from the idea of DPS that each core label should be

topologically distant from the others. Simple observation confirms that the selected

label terms with high density also represent the terms they lead. Drilling down

into each of the six initial parents, #1 Deep learning branches off into topics that

pertain to convolutional neural networks and then onwards to the relevant tasks

they are used to solve, e.g., computer vision, image segmentation, etc. The lower

branch of this topic groups the models and metrics associated with deep learning,

such as random forests and prediction accuracy. #2 Optimisation problems span

different techniques, algorithms, and research objects associated with optimisation

and its sub-problems. #3 Decision-making captures the models, strategies, and sub-

problems relevant to decision intelligence and its processes. #4 Operating systems

group the research topics surrounding computing architectures and software, a fun-

3Constraints on the page size limit the tree to its top three layers. The

total HTT-I result is available at HTT-Ips://github.com/IntelligentBibliometrics/HTT-

I/blob/main/CS%20case%20results.png
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damental aspect of computer science. #5 The Internet of Things (IoT) connects big

data and sensor technology with its many application spheres. Last, #6 Closed-loop

systems leads the branch of topics concerning the convergence of computer science

with engineering and control systems.

We also generated insights into cross-direction convergence from the topic over-

laps in Figure 4.5. The overlapping terms between #1 and #2 include data mining,

classification accuracy, and classification tasks, which are universal concepts for both

deep learning and optimisation studies. Overlapping terms of topics #2 and #4 de-

scribe two programming tools (R, MATLAB) and computer performance (enhanced

performance, CPU time). This overlap indicates a direction of solving optimisation

problems using computer operating system-based applications. Likewise, the other

overlapping terms all indicate different kinds of topic convergence. Intriguingly, ma-

chine learning was also assigned to this overlapping section. Conventionally, deep

learning would be regarded as a sub-topic of machine learning ; however, the two

terms are close neighbours in this term co-occurrence network, and deep learning

has a higher KNN density. This reflects that deep learning has overshadowed its

precursor technologies to become the more dominant research focus.
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Figure 4.4 : The HTT-I result for computer science
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Figure 4.5 : Topic details and partial topic overlaps in computer science
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4.4 Case Study II: Reveal the Topic Hierarchies in AI Ethics

Research

A pandora’s box of artificial intelligence (AI) has been opened and these disrup-

tive technologies are transforming the daily lives of human beings in relation to new

ways of thinking and behavioural patterns with enhanced capabilities and efficiency.

There are many examples of AI applications in use today, such as smart homes

(Harper, 2006), smart farming (Walter et al., 2017), precision medicine (Collins

and Varmus, 2015) and healthcare surveillance systems (Hossain et al., 2020). The

ethical and privacy issues surrounding the use of AI have been a topic of growing

interest among diverse communities. For example, the general public has expressed

concern about the impact of the increased use of robots on unemployment and

inequality (Bossmann, 2016), social scientists have raised deep privacy concerns re-

lated to surveillance systems (Müller, 2020), and limited regulation of social media

has raised debate with technical giants on the abuse of private data. Despite these

concerns, the AI community stands behind the efficiency and robustness of their AI

models. There is an urgent need to guide the research community to understand

these ethical and privacy challenges.

To address these concerns, this case study reports on bibliometric research to

comprehensively profile the key ethical and privacy issues discussed in the research

articles and to trace how such issues have changed over the past few decades. We

integrated a set of intelligent bibliometric approaches within a framework for diverse

analyses. With specific foci in topic analysis, we initially retrieved terms from the

combined titles and abstracts of collected articles and used a term clumping process

(Zhang et al., 2014b) to remove noisy terms and consolidate technical synonyms. We

answered the questions about the topical landscape using the approach of HTT-I.

We anticipate that the empirical insights identified in this study will motivate the
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AI community to extensively and comprehensively discuss the ethical and privacy

issues surrounding AI and will guide the implementation of AI in line with an ethical

framework.

4.4.1 Data collection and pre-processing

The Web of Science (WoS), owned by Clarivate, is a well-recognised integrative

platform of bibliometric data sources. Of these, the WoS All Databases covers all

the WoS’s subscribed resources which we used as our primary data source when

considering AI ethics as an emerging topic covering both natural sciences and social

sciences. Its major debates exist not only in journal articles but also in a wide range

of resources (e.g., conference proceedings and other types of research publications).

Our special interest is in the ethical issues surrounding AI at both the macro and

micro levels. Thus, topic analyses would focus on the WoS All Databases. In

addition, since the WoS Core Collection database provides a curated form of full

bibliographical information (e.g., author affiliations, countries/regions, and forward

and backward citations), we particularly focused on an analysis of the key entities

that contribute to the research on AI ethics and the interactions between these

entities. Comparably, the WoS All Database covers a relatively ”full” collection of

various types of articles in WoS, with a priority on data coverage, but the WoS Core

Collection only contains journal articles collected in selective indexes (e.g., Science

Citation Index), highlighting the quality of its data collection. In other words, the

WoS Core Collection is a subset of the WoS All Database, with a filtered data

collection. The search process ended up with 4,375 articles. The search strategy is

given below:

TS = ((”artificial intelligence” OR ”big data”) AND (”disinform*” OR ”ethic*”

OR ”crimin*” OR ”moneti*” OR ”data control*” OR ”implicit trust*” OR

”addiction*” OR ”contestab*” OR ”moral*” OR ”digit* transparen*” OR
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”algorithm* transparen*” OR ”accountabilit*” OR ”liabilit*” OR ”fairness*”) )

Data source: WoS All Databases

4.4.2 HTT-I result and interpretation

In this section, we applied an HTT-I topic analysis to the collected dataset from

the WoS All Databases. We initially retrieved 93,364 terms from the combined titles

and abstracts of the 4,375 articles and conducted a term clumping process (Zhang

et al., 2014b) to remove noise and consolidate the technical synonyms, reducing the

total number of terms to 52,054. Then, we used the 2,163 terms appearing in more

than two articles as the core set of terms to generate the HTT-I result shown in

Figure 4.6.

Figure 4.6 enhances the understanding of the details of AI ethical issues, espe-

cially the connections between specific AI techniques and moral concerns. Among

its 71 nodes, the HTT-I result lists 27 AI techniques (e.g., machine learning) and

AI-driven applications, devices, and products (e.g., robots and autonomous vehi-

cles), 28 ethical topics (e.g., fairness and discrimination), and 16 societal topics

(most of them about medical and healthcare issues). The four main branches of this

HTT-I result represent four significant issues relating to AI ethics, that is, #1 AI

techniques and potential ethical issues, #2 technological and political implications of

AI ethics, #3 data privacy, and #4 privacy in healthcare. We discuss these four

issues in detail:

• #1 AI techniques and potential ethical issues : Figure 4.6 reveals the key AI

techniques that may raise ethical concerns, such as machine learning (includ-

ing deep learning, computer vision, neural networks, natural language process-

ing, etc.), ontologies, communication technologies, and neuroscience. Machine

learning, one of the key areas in AI, shares close connections with almost all

AI techniques and thus attracts the most attention in this HTT-I and is con-
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Figure 4.6 : HTT-I result of AI ethics research
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nected with all ethical issues, such as fairness, discrimination, liability, fraud,

and criminals. It is easy to explain these cases. For example, applying AI

models to make decisions entails a justiciable ”right to a well-calibrated ma-

chine decision” (Kalluri, 2021; Huq, 2020), AI-driven fraud in social media,

political elections, and financial markets (e.g., fake videos and identifications

manipulated by AI techniques, such as image processing and face recognition)

has become a major concern (King et al., 2020). How to validate AI recom-

mendations with human knowledge in actual cases, such as clinical practice, is

challenging both the AI community and the receptivity of the general public

(Price et al., 2019). A brand-new topic of brain-computer interfaces is attract-

ing increasing attention from the public, and ethical issues (such as privacy)

and related regulations are appearing in public reading materials.

• #2 Technological and political implications of AI ethics : As an extension of

the ethical issues in #1, #2 further extends AI’s influence from ethics to the

broad society through specific technological and political implications, such

as sustainability, responsibility, and digitalisation. From the perspective of a

complex ecosystem, these societal reactions could be the resilient progress of

an ecosystem responding to disruptions introduced by AI techniques and their

resulting ethical issues (Zhang et al., 2021a).

• #3 Data privacy and #4 Privacy in healthcare: #3 and #4 are a specific case

of AI ethics. The big data boom initially activated the public’s concerns about

data privacy, where the illegal exposure of personal data, particularly those

linked with social media, occurred. Furthermore, while analysing health data

(e.g., electronic health records), including clinical trials and gene sequencing

data, provides evidence for precision medicine, privacy concerns in medical

and healthcare sectors then become not only a societal issue but also a threat
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to national strategies and the sustainability and balance of nature (Webber

et al., 2015).

4.4.3 Case summary

In the HTT-I result, key AI techniques such as machine learning, data analysis,

robots and intelligent systems, and cloud technologies generate concerns about the

ethical issues relating to AI. Fairness and discrimination are critical concerns be-

cause AI models are applied in decision support in diverse scenarios. Data privacy,

particularly in the healthcare and medical sectors, is a cause of increasing problems.

Cybercrime and fraudulent behaviour are particularly concerning in the absence of

appropriate support from the law and regulations. Machine ethics are mainly re-

lated to robots, autonomous cars, and intelligent machines, highlighting a balance

between machine consciousness and human rights.

4.5 Case Study III: Digital Transformation Conceptualisa-

tion

Digital transformation (DT) has become an emerging phenomenon in strategic

information research and industrial business practice. At a macro level, society

is experiencing profound changes due to the explosion in digital technology across

various industries. At a micro level, organisations build their digital capabilities and

take advantage of new digital technologies to realise innovations and create business

value. Yet, despite the vast interest in DT, there are still some significant research

gaps in this domain.

First, most conceptual definitions of DT are based on qualitative analyses, such

as expert judgments or a literature review (Reis et al., 2018; Vial, 2019). Data-driven

quantitative analysis has rarely been used to characterise DT or the capabilities that

enable it. This was one of Vial (2019)’s most urgent and vital calls to researchers.
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Second, many studies point out the significant role of dynamic and technological

capabilities in an organisation’s development (Bharadwaj, 2000; Chae et al., 2014;

Eisenhardt and Martin, 2000; Helfat et al., 2009; Teece, 2007; Warner and Wäger,

2019). However, almost no studies bring them together to understand their role in

enabling DT. Lastly, when it comes to technological capabilities, most studies on

DT are general. They talk non-specifically about the realm of digital technologies

and not the technologies themselves, which makes it difficult to generate specific

theoretical and practical implications from the results.

Hence, this case study aims to fill the three critical gaps: the lack of quantitative

analysis on a definition of DT, the missing link between DT and the capabilities

that enable it, and the lack of attention to understanding the capabilities needed to

leverage specific digital technologies. To fill the third gap, this case study presents

a case study focusing on one emerging technology, artificial intelligence (AI), to

exemplify the specific capabilities needed to leverage AI successfully in a DT journey.

More specifically, the overall goal of this case study could be concluded as answering

the three following case research questions:

• Case research question 1 (CRQ1): What is the definition of DT from a biblio-

metric perspective?

• Case research question 2 (CRQ2): What capabilities enable DT?

• Case research question 3 (CRQ3): What are the AI capabilities enabling DT?

This case study is to leverage bibliometrics to seek quantitative evidence of pre-

cisely what DT is and the capabilities needed to enable it successfully. The analysis

framework devised for this study integrates a topic-tracking method called scientific

evolutionary pathways (SEP) (Zhang et al., 2017c) with a novel method of iden-

tifying topic hierarchies named hierarchical topic tree (HTT-I). By incorporating
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these two methods with network analytics and a literature review, each of our three

research questions can be answered empirically rather than subjectively.

More specifically, we collected 10,179 scientific articles from the Web of Science

and 9,454 patents relating to AI from the Derwent Patent Citation Index. Through

SEP analysis on the collected dataset of scientific papers, we identified the evolution-

ary patterns of research topics in the DT literature, enabling us to distil a general

definition of DT (CRQ1). To unravel the specific capabilities enabling DT (CRQ2),

we applied HTT-I coupled with a literature review of specific papers on digital capa-

bilities to arrive at a comprehensive categorisation of the resources and competencies

needed to successfully undertake a DT journey, with the specific capabilities from

39 core papers classified as dynamic capabilities, technological capabilities, plat-

form capabilities, and other capabilities. Lastly, taking AI as our focus technology,

we applied an HTT-I analysis to a corpus of patents on AI and conceptualised a

four-level model to guide AI-enabled DT (CRQ3). From bottom to top, the model

progressively presents data collection and transmission capabilities, bridging capa-

bilities, algorithm capabilities, and application capabilities required for companies

to leverage AI in their digital transformation process.

4.5.1 Data collection and pre-processing

We chose two data sources as our corpus: Academic papers from the Web of

Science (WoS) core collection and patents from the Derwent Patent Citation Index

(DPCI). The WoS is a well-curated multidisciplinary database with 74.8 million

scientific publications from over 21,100 journals, while the DPCI contains 39 million

patent citations covering all technologies. The following search strategy returned

10,179 articles related to DT from WoS:

TS = (”digit* transfor*” OR ”digitisation*” OR ”digitisation*” OR

”digitalisation*” OR ”digitalisation*” OR ”digit* capabilit*” OR ”digit*
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platform*” OR ”digit* tech*” OR ”digit* innova*” OR ”digit* competence*” OR

”digit* mind*” OR ”digit* activit*” OR ”digit* practice*” OR ”digit* manag*”)

AND LANGUAGE: (English) AND DOCUMENT TYPES: (Article)

Timespan=2010-2020

Search date: 24 September 2020

These papers constitute Dataset 1. From these data, we additionally prepared a

second, more focused dataset of 913 papers published in journals our experts deemed

to be of “high quality”. The list of the journal titles is provided in Appendix A.

Dataset 3 was assembled to support the case study. It comprises 9,454 patents

relating to AI drawn from the DPCI. Given the general concept of AI covers such

a broad range of areas, we narrowed our search to only patent titles that contained

“artificial intelligen*”) with the following search strategy:

TI = (”artificial intelligen*”) AND IP=(G06* OR H04* OR H01* OR G11* OR

G10* OR G01* OR G02* OR H05* OR H02* OR H03* OR G09* OR G05* OR

A63* OR G08* OR G03* OR B60* OR G07* OR F24* OR A61* OR B65* OR

B23* OR B81* OR B25* OR C08* OR A45* OR B01* OR C25* OR C09* OR

B64* OR C23* OR F16* OR A44* OR C12* OR B32* OR C03* OR B62* OR

F04* OR B29* OR B41* OR B24* OR F25* OR F28* OR E04* OR F21* OR

G12* OR G04* OR G16* OR C01* OR B66* OR C07* OR B22* OR A47* OR

A01* OR B82* OR B05* OR C22*)

Search date: 06 November 2020

In summary, the three datasets are:

• Dataset 1: 10,179 scientific papers related to DT retrieved from the WoS.

• Dataset 2: A subset of Dataset 1 comprising 913 articles published in high-

quality journals.
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Table 4.2 : Step-wise results of the term clumping process

Step Description #Terms

1 Raw terms retrieved with NLP 253,162 24,203

2
Consolidated terms with the same stem, e.g., “information system” and “infor-

mation systems”
220,812 20,530

3

Removed spelling variations, removed terms starting/ending with non-alphabetic

characters, e.g., “Step 1” or “1.5 m/s”, removed meaningless terms, e.g., pro-

nouns, prepositions, and conjunctions

199,410 18,398

4 Removed general single-word terms, e.g., “information” * 174,880 15,281

5 Filtered technological terms suggested by experts - -

6
Consolidated synonyms based on expert knowledge, e.g., “co-word analysis” and

“word co-occurrence analysis”
164,433 14,918

7 Eliminated all but the top 5000 most frequently occurring terms 5,000 5,000

8 Eliminated all terms occurring only once - -

• Dataset 3: 9,454 AI patents from the DPCI.

Before using the data for HTT-I analyses, we applied VantagePoint’s natural

language processing (NLP) function to convert the datasets into a dictionary of raw

words and phrases. We then executed a term clumping process (Zhang et al., 2014b)

that removes noise and consolidates synonyms to arrive at a final list of topic terms.

From this list, we selected the 5000 terms with the highest frequency from datasets

1 and 2 and those with a frequency greater than one from Dataset 3 for further

analysis. The step-wise results are given in Table 4.2.

4.5.2 SEP results and interpretation

The SEP analysis helped us to define DT from a bibliometric perspective in

answer to CRQ1. By running the SEP algorithm on processed Dataset 1, we gener-

ated the DT research SEP in Figure 4.7. It traces the changing focus of academic

research over the last decade. Each node represents a topic, and each edge indicates

predecessor-descendent relationships between two topics. The colours indicate the
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Figure 4.7 : The SEP within DT research

four topic communities detected by Gephi4.

