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ABSTRACT

Frost damage in broadacre cropping and horticulture (including viticulture) results in substantial

economic losses to producers and may also disrupt associated product value chains. Frost risk

windows are changing in timing, frequency, and duration. Faced with the increasing cost of miti-

gation infrastructure and competition for resources (e.g., water and energy), multi-peril insurance,

and the need for supply chain certainty, producers are under pressure to innovate in order to man-

age and mitigate risk. Frost protection systems are cyber-physical systems comprising sensors

(event detection), intelligence (prediction), and actuators (active protection methods). These sys-

tems are an important tool and cost factor in fighting against frost. Therefore, there is a need to

improve the efficiency and effectiveness of frost protection cyber-physical systems.

This study adopts the Internet of Things 2.0 architectures and emphasizes the dimensions of

machine learning intelligence, scalability, interoperability, and user-friendliness in frost protection

systems. This research also improves on the limitations of existing frost protection systems and the

prediction methods that control the systems. The limitations are historical data dependence, low

prediction temporal resolution, non-real-time response, and low fault tolerance. In response to the

limitations of low prediction temporal resolution and non-real-time response, the existing 12-24

hours prediction methods are extended by artificial neural networks and recurrent neural networks

for near real-time frost prediction. A minute-wise regression model to predict the next hour mini-

mum temperature is proposed. The minute-wise model further highlights the system dependence

on local historical data and sensors. To decouple this dependence, a spatial interpolation-based

frost prediction system is implemented. This model-based system only requires data from existing

weather stations to predict frost at any new sites. Combining the results of the previous two mod-

els, a cyber-physical system framework is proposed to improve the system fault tolerance. This

framework is a modular design with the local data-based system as the primary predictor and the

model-based system as both a secondary predictor and system stopping mechanism. The result

shows improvements in operational cost compared to traditional methods. The final contribution

is the improvement of energy efficiency on edge-based prediction. A spatially generalized model

with a smaller prediction window is constructed and deployed on a LoRa transmission node. The

proposed system not only improves energy efficiency, it also reduces the false positive rate.
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1
Introduction

1.1 Motivation

As the growth of the global population continues, the yield of food production should follow this

growth to avoid future food shortages [24]. Although many environmental factors are affecting

the yield of food, this research focuses on frost, which can be a cause of food shortages in coun-

tries relying on frost intolerant crops [25]. The direct economic loss of lost production through

frost damage can be substantial. For example, in 1998, the Wimmera region of Australia lost an

estimated 60% of its wheat crop due to frost, costing 200 million AUD [26]. More recent research

from 2016 shows that frost events incur a loss of 120 million to 700 million AUD annually from

the Australian broadacre agriculture sector [27]. The frost event also adversely impacted on jobs

along the supply chain [28].

The global trend of climate change has not only increased the average temperature of the

Earth’s climate system, but also induced greater instability in weather patterns, which lead towards

a higher risk of frost damage [29, 30]. Recent changes in the spatial and temporal characteristics

of frost events have been attributed to climate change [27]. Frost prediction models that depend

on historical weather data could be challenged. Therefore, real-time active responses provided

by Cyber-Physical Systems (CPSs) are required to predict and mitigate the risk of frost damage

accurately in the face of these challenges.
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1.2 Challenges

Many early designs of frost protection systems referred to IoT as a potential solution. However,

the adoption of IoT technology in frost prediction is still primitive. Consequently, the results on

the ability of protection are limited. These systems could benefit from modern architectures of

IoT. Another challenge comes from the prediction models. Predictions are not real-time. Most

prediction models based on machine learning can only perform next day or night predictions. This

could be a potential waste of operation costs of protection equipment. The environmental data

source is another issue. Existing systems often rely on one local data source. As a result, these

systems operate with low fault tolerance. Also, when the protection equipment is operating, the

corruption of environmental data source by the protection equipment poses as a challenge.

1.3 Research Questions and Objectives

Figure 1.1: Objectives, Research Questions, and Deliverables.

From Figure 1.1, this research aims to increase the temporal resolution and fault tolerance of frost

prediction systems by adopting modern IoT concepts. The objectives of this research project are

listed as follows:

1. Evaluate the limitations of existing frost protection systems.

2. Evaluate the concepts of IoT as reference designs for frost protection systems.

3. Develop a real-time, high temporal resolution frost prediction method.

4. Implement fault tolerance mechanisms in frost protection systems.

5. Propose a frost protection CPS framework with the following properties:

• Near real-time prediction and protection.

• High fault tolerance achieved with multiple data sources.

2
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• Modular framework design.

• Ease of deployment.

• Energy efficient.

The objectives mentioned in the above lead to the following research questions:

1. What are the limitations of existing frost protection systems?

2. What are the suitable prediction methods for real-time frost prediction?

3. What is the role of IoT in frost protection?

4. How to achieve near real-time frost prediction?

5. How to ensure system fault tolerance in frost prediction?

6. What are the critical energy cost factors of frost prediction and protection systems?

1.4 Deliverables

The contributions to achieve the research objectives and answer the research questions are listed

as follows:

1. An analysis of the relevant concepts of IoT in frost prediction.

2. A comparison between different frost prediction and protection systems.

3. A near real-time, high temporal resolution frost prediction method.

4. A multi-data source, high fault tolerance frost prediction method.

5. A modular, scalable, frost protection CPS framework.

6. An energy efficient, edge-based implementation of frost prediction system.

1.5 Stakeholders

The deliverables of this research project should influence the academic and industrial sectors of

agriculture. The final deliverable includes frost prediction algorithms and a fault-tolerant frost

protection CPS. The primary stakeholders affected by this research project are farmers, frost pro-

tection equipment manufacturers, and researchers. Farmers are the direct victims of the frost event

as a substantial number of crops have been destroyed by frost annually [27]. Hence, farmers can

provide accurate primary research results and real-life experiment fields for constructing and val-

idating the proposed system. Since current automated protection systems are incomplete and still

in the experimental phase, the farmers rely on frost prediction methods and empirical experiences
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to apply protection methods [31]. This would incur excess manual labor costs and operational

costs. However, if the proposed system and algorithms can be widely deployed, the operational

costs could be reduced. Also, as the system operates autonomously with high fault tolerance, the

requirement for manual labor is minimized. Moreover, the damage to crops should be reduced.

Overall, with the deployment of the proposed system, the loss incurred by crop damage would be

reduced for the farmers.

The frost equipment manufacturers could provide information on existing frost protection

equipment and provide recommendations on efficient, effective, and economically feasible equip-

ment. The proposed system intends to automate the usage of these frost protection equipment.

Consequently, the manual labor and operational cost of using the equipment decreases. Also,

as the automated protection system facilitates the frost protection process, this could drive the

development of protection equipment that complies with existing protection systems. A novel in-

dustrial communication standard between different components of the protection system could be

established as a branch of IoT.

Some deliverables and results of this research project could stimulate other researchers in their

future research work. The frost prediction method could provide a baseline for future development

to increase model accuracy and resolution. Furthermore, the proposed system could be a reference

platform to test novel active frost protection methods. Finally, as mentioned above, this could

induce further research on an industry-based communication protocol between frost protection

system components.

Frost insurance providers are minor stakeholders. In Australia, there is a limited number of

insurances that cover frost damage. A reason for this limitation is the high variability of climate

patterns [32]. The proposed frost prediction model should contribute to the accuracy of frost

prediction and eventually foster the business opportunity of frost-related insurances. Finally, as

current frost events impact all parties along the agricultural supply chain [28], this research project

could reduce the economic loss for all these parties.

1.6 Research Methodology

The initial phase of this research started from the challenges defined in Section 1.2. Then, the next

phase and the phases after all build upon the limitations and challenges identified in the previous

phase. Therefore, later phases of this research are connected and derived by the limitations of

earlier phases. From Figure 1.2, the initial phase 0 outlines the relevant concepts and architectures

of IoT. Also, the existing frost prediction systems in the literature are evaluated. The analysis of

existing frost prediction systems provided the initial limitations and research challenges to start

the project. The limitation of low prediction frequencies of the existing frost prediction models is

addressed in phase 1. Minute-wise predictions with neural networks became the solution. Also,

RNN-based models are assessed as frost prediction models in phase 1. Then, in phase 2, the neural

networks are further improved with spatial interpolation techniques to eliminate the requirement
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Figure 1.2: Research Methodology.
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of local historical data from new sites to construct the models. After that, the results of phases

1 and 2 are merged into the framework in Phase 3. This phase provides a model-based stopping

condition for the frost protection equipment. Utilizing external weather stations from phase 2,

this framework is able to eliminate the contamination of sensor readings from operating frost

protection equipment. Finally, in phase 4, an edge solution of frost prediction is proposed to

assess the energy consumption of critical components. Also, the false positives of the system are

reduced with lower prediction windows of the frost prediction models.

1.7 Thesis Organization

To complete the objectives and answer the research questions, the rest of this thesis is organized

as follows:

• Chapter 2 outlines the relevant technology and concept of IoT relevant to frost prediction and

protection under the tree of IoT 2.0. Chapter 2 also identifies the limitations and research

challenges of existing frost prediction and protection systems.

• Chapter 3 increases the frost prediction frequency from once per 12–24 hours for the next

day or night events to minute-wise predictions for the next hour events. It also evaluates

RNN-based models as potential frost prediction models.

• Chapter 4 introduces spatial interpolation methods into frost prediction. This research aims

to eliminate the requirement of historical data on models for new sites of deployment and to

enhance system fault tolerance.

• Chapter 5 proposes a multi data source frost prediction framework. Model-based stopping

mechanism of the frost protection equipment is achieved in this chapter to further enhance

system fault tolerance. An implementation of the framework with models from the previous

two chapters is also evaluated.

• Chapter 6 presents an edge-based implementation of a frost prediction system. Energy

requirements of the edge-based system is compared with a transmission-based system. This

implementation also utilizes generalized frost prediction models with smaller prediction

windows to reduce the false positives of frost detection.

• Chapter 7 summarizes this research with highlights of each chapter. Finally, challenges for

future research are also outlined as the end of this thesis.
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2
Literature Review

This chapter provides a comprehensive review of frost prediction systems and introduces its build-

ing block technologies under the Internet of Things 2.0. The first part of this chapter presents the

concept of the Internet of Things 2.0 with an emphasis on relevant topics to frost prediction and

protection. These topics are machine learning intelligence, IoT scalability, IoT interoperability

and user friendly IoT. An overview of recent IoT architecture is also provided as reference de-

signs of frost protection systems. Connections between these IoT topics and frost protection are

revealed to answer Research Question 3: What is the role of IoT in frost protection? The second

part of this chapter discusses frost prediction methods, frost protection methods, integrated frost

active protection systems, and the IoT communication protocols for frost protection applications.

Different prediction methods are compared to answer Research Question 2. Moreover, limita-

tions of existing methods and systems are concluded as the response to Research Question 1 and

the starting gaps to be filled in the next sections of this thesis. This chapter is structured as fol-

lows. Sections 2.1–2.6 present background information on IoT. Section 2.1 provides an overview

of related technologies and concepts. Section 2.2 examines the IoT architectures. Section 2.3

elaborates on the usage of machine learning techniques in different layers of the IoT architecture.

Then, Section 2.4 describes different types of scalability and scalability enabled by software de-

fined networks (SDN). Section 2.5 reports IoT interoperability with existing standards. Section

2.6 illustrates user friendly IoT as the final dimension of IoT 2.0. The second part of this chapter

(Sections 2.7–2.12) concludes recent development in frost prediction and protection technologies.

Section 2.7 discusses the definition of frost. Section 2.8 demonstrates an analysis of current work

on frost prediction models. Then, Section 2.9 categorizes the existing frost protection methods into

passive and active methods. Then, the limitations of recent automated frost protection systems are
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discussed in Section 2.10. Section 2.11 provides insights on the deployment of IoT protocols in

terms of power consumption, communication range and cost factors in a frost protection CPS.

With the research gaps on frost prediction models and limitations of automated frost protection

systems concluded, Section 2.12 proposes future research directions on frost prediction and pro-

tection systems. Finally, Section 2.13 offers concluding remarks. Other than these major section,

an extra Section 2.14 is included to conclude the development of frost systems after finishing all

the chapters in thesis. The major parts of this chapter have been published as the journal papers

”Internet of Things 2.0: Concepts, Applications, and Future Directions,” in IEEE Access [33] and

”Frost Monitoring Cyber–physical System: A Survey on Prediction and Active Protection Meth-

ods,” in IEEE Internet of Things Journal [34].

2.1 Technologies and Concepts underlying IoT 2.0

The term “Internet of Things” (IoT) was first coined by Kevin Ashton in 1999 [35]. The Inter-

national Telecommunication Union (ITU) has formally defined IoT as “A global infrastructure

for the information society, enabling advanced services by interconnecting (physical and virtual)

things based on existing and evolving interoperable information and communication technolo-

gies [36].” This definition can be viewed as the basis of IoT technologies. There is an increasing

demand for IoT applications and technologies worldwide. It is predicted that networked devices

will increase from 18 billion in 2017 to 28.5 billion in 2022, and Machine to machine (M2M)

connections will reach 15 billion in 2022 [37]. With recent advancements in the fifth-generation

of mobile telecommunications technology (5G), high speed and low latency networks will further

facilitate the development of IoT technologies and applications [38]. However, with the recent ad-

vancement of other technologies and applications such as machine learning, edge computing, and

Industry 4.0, there is a need to update and redefine the concept of IoT towards IoT 2.0 [38–40].

There are many industry and public mentions of IoT 2.0 visions. Many of them focus on improv-

ing IoT application productivity and service quality with the vision of users [41–43]. AI-driven

service development is viewed as a way to enhance service quality [44]. IoT interoperability is

another field that attracted attention for IoT 2.0 [45]. Other than these fields, security and privacy

vulnerabilities are also mentioned as issues to be solved in the next generation IoT systems [46].

A potential solution to reinforce IoT security and privacy could be blockchain [47].

At the Samsung Developer Conference 2019, interoperability, security, connectivity, and au-

tomation of IoT applications are major fields of further development in the IoT 2.0 vision [48].

Other than this conference, a report [49] from the Joint Research Centre (JRC) of the European

Commission concluded that IoT 2.0 should utilize machine learning technologies to enhance the

generated intelligence and knowledge available to users. In this process, interpolation is an issue

that limits the advancement of specialized edge services. Therefore, approaches toward integra-

tion and standardization are inevitable for the evolution of IoT and further development of IoT

applications. Compared to the enthusiasm in the industry, academic works on the concept of IoT

2.0 are limited. In [50], an IoT 2.0 platform is proposed. This platform integrates application
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Machine Learning
Intelligence

Mission Critical
Communication

IoT Scalability

IoT Sustainability

IoT Interoperability

IoT Security

User Friendly IoT

IoT 2.0

Figure 2.1: IoT 2.0 Concepts.
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development, deployment, and sharing. Interoperability is featured as a key function of the IoT

2.0 platform [50, 51]. The authors of [52] demonstrated the “Identity of Things” as an IoT 2.0

component. IoT applications should also be identified by their manufacturers to avoid security

issues generated by any criminal parties [52]. In [53], an IoT 2.0 conceptual framework is de-

veloped to emphasize the usability of IoT and systems for end-users. Distributed intelligence

powered by artificial intelligence (AI) is discussed in [54] and recognized as an aspect of IoT 2.0.

The above works only describe one or a few aspects of advancement in IoT. Also, the authors

of [55] concluded that very few existing survey papers had connected different aspects of IoT.

Recent IoT advancement is concluded into IoT 2.0 as a seven-dimension framework. These di-

mensions include machine learning intelligence, mission critical communication, IoT scalability,

IoT sustainability, IoT interoperability, user friendly IoT, and IoT security shielding the previous

six aspects from external attacks (Figure 2.1) [33].The first half of this chapter aims to build up

the technical background with the IoT 2.0 dimensions relevant to frost prediction and protection

systems.

2.1.1 5G

The authors of [56] revealed the requirements of 5G-based IoT as high data rate, highly scalable

and fine-grained networks, very low latency, reliability, resilience, security, long battery lifetime,

connection density and mobility. Therefore, 5G grants IoT applications the capability to provide

better services by gathering more data in a faster and more secure channel. Furthermore, 5G

networks could support the development of next-generation IoT applications. In this subsection,

the 5G enabling technologies are reviewed.

Wireless Network Function virtualization (WNFV) is a major part of 5G networks. It not

only enables network services to be run through software, but also enables wireless networks to

be managed more efficiency and provide better Quality of Service (QoS). Network slicing is key

technology within 5G which is built on top of the WNFV to create logically separate networks and

provide end-to-end QoS guarantees [57].

5G Heterogeneous networks have evolved to improve the speed of data transmission. To re-

duce latency, multi-tier cell architectures are deployed to offload data from higher tier centralized

cells to lower-tier distributed cells. Lower tier cells are closer to the end users. Hence, latency is

reduced [58].

Advanced spectrum sharing and interference management enable wider coverage area and

higher traffic load balance [58]. To further improve spectral efficiency, device to device (D2D)

communication technology is also included in 5G networks. This technology allows users in close

distance to communicate without a base station. Therefore, D2D communication improves not

only spectral efficiency but also provides high throughput and energy efficiency [56].

One key enabler of real-time applications is edge computing. As edge computing enables low

latency data transmission, real-time smart applications can be developed to provide high quality

10
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services [59]. Therefore, in a 5G network age, integration of AI and edge computing enhanced

IoT will significantly enhance the quality of user experience [56].

2.1.2 Tactile Internet

The authors from [60] highlighted that Tactile Internet includes human to machine interactions

through haptic devices. They view Tactile Internet on the same level as IoT and 5G. Therefore, re-

vealing the common properties of Tactile Internet, IoT and 5G as low latency, ultra-high availabil-

ity, Human to Human (H2H)/M2M co-existence, data-centric technologies and security. However,

the authors from [61] interprets Tactile Internet as another domain addressed by the low latency

requirement of 5G and actuated by the wireless communications of IoT.

Based on the properties of Tactile Internet from [61], the authors of [62] further categorized

the challenges of Tactile Internet into communications, haptics, artificial intelligence, and com-

putation. Communication challenges are higher data rates, ultra-low latency, high reliability, and

support of cloud/fog network overheads. These requirements are almost identical to the properties

of 5G networks. Therefore, communication requirements can be resolved under the environment

of 5G. Low latency services also require artificial intelligence and computation power. Artificial

intelligence can be leveraged to predict future actions to compensate for latency. Furthermore, ar-

tificial intelligence is also the basis of intelligent services. Similar to artificial intelligence, faster

computation also reduces the impact of latency. It also supports computation for artificial intelli-

gence and real-time haptic services. The authors of [63] provided six use cases of Tactile Internet

applications. The first use case is health care. An example of a health care application is exoskele-

tons for disabled people. The exoskeleton can detect changes in human muscle to perform certain

movements. However, tactile latency is required to ensure safety. Exoskeletons can also be used

for education and sports. It can be used in virtual training centers so that students can train in

any location. Another use case is traffic. Tactile Internet enables fully autonomous traffic, where

vehicles can react instantly to incoming humans on the street. Therefore, this system aims to pre-

vent any injury or death from traffic accidents. This also enhances the performance of monitoring.

The usage of free-viewpoint video provides multi-perspective monitoring for users [63]. In the in-

dustrial sector, Tactile Internet enables mobile robots for production, reducing any human injuries

during production. The last use case is the smart grid. Using Tactile Internet, low latency networks

can synchronize the usage of power to the suppliers. This allows the suppliers to precisely adjust

the reactive power, preventing wastage of power.

2.1.3 Edge Computing

The aim of edge computing is to reduce bandwidth usage and latency for an IoT network. From

Figure 2.2, as a major task of edge computing, machine learning is highly deployable on edge

devices [1]. Edge computing is an enabler of low latency and real-time AI applications. In this

subsection, the major architectures of edge computing are discussed.
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There are three significant architectures of edge computing: fog computing, mobile edge com-

puting (MEC) and cloudlet computing [1]. Fog computing is an extension of traditional cloud

computing with fog computing nodes [1]. These fog computing nodes are placed between the

end devices and a centralized cloud. The function of these fog computing nodes is to aggregate

heterogeneous data from different sources. Furthermore, the fog computing nodes act as an in-

terface to access these heterogeneous data, protecting any user from the heterogeneity of data. In

the second architecture, MEC, is designed for cellular networks [1]. Unlike fog computing nodes,

MEC nodes utilize both computational and storage capabilities. The functionality of these nodes

can be modified through virtualization interfaces. Hence, MEC nodes can provide flexible, low

latency, and real-time services to mobile end users. Finally, cloudlet computing is implemented

with a cloudlet, which is a virtualized server that is one hop away from the end user [1]. Cloudlets

are able to store provisional resources. Therefore, this architecture also can provide end users with

flexible, low latency, and real-time services [64]. Based on these major architectures, there are

also further enhancements in IoT networks improving energy efficiency [65, 66] and data reliabil-

ity [67].

In conclusion, the major edge computing architectures are implemented with extended servers

or nodes near the end users. The common purposes of these nodes are reducing latency, providing

computation or storage capabilities, and delivering real-time services to end users. In a 5G envi-

ronment, these node properties are the basis of intelligent services pushed by big data transmission

and processing. Tactile Internet and Industry 4.0 also drive potential application requirements for

IoT 2.0.

2.1.4 Industry 4.0

The authors of [68, p.835] defined Industry 4.0 as “the fourth industry revolution.” The Cyber-

Physical System (CPS) is the basis of this revolution. The authors of [39] revealed that “CPS

are industrial automation systems that integrate innovative functionalities through networking to

enable connection of the operations of the physical reality with computing and communication

infrastructure.” This definition shows that CPSs require heterogeneous data from multiple sources.

As a result, data analytics techniques are suitable for implementing intelligence as part of the CPS

service. The authors of [39] also pointed out that methods for processing data remain a challenge

for these CPS applications. Hence, the implementation of big data analytics and machine learning

are essential for the development of Industry 4.0. The amount of data generated by intelligent

CPSs is difficult for a centralized cloud architecture to process. Inevitably, edge computing is

used to distribute the load for data processing. Also, edge computing devices are closer to the end

users. Therefore, it ensures lower latency of a service [69].

2.1.5 Machine Learning

IoT data processing is a challenge due to the 5V (volume, velocity, variety, veracity, and value)

features of these data [70]. Data analytics techniques like machine learning can process data with
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Figure 2.2: Major tasks of edge computing. [1]

complex 5V features [71]. Furthermore, applying machine learning on heterogeneous IoT data

ensures intelligence to IoT applications, providing better and efficient services.

The major types of machine learning are supervised learning, unsupervised learning and rein-

forcement learning [72]. The supervised learning methods use input data with expected outcomes

to lead the learning process of a machine learning model. On the other hand, the expected outcome

is not provided when training an unsupervised learning model. An unsupervised learning model

is built through clustering and other statistical methods [73]. Reinforcement learning models per-

form actions with input features or state of the current environment. This model learns from the

return reward of the action and improves through trial-and-error [4].
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Figure 2.3: Layered Conventional IoT Architecture. [2]

14



2.2. IOT ARCHITECTURES

2.2 IoT Architectures

In this section, technical improvements of current IoT architectures are revealed through a detailed

analysis of novel IoT architectures under the environment of 5G, Tactile Internet, and Industry 4.0.

There are many different IoT architectures [2, 74–81]. The authors in [2] aggregated the conven-

tional IoT architectures into a layered architecture of six layers. From Figure 2.3, this architecture

consists of the physical layer, the perception layer, the network layer, the middleware/cloud layer,

the application layer, and the business layer. With the assumption that end devices have limited

power, memory and computational resource, the perception layer or the end devices in the percep-

tion layer are only responsible for data collection and transfer. Therefore, all data is transmitted to

the middleware/cloud layer for further processing. For applications with extensive data flows like

virtual reality and augmented reality, the throughput and latency of data transmission cannot meet

the requirements of real-time, perhaps mission critical service. Therefore, novel IoT architectures

are needed in this new era of 5G, Tactile Internet, and Industry 4.0 [74, 82, 83].

Similar to conventional IoT architecture, the recent IoT architectures reviewed in this chapter

also contain end-devices and cloud layers. On the other hand, the most significant difference is the

utilization of an edge/fog layer in the recent IoT architecture to provide real-time services, data

analytics, and data processing functionalities near the end devices. The combination of machine

learning models for data analytics services is one of the drivers for these recent architectures

[74–81]. Figure 2.4 shows the layers with the functions of these recent IoT architectures. As an

architecture providing basic edge computing, the authors followed a three-layered design. This

design consists of the IoT end device layer, the fog/edge layer, and the cloud layer. The IoT end

device layer is similar to the perception layer of the conventional IoT architecture. This layer

also contains IoT sensors, actuators, and end devices for data collection and transmission. Data

is passed to the fog/Edge layer to perform analytical procedures and processed for a higher-level

layer. The final layer of the three-layered architecture is the cloud layer, providing a platform

for centralized data analytics, storage, and decision making [75–77]. Comparing the above recent

architectures with conventional IoT architectures, the involvement of the edge computing layer is

the root of the changes between architectures.

The authors of [78] separated the cloud layer into a cloud layer and a new network core layer.

This layer connects the cloud layer with the fog/edge layer. Also, it provides a flexible and scalable

interface for controlling the fog/edge layers [78, 81]. This interface is also developed between the

data edge/fog layer and the IoT end device layer. More specifically, the network domain and the

communication layer have similar functions to the network layer of the conventional IoT archi-

tecture. These layers create a link between the end devices and the fog/edge level devices. Also,

as a 5G process, the communication layer facilitates advanced spectrum sharing and interference

management for D2D communication [74, 80].

The application layer is above the cloud layer. For different IoT applications, the application

layer is different. However, in the recent IoT architectures, the application layer commonly acts

as a software interface to control lower layers. Services could be deployed on the cloud level and
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Figure 2.4: Recent IoT Layered Architectures.

the edge/fog level to provide centralized high-level services and distributed, real-time services,

respectively [74, 79–81].

The authors of [74] proposed an eight-layer IoT architecture. Different from the previous

architectures, the data storage layer, the collaboration/process layer, and security aspects are added

to consider the security and performance requirements under the 5G environment. The data storage

layer stores raw data from the edge/fog layers. This expands the limited memory of edge devices

and prepared for services with high volume traffic. The second layer, collaboration/process layer,

is designed for modern business settings. It allows collaboration from different personnel. Finally,

security is recognized as a concept applied to all layers to protect them against possible external

attacks.

The basic CPS architecture introduced in the following subsection is the basis and generaliza-

tion of all system architectures proposed in this thesis. This CPS architecture is a reconstruction of

the application, cloud, network, perception, and physical (hardware) layers from the conventional

IoT architecture (Figure 2.3) highlighting the control aspect. A similar architecture with multiple

data sources is adopted in Chapter 5 to increase the fault tolerance of frost prediction systems. The

edge computing portion from Figure 2.4 appeared in Chapter 6 as an edge-based frost prediction

system.
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2.2.1 Cyber-Physical Systems

The fourth industrial revolution or Industry 4.0 leverages CPS as a core element to improve the

efficiency and effectiveness of industrial systems [39, 84]. CPSs are hybrid systems of physical

and logical elements joined by communication capabilities to provide safe and reliable control on

physical entities [85]. Figure 2.5 demonstrates a basic CPS architecture. This architecture consists

of sensors for data collection from the environment, actuators to perform an action affecting the

environment, intelligence to control the actuators based on sensor data and network to communi-

cate between the prior three elements [3]. In addition to these elements, CPSs also incorporate

different technologies such as WSN, IoT and machine learning to achieve the goal of operational

efficiency and effectiveness in industrial operations. The rest of this subsection describes the rela-

tionship between CPS and these different technologies in the agricultural context.

WSN is a vast network that utilizes many low power and low-cost sensor nodes. With the aid

of different communication protocols and network topologies, WSNs can provide manageability

to the sensors and actuators within the network [86]. This manageability would aid CPSs to control

and operate a high number of sensors and actuators to interact with the environment [87]. In an

agricultural context, a terrestrial WSN with reliable and dense communications could be deployed

to monitor the environment [88]. The advantages of deploying such a network in agricultural

applications are low cost, a low impact on the environment, real-time information feedback, and

high efficiency (Table 2.1) [8]. Therefore, WSN is highly compatible with agricultural applications

to act as a data gatherer for CPSs.

Table 2.1: Advantages of WSN in Agriculture. [8]

Advantage Description

Low cost Allows dense deployment to accurately monitor the environment.

Low impact on the envi-
ronment

Reduces possible cause of stress on crops and animals by the
system itself.

Real-time information
feedback

Farmers can actively response to environmental changes and ad-
just their strategy.

High efficiency Incorporation of sensors and actuators to replace previous man-
ual work.

IoT and CPS are similar concepts. From [85], previous works often separate IoT and CPS from

the perspectives of control, platform, internet, and human, but the authors of [85] pointed out that

these distinctions are unclear and insufficient. However, CPS is developed from a systems engi-

neering and control perspective, and IoT focuses on networking and information technology [85].

Therefore, in this chapter, the controlling and monitoring ability of CPS is recognized, and the

networking and communication ability of IoT highlighted. Thus, IoT is viewed as an autonomous

network of wirelessly connected entities through sensors [89]. As CPSs require interaction with

different subsystems, IoT can be viewed as an enabler for CPSs to connect with devices for con-

trolling and monitoring [90, 91]. Furthermore, IoT within CPSs is described as Industrial IoT
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Figure 2.5: Basic CPS Architecture. [3]

(IIoT) [91]. As IIoT provides a massive amount of information, big data analytics are essential

to process this information from the sensors [90]. Within the field of big data analytics, machine

learning is often incorporated to extract patterns, draw novel insights, and provide intelligence

from existing data in IoT networks [71]. Machine learning is also applied to frost prediction with

various sensor data.
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2.3 Machine Learning Intelligence

This section presents the machine learning intelligence applications. As a start, the relevant su-

pervised, unsupervised, reinforcement, and other relevant machine learning algorithms are in-

troduced. Then, the usage of machine learning on the physical layer, the network layer, the edge

computing layer, and the cloud layer are introduced. On the physical layer, machine learning helps

end devices perform energy preservation scheduling and physical layer communication. Then, this

section demonstrates the usage of machine learning to improve network layer performance and re-

duce management overhead. After that, edge layer devices and motivations of applying machine

learning on edge are described. Finally, this section focuses on the collaboration between the cloud

layer and the edge layer.

2.3.1 Machine Learning Algorithms

2.3.1.1 Supervised Learning Algorithms

In supervised learning, the model learns through reducing the output of the cost function, which

usually represents the model prediction and the true value. The major supervised learning meth-

ods are linear regression, logistic regression, support vector machines (SVM), Naı̈ve Bayes classi-

fiers, and k-nearest neighbors. Some deep learning algorithms, including artificial neural networks

(ANN), convolutional neural networks (CNN), and recurrent neural networks (RNN) are suitable

for supervised learning [92]. There is a wide range of applications of supervised learning. For

example, in the field of computer vision, many CNN-based applications are established in smart

healthcare [93], smart home, smart city, smart energy, agriculture, education, industry, govern-

ment, sports, retail, and IoT infrastructure [94]. The rest of this subsection explains some of the

supervised learning algorithms.

Support Vector Machine (SVM) SVM is created to solve binary classification problems [95].

The aim of SVM is to create a hyperplane over a multidimensional space to separate the data

points of this space into two classes. The SVM model can be represented by Equation (2.1) [95].

In this equation y is the output class as a sign of positive and negative, ω is the weight vector, x is

the input vector and b is the scalar bias factor.

y = sign(ω · x+ b) (2.1)

From Figure 2.6, the distance between the two classes can be represented by Equation (2.2)

[95], where ||ω|| is the Euclidean distance.

D =
2

||ω||
(2.2)
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Figure 2.6: Support vector machine.

The parameter ω is obtained through maximizing the distance D with minimum classification

error. Therefore, the optimization problem can be defined as Equation (2.3) [95].

Φ(ω) =
1

2
||ω||2 (2.3)

As indicated by [95], optimization of Equation (2.3) is a quadratic optimization problem,

which could be solved through constructing a Lagrangian function as Equation (2.4), where αi

are the Lagrange multipliers.

L(ω, b, α) =
1

2
||ω||2 −

l∑
i=1

αi{yi(ω · xi + b)− 1} (2.4)

The SVM described above are only suitable for linearly separable datasets. However, ex-

tensions as soft margin SVM and kernel SVM are all capable of handling non-linear datasets.

