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Notation

In this chapter, we introduce acronyms that are frequently used throughout this thesis.

Acronyms

Table 1: Table with acronyms used in the thesis with their meanings.

Acronym Meaning

GLMM Generalized linear mixed model

GVA Gaussian variational approximation

MLE Maximum likelihood estimation

TAP Thouless-Anderson-Palmer



v

Contents

1 Introduction and Background 2
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Thesis Aim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Matrix Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4.1 Difference Between Two Matrix Inverses . . . . . . . . . . . . . . 4
1.4.2 Other Useful Matrix Identities . . . . . . . . . . . . . . . . . . . 4
1.4.3 Block Matrix Inversion . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4.4 The vec and vech Operators . . . . . . . . . . . . . . . . . . . . . 6

1.4.4.1 The Commutation Matrix . . . . . . . . . . . . . . . . . 7
1.4.4.2 The Duplication Matrix . . . . . . . . . . . . . . . . . . 7

1.4.5 Kronecker Products and Related Properties . . . . . . . . . . . . 8
1.4.6 Vector and Matrix Norms . . . . . . . . . . . . . . . . . . . . . . 8

1.4.6.1 Euclidean Norm . . . . . . . . . . . . . . . . . . . . . . 8
1.4.6.2 Frobenius Norm . . . . . . . . . . . . . . . . . . . . . . 8
1.4.6.3 Spectral Norm . . . . . . . . . . . . . . . . . . . . . . . 9

1.4.7 Eigenvalue Bound Results . . . . . . . . . . . . . . . . . . . . . . 10
1.4.7.1 Matrix Identities from Harville (1977) . . . . . . . . . . 10

1.4.8 Vector Differential Calculus . . . . . . . . . . . . . . . . . . . . . 11
1.5 Key Integral Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.5.1 Useful Integral Results . . . . . . . . . . . . . . . . . . . . . . . . 12
1.5.2 Integral Form of the Matrix Square Root . . . . . . . . . . . . . 13

1.6 Key Expectation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.6.1 Law of Total Expectation . . . . . . . . . . . . . . . . . . . . . . 13
1.6.2 Jensen’s Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.6.3 Markov’s Inequality . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.6.4 Cauchy-Schwarz Inequality . . . . . . . . . . . . . . . . . . . . . 14

1.7 Exponential Families . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.7.1 One-Parameter Exponential Families . . . . . . . . . . . . . . . . 14
1.7.2 Two-Parameter Exponential Families . . . . . . . . . . . . . . . . 17

1.8 Generalized Linear Mixed Models . . . . . . . . . . . . . . . . . . . . . . 17
1.9 Maximum Likelihood for Generalized Linear Mixed Models . . . . . . . 19

1.9.1 The Likelihood Function . . . . . . . . . . . . . . . . . . . . . . . 19
1.9.2 Maximum Likelihood Estimation . . . . . . . . . . . . . . . . . . 20



vi

1.9.3 Asymptotic Properties of Maximum Likelihood Estimators for
Generalized Linear Mixed Models . . . . . . . . . . . . . . . . . . 21

1.10 Asymptotics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.10.1 Convergence of Random Variables . . . . . . . . . . . . . . . . . 23

1.10.1.1 Convergence in Probability . . . . . . . . . . . . . . . . 23
1.10.1.2 Convergence in Distribution . . . . . . . . . . . . . . . 23
1.10.1.3 Continuous Mapping Theorem . . . . . . . . . . . . . . 24
1.10.1.4 Slutsky’s Theorem . . . . . . . . . . . . . . . . . . . . . 24
1.10.1.5 Cramér-Wold Device . . . . . . . . . . . . . . . . . . . 24

1.10.2 Stochastic Order Notation . . . . . . . . . . . . . . . . . . . . . . 25
1.10.3 Other Tools for Working with Asymptotic Expansions . . . . . . 26

1.10.3.1 Inversion of Asymptotic Series . . . . . . . . . . . . . . 26
1.11 Frequentist Variational Approximations . . . . . . . . . . . . . . . . . . 27

1.11.1 Thouless-Anderson-Palmer Variational Approach . . . . . . . . . 29

2 Preliminary Lemmas and Their Proofs 31
2.1 Lemma 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2 Lemma 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3 Lemma 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.4 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4.1 Proof of Lemma 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.4.2 Proof of Lemma 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.4.2.1 A Fundamental Inequality for the Spectral Norm of a
Vectorised Matrix . . . . . . . . . . . . . . . . . . . . . 35