The green community (#I) encompasses the fundamental concepts of DT re-

search at a macro level. The orange community (#II) indicates the initial develop-

ment of digital technologies researched in DT and highlights the heavy involvement

of interactive technologies. The blue community (#III) marks communications tech-

nologies (CTs) as a prominent technology related to DT and uncovers other relevant

emerging technologies based on CTs, like mobile CTs and AI. Lastly, the pink com-

munity (#IV) denotes digitisation processes and the transition from theory into

4HTT-Ips://gephi.org/
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practice.

#I digitisation (green): This community can be considered a birds-eye view

of the spectrum of research into DT. Many of the significant evolution emanate

from the industries that need or benefit from DT, such as healthcare, education,

and manufacturing (relevant topics: healthcare [2017], COVID-19 [2020], teachers

[2013], and manufacturers [2014]). The milestones along the main pathways in-

clude changes to the fabric of industry itself (Industry 4.0 [2018], industrial internet

[2020]), digitising objects (digital text [2015], digital media [2018], digital images

[2016], 3D digitisation [2020]); and research methods (questionnaires [2019], inter-

views [2019], web-based surveys [2020], semi-structured interviews [2020]). Of the

four communities, this one has the most comprehensive scope.

#II Digital technologies (orange): Derived from Community #I, this community

reveals the first offshoots of DT – the technologies developed. The topics include

digital platforms, social networks, advanced interaction media, and immersive reality

(Hein et al., 2019; Butler et al., 2020; Zhukov et al., 2018), primarily interactive and

user-engaged. This community also acts as a bridge to Community #3, where

information communication technologies (ICTs) emerge.

#III ICTs (blue): Community #III encompasses smartphones [2016], mobile

technologies [2017] and mobile devices [2018], highlighting the developing trends in

mobile communications (Neirotti and Pesce, 2019). It also includes the emerging

topics of data analytics, artificial intelligence, and sustainability (artificial intelli-

gence [2018], principal component analysis [2019], logistics models [2020], sustain-

able development [2019], and smart cities [2020]) (Yang et al., 2020b; Brock and

Von Wangenheim, 2019; Tumelero et al., 2019).

#IV digitisation processes (pink): While Community #I shows the theoretical

beginnings of DT, Community #IV shows the practical outcomes. Many of the
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topics in this community are either key enablers to DT (big data [2017], IoT [2018],

remote sensing [2018], Blockchain [2019], etc.) or digitisation solutions (technology

integration [2015], the sharing economy [2018], manual digitisation [2019]), which

guides companies to realise a successful DT (Nicolescu et al., 2018; Bayer et al.,

2020).

Overall, this SEP analysis reveals how the research into DT has evolved. The four

different topic communities reveal the “entity” (#I), the “technologies” (#II and

#III) and the “significant change” that has occurred as a result (#IV), providing

quantitative evidence of how the theoretical foundations of DT can become a reality.

These four communities accord with Vial (2019)’s definition that “DT is a process

that aims to improve an entity by triggering significant changes to its properties

through combinations of information, computing, communication, and connectivity

technologies”.

4.5.3 AI research papers - HTT-I result and interpretation

The HTT-I result reveals topic relationships from a cross-sectional and vertical

perspective. In Figure 4.8, the digital technologies topic is the most dominant node.

Therefore, both figures indicate that the development of digital technology is a

critical enabler of DT. Digital platforms and information technology are the other

two topic nodes in the tree without parent nodes, which means these two topics are

equivalently important with digital technologies to DT. The remaining nodes are

divided into ten topic clusters. We named each cluster after the node with the most

substantial connection to its parent.

On the right side of the tree, there are seven topic clusters subordinate to the

digital technologies root node. These seven clusters represent either specific digital

technologies or the business implications of those technologies. The top four are ICT

(#1), social networks (#2), AI (#3), and IoT (#4) – all digital technologies. From a
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Figure 4.8 : The HTT-I result discovered in DT research
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complete reading of some of the papers in these clusters, we find that disruptiveness

is a characteristic shared by all topics (Zhukov et al., 2018; Bayer et al., 2020; Young

et al., 2019). By disruption, we mean they can shake up industries, trigger the

development of new business models, and segment markets in new ways (Danneels,

2004). The papers in these clusters articulate how the technologies they discuss can

enable DT (Neirotti and Pesce, 2019; Brock and Von Wangenheim, 2019; Nicolescu

et al., 2018; Bayer et al., 2020; Ardolino et al., 2018; Hartley and Sawaya, 2019; Wang

et al., 2015b), and they present empirical evidence to prove it (Butler et al., 2020;

Yang et al., 2020b; Chae, 2019). Thus, the social implication of the technologies

in this cluster is also a research focus. For instance, the explosion and imbalance

of ICT development are claimed to be one of the causes of the digital divide – a

prominent social problem in implementing digital technologies (Afshar Ali et al.,

2020; Srivastava and Shainesh, 2015), while IoT is recognised to have the potential

to promote sustainable development by industry (Tumelero et al., 2019; Yang et al.,

2020b).

The remaining three of the seven are digital products (#5), digital capabilities

(#6), and digital innovation (#7). These reflect the business implications of digital

technologies.

The articles on digital products #5 typically aim to promote the development or

improvement of digital products based on digital technologies (Henfridsson et al.,

2014; Øiestad and Bugge, 2014). Here, user experience is usually the key evaluation

indicator (Shin, 2019). The focus in digital capabilities #6 is on the capabilities

required by organisations and individuals in the DT process, which are divided into

digital (Gurbaxani and Dunkle, 2019; Pagoropoulos et al., 2017), dynamic (Demeter

et al., 2020; Jantunen et al., 2018; Karimi and Walter, 2015; Freitas et al., 2020), and

their combination (Fernandes et al., 2017; Antonucci et al., 2020). A few studies

have attempted to shed light on the connotation of some capabilities. However,
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there is still no guidance in the form of widely-accepted and broad categories of the

specific capabilities required for a successful DT. To further explore this question, we

conducted a literature review, the results of which are summarised in the following

subsection. The articles grouped under digital innovation #7 discuss how to realise

digital innovation using digital technologies (Nylén and Holmström, 2015; Pershina

et al., 2019; Trabucchi and Buganza, 2019). Here, information technology is also

a parent of innovation processes. This indicates that information technology is

a universal research topic but has a specific power to drive digital and business

innovation (Candi and Beltagui, 2019; Trantopoulos et al., 2017).

The last subordinate cluster of digital technologies is digitalisation (#8) at the

left top. The articles in this cluster discuss several prevalent issues for company

management and industry governance in the DT process, such as alternative and

innovative business models (Li, 2020; Loebbecke and Picot, 2015), digital strategy

scheduling (Bharadwaj et al., 2013; Correani et al., 2020), the development and

enhancement of business servitisation (Frishammar et al., 2019; Kohtamäki et al.,

2020), and how to maintain one’s competitive advantages through digitalisation

(Black and van Esch, 2020; Ferreira et al., 2019). Another notable highlight in

this cluster is the frequent mention of manufacturing as a representative industry

experiencing digitalisation (Björkdahl, 2020; Pessot et al., 2020).

The next parent, digital platforms, is linked to two subordinate clusters: digiti-

sation (#9) and platform ecosystems (#10). Papers in the digitisation #9 cluster

claim the significance of digital platforms in realising business value (Hein et al.,

2019; Alaimo and Kallinikos, 2017; Helfat and Raubitschek, 2018) and acceler-

ating the digitisation process (Karimi and Walter, 2015). Further, this cluster

contains several branches highlighting the highly-relevant sectors of digitisation in

practice, including supply chains (Garay-Rondero et al., 2019; Ghadge et al., 2020;

Ivanov et al., 2019), manufacturing (Culot et al., 2020; Ghobakhloo and Fathi, 2019;
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Horváth and Szabó, 2019; Zheng et al., 2019), and healthcare (Agarwal et al., 2010;

Holeman and Kane, 2020). Papers discussing platform ecosystems #10 explore the

establishment, development, and implications of platform-based digital ecosystems

(Ghazawneh and Henfridsson, 2015; Wang and Miller, 2020; Yablonsky, 2020).

Intriguingly, our algorithm placed the topic Industry 4.0 at the convergence of

two parent nodes, digitisation and digitalisation, which means that, at the macro-

level, realising industry 4.0 requires both digital technologies and transformative

business practice (Bienhaus and Haddud, 2018; Frank et al., 2019).

In summary, this topic tree quantitatively reflects the composition of research

topics in the field of DT, highlighting that technologies and platforms are two essen-

tial enablers of the transformation process. The digital technologies most frequently

studied to promote DT are ICT, social networks, AI, and IoT. Establishing digital

platforms can empower DT by creating digital ecosystems and providing systematic

business digitisation approaches (Wang et al., 2019b; Hein et al., 2019). Among all

the clusters, digital capabilities #6 specifically gathers papers discussing capabilities

that enable DT, which corresponds to our CRQ2.

4.5.4 Categorising the capabilities that enable DT

The findings outlined in SEP and HTT-I result highlight that no overall category

has emerged from the exacted terms but rather only categories that encompass tech-

nologies and digitisation. From Figure 4.7, we see digitisation plays a substantial

role. This finding confirms the emerging newness of DT and the lack of a coherent

theory behind it. It also shows the importance of digitisation as a broad category

of observing transformations taking place through digital technologies. But, more

importantly, our findings highlight that DT is highly connected with digital tech-

nologies and platforms, as Figure 4.8 shows. Hence, we must revise Vial’s definition

of DT (Vial, 2019), proposing that DT be defined as a process that aims to improve
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an entity by triggering significant changes to its properties through combinations of

digital capabilities, technologies, and platforms.

Given that DT is a change process, it is critical to understand what capabilities

can help its development and management. The digitisation cluster in Figure 4.7

and the digital capabilities #6 cluster in Figure 4.8 point us to the academic work

on this subject. Digital capabilities #6 represents 59 articles, which we read to

determine whether they offer any clear and specific insights into the capabilities

required for DT at a company level. Here, clear and specific means definitions are

given, and constructs have been developed and used to measure them. Of the 59

papers, 31 satisfied these criteria and were included in the review. The other papers

typically focused on society-level issues, such as measuring the Industry 4.0 readiness

of manufacturing in the EU (Castelo-Branco et al., 2019), or on individual-level

topics, such as how to assess digital skills in citizens (Hidalgo et al., 2020). These

papers were discarded.

Both authors read and classified the 31 articles based on the capabilities dis-

cussed, as listed in Table 4.3. The capabilities fall into two broad categories: dy-

namic and technological. Dynamic capability is the more extensive and diverse

of the two but mainly includes traditional and non-traditional variations of three

key concepts: sensing, seizing, and transforming (Teece et al., 1997). One article,

driven by a study of 208 innovations in the insurance industry, uses the term “trans-

formative capabilities”, referring to sector-specific capabilities, such as developing

services that fulfil customer needs, exploiting data for risk assessment, and under-

writing (Stoeckli et al., 2018). Conversely, any technological capabilities have, by

and large, been neglected.

The closest call to a technological capability is the digital capabilities defined

in just a few studies, as shown in Table 4.3. All of these refer to IT-related ca-
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Table 4.3 : The 31 articles of capabilities enabling DT

Capability category Capabilities Source

Dynamic capabilities

Sensing, seizing, transforming

(Demeter et al., 2020; Jantunen

et al., 2018; North et al., 2019;

Stoeckli et al., 2018; Day and

Schoemaker, 2016)

Digital sensing, digital seizing, digital trans-

forming
(Warner and Wäger, 2019)

Absorptive capacity (Demeter et al., 2020)

Integrative capabilities

(Demeter et al., 2020; Helfat and

Raubitschek, 2018; Lin et al.,

2016)

Relational capabilities
(Demeter et al., 2020; Lin et al.,

2016; Sun et al., 2020a)

Innovative capability
(Ferreira et al., 2019; Helfat and

Raubitschek, 2018)

Dynamic managerial capabilities (Annosi et al., 2019; Li et al., 2018)

Technological capabilities

Digital capabilities

(Fernandes et al., 2017; Ardolino

et al., 2018; Gurbaxani and Dun-

kle, 2019; Pagoropoulos et al.,

2017; Levallet and Chan, 2018)

Dynamic IT capabilities (Li and Chan, 2019)

Big data capabilities (Dremel et al., 2017)

Information analytics (Park and Mithas, 2020)

Relational and information processing capabil-

ity
(Saldanha et al., 2017)

Platform capabilities
Platform capability

(Li and Chan, 2019; Karimi and

Walter, 2015; Sun et al., 2020a)

Platform utilisation capabilities (Annosi et al., 2019; Li et al., 2018)

Others

Business process management capabilities
(Antonucci et al., 2020; Ukko

et al., 2019)

Project capabilities (Lobo and Whyte, 2017)

Organisational learning capabilities (Tortorella et al., 2020)

Customer service capabilities (Setia et al., 2013)

R&D capabilities (Szalavetz, 2019)

Production capabilities (Ukko et al., 2019; Szalavetz, 2019)

Knowledge management (Muninger et al., 2019)

Top management understanding

(Gurbaxani and Dunkle, 2019;

Muninger et al., 2019; El Sawy

et al., 2016)

Networking and collaboration competences (Muninger et al., 2019)
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pabilities with diverse and hard-to-generalise definitions. For example, one study

refers to digital capabilities as the combination of a flexible IT infrastructure and a

well-developed information management capability (Levallet and Chan, 2018). An-

other considers digital capabilities as a company’s capacity to utilise its available IT

resources (Fernandes et al., 2017).

The study by Li and Chan (2019) presents an in-depth conceptual model devel-

oped for IT departments. This unique study offers companies three sets of capa-

bilities to manage their IT: 1) dynamic digital platforms covering IT infrastructure

functionality, flexibility, and integration capability; 2) dynamic IT management con-

sisting of IT deployment, exploration, and exploitation; and 3) dynamic IT knowl-

edge management based on knowledge creation, transfer, and retention.

In another study, Gurbaxani and Dunkle (2019) offer a framework for DT con-

sisting of six themes: strategic vision, the culture of innovation, know-how and IP

assets, digital capabilities, strategic alignment, and tech assets. The majority of

these items are managerial, but digital capabilities and tech assets speak to techni-

cal capabilities. For example, digital capability refers to the availability of expertise

at both the strategic and technical levels and the level of skill at hand to define and

execute digital strategies. Tech assets cover big data, data mining and analysis/data

analytics, mobile technologies, cloud computing, and internet and wireless commu-

nications. These are deemed sufficient technology assets to implement a strategic

vision. However, no details are supplied regarding the expertise needed to use any

specific tech asset. The study asks survey respondents to rate their company’s po-

sition compared with rival companies.

The remaining digital capabilities mentioned are related to IT, such as a com-

pany’s big data assets (Dremel et al., 2017), or its ability to undertake information

analytics (Park and Mithas, 2020) or relational/information processing (Saldanha
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et al., 2017). Many studies focus on general technologies, but they do not discuss

any capabilities associated with specific technologies. For example, Muninger et al.

(2019) investigated the capabilities needed to use social media to generate innova-

tion, finding three non-technical capabilities companies should build upon knowledge

management, top management understanding, and networking and collaboration.

There are also inconsistencies in the broad categories of capabilities, which fur-

ther complicates a general understanding of what is required for a successful DT. For

example, the authors of one study refer to “managerial capability” (Annosi et al.,

2019) when what they really mean is the level of technical knowledge managers

have. Further, the managerial capability is measured by qualitatively ranking the

managers’ responses to questions such as “Do you have employees dedicated to the

management and/or research of new digital technology for your farm?” (the study

concerns agriculture). However, again, the paper provides no details of any specific

technologies.

This exclusion of technological capabilities from studies presents an intriguing

opportunity for future studies to explore. Even though it is speculative, we think

the gap may exist for two main reasons. First, it might be challenging to find com-

mon technological capabilities considering the wide range of different technological

features for each digital technology. Second, the literature is vague on the definition

of technological capabilities. Most articles seem to rely on infrastructure or techno-

logical investments to indicate a company’s technological capabilities (Li and Chan,

2019). But this approach ignores the importance of the soft side of technologies,

particularly know-how and intellectual property rights.

To fill this knowledge gap in the literature, this study draws on the understanding

of technology management as a set of capabilities (Cetindamar et al., 2016). Fur-

ther, CRQ3 asks: What are the AI capabilities enabling DT? Through this question,
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we focus on one digital technology, AI, and assess it through the most widely used

indicator of technological proficiency: patents. We used network analytics to de-

construct the key technical knowledge that might be associated with a company in

this arena. The following section exemplifies how technological capabilities can be

derived for different technologies using HTT-I analysis on AI patents.

4.5.5 AI patents - HTT-I result and interpretation

By feeding the technical terms extracted from Dataset 3 into our HTT-I algo-

rithm, we generated the HTT-I in Figure 4.9. We then used this tree result to

identify the technological composition, divergence, and convergence of patented AI

techniques.

The HTT-I result partitions the research directions into seven clusters. This

HTT-I’s primary root node is labelled sensor with three linked topic clusters: sensor

technologies #A; transmission technologies #B; AI applications #C, which owns

robot, cloud technology, and Internet of Things (IoT) as three typical AI applications.