Another form of SVM is the multiclass SVM, which is capable of classifying between more than

two classes [95].
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Support Vector Regression (SVR) SVM can also be extended to solve regression problems

[95]. The generic SVR function is defined by Equation (2.5) [95], where Φ transforms non-linear

inputs of x into a higher dimension, the vector w and scalar b should be optimized to minimize

the regression risk function defined by Equation (2.6) [95]. In Equation (2.6), C is a constant that

represents penalty to errors and Γ represents the cost function. Equation (2.7) [95] defines this

cost function with ϵ as the least-modulus loss.

f(x) = w · Φ(x) + b (2.5)

Rreg(f) = C
l∑

i=0

Γ(f(xi)− yi) +
1

2
||w||2 (2.6)

Γ(f(x)− y) =

|f(x)− y| − ϵ, if |f(x)− y| ≥ ϵ

0, otherwise
(2.7)

Finally, similar to the SVM, the optimal parameters can also be found by constructing the

Lagrangian function as Equation (2.8) [95]. In this equation, function k is the kernel function to

transform inputs into high-dimensional vectors. The variables αi and α∗
i are the solutions for this

optimization problem.

L =
1

2

l∑
i,j=1

(α∗
i − αi)(α

∗
j − αj)k(xi, xj)

−
l∑

i=1

α∗
i (yi − ϵ)− αi(yi + ϵ);

Where,
l∑

i=1

αi − α∗
i = 0,AND

l∑
i=1

αi, α
∗
i ∈ [0, C]

(2.8)

Linear Regression Linear regression provides an approximation of the relationship between

different data domains. In an example of one-dimensional input, the linear regression model is

created in the form of the line of best fit (Figure 2.7). The authors in [96] gave a generic model

of linear regression with multiple outputs. However, to simplify the process of demonstration,

a single-output model is given by Equation (2.9). x and β of Equation (2.9) represent the input

vector and the weight vector respectively.

f(x) = β · x (2.9)

The mean squared error (MSE) is computed to be utilized as the loss function (Equation

(2.10)). The variable n is the number of data in the training set, xi represents the ith input vector
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Figure 2.7: One-dimensional input linear regression.

and yi represents the ith real output.

MSE =
1

n

n∑
i=1

(f(xi)− yi)
2 (2.10)

Logistic Regression The logistic regression solves the binary classification problem. The output

of logistic regression is a value between 0 and 1. Thus, providing the confidence level of the

prediction. Equation (2.11) demonstrates the logistic regression model, which is based on the

Sigmoid function [97]. Similar to the linear regression, β and x are the input vector and the

weight vector, respectively.

f(x) =
1

1 + e−β·x (2.11)

In order to find the optimal β, the method of maximizing likelihood is leveraged [97]. Equation

(2.12) is the loss function. Similar to the linear regression, xi is the ith input vector and yi is the

ith real output.

g =
n∏

i=1

f(xi)
yi(1− f(xi)

yi)(1−yi) (2.12)

However, to ensure this loss function can be processed with an optimization algorithm such

as gradient descent, the problem is converted to maximizing the logarithm of the likelihood. This
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function is presented by Equation (2.13) [97].

log(g) =
n∑

i=1

yilog(f(xi)) + (1− yi)log(1− f(xi)) (2.13)

The authors of [97] also provide the general form of the logistic regression using the Softmax

function, which incorporates the ability to solve multi-class classification problems.

K-Nearest Neighbor (KNN) KNN is mainly used for classification tasks. The model is built by

plotting all training dataset in the feature space. When a new data point is inputted for inference,

the model finds K nearest data points in the training set and provides an output based on the major-

ity label of these nearest data points [71]. In order to calculate the distances, distance metrics such

as the Euclidean distance, L-infinity norm, angle, Mahalanobis distance, and Hamming distance

can be adopted [71]. Figure 2.8 demonstrates KNN with three nearest neighbors. The major label

of the neighbors is class 1. Therefore, the new input data point is also labeled as class 1.
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Decision Tree (DT) The authors of [98] emphasized that the main objectives of DT classifiers

are to limit the classification error to an insignificant level, to classify with high accuracy beyond

the training dataset, to achieve incremental updates with new training data, and to structure in a

simple form. To achieve the above objectives, algorithms are required to build a DT. Here the ID3

algorithm is used as an example to illustrate DT.

ID3 uses the concept of entropy to construct the DT. Equation (2.14) describes the calculation

of entropy, where A is a vector of input features, x1 and x2 represent the two classes [99]. Entropy

is calculated with all vector A in a tree node.

H(a) =
∑
A

[−P (x1|A)log2P (x1|A)− P (x2|A)log2P (x2|A)] (2.14)

New tree nodes should be created with minimal entropy [98]. Therefore, the first step of ID3

is to find an attribute within the input vectors to produce child nodes with the minimal entropy.

Then, the input vectors in the root are split according to the attribute to produce the child nodes.

Next, if a child node contains input vectors with only one class, the splitting process is terminated

for this node and continued with the next child node. On the other hand, if the child node contains

input vectors with more than one class, the algorithm repeats the first step with the child node

recursively [99].

Ensemble Learning The authors of [100, p.1] defined ensemble learning as “methods that com-

bine multiple inducers to make a decision...” Therefore, as an advantage, models compensate

errors of other models. The authors of [100] also divided ensemble methods into the dependent

framework and the independent framework. In the dependent framework, the construction of the

current model depends on the output of the previous model. An example is the AdaBoost al-

gorithm, where the current model considers the error in the previous model. Gradient boosting

machines also adopts a similar concept [100].

The independent framework includes multiple models, which are built independently from

each other. Some examples of these methods are bagging, random forest, random subspace meth-

ods, error-correcting output codes, rotation forest, and extremely randomized trees [100]. Random

forest is described in the next part of this subsection.

Random Forest The random forest is an ensemble learning method based on DT [100]. It

consists of multiple DTs. Each DT is trained by a random subset of the training data. Also,

another random subset of the attributes is produced for the creation of new child nodes. Therefore,

the algorithm only examines part of the attributes for an attribute of the best split. Furthermore,

this randomness provides a low correlation between trees, avoiding the domination of a few strong

attributes [101].
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Naı̈ve Bayes Classifier (NB) NB is a supervised learning algorithm based on the Bayes rule

(Equation (2.15)). The Bayes rule provides a model of the conditional probability of a result

Y with the given input or the condition X . This algorithm is generally applied to classification

problems. In classification problems, Y is from a discrete set of classes. Moreover, an input X

belongs to the Y giving the greatest P (Y |X) [102].

P (Y |X) =
P (Y )P (X|Y )

P (X)
(2.15)

The NB model consists of the probability of a class Y and the joint probability of attributes

(Equation (2.16)). Therefore, the model is constructed by estimating P (Y ) for every class Y in

the training set and the conditional probabilities of each attribute P (Xi = ai|Y ) for every class.

P (Y = yi|X = a0, a1, ..., ai) =

P (Y = yi)P (X = a0, a1, ..., ai|Y = yi)

P (X = a0, a1, ..., ai)

(2.16)

Bayesian Network (BN) NB models assume that all attributes are independent of applying the

Bayes rule. However, in the real world, the correlation between attributes is inevitable [102, 103].

BN is a classifier that is not limited by the assumption of attribute independence. A BN can be

represented by Equation (2.17), where G is a directed acyclic graph, where nodes represent the

different events and the edges represent the dependency. The symbol Θ contains the Conditional

Probability Table (CPT) for all possible values of the attributes and their conditions [103].

B =< G,Θ > (2.17)

The learning process is divided into two phases. During the first phase, the graph structure

is determined and then in the second phase, the CPT is constructed [104]. The structure can

be determined by an expert or learned by data with score-based structure learning methods and

constraint-based structure learning methods [105]. The goal of score-based methods is to find a

structure that provides the maximum score of a score function. For example, the Bayes Dirichlet

equivalent uniform and the Bayesian Information Criterion. In the first step of score-based meth-

ods, the algorithm provides a score of suitable parents for every node. Then, parents are assigned

to nodes to maximize the scores and to avoid cycles. On the other hand, constraint-based methods

use conditional constraints to update the model. An example is the PC algorithm. When using the

PC algorithm, the graph starts as a fully connected undirected graph. Edges are removed accord-

ing to the result of CI tests. This method is repeated until no edges can be removed [106]. After

obtaining a graph structure, CPT can be constructed to obtain a full model.

Kernel Bayes Rule (KBR) The KBR extends the Bayes rule by applying kernels to represent

probabilities in reproducing kernel Hilbert spaces. Moreover, the prior and likelihood can be

expressed by data, which does not require a distribution model [107].
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Gaussian Process Regression (GPR) GPR is a non-parametric regression method as the com-

plexity is determined by the data [108]. GPR utilizes the Gaussian Process (GP) to model the

function between the input X and output Y . GP is an infinite dimension version of the multivari-

ate Gaussian distributions [108]. GP can be defined by a mean and covariance function. The mean

value is usually set as zero and the covariance function can be modeled by a kernel function repre-

senting the dependence between different function outputs for different input X [108]. The GPR

learning process adjusts hyperparameters of the kernel, such as the length-scale, signal variance,

and noise variance [108].

Collaborative Filtering (CF) CF algorithms provide recommendations to a user from experi-

ences of other users [109]. CF operates under two assumptions: Opinions of users do not change

over time; Users with similar characteristics provide similar opinions. With these assumptions,

CF can be implemented to provide a decision basis for product promotion, social media recom-

mendations, e-commerce reputations, and even strategy [109].

Feedforward Neural Network (FFNN) A sample model of the FFNN or ANN is demonstrated

by Figure 2.9. An FFNN contains an input layer, an output layer and one or multiple hidden

layers [110].

f(X) = foutput(fhidden2(fhidden1(X))) (2.18)

Equation (2.18) [110] provides the general form of the sample model. In these layers, the

input layer consists of the input vector, and the hidden layers can be represented in the form of

(2.19) [110], where W is a matrix of coefficients, X is the input vector, B is the bias vector, and

g is the activation function. W and B can be learned through the backpropagation algorithm.

Whereas, g is chosen by the data analyst to provide nonlinearity [110]. Some candidates of g

are the ReLU function, the Sigmoid function, and the Tanh function. Finally, the output layer

defines the output type of the model. If the output layer is a Softmax function similar to logistic

regression, the FFNN provides the output of discrete values, which solves classification problems.

On the other hand, if the output layer provides continuous values like linear regression, the FFNN

solves regression problems.

f(X) = g(WX +B) (2.19)

Convolutional Neural Network (CNN) CNN is a special type of FFNN. CNNs also process

input data in a layer-by-layer style. The major motivation of CNN is to reduce the number of

parameters to be trained [111]. Figure 2.10 demonstrates the general architecture of CNNs. A full

convolutional layer group consists of the convolutional layer, the detector layer, and the pooling

layer. In the convolutional layer, the input data is processed by a convolutional filter. This filter is

in the form of a vector for one-dimensional data and matrix for two-dimensional data. The filter
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X0

X1

Y0
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Figure 2.9: Sample Feedforward Neural Network Architecture.

Figure 2.10: General Convolutional Neural Network Architecture.

sweeps through the input data as a moving window, and during each iteration, the dot product of

the filter matrix and the current region is calculated. Figure 2.11 provides an example of the first

iteration and the final iteration of convolutional layer calculation with 4×4 input and a 2×2 filter.
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Figure 2.11: 2D Convolution Filtering.

After the convolutional layer, the detector layer processes the data as a hidden layer with the

ReLU activation function. The ReLU function provides nonlinearity to the network [110]. Finally,

a filter is also used in the pooling layer. Similar to the convolutional layer, the filter in the pooling

layer also sweeps through the input. However, the filter only represents the area for the current

iteration. Pooling calculation could be simply obtaining the average or the maximum of the filter

area [111]. CNN is widely used for image processing.

Recurrent Neural Network (RNN) Unlike the basic FFNN, which only accepts one input a

time, RNNs accept several inputs [112]. In terms of time-series data, individual data points are

processed at once in the sequence of time [112]. As shown in Figure 2.12, the output of the current

hidden state Ht is generated from the input Xt of the current time state and the output Xt−1 of

the previous time state, recursively [112]. Finally, if only one output is required (for classification

or regression), the output Y is calculated from the final hidden state [112].
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Figure 2.12: RNN Layer at time t.

Long Short-term Memory (LSTM) Since gradient propagates through multiple stages in

RNNs, issues such as gradient explosion and gradient vanishing arise [112]. To address these

issues, Long Short-Term Memory (LSTM) is proposed as variants of the RNN [112]. The LSTM

incorporated an additional cell state to enhance long term memory [113]. Also, the additional

forget and input gates are utilized to forget and insert information into the cell state [113].

Random Neural Network (RandNN) The RandNN is a type of RNN. Excitatory impulse

signals of “+1” and inhibitory impulse signals of “-1” are transmitted between the neurons of

RandNN [114]. The neuron state or potential at a certain time is represented by a non-negative

integer. This potential increases when the neuron receives an excitatory impulse and decreases

when the neuron emits a signal. The neuron emits signals when its potential is positive. Also, the

acceptance of an inhibitory signal outside of the network decrements the neuron potential [114].

The RandNN can be applied in multiple fields such as associative memory, optimization, texture

generation, magnetic resonance imaging, function approximation, mine detection, and automatic

target recognition [114].

2.3.1.2 Unsupervised Learning Algorithms

The two major types of unsupervised learning models are principal component analysis (PCA)

and K-means clustering. PCA is used as a technique to compress data. This is important for IoT
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applications, such as wireless sensor networks (WSN), with limited throughput and energy [115].

The K-means algorithm is used for the clustering of multiple sensors. By dividing the monitored

field into areas using the unsupervised K-means clustering, the complexity of data gathering and

processing are reduced [115]. Some other unsupervised learning algorithms are also explained

further in this subsection.

K-means The K-means algorithm produces a classification model through clustering [116]. It

aims to generate multiple K centroids from the dataset. Data points close to a centroid forms

a cluster [116]. The centroids are initialized by choosing random data points from the dataset.

Then, data points are assigned to the cluster of the nearest centroid. Next, the new K centroids

are calculated by averaging the assigned data points within their clusters. The above steps are

iterated until the centroids are stable, or the algorithm reached a preset number of iterations [116].

With the centroids calculated, a data point can be classified by computing the distance towards the

centroids. The new data point belongs to the cluster of the closest centroid [116].

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) DBSCAN is an-

other clustering method similar to K-means. However, compared to K-means, DBSCAN does

not require a predefined number of K centroids. Also, DBSCAN can identify noises. Moreover,

the shape of the cluster can be arbitrary [117]. DBSCAN has two hyperparameters the minimum

number of neighbor points minPoints within the distance R [117]. To construct the clusters,

DBSCAN iterates through all points in the dataset [117]. If an unvisited data point has more than

minPoints neighbors within R, the data point is marked as a core point, and a new cluster is

created. After that, recursively, all previously unvisited neighbors of the core point are visited and

added into the cluster. Also, if the neighbor point is another core point, the two clusters would

merge [117]. If a data point has less than minPoints of neighbors within the range R, the data

point is classified as noise [117].

Hierarchical Clustering Analysis (HCA) HCA is a clustering method, where the data sam-

ple is recursively merged or split to form a tree diagram [118]. HCA methods can be divided

into agglomerative hierarchical clustering and divisive hierarchical clustering. Agglomerative hi-

erarchical clustering is the bottom-up approach, where each data point forms its own cluster, and

similar clusters merge until the desired architecture is obtained. On the other hand, divisive hier-

archical clustering is the top-down technique as it starts with a huge cluster containing the whole

data sample. Then, the cluster is divided to form the tree [118]. Merging and division decisions

are made with similarity criteria. The three different sets of criteria are single-link clustering,

complete-link clustering, and average-link clustering. For the three clustering methods, the dis-

tance between two clusters is calculated as the shortest distance between any two members from

different clusters, the longest distance between any two members from different clusters, and the

average distance between any two members from different clusters, respectively [118].
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Expectation Maximization (EM) The EM algorithm computes maximum likelihood estima-

tions for latent variables [119]. The algorithm consists of the Expectation (E) and Maximization

(M) steps. The E step computes the missing data from current function parameters. During the

M step, the function parameters are updated to maximize the log-likelihood of the estimated la-

tent variables [119]. The E and M steps are repeated until the model converges slowly to a local

maximum [119].

Gaussian Mixture Modeling (GMM) The superposition of multiple Gaussian distributions can

approximate any continuous density through the adjustment of their means, covariances, and co-

efficients [120]. Unlike the parameters of a single Gaussian model that can be determined directly

by the maximum likelihood method, GMM is trained using EM in an iterative way [120]. GMM

can be applied to solve clustering problems [120].

Principal Component Analysis (PCA) PCA reduces the number of attributes in a dataset by

transforming the original inputs into another set of vectors with low information loss [121]. Di-

mensionality reduction is achieved by eliminating components with a lower variance. These com-

ponents are detected through the computation of the eigenvectors and eigenvalues of a covariance

matrix from the original dataset [121]. A component with a higher eigenvalue indicates more

information contained. Therefore, features can be extracted by choosing the corresponding com-

ponents or eigenvectors with higher eigenvalues [122].

MultiDimensional Scaling (MDS) MDS is another dimensionality reduction technique. How-

ever, unlike PCA, MDS preserves the distance or difference between sample cases instead of the

variance [123]. Stress, the loss function of MDS is defined as Equation (2.20), where dij is the

difference between sample cases i and j in the original data space, and Dij is the distance between

i and j in the lower dimension or projected data space [124]. MDS consists of four steps [125]. In

the first step, a squared distance matrix is computed from the data points in the original data space.

Then, the matrix B is computed by applying double-centering to the squared distance matrix. Af-

ter that, the eigenvalues V and eigenvectors Q of matrix B can be obtained. Vm is a matrix of the

first m eigenvalues greater than zero, and Qm is a matrix of corresponding eigenvectors. Finally,

the coordinate matrix can be calculated by multiplying Qm and V
1
2
m [125].

Stress =

∑
i=1,j=1(dij −Dij)

2∑
i=1,j=1D

2
ij

(2.20)

Diffusion Maps (DM) DM is also an algorithm for dimensionality reduction [126]. In contrast

to PCA and MDS, DM unravels the potential manifold structures in the dataset [126]. The DM

algorithms initiate by defining a kernel and a kernel matrix. Through normalization of the kernel

matrix, the diffusion matrix can be acquired. Finally, DM utilizes n numbers of the most dominant
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eigenvectors from the diffusion matrix to project the dataset from the original data space to n-

dimensional diffusion space [127].

Window Sliding with De-Duplication (WSDD) WSDD is used to mine patterns from system

events sorted in chronological order [128]. WSDD utilizes a sliding window over the training

dataset to learn patterns in a brute force approach. The algorithm is capable of detecting both

frequent sequential patterns and periodic sequential patterns [128]. To increase efficiency, the

algorithm stores mined patterns in a hashmap and avoided mining duplicate patterns. The pattern

itself is stored as the key in the hashmap, and the count of the pattern is stored as the value. Finally,

only patterns detected over a minimum count are returned as the output of WSDD [128].

Autoencoders (AE) The AE is a neural network consisting of the encoder, code, and decoder

components [129]. The encoder maps the raw input to the output of the code component, and

the decoder reconstructs the raw input from the output of the code component. AEs can be used

for feature reduction as the output of the code component from a trained AE holds near lossless

information of the raw input [129].

Hopfield Neural Network (HNN) The HNN is a type of RNN for solving optimization prob-

lems [130]. Each neuron provides non-linear outputs through a sigmoid function. All neurons are

interconnected with each other to restrict and revise the outputs of each other. Each connection

includes an interconnection weight. Each neuron contains a user adjustable input bias [130]. The

neurons update according to the energy function (Equation (2.21)), where Tij is the weight of the

connection between neurons i and j, V is the output of a neuron [131]. The HNN neurons evolve

until a local minimum of the energy function is reached [131].

E = −1

2

∑
i̸=j

TijViVj (2.21)

Self-Organizing Map (SOM) The SOM is a type of neural network that can perform clustering

similar to the K-means [116]. In each iteration, the neuron closest to a randomly selected data

point moves towards the data point by a preset learning rate [132]. Neurons within the preset

neighbor range of the first neuron also move towards the data point. The learning rate and the

neighboring radius delays over the number of iterations [132].

2.3.1.3 Reinforcement Learning Algorithms

The goal of reinforcement learning is to solve the problem of Markov decision processes (MDP).

MDP is a sequential decision problem. As demonstrated in Figure 2.13, any action made by the

agent will influence the environment and generate a reward. The goal of reinforcement learning is

to maximize long-term rewards [4]. Q-learning, a type of reinforcement learning, is used to solve
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Figure 2.13: Agent-Environment Relationship. [4]

routing problems in IoT networks. Unfortunately, most of these algorithms are based on wired

networks [133]. In WSNs, energy, processing power, and storage might become a bottleneck for

distributed reinforcement learning routing algorithms [70]. Reinforcement learning algorithms

aim to provide high-level intelligence to IoT applications.

Temporal-Difference (TD) TD learning includes various model-free reinforcement learning al-

gorithms, which require no model of the environment [134]. TD algorithms bootstrap or update the

estimates based on current estimations. The value function is updated at every step of TD [134].

There are three fundamental types of TD-based learning algorithms mentioned in the sections af-

ter. The on-policy TD algorithm SARSA learns the action values from the current policy, while the

off-policy algorithm Q-learning learns from the optimal policy [134]. Finally, a third type of TD

learning, the Actor-critic learning learns both a policy (actor) and value function (critic) [135].

Actor-critic learning is always on-policy as the “critic” needs to learn from and correct the TD

errors from the “actor” or the policy.

Least-Squares Policy Iteration (LSPI) LSPI is a model-free off-policy reinforcement algo-

rithm [136]. LSPI is also an approximate policy-iteration algorithm, where the value function

and policy representation are approximated. Therefore, compared to tabular methods, the policy
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search process is more efficient for LSPI [136]. Also, LSPI is based on least squares temporal

difference learning [136]. Thus, as TD learning methods update incrementally, data efficiency of

LSPI can be preserved [134].

2.3.1.4 Other Relevant Machine Learning Techniques

Transfer Learning By adopting transfer learning techniques, a model trained to solve one

problem can be transferred and adapted to solve a different problem [137]. This prevents time-

consuming labeling processes. Transfer learning can be categorized into inductive transfer learn-

ing, transductive transfer learning, and unsupervised transfer learning [137]. In the inductive trans-

fer learning setting, the domains can be the same or different, but the tasks are different for the

two problems. Whereas in transductive transfer learning, the tasks are the same, and the domains

are different. Finally, in unsupervised transfer learning, similar to inductive transfer learning, the

tasks are different. However, unsupervised transfer learning performs unsupervised learning tasks

in the target problem [137].

Federated Learning Federated learning is a technique of multiple users training a common

machine learning model without leaking their local dataset to other users [138]. There is the hori-

zontal federated learning technique, where different datasets share the same features, but different

sample cases [138]. On the other hand, vertical federated learning can be applied to datasets with

more overlapping sample cases and different features [138]. Finally, federated transfer learning is

suitable for datasets with different sample cases and features [138].

2.3.2 Physical Layer Applications

One major application of machine learning influencing IoT end devices is communication control.

The authors in [139] used Q-learning for transmission power control to reduce the unnecessary

waste of power due to interference. This model is only tested under the scenario of one-to-one

transmission. A scenario of multiple sources toward multiple receivers should be tested.

The authors of [140] explored the usages of deep learning in end-to-end communication sys-

tems. The authors adopted the AE to replace different compensation techniques during the trans-

mission of data. Data is encoded between transmission and decoded after transmission to protect

the payload during transmission. Another application is the implementation of CNN for modula-

tion classification. This is a prerequisite for developing an intelligent receiver.

Machine learning algorithms increase the energy consumption of IoT devices. Therefore, it

is important to apply energy preservation techniques. The authors of [141] concluded that the

two major energy preservation methods are energy saving and energy harvesting. Most of the

energy saving techniques are implemented through the estimate and control of the uptime of end

devices [139, 142–147]. The rest of this subsection focuses on machine learning-based energy

saving techniques. The authors of [142] established ARIIMA or A Real IoT Implementation of
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a Machine-Learning Architecture for reducing energy consumption. This is an IoT architecture

that uses machine learning to forecast end device usage to control the up and downtime of IoT end

devices. The aim is to reduce energy consumption. The authors compared different methods of

calculating the loss of the predicted outcome. However, the authors did not link energy efficiency

improvement to any specific machine learning algorithms.

The authors of [144] utilized the Naı̈ve Bayes Classifier for calculating the optimized uplink

period for IoT data collectors. The goal of this work is to optimize the uplink time for power

efficiency and preserve the accuracy of data.

The authors from [146] used a single hidden layer feedforward neural network to predict the

power usage based on smart meters. With these predictions, the power suppliers can balance the

power production with consumption to avoid power wastages. Also, individual home devices can

be controlled to relieve the grid pressure at power peaks.

The authors of [145] used logistic regression, KNN, and Naı̈ve Bayes algorithm to increase

the power efficiency of smart buildings. Light, temperature, and motion data of a room are fed

into the models to determine whether if people are present in a room. In conclusion, this work

only determines the existence of people. Nevertheless, further work needs to be done on the de-

velopment of an energy efficient device control scheme based on the predictions of these machine

learning models.

The authors of [147] extended the model for predicting human presence in smart buildings.

A random neural network model is applied with inputs of carbon dioxide level and temperature

readings to predict the number of occupants in a room. This model is used to control the heating,

ventilation, and air conditioning (HVAC) systems. HVAC devices will be turned off to save power

if no occupants are detected in the room.

The authors from [143] pointed out that the manual labeling of training data is time consuming

in supervised learning algorithms. Therefore, the authors proposed an energy saving scheme based

on unsupervised learning. The WSDD algorithm is used to extract patterns of device behavior from

historical data.

2.3.3 Network Layer Applications

The authors of [9, 10] summarized existing network layer applications using machine learning

algorithms. These applications are IoT device identification, network routing, traffic profiling,

traffic prediction, traffic classification, congestion control, resource management, fault manage-

ment, QoS and Quality of Experience (QoE) management, and network security. Table 2.2 links

these applications to implemented machine learning algorithms. However, these applications alone

might not be feasible to deal with the complexity of networks such as 5G, Tactile Internet, and In-

dustry 4.0 requirements. Furthermore, an autonomous network structure is required.
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Table 2.2: Network Applications and Related Machine Learning Algorithms. [9, 10]

Applications Machine Learning Algorithms

IoT Device Identification KNN, SVM, GMM, decision tree, ensemble learning, ran-
dom forest

Network Routing LSPI, Q-Learning, n-step TD, SARSA

Traffic Profiling K-means, Clustering

Traffic Prediction FFNN, SVR, KBR, LSTM, GPR

Traffic Classification SVM, NB, HCA, KNN, DT, K-means, Random Forest,
FFNN, DBSCAN

Congestion Control EM, DT, Random forest, KNN, FFNN

Resource Management FFNN, RandNN, SVM, HNN, RNN, Q-Learning, TD, BN

Fault Management BN, FFNN, DT, SVM, Ensemble Learning, Linear Regres-
sion, Autoencoders, K-means, EM, RNN, SOM

QoS and QoE Management FFNN, DT, Random Forest, NB, SVM, KNN, SVR, Q-
learning

Network Security FFNN, Ensemble Learning, DT, BN, NB, SVM, KNN, Lin-
ear Regression

2.3.3.1 Self-organizing networks

The increasing network complexity and device numbers for 5G and beyond networks are

inducing conflicting demand over network resources and routing decisions. Therefore,

self-organizing networks (SON) are required to reduce the complexity of managing these

networks [148]. Management functionality of SONs consists of self-configuration,

self-optimization, and self-healing. Self-configuration processes automate network design,

network planning, and network deployment. After that, the self-optimization functionalities

maintain the network performance and conduct routine network operations [149]. Finally,

self-healing functionalities focus on fault detection and recovery [150].

The authors of [151] organized machine learning in SONs into four modules: sensing, mining,

prediction, and reasoning. Sensing involves the detection of network anomalies and routine events.

Therefore it contains functionalities of self-optimization and self-healing. Mining aims to classify

services to help the network to optimize its performance. Moreover, mining belongs to the self-

configuration functionalities. Finally, reasoning could apply to the offline parameter tuning during

self-configuration and the online parameter tuning for self-optimization during network runtime.

The authors of [11] categorized machine learning applications on SONs according to the three

functionalities. In Table 2.3, the self-configuration applications are operational parameters con-

figuration, neighbor cell list configuration and radio parameters configuration. In Table 2.4, the

self-optimization applications consist of backhaul, caching, coverage and capacity, mobility, han-

dover, load balancing, resource optimization, and coordination. In Table 2.5, the self-healing ap-

plications include fault detection, fault classification and outage management. Table 2.3, 2.4 and
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Table 2.3: Machine Learning Applications in Self-configuration. [11]

Applications Description Machine Learning Algo-
rithm

Operational Parameters Con-
figuration

Configuration of the base sta-
tion for basic operations.

SOM

Neighbor Cell List Configura-
tion

Neighbor discovery, Self-
advertisement

N/A (Control-based algo-
rithms)

Radio Parameters Configura-
tion

Transmission power, radio an-
gle, topology configuration.

Q-Learning

2.5 only include the algorithms that are relevant to supervised learning, unsupervised learning and

reinforcement learning. Therefore, controller models, Markov models, and heuristics algorithms

are out of the scope of this chapter.

The authors from [152] promoted self coordination as a fourth functionality group of SONs.

Their work demonstrates that the current design of standalone management functionalities of

SONs could lead to conflicting parameter adjustment between distinct functions. This work

also concludes that DT, Q-learning, actor-critic learning, and SVM can be solutions for self-

coordination.

The authors from [153] proposed another method to avoid collision between different func-

tionality results. Their distributed Q-learning model considers both base station power allocation

and user quality of service. Q-learning consists of a list of actions, a list of states, and a list of

rewards. The actions are the power allocation for the base stations. The states are the ring that the

agent is covered with current power allocation. Finally, the rewards are calculated considering the

higher capacity of the base station and better user quality of service.

The network applications for traditional networks in Table 2.2 could be applied to support the

SON functionalities. The authors of [154] emphasized that the result of traffic forecasting and

prediction can increase the performance and accuracy of all other SON functionalities. The au-

thors tested three types of machine learning models for traffic forecasting. The first type of model

is autoregressive algorithms. This includes linear or polynomial regression. The second type of

model is neural networks and finally, the authors used GPR for traffic forecasting. The authors also

mentioned that this application can be further extended for QoS management and congestion con-

trol, providing possible use cases for models in the traditional networks. To improve the current

management scheme in 5G and beyond networks, the implementation of SDN and Network Func-

tion Virtualization (NFV) architectures in SONs fulfills the intelligence, automation, management,

and optimization requirements [155]. In this architecture, machine learning works at the core to

enable intelligent network management. This work also demonstrates that traffic classification as

an essential application provides results affecting consecutive decision making processes.
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Table 2.4: Machine Learning Applications in Self-optimization. [11]

Applications Description Machine Learning
Algorithm

Backhaul Connection between user, base station
and the core network.

Q-Learning

Caching Temporarily storing functions and ser-
vices on the base stations

CF, K-means, Game
Theory, Q-learning,
Transfer Learning

Coverage and Capac-
ity

Managing tradeoff between network cov-
erage and network capacity

SOM, Q-learning

Mobility Locate and predict the location of the
user.

Naı̈ve Bayes classi-
fier, FFNN, SVM,
DT, K-means

Handover Realtime change of channel parameters
when the user is using the channel. Of-
ten associated with mobility management
when users move between cells.

FFNN, SOM, Game
Theory, Q-learning,

Load Balancing Intelligently balancing network load Q-learning

Resource optimiza-
tion

Allocation and prediction of network re-
source usage.

FFNN, K-means,
SOM, Game Theory,
Q-learning, Transfer
Learning

Coordination Minimizing the interference between two
different functionalities.

DT

Table 2.5: Machine Learning Applications in Self-healing. [11]

Applications Description Machine Learning Algo-
rithm

Fault Detection Detect and locate the fault Naı̈ve Bayes classifier,
SVM, K-means, SOM,
PCA

Fault Classification Determining source of the
fault, Classifying the fault

Naı̈ve Bayes classifier,
DT, Transfer Learning

Outage Management Detection of outage, Outage
compensation

KNN, FFNN, SVM, DT,
CF, K-means, SOM,
Q-learning, PCA, MCA,
DM, MDS

2.3.4 Edge Computing Applications

2.3.4.1 Edge Computing Hardware

The development of edge computing hardware enables machine learning on the edge level. Table

2.6 includes some of the representative edge computing devices. These devices can be classified
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into three device types. The first type is the board devices. Board devices are standalone embed-

ded computers that run machine learning algorithms independent of external devices. The second

type is the accelerator devices. These devices cannot operate alone. Accelerator devices often act

as an add-on to provide extra machine learning capabilities to embedded boards, personal comput-

ers, and other devices. The final type is smartphone chips. Smartphone chip manufacturers like

Qualcomm, Hisilicon, Samsung, and MediaTek are pushing machine learning processing to mo-

bile devices. Most of these chips rely on an AI accelerator to provide real-time machine learning

processing capabilities.