2.4.2.2 Notational Definitions . . . . . . . . . . . . . . . . . . . 35
2.4.2.3 Derivation of (2.7) . . . . . . . . . . . . . . . . . . . . . 36
2.4.2.4 Expression for (2.6) with Lagrange Form of Remainder 37
2.4.2.5 Spectral Norm Bounding of (2.9) . . . . . . . . . . . . . 38
2.4.2.6 Strategy for Proving (2.10) . . . . . . . . . . . . . . . . 38
2.4.2.7 Proof of Result (2.16) . . . . . . . . . . . . . . . . . . . 39
2.4.2.8 Proof of Result (2.17) . . . . . . . . . . . . . . . . . . . 45
2.4.2.9 Summary of Moment Assumptions . . . . . . . . . . . . 48
2.4.2.10 Succinct Expression for Moment Assumptions . . . . . 49
2.4.2.11 A Sufficient Condition for the Moment Assumptions . . 50

2.4.3 Proof of Lemma 3 . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.4.3.1 Matrix Extension of Results Concerning Integrals of

Half-Cauchy Forms . . . . . . . . . . . . . . . . . . . . 51
2.4.3.2 Derivation of Integrand Expressions . . . . . . . . . . . 52
2.4.3.3 Succinct Expressions for the Components in (2.53) . . . 59
2.4.3.4 Simplification of Integrals . . . . . . . . . . . . . . . . . 60
2.4.3.5 Explicit Expressions for (2.54) . . . . . . . . . . . . . . 60
2.4.3.6 Convergence in Probability Limits of the Functions in

(2.55) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.4.4 Multivariate Integral Limits for the Matrix Square Root Result . 61

2.4.4.1 Overview of this Appendix . . . . . . . . . . . . . . . . 61
2.4.4.2 Computing Spectral Norms . . . . . . . . . . . . . . . . 61



vii

2.4.4.3 Verifying Convergence in Probability Limits of the Func-
tions in (2.55) . . . . . . . . . . . . . . . . . . . . . . . 68

2.4.4.4 Conclusion for Multivariate Integral Limits for the Ma-
trix Square Root Result . . . . . . . . . . . . . . . . . . 71

3 Usable Asymptotic Normality Results and Inference for Gaussian
Response Linear Mixed Models 72
3.1 Model Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.2 Notation Required for Fisher Information Calculations . . . . . . . . . . 74
3.3 Asymptotic Normality Theorem . . . . . . . . . . . . . . . . . . . . . . . 74
3.4 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.4.1 Linear Mixed Models with Multivariate Fixed and Random Effects 75
3.4.2 Expression for Top Left Block of Fisher Information Matrix . . . 77

3.4.2.1 Top Left Block of (3.5) . . . . . . . . . . . . . . . . . . 77
3.4.2.2 Top Right Block of (3.5) . . . . . . . . . . . . . . . . . 77
3.4.2.3 Bottom Left Block of (3.5) . . . . . . . . . . . . . . . . 78
3.4.2.4 Bottom Right Block of (3.5) . . . . . . . . . . . . . . . 78

3.4.3 Expression for Bottom Right Block of Fisher Information Matrix 82
3.4.3.1 Top Left Block of (3.10) . . . . . . . . . . . . . . . . . . 82
3.4.3.2 Top Right Block of (3.10) . . . . . . . . . . . . . . . . . 83
3.4.3.3 Bottom Left Block of (3.10) . . . . . . . . . . . . . . . 84
3.4.3.4 Bottom Right Block of (3.10) . . . . . . . . . . . . . . . 84

3.4.4 The Inverse of the Fisher Information Matrix . . . . . . . . . . . 85
3.4.4.1 Expression for Top Left Block of Inverse Fisher Infor-

mation Matrix . . . . . . . . . . . . . . . . . . . . . . . 85
3.4.4.2 Expression for Bottom Right Block of Inverse Fisher

Information Matrix . . . . . . . . . . . . . . . . . . . . 87
3.4.5 Derivation of the Final Asymptotic Normality Result for Gaussian

Response Linear Mixed Models . . . . . . . . . . . . . . . . . . . 90

4 Usable Asymptotic Normality Results and Inference for Generalized
Linear Mixed Models 93
4.1 Model Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.3 Asymptotic Normality Theorem . . . . . . . . . . . . . . . . . . . . . . . 96
4.4 Dispersion Parameter Extension . . . . . . . . . . . . . . . . . . . . . . 97
4.5 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.5.1 Multivariate Extension of (2.6) of Tierney et al. (1989) . . . . . . 98
4.5.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.5.1.2 Multivariate Derivative Notation . . . . . . . . . . . . . 99
4.5.1.3 Check of the Miyata (2004) Appendix A Result for the