Derived from cluster #C, robot is further broken down into robotics (#D), and robot

functions (#E), the topic cloud technology leads a whole cluster with the same name,

i.e., cloud technology #F. Neural networks (#G) is a relatively independent cluster

parent node that converges with the node machine learning.

The status of sensor technology as the root node demonstrates its foundational

role in AI. Our patent review also confirmed that sensors were used as a primary

data collection module in most granted patents.

Sensor technologies (#A) consist of various sensors designed to capture differ-

ent input signals, such as pressure, humidity, images, ultrasonic waves, tempera-

ture, infrared light, etc. Transmission technologies (#B) comprises information and

communication technologies used in data transmission modules, such as Bluetooth,

wireless fidelity (WIFI), and wireless communication.
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Figure 4.9 : The HTT-I result generated from the AI patents dataset
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AI applications (#C) contains robot, cloud technology and IoT as three represen-

tative applications. Robot is the largest subordinate node and is further partitioned

into robotics (#D) and robot functions (#E). Robotics #D is an interesting cluster

housing many innovations that sit at the convergence of multiple other technologies,

such as speech recognition, face recognition, smartphone, wearable devices, virtual

reality, and augmented reality. Robot functions (#E) covers the robots built for

various specific uses, including drones, autonomous vehicles, pets, navigation, clean-

ing, service, education, etc. IoT is another application in this cluster but it has no

subordinate nodes. Our patent review reveals that current major patents in IoT

tend to focus on intelligent hardware control. However, the terms describing pure

hardware facilities (like rotating rods, supporting rods, etc.) were not included in

the filtered technological terms. Our findings of the emergence of IoT and robotics

in AI applications comply with the co-evolving patterns and convergences identified

by Börner et al. (2020), whose citation analysis indicates that cross-citation between

AI, IoT, and robotics has increased dramatically over the last decade.

Cloud technology (#F) is a unique AI application that bridges the connection

between AI services and end-users. This cluster involves substantial specific AI

algorithms and techniques. By referring to the relevant patents in this cluster, we

found that AI algorithms and techniques always involve massive data processing

and need cloud technology to provide a computing efficiency solution. From this

perspective, cloud technology can be regarded as the prerequisite technology for

the product realisation of AI. When diving into the subordinate nodes of cloud

technology, we identify the following technological composition and changes:

• Technological segmentation (#F): Machine learning is segmented into deep

learning, natural language processing (NLP), and classification. Classification

diverges into image processing, image classification, and image recognition,
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indicating that most classification tasks are related to image data.

• Technological convergence (#F and #G): machine learning and neural net-

works present a technological convergence to classification. This convergence

indicates the incorporation of machine learning and neural network in improv-

ing the accuracy of classification tasks.

Based on Figure 4.8, we find AI capabilities can be classified into four levels:

i. Data collection and transmission: the capability to leverage technologies that

collect data from the physical world or to transfer data within and between

product modules. Sensors and ICTs are the representative technologies that

realise such capabilities in AI inventions.

ii. Bridging: the ability to connect (disparate) end-users with AI products and

services/products. Cloud technology is a crucial part of bridging capability

since it plays an indispensable role in the deployment and large-scale imple-

mentation of advanced AI algorithms.

iii. Algorithms: the ability to use AI techniques and algorithms to perform specific

business tasks. Typical examples include machine learning, deep learning, big

data analysis, neural networks, etc.

iv. Applications: the capability to realise mature technological convergences be-

tween AI and other technologies to provide innovative products. IoT and

robots, for example, are two mainstream applications of such a kind.

With this stratification, we can conceptualise the capabilities needed to leverage

AI successfully within a DT process as the pyramid shown in Figure 4.9.
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Figure 4.10 : The pyramid of AI capabilities

4.5.6 Case summary

DT is here to stay, and its revolutionary nature seems to speed up in paral-

lel to making rapid changes in digital technologies (Schwab, 2017). Clarifying its

definition, observing its evolution, and identifying its enablers could benefit the

information systems and technology management disciplines. Without clear and

empirically-validated definitions, the DT literature might remain in an adolescent

development phase. In this study, we exploit methods of intelligent bibliometrics,

including scientific evolutionary pathways, HTT-I analysis, and network analytics,

to conduct a set of quantitative analyses as opposed to the qualitative analyses dom-

inating the field. Through these approaches, we address three critical questions in

DT:

• CRQ1: What is the definition of DT from a bibliometric perspective?

The SEP analysis advances Vial’s definition and solidifies those concepts with
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identified dynamic research communities. Additionally, the HTT-I analysis

highlights several DT enablers, including digital technologies, digital plat-

forms, and digital capabilities, based on which researchers can further extend

DT’s definition.

• CRQ2: What are the capabilities enabling DT?

Our literature review, driven by the SEP and HTT-I analyses brings a broad

range of digital capabilities together into a comprehensive set of categories, as

given in Table 4.3. The studies reviewed highlight the key role of dynamic,

technological, and platform capabilities in DT.

• CRQ3: What are the AI capabilities enabling DT?

Having decomposed the hierarchical technologies from AI patents, we propose

the pyramid model of four significant capabilities illustrated in Figure 4.10:

data collection and transmission, bridging, algorithms, and applications.

This research benefits the DT field from both an academic and a practical per-

spective. From an academic standpoint, our study presents topic analyses that can

help researchers understand the breadth and depth of DT research. It provides in-

sights and clues to conduct a more in-depth analysis of certain research topics. From

a practical perspective, the current literature is patchy and incomplete regarding an

understanding of the capabilities needed for a successful DT. By bringing these di-

verse capabilities together, we make managers aware of some core resources and

competencies that will likely prove helpful on their DT journeys.

Lastly, this case study sheds light on the definition of DT, its evolution, and

the capabilities that enable it. It offers an approach to identifying technological

capabilities for a specific digital technology, AI. Future studies might explore the

generalisability of these techniques with empirical evidence of these capabilities with
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other technologies and more importantly in real-life applications and diverse con-

texts, such as different industries, countries, and organisation types. With enough

such studies, it may be possible to compare capabilities in practice to determine the

components and configurations that make DT successful more precisely.

4.6 Summary

In summary, this chapter presents an end-to-end framework called HTT-I for

identifying topic hierarchies from a co-occurrence network. The methodology com-

bines density peak search and overlapping community allocation to provide a solu-

tion that extracts the topics from a corpus, identifies topic overlaps, arranges the

topics in a hierarchy, and gives each topic an appropriately descriptive name. In

HTT-I, the core term to each topic in a co-occurrence network, to be used as its label,

is determined by term density peak characteristics, while overlapping community al-

location detects overlaps among different topics. The recursive implementation of

these two algorithms generates a hierarchical topic tree. Case studies on the hierar-

chy of computer science, AI ethics and DT research topics demonstrate the proposed

methodology’s feasibility and reliability.
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Chapter 5

Hierarchical Topic Tree - II Model

5.1 Introduction

In Chapter 4, we proposed HTT-I, the initial version of HTT that can extract

topic hierarchies from term co-occurrence networks. However, the HTT-I model still

has two parameters to be fine-tuned, which hinders its adaptivity and was listed as

one of the future research improvements. To provide an adaptive and generalised

way of constructing topic hierarchies in this chapter, we develop a network-based

non-parametric hierarchical topic extraction model named Hierarchical Topic Tree

- II (HTT-II) that can automatically construct the high-quality topic tree without

the need for preset parameters. The model takes a co-term network as input and

generates hierarchical term communities as topics on different layers. Inspired by

the natural hierarchical structures of real-world networks and the influential node

theory in social network analysis (Clauset et al., 2008; Kitsak et al., 2010; Sun

et al., 2021), we employ k-shell decomposition to layer the nodes in a network as

core or periphery according to their connectivity. Simultaneously, we apply the

Louvain community detection method to partition nodes into communities. The

densely-connected nodes in the core layer form different topics based on their given

community labels, while the periphery nodes, along with their community informa-

tion, will go into the next round for further partition. The two steps will recursively

run until no community structure or core nodes can be found. The finalised output

of the proposed method is a topic tree with every tree node (topic) formed by a

group of term nodes. Originating from a virtual root topic, the tree diverges into
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multiple branches and ends with leaf topics.

A set of experiments and an empirical case study demonstrate the utility and

effectiveness of our method. Comparisons to six baselines with multiple real-world

co-term networks reveal that HTT-II analysis can construct a high-quality topic

tree with high topic coherence, strong parent-child topic association and exclusive

sibling topics. The case study, which focuses on 11,399 research papers in the field

of information science, constructs an HTT-II result with five major branches and

144 topics. The HTT-II result uncovers five prominent research directions in the

discipline: Data mining, bibliometrics, information seeking, information systems

and ontology construction. These research streams are then broken down into more

fine-grained research topics, as detailed in the case study.

The remainder of this chapter is organised as follows. Section 4.2 sets out the

details of our proposed methodology. Section 3.3 follows, presenting the empirical

study and demonstrating the effectiveness and practical value of HTT-II analysis.

Section 4.6 wraps this chapter, concluding the study’s limitations and future research

directions.

5.2 HTT-II Methodology

5.2.1 k-shell decomposition

The k-core of a network is defined as the largest subnetwork in which each node

has at least k edges. k-shell decomposition aims to assign each node a k-shell index

that indicates the largest k-core the node exists in. The assigned k-shell indices

partition nodes from high to low, reflecting the hierarchical structure of nodes from

core to periphery in a network (Dorogovtsev et al., 2006). We give the pseudo-code

of k-shell decomposition in Algorithm 2 and illustrate the k-shell decomposition

process in Figure 5.1.
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Algorithm 2: k-shell decomposition

Input : G = (V,E), where V = {1, 2, ..., n} is the node set and

E = (i, j|i, j ∈ V ) is the edge set.

Output: KSI = {ksi1, ksi2, ..., ksin} // The k-shell index of every

node

1 l = 0, V
′
= ∅;

2 G
′
= G(V − V

′
);

3 while V
′ ̸= V do

4 for i ∈ V − V
′
do

5 if k
′
i == l then

6 // k
′
i is the degree of node in G

′

7 ksii = l, V
′ ← add i // Add i to the k-shell index

assigned nodes

8 end

9 l+ = 1

10 end

11 end

Figure 5.1 : Illustration of the k-shell decomposition method
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Although the k-shell index is a robust and efficient measure for node influence

and network hierarchy structures (Kitsak et al., 2010; Liu et al., 2015; Zhang et al.,

2008), some issues remain when this measure is applied to reveal topic hierarchies

hidden in co-term networks (Ba et al., 2019; Xiao et al., 2016). The first issue is

that k-shell decomposition may yield many trivial and similar adjacent shells, es-

pecially when the network scale increases largely. In the previous practice, Carmi

et al. (2007) reorganised the trivial shells by searching for transition shells according

to the percolation theory. Xiao et al. (2016) compared the morphology of adjacent

shells and manually reclassified similar shells as layers. However, such solutions may

not work efficiently on large-scale networks, as hundreds or even thousands of shells

can be generated, in which transition shells are much less noticeable. Besides, the

manual decision can vary from subjective opinions and result in time cost aligning

an appropriate decision. Another issue is that k-shell decomposition characterises

the hierarchical network structure by a chain of node shells (node groups) from

core to periphery nodes, which does not reflect the divisions of research topics on

different granularity when it is applied to co-term networks; Substantial previous

studies and practical experience have demonstrated the tree structure is more suit-

able for profiling hierarchical research landscapes and highlighting fine-grained topic

segmentation (Qian et al., 2020; Shang et al., 2020; Yu et al., 2020; Zhu et al., 2019).

5.2.2 HTT-II conceptualisation

Aiming to address the two drawbacks of k-shell decomposition in revealing hi-

erarchical knowledge structures, we devise an improved recursive algorithm named

hierarchical topic tree - II (HTT-II) analysis. The proposed method addresses the

above issues by incorporating the Louvain community detection method (Blondel

et al., 2008) to break the innermost shells into multiple communities and organise

the network hierarchy as a tree structure. As illustrated in Figure 5.2, our HTT-
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Figure 5.2 : Research framework of the HTT-II model

II analysis consists of six steps: Step 1: Run the Louvain community detection

algorithm to assign every term node a community label. Step 2: Apply k-shell de-

composition to assign every term node a k-shell index (ksi) and identify term nodes

in the kmax shell (kmax is the largest k-shell index). Step 3: Wrap every group of

term nodes in both the kmax shell and the same community as a parent topic, then

add the parent topics as tree nodes of the finalised hierarchical topic tree. Step 4:

Judge the subnetworks formed by the rest of nodes in each community; If the kmax

of the subnetwork exists or the subnetwork can be further partitioned to multiple

communities, continue to Step 5, else go to Step 6. Step 5: Use the subnetworks

as inputs to iterate steps 1-4. Step 6: Add the subnetworks as tree leaf nodes of

the finalised hierarchical topic tree.

The design of HTT-II analysis ensures that: 1) Every topic derives from a kmax

shell of term nodes that are strongly connected; hence there will be few trivial topics

in the finalised tree result compared to the original k-shell decomposition approach.

2) The community detection process can partition nodes into multiple groups ac-
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cording to their topological features in each iteration, generating the branches to

reflect research topic divisions on different levels in the finalised tree result. In most

cases, our method design guarantees the generation of a tree structure with the

automatically-decided number of nodes and layers representing the topic hierarchies

of a co-term network.

5.2.3 HTT-II input and output

The input to HTT-II analysis is a co-term network, where the terms can be key-

words (author-provided), pre-assigned topics (Shen et al., 2018), or terms extracted

from a term extraction process (Zhang et al., 2014b). We retain raw co-occurrence

semantic relationships because, although term embedding techniques have great

merit, Shang et al. (2020) demonstrated that while term embedding clustering can

roughly group terms from different domains, they do not perform well at distin-

guishing highly coupled terms in a specific field. A co-term network can be formally

represented as G = (V,E), where V represents the set of term nodes, and E repre-

sents the co-occurrence edges of the nodes in V .

The finalised HTT-II output is a tree structure, as illustrated in Figure 5.3. The

tree originates from a virtual root topic that derives multiple branches and tree

nodes (A, B, C, A1, A2, B1, B2, C1, and C2); Each tree node, composed by a term

node group generated in steps 3 or 6, represents a topic. Each branch denotes a

parent-child topic pair. The child topics derived from the same parent topic are

siblings (A and B, B and C, A and C, A1 and A2, B1 and B2, C1 and C2).

5.2.4 HTT-II algorithmic details

From the algorithmic perspective, the HTT-II six steps can be concluded as a

two-stage process. Stage I covers steps 1-3; It starts with the co-term network input

and runs one-round community detection and k-shell decomposition algorithms to
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Figure 5.3 : Illustration of the HTT-II-generated tree structure

present a set of two-layer tree topics. Stage II runs steps in Stage I recursively to

increase the tree depth incrementally; It will end until the stopping criterion is met.

Stage I: Network parent-child layer partition (Steps 1-3)

In this stage, we initially run the Louvain algorithm on the input network G

and assign community labels for all nodes, representing the initial research direc-

tion segmentation characterised by different term node communities. Then, k-shell

decomposition is applied to partition nodes into multiple shells. Together with the

community information, the core nodes in the innermost shell will form different

topics; The periphery nodes will retain their community information and go into

Stage II. The pseudo-code of Stage I is given in Algorithm 3.
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Algorithm 3: Network parent-child layer partition

Input : G = (V,E), where V = {1, 2, ..., n} is the node set and

E = (i, j|i, j ∈ V ) is the edge set.

Output: Two sets of node groups T = {ϕ1, ϕ2, ..., ϕn} that denotes the

generated core topics and L = {ℓ1, ℓ2, ..., ℓn} that denotes the

periphery nodes of each core topic.

1 T = ∅,L = ∅ // Initiate the layer and node set

2 G
′
= G(V − V

′
)← run community detection #C = {1, ..., 2..., k, ..., n}

// where Ci denotes the community of i

3 KSI = G(V,E)← run algorithm 2 ;

4 for i ∈ V do

5 if ksii == max(KSI) then

6 ϕCi
← add v // if the node is in the max(KSI)-core

network

7 else

8 ϕCi
← add v // the periphery nodes in this community will

go into the next layer

9 end

10 for k ∈ C do

11 if |Vϕk
> 2| and |Eϕk

| > 1 then

12 T ← add ϕk ;

13 L ← add ℓk

14 end
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Stage II: Recursive tree generation (Steps 4-6)

This stage constructs the topic tree by recursively running Step I on derived

subnetworks and generating intensely connected topics and their parent-child rela-

tionships. The stopping criterion for each subnetwork is kmax=1, or the subnetwork

cannot be partitioned into two or more communities. The stopping criterion was

set up in Algorithm 2 to guarantee the algorithm can converge. The pseudo-code of

Stage 2 is given in Algorithm 4.
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Algorithm 4: Recursive tree generation

Input : G = (V,E) and R, R is the virtual root topic.

Output: The tree structure H = {ϕ1, ϕ2, ..., ϕn} ;

The parent-child relationship mappings of topics

M = {ϕ1 : R, ϕ2 : R, ..., ϕn : ϕk}, where ϕn : ϕk denotes that ϕn is the child

topic of ϕk.