2.3.4.2 Machine Learning on the edge

Machine learning applications on the edge layer can be separated into two major types. The

first type aims to offload part or all of the existing functionality to the edge layer. This type

of application is defined in this chapter as process offloading applications [77, 156–158]. The

second type of application is referred to as sole functionality applications in this chapter. Sole

functionality machine learning models often perform subtasks, which assist the main task on the

cloud. The machine learning model of these subtasks is different from the model of the main

tasks [159–162]. Table 2.7 summarizes all the works with different motivations for applying edge

computing.

The motivation for process offloading applications is the limited resources of devices. The

authors from [156] pointed out that low latency is essential for vehicle-to-everything applications.

This work classifies vehicle-related applications into critical applications, high priority applica-

tions, and low priority applications. Critical applications include vehicle control systems, system

monitoring, and accident prevention. These applications must be deployed on the very edge to the

vehicle for a near-instant response. High and low priority applications include navigation and en-

tertainment. These applications should be deployed on edge servers to enhance the computational

capability of end user devices. This also ensures a relatively low latency.

The authors of [157] applied a similar offloading scheme to general machine learning web

applications. The aim of this work is to offload computation power demanding machine learning

tasks from embedded devices to an edge server. To achieve this, the edge device transmits a

snapshot of the execution state before processing a machine learning task to the edge server. This

method is independent of the type and model of the machine learning algorithm. However, the

size of a snapshot is still enormous for embedded devices.

The authors from [77] further revealed that edge computing could also be used to protect user

privacy. Their application uses a neural network to recognize certain objects from live stream-

ing video. To protect user privacy, the first few layers of the neural network are offloaded to the

edge servers. This also reduces energy consumption for the whole system, since processing is

distributed among the network. However, as the users still need to send raw information to edge

servers to be processed, privacy leakage remains an issue. This issue can be solved by directly

deploying these first layers of the neural network to the end device. As a result, users only send
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Table 2.6: Machine Learning Edge Computing Hardware.

Reference Hardware Series Recent Model AI Processor/Accelerator AI Perfor-
mance

Device Type

[163] Nvidia Jetson Jetson AGX Xavier 512-core NVIDIA Volta

GPU with 512 Tensor

Cores

32 TOPs Board

[164, 165] Intel Neural Compute Stick Intel Neural Compute Stick

2

Intel Movidius Myriad X

Vision Processing Unit

4 TOPs Accelerator

[166, 167] Coral Dev Board Coral Dev Board Google Edge TPU ML ac-

celerator coprocessor

4 TOPs Board

[167, 168] Coral USB Accelerator Coral USB Accelerator Google Edge TPU ML ac-

celerator coprocessor

4 TOPs Accelerator

[169] Qualcomm Snapdragon Qualcomm Snapdragon

855 Mobile Platform

Using CPU, GPU and DSP Undisclosed Smartphone

Chip

[170] HiSilicon Kirin HiSilicon Kirin 980 Dual Neural Processing

Unit

Undisclosed Smartphone

Chip

[171] Samsung Exynos Samsung Exynos 9820 Neural Processing Unit Undisclosed Smartphone

Chip

[172] MediaTek Helio P Series MediaTek Helio P90 MediaTek APU 2.0 Undisclosed Smartphone

Chip
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processed intermediate data to the network. All the works above only use edge computing primi-

tively to offload computation requirements. However, machine learning by edge computing should

leverage some unique properties of edge devices. The authors of [158] proposed a collaborative

edge-centric learning method to train machine learning models. Each sensor contains a model

that is trained locally using only data from that sensor. Training locally allows sensors to utilize

contextual parameters to improve model accuracy. After training the local models, only the param-

eters of the models are sent to the sink from the sensors. This method reduces network overhead

and energy consumption during training.

Different from the previous process offloading applications, sole functionality applications

improve the performance of the system by performing a different subtask of the major task in the

cloud. Earlier motivations are also related to the limited resources of devices. The authors of [161]

utilized multiple filters, including CNN and SVM, to drop blurry and unwanted image data at the

edge layer. The usage of filters reduces the processing power required on upper layers to create a

training dataset for other applications.

Similarly, The authors from [159] also applied data cleansing on the edge layer to filter blurry

images. Data cleansing is done by K-means in their food recognition system. Image segmentation

is further applied as a data preprocessing method to reduce the load of the cloud server. However,

the significance of this work is the utilization of locational data as a unique data type provided

by edge devices. Furthermore, the authors used the locational data as a basis for collaborative

recognition on the cloud layer.

To enhance localized service, the authors of [162] implemented network traffic prediction via

LSTM on the edge cloudlets of a healthcare system. The purpose of this machine learning model is

to predict bidirectional traffic between the cloud and the cloudlet to control data transmission rate

and data caching frequency. These improve the quality of service and the reliability of data. As

the LSTM model is deployed locally on cloudlets, the control decisions of the model are different

between different cloudlets due to the different local network traffic.

Similarly, the authors from [160] also used machine learning to predict future sensor data.

This is based on multi-variable regression and LSTM in their traffic monitoring system. These

models are implemented on the edge servers to provide parameters for determining the quality of

the video to be sent from the edge servers to the cloud. Therefore, this application aims to reduce

network traffic by control data transmission from edge servers during non-critical events. The

origin of these advantages is the increase of connectivity by introducing more edge servers to the

system.

As machine learning applications on the edge attract much attention, the emergence of TinyML

provides further advancement of these applications. TinyML combines embedded IoT technolo-

gies with machine learning [173]. It has the advantage of low bandwidth usage and latency like

other edge computing applications [1]. On the other hand, TinyML applications aim to minimize

energy consumption (below 1 mW). To deploy a machine learning model on such a low consump-

tion device, model size also needs to be minimized. Balancing between model size and accuracy
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Table 2.7: Motivation of Edge Computing.

Reference Application Edge Motivation Application Type

[156] Vehicle-to-Everything Enhance computational
capabilities

Process Offloading

Reduce latency

[77] Video Recognition Process offloading Process Offloading

Reduce latency

Reduce energy consump-
tion

Protect privacy

[157] Machine Learning Web
App

Process offloading Process Offloading

[158] Smart IoT Application Reduce network overhead Process Offloading

Reduce energy consump-
tion

[159] Food Recognition Data preprocessing Sole Functionality

Data cleansing

Reduce latency

Reduce energy consump-
tion

Location awareness

[160] Traffic Control Reduce network Traffic Sole Functionality

Increase scalability

Ensure mobility

Reduce latency

[161] Graphical Expert System Process offloading Sole Functionality

Data preprocessing

Data cleansing

[162] Healthcare System Reduce latency Sole Functionality

Reduce network traffic

Increase reliability

Increase security

is a challenge for implementing TinyML applications [173].

2.3.5 Edge-Cloud Collaboration

In the traditional IoT architecture, machine learning algorithms on the cloud layer usually perform

analytical tasks. However, novel applications are proposed utilizing the collaboration between
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edge and cloud layers. Table 2.8 includes some edge-cloud collaboration methods.

A most common type of edge-cloud collaboration is the sole functionality applications from

the subsection above. The healthcare system from [162] is an example. The system aims to

classify and store data at different nodes of the cloud server. Data is collected from mobile devices

and passed to the cloudlet layer. In the cloudlet layer, LSTM is implemented to predict network

traffic. The prediction results are used for data transmission rate control and caching frequency

control. Then, data is transmitted to an upper network layer. This layer utilizes a FFNN to classify

traffic. Finally, these data are stored on the cloud according to the classified traffic types. In this

application, the edge layers support upper cloud layers by completing subtasks. The result of the

subtasks helps the cloud layer to perform the main task.

Edge assisted training is another type of edge-cloud collaboration. The authors from [161]

used CNN and SVM to filter out images on the edge layer. This filter is to prevent corruption of

the training on the cloud. Hence, it decreases the time required for an expert to create a training

set.

The authors from [174] used federated learning to create an AE model for anomaly detection.

A local version of the AE model is trained on every edge device using its local datasets. Then, the

weights of these local models are transmitted to the cloud server and aggregated to form one AE

model. This cloud level AE model is redistributed to the edge devices for local anomaly detection.

As less data is sent from the edge to the cloud, this method reduces bandwidth demand during

training and ensures that the training dataset is not corrupted due to data transmission. However,

this method only considers one model across the system.

The authors of [175] extended training to multiple models. This is achieved with a machine

learning model management module on the cloud server. This module accepts sensor data from

the edge layer and uses these data to train different machine learning models. Then, the machine

learning model selector selects and distributes a suitable model for every edge platform based on

device performance and characteristics. This method optimizes network performance as the most

suitable model is deployed for every device.

Another edge-cloud collaboration method is process offloading scheduling. The authors from

[77] addressed that edge servers have limited bandwidth. Thus, scheduling of cloud process of-

floading should be implemented to avoid network congestion. The authors of [176] implemented

a similar scheduling method on 5G networks. They use deep Q-learning to schedule server app

migration on mobile edge servers. This method aims to provide users with an optimal quality of

service. The authors from [177] incorporated cross-layer communication into process offloading

decisions. In this work, end IoT devices can communicate both with Unmanned Aerial Vehicle

(UAV) edge servers and satellite cloud servers. If the IoT devices loose connection with UAV

edge servers, the IoT devices could offload their computation tasks to the satellite cloud. A deep

actor-critic learning method is proposed considering energy consumption and network delay to

solve this scheduling problem.

This section summarizes many machine learning algorithms, hardware and applications. The
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Table 2.8: Applications Involving Edge-Cloud Collaboration.

Reference Application Collaboration Method

[77] Video Recognition Process offloading decisions.

[176] 5G Mobile Network Process offloading decisions.

[177] General IoT Application Process offloading decisions.

[161] Graphical Expert System Data cleansing to aid training.

[174] Anomaly Detection Training using Federated Learning.

[175] Indoor Condition Prediction Dynamic model selection.

[162] Healthcare System Collaborating the results of different
subtasks on different layers.

usage of machine learning from a network perspective are described. Machine learning appli-

cations in the physical layer and network layer are elaborated. Scheduling and management of

different network resources and process are major applications of machine learning on these two

layers. Then, for the cloud layer, the applications of machine learning that enable edge-cloud col-

laboration are illustrated. Edge computing aids cloud applications through process offloading and

edge-only functions (sole functionality). However, this only shows collaboration in the application

layer (Edge-Cloud). Collaboration between lower layers or cross-layer machine learning applica-

tions are still limited. Different methods of machine learning are widely adopted as frost prediction

methods. Section 2.8 evaluates a few machine learning and deep learning-based frost prediction

systems. Machine learning-based frost prediction methods are also adopted in integrated active

protection systems (Section 2.10). The performance of RNN-based models as frost prediction

methods is also assessed in Chapter 3. Moreover, the frost prediction methods in later Chapters

are mostly based on ANN. Furthermore, ensemble learning is applied in Chapter 4 to aggregate

the prediction results from multiple local weak predictors. These implementations demonstrate

machine learning usage on the application layer. Finally, Chapter 6 presents frost prediction at the

edge.

2.4 IoT Scalability

Universal scalability is discussed in this section. Universal scalability is separated into hardware

scalability, network scalability and service scalability. Table 2.9 defines these different scalability

concepts.

Hardware scalability is the ability of a piece of hardware to be extended to cope with different

environmental, network, and service requirements. A common method for implementing hard-

ware scalability is offloading part of the device functionality to a server [178, 179]. The authors

of [178] proposed an architecture that extends device functionality through device virtualization.

Additionally, this work demonstrates device virtualization in the case of a multi-protocol scenario.

As a solution, virtual gateways are deployed on fog servers to process the packets received by
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the end devices. However, adding functions of another functionality group (for example, adding

image sensors to a transceiver device) still requires modification from the hardware level. To

avoid modification from the hardware level, the concept of synthetic sensors is proposed [179].

Synthetic sensors can be separated into the device level and the server level. The device level is

assembled by sensor tags capable of sensing data from multiple sensing dimensions. These sens-

ing dimensions are low-level data types include vibration, audio, camera, temperature, humidity,

air pressure, illumination, color, motion, magnetic field, and Received Signal Strength Indicator

(RSSI). Then, low-level data is transmitted to the server level. On the server level, machine learn-

ing algorithms process these low-level data and convert them into valuable results to users. In

conclusion, synthetic sensors create a platform with all the raw data types required and extend its

functionalities through server-based machine learning analytics.

Network scalability is the ability to dynamically scale resources up and down to process the

incoming IoT traffic. A common method to ensure network scalability in wireless sensor networks

is clustering. The authors of [180] reviewed common clustering algorithms. Their work outlines

clustering into processes of cluster head election and cluster formation. Cluster head election is the

process of choosing cluster heads from wireless devices, and these cluster heads gather data from

other members of its cluster and transmit it towards the base station [180]. After the cluster heads

are elected, other wireless devices advertise themselves to the cluster heads and form clusters

around these cluster heads to join the network [180]. Therefore, new devices can easily join the

network with the cluster formation process. As a result, scalability is achieved with clustering.

The clustering techniques assume devices in the network are homogeneous. However, in an

IoT scenario, devices are heterogeneous [180]. As a solution, intermediate fog devices are utilized

[181]. Similar to the cluster heads, these fog devices gather information from the end IoT devices

and transmit it towards a centralized server. Different to the wireless sensor network scenario, fog

devices are not chosen by algorithms. These devices are specialized as an intermediate server.

The authors of [181] pointed out that as a new IoT device joins the network, the device drivers and

services can be distributed on the fog devices to achieve a simpler integration process. Therefore,

fog servers increase the scalability of IoT networks.

The extensibility of network coverage affects the availability of network services to mobile

users. The authors of [182] explored antenna-based coverage and capacity optimization in cellular

networks. Their work is based on two major phenomena. The first phenomenon is that the tilting of

mobile network antennas affects network coverage and capacity. The second phenomenon is that

there is a tradeoff between coverage and capacity. These phenomena are caused by an increase

in the power of the received useful signal in a cell and the reduction of signal coverage due to

antenna tilting. On the other hand, the authors of [183] addressed energy efficient parent selection

of mobile IoT nodes.

To ensure further coverage, scalability induced by antenna tilting, online and dynamic antenna

configuration using reinforcement learning can be applied to cellular networks [184]. This method

also belongs to the SON self-optimization functionalities [11]. Finally, to further extend network

coverage, satellites are incorporated to provide network backhaul for IoT networks. The usage of
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Table 2.9: Types of Scalabilty.

Reference Type of Scalability Definition

[178, 179] Hardware Scalability The ability of a piece of hardware to be ex-
tended to cope with different environmental,
network and service requirements.

[180–182] Network Scalability The ability to dynamically scale resources up
and down to process the incoming IoT traffic.

[186] Service Scalability The ability to incorporate new services into
the existing IoT system.

satellite backhauls provides advantages of cost efficient, ease of deployment, avoidance of damage

from natural disasters, seamless coverage, and reliability [185]. This could be part of the universal

coverage solution.

Service scalability emphasizes the ability to incorporate new services into the existing IoT sys-

tem. The authors of [186] defined scalability requirements of IoT applications as explicit control

flow, decentralized interactions, the separation between control and computation, and service loca-

tion transparency. This work also categorized IoT service interaction types into direct interactions,

indirect interactions, event-driven interactions, and exogenous interactions. After the evaluation

of the service interaction types with the scalability requirements, exogenous interactions are the

only service interaction type, which satisfies all scalability requirements.

Exogenous interactions incorporate a coordinator to manage all service interactions with dif-

ferent devices and services. Therefore control is always managed by coordinators and is separated

from service computation. From [186], this type of interaction is controlled with explicit control

flow as the control flow is defined by the coordinators. Also, as a definition of exogenous inter-

action, the control is always separated from service computation. Furthermore, exogenous can

be decentralized in a hierarchical manner. Finally, location transparency is provided by exoge-

nous interaction because coordinators are controlling the service interactions, and location data is

encapsulated during the process.

2.4.1 SDN Induced Scalability

SDNs bring programmability into traditional networks. Forwarding devices such as switches and

routers can be virtualized in SDNs. This is achieved through the separation of control plane

and data plane. As a result, SDNs simplify network management, minimize the limitation from

hardware, and are easier to extend network functionality [5]. The advantages of SDNs could also

be beneficial to manage D2D communication in 5G networks [187].

From Figure 2.14, an SDN architecture consists of the application layer, the control layer, and

the data-plane layer. The application layer consists of software applications communicating with

the control layer, the control layer process requests from the application layer and manage net-

work devices, and the data-plane layer is network infrastructure such as switches and routers [5].
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Figure 2.14: SDN Architecture. [5]

NFV is another technique that leverages service virtualization to increase network scalability. Eu-

ropean Telecommunications Standards Institute (ETSI) defines a standard for NFV architecture

(Figure 2.15) [6]. This architecture is assembled by the virtualized network functions (VNFs),

the NFV infrastructure (NFVI), and NFV management and orchestration. NFVI includes the

physical resource, which hosts VNFs as virtualized software implementations of network func-

tionalities. Both NFVI and VNF are all managed by the NFV management and orchestration

module. The advantages of the NFV architecture are reduction of hardware implementation costs,

increasing flexibility and scalability by hosting VNFs on hardware, faster service modification

due to software-based deployment, improved operational efficiency due to possible automation

and operating procedures, improved power efficiency by planning and offloading workloads. NFV

architecture is also able to create software interfaces to associate elements from different vendors.

The authors of [7] pointed out that SDN and NFV can benefit each other. SDN controllers can

be treated as a VNF on the cloud providing flexibility to controller distribution. On the other hand,

SDN provides its programmability to NFV, allowing communication between different VNFs.

The combination of SDN and NFV further increases scalability. The authors of [7] also provided

a software-defined NFC architecture that consists of the forwarding devices, the controller module,

and the NFV Platform. From Figure 2.16, the forwarding devices are switches and routers from the

data-plane layer of SDNs. These forwarding devices store forwarding tables to process a particular
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data packet. The forwarding tables are defined by the SDN controller. The SDN controller also

controls NFV orchestration on the control module. Another function of NFV orchestration is to

assign functions to the NFV platform, where servers host hypervisors supporting virtual machines

running with the network functions [7].

The authors from [188] identified that in the environment of SDN and NFV, connecting and

modification of virtual functions are complex due to multiple heterogeneous end-user demands and

network parameters. Service function chaining could be a solution to reduce this complexity and

optimize the use of resources. The authors from [188] also categorized existing service function

chaining models into six optimization types as follows: network latency minimization, resource

utilization optimization, cost minimization, power/energy minimization, service level agreement

based optimization and quality of service based optimization. Finally, the authors of [7] provided a
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vision of implementing service function chaining on the software-defined NFV Architecture. The

optimal path of service chains is coordinated with the SDN controller fulfilling user requirements

and resource constraints. Then, service chains are created from multiple VNFs, and data packets

flow through the path of the service chains.

In this section, network and service scalability achieved with SDN and NVF are reviewed.

The authors of [189] indicated the emerging network scalability issues trigger by the network

management overhead in current networks with increasing size and dynamism. Autonomic or

self-management of the networks (SONs) [189] could be a solution for these issues. On the other

hand, IoT interoperability could be another solution to resolve scalability issues [12].

In Chapter 6, the implementation of pre-trained spatially generalized frost prediction models

on edge nodes is a design that considers spatial scalability. Pre-trained generalized models can

avoid the data collection time required for models based on local data when the frost prediction

service needs to be expanded to a new location.

2.5 IoT Interoperability: Interoperability Between Standards

IoT networks are created with massive heterogeneous devices. The communication of these differ-

ent devices is a key problem. To solve this problem, different standards are created to standardize

the information exchanging process within IoT networks. The authors of [89] summarized all

these standards and categorize them into communication, RFID, Data content and encoding, elec-

tronic product code, sensor, network management, middle, and quality of service. Apart from

these protocols, there are also standards designed to fit the IoT use cases, such as, IoT6 [190].

With all these standards and protocols aiming for different scenarios, inter-communication be-

tween standards is an issue. This introduces interoperability problems of IoT. In Table 2.10, the

authors of [12] classified interoperability problem into device interoperability, network interoper-

ability, syntactical interoperability, semantic interoperability, and platform interoperability. The

authors from [12] also aggregated different works and form seven approaches tackling the prob-

lem of interoperability. As the first approach, adapters and gateways are utilized as an intermediate

bridge between different standards and specifications [12]. The intermediate device is compati-

ble with multiple standards and specifications. Therefore, such a device can communicate with

different IoT devices by converting messages between different protocols. However, this method

assumes TCP/IP support on devices and does not account for the limitation of resources of IoT

devices. Also, scalability is a problem as the message conversion process needs to be defined be-

tween all IoT protocols. The second approach is using a virtualized network overlay layer above

physical networks. This approach supports end-to-end communication using different protocols.

Unfortunately, scalability issues induced by different protocols persist.

The third approach in [12] consists of four different network technologies. The first technol-

ogy is TCP/IP. Interoperability is implemented by embedding the TCP/IP stack on smart devices.

Therefore, these devices can communicate with standard network protocols. The second technol-
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ogy is SDN. This programmable network technology provides intelligence, efficiency, security,

and scalability to IoT networks. This can also be achieved with NFV, where virtual networks

separate network functions with the physical equipment. Furthermore, physical equipment can be

shared between different network functions. The final technology is fog computing. Fog comput-

ing relies on fog servers to preprocess raw data from the end devices and preparing these data to

be interoperable for other applications [12].

The fourth approach is using open APIs [12]. A commonly used example is the REST API.

Open APIs provide standard methods to access data or services. This provides cross-platform and

cross-domain interoperability. A future direction is a generic API for uniform resource access.

A service-oriented architecture is implemented above the network layer as the fifth approach

to achieve interoperability. The aim of this architecture is to package the IoT device resource as

standard services. Therefore, device data can be standardized into services, providing syntactic

interoperability [12]. The IoT6 standard is an example of this approach. IoT6 is an IPv6-based

service-oriented architecture that provides interoperability between heterogeneous system compo-

nents [190].

The last two approaches to achieving IoT interoperability are semantic web technologies and

open standards. Both of these approaches require a recognized organization to provide common

definitions [12]. Semantic web technologies define a common understanding of the various enti-

ties. Once a common vocabulary of standard, data and format is agreed, semantic interoperability

can be achieved. The final approach is the establishment of open standards. These standards are

provided by recognized organizations to achieve interoperability with IoT networks implementing

these standards. An example is the AllSeen Alliance, defining the AllJoyn for device interoper-

ability and the oneM2M for platform interoperability [12]. The ISO also developed a framework

(ISO/IEC NP 21823) for IoT interoperability [191]. They established standards on semantic inter-

operability and network connectivity.

The frost prediction systems proposed in Chapters 4 and 5 require different data types from

different origins. There are local sensor data, external weather station data, and satellite image

data. Platform interoperability is needed for the proposed systems to facilitate these data with

different data structures and access mechanisms.

2.6 User friendly IoT

This section provides insights into the usability of IoT 2.0. The purpose is to create a vision of fu-

ture IoT that aims to lower the entry barrier of IoT services for non-expert users. This vision starts

with exploring the previous technologies of lowering entry barriers for non-expert users. These

technologies are cloud computing-based services, which are infrastructure as a service (IaaS), plat-

form as a service (PaaS), and software as a service (SaaS). The usability of these technologies is

created by increasing accessibility, increasing scalability and flexibility, the use of virtualization,

reducing cost on maintenance, and standardization [192, 193]. Accessibility is created by the fea-
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Table 2.10: Types of IoT Interoperability. [12]

Type of Interoper-
ability

Definition

Device Interoperabil-
ity

The exchange of information between heterogeneous devices and het-
erogenous communication protocols;The ability to integrate new de-
vices into different IoT platforms.

Network Interoper-
ability

Interact between different system accounting routing, resource opti-
mization, security, quality of service and mobility.

Syntactical Interop-
erability

Interoperation of data structure in exchanged information.

Semantic Interoper-
ability

Descriptions or understandings of resource, operational procedures,
data models and information models between different entities.

Platform Interoper-
ability

Interoperability required for barriers created by different IoT stacks
consist of different operating systems, programming languages, data
structures, architectures and access mechanisms for things and data.

ture of the cloud, where users can easily access the services through the Internet. Scalability and

flexibility are induced by the virtualization of hardware and software resources [193]. Therefore,

users do not need to directly configure these resources, as a standardized interface can reduce the

complexity of resource configuration [192]. Finally, as maintenance is mostly done by the service

providers, the cost of maintenance is reduced on the user side [192].

The authors of [194] offered the five features to ensure the usability of IoT systems. These

features are Plug & Play, interoperability, the ability for remote control and monitor, cost effective-

ness, and open source, open architecture. Also, by deduction from the cloud computing services, a

standardized interface can increase the usability of systems and fulfill the features of remote con-

trol and interoperability. However, due to the heterogeneity of IoT devices, a solution is to adopt

modularization. The authors from [195] proposed Internet of Things as a service (iTaaS). iTaaS

utilizes service oriented architecture, which is built with modular and reusable service modules.

Thus, this architecture reduces the time of service development, service deployment, and service

configuration.

iTaaS only reduces complexity and interoperability issues for software deployment. Differ-

ent from cloud computing services, IoT devices are heterogeneous and deployed in complex en-

vironments. Therefore, the customization of IoT devices is important to support different use

cases [196]. The authors from [196] also emphasized that the modularization of IoT devices can

reduce cost and complexity for non-technical personnel. Therefore, modularization increases the

cost effectiveness and usability of IoT systems.

To reduce the cost of maintenance, IoT devices must operate in a self-organized, secure man-

ner and avoid extra human intervention. The authors of [197] mentioned that self-organized IoT

networks should contain the following features: cooperative communication model to support

communication across different layers with suitable resource control, situational awareness to
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monitor neighbor devices and faults, and automated load-balancing to extend the overall lifetime

of the whole system. A possible solution is the SONs mentioned in the sections above. SONs

provide machine learning-driven self-configuration, self-optimization, and self-healing function-

alities [148].

Finally, as a vision towards the future, industry level standardization and efficient device de-

ployment method is required for IoT systems. The authors from [198] pointed out that standard-

ization drives standard testing and manufacturing procedures. Thus, this provides end users with

more trust and confidence in IoT products. Another problem with current IoT systems is device

deployment. Most work on IoT deployment focuses on software deployment and topology [194].

However, most devices are still deployed by humans. Novel device deployment methods should

be invented to automate this process.

Chapter 5 modularized the proposed frost prediction framework. Users can replace the meth-

ods used in the modules to achieve an easier implementation of frost prediction and automated

equipment control. The pre-trained spatially generalized models tested in Chapter 6 is a design

to ensure the implemented edge nodes could achieve the feature of Plug & Play at new sites of

operation without collecting local data.

2.7 Concepts of Frost

The second half of this chapter discusses the frost prediction methods in terms of the capability

of real-time prediction as well as the requirements of relevant spatial and temporal resolution. In

practical terms, and in addition to the obvious requirement of reliability and accuracy, desirable

attributes of frost prediction methods must also include a reduction in the cost of frost protection

and being able to provide crop managers appropriate warning time in order to implement effective

response strategies [13,31]. The process of prediction and protection could be automated by lever-

aging CPSs with controllers controlling actuators based on sensor outputs, assuming the outputs

have been preconditioned via some form of analytical processes in order to trigger a correct and

timely response [84]. Therefore, and given CPSs by their nature conduct real-time operations [84],

this research focuses on the short-term active frost protection methods, rather than the long-term

passive frost protection methods. The primary aim of this part of the chapter is to identify cur-

rent challenges and research gaps in automating real-time frost protection systems with minimal

operational cost. The major contributions of this part are listed as follows:

1. Analysis of existing frost prediction algorithms and methods.

2. Summary of the existing work on active frost protection applications and methods.

3. Overview of protection systems leveraging frost prediction models.

4. Identification of current research gaps and future directions.
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The definition of frost typically follows either the physical process itself, or the effect of its

occurrence can vary in different literature. Through the former, frost refers to the phenomenon

of ice crystal generation from dew or vapor [199], as “...the occurrence of an air temperature of

0 oC or lower, measured at the height between 1.25 and 2.0 m above soil level, inside an appro-

priate weather shelter.” The second definition focuses on the damage of crops. The term “frost

protection” is also ambiguous. Freeze damage or injury is caused by plants in an environment

under a critical temperature, where water freezes within and damages the cells of crops [200].

As the words “frost” and “freeze” are often used as substitutes of each other and the term “frost

protection” is used more frequently, “frost protection” generally means “freeze protection” [199].

Therefore, in this chapter, frost protection is defined as protecting crops from freeze damage or

injury.

The authors of [13] categorized frost into radiation frost and advection frost (freeze) (Table

2.11). Radiation frosts occur in nights with calm wind and clear skies. During the event of a

radiation frost, the temperature drops due to the natural radiation of heat [200]. Hence, temperature

inversions occur, whereas advection frosts are formed without temperature inversions and in the

presence of through wind. In addition, advection frosts are formed by a body of cold air moving

to the site through wind [200].

Table 2.11: Environmental Characteristics of Radiation and Advection Frosts. [13]

Property

Frost Type
Radiation Frost Advection Frost

Wind Speed <5 mph >5 mph

Cloud Coverage Clear sky Could be with cloud

Cold Air Thickness 30–200 ft 500–5000 ft

Temperature Inversion Inversion develops No inversion

2.8 Frost Prediction Methods

Frost prediction methods aim to detect an incoming frost event. In this chapter, frost events are

categorized as classification methods and regression methods. Classification methods classify

an input case into frost or no frost events for a future period of time, whereas regression methods

predict the minimum temperature of a future period of time. As weather conditions could vary due

to small spatial variations [31, 201], spatial resolution is essential for frost prediction. Also, real-

time prediction and high temporal resolution prediction are both important to save the protection

cost. The operational cost of active protection methods can be reduced as prediction resolution

increases. This also gives the farmers more time to decide their tactics [31]. The rest of this

section presents and discusses some relevant work on frost prediction with the three identified

factors: instantaneity, high spatial resolution, and high temporal resolution.
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Table 2.12: Frost Classification Prediction Methods.

Year Prediction
Method

Input Data Output Performance Real-time High
Spatial
Resolution

High Tem-
poral Reso-
lution

1976 [202] Weather

forecast

Temperature, Empirical ex-

perience

Indication of frost

or no frost

N/A X X X

1984 [31] Weather

forecast,

Manual

monitoring

Temperature, Dew point Indication of frost

or no frost

N/A ✓ ✓ ✓

1996 [203] ANN Daily max temperature,

Daily min temperature,

Humidity at 1900, Cloud

cover, Wind speed at 1900,

Wind direction at 1900

Min temperature

≤ 1.0 OR Min

temperature > 1.0

Rate of correct pre-

dictions: 88% - 94%

X X X

2009 [204] SOM, ANN Temperature, relative hu-

midity, wind direction, wind

speed and dew point

Indication of frost

or no frost

N/A X X X



Table 2.13: Frost Classification Prediction Methods (Cont.).

Year Prediction
Method

Input Data Output Performance Real-time High
Spatial
Resolution

High Tem-
poral Reso-
lution

2016 [205] Logistic

regression,

DT

Min temperature, grass min

temperature, dew point,

Difference of max & min

temperature, mean relative

humidity, min relative

humidity

Indication of frost

or no frost

Probability of detec-

tion (Logistic Re-

gression): 0.747 -

0.816. Probability

of detection (DT):

0.731 - 0.866

X ✓ X

2017 [206] Random for-

est

Temperature, relative hu-

midity, solar radiation, dew

point, wind speed and direc-

tion

Indication of frost

or no frost

Overall success rate:

79% - 98%

X ✓ X

2018 [207] Logistic re-

gression

Temperature, relative hu-

midity, weather station data

Indication of frost

or no frost

True positive rate:

0.82 - 0.88

✓ ✓ X

2019 [208] ARIMA Dry bulb temperature at 60

cm above ground at sunrise

and sunset, Dew point at

sunset, Wet bulb tempera-

ture at 60 cm above ground

at sunset, Relative Humidity

at sunset

Indication of frost

or no frost

True positive rate:

0.60 - 1.00

X ✓ X
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2.8.1 Classification Methods

Current classification methods focus on prediction of a possible frost event over a following period

of time [31, 202–207]. Tables 2.12 and 2.13 summarize works on classification methods. A prim-

itive method is described by [202]. The major contribution of the work is to measure the value

created by frost forecasting. However, it also records farmers using temperature from the weather

forecast with their empirical experiences to decide whether to switch on their protection heaters or

not. This method is neither real-time nor high in temporal resolution as the prediction covers the

whole night. As many farms scattering across a large county are using the same data source, this

method fails to achieve high spatial resolution.

