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ABSTRACT

Antenna arrays play a significant role in many aspects of our lives, including wireless

mobile communications, sensing, radio astronomy, etc. Researchers worldwide have

developed many array pattern synthesis methods over the past decades. Most of them

optimize both the excitation amplitudes and phases to achieve better performances, con-

sequently increasing the complexity and cost of the beamforming networks. To facilitate

simplified feeding networks, this dissertation presents several novel array synthesis

methods that can be categorized into two parts.

The first part develops an antenna rotation technique. The rotation of an antenna

can be regarded as approximated amplitude weighting to its co- and cross-polarized

components. By properly rotating antennas in an array, favorable radiation patterns

can be achieved. Specifically, a novel approach to synthesizing sum-and-difference pat-

terns by rotating dipole antennas and adjusting their positions with linear arrays is

first presented. Then the element rotation technique is extended to synthesize shaped

patterns for linear and planar arrays considering mutual coupling. After that, the el-

ement rotation technique is further extended to deal with cylindrical conformal array

synthesis. These approaches replace the traditional excitation amplitude weighting with

the rotation of antennas for array synthesis, which significantly reduces the complexity

and cost of the beamforming networks.

The second part of this dissertation focuses on multi-beam array synthesis. As a

key technology for the fifth-generation (5G) wireless communication networks, multi-
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beam antennas have drawn increased attention recently. A phase-only method based

on a partitioned iterative Fourier transform (PIFT) method is presented to efficiently

synthesize multi-beam patterns for uniformly spaced phased arrays. To achieve accurate

beam control, the PIFT integrates a partitioned beam calibration strategy to calibrate

the multi-beams individually without affecting each other. Additionally, multi-beam

synthesis by utilizing the generalized joined coupler matrix (GJC) is presented. The GJC

matrix is a recently developed matrix that can generate independently and individually

scannable multi-beams using low-power-consumption and cost-effective analogue feeding

networks. However, similar to other matrices, the lower beams will significantly distort

and even split when they approach an upper beam. In this dissertation, an effective

strategy of using reconfigurable directional couplers is adopted to address the beam

splitting and to achieve continuously scannable multi-beams with a flexible synchronized

optimization strategy.

Since modern wireless communication systems are evolving to be high-integration

and low-cost ones, it is believed that the developed techniques could be highly attractive

for numerous applications in both current and future terrestrial and non-terrestrial

wireless communications.
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1
INTRODUCTION

A
s the primary devices for transmitting and receiving electromagnetic waves,

antennas are ubiquitous in our daily life. They utilize their structures to con-

vert alternating current (AC) signals or guided waves on the transmission line

into electromagnetic waves propagating in space, and vice versa [1]. A single antenna

element (except for some special antennas like the lens antenna and the reflector an-

tenna) often has limitations, such as low gain and high sidelobe level (SLL). In many

wireless applications, however, high directivity or gain and flexible beam scanning ability

are necessary. In such situations, a single antenna element is no longer suitable, and

antenna arrays become imperative.

An antenna array is a system consisting of at least two antenna elements arranged

in a specific configuration. Element antennas in the array operate based on the principle

of interference superposition of the electromagnetic waves. Appropriate excitations

can be fed to the antenna elements to obtain desired radiation characteristics for the

array. In comparison to a single antenna element, an array pattern can be modulated

through proper synthesis techniques that determine the excitations or positions for array
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CHAPTER 1. INTRODUCTION

elements in order to have particular pattern characteristics for target applications. Array

antennas have found many significant applications in mobile communications, radio,

and television, navigation, radio astronomy, etc. They offer many advantages, including

not only high gain and low SLL, but also complicated pattern modulations like beam

steering, anti-interference nulling, multibeam, and beam shaping [2, 3].

1.1 Motivation and Scope

The development of modern terrestrial and non-terrestrial wireless communication

networks has brought increasing demand on both array pattern performance as well

as antenna array system itself. In terms of the array pattern performance, relatively

low SLL is generally required to minimize the influence of noises and interferences from

the environment. Besides, particular main lobe shapes like flattop and cosecant-squared

shaped patterns with gentle ripples, sum-and-different patterns with steep slopes for the

difference pattern, and multi-beam patterns are needed in many applications, including

base stations for cellular communications networks, satellite communication, sensing,

and imaging systems.

To meet those demands, many methods were developed in the past decades [4–18].

Most of them optimized both excitation amplitudes and phases in order to obtain good

main lobe shapes and relatively low SLLs. As a result, the yielded excitation amplitudes

generally had a relatively large dynamic range ratio. Although the dynamic range ratio

can be reduced by employing some effective methods, nonuniform power dividers are still

required in the beamforming network. As a consequence, it will not only increase the

complexity of the beamforming network design but also increase the cost for the whole

antenna array system.

Element rotations can serve as an available degree of freedom that can be exploited in

the array pattern synthesis. Several studies have been presented in the past decade for

2
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pattern synthesis by using the element rotation technique [19–24]. They have achieved

outstanding array pattern performances. However, they only considered focused-beam

patterns, and most of them did not consider mutual coupling as well as realistic antenna

structure. In order to meet the above-mentioned demands, in the dissertation, the

element rotation technique is first exploited to synthesize shaped-beam and sum-and-

difference patterns. By replacing the excitation amplitude weighting with the rotation

of antenna elements, it is shown that almost equivalent pattern performances can be

achieved with much-simplified feeding networks by casting off many unequal power

dividers.

Another topic that will be studied in this dissertation is the multi-beam antenna

array (MBAA) design with simplified and cost-effective feeding networks. The MBAA

is able to generate a number of independent directive beams to cover multiple angular

ranges. It has significant applications in modern terrestrial and non-terrestrial wireless

communication networks such as the fifth-generation (5G), point-to-multipoint (PTMP)

data transmission and broadcasting, satellite communication, and sensing [25]. Espe-

cially in 5G wireless communications, MBAA is the key infrastructure to achieve the

required independent beamforming that boosts the 5G [26].

Specifically, there are two kinds of multi-beams. One is to generate a radiation

pattern with multiple simultaneous focused beams employing one set of excitations.

The other is to generate multiple patterns with multiple sets of excitations, each of

which affording one focused-beam pattern. Both of these two types of multi-beams are

considered in this dissertation. For the former one, a fast phase-only synthesis method

based on a partitioned iterative Fourier transform (PIFT) is presented to obtain multi-

beam patterns with accurate beam directions. For the latter one, the beam splitting

issue when dual or multiple beams are overlapping for the generalized joined coupler

(GJC) matrix is first investigated, and a synchronized optimization strategy employing
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reconfigurable directional couplers is presented to address the issue and to obtain

continuously scannable multi-beam patterns with reduced SLLs.

In summary, this dissertation focuses on the following several main topics:

• 1. Sum and difference patterns synthesis for linear dipole arrays by optimizing

element rotations and positions;

• 2. Shaped power pattern synthesis for linear and planar arrays considering mutual

coupling with a refined joint rotation and phase optimization method;

• 3. Shape power pattern synthesis for cylindrical conformal arrays considering

mutual coupling by a refined element rotation and phase optimization method;

• 4. Efficient and accurate phase-only multi-beam pattern synthesis for linear arrays

based on the PIFT.

• 5. Optimization of the GJC matrix to achieve continuously scannable multi-beams

with reduced SLLs.

1.2 Statement of Contributions

This dissertation presents several novel techniques to synthesize desired patterns with

simplified and cost-effective feeding networks. Particularly, key contributions of this

dissertation include exploiting the rotations of antenna elements to synthesize desired

array patterns like sum-and-difference patterns and shaped patterns. Contributions also

include synthesizing accurate multi-beam patterns employing the PIFT and optimization

of the GJC matrix to achieve continuous multibeam steering. Detailed contributions are

outlined below:

The first contribution is to present a sum and difference patterns synthesis method

by employing the element rotation technique. The particle swarm optimization (PSO)

4
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method is used to optimize the antenna rotation angles and positions of linear dipole

arrays to yield sum and difference patterns. Besides, reduced SLL and constrained

cross-polarization level (XPL) can be achieved. Moreover, the difference pattern slope

is also optimized to be as steep slope as possible. It can result in sum-and-difference

patterns arrays with sparsely distributed elements of uniform amplitude, thereby saving

many unequal power dividers and antenna elements. It is shown that the synthesized

arrays are able to radiate favorable sum and difference patterns meanwhile saving

34.69%-42.27% antenna elements comparing to half-wavelength-spaced arrays.

The second contribution is to present a refined element rotation and excitation phase

optimization method to synthesize shaped power patterns for linear and planar antenna

arrays considering mutual coupling. Vectorial active element patterns (VAEPs) are

used, and the rotation of an element is approximately described by mathematically

rotating its VAEP under the assumption that the mutual coupling from nearby elements

remains unchanged during the rotation. Then the element-rotated array pattern can

be approximately obtained by weighted summation of all the rotated VAEPs. Optimal

element rotations and phases can be found by solving a vectorial shaped pattern synthesis

problem such that desired shaped pattern with constrained SLL and XPL can be obtained.

However, owing to the mutual coupling change, the synthesized pattern may deviate

much from the real one. To improve the accuracy, several steps of successive refined

joint element rotation/phase optimizations are conducted. The allowable rotation angle

range is set smaller and smaller as the refining steps increases to improve the accuracy.

Such a shaped power pattern synthesis technique does not need nonuniform amplitude

weighting, thus saving many unequal power dividers. Examples of synthesizing shaped-

beam linear and planar arrays with different antenna structures as well as pattern shape

requirements are provided. Full-wave simulations and measurements are conducted to

validate the synthesized results.
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The third contribution is to extend the element rotation method to the shaped pattern

synthesis for cylindrical conformal arrays. The pattern of an antenna element rotated on

a curved surface is approximately described by mathematically rotating the VAEP of this

element when without rotation. Coordinate transformation and scattered interpolation

are employed to express all the rotated VAEPs at a unified angle sampling grid in a

common global coordinate system (GCS), and then, the approximated array pattern

can be calculated by summing the interpolated rotated VAEPs at the same sampling

grid. Optimal element rotations and phases affording desired shaped pattern with

controlled SLL and XPL can be found by using the PSO with the approximated array

pattern expression. After that, a refined strategy is adopted to successively improve the

accuracy of the synthesized pattern. The developed method can obtain shaped patterns

for cylindrical conformal arrays by optimizing element rotations and phases only, and no

amplitude weighting is required, thus saving many unequal power dividers. Three typical

shaped patterns are synthesized for cylindrical arrays. A prototype of a cylindrical array

with 24 rotated U-slot loaded patch antennas is fabricated and measured for validation.

The fourth contribution is to present a novel phase-only method based on the PIFT

to efficiently synthesize radiation patterns with dual or multiple concurrent focused

beams for uniformly spaced linear arrays. To achieve accurate main lobe peak directions,

the PIFT integrates a partitioned beam calibration strategy into the iterative Fourier

transform (IFT) to iteratively calibrate the beams by partitioning the multi-beam pattern

into multiple single-beam patterns and calibrating them individually. In addition, the

main lobes as well as the sidelobes of the multi-beam patterns are iteratively modified

to achieve desired peak gains and relatively low SLLs. Several examples are presented

to demonstrate the effectiveness and efficiency of the developed method. Comparisons

to the convention IFT and other phase-only methods are presented for comprehensive

evaluation of the proposed method. Mutual coupling can also approximately considered,
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and full-wave simulations have demonstrated the validity of the PIFT method.

The fifth contribution is to present a novel synchronized optimization strategy for

the design of the GJC matrix to achieve continuous multibeam steering with reduced

SLLs. The beam distortion and splitting problem when multi-beams overlap for the

GJC matrix is thoroughly investigated for the first time. An effective strategy of using

reconfigurable directional couplers is adopted to address this issue and to achieve

continuously scannable multi-beams. To this end, a flexible synchronized optimization

strategy that can consider multiple cases where multi-beams can have different scanning

angles is developed. In addition to the capability of addressing the beam splitting issue,

consistent SLLs during scanning can also be achieved by using the developed method.

Numerical results are provided to demonstrate the effectiveness of the developed method.

Besides, comparison between the GJC matrix with a classical Blass matrix design method

is presented.

Since a simple and cost-effective feeding system is key to the current and future

terrestrial and non-terrestrial wireless communication networks, it is believed that the

developed techniques in this dissertation can find a wide range of applications.

1.3 Organization of the Thesis

The structure of this dissertation is organized as follows:

In Chapter 2, relevant background and state-of-the-art works are reviewed.

In Chapter 3, a sum and difference pattern synthesis method which employs the

element rotation technique is presented.

Chapter 4 presents a shaped pattern synthesis method based on element rotation

and excitation phase optimization for linear and planar arrays.

In Chapter 5, the element rotation technique is extended to deal with shaped pattern

synthesis for cylindrical conformal arrays.

7
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Chapter 6 presents an accurate and efficient PIFT-based phase-only multi-beam

pattern synthesis method.

In Chapter 7, the GJC matrix is optimized to yield continuously scannable multi-beam

patterns by addressing the beam splitting issue.

Chapter 8 draws the conclusion.
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2
BACKGROUND AND STATE-OF-THE-ART

In this chapter, the backgrounds of the antenna array are discussed in the beginning.

Then, detailed state-of-the-art works relevant to the array synthesis methods presented

in this dissertation are reviewed to learn the backgrounds and the motivation of this

dissertation.

2.1 Antenna Arrays and Their Far-Field Radiation

Patterns

An antenna array is defined as a system of at least two antennas arranged in a specific

layout [2]. Antenna elements in the array work together based on the principle of elec-

tromagnetic wave interference and superposition. According to the element distribution

in the array, antenna arrays can be categorized into three types: linear array, planar

array, and conformal array. Fig. 2.1 shows schematic diagrams of uniformly spaced linear,

planar, and cylindrical conformal arrays. As can be seen, the elements (denoted by black

dots) in the linear array are placed along a line, while those in the planar array are
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(a)

(b) (c)
Figure 2.1: The schematic diagram of uniformly spaced (a) linear array, (b) planar array,
and (c) conformal array.

placed on a plane. Particularly, in some applications, antenna elements are required to

be tightly integrated onto curved surfaces such that the carriers can save much space

or preserve their aerodynamic as well as hydrodynamic properties. Thus, conformal

arrays are usually employed in these applications. According to the shape of the carrier,

conformal arrays can be divided into spherical array, cylindrical array, conical array, etc.

Fig. 2.1(c) shows the schematic diagram of a cylindrical conformal array.

Though having different element distributions, their array patterns can be expressed

as a uniform equation. Generally, for an arbitrary antenna array, one can write the

far-field pattern as [2]:

F(w;θ,φ)=
N−1∑
n=0

wnEn(θ,φ)e jβ⃗rn ·⃗u (2.1)

where j = p−1 is the imaginary unit, β = 2π/λ is the propagation constant, with λ
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being the wavelength in free space. En(θ,φ) and r⃗n = [xn, yn, zn] are the element pattern

and position of the nth element. u⃗ = [sinθ cosφ,sinθsinφ,cosθ] is the propagation direc-

tion vector. w = [w0,w1, ...,wN−1]T is the complex excitation vector, where [·]T denotes

transpose of a matrix.

Traditional array synthesis is to find proper excitation vector w and/or element

positions r⃗n to obtain desired pattern performance in terms of main lobe shape, side

lobe level (SLL), and null for anti-interference, etc. In the past many years, a great

many array synthesis methods have been developed. In the following, the state-of-the-art

works associated with the contents that will be presented in this dissertation will be

briefly reviewed.

2.2 State-of-the-Art

2.2.1 Sum-and-Difference Patterns Synthesis

Owing to the high demand in target tracking and positioning, antenna arrays radiating

sum-and-difference patterns have received much attention in the past decades. The sum

pattern, also known as the focused-beam pattern, has a peak in the target direction,

whilst the difference pattern has a null therein. Together they play a very important

role in detecting and tracking the potential target in wireless communications and

monopulse radar systems [27]. The sum-and-difference patterns generally need to have

high directivity for the sum pattern, a steep slope for the difference pattern, and low

SLLs for both patterns in order to achieve high positioning and tracking accuracy.

A lot of advanced techniques and methods were developed for obtaining sum-and-

difference patterns in the past several decades [28–34]. If the complexity and cost of a

beam forming network (BFN) are affordable to the target application, classical methods

like the Dolph-Chebyshev [28], the Bayliss approach [29], as well as some other methods

11
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[30] that employ independent excitations will be adequate.

However, to result in a simplified BFN and reduce the system cost, compromised

schemes to avoid two completely independent sets of excitations are preferred. In [31], a

typical and common BFN known as two-section BFN shared by the sum and difference

radiation modes is employed, and sum-and-difference patterns were synthesized by

optimizing the excitation amplitudes. To achieve a sum pattern, one can apply identical

phases to the two halves of the array. Similarly, a difference pattern can be obtained by

feeding the two halves of the array with anti-phases. However, the sum-and-difference

patterns produced by the two-section BFN have limited performance because only half of

the excitation amplitudes can be optimized.

To improve the sum-and-difference patterns performance based on the two-section

BFN, some researchers chose to additionally optimize the excitation phases and/or

element positions along with the excitation amplitudes, such as those in [32, 33]. By

doing so, they have achieved excellent performance, including steep slopes and relatively

low SLLs. Besides, instead of sharing a common BFN, Morabito et al. chose to share

only a part of excitation amplitudes between sum-and-difference modes to release more

degrees of synthesis freedom [34], as shown in Fig. 2.2.

Another effective and widely-used approach to avoid two independent BFNs is using a

subarray-based strategy. In such a strategy, the element excitations affording a required

sum pattern are obtained at first (generally using either the Taylor or Dolph-Chebyshev

approach). After that, the array is subdivided into a number of subarrays, and eventually,

the difference pattern can be obtained by optimizing additional weights for the subarray

outputs [35–39]. Based on the subarray-based strategy, the contiguous partition methods

(CPM) in [35] and [36] and some stochastic optimization algorithms in [37–39] have been

successfully employed to yield sum-and-difference patterns.

Despite their outstanding performance, most of the existing methods chose to opti-
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Figure 2.2: Array with partially switchable excitations for sum-and-difference modes
[34]. I denotes element excitation in the figure.

mize the excitation amplitudes to acquire desired performance, such as low SLL and

large slope. Consequently, they need multiple unequal dividers that lead to relatively

complicated BFNs. To avoid nonuniform excitation amplitudes, a few methods have

been presented for synthesizing a sum or difference pattern by using phase-only or joint

phase and position optimization [40, 41]. However, these methods synthesize sum-and-

difference patterns individually, which means that the BFNs for both of the patterns

would not be shared [40, 41].

Simultaneously achieving good pattern performance and a simplified BFN has re-

mained a challenge when aiming to achieve sum-and-difference patterns.

2.2.2 Shaped Power Pattern Synthesis for Linear and Planar

Arrays

In applications such as satellite communications, sensing, and imaging systems, it is

often necessary for the main lobes of antenna array radiation patterns to exhibit specific

shapes, such as flat-top or cosecant-squared shapes, in order to achieve the desired

spatial coverage with the desired power distribution. This requirement leads to the

need for shaped-beam radiation patterns in these applications. Over the past decades,

13
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numerous advanced methods have been developed to synthesize shaped patterns in

antenna arrays. Owing to the fact that shaping an array pattern is quite a complicated

process, most of the literature chose amplitude as one of the optimization variables.

The most classical methods of synthesizing shaped patterns are the Taylor and

Woodward-Lawson methods [11, 12]. In the Taylor method, the distribution of a pencil

beam with low SLL is obtained by using the Taylor method first. Then let the beams scan

to the direction where the shaped region locates such that the sum of the scanned pattern

will have a main lobe like a shape pattern. The angle values and the element weights

can be determined, and by counting the shaped-beam pattern distribution with the new

array factor function, the desired shaped pattern can be obtained [11]. Two patterns

synthesized in [11], including a flat-top shaped and a cosecant-squared shaped pattern,

are given in Fig. 2.3 of this thesis. As can be seen, the pattern performance in terms of the

ripple and the SLL is outstanding. The corresponding excitation amplitudes and phases

are also included in Fig. 2.3. The Woodward-Lawson method is also an analytical method

that optimizes the excitation amplitudes and phases to synthesize shaped patterns for

line source array or discrete element array [12]. However, these two methods deal with

uniformly spaced arrays only. Moreover, they are unable to take the mutual coupling and

practical antenna structures into consideration.

In addition, a number of other methods, like the alternating projection methods [13,

14], iterative fast Fourier transform (FFT) and its variants [16, 42], convex optimization

techniques [6, 43], semi-definite relaxation methods [18, 44], and stochastic optimization

algorithms [45–49] are also good candidates for the shaped pattern synthesis. They

generally can deal with nonuniformly distributed arrays with mutual coupling considered.

Shaped patterns with excellent performance were obtained with these methods.

However, due to the intricate nature of shaped pattern synthesis compared to focused-

beam pattern synthesis, most existing methods have opted to optimize both excitation
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(a) (b)

(c) (d)
Figure 2.3: The flat-top and cosecant-squared patterns and their excitations obtained in
[11] for a linear array of 20 elements. (a) flattop shaped pattern and (b) cosecant-squared
shaped pattern, and their excitations (c) and (d), respectively.

amplitudes and phases to achieve precise control over the main lobe shape and SLL.

Consequently, the resulting shaped-beam pattern array typically requires a complex

feeding network to implement nonuniform element amplitudes, often with a large dy-

namic range ratio. The design of multiple unequal power dividers becomes necessary,

requiring careful attention and leading to increased weight and system cost.

To circumvent the use of unequal power dividers, several methods have been proposed

to achieve shaped beam patterns through phase-only optimization, such as those in

[41, 50–52]. Owing to the limited degrees of freedom, however, the obtained overall

performance in terms of main lobe shape accuracy, transition width, and SLL is usually

considerably worse than those obtained with full control of both the excitation amplitudes

and phases. As can be seen in Fig. 2.4(a) and (b), which were obtained with phase-only
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(a) (b)
Figure 2.4: The flat-top patterns obtained by phased-only methods in [41] and [52],
respectively. (a) shows the pattern obtained in [41] with a 5λ-long line source and (b) is
obtained in [52] for a linear array of 32 elements.

methods in [41] and [52], the SLLs are much higher than those obtained in the amplitude

optimization method. The insufficient optimization degrees of freedom resulting from

using excitation phase as the sole variable contribute to this disparity. In [53], element

positions along with the excitation phases were optimized to improve the performance of

the shaped pattern synthesis.

Further research is highly desired to synthesize shaped patterns with reduced SLLs

while using uniform excitation amplitudes to simplify the feeding network.

2.2.3 Shaped Pattern Synthesis for Conformal Arrays

Conformal arrays are those required to be tightly integrated onto curved surfaces such

that the carriers can save much space and preserve their aerodynamic and hydrody-

namic properties. Shaped pattern synthesis for conformal arrays has been receiving

considerable attention for their significant applications in space navigation and wireless

communications. Synthesizing shaped power patterns for conformal arrays is more com-

plicated than that for linear and planar arrays since elements in conformal arrays orient

in different directions, and the array factor is no longer independent of the element radi-

ation pattern. Despite its complexity, many techniques have been proposed to synthesize
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shaped patterns for conformal array due to the high demands [54–57].

In [54], a modified least-squares optimization method was introduced. This method

involved choosing the phases of non-zero values and non-zero constraint values through

a rapid iteration process to achieve an optimal fit to the goal function amplitude. Such

modification makes the least-squares optimization method a robust and fast synthesis

method for large conformal arrays. In [55], an iterative linear programming method

was proposed to synthesize patterns for an arbitrary array. As an example, the author

synthesized a 3D cosecant-squared pattern for an 8×8 cylindrical array by using the

proposed method. The obtained results are given in Fig. 2.5. As can be observed that a

relatively low SLL and small ripple were obtained, which demonstrated the effective-

ness of the proposed method. A versatile Bayesian compressive sampling (BCS) method

was presented in [56] to design sparse conformal arrays with shaped patterns. Such a

strategy optimized the element arrangement of the conformal arrays. Within a proba-

bilistic formulation, the sparsest array distribution was derived by employing a suitable

generalization to the conformal architectures of the Bayesian method [56]. In addition,

a generalized projection algorithm was applied in the reconfigurable shaped pattern

synthesis with near-field constraints in [57]. The synthesized results demonstrated the

effectiveness of this method in achieving the desired shaped pattern while satisfying the

near-field constraints.

Despite their outstanding effectiveness, all the above-mentioned methods did not take

the mutual coupling into consideration. There are many strategies that consider mutual

coupling when synthesizing the shaped pattern for conformal array [43, 44, 58–61]. They

include, for example, the semidefinite relaxation method [44, 58], the alternate projection

[59], the second-order cone programming method [43], and the stochastic algorithms

[60, 61]. In [44], a semidefinite relaxation method is extended to obtain a co-polarized

(CoP) pattern with good main lobe shape and reduced SLL, meanwhile maintaining a
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(a) (b)
Figure 2.5: The 8×8-element cylindrical array and the obtained cosecant-squared pattern
in [55].

low cross-polarization level (XPL). The developed method considered mutual coupling

by utilizing the vectorial element pattern. Several examples considering various array

geometries and pattern requirements were provided. A circular flat-top shaped pattern

synthesized for a cylindrical array is shown in Fig. 2.6. One can see that satisfactory

results are obtained with arrays of realistic elements.

Again, most of these methods optimized excitation amplitudes to obtain desired

patterns to get better main lobe and SLL performance. As a result, they will require

unequal power dividers in the feeding network, thus increasing the complexity and

cost of the array system. A method that can obtain satisfactory shaped patterns for the

conformal array without using amplitude modulation is highly desired.