1 T,L = G(V,E)← run Algorithm 3 ;

2 H = H ∪ T,J = J ∪ L ;

3 for ϕ ∈ T doM← add ϕ : R;

4 while J do

5 J = ∅ ;

6 for ℓ ∈ J do

7 G
′
= G(ℓ) ;

8 T
′
,L′

= G
′ ← run Algorithm 3 ;

9 H = H ∩ T
′
,J = J ∩ L′

;

10 for ϕ ∈ T
′
do

11 M← add ϕ : ϕp // ϕp is the core topic generated in the

last loop

12 end

13 end

14 end
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5.3 Experiment

5.3.1 Experimental networks and baselines

To validate the effectiveness of our proposed method, we tested HTT-II and six

baselines on three real-world co-term networks. The tested networks are generated

from literature collections in the previous pilot studies, covering a broad range of

research fields, including artificial intelligence (AI) ethics (Zhang et al., 2021d),

bibliometrics (Mejia et al., 2021), and early COVID-19 research (Fry et al., 2020;

Zhang et al., 2021a). We selected the three networks because they were from different

disciplines, and the density of the three networks varies, representing different levels

of knowledge interaction within the relevant research fields. The details of the test

networks are given in Table 5.1.

Following the test networks, we selected two non-parametric community detec-

tion algorithms that can each be scaled to large networks and constructed six base-

lines. They are:

i. Asynchronous label propagation algorithm and k-shell decomposition (aLPA

+ k-shell): This baseline uses the same design of HTT-II but utilises aLPA

(Raghavan et al., 2007) as the community detection algorithm. The aLPA

algorithm initialises every node with a unique community label and uses ran-

domisation and an asynchronous strategy to update the labels until every node

Table 5.1 : The information of three tested networks

#Nodes #Edges Average degree Density

N1 (AI ethics) 2,163 41,833 19.34 0.0179

N2 (Bibliometrics) 5,000 388,737 77.75 0.0311

N3 (COVID-19) 4,481 551,453 123.06 0.0549
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adopts the label that most of its neighbours currently have.

ii. Semi-synchronous label propagation algorithm and k-shell decomposition (sLPA

+ k-shell): This baseline uses the same design of HTT-II but utilises sLPA

(Cordasco and Gargano, 2010) as the community detection algorithm. sLPA

is a refined version of aLPA. It adopts the same ending condition but intro-

duces less randomisation to provide more stable results than the asynchronous

model.

iii. Recursive Louvain method (rLouvain): This baseline uses the Louvain method

(Blondel et al., 2008) to recursively partition the input network into hierar-

chical communities. The Louvain method starts from a singleton partition of

nodes and then iteratively removes nodes and merges communities to maximise

network modularity, an objective function that measures the overall commu-

nity partition quality.

iv. Recursive aLPA (raLPA): This baseline uses the aLPA method to partition

the input network into hierarchical communities recursively.

v. Recursive sLPA (rsLPA): This baseline uses the sLPA method to partition the

input network into hierarchical communities recursively.

vi. K-shell decomposition (k-shell): This baseline uses the original k-shell decom-

position method to partition nodes into hierarchical chain groups.

5.3.2 Evaluation indicators

To measure the quality of network tree structures generated by different ap-

proaches, we followed the evaluation criteria Shang et al. (2020) proposed and de-

signed three quantitative indicators: Topic coherence, parent-child association, and

sibling topic exclusiveness. Deeming each topic as a subnetwork of G, edges in E
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can exist within a topic and between any two topics (parent-child, sibling or non-

connected topics in the generated topic tree). Based on this understanding, we

define the three evaluating indicators as follows:

i. Topic coherence (TC): In a high-quality topic tree structure, the term nodes

within the same topic should be densely connected; hence the network density

is a straightforward measure. We calculate the weighted mean of all the topics

to indicate the overall density of the generated tree structure:

ii. Parent-child topic association (PCTA): A parent topic should topologically

have a substantial association with its child topics in the topic tree structure.

We first calculate the mean link possibilities for each set of parent-child topic

pairs to measure such association strength. Then, we exploit the weighted

summation of the mean link possibilities for all the parent topics to measure

the overall parent-child association strength of the topic tree. The calculating

formula of this indicator is:

iii. Sibling topic exclusiveness (STE): Multiple sibling topics can derive from the

same parent topic in the topic tree structure. However, the sibling topics

are supposed to be as distinctive as possible to reflect sufficient divisions of

different branches. Hence, for each topic, we calculate the ratio of its inner

edges to its external edges with sibling topics. Following this, we exploit the

weighted summation of this value for all topics to measure the overall sibling

topic exclusiveness of the tree. The formula of this indicator is:

5.3.3 Experimental results

We applied the six baselines and our HTT-II analysis to all the networks and

measured the quality of generated trees via the three evaluating indicators. The

results are presented in Figure 5.4. The subfigures 5.4 (A)-(C), 5.4 (D)-(F), and 5.4
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Figure 5.4 : The experimental results of seven methods

(G)-(I) respectively show HTT-II and the six baselines’ TC, PCTA and STE values

on the three test networks.

In Figures 5.4 (A)-(C), we observed that most TC values are significantly higher

than the input network densities in Table 5.1, which means all the methods can

transform sparse co-term networks into denser topic hierarchy representations. Among

all the approaches, HTT-II significantly outperformed the six baselines on TC and

PCTA in Figures 5.4 (A)-(F), indicating the effectiveness of incorporating the Lou-
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vain method and k-shell decomposition in generating coherent topics and consistent

parent-child topic association. Focusing on the value variations of methods that

use different community detection algorithms, the LPA-based methods generally

performed less competitively than the Louvain method, resulting from the fuzzy

boundaries between research topics formed by knowledge convergence and interac-

tivity. According to a phenomenon frequently reported in many previous studies

(Fiscarelli et al., 2019; Malhotra and Chug, 2021), LPA-based algorithms tend to

merge smaller, less clear community structures into a single giant community. The

original k-shell decomposition results show low TC values because it generated a

substantial number of small and sparsely connected shells, which we introduced as

one of its issues in the methodology section.

Figures 5.4 (G)-(I) present the STE values; The results illustrate that HTT-

II still produced competitive results on three test networks, with rLouvain as a

strong competitor. The ability of HTT-II to partition topics on different levels

majorly comes from the Louvain community detection algorithm, which explains

the similar performance of the two methods on this indicator. Besides, we observe

some zero STE values in 5.4 (G)-(I). For k-shell decomposition, the zero values

resulted from the fact that k-shell decomposition presented all the topic hierarchies

as chains instead of tree structures, which did not yield any sibling topics in the

results. The other zero values in 5.4 (G)-(I) were also a result of the chain structure

issue. Although LPA-based methods were equipped with the capability to partition

multiple topics on each level, they still generated only a single child topic or a

few size-skewed sibling topics on the test networks as a result of the fuzzy topic

boundaries.

We summarise three critical insights from the experimental results: 1) Incorpo-

rating the community detection methods into k-shell decomposition can help reveal

more consistent and coherent hierarchical structures of networks. 2) The Louvain
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method outperforms the other two competitors in identifying topic boundaries from

co-term networks. 3) Among the evaluating results of seven approaches, our pro-

posed HTT-II can generate high-quality hierarchical topic results with highly coher-

ent topics, strong parent-child associations and exclusive sibling topics.

5.4 Case Study: Topic Hierarchies in the Information Sci-

ences Discipline

To demonstrate the practical use of HTT-II analysis, we conducted a case study

profiling the hierarchy of research topics in the information sciences discipline. With

the aid of the open data platform AMiner (Tang et al., 2008), we accessed the Mi-

crosoft Academic Graph (MAG) and collected 11,399 articles on information science

(IS) from the nine most relevant journals (Hou et al., 2018): JASIST, Information

Processing and Management, Journal of Informetrics, Information Research, Library

and Information Science Research, Scientometrics, Research Evaluation, Journal of

Documentation, and Journal of Information Science. MAG generates topic tags for

each paper called fields of study (FoS) (Shen et al., 2018). We directly exploited

these FoS tags to construct the co-term network containing 7,028 nodes and 137,088

edges. Then we run the HTT-II analysis on the constructed network and obtain a

tree with 144 tree nodes; The topic details in the top three layers are profiled in

Figure 5.5: Each circle represents a topic, and the size denotes the number of nodes

contained in this topic. The different circle colours reflect the topic segmentation at

the first layer.

Looking at the top-level topics, we see five prominent topic segmentation: 1)

Data mining, 2) bibliometrics, 3) information seeking, 4) information systems, and

5) ontology. In the following discussion, we will dive into specific research papers

within these five major topics and their child topics to interpret the results in detail.

Note that the results may involve some computer science-based topics; However, our
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Figure 5.5 : The top three layers of the HTT-II result

interpretation is based on their applications in the information science domain, not

their origins in the computer science discipline.

i. Data mining: Among the five major top-level branches, data mining is the

largest. This branch indicates that data-driven approaches have become in-

dispensable in IS research. From the term included in topic #1, we can glimpse

multiple mainstream data mining approaches such as natural language process-

ing (NLP), cluster analysis, machine learning, and database. The subordinate

topics in this branch specify detailed technical directions of those approaches:

including machine learning concepts and tools (#1.1), database design and

utilisation (#1.2), NLP tasks and issues (#1.3), data engineering techniques

(#1.4), and different clustering algorithms (#1.5). Diving into papers in each

subordinate topic, #1.1 and #1.3 cover machine learning and NLP appli-
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cations on a broad range of IS research tasks, including sentiment analysis

(Huang et al., 2017; Melo et al., 2019; Onan and Korukoğlu, 2017), named

entity extraction (Kholghi et al., 2017; Mao and Cui, 2018), and so on. Re-

search papers in #1.2 consist of studies on database construction and database

information retrieval performance and evaluation (Gu and Hwang, 2015; Yu

et al., 2015). Relevant papers in #1.5 mostly contribute to the methodolog-

ical innovations of clustering methods (Zhu et al., 2018) or they discuss the

applications of clustering analysis given different research tasks, such as topic

extraction (Fang et al., 2014; Zhang et al., 2018b), opinion mining (Hu et al.,

2017; Pandey et al., 2017), and scientific behaviour patterns discovery (Xie

et al., 2018).

ii. Bibliometrics: This topic highlights bibliometric studies as an important com-

ponent of IS research. From the terms in the topic, we can observe that

citation-related terms are frequently highlighted as citing is one of the essen-

tial scientific behaviours and the basic indicator for scientific literature anal-

ysis (Ding et al., 2009; Leydesdorff and Rafols, 2011; Zhai et al., 2018); The

full list of terms also consists of several citation-derived subjects, including

informetrics and altmetrics. Diving into subordinate topic #2.1, we find it

intriguingly indicates two critical associated disciplines relevant to bibliomet-

rics in IS research: mathematics and econometrics. Our investigation of the

associated papers reveals that 1) mathematics and statistics are commonly

applied in bibliometrics or derived research domains from identifying research

activity patterns (Mir and Ausloos, 2018) and find correlations between depen-

dent and independent variables (Abbasi et al., 2011; Thelwall, 2018b). 2) the

appearance of econometrics is because the theoretical foundations of their re-

search assumptions and the indicators developed in those bibliometric studies

were derived from econometrics (Leydesdorff et al., 2019; Parolo et al., 2015;
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Ruiz-Castillo and Costas, 2014). This connection indicates that transferring

econometric methods to bibliometric research is a trending research paradigm.

iii. Information seeking: This topic is composed of studies on online information

needs and information-seeking behaviours. Papers on this topic broadly throw

light on developing or improving web information retrieval tools (Abdi et al.,

2018; Fernández-Reyes et al., 2018; Song et al., 2019), exploring web-based in-

formation resources (Abad-Garćıa et al., 2018; Kousha et al., 2018; Thelwall,

2018a), proposing information recommendation algorithms (Cechinel et al.,

2013; Pera and Ng, 2018), and evaluating information seeking behaviour and

needs (Buchanan et al., 2019; Goyal et al., 2018; Ruthven et al., 2018). The

subordinate topic #3.1 highlights the fine-grained research of web-based ap-

plications, such as web-based recommendation (Sisodia et al., 2017), web in-

formation extraction (Uçar et al., 2017), and web archiving (Dougherty and

Meyer, 2014), etc.

iv. Information systems: This branch presents the qualitative research trajectory

of information science and reflects its multidisciplinary nature. Studies within

this branch broadly discuss issues in the information life cycle, including in-

formation creation, processing, utilisation, dissemination, and management

in various social activities. The subordinate topics of this branch diverge

into data management (#4.1), information industry development (#4.2), or-

ganisation knowledge management (#4.3), information education (#4.4), and

information dissemination (#4.5). Diving into relevant papers in the biggest

subordinate topic #4.3, we found they focus on discovering methods of pro-

ducing, organising, using, storing, and sharing knowledge on the personal and

organisational levels (Ahmad, 2018; La Bella et al., 2018; Shen et al., 2019).

v. Ontology: This branch is a relatively small first-layer interest group in line



122

with information science studies. Papers in this branch majorly discuss the

definition (Almeida, 2013), construction (Lubani et al., 2019; Lumsden et al.,

2011) and utilisation (Browne et al., 2019; Rodŕıguez-Garćıa et al., 2019; Yeh

et al., 2008) of ontology. The subordinate topic #5.1 highlights the prevalence

of XML schemes in ontology construction (Aouadi et al., 2012; Hacherouf et al.,

2015).

However, we also noticed that there are still a few coupled terms in the top-

layer topics based on our experience in this field, such as the term “information

technology” in topic #4, which can also make sense if it is partitioned into topic #3.

This results from the fuzzy topic boundaries formed by knowledge convergence and

interactivity – characteristics that typify scientific development. “Hard” community

detection methods, which allocate each node into one single community, cannot well

capture and represent such fuzzy characteristics. Despite our HTT-II performing

best on the proposed indicators in the experiment, it still adopts a hard community

detection algorithm and may result in coupled terms in topics. Hence, involving

overlapping community detection methods to identify the possible overlaps between

topics is a promising improvement. We will also include this issue in the Discussion

section.

There are some limitations to our current study. First, HTT-II analysis is a

method that reflects the knowledge components of a field. Yet, it does not generate

the developing trending of topics along with time, which might be more signifi-

cant and intriguing to scientists. Topic composition and hierarchies are constantly

changing; Hence, we intend to build a variant of HTT-II that considers the tem-

poral relationship between topics and how those research topics evolve. Second,

HTT-II only focuses on textual data and exploits the semantic relationships from

the research literature data; However, this may overlook more available data pat-
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terns, such as author collaborations, venue associations, co-citations, and citation

coupling. These heterogeneous data sources have the potential to help HTT-II yield

more accurate and explainable topic hierarchy results. In subsequent studies, we

anticipate embedding more external information like author collaborations, publi-

cation types, and geographical locations to build a more sophisticated hierarchical

topic model that incorporates exterior features. Last, as we stated at the end of

the case study section, the hard partition of communities will inevitably result in

coupled terms in different research topics. To generate more comprehendible and

informative hierarchical topic results, we plan to equip HTT-II with overlapping

community detection approaches and enable it to reveal topic overlaps.

5.5 Summary

This case study presents an adaptive and non-parametric method of identifying

topic hierarchies from scientific documents called HTT-II analysis. The proposed

method devises a recursive process incorporating the Louvain community detection

and k-shell decomposition methods and provides a universal solution that auto-

matically extracts topics and their hierarchical relationships. In HTT-II, k-shell

decomposition and community detection parse the nodes to allocate them simulta-

neously in landscape and portrait directions of the tree. Nodes connected densely

form different topics according to their community labels, with periphery nodes from

the same community composing their child topics. Recursive implementation of this

process generates the whole hierarchical structure of all identified topics until the

topics are too small to be subdivided. As such, the number of topics and tree depth

are also decided automatically. Experiments and a case study on real-world co-term

networks demonstrate the theoretical and empirical effectiveness of HTT-II analysis.

Compared with the HTT-I model, there are a few methodological and practical

differences worth highlighting:
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• From a methodological standpoint, the HTT-I model utilizes a combination

of K-nearest neighbours (KNN) and density peak methods, whereas the HTT-

II model employs an alternative framework based on k-shell decomposition

and Louvain community detection. Two primary distinctions between these

models are evident: Firstly, HTT-I requires the specification of a parameter

K to establish the KNN criterion, whereas HTT-II does not, rendering the

latter model more adaptable. Secondly, while the HTT-I model possesses the

ability to detect overlapped communities, the current HTT-II model does not

support the identification of overlapping topics.

• The experimental results demonstrate that both the HTT-I and HTT-II mod-

els are capable of generating coherent topics and establishing robust parent-

child topic relationships. However, the discrepancies observed in the generated

trees indicate that the HTT-I model tends to capture topics at finer granular-

ities, potentially overlooking significant links within the original network.

• From a practical perspective, it is advisable to apply the HTT-I model to

networks composed of multi-disciplinary or inter-disciplinary knowledge, as

it is capable of uncovering topic overlaps. Conversely, the HTT-II model is

better suited for networks constructed with single-domain knowledge.