In [31], the farmers achieved real-time prediction with high spatial resolution and temporal

resolution. However, their method uses a substantial amount of human labor. As the temper-

ature reaches a preset point, farmers are informed by an alarm [31]. Then, the farmers would

continuously monitor the temperature and dew point for the whole night to decide if a protection

mechanism needs to be triggered [31]. This method matches all the preset criteria. However, it

requires much manual intervention, and hence, it cannot be automated. On the other hand, the au-

thors of [31] proves that protection mechanisms do not require to be switched on all night during

a frost event. This gives motivation for developing a high temporal resolution prediction method

to save operational costs on protection.

The authors of [203] leveraged a classification ANN to predict the occurrence of frost events

for the coming night. The input of the model is temperature, humidity, cloud coverage, wind

speed, and direction [203]. With these inputs, the model detects frost by labeling the input as

“Temperature ≤ 1.0” and “Temperature > 1.0.” The label “Temperature ≤ 1.0” indicates frost.

The temporal resolution of this method is low because it is predicting frost occurrence for the

whole night. Also, the spatial resolution of this method is questionable, since the data source is

from Catania, Italy and it is unclear that these data are from multiple sources or not. Similarly, the

ability for real-time prediction is also questionable since there is no experiment on the real-time

inference of the model.

The authors of [204] aimed to create a frost prediction model with two stages of processing of

the raw weather data. The first stage categorizes weather data into clusters using SOM. With the

result of these clusters, a classification algorithm would classify new inputs as frost or non-frost

events. However, this research only demonstrated results for the first stage of the study. Further

evidence is required for the performance of the prediction algorithm.

Logistic regression and DTs are also leveraged for frost event prediction. These machine

learning techniques are applied to compute the next day occurrence of a frost event using weather

data collected from weather stations in Korea [205]. Prediction with a high temporal resolution

still remains an issue as the prediction period is one-day long.

The authors of [206] improved the temporal resolution for classification methods to the next

12 hours. However, it is still not sufficient for creating a real-time protection system. Data are
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collected from weather stations of the Maule region of Chile. Each model is trained using the

dataset from only one region. Therefore, this method demonstrates a high spatial resolution.

The problem of temporal resolution still persists in [208]. However, it is still significant that

the authors viewed the problem as a time series prediction problem using the Autoregressive In-

tegrated Moving Average (ARIMA) model. This method allows the detection of all frost events

in the test data. Unfortunately, the trade-off is high false alarms, which would increase the opera-

tional cost for the farmers to protect their crops.

2.8.2 Regression Methods

Earlier frost prediction regression methods are based on descriptive models of thermal radiation

and heat convection [209–212]. In more recent work, neural networks demonstrated improvements

in the results using the descriptive methods as a baseline [213]. Since the more recent methods

have better results and the descriptive methods have already been analyzed in-depth, this chapter

focuses on later models based on statistical methods and machine learning. However, descriptive

methods can provide rapid and economically feasible predictions [214]. Therefore, the potential

of these descriptive methods should be explored further in the future.

Tables 2.14 and 2.15 summarize works on regression methods. Most of the regression methods

focus on predicting the minimum temperature of a future period of time with given historical or

current inputs [207, 213, 215–219]. However, the method demonstrated in [220] is an exception.

It is still considered as a regression method because the predictands are numerical values. This

method uses Southern Oscillation Index (SOI) data, temperature and historical data of the date

of last frost and the number of frosts to re-predict the date of last frost and the number of frosts

of the coming year. Correlation analysis and linear discriminant analysis are conducted to find

the relationship between SOI and the predictands. Furthermore, PCA and iterative clustering are

used to study SOI phases. Unfortunately, this work cannot be applied in real-time as the results

require years of historical data. Also, the temporal resolution of prediction is one year as this work

predicts the date of last frost and the number of frost events of the coming year.

In [216], multiple models of temperature are produced considering the effect of the wind

machine to predict temperature for different times of the day. This model predicts real-time with

high spatial and temporal resolution as the data collected are from a 0.5 km2 vineyard. However,

this model fails to consider wind as a possible input factor as the study region is usually windless.

Therefore, this method would be accurate for the study region of other windless regions. The

model could fail in regions with winds as a significant factor affecting temperature.

The authors of [215] extended their work [203] from a binary classification model to a multi-

class classification model with eight ranges of minimum temperatures. Since this is not merely

predicting an occurrence of a frost event and even the model is a classification model, this method

is considered as a frost regression prediction method. However, the limitations still persist. Spatial

resolution and real-time prediction capability of this method remain questionable as the source of

data are vague and there is no test conducted for real-time inference. Temporal resolution is still
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Table 2.14: Frost Regression Prediction Methods.

Year Prediction
Method

Input Data Output Performance Real-
time

High
Spatial
Resolu-
tion

High Tem-
poral Reso-
lution

1996 [220] Correlation

analysis,

Linear dis-

criminant

analysis,

PCA, Clus-

tering

SOI phases data, Temperature, Historical

dates of last frost and number of frosts each

year

Date of last

frost, number

of frosts

N/A X X X

1997 [215] ANN Previous day min temperature, Previous

day max temperature, Cloud cover, humid-

ity at 1900, Wind speed and direction at

1900

A range of next

24-h min Tem-

perature

Rate of correct

predictions:

94%

X X X

2003 [216] Linear re-

gression

Elevation, Time of local sunset, Radiation

received during the previous day, Distance

to wind machines.

Temperature Standard error:

0.24 - 0.60

✓ ✓ ✓

2006 [213] ANN Air Temperature, Soil Temperature, Rel-

ative Humidity, Wind velocity, Average

Wind velocity, Max temperature of day,

Min temperature of previous day, Daytime

length

Min temper-

ature of the

night

Percent correct:

87.8% - 95.6%

✓ ✓ X



Table 2.15: Frost Regression Prediction Methods (Cont.).

Year Prediction
Method

Input Data Output Performance Real-
time

High
Spatial
Resolu-
tion

High Tem-
poral Reso-
lution

2012 [217] ANN Max temperature, Min temperature, Aver-

age temperature, Max wind speed, Precip-

itation, Cloud cover, Moisture, Pressure,

Humidity at 1900, Wind direction at 1900,

Wind speed at 1900, 2 previous days min

temperature, 5 previous days min tempera-

ture

Min temper-

ature for the

next 24 hours

True rate: 88% X ✓ X

2018 [218] ANN Air temperature, Relative humidity, radia-

tion, Precipitation, and Wind direction and

speed

Next day min

temperature

Accuracy: 0.97

- 0.99

X ✓ X

2018 [219] Linear re-

gression

Temperature, Dew point, Humidity Min temper-

ature of the

night

N/A X ✓ X

2018 [207] Random for-

est

Temperature, Relative humidity, Weather

station data

Next day min

temperature

True positive

rate: 0.75 - 0.9

✓ ✓ X
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low because the predictand is accounted for the next 24-hours. Also, prediction with two output

classes demonstrates the highest accuracy. Therefore, extending towards multiple classes does not

contribute to the improvement of frost prediction.

Similarly, ANN is also used to predict the minimum temperature of the night with daytime

variables and previous day minimum temperature [213], but in a regression model. The model is

built with high spatial resolution as data from individual weather stations is leveraged. However,

the model is not tested for real-time inference. Also, the temporal resolution is limited, as it only

predicts the minimum temperature of the night. On the other hand, an important result of this

work is that the deep learning models have the potential to outperform the traditional descriptive

models.

ANN is further leveraged to predict frost for the next 24 hours using rough sets [217]. The

data is collected from a weather station located in Hunan, China. Therefore, the spatial resolution

of the prediction is high. However, the method is predicting for the next 24 hours, which indicates

low temporal resolution.

Similar work is done in [218]. ANN is applied on datasets from multiple weather stations

of Central Chile to predict the next day minimum temperature with fewer parameters. Since the

method is also predicting for the next day, low temporal resolution is still an issue.

The authors of [219] introduced the concept of WSN into frost prediction regression applica-

tions. They used WSN to increase the reliability of the data collection process. This ensures a

high spatial resolution of prediction. Also, this system allows real-time inference, as the decision

process is based on real-time data. However, the temporal resolution remains low as they are only

predicting the minimum temperature of the coming night.

The authors of [207] also used WSN to predict frost occurrence. It performs both regression

and classification methods using the random forest and logistic regression, respectively. Also,

an external weather station is introduced to the temperature readings from WSN sensors. As

WSN is used for data collection, the prediction method can conduct real-time prediction with

high spatial resolution. Again, the temporal resolution remains low as prediction is for next day

minimum temperature and next day frost occurrence. However, the significance of this work is

using the Synthetic Minority Oversampling Technique (SMOTE), which significantly improves

the performance of random forest and logistic regression models.

In conclusion, both classification and regression methods all predict with high spatial resolu-

tion as the data are collected from a sole weather station or using WSN. On the other hand, most

systems are not tested for the capability of real-time prediction. Since most of the methods pre-

dict for the next day or the next 24-hour, the methods could potentially be extended for a higher

temporal resolution. However, classification methods are hard to extend because, in the case of

hourly or higher resolution prediction, the indication of frost events is complex compared to next

day predictions. For example, as frost already occurs in the first hour of the event, in the second

hour it is hard to indicate if the existing frost appears due to the environmental factor of the second

hour or the first hour. On the contrary, an extension on regression methods is more straightforward
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as the hourly minimum temperature can be measured with a temperature sensor.

2.9 Frost Protection Methods

Frost protection methods consist of passive protection methods and active protection methods

[14, 15]. Passive protection methods are applied before the event of frost and are usually cheaper.

However, passive methods might not provide sufficient heat to resist frost injury [15], whereas

active protection methods are applied during the event of frost to preserve heat on the crops for

protection. Active protection methods are usually expensive due to manual operation and main-

tenance costs [15]. Therefore, this chapter focuses on the exploration of automated systems to

mitigate the operational cost of active protection methods. The rest of this section introduces both

passive and active protection methods, but emphasizing on the works of active protection methods.

2.9.1 Passive Frost Protection Methods

Table 2.16 lists the advantages and disadvantages of some common passive frost protection meth-

ods. A common aspect of passive frost protection methods is that these methods need to be applied

before the frost events [14, 15]. Hence, passive frost protection methods are not explored in this

chapter, as this chapter focuses on real-time automated protection systems. On the other hand, pas-

sive methods are usually less expensive and effective against advection frosts [13]. Thus, passive

methods could be a complement to the active protection methods.

2.9.2 Active Frost Protection Methods

Table 2.17 lists the advantages and disadvantages of some common active frost protection meth-

ods. Active frost protection methods are applied during an event of frost [15]. Therefore, active

frost protection methods can be implemented on a real-time frost protection CPS. However, active

protection methods are usually ineffective against advection frosts because of the high cost of large

scale deployment and the lack of natural heat source in the environment [221]. The rest of this

subsection demonstrates some works on active frost protection methods to summarize the current

research trend.

The majority of works on active frost protection methods are related to sprinklers [222–225,

227] and driven by air disturbance technologies [17, 228]. The ultimate goal of most works on

sprinklers is to improve the efficiency of water usage. To achieve this, heat convection mechanisms

are studied to estimate efficient water application rates for frost protection [222,223]. Furthermore,

choosing the suitable rate of application is important as over-irrigation would cause water logging

issues and under-irrigation would cause potential frost injuries [227].

Some other works on sprinklers emphasize the comparison between different equipment se-

tups. For example, in [224], settings of different sprinkler application rates with or without plant
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Table 2.16: Common Passive Frost Protection Methods. [13–16]

Protection
Method

Protection Mechanism Advantages Disadvantages

Site Selection Avoidance of frost prone
area. Choosing a site
with soil in favor of heat
transfer and storage.
Choose higher spots to
avoid dense cold air.

Could completely
avoid frost.

Heat in soil might
not be sufficient af-
ter a cloudy day.

Cold Air
Drainage

Placement or removal of
vegetation and other ob-
stacles to control cold air
drainage.

Can provide high
degree of protection
when the drainage
pattern is known.

Could lead to ero-
sion with the re-
moval of plants and
vegetation.

Plant Selection Select frost resistant
plants.

Significantly reduces
the risk of frost dam-
age.

Limited to certain
crop types.

Canopy Trees Enhance downward radia-
tion

Efficient protection
method.

N/A

Plant Covers Reduce heat loss to the air
from the crops.

Good for small plants Deficient ventilation
could cause dis-
eases. Might not be
effective without an
external heat source.
High labor cost for
implementation and
removal.

Soil Cultivation
Planning

Cultivation releases heat
from soil.

N/A N/A

Irrigation Wet soil allows better heat
transfer and storage.

Can be used for other
farming applications.

High installation
cost.

Cover crops Re-
moval

Increases direct radiation
to the soil.

N/A Might cause erosion.

Soil Covers Warming the soil. N/A Covering with veg-
etive mulches might
reduce head transfer
into the soil.

Chemical Treat-
ment

Activate cold resistance or
delay bloom.

Effective method. Not suitable to all
crop types.
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Table 2.17: Common Active Frost Protection Methods. [13–17]

Protection
Method

Protection Mechanism Advantages Disadvantages

Heaters Converting fuel to heat to
replace crop heat loss.

Lower installa-
tion cost.

Expensive fuel cost. Not
efficient as heat loss to
the sky.

Wind Machines Mix warm air above with
the cooler air at the surface

Efficient usage
of fuel.

High installation cost. In-
duce noises. Fan could
be damaged during heavy
wind or supercooled fog.

Helicopters Moving warm air above
towards the surface.

High area cover-
age.

High operational cost.

Sprinklers Heat releases when water
changes its state.

Low operational
cost and labor
requirement.

High installation cost.
Require large volume of
water. Some could be
affected by the wind drift
effect.

Artificial Fog Smoke or fog traps radiat-
ing heat.

Effective for ra-
diation frost

Only effective for a rel-
ative short time. Cause
pollution.

Table 2.18: Works on Active Frost Protection Methods.

Year Protection Method Research Aim

1981 [222] Sprinkler Prediction of the application rate required to
keep a leaf at 0oC.

1986 [223] Sprinkler Investigation on the water requirement for
frost protection.

1992 [224] Sprinkler & Enclosure Comparison of effect of protection between
various settings of the enclosure and applica-
tion rates of the sprinklers.

2002 [225] Sprinkler Comparison between efficiencies of mi-
crosprinklers and microsprayers.

2009 [226] Electrically heated cables Testing the effectiveness of the electrically
heated cables.

2016 [227] Sprinkler Investigation on the effect of application rate
towards the surface temperature of tea leaves.

2018 [17] Wind machines, Selective
Inverted Sink (SIS), Heli-
copters

Review on the control, effectiveness and
working environment of air disturbance tech-
nology on frost protection.

2019 [228] Wind machines Investigation on the effectiveness of portable
wind machines comparing to the stationary
wind machines.
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enclosure are compared to detect the setting with a higher temperature under the same environ-

ment. As a result, the setting with the enclosure and a high rate water application of 1.22 cm

h−1 is proven to maintain the highest temperature. Another work [225] compares the efficiency

between microsprinklers and microsprayers. Microsprinklers generally have better performance

than microsprayers due to a higher rate of water flow. However, the difference is not significant

with a temperature above 3oC.

Other than sprinkler irrigation methods, air disturbance technologies are also widely stud-

ied. The authors of [17] provided a review of protection methods depending on air disturbance

technologies. These methods include wind machines, selective inverted sinks (SIS), and frost

protection helicopters. The review of these methods is conducted in terms of working principle,

control factors, and selection criteria. As a result, the advantages of air disturbance technologies

are a long-lasting period of protection and high effectiveness against radiation frosts. However,

the common limitations are high initial cost, the presence of disturbing noise, dependency on the

limited access of power supply, reliance on strong thermal inversion, and suitable wind direction.

To reduce the initial installation cost of wind machines, portable wind machines are proposed.

A study [228] compares portable wind machines with stationary wind machines. As mentioned,

portable wind machines do not require expensive initial installation costs and permanent installa-

tion. Also, some other advantages are less fuel consumption, less noise, and compatibility with

different wind conditions. However, the portable wind machines are less effective than the station-

ary wind machines due to their lower engine power, narrower coverage angle, and lower height.

Finally, a novel method of frost protection is proposed in [226]. To mitigate the environmental

requirements and water resource requirements on conventional heaters, wind machines and sprin-

klers, electrical heated cables are implemented to protect vines against frost damages. This method

is effective as it significantly reduced loss from 46% to 13%. However, the use of electrical cables

around vineyards would require extra care for the farmers during daily operations. Thus, poten-

tially increasing manual labor cost. Moreover, large scale deployment would also incur a high

manual labor cost.

2.10 Integrated Frost Prediction and Active Protection Sys-
tems

This section explores some implementations of frost protection CPSs (Table 2.19). In 1984, a

primitive implementation of an automated frost protection system placed temperature sensors near

the crops [31]. When the temperature reaches a preset point, a bedroom alarm as the actuator will

be triggered to alert the farmers to switch on protection equipment. In more recent works, the

triggering of protection equipment is automated with different frost prediction methods [226,229–

231]. However, most of these works still rely solely on temperature sensors to trigger the operation

of protection equipment. A more sophisticated prediction algorithm could be implemented to

provide a larger reaction window during periods with rapid changes in the environment.
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Table 2.19: Works on Automated Frost Protection Systems.

Year Protection Method Alarm System

1984 [31] Manual trigger of wind machine,
Sprinklers, Heaters

Temperature sensors, Bedroom
alarm

2008 [229] Artificial Smoke Temperature sensors, Fuzzy con-
troller

2009 [230] Sprinklers Thermistors

2009 [226] Electrical heating cable Air temperature sensors, Timer
switch

2012 [231] Artificial cloud burner WSN temperature sensors, Fuzzy
controller

2017 [16] N/A WSN Temperature sensors, Public
weather forecast service

2019 [232] N/A WSN sensors, Weather station ser-
vice, Multivariate index

2019 [233] N/A WSN sensors, Weather station data

More recent works introduced external weather services, which calibrate with the deployed

WSN sensors to provide better prediction [16, 232, 233]. Unfortunately, most of these works are

still in an earlier stage. Therefore, there are limited results on prediction or integration with a

protection method. As demonstrated by Table 2.19, these systems require integration with some

actuators to become complete CPSs.

Another common issue of the current automated frost protection systems is low fault tolerance.

As current systems are all unsupervised and depend on a small number of sensors and actuators,

unavailability due to hardware defects or accidents on any of them could disable the whole system.

As a consequence, the crops would suffer from frost damage. A more sophisticated system with

high fault tolerance should be designed to eliminate this consequence.

2.11 IoT Communication Protocols for Frost Protection Appli-
cations

In this section, different IoT communication protocols are compared and evaluated in two stages.

The set of criteria in the first stage is formed by evaluating IIoT requirements with the background

of frost protection applications to choose the relevant factors. Then, the IoT communication pro-

tocols are compared and filtered using the result factors. Finally, protocols are further considered

in a perspective of cost.

From [18], the requirement factors for IIoT networks are listed in Table 2.20. These factors are

evaluated considering the operational environment of frost protection systems to be included as a

prioritized factor. The evaluated frost protection systems are all utilizing single or a small number
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Table 2.20: IIoT Requirements. [18]

Requirement Factor Description

Latency Can be improved by smaller packets and simpler protocols.

Reliability Related to the amount of transmission errors.

Throughput The amount of transmitted data in a fixed amount of time. High
throughput is important for applications such as high resolution
images or videos transmission.

Interference-robust capa-
bility

The ability against interference generated by other electrical
equipment and communication systems.

Fading-robust capability The ability against signal degradation due to wave reflection and
scattering.

Energy efficiency Energy efficiency is important for environment with limited num-
ber of stable terminals.

Communication range The one-hop transmission distance.

of sensors for a relatively large field with limited amount of data transmitted [16, 226, 229–233].

Therefore, the system does not require a high throughput. Also, under the critical temperature, the

freezing process is a (relatively) slow procedure up to 30 minutes with 10% of crop allowed to be

eliminated for the purpose of thinning [31]. Thus, ultra low latency transmission is not required.

Some latency and errors can be tolerated. With real-time inference of frost prediction methods,

the system should still provide timely predictions. Overall, latency, reliability, and throughput are

not critical factors for frost protection systems.

As agricultural IoT applications are mostly deployed in rural communities [234], the envi-

ronmental characteristics of rural areas are influential for frost protection systems. The authors

of [235] demonstrated that there are significantly less path loss and more extended transmission

range in rural areas than suburban areas. Therefore, as frost protection systems are deployed

in rural regions, interference-robust capability and fading-robust capability are not considered as

priorities.

Since rural farmlands have a limited number of power terminals, and the wiring costs are

high [234], the IoT nodes for agricultural applications have limited energy sources. Therefore,

these IoT nodes need to be energy efficient to maintain the availability of the network [236].

Hence, energy efficiency is chosen as a factor of the criteria. On the other hand, the average

European farm size is 16.6 ha [237], and the average Australian farm size is 4,331 ha [238].

Wireless communication covering such vast land requires a longer one-hop distance or an increase

in the number of forwarding relays [239]. Since this affects the coverage of the network and

the number of forwarding relays as a cost factor, communication range of IoT protocols is also

evaluated. In the next paragraph, the energy consumption and communication range of some

common IoT protocols are compared.

From Table 2.21, medium to high energy consumption protocols include Bluetooth, Wi-Fi,
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WiMAX, Cellular. Operation with these networks result with a lower life span of the application

[236]. Hence, these protocols are not suitable. On the other hand, protocols with low energy

consumption often operate with a limited communication range around 100 - 200 m [19–21].

Therefore, more relays are required to forward the signals to the sink [239]. The Low Power Wide

Area Network (LPWAN) protocols (LoRaWAN, SigFox and NB-IoT) are the only low energy

consumption and long communication range protocols that are evaluated. Therefore, LoRaWAN,

SigFox and NB-IoT are further analyzed with cost factors in the next stage.

Table 2.21: Comparison of IoT Communication Protocol Energy Consumption and Communica-
tion Range. [19–22]

Protocol

Criteria
Energy Consumption Communication Range

6LoWPAN Low Short (10 - 100 m)

Bluetooth Medium Short (10 - 100 m)

ZigBee Low Short (10 - 100 m)

RFID Low Short (up to 200 m)

NFC Low Short (<1 m)

Z-Wave Low Short (30 - 100 m)

Li-Fi Low Short (around 10 m)

Wi-Fi High Short (1 - 100 m)

WiMAX Medium Long (<50 km)

Cellular High Long (several km)

LoRaWAN Low Long (5 - 30 km)

SigFox Low Long (10 - 40 km)

NB-IoT Low Long (1 - 10 km)

The authors of [22] split the cost of LPWAN protocols into spectrum cost, deployment cost,

and end-device cost. From Table 2.22, NB-IoT is the most cost-ineffective in all three types of

cost. Also, as LTE cellular coverage is not available for some farms [22], NB-IoT is not suitable

for frost protection applications. If NB-IoT is not considered, the deployment cost would be

the most significant for other LPWAN protocols. Private local networks can be deployed with

cheaper LoRaWAN gateways instead of expensive base stations [22]. This significantly reduces

deployment costs. From a cost perspective, among the assessed LPWAN protocols, LoRaWAN

should be the most suitable for frost protection applications.
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Table 2.22: Costs of LPWAN Implementation. [22]

Protocol

Cost
Spectrum Cost Deployment Cost End-device Cost

SigFox Free >4000e per base station. <2e

LoRaWAN Free >100e per gateway. >1000e
per base station.

3 - 5e

NB-IoT >500 Me per
MHz

>15000e per base station. >20e

2.12 Current Limitations and Future Directions of Frost Sys-
tems

This section provides an overall discussion on frost prediction methods, frost protection meth-

ods, and integrated frost protection systems. After outlining the common aspects of the current

state, limitations are concluded to lead to possible future implementations. Several limitations are

avoiding the construction of effective, real-time, and automated frost protection CPS.

Model accuracy is limited by the quality of local historical data From Tables 2.12, 2.13,

2.14, and 2.15 most prediction methods leverage machine learning techniques to build the predic-

tion models. Although machine learning methods demonstrate results with high accuracy, their

dependency on historical sensor data could be a limitation towards higher accuracy. The demand

for higher accuracy is valid because any false-negative results of frost prediction could induce a

substantial loss to the agricultural sector.

This limitation on model accuracy is consistent with the constraints of machine learning mod-

els. As machine learning models are highly dependant on data, data quality is often influential

to the performance of the model [94]. In most systems, data is collected by sensors. Therefore,

data quality is highly bounded by the characteristics of the sensors. In an IoT context, sensor data

could arrive with noises, errors, and discontinuities [71]. These data could corrupt the dataset and

result in an inaccurate machine learning model. A possible solution would be applying various

data cleaning techniques on the training dataset to remove the noises, eliminate the errors, and

patch the discontinuities [240].

Another limitation of machine learning models is generality. Machine learning can provide

models of the patterns from the training dataset with high generality. However, it cannot provide

an accurate output beyond the patterns of the training dataset [241]. This phenomenon also applies

to deep learning models [242]. The issue of generality could appear in both spatial and tempo-

ral dimensions. In the spatial dimension, as most machine learning models are built with local

data, it could only provide accurate results within a local scope. Moreover, most model building

and testing processes are also conducted with local data. Therefore, the generality of models is

not confirmed at other locations. In the temporal dimension, since the patterns of future climate
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change are unpredictable [243], models based on climate data from earlier years might decrease in

accuracy. Possible mitigation techniques include rebuilding the models with a recent dataset and

application of a self-adaptive learning model such as reinforcement learning.

Prediction models have low temporal resolutions According to Table 2.12 and 2.14, the cur-

rent frost prediction methods often predict the occurrence of any frost for the next 12 and 24 hours.

Therefore, the protection equipment needs to be switched on for 12 to 24 hours to minimize the

risk of frost damage. However, by the results from manual observations [31], the duration of a frost

event could be shorter. Thus, the operational time of frost protection equipment could be reduced

to save the operational cost. A solution provided by [31] is manual monitoring, which would incur

extra human labor costs. To eliminate this human labor cost, a potential improvement would be

increasing the temporal resolution of prediction to hourly or even minute by minute prediction.

As a result, this improvement could achieve the automatic operation of protection equipment with

fewer operational hours.

Prediction models are often not tested in real-time scenarios Frost prediction in the agri-

cultural sector allows farmers to plan their tactics to protect the crops and retain psychological

comfort [31]. However, current frost prediction models demonstrate limited evidence of opera-

tion in a real-time scenario. To construct an operational cost-efficient protection system, real-time

prediction results with the high temporal resolution are required. As a result, an efficient opera-

tion scheme can be generated by the system. In conclusion, tests for real-time prediction models

leverage live WSN data acquisition should be conducted to confirm the capability of real-time

predictions.

Active frost protection methods are vulnerable against advection frosts [221] Currently,

large scale deployment of an active frost protection method is not economically feasible [221].

However, from Table 2.18, most research of active protection methods lay in the field of sprinklers

and wind machines. These methods are vulnerable to advection frosts. An economically feasi-

ble active protection method could be a future research field to eliminate the vulnerability. This

method could benefit from passive protection methods to reduce the cost and increase effectiveness

against advection frosts [13]. Also, the potential of some chemical solutions has not been fully

revealed. Ice nucleation inhibitors protect crops from frost damage by limiting the ice nucleation

process. This is achieved through the inhibition of bacterial ice nucleating agents [244, 245]. The

chemical solutions could be applied using the existing irrigation systems or sprayers to reduce the

manual labor required.

Current frost protection systems have low fault tolerance Most frost protection systems from

the works of Table 2.19 rely on only one or a small number of sensors and actuators. These systems

would have a low tolerance for any system fault. Consequently, this would induce inaccurate de-

cisions and even unavailability of the whole system. The faults can be classified into device faults
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and network faults [246]. Device faults are generated by malfunctioning nodes and sinks, whereas,

network faults are originated from the outage of network connections between devices [247]. The

cause of these faults spans across the hardware layer, the software layer, the network layer, and the

application layer [247]. The authors of [247] separated fault tolerance mechanisms into three cat-

egories, including redundancy-based, clustering-based, and deployment-based mechanisms [247].

Redundancy-based techniques are redundancy of data, path, reports, and nodes. As current frost

protection systems operate with a few sensors and actuators, redundancy-based methods can in-

crease the reliability of the system [248]. However, a trade-off between cost and reliability needs

to be further evaluated [248]. The second type of fault tolerance technique is related to cluster-

ing. Clustering is a technique that increases the overall network lifespan by utilizing local cluster

heads [249]. Clustering-based fault tolerance mechanisms could be applied to minimize the fault

during cluster head selection [248]. This mechanism might not be active on current frost protec-

tion systems with a few nodes, but it can be applied to future systems implementing node redun-

dancy. The final type of fault tolerance mechanism is the deployment-based mechanism [247].

Deployment-based mechanisms focus on topology control to adapt the network to the changes

of node condition, noise, and interference [247]. These mechanisms can be applied to increase

the reliability of the system [247], thereby reducing the possible economic loss of frost damage

induced by system errors.

A final future direction would link back to the aim of the chapter. According to Table 2.19,

some of the automated protection systems are lacking integration with a sophisticated prediction

method, while other methods require actuators for frost protection. Therefore, the final future

direction is the integration of a sophisticated prediction method leveraging sensor data with a

protection actuator to form a real-time accurate frost protection CPS.

2.13 Summary

This chapter provides the technical background and first motivations of this thesis. Recent IoT

architectures and the four dimensions of IoT 2.0 have been discussed as the basis of frost predic-

tion and protection systems in this thesis. In response to Research Question 3, these discussions

have revealed that IoT architectures can act as reference architectures to frost CPS systems. Ma-

chine learning intelligence lies on the application (intelligence) and edge layers of the IoT (CPS)

architecture to predict frost and provide protection decisions. IoT Scalability of frost prediction

systems is improved in later chapters with a spatially generalized prediction model. In addition,

IoT platform interoperability supports the integration of data from multiple sources. As the final

relevant dimension of IoT 2.0, the design idea of user friendly IoT leads to the modularization and

standardization of frost prediction and protection systems. The second half of this chapter reviews

recent frost prediction methods, frost protection methods, integrated protection systems, and their

communication protocols. The limitations induced by historical data dependence, low prediction

temporal resolution, non-real-time response, vulnerability against advection frost, and low fault

tolerance are revealed as a reply to Research Question 1. Research Question 2 is answered
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in two stages. Firstly, the frost regression prediction methods are in favor over the classification

methods due to the different threshold temperatures of different plants. Secondly, ANN-based

models demonstrate the highest accuracy in the literature reviewed for regression methods. New

research questions have emerged with the response to these previous questions. The limitations

of low prediction temporal resolution and non-real-time response lead to Research Question 4:

How to achieve near real-time frost prediction? This question is acknowledged in the next Chap-

ter (Chapter 3). Research Question 5 reflects on the limitation of low system fault tolerance.

The spatial interpolation-based designs in Chapters 4 and 5 address the concerns of Research
Question 5.

2.14 Review on Post-thesis Frost Prediction

This section summarizes some works on frost prediction after the design and implementation

of the proposed systems in this thesis. Similar to the above sections, these works have been

separated into classification methods (Table 2.23) and regression methods (Table 2.24).

In [250], a zoning tool is created to predict the risk of frost in forest plantations. Instead

of relying on rapidly changing measurements (e.g., temperature, humidity), the tool is based on

geological coordinates, elevation, relative altitude and hydrography. The zones provided are per-

manent despite the changing environmental conditions. Therefore, this method is unsuitable for

real-time, high temporal resolution predictions. However, this tool is still significant for passive

frost protection. During the planning phase of plantations, frost-sensitive crops can be planted in

low-risk zones. The authors applied random forest, SVM and ANN. The results show that random

forest has the highest accuracy and ANN has the lowest accuracy.