Univariate Case . . . . . . . . . . . . . . . . . . . . . . 99
4.5.1.4 The Multivariate Case . . . . . . . . . . . . . . . . . . . 100
4.5.1.5 Final Expression for the Multivariate Extension of (2.6)

of Tierney et al. (1989) . . . . . . . . . . . . . . . . . . 101
4.5.2 Proof of Theorem 12 . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.5.2.1 Constructing the Fisher Information Matrix . . . . . . 101



viii

4.5.2.2 Expression for Conditional Density Function . . . . . . 102
4.5.2.3 Introduction of Useful Notation and its Properties . . . 103
4.5.2.4 Computing an Asymptotic Approximation for the First

Entry in (4.7) . . . . . . . . . . . . . . . . . . . . . . . 105
4.5.2.5 Computing an Asymptotic Approximation for the Sec-

ond Entry in (4.7) . . . . . . . . . . . . . . . . . . . . . 109
4.5.2.6 Computing an Asymptotic Approximation for the Third

Entry in (4.7) . . . . . . . . . . . . . . . . . . . . . . . 112
4.5.2.7 The Quadratic Conditional Expectations of the Scores . 115
4.5.2.8 Treating the Leading Term of the (2,2)-Entry of the

Fisher Information Matrix . . . . . . . . . . . . . . . . 122
4.5.2.9 The Fisher Information Matrix . . . . . . . . . . . . . . 123
4.5.2.10 The Inverse of the Fisher Information Matrix . . . . . . 123
4.5.2.11 Derivation of the Final Asymptotic Normality Result

for Generalized Response Linear Mixed Models . . . . . 126
4.5.3 The Reciprocal Dispersion Parameter Fisher Information Block

for Gamma Responses . . . . . . . . . . . . . . . . . . . . . . . . 128
4.5.3.1 The Conditional Density Function . . . . . . . . . . . . 128
4.5.3.2 The Score of the Reciprocal Dispersion Parameter . . . 131
4.5.3.3 Computing the Fisher Information Block for the Recip-

rocal Dispersion Parameter . . . . . . . . . . . . . . . . 132
4.5.3.4 Asymptotic Normality and Variance Results for the Max-

imum Likelihood Estimator of the Reciprocal Dispersion
Parameter . . . . . . . . . . . . . . . . . . . . . . . . . 145

4.5.3.5 Asymptotic Normality and Variance Results for the Max-
imum Likelihood Estimator of the Dispersion Parameter 145

5 Consequences and Applications of Asymptotic Normality Results 146
5.1 Asymptotically Valid Inference . . . . . . . . . . . . . . . . . . . . . . . 147

5.1.1 Construction of Asymptotically Valid Confidence Intervals . . . . 147
5.1.2 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.2 Approximate Optimal Design . . . . . . . . . . . . . . . . . . . . . . . . 155
5.2.1 Background and Model Description . . . . . . . . . . . . . . . . . 155
5.2.2 Approximate Locally D-Optimal Design Determination . . . . . 156
5.2.3 Illustration of Theorem 13 . . . . . . . . . . . . . . . . . . . . . . 158

5.3 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
5.3.1 Model Description . . . . . . . . . . . . . . . . . . . . . . . . . . 159
5.3.2 Asymptotic Assumption for Support Point Sample Sizes . . . . . 161
5.3.3 Useful Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
5.3.4 Key Moment Results . . . . . . . . . . . . . . . . . . . . . . . . . 162
5.3.5 The Fisher Information Matrix . . . . . . . . . . . . . . . . . . . 164
5.3.6 The Asymptotic D-Optimality Criterion . . . . . . . . . . . . . . 164
5.3.7 Alternative Final Asymptotic D-optimality Criterion . . . . . . . 166
5.3.8 Special Distribution Cases . . . . . . . . . . . . . . . . . . . . . . 167

6 Thouless-Anderson-Palmer Enhancement of Generalized Linear Mixed
Models 169



ix

6.1 Model Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
6.2 The Gaussian Variational Approximate Log-Likelihood . . . . . . . . . . 170
6.3 Overview of Thouless-Anderson-Palmer Enhancement . . . . . . . . . . 172
6.4 The Thouless-Anderson-Palmer Approximate Negative Log-Likelihood . 173
6.5 Thouless-Anderson-Palmer Enhancement for Poisson Generalized Linear