5.5.1 Technical implications

This method makes two main methodological contributions to the literature.

Most importantly, HTT-II analysis provides an adaptive way of extracting topic

hierarchies from scientific documents without human interference or prior expertise.

The non-parametric characteristic of HTT-II is advantageous for 1) newcomers who

know little about a targeted discipline and struggle to fine-tune a clustering model’s

parameters and 2) identifying topic hierarchies in a newly emerging research field

with little knowledge background. Besides, constructing high-quality topic hierar-
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chies can also benefit various downstream applications. For example, hierarchical

topic structures can navigate efficient document retrieval in digital libraries (Dinneen

et al., 2018); A built topic/item hierarchical structure can help extract multi-level

features of authors/users to facilitate more accurate and explainable topic/item rec-

ommendations (Gao et al., 2019; Zhang et al., 2014a); Curated topic tree structures

can serve as a hierarchical knowledge graph to empower resolving knowledge infer-

ence and question answering tasks (Yang et al., 2017).

5.5.2 Practical implications

The feasibility and utility of the proposed approach and its early versions have

been proven to be useful in the pilot case studies, e.g., conceptualising the defini-

tion of digitalisation (Wu et al., 2021a) and AI literacy (Cetindamar et al., 2022),

profiling research landscapes in AI ethics (Zhang et al., 2021d) and bibliometrics

(Mejia et al., 2021). Those case studies empirically demonstrate the practical effec-

tiveness of HTT analysis. Intuitively, topic hierarchies assist stakeholders in quickly

comprehending the knowledge components of a research field of interest. Beyond

this, it can help academic researchers, policymakers, and entrepreneurs make more

informed decisions. For example, the topic hierarchies of a specific target discipline

could empower individual researchers to better grasp the frontiers of research in

that field, supporting them to access more relevant literature via hierarchy-based

document retrieval. Additionally, creating topic hierarchies for multiple disciplines

may help policymakers map research resource distributions across different domains

or help to justify their funding allocation strategies. Topic hierarchies for emerging

subjects or technologies, like COVID-19 treatments or electric vehicles, could help

companies to chart major research pathways or be used to inform more reasonable

business strategies.
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Chapter 6

An Intelligent Bibliometric System and Empirical

Studies on COVID-19

In this chapter, we introduce the constructed intelligent bibliometric system archi-

tecture, the developed GUI BiblioEngine for accessing the system, and two empirical

COVID-19 case studies using this system. The system architecture integrates the

proposed methods in Chapters 3, 4 and 5 and provides an accessible tool for non-

technical background users to conduct customised case studies. To demonstrate the

practical use of the system, we introduce two empirical studies on COVID-19 litera-

ture datasets to show how users can comprehensively leverage the analysing results

to generate insights into real-world research issues.

6.1 Term explanation

The explanation of terms used in this section is given as follows:

• Bioentity ranking: This term refers to the process of ranking biomedical en-

tities (including diseases, drugs, genes and genetic variations) extracted from

literature according to their network importance and specificity to a target

disease. The ranking can be entity category-separated or all category-mixed.

• Heterogeneous bioentity analysis: This term refers to the HBAM framework,

which constructs the heterogeneous co-occurrence network of multiple cate-

gories of biomedical entities and contains ranking analysing and entity associ-

ation inference methods.

• The Hierarchical Topic Tree (HTT): HTT is a network-driven methodology
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designed to uncover research topics and their underlying hierarchical relation-

ships. This method employs two models and has the capability to generate a

tree-like structure where topics are organized in a hierarchical manner. These

hierarchically-organized topics provide a comprehensive understanding of the

interconnections and dependencies among different research areas.

• Scientific Evolutionary Pathways (SEP): SEP is a topic-tracking approach

specifically designed to detect and trace research topics within a time-labelled

document stream. This method effectively identifies and analyzes the evolu-

tion of research topics over time, allowing for the tracking of their progression,

changes, and interrelationships within the scientific literature.

6.2 The Intelligent Bibliometric System Architecture

The architecture of the intelligent bibliometric system is illustrated in Figure

6.1. It consists of two modules and a work pipeline: Module A is designed to

collect and pre-process data input; Module B is built up for conducting multiple

intelligent bibliometric analyses; Module C illustrates the work pipeline to show

how a customised case study is conducted. The interface of our constructed GUI

(BiblioEngine) is given in Figure 6.2.

i. Module A: Data input and pre-processing

This module is designed for loading and pre-processing raw data inputs. The

inputs supported are 1) text/XML files downloaded from PubMed/PMC databases

and 2) raw search strings. If the users input raw search strings, our GUI will

access the PubMed E-utilities application programming interface (API)1 to

download the literature dataset automatically. However, this approach may

face a data scalability issue due to PubMed API data regulations. Further, the

1https://www.ncbi.nlm.nih.gov/books/NBK25500/
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Figure 6.1 : Intelligent bibliometric system architecture

GUI will apply multiple pre-processing steps to the imported dataset, includ-

ing mapping the collected papers to the OpenAlex2 database to curate dis-

ambiguated author/affiliation information and concept information, searching

Journal Citation Report (JCR) API3 to retrieve journal impact factor infor-

mation.

ii. Module B: Data analysis functions

This module includes the HBAM proposed in Chapter 3 as the heterogeneous

bioentity analysis block and the HTT models proposed in Chapters 4 and 5

as the Topic analysis - HTT block. The two function blocks will run automat-

ically on the imported dataset and generate corresponding results in tabular

formats or visualisations. In the current version of this system, we support

both HTT models (I and II) for topic analysis. Apart from the two pro-

2https://openalex.org/

3https://jcr.clarivate.com/jcr/home
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posed methods, we also integrate two methods: Scientific evolutionary path-

ways (SEP) analysis developed in our pilot study (Zhang et al., 2017c) and

diffusion-based recommendation algorithm proposed in a more recent explo-

ration (Zhang et al., 2022) to fulfil the work pipeline of intelligent bibliometrics.

The primary visualisation tools we have integrated into the GUI dashboard

are the Python Plotly4 and gravis5 packages and the JavaScript Vega visual-

isation package6. Another two individual visualisation tools we additionally

employed are VoSViewer7 and Gephi software8.

iii. Module C: Systematic analysis workflow

This workflow illustrates how non-technical background users can access this

system and conduct a customised analysis. It consists of six steps: 1) User

data collection (via search string or downloaded file), 2) data cleansing, 3) het-

erogeneous bioentity analysis via HBAM, 4) HTT, SEP and citation main path

analysis, 5) export to BiblioEngine project file (save as a persistent model),

and 6) Dashboard visualisation.

6.3 BiblioEngine GUI Introduction

In this section, we will present our developed GUI named BiblioEngine for real-

ising the intelligent bibliometric system. The screenshot of the main interface is in

Figure 6.2.

4https://plotly.com/

5https://robert-haas.github.io/gravis-docs/

6https://vega.github.io/

7https://www.vosviewer.com/

8https://gephi.org/
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Figure 6.2 : The BiblioEngine GUI

6.3.1 Module A: Data input and pre-processing

The data import and pre-processing steps are shown in Figure 6.3. BiblioEngine

supports inputs from PubMed/PMC database download and raw string search,

which is listed in Figure 6.3A. Figure 6.3B is mapping the imported dataset to Ope-

nAlex for retrieving disambiguated authors, affiliations, and concept terms (that can

be used as our SEP/HTT input). Figures 6.3C and 6.3D respectively present the

disambiguated affiliations and concept terms.

6.3.2 Module B: F1.1 Visualisation

For visualising the processed dataset and analysing results, we developed a

Plotly-based dashboard as shown in Figure 6.4 to illustrate the year distribution, bib-

liographic indicator (including year, journal, authors, affiliations, extracted bioen-

tity, etc.) rankings and a series of filters to narrow down the imported dataset.
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Figure 6.3 : Module A: Data input and pre-processing

Figure 6.4 : Module B: F1.1 Visualisation



132

Figure 6.5 : Module B: F1.2 Recommendation

6.3.3 Module B: F1.2 Recommendation

This is the extra function we developed in (Zhang et al., 2022). It aims at rec-

ommending research topics and collaborators for scholars and organisations. Figure

6.5A, B and C show the function entrance and individual/organisational collaborator

recommendation results.

6.3.4 Module B: F1.3 Heterogeneous bioentity analysis

Figure 6.6A show the function entrance for HBAM. Figures 6.6B, C and D illus-

trate the stepwise guidance of performing Pubtator extraction, network construc-

tion, indicator calculation and non-dominated ranking to the processed dataset.

Figure 6.7 gives the visualisation results via functions we developed in the dash-

board.



133

Figure 6.6 : Module B: F1.3 Heterogeneous bioentity analysis

6.3.5 Module B: F1.4 and F1.5 Topic analysis - SEP and HTT

Figure 6.8A show the function entrance for SEP and HTT analyses. Figure 6.8B

is the operation for SEP and HTT analysis, with the input of either the MeSH

terms affiliated with PubMed papers or concept terms retrieved from OpenAlex.

The visualisations of the analysing results are given in Figures 6.8C and 6.8D. They

are integrated into BiblioEngine and realised by the Python Gravis package and

Vega visualisation grammar.
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Figure 6.7 : Module B: F1.3 Heterogeneous bioentity analysis results visualisation
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Figure 6.8 : Module B: F1.4 and F1.5 Topic analysis - SEP and HTT

6.4 The Comparison of BiblioEngine with Existing Biblio-

metric Tools

In contrast to existing bibliometric tools such as CiteSpace (Chen, 2006), VoSViewer

(Van Eck and Waltman, 2010) and Bibliometrix (Aria and Cuccurullo, 2017), Bib-

lioEngine boasts a range of distinctive features that set it apart in the field of litera-

ture mining. Notably, BiblioEngine excels in the algorithms to uncover entity-level

knowledge, facilitate entity association prediction, and profile topic evolution and

hierarchy. When compared to its counterparts, BiblioEngine offers several notable

advantages:

• Enhanced entity-level knowledge: BiblioEngine excels in extracting and analysing

entities within the literature, enabling a deeper understanding of the knowl-

edge landscape. By delving into the granular details of entities, BiblioEngine

enables researchers to gain valuable insights on a more fine-grained level.
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• Topic extraction and profiling algorithms: BiblioEngine seamlessly integrates

the HTT and SEP algorithms to identify topic evolution and hierarchy within

time-labelled scholarly documents effectively. Extensively validated through

numerous case studies, these algorithms have consistently demonstrated their

ability to derive valuable real-world insights.

• Integrated visualisations and interactive dashboard: BiblioEngine offers an

intuitive and user-friendly dashboard, ensuring ease of use for researchers of

varying technical backgrounds. This platform serves as a convenient pipeline

for users to apply entity extraction, heterogeneous network analysis, and topic

analysis techniques to their collected literature data. Moreover, it provides so-

phisticated visualisation options to effectively present analysis outcomes. The

platform offers visually appealing and customisable visual layouts, enhancing

the clarity and interpretation of results.

6.5 COVID-19 Bioentity Association Analysis

In the following two empirical studies, we will focus on COVID-19, a global

public health threat, to demonstrate how to use the proposed system in discovering

bioentity associations and uncovering knowledge hierarchy. The two studies were

conducted separately in our two research papers, but the relevant data analysis parts

were performed using BiblioEngine.

During the time of this thesis being curated, the COVID-19 pandemic has devel-

oped into an unprecedented global crisis that impacts people’s daily lives and health-

care services provision. To stop its spread and efficiently control it, the biomedi-

cal research community has responded proactively on multiple fronts, including in

the field of genetic research. By deciphering the genetic mechanisms underlying

the body’s response to SARS-CoV-2 infection, researchers can better understand

COVID-19 pathogenesis, diagnosis, treatment, and, potentially, prevention, includ-
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ing optimising vaccine development. In practical terms, the multiple COVID-19 ge-

netic research efforts have resulted in substantial research publications (Chua et al.,

2020; Pairo-Castineira et al., 2021; Shin et al., 2020; Wrobel et al., 2020). How-

ever, the downside of this productivity is that the quantity of COVID-19 literature

proliferates and results in difficulties for researchers in comprehending this field’s

changing knowledge landscape, particularly regarding the emerging information on

various genes involved in COVID-19 response.

Bibliometrics is a subject that deciphers the patterns generated by scientific en-

deavours by quantitatively tracking and measuring research activities. The intensive

growth of COVID-19 publications has triggered considerable attention from the bib-

liometrics community. As part of those studies,Colavizza et al. (2021) tracked the

topics in COVID-19 research, Chahrour et al. (2020) presented descriptive statistics

of publication distribution, Fry et al. (2020) revealed the influence of COVID-19

on scientific activities such as international collaboration patterns, Zhang et al.

(2021a) highlighted topical disruptions and resilience to the coronavirus research

focus. Traditional bibliometric studies are conducted based on the statistical anal-

ysis of bibliographic information such as author entities, keywords and citations.

Empowered with artificial intelligence (AI) techniques like text mining and network

analytics, current bibliometrics has developed novel capabilities of excavating im-

plicit knowledge and inferring potential knowledge associations from literature data,

which could be described as intelligent bibliometrics (Zhang et al., 2020b). The case

study presented here differs from other COVID-19 bibliometric studies in that it fo-

cuses specifically on COVID-19 genetic research. It utilises multiple traditional and

intelligent bibliometric analyses to profile this emerging field’s research landscape

and address the following question: What specific genes are frequently highlighted,

and which ones are emerging as relatively newly-described entities that may be

potentially important in the COVID-19 genetic studies?
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Previous efforts to answer these questions mostly consist of COVID-19 topic

analysis (Colavizza et al., 2021; Pourhatami et al., 2021; Haghani and Bliemer,

2020; Zhang et al., 2021a), literature-based discovery studies (Wise et al., 2020;

Wu et al., 2021b; Yu et al., 2021), and literature search tools (Chen et al., 2021;

Trewartha et al., 2020). A common approach in current topic studies is to apply

co-word clustering (Pourhatami et al., 2021) or topic modelling (Colavizza et al.,

2021; Tran et al., 2020) to the COVID-19 literature. Such studies have helped to

track newly emerging knowledge but have often overlooked the relationships between

new evidence and previously established coronavirus knowledge. For example, what

are the similarities and differences between the diagnosing criteria, treatments, and

social responses for SARS and SARS-CoV-2? In such cases, established knowledge

can effectively discover and synthesise new knowledge (Haghani and Bliemer, 2020;

Haghani and Varamini, 2021; Hu et al., 2021; Petrosillo et al., 2020). In addition,

current literature-based discovery studies are conducted on macro levels and do

not focus on specific knowledge domains to discover targeted knowledge for people

pursuing different interests (Wise et al., 2020; Yu et al., 2021). For example, the

interests of virologists and pathologists lie in tracing the spike protein mutations of

SARS-CoV-2 (Pairo-Castineira et al., 2021; Starr et al., 2021), while clinical doctors

are eager to follow the latest progress in diagnosis and treatment (Felsenstein et al.,

2020; Merrill et al., 2020). For this reason, combining topic analysis and literature-

based discovery approaches is a promising way to fill these two gaps. Further, few

of the available COVID-19 knowledge search tools provide visualisations or other

efficient ways to assist users in understanding the retrieved results (Trewartha et al.,

2020; Zhang et al., 2021a). A concise and appropriate visualisation could save a huge

amount of time in finding the right papers to follow or in narrowing down their search

scope. Aiming to fill these research gaps, we employed the heterogeneous bioentity

analysis methodology that provides a systematic solution to answering the three
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cited research questions.

6.5.1 Data collection and pre-processing

PubMed is a public biomedical literature database developed by the National

Library of Medicine (NIH) and comprises over 32 million medical articles and on-

line books. Falagas et al. (2008) recommend PubMed as the optimal bibliometric

database for medical and life sciences, which exactly coheres with the foci of our

study. Its advantage in biomedical information retrieval is providing specialised func-

tions like Medical Subject Heading (MeSH) search and biomedical filters (including

the species filter we used in this work) to return precise results. While considering

Web of Science (WoS) is also a well-recognised data source in traditional bibliometric

studies, we compared the search results of WoS and PubMed using the same search

string (the filter and MeSH terms excluded) and noted that 93% of our collected

data are indexed by WoS, indicating a wide coverage of PubMed data. Given that

circumstances, in our study, we only exploited the PubMed database as our data

source.