2.2.4 Dual- and Multi-Focused-Beam Shaped Pattern Synthesis

Multi-beam antenna arrays with multiple flexibly scannable beams are identified as a

key technology for the fifth-generation (5G) and sixth-generation (6G) wireless commu-

nication and have undergone extensive development in recent years [26, 62, 63]. There

are two kinds of multi-beams for antenna arrays. One of them is using phased arrays to

generate multi-focused-beam shaped patterns. In other words, only one set of excitation

is required to obtain a radiation pattern with multiple focused beams. It can be regarded
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(a)

(b) (c)
Figure 2.6: The cylindrical conformal array with 6×12 E-shaped patch antennas (a), and
the synthesized flat-top shaped CoP pattern (b) and XP pattern (c) [44].

as a special case of shaped pattern, which can usually be used to achieve two or multiple

small angular coverages. Fig. 2.7 shows an example with dual focused beams.

Antenna arrays that can radiate a pattern with dual or multiple focused beams have

been widely applied in many significant applications, typically in point-to-multipoint

(PTMP) data transmission, PTMP broadcasting, reconfigurable reflecting surface-assisted

wireless communications, and multi-target vital-signs monitoring [64–66]. A simple but

effective way of generating a dual-focused-beam pattern is to design a single antenna

element that can radiate dual concurrent beams, like those in [67–69]. However, a single

antenna element is very limited both in gain and beam steering flexibility, which makes

it hardly attractive in long-range communication with mobile users. Antenna arrays,

which can generate high-directivity, flexibly steerable, and narrower beams, are much

preferable in most multibeam applications.

19



CHAPTER 2. BACKGROUND AND STATE-OF-THE-ART

0 45 90 135 180
θ(°)

-30

-25

-20

-15

-10

-5

0

Pa
tte

rn
 (d

B)

Figure 2.7: An array pattern with dual focused beams.

Over the past many years, many sophisticated methods were developed to synthesize

multibeam antenna arrays [26, 70–79]. For example, in [72], an auxiliary function with a

desired amplitude pattern and a generic phase pattern was adopted, and the multibeam

pattern was obtained by iteratively modifying the phase pattern. In [73], by perturbing

locations of the array factor zeros, multibeam patterns with low SLLs were obtained.

However, to obtain multibeam patterns with desired beam directions as well as low

SLLs, these methods optimized both the excitation amplitudes and phases. Moreover,

the resulting excitation amplitudes could fluctuate severely, and the amplitude dynamic

range ratio could be considerably large due to the complexity of generating a multibeam

pattern, thus leading to complicated feeding networks and low aperture efficiency.

To maintain the simplicity of the array system, a few attempts have been made to

synthesize dual or multibeam patterns using uniform excitation amplitudes [72, 74, 76–

78]. For example, in [77], the grating lobes were developed to generate a dual-beam

pattern. However, for determined element distribution, dual beams obtained using

grating lobes will always have fixed distance in uv-space (u = sinθ cosφ, v = sinθsinφ),

which greatly restricts the beam steering flexibility. To achieve flexibly steerable beams,

several works have been reported to synthesize dual- or multibeam patterns employing

phase-only method [72, 74, 76, 78]. In [72, 76], the single co-ordinate method (SCM) was
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employed to efficiently synthesize dual-beam patterns for arbitrary array geometries by

optimizing the excitation phases only. In [74], the sequential quadratic programming

(SQP) algorithm was utilized to synthesize multibeam patterns with prescribed nulls

for linear arrays. In [78], the neural networks based on a back-propagation algorithm

were developed to synthesize multibeam patterns with adaptive nulls. However, these

reported approaches are either time-consuming or unable to achieve accurate beam

control and relatively low SLL.

An efficient phase-only method that can synthesize multiple-focused-beam shaped

patterns with accurate beam directions and reduced SLLs for phased arrays is highly

desired.

2.2.5 Multibeam Enabled by Analog Beamforming Matrix

The aforementioned multibeam with multiple focused beams in a radiation pattern will

split the total gain of an antenna array. Another kind of multibeam uses different sets

of excitations to afford multiple radiation patterns, each affording one focused beam in

different directions. In comparison to the former one, the latter can achieve higher gain

for the same antenna array since there is only one main lobe in the radiation pattern.

Digital beamforming, such as multiple-input-multiple-output (MIMO) signal pro-

cessing, is a powerful and attractive approach to achieve the latter kind of multibeams

with very much flexibility [80–83]. However, digital beamforming multibeam anten-

nas can lead to high power consumption and economic cost. An alternative low-power-

consumption and cost-effective approach to generating multibeams is employing circuit-

type analogue beamforming networks. Butler matrix is a well-known and effective

analogue approach to generate multibeams [84–88]. Despite their excellent performance,

multibeams generated by Butler matrices are always orthogonal. This feature is ac-

ceptable in some applications, such as the conventional base station where multi-sector
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coverage is required. However, for the 5G and 6G systems, more flexible and dynamic

beam scanning is indispensable [62].

Blass matrix and Nolen matrix, whose beams have arbitrary directions, are preferable

in the 5G and 6G wireless communications. The Blass matrix and Nolen matrix are

comprised of a number of nodes, each containing a directional coupler and a phase shifter

[89, 90]. Blass matrix is a rectangular matrix that consists of M ×N nodes, where M

is the number of beams and N is the number of antenna elements, connected with

matching loads at the end of each row and column. Therefore, Blass matrices allow for

generating an arbitrary number of beams, but they are usually lossy. On the other hand,

Nolen matrix can save half of the nodes compared to Blass matrix since the nodes along

the diagonal are directly connected to rows above [91–93]. Nevertheless, the maximum

number of beams M generated by Nolen matrix is no larger than the element number N.

In [94], the authors developed a systematic method of designing analogue mutlibeam

antennas by employing the generalized joined coupler (GJC) matrices including Blass

matrices, Nolen matrices, and their variants. It has shown that multibeams can be

obtained by optimizing the coupler values in each row of the GJC matrix, and scanning

can be achieved by simply adjusting the phase shifter values. As a first-order approxi-

mation, a GJC matrix can be regarded as multiple connected series-fed linear phased

arrays, as shown in Fig. 2.8. Therefore, individual and independent beam scanning can

be achieved by just tuning the phase shifters. Most recently, in [95], the authors pre-

sented a more robust optimization method for the GJC matrix design, which is capable

of obtaining multibeam patterns with lower SLL, as well as nulls at specific directions

for anti-interference.

An intrinsic issue of the GJC matrix is that when the multibeams are close to each

other or overlap, the beams generated by lower rows will significantly distort and even

split into difference-pattern-like beams. That is because when two or more rows have
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Figure 2.8: Part of a general GJC matrix [94].

their beams pointing to identical directions, the phases of some output ports would be

anti-phase with respect to the rest ports. Although this issue can be avoided by simply

dividing the whole scanning region as multiple sectors to avoid beam overlapping, like

the authors did in [94, 95], it is unacceptable in many applications like the emerging joint

communications and sensing (JCAS) systems whose beams for sensing are required to

scan to arbitrary directions including angles close to or overlapping the communication

beams [96–98]. This issue should be addressed carefully to make the GJC matrix more

attractive in future wireless communications.

2.2.6 Linearly Polarized Element Rotation Technique

Polarization is an inherent attribute of electromagnetic waves, describing the trajectory

followed by the electric field vector as observed in space along the direction of wave

propagation [2]. Different polarization types include linear polarization (LP), circular

polarization (CP), and elliptical polarization, each characterized by specific field vector

trajectories. LP occurs when the trajectory forms a straight line, CP when it forms a

circle, and elliptical polarization when it forms an ellipse. Strictly speaking, polarization

must be taken into account in the array synthesis. But in most array synthesis, cross-
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polarization (XP) components are not considered because they are actually negligible.

However, for some arrays such as conformal arrays, owing that the orientation and

radiation direction of each element are different, there is a difference in the polarization

direction of the electromagnetic wave each element transmitted or received. In this

situation, polarization must be taken into consideration in the array synthesis.

Actually, the polarization of an antenna can be considered as an optimization variable

that can be used in the array pattern synthesis. And indeed, several researchers have

considered polarization as a degree of freedom in the array synthesis [20–24, 99–101].

In the following, these polarization rotation techniques are briefly reviewed.

In [24], a method optimizing the rotation of every dipole in the array to obtain low SLL

for the CoP pattern whilst maintaining the XP pattern gain under a desired level was

proposed. The authors declared that except for controlling the SLL using the appropriate

element weighting, an alternative way to modify the element excitation to obtain low

SLL was to rotate the antenna elements individually. The element rotation changes the

CoP and XP element pattern at a fixed cut of the antenna pattern. To illustrate this, the

authors presented a figure, which is shown in Fig. 2.9. It is clearly shown in the figure

that the θ gain pattern gets smaller and smaller with the increase of the rotation angle.

The element pattern becomes less isotropic as the rotation angle increases. The gain

change caused by the element rotation should be enough to generate a low SLL taper in

a fixed cut of the antenna pattern. Numerical results provided in [24] verified this idea.

In [21], Echeveste et al. developed a method for synthesizing arrays of coupled

antennas using the element rotation technique. The antenna array was analyzed using a

hybrid method on the basis of 3D finite element method, modal analysis, and generalized

scattering matrix. The array patterns were optimized by utilizing the gradient method,

according to a cost function, with successive element rotations. Several low SLL patterns

were synthesized with constrained XPL to evaluate the proposed method. One of them
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(a) (b)
Figure 2.9: Pattern of a rotated dipole and the synthesized array pattern obtained by
rotating the antenna elements in [24]. (a) theta gain pattern of a dipole when it is rotated
with different angles and (b) CoP and XP patterns of a linear array with rotated dipoles.

was a 10×10-element planar array. The element rotation angles were optimized, and

the CoP and XP patterns with constrained low SLL and XPL were obtained. Fig. 2.10

shows the optimized results. As is seen, the element rotation technique is quite effective

in focused beam pattern synthesis. Compared with [24], realistic antenna elements were

considered in this method, which demonstrated its wide applicability.

In addition to the LP pattern synthesis, the rotation of the LP elements was also

used in the CP pattern synthesis. In [22], a sequential rotation technique was proposed

to enhance the axial ratio of the mm-wave phased-array patterns. A random sequential

rotation method for synthesizing CP patterns of arrays consisting of LP antennas with

SLL and axial ratio control was presented in [23]. It is shown that, although a uniform

array element layout was used in the synthesis, similar properties as a randomly spaced

antenna array were achieved. In such a way, wideband performance can be facilitated

without introducing any grating lobes. Furthermore, owing that no amplitude weighting

was used, the gain of the array pattern was maximized. A 4×4 planar array was fabricated

and measured in [23]. The pictures and patterns of the fabricated array are shown in Fig.

2.11. It can be observed that favorable pattern performance in terms of the XPL, SLL,

and axial ratio was obtained.
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(a)

(b) (c)
Figure 2.10: The obtained rotation status of the 10×10-element array and the synthe-
sized array patterns in [21]. (a) the optimized rotation status of the array; (b) and (c) the
CoP and XP patterns, respectively.

In [99], a mapping-based optimization method was developed for synthesizing array

patterns using the element rotation technique. The orientation of every element in the

array was optimized to obtain low SLL and XPL meanwhile maintain the main lobe

peak gain. In that paper, the variable definition domain problem was converted to a

fixed definition domain problem using coordinate transformation. Then the method of

moments was integrated with the optimization, which made it convenient to obtain

the array pattern properties and their sensitivities concerning the design variables.

Therefore, the optimization can be efficiently solved by utilizing the gradient-based

optimization. Moreover, the mutual coupling was also considered.

These existing LP element rotation methods only deal with focused beam patterns

with low SLL, low XPL, and large axial ratio bandwidth. Shaped-beam as well as sum-

and-difference patterns synthesis employing the element rotation technique is not found
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(a) (b)

(c)
Figure 2.11: The 4×4-element array with random sequential rotation method and the
CoP as well as XP patterns obtained in [23]. (a) shows the 4×4-element array obtained
with random sequential rotation method, (b) and (c) show its CoP and XP patterns,
respectively.

in the literature. Hence, in this dissertation, sum-and-difference patterns synthesis for

linear dipole arrays employing the element rotation is first studied. Then, shaped power

patterns synthesis for linear, planar, and conformal arrays using the element rotation

technique considering mutual coupling are studied.
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3
SUM-AND-DIFFERENCE PATTERNS SYNTHESIS

EMPLOYING THE ELEMENT ROTATION TECHNIQUE

3.1 Introduction

In Chapter 2, state-of-the-art works related to the sum-and-difference patterns synthesis

have been reviewed. It was shown that sum-and-difference patterns synthesis employing

excitation amplitude and phase modulation would lead to excellent results, yet results in

complicated feeding networks and low aperture efficiency. Although phase-only methods

can avoid the use of nonuniform excitation amplitudes, the pattern performances will

inevitably deteriorate compared to amplitude modulation methods. In this chapter, a

novel joint rotation and phase position optimization method is presented to synthesize

sum-and-difference patterns. The synthesized arrays have sparsely rotated elements

with uniform amplitudes, thereby leading to reductions of both the element number and

unequal power dividers.

In this chapter, the following challenges are addressed: a) first, based on the two-
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section beamforming network (BFN) model, common element rotations and positions

are optimized for synthesizing sum-and-difference patterns; b) second, common element

rotations and positions should be found to simultaneously meet multiple pattern require-

ments including low sidelobe levels (SLL) and cross-polarization levels (XPL) for the

sum pattern, and low SLL, low XPL and large slope for the difference pattern. Several

sum-and-difference patterns synthesis examples by using the developed method are

presented. It is shown that favorable sum-and-difference patterns with reduced SLLs

and XPLs, as well as steep slopes are obtained with uniform excitation amplitudes.

Comparisons with other synthesis methods are provided to show the advantages of the

proposed method.

This chapter is organized as follows. Formulation and algorithm are discussed in

Section 3.2. Section 3.3 presents some numerical results. A summary is drawn in Section

3.4.

3.2 Formulations and Optimization Algorithm

3.2.1 Nouniformly Spaced Dipole-Rotated Linear Array with

Sum-and-Difference Patterns

Assume there is a linear array with 2N nonuniformly-spaced elements located along

x-axis. For convenience, the number of elements is assumed to be even. However, it

should be noted that the following analysis is also applicable with slight modifications

when the number of elements is odd. The sum-and-difference array is usually divided as

two halves. To obtain a sum pattern, the two halves of the array can be fed with identical

phases, resulting in an in-phase superposition of the elements. Conversely, to produce a

difference pattern, the two halves of the array are fed with a phase difference of π. Fig.

3.1 shows a nonuniformly spaced linear array radiating sum-and-difference patterns
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Figure 3.1: A nonuniformly spaced linear array radiating sum-and-difference patterns.

based on a typical two-section BFN.

In general, excitation amplitudes are optimized for synthesizing low-SLL sum-and-

difference patterns. Thus, other than the π phase shifter, unequal power dividers are

also needed. Here, instead of excitation amplitude, the element rotations and locations

are optimized to synthesize sum-and-difference patterns. Such a method is not only

capable of simplifying the BFN, but also improving the aperture efficiency and reducing

the system cost. Let ξn ∈ [−π,π] (n = −N,−N +1, ...,−1,1, ..., N) denote the arbitrary

rotation angle of the nth element as shown in Fig. 3.1. In the principal observation plane

(xoy-plane), the vectorial sum-and-difference patterns is given as: F⃗Σ,θ(φ)= F⃗1,θ(φ)+ F⃗2,θ(φ)

F⃗Σ,φ(φ)= F⃗1,φ(φ)+ F⃗2,φ(φ)
(3.1)

 F⃗∆,θ(φ)= F⃗1,θ(φ)− F⃗2,θ(φ)

F⃗∆,φ(φ)= F⃗1,φ(φ)− F⃗2,φ(φ)
(3.2)

where  F⃗1,θ(φ)=∑−1
n=−N En,θ(φ;ξn)e jβrn cosφθ̂

F⃗2,θ(φ)=∑N
n=1 En,θ(φ;ξn)e jβrn cosφθ̂

(3.3)

 F⃗1,φ(φ)=∑−1
n=−N En,φ(φ;ξn)e jβrn cosφφ̂

F⃗2,φ(φ)=∑N
n=1 En,φ(φ;ξn)e jβrn cosφφ̂.

(3.4)
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Figure 3.2: A linear array of rotated dipoles.

In the above, φ ∈ [0,π] is the azimuth angle, j =p−1 , β= 2π/λ. E⃗n(φ;ξn)= En,θ(φ;ξn)θ̂+
En,φ(φ;ξn)φ̂ and rn = xn are the nth rotated element pattern and position. F⃗Σ,θ(φ) and

F⃗Σ,φ(φ) are the two polarization components of of the sum pattern, whilst F⃗∆,θ(φ) and

F⃗∆,φ(φ) are the two polarization components of the difference pattern.

In this chapter, the effectiveness of synthesizing sum-and-difference patterns employ-

ing joint rotation and position optimization is verified with dipole arrays. Suppose the

dipoles are placed in parallel (perpendicular to x-axis) along x-axis in xoz plane initially.

Then, assume every dipole is rotated with an angle ξn with respect to their centre in xoz

plane, as can be seen in Fig. 3.2. To facilitate the pattern derivation, a local coordinate

x′y′z′ is built with z′-axis aligning with the rotated dipole and y′-axis being parallel

to y-axis. In x′y′z′, it is easy to know the two components of radiation patterns of the

rotated dipole. Then its θ- and φ-polarized patterns in xyz can be obtained by using

coordinate transform. Finally, in the principal xoy-plane (θ = 90◦), its θ- and φ-polarized

patterns can be obtained as given below [20]:

En,θ(φ;ξn)= cosξn cos(π2 sinξn cosφ)

1−sin2 ξn cos2φ
(3.5)

En,φ(φ;ξn)= sinξn sinφcos(π2 sinξn cosφ)

sin2 ξn cos2φ−1
. (3.6)

By substituting (3.5) and (3.6) into (3.1)-(3.4), one can obtain the sum-and-difference

pattern expression.
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3.2. FORMULATIONS AND OPTIMIZATION ALGORITHM

3.2.2 Cost Function for Sum-and-Difference Patterns Synthesis

The problem concerned is finding the optimal combination of element rotation angles ξn

and positions xn, such that the sum-and-difference patterns exhibit minimal SLLs and

XPLs, while ensuring that the difference pattern has the steepest slope achievable. To

result in a symmetrical BFN, the element distribution xn are assumed to be symmetrical

with respect to the array center. Therefore, only N element positions need to be optimized.

On the other hand, all the element rotation angles are chosen as optimization variables

to achieve better pattern performance. Therefore, the optimization problem involves

optimizing a total of N positions and 2N rotation angles. To achieve this, a cost function

is constructed that incorporates five different terms aimed at penalizing SLLs, XPLs,

and the slope of the difference pattern.

fc = W1
B

B∑
b=1

1
4 (Xb +|Xb|)2 + W2

C

C∑
c=1

1
4 (Yc +|Yc|)2 + W3

D

D∑
d=1

1
4 (ZΣ,d +|ZΣ,d|)2

+W4
D

D∑
d=1

1
4 (Z∆,d +|Z∆,d|)2 + W5

4 (|S|−S)
2

(3.7)

where 

Xb = |FΣ,θ(φb)|2 −ΓSLL1

Yc = |F∆,θ(φc)|2 −ΓSLL2

ZΣ,d = |FΣ,φ(φd)|2 −ΓX PL1

Z∆,d = |F∆,φ(φd)|2 −ΓX PL2

S = |∂F∆,θ(φ)
∂φ

|φ=φ0 |2 −Γslope.

(3.8)

In the above, W1, W2, W3, W4 and W5 are weighting factors. ΓSLL1 and ΓSLL2 are the

target SLLs for FΣ,θ(φ) and F∆,θ(φ), respectively, whereas ΓX PL1 and ΓX PL2 are the

target XPLs for FΣ,φ(φ) and F∆,φ(φ), respectively. Without loss of generality, the θ-

polarized pattern is considered as the co-polarized (CoP) pattern. Γslope denotes the

target difference pattern slope. The sampling angles in the SLL regions of FΣ,θ(φ) and

F∆,θ(φ) are denoted by φb(b = 1,2, ...,B) and φc(c = 1,2, ...,C), respectively. Additionally,

φd (d = 1,2, ...,D) represents the sampling angle in the range of φ ∈ [0,π]. The target
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direction φ0 is chosen as φ0 = π/2 throughout this chapter and, hence, the difference

pattern slope can be obtained as:

∂F∆,θ(φ)
∂φ

|φ=π/2 =
N∑

n=−N
sgn(n) jβxn cosξn (3.9)

where sgn(n) is the sign function of n (n =−N,−N +1, ...,−1,1, ..., N). It should be noted

that if nulls are required in some applications, more penalization terms can be added to

the cost function of (3.7).

The cost function (3.7) is defined as the summation of five terms, each targeting

a specific aspect. In a sequential manner, these terms aim to penalize SLLs of the

sum-and-difference patterns, XPLs of the sum-and-difference patterns, and the slope

of the difference pattern, respectively. Let us take the first term, W1
B

B∑
b=1

1
4 (Xb +|Xb|)2,

as an example for explanation. In this term, Xb = |FΣ,θ(φb)|2 −ΓSLL1 represents the

difference between the actual SLL of the sum pattern and the target value ΓSLL1 at the

observation angle φb. If the SLL |FΣ,θ(φb)|2 at angle φb is greater than ΓSLL1, indicating

that it exceeds the target value and requires penalization, Xb will be a positive value.

Otherwise, if Xb is non-positive, it means that the SLL is within the acceptable range

and no penalization is needed. When Xb is positive, we have Xb+|Xb| = 2Xb. In this case,

1
4 (Xb+|Xb|)2 = X2

b. On the other hand, when Xb is non-positive, Xb+|Xb| = 0, resulting in

1
4 (Xb +|Xb|)2 = 0. Therefore, the summation W1

B

B∑
b=1

1
4 (Xb +|Xb|)2 accounts only for SLLs

at the sampling angles where they are worse than the target value.

Similar explanation applies to the remaining four terms in (3.7). Therefore, only the

SLLs, XPLs, and slope that do not meet the requirements will contribute to the cost. As

a result, when utilizing a stochastic algorithm to optimize rotation angles and positions

guided by the cost function (3.7), achieving a minimized value of (3.7) as 0 ensures the

satisfaction of all requirements.
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3.2.3 Element Rotation and Position Optimization with the

Particle Swarm Optimization

Minimizing the cost function (3.7) to find optimal ξn and xn (x−n =−xn for n =−N,−N +
1, ...,−1,1, ..., N) is a highly non-linear problem. In general, a global stochastic algorithm

would be adequate for the optimization. The particle swarm optimization (PSO) method

is adopted here. The PSO is a population-based algorithm that is developed by mimicking

the behavior of social animals like bird flocks. It is computationally inexpensive in terms

of both memory requirements and speed [102]. In PSO, each particle keeps its own

track which is related to the best position called pbest it has achieved in the problem

space. Another position is the global best location called gbest. The PSO finds the global

best solution by changing the speed of every particle to its pbest and gbest with an

acceleration factor weighted by a random term in every iterative generation. The PSO

has found many different applications in array synthesis problems [8, 103]. Algorithm

1 lists the detailed optimization procedure based on the PSO.

3.3 Synthesis Results

In this section, three examples are provided to demonstrate the effectiveness of the devel-

oped sum-and-difference patterns synthesis method based on joint rotation and position

optimization. Comparisons with other methods are also provided. All the examples were

conducted on a Dell Workstation with an Intel Xeon E5-2697 CPU at 2.30 GHz.

3.3.1 Sum-and-Difference Patterns Synthesis for a 32-Element

Linear Array

A 32-element linear dipole array is employed to synthesize sum-and-difference patterns

with reduced SLLs as the first example. The element positions are assumed to be
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Algorithm 1 The developed sum-and-difference patterns synthesis procedure based on
element rotation.

1: Input the parameters including ΓSLL1, ΓSLL2, ΓX PL1, ΓX PL2, and Γslope. Set the max-
imum iteration Im, population size Np, problem dimension Dp as well as weighting
factors W1, W2, W3, W4, and W5.

2: Randomly generate Np particles composed of ξn(n =−N,−N +1, ...,−1,1, ..., N) and
xn(n = 1,2, ..., N) with random velocities and positions in the given Dp dimensional
solution space.

3: Evaluate the cost function value of each particle using (3.7).
4: Compare the cost function value of the current particle with that of the pbest. If the

current value is smaller than that of pbest, let pbest equal the current location, and
update the cost function value with the current cost function value.

5: Compare the current cost function value with that of gbest, which is the best solution
all the particles achieved so far. If the current value is smaller than that of gbest,
replace the location and cost function value of gbest with those of the current particle.

6: Update the velocity and position of the current particle.
7: Loop to step 3 until the maximum iteration Im is reached or the best rotations ξn

and positions xn remain unchanged for multiple iterations.

symmetric, and all the element intervals are restricted in [0.5λ,λ]. The available element

rotation angle is set as ξn ∈ [−π,π]. In the PSO-based optimization, the weighting

coefficients of the cost function are set as W1 =W2 =W3 =W4 = 1, and W5 = 5, respectively.

The target SLLs and XPLs are set as ΓSLL1 = ΓSLL2 = ΓX PL1 = ΓX PL2 = −17 dB. The

target difference pattern slope is chosen as Γslope = 45 dB. The number of optimization

variables is Dp = 48. The population size of the PSO is set as Np = 96, whilst the iteration

number is set as Im = 2000.