Similar to [250], the authors of [251] included a physiographic description of the study site

with geological coordinates, slope, aspect, elevation, and curvature as prediction inputs. In ad-

dition to the physiographic factors, environmental readings (minimum temperature, relative hu-

midity, wind velocity, and sunshine hours) are included as climatic factors for prediction. These

variables are used with SVM and ANN models to predict frost occurrence in five classes (no frost,

mild frost, moderate frost, severe frost, serious frost). Since this prediction is based on daily data,

this method can not provide real-time predictions with high temporal resolution. The accuracy of

the SVM predictor is higher than ANN. However, the accuracy of the ”no frost” classification of

ANN (0.500) is higher than SVM (0.375). This shows fewer false positives of ANN than SVM.

Overall, the accuracy of both methods needs further improvement.

The authors of [252] focused on prediction with environmental readings. Hourly prediction

models of frost occurrence are created with logistic regression, DT, random forest, and SVM.

Among these classification models, random forest and SVM demonstrate higher accuracies than

the other models. These two models are extended with the initial frost occurrence time and min-

imum temperature at night. These new learning variables increased the model accuracy to over

93%. However, as the new variables can not be obtained with hourly observations, the model pro-
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vides daily frost occurrence prediction for the next morning. In conclusion, the extended models

cannot provide real-time predictions with high temporal resolutions.

In [253], the model inputs are all environmental and meteorological parameters. Frost occur-

rence probability of 1–5 days after the prediction is computed with logistic regression and ANN.

The accuracy of both models is below 0.72, with a high false alarm ratio of over 0.38. Similar to

the models before, the temporal resolution of prediction is low.

The authors of [254] introduced graph neural networks into frost prediction. A

spatial-temporal graph is constructed to predict frost occurrence in six-hour intervals.

Spatial-temporal relationships between the experiment site and 10 weather stations are modeled.

The authors implemented two versions of the model. There is a classification model predicting

frost occurrence probability and a regression model predicting the minimum temperature. Both

models have low temporal resolutions.

In [255], nightly minimum temperature maps are generated using only one temperature sensor

mote in a farm. The map is generated by computing the difference in terrain between the tem-

perature sensor and the target location. The difference in terrain is measured by the difference in

elevation, and the difference in standard deviation of elevation within a radius of 700 m. As this

work provides nightly maps, the temporal resolution of prediction is relatively low. This work is

still significant because it provides a cheap zoning method to indicate zones with high frost risks

and contributes to passive frost protection methods.

Compared to the models reviewed in the above sections, the post-thesis frost prediction works

also focus on low temporal resolution predictions. Low temporal prediction resolution has been

viewed as a limitation in this thesis and improved in the next chapters of this thesis towards minute-

wise predictions. Most of these works also rely on a single sensor node, which suffers from low

fault tolerance. Overall, Research Questions 4 and 5 can still be asked to determine the limitations

in most post-thesis works. However, there are also improvements. The graph neural network [254]

is the newly introduced model type in frost prediction. As multiple data sources are required for

graph neural networks, the fault tolerance of the prediction system is enhanced. On the other

hand, there are model-based solutions to aid passive frost protection [250,255], which is a gap not

covered by this thesis.
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Table 2.23: Post-thesis Frost Classification Prediction Methods.

Year Prediction
Method

Input Data Output Performance Real-
time

High
Spatial
Resolution

High Tem-
poral Reso-
lution

2021

[250]

Random

forest,

SVM, ANN

Longitude, Latitude, Elevation, Relative altitude,

Relief orientation, and Hydrography distance

Frost occur-

rence probabil-

ity

Accuracy: Ran-

dom forest: 0.91;

SVM: 0.76; ANN:

0.67

X ✓ X

2021

[251]

SVM, ANN Longitude, Latitude, Elevation, Slope, Aspect, Cur-

vature, Minimum temperature, Relative humidity,

Wind velocity, Sunshine hours

Frost damage

as five classes

Average accuracy:

SVM: 0.7929;

ANN: 0.7129

X ✓ X

2021

[252]

Logistic

regression,

DT, Ran-

dom forest,

SVM

Temperature, Subzero duration, Precipitation,

Wind speed, Humidity, Snowfall, Three-hourly

snowfall, Ground temperature, Initial frost occur-

rence time, and Night minimum temperature

Frost or no frost Accuracy: Ran-

dom forest: 0.765,

0.9416; SVM:

0.771, 0.9361

✓ ✓ ✓

2021

[253]

Logistic

regression,

ANN

Max and Min temperature, Wind speed, Precipita-

tion, Sunshine hours, Cumulative pan evaporation,

Morning relative humidity, and Afternoon relative

humidity

Frost occur-

rence proba-

bility 1-5 days

after

Accuracy: Logisti

regression: 0.75,

0.81; ANN: 0.70,

0.72

X ✓ X

2022

[254]

Graph neu-

ral network

Latitude, longitude, temperature, humidity Frost or no frost

in six-hour in-

tervals

Precision: 0.891 X ✓ X



Table 2.24: Post-thesis Frost Regression Prediction Methods.

Year Prediction
Method

Input Data Output Performance Real-
time

High
Spatial
Resolution

High Tem-
poral Reso-
lution

2021

[255]

Multivariate

adaptive

regression

splines

Elevation difference between logger and weather

station, Standard deviations difference of eleva-

tion within a radius of 700 m between logger and

weather station

Nightly mini-

mum tempera-

ture maps

RMSE: 0.72-

1.61oC

X ✓ X

2022

[254]

Graph neu-

ral network

Latitude, longitude, temperature, humidity Minimum tem-

perature in six-

hour intervals

RMSE: 5.42oC X ✓ X



3
Minute-wise Frost Prediction: An Approach of

Recurrent Neural Networks

3.1 Introduction

This chapter focuses on predicting the condition of future frost damages to plants. A near real-

time prediction system based on local sensors has been designed. The potential of RNNs in frost

prediction is explored in this chapter. The standard RNN has issues such as gradient explosion

and gradient vanishing [112]. To address these issues, LSTM and Gated Recurrent Unit (GRU)

are proposed as variants of the RNN [256]. This chapter leverages RNN, LSTM, and GRU models

for frost prediction. A minute-wise frost prediction system has been created to address Research
Question 4. Most of this chapter has already been published as the journal paper ”Minute-wise

Frost Prediction: an Approach of Recurrent Neural Networks,” in Elsevier Array [257].

In recent years, the Internet of Things (IoT) technologies have been widely applied in the

field of agriculture to provide real-time monitoring and actuation services [258]. There are also a

few IoT-based frost protection systems. However, most of these frost protection systems rely on

thresholds of real-time sensor readings to trigger the frost protection equipment [34]. The effect

of these simple mechanisms is limited compared to the accuracy of the prediction algorithms [34].

Therefore, this article considers a few factors related to the future deployment of frost prediction

algorithms. These factors include model processing speed, long-term accuracy and data availabil-

ity. Since system resources are limited for IoT systems, the model should require a faster process-

ing speed [259]. Also, IoT systems should eliminate extra human interventions [258]. Therefore,

the deterioration of model accuracy over time should be minimum to ensure manual updates to
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IoT nodes are infrequent. Finally, as most frost prediction models depend on on-site historical

data [34], data availability is important when creating these models. Since a large amount of his-

torical data cannot be assumed to be available at all sites, our set scene assumes that only a small

amount (three months) of data is available to minimize the data collection time for new models.

3.1.1 Related work

In Chapter 2 [34], frost prediction methods are categorized as “classification methods” and “re-

gression methods.” Classification methods predict the occurrence of frost as a percentage in a

future time, whereas regression methods predict the minimum temperature in a future period [34].

Both methods rely on climate data as the model input. Since the frost resistances for different

species of plants are different [260], frost regression prediction methods are proposed in this chap-

ter to provide the farmers future environmental insights and provide a more generalized solution

avoiding the differences between individual plant species.

There are a few existing frost regression prediction methods. In [216, 219] and [207], tradi-

tional machine learning methods are leveraged to predict temperature or minimum temperature in

the next day or night. Random forest models are used in [207] to predict next-day minimum tem-

perature with temperature and humidity inputs. Linear regression is used in both [216] and [219].

Environmental parameters such as temperature, dew point, and humidity are inserted as model

inputs in [219]. On the other hand, to consider the effect of wind machines, the authors of [216]

introduced the distance to wind machines along with elevation, time of local sunset, and radiation

received during the previous day as input parameters.

Apart from the traditional machine learning models. ANN with fully connected layers, as

a deep learning model, can also predict future minimum temperatures [213, 217, 218]. Models

in [213, 217] and [218], predict minimum temperature in the next 12–24 hours as a numerical

value. These three works all implement prediction models with air temperature, relative humidity,

precipitation, wind direction and speed. However, [213] also includes daytime length, daytime

maximum and minimum temperature to support night temperature predictions with a daytime

baseline. In [217], precipitation, cloud cover, moisture, and pressure are included as model inputs.

The authors also considered humidity and wind velocity at 19:00. The authors of [218] predicted

next day minimum temperature with fewer input parameters, but introduced radiation to build their

prediction ANN.

The above machine learning and deep learning models all predict frost conditions in the next

12 - 24 hours [207, 213, 216–219]. Therefore, in extreme conditions, protection equipment might

need to be switched on for 12 - 24 hours to ensure zero frost damage when solely considering

model predictions. However, by constant manual observations, the operational time of protection

equipment could be reduced [34]. Hence, to reduce the operational time automatically, the major

aim of this chapter is to implement minute-wise next hour minimum temperature prediction for

frost prediction. Also, as mentioned in the above paragraphs, the potential of RNN-based models

(RNN, LSTM, GRU) are explored to solve this prediction problem. The performance of different

76



3.2. METHODOLOGY

RNN-based models is also compared with each other in this chapter. In conclusion, the major

contributions of this chapter are presented as follows.

1. Application of an RNN-based frost prediction method.

2. Increasing the prediction frequency from once per 12–24 hours for the next day or night

events to minute-wise predictions for the next hour events.

3. Comparing the errors of different RNN-based models for frost prediction.

4. Test the processing time required for training and inference for RNN models with different

settings.

The rest of this chapter is arranged as follows. Section 3.2 describes the methodology and ex-

periment settings with the study area, data processing procedures, and experiments. Experiments

include comparing temperature prediction models (ANN, RNN, LSTM, GRU), analyzing different

RNN model settings, and the performance of predicting minimum temperature with other frost-

related parameters. Then, the experimental results are discussed in Section 3.3 and lead towards

limitations with open challenges. In the end, Section 3.4 summarizes the whole chapter.

3.2 Methodology

This section explains the methodology and settings of the experiments. The study area is firstly

explained, followed by the data preprocessing procedures. Then, model construction and testing

leveraging the preprocessed data are described. Finally, the experiment processes are summarized.

3.2.1 Study Area

The study area is located in New South Wales (NSW) and Australian Capital Territory (ACT) of

Australia. In the study area, datasets from 30 different weather stations are obtained. Figure 3.1

is a map of the study area with the weather station locations and IDs. Also, a list of location

coordinates of the weather stations are presented by Tables in Appendix A [261]. All these raw

datasets used in this chapter can be acquired from the public weather station directory service

hosted by the Bureau of Meteorology (BOM) of Australia [261].

This study is focused on the months June, July, and August of winter [262, 263]. Minute-wise

climate data of these winter months in years 2016 and 2017 are extracted from the 30 weather

stations in the study area. After extracting these data, they are further processed to be prepared for

model construction and testing. These procedures are discussed in the next subsection.
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Figure 3.1: Weather Stations with ID
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3.2.2 Data Preprocessing

The raw data needs to be preprocessed before model construction. After extracting the required

columns (Timestamp, Air Temperature, Dew Point, Relative Humidity, Wind Speed, Wind Direc-

tion) from the raw datasets, seven more steps of data preprocessing are performed. These seven

steps belong to two phases. In phase 1, the raw data is processed to transform useful features and

handle empty values. The outputs of phase 1 are saved for reuse in the next phase. In phase 2, the

outputs from phase 1 are inputted and modified to fit a specific target model and model setting. As

an example, Figure 3.2 outlines the changes of data structure during data preprocessing, using an

RNN with a sequence length of 20 as an example. The red figures indicate a change to that data

in that step.

Phase 1 consists of five steps and starts with transforming wind speed and direction into fea-

tures of “N-wind” and “E-wind”. These two new features represent wind speeds toward the north

(N-wind) and east (E-wind) directions. This transformation is done to prevent the possible errors

generated by the wind direction values (0 - 359) [264]. The original wind direction data from

BOM is the bearing of the direction the wind is originated [265]. Therefore, to begin the conver-

sion, the original wind direction (met) is changed to the wind blowing direction (deg) by reversing

the direction (Equation 3.1).

deg =

met+ 180◦, if met < 180◦

met− 180◦, if met ≥ 180◦
(3.1)

Then, with the wind speed (v) and the wind blowing direction (deg), magnitudes of wind

vector toward north (vN ) and east (vE) are obtained through Equation 3.2 [264].

vE , vN = v × sin(deg), v × cos(deg) (3.2)

In the second step of data preprocessing, the minimum temperature is constructed as the pre-

diction target. The minimum temperature is simply constructed by getting the minimum tempera-

ture value in the next 60 minutes. As the recording of data is done once per minute, the minimum

temperature of the current data entry is the minimum value of the next 60 temperature values.

To fit the data structure for RNN, LSTM, and GRU models, sequences of data are created

in step 3. A sequence contains all the features (Air Temperature, Dew Point, Relative Humidity,

Wind Speed, Wind Direction). For every data entry, the current sequence is defined as sequence t,

the sequence from one minute before is added to the current entry and defined as sequence t− 1.

Similarly, the sequence from two minutes before is added and defined as sequence t−2. Since the

maximum sequence length of the experiments is 120, sequences from previous entries are added to

the current entry from one minute before until 119 minutes before. Therefore, each entry includes

120 sequences from sequence t− 119 to sequence t.

The timestamp column is a tool to help extract the data from the desired time period. Now,
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Figure 3.2: Data Preprocessing Steps.
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as all of the features and sequences are generated, the timestamp column can be removed in step

4. Then, in the final step of phase 1, the listwise deletion data imputation technique is applied to

eliminate data entries with empty features [266]. This also includes the removal of data sequences

with missing features to preserve the time differences between observations. The final product of

phase 1 is output to hard disk to be used in phase 2. For every weather station dataset, the steps in

phase 1 are conducted for data in years 2016 and 2017.

In phase 2 of data preprocessing, the results from phase 1 are transformed to the required form

for different models with different settings. After reading an output from phase 1, step 6 of data

preprocessing removes excess data sequences. For ANN models, only one sequence is required.

Therefore, sequences t − 119 to t − 2 should be removed. For RNN, LSTM, and GRU models,

sequences are removed according to the sequence length of the target model. For example, with

a desired sequence length of 20, sequences t − 119 to t − 20 are removed, leaving only 20 data

sequences (Figure 3.2).

Step 7 of data preprocessing is only executed to prepare the data for RNNs and their variants.

Every entry in the dataset is converted to a 2D structure. Each row of this 2D structure represents

a sequence of a specific time. The rows are structured top to bottom from an earlier time to a more

recent time. At this stage, the data can proceed to model construction.

3.2.3 Model Construction and Testing

In this subsection, information of model construction and testing is provided. The computation

environment is firstly described, followed by the usage of datasets. Next, the model structures and

hyperparameters are clarified. Finally, the two stages of model construction are revealed.

All models in this chapter are constructed on a desktop computer using an Intel i7-8700K 3.70

GHz processor, equipped with 32GB RAM. The graphics processing unit is a Nvidia RTX 2080

graphics card. The deep learning framework for model construction and testing is TensorFlow

2.3.0.

The data preprocessing processes generate two datasets from 2016 and 2017 for every weather

station. In the experiment scene, models should be built in the current year and deployed in the

next year. The year 2016 has been set as the “current” year and 2017 is the “next” year. Therefore,

datasets from 2016 are used for model construction and datasets from 2017 are used for final

testing.

It is assumed that during the process of model construction only the “current” year data is

available. The datasets from year 2016 are split for model training, validation, and testing. For ev-

ery dataset from different weather stations, 80% of the data are randomly allocated to the training

dataset and the other 20% to the testing dataset. From the training dataset, a further split of 20% of

the data forms the validation dataset. The training dataset, which contains most of the data, is used

to fit the parameters of the models. During the training process, the validation dataset helps to

tune the hyperparameters. After all training, hyperparameter tuning, and validation are completed,
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test predictions are conducted by the model with the testing dataset. This provides an error metric

of the model. However, as the model should be deployed in the “next” year, datasets from 2017

are used as extra and final testing datasets. In the experiments, the errors generated from the 2017

testing datasets are also compared with each other.

The model structure for all models is defined as a three-layer model. The first layer has five

neurons. The second has seven and the output layer has one neuron. The first two layers change

according to the target model. For example, if it is an ANN model, the cells in these two layers

are ANN cells with Rectified Linear Unit (ReLU) activation functions. For RNN and its variants,

the cells use the tanh activation functions with relevant cells to the models. Also, for the first layer

of RNN, LSTM, and GRU models, the hidden state of the cells is output as sequential inputs of

the second layer. The third layer only consists of a single linear cell to output the result.

Adam is the optimizer used during training. Learning rate, β1, β2, and ϵ, are the hyperparame-

ters required for Adam [267]. In the experiments, learning rate is set to the “good default settings”

as 0.001, β1 as 0.9, β2 as 0.999, and ϵ as 10−7. Another hyperparameter, batch size is configured

to 64. With these settings, all models are trained for 100 epochs with a Mean-Square Error (MSE)

loss function.

Models are constructed in two groups. The groups are separated by different model structures

and settings. In the first group, one ANN model is constructed for each of the 30 weather stations.

In the second group, RNN, LSTM, and GRU models with different sequence lengths are trained

for all 30 weather stations. There are 6 different sequence length settings (20, 40, 60, 80, 100,

120). Altogether, the second group outputs 540 models. Overall, there are 570 models constructed

for this article. The usage of these models in experiments is explained in the next subsection.

3.2.4 Experiments

There are three experiments conducted to test the model error and performance of models. In these

experiments, model error is measured in MSE. MSE is computed with
∑D

i=1(yi− ŷi)
2, where D is

the number of cases in a sample, yi is the observed result, and ŷi is the predicted result. In the first

experiment, the errors of different model types (ANN, RNN, LSTM, GRU) are compared with

each other. ANN models from the first model group are the baseline of this experiment. For each

weather station, there are eight conducted tests to measure the losses from the current year and

next year data for the four model types. RNN models and their variants are tested with a sequence

length of 120. As the result, the first experiment attempts to obtain an RNN-based model type

with the lowest loss in the current year and next year settings. Then, in the second experiment,

the effects of the sequence length of RNN, LSTM, and GRU models are revealed. Additional to

the results obtained in the first experiment, 30 more tests are conducted for each weather station

to obtain the results of the three RNN-based model types with five sequence number settings, and

tested with the current year and next year testing datasets. Model errors of all RNN-based model

types are compared with different sequence length settings against the ANN baseline. Similarly,

in the final experiment, the training time and inference time of different sequence length settings
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are compared against the ANN baseline.

3.3 Results and Discussions

To evaluate the performance of different model settings for next hour frost prediction models, the

experiments defined in the above section are conducted. The first experiment compared the MSE

between ANN and RNN-based model types to determine the RNN-based model type with the

lowest loss. Then, in the second experiment, MSEs of RNN-based models with different sequence

lengths are assessed to reveal the effect of sequence length on model losses. Finally, processing

time related factors are also analyzed with different sequence lengths. This provides an overview

of different models’ real-time computation abilities.

3.3.1 Model Error

In this experiment, the model errors of RNN-based models with a sequence length of 120 are

evaluated with ANN models. Figure 3.3 shows that when testing with testing datasets derived

from the same year when the training datasets is collected, LSTM seems to perform with the best

accuracy with the lowest MSE loss. LSTM is also the only RNN-based model type to exceed the

accuracy of ANN models. This result is also confirmed with one-sided paired T-tests. From Table

3.1, LSTM is the only model type that the p-value is smaller than the 0.05 α value. This means the

null hypothesis is rejected and ANN is likely to produce outputs with a greater loss than LSTM.

LSTM models have the highest accuracy among other RNN-based models due to the extra gates

to memorize sequence patterns [256].

An assumption made for the models of this chapter is that the models are constructed using

data from “this” year and deployed in the “next” year. Therefore, models are also tested with

testing datasets obtained one year after the training datasets. The results are significantly different

compared to the results from the “current” year testing datasets (Figure 3.3). ANN shows the

lowest MSE loss, which indicates the highest accuracy. On the other hand, LSTM models have

the lowest accuracy. Table 3.2 demonstrates that LSTM and GRU models have p-values for one-

sided paired T-tests less than the α threshold. Therefore, it is likely that LSTM and GRU models

all have a significantly higher loss (less accurate) than ANN models.

As all models are trained with the current year data, LSTM models with more parameters

and gates [268] fit closer to the current year testing datasets. On the other hand, RNN-based

models are constructed through learning the sequence patterns [112, 256]. Thus, these models

are sensitive to the change of sequence patterns. In [29, 30], the global climate change induces

an increase of instability in weather patterns over time. As a result, the accuracy of RNN-based

models deteriorates when tested with the next year testing datasets. Compared to the baseline,

LSTM and GRU models with more parameters [268] tend to “overfit” more to the current year

pattern and are vulnerable to the changed next year pattern. However, the exact extent of accuracy

reduction is unknown as the change of climate patterns in the future is also unknown.
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Figure 3.3: Average MSE Tested with Current and Next Year Datasets

Table 3.1: P-values of Comparing Average MSEs for Current Year Datasets

RNN LSTM GRU

ANN 0.1544 6.1225e-12 0.2644

Table 3.2: P-values of Comparing Average MSEs for Next Year Datasets

RNN LSTM GRU

ANN 0.1350 0.0432 0.0027

84



3.3. RESULTS AND DISCUSSIONS

3.3.2 Effect of Sequence Length on Model Error

In this experiment, the effect of sequence length on model error for RNN-based models is in-

spected. Figure 3.4 shows the average MSEs of RNN-based models tested by current year datasets.

Overall, the increase of sequence length does not reduce the average loss. Only LSTM shows a

decreasing trend of losses with the increase of sequence length. However, this change is not very

significant. When compared to ANN, LSTM and GRU with some settings (sequence length=20,

40, 80, 100) seem to have a smaller loss than ANN (0.4550). This is confirmed by the one-sided

paired T-tests results on Table 3.3. Only p-values of LSTM, and GRU models with the sequence

lengths of 20, 40, 80, and 100 are smaller than the α. This reveals that when testing with the

current year datasets. This demonstrates the higher likelihood that LSTM and GRU (sequence

length=20, 40, 80, 100) models are more accurate than ANN models when tested with current

year testing datasets.

Figure 3.4: Average MSE Tested with Current Year Datasets for Different Sequence Lengths

Figure 3.5 is the average MSEs for RNN-based models with different sequence lengths tested

by the next year testing datasets. Similar to the reverse of results in Experiment 1, all RNN-based

models have a higher loss than the ANN MSE (0.7813 oC2). Table 3.4 is the p-values obtained

from one-sided paired T-tests with an alternative hypothesis that each tested model has a greater

MSE than the ANN baseline. The alternative hypothesis is in favor of LSTM and GRU models

as their p-values are less than α. This means LSTM and GRU models are likely to perform with

higher errors than ANN models in the next year. Also, as explained in Experiment 1, the change

of climate patterns in the future is unknown. This could be the reason of the additional noise in
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Table 3.3: P-values of Comparing Average MSEs between ANN and RNN-based Models with
Different Model Sequence Lengths (Current Year)

Sequence
Length

Model Type
RNN LSTM GRU

20 0.1603 3.4979e-10 0.0032

40 0.1617 6.9911e-11 1.3249e-5

60 0.1628 1.0544e-10 0.1591

80 0.1581 3.0000e-11 4.2542e-7

100 0.1576 2.1009e-11 4.2930e-7

120 0.1544 6.1225e-12 0.2644

Figure 3.5, compared to Figure 3.4.

Figure 3.5: Average MSE Tested with Next Year Datasets for Different Sequence Lengths

3.3.3 Effect of Sequence Length on Processing Time

In the final experiment, the training time per epoch and inference time per input are tested and

compared between ANN models and RNN-based models with different sequence lengths. Figure

3.6 demonstrates that the training time per epoch for RNN, LSTM, and GRU models increases as

the sequence length increases. This is due to the additional parameters for training as the sequence
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Table 3.4: P-values of Comparing Average MSEs between ANN and RNN-based Models with
Different Model Sequence Lengths (Next Year)

Sequence
Length

Model Type
RNN LSTM GRU

20 0.1466 0.0013 0.0109

40 0.1463 0.0040 0.0249

60 0.1538 0.0028 0.0156

80 0.1457 0.0072 0.0089

100 0.1497 0.0048 0.0294

120 0.1350 0.0433 0.0028

length increases. LSTM and GRU models have overlapping curves of training times. RNN training

times are greater than the prior two models. This is because, in TensorFlow 2.3.0, only LSTM and

GRU model training processes are optimized by cuDNN for faster training speeds [269, 270].

However, whether optimized or not, compared to the ANN training time of 1.070 seconds, as the

p-values are smaller than the 0.05 α, Table 3.5 indicates that the training time of ANN models per

epoch is more likely to be smaller than all settings of RNN-based models.

Figure 3.6: Average Training Time per Epoch for Different Sequence Lengths

Figure 3.7 demonstrates the average inference time per input for RNN-based models with

different sequence lengths. There is a trend of increase in inference time, along with the increase
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Table 3.5: P-values of Comparing Average Training Time per Epoch between ANN and RNN-
based Models with Different Model Sequence Lengths

Sequence
Length

Model Type
RNN LSTM GRU

20 0 0 0

40 0 0 0

60 0 0 0

80 0 0 0

100 0 0 0

120 0 0 0

of sequence length. Similar to training time, a higher sequence length of RNN-based models

implies a larger input sequence and a model structure with more parameters. Thus, the inference

time increases with the sequence length. Also, the inference time for all RNN-based settings is

significantly larger than ANN inference time (4.5214e-4 seconds). This statement is supported

with the one-sided paired T-test results as all p-values are less than the α (Table 3.6).

Figure 3.7: Average Inference Time per Input for Different Sequence Lengths
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Table 3.6: P-values of Comparing Average Inference Time per Input between ANN and RNN-
based Models with Different Model Sequence Lengths

Sequence
Length

Model Type
RNN LSTM GRU

20 0 1.0941e-17 0

40 0 0 0

60 0 0 0

80 0 0 0

100 0 0 0

120 0 0 0

3.3.4 Limitations and Open Challenges

Experiment 1 shows that RNN-based models have lower model errors than ANN models when

tested with current year datasets. LSTM models have the lowest errors and highest accuracy.

However, RNN-based models’ accuracy declines and is exceeded by ANN when tested with next

year datasets. This decline is likely to be caused by climate pattern change over time [29, 30,

112, 256]. Also, the models in this chapter are constructed with one year of data. From [271],

RNN models often require data from more years to fully learn the seasonality patterns. However,

this would increase the dependency on historical data, which is a limitation mentioned in the next

subsection. With both sources of accuracy deterioration, RNN-based models are only suitable

for a model deployed in the short term. In Experiment 2, RNN-based models do not present

a significant reduction in model error as the sequence length increases. Therefore, considering

the results from Experiment 3, RNN-based models with a short sequence can be deployed for

short times to provide predictions with higher accuracy and performance. On the other hand,

ANN models can be deployed over longer time spans without much accuracy deterioration. Both

training and inference time is significantly lower than RNN-based models. Overall, ANNs might

still be more suitable than RNN-based models for frost prediction in a long-term scenario with

minimal system maintenance and update because of their higher accuracy and performance over

the long term. After constructing the above different frost prediction models and analyzing their

performance, the limitations presented in this subsection are discovered. Limitations create new

challenges and lead towards future directions to frost prediction research.

3.3.4.1 Model accuracy requirements are not specified

Different plants have different frost tolerance and sensitivity [260]. Therefore, model accuracy

requirements may vary between different plants. There are many studies on plant frost tolerance.

However, the sensitivity of plants to individual frost factors is not fully revealed [272]. As a

future direction, the sensitivity to different frost factors such as temperature, humidity, dew point,
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cloud coverage, solar radiation and wind speed should be tested with high precision for individual

species of plants in controlled environments. With enough plant species studied, a model accuracy

threshold can be set for frost prediction models.

3.3.4.2 Lack of standard datasets

The models and experiment results are obtained from a public dataset that represents local

climate conditions of our study sites in Australia. Therefore, the accuracy of the models at other

sites with different climate patterns is questionable. To the best of our knowledge, prior research

has been based upon locally obtained private datasets [207, 213, 216–219]. As a result, model

results could be biased. There is a need of a standard dataset for frost prediction models that

includes data entries from different locations.

3.3.4.3 The RNN input data format affects the system energy efficiency

The RNN-based models in this chapter require a sequence of climate data as model inputs.

Each sequence of data contains sensor readings collected every minute over a long time span. This

places a restriction on node duty cycles. Sensor readings must be collected per minute to satisfy

the model input. For common agricultural IoT systems, sensor readings are transmitted through

the radio from a node to a central processing node for further processing and data analytics [273].

In [274], radio power consumption increases as the time interval of radio transmission reports

decreases. Even radio transmissions between 10-minute periods consume a significant amount of

the system energy [274]. Therefore, if sensor readings are reported every minute, higher energy

consumption will be placed on the whole system. This issue could be mitigated by aggregating a

few minute-wise sensor readings into one radio transmission. Also, inference on edge with edge

computing can also reduce the number of radio transmissions. A model can be deployed on edge

devices and only transmit the predicted outcome when it triggers a preset condition. However,

even there are mitigation plans, RNN-based models still limit the design of IoT systems with

potential high energy impact. On the other hand, each ANN model inference only requires a

single set of climate data as input. ANN-based frost prediction models can be applied to systems

with different time intervals to obtain sensor data. Radio transmission intervals can be adjusted

according to system requirements. Therefore, ANN models may still be more suitable for frost

prediction systems.

3.3.4.4 Models depend on previous year data

All models constructed for this chapter depend on previous years of data. Therefore, model

accuracy is dependent on the quality of historical data. This is a limitation on all machine learning

models [94]. As more recent researches are site-specific, sites without any record of historical

climate data require an IoT data collection system to be deployed for data collection. To ensure

similar performance to the results of this chapter, the system must be deployed at least a year
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prior to produce a prediction model and provide frost prediction services. This increases the

deployment time of the system. A possible solution is to explore the performance of models based

on previous months of data. This solution could substantially reduce development time. However,

it cannot eliminate this excess system development time for data collection. Methods eliminating

the requirement of on-site historical data need to be developed. Another possible direction is to

explore the generalization or transfer of models to similar locations.

3.3.4.5 Lack of stopping conditions

The frost prediction models constructed in this chapter only predict the start of a frost event

with real-time sensor readings. This prediction could be the trigger of a frost protection mecha-

nism. However, there are limited mentions of predicting the end of a frost event to switch off any

protection mechanisms. As most frost protection systems rely only on a single sensor node [34],

activation of a nearby protection mechanism might affect the sensor readings and contaminate

the prediction outcomes of frost prediction models. Therefore, future prediction models could

be developed to eliminate the effect of frost protection mechanisms. As a possible benefit, frost

protection mechanisms could be switched off earlier to reduce the operational cost.

3.4 Summary

As a response to Research Question 4, the primary aim of this chapter is to increase the prediction

frequency from once per 12–24 hours for the next day or night events to minute-wise predictions

for the next hour events. RNN-based models are selected to learn the sequence pattern of historical

data. ANN models are used as a baseline. Datasets from weather stations in the NSW and ACT

areas of Australia are obtained. These datasets are recorded during the years 2016 and 2017. With

these datasets, it is assumed that our models are built during the year 2016 (current year) and de-

ployed in year 2017 (next year). Therefore, datasets from 2016 are used for model construction and

preliminary testing. Datasets from 2017 are used for final testing. After constructing the models,

there are three experiments testing the model errors, also the effect of sequence lengths on errors

and processing time for RNN-based models. The errors of models is tested with both the current

and next year datasets. LSTM seems to have the highest accuracy when tested with the current

year testing datasets. However, the accuracy for all RNN-based models reduces when tested with

the next year testing datasets. ANN models have the highest accuracy with the next year testing

datasets. When testing RNN-based models with different sequence lengths, it seems that sequence

lengths can not affect the accuracy of models significantly. However, training and inference time

increases with the sequence length. Therefore, RNN-based models should be used for short-term

deployments with a shorter sequence length to ensure accuracy and performance. On the other

hand, ANN models demonstrate the lowest error when tested with next year datasets. Also, the

training and inference speeds of ANN models are faster than RNN-based models. Therefore, in

the long term, ANN models are more suitable than RNN-based models due to better accuracy and
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performance.