Using the search strategy below, we collected a data set of the genetic research

performed on COVID-19 and SARS-CoV-2 from PubMed:

(”COVID-19/genetics”[MeSH Terms] OR ((”genes”[MeSH Terms] OR

”genetics”[MeSH Terms] OR ”gene”[All Fields] OR ”genes”[All Fields] OR

”genome”[All Fields] OR ”genetics”[All Fields]) AND (”COVID-19”[All Fields]

OR ”SARS-Cov-2”[All Fields]))) AND (humans [Filter])

Search date: 08/03/2021

The search yielded 5,632 records related to COVID-19 genetic research. We

restricted the species to humans since our primary goal is only to explore the critical

human genes that act in COVID-19 infection.
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Table 6.1 : Stepwise results of the pre-processing procedure

Raw Step 1 Cleaned Step 2 Nodes

Disease 31,974 31,963

MeSH

801

Chemical 4,494

Removed noisy concepts like “cardioembolic”,

“JAGS”, “nonvitamin”, etc. that could not be

mapped to MeSH
3,724 678

Gene 11,211
Exclude genes that do not belong to Homo

Sapiens
8,781 NCBI Gene 968

Genetic variant

- DNA mutation 69 17 126

- Protein mutation 349 91 dbSNP

- SNP 104

Removed variants with unclear loci (i.e., could

not be mapped to an SNP ID) 104

Total 48,201 - 44,680 - 2,573

6.5.2 Bioentity extraction and pre-processing

Following the heterogeneous bioentity analysis methodology (HBAM) proposed

in Chapter 3, we first exploited Pubtator to extract bioentities from the 5,632

PubMed records, resulting in 48,201 raw biomedical concepts, including diseases,

chemicals, genes and genetic variants. The cleaning process was then conducted to

map every concept to the corresponding dictionary, remove noisy concepts (Step

1) and consolidate concepts (Step 2). 2,573 unique bio-entities remained after the

cleaning steps with the stepwise results presented in Table 6.1. The 2,573 bi-entities

were then used to construct the heterogeneous bioentity co-occurrence network.

The finalised network comprised 2,573 bioentity nodes and 31,848 co-occurrence

edges. The counts of different types of nodes and edges are given in Table 6.2. The

numbers in the parentheses are the node counts of the corresponding bioentities,

and the numbers in the tabular cells are edge counts.

6.5.3 Bioentity ranking analysis

To begin with the bioentity analysis, we listed the top ten highly frequent bio-

entities and presented them in Table 6.3. The monthly changes of those entities
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Table 6.2 : Counts of the different types of edges

Disease (801) Chemical (678) Gene (968) Genetic Variant (126)

Disease (801) 8,231 4,872 6,966 499

Chemical (678) 4,872 2,121 2,268 37

Gene (968) 6,966 2,268 5,692 385

Genetic Variant (126) 499 37 385 777

Table 6.3 : The top ten entities ranked by the raw frequency

Ranking Disease Chemical Gene Genetic Variant

1 Death Oxygen ACE2 rs2285666

2 Pneumonia Hydroxychloroquine TMPRSS2 rs12329760

3 Inflammation remdesivir IL6 rs4646116

4 Fever Serine CRP rs11385942

5 Neoplasms Chloroquine TNF rs12252

6 Respiratory Distress Syndrome, Adult Lipids CD4 rs1244687367

7 Cough Azithromycin ACE rs143936283

8 Diabetes Mellitus lopinavir-ritonavir drug combination CD8A rs73635825

9 Hypertension Nitrogen IFNG rs8176746

10 Zoonoses Aldosterone FURIN rs8176719

during the entire year 2021 are provided in Figures 6.9, 6.10 and 6.11. Genetic

variation entities are not given due to the relatively small amount of data in this

category. We only traced the frequency changes to January 2021 since the latter

collection is incomplete due to publishing lags.

Generally, the frequencies of the top ten entities in each category keep increasing

during the early pandemic. Predictably, ACE2 is the top-mentioned gene with a

noticeable frequency gap with the following genes. This is mainly because ACE2

is the primary functional receptor for the SARS-CoV-2 virus in human cells and

plays a core role in the virus infection process (Zheng et al., 2020). Regarding the

comorbidities, apart from cough, respiratory distress syndrome and inflammation

that could be regarded as symptoms or directly associated disease manifestations

of COVID-19 infection, the comorbidities in COVID-19 genetic studies include neo-
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Figure 6.9 : Top ten gene frequency changes

Figure 6.10 : Top ten disease (comorbidity) frequency changes
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Figure 6.11 : Top ten chemical frequency changes

plasms, diabetes and hypertension. When it comes to chemicals, Figure 6.11 presents

multiple prevalent drug treatments that were utilised and trialled for COVID-19,

including hydroxychloroquine, azithromycin, remdesivir and the lopinavir-ritonavir

drug combination, indicating that the pharmacogenomics of those drugs is also a

key research interest in this field.

6.5.4 Emerging gene discovery

By applying centrality measurement, the non-dominated sorting centrality com-

bination algorithm, and the intersection ratio calculation to the constructed net-

work, we attributed every gene node two indicators: centrality combination and

intersection ratio. We then normalised the two indicators as the intersection ratio

on the X-axis and centrality combination on the Y-axis to locate all the genes in a

coordinate system, as shown in Figure 6.12. According to our design, a high value

of centrality combination indicates the importance/impact of a given gene to rela-

tively broad domains of the target disease, while a high value of intersection ratio



144

Figure 6.12 : Gene map derived from COVID-19 research

may represent the specialty of a given gene to the target disease.

The genes depicted are shown as a matrix based on their centrality combina-

tion, i.e., the strength of their contribution to the surveyed COVID-19 literature in

biological terms, together with their intersection ratio, i.e., the strength of their re-

lationship to COVID-19, as deduced from the published body of COVID-19 genetic

research. For example, ACE2 and TMPRSS2 have a relatively strong presence

in the literature, as well as a relatively crucial biological influence, and are also

moderately strongly specific for COVID-19. From the centrality combination value
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perspective, we could identify ACE2, IL6, TMPRSS2, and TNF as frequently high-

lighted genes. ACE2 is the primary functional receptor for the SARS-CoV-2 virus

(Zheng et al., 2020). TMPRSS2 is an enzyme that primes the spike S protein of the

SARS-CoV-2 to promote virus entry (Hoffmann et al., 2020b). IL6 and TNF are

pro-inflammatory cytokines found generally elevated in severe COVID-19 patients

(Cao, 2020).

Figure 6.13 zooms into some relatively recently mentioned genes in the litera-

ture that own both high intersection ratio and centrality combination in the first

quadrant. The potential role of some of these ”emerging” genes and their products,

together with their possible biological role in COVID-19, is discussed below:

FURIN : FURIN is an essential cleavage enzyme for the spike protein of SARS-

CoV-2 in the virus infection process. From the biochemical perspective, Klimstra

et al. (2020) identified the association between a putative furin cleavage signal gener-

ated by a novel insertion of the SARS-CoV-2 spike S glycoprotein and the expanded

host range. Wrobel et al. (2020) discovered that the cleavage at the furin-cleavage

site decreases the overall stability of SARS-CoV-2 S and facilitates the adoption of

the open conformation required for the viral S (spike) protein to bind to the ACE2

receptor. From the treatment perspective, Hoffmann et al. (2020a) highlighted that

obtaining an S1/S2 multibasic cleavage site was essential for COVID-19 infection

and indicated furin as a potential target for therapeutic intervention. A similar

finding was also presented by Sallenave and Guillot (2020), whose study identified

a furin-like cleavage site in SARS-CoV-2 to facilitate the S protein priming. They

also claimed that furin inhibitors could be targeted as potential drug therapies for

SARS-CoV-2.

CXCL10 : CXCL10 is a frequently studied gene in multiple COVID-19 genetic

studies (Bermejo-Martin et al., 2020; Chua et al., 2020; Han et al., 2021; Hou et al.,
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Figure 6.13 : Gene map from COVID-19 research – detailed partial view
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2020; Parkinson et al., 2020; Tan et al., 2021; Xiong et al., 2020). Among those

studies, a paper published in Nature Biotechnology identified that critical COVID-19

cases had shown stronger interactions between epithelial and immune cells which in-

cludes inflammatory macrophages expressing CXCL10 (Chua et al., 2020). Bermejo-

Martin et al. (2020) reported that viral RNA load in plasma correlates with higher

chemokines levels, including CXCL10 and CCL2. Xiong et al. (2020) also indicated

the association between COVID-19 pathogenesis and excessive cytokine release, in-

cluding CXCL10/IP-10.

OAS1, OAS2, OAS3, IFIT1, IFIT3, IFI44, IFI44L and IFITM1 : Current COVID-

19 genetic studies incline to analyse those genes together. In a paper published

on Nature, Pairo-Castineira et al. (2021) identified a significant genetic variant

rs10735079 associated with critical illness of COVID-19 in the gene cluster encodes

OAS1, OAS2, and OAS3. Interestingly, recent work on archaic human (Neandertal)

DNA has identified an additional haplotype in Chromosome 12 containing OAS1,

OAS2, and OAS3 that protects against severe COVID-19 (Zeberg and Paabo,

2020). Klaassen et al. (2020) identified six genetic variants in innate immunity-

related genes, including OAS1 (p.Arg130His), which might have predictive value for

COVID-19 infection. Besides, IRF9, IFIT1, IFITM1, MX1, OAS2, OAS3, IFI44

and IFI44L were found to be upregulated in the COVID-19 infected normal hu-

man bronchial epithelial cells (Vishnubalaji et al., 2020). Similarly, Prasad et al.

(2020) also found that some interferon-stimulated genes can be considered potential

candidates for drug targets in COVID-19 treatment. Those genes include IFIT1,

IFITM1, IRF7, ISG, MX1, and OAS2. Shi et al. (2021) showed that COVID-19

infections are generally restricted by IFITM1, IFITM2 and IFITM3 using gain-

and loss-of-function approaches.

ISG15 : The findings of ISG15 are mostly related to the papain-like proteases

(PLpro) encoded by the SARS-CoV-2 coronavirus. A paper published in Nature
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revealed a unique preference of SARS-CoV-2 coronavirus of cleaving ubiquitin-like

interferon-stimulated gene 15 protein (ISG15 ), which is different from SARS-CoV

(Shin et al., 2020). This study also indicated that SARS-CoV-2 papain-like protease

contributes to the cleavage of ISG15 from interferon responsive factor 3 (IRF3 ) and

attenuates type I interferon responses. Klemm et al. (2020) specified that the struc-

ture of the SARS-CoV-2 PLpro reveals that S1 ubiquitin-binding site is responsible

for high ISG15 activity, while the S2 binding site provides Lys48 chain specificity

and cleavage efficiency. Freitas et al. (2020) evaluated the biochemical activity of

SARS-CoV-2 PLpro and ISG15 with its counterparts in MERS-CoV and SARS-

CoV. They indicated that naphthalene-based PLpro inhibitors are shown to be ef-

fective at halting SARS-CoV-2 PLpro activity as well as SARS-CoV-2 replication.

TNFAIP3: Protein and protein interaction analysis from Islam et al. (2020c)

indicated that TNFAIP3 is one of the key hub genes that have good binding affinities

with repurposed COVID-19 drug candidates, which includes dabrafenib, radicicol

and AT-7519. Li et al. (2021) observed the bimodal gene expression of TNFAIP3

in various immune cells from severely infected COVID-19 patients.

The overlapping genes in Group 1 are investigated in a single paper (Shaath

et al., 2020). They identified neutrophils (IFITM2, IFITM1, H3-H3B, SAT1 and

S100A8 ) and macrophage cluster-1 (CCL8, CCL3, CCL2, KLF6 and SPP1 ) as the

main immune cell subsets associated with severe COVID-19 cases. They also found

some upstream regulators (IFNG, PRL, TLR7, PRL, TGM2, TLR9, IL1B, TNF,

NFKB, IL1A, STAT3, CCL5 ) were enriched in bronchoalveolar lavage cells in severe

COVID-19 cases compared to the mild cases. Besides, common genes found in both

mild and severe COVID-19 cases (IFI27, IFITM3, IFI6, IFIT3, MX1, IFIT1, OASL,

IFI30, OAS1 ) and only in severe cases (S100A8, IFI44, IFI44L, CXCL8, CCR1,

PLSCR1, EPSTI1, FPR1, OAS2, OAS3, IL1RN, TYMP, BCL2A1 ) are reported as

well.
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MIR361 : miRNAs are essential regulators of viral pathogenesis, particularly

among RNA viruses. Pierce et al. (2020) verified the biological plausibility of the

predicted miRNA-target RNA interactions, in which miRNA361 binds to the SARS-

CoV-2 IFN -α 3’-UTR. Li et al. (2021) showed that hsa-miR-361-3P is one of the top

upregulated or downregulated genes in COVID-19 patients compared to the healthy

controls.

IFNL3 : Stevenson et al. (2021) claimed IFNL3 as one of the predictive markers

for severe symptoms of COVID-19 based on an analysis of serum chemokines and

cytokines from COVID-19 patents, while another pharmacogenomic study did not

find the potential of IFNL3 in modifying treatments (Sugiyama et al., 2020). In-

stead, they identified CYP2D6 and CYP2C19 as likely best targets for treatment

modification, especially for ondansetron, oxycodone, and clopidogrel.

6.5.5 Case summary

Due to the large number of studies done since the beginning of the COVID-19

pandemic, keeping up with the rapid changes is challenging for scientific researchers

and policymakers. This empirical study comprehensively analyses COVID-19 ge-

netic research papers published during the pandemic with traditional and intelli-

gent bibliometric approaches. Our bioentity network analysis presents a gene co-

ordinate system with every gene located by its network importance vs. specificity

to COVID-19. From the node network importance perspective, we identify ACE2,

IL6, TMPRSS2, and TNF to be frequently highlighted in the COVID-19 genetic

studies. Combining the genes’ network importance and specificity to COVID-19, we

have used this method to identify candidate novel genes, such as FURIN, CXCL10,

OAS1, OAS2, OAS3, ISG15, etc., as emerging genes that may require further re-

search and attention in this field.

This study provides a suite of intelligent bibliometric tools for biomedical re-
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searchers to conduct medical knowledge discovery. For example, it could profile the

research landscape of a given medical case with identified associations between genes

and diseases. Compared with other bibliometrics conducted on COVID-19, this case

study provides a systematic and adaptable research framework to profile the research

landscape and exploit disease genetics-related knowledge from the literature. Addi-

tionally, this study specifically focused on COVID-19 genetic research. It targeted a

set of frequently highlighted genes and emerging genes on COVID-19, which could

be the clue for COVID-19 prevention and treatment. The results of this study could

benefit 1) clinical researchers with longitudinal analyses on COVID-19 genetic re-

search, and 2) policymakers with insights into recognising potential threats from

COVID-19 and providing pre-emptive actions on national strategies, science policy,

and public health and administration for gene-level prevention and treatments.

There are also some limitations to be addressed in our current study. From the

methodology perspective, we designed a purely data-driven method to identify those

primary genes and potentially emerging novel genes from literature data. However,

we have not touched on some other valuable knowledge sources, such as clinical trials

and curated medical knowledge databases, which also have the potential to facilitate

novel knowledge discovery in this field. From the result validation perspective, we

employ evidence from the literature to interpret and support our findings with assis-

tance from our medical experts. Nonetheless, the validation is primarily qualitative

without detailed measuring metrics. In future studies, we will put our efforts into

1) involving more data and information sources to improve the completeness and

comprehensiveness of our method; and 2) designing a systematic validating method

from both quantitative and qualitative perspectives.

The COVID-19 pandemic remains a worldwide threat to human health, as well

as to the global economy and political landscape. Controlling the pandemic and

improving prevention and treatment are top global priorities. Despite the wel-
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come rollout of several different vaccines, there is still substantial knowledge about

this virus waiting to be uncovered and explained, especially related to dealing with

the ongoing mutations of this virus and optimising treatments for different patient

groups. Our study provides a suite of novel bibliometrics-based tools for biomedical

researchers to utilise to highlight the rapid changes in this field rapidly and may

help accelerate our process of learning about this illness. Moreover, our research

results could be of use to policymakers to help produce research priorities designed

to mitigate future threats from SARS-CoV-2 and similar viruses, as well as to help

plan post-COVID-19 health interventions.

6.6 COVID-19 Knowledge Hierarchy and Retrieval

Since the COVID-19 outbreak in 2020, scientists around the globe have pub-

lished more than 200,000 research papers on the nature of this virus and ways to

help mitigate its negative impacts. While beneficial, the sheer volume of information

published has caused an information crisis (Chahrour et al., 2020; Xie et al., 2020).

Apart from the problem of misinformation and rumours, the overwhelming influx of

research papers has resulted in severe information overload, challenging scientists,

healthcare professionals, and the general public to 1) keep up with the rapid accu-

mulation of new knowledge, 2) accurately and comprehensively obtain knowledge

on specific topics; and 3) understand the new knowledge emerging (Hossain, 2020;

Wise et al., 2020; Yu et al., 2021). Although several open literature datasets and

search tools are available online (Trewartha et al., 2020; Zhang et al., 2020a), a

comprehensive framework incorporating effective analytical tools is still missing to

help scientists meet these challenges. What is needed is a solution that can help

researchers answer the following three case research questions:

• Case research question 1 (CRQ1): What are the key research topics in the

emerging COVID-19 knowledge system?



152

• Case research question 2 (CRQ2): How can we retrieve established knowledge

for specific COVID-19 research topics?

• Case research question 3 (CRQ3): How do we understand and utilise the

retrieved knowledge?