Fig. 3.3 shows the synthesized sum-and-difference patterns. It is observed that the

achieved SLL and XPL for the sum pattern are −17.00 and −19.71 dB, respectively,

whereas the difference pattern has a SLL and XPL of −17.01 dB and −17.04 dB, res-

pectively. All of them meet the specified bound of −17 dB. The difference pattern has

a slope of 59.21 dB. Table 3.1 lists the obtained element rotations as well as positions.

The obtained minimum, maximum, and average element intervals are 0.50λ, 1.00λ,

and 0.77λ, respectively. It means that the synthesized array by the developed method

saved around 34.69% elements comparing to a half-wavelength-spaced array that has an
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Figure 3.3: The synthesized sum-and-difference patterns and the corresponding full-
wave simulated ones, patterns synthesized by a position-only method, and the difference
pattern obtained with the position and excitation optimization in [104] for a 32-dipole
linear array.

identical array aperture. The time cost of the PSO-based optimization for this example is

about 4.12 minutes.

For comparison purpose, the sum-and-difference patterns are also synthesized by

employing position-only optimization using the same PSO. In this case, only element

positions are optimized. The number of variables is set as Dp = 16, and the population

size is Np = 2Dp = 32. The inter-element spacing restriction and other parameters are

used the same as above. The synthesized patterns are plotted in Fig. 3.3(a) and (b). It is

observed that the SLLs are increased to −13.80 dB and −13.84 dB, respectively, due to

the lack of the element rotations as the additional degrees of freedom.

In addition, the hybrid approach of convex programming and simulated annealing

(SA) that was developed in [104] is also adopted here to produce the same difference

pattern for further comparison. The constraint on the element intervals is set as [0.5λ,λ],

which is the same as that of the developed method, and the parameters for the SA,

including the initial temperature and the scaling factor for the temperatures, are used

the same as those used in [104]. The obtained difference pattern by this hybrid method

is shown in Fig. 3.3(b). It can be seen that the maximum SLL is almost the same as that
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of the developed method. However, in this hybrid method, amplitude weighting along

with position optimization is used, and the amplitude dynamic range ratio required for

generating this pattern is 4.49. This leads to a relatively complicated BFN with multiple

unequal power dividers. In contrast, the array synthesized using the developed method

does not need amplitude weighting, as it achieves the desired pattern characteristics

through appropriate element rotations.

Besides, with the element rotations and positions obtained by the developed method,

the array is modeled by using the high-frequency simulation software (HFSS) [105]. A 1

mm diameter dipole operating at a frequency of f = 3 GHz with an overall length of 48

mm is used as the element. Figure 3.3 depicts the full-wave simulated patterns, which

demonstrate excellent agreement with the synthesized patterns. The full-wave simulated

SLLs of the two patterns increase by 0.64 dB and 0.50 dB, respectively, meanwhile

the XPLs remain below the target bound. The high level of agreement between the

synthesized and simulated patterns can be attributed to the weak mutual coupling

between elements, which is a result of the relatively large spacing between them.

3.3.2 Sum-and-Difference Patterns Synthesis for a 56-Element

Linear Array

As another example, sum-and-difference patterns in Fig. 6 and Fig. 7 of [33] obtained

with excitation amplitude and position optimization using a linear programming method

are synthesized. The obtained SLLs in [33] were −20 dB and −16.5 dB for the sum-

and-difference patterns, respectively. Here, for comparison, sum-and-difference patterns

under the same SLL and XPL constraints are synthesized with a 56-element linear

dipole array through optimization of the element rotations and positions. The element

spacing is restricted in [0.5λ,1.28λ] (smaller than [0.43λ, 1.28λ] in [33]). A minimum

spacing of 0.5λ is utilized to avoid the intersection between elements. In the PSO-based
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optimization, the target SLLs and XPLs are chosen to be identical as those in [33]. The

target difference pattern slope is still Γslope = 45 dB. The number of variables to be

optimized is D = 84. The population size and the maximum iterations are set as Np = 168

and Im = 2000, respectively. Other parameters are chosen to be identical as those in the

first example.

The PSO-based synthesis procedure takes about 41.98 minutes to find the solution

in this example. Fig. 3.4(a) and (b) show the results obtained by the developed method

as well as those obtained in [33]. It is shown that the developed method yields a sum

pattern with SLL and XPL values of −20.01 dB and −20.03 dB, respectively. The differ-

ence pattern, on the other hand, has SLL and XPL values of −16.50 dB and −16.51 dB,

respectively. The slope of the difference pattern is 68.68 dB. The pattern performance is

comparable to that obtained in [33]. But it should be mentioned again that the synthe-

sized array by the developed method does not utilize nonuniform amplitude weighting,

so no unequal power dividers are required. The corresponding element rotations and

positions are listed in the middle column of Table 3.1. For this particular example, the

minimum, maximum, and average element spacings of the synthesized array are 0.5λ,

1.07λ, and 0.88λ, respectively. Fig. 3.4 also shows the full-wave simulated patterns. One

can see that the simulated SLLs are −17.82 dB and −15.35 dB, respectively. They are

2.19 dB and 1.15 dB worse than the synthesized values. The simulated XPLs remain

below the target levels.

To demonstrate the advantage of optimizing both the element positions and rotations,

the rotation-only optimization method is utilized here to synthesize the same sum-and-

difference patterns. A 97-element dipole array with uniform spacing of λ/2 is adopted

since it occupies almost the same aperture as that of the sparse array obtained by

the developed method, and thus sum-and-difference patterns with similar beamwidths

and slope can be obtained. In the PSO-based rotation-only optimization, Dp = 97 and
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Figure 3.4: The synthesized sum-and-difference patterns and the corresponding full-wave
simulated results, as well as patterns in [33] for a linear array of 56 elements.

Np = 2Dp = 194. The rotation angle range and other parameters are used the same as

those of the developed method. Fig. 3.5 shows the obtained sum-and-difference patterns.

The SLL and XPL values of the sum pattern are −19.71 dB and −19.85 dB, respectively,

while the difference pattern has SLL and XPL values of −16.42 dB and −16.43 dB,

respectively. These values are slightly higher than the corresponding ones obtained by

the developed method. Besides, the developed method requires much fewer elements

than the rotation-only optimization method, and the element saving is up to 42.27%.

3.3.3 Sum-and-Difference Patterns Synthesis with Nulls for

Anti-Interference

In electromagnetic environments where jamming is present from specific directions, it

becomes necessary to introduce nulls to mitigate the interference. As an example, a same

56-element dipole array is used to synthesize both sum-and-difference patterns with an

additional requirement of a −30 dB null in the region of φ ∈ [40◦,45◦]∪ [135◦,140◦]. To

meet this requirement, the cost function (3.7) needs to be modified slightly. While the

first four terms in the cost function are used to generate a −20 dB SLL and XPL for the
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Figure 3.5: The sum-and-difference patterns obtained using a rotation-only method with
a 97-element λ/2-spaced linear dipole array.

sum pattern, and a −16.5 dB SLL and XPL for the difference pattern, an additional four

terms are added to penalize the −30 dB nulls in the specified regions for all patterns. All

other parameter settings for the PSO-based synthesis procedure are used the same as

those in the second example.

The PSO-based pattern synthesis takes about 42.35 minutes in this example. Fig.

3.6(a) and (b) show the obtained patterns with enlarged views of peaks and −30 dB

SLL/XPL regions. The results demonstrate that the obtained patterns meet the require-

ments, even for complex null specifications, except for a slightly higher first sidelobe in

the sum pattern (approximately 0.55 dB above the target level). The difference pattern

slope in the target direction is 68.84 dB. It is noted that the nulls for both patterns are

restricted below −30 dB in φ ∈ [40◦,45◦]∪ [135◦,140◦]. These results further demonstrate

the outstanding capability of the developed method.

Table 3.1 lists the obtained element rotations and positions in the right column. The

minimum, maximum, and average element spacings achieved are 0.50λ, 1.18λ, and

0.88λ, respectively. Around 42.27% elements have been saved in this example comparing

to a half-wavelength-spaced array with an identical array aperture. Fig. 3.6 also shows

the full-wave simulated patterns of the dipole-rotated array. The full-wave simulated
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Table 3.1: THE ELEMENT ROTATIONS AND POSITIONS (x−n =−xn) OBTAINED BY THE

DEVELOPED METHOD FOR THE THREE EXAMPLES.

Example 1 Example 2 Example 3
n Rot. (◦) Pos. (λ) Rot. (◦) Pos. (λ) Rot. (◦) Pos. (λ)
1 −46.74 −12.19 24.72 −24.10 −58.70 −24.08
2 85.26 −11.19 −83.14 −23.23 91.32 −22.90
3 −49.09 −10.43 152.22 −22.17 −29.12 −21.91
4 56.22 −9.46 10.77 −21.10 71.44 −20.93
5 14.78 −8.56 −66.37 −20.03 94.69 −19.87
6 21.84 −7.72 −23.75 −19.04 60.82 −19.02
7 14.33 −6.93 71.53 −18.09 48.28 −18.16
8 1.10 −6.17 −61.46 −17.33 23.68 −17.18
9 −3.60 −5.51 −35.25 −16.38 59.38 −16.29
10 −2.28 −4.78 −42.79 −15.32 −33.20 −15.32
11 −12.74 −4.09 20.44 −14.44 −10.64 −14.41
12 −6.65 −3.36 2.38 −13.53 −5.25 −13.50
13 −2.88 −2.55 −17.80 −12.68 −4.94 −12.58
14 −0.42 −1.67 −3.38 −11.71 4.90 −11.74
15 −0.72 −0.88 6.52 −10.85 4.07 −10.84
16 1.98 −0.25 15.16 −9.96 20.32 −10.06
17 −0.97 0.25 −4.56 −9.18 −4.38 −9.28
18 3.67 0.88 −3.21 −8.46 4.48 −8.45
19 6.31 1.67 −10.39 −7.60 3.40 −7.68
20 4.52 2.55 −9.93 −6.80 −7.84 −6.80
21 3.48 3.36 0.60 −5.89 1.86 −5.93
22 5.43 4.09 5.71 −5.05 −10.03 −5.05
23 −7.19 4.78 3.80 −3.99 9.82 −4.27
24 2.53 5.51 −5.30 −3.15 −15.60 −3.39
25 0.31 6.17 35.09 −2.21 5.90 −2.36
26 10.73 6.93 −4.83 −1.40 −8.25 −1.54
27 12.87 7.72 −0.13 −0.75 0.24 −0.80
28 36.80 8.56 2.80 −0.25 −0.86 −0.25
29 −21.19 9.46 −1.41 0.25 −0.61 0.25
30 −53.67 10.43 3.54 0.75 −1.17 0.80
31 75.97 11.19 4.53 1.40 −7.78 1.54
32 67.89 12.19 −2.61 2.21 6.03 2.36
33 −2.56 3.15 −1.43 3.39
34 2.01 3.99 18.74 4.27
35 −1.23 5.05 −9.34 5.05
36 −0.29 5.89 3.56 5.93
37 11.08 6.80 −12.19 6.80
38 −3.14 7.60 −0.89 7.68
39 −15.88 8.46 10.76 8.45
40 10.68 9.18 7.04 9.28
41 6.05 9.96 4.71 10.06
42 −3.86 10.85 1.86 10.84
43 −4.59 11.71 9.70 11.74
44 −16.40 12.68 −2.38 12.58
45 9.71 13.53 −1.84 13.50
46 18.59 14.44 −31.45 14.41
47 −1.01 15.32 −37.48 15.32
48 −41.83 16.38 41.17 16.29
49 −46.77 17.33 63.99 17.18
50 −55.55 18.09 −0.54 18.16
51 83.30 19.04 −29.74 19.02
52 55.06 20.03 −109.26 19.87
53 84.40 21.10 26.57 20.93
54 39.19 22.17 119.04 21.91
55 −80.79 23.23 −55.72 22.90
56 77.53 24.10 60.95 24.08
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(a) The sum patterns

(b) The difference patterns

Figure 3.6: The synthesized and full-wave simulated sum-and-difference patterns with
nulls for a linear array of 56 rotated dipoles.

SLLs are 1.57 dB and 1.28 dB higher than the synthesized values, whereas the XPLs

of both patterns still keep below the target bound. The simulated patterns match the

synthesized ones very well in total.

3.4 Summary

A novel method that synthesizes sum-and-difference patterns through the optimization

of the element rotation angles and positions of uniform amplitude dipole arrays is

presented in this chapter. Numerical examples are presented, and it is shown that the
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developed method can obtain much better sum-and-difference patterns performance

than the position-only optimization method. Compared with the joint optimization of

element excitations and positions, the developed method can obtain comparable pattern

performance but without the requirement of nonuniform amplitude weighting, thus

saving many unequal power dividers for the BFN. Synthesis results also validated

the ability of the developed method to synthesize sum-and-difference patterns with

nulls at specific angles. In the presented examples, the element reduction achieved is

around 34.69% - 42.27% compared to the uniformly distributed arrays using λ/2-spaced

elements to occupy the same aperture. Hence, the overall advantages, including the BFN

simplification and element reduction, make the developed method very attractive for

applications where the cost, complexity, and weight of the antenna system are highly

restricted.
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SHAPED-BEAM PATTERN LINEAR AND PLANAR ARRAY

DESIGN BASED ON ELEMENT ROTATION

4.1 Introduction

In Chapter 3, sum and difference patterns are synthesized employing the element ro-

tation technique. Linear dipole arrays with analytical expressions were considered. In

this chapter, the element rotation technique is extended to deal with shaped pattern

synthesis considering mutual coupling and arbitrary antenna elements for linear and

planar arrays. To this end, the vectorial active element pattern (VAEP) is employed to

consider mutual coupling. Element rotations are approximately achieved by mathemat-

ically rotating the full-wave simulated VAEPs. After that, rotation angles, as well as

excitation phases of the array, are optimized by using the particle swarm optimization

(PSO) to achieve desired shaped patterns. To improve the approximation accuracy, a

refined strategy is adopted. Several examples are provided to show the effectiveness

of this method. The synthesis results are validated through full-wave simulation. A
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prototype of a 24-element linear array is fabricated and measured. Measured results

turn out to agree very well with the simulated ones.

This chapter is organized as follows. Formulation and algorithm are discussed in

Section 2. Section 3 presents some numerical results. In Section 4, measurement results

are presented. A summary is drawn in Section 5.

4.2 Formulations and Optimization Algorithm

This section presents the derivation of the antenna-rotated array pattern model as well

as the refined element rotation/phase synthesis procedure by utilizing the PSO.

4.2.1 Vectorial Pattern Expression of a General Antenna-Rotated

Array

The expression of an antenna-rotated array is derived first. Consider a 3×3 planar

patch array without element rotation as shown in Fig. 4.1(a). Note that the following

formulation is valid for any antenna-rotated linear and planar arrays regardless of

element count and placement. According to equation (2.1), the vectorial array pattern

can be given by:

Fθ(θ,φ)=
N∑

n=1
En,θ(θ,φ;0)e j{β⃗rn ·⃗u(θ,φ)+ϕn} (4.1)

Fφ(θ,φ)=
N∑

n=1
En,φ(θ,φ;0)e j{β⃗rn ·⃗u(θ,φ)+ϕn} (4.2)

where β= 2π/λ, j =p−1 , u⃗ = [sinθ cosφ,sinθsinφ,cosθ]. r⃗n and ϕn are the nth element

location and excitation phase, respectively. E⃗n(θ,φ;0) = En,θ(θ,φ;0)⃗θ+En,φ(θ,φ;0)φ⃗ is

the VAEP for the nth antenna without rotation, i.e., with the state of ’0’ rotation angle

[106]. A VAEP is a vectorial pattern of an array with one element is excited, whilst the

rest elements are terminated with matching loads. In general, VAEPs can be obtained by

using measurements or full-wave simulations. VAEPs usually vary for different elements.
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Figure 4.1: Configuration of a 3×3-element planar array with (a) no element rotation,
and (b) elements rotated by different angles.

However, for the case of uniformly spaced linear or planar arrays with the elements

rotated by an identical angle (for example, all with ’0’ rotation angle), VAEPs for different

elements can be considered identical if one ignores the edge effect of the array. That

is, E⃗n(θ,φ;0) = E⃗(θ,φ;0) = Eθ(θ,φ;0)⃗θ+Eφ(θ,φ;0)φ⃗ for n = 1,2, · · · , N. In this situation,

the simulated VAEP using periodic boundaries can be utilized to approximate the real

VAEPs, which simplifies the process of obtaining those VAEPs.

Now, assume that those N elements are separately rotated in the xoy plane with

respect to the z′-axis in their own local coordinate systems (LCSs) x′y′z′ as shown in Fig.

4.1(b). With ξn denoting the nth element rotation angle, the vectorial array patterns are

expressed as:

FRot
θ (θ,φ)=

N∑
n=1

En,θ(θ,φ;ξn)e j{β⃗rn ·⃗u(θ,φ)+ϕn} (4.3)

FRot
φ (θ,φ)=

N∑
n=1

En,φ(θ,φ;ξn)e j{β⃗rn ·⃗u(θ,φ)+ϕn} (4.4)

where E⃗n(θ,φ;ξn)= En,θ(θ,φ;ξn )⃗θ+En,φ(θ,φ;ξn)φ⃗ is the nth VAEP with an rotation range

of ξn. The condition ξn > 0 indicates an anticlockwise rotation. The definition of the VAEP

specifies that the nth VAEP is not only dependent on its own rotation angle, but also on

the rotation angles of neighboring elements.

As mentioned previously, all VAEPS can be acquired using measurements or full-wave

simulations. However, in the considered problem, element rotation angles and phases
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are unknown variables to be optimized. Hence, their values are actually unknown. To

deal with this issue, an assumption is made that the mutual coupling among the current

element and other elements remains unchanged during the rotation. Thus the rotated

element pattern can be approximately obtained by mathematically rotating its original

VAEP from the ’0’ rotation state. It can be easily proved that, for the nth element rotated

with an angle of ξn with respect to z′-axis in the LCS, the phase-adjusted VAEP can be

approximated as:

En,θ(θ,φ;ξn)≈ En,θ(θ,φ−ξn;0) (4.5)

En,φ(θ,φ;ξn)≈ En,φ(θ,φ−ξn;0). (4.6)

By substituting (4.5) and (4.6) into (4.3) and (4.4), one can obtain:

FRot
θ (θ,φ)≈

N∑
n=1

En,θ(θ,φ−ξn;0)e j{β⃗rn ·⃗u(θ,φ)+ϕn} (4.7)

FRot
φ (θ,φ)≈

N∑
n=1

En,φ(θ,φ−ξn;0)e j{β⃗rn ·⃗u(θ,φ)+ϕn}. (4.8)

The accuracy of the above approximation greatly depends on the rotation angles ξn for

n = 1,2, · · · , N, given determined element spacing and radiating structure. As a general

rule, larger rotation angles result in lower approximation accuracy. This means that

when an algorithm is used to optimize the element rotations and phases using the

approximated expressions (4.7) and (4.8), the actual array pattern including mutual

coupling variations may differ from the synthesized one calculated from the approximated

expressions. The extent of the discrepancy depends on the allowable range of ξn. To reduce

this discrepancy, a refining strategy can be utilized. For example, after optimizing the

element rotations and phases using the approximated expressions, full-wave simulation

can be used to obtain all the real rotated VAEPs for the new configurations. Then, the

element rotations can be fine-tuned within a smaller range to improve the synthesized

results and reduce the errors.
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The refined joint optimization process for element rotations and excitation phases

can be repeated multiple times until the difference between the synthesized and actual

array patterns is negligible or below a predetermined tolerance level. Let ξ(0)
n and ξ(k)

n

represent the rotation angle for the nth element at the initial step and the kth refining

step (k = 1,2, · · · ,K), respectively. Similarly, let ϕ(0)
n and ϕ(k)

n denote the element phases

at the initial step and the kth refining step, respectively. At the kth refining step, the

approximated array pattern can be expressed as:

F (k)
θ

(θ,φ)≈
N∑

n=1
En,θ(θ,φ−ξ(k)

n ;
k−1∑
l=0

ξ(l)
n )e j{β⃗rn ·⃗u(θ,φ)+ϕ(k)

n } (4.9)

F (k)
φ (θ,φ)≈

N∑
n=1

En,φ(θ,φ−ξ(k)
n ;

k−1∑
l=0

ξ(l)
n )e j{β⃗rn ·⃗u(θ,φ)+ϕ(k)

n }. (4.10)

To reduce the error, the allowed range of the element rotation angle ξ(k)
n at the refining

steps are set smaller and smaller as the increase of k. When ξ(k)
n is small enough, the

synthesized array patterns will show good agreement with the full-wave simulated ones

including mutual coupling variation.

4.2.2 Shaped Pattern Synthesis Using the Element Rotation and

Excitation Phase Optimization

To facilitate the formulation, the realizable co-polarization (CoP) and cross-polarization

(XP) definitions presented in [44] is adopted to calculate the CoP and XP patterns. As is

seen in Fig. 4.2, the CoP is given by:

p⃗co = p⃗d − [p⃗d · u⃗(θ,φ)]⃗u(θ,φ)
| p⃗d − [p⃗d · u⃗(θ,φ)]⃗u(θ,φ)| . (4.11)

The realizable XP direction p⃗X is orthogonal with respect to both p⃗co and u⃗(θ,φ), which

is given as:

p⃗X = p⃗co × u⃗(θ,φ). (4.12)
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Figure 4.2: The CoP and XP defined in [44].

With (4.11) and (4.12), one then can calculate the approximated CoP and XP array

patterns at the kth step:

F (k)
co (θ,φ)≈

N∑
n=1

En,co(θ,φ−ξ(k)
n ;

k−1∑
l=0

ξ(l)
n )e j{β⃗rn ·⃗u(θ,φ)+ϕn} (4.13)

F (k)
X (θ,φ)≈

N∑
n=1

En,X (θ,φ−ξ(k)
n ;

k−1∑
l=0

ξ(l)
n )e j{β⃗rn ·⃗u(θ,φ)+ϕn}. (4.14)

where

En,co(θ,φ;
∑k−1

l=0 ξ(l)
n )= En,θ(θ,φ;

∑k−1
l=0 ξ(l)

n )⃗θ · p⃗co +En,φ(θ,φ;
∑k−1

l=0 ξ(l)
n )φ⃗ · p⃗co (4.15)

En,X (θ,φ;
∑k−1

l=0 ξ(l)
n )= En,θ(θ,φ;

∑k−1
l=0 ξ(l)

n )⃗θ · p⃗X +En,φ(θ,φ;
∑k−1

l=0 ξ(l)
n )φ⃗ · p⃗X . (4.16)

In the above, En,θ(θ,φ;
∑k−1

l=0 ξ(l)
n ) and En,φ(θ,φ;

∑k−1
l=0 ξ(l)

n ) are obtained with full-wave

simulation after the (k−1)th refining step.

To synthesize a power pattern with desired shape, subject to constraints on sidelobe

level (SLL) and XP level (XPL), the cost function utilized in [20] is referenced with

proper extension. Suppose that the desired CoP main lobe is denoted by Pt(θ,φ), and the

anticipated SLL and XPL are denoted by ΓSLL and ΓX PL, respectively. The cost function

can be constructed as:

f = W1
B

B∑
b=1

{|F (k)
co (θb,φb)|2 −Pt(θb,φb)}2 + W2

C

C∑
c=1

1
4 (X c +|X c|)2 + W3

D

D∑
d=1

1
4 (Yd +|Yd|)2

(4.17)
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where  X c = |F (k)
co (θc,φc)|2 −ΓSLL; θc,φc ∈SLL region

Yd = |F (k)
X (θd,φd)|2 −ΓX PL; θd,φd ∈XPL region.

(4.18)

In the above, W1, W2, and W3 are weighting factors. (θb,φb) for b = 1,2, · · · ,B represent

sampling angles within the main lobe region of the CoP, whereas (θc,φc) for c = 1,2, · · · ,C

represent sampling angles in the sidelobe region. (θd,φd) for d = 1,2, ...,D correspond to

sampling angles in the region of interest where XPL control is necessary. The principle

behind the construction of the cost function (4.17) is similar to that for the cost function

(3.7) in Chapter 3. Further explanations are thus omitted here.

4.2.3 The Refined Antenna Rotation and Excitation Phase

Optimization Strategy

The overall process of the developed method is listed in Algorithm 2. Note that, at the

kth step, the rotation angle range is set as:

ξ(k)
n ∈ sk(1+δ(−k))[−π/2,π/2] (4.19)

where δ(·) is a step function, which is equal to 1 for k = 0 and 0 for k > 0. s (0< s < 1) is

a scale factor. The choice of the parameter s has an impact on the number of refining

steps needed to minimize the error. A larger value of s (e.g., closer to 1) typically requires

more refining steps and increases the computation time. On the other hand, selecting a

smaller value for s leads to faster convergence of the optimization procedure but may

affect the resulting performance of the array pattern. s is set to 1/3 throughout this

chapter, which has been found to achieve acceptable accuracy in the synthesis examples

with typically only three refining steps.

The PSO algorithm, which was used in the Chapter 3, is adopted for the optimization

of rotation angles and excitation phases at each step. The optimization procedure using

the PSO is outlined in Algorithm 3.
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Algorithm 2 The developed refined joint rotation/phase optimization algorithm for
vectorial shaped pattern synthesis
1: Set the configurations of the antenna array such as element structure, element count and

array geometry. Set Pt(θb,φb), ΓSLL, and ΓX PL;
2: Acquire VAEPs with full-wave simulation of the array, or by using analytical expressions, or

simulation of a single element with periodical boundaries;
3: Set k = 0, and initialize s = 1/3;
4: Optimize ξ(k)

n ∈ sk[1+δ(k)][−π/2,π/2] and ϕ(k)
n ∈ [0,2π] for n = 1,2, · · · , N by using the PSO-

based shaped pattern synthesis given in Algorithm 3.
5: Update the element rotations ξ(k)

n = ξ(k)
n +ξ(k−1)

n for n = 1,2, · · · , N.
6: With the optimized ξ(k)

n and ϕ(k)
n , full-wave simulate the element-rotated array to obtain the

real array pattern and acquire all VAEPs at current states of rotations from the simulation;
7: Check if the error meet the prescribed tolerance: if yes, exit the whole procedure; otherwise,

set k = k+1 and repeat Step 4 to 7.