There are limitations determined. Firstly, the model accuracy requirements are not specified

in this chapter due to the lack of studies on precise frost sensitivities to individual frost factors.

Secondly, the current model and most previous models are constructed with local data. The lack of

standard datasets limits unbiased comparisons between different models. Thirdly, the RNN input

data format affects the system energy efficiency. The limitations on energy efficiency could be

avoided by the application of edge computing or message aggregation. On the other hand, ANN

models do not have such limitations. The next limitation is related to the construction of models.

All of these models depend on previous year data. For sites without data records, this limitation

induces extra development and deployment time. Therefore, models that decouple from histori-

cal data could be developed to eliminate this restriction completely. The final limitation is that

prediction models lack stopping conditions. As most systems read climate data from one sensor

node, the activation of protection gear could contaminate the input data. Thus, it contaminates

the prediction outcomes. The last two limitations are addressed in the next chapters of this thesis.

The limitation of historical data dependence has also been mentioned in Chapter 2. This limitation

is handled in the next Chapter (Chapter 4) along with the issue of low fault tolerance (Research
Question 5). Combining the results of this chapter and Chapter 4, a model is developed to re-

move the effect of data contamination and provide a model-based automatic stopping mechanism

to reduce operational costs of frost protection systems.
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4
Intelligent Spatial Interpolation-based Frost

Prediction Methodology using Artificial Neural
Networks with Limited Local Data

4.1 Introduction

From the studies of Chapters 2 [34] and 3 [257], recent frost prediction models require historical

data from a specific site to predict future frost events. However, this requirement of on-site his-

torical data poses a restriction for model construction in new sites without historical data. Long

periods of time are needed for data collection at these new sites to construct and deploy the ma-

chine learning models. After the models are constructed, local sensor motes are needed to feed

live data to the prediction models. This is another restriction of recent methods. To overcome

these restrictions, this chapter proposes a frost prediction method based on spatial interpolation

techniques, aiming to predict frost for a site without any on-site historical data or sensors. This

chapter also forms part of the response to Research Question 5 and loosens the frost prediction

data dependency from the local data source as the only option to different external data sources as

multiple candidates. Spatial interpolation is leveraged to support the proposed system.

Spatial interpolation includes methods that generate or predict spatially continuous data from

a few regional sample points [275]. The authors of [276] compared different spatial interpolation

methods for monthly air temperatures at Mt. Kilimanjaro, Tanzania. They found that model

averaging neural networks and ANNs are ranked fourth and fifth in accuracy, respectively. ANNs

are also the most accurate model type within recent frost prediction techniques. Therefore, in this
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chapter, the proposed method uses ANN as the base model and baseline.

The proposed method is an ensemble learning method that utilizes the existing historical data

from 75 weather stations across NSW and ACT in Australia. Several weak predictors are trained.

Each weak predictor is created using the climate features from one specific station to predict the

next hour minimum temperatures of other weather stations. Location features from both stations

are also included. The location features include geographical location, elevation from the Digi-

tal Elevation Model (DEM), and Normalized Difference Vegetation Index (NDVI), indicating the

amount of green vegetation [277]. These location features are also used to aggregate the results

of the weak predictors. Unlike the climate features, the location features are near perpetual (ge-

ographical location, DEM) or change infrequently (NDVI). The correlation between NDVI and

temperature is discovered in different works. Strong positive correlations are revealed between

NDVI and minimum temperature [278, 279]. Therefore, NDVI is used as a hint for the minimum

temperature. The purpose of adopting multiple weak predictors is to provide fault tolerance to ex-

ternal data sources. If a data source is unavailable or malfunctioning, the system can still operate

with the other available data sources or weak predictors.

4.1.1 Related Work

Recent frost prediction methods can be divided into “classification methods” and “regression

methods” [34]. The classification methods predict the probability of frost occurrence in the fu-

ture. The regression methods predict the future minimum temperature. As different crops have

different resistance to frost [260], this chapter focuses on regression methods of frost prediction.

Along with the regression methods, different triggering temperatures for frost can be applied as a

general solution for different types of crops and plants.

The majority of recent frost prediction regression methods [207, 213, 216–219] predict the

minimum temperature of the next 12–24 hours. The prediction models include, linear regression

[216, 219], random forest [207], and ANNs [213, 217, 218]. The ANNs have the highest accuracy

among the other model types [34].

All these methods [207,213,216–219] depend on local/on-site historical climate data for model

training, validation, testing and future operations. This first generates extra development and de-

ployment time to collect local climate datasets. Then, a live sensor system is required to transmit

data to the prediction models. The proposed method in this chapter aims to remove the model

dependency of on-site data and sensors. Models can be built from existing historical data from

other weather stations, previously surveyed DEM, and NDVI data from satellites. During oper-

ation time, the model input sources are also climate data from other weather stations, previously

surveyed DEM, and NDVI data from satellites. The proposed method does not require on-site data

or sensors. The major contributions of this chapter are:

1. Proposing a spatial interpolation-based frost prediction method.

2. Eliminating the on-site data/sensor requirement for frost regression prediction methods.
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3. Exploring the performance of an off-site frost prediction method.

The rest of the chapter is organized as follows. Section 4.2 presents the methodology. This in-

cludes the descriptions of data sources, data preprocessing methods, model types, and experiment

settings. The experiments compare the performance of the proposed method with the baseline

method derived from on-site climate datasets. Then, Section 4.3 shows the experiment results

along with the discussions on limitations. Finally, the chapter is summarized in Section 4.4.

4.2 Methodology

In this section, the data processing and experiment procedures are presented. To start all experi-

ments, multiple datasets are obtained from different data sources. These datasets and their sources

are described. Then, the data preprocessing steps are demonstrated, followed by the model struc-

ture of the prediction models. Finally, this section explains the experiment settings.

4.2.1 Data Sources

The data sources can be grouped into four categories. These categories are climate data, DEM

data, NDVI data and state boundary data. The climate datasets are obtained from 75 different

weather stations across NSW and ACT. The raw datasets can be obtained from the Australian

BOM website [261]. In the climate data category, there are two groups of datasets. The first group

consists of datasets from the year 2017. These datasets are used for model training, validation,

and preliminary testing. The second group is datasets from June, July, and August (winter [280])

of 2018. These datasets are used to test the model performance in the winter one year after the

models are constructed.

The second data source category includes a DEM dataset of the study area. The DEM dataset

contains 1 second (about 30 m) resolution elevation data of Australia. The NSW and ACT portion

of the DEM dataset is extracted to be used as features during model construction, validation, and

testing. The raw DEM dataset is hosted by Geoscience Australia [281].

The raw NDVI datasets are collected from the Land Processes Distributed Active Archive

Center of NASA [282]. The data resolution is 250 m. Similar to the climate datasets, NDVI

datasets are from the year 2017 and the winter months of 2018. The datasets from 2017 are also

used for model training, validation, and preliminary testing. The NDVI datasets from 2018 act as

features during the final testing phase to evaluate the model performance in the winter one year

after model construction.

Boundary datasets form the final data category in this chapter. There are two separate data files

that contain boundary information of NSW and ACT. The area coverage is defined by coordinates

of multiple polygon vertices. The boundary datasets are not directly involved in the process of

model training, validation, or testing. However, the boundary datasets are required when extracting
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the NSW and ACT portion of the DEM and NDVI datasets. The boundary datasets of NSW and

ACT can be obtained from [283] and [284], respectively.

4.2.2 Data Preprocessing

Data preprocessing procedures are described according to the data categories defined in the above

subsection. Climate data preprocessing is explained first, followed by DEM data preprocessing

and NDVI data preprocessing. The boundary data is used during the preprocessing of DEM and

NDVI datasets. However, as boundary data is not included in the processes of model training,

validation, and testing, the usage of boundary data is only presented with other data categories.

After the preprocessing of the four data categories, the datasets are merged to be fit as training

data of prediction models. This merging process is also explained.

Each climate data file stores climate data from a different weather station. The temperature,

dew point, relative humidity, wind speed, and wind direction fields are extracted from each of

these stations. Wind speed and direction are converted to N-wind and E-wind, as the north and

east components of the wind. This conversion is done by reversing the wind direction (met) to

the wind blowing direction (deg) (Equation 3.1) [264]. Then, calculating the magnitude of the

eastward (vE) and northward (vN ) wind components with the wind speed (v) and wind blowing

direction (deg) (Equation 3.2). After computing the wind components, the next hour minimum

temperature is calculated as the training targets of the models. For each time step at each weather

station, the target is obtained from the minimum temperature of the next 60 time steps.

Since the spatial interpolation models are built with five-fold validation, the weather stations

are randomly divided into five folds. For each model fold, one different fold of the weather stations

(15 stations) is used as testing data sources and the rest of the weather stations are used as training

data sources. Figure 4.1 summarizes the above steps of five-fold validation and Figure 4.2 shows

the distribution of weather station folds. Detailed coordinates of the fold stations are recorded in

Appendix A.

The DEM dataset is resampled to a grid with a cell size of 0.01◦ × 0.01◦ (approximately 1.11

km × 1.11 km). Then, the NSW and ACT parts of the map are extracted according to the boundary

datasets. The DEM readings of Figure 4.2 is the result of DEM preprocessing. The NDVI datasets

are preprocessed with the same procedures as the DEM dataset. These datasets are also resampled

to a 0.01◦ × 0.01◦ grid. Then, data is extracted within NSW and ACT boundaries.

Table 4.1 shows five feature groups. The training data required by all models in this chapter

can be represented by assembling some of the five feature groups. There are two data input formats

that correspond to the two model types. The first model type is the baseline model. The baseline

model represents the previous models relying on local sensors and data. It is used as a benchmark

to reveal any gaps between the previous method and the proposed method (off-site prediction).

Therefore, the source station climate features are required as the input features of the baseline

models, and the next hour minimum temperature of the source station is used as the model target

or predictand.
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Figure 4.1: Training and Testing with Five-fold Validation.
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Figure 4.2: Distribution of Station Folds on NSW and ACT DEM Map.

The second model type provides off-site frost predictions. For each model prediction, the

models utilize climate data from a source station and predict the next hour minimum temperatures

for a target station in another locations. The source station attributes and target station attributes

are acquired as the features to compute the differences between stations (Location, DEM, NDVI).

Also, the source station climate features are input as climate references. Finally, the spatial model

predictand is the minimum temperature values from the target station.

Table 4.1: Features and Predictands of Preprocessed Datasets

Feature Groups Features

Source Station At-
tributes

Longitude, Latitude, DEM, NDVI

Target Station At-
tributes

Longitude, Latitude, DEM, NDVI

Source Station Climate
Features

Temperature, Dew Point, Relative Humidity, N-wind, E-
wind

Baseline Predictand Source Station Minimum Temperature

Spatial Model Predic-
tand

Target Station Minimum Temperature
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4.2.3 Model Types

This chapter involves two major model types. They are the baseline models (benchmark) and

spatial interpolation-based models (proposed). Baseline models are ANN models that harness

data from sensors at a particular site and predict frost on the site. Every model is designed to

predict frost for one different location. These models represent recent frost prediction models that

are built from on-site historical climate datasets.

Spatial interpolation-based models are also ANN models. Unlike the baseline models, the

spatial interpolation-based models do not need on-site sensor data from the target location. These

models use off-site climate data from weather stations of other locations to predict any frost of the

target location. In this chapter, there are multiple spatial interpolation-based models. Each model

in each station fold is constructed based on the climate data of a different source station, and the

target stations of that model are the testing stations of the fold. To increase the accuracy of pre-

dictions, the results within a fold are aggregated. Two results aggregation methods are tested. The

first method is averaging all results within each fold. The second method is to compute a weighted

average based on the difference between each source station and the target location/station. This

difference is calculated by geographical coordinates, DEM, and NDVI.

4.2.3.1 Weighted Average Layer

The weighted average layer is applied after obtaining the results of multiple spatial interpolation-

based models in a particular fold. A weight is calculated for every station with an available predic-

tion result. An intermediate weight for the ith source station (Wi) is first calculated by Equation

4.1. gi, di, and ni are normalized geographical distance, DEM difference, and NDVI difference

between the source station and the target location. The geographical distance is computed as the

two-dimensional Euclidean distance d2 (Equation 4.2). x1, y1 and x2, y2 are the longitude, lati-

tude of two locations in Equation 4.2. The DEM difference is computed as the one-dimensional

Euclidean distance d1. In Equation 4.3, v1 and v2 are the DEM of two locations. NDVI difference

is also calculated as the one-dimensional Euclidean distance by replacing v1 and v2 in 4.3 to the

NDVI of two locations. To compute gi, di, and ni, the geological distance, DEM difference, and

NDVI difference are normalized in Equation 4.4, with di as the input distance/difference, dmin is

the minimum distance/difference and dmax as the maximum. a, b, and c provide adjustable im-

portance of the geological distance, DEM difference, and NDVI difference to the station weight.

Currently, the adjustable weights (Table 4.2) are generated by Pearson Correlation [285] between

each of the distance/differences and model errors computed by absolute error. After the interme-

diate weights for all stations are obtained, these intermediate weight for each station is divided by

the sum of the intermediate weights Wsum to obtain the final weight Fi for each station (Equation

4.5).

Wi =
1

agi + bdi + cni
(4.1)
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d2 =

√
(x1 − x2)

2 + (y1 − y2)
2 (4.2)

d1 = |v1 − v2| (4.3)

d̄ =
di − dmin

dmax − dmin
(4.4)

Fi =
Wi

Wsum
(4.5)

Table 4.2: Adjustable Weights for Different Folds

Fold Number Geo Weight (a) DEM Weight (b) NDVI Weight (c)

0 0.1629 0.0132 0.0290

1 0.1768 0.0205 0.0238

2 0.1612 0.0222 0.0177

3 0.1804 0.0114 0.0269

4 0.1601 0.0110 0.0260

4.2.4 Experiments

To compare the results of the off-site prediction models with the baseline, three experiments are

conducted. The aim of the first experiment is to compare the prediction results of different folds

and determine if bias exists due to different station training data. Three sets of raster maps of

NSW and ACT are generated from the datasets acquired in the year 2017. These raster maps are

computed from the spatial interpolation-based models. Each map of the first set is created using

the results from one different weather station. The second set is created by averaging the first map

set per fold. After that, the final map set is generated using the weighted average layer.

The second experiment compares the accuracy between the three model types (baseline, av-

eraging, weighted averaging). The testing datasets are from 2017. The baseline models use parts

of the datasets not involved in the training process (20% of data for each station from 2017). For

spatial interpolation-based models, 15 weather stations per fold act as testing datasets (Appendix

A).

In the final experiment, datasets from the winter months of 2018 are used to compare the spa-

tial interpolation-based models with different numbers of available stations. Model accuracy is

compared against the baseline models. After that, the percentages of captured events below zero

degrees [199] are also evaluated. An event is determined as a time step, where the temperature is
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below zero degrees. An event is captured when the prediction algorithm predicts that the tempera-

ture is below zero degrees at the time step of the event. Finally, the results of the proposed methods

are compared with the results of Inverse Distance Weighting (IDW) and Ordinary Kriging (OK).

IDW and OK are the two most commonly compared spatial interpolation methods [275].

4.3 Results and Discussions

4.3.1 Effect of Different Fold Training Datasets

In this experiment, the differences in the results generated by models trained and tested with

different datasets are revealed. As examples, one test station is randomly chosen from each of the

weather station folds. For each of the stations, four raster maps generated from models trained

with climate data from the station are compared from the other four folds. The fives stations are

stations 63291, 66137, 58212, 72160, and 67119, from folds 0, 1, 2, 3, and 4, respectively.

Figure 4.3: Raster Maps from Models Using Weather Station 63291 as Climate Data Source
Trained with the Datasets from Folds 1–4.
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Figure 4.3 shows the raster maps generated from individual models of station 63291 con-

structed by the training data (excluding the data from testing stations in each test fold) in fold

1–4. From a visual perspective, the raster maps of the four folds are similar in major features.

For example, all maps present heat spots in the northeastern and northwestern regions. Also, all

maps demonstrate the cold spot near the center of the maps. However, the shapes of these features

are different between each fold. Folds 2 and 3 show more details than the other two folds. The

maps seem to be significantly affected by the available training datasets for different folds. The

result of T-tests also supports the hypothesis that raster map results are affected by the different

training datasets in each fold. Paired T-tests are conducted for all possible fold raster map result

pairs. All of the P-values are zero (smaller than 0.05). This rejects the null hypothesis and favors

the alternative hypothesis that the raster maps are different from each other. Raster maps from

stations 66137, 58212, 72160, 67119 draw similar conclusions. The raster maps of these stations

are placed in Appendix B and the P-values are all zero.

Raster maps (Figure 4.4) are also generated for the averaged result of each folds. Compared to

the maps generated from individual models, maps of averaging models per fold are more visually

similar. However, The results of paired T-tests are similar to the individual models. All of the

P-values are zero (smaller than 0.05). This suggests strong evidence against the null hypothesis.

There are significant differences between these averaged maps from different folds. Absolute error

maps are generated to visualize the difference between averaged results of different folds (Figure

4.5). These maps are generated by computing the absolute difference between corresponding

points from two maps of different folds. These differences also exist between weighted averaged

maps.

Figure 4.4: Raster Maps from Averaged Results per Fold.

Finally, raster maps (Figure B.4 in Appendix B) created from weighted averages of models

within each fold present similar properties to the averaged maps. From the absolute error maps

102



4.3. RESULTS AND DISCUSSIONS

Figure 4.5: Absolute Error Map from Averaged Results Between Folds.
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(Figure B.5 in Appendix B), the effect of different training station datasets still persists. The

T-tests also present all-zero results.

4.3.2 Model Accuracy

In the second experiment, model accuracy is compared between individual station models for

different folds, an averaged station result per fold, a weighted average result of station models per

fold, and the baseline (Figure 4.6). The baseline, using on-site sensor data, reaches the highest

accuracy with the lowest RMSE. The ensemble methods of averaging and weighted averaging

outperform the individual station models in the spatial interpolation-based methods. Ensemble by

weighted average reached higher accuracy because higher weights are given to stations that are

much similar to the target locations.

Figure 4.6: RMSE of Individual, Averaged, Weighted Averaged Models Obtained from Year 2017
Testing Datasets.

4.3.3 Effect of the Number of Available Weather Stations

In the final experiment, the ability of fault tolerance of the proposed ensemble methods is tested.

The accuracy and event capture rate of the averaged and weighted averaged methods are tested

with different numbers of available weather stations. This experiment focuses more on the ability

to capture potential events below zero degrees in the future. The mean true positive rate of the
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baseline models is 99.62%. To ensure fairness of the experiment, the testing datasets are from the

year 2018 (a year after the training datasets).

Figure 4.7 shows the accuracy of the proposed ensemble methods with different numbers of

available weather stations 10, 20, 30, 40, 50, and 60. The weighted averaged method outperforms

the averaged method with a lower RMSE. Accuracy for both methods increases as the number of

stations increases.

Figure 4.7: RMSE of Averaged and Weighted Averaged Models with 10–60 Available Stations
Obtained from Year 2018 Testing Datasets.

Contrary to the accuracy, the event capture rate or true positive rate reduces as the number of

stations increases (Figure 4.8). However, the false discovery rate also reduces with the increase of

the number of available stations. This illustrates that the event detection rate is high due to high

false positives. The ensemble of results with more stations reduces error. However, high errors

induce lower temperature predictions, which increase the event capture rate with the number of

false positives. Another experiment with the number of available stations 1–10 is conducted to

inspect the relationship between true positive rate and false discovery rate.

The RMSE (Figure 4.9) of the ensemble methods for 1–10 stations follows previous patterns.

RMSE reduces with the increase of the number of available stations. The true positive rate per-

forms a more extreme pattern. When there is only one available station, the true positive rate could

exceed 90% (92.55% as the highest) (Figure 4.10). However, the false discovery rate also exceeds

90% when there is only one available station. In conclusion, as the accuracy of temperature pre-

diction reduces, the models recognize more events. This increase of event recognition increases

the true positive rate along with the false discovery rate. The number of stations selected from the

ensemble methods should be considering the balance between the event capture rate and number

of false positives.
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Figure 4.8: True Positive Rate and False Discovery Rate of Averaged, Weighted Averaged,
and Weighted Voting Models with 10–60 Available Stations Obtained from Year 2018 Testing
Datasets.

Figure 4.9: RMSE of Averaged and Weighted Averaged Models with 1–10 Available Stations
Obtained from Year 2018 Testing Datasets.
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Figure 4.10: True Positive Rate and False Discovery Rate of Averaged, Weighted Averaged, and
Weighted Voting Models with 1–10 Available Stations Obtained from Year 2018 Testing Datasets.

Generally, the weighted averaged method demonstrates a higher accuracy and event detection

rate compared the averaged method. However, for both methods the true positive rate decreases

as the number of stations increases. This phenomenon is due to the low accuracy of the weak

predictors and the smoothing effect of the averaging methods. The averaging methods are filtering

out the lower extremes of the prediction results. Therefore, a third method or the weighted voting

method is proposed. The weighted voting method collects a weighted vote from each of the weak

predictors and aggregates the votes. The vote positive when the prediction result is smaller than

the triggering temperature zero degrees, else the vote is negative. The weights are computed by

the same algorithm of the weighted averaged models.

Figures 4.8 and 4.10 compared the true positive rate and false discovery rate of the weighted

voting method with the previous two methods. The true positive rates have significantly increased

compared to the previous methods, when utilizing the same number of stations. However, the false

discovery rate also increased. To further increase the true positive rate without the increase of

false discovery rate of the spatial interpolation-based methods, the accuracy of the weak predictor

models should be further improved.

4.3.4 Comparing Proposed Data Aggregation Methods with Traditional Methods

In this subsection, the proposed averaging, weighted averaging, and weighted voting methods

are compared with two traditional kriging methods. At each time step, the prediction results of the

60 source weather stations in a data fold are aggregated by IDW and OK to compute the next hour

minimum temperatures at the 15 testing weather stations. Similar to the previous subsection, the
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number of source stations is variable. The results presented are from Fold 0. From Figure 4.11, the

RMSEs of both IDW and OK are lower than the averaging method, but higher than the weighted

averaging method. The traditional methods demonstrate similar patterns to the proposed methods

in that a higher number of source stations reduces the RMSE.

Similarly, the true positive and false discovery rate trends of IDW and OK are also similar

to the proposed methods (Figure 4.12). The true positive rates of the traditional methods are

decreasing with the increase of source stations. The false discovery rates are decreasing with the

increase of source stations. This shows that the low accuracy of the submodels also impacts the

traditional methods. The true positive rates of the IDW method are only higher than the averaging

method. In exchange, the false discovery rates of IDW are only higher than the averaging method.

The true positive rates of OK are close to the weighted voting method. When there are 10 and 60

source stations, the true positive rates of the weighted voting method outperform OK. In exchange,

the false discovery rates of OK at 10 and 60 stations are lower than the weighted voting method.

In general, most of the proposed methods demonstrated a better ability to capture frost events

than IDW. However, IDW demonstrated a lower false discovery rate. On the other hand, OK

outperformed most of the proposed methods with a higher true positive rate except for the weighted

voting method. However, OK also has a relatively high false discovery rate. Overall, the traditional

methods still have the potential to be used as data aggregation methods for the submodels.

Figure 4.11: RMSE of Averaged, Weighted Averaged, IDW, and OK Models on 2018 Fold 0 Data.
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Figure 4.12: True Positive Rate and False Discovery Rate of Averaged, Weighted Averaged,
Weighted Voting, IDW, and OK Models on 2018 Fold 0 Data.

4.3.5 Limitations and Open Challenges

After testing the proposed method with the baseline, there are a few limitations of the method

detected. These limitations are open challenges that lead toward future development of spatial

interpolation-based frost prediction methods.

4.3.5.1 Further improvement of the accuracy

The errors of the proposed method are higher than the baseline created from on-site datasets. The

highest true positive rate (or event capture rate) achieve from the proposed methods is 92.55%,

which is lower than the average true positive rate (99.62%) of the baseline models. Moreover, this

high rate of the proposed method is only achieved with high numbers of false positives. To increase

capture rate and decouple event capture rate with the number of false positives, the increase of

accuracy is inevitable. With the current accuracy, spatial interpolation-based methods cannot fully

replace previous methods based on on-site historical datasets and sensors.

4.3.5.2 Lacking of ground truth to validate models

As spatial interpolation-based models are constructed with five-fold validation, the testing datasets

are limited [286]. In this chapter, the testing datasets are generated from 15 weather stations for

each fold. Therefore, any accuracy metrics can only represent the accuracy on these 15 weather

stations. In the production environment, predictions are required on other locations. The model

accuracy on other locations is uncertain. In future works, more weather stations could be involved

to reduce this uncertainty.
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4.3.5.3 Models are highly sensitive to the choice of training weather stations

As shown by experiment 1, raster maps produced from models of different folds are significantly

different from each other. The models are affected by choices of training weather stations. From

experiment 2, this choice also affects the accuracy of models. In future model construction with

cross-validation, the accuracy of each fold should be carefully examined. A possible method to

mitigate this issue is the increase in the number of weather stations. As the number of stations

increases, the effect of individual stations reduces.

4.3.5.4 Implementation with other spatial interpolation methods

The focus of this paper is to eliminate the dependency on local sensors and data in frost predic-

tion applications. Therefore, the proposed method is developed from previous machine learning-

based frost prediction methods. However, there are also other factors that are not considered. The

first factor is model design. Each submodel of the proposed method is an end-to-end model that

directly produces the output minimum temperature of a target location. Could this be designed

into a multi-stage pipeline model? For example, spatial interpolation is applied to the environ-

mental parameters of a source station to obtain the parameters at the target location. Then, these

environmental parameters could be fed to a local sensor/data-based prediction model to obtain the

minimum temperature. These parameters could be reused for other applications at the target loca-

tion. Another unconsidered factor is the usage of other existing spatial interpolation methods. In

this paper, the test results of OK demonstrated some potential. There are other kriging methods.

These methods are reviewed in [287]. The authors of [287] also stated other machine learning

models used in spatial interpolation methods. These models are support vector machine, random

forest, and neuro-fuzzy network. Other than these, there are also state-space models based on

Bayesian inference [288, 289].

4.3.5.5 Application of similar methods to other domains

The recent frost prediction methods mentioned in Section 4.1 all predicts the local condition with

local historical climate data-based models. Data availability is an inevitable factor to consider

when constructing these models. Some other domains using local historical data could also be

impacted by data availability. Therefore, these domains could also benefit from the proposed

method in this chapter. Domains such as forest fire forecasting [290] and soil property prediction

[291] that are evolving with spatial methods could be further explored with a varied version of the

proposed method. Other fields such as rain forecasting and atmospheric weather forecasting [292]

could implement the proposed method as an exploration of a fault-tolerance design.
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4.4 Summary

This chapter proposes a spatial interpolation-based frost prediction method. As a precondition to

answer Research Question 5, this method aims to eliminate the dependency on on-site historical

datasets/sensors during model training, validation, testing, and future operations. The proposed

methods are ensemble learning methods based on ANN models. The two ensemble methods are

averaging and weighted averaging of weak predictors. Each weak predictor is constructed using

one weather station as the climate data source. The baseline models are ANN models trained with

on-site historical data. There are three experiments conducted to test the performance of models.

The first experiment compares the raster map outputs of spatial interpolation-based models. Raster

maps are constructed from the individual weak predictors, averaged results of weak predictors,

and weighted averaged results of weak predictors. The results of the T-tests show that the raster

maps for different folds are significantly different from each other. This shows that the models

are significantly affected by the training datasets. Hence, the division of folds is important. The

second experiment shows that the weighted averaged method provides the lowest error among

the spatial interpolation-based methods. After that, the final experiment reveals the effect of the

number of available stations. Accuracy increases as the number of available stations increases.

However, the event capture rate increases with the reduction of station numbers. This increase

is related to the increase in false positives. Apparently, higher errors induce the triggering of

more events, which increases both event capture rate and false positives. The experiments indicate

three limitations of the work. The first limitation is accuracy. Accuracy needs to be increased

to eliminate the relationship between high event capture rates and high false positives. Also,

as a spatial interpolation-based method constructed by five-fold validation, only 15 stations per

fold act as the ground truth to test the models. Finally, the models are highly sensitive to the

choice of training weather stations. This uncovers the importance of fold selection. In conclusion,

as a standalone system, the proposed spatial interpolation-based frost prediction method could

capture frost events. However, this system is still limited by high false positives and the lack of

stability. Therefore, The system is not sufficient to fully answer Research Question 5. It could

be deployed as an alternative system when on-site historical datasets are temporarily unavailable.

In the next Chapter (Chapter 5), a response to Research Question 5 is further explored. The

spatial interpolation-based system is integrated as a fault tolerance mechanism besides a local

sensor-based system.
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5
A Frost Forecasting Framework Featuring Spatial

Prediction-based Stopping Mechanism

5.1 Introduction

The recent frost prediction and protection systems reviewed in Chapter 2 often rely on IoT tech-

nologies with wireless sensors and protection equipment placed on the site [34]. However, as

these systems depend solely on a single sensor mote, fault tolerances of these systems are ques-

tionable [34]. Also, as the sensors are placed together with the protection equipment, activation

of this equipment could interfere with the outputs of local sensors (Chapter 3 [257]). These is-

sues, along with Research Question 5, have been addressed in the previous chapter (Chapter 4).

However, the system proposed in the previous chapter suffers from instability and low accuracy

(the highest detection rate is only 92.55%). Further improvements in the reliability and accuracy

of frost prediction and protection models are required. The frost prediction framework described

in this chapter complements the response to Research Question 5 provided by Chapter 4. The

use case scenario of the framework is assumed to be after the operation of a spatial interpolation-

based system. During the operation of the spatial interpolation-based system, local data could be

collected to update the system into the proposed framework.

This chapter proposes a near real-time frost prediction framework to enhance the reliability of

frost protection systems. This framework combines a relatively high accuracy prediction method

(Chapter 3 [257]) based on local sensors (local prediction module or LPM) with a model (Chap-

ter 4 [293]) based on weather station measurements (remote prediction module or RPM). Both

models predict the minimum temperature of a future time period. The RPM is integrated to pre-
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vent interference from local protection equipment and provide extra fault tolerance. The stopping

mechanism controlling the frost protection equipment should also be based on the results from a

remote source uninfluenced by the protection equipment itself.

5.1.1 Related Work

IoT-based frost protection systems started as an assistant to human monitoring [31]. With this

method, temperature sensors are used to wake up the farmer during night. The farmer monitors the

temperature manually to decide the triggering of protection equipment by experience and leave the

equipment on until the next morning. After that, modern implementations [226, 229–231] of the

system are automated with IoT systems and WSNs (Table 5.1). These frost protection systems rely

on one or two local temperature sensors. An early implementation of these systems is equipped

with a smoke generator/burner as the protection mechanism against frost on an open field [229].

Temperature-based fuzzy logic rules are applied to control the output magnitude of the protection

mechanism. However, the stopping condition of the protection equipment is not discussed. This

design is improved in [231]. The energy requirement of the burner is minimized by limiting

the triggering threshold. A similar stopping mechanism is developed in [230]. The sprinklers

in the fields are stopped when the temperature reaches a threshold. Another type of stopping

mechanism is created with a timer [226] and the timer stops the mechanism in the morning. Some

system fault tolerance exists with the dual sensor design. At this stage, most systems determine the

stopping condition with near-real-time mechanisms. However, the reliability of these mechanisms

is questionable as the sensor nodes are placed near the protection equipment. Contamination of

sensor node readings is never handled. Additionally, as the systems rely solely on one or two

sensors, there is limited system fault tolerance. Therefore, external data sources may be required.

More recent frost protection system architectures [16, 232] included more sensor types. It is

significant that these architectures recognize external data sources. These external data sources are

often drawing data from nearby weather stations (Table 5.1). The authors of [16] tried to predict

temperature with the aid of a local sensor and weather forecast service. This method shows a

high error of over 9 degrees. As this work only provides prediction, the stopping mechanism

is not implemented. A more detailed system is proposed in [232]. The relationship between

the site of interest and nearby weather stations is studied. A frost index is designed to predict

the occurrence of frost. However, this method only provides daily predictions. The protection

mechanism would need to be operating for the whole night without shorter prediction windows

and stopping conditions.

In summary, earlier systems need to be extended to handle the effect of local protection mech-

anisms on the local data source. Additionally, system fault tolerance is limited, with the reliance

on only one or two sensors. On the other hand, operational resources are preserved with the in-

clusion of near-real-time stopping mechanisms. However, this mechanism has been removed in

more recent systems. Recent systems predict frost with the aid of external weather stations. This

provides some fault tolerance to the systems. However, as the local sensor readings are still a
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Table 5.1: Recent Works on Frost Protection Systems.