Previous efforts to answer these questions mostly consist of COVID-19 topic

analysis (Colavizza et al., 2021; Pourhatami et al., 2021; Tran et al., 2020; Zhang

et al., 2020a), literature-based discovery studies (Wise et al., 2020; Zhang et al.,

2021d; Yu et al., 2021), and literature search tools (Chen et al., 2021; Trewartha

et al., 2020). A common approach in current topic studies is to apply co-word clus-

tering (Pourhatami et al., 2021) or topic modelling (Colavizza et al., 2021; Tran

et al., 2020) to the COVID-19 literature. Such studies have helped to track newly

emerging knowledge but have often overlooked the relationships between new evi-

dence and previously established coronavirus knowledge. For example, what are the

similarities and differences between the diagnosing criteria, treatments, and social

responses for SARS and SARS-CoV-2? In such cases, established knowledge can

be a significant means of discovering and synthesising new knowledge (Haghani and

Bliemer, 2020; Haghani and Varamini, 2021; Hu et al., 2021; Petrosillo et al., 2020).

In addition, current literature-based discovery studies are conducted on macro levels

and do not focus on specific knowledge domains to discover targeted knowledge for

people pursuing different interests (Wise et al., 2020; Yu et al., 2021). For example,

the interests of virologists and pathologists lie in tracing the spike protein mutations

of SARS-CoV-2 (Pairo-Castineira et al., 2021; Starr et al., 2021), while clinical doc-

tors are eager to follow the latest progress in diagnosis and treatment (Felsenstein

et al., 2020; Merrill et al., 2020). For this reason, combining topic analysis and

literature-based discovery approaches is a promising way to fill these two gaps. Fur-

ther, few of the available COVID-19 knowledge search tools provide visualisations or
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other efficient ways to assist users in understanding the retrieved results (Trewartha

et al., 2020; Zhang et al., 2020a). A concise and appropriate visualisation could

save a huge amount of time in finding the right papers to follow or in narrowing

down their search scope. Aiming to fill these research gaps, we developed a research

framework that provides a systematic solution to answering the three cited research

questions.

CRQ1 is answered via a strategy that involves two topic extraction methods,

Principal Component Decomposition (PCD) (Watts and Porter, 1999; Watts et al.,

1999) and hierarchical topic tree (HTT) analysis (Wu and Zhang, 2021). This ap-

proach identifies research topics from research papers and yields a bird’s eye view

of COVID-19’s knowledge system. Compared to other topic extraction approaches

like K-means text clustering (Wartena and Brussee, 2008) or topic modelling (Blei

et al., 2003; Yau et al., 2014), PCD can generate robust document clustering results

without introducing any randomisation processes. HTT, on the other hand, profiles

the research topics in a hierarchical structure to highlight the differences and inner

connections between topics. The two topic profiling approaches complement each

other in generating both macro-level knowledge overviews and meso-level knowledge

hierarchies. With the COVID-19 topics identified, we further developed a document

retrieval approach based on a knowledge model that supports topic-specific docu-

ment retrieval. The approach parses the entire PubMed database and links each

identified topic with semantically similar pre-COVID literature in PubMed. In this

way, new knowledge is linked to foundational knowledge. CRQ2 is answered by com-

bining the topic analysis with the results of the knowledge model. Targeting CRQ3,

the focus is on hierarchy, a specific dimension of knowledge composition, where the

hierarchical structures of a topic’s knowledge body are profiled and visualised. This

helps researchers to efficiently understand the knowledge structures in the retrieved

papers, further supporting knowledge discovery. All in all, this study blends mul-
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tiple data-driven bibliometric approaches to reveal insights into COVID-19 knowl-

edge deconstruction, effective retrieval, and understanding. It is in line with the

direction what we called “intelligent bibliometrics” (Zhang et al., 2020b), targeting

problems in science, technology, and innovation (ST&I) studies and highlighting the

development of computational models incorporating artificial intelligence and data

science techniques with bibliometric indicators. Despite a specific focus on COVID-

19 knowledge in this chapter, the proposed framework is adaptable for knowledge

deconstruction and retrieval in broad domains and scenarios.

To conduct our case study, we collected the abstracts of 127,971 research pa-

pers published in 2020 and 2021 from the PubMed database. Feeding those papers

into the PCD analysis, we generated 35 PCD topics and revealed how the emphasis

on different topics changed over different periods. Initially, the focus was on the

epidemiological and clinical characteristics of the virus. However, over time the em-

phasis changed to the impacts of COVID-19 on different societies. The HTT results

divided the explored knowledge into a clinical branch and a public health branch.

The clinical branch focuses on discovering COVID-19-associated clinical factors and

treatments. The public health branch addresses six particular public health con-

cerns. Additionally, we constructed a knowledge model based on the most popular

PCD topic of vaccination and ran a global search on PubMed for records published

before 2020 to retrieve the knowledge foundations of this topic, resulting in 92,286

retrieved papers. Lastly, we used HTT to visualise the knowledge structures of the

retrieved results. The HTT results highlighted multiple vaccination-related disci-

plines, including immunology, molecular biology, virology, etc. From the branches

of those disciplines, we identified four future promising research directions: mono-

clonal antibody treatments, vaccination in diabetic patients, vaccination effective-

ness in SARS-CoV-2 antigenic drift, and vaccination-related allergic sensitisation.

We empirically evaluated the results by matching evidence identified from the lit-
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Table 6.4 : Stepwise results of term clumping

Step Description # Terms

1 Raw terms retrieved with NLP 1,603,542

2

Remove terms starting/ending with non-alphabetic characters

Remove common terms in scientific articles, e.g., “research framework”

Remove meaningless terms, e.g., pronouns, prepositions, and conjunctions 1,367,374

Consolidate synonyms based on expert knowledge, e.g., “COVID-19” and “COVID”

Consolidate terms with the same stem, e.g., “severe patient” and “severe patients”

3 Filter terms with term frequency above 10 33,281

erature and identified research evidence in the latest studies. This empirical case

not only demonstrates the reliability of our method but also derives insights to sup-

port potential COVID-related R&D and strategic management for funding agencies,

individual researchers, and institutions.

6.6.1 Data collection and pre-processing

For topic analysis, the search process returned 127,971 relevant research papers

from 1 January 2020 – 1 January 2022 as of early March 2022. Then we further

applied the natural language processing function of VantagePoint to extract topic

terms from titles and abstracts. The list of extracted terms was cleaned to remove

stop words, consolidate similar terms, and eliminate all terms appearing in less than

ten records (Zhang et al., 2014b). The term clumping process and stepwise results

are given in Table 6.4.

6.6.2 Data overview

Trends in COVID-19 publications can help us glimpse the response patterns

of the scientific community given catastrophic events. To capture such trends, we

first applied a descriptive bibliographic analysis to profile the external characteris-

tics of COVID-19 studies regarding the monthly growth, institution ranking, and
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Figure 6.14 : Monthly increasing trend of COVID-19 research papers

geographical distribution.

Figure 6.14 illustrates the basic monthly numbers of COVID-19 research papers.

Early in 2020, these numbers were rapidly increasing, but by 2021, they had become

relatively steady. The burst of COVID-19 publications can easily be attributed to

the disruptiveness and uncertainty that COVID-19 has brought to previously estab-

lished knowledge systems (Zhang et al., 2020a), which attracts research attention

from massive new researchers (Wagner et al., 2022). However, the slowing increase

might be due to multiple reasons: Is it due to research capacity limitations (e.g.,

journals, review speed, funding, etc.)? Or does it indicate that newly discovered

knowledge is converging to a new stage? Will there be a decay period following?

These possibilities only trigger more research questions to be answered and examined

in future studies.

Figures 6.15 and 6.16 respectively profile the global distribution and ranking

changes of COVID-19 research papers among worldwide countries/regions. Figure

6.17 lists the top 20 productive institutions. In terms of the absolute number of
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papers published at the national level in Figure 6.15, the United States and China

unsurprisingly hold leading positions, followed by Italy, India, Germany, Canada,

etc. From a retrospective view, the ranking changes in Figure 6.16 intuitively in-

dicate the association between productivity and local epidemic severity (Wagner

et al., 2022). For example, China took first place in the initial few months because

it was the first victim of COVID-19 and had first-hand access to massive numbers of

clinical cases. However, the US soon overtook China and has held the first position

since the middle of 2020. This may be because the US has solid research strength,

but it could also be the result of how severely the COVID-19 pandemic hit the US

(Burki, 2020). Italy maintained third place for a long time from March 2020 as it

became the European COVID-19 epicentre, suffering high cases and mortality rates

(Remuzzi and Remuzzi, 2020). Following a sharp decrease in March 2020, which

could be a result of the 21-day nationwide lockdown at that time, India has remained

high in the ranking list. The pandemic hit India severely, and multiple SARS-CoV-2

variants have emerged there (Bernal et al., 2021).

Diving into the institution level, we found that, compared to the earlier China-led

trends in COVID-19 research (Fry et al., 2020), the momentum for US institutions

to lead in this domain has continued to grow (Wu et al., 2021b). This indicates

that even though China has published a substantial volume of papers, individual

Chinese universities and research institutions have not demonstrated equal strength

in competition with their global counterparts, particularly those from the States.

6.6.3 COVID-19 study overall research landscape

PCD is essentially a robust and reproducible variant of principal components

analysis (PCA) that groups scientific documents according to their textual features

(Watts et al., 1999; Watts and Porter, 1999). Compared to the original PCA, PCD

automatically decides the number of factors (derived PCA groupings) by minimising
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Figure 6.15 : The geographical distribution of COVID-19 papers

Figure 6.16 : The ranking changes of countries
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Figure 6.17 : Top twenty prolific research institutions

the entropy and maximising the cohesiveness of the derived factor groups. In our

case, we exploited processed terms extracted from the titles and abstracts as doc-

ument feature vectors. We then ran PCD on the document-term matrix to decide

the factors automatically. The retained factors were deemed to be PCD topics.

Feeding the extracted topic terms into the PCD analysis, we distilled 35 research

topics. Further, we plotted a topic correlation map in Figure 6.18, with each bubble

representing a PCD research topic and the size denoting its associated paper count,

and the links denoting a cosine correlation above 0.5 (Salton and McGill, 1986).

The correlation map of the 35 topics highlights a core topic cluster in the middle,

representing a set of clinical manifestations and hospitalisation factors of COVID-19.

The other scattered topics cover a broad range, including public health, education,

economics, etc. More details are provided on those topics in the following analysis.

The monthly ranking changes of the top ten topics are given in Figure 6.19,
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Figure 6.18 : The distribution and cross-correlation of PCD topics
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Figure 6.19 : Monthly increasing trend of PCD topics

indicating different stages of COVID-19 research. Among these topics, the rankings

of PCR and Public Health maintain the top, while other topics show significant

fluctuating trends.

At the beginning of the COVID-19 breakout in Wuhan, the PCD topics Pneumo-

nia and SARS-CoV-2 Transmission attracted massive attention, as first-hand clinical

and epidemiological investigations were urgently needed to improve COVID treat-

ments and control its transmission (Huang et al., 2020a; Li et al., 2020b; Lu et al.,

2020; Wang et al., 2020b). In such studies and following clinical trials, the gender

difference is an essential analysing factor as indicated by the continuing ranking rise

of PCD topics in Women and Men. Additional attention was put on the female

group due to studies on the vulnerabilities of pregnant women or women at lactat-

ing ages (Chen et al., 2020). As COVID-19 turned from regional transmissions into

a global pandemic, scientists started to look into the social impacts of COVID-19

as illustrated by the rise of topics Lockdown (Ruktanonchai et al., 2020; Shepherd

et al., 2021) and Mental Health. The former broadly covers the social impacts of

lockdown measures on healthcare services (Shepherd et al., 2021), economy (Bonac-



162

corsi et al., 2020), education (Engzell et al., 2021), and environment (Venter et al.,

2020), etc.; The latter topic discusses mental health issues among the general public

(Brülhart et al., 2021; Shi et al., 2020) and healthcare workers (Lai et al., 2020). As

the COVID pandemic progressed, the rankings of Death and ICU topics decreased

relatively steadily.

Notably, the change in Vaccination-related papers illustrates two waves of vac-

cine studies. The first wave appeared at the beginning of the COVID-19 breakout

and peaked in February 2020. These early-stage papers mainly focus on reviewing

past coronavirus vaccines, calling for rapid vaccine development procedures, and

proposing possible vaccine development approaches (Ahmed et al., 2020; Ahn et al.,

2020; Pang et al., 2020; Prompetchara et al., 2020). With the advent of multiple

available vaccines, the next wave emerged in the third quarter of 2020 and con-

tinued to rise. In addition to the massive numbers of basic medicine and clinical

trial studies around the safety and efficacy of those vaccines (Polack et al., 2020;

Thomas et al., 2021; Xia et al., 2020), the rollout of vaccines also triggers researchers’

concerns about the social implications, including the vaccine hesitancy phenomena

(Biswas et al., 2021; Dror et al., 2020), vaccine allocation strategies (Duch et al.,

2021) and vaccination incentives (Campos-Mercade et al., 2021; Dai et al., 2021).

As vaccination offers one of the most effective measures in preventing COVID-19, we

will demonstrate how we used our knowledge model to retrieve historical knowledge

of vaccination studies in the next section.

The PCD results yield a flat view of the COVID-19 research landscape. To dive

further into the hierarchy of COVID-19 knowledge and obtain more details about

research topics, we ran the HTT algorithm and constructed a co-term network using

terms with a frequency above ten. The characteristics of our input network are

given in Table 6.5. The generated HTT map is shown in Figure 6.18, with the tree

trimmed to only show nontrivial branches. The node size indicates the prevalence
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Table 6.5 : The characteristics of COVID-19 term co-occurrence network

Number
Weight

Max Min Avg. Std.

Node 3,281 14,914 10 45.448 237.11

Edge 7,504,641 3,618 1 1.568 6.246

Average degree 450.98

of the topic, and the edge thickness denotes the co-occurring strength of the two

linked topics.

The hierarchical topic tree shows more detail on every individual topic. The

HTT map covers most PCD topics and arranges them hierarchically according to

their topological importance in the co-occurrence network. This empirical evidence,

discovered through PCD and HTT, coincides with knowledge manually identified

from the literature, which can endorse the method’s practical effectiveness. Mor-

tality and Public health are two HTT topics that hold the top positions in this

hierarchy and represent the two major research branches: clinical and public health

studies.

The clinical branch spans efforts to uncover the associated clinical factors of

COVID-19 and find effective therapies. As illustrated in Figure 6.20, such explored

clinical factors include gender – women, men (Jin et al., 2020), complications –

inflammation, cytokine storm (Jose and Manuel, 2020), thrombosis (Levi et al.,

2020), age – elderly (Liu et al., 2020a), and comorbidities – diabetes (Muniyappa and

Gubbi, 2020), hypertension (Fang et al., 2020). The treatments studied in clinical

case reports and clinical trials consist of mechanical ventilation, hydroxychloroquine

(Gautret et al., 2020), remdesivir (Beigel et al., 2020), and bamlanivimab (Gottlieb

et al., 2021), etc. In summary, this branch contains various clinical case reports
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Figure 6.20 : The hierarchical knowledge landscape of COVID-19 literature

and clinical trial studies devoted to revealing the associated factors of COVID-19

severity/mortality/prognosis and finding effective treatments.

For the public health branch, six subtopics are highlighted as follows.

i. Government: This branch discusses the role of government in fighting COVID-

19. One of its subordinate branches points to policymakers, and, within this,

handling inequalities in different groups of people has become a notable con-

cern in the policy-making process (Chu et al., 2020; Garcia et al., 2021). The

other subordinate branch of social media indicates the role of social media as a
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double-edged sword for governments regarding information dissemination and

evaluation (Islam et al., 2020b; Li et al., 2020a; Tsao et al., 2021), given the

presence of misinformation.

ii. Prevention: This set of HTT topics reflects some of the major explorations of

COVID -19 prevention: Face mask production and use issues (Brooks et al.,

2021; Long et al., 2020; Wu et al., 2020); identifying effective control mea-

sures (Nussbaumer-Streit et al., 2020; Wang et al., 2020c); and how to protect

frontline healthcare workers (Ding et al., 2020; Islam et al., 2020a).

iii. SARS-CoV-2 transmission: This set of topics explores the epidemiological

characteristics of COVID-19, among which the transmission between health-

care workers (Bergwerk et al., 2021; Sikkema et al., 2020) and the use of

personal protective equipment (Mick and Murphy, 2020) have attracted sub-

stantial research attention.

iv. Crisis: This topic set discusses the implications of COVID-19 on healthcare

systems (Liu et al., 2020b; Spinelli and Pellino, 2020) and medical education

(Hall et al., 2020).

v. Lockdown: As one of the strictest restrictions, lockdown measures were fre-

quently explored for their associations with mental health issues in the general

public and medical staff (Wang et al., 2020a; Williams et al., 2020).

vi. Vaccination: Apart from one branch highlighting the basic biomedical studies

for vaccine development (Polack et al., 2020; Xia et al., 2020), the other two

branches respectively address attention to vaccination in healthcare workers

(Bergwerk et al., 2021) and the vaccination hesitancy issue (Dai et al., 2021;

Machingaidze and Wiysonge, 2021).
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6.6.4 The HTT result of COVID-19 vaccination studies

This section demonstrates the utility of our knowledge model and HTT ap-

proaches in retrieving historical knowledge from the entire PubMed database, using

the most prominent PCD research topic, Vaccination, as an example. We extracted

15,967 papers related to this topic and calculated the TF-IDF values of all the ex-

tracted terms of those papers. Then, a knowledge model was built up with its top 50

and bottom 50 term stems9. Further, we ran the knowledge model-based document

retrieval method (Cassidy, 2020) over the entire PubMed database and retrieved

92,286 historical records out of the COVID dataset. We removed records containing

the /vaccin/ stem and empirically set the cosine similarity retrieving threshold to

0.25. The next section demonstrates how to deconstruct the retrieved results and

mine the knowledge structures.