Algorithm 3 The developed PSO-based shaped pattern synthesis sub-procedure.
1: Input the desired pattern characteristics including Pt(θb,φb), ΓSLL, ΓX PL, and input the

maximum iteration Im, population size Np, problem dimension Dp, as well as weighting
factors W1, W2 and W3.

2: Randomly generate Np particles consist of {(ξ(k)
n ,ϕ(k)

n ); |n = 1,2, ..., N} in the given Dp dimen-
sional solution space.

3: For each particle in the population, evaluate its cost using the designed cost function (4.17).
4: Compare the cost value of the current particle with that of the pbest, which is best solution

this particle achieved so far. If it is better than pbest, let pbest equal the current location,
and update the cost value with the current cost value.

5: Compare the current cost value with gbest, which is the best solution the whole swarm
achieved so far. If the current value is better than that of gbest, replace the location and cost
value of gbest with that of the current particle.

6: Update the velocity and position of the current particle.
7: Loop to step 3 until the maximum iteration Im is reached or the best fit rotation angles ξ(k)

n
and excitation phases ϕ(k)

n remain unchanged for multiple iterations.

4.3 Synthesis Results

In this section, three typical examples are provided to evaluate the performance of the

developed method. Comparisons between synthesized and full-wave simulated results

are provided. Furthermore, comparisons with other methods are also included.
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4.3.1 Cosecant-Squared Pattern Synthesis for a 29-Dipole Array

In the first example, a cosecant-squared pattern that was obtained in [53] by optimizing

29 nonuniform positions and phases is synthesized with the developed method. This

pattern was also synthesized in [20] by optimizing the antenna rotations and excitation

phases with the analytical expression of a rotated ideal dipole array without considering

the mutual coupling effect. Now, the developed refined joint rotation/phase optimization

method is applied to synthesize this pattern. Suppose p⃗d = y⃗. According to (4.11) and

(4.12), it can be known that on the xoz plane, p⃗co and p⃗X are parallel to ϕ⃗ and θ⃗,

respectively. The same cosecant-squared function as that used in [53] is chosen for the

desired main lobe shape, and ΓSLL =ΓX PL =−22 dB are set for the SLL and XPL. In the

sub-procedure of PSO-based shaped pattern synthesis, the parameters are set as follows:

Dp = 58 for the problem dimension, Np = 110 for the population size, Im = 2000 for the

maximum number of iterations, and W1 = 5 and W2 =W3 = 1 for the weighting factors in

the cost function.

At the initial step (k = 0), the developed method adopts analytical element patterns

of rotated dipoles to find initial element rotation angles and phases. The obtained array

patterns are given in Fig. 4.3(a). One can see that the SLL is much lower than that

obtained in [53]. However, the pattern performance can deteriorate considerably when

the mutual coupling is included in practice. To illustrate this, a real rotated dipole array

working at 3 GHz is built in which each dipole having a length of 48 mm and diameter

of 1 mm is rotated and excited according to the synthesized results in the initial step.

The real array pattern is obtained through full-wave simulation, and it is also plotted

in Fig. 4.3(a). One can see that the full-wave simulated array pattern including mutual

coupling deteriorates significantly in both sidelobe and main lobe regions. The SLL

greatly increases from −21.90 dB to −14.73 dB.

To improve the synthesis accuracy, the developed method adopts several refining
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Figure 4.3: The cosecant-squared shaped patterns synthesized by the developed method
as well as the full-wave simulated real patterns. (a) shows the results at the initial step,
as well as the pattern obtained in [53] for comparison, and (b)-(d) show results obtained
in the 1st, 2nd and 3rd refining step, respectively.

steps, as described in Algorithm 3. By setting s = 1/3, the allowable element rotation

angle range becomes smaller and smaller as k increases. Fig. 4.3(b)-(d) show the patterns

using the rotations and phases obtained at three refining steps, respectively. As can be

seen, as the number of refining steps increases, the synthesized pattern becomes more

and more approaching the real one. At the 3rd step, they become almost the same. Table

4.1 shows the SLL and XPL for the synthesized and real array patterns at different

refining steps of the developed method. At the 3rd step, the obtained real SLL is reduced

to −20.05 dB, and the XPL is −20.04 dB. In comparison to the result without refining,

5.32 dB reduction in the SLL is achieved.
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Table 4.1: THE SYNTHESIZED AS WELL AS FULL-WAVE SIMULATED SLLS AND XPLS AT

THE FOUR STEPS FOR THE ROTATED DIPOLE ARRAY.

kth Synthesized (dB) Simulated (dB)
SLL XPL SLL XPL

0 −21.90 −21.93 −14.73 −20.32
1 −20.91 −21.23 −18.07 −19.56
2 −20.65 −20.82 −20.04 −19.71
3 −20.42 −20.62 −20.05 −20.04

Fig. 4.4(a) shows the obtained element rotation angles at the four steps, and Fig.

4.4(b) shows the excitation phases. One can see that the synthesized rotations and

phases vary significantly from the initial step to the 1st refining step, while they have

not changed much from the 2nd and 3rd refining step as expected. Further refining is

thus unnecessary.

4.3.2 Synthesis of a 24-Element U-Slot Patch Antenna Array with

a Flat-Top Pattern

For further validation, a 24-element 0.55λ-spaced linear array is considered for synthe-

sizing a flat-top power pattern. The array element is designed as a U-slot loaded patch

antenna operating at 10 GHz (analysis and design procedure for this antenna can be

found in [107]). The geometry of the antenna model with detailed parameters is shown

in Fig. 4.5. Assume p⃗d = y⃗, in the xoz plane, the CoP and XP are ϕ⃗ and θ⃗, respectively.

The main lobe region is chosen as |θ| ≤ 9◦ whilst the sidelobe region is |θ| ≥ 13◦. Set

ΓSLL =ΓX PL =−16 dB, Dp = 48, Np = 60 in this example, and other parameters including

M, W1, W2, and W3 are the same as those in the first example.

At the initial step, VAEPs are obtained through simulations of a periodic-bounded

U-slot loaded patch antenna. The flat-top power pattern is synthesized using the ap-

proximated array expressions, but it is observed that there is a difference between

the synthesized pattern and the actual one, as depicted in Fig. 4.6(a). The synthesized
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Figure 4.4: The optimized rotations and excitation phases at the four steps for the
cosecant-squared pattern synthesis case. (a) the rotation angles, and (b) the excitation
phases.
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Figure 4.5: Geometry of the U-slot loaded patch antenna. The sizes are given as follows:
d1 = d6 = 0.55 mm, d2 = 1.85 mm, d3 = 6.60 mm, d4 = 4.40 mm, d5 = 2.30 mm, L1 = 9.40
mm, L2 = 9.20 mm, h = 1.575 mm, and εr = 2.2.

pattern has an SLL of −15.85 dB, XPL of −15.97 dB, and main lobe ripple of ±0.45

dB. However, the actual pattern has higher values of SLL, XPL, and main lobe ripple,

which are −12.75 dB, −13.11 dB, and ±0.73 dB, respectively. In order to improve the

performance of the actual pattern, three refining steps are employed to refine the rota-

tions and phases. The synthesized and full-wave simulated patterns at these refining

steps are shown in Figures 4.6(b)-(d), respectively. It is observed that the synthesized

patterns increasingly match the corresponding actual ones as the number of refining

steps increases. The maximum SLLs, XPLs, and main lobe ripples for both synthesized

and actual patterns at different refining steps are listed in Table 4.2. At the 3rd step, the

actual SLL and XPL are −14.58 dB and −14.57 dB, respectively, which are very close to
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Figure 4.6: The synthesized and full-wave simulated flat-top shaped patterns at different
steps. (a) shows the results at the initial step, and (b)-(d) show results obtained in the
1st, 2nd, and 3rd refining step, respectively.

Table 4.2: THE SYNTHESIZED AND FULL-WAVE SIMULATED SLLS, XPLS, AND MAIN

LOBE RIPPLE AT THE FOUR STEPS FOR THE ROTATED U-SLOT MICROSTRIP ANTENNA

ARRAY.

kth Synthesized Results (dB) Simulated Results (dB)
SLL XPL Ripple SLL XPL Ripple

0 −15.85 −15.97 ±0.45 −12.75 −13.11 ±0.73
1 −15.23 −15.57 ±0.55 −13.92 −15.23 ±0.44
2 −15.09 −15.14 ±0.44 −13.98 −13.92 ±0.45
3 −14.94 −14.74 ±0.65 −14.58 −14.57 ±0.58

their corresponding synthesized values. Fig. 4.7(a) shows the obtained element rotations,

and Fig. 4.7(b) shows the excitation phases. The resulting 24-element rotated U-slot

loaded microstrip antenna array after the third refining step is shown in Fig. 4.8.
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Figure 4.7: The obtained rotation angles and excitation phases at the four steps in the
flat-top shaped pattern synthesis case. (a) the rotation angles, and (b) the excitation
phases.

Figure 4.8: The 24-element rotated U-slot loaded patch antenna array obtained in the
flat-top shaped pattern synthesis case.

4.3.3 Circular Flat-Top Pattern Synthesis for a 121-Element

Cavity-Backed Patch Antenna Planar Array

In this example, the developed method is applied to synthesize a shaped power pattern

for a planar array. A circular flat-top pattern was previously synthesized for an 11×11

half-wavelength-spaced planar array in [6] by optimizing the excitation amplitudes

and phases without taking into account mutual coupling effects. The main lobe region

was defined as θ ≤ 15◦ and φ ∈ (0◦,360◦), with a maximum SLL smaller than −10 dB

in θ ≥ 20◦ and φ ∈ (0◦,360◦), as shown in Fig. 4(a) of [6]. Now, the developed method is

utilized to reproduce the pattern by optimizing element rotations and phases without

amplitude weighting. The same planar array size is considered, and the element chosen

is a cavity-backed patch antenna designed in [108]. Suppose p⃗d = y⃗, unlike the linear

array pattern synthesis cases, the realizable CoP and XP will be changing with (θ,ϕ)

58



4.4. FABRICATION AND MEASUREMENT

according to the definitions (4.11) and (4.12). In this example, the same circular flat-

top function as that in [6] is set as the target pattern, and the parameters are set as:

ΓSLL = ΓX PL = −11 dB, Dp = 242, Np = 400. Other parameters are used the same as

those in the first example.

Fig. 4.9(a) to (h) show the CoP and XP of both the synthesized and full-wave simulated

array patterns synthesized by the developed method, at both the initial and the third

refining steps. As is seen, in the end, the synthesized and real patterns are nearly

identical for both the CoP and XP components. Table 4.3 lists the maximum SLLs, XPLs,

and main lobe ripples for both the synthesized and real array patterns at all four steps.

The real SLL and XPL decrease as the refining process is performed. At the 3rd step, the

obtained real SLL and XPL are −10.32 dB and −10.18 dB, respectively, and the ripple

is ±1.23 dB. Fig. 4.10 shows the array arrangement obtained with optimized element

rotations. When compared with the result in Fig. 4(a) of [6], the current obtained pattern,

including mutual coupling, has better sidelobe performance, and the synthesized array

does not require amplitude weighting, thereby saving many unequal power dividers.

4.4 Fabrication and Measurement

The 24 rotated U-slot antenna array with a flat-top shaped pattern obtained in Example

2 has been fabricated, as shown in Fig. 4.11. The array is designed and constructed

using two substrates with the same relative permittivity (εr = 2.2), but with different

dimensions. The upper substrate measures 429 mm × 131 mm with a thickness of 1.575

mm, while the lower substrate measures 429 mm × 58 mm with a thickness of 0.508

mm. The array is structured as follows, from top to bottom: rotated U-slot antennas, a

radio frequency (RF) ground, and a feeding network. The feeding network of the antenna

array is implemented as a Wilkinson power divider. The Wilkinson power divider is a

commonly used microwave component that enables power splitting or combining in RF
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.9: The circular flat-top shaped patterns synthesized by the developed method
and the corresponding full-wave simulated ones. (a) and (b) show the synthesized CoP
and XP at the initial step; (c) and (d) show the full-wave simulated CoP and XP at the
initial step; (e) and (f) show the synthesized CoP and XP at 3rd refining step; (g) and (h)
show the full-wave simulated CoP and XP at the 3rd refining step.
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Table 4.3: THE SYNTHESIZED AS WELL AS THE FULL-WAVE SIMULATED SLLS, XPLS,
AND MAIN LOBE RIPPLE AT THE FOUR STEPS IN THE CIRCULAR FLAT-TOP SHAPED

PATTERN SYNTHESIS EXAMPLE.

kth Synthesized Results (dB) Simulated Results (dB)
SLL XPL Ripple SLL XPL Ripple

0 −10.62 −10.83 ±1.14 −7.57 −8.25 ±1.60
1 −10.77 −10.63 ±1.09 −9.25 −9.88 ±1.19
2 −10.30 −10.20 ±1.14 −9.83 −10.39 ±1.17
3 −10.32 −10.32 ±1.17 −10.32 −10.18 ±1.23

 

Figure 4.10: The obtained element-rotated planar array in the circular flat-top shaped
pattern synthesis example.

and microwave systems. The designed Wilkinson power divider in this study features

one input port for connection to the feeding cables and 24 output ports for connection to

the rotated antennas through 24 metal vias, which are insulated from the RF ground.

50 Ω resistors are inserted between each pair of branched transmission lines to improve

isolation. The Wilkinson power divider is designed to provide equal output amplitudes

but different phases. The optimized phases required for achieving the desired flat-top

shaped pattern are achieved by incorporating phase shifting lines with varying lengths

in the design, as can be seen in Fig. 4.11(b). Finally, to keep the whole structure flat, a

hard plastic plate has been attached to the lower substrate, as the substrate layer is thin

and long and tends to bend easily.

The measured patterns, along with the simulated ones, are shown in Fig. 4.12. The
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(a) (b)

(c)
Figure 4.11: The fabricated 24-element rotated U-slot microstrip antenna array with a
feeding network and a supportive plastic plate, as well as the photo of this array under
the test.
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Figure 4.12: The measured and full-wave simulated CoP and XP patterns for the 24-
element antenna array integrated with the feeding network.

results indicate that the measured CoP pattern exhibits a main lobe ripple of ±0.84

dB, which is slightly higher than the simulated ripple of ±0.67 dB. Additionally, the

measured SLL and XPL are −13.33 dB and −12.67 dB, respectively, which are 1.27 dB

and 1.11 dB worse than the simulated values. Although there is a slight degradation
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in performance, probably due to fabrication and assembly errors and a non-ideal mea-

surement environment, the measured patterns are in good agreement with the full-wave

simulation results.

4.5 Summary

A refined joint element rotation and excitation phase optimization strategy has been

developed to synthesize shaped power patterns for linear and planar antenna arrays

considering mutual coupling. This strategy is a significant extension of the element

rotation technique used only for synthesizing linear arrays with ideally rotated dipoles

where an analytical dipole pattern expression is used and mutual coupling effect for

practical antenna arrays cannot be considered. For a more general antenna array, the

key problem of synthesizing vectorial shaped power patterns by using joint element

rotation/phase optimization is that one does not know the pattern expression for an

element-rotated array with rotation angles to be optimized. The developed refined

optimization strategy provides a very useful solution. Three synthesis examples have

been provided. Synthesized results show that the developed refined rotation/phase

optimization strategy is quite effective and robust for obtaining shaped patterns for

different antenna arrays. The synthesized patterns exhibits the desired CoP main lobe

shapes while maintaining reasonable SLL and XPL control. Measured results agree well

with the simulated results.

Last but not least, it is noted that the developed strategy does not require nonuniform

amplitude weighting which is usually required in conventional shaped pattern synthesis

methods, thus avoiding the use of many unequal power dividers.
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5
SHAPED-BEAM PATTERN CYLINDRICAL CONFORMAL

ARRAY DESIGN BASED ON ELEMENT ROTATION

5.1 Introduction

In Chapter 4, shaped-beam patterns were synthesized employing the element rotation

technique. Linear and planar arrays with arbitrary antenna structures were considered.

In many applications like aircraft, antenna arrays are required to be tightly conformed

to a curved surface to preserve their aerodynamic or hydrodynamic properties. In this

case, conformal arrays must be employed. In this chapter, the element rotation method

is extended to synthesize shaped patterns for conformal arrays. Different from linear or

planar arrays, antennas in conformal arrays are conformed to curved surfaces. In this

case, the rotation will not only change the mutual coupling but cause severe deformation

to the rotated antennas. In addition, since different antennas have different normal

directions in the conformal array, coordinate transformations for both scalar element

patterns and polarization vectors are required to calculate the array pattern of rotated
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antennas. Moreover, proper interpolation is also necessary to make all the element

patterns transformed into the global coordinate system (GCS) to calculate the array

pattern. This chapter will address all these issues and try to synthesize shaped patterns

for cylindrical conformal arrays considering mutual coupling employing the element

rotation technique.

In this chapter, formulation and algorithm are discussed in the Section 5.2. Section

5.3 presents some numerical results. In Section 5.4, measurement results are presented.

Section 5.5 draws the conclusion.

5.2 Formulations and Optimization Algorithm

This section describes the formulations and algorithm that are used to achieve shaped

pattern synthesis for cylindrical conformal arrays considering mutual coupling and

arbitrary antenna structure.

5.2.1 Vectorial Pattern Approximation of a Rotated Element in

Cylindrical Conformal Array

While the following formulation is applicable to cylindrical arrays with multiple rows of

elements, for simplicity, a single row configuration is assumed. Consider a cylindrical

conformal array with N uniformly distributed elements arranged in a row on the surface

of a cylinder with a radius r0. A GCS xyz with an origin O is established with its y-axis

coinciding with the center axis of the cylinder, as illustrated in Fig. 5.1 from a side view in

the +y-axis direction. For the nth (n = 1,2, ..., N) element, a local coordinate system (LCS)

x′n y′nz′n is established, with x′n-axis being tangent to the cylinder circular arc, y′n-axis

being parallel to y-axis, and z′n-axis directed along the radial line passing through the

origin O and O′
n, where O′

n denotes the origin of the LCS.
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Figure 5.1: Element rotation in cylindrical conformal array.

As depicted in the left inset of Fig. 5.1, suppose the nth element is rotated by an

azimuth angle ξn with respect to z′n-axis in its LCS. Its far-field radiation pattern in the

LCS can be written as:

E⃗n(θ′
n,m,φ′

n,m;ξn)= Eθ′n(θ′
n,m,φ′

n,m;ξn )⃗θ′
n +Eφ′

n
(θ′

n,m,φ′
n,m;ξn)φ⃗′

n (5.1)

where θ′
n,m and φ′

n,m denote the elevation and azimuth angle of the LCS, m = 1,2, ..., M

denote discrete sampling points, θ⃗′
n and φ⃗′

n are the polarization unit vectors in the θ′
n

and φ′
n directions, respectively. Eθ′n(θ′

n,m,φ′
n,m;ξn) and Eφ′

n
(θ′

n,m,φ′
n,m;ξn) are the θ′

n- and

φ′
n-components of the vectorial active element pattern (VAEP). Similarly, VAEPs of

the elements in the cylindrical array environment can be acquired through full-wave

simulation using the high-frequency simulation software (HFSS).

For any given rotation angles ξn (n = 1,2, ..., N), the rotated VAEPs in the cylindrical

conformal array can be obtained from a single full-wave simulation of this array. However,

in this particular problem, the rotation angles ξn are not initially available. Therefore, a

suitable method is required to predict the VAEPs of elements with any possible rotation

angles for evaluating the pattern performance. An effective method, which has been used

in Chapter 4, is to first obtain non-rotated VAEPs by full-wave simulating the array with

non-rotated elements. Then, the VAEP of each element rotated by an angle ξn can be

predicted through mathematical calculations based on the non-rotated VAEP as:

E⃗n(θ′
n,m,φ′

n,m;ξn)= Eθ′n(θ′
n,m,φ′

n,m −ξn;0)⃗θ′
n +Eφ′

n
(θ′

n,m,φ′
n,m −ξn;0)φ⃗′

n (5.2)
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Clearly, some inaccuracies caused by the variations of antenna curvature and mutual

coupling after rotation are introduced in the rotated VAEP prediction (5.2).

As an illustration, Fig. 5.2 shows the rotation of a conformed antenna. With the VAEP

Eθ′n(θ′
n,m,φ′

n,m;0) and Eφ′
n
(θ′

n,m,φ′
n,m;0) of the non-rotated element shown in Fig. 5.2 (a),

the rotated VAEP can be predicted using (5.2). But owing to the neglect of the antenna

curvature variation, the element is actually considered to be rotated with its curvature

maintained, as shown in Fig. 5.2 (b). It is much different from the element rotated

with the same angle but with real curvature, as shown in Fig. 5.2 (c). Nevertheless, the

direct rotation in Fig. 5.2 (b) can be an approximation of the real situation in Fig. 5.2 (c).

Generally, given the antenna structure and cylinder configuration, the approximation

would be more accurate when the rotation angle is small.

To analyze the effect of rotation angles on the approximation error, a rotated element

pattern approximation example is presented. A 9-element cylindrical array with a radius

of r0 = 255.5 mm is considered, and the U-slot loaded patch antenna shown in Fig. 4.5

is selected as the element. The antennas are evenly distributed with an inter-element

spacing of 0.59λ in the circumferential direction, corresponding to an angular interval of

4◦. Initially, all elements are not rotated. The array is simulated using the HFSS, and

the θ- and φ-component element patterns of the center element are acquired from the

simulation. The proposed approximation method is then applied to predict the element

patterns with rotation angles of 3.33◦, 10◦, 30◦, and 60◦ using the acquired element

patterns. In parallel, several full-wave simulations are conducted with the center element

rotated by 3.33◦, 10◦, 30◦, and 60◦, respectively (the rest elements remain unchanged).

The simulated rotated element patterns are obtained from these simulations and serve

as comparisons to evaluate the error of the approximated patterns.

The predicted and full-wave simulated θ- and φ-component electrical patterns are

illustrated in Fig. 5.3 and Fig. 5.4, respectively. It can be observed that both electrical
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(a) (b) (c)
Figure 5.2: Illustration of the antenna curvature variation when rotating an antenna in
conformal array. (a) without rotation, (b) directly rotated without considering deforma-
tion, and (c) actual antenna rotation status.

components generally exhibit increasing variations between the approximated and

simulated patterns as the rotation angle increases. To quantify the approximation

error, the root mean squared errors (RMSEs) are calculated between the predicted

and simulated electrical field amplitudes. The RMSE values corresponding to different

rotation angles are depicted in Fig. 5.5, further demonstrating a general increase in

error with larger rotation angles. These investigations demonstrate that as the rotation

angle decreases, the approximation accuracy is generally improved. Therefore, a refined

strategy can naturally be exploited to gradually increase the approximation accuracy.

In order to calculate the array pattern, it is necessary to express the rotated VAEPs of

the different elements as functions of θ and φ in the common GCS by performing a proper

transformation. It is important to note that different elements in the cylindrical array

have different normal directions, which means that the LCSs in which the elements

are rotated have both translational and rotational transformation relations with the

GCS, as shown in Fig. 5.1. This is a more complicated situation than that of linear and

planar arrays, where the LCSs only have a translational transformation relation with

the GCS. Therefore, in addition to transforming both components of the scalar pattern,

i.e., Eθ′n(θ′
n,m,φ′

n,m −ξn;0), Eφ′
n
(θ′

n,m,φ′
n,m −ξn;0), it is also necessary to transform the

polarization unit vectors θ⃗′
n and φ⃗′

n from LCS to GCS.

Firstly, θ⃗′
n and φ⃗′

n can be expressed in the LCS by the Cartesian unit vectors x⃗′n, y⃗′n,
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Figure 5.3: The predicted and full-wave simulated θ-component electrical patterns in the
main observation cut of a center element with rotation angles of (a) 3.33◦, (b) 10◦, (c) 30◦,
and (d) 60◦, respectively.

and z⃗′n as:

θ⃗′
n = cosθ′

n,m cosφ′
n,m x⃗′n +cosθ′

n,m sinφ′
n,m y⃗′n −sinθ′

n,m z⃗′n (5.3)

φ⃗′
n =−sinφ′

n,m x⃗′n +cosφ′
n,m y⃗′n (5.4)

By using the coordinate transformation matrix from LCS to GCS

Mt =


cosϑn 0 −sinϑn

0 1 0

sinϑn 0 cosϑn

, (5.5)

θ⃗′
n and φ⃗′

n can be expressed in the GCS as:

θ⃗′
n = [

cosθ′
n,m cosφ′

n,m,cosθ′
n,m sinφ′

n,m,−sinθ′
n,m

]
Mt

[
x⃗, y⃗, z⃗

]T (5.6)
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Figure 5.4: The predicted and full-wave simulated φ-component electrical patterns in
the main observation cut of a center element with rotation angles of (a) 3.33◦, (b) 10◦, (c)
30◦, and (d) 60◦, respectively.
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Figure 5.5: The root mean squared errors (RMSEs) of the predicted and simulated Eθ

and Eφ with different rotation angles.
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φ⃗′
n = [ −sinφ′

n,m,cosφ′
n,m,0

]
Mt

[
x⃗, y⃗, z⃗

]T (5.7)

where ϑn denotes the elevation angles of the nth element in the GCS as shown in Fig. 5.1,

and the superscript [·]T denotes the matrix transpose.