Mixed Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
6.5.1 The Gaussian Variational Approximate Log-Likelihood for Simu-

lation Set-Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
6.5.2 The Thouless-Anderson-Palmer Negative Approximate Log-Likelihood

for Simulation Set-Up . . . . . . . . . . . . . . . . . . . . . . . . 176
6.5.3 Optimisation Issues . . . . . . . . . . . . . . . . . . . . . . . . . 176

6.5.3.1 A Simplified Version of the Optimisation Problem . . . 177
6.5.3.2 Simplified Simulation Study . . . . . . . . . . . . . . . 178
6.5.3.3 Results and Conclusion . . . . . . . . . . . . . . . . . . 179

6.5.4 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
6.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

6.6.1 Proof of Result 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
6.6.1.1 Main Quantity in Onsager’s Correction Term . . . . . . 185
6.6.1.2 An Explicit Expression for the First Term in (6.10) . . 185
6.6.1.3 An Explicit Expression for the Second Term in (6.10) . 189
6.6.1.4 An Explicit Expression for the Third Term in (6.10) . . 190
6.6.1.5 The Resultant Expression for the Main Quantity in the

Onsager’s Correction Term . . . . . . . . . . . . . . . . 190
6.6.2 Expressing the Main Quantity in the Onsager’s Correction Term

Using Integral Families . . . . . . . . . . . . . . . . . . . . . . . 192
6.6.3 Proof of Result 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

6.6.3.1 Simplifications in Poisson Case . . . . . . . . . . . . . . 193

7 Extensions to Noncanonical Link Generalized Linear Mixed Models 195
7.1 Asymptotic Normality Results Involving Noncanonical

Links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
7.1.1 Model Description . . . . . . . . . . . . . . . . . . . . . . . . . . 196
7.1.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
7.1.3 Asymptotic Normality Theorem . . . . . . . . . . . . . . . . . . 198

7.2 Thouless-Anderson-Palmer Approach Involving Noncanonical Links . . . 199
7.2.1 Model Description . . . . . . . . . . . . . . . . . . . . . . . . . . 199
7.2.2 The Gaussian Variational Approximate Log-Likelihood . . . . . . 200
7.2.3 Overview of Thouless-Anderson-Palmer Enhancement . . . . . . 200

7.3 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
7.3.1 Constructing the Fisher Information Matrix . . . . . . . . . . . . 202
7.3.2 Expression for Conditional Density Function . . . . . . . . . . . 202
7.3.3 Deriving Expressions for the Expectation and Variance of the

Response Variable . . . . . . . . . . . . . . . . . . . . . . . . . . 203
7.3.4 Introduction of Useful Notation and Its Properties . . . . . . . . 205
7.3.5 Key Conditional Moment Results . . . . . . . . . . . . . . . . . . 205
7.3.6 Computing an Asymptotic Approximation for the First Entry in

(7.9) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207



CONTENTS x

7.3.6.1 The First Term of the First Score . . . . . . . . . . . . 210
7.3.6.2 The Other Terms of the First Score . . . . . . . . . . . 210
7.3.6.3 Overall Leading Term Expression for the First Score . . 210

7.3.7 Computing an Asymptotic Approximation for the Second Entry
in (7.9) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
7.3.7.1 The First Term of the Second Score . . . . . . . . . . . 211
7.3.7.2 The Other Terms of the Second Score . . . . . . . . . . 211
7.3.7.3 Overall Leading Term Expression for the Second Score 211

7.3.8 Computing an Asymptotic Approximation for the Third Entry in
(7.9) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
7.3.8.1 The First Term of the Third Score . . . . . . . . . . . . 212
7.3.8.2 The Other Terms of the Third Score . . . . . . . . . . . 212
7.3.8.3 Overall Leading Term Expression for the Third Score . 212

7.3.9 The Quadratic Conditional Expectations of the Scores . . . . . . 212
7.3.9.1 The Conditional Expectation of the Square of the First

Score . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
7.3.9.2 The Conditional Expectation of the Square of the Second

Score . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
7.3.9.3 The Conditional Expectation of the Square of the Third

Score . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
7.3.10 The Fisher Information Matrix . . . . . . . . . . . . . . . . . . . 216
7.3.11 The Inverse of the Fisher Information Matrix . . . . . . . . . . . 218
7.3.12 Final Asymptotic Normality Result . . . . . . . . . . . . . . . . . 218