Year Local Data
Source

External Data
Source

Stopping Con-
dition

Fault Tolerance Detection
Frequency

2008 [229] Temperature
sensors

N/A Equipment out-
put is only ad-
justed by fuzzy
logic

N/A Hourly

2009 [230] Thermistors N/A Equipment
stopped by
reached temper-
ature

N/A Second-
wise

2009 [226] Air tem-
perature
sensors

N/A Stopped in the
morning by a
timer

Some tolerance
provided by dual
sensor design

Per 10 min-
utes

2012 [231] WSN tem-
perature
sensors

N/A Equipment
stopped by
reached temper-
ature

N/A Per 15 min-
utes

2017 [16] WSN tem-
perature
sensors

Public weather
forecast service

N/A Calibration with
weather forecast

Per 15 min-
utes

2019 [232] WSN sen-
sors

Weather station
service

N/A Calibration with
nearby weather
station

Daily

Proposed
Frame-
work

WSN sen-
sors

Weather sta-
tion data,
Satellite data

External stop-
ping condition
independent of
local sensors

Calibration
from indepen-
dent multiple
weather sta-
tions

Minute-
wise
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dominant part of the prediction input, this fault tolerance is limited.

The proposed framework aims to include both the near-real-time stopping condition and fault-

tolerant external data source designs from earlier methods and enhance these designs with each

other. The proposed framework includes both local and external data sources. The stopping mech-

anism is triggered mainly by the prediction readings from external data sources to eliminate the

contamination from local protection equipment (e.g., heaters and sprinklers). As the external data

sources are not likely to be affected by the temperature or humidity change from the local pro-

tection equipment, the system can still provide uncorrupted outputs. Based on these outputs, a

stopping mechanism for the protection equipment can be operated. With this real-time stopping

mechanism, the operation time of the protection equipment can be minimized. Since prediction

systems only with external data sources are less accurate than using local sensors [16, 293], the

external data sources are only used to provide a stopping condition and extra fault tolerance when

the local sensors readings are contaminated or unavailable. To test the proposed framework, a ver-

sion of the framework is implemented with the system developed in Chapter 3 [257] as the LPM

and the system developed in Chapter 4 [293] as the RPM. The contributions of this chapter are:

1. Proposing a frost prediction system framework.

2. An implementation of the framework with existing local and remote prediction methods.

3. Eliminating the unavailability of frost prediction systems caused by local sensor faults.

4. Establishing a model-based stopping mechanism for frost protection equipment.

The rest of the chapter is organized into three sections. Section 5.2 describes the methodol-

ogy, which includes the framework structure, data sources, and experiment settings. Section 5.3

presents the results and discusses the insights from the results. Finally, the chapter is summarized

in Section 5.4.

5.2 Methodology

This section describes the methodology involved in constructing the proposed prediction method.

First, the model structures are illustrated with the designed data inputs. Then, the data sources and

data types of these data inputs are revealed. Finally, the experiment methods are described.

5.2.1 Proposed Framework Structure

In addition to the existing prediction methods based on local sensors, the proposed method in-

cluded a prediction model based on external weather stations to act as a fault-tolerance mechanism

and a stopping mechanism for the frost protection system. Therefore, the proposed framework

structure consists of three modules. These modules are the original LPM, the additional RPM and

the merging module (MM) to merge the results from the prediction modules (Figure 5.1).

116



5.2. METHODOLOGY

Figure 5.1: Experimental Implementation of the Proposed Prediction Model.

The LPM is a model that provides minute-wise predictions of the next hour minimum temper-

ature. As suggested by the module name, these predictions are obtained from local sensor inputs.

In this chapter, a neural network model similar to the model in Chapter 3 [257] is implemented as

the LPM. The model accepts current temperature and relative humidity data and outputs the next

hour minimum temperature.

Since the status and availability of the local sensors could be affected by multiple factors such

as mote energy consumption, hardware fault/failure, and activation of heating equipment [293],

the RPM predicts the next hour minimum temperature from data obtained from external sources

to ensure the availability of the prediction system, while the local sensors are unavailable. In the

experiments, the spatial prediction method from Chapter 4 [293] is used as the RPM. This model

involves a series of sub-models. Each of the sub-models uses data from a fixed weather station to

predict the next hour minimum temperature of a remote location. Each of the sub-models accepts

climate data (temperature, dew point, relative humidity, wind speed and direction) and location

features (longitude, latitude, digital elevation and normalized difference vegetation index). For

sub-model inferences, location features of both the weather station and the target location are

required. Climate data is only needed from the fixed weather station. With multiple sub-models,

the fault-tolerance of the entire remote prediction model is high. In the implementation, every

remote prediction is supported by at most 60 weather stations.

The MM processes the outputs from the prior two modules to ensure the availability of the
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system. By the control and management of the MM, frost protection equipment can be stopped

at a suitable time to minimize operational costs. In this chapter, the Kalman filter and the particle

filter are tested as merging algorithms. Both filters receive outputs from the LPM. The filters will

switch to receive RPM outputs under the below two conditions:

1. A current, real value is unavailable from the LPM. OR

2. The frost protection equipment is switched on.

The first condition indicates possible malfunctioning of the local sensor. When the second condi-

tion is true, the frost protection equipment could corrupt the local sensor values. In both condi-

tions, the local sensor cannot be trusted. Therefore, the filters will switch to accept outputs from

the RPM.

The Kalman filter is set to accept simple one-dimensional temperature measurements. To con-

struct the Kalman filter, the process noise covariance, observation noise covariance, state-transition

model, and observation model are calculated. The process noise covariance and observation noise

covariance are obtained as variances because these are calculated from one-dimensional data. The

process noise data for each target location is obtained by subtracting the average minimum temper-

ature from the minimum temperature. This assumes a stable minimum temperature over time. All

changes in the minimum temperature are viewed as noises by the Kalman filter estimation. There-

fore, the state-transition model is set to one. There are two sets of observation noise variance cor-

responding to the LPM and RPM. During operation, when the filter switch to accept outputs from

the LPM or RPM, the observation noise variance also switches. The difference between predicted

minimum temperatures from an LPM or RPM, and the true minimum temperatures computes the

observation noises for each target location. Finally, since the observation and true state are in the

same space, the observation model is also set to one.

The particle filter requires the process noise covariance, observation noise covariance, and the

number of particles. The covariances or variances are the same as the Kalman filter. The number

of particles is set according to the experiment condition defined in Section 5.2.3.

5.2.2 Data Sources

The study area of the experiments includes the New South Wales and Australian Capital Territory

states of Australia. There are two sets of data sources obtained from the study area. The locations

(Appendix A) of the data sources correspond to 75 different weather stations. The first set of data

sources is used in the training and testing processes of the local and remote prediction modules.

Table 5.2 outlines the data sources.

The second set of data sources includes the sunrise and sunset times of the year 2018. This

data is generated from the geodetic calculators of Geoscience Australia [294]. The geographical

coordinates of the 75 weather stations are inserted into the calculators. The sunrise and sunset

times of June, July, and August are later used to form a baseline in the experiments.
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Table 5.2: Climate and Location Data Sources from Different Organizations

Organization Data Types

Bureau of Meteorology [261] Temperature, dew point, relative humidity, wind
speed and direction

Geoscience Australia [281] Digital elevation

NASA [282] Normalized difference vegetation index

Department of Industry, Science,
Energy and Resources [283, 284]

New South Wales and Australian Capital Territory
state boundaries

5.2.3 Experiments

The models constructed for the experiments are trained with climate data and location data (first

three data sources of Table 5.2) of the 75 weather stations obtained for the year 2017. Then, the

testing results are obtained with data representing the year 2018. There are two sets of experiments

performed to test the proposed prediction method. The first set of experiments compares the model

accuracy of merging methods. For the proposed methods utilizing the Kalman and particle filters,

to minimize model losses, it is assumed that there is no sensor value corruption from the protection

equipment and the remote prediction outputs are only activated when the local prediction outputs

are not available. Also, the local sensor motes are able to transmit a set of readings each minute.

The particle number of the particle filter is set as 10000 to balance model accuracy and process

power requirements.

The second set of experiments compares model accuracy at different transmission periods of

the LPM. The transmission period of the local sensor motes is variable. The transmission period

is set to one minute, five minutes, ten minutes, fifteen minutes, twenty minutes, half an hour, and

an hour. It is also assumed that the protection mechanism will corrupt local sensor readings. The

MM uses spatial prediction module outputs when local sensor data is unavailable, between local

reading transmissions, and during operation period of protection mechanisms.

Other than the model losses, the second set of experiments also compares the ability of frost

event detection. This involves the construction of the baseline. The baseline utilizes the ideal

state of the traditional frost detection method. Recent prediction methods are predicting frost

for the next 12–24 hours and the more common frost type (radiation frost) appear during night

times [200]. Therefore, in our modeled baseline, when there is one reading after the sunset below a

certain temperature threshold, all times after sunset and before the next day sunrise are considered

as frost events. With the baseline, the true positive rates, false discovery rates, and the frost

protection equipment operation times of the proposed methods are analyzed. The conditions of

the experiment sets are summarized in Table 5.3.
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Table 5.3: Experiment Conditions

Experiment Set
Number

Particle Number (for particle
filter)

Transmission Period (Min-
utes)

1 10000 1

2 1, 10, 100, 1000, 10000 1, 5, 10, 15, 20, 30, 60

5.3 Results and Discussions

This section outlines the results obtained from the two sets of experiments. Model accuracy is first

compared between the Kalman filter and the particle filter. Then, the ability of frost detection is

evaluated for models with different local sensor transmission rate. After that, operation time of the

frost protection equipment is analyzed. Finally, the results lead to discussions of limitations and

future works.

5.3.1 Accuracy of Different Merging Methods

Table 5.4 is collected from the first set of experiments mentioned in Section 5.2. The mean RMSEs

from the Kalman filter and particle filter (10000 particles) are quite close to the sole LPM. The

particle filter has a insignificantly higher loss than the sole LPM and Kalman filter.

Table 5.4: Mean RMSE of the Sole LPM and Different Result Merging Methods with One-minute
Transmission Period and without Assumed Influence from Frost Protection Equipment.

Method Mean RMSE (◦C)

Sole LPM 0.9733

Kalman Filter 0.9733

Particle Filter 0.9742

Figure 5.2 is collected from the second set of experiments. The transmission period is also

set to one minute to minimize the loss. Differ to the first set of experiments, the influence of the

frost protection equipment to the local sensors is considered. Therefore, outputs from the RPM

is processed by the MM when the frost protection equipment is in operation. From Figure 5.2,

the mean RMSE reduces significantly for particle numbers 1 and 100. However, with the particle

number 1000, this reduction is insignificant (less than 5%). The mean RMSE of the particle filter

with 1000 particles is 1.3855◦C, which is still higher than the mean RMSE of the Kalman filter

(1.3831◦C). When the particle number reaches 10000, the mean RMSE is 1.3690◦C, which is

slightly better than the Kalman filter. However, considering the significant amount of processing

power required for particle filters with more than 100 particles [295] and the insignificant amount

of difference between Kalman filter results. The Kalman filter is in favor. However, to ensure

the completeness of the experiments, the results of the particle filter with 10000 particles are also

presented in the subsections below.
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Figure 5.2: Mean RMSE of the Particle Filter Merging Method with One-minute Transmission
Period and Variable Number of Particles.

5.3.2 Frost Detection with Different Transmission Periods

In this subsection, the proposed frost prediction method is compared with a baseline. The baseline

is the assumed traditional frost detection method, in which the protection equipment is switched on

after sunset if any event is predicted. A temperature measurement below 0◦C at a certain minute

is defined as an event in the experiments. The protection mechanism will be operating if such an

event is predicted. Table 5.5 describes the baseline results to compare with the proposed methods.

Since the baseline does not produce numeral values for prediction, it is unnecessary to describe it

with the RMSE. The true positive rate, false discovery rate, and operation time are sufficient to be

compared with the proposed method.

Table 5.5: Baseline Results.

Mean True Positive
Rate

Mean False Discov-
ery Rate

Mean Operation Time
(Hours)

0.8127 0.6982 208.24

To compare the effect of the local sensor transmission period, the mean RMSE is presented

in Table 5.6. For both merging methods, the mean RMSE increases as the transmission period

increases. This is caused by the increasing usage of the RPM results with the increase of transmis-

sion period. With more usage of the remote prediction results, the mean RMSE also approaches
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the relatively higher values of the spatial prediction models [293]. There is a significant increase

of mean RMSE between transmission period of one and five minutes. After that, the mean RMSE

increases gradually. This is because at transmission period of five minutes most prediction results

adopted by the merging method are from the remote source (greater than 80%). The model will

be more accurate with a lower transmission period. From an inter-method perspective, the mean

losses do not demonstrate significant differences between the Kalman filter and particle filter with

10000 particles.

Table 5.6: Mean RMSE (◦C) of Different Result Merging Methods with Variable Transmission
Periods and Assumed Influence from Frost Protection Equipment.

Method
Period (Minutes)

1 5 10 15 20 30 60

Kalman Filter 1.3831 2.3330 2.4229 2.4519 2.4667 2.4812 2.4960

Particle Filter (10000
Particles)

1.3690 2.3309 2.4226 2.4521 2.4671 2.4818 2.4968

The mean true positive rate of the proposed method is compared with the baseline in Table

5.7. Similar to the mean RMSE, there is no significant difference between the Kalman filter and

particle filter with 10000 particles. The mean true positive rate decreases as the transmission

period increases. When analyzed with the mean RMSE (Table 5.6), the mean true positive rate

decreases as the loss of the models increases. Clearly, with a higher model accuracy, the detection

rate is higher. Finally, the bold values on the table reveals that both merging methods, with local

sensor transmission period of one, five, ten, fifteen minutes, capture more true frost events than

the baseline.

Table 5.7: Mean True Positive Rate of Different Result Merging Methods with Variable Transmis-
sion Periods and Assumed Influence from Frost Protection Equipment (Bold values are better than
the baseline).

Method
Period (Minutes)

1 5 10 15 20 30 60

Kalman Filter 0.9987 0.9460 0.8883 0.8386 0.7950 0.7197 0.5735

Particle Filter (10000
Particles)

0.9987 0.9466 0.8900 0.8408 0.7985 0.7242 0.5805

The mean false discovery rate shows the amount of false positives in all positives recognized

by the models. This rate decreases as the transmission period increases (Table 5.8). All mean false

discovery rates of the proposed models are lower or better than the baseline.

Per site analysis of the results is conducted to compare the true positive rates and false dis-

covery rates of the merging methods with the baseline site by site. Figure 5.3 demonstrates the

comparison of true positive rates per site between the Kalman filter and baseline. The circles rep-

resent a site that the Kalman filter results have a higher (better) true positive rate than the baseline.
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Table 5.8: Mean False Discovery Rate of Different Result Merging Methods with Variable Trans-
mission Periods and Assumed Influence from Frost Protection Equipment (All values are better
than the baseline).

Method
Period (Minutes)

1 5 10 15 20 30 60

Kalman Filter 0.6300 0.5488 0.5069 0.5049 0.4792 0.4640 0.4370

Particle Filter (10000
Particles)

0.6377 0.5567 0.5127 0.5110 0.4839 0.4672 0.4390

Table 5.9: Mean Operation Hours of Different Result Merging Methods with Variable Transmis-
sion Periods and Assumed Influence from Frost Protection Equipment (Bold values are better than
the baseline).

Method
Period (Minutes)

1 5 10 15 20 30 60

Kalman Filter 208.74 162.16 139.33 131.01 118.08 103.85 78.79

Particle Filter (10000
Particles)

213.19 165.15 141.27 132.98 119.66 105.13 80.02

The crosses symbolize a site with a lower true positive rate than the baseline. Finally, squares

demonstrate sites with no events. In Figures 5.3a - 5.3c, most sites shows a higher true positive

rate than the baseline. However, there is a significant increase of sites with a lower true positive

rate than the baseline when the transmission period approaches 15 minutes (Figure 5.3d). For

transmission periods of 20, 30, and 60 minutes, there are also more sites with a lower true positive

rate than the baseline (Not shown in figures as the results are similar). This result is partially con-

sistent with Table 5.7. However, it uncovers that even the mean true positive rate is higher than the

baseline for the merging methods with a transmission period of 15 minutes, it is still not suitable

as more sites are showing a lower true positive rate than the baseline. The analysis results of the

false positive rates are also not included as they do not present new insights.

5.3.3 Operation Time of Protection Equipment

The final set of measurements obtained from the second set of experiments draws in the operation

hours of the protection equipment. Table 5.9 shows that the operation hour is inversely propor-

tional to the transmission period. This result is consistent to Tables 5.7 and 5.8. The reduction of

operation time is caused by the reductions of true positive and false positive events. Table 5.9 also

shows that both merging methods with transmission periods of 5, 10, 15, 20, 30, and 60 minutes

are shorter than the baseline. With a transmission period of one minute, the transmission hours are

insignificantly longer (less than 5%) than the baseline. However, considering that more true frost

events are captured than the baseline, it is still acceptable for the one-minute transmission time

method to have an insignificantly longer protection equipment operation time (Figure 5.4). Figure
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(a) 1 Minute (b) 5 Minutes

(c) 10 Minutes (d) 15 Minutes

Figure 5.3: Per Site Comparison between the True Positive Rates of the Kalman Filter results and
the Baseline with Transmission Periods of 1, 5, 10, 15 minutes.
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5.4 analyzes the composition of the operation time of the baseline and the Kalman filter (Particle

filters are not included as they draw similar insights). This figure also split the operation times

as responses for true positive and false positive events. On average, the baseline uses 69.82% of

operation time on false positives. The Kalman filter-based methods invest less proportion of time

on false positives than the baseline. However, the rate of operation time spent on false positives

are over 50% for models with transmission periods of 1, 5, 10, and 15 minutes. The lowest pro-

portion of time on false positives is 43.70%. In conclusion, the operation time compositions of the

proposed methods are superior to the baseline for their similar or lower operation times and lower

proportion of time over false positives. However, the operation time spent on false positives are

still high and should be reduced in future works.

Figure 5.4: Mean Operation Hours and True Positive Rate of the Kalman Filter Merging Method
with Variable Transmission Periods.

5.3.4 Limitations and Open Challenges

The experiment results show that the Kalman filter is preferred for the implementation of the pro-

posed framework due to similar losses and fewer processing requirements compared to the particle

filter. Both methods have higher, but close losses to the sole LPM models. The comparison be-

tween the proposed models, using variable transmission periods, and the frost detection baselines

reveals that transmission periods of 1, 5, and 10 minutes are in favor. The proposed model can

operate with higher true positive rates and lower false discovery rates than the baseline traditional
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method with these transmission periods. After obtaining all the insights, some of the limitations

are also revealed by the experiments.

5.3.4.1 Limitations of the Remote Prediction Method

As the RPM dragged down the overall model accuracy in the experiments, it is important to rec-

ognize the limitations of the model running within this module. From Chapter 4 [293], limitations

of the prediction model based on spatial interpolation are low accuracy, lacking of ground truth

to validate models, and high sensitivity to the choice of model training data. These limitations

affect the true positive rate, false discovery rate and the stability of the proposed method. As a

future direction, models using historical local data to correlate remote prediction methods could

be a solution.

5.3.4.2 High number of False Positives

The results show that the proposed method has lower false discovery rates than the baseline. How-

ever, most of these rates are over 50%. High false discovery rates lead to unnecessary operation

of the frost protection equipment. Compared with the results from Chapter 4, the LPM is a stable

source of false discovery rates and should be the priority for improvement. There are two possible

methods to lower the number of false positives. The first method is to increase the accuracy of

the prediction models. With higher accuracy, the models can detect events with higher precision.

The second method is to reduce the prediction window. Each prediction of the proposed method

accounts for the next hour. However, the start and the end of a continuous frost event could only

take part of the whole hour. Reducing the prediction window to half an hour or less could prevent

these false positives.

5.3.4.3 Real-time validation of measurements

This chapter discussed the scenario where the prediction method could fail due to unavailable

local sensor data. However, the validity of the data is not considered. All the data involved in this

chapter are cleaned and preprocessed. However, in the deployment environment, uncleaned data

will be directly fed into the models. This could be a potential source of error that may lead to the

failure of the whole system. A possible solution is to develop and include a real-time validation

model. Based on historical data, real-time entries could be validated through statistical outlier

detection methods and regression data imputation methods [296].

5.3.4.4 Energy Consumption of the Local Sensor Mote

The experiments assumed that the local sensor mote is transmitting data wirelessly from the site

of frost protection to a particular processing unit. In IoT applications, radio transmission con-

sumes the highest amount of energy over other usages (processing, sensing, system) [274]. From
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the experiment, methods with higher transmission frequencies are providing better results. This

indicates that the proposed method requires high transmission frequencies. Higher transmission

frequencies will lead to lower battery lifetimes and excess human resources for recharging the

energy sources in the deployment environment. A viable solution could be developing a frost

prediction method based on edge computing to prevent this high energy consumption from radio

transmissions.

5.4 Summary

This chapter proposes a frost prediction framework introducing an extra RPM. The RPM can pre-

vent the effect of protection mechanisms on the prediction model. Also, since the source of data

increases, the reliability and fault tolerance increase. There could be multiple remote data sources.

Moreover, this RPM can be utilized as the stopping mechanism for frost protection equipment.

Including the RPM, the proposed framework contains three modules. The other two modules are

the LPM and MM. The LPM provides minute-wise predictions of the next hour minimum temper-

ature using local sensor readings. The MM merges the outcomes from the two prediction modules.

The implementations of the framework are then tested in two sets of experiment settings. The ex-

periments are designed to measure the accuracy of the framework with different MM algorithms

(Kalmen filter and particle filter) and transmission periods of local sensors. Prediction errors are

measured in RMSE. The true positive rate, false discovery rate, and operation time of equipment

are also measured and compared against the traditional baseline method. For the merging methods,

the results suggest that the Kalman filter is better than the particle filter as the merging method due

to the lower requirement of processing power. Compared with the baseline, the models’ true posi-

tive rates, false discovery rates, and operation times with 1, 5, and 10-minute transmission periods

are better than the baseline. This also means more true events discovered, fewer false positives,

and fewer resources used on protection than the baseline. However, the accuracy and performance

of the proposed methods can be further enhanced by lowering the high false discovery rates. This

should be improved in the future with remote prediction models with higher accuracy and further

correlation with local readings. Other future improvements to the framework include real-time

sensor readings validation, and possible edge computing solutions to reduce energy consumption.

Overall, with higher true positive rates than the sole operation of an RPM, this chapter comple-

ments the response to Research Question 5 provided by Chapter 4. In the next chapter (Chapter

6), the limitations of high false discovery rates and energy consumption (Research Question 6)

of the LPM are discussed.
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6
Edge-based Spatially Generalized Frost Prediction

with Neural Networks

6.1 Introduction

The experiment results in the previous chapter (Chapter 5) have demonstrated high false discovery

rates from frost prediction systems. The LPM produces stable, high numbers of false positives and

creates long unnecessary operation time. Therefore, the first priority of this chapter is to improve

the LPM. The second priority of this chapter is to indicate the critical energy cost factors of frost

prediction systems (Research Question 6). Recent frost prediction and protection systems have

incorporated IoT technologies, utilizing WSNs [34]. Sensor readings can be wirelessly transmitted

to a controller for decision-making. The lifetime or availability of these WSN systems is limited

by the energy consumption of the sensor nodes [297]. Therefore, this chapter studies the sensor

node energy requirements of a transmission-based system and an edge computing-based system

to maximize the lifetime of frost prediction and protection systems.

As indicated in Chapter 2, among the different wireless transmission protocols, LoRa is a suit-

able technology for frost prediction and protection applications due to its low power consumption

and long transmission range [34]. LoRa takes advantage of a modulation technique based on chirp

spread spectrum technologies [298]. This technique provides some noise tolerance. Also, LoRa

transmissions appear similar to noise, thus making it less susceptible to certain types of security

attacks [298]. Overall, the authors of [299] concluded that LoRa provides better connectivity, effi-

cient energy management, security, and less complexity to the IoT-based frost protection systems.
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Edge computing is a paradigm placing the processing ability near or co-located with the end

devices [300]. This paradigm reduces the transmission latency from the end devices. Other advan-

tages of edge computing are avoided costs on cloud computing, reduced bandwidth requirements

and network overhead [301]. In the context of frost protection systems, the application of edge

computing offloads the decision-making process to the environmental sensor node. The sensor

node assists the triggering of frost protection equipment. Frost protection systems could be inde-

pendent from a nearby gateway or data center.

In this chapter, a frost prediction method based on edge computing is proposed. Edge comput-

ing has the advantage of avoiding the costs on the gateway, data center, and cloud computing [301].

To extend this advantage on low costs, generalized models for frost prediction are introduced in

this chapter. As recent frost prediction models are trained with local historical data, systems de-

ployed on new sites need extra deployment time to collect local data for model construction and

testing [34,257]. The purpose of the generalized models is to reduce the deployment time by train-

ing with existing historical data from weather stations scattered across a region. Also, to evaluate

the energy consumption, a LoRa-based application setting is implemented to compare with the

edge computing setting.

6.1.1 Related Work

Table 6.1 outlines recent frost protection systems. In early systems, Wireless sensor reading trans-

mission [229, 231] co-existed with wired settings [226, 230]. According to the experimental set-

tings provided, the wireless systems are only designed for small farms. Large farms require a

long-range transmission protocol to reach the border gateway. Decision-making for these early

systems is based on simple conditions and fuzzy logic with sensor inputs [226, 229–231]. As the

performance of frost prediction is either not tested or limited, simple conditions and fuzzy logic

are not suitable for frost prediction.

More recent systems predict frost with more complex methods. In [16], a frost index IG is

developed with regional weather station data. However, the method requires a centralized server

to compute such an index. This places an extra cost on the server.

LoRa is used in [232] to collect data with local sensors. This work also applied regression to

predict frost events. As a calibration to local sensors, readings from weather stations are intro-

duced. As this system requests weather station services, a server is required to access the services

through RESTful API. The system described in [233] is very similar to the system in [232]. It is

also a regression-based frost prediction system, processing readings from local wireless sensors

and weather stations through a server.

Compared with the existing systems, the proposed frost prediction system adopts neural net-

works as models for frost prediction. The neural network is the most accurate model type among

recent frost prediction methods [34]. The proposed system also utilizes edge computing to reduce

the cost of servers and avoid the excess energy consumption from radio transmissions. To evaluate
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Table 6.1: Sensor Communication and Decision-making Methods Applied by Recent Frost Pro-
tection Systems.

Year Decision-making
Method

Sensor communication method

2008 [229] Fuzzy logic Unspecified wireless communication

2009 [230] Simple conditions Wired to a local server room

2009 [226] Simple conditions Wired

2012 [231] Fuzzy logic Unspecified wireless communication

2017 [16] Frost index IG Server-based computation

2019 [232] Regressions LoRa, RESTful

2019 [233] Regressions Unspecified wireless communication, cloud

this excess energy consumption, an application setting based on LoRa is also implemented for this

chapter. As a summary, the major contributions of this chapter are listed below:

1. Evaluating the possibility to generalize frost prediction models from multiple locations.

2. Eliminating the requirement of centralized servers for recent frost protection systems.

3. Comparing the energy and resource consumption for LoRa-based and edge-based frost pre-

diction systems.

4. Proposing an edge-based frost prediction system.

The rest of this chapter is organized as follows. The methodology is specified in Section 6.2.

This includes the methods for model construction, details of the testing node, and settings for

the experiments conducted. The experiment results are analyzed in Section 6.3 followed by the

discussions on limitations. Finally, Section 6.4 summarizes the whole chapter.

6.2 Methodology

In this section, the processes involved to obtain the experiment results are outlined. First, the frost

prediction models are trained and tested with data from multiple weather stations. Then, a node

is assembled for environmental data collection, model inference on edge, and data transmission

using LoRa. With the prediction models and testing node, a series of experiments are conducted

to output results for further analysis.

6.2.1 Model Construction

There are two sets of models constructed for the experiments. Each model of the first set is con-

structed with environmental data collected from a single and different weather station. These
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models all require local data from their corresponding weather stations. Therefore, data collection

must be performed for new sites to construct these prediction models. The first set of models

is used as the baseline in the experiments to represent results from existing near real-time meth-

ods. These ANN models are mentioned as “local models” or “baseline models” in the rest of the

chapter.

The second set of models contains the spatially generalized models. There are only five ANN

models trained with five-fold validation. Unlike each of the baseline models trained with data

from a single location, the spatially generalized models are boosted by the amount of data from all

the training stations in each fold. Environmental data of the weather stations in the current testing

fold are used as testing data, and all other data are used as training data to construct the current

model. The distribution of folds can be found in Appendix A. The purpose of five-fold validation

is to test the performance of models on “new” sites. In each model or fold, the testing weather

stations are not involved during training. The testing weather stations can be treated as new sites

to the models. The second set of models is an attempt to test the generalization ability of neural

networks on frost predictions with training and testing data from multiple locations. Therefore,

the models are described as “generalized models” in the later sections.

Data for model training and testing are acquired from the Bureau of Meteorology [261]. These

data are minute-wise temperature and relative humidity readings measured from 75 weather sta-

tions located in the states of NSW and ACT, Australia. Data collected in the year 2017 are used

during training. Testing results of the models are obtained by model inference with data from the

Winter months (June, July, August [280]) of the year 2018.

6.2.2 Testing Node

The testing node is assembled from two components. A Pycom LoPy 4 development board [302]

is the major part of the testing node. This board is equipped with an Xtensa dual-core 32-bit LX6

microprocessor. The board acted as a platform to collect, process, and transmit sensor readings

during experiments. The on-board Semtech SX1276 LoRa transceiver allows low-power wireless

transmissions of sensor readings.

The sensing capability of the testing node is provided by a DHT22 sensor packaged as the

SEN0137 module from DFRobot [23]. Temperature and relative humidity readings from the mod-

ule are obtained by the Pycom LoPy 4 board to be transmitted or further processed. Table 6.2

shows the technical specifications of the sensor module.

6.2.3 Experiments

Figure 6.1 shows a high level structure of the experiments. Experiments are divided into two

sets. The first set is designed to test the daily energy consumption of the testing node under

different application settings. Application settings can be further split into three groups. The

first group simulates the scenario that sensor readings are acquired and transmitted to a central
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Table 6.2: DFRobot SEN0137 Sensor Specifications [23].

Parameter
Sensor Type

Temperature Humidity

Range -40-80◦C 0-100%

Resolution 0.1◦C 0.1%

Error < ±0.5◦C ±2%

processing unit for frost prediction periodically. The device enters deep sleep mode after sensing

and transmitting to save power until the next cycle. The fixed radio transmission parameters are

set according to Table 6.3 Before operation with the testing node, preliminary simulations of

daily LoRa transmission energy consumption is conducted using NS3 [303] based on the current

consumption values of the Pycom LoPy 4 (Table 6.4).

Table 6.3: Fixed LoRa Transmission Parameters

Parameter Value

Frequency 915.2 MHz

Transmission Power 20 dBm

Spreading Factor 12

Payload Size 4 Bytes

Table 6.4: NS3 LoRa Daily Energy Consumption Simulation Parameters

Parameter Value

Payload Size 4 Bytes

Supply Voltage 5 V

Sleep Current 19.5 mA [302]

Transmission Current 105 mA [302]

Transmission Period 1, 5, 10, 15, 20, 30, 60 Minutes

The second group processes sensor readings locally by the testing node with a neural network

to predict the next hour minimum temperature as the frost indicator. This model is the local model

constructed with historical data from the site of deployment. Sensing and model inference are also

triggered periodically. The final application group setting is similar to the second group setting.

However, the final application group setting utilizes the generalized models created with data from

multiple weather stations. Within each application group, the execution/transmission periods are

also variable. Table 6.5 outlines the conditions of the experiments for daily energy consumption

measurements.

The second experiment set involves simulations of the prediction models with weather station

data collected in the year 2018. The loss and accuracy of the generalized models are compared
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Figure 6.1: Concept Diagram of the Experiments.
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Table 6.5: Daily Energy Consumption Experiments Settings

Group Num-
ber

Transmission or
Processing

Model Type Transmission/Processing Pe-
riod (Minutes)

1 Transmission N/A 1, 5, 10, 15, 20, 30, 60

2 Processing Local 1, 5, 10, 15, 20, 30, 60

3 Processing Generalized 1, 5, 10, 15, 20, 30, 60

with the baseline models optimized for single weather stations. After that, the true positive rates,

false discovery rates, and frost protection equipment operation times are also compared between

generalized and baseline models with variable transmission periods. These values are measured

assuming that a frost event is below 0◦C. Transmission periods are identical to the settings of

experiment set one (Tables 6.4 and 6.5).