Secondly, to express the scalar pattern Eθ′n(θ′
n,m,φ′

n,m − ξn;0) and Eφ′
n
(θ′

n,m,φ′
n,m −

ξn;0) of the VAEP as functions of θ and φ in the GCS through a rotational and a

translational transformation, a method illustrated in Fig. 5.6 can be used. For the

rotational transformation, given that the scalar pattern of the VAEP and its spatial

angles θ′
n,m and φ′

n,m of the LCS are known, it is possible to obtain the scalar pattern of

the VAEP in the GCS by associating (θ′
n,m, φ′

n,m) with (θ, φ) through a proper method.

One approach is to express an arbitrary propagation unit vector u⃗ simultaneously in the

LCS and GCS, and then use this unit vector as a medium to establish the relationship

between (θ′
n,m, φ′

n,m) and (θ, φ). To achieve this, u⃗ can be expressed in the LCS as follows:

u⃗ = sinθ′
n,m cosφ′

n,m x⃗′n +sinθ′
n,m sinφ′

n,m y⃗′n +cosθ′
n,m z⃗′n (5.8)

It can also be expressed in the GCS as:

u⃗ = u x⃗x+uy y⃗+uz z⃗ (5.9)

where ux, uy and uz can be obtained as:
ux

uy

uz

=MT
t


sinθ′

n,m cosφ′
n,m

sinθ′
n,m sinφ′

n,m

cosθ′
n,m

 (5.10)

Then, θn,m and φn,m can be associated with θ′
n,m and φ′

n,m by:
θn,m = arccosuz, θn,m ∈ [0,π]

φn,m = arctan
(uy

ux

)
, φn,m ∈ [0,2π].

(5.11)

Once the relationship between θn,m and φn,m of the GCS and θ′
n,m and φ′

n,m of the LCS

are obtained, one can naturally obtain the rotated VAEP in the GCS:

E⃗n(θn,m,φn,m;ξn)≈ En,θ(θn,m,φn,m;ξn)e jβ⃗rn ·⃗uθ⃗′
n +En,φ(θn,m,φn,m;ξn)e jβ⃗rn ·⃗uφ⃗′

n (5.12)
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Figure 5.6: Illustration of the transformation from the LCS to the GCS.

where j =p−1 is the imaginary unit, β= 2π/λ, r⃗n and u⃗ are the nth element location and

the propagation unit vector, respectively, both expressed in the GCS. θ⃗′
n and φ⃗′

n are ex-

pressed in GCS obtained with (5.6) and (5.7). En,θ(θn,m,φn,m;ξn) and En,φ(θn,m,φn,m;ξn)

are representations of Eθ′n(θ′
n,m,φ′

n,m −ξn;0) and Eφ′
n
(θ′

n,m,φ′
n,m −ξn;0) in the GCS, res-

pectively. e jβ⃗rn ·⃗u is a phase term applied to achieve the aforementioned translational

transformation from O′
n to O as shown in Fig. 5.6.

5.2.2 The Spatial Angle Sampling Grid Unification to Obtain the

Array Pattern

To facilitate the formulation of vectorial array pattern expressions, the co-polarized (CoP)

and cross-polarized (XP) definitions (4.11) and (4.12) are employed to calculate the CoP

and XP patterns, respectively. The CoP/XP pattern of the nth rotated element can be

obtained through vector projection as:

En,co(θn,m,φn,m;ξn)≈ En,θ(θn,m,φn,m;ξn)e jβ⃗rn ·⃗uθ⃗′
n · p⃗co +En,φ(θn,m,φn,m;ξn)e jβ⃗rn ·⃗uφ⃗′

n · p⃗co

(5.13)

En,X (θn,m,φn,m;ξn)≈ En,θ(θn,m,φn,m;ξn)e jβ⃗rn ·⃗uθ⃗′
n · p⃗X +En,φ(θn,m,φn,m;ξn)e jβ⃗rn ·⃗uφ⃗′

n · p⃗X

(5.14)

From (5.10) and (5.11), it is seen that the spatial angles (θn,m, φn,m) are non-linearly

related to (θ′
n,m, φ′

n,m). Since the VAEPs in the LCSs are obtained from full-wave simula-

tion using discrete and uniform spatial angle samplings of θ′
n,m and φ′

n,m, the calculated
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θn,m and φn,m are nonuniformly distributed, and they differ for different elements. There-

fore, to calculate the array pattern, it is necessary to perform proper interpolation that

allows all the rotated VAEPs to share an identical spatial angle sampling grid of θm and

φm. A scattered interpolation approach based on the Delaunay triangulation is utilized

here. The scattered VAEPs data is used as vertexes to generate triangular surfaces based

on the Delaunay triangulation criteria [109]. These surfaces can be used to evaluate

VAEP values at any query angle θm and φm lying in the convex hull of the known scat-

tered data set of θn,m and φn,m. As a result, the CoP and XP of the rotated VAEP at a

unified spatial angle sampling grid in the GCS can be obtained as:

En,co(θn,m,φn,m;ξn)
f Int=⇒ EInt

n,co(θm,φm;ξn) (5.15)

En,X (θn,m,φn,m;ξn)
f Int=⇒ EInt

n,X (θm,φm;ξn) (5.16)

where f Int denotes the scattered interpolation function. For convenience, the Matlab

integrated Delaunay-triangulation-based scattered interpolation function is employed

here.

Finally, the CoP and XP patterns of the cylindrical conformal array with rotated

antenna elements are obtained as:

Fco(θm,φm)=
N∑

n=1
EInt

n,co(θm,φm;ξn)e jϕn (5.17)

FX (θm,φm)=
N∑

n=1
EInt

n,X (θm,φm;ξn)e jϕn (5.18)

where ϕn is excitation phase of the nth element. Note that, though (5.17) and (5.18) are

derived considering a cylindrical conformal array with one row of elements, it is also

applicable to cylindrical arrays with multiple rows of elements.
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5.2.3 Shaped-Beam Cylindrical Array Synthesis with the Refined

Rotation/Phase Optimization

To obtain ξn and ϕn for n = 1,2, ..., N that can yield desired shaped pattern with the

lowest possible sidelobe level (SLL) and XP level (XPL) for cylindrical conformal array, a

cost function is constructed as:

fc = W1

B

B∑
b=1

[
|Fco(θb,φb)|2 −Pt(θb,φb)

]2 + W2

C

C∑
c=1

[1
4

(X c +|X c|)
]2 + W3

D

D∑
d=1

[1
4

(Yd +|Yd|)
]2

(5.19)

where W1, W2 and W3 are weighting coefficients. Pt(θb,φb) is the desired main lobe,

where (θb,φb) for b = 1,2, ...,B are sampling angles in the CoP main lobe region. X c =
|Fco(θc,φc)|2 −ΓSLL, where (θc,φc) for c = 1,2, ...,C are sampling angles in the CoP

sidelobe region, and ΓSLL is the desired SLL. Yd = |FX (θd,φd)|2 −ΓX PL, where (θd,φd)

for d = 1,2, ...,D are sampling angles in the region where the XPL is required to be

constrained, and ΓX PL is the desired XPL. Explanations for the cost function (5.19) are

omitted here since the design principle is similar to that of the cost function (3.7) in

Chapter 3. With (5.19), the constriction factor particle swarm optimization (PSO) is

employed for the optimization.

Since the effects of antenna deformation and mutual coupling variations are ne-

glected in (5.2), the shaped-beam pattern synthesized using (5.17) and (5.18) through

joint rotation and phase optimization would differ greatly from the actual patterns. To

improve the accuracy, a refined strategy is adopted. In the refinement, the previous

cylindrical array with non-rotated elements is modified and then simulated to acquire

updated VAEPs. Then, with the updated VAEPs, joint rotation and phase optimization is

performed again, but within a smaller rotation angle range. Let ξ(k)
n and ϕ(k)

n be the rota-

tion angle and excitation phase of the nth element at the kth step, where k = 0,1,2, . . . ,K

(k = 0 represents the initial step). At the kth step of refinement, the CoP and XP patterns
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can be obtained:

F (k)
co (θm,φm)=

N∑
n=1

EInt
n,co(θm,φm;

k∑
l=0

ξ(l)
n )e jϕ(k)

n (5.20)

F (k)
X (θm,φm)=

N∑
n=1

EInt
n,X (θm,φm;

k∑
l=0

ξ(l)
n )e jϕ(k)

n (5.21)

where EInt
n,co(θm,φm;

∑k
l=0 ξ(l)

n ) and EInt
n,X (θm,φm;

∑k
l=0 ξ(l)

n ) are the rotated CoP and XP

VAEPs of the nth element in the GCS, that are obtained with its rotated VAEP En,co(θ′
n,m,

φ′
n,m;

∑k
l=0 ξ(l)

n ) and En,X (θ′
n,m,φ′

n,m;
∑k

l=0 ξ(l)
n ) in LCS through proper transformations of

the scalar patterns and polarization unit vectors, polarization vector projection, and

scattered interpolation. En,co(θ′
n,m,φ′

n,m;
∑k

l=0 ξ(l)
n ) and En,X (θ′

n,m,φ′
n,m;

∑k
l=0 ξ(l)

n ) can be

obtained as:

En,co(θ′
n,m,φ′

n,m;
k∑

l=0
ξ(l)

n )≈ Eθ′n(θ′
n,m,φ′

n,m−ξ(k)
n ;

k−1∑
l=0

ξ(l)
n )θ⃗′n · p⃗co+

Eφ′
n
(θ′

n,m,φ′
n,m −ξ(k)

n ;
k−1∑
l=0

ξ(l)
n )φ⃗′

n · p⃗co

(5.22)

En,X (θ′
n,m,φ′

n,m;
k∑

l=0
ξ(l)

n )≈ Eθ′n(θ′
n,m,φ′

n,m−ξ(k)
n ;

k−1∑
l=0

ξ(l)
n )θ⃗′n · p⃗X+

Eφ′
n
(θ′

n,m,φ′
n,m −ξ(k)

n ;
k−1∑
l=0

ξ(l)
n )φ⃗′

n · p⃗X

(5.23)

Similarly, in the refining steps, the rotation angles ξ(k)
n are set to become smaller and

smaller as k increases. As ξ(k)
n becomes small enough, the synthesized pattern would be

almost identical to the full-wave simulated one since the antenna curvature and mutual

coupling would not change much. After K refining steps, the total rotation angles and

final excitation phases would be ξn =∑K
k=0 ξ(k)

n and ϕn =ϕ(K)
n , respectively. The detailed

procedure of the developed shaped-beam cylindrical conformal array synthesis with

PSO-based refined rotation/phase optimization method is presented in Algorithm 4.
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Algorithm 4 Procedure of the vectorial shaped pattern synthesis considering mutual
coupling for cylindrical conformal array with the PSO-based joint rotation/phase opti-
mization method.
1: Set the cylindrical conformal array configurations including the cylinder radius r0, element

number N, element intervals ϑn and dy, antenna structure, desired main lobe Pt(θb,φb), as
well as the desired SLL ΓSLL and XPL ΓX PL;

2: Input the PSO parameters including the maximum iteration Im, population size Np, and
weighting factors W1, W2, and W3;

3: Model the cylindrical conformal array with non-rotated elements, and then simulate to
acquire all the embedded VAEPs in the LCSs.

4: Set k = 0;
5: Randomly generate Np particles consists of the rotation angles ξ(k)

n ∈ sk[1+δ(k)][−π/2,π/2]
(s ∈ (0,1), ξ(k)

n decreases as k increases) and excitation phases ϕ(k)
n ∈ [0,2π] for n = 1,2, · · · , N.

6: With the simulated VAEPs, predict the VAEPs of the elements rotated by ξ(k)
n with (5.2), and

express them in the GCS through transformations of both the scalar patterns and polarization
unit vectors, and then interpolate to calculate the array pattern.

7: Optimize ξ(k)
n and ϕ(k)

n by using the PSO with the guidance of the cost function (5.19) to
synthesize desired shaped pattern with reduced SLL and constrained XPL.

8: Update the array in HFSS: flatten the antennas from its previous curvature, rotate with
the optimized angles ξ(k)

n , and re-conform to the cylinder; set the excitation phases as ϕ(k)
n .

Simulate the updated array to acquire the real array patterns.
9: Check if the error meet a preset tolerance: if so, output ξn = ∑k

0 ξ(k)
n and ϕn =ϕ(k)

n and exit;
otherwise, acquire all the VAEPs of the updated array, set k = k+1 and loop to Step 5.

5.3 Synthesis Results

In this section, three shaped-beam cylindrical conformal array synthesis examples are

presented to evaluate the developed method. In the examples, the rotation angle range

at the kth step is chosen as ξ(k)
n ∈ sk[1+δ(−k)][−π/2,π/2], where δ(k) = 1 for k = 0 and

δ(k)= 0 for k = 1,2, ...,K . s (0< s < 1) is a scale factor. If a larger value of s is used, more

refining steps are required to converge, while a smaller s can lead to faster convergence

but may limit the obtained pattern performance. Therefore, s = 1/3 is used to balance

pattern performance and time cost. In this case, only K = 3 refining steps are required to

obtain an accurate result. All the examples were tested on a workstation with an Intel

Xeon 6258R CPU at 2.70 GHz.
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5.3.1 Flat-Top Pattern Synthesis for a Cylindrical Array of 24

U-slot Loaded Patch Antennas

The first example illustrates the application of a refined joint rotation/phase optimization

method to synthesize a flat-top shaped pattern for a 24-element cylindrical conformal

array. The radius of the cylinder is set to r0 = 255.5 mm and the U-slot loaded patch

antenna shown in (4.5) is chosen as the element. The 24 U-slot loaded patch antennas are

evenly distributed with an inter-element spacing of 0.59λ in the circumferential direction

(the angular interval is 4◦). Assuming p⃗d = y⃗, the CoP and XP directions on the principal

observation plane (xoz plane) are respectively identical to φ⃗ and θ⃗ according to the

definitions in (4.11) and (4.12). The flat-top shaped beam region is set as θ ∈ [−20◦,15◦],

while the SLL region is θ ∈ [−90◦,−26◦]∪ [21◦,90◦]. The target SLL and XPL are set

as ΓSLL = ΓX PL = −16.5 dB. The parameter settings in the PSO are given as follows:

Np = 96 for the population size, Im = 2000 for the maximum number of iterations, and

W1 = 5, W2 =W3 = 1 for the weighting factors.

Initially (k = 0), the cylindrical array with non-rotated antenna elements is modeled

and simulated in HFSS to obtain the VAEPs. Subsequently, the rotation angles ξn ∈
[−π,π] and phases ϕn ∈ [0,2π] for n = 1,2, ..., N are optimized to synthesize the desired

flat-top pattern. The synthesized array patterns are presented in Fig. 5.7(a), which

indicate that the achieved SLL, XPL, and main lobe ripple are −16.06 dB, −16.10 dB, and

±0.64 dB, respectively. Nevertheless, the synthesized patterns may differ significantly

from the actual ones as the antenna deformation and mutual coupling change caused by

the rotation are disregarded. To demonstrate this, the initial cylindrical array is modified

and then simulated again. During the modification, the curved antenna elements are

flattened, rotated with the optimized angles, and then re-conformed to the curved surface.

The real patterns obtained with full-wave simulation are also depicted in Fig. 5.7(a). As

observed, the pattern performance in terms of the main lobe ripple, SLL, and especially
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Figure 5.7: The synthesized and full-wave simulated flat-top shaped patterns for the
cylindrical array with 24 rotated U-slot loaded patch antennas in the initial (a), 1st (b),
2nd (c), and 3rd (d) refining steps. (d) also shows the patterns obtained by the phase-only
and amplitude/phase optimization method.

the XPL (only −8.14 dB) deteriorates considerably compared to the synthesized patterns.

To improve the performance of the real pattern, three refining steps are conducted,

where the rotation angles in the 1st, 2nd, and 3rd refining steps are π/6, π/18, and π/54,

respectively. The obtained flat-top patterns in the three refining steps are shown in

Fig. 5.7(b), (c), and (d), respectively. It can be observed that the discrepancies become

smaller as k increases. At the 3rd refining step, the synthesized CoP and XP patterns

closely match the real ones. The SLL, XPL, and main lobe ripple of the real pattern are

−14.69 dB, −14.37 dB, and ±0.69 dB, respectively. In comparison to the real pattern

obtained in the initial step, the SLL and XPL have been improved by 0.8 dB and 6.23 dB,

respectively.
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The synthesized results and the comparison with the simulated patterns validate the

effectiveness of the developed approach. Table 5.1 shows the SLLs, XPLs, and main lobe

ripples of the synthesized and real patterns for different ks. It is important to note that

the synthesized SLLs and XPLs tend to slightly deteriorate as k increases. This happens

because the VAEPs updated from the full-wave simulated element-rotated arrays in

the refining steps consider the complicated mutual coupling change among the rotated

elements. Therefore, when synthesizing the shaped-beam pattern with these updated

VAEPs in a decreased rotation angle range, the obtained SLL and XPL become slightly

worse than those synthesized at the previous step. Nevertheless, the real SLL and XPL

gradually improve as k increases, which is the objective of the refined strategy. Fig. 5.8

shows the final status of the obtained cylindrical conformal array with rotated U-slot

antennas, and Table 5.2 lists the finally optimized rotation angles and excitation phases.

Furthermore, Fig. 5.9 displays the active |S11|s of different elements in the array at

different k. It is worth noting that the active |S11|s of all the elements remain below −15

dB, indicating good matching of the element-rotated cylindrical array.

In this example, it takes around 2.96 minutes for one-time PSO-based rotation/phase

optimization and 31 minutes for one-time HFSS simulation of the element-rotated

cylindrical conformal array. Therefore, the total time cost for the optimizations and

full-wave simulations by the developed method is approximately 2.26 hours. Moreover,

based on the Matlab recording profile and the HFSS solution data profile, the memory

occupied by the PSO-based optimization and full-wave simulation are 9.4 MB and 20.1

GB, respectively.

As a comparison, the phase-only and amplitude/phase optimization methods are

employed to synthesize the 24 U-slot loaded patch cylindrical array to produce the same

flat-top pattern by using the PSO. The full-wave simulated non-rotated VAEPs are used

as the element patterns. The parameters of the PSO are initialized as those in the joint
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Table 5.1: THE SYNTHESIZED AND SIMULATED MAXIMUM SLLS, XPLS, AND MAIN

LOBE RIPPLES FOR DIFFERENT kS IN EXAMPLE 1.

kth Synthesized (dB) Real (dB)
SLL XPL Ripple SLL XPL Ripple

0 −16.06 −16.10 ±0.64 −13.89 −8.14 ±1.40
1 −15.77 −15.68 ±0.62 −14.93 −13.31 ±1.00
2 −15.64 −15.44 ±0.52 −14.70 −14.23 ±0.66
3 −15.24 −15.03 ±0.61 −14.69 −14.37 ±0.69

z
x

y Unit: mm

9.20

9.
40
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Figure 5.8: The obtained element-rotated cylindrical conformal array with closed view of
the adopted U-slot loaded patch antenna in Example 1.
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Figure 5.9: The active |S11|s of the 24 rotated U-slot loaded patch antennas in the
cylindrical array for different ks.

rotation/phase optimization, except that the number of particles is set to Np = 48 for the

phase-only method. Fig. 5.7(d) shows the synthesized patterns. As can be seen, the SLL

and main lobe ripple obtained by the phase-only method are −11.04 dB and ±0.64 dB,

respectively. Although an equivalent main lobe ripple is obtained, the SLL optimized

by the phase-only method is much higher than that achieved by the developed method.
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The amplitude/phase method is able to obtain a slightly smaller main lobe ripple and

an equivalent SLL compared to the developed method. However, amplitude weighting

requires many unequal power dividers, which considerably increases the complexity

of the feeding network. Furthermore, the optimized excitations are used to excite the

array elements in the full-wave simulation. It is shown that the average realized gains

achieved by the phase-only, amplitude/phase, and rotation/phase methods are 8.85 dB,

8.70 dB, and 8.84 dB, respectively. Since the array apertures are identical for the three

methods, this indicates that the efficiency of the developed element-rotated cylindrical

array is equivalent to that of the phase-only or amplitude/phase weighted array with

non-rotated elements.

5.3.2 Cosecant-Squared Pattern Synthesis for a 32-Dipole

Cylindrical Array

Another example of synthesizing a cosecant-squared pattern for a dipole cylindrical

conformal array is presented in this section. A dipole with a length of 48 mm and a

diameter of 1 mm working at 3 GHz is chosen as the element. Thirty-two dipoles are

uniformly distributed around a cylinder with a radius of r0 = 900.4 mm at an angular

interval of 3.5◦ (the arc distance is 0.55λ). The desired polarization is still set as p⃗d = y⃗.

The cosecant-squared shaped beam region is set as θ ∈ [−20◦,10◦], while the SLL region

is θ ∈ [−90◦,−25◦]∪ [15◦,90◦]. The desired SLL and XPL are set as ΓSLL = ΓX PL =−17

dB. The population size of the PSO is set to Np = 96, while all other parameters are the

same as those used in the first example.

In the initial step (k = 0), the full-wave simulated VAEPs of non-rotated elements in

the array environment are used for the desired cosecant-squared pattern synthesis. Fig.

5.10(a) displays the synthesized and full-wave simulated patterns, showing that the SLL

and XPL values for the synthesized pattern are −16.57 dB and −16.63 dB, respectively.
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Table 5.2: THE FINALLY OPTIMIZED ROTATION ANGLES AND EXCITATION PHASES IN

EXAMPLE 1 AND EXAMPLE 2.

Example 1 Example 2
n Rotation (◦) Phase (◦) Rotation (◦) Phase (◦)
1 -183.2 51.0 23.4 309.0
2 -38.9 133.1 -79.0 259.8
3 -174.8 221.9 70.2 143.7
4 4.4 311.6 174.7 219.2
5 25.2 269.7 165.3 146.1
6 3.7 213.8 -167.1 90.4
7 -8.7 219.2 -172.0 26.0
8 11.9 184.0 -0.4 159.1
9 4.3 166.5 -3.1 115.6
10 -3.9 154.4 -5.0 98.6
11 8.2 134.5 -5.2 99.0
12 0.8 111.2 -1.5 107.3
13 -3.1 123.4 2.4 116.6
14 -1.1 152.6 2.4 121.4
15 6.6 207.1 2.6 153.6
16 -5.8 255.0 -2.8 183.5
17 -1.8 294.1 -12.9 199.9
18 0.1 327.2 26.8 203.1
19 -16.5 28.9 -24.5 268.4
20 7.4 65.8 -162.8 151.6
21 155.4 331.0 -4.8 43.6
22 -7.3 232.5 -8.1 123.7
23 167.0 160.2 1.3 207.5
24 13.2 111.6 -20.8 280.7
25 -125.9 157.4
26 50.3 76.6
27 27.5 144.7
28 21.1 268.1
29 131.4 171.0
30 -91.5 220.8
31 -148.3 73.3
32 36.9 71.9

In contrast, the full-wave simulated pattern yields SLL and XPL values of −14.31 dB

and −15.29 dB, respectively. The overall performance of the real patterns is worse than

that of the synthesized ones. To improve the pattern performance, three refining steps

are employed. The available element rotation angles and phases are set to the same as

those in the first example. The synthesized patterns along with the HFSS simulated

ones obtained in the refining steps are shown in Fig. 5.10(b), (c), and (d), respectively.

As can be seen, with the increase of k, the real patterns are gradually approaching the

synthesized ones. At the 3rd refining step, the real CoP and XP patterns are nearly
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Figure 5.10: The synthesized cosecant-squared shaped patterns as well as the corre-
sponding HFSS simulated real ones for the cylindrical array of 32 rotated dipoles at (a)
the initial, (b) 1st, (c) 2nd, and (d) 3rd refining steps.

the same as the synthesized results. The final real SLL is −16.21 dB, while the XPL is

−16.22 dB. They are very close to the synthesized −16.41 dB and −16.46 dB, respectively.

Table 5.3 gives the synthesized and real SLLs and XPLs for different ks. The finally

optimized antenna rotations as well as excitation phases are listed in Table 5.2.

In this example, it takes about 3.92 minutes for one-time PSO-based optimization and

25 minutes for one-time HFSS simulation of the element-rotated cylindrical conformal

array. Thus, the total time cost of the developed method is about 1.93 hours. Besides, the

memory occupied by the PSO-based optimization and full-wave simulation is 11.2 MB

and 13.8 GB, respectively.
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Table 5.3: THE MAXIMUM SYNTHESIZED AND REAL SLLS AND XPLS FOR DIFFERENT

kS IN EXAMPLE 2.

kth Synthesized Results (dB) Simulated Results (dB)
SLL XPL SLL XPL

0 −16.57 −16.63 −14.31 −15.29
1 −16.44 −16.50 −14.60 −15.07
2 −16.43 −16.50 −15.99 −15.09
3 −16.41 −16.46 −16.21 −16.22

5.3.3 Triangular Flat-Top Pattern Synthesis for a 12×12 Circular

Patch Antenna Cylindrical Array

Finally, the developed method is utilized to synthesize a more complicated pattern with

a triangular flat-top shaped beam for a cylindrical array of 12×12 elements. A circular

microstrip patch antenna with a radius of 3.72 mm working at 10 GHz is utilized as

the array element. The FR4 substrate is used, and the dielectric constant is ϵr = 4.4

with a thickness of 1.50 mm. Suppose the elements are distributed around a cylindrical

surface with a radius of 101 mm. The element spacing is 0.5λ in both circumferential

directions (the angular interval is 8.5◦) and generatrix direction. p⃗d = y⃗ is set for the

desired polarization. Then, the CoP p⃗co and the XP p⃗X can be calculated according to the

definitions (4.11) and (4.12), respectively. Suppose the shaped beam region is chosen as

{(u,v); |0.08≤ u ≤ 0.6&−0.1≤ v ≤ 0.4&u+v ≤ 0.5}, where u = sinθ cosφ and v = sinθsinφ.