8 Discussion and Conclusion 219

9 References 223



1

Abstract

Generalized linear mixed models are an essential group of models for analysing many

present-day complex data sets, especially those that contain non-normal and correlated

response data. Despite the large volume of research concerning this group of models,

there is very little theory concerning the statistical properties of maximum likelihood

estimators for generalized linear mixed models. Existing theoretical results available

for the asymptotic variance-covariance matrix for such estimators contain limits and

expectations over the response distribution, hence such results are not in ready-to-use

forms when carrying out tasks such as constructing studentized confidence intervals

or optimal design determination. In this thesis, we derive precise asymptotic results

for likelihood-based generalized linear mixed model analysis. The novel asymptotic

normality results are derived for both cases involving either a canonical or noncanonical

link function. In our approach, we derive the exact leading term behaviour of the Fisher

information matrix when both the number of groups and number of observations within

each group diverge. This leads to asymptotic normality results with explicit and simple

studentizable forms. The implications of these results in optimal design theory is also

explored, leading to simpler and more direct determination of approximate locally D-

optimal designs. Towards the end of this thesis, a Thouless-Anderson-Palmer approach

is introduced for modern statistical inference for generalized linear mixed models. Such

methods have proven to provide accurate approximations to problems arising in machine

learning contexts. However, statistical applications such as generalized linear mixed

model analysis have not been investigated. Thus, we derive results for implementing

the Thouless-Anderson-Palmer frequentist variational approach to generalized linear

mixed models and analyse the accuracy of its variational estimates.
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Chapter 1

Introduction and Background

This chapter serves as an introduction for the thesis and also presents the necessary

background information and theory required for the remaining chapters in this thesis.

Note that the results, definitions and work presented in this chapter are not novel.

1.1 Introduction

In recent developments in statistical analysis, generalized linear mixed models (GLMMs)

have become an essential group of models for analysing many present-day complex

data sets, causing it to become a rapidly growing area of research. These models have

been deemed useful and practical when accounting for overdispersion is necessary, a

common occurrence when working with outcomes that have underlying Poisson or

binomial distributions. In addition, GLMMs can also be applied widely in areas such as

longitudinal data analysis and disease mapping (Breslow and Clayton, 1993).

A popular approach for fitting GLMMs is maximum likelihood estimation (MLE).

Problems however arise as while the log-likelihood of a GLMM can be expressed

mathematically, it involves integration over the random effects component of the model,

which cannot be evaluated as closed form integrals. In some cases, to counter this

hindrance caused by integral intractability and to accurately evaluate these integrals,

standard quadrature techniques such as Gauss-Hermite quadrature can be used. Many

software packages are also available to fit these GLMMs. One such example is the

package lme4 (Bates et al., 2015) in the R computing environment (R Core Team, 2022)

and contains the function glmer() which is used to fit GLMMs.
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While estimation by maximum likelihood for GLMMs is well and widely established,

asymptotic normality results that can be used for practical purposes such as constructing

confidence intervals and Wald tests via Studentization are currently unavailable in the

existing generalized linear mixed model literature.

With regards to possible developments in methodology used for GLMMs, one may

consider the Thouless-Anderson-Palmer (TAP) paradigm, which was developed in

statistical physics literature for spin glass models (Thouless et al., 1977). Recently, there

has been a realisation that it provides accurate approximations to problems arising in

machine learning learning contexts. The TAP approach is also able to overcome issues

involving intractable integrals, a common problem that hinders frequentist inference

carried out on GLMMs. However, statistical applications such as longitudinal data

analysis and multilevel models analysis, which may benefit from using TAP methodology,

have not been investigated.

1.2 Thesis Aim

This thesis aims to address some of the gaps currently present in the immense statistical

literature available for GLMMs in the frequentist setting. We firstly aim to develop

novel asymptotic theory for maximum quasi-likelihood estimators for GLMMs. The

goal is to develop such theory for both cases where one may choose to either use a

canonical link or noncanonical link as part of the GLMM, dependent on the type of

data being used. Following that, we aim to assess the efficacy of the confidence intervals

constructed using the newly derived asymptotic normality distribution for maximum

quasi-likelihood estimators for GLMMs. We also aim to explore applications for the

asymptotic results, such as its implications in optimal design theory. Last but not least,

we aim to develop theory for implementing the TAP frequentist variational approach to

generalized linear mixed models and analyse the accuracy of its variational estimates.

1.3 Outline

Following the introductory chapter, Chapter 2 introduces lemmas that serve as essential

statistical tools for carrying out the asymptotic derivations present in this thesis.