We further mapped the 92,286 records to Open Academic Graph (OAG) and

retrieved 89,951 records with the field of study (FoS) information. The FoS is

essentially constituted by Wikipedia entities assigned to scholarly papers via a Näıve

Bayes-based tagging process (Shen et al., 2018). OAG originates from Microsoft

academic graph (MAG) and currently covers more than 240 million publications.

Compared to scientific terms extracted from titles and abstracts the FoS system

adopts Wikipedia entity entries as the topics of each paper, which we consider

more suitable for representing established knowledge foundations. To efficiently

understand and visualise the knowledge in the search results, we constructed the

FoS co-occurrence network of the 89,951 records and ran our HTT algorithm over

it. The detail of the constructed network is given in Table 6.6.

We trimmed this HTT to retain the main body of knowledge. This is presented in

Figure 6.21, yielding a hierarchical overview of the search results. Immunology is the

9The knowledge modelling process is introduced in (Wu et al., 2023)
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Table 6.6 : The characteristics of the FoS network

Number
Weight

Max Min Avg. Std.

Node 27,596 39,542 1 3.459 44.336

Edge 922,252 18,737 1 28,1358 427.105

Average degree 66.840

Figure 6.21 : The hierarchical knowledge landscape of retrieved results

root topic of this HTT, indicating that vaccination studies are mainly constructed

based on immunology knowledge. The presented topics are primarily highlighted as

discipline-level topics (green font) and entity-level topics (red font). By comparing

and contrasting the historical records (regarded as the knowledge foundations) with

the latest research evidence, we drew insights on four essential topics: Monoclonal

antibodies, Antigenic drift, Diabetes, and Allergic sensitisation.

Then we validated our empirical results with literature-based evidence and dived
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into the historical papers and the newest COVID-19 research articles related to the

four topics. The knowledge connections we identified from the papers are presented

as follows:

• Monoclonal antibodies: This topic is positioned in the branch of molecular

biology – biochemistry. Diving into this topic, we can trace many historical

studies on developing monoclonal antibodies as a treatment for existing human

and animal coronaviruses, including severe acute respiratory syndrome (SARS)

coronavirus (Traggiai et al., 2004; Zhu et al., 2007) and bovine coronaviruses

(Deregt and Babiuk, 1987; Mockett et al., 1984). Such studies can provide in-

structive research clues for developing novel monoclonal antibody treatments

for COVID-19. With the approval of multiple monoclonal antibody treatments

for COVID-19, more efforts will predictably be put into finding efficient meth-

ods of extracting and producing such monoclonal antibodies (Taylor et al.,

2021).

• Antigenic drift: This topic exists in the virus branch, describing a natural phe-

nomenon of antigen genetic mutations that also happens in the SARS-CoV-2

virus (Yuan et al., 2021). Medical experts can trace historical studies of in-

fluenza viruses (Pica et al., 2012; Yu et al., 2008) and other possibly related

viruses (Coulson et al., 1985) in search results to infer and analyse the im-

pacts of antigenic drift on vaccination implementations. The effectiveness and

immune durability of various SARS-CoV-2 variants (including the Omicron

subtype that is currently circulating) may need deeper exploration (Coulson

et al., 1985; Koyama et al., 2020).

• Diabetes: Located in the endocrinology branch, this topic consists of histori-

cal papers clarifying the autoimmune-mediated beta-cell damage mechanisms

(Van Belle et al., 2011), significant autoantigens (Wenzlau et al., 2007), and
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different subtypes of type 1 diabetes (Imagawa et al., 2000; Stenstrom et al.,

2005). Recent studies report that two types of diabetes are associated with

higher odds of COVID-19 hospital deaths (Barron et al., 2020; Holman et al.,

2020), and SARS-CoV-2 infection possibly induces adverse effects on beta-

cells (Apicella et al., 2020; Bornstein et al., 2020; Lim et al., 2021; Marchand

et al., 2020). Consequently, vaccination in diabetic patients has become a

trending topic among vaccination studies. On the one hand, many researchers

have called for prioritising vaccination in diabetic patients as they are more

vulnerable to COVID-19 (Pal et al., 2021; Powers et al., 2021). On the other

hand, associating the knowledge from our search results with COVID vaccina-

tions (especially for Type 1 diabetes) is worth deeper exploration because the

current evidence is still limited (Boddu et al., 2020; Marchand et al., 2020).

• Allergic sensitisation: Historical studies on this topic comprehensively discuss

the reactivity of immunoglobulin E in allergic reactions (Aalberse et al., 2001;

Eibensteiner et al., 2000; Jenmalm et al., 2001), which can provide instructive

insights for COVID-19 vaccination allergy studies (Cabanillas et al., 2020;

Kounis et al., 2021).

6.6.5 Case summary

COVID-19 has brought about a global public health pandemic and an over-

whelming flood of research knowledge. Aiming to efficiently discover and use the

knowledge contained in the massive body of COVID-19 scientific studies, we devised

a research framework that: 1) profiles the COVID-19 knowledge landscape and re-

search topics at both the flat and hierarchical levels; 2) retrieves the foundations

of knowledge related to specific topics; and 3) visualises the retrieved knowledge to

support knowledge understanding and discovery. We anticipate that this research

methodology and our key findings will support a) scientific researchers to quickly
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absorb new knowledge and identify their future study directions and b) research

policymakers to make informed decisions about research funding allocations.

We exploited PCD and HTT analysis to profile the COVID-19 research land-

scape. The PCD results highlight 35 research hotspots and multiple research em-

phases over different periods. The changing trends in PCD topic rankings indicate

that early COVID-19 studies focus on uncovering the clinical and epidemiology

characteristics of COVID-19, while the subsequent studies throw more light on the

societal impacts of the pandemic. Intriguingly, the change in PCD topic vaccination

papers reflects two waves of vaccination studies – the first appearing at the start

of the COVID outbreak and the second after the rollout of multiple available vac-

cines. The HTT results consistently reveal clinical and public health studies as two

significant branches of research in this domain. Complementarily, the HTT results

generate more detailed insights on 1) the clinically investigated factors associated

with COVID-19 mortality/severity and effective treatments; and 2) six segments of

public health concern: government, prevention, SARS-CoV-2 transmission, crisis,

lockdown, and vaccination.

We ran our HTT algorithm over the search results from the knowledge model to

reveal the hierarchies of topics. At the top levels of the HTT, we identified multiple

significant medical disciplines, including immunology, molecular biology, virology,

and so on. In addition to these disciplines, we uncovered four directions worthy of

more attention in future vaccination-related studies. These are 1) monoclonal anti-

body treatments, 2) vaccination priority and immune responses in diabetic patients,

3) the effectiveness and durability of vaccines on various SARS-CoV-2 mutations,

and 4) vaccination allergies.

There are three methodological contributions of this case study worth high-

lighting. Initially, incorporating PCD topic analysis and knowledge model searches
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provides an effective topic-based mode of knowledge retrieval. This approach first

clusters research papers into research topics. Then it searches the entire PubMed

dataset for the foundational knowledge on the target topic, generating a more nar-

rowed, focused, and accurate search scope in knowledge retrieval. Additionally, our

HTT results allow researchers to visualise and understand thousands of papers effi-

ciently. The HTT can help researchers quickly clarify complex knowledge structures

and identify intriguing topics by highlighting the topologically significant terms in

the co-occurrence network. Last but not least, our research framework provides

a paradigm for research profiling and knowledge retrieval. This methodology is

adaptable to various cases and can be transferred with little cost.

From the practical perspective, this chapter profiles the knowledge landscape

of COVID-19 studies both in flat (PCD) and hierarchical (HTT) manners, yielding

hotspots for researchers to follow. Furthermore, the insights offered in the case study

identify four intriguing vaccination-related research directions. Such insights can:

1) inspire medical researchers to conduct future studies with enriched knowledge

foundations and 2) assist scientific policymakers in making informed decisions about

research funding allocations.
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Chapter 7

Conclusion and Further Study

This chapter concludes the thesis and presents further directions for relevant research

trajectories.

7.1 Conclusion

The main contributions of this thesis are as follows:

i. It develops a heterogeneous bioentity analysis methodology (to achieve

Objective 1) for knowledge association analysis and prediction in

Chapter 3.

The heterogeneous bioentity analysis methodology (HBAM) develops a sys-

tematic work pipeline for processing biomedical literature data, sorting het-

erogeneous bioentities and predicting bioentity associations. It incorporates a

heterogeneous entity network construction procedure, a non-dominated sort-

ing genetic algorithm-based scoring scheme, a bioentity2vec training model

and a semantics-enhanced link prediction method to rank bioentity impor-

tance/specificity and predict unobserved emerging entity associations. A case

study of atrial fibrillation reveals critical disease, gene and genetic variation

bioentities associated with this disease; Further predictions uncover potential

genes and genetic factors that are worth further investigation with empirical

evidence. The main contributions of this work include 1) a cohesive methodol-

ogy based on a combination of centrality and intersection ratio measurements

for identifying diseases, chemicals, genes, and genetic variants core to dis-
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ease; 2) a semantic similarity-enhanced link prediction algorithm for generat-

ing more accurate predictions of the possible associations between bioentities;

3) an adaptable and transferable framework for general use in genetic factor

analysis and prediction.

ii. It develops an adaptive hierarchical topic tree model - HTT I (to

achieve Objective 2) for knowledge hierarchy extraction in Chapter

4.

Hierarchy is an innate characteristic of scientific knowledge. The automatic

construction of knowledge hierarchy from scientific textual data can support

domain professionals and newcomers in developing an in-depth understanding

of fine-grained knowledge components and benefit many downstream appli-

cations, including document recommendation and text classification. With

the input of a term co-occurrence network from scientific literature data, the

HTT-I model provides a feasible and handy approach for topic hierarchies ex-

traction. It exploits the idea of density peak clustering to identify term nodes

with high density and relatively long distances from other high-density nodes

as community centroids. Then an overlapping community allocation algorithm

applies to partition the rest nodes to affiliate the identified centroids. The pro-

cess iterates until no density peak nodes can be found. The values of three

evaluation indicators on the HTT-I model demonstrate that it can generate

consistent topics and solid parent-child topic associations with reasonable in-

formation loss. The empirical studies on computer science topics profiling, AI

ethic issues mining and digital transformation conceptualisation validate the

model’s practical effectiveness and generate fruitful research insights into the

three research case themes.

iii. It develops a non-parametric hierarchical topic extraction model -
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HTT II (to achieve Objective 2) and provides a more adaptive way

to fit different real-world inputs in Chapter 5.

In Chapter 5, we proposed a refined version of the HTT-II model to improve

adaptability and fit a broader range of network inputs with different degrees of

clustering tendency. Still using the term co-occurrence network as the input,

the HTT-II model adopts k-shell decomposition and the Louvain algorithm

to partition parent and child layers of terms and terms belonging to different

topics. Compared with the HTT-I model, the HTT-II model is parameter-free

and embraces a different design to partition terms into parent and child topics.

This design can better retain coupling knowledge and differentiate terms in

parent and child topics. The results from the comparison experiment demon-

strate that the HTT-II model can generate consistent topics, solid parent-child

topic associations and exclusive sibling topics. The empirical study on informa-

tion sciences topics profiling validates the new model’s practical effectiveness

and highlights five significant research directions in this discipline.

iv. It constructs an intelligent bibliometric system and GUI (to achieve

Objective 3) to integrate the proposed methods and empower future

case studies in Chapter 6.

Despite the proposed methodologies, it remains a challenge for non-technical

background users to access the functions and leverage the value of scientific

literature data. In Chapter 6, we developed a Python-based GUI that enables

users to approach the proposed functions and perform systematic data anal-

ysis of scientific literature data. Moreover, we presented two case studies on

COVID-19 literature datasets to 1) highlight core bioentities investigated in

COVID-19 research, 2) profile COVID-19 research hot spots and segmented

research directions, and 3) uncover the knowledge foundation for COVID-19
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vaccination studies.

7.2 Social and Industry Implications

Notwithstanding the technical contributions, this thesis encompasses practical

implications for both society and pertinent industry sectors. Firstly, the developed

HBAM presents an adaptive methodological framework that enables researchers to

mine entity associations and predict latent gene-disease links. This functionality can

be of immense assistance to: 1) biomedical researchers in prioritising candidate genes

for diseases, particularly rare diseases and those with unclear genetic mechanisms;

and 2) clinicians in devising targeted diagnostic and therapeutic approaches.

Secondly, the developed Hierarchical Topic Tree (HTT) models, namely HTT I

and HTT II, offer flexible topic hierarchy profiling methods from various perspec-

tives. These models can be advantageous for the academic community by quanti-

tatively capturing the research landscape and identifying cutting-edge areas. More-

over, they can facilitate librarians in rapidly comprehending the hierarchical topic

profiles of document collections, thereby facilitating document classification.

Lastly, the entire thesis wraps up with the integration of an accessible software

called BiblioEngine, which consolidates all the developed functions. The implemen-

tation of this system will significantly aid users without a technical background

in accessing these functions and leveraging them within their respective industry

sectors. Consequently, it will furnish knowledge associations and hierarchical intel-

ligence, enabling them to gain a better understanding of their domains and attain

competitive advantages.

7.3 Further Study

This thesis also has several limitations for investigation in future studies.

Regarding the HBAM, there are three directions we are heading to improve. The
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first comes from a technical standpoint. We emphasised the need to identify strong

associations by adopting co-occurrence analysis. However, this process inevitably

retrieves negative associations along with the positives because it does not recognise

the causalities between entities. Embedding SAO triples could be a challenging but

significant task in this area. We have conducted certain pilot studies on this trail

(Zhang et al., 2021c) by incorporating word embedding techniques with SAO triples.

It is foreseeable to enhance its capabilities in identifying the causalities of entities.

Second, due to the lack of available rules for entity extraction, we dealt with disease

entities at the granularity defined in MeSH and did not further classify disease

entities into other subtypes. Yet, in the context of biomedical entity inference,

the molecular mechanisms that underpin the different types of atrial fibrillation are

pretty diverse. A rule-based filter could overcome this problem, which is also on

our agenda. From a biomedical standpoint, there is also an issue with selecting

the core entities using inference. Guilt-by-association is a prevalent hypothesis for

establishing genetic associations for diseases. Thus, we instinctively filtered out the

neighbours of the core entities to narrow down the model input, but it did not

contribute significantly to our recall performance. Despite this limitation, however,

we believe that emphasising the core genetic factors for link prediction is still a

promising approach for improving performance.

We also plan a few improvements for future HTT models. First, HTT analy-

sis is a method that reflects the knowledge component of a field. Yet, it does not

generate the developing trending of topics along with time, which might be more

significant and intriguing to scientists. Topic composition and hierarchies are con-

stantly changing; Hence, we intend to build a variant of HTT that considers the

temporal relationship between topics and how those research topics evolve. Sec-

ond, HTT only focuses on textual data, exploiting the semantic relationships in

the research literature. However, this may overlook more available data patterns,
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such as author collaborations, venue associations, co-citations, and citation cou-

pling. These heterogeneous data sources have the potential to help HTT yield more

accurate and explainable topic hierarchy results. In subsequent studies, we antic-

ipate embedding more external information like author collaborations, publication

types, and geographical locations to build a more sophisticated hierarchical topic

model that incorporates external features. Last, the hard partition of communi-

ties will inevitably result in coupled terms in different research topics. To generate

more comprehendible and informative hierarchical topic results, we plan to equip

the HTT-II model with overlapping community detection approaches and enable it

with the capability of revealing topic overlaps.



178

Bibliography

Aalberse, R. C., Akkerdaas, J. & Van Ree, R., 2001, ‘Cross-reactivity of ige

antibodies to allergens’, Allergy, vol. 56, no. 6, pp. 478–490.
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Lü, L., Jin, C.-H. & Zhou, T., 2009, ‘Similarity index based on local paths for link

prediction of complex networks’, Physical Review E, vol. 80, no. 4, p. 046122.
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Pierce, J. B., Simion, V., Icli, B., Pérez-Cremades, D., Cheng, H. S. & Feinberg,

M. W., 2020, ‘Computational analysis of targeting sars-cov-2, viral entry

proteins ace2 and tmprss2, and interferon genes by host micrornas’, Genes,

vol. 11, no. 11, p. 1354.
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