ΓSLL =ΓX PL =−11 dB are set for the desired SLL and XPL. In the PSO, parameters used

are the same as those in the first example, except that the population size is Np = 288.

The synthesized patterns as well as the full-wave simulated real ones obtained in the

initial and the 3rd refining step are given in Fig. 5.11. As can be seen, in the initial step

(k = 0), the real pattern performance is much worse than that of the synthesized pattern

due to the neglect of the mutual coupling variation and antenna deformation. The SLLs

and XPLs of the real CoP and XP patterns are only −7.5 dB and −5.8 dB, respectively,

which are much higher than −10.91 dB and −10.78 dB of the synthesized patterns.
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Figure 5.11: Top views of the synthesized and HFSS simulated real triangular flat-top
shaped patterns. (a), (b) show the synthesized, and (c), (d) show the real CoP and XP
patterns at the initial step; (e), (f) show the synthesized, and (g), (h) show the real CoP
and XP patterns at 3rd refining step.
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Table 5.4: THE MAXIMUM SLLS AND XPLS OF THE SYNTHESIZED AND REAL PAT-
TERNS FOR DIFFERENT kS IN EXAMPLE 3.

kth Synthesized Results (dB) Simulated Results (dB)
SLL XPL SLL XPL

0 −10.91 −10.78 −7.50 −5.80
1 −10.74 −10.92 −9.10 −8.83
2 −10.73 −10.62 −10.32 −9.70
3 −10.64 −10.63 −10.58 −10.23

Nevertheless, after employing three successive refining steps, the real patterns highly

resemble the synthesis ones. The real SLL and XPL are −10.58 dB and −10.23 dB in the

3rd refining step, which are 3.08 dB and 4.43 dB better than the corresponding values

obtained in the initial step. The obtained results for this 12×12-element cylindrical

conformal array have further demonstrated the effectiveness of the developed element

rotation based method. The synthesized and real SLLs and XPLs at the four steps are

given in Table 5.4.

The obtained element-rotated cylindrical conformal array is shown in Fig. 5.12. It is

noteworthy that the antennas are rotated with respect to their feeding pins. As a result,

this rotation causes phase center shift of each antenna, as the phase center is located at

the center of the circular patch. However, the phase center change is relatively small as

the distance between the feeding pin and the circular patch center is only 0.09λ at the

center frequency of f = 10 GHz. Although the change in phase center introduces certain

errors to the element pattern approximation, the proposed refined method can effectively

reduce the errors by successively decreasing the rotation angles with several refining

steps. In the last refining step, the maximum phase center shift is only 0.0052λ for a

maximum rotation angle of 3.3◦. This minimal phase center shift has negligible impact

on the element pattern, ensuring that the approximation remains highly accurate.

In this example, it takes about 4.85 hours for one-time PSO-based rotation and phase

optimization and 6.73 hours for one-time HFSS simulation of the element rotated array.

Thus, the total time cost of the developed method is about 46.32 hours. Besides, the
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Figure 5.12: The obtained element-rotated cylindrical array with a closed view of the
adopted circular patch antenna.

memory occupied by the PSO-based optimization and full-wave simulation are 146.8 MB

and 135 GB, respectively.

5.4 Fabrication and Measurement

The obtained cylindrical conformal array with 24 rotated U-slot loaded patch antennas

is fabricated. A 24-way power division network is designed to provide the optimized

excitation phases with equal amplitudes. Similar to the fabricated linear array in Chapter

4, a Wilkinson power divider is designed here to provide equal excitation amplitudes

but unequal excitation phases for the shaped pattern. The designed Wilkinson power

divider includes one input port for connection to the feeding cables and 24 output ports

for connection to the rotated antennas. These connections are made through 24 metal

vias, which are insulated from the RF ground. To enhance isolation, 50 Ω resistors are

incorporated between each pair of branched transmission lines. The excitation phases
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required to achieve the desired flat-top shaped pattern are accomplished by including

phase shifting lines of different lengths in the designed Wilkinson power divider.

The Wilkinson power divider and the rotated antennas are fabricated on two separate

flat substrates. Both substrates have the same thickness of 0.508 mm and dielectric

constant of ϵr = 2.2, but different sizes. The power division network and the ground

plane are fabricated on the two sides of one substrate with a size of 519 mm × 146 mm.

The other substrate has a size of 469 mm × 58 mm with the rotated antenna elements

fabricated on one side and nothing on the opposite side. These two substrates are thin

and can be easily bent and fixed to a cylinder-shaped support structure (3D-printed using

photosensitive resin material, ϵr = 3.5) using dielectric screws. Finally, 24 feeding probes

are used to connect the output ports of the power division network and the corresponding

rotated elements. The fabricated and assembled cylindrical conformal array and its

picture under test are shown in Fig. 5.13.

The prototype is measured using the NSI far-field measurement system, and the

measured array patterns, as well as the HFSS simulated ones, are shown in Fig. 5.14. It

should be noted that the simulated patterns in Fig. 5.14 are obtained by simulating the

element-rotated antenna array fed by a Wilkinson power division network, and therefore,

they differ slightly from the simulated patterns in Fig. 5.7(d), which are obtained by

feeding every element with a coaxial port in the HFSS. The measured SLL is −13.43

dB, whilst the XPL is −13.11 dB. These values are around 0.93 dB and 0.45 dB worse

than the simulation ones. The measured CoP main lobe ripple is about ±1.3 dB, which

is slightly larger than the ±0.85 dB obtained in the full-wave simulation. Despite the

slight degradation in performance due to fabrication and assembly errors, the measured

patterns show good agreement with the simulated ones.
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(a) (b)

(c)

Figure 5.13: Photos of the fabricated cylindrical array of rotated U-slot antennas as well
as the photo of this array under test.
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Figure 5.14: The full-wave simulated and measured CoP and XP patterns for the cylindri-
cal array of 24 rotated U-slot antennas integrated with a equal-power feeding network.

5.5 Summary

In summary, this chapter presents a novel method for shaped-beam conformal array

synthesis using the element rotation technique. The challenges in this type of array
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synthesis are addressed, including the effect of element rotation on mutual coupling

and antenna deformation, as well as the need for complicated transformations and

interpolations. The effectiveness of the developed method is demonstrated through

three representative examples, which also show its superiority over phase-only and

amplitude/phase methods. Finally, measurements of the fabricated prototype validate

the synthesized results. Overall, this method presents a valuable contribution to the

field of conformal array synthesis.

For the first time in the literature, this work has both theoretically and experimentally

validated that element rotation can serve as an equivalent amplitude weighting for

improving the shaped-beam conformal array synthesis performance. With the developed

method, complicated shaped patterns can be obtained by just optimizing the element

rotations and phases, and no amplitude weighting is required, thus saving many unequal

power dividers in the feeding network.
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EFFICIENT AND ACCURATE PHASE-ONLY MULTI-BEAM

SYNTHESIS USING THE PARTITIONED ITERATIVE FFT

6.1 Introduction

As a key technology for the fifth-generation (5G) and sixth-generation (6G) wireless com-

munication networks, multi-beam antennas with flexibly steerable beams have drawn

increased attention these years. In Chapter 2, the state-of-the-art studies regarding the

dual- and multi-beam pattern synthesis methods have been reviewed. It was shown

that the existing dual- and multi-beam pattern synthesis methods prefer employing

excitation amplitude and phase modulation to achieve favorable results. Despite their

outstanding performance, nonuniform excitation amplitudes will inevitably result in

complicated feeding networks and low aperture efficiency. Although a few phase-only

methods were developed to avoid nonuniform excitation amplitudes, they were either

time-consuming or unable to achieve good enough pattern performance regarding the

peak directions, peak powers, as well as sidelobe levels (SLLs). An accurate and efficient
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method is highly desired.

In this chapter, a partitioned iterative Fourier transform (PIFT) technique is devel-

oped to efficiently synthesize dual- and multi-beam patterns by optimizing the excitation

phases only. To achieve accurate beam directions, a partitioned beam calibration strategy

learned from the Schelkunoff unit circle is incorporated in the PIFT to successively

calibrate the multiple beams. This partitioned calibration strategy can partition the

multi-beam pattern into single-beam patterns, which can then be calibrated separately

by applying additional peak-deviation-related phase terms to their excitations. Such

a partition and calibration method can accurately shift the beams to their anticipated

directions without affecting each other. Besides, main lobes of the multi-beam pattern

are iteratively corrected to achieve desired peak powers, and the sidelobes are also

iteratively modified to achieve relatively low SLL. Moreover, element patterns as well

as quantized excitation phases can be considered in the PIFT method with proper ex-

tension. Several numerical examples of synthesizing dual- and multi-beam patterns are

presented. Full-wave simulation and comparisons with other phase-only methods are

presented to comprehensively evaluate the developed PIFT method.

This chapter is organized as follows. Formulation and algorithm are discussed in

Section 6.2. Section 6.3 presents some numerical results. Section 6.4 draws the summary.

6.2 Formulations and Optimization Algorithm

6.2.1 Analytical Excitations to Generate Multi-Beam Patterns

Suppose there is a linear array with N isotropic elements located on z-axis with uniform

intervals of d. The array pattern is obtained with (2.1) and simplified as:

F(w;θ)=
N−1∑
n=0

wne jβrn cosθ (6.1)
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where j = p−1 , β = 2π/λ, λ is wavelength. rn = nd is the nth element position. w =
[w0,w1, ...,wN−1]T is the excitation vector, where [·]T denotes transpose of a matrix.

Suppose an L-beam pattern with L main lobe peaks whose directions are at θl

(l = 1,2, ...,L) is desired. To obtain it, one can directly calculate the excitations with an

analytical expression. As is known, a multi-beam pattern can be obtained by summing

multiple single-beam patterns as:

F(w;θ)=
L∑

l=1
Fl(wl ;θ)=

L∑
l=1

N−1∑
n=0

w(l)
n e jβrn cosθ =

N−1∑
n=0

( L∑
l=1

w(l)
n

)
e jβrn cosθ (6.2)

where w(l)
n = e− jβrn cosθl . As can be learned from (6.2), a multi-beam pattern excitation

vector can be obtained by summing multiple single-beam pattern excitation vectors as:

w=
L∑

l=1
wl =

[ L∑
l=1

w(l)
1 ,

L∑
l=1

w(l)
2 , ...,

L∑
l=1

w(l)
N−1

]T
(6.3)

However, though a multi-beam pattern can be yielded, the excitations obtained with

(6.3) have nonuniform amplitudes, and the amplitude dynamic range ratio could be

considerably large. As an example, a dual-beam pattern whose peaks are at θ1 = 30◦

and θ2 = 80◦ is designed with (6.3) for a 20-element λ/2-spaced linear array. The pattern

is shown in Fig. 6.1(a) and the corresponding excitation amplitudes are shown in Fig.

6.1(b). One can see that the excitation amplitudes fluctuate severely. Such fluctuated

amplitudes will not only lead to a complicated feeding network but also result in a low

aperture efficiency. Instead, it would be much more desirable to achieve multi-beam

patterns with uniform excitation amplitudes.

A straightforward method to obtain a uniform-amplitude excitation vector that can

yield a multi-beam pattern is directly extracting a phase vector from (6.3) as:

wp = e j∗arg
[∑L

l=1 wl

]
(6.4)

where arg[·] denotes argument of a complex number, the subscript p denotes phase vector.

However, (6.4) generally cannot yield good results since the phase extracting can cause
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Figure 6.1: Dual-beam patterns designed with nonuniform-amplitude excitation vector
(6.3) and uniform-amplitude excitation vector (6.4), and their excitation amplitudes for a
linear array of 20 elements. (a) the dual-beam patterns and (b) the excitation amplitudes.

severe peak power decrease, beam direction deviation, and SLL increase. As an example,

the 20-element linear array is considered to design a dual-beam pattern with (6.4). The

obtained pattern is shown in Fig. 6.1(a). The excitation amplitudes are uniform, as shown

in Fig. 6.1(b). One can see that the dual peaks deviate from the desired angles, and the

SLL is up to −8.01 dB. Thus, an optimization method that can efficiently optimize the

excitation phases to obtain multi-beam patterns with accurate beams and reduced SLLs

is much preferable.

6.2.2 Multi-Beam Pattern Synthesis with Accurate Beam Control

Using the Partitioned Iterative Fourier Transform

As is known, the array factor (6.1) has a similar expression as the Fourier transform. By

sampling cosθ as cosθ = q∆= qλ/(Qd), where q =−Q/2,−Q/2+1, ...,Q/2−1, Q being the

number of sampling points, (6.1) can be rewritten as:

F(w; q∆)=
N−1∑
n=0

wne jn2πq/Q (6.5)

As is seen, (6.5) forms a Fourier transform relationship between {F(w; q∆)} and w. This

relationship has been exploited to develop an iterative Fourier transform (IFT) array
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synthesis method [110], where the fast Fourier transform (FFT) and inverse FFT (IFFT)

are iteratively applied to synthesize desired patterns. The IFT has proven to be one of

the most efficient iterative methods and has been widely employed in array synthesis

[16, 111–113].

Naturally, the IFT can serve as a potential candidate to efficiently synthesize multi-

beam patterns by optimizing the excitation phases only. However, when one applies the

conventional IFT-based phase-only method to synthesize a multi-beam pattern, the main

lobe peaks might deviate from the desired angles since it lacks accurate control of the

multiple peak directions. One cannot just simply shift the beams to the right directions

by applying an additional phase term to the original excitation since it will shift all the

beams to the same direction with identical distances (as observed in u-space, u = cosθ),

which is not desired in most cases. Furthermore, the conventional IFT does not have a

precise strategy to control the peak powers of all the multiple beams.

A PIFT technique is developed here to synthesize multi-beam patterns with accurate

beam control. The PIFT incorporates a partitioned calibration strategy in each iteration

of the IFT to successively calibrate the multiple beams. The partitioned calibration

strategy, which is developed according to the Schelkunoff ’s unit circle, can partition the

multi-beam pattern into single-beam patterns and calibrate their peaks separately by

applying additional peak-deviation-related phase terms to their excitations. According to

the Schelkunoff ’s unit circle method [4], (6.5) can be rewritten as:

F(w; q∆)=
N−1∑
n=0

wnzn (6.6)

where z = e j2πq/Q . Since (6.6) is of order (N −1), it has (N −1) roots and can be rewritten

as:

F(w; q∆)= wN−1(z− z1)(z− z2)...(z− zN−1) (6.7)

where zn (n = 1,2, ..., N −1) are complex roots or zeros of (6.6). (6.7) indicates that the

amplitude of the array factor, as observed from any point z on the unit circle in the
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complex plane, is the product of the lengths of the straight segments joining that point

to the nth (n = 1,2, ..., N −1) zeros [3]. For a multi-beam pattern, when the zeros nearby

beam l are moved, which is equivalent to changing beam l, other beams at the far

side will not be affected much. That is because, as observed from point z at far beams,

movement of the zero zn nearby beam l will not change (z− zn) much, so that (6.7) would

not change much. Based on this principle, it is feasible to partition a multi-beam pattern

into multiple single-beam patterns and calibrate them individually. In this way, when

modifying the excitation phases of one partitioned single-beam pattern for beam direction

calibration, only the zeros as well as the main lobe of this pattern will be shifted, whereas

other beams will be hardly affected. After calibration of all the single-beam patterns, a

calibrated multi-beam pattern can be obtained through direct summation of the updated

single-beam pattern excitations.

Thus, an array pattern F(θ) with L deviated beams pointing to θ′
l (l = 1,2, ...,L) can be

partitioned into L single-beam patterns F ′
l(θ) (l = 1,2, ...,L) at first. Then, their excitation

vectors w′
l can be obtained by applying FFT, and the peak directions can be calibrated as

[114]:

wl =w′
l ⊙ e− jβr(cosθl−cosθ′l ) (6.8)

where ⊙ is the Hadamard product of two matrices with the same dimension, r =
[r1, r2, ..., rN−1]T denotes the element location vector. At last, the multi-beam pattern

with calibrated beams can be obtained by applying IFFT to the summation of all the

calibrated single-beam excitations e j∗arg[
∑L

l=1 wl ]. An example is given to demonstrate

the developed PIFT-based calibration method. Suppose there is a dual-beam pattern

F(θ) with deviated peak directions θ′
1 = 60◦ and θ′

2 = 90◦, which can be designed by (6.3),

as shown in Fig. 6.2(a). The corresponding excitation phases are shown in Fig. 6.2(b).

Assume the desired beam directions are θ1 = 50◦ and θ2 = 100◦. F(θ) can be directly

partitioned into two single-beam patterns F ′
1(θ) and F ′

2(θ) from the middle of the dual
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Figure 6.2: Dual-beam pattern calibration with the developed PIFT-based calibration
strategy: (a) dual-beam patterns and (b) excitation phases before and after calibration;
(c) and (d) partitioned and calibrated single-beam patterns.

beams, as is seen Fig. 6.2(c) and (d). The excitation vectors can be obtained by applying

FFT to F ′
1(θ) and F ′

2(θ), and then, they can be calibrated using (6.8). The calibrated

patterns are shown in Fig. 6.2(c) and (d). At last, by applying IFFT to the summation

of the two calibrated single-beam excitations, the calibrated dual-beam pattern can be

obtained, as shown in Fig. 6.2(a). As can be seen, the beams are precisely adjusted from

the original directions to the anticipated directions, which has validated the PIFT-based

calibration strategy.

Except for the beam calibration, the multi-beam pattern is also iteratively modified

to correct the peak powers and reduce the SLL in the PIFT-based phase-only method.

The peak power calibration and SLL reduction are described in detail below.

(i) Peak Power Calibration: Suppose the main lobe regions where the peaks θl (l =
1,2, ...,L) locate are denoted by ΘML

l . To precisely control the main lobe peak powers,
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the main lobes are corrected to have the desired powers as:

F ′(θ)= Γ(l)
P F(θ)
|F(θl)|

, for θ ∈ΘML
l , l = 1,2, ...,L. (6.9)

where Γ(l)
P is the desired peak power of the nth beam.

(ii) Sidelobe Reduction: Suppose the sidelobe region and the desired SLL are denoted

by ΘSL and ΓSLL, respectively, the sidelobes can be modified as:

F ′(θ)=


(2ΓSLL
|F(θ)| −1

)
F(θ), if |F(θ)| >ΓSLL

F(θ), if |F(θ)| ≤ΓSLL

(6.10)

where θ ∈ΘSL. In the above, the more the SLL exceeds ΓSLL, the more it is reduced.

6.2.3 The Proposed Phase-only Multi-Beam Pattern Synthesis

Procedure

Like the traditional IFT, the performance of the PIFT is actually dependent, to some

extent, on the initial solution. Naturally, if multiple times of PIFT-based phase-only

optimizations can be conducted with different initial excitations, the performance of the

finally optimized multi-beam pattern can be improved. Here, to generate multiple initial

solutions, a random phase parameter φl is introduced to equation (6.4) to yield a more

generalized version as:

wp = e j∗arg[w1+∑L
l=2 wl e jφl ] (6.11)

where φl ∈ [0,2π] (l = 2,3, ...,L).

The detailed procedure of synthesizing multi-beam patterns with the developed PIFT-

based phase-only method is summarized in Algorithm 5. In Algorithm 5, the excitation

phase vector obtained at each iteration is saved, and the final solution is the one with the

lowest SLL under the circumstance of satisfying given main lobe constraints. Main lobe

examination is necessary since even though they are iteratively calibrated and corrected,

they still have a chance to deteriorate due to the direct phase extraction in the PIFT.
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The PIFT-based phase-only method is also applicable to the multi-beam planar array

synthesis with proper modification. For a M × N-element planar array with uniform

distances of d, its pattern can be readily obtained [110]. By sampling u = sinθ cosφ and

v = sinθ cosφ as u = p∆p = pλ/(Pd), v = q∆q = qλ/(Qd), where P and Q are the sampling

point number, the array pattern can be rewritten as:

F(w; p∆p, q∆q)=
M−1∑
m=0

N−1∑
n=0

wmne j2π(mp/P+nq/Q) (6.12)

With (6.12), a 2D-PIFT can be developed to synthesize multi-beam patterns with accurate

beam control for planar arrays. The synthesis process is similar to Algorithm 5, and

the only difference is the beam calibration. For the planar array, the beam calibration

(6.8) becomes:

wl =w′
l ⊙ e− jβ[rx(ul−u′

l )+ry(vl−v′l )] (6.13)

where (ul , vl) and (u′
l , v′l) are the desired and actual beam directions of the l th beam, rx

and ry are position vectors of the elements.

The PIFT method can consider actual element patterns. For simplicity, the element

pattern obtained by full-wave simulating the antenna in an array environment is used

for all elements. Though error will be introduced to the synthesized results, the error is

actually limited, especially for large arrays where the edge effect has a slight influence.

When considering the element pattern, there is slight difference in the synthesis proce-

dure Algorithm 5: each time after applying IFFT to the excitation vector, the element

pattern is multiplied to calculate the array pattern; when calculating the excitation

vector, the array pattern is divided by the element pattern and then applying the FFT.

Besides, the PIFT method is also capable of optimizing discrete excitation phases. The

quantization strategy developed in [115] is iteratively integrated into the PIFT method

to obtain a quantized PIFT (Q-PIFT) method. In the Q-PIFT, the nth excitation phase is

quantized as:

ϕ′
n = R[(ϕn +δn)/∆ϕ]∆ϕ−R[δn/∆ϕ]∆ϕ (6.14)
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Algorithm 5 The developed PIFT-based phase-only multi-beam pattern synthesis proce-
dure.

1: Input the element number N, desired peak directions θl and their peak powers Γ(l)
P

(l = 1,2, ...,L−1), desired SLL ΓSLL, the number of sampling points Q, the number of
initial excitations K and the number of iterations Im.

2: Initialize K excitation phase vectors w(0)
k (k = 1,2, ...,K) with (6.11) by choosing

different values of φl .
3: Set k = 1.
4: Set i = 1, w(i) = w(0)

k .
5: Apply IFFT to w(i) to obtain a multi-beam pattern F (i)(θ), and partition it into L

single-beam patterns F ′
l(θ) (l = 1,2, ...,L).

6: Apply FFT to each single-beam pattern F ′
l(θ) to obtain the corresponding excitation

vectors w′
l .

7: Modify w′
l with (6.8) to obtain wl for beam calibration.

8: Update w(i) = ∑L
l=1 wl , and apply IFFT to obtain an updated multi-beam pattern

F (i)(θ) with calibrated beams.
9: Peak power calibration and sidelobe reduction: if F (i)(θl) do not equal Γ(l)

P , calibrate
the peak power with (6.9); if the SLL exceeds ΓSLL, reduce the SLL with (6.10).

10: Apply FFT to the modified F (i)(θ) to obtain an updated excitation vector w(i).
11: Extract the phase vector w(i)

p = e j∗arg[w(i)];
12: Save w(i)

p , set i = i+1, w(i) =w(i−1)
p , and loop to Step 5 until i = Im.

13: Set k = k+1 and loop to Step 4 until k = K .
14: Output the best excitation phase vector, which yields a multi-beam pattern with the

lowest SLL meanwhile meets the main lobe requirements.

where R[·] is the nearest integer function, ϕn = arg[wn], δn is the random phase offset,

and ∆ϕ is the quantization bit of the discrete phase shifter [115]. The synthesis procedure

of the Q-PIFT is similar to Algorithm 5 except that two quantization operations based

on the above equation are added after Step 2 and 11.

6.3 Synthesis results

In this section, dual- and multi-beam pattern synthesis examples are presented for

demonstration of the developed PIFT-based phase-only method. Comparisons with other

improved methods are also included. All the examples are conducted on a workstation

with an Intel Xeon 6248 CPU at 2.50 GHz.
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6.3.1 Phase-Only Dual-Beam Pattern Synthesis for Linear Arrays

The PIFT-based phase-only method is employed to synthesize dual-beam patterns for

linear arrays at first. Before that, the initial excitation number K and iteration number

Im of the PIFT are studied with a 192-element array for the synthesis of an equal-

power dual-beam pattern with beam directions of θ1 = 60◦ and θ2 = 130◦. The evaluation

criterion of the pattern is the peak SLL under the condition of satisfying the main lobe

constraints (with accurate beam direction and the peak power deviation < 0.1 dB). In

the study, the desired SLL is set as ΓSLL = −18 dB, whilst Q is set as Q = 2048. K is

set as 1, 10, 20, and 30, whilst Im varies from 50 to 250 at 50 interval. For different K

and Im, 10 times of the PIFT are conducted to obtain an average SLL. The obtained

SLLs for different K and Im are shown in Fig. 6.3. As can be seen, the SLLs generally

decrease with the increase of K and Im. Nevertheless, when Im increases from 150 to

250, the SLL decrease is very limited (smaller than 0.1 dB). Similarly, when K increases

from 20 to 30, the SLL decrease is smaller than 0.1 dB. Thus, K = 20 and Im = 150 are

reasonable choices, and further increase of K and Im is not necessary.

Then, the developed PIFT is utilized to synthesize equal-power dual-beam pattern

linear arrays with 24, 48, 96, and 192 elements, respectively. For the four arrays, the dual

beam peak directions are set as θ1 = 60◦ and θ2 = 130◦. As a comparison, the conventional

IFT and two other phase-only methods in the literature, namely the single co-ordinate

method (SCM) developed in [116] and the sequential quadratic programming (SQP) in

[74], are also utilized for the same dual-beam pattern synthesis. Note that since the SLL

performance was originally not considered in [74], here the SLL constraint is included in

the SQP for comparison purpose. Both the SCM and the SQP are initialized with their

best parameters, and they are used to obtain their best achievable SLL performance

under the circumstance of not affecting the main beams.