Chapter 3 then starts off by dealing with the Gaussian generalized linear mixed model

and presents a theorem concerning the joint asymptotic normality of all of the maximum
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quasi-likelihood estimators for such a model. The theorem is then extended to the

generalized linear mixed model case in Chapter 4. Consequences and applications of

the novel asymptotic normality results are then investigated and discussed in Chapter

5. Chapter 6 then turns to newly developed methodology for GLMMs and develops

theory for usage of the TAP variational method for GLMMs and investigates if there

are improvements in the statistical approximations. Since only canonical links are

considered in Chapters 4 and 6, Chapter 7 further extends the novel asymptotic results

and TAP variational approximation derivations to cater for noncanonical links as well.

The thesis ends off with a discussion and conclusion based on the work presented so far.

1.4 Matrix Theory

In this section, we present some background on the matrix theory required for the

derivations present in this thesis.

1.4.1 Difference Between Two Matrix Inverses

For any two equal-sized invertible matrices A and B, we have,

A−1 −B−1 = A−1(B −A)B−1. (1.1)

1.4.2 Other Useful Matrix Identities

Let M and N be invertible square matrices of the same size. Using an iterative

application of the Sherman-Morrison-Woodbury formula, we have,

(M −N)−1 =
∞∑
k=0

(M−1N)kM−1, (1.2)

for matrices such that the spectral radius of M−1N is less than 1. Let A and B be

invertible square matrices and I be an identity matrix with all the matrices having the

same size. Using (1.2) and setting M = I and N = −B−1A−1 results in the following



1.4. MATRIX THEORY 5

matrix identity

(I +AB)−1A =
[
(AB){(AB)−1 + I}

]−1
A

= (I +B−1A−1)−1B−1A−1A

= (I +B−1A−1)−1B−1

= (I +B−1A−1 + . . . )B−1

. (1.3)

Let A, B and C be invertible square matrices and I be an identity matrix with all the

matrices having the same size. Using (1.2) and setting M = I and N = −B−1A−1

results in the following matrix identity

(I +AB)−1C =
[
(AB){(AB)−1 + I}

]−1
C

= (I +B−1A−1)−1B−1A−1C

= (I +B−1A−1 + . . . )B−1A−1C.

(1.4)

Let A and B be invertible square matrices and I be an identity matrix with all the

matrices having the same size. Using (1.2) and setting M = A and N = −B−1 results

in the following matrix identity

B(I +AB)−1 = (B−1)−1(I +AB)−1

=
{
(I +AB)(B−1)

}−1

= (B−1 +A)−1

=
{
A− (−B−1)

}−1

= A−1 −A−1B−1A−1 + . . .

(1.5)

1.4.3 Block Matrix Inversion

The following definition instructs how a block matrix can be inverted.

Result 1. Consider the following matrix which has been partitioned into four blocksA B

C D


where A and D are square blocks of arbitrary size and blocks B and C are conformable

such that the matrix can be properly partitioned. The matrix can then be inverted
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blockwise as followsA B

C D

−1

=

A−1 +A−1B(D −CA−1B)−1CA−1 −A−1B(D −CA−1B)−1

−(D −CA−1B)−1CA−1 (D −CA−1B)−1

 .
(1.6)

By permuting the blocks, an equivalent result isA B

C D

−1

=

 (A−BD−1C)−1 −(A−BD−1C)−1BD−1

−D−1C(A−BD−1C)−1 D−1 +D−1C(A−BD−1C)−1BD−1

 .
(1.7)

Note that matrices A and D −CA−1B must be invertible when using the block

matrix inversion result presented in (1.6). Likewise, matrices D and A−BD−1C must

be invertible when using the block matrix inversion result presented in (1.7).

1.4.4 The vec and vech Operators

Let A be a m× n matrix and let aij represent the element in the matrix located in the

i-th row and j-th column. For any matrix A, vec(A) is defined as the mn× 1 vector

which is constructed from the columns in A being stacked on top each other, one column

after the other, from left to right. If A is a square d× d matrix, then vech(A) is defined

as a 1
2d(d+ 1)× 1 vector, where the entries including and below the diagonal of A, are

stacked on top each other, one column after the other, from left to right.

For example, if A is a 3× 3 square matrix, then we have the following matrix, vec

and vech operators, where

A =


a11 a12 a13

a21 a22 a23

a31 a32 a33
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with

vec(A) =



a11

a22

a31

a12

a22

a32

a13

a23

a33



and vech(A) =



a11

a21

a31

a22

a32

a33


.