6.3 Results and Discussions

This section outlines and discusses the results of the experiments. Daily energy consumption

readings acquired from experiment set one with different operation settings are discussed. After

comparing the differences between the edge transmission and edge inference settings, the accu-

racy of frost detection for local and generalized models is evaluated with key indicators. These

indicators include model loss, true positive rate, false discovery rate, and operation hour of frost

protection equipment. The analysis of these results leads to the final discussions and limitations.

6.3.1 Daily Energy Consumption of the Testing Node

Figure 6.2 shows that the energy consumption increases with the increase of transmission/infer-

ence period in the simulated environment and all three application settings. However, the simu-

lated result (Figure 6.2a) has significantly more minor differences between adjacent readings than

the other application settings. This is due to a high current spike when the Pycom board is starting

up [304] and returning from deep sleep mode (similar to reset [305]). Energy consumption by the

high current spike accumulates for each transmission/inference. Therefore, as the frequency of

transmission/inference increases, the effect of the current spike magnifies.

Table 6.6 compares the daily energy consumption between different application settings for

different transmission/inference periods. It reveals that when the testing node is transmitting, the

energy consumption readings are the highest compared with non-transmission settings at each pe-

riod. However, only when the transmission period is one minute, the increase of consumption

from the edge transmission is significant (greater than 5%) to the other settings. When the pe-

riod increases, the energy consumption differences between the transmission and local inference

settings reduce.
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(a) Simulated Transmission (b) Edge Transmission

(c) Edge Local (d) Edge Generalized

Figure 6.2: Simulated and Measured Daily Energy Consumption using local or generalized models
with variable transmission/inference periods.
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For the latter two scenarios utilizing local frost detection with edge inference, the energy

consumption readings (Table 6.6) for each inference period are similar. As the duty cycles of

the two scenarios are the same, the only difference is the structure of the model deployed on

the testing node. In the experiments, the structures of the models are the same with different

parameters. Therefore, the energy consumption for the two application settings should be similar.

The next part of the analysis is about the differences between the two models.

Table 6.6: Measured Daily Consumption (mWh) with Variable Transmission/Inference Periods
(Bold values are the lowest in each column).

Method
Period (Minutes)

1 5 10 15 20 30 60

Edge Transmission 2773 2203 2136 2112 2087 2073 2061

Edge Local 2540 2150 2112 2089 2072 2064 2054

Edge Generalized 2550 2150 2105 2087 2072 2064 2058

6.3.2 Frost Detection with Different Model Types

Table 6.7 records the mean RMSE of the two prediction models. In general, the generalized models

have lower losses than the baseline models. This is expected as each of the generalized models

is trained with data from 60 weather stations, whereas every baseline model is only trained with

data from one weather station. More training data ensures the generalized models can better fit

the pattern between the temperature, humidity inputs, and the the next hour minimum temperature

outputs. However, Table 6.8 shows that the baseline models have a slightly higher mean true

positive rate than the generalized models. This indicates that the baseline models are more accurate

in predicting cold, extreme temperatures. As more weather station data is used to construct the

generalized models, there are significantly more amount of general temperature conditions than

the cold, extreme conditions. Thus, compared to the baseline models, the generalized models fit

better to the general temperature conditions than the cold, extreme conditions. This phenomenon

is further explained when analyzing the false discovery rate results later in this subsection.

In Table 6.8, the true positive rate decreases with the reduction of inference frequency for both

model types. As the number of inferences reduces, it also reduces the fault tolerance to predict

cold temperatures. Overall, the decline in true positive rate is insignificant (smaller than 5%)) for

both model types. With one inference per hour, both model types can still detect over 94% of frost

events. This setting could be suitable for scenarios with a scarce energy supply.

Table 6.7: Mean RMSE of the Baseline and Generalized Models.

Model Mean RMSE (◦C)

Baseline 0.9733

Generalized 0.8678
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Table 6.8: Mean True Positive Rate of the Baseline and Generalized Models with Variable Periods
(Bold values are the highest in each column).

Model
Period (Minutes)

1 5 10 15 20 30 60

Baseline 0.9987 0.9985 0.9979 0.9967 0.9952 0.9906 0.9695

Generalized 0.9864 0.9858 0.9847 0.9830 0.9807 0.9742 0.9475

Similar to the mean true positive rate, the mean false discovery rate also decreases with the

reduction of inference frequency for both model types (Table 6.9). The generalized models have

a lower false discovery rate than the baseline models for each inference period. This can be

explained with the results of the better true positive rates from the baseline models. As mentioned

above, the generalized models are trained with significantly more data of general temperature

conditions than the extreme, cold conditions. Therefore, predicting the next hour temperature of

normal temperature conditions would be more accurate and more likely to deny these conditions

as frost events for generalized models to the baseline models. The results reveal the tradeoff of a

small reduction of true positive rate for a significant decrease of false positives between the two

model types. From an energy perspective, the generalized models would save more resources by

reducing the operation time of the frost protection equipment on false positives.

Table 6.9: Mean False Discovery Rate of the Baseline and Generalized Models with Variable
Periods (Bold values are the lowest in each column).

Model
Period (Minutes)

1 5 10 15 20 30 60

Baseline 0.6609 0.5810 0.5314 0.5229 0.4889 0.4587 0.3972

Generalized 0.4416 0.4228 0.4036 0.3880 0.3739 0.3489 0.2891

Table 6.10: Mean Operation Hours of the Protection Equipment Controlled with the Baseline and
Generalized Models with Variable Periods (Bold values are the lowest in each column).

Model
Period (Minutes)

1 5 10 15 20 30 60

Baseline 227.82 184.33 164.72 161.59 150.61 141.55 124.39

Generalized 136.62 132.10 127.71 124.23 121.14 115.72 103.09

6.3.3 Composition of Equipment Operation Time

The mean operation hours of both model types are directly proportional to the inference frequency

(Table 6.10). Suggested by Tables 6.8 and 6.9, the amount of detected true and false positives

all decreases with the reduction of inference frequency. As a result, the equipment operations

triggered by these positives also decline with the inference frequency. On the other hand, the
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mean operation hours of the generalized models are significantly shorter than the baseline models

for every period. This outcome is consistent with the similar patterns found for the mean false

discovery rates.

Other than the insights provided by Table 6.10, Figure 6.3 separated the operation hours into

two portions. From Figure 6.3a, the local or baseline models waste significant amounts of op-

eration hours on false positives. Within most period settings, over 50% of operation time is con-

tributed on false positive. Only at periods of 20, 30, and 60 minutes, the baseline models contribute

more time to true positives. On the other hand, as a result of the reduced false discovery rate, the

generalized models contribute more time to true positives for all period settings. Therefore, from

an energy efficiency perspective, the generalized models outperform the baseline models due to

shorter operation time and less time wasted on false positives in each period setting.

6.3.4 Frost Detection with Reduced Prediction Windows

The baseline and generalized models tested in the subsections above adopted a prediction window

of an hour. Hence, a possible future events could be assessed multiple times if the period of

prediction is less than an hour. Multiple assessments can provide fault tolerance. However, the

number of false positives can also increase with the number of assessments. This subsection

evaluates new sets of baseline and generalized models with smaller prediction windows of 15 and

30 minutes. Models with prediction windows of 15 and 30 minutes are only tested with periods

less and equal than 15 and 30 minutes, respectively.

Table 6.11 compares the mean RMSE of the baseline and generalized models with 15, 30, and

60 minutes prediction windows. For both model types, the loss increases with the prediction win-

dow. This is simply another demonstration that neural networks are more accurate for short-term

time-series predictions than long-term time-series predictions [306]. At these shorter prediction

windows, the losses of the baseline and generalized models became similar. Also, the baseline

models have insignificantly smaller losses than the generalized models at these shorter windows.

Table 6.11: Mean RMSE (◦C) of the Baseline and Generalized Models With Variable Prediction
Windows.

Model
Window (Minutes)

15 30 60

Baseline 0.3760 0.5508 0.9733

Generalized 0.3793 0.5587 0.8678

The mean true positive rate decreases with the reduction of the prediction window (Table 6.12).

Generally, as the prediction window is short, there are fewer assessments for a possible future event

to provide extra fault tolerance. Therefore, there are fewer events captured by the models. On the

other hand, fewer assessments also lead to fewer false positives. Table 6.13 reveals that with a

short prediction window, the false discovery rate could be reduced down to 14.14%.
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(a) Edge Local

(b) Edge Generalized

Figure 6.3: Protection Equipment Mean Operation Time Compositions of the Baseline and Gen-
eralized Models with Variable Periods.
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Table 6.12: Mean True Positive Rate of the Baseline and Generalized Models with Variable Peri-
ods and Prediction Windows.

Model Window (Minutes)
Period (Minutes)

1 5 10 15 20 30

Baseline 15 0.9809 0.9781 0.9682 0.9580 N/A N/A

Baseline 30 0.9832 0.9824 0.9795 0.9753 0.9672 0.9546

Baseline 60 0.9987 0.9985 0.9979 0.9967 0.9952 0.9906

Generalized 15 0.9850 0.9819 0.9713 0.9605 N/A N/A

Generalized 30 0.9854 0.9842 0.9804 0.9752 0.9652 0.9511

Generalized 60 0.9864 0.9858 0.9847 0.9830 0.9807 0.9742

Table 6.13: Mean False Discovery Rate of the Baseline and Generalized Models with Variable
Periods and Prediction Windows.

Model Window (Minutes)
Period (Minutes)

1 5 10 15 20 30

Baseline 15 0.2235 0.1945 0.1662 0.1440 N/A N/A

Baseline 30 0.3261 0.3022 0.2784 0.2594 0.2404 0.2108

Baseline 60 0.6609 0.5810 0.5314 0.5229 0.4889 0.4587

Generalized 15 0.2173 0.1891 0.1617 0.1414 N/A N/A

Generalized 30 0.3046 0.2803 0.2566 0.2371 0.2182 0.1897

Generalized 60 0.4416 0.4228 0.4036 0.3880 0.3739 0.3489

With a reduction of false discovery rate with prediction window, Figure 6.4 shows a decline of

mean operation hour with prediction window. Also, the operation time wasted on false positives

is significantly reduced, especially on the baseline models. From a prediction window of 60 to 30

minutes, the time spent over false positives reduced from over and near 50% to all below 35%.

When the prediction windows and periods are equal, the generalized models are still in favor with

less time wasted on false positives and shorter overall operation time than the baseline models.

6.3.5 Limitations and Open Challenges

The first set of experiments shows that the energy consumption of local inference is less than

transmission on the Pycom-based testing sensor node. However, as the frequency of transmis-

sion/inference reduces, the consumption difference becomes less significant. For the local infer-

ence scenarios, as the model structures of both local and generalized settings are the same, the

daily energy consumption is similar. The accuracy of the model results seems to be more notable

for affecting the operation times of the frost protection equipment. As the result of experiment set

two, the generalized models have lower mean false discovery rates than the baseline models for

all experimented periods. Thus, the generalized models require less operation time to achieve a
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(a) Baseline 15 (b) Generalized 15

(c) Baseline 30 (d) Generalized 30

(e) Baseline 60 (f) Generalized 60

Figure 6.4: Protection Equipment Mean Operation Time Compositions of the Baseline and Gen-
eralized Models with Variable Periods and Prediction Windows.
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similar true positive rate to the baseline models. Moreover, the generalized models invest most op-

eration time on true positives, whereas the baseline models waste most operation time responding

to false positives. With the above analysis of the results, some limitations are identified.

6.3.5.1 High Amount of False Positives

In the second set of experiments, the generalized models with a low prediction window improved

from the baseline models with lower numbers of false positives. However, the lowest mean false

discovery rate is 0.1414. This means there is over 14.14% of operation time spent on false pos-

itives. Since the results demonstrated the tradeoff between true positive rate and false discovery

rate with the change of training data. In future works, more weather stations could be introduced

during training to reduce the false discovery rate further.

6.3.5.2 The Effects of On-site Protection Equipment are not considered

All three application settings in this chapter assume the frost protection equipment deployed in

the same site with the testing sensor node. When the sensor node provides results that trigger

the protection equipment, the operation of the equipment could corrupt the readings of the sensor

node. Thus, the prediction results might be corrupted. To avoid these corruptions, an external data

source could be placed as a backup during the operation of the protection equipment. However,

the operation area of the equipment, and the spatial differences between the external data source

and the site need to be carefully investigated.

6.3.5.3 Environmental Data are not Recorded

This chapter did not mention any design to record the sensor readings after the sensor node is

deployed for edge inference application settings. Consequentially, the models cannot be improved

to fit new patterns of the changing climate. The two suggested solutions require excess energy.

The first solution is the addition of a data storage module to the sensor node. Considering the

insignificant increase in energy consumption when the transmission frequency is low, the second

option is to transmit the readings to a reachable gateway. To further reduce the cost of maintaining

a site to connect the gateway, sensor nodes that are able to transmit to geosynchronous Earth orbit

satellites could be considered. Such data transmission does not require a local gateway. Direct

communications are established between the node and satellite with a latency of two minutes

[307].

6.4 Summary

Recent frost protection systems are based on wireless transmissions and centralized servers for

frost prediction. This creates excess costs on server maintenance and energy consumption on
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radio transmission. To avoid these costs, the proposed frost prediction method adopts the edge

computing paradigm. Frost prediction results are directly obtained on the sensor node deployed

with a neural network as the prediction model. The proposed prediction model is a generalized

frost prediction model with training data from multiple locations. As recent prediction models

require historical data for training, some time is required to collect data on new sites. Since the

generalized model is trained with data from existing weather stations, data collection for new sites

is unnecessary. The proposed system is implemented with a Pycom LoPy 4 board, and DHT22

sensor. The Pycom board allows transmission with LoRa, which enables the comparison of energy

consumption between the proposed edge computing setting and conventional radio transmission

setting. To evaluate the performance of the proposed system, two sets of experiments are con-

ducted. As a response to Research Question 6, the first set of experiments compared the energy

consumption of the LoRa transmission setting, edge setting with local prediction models, and

edge setting with generalized prediction models. The results demonstrate that the radio trans-

mission setting uses more energy than the edge-based settings. However, with the decrease of

transmission/inference frequencies, the difference between energy consumption is reduced. Over-

all, the edge-based settings consume less energy. However, if the transmission frequency is low,

the difference is insignificant. The second set of experiments compared the performance of the

baseline and generalized models. The generalized models fit the general temperature conditions

better than the extreme, cold conditions because there are more training data that represent the

general temperature conditions from multiple weather stations. As a result, the generalized mod-

els have significantly lower false discovery rates than the baseline models. As the false discovery

rates are reduced, lesser operation time is wasted on the false positives than the baseline. Thus,

the operation time of the frost protection equipment controlled by the generalized models is also

shorter than the baseline. To further reduce the operation time wasted on false positives, models

with shorter prediction windows of 15 and 30 minutes are constructed. Shorter prediction windows

reduced the amount of redundant assessment to a future possible event. Therefore, the number of

false positives is also reduced. Overall, the generalized models with a short prediction window are

in favor.

144



7
Conclusions and Future Work

This final chapter concludes the thesis and suggests future directions of the research. The prin-

cipal aim of this research is to construct a near real-time frost prediction system with high fault

tolerance. Such a system can be categorized into the smart farm applications of IoT. Therefore,

a survey that summarizes the recent application and advancement of IoT is conducted. Machine

learning intelligence, IoT scalability, IoT interoperability, and user friendly IoT dimensions of IoT

2.0 are leveraged to shape the design and methodology of later experiments. The implementation

of these IoT concepts needs to consider the background of frost prediction and protection. Thus,

a comprehensive study on existing frost prediction, protection, methods and protection systems is

carried out. This study enriched the initial motivations of the thesis. A minute-wise frost prediction

method based on machine learning is adopted to lift daily prediction to near real-time prediction.

However, machine learning-based methods also emphasize the limitation of historical data depen-

dence. Therefore, the implementation of a spatial interpolation-based frost prediction method is

a contribution of the thesis. This method eliminates the need for local historical data and local

sensors. It is further applied in the proposed frost prediction framework as a stopping mechanism

to control the protection equipment. Model-based stopping mechanism is another contribution of

this thesis. The usage of external weather stations as the data sources of the stopping mechanisms

can prevent the corruption of output from local sources by the operation of protection equipment.

The final contribution of the thesis is the edge implementation of a frost prediction system with

generalized frost prediction models in consideration of IoT scalability and user friendly IoT. A

more detailed summary of the chapters can be found in the next section.
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7.1 Summary of Thesis Chapters

Chapter 2 is presented in two parts. The first part provides a detailed study of relevant IoT 2.0

concepts to frost prediction and protection. Both conventional and recent IoT architectures shaped

the proposed frost prediction system architectures. Machine learning intelligence, IoT scalability,

IoT interoperability, and user friendly IoT are the four IoT 2.0 dimensions that contributed to the

system designs in this thesis. The links between the architectures, dimensions and frost systems

are revealed to answer Research Question 3. This part of the chapter also sets the technical

background of this thesis.

The second part of Chapter 2 provides a comprehensive review of existing frost prediction,

protection methods, and protection systems. There are four major topics of study. These topics

are frost prediction methods, frost protection methods, integrated frost prediction systems, and IoT

communication protocols for frost protection applications. The study of these topics introduced

the initial problems of this thesis and affected later designs of the proposed solutions. Overall,

Research Questions 1 and 2 are covered in the second part of Chapter 2 by pointing out the

limitations of frost protection systems and reviewing the different prediction methods. The rele-

vant limitations are historical data dependence, daily prediction, and low fault tolerance. These

limitations bring other research questions. The limitation of daily predictions leads to Research
Question 4, which is addressed in Chapter 3. The limitation of questionable fault tolerance is

handled in Chapters 4 and 5 as responses to Research Question 5.

Chapter 3 presents a near real-time frost prediction method. This approach addresses Re-
search Question 4 and the limitations of existing methods revealed in Chapter 2. The proposed

method lifts the existing method from daily predictions of the next 12–24 hours to minute-wise

predictions of the next hour. The performance of RNN-based models as frost prediction methods

is also evaluated. LSTM models have the lowest loss over the over tested RNN-models and the

ANN baseline. However, with relatively small datasets, the accuracy of ANN models is more

stable over time than RNN-based models. This leads to the adoption of ANN models in the rest

of this thesis. The resolution of Research Question 4 induced and emphasized the limitations

on historical data dependence and the lack of equipment stopping conditions. These issues are

resolved in Chapters 4 and 5, along with Research Question 5.

Dependency on local historical data is highlighted in Chapters 2 and 3 as a limitation for ma-

chine learning-based frost prediction. In Chapter 4, a spatial interpolation-based frost prediction

method is proposed. This method predicts local frost with environmental parameters from exter-

nal weather stations. Therefore, this method is independent of local historical data and sensors.

A prediction result is calculated by aggregating the results from multiple weak predictors. Each

weak predictor is trained with historical data from a different weather station. As there are multi-

ple external sources, high fault tolerance can be achieved. The aggregation of the weak predictors

reduced model loss. However, some of the predicted extreme conditions are also filtered out. To

increase the stability of this method, weak predictors with higher accuracy are required. This

method also reached a frost detection rate of 92.55%. As the frost detection rate of the proposed
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model is still unstable and limited, this chapter is only viewed as a partial response to Research
Question 5. In Chapter 5, this response is extended by combining the local sensor-based method

and the external weather station-based method.

Based on the work of Chapters 3 and 4, a frost prediction framework is proposed in Chapter

5. The proposed framework achieved model-based control of the frost protection equipment. The

framework adopted a modular design with three modules: the LPM, RPM, and MM. The LPM

is the standard frost prediction model trained with local historical data and accepts local sensor

readings. While the local sensor is unavailable or the frost protection equipment is operating, the

RPM predicts frost with data from external weather stations. The MM manages and merges the

results from the prior two modules. From the results, the Kalman filter is in favor over the particle

filter as the merging algorithm to merge the prediction results due to the similar RMSEs and lower

processing requirements to the particle filter. Compared with the traditional method, the proposed

framework has higher true positive rates and lower false discovery rates when the transmission

period is 1, 5, or 10 minutes. However, a high false discovery rate of 43.70% and the energy

consumption of the LPM can be further improved. With higher true positive rates than the sole

operation of an RPM, Chapter 5 complements the response to Research Question 5 provided by

Chapter 4. In Chapter 6, the limitations of high false discovery rates and energy consumption

(Research Question 6) of the LPM are discussed.

The proposed prediction method in Chapter 6 aims to eliminate energy requirements and main-

tenance costs of centralized servers by adopting the edge computing paradigm. The energy con-

sumption of the edge-based method is compared with the consumption of the transmission-based

method as the response to Research Question 6. Frost prediction models are deployed directly

on the local sensor node to trade the higher radio energy requirement for the lower computation

energy requirement. Other than that, spatially generalized frost prediction models are proposed to

remove the requirement of historical data for training the more common local prediction models.

These generalized models are trained by existing data from multiple weather stations. Therefore,

data collection is no longer required at new sites. The energy consumption of the proposed edge-

based method is tested against a transmission-based method deployed with LoRa. As a result,

the energy consumption of the edge-based method is less than the transmission-based method.

However, this difference is reduced with the increase in inference/transmission period. As for the

false discovery rate, the replacement of the baseline models with the generalized models induced

a 40.03% decrease in frost protection equipment operating hours. The decline of the prediction

window from an hour to 30 minutes and 15 minutes further reduced the false discovery rate to

14.14%.

7.2 Future Work

The original motivation of this research expressed concerns about possible food shortages caused

by the growing world population. Frost predicting and protection systems were studied to address

these concerns. From these studies, there are still limitations to be addressed shaped by the visions
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of future developments. The future works derived from this thesis are:

1. Increase the accuracy of the weak predictors from the spatial interpolation-based methods.

2. Define and propose important requirements of standard datasets to enable fair comparisons

between future frost prediction model types.

3. Specify a set of important and vulnerable plants for frost and study their frost tolerance. This

study could later standardize the model accuracy requirements of frost prediction models.

7.2.1 Increase the Accuracy of Weak Predictors

The true positive and false discovery rates of frost detection methods are limited by the accuracy

or loss of the weak predictor corresponding to each weather station. The weak predictors utilize

end-to-end frost prediction methods based on spatial interpolation. Other methods should be tested

to seek the improvement of accuracy. Another method could be spatially generalized models of

the weak predictors. Other than end-to-end methods, predictions with multiple stages could be

evaluated. For example, the environmental parameters of the target location could be obtained

through spatial interpolation. A prediction with generalized frost prediction models could provide

the results using these parameters.

7.2.2 Define and Propose Important Requirements of Standard Datasets

During this study, there are no standard methods or benchmarks to evaluate the performance or

effectiveness of frost prediction methods. The evaluated frost prediction and protection works

referred to by this thesis experimented with local, private datasets. The establishment of standard

datasets and testing procedures would enable fair comparisons between frost prediction methods

and reduce the workload for future model development. The standard datasets should contain

data over the world. This empowers generalized frost studies and distinct studies with specified

climate, location.

7.2.3 Study the Frost Tolerance of Important and Vulnerable Plants

The proposed methods demonstrated the ability of models to predict frost-related parameters.

However, the accuracy requirements of these regression models are not defined. The relationship

between frost damage and related parameters should be carefully tested with controlled exper-

iments. These experiments should reveal the major parameters inducing frost damage and the

effect of changing each parameter on time to frost damage. To mitigate future food shortages,

food crops intolerant to frost, such as wheat, should be studied first.
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[228] V. Beyá-Marshall, J. Herrera, F. Santibáñez, and T. Fichet, “Microclimate modification

under the effect of stationary and portable wind machines,” Agricultural and Forest Meteo-

rology, vol. 269-270, pp. 351 – 363, May 2019. 61, 63, 64

[229] M. A. K. Jaradat, M. A. Al-Nimr, and M. N. Alhamad, “Smoke modified environment for

crop frost protection: a fuzzy logic approach,” Computers and Electronics in Agriculture,

vol. 64, no. 2, pp. 104 – 110, Dec. 2008. 64, 65, 66, 114, 115, 130, 131

[230] A. A. Ghaemi, M. R. Rafiee, and A. R. Sepaskhah, “Tree-temperature monitoring for frost

protection of orchards in semi-arid regions using sprinkler irrigation,” Agricultural Sciences

in China, vol. 8, no. 1, pp. 98 – 107, Jan. 2009. 64, 65, 66, 114, 115, 130, 131

[231] S. A. Alboon, A. T. Alqudah, H. R. Al-Zoubi, and A. A. Athamneh, “Fully automated smart

wireless frost prediction and protection system using a fuzzy logic controller,” Int. J. Artif.

Intell. Soft Comput., vol. 3, no. 2, pp. 165–184, Sep. 2012. 64, 65, 66, 114, 115, 130, 131

[232] J. R. Rozante, E. R. Gutierrez, P. L. da Silva Dias, A. de Almeida Fernandes, D. S. Alvim,

and V. M. Silva, “Development of an index for frost prediction: Technique and validation,”

Meteorological Applications, vol. Early View, May 2019. 65, 66, 114, 115, 130, 131

[233] E. Pacini, L. Iacono, C. Mateos, and C. Garcı́a Garino, “A bio-inspired datacenter selection

scheduler for federated clouds and its application to frost prediction,” Journal of Network

and Systems Management, vol. 27, no. 3, pp. 688–729, Jul. 2019. 65, 66, 130, 131

[234] X. Shi, X. An, Q. Zhao, H. Liu, L. Xia, X. Sun, and Y. Guo, “State-of-the-art internet of

things in protected agriculture,” Sensors, vol. 19, no. 8, p. 1833, Apr. 2019. 66

[235] A. Ikpehai, B. Adebisi, K. M. Rabie, K. Anoh, R. E. Ande, M. Hammoudeh, H. Gacanin,

and U. M. Mbanaso, “Low-power wide area network technologies for internet-of-things: A

comparative review,” IEEE Internet of Things Journal, vol. 6, no. 2, pp. 2225–2240, Apr.

2019. 66

[236] N. Kaur and S. K. Sood, “An energy-efficient architecture for the internet of things (IoT),”

IEEE Systems Journal, vol. 11, no. 2, pp. 796–805, June 2017. 66, 67

[237] Eurostat, Agriculture, forestry and fishery statistics. Publications Office of the European

Union, 2018. 66

[238] A. B. of Statistics. (2018) Agricultural commodities, australia, 2015-16. [On-

line]. Available: https://www.abs.gov.au/AUSSTATS/abs@.nsf/Lookup/7121.0Main+

Features12015-16 66

168

https://www.abs.gov.au/AUSSTATS/abs@.nsf/Lookup/7121.0Main+Fea tures12015-16
https://www.abs.gov.au/AUSSTATS/abs@.nsf/Lookup/7121.0Main+Fea tures12015-16


BIBLIOGRAPHY

[239] N. C. Luong, D. T. Hoang, P. Wang, D. Niyato, D. I. Kim, and Z. Han, “Data collection

and wireless communication in internet of things (IoT) using economic analysis and pricing

models: A survey,” IEEE Communications Surveys Tutorials, vol. 18, no. 4, pp. 2546–2590,

Fourthquarter 2016. 66, 67

[240] X. Chu, I. F. Ilyas, S. Krishnan, and J. Wang, “Data cleaning: Overview and emerging

challenges,” in Proceedings of the 2016 International Conference on Management of Data,

ser. SIGMOD ’16. New York, NY, USA: ACM, Jun. 2016, pp. 2201–2206. 68

[241] J. Xie, F. R. Yu, T. Huang, R. Xie, J. Liu, C. Wang, and Y. Liu, “A survey of machine learn-

ing techniques applied to software defined networking (sdn): Research issues and chal-

lenges,” IEEE Communications Surveys Tutorials, vol. 21, no. 1, pp. 393–430, Firstquarter

2019. 68
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APPENDIX A. WEATHER STATION LOCATION AND FOLD DISTRIBUTION

Table A.1: Weather Station Location and Fold Distribution (Bold Stations Appeared in Chapter 3)

Station ID Latitude (De-
grees)

Longitude (De-
grees)

Fold Num-
ber

70351 -35.3088 149.2004 0

70217 -36.2939 148.9725 0

65103 -33.3627 147.9205 0

66194 -33.9057 151.1134 0

68192 -34.0390 150.6890 0

75041 -34.2487 146.0695 0

66037 -33.9465 151.1731 0

63291 -33.4119 149.6540 0

73138 -34.2493 148.2475 0

51049 -31.9861 147.9489 0

62100 -32.7244 150.2290 0

58198 -28.8353 153.5585 0

67113 -33.7195 150.6783 0

61078 -32.7939 151.8364 0

61363 -32.0335 150.8264 0

69148 -35.9004 150.1437 1

61287 -32.1852 150.1737 1

51161 -30.9776 148.3798 1

74148 -34.7050 146.5140 1

58208 -28.8824 153.0618 1

66161 -33.9925 150.9489 1

62101 -32.5628 149.6149 1

47048 -32.0012 141.4694 1

65068 -33.1281 148.2428 1

69139 -36.6722 149.8191 1
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Table A.2: Weather Station Location and Fold Distribution (Bold Stations Appeared in Chapter
3)(Cont.)

Station ID Latitude (De-
grees)

Longitude (De-
grees)

Fold Num-
ber

59007 -31.0711 152.7717 1

58214 -28.8305 153.2601 1

60141 -31.8895 152.5120 1

68262 -34.3335 150.2670 1

66137 -33.9176 150.9837 1

58012 -29.4325 153.3632 2

75019 -34.5412 144.8345 2

56238 -30.5273 151.6158 2

63292 -33.6185 150.2741 2

49000 -32.8833 144.3092 2

67105 -33.6004 150.7761 2

63303 -33.3768 149.1263 2

58077 -29.6224 152.9605 2

68257 -34.0615 150.7735 2

66212 -33.8338 151.0718 2

55202 -30.9537 150.2494 2

68242 -34.6532 150.8609 2

74258 -35.5575 144.9458 2

65111 -33.8382 148.6540 2

58212 -29.1830 153.3964 2

70330 -34.8085 149.7311 3

48245 -30.0362 145.9521 3

54038 -30.3154 149.8302 3

72160 -36.0690 146.9509 3

72162 -36.2304 148.1405 3
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APPENDIX A. WEATHER STATION LOCATION AND FOLD DISTRIBUTION

Table A.3: Weather Station Location and Fold Distribution (Bold Stations Appeared in Chapter
3)(Cont.)

Station ID Latitude (De-
grees)

Longitude (De-
grees)

Fold Num-
ber

72161 -35.9371 148.3779 3

50017 -33.9382 147.1962 3

60139 -31.4335 152.8655 3

61375 -33.2894 151.2107 3

68072 -34.9469 150.5353 3

68239 -34.5253 150.4217 3

61425 -33.4351 151.3614 3

46012 -31.5194 143.3850 3

64017 -31.3330 149.2699 3

69128 -35.1103 150.0826 3

68228 -34.3691 150.9291 4

67108 -33.8969 150.7281 4

69137 -37.2622 150.0504 4

52088 -30.0372 148.1223 4

61392 -31.7416 150.7937 4

67119 -33.8510 150.8567 4

55325 -31.0742 150.8362 4

61055 -32.9184 151.7985 4

50137 -33.0682 147.2133 4

69138 -35.3635 150.4828 4

61366 -33.2814 151.5766 4

65070 -32.2206 148.5753 4

61260 -32.7886 151.3377 4

69147 -36.9077 149.8989 4

68241 -34.5638 150.7900 4
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APPENDIX B. RASTER MAPS GENERATED FROM MODELS CREATED BY
DIFFERENT WEATHER STATIONS

Figure B.1: Raster Maps from Models Using Weather Station 58212 as Climate Data Source
Trained with the Datasets from Folds 0, 1, 3, and 4.

Figure B.2: Raster Maps from Models Using Weather Station 72160 as Climate Data Source
Trained with the Datasets from Folds 0, 1, 2, and 4.
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Figure B.3: Raster Maps from Models Using Weather Station 67119 as Climate Data Source
Trained with the Datasets from Folds 0–3.

Figure B.4: Raster Maps from Weighted Averaged Results per Fold.
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APPENDIX B. RASTER MAPS GENERATED FROM MODELS CREATED BY
DIFFERENT WEATHER STATIONS

Figure B.5: Absolute Error Map from Weighted Averaged Results Between Folds.
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