The pattern performances and time costs achieved by the four methods are listed in
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Figure 6.3: The peak SLLs obtained in the study of K and Im for a 48-element linear
array.

Table 6.1. One can see that the conventional IFT is the fastest method, and the SCM is

slightly slower. However, despite their high efficiency, they both have poor performance

in SLL reduction and beam direction control. The beam direction deviations obtained

by these two methods are up to 0.9◦ and 0.6◦, respectively. The SQP, on the other hand,

can achieve the lowest SLLs among the four methods. The SLL is about −18.54 dB when

N = 192. It is 3.96 dB lower than that obtained by the SCM. However, it generally cannot

achieve very accurate control of the beam directions and peak powers. Moreover, it is the

most time-consuming method. The time cost is 469.28 seconds when N = 192, which is

more than 1000 times slower than the SCM.

For the developed PIFT-based method, the obtained dual beams are all exactly

directed in the anticipated directions. Compared to the IFT, the beam direction improve-

ment achieved by the PIFT is 0.4◦ for the 192-element array. Though 0.4◦ looks small,

it actually corresponds to 50% of the half-power beamwidth (HPBW). It means that

the conventional IFT actually leads to a gain decrease of around 3 dB. By contrast, the

improvement achieved by the PIFT is prominent. Besides, the obtained peak power

deviations are smaller than 0.03 dB. Furthermore, the obtained SLLs are −12.50 dB

and −14.14 dB when N = 24 and N = 48, which are comparable to those obtained by
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Table 6.1: The SLLs, Actual Beams Directions, Peak Power Deviations, and Time Costs Achieved in the Phase-Only Dual-
Beam Pattern Synthesis for Different Linear Arrays Using the IFT, the SCM, the SQP, and the developed PIFT-Based Method

SLL (dB) Actual Beam Directions (◦) Power Deviation (dB) Time Cost (Seconds)

N IFT SCM SQP PIFT IFT SCM SQP PIFT IFT SCM SQP PIFT IFT SCM SQP PIFT

24 −11.62 −9.98 −12.52 −12.50 60.6/130.3 60.3/129.1 60.2/130.3 60/130 0.53 0.10 0.12 0.03 0.03 0.04 25.69 1.32

48 −13.56 −10.83 −14.29 −14.14 60.5/129.5 60.6/129.4 60.2/129.6 60/130 0.58 0.05 0.13 0.01 0.04 0.08 105.21 1.65

96 −15.05 −13.76 −16.91 −16.02 60.3/130.6 60.3/129.5 60/130 60/130 0.62 0.01 0.14 0.03 0.05 0.17 251.30 2.11

192 −16.41 −15.59 −18.54 −17.22 59.8/130.4 60.5/129.4 60/130 60/130 0.47 0.09 0.01 0.01 0.08 0.43 469.28 2.62
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the SQP, though the values are a little worse when N increases to 96 and 192. But the

developed method is much faster than the SQP, and only 2.62 seconds are required for

the 192-element array.

In addition, for a more comprehensive comparison, Table 6.2 provides the compu-

tational complexity and memory usage of the four methods in the synthesis of the

24-element linear array. As can be seen, among the four methods, the SQP and the

proposed PIFT methods feature higher computational complexity than the IFT and SCM

methods. On the other hand, the IFT outperforms the rest three methods in terms of

memory usage during the optimization. The proposed PIFT method occupied slightly

larger memory than the IFT and SCM methods. In summary, the PIFT method emerges

as the preferred choice among the four methods. It demonstrates efficient performance in

achieving dual-beam patterns with the most accurate beam direction and power control,

and relatively low SLL. Although it requires relatively larger memory usage compared

to other methods, the overall benefits and improved performance make it the preferred

method for dual-beam pattern synthesis. The 48-element array patterns obtained by

the four methods are provided in Fig. 6.4, and the corresponding excitation phases are

provided in Table 6.3.

To further evaluate the developed PIFT method, another example considering beam

scanning is presented here. A 48-element λ/2-spaced linear array is considered. Suppose

one beam is fixed at θ1 = 40◦, while the other beam scans from θ2 = 55◦ to θ2 = 150◦ at an

interval angle of 5◦. The synthesized dual-beam patterns are shown in Fig. 6.5. It can be

seen that, for all the scanning angles, the main beams are very accurately directed at

the corresponding anticipated angles, with the peak power deviations smaller than 0.1

dB. The SLLs are ranging from −13.70 dB to −14.39 dB. The obtained results show the

good capability and stability of the developed PIFT method in accurate beam control.
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Table 6.2: PERFORMANCE COMPARISON BETWEEN THE PIFT METHOD AND THE

REFERENCE METHODS FOR THE 24-ELEMENT LINEAR ARRAY EXAMPLE.

Method IFT SCM SQP PIFT

Computational Complexity O(ImP logP) O(N2) O(N3.5 log( 1
η )) O(K ImP logP)

Memory (MB) 1.1 2.3 56 6.3

η denotes a prefixed accuracy in the SQP method [117].
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Figure 6.4: Dual-beam patterns obtained by conventional IFT, the SCM, the SQP, and
the PIFT for a 48-element linear array.

6.3.2 Phase-Only Multi-Beam Pattern Synthesis for Planar

Arrays

In this section, the PIFT is utilized to synthesize multi-beam patterns for planar arrays.

A 15× 15-element λ/2-spaced planar array is considered, and a microstrip antenna

consisting of three staggered patches working at 5.2 GHz [118] is adopted as the element.

For simplicity, element patterns of the array elements are assumed to be identical,

and an embedded element pattern obtained by full-wave simulating this antenna in

the array environment is utilized. Suppose an equal-power triple-beam pattern with

the main beams directing at (θ, φ) = (30◦, 0◦), (30◦, 90◦), and (30◦, 180◦) is desired.

Firstly, a hybrid algorithm based on the genetic algorithm and modified IFT (HGAMIFT)

technique [119] is employed to synthesize this pattern. Since the HGAMIFT method was
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Table 6.3: THE EXCITATION PHASES OBTAINED BY THE PROPOSED METHOD FOR A

48-ELEMENT LINEAR ARRAY WITH A DUAL-BEAM PATTERN DIRECTING 60◦ AND 130◦

AS SHOWN IN FIG. 6.4.

n 1 2 3 4 5 6 7 8

Phases (◦) -2.9 155.9 169.7 139.3 6.0 -104.4 -112.3 80.8

n 9 10 11 12 13 14 15 16

Phases (◦) -6.7 -79.6 87.9 129.8 -47.0 -47.6 148.0 132.4

n 17 18 19 20 21 22 23 24

Phases (◦) 8.6 -176.1 -144.4 45.8 66.8 -104.6 -94.9 91.7

n 25 26 27 28 29 30 31 32

Phases (◦) -106.6 -69.7 138.8 148.3 -22.6 -27.0 179.5 -7.9

n 33 34 35 36 37 38 39 40

Phases (◦) 26.2 -108.7 -106.4 55.7 -28.9 -91.2 3.3 154.8

n 41 42 43 44 45 46 47 48

Phases (◦) -67.4 -8.1 161.3 -117.8 12.9 -156.8 -153.6 51.0

Figure 6.5: The synthesized dual-beam patterns with one beam directing in 40◦, whilst
the other beam scanning from 55◦ to 150◦ at an interval of 5◦.

originally developed to synthesize thinned arrays, here it is adapted by abandoning the

perturbation mechanism (used to decide the on-off status of the elements) to obtain an

HGAIFT method for phase-only multi-beam pattern synthesis. Note that the HGAIFT

inherits the dynamic control of the crossover and mutation rate of the GA and the control

factor to determine the proportion of individuals from GA and modified IFT so that its

search ability has not worsened. The synthesized triple-beam pattern is shown in Fig.
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Figure 6.6: The synthesized and full-wave simulated triple-beam patterns for a 15×15-
element planar array. (a) and (b) the 3D patterns synthesized by the HGAIFT and PIFT;
(c) and (d) the v = 0 and u = 0 cut patterns obtained by the two methods and full-wave
simulation using the HFSS.

6.6(a), and the v = 0 (φ= 0◦) and u = 0 (φ= 90◦) cut patterns are shown in Fig. 6.6(c) and

6.6(d), respectively. As can be seen, owing to the lack of accurate beam control, the beam

direction is up to 2.6◦ (31% of the HPBW) deviated, and the peak power decrease is up to

2.27 dB. Besides, the SLL is about −20.81 dB.

Then, the developed PIFT method is employed to synthesize this triple-beam pattern

with the same array. In the PIFT, the parameters are set as follows: ΓSLL = −22 dB,

Γ(1)
P = Γ(2)

P = Γ(3)
P = 0 dB, P = Q = 1024, K = 20, Im = 200. The synthesized triple-beam

pattern is shown in Fig. 6.6(b), 6.6(c), and 6.6(d). As can be seen, the main lobe peaks
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are exactly directed in the desired directions; meanwhile, the peak power deviations

are smaller than 0.01 dB. The obtained SLL is −20.86 dB, which is comparable to that

obtained by the HGAIFT. In addition, the planar array is full-wave simulated by using

the high-frequency simulation software (HFSS). The array model is shown in Fig. 6.7(a).

The PIFT-optimized excitation phases are utilized to excite the array. The full-wave

simulated pattern at v = 0 (φ= 0◦) and u = 0 (φ= 90◦) cuts are given in Fig. 6.6(c) and

6.6(d). It can be seen that the simulated pattern also has very accurate beam directions,

and it matches very well with the synthesized one despite a small peak power deviation

(0.23 dB) and SLL increase (0.95 dB). The simulated realized gains of the three beams are

18.81 dBi, 18.67 dBi, and 18.52 dBi, respectively. The full-wave simulated results have

validated the PIFT method in the accurate multi-beam pattern synthesis for practical

antenna arrays.

As another example, a large planar array with 50×50 elements is considered to syn-

thesize an unequal-power quad-beam pattern here. Suppose the desired beam directions

are (θ, φ) = (0◦, 0◦), (15◦, 0◦), (35◦, 0◦), and (60◦, 0◦) with peak powers of 0 dB, −2 dB,

−3 dB, and −4 dB, respectively. In the PIFT-based synthesis, we set ΓSLL =−29 dB, and

other parameters are used the same as before. The synthesized pattern at v = 0 (φ= 0◦)

cut is shown in Fig. 6.8(a). As can be seen, the four beams are directed exactly in the

desired directions with only 0.02 dB peak power deviation. The obtained SLL is −28.40

dB. The PIFT method only costs 3.56 minutes for this example, which has demonstrated

its remarkable speed. The excitation phases obtained by the PIFT are shown in Fig.

6.8(b).

In addition, the Q-PIFT is utilized to synthesize this quad-beam pattern with discrete

excitation phases here. Before that, direct quantization is applied as a comparison.

Suppose a 4-bit phase shifter is targeted. The pattern obtained by directly quantifying

the PIFT-optimized excitation phases is given in Fig. 6.8(a). It is observed that the
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Figure 6.8: The quad-beam patterns and the excitation phases for a 50×50-element
planar array. (a) shows the pattern obtained by the PIFT, the 4-bit Q-PIFT, and the 4-bit
direct quantization; (b) the excitation phases obtained by the PIFT.

pattern has a peak direction deviation of 0.1◦ with a peak power deviation of 0.22 dB.

Furthermore, the SLL is about −22.95 dB. It is 4.45 dB worse than that obtained by the

PIFT with continuous excitation phases. Then the Q-PIFT is utilized to synthesize this

pattern. The discrete excitation phase interval ∆ϕ is set as 22.5◦. The obtained pattern is

also shown in Fig. 6.8(a). It is observed that very accurate beam directions are achieved

with peak power deviations smaller than 0.08 dB. Besides, the SLL is −26.64 dB. This

value is 3.69 dB lower than that obtained by using direct quantization. By contrast, the

superiority of the Q-PIFT has been demonstrated.
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6.4 Summary

A novel phase-only dual- and multi-beam pattern synthesis method based on the PIFT

was developed. The PIFT incorporates a partitioned calibration strategy into each iter-

ation to achieve accurate beam directions by partitioning and calibrating the multiple

beams individually without affecting each other. The main lobes and sidelobes are also

iteratively corrected and modified to obtain desired peak powers and reduced SLLs. Nu-

merical examples of synthesizing dual- and multi-beam patterns, including comparisons

with other phase-only methods, are presented. Synthesized results show that multi-beam

patterns with precisely controlled beam directions and peak powers, as well as reduced

SLLs, can be obtained within only 3.56 minutes for large planar arrays with up to 2500

elements. Full-wave simulation results have validated that the PIFT can achieve precise

beam direction control even when practical antennas are considered.

In addition, it has been validated that discrete excitation phases can also be optimized

with the developed Q-PIFT to achieve accurate multi-beam patterns. The developed PIFT-

based phase-only multi-beam pattern synthesis method can find significant applications

in many wireless communications, especially when very accurate beam direction is

required like in long-range communication. Compared to the amplitude optimization

methods, the developed method that uses uniform amplitudes can lead to a much-

simplified feeding network.
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7
MULTIBEAM ANTENNA ARRAY SYNTHESIS EMPLOYING

THE GENERALIZED JOINED COUPLER MATRIX

7.1 Introduction

In Chapter 6, radiation patterns with accurate dual or multiple focused beams were

efficiently synthesized with the partitioned iterative Fourier transform (PIFT) method

for phased arrays. Another way of generating multibeams that features lower power

consumption and low cost is using the analogue beamforming network. In [94], a sys-

tematic method of designing generalized joined coupler (GJC) matrix for multibeams

was developed. Then a robust optimization method was developed in [95] to achieve low

sidelobe levels (SLLs) and nulls for the multibeams using the GJC matrix.

In fact, owing to the intrinsic structure of the GJC matrix, the lower beams will split

as a difference pattern when multiple beams are in the same direction. To avoid this

problem, an effective strategy is to divide the whole scanning region into multiple sectors,

and different beams are assigned to scan in their own allocated sectors, as the authors
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did in [94, 95]. However, this strategy cannot achieve arbitrary beam scanning since

beam overlapping must always be avoided. What is more, arbitrary beam scanning with

beam overlapping is inevitable in some communications and radar applications where

beam overlap is necessary. In this case, the beam splitting is unacceptable and should be

resolved.

In this chapter, the beam splitting problem is thoroughly discussed. An effective

strategy of using reconfigurable directional couplers is adopted to address this issue

and to achieve continuous multibeam steering. To this end, a flexible synchronized

optimization strategy that can consider multiple different cases is developed. The beam

splitting issue can be well solved by using the developed optimization method with

reconfigurable directional couplers. Moreover, multibeams with consistent and relatively

low SLLs during scanning can be achieved by considering all the different multibeam

scanning cases in a single optimization. Numerical results are provided to demonstrate

the effectiveness of the developed method. A comparison with the classical method of

designing the Blass matrix is also presented to comprehensively evaluate the developed

GJC matrix design method.

This chapter is organized as follows. Formulation and algorithm are discussed in

Section 7.2. Section 7.3 presents some numerical results. Section 7.4 draws the summary.

7.2 Formulations and Optimization Algorithm

7.2.1 Signal Flow in the GJC Matrix

The function of analogue beamforming networks, including the GJC matrix, is to output

desired excitation vectors w= [w1,w2, ...,wN]T (T denotes matrix transpose) to feed an

antenna array with N elements so as to achieve multibeams with desired directions.

Generally, the input port number M decides the number of beams, whilst the output port
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number N corresponds to the antenna element number. For the GJC matrix, the design

target is to find the coupler value directing signal flow as well as the phase shifter value

deciding beam directions in each node to yield the required excitations w at the output

ports. In [94], the general signal transformation of a GJC matrix has been detailedly

deduced. For a general GJC matrix shown in Fig. 7.1, suppose the signal transfer for the

directional coupler is expressed by the scattering matrix, known as S matrix, as:

S=



0 j sinϑ cosϑ 0

j sinϑ 0 0 cosϑ

cosϑ 0 0 j sinϑ

0 cosϑ j sinϑ 0


(7.1)

where j =p−1 . Let ϕmn denotes the phase shifter value in the mth row and nth column.

Then, according to [94], the output excitation vector Y= [y1, y2, ..., yN ]T corresponding to

the input vector X= [x1, x2, ..., xM]T can be obtained as:

Y=ΩM×NX. (7.2)

where ΩM×N is the signal transformation matrix of a M ×N GJC matrix that can be

obtained as:

ΩN×M =



[
α(1)

M×1

]T[
α(2)

M×1

]T
A(1)

M×M
...[
α(n)

M×1

]T
A(n−1)

M×M · · ·A(1)M×M

...[
α(N)

M×1

]T
A(N−1)

M×M · · ·A(1)M×M


N×M

(7.3)

In the above, the matrix α(n)
M×1 can be obtained as:
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Figure 7.1: The structure of a M×N GJC matrix with an inset view of the node comprising
of a directional coupler and a phase shifter.

α(n)
M×1 =



j sinϑ1n

j sinϑ2n cosϑ1n

j sinϑ3n cosϑ2n cosϑ1n

...

j sinϑMn cosϑ(M−1)n · · ·cosϑ1n


M×1

. (7.4)

The matrix A(n)
M×M is given as:

A(n)
M×M =



cosϑ1ne− jϕ1n j2 sinϑ1n sinϑ2ne− jϕ1n · · · j2 sinϑ1ncosϑ2n . . .cosϑ(M−1)n sinϑMne− jϕ1n

0 cosϑ2ne− jϕ2n · · · j2 sinϑ2n cosϑ3n . . .cosϑ(M−1)n sinϑMne− jϕ2n

0 0 · · · j2 sinϑ3n cosϑ4n . . .cosϑ(M−1)n sinϑMne− jϕ3n

...
...

. . .
...

0 0 · · · cosϑMne− jϕMn


. (7.5)

With the signal transform equation (7.2), the coupling values ϑmn and phase shifter

values ϕmn for m = 1,2, ..., M and n = 1,2, ..., N can be designed to have desired output

excitations for multibeam synthesis.
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7.2.2 The Beam Splitting Issue for Overlapping Multibeams

The beam splitting issue when two or multiple beams are directed in the same direction

for the GJC matrix is revealed in the following. As shown in Fig. 7.2, assume two beams

generated by the first two rows of a Nolen-like GJC matrix have the same directions. In

this case, all the phase shifter values in the first two rows are identical. Let ∆ϕ denote

the phase shifter values in the first two rows. According to equation (7.1), the coupling

value and through value for the mnth coupler is j sinϑ and cosϑ, respectively. In other

words, the coupling value and through value have a phase difference of 90◦. This will

not affect the first beam generated by feeding the first input port x1. However, when the

second input port x2 is excited to generate the second beam, the main lobe splits as a

difference pattern. The reason is as follows. When x2 is excited, there are n signal flow

paths in total towards the nth element. Signals flow through the first (n−1) paths have

the phases of (n−1)∆ϕ−π/2, as denoted with blue lines in Fig. 7.2, meanwhile the signal

flows through the nth path has a phase of (n−1)∆ϕ+π/2, as denoted with a red line in

Fig. 7.2. It means that the signals flowing through the first (n−1) paths are anti-phase

with respect to that flows through the nth path.

When x2 is excited, the yielded excitation at the nth output port can be given as:

w2,n =
n−1∑
i=1

ai e j
[
(n−1)∆ϕ−π/2

]
+ane j

[
(n−1)∆ϕ+π/2

]
=

(n−1∑
i=1

ai −an

)
e j

[
(n−1)∆ϕ−π/2

]
(7.6)

where ai (i = 1,2, ...,n) denotes the amplitude of the energy flowing through the ith path.

According to (7.6), if
∑n−1

i=1 ai is larger than an, the nth element excitation phase would be

(n−1)∆ϕ−π/2; otherwise, the excitation phase would be (n−1)∆ϕ+π/2. For normal excita-

tion distributions like uniform or tapered distributions such as the Taylor or Chebyshev

distribution, the coupling and through values are usually such that approximately half

of the outputs (usually the left half of output ports) have
∑n−1

i=1 ai smaller than an, whilst

the rest have
∑n−1

i=1 ai larger than an. In other words, around half of the outputs have

excitation phases of (n−1)∆ϕ−π/2 whilst the rest have excitation phases of (n−1)∆ϕ+π/2.
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(a)

(b)
Figure 7.2: Signal flow in the first two rows when their beams have the same directions.
Blue line denotes signal flow with a phase of (n−1)∆ϕ−π/2, meanwhile red line denotes
signal flow with a phase of (n−1)∆ϕ+π/2, where ∆ϕ denotes the phase shifter value in
the first two rows.

It means that there is a 180◦ phase difference among some of the elements with respect

to others, thereby resulting in a difference pattern.

To demonstrate this, two examples with uniform and Taylor distributions are provided

here. Fig. 7.3(a) shows the multibeam patterns (the beam directions are {0◦, −30◦, 30◦})

generated by a 3×12 Blass-like GJC matrix. The three beams are obtained by optimizing

the coupler values to generate uniform output amplitudes with the method in [94]. After

that, the second beam with an angular direction of −30◦ is steered to 0◦ (the same as

the first beam) by altering the phase shifter values. As shown in Fig. 7.3(b), when the

first two beams are overlapping, the second beam splits as a difference pattern. Table 7.1

gives the excitation amplitudes and phases of the multibeams when they are at {−30◦,

0◦, 30◦} and {0◦, 0◦, 30◦}, respectively. As can be seen, when the second beam is steered
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Figure 7.3: Beam deterioration when the second beam generated by a 3×12 Blass-like
GJC matrix overlaps the first beam. (a) shows the multibeams obtained by optimizing
the ϑmn with beam directions of −30◦, 0◦, and 30◦. (b) shows the second beam scanning
from 0◦ to −30◦.

Table 7.1: THE OUTPUT AMPLITUDES AND PHASES OBTAINED IN THE SYNTHESIS OF

THE 3×12 BLASS-LIKE GJC MATRIX.

n
Initial Multibeam Directions {0◦, −30◦, 30◦} Multibeam Steering to {0◦, 0◦, 30◦}

Amplitudes Phases (◦) Amplitudes Phases (◦)
beam1 beam2 beam3 beam1 beam2 beam3 beam1 beam2 beam3 beam1 beam2 beam3

1 0.29 0.29 0.29 90 90 90 0.29 0.29 0.29 90 90 90
2 0.29 0.29 0.29 90 -174.8 -5.2 0.29 0.26 0.26 90 90 -12.0
3 0.29 0.29 0.29 90 -84.3 -95.7 0.29 0.21 0.31 90 90 -99.5
4 0.29 0.29 0.29 90 0.6 179.5 0.29 0.18 0.28 90 90 178.1
5 0.29 0.29 0.29 90 90.7 89.3 0.29 0.17 0.30 90 90 88.2
6 0.29 0.29 0.29 90 -172.4 -7.6 0.29 0.13 0.26 90 90 -17.6
7 0.29 0.29 0.28 90 -81.4 -98.9 0.29 0.04 0.32 90 90 -102.9
8 0.29 0.29 0.28 90 2.3 177.9 0.29 0.01 0.25 90 -90 172.1
9 0.29 0.29 0.29 90 93.6 87.2 0.29 0.04 0.32 90 -90 83.2
10 0.29 0.29 0.31 90 -163.7 -16.1 0.29 0.15 0.27 90 -90 -42.6
11 0.29 0.29 0.28 90 -67.3 -116.5 0.29 0.35 0.29 90 -90 -118.0
12 0.29 0.15 0.15 90 43.1 146.6 0.29 0.72 0.24 90 -90 80.7

to 0◦, a total number of 5 elements are anti-phase with respect to the rest elements.

Another example is generating Taylor distribution with −20 dB SLLs for a 2×12

Blass-like GJC matrix. Similarly, the coupler values are optimized utilizing the method in

[94] to generate the required Taylor distribution. Fig. 7.4(a) shows the optimized patterns

with beam directions of {0◦, −30◦}. However, when the two beams are overlapping at

0◦, beam splitting occurs to the second beam, as can be seen in Fig. 7.4(b). As given
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Figure 7.4: Beam deterioration when the second beam generated by a 2×12 Blass-like
GJC matrix overlaps the first beam. (a) shows the multibeams obtained by optimizing
the ϑmn with beam directions of 0◦, and −30◦. (b) shows beam 2 scanning from 0◦ to
−30◦.

in Table 7.2, when the two beams are both at 0◦, some of the excitation phases for the

second beam have 180◦ phase difference with respect to others. These two examples have

validated the aforementioned statement regarding the beam splitting.

Here only the overlapping of two beams is presented. It should be noted that when

M beams are overlapping, a total number of M−1 beams generated by the lower rows

will split. This greatly restricts the application of the GJC matrix in many wireless

communication and radar systems where beam overlapping is necessary. This issue must

be carefully addressed to enhance the attractiveness of the GJC matrix.