1.4.4.1 The Commutation Matrix

The commutation matrix of order d, denoted by Kd, allows for the conversion between

the operators vec(A) and vec(AT ). It is the d2 × d2 matrix containing only zeroes and

ones such that

Kdvec(A) = vec(AT )

for all d× d matrices A. The following useful property regarding commutation matrices

also exists (Magnus and Neudecker, 1999):

KT
d = K−1

d = Kd. (1.8)

1.4.4.2 The Duplication Matrix

The duplication matrix of order d, denoted by Dd, allows for the conversion between

the operators vec(A) and vech(A). Dd is the unique d2 × 1
2d(d+1) matrix of zeros and

ones such that

vec(A) = Ddvech(A)

for all d× d matrices A. Finally, the Moore-Penrose inverse of Dd is defined as

D+
d = (DT

dDd)
−1DT

d .
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1.4.5 Kronecker Products and Related Properties

Let A be a m × n matrix and let B be a p × q matrix. The Kronecker product of

matrices A and B is denoted as A⊗B and it is the mp× nq matrix defined by
a11B . . . a1nB
...

...

am1B . . . amnB

 .
LetA,B,C andD be square matrices. Then some of the properties regarding Kronecker

products are as follows:

A⊗ (B +C) = A⊗B +A⊗C,

(A⊗B)(C ⊗D) = AC ⊗BD,

(A⊗B)−1 = A−1 ⊗B−1,

vec(ABC) = (CT ⊗A)vec(B) and

tr(ABCD) = vec(D)T (A⊗CT )vec(BT ).

1.4.6 Vector and Matrix Norms

In this subsection, we present a few vector and matrix norms and their properties.

1.4.6.1 Euclidean Norm

Let x ∈ Rd. Then, the Euclidean Norm of x is

∥x∥2 =
√
xTx.

1.4.6.2 Frobenius Norm

The Frobenius norm of a general matrix A is

∥A∥F ≡
√
trace(ATA).
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1.4.6.3 Spectral Norm

For a general symmetric matrix M , let us define the following:

λmin(M) ≡ smallest eigenvalue of M and λmax(M) ≡ largest eigenvalue of M .

The spectral norm of a general matrix A is such that

∥A∥S ≡
√
λmax(ATA).

If A is symmetric then

∥A∥S = λmax(A).

Also, if A is symmetric and positive definite, then the spectral decomposition of A is

A = Udiag(λ)UT

where UTU = I and λ is the vector containing the eigenvalues of A. We then have

A−1 = Udiag(1/λ)UT

and therefore

∥A−1∥S = 1/λmin(A).

The spectral norm also possesses the following sub-multiplicity property

∥AB∥S ≤ ∥A∥S∥B∥S

for any pair of matrices A and B such that the matrix product AB is defined.

Finally, suppose that A is a d× d matrix and 1d is the vector of ones. Then, using

the sub-multiplicity property of the spectral norm, we can claim that

∥1TdA1d∥S ≤ ∥1Td ∥S∥A∥S∥1d∥S.

Then

∥1Td ∥S =
√

largest eigenvalue of 1d1
T
d =

√
d

and

∥1d∥S =
√
largest eigenvalue of 1Td 1d =

√
d.
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Hence

∥1TdA1d∥S ≤ d∥A∥S.

1.4.7 Eigenvalue Bound Results

Let the eigenvalues of a d× d matrix M be denoted by

λ1(M), . . . , λd(M).

Theorem 8.1.5 of Golub and Van Loan (2013) states that, for any d× d matrices A and

E such that A and A+E are symmetric, we have

λj(A) + λmin(E) ≤ λj(A+E) ≤ λj(A) + λmax(E) for all 1 ≤ j ≤ d.

In particular, by choosing λj to correspond to λmin, we have

λmin(A+E) ≥ λmin(A) + λmin(E). (1.9)

1.4.7.1 Matrix Identities from Harville (1977)

For a general linear model

y = Xβ +Zα+ ε,

assume that y is a n × 1 response vector, X and Z are n × p and n × q matrices

respectively, β is a p × 1 vector of unobservable fixed effects, α is a q × 1 vector of

unobservable random effects and ε is a n× 1 vector of unobservable random errors. In

addition, the following properties apply where E(α) = 0, E(ε) = 0 and E(αTε) = 0.

Also let D = Cov(α),R = Cov(ε) and V = ZDZT +R such that Cov(y) = V , where

Cov( ) denotes the covariance function. Harville (1977) then provides the following

matrix identities.