To address this issue, reconfigurable directional couplers [120] can be used to have

switchable coupler values for cases with or without beam overlapping. When there is

no beam overlapping, the coupler values can be optimized naturally. When there is

beam overlapping, in terms of the Blass-like GJC matrix, the coupling values can be

optimized as such that
∑n−1

i=1 ai is always smaller than an. In this case, there would not

be anti-phases since
∑n−1

i=1 ai −an is always positive. The consequence is that there will

be an amount of energy flowing to the matching load at the end of each row. On the other

hand, for the Nolen-like GJC matrix, this method is no longer feasible since there is
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Table 7.2: THE OUTPUT AMPLITUDES AND PHASES OBTAINED IN THE SYNTHESIS OF

THE 2×12 BLASS-LIKE GJC MATRIX.

n
Initial Multibeam {0◦, −30◦} Multibeam Steering to {0◦, 0◦}

Amplitudes Phases (◦) Amplitudes Phases (◦)
beam1 beam2 beam1 beam2 beam1 beam2 beam1 beam2

1 0.14 0.14 90 90 0.14 0.14 90 90
2 0.20 0.20 90 -178.9 0.20 0.20 90 90
3 0.26 0.26 90 -87.6 0.26 0.24 90 90
4 0.31 0.31 90 3.3 0.31 0.26 90 90
5 0.36 0.36 90 94.6 0.36 0.24 90 90
6 0.38 0.37 90 -172.5 0.38 0.17 90 90
7 0.38 0.38 90 -79.5 0.38 0.06 90 90
8 0.36 0.36 90 13.3 0.36 0.10 90 -90
9 0.31 0.31 90 105.3 0.31 0.24 90 -90
10 0.26 0.26 90 -160.1 0.26 0.37 90 -90
11 0.20 0.21 90 -60.6 0.20 0.46 90 -90
12 0.14 0.14 90 59.1 0.14 0.56 90 -90

no matching load at the end of each row. Another effective strategy is to optimize the

coupling values such that the signals that flow to the outputs having anti-phases have

very small powers. In this case, although they are anti-phase, their amplitudes are so

small that they would not affect the pattern much. However, the potential problem is

that the array gain would decrease to a certain extent. The beam splitting issue will be

addressed and demonstrated with examples in the Section 7.3.

7.2.3 A Synchronized Optimization Strategy

For an N-element linear array, according to equation (2.1), the array radiation pattern

considering active element pattern is given as:

Fm(wm;θ)=
N−1∑
n=0

wmnEn(θ)e jβrn cosθ (7.7)

where θ ∈ [−90◦,90◦] is the angle of observation, wm = [wm1,wm2, ...,wmN ]T is the output

excitation vector of the GJC matrix for the mth beam, En(θ) and rn is the nth antenna

element radiation pattern and position. β= 2π/λ is the propagation constant.

The target of designing a GJC matrix is to find the directional coupler values ϑmn as

well as phase shifter values ϕmn resulting in an output excitation vector w such that the
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multibeam patterns have desired beam directions and relatively low SLLs. Basically, the

phase shifter values can be directly calculated according to the beam directions as:

ϕmn =βrn sinθm (7.8)

where θm is the peak direction of the mth beam. On the other hand, obtaining the coupler

values ϑmn to yield excitation vectors wm using equation (7.2) for generating desired

multibeams is a highly non-linear problem. A proper cost function can be constructed

and a stochastic algorithm can be utilized to minimize the cost function value to obtain

desired multibeams. The cost function similar to the one in [121] is given as:

fcost =
C×M∑
m=1

[
W1

(
1
2

(
X (m)

p +
∣∣∣X (m)

p

∣∣∣))2
+W2

(
1
2

(
Y (m) +

∣∣∣Y (m)
∣∣∣))2

+
B∑

b=1

W (m)

B

(
1
2

(
Z(m)

b +
∣∣∣Z(m)

b

∣∣∣))2 ]
(7.9)

where

X (m)
p = F (m)(θ(m)

p )−0, (7.10)

Y (m) = 1−η(m)
t , (7.11)

Z(m)
b = F (m)(θ(m)

b )−ΓSLL. (7.12)

F (m) is the mth beam pattern normalized to the maximum gain of the multibeams, θ(m)
p

is the peak direction angle of F (m). θ(m)
b (b = 1,2, ...,B) are the sampling angles in the mth

beam pattern sidelobe region. η(m)
t is the transmission efficiency of the mth beam. W1,

W2, and W (m) (m = 1,2, ..., M, M+1, ...,C×M) are the weighting coefficients. C is the total

number of cases. By considering C different cases, each with M beams with different

directions, different beam overlapping conditions can be considered simultaneously.

What is more, by adopting the constraint (7.10) in the cost function, the peak gains

of the multibeams can be optimized to have equal power to resolve the beam splitting

issue. In addition, multibeams with stable and global low SLLs during scanning can

also be achieved by considering different beam scanning angles for the multibeams

simultaneously. Note that constraint (7.11) is for the optimization of the Blass-like GJC
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matrix, and there is no need for the Nolen-like GJC matrix since the transmission

efficiency is always 1. The principle of designing the cost function (7.9) is similar to that

for the cost function (3.7) in Chapter 3. Further explanations are thus omitted here.

Minimizing the cost function (7.9) to find the optimal coupling values ϑmn for m =
1,2, ..., M and n = 1,2, ..., N is a highly non-linear problem. In general, global stochastic

algorithms would be adequate for the optimization. The particle swarm optimization

(PSO) algorithm used in the previous chapters is employed for the optimization here.

7.3 Synthesis results

In this section, the beam overlapping issue is first resolved by adopting reconfigurable

directional couplers to achieve continuously multibeam scanning. In addition, examples

of optimizing the GJC matrices to achieve multibeams with stable SLLs are presented.

7.3.1 Optimization of the GJC Matrix to Address the Beam

Splitting for Continuous Multibeam Scanning

As aforementioned, a serious problem that must be carefully addressed for the GJC

matrix is that the lower beams will split as difference patterns when two or more beams

are scanned to the same directions. To avoid this problem, a straightforward and effective

method is to divide the beam scanning range into several sectors according to the beam

number, as the authors did in [94, 95]. In that case, different beams will work in their

own scanning range and, thus, identical beam direction angles and, hence, beam splitting

can be avoided. However, in some communications and radar applications, arbitrarily

scannable multibeams with beam overlapping are necessary. Therefore, addressing the

beam splitting issue of the GJC matrix is necessary.

In the following, this problem is solved by using the developed synchronized optimiza-

123



CHAPTER 7. MULTIBEAM ANTENNA ARRAY SYNTHESIS EMPLOYING THE
GENERALIZED JOINED COUPLER MATRIX

tion strategy with reconfigurable directional couplers. Basically, there are two different

multibeam scanning cases: multibeams without beam overlapping and multibeams with

beam overlapping. For these two cases, two sets of directional coupler values can be

optimized individually, and reconfigurable directional couplers can be employed to re-

configure their coupler values between these two sets of optimized values. On the other

hand, the phase shifter values can be either calculated with (7.8) or optimized along

with the coupler values. For the optimization, when there is no beam overlapping, the

coupler values can be readily optimized, and there will not be any issue. In the following,

multibeams with beam overlapping are optimized to address the beam splitting issue.

As the first example, suppose three beams are required in a practical radar applica-

tion for simultaneous communication and sensing. The first two beams are employed

for communication, and their scanning ranges are fixed at [−50◦, −5◦] and [5◦, 50◦],

respectively. The third beam is utilized for sensing that must scan to an arbitrary angle

in [−50◦, 50◦]. A 3×12 Blass-like GJC matrix consisting of reconfigurable directional

couplers is used. Two sets of coupler values are optimized with the phase shifter values

calculated using (7.8). For the optimization of multibeams with beam overlapping, the

two beams for communication are firstly fixed at specific directions, for example, −30◦

and 30◦. Then the direction of the third beam is either at −30◦ or 30◦, which overlaps

with the first or the second beam, respectively. In other words, two cases with beam

directions of {−30◦, 30◦, −30◦} (the third beam overlaps the first one) and {−30◦, 30◦,

30◦} (the third beam overlaps the second one) are considered simultaneously in the

optimization. Then all the coupler values in the three rows are optimized simultaneously

using the developed method to achieve beams without splitting as well as relatively low

SLLs. In the PSO-based optimization, the desired SLLs are set as ΓSLL =−20 dB, the

population size is N p = 36, the maximum number of iterations is Im = 800, the weighting

factors of the cost function are W1 =W2 =W (m) = 1.
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Figure 7.5: The synthesized multibeam patterns with beam overlapping by using a 3×12
Blass-like GJC matrix. The multibeam angles are (a) {−30◦, 30◦, −30◦}, (b) {−30◦, 30◦,
30◦}, (c) {−50◦, 5◦, 5◦}, and (d) {−10◦, 20◦, 20◦}, respectively. The overall transmission
efficiency is about 54.8%.

Table 7.3: THE OUTPUT AMPLITUDES AND PHASES OBTAINED IN THE SYNTHESIS OF A

3×12 NOLEN-LIKE GJC MATRIX WITH THE MAIN BEAMS AT {30◦, 0◦, 0◦}.

n
Amplitudes Phases (◦)

beam 1 beam 2 beam 3 beam1 beam 2 beam 3
1 0.00 0.02 0.27 90 90 90
2 0.02 0.03 0.25 0 90 90
3 0.17 0.14 0.20 -90 90 90.2
4 0.11 0.12 0.31 -180 91.3 90.7
5 0.23 0.22 0.26 90 90.8 91.6
6 0.28 0.29 0.29 0 91.6 91.7
7 0.31 0.28 0.21 -90 95.2 95.1
8 0.25 0.27 0.21 -180 94.4 93.8
9 0.29 0.29 0.13 90 90.8 91.6

10 0.23 0.24 0.08 0 92.5 90.2
11 0.23 0.23 0.03 -90 95.0 98.5
12 0.19 0.21 0.01 -180 93.2 114.1
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The optimized results are shown in Fig. 7.5(a) and (b). It is observed that there is

not any beam splitting observed when the third beam scan to the first or the second

beam directions. In addition, the beams can be steered to any directions in the scanning

region by just altering the phase shifter values according to (7.8), and there is no beam

splitting. For simplicity, only two cases with beam directions of {−50◦, 5◦, 5◦} and {−10◦,

20◦, 20◦} are shown in Fig. 7.5(c) and (d). The excitation amplitudes and phases with

multibeam directions of {30◦, 0◦, 0◦} are shown in Table 7.3. As can be seen, for beam

2 and beam 3, there is not any anti-phase after the optimization. It is noted that some

of the excitation phases are slightly different from 90◦ (ideal phase for the beam at 0◦)

due to the multi-path effect of the GJC matrix. As mentioned before, for the Blass-like

GJC matrix, the consequence is that there will be an amount of energy flowing to the

matching load at the end of each row. In this example, the overall transmission efficiency

of the Blass-like GJC matrix is about 54.8%.

To further show the effectiveness of the developed method, another example is

presented here. Suppose three beams are required and they need to scan to an arbitrary

angle within [−50◦, 50◦]. It means that all three beams or two of them may overlap. To

resolve the beam splitting, the developed synchronized optimization strategy employing

reconfigurable direction couplers is adopted. In the PSO-based optimization, all the

parameters are set the same as previous example. The optimized results with beam

overlapping are shown in Fig. 7.6. As can be seen, no matter the overlapping of three

or any two beams of them, there is not any beam splitting. What is more, the SLLs are

always below −20 dB. In this case, however, the resulting overall transmission efficiency

is only 29.4 %.

For the Nolen-like GJC matrix, it is more difficult to resolve the beam splitting issue

since there is no any matching load to absorb the energy. In that case, anti-phases are

inevitable. A potential solution is to minimize the powers that flow into the anti-phase
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Figure 7.6: Multibeam scanning patterns with beam overlapping by using a 3×12
Blass-like GJC matrix. The multibeam angles are (a) {0◦, 0◦, 0◦}, (b) {0◦, 40◦, 40◦}, (c)
{−50◦, 20◦, −50◦}, and (d) {−10◦, 10◦, −10◦}, respectively. The transmission efficiency is
about 29.4%.

ports. Here, the developed optimization method is utilized to optimize both the coupler

values and the phase shifter values with a 3×12 Nolen-like GJC matrix to address

this issue. The desired SLLs are set as ΓSLL =−15 dB. The parameters for the PSO is

used the same as before except that the population size is N p = 60. It should be noted

that different from the Blass-like GJC matrix which only two sets of coupler values are

required, the Nolen-like GJC matrix requires three sets of coupler values and phase

shifter values when there are three beams due to its complexity. One set of coupler values

and phase shifter values for three beams overlapping, one set for any two of the three

beams overlapping, and one set for the case without beam overlapping.

The optimized multibeams are shown in Fig. 7.7. As is shown that the beam splitting
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Figure 7.7: The synthesized mutlibeam patterns with beam overlapping for a 3×12
Nolen-like GJC matrix by optimizing the ϑmn and φmn simultaneously. (a), (b), (c), and
(d) show the patterns with beam directions of {0◦, 0◦, 0◦}, {−30◦, −30◦, −30◦}, {0◦, 0◦, 30◦},
{−15◦, 45◦, −15◦}, respectively.

issue is well solved. For the cases with two or three beams overlapping, there is no beam

splitting observed. The optimized excitation amplitudes and phases for the three beams

with directions of [0◦, 0◦, 0◦] are shown in Table 7.4. It is noted that the anti-phase

elements are generally optimized to have small amplitudes.

7.3.2 Beam Scanning with Stable SLLs using Calculated

Progressive Phases

In this example, the developed method is utilized to achieve beam scanning with stable

SLLs. In the referenced methods [94, 95], only multibeams with fixed angles were
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Table 7.4: THE OUTPUT AMPLITUDES AND PHASES OBTAINED IN THE SYNTHESIS OF

THE 3×12 NOLEN-LIKE GJC MATRIX WITH THE MAIN BEAMS SCANNED TO {0◦, 0◦, 0◦}.

n
Amplitudes Phases (◦)

beam 1 beam 2 beam 3 beam1 beam 2 beam 3
1 0.18 0.56 0.16 90 90 90
2 0.01 0.48 0.06 87.5 96.5 79.9
3 0.04 0.53 0.05 -9.4 87.6 -75.5
4 0.34 0.28 0.17 -99.5 92.5 -101.0
5 0.36 0.23 0.06 -96.7 93.9 -87.8
6 0.44 0.12 0.04 -103.5 82.0 -145.0
7 0.50 0.10 0.04 -96.3 -91.2 74.8
8 0.50 0.12 0.16 -92.8 -79.9 71.1
9 0.08 0.04 0.46 -115.5 -60.5 81.9

10 0.01 0.07 0.51 94.7 -105.4 79.8
11 0.12 0.03 0.40 -101.6 147.8 81.7
12 0.11 0.08 0.53 82.4 92.10 82.1

optimized at a time, and with the optimized coupler values, multibeams at other scanning

angles were obtained by changing the phase shifter values only. The problem is that,

since only one set of beam angles is considered in the optimization, the SLLs and gains

may deteriorate after scanning owing to the multi-path effect of the GJC matrix. This

problem can be solved by using the developed synchronized optimization strategy by

considering multiple beam scanning cases. By setting C cases with differently scanned

multibeams, it is possible to achieve global low and stable SLLs such that the SLLs will

not deteriorate during scanning.

A 3×17 Nolen-like GJC matrix is considered here to achieve three scannable beams

in the ranges of [−40◦, −20◦], [−10◦, 10◦], and [20◦, 40◦]. Each beam scans at an interval

of 10◦. For example, the first beam can scan to −40◦, −30◦, and −20◦. In this case, C

is set as 33 = 27 since there are 27 different scanning angle combinations. The desired

SLLs are set as ΓSLL =−20 dB for all the possible scanning angles of the multibeams.

The parameters for the PSO is used the same as before except that the population size is

N p = 48. The optimized results are shown in Fig. 7.8. It can be seen that, for multibeams

with any possible scanning angles, the SLLs always remain below −20 dB. Moreover, all

the beams have consistent gains, which has demonstrated the favorable performance of
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Figure 7.8: Beam scanning with stable SLLs with calculated progressive phases. (a)
mutlibeams with different scanning angles. (b), (c), and (d) show mutlibeams with
scanning angles of {−40◦, 20◦, 40◦}, {−40◦, −10◦, 40◦}, and {−20◦, −10◦, 20◦}, respectively.

the developed method.

7.3.3 Comparison with a Classical Blass Matrix Design Method

To further evaluate the developed method, a comparison with a classical Blass matrix

optimization method by Mosca is provided with a 5×20 Blass-like GJC matrix. In [122],

the multivariable nonlinear problem of designing a Blass matrix was reduced to a one-

variable linear programming problem by assuming the power at each row only dissipated

by the matching load at the end of that row. Then the loss of each row was minimized

by easily solving the linear programming problem with the help of the Gram-Schmidt

orthogonalization. However, the multi-path effect was not considered, and the efficiency
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of each row was only as high as 90%. Here, this method is first utilized to optimize a

5×20 Blass matrix to design multibeams directing at {−40◦, −20◦, 0◦, 20◦, 40◦}. The

target output amplitude distribution is the Taylor distribution, and the SLLs are −25 dB.

The results obtained by the reference method in [122] are shown in Fig. 7.9. As is seen,

−25 dB SLLs are obtained. The transmission efficiencies of the five beams are 89.8%,

89.9%, 89.0%, 87.8%, and 84.9%, respectively.

Then, the developed method is employed to design the same multibeams employing

a 5×20 Blass-like GJC matrix. The beam directions and the desired SLLs are set the

same as before. The population size of the PSO si set as N p = 54, and all the parameters

are set the same as the previous example. The optimized multibeam patterns are shown

in Fig. 7.10. As is shown, −25 dB SLLs are obtained for all five beams. The optimized

excitation amplitudes are listed in Table 7.5. Table 7.6 provides a comparison between

the proposed method and the reference method in [122] in terms of computational

efficiency, time consumption, memory usage, and transmission efficiency. The results

show that the proposed method achieves better transmission efficiency compared to

the Blass matrix optimization method by Mosca. The overall transmission efficiency is

about 98.9%, indicating nearly lossless transmission. However, it should be noted that

the proposed method employing the stochastic algorithm PSO requires more time and

memory during the optimization process. This suggests that further improvements are

necessary to enhance the efficiency of the proposed method.

In conclusion, while the proposed method outperforms the reference method in terms

of transmission efficiency, there is room for improvement in terms of computational

efficiency, time consumption, and memory occupation. Future research and optimization

efforts can address these areas to enhance the proposed method.
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Figure 7.9: The mutlibeam patterns for a 5×20 Blass matrix obtained by the method in
[122]. The beam directions are {−40◦, −20◦, 0◦, 20◦, 40◦}, and efficiencies of the 5 beams
are 89.8%, 89.9%, 89.0%, 87.8%, and 84.9%, respectively.
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Figure 7.10: The synthesized mutlibeam patterns for a 5×20 Blass-like GJC matrix by
optimizing the ϑmn. The beam directions are {−40◦, −20◦, 0◦, 20◦, 40◦}.

7.4 Summary

In this chapter, a novel synchronized optimization strategy employing reconfigurable

directional couplers is developed for the design of the GJC matrix to produce continuously

scannable multibeams with relatively low SLLs. The beam splitting issue when beams

overlap was thoroughly discussed and well addressed for both Blass- and Nolen-like

GJC matrices. Besides, multibeams with different scanning angles can be considered

simultaneously by using the developed optimization strategy to achieve global low and

stable SLLs. Moreover, a comparison between the GJC matrix and the classical Blass
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Table 7.5: THE OUTPUT AMPLITUDES OBTAINED IN THE SYNTHESIS OF THE 5×20
BLASS-LIKE GJC MATRIX.

n beam 1 beam 2 beam 3 beam 4 beam 5
1 0.17 0.13 0.17 0.11 0.11
2 0.16 0.14 0.15 0.12 0.17
3 0.22 0.14 0.29 0.16 0.21
4 0.31 0.21 0.19 0.16 0.18
5 0.18 0.25 0.26 0.26 0.24
6 0.26 0.27 0.32 0.27 0.27
7 0.32 0.35 0.30 0.30 0.31
8 0.34 0.27 0.34 0.28 0.31
9 0.30 0.34 0.32 0.34 0.27
10 0.28 0.32 0.29 0.33 0.31
11 0.27 0.34 0.29 0.32 0.31
12 0.29 0.28 0.24 0.27 0.29
13 0.21 0.20 0.20 0.25 0.22
14 0.19 0.23 0.18 0.23 0.26
15 0.13 0.16 0.15 0.20 0.15
16 0.15 0.14 0.12 0.16 0.17
17 0.08 0.11 0.08 0.12 0.12
18 0.06 0.10 0.06 0.09 0.08
19 0.04 0.04 0.05 0.07 0.09
20 0.04 0.04 0.04 0.04 0.06

Table 7.6: PERFORMANCE COMPARISON BETWEEN THE PROPOSED METHOD AND THE

REFERENCE METHOD IN [121] FOR THE SYNTHESIS OF A 5×20 BLASS MATRIX.

Method Computational
Complexity

Time Cost
(Seconds)

Memory (MB) Transmission
Efficiency

Method in [122] O(MN) 0.1 0.2 88.3%

Proposed Method O(ImNpM2N2) 64.8 9.9 98.9%

matrix design method was presented to demonstrate the superiority of the GJC matrix.

The developed synchronized optimization method employing a reconfigurable strategy

has solved the beam splitting problem of the GJC matrix, which completes the study

of the GJC matrix and makes it more attractive in modern fifth-generation (5G) and

beyond 5G (B5G) wireless communications like the joint communication and sensing

(JCAS) where beam overlapping is essential.
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8
CONCLUSION AND FUTURE WORK

8.1 Conclusion

In this dissertation, several novel techniques were developed to achieve desired pattern

synthesis with simplified and cost-effective feeding networks. Those techniques can be

categorized into two parts: the first part is replacing excitation amplitude modulation

with element rotation to simplify the structure of the feeding network; the second part is

multibeam synthesis.

Since pattern synthesis including shaped pattern and sum-and-difference pattern

synthesis to achieve decent performance are complicated, the majority of existing meth-

ods optimized excitation amplitudes and phases for obtaining good control on both the

main lobe shape and sidelobe level (SLL). As a consequence, the obtained array usually

requires a complicated feeding network to implement nonuniform excitation amplitudes.

Multiple unequal power dividers must be designed with much attention, and that will

also result in an increase in the weight as well as the cost of the antenna array system.
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Polarization of the antenna can be considered as an optimization variable that can be

used in pattern synthesis. In this dissertation, the polarization rotations or the antenna

rotations were modulated to synthesize sum-and-difference patterns and shaped-beam

patterns. Sum-and-difference patterns were first synthesized through optimization of the

antenna rotation angles and positions to achieve low SLLs and steep difference pattern

slopes for linear dipole arrays. After that, shaped power patterns were synthesized by

optimizing element rotations and excitation phases considering mutual coupling and

arbitrary antenna structures for the linear and planar array. Further extension of this

method was achieved then to deal with shaped pattern synthesis for cylindrical conformal

arrays considering mutual coupling. Favorable main lobe shapes and relatively low

SLLs were obtained. Comparisons showed that the element rotation-based method can

achieve equivalent performance in terms of SLL and main lobe shape as the amplitude

optimization methods as some excitation amplitude optimization methods.

The second part is multibeam synthesis. Firstly, a phase-only multibeam pattern

synthesis method based on the partitioned iterative Fourier transform (PIFT) was

developed for phased array. The PIFT incorporates a partitioned calibration strategy

into each iteration to achieve accurate beam directions by partitioning and calibrating

the multiple beams individually without affecting each other. The main lobes and the

sidelobes are also iteratively corrected and modified to obtain desired peak powers

and reduced SLLs. Numerical examples including comparisons with other phase-only

methods were presented to show the effectiveness of the developed method. Synthesized

results showed that multibeam patterns with precisely controlled beam directions and

peak powers, as well as reduced SLLs, can be obtained within only 3.56 minutes for large

planar arrays with up to 2500 elements. Full-wave simulation results have validated

that the PIFT can achieve precise beam direction control even when practical antennas

are considered.
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At last, an effective strategy of using reconfigurable directional couplers is adopted

to address the beam splitting issue of the generalized joined coupler (GJC) matrix and to

achieve arbitrarily and individually scannable multibeams. To this end, a flexible syn-

chronized optimization strategy that can consider multiple different cases was developed.

Synthesized results have demonstrated that, by using the developed optimization strat-

egy, beam splitting issue when beam overlapping can be well solved. Besides, multiple

different cases with differently scanned multibeams can be optimized at a time to achieve

global optimum and stable SLLs as well as consistent gains for all the beams. Compari-

son with a classical Blass matrix design method has further validated the effectiveness

of the developed method.

Since modern wireless communication systems are evolving to be high-integration

and low-cost ones, it is believed that the developed techniques that can lead to simplified

and cost-effective feeding systems can be very attractive in many applications in current

and future terrestrial and non-terrestrial wireless communication networks.

8.2 Future Work

There are some interesting works deserving further investigation in the future:

1. Wide-angle beam scanning employing the GJC matrix. Wide-angle beam scanning

can find significant applications in the fifth-generation (5G) and future wireless com-

munications such as sensing, satellite communication, smart vehicles, and air-based

platforms, including unmanned aerial vehicle (UAVs) and aircraft. The gain at large

scanning angles usually drops significantly due to the gain drop of the element pattern.

By properly designing the GJC matrix, the gain decrease can be compensated at large

scanning angles to achieve beam scanning with consistent gain. It would be very useful

if a large range beam scanning can be achieved.

2. 2D wide-angle beam scanning conformal array synthesis employing the GJC matrix.
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In some wireless communication systems, such as the UAVs, antenna arrays are required

to be integrated into a curved shape to maintain the aerodynamic or hydrodynamic

requirements. In this case, linear or planar arrays are no longer applicable. Conformal

arrays that are able to achieve wide 2D wide-angle beam scanning are highly desired in

these applications. By connecting series-fed 1D antenna arrays to each output port of

the GJC matrix, it is possible to achieve 2D wide-angle beam scanning. By employing a

cylindrical conformal array, it is also possible to achieve full 360◦ azimuth beam scanning

and also wide-angle beam scanning in the elevation plane.
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