V −1 ≡ R−1 −R−1ZD(I +ZTR−1ZD)−1ZTR−1, (1.10a)

ZTV −1 ≡ (I +ZTR−1ZD)−1ZTR−1. (1.10b)
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1.4.8 Vector Differential Calculus

Let f be a scalar-valued function with a vector x ∈ Rd as its argument. Then the 1× d

derivative vector of f , denoted by Df(x), has entries

∂f(x)

∂xi

where 1 ≤ i ≤ d. The d× d Hessian matrix of f is then defined as follows

Hf(x) = D{Df(x)T }

with (i, j) entry equal to
∂2f(x)

∂xi∂xj

where 1 ≤ i ≤ d and 1 ≤ j ≤ d. When vectors and matrices are involved, it is more

appropriate to use vector differential calculus rather than ordinary scalar differential

calculus. In order to compute the derivative vector, we use the following definition

(Magnus and Neudecker, 1999):

Theorem 1. First Identification Theorem: If a and x are 1× d vectors such that

df(x) = a dx

then

a = Df(x).

The Hessian matrix can then be computed as follows:

Theorem 2. Second Identification Theorem: If x is a 1× d vector and A is a d× d

matrix such that

d2f(x) = (dx)T A dx

then

A = Hf(x).

Further rules regarding vector differential calculus are provided in Magnus and

Neudecker (1999) and Wand (2002).
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1.5 Key Integral Results

In this section, we present key integral results used in this thesis.

1.5.1 Useful Integral Results

Let

a1, a2, a3, b > 0

be strictly positive real numbers such that

a1a2 > b.

Then, from Wolfram Research Inc. (2022), we have the following integral results:∫ ∞

0

dx

a1 + x2
=

π

2
√
a1
,∫ ∞

0

dx

(a1 + x2)2
=

π

4a1
√
a1
,∫ ∞

0

dx

(a1 + x2)(a2 + x2)
=

π

2
√
a1a2(

√
a1 +

√
a2)

,∫ ∞

0

dx

(a1 + x2)2(a2 + x2)
=

π(2
√
a1 +

√
a2)

4a1
√
a1a2(

√
a1 +

√
a2)2

,∫ ∞

0

x2 dx

(a1 + x2)(a2 + x2)
=

π

2(
√
a1 +

√
a2)

,∫ ∞

0

dx

(a1 + x2)(a2 + x2)(a3 + x2)
=

π(
√
a1 +

√
a2 +

√
a3)

2
√
a1a2a3(

√
a1 +

√
a2)(

√
a1 +

√
a3)(

√
a2 +

√
a3)

and ∫ ∞

0

x2 dx

(a1 + x2)(a2 + x2)− b

=
π

√
2

{√
a1 + a2 +

√
(a1 − a2)2 + 4b+

√
a1 + a2 −

√
(a1 − a2)2 + 4b

} .
Also note that,

π(2
√
a1 +

√
a2)

4a1
√
a1a2(

√
a1 +

√
a2)2

<
2π(

√
a1 +

√
a2)

4a1
√
a1a2(

√
a1 +

√
a2)2

=
π

2a1
√
a1a2(

√
a1 +

√
a2)
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which leads to the bound∫ ∞

0

dx

(a1 + x2)2(a2 + x2)
<

π

2a1
√
a1a2(

√
a1 +

√
a2)

. (1.11)

1.5.2 Integral Form of the Matrix Square Root

The integral form of the square root of a matrix, for a matrix A having no eigenvalues

on R−, is given by Higham (2008) as

A1/2 =
2

π

∫ ∞

0
A(A+ t2I)−1 dt. (1.12)

1.6 Key Expectation Results

In this section, we present some key expectation results used frequently in the derivations

in this thesis.

1.6.1 Law of Total Expectation

Theorem 3. Let X and Y be random variables defined on the same probability space

and where the expected value of X, E(X), is defined. Then the law of total expectation

is defined as follows

E(X) = E{E(X|Y )}.

1.6.2 Jensen’s Inequality

Theorem 4. Let f : R → R be a convex function and X be a random variable such that

its expected value, E(X), is finite. Then, Jensen’s inequality states the following

f(E(X)) ≤ E(f(X)).
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1.6.3 Markov’s Inequality

Theorem 5. Let X be a random variable and a be a scalar. Markov’s inequality states

that if X is non-negative and a > 0, then the probability that X is greater than or equal

to a is at most the expectation of X divided by a,

P (X ≥ a) ≤ E(X)

a
.

1.6.4 Cauchy-Schwarz Inequality

Theorem 6. Let X and Y be random variables. Then the Cauchy-Schwarz inequality

is defined as follows

|E(XY )|2 ≤ E(X2)E(Y 2).

1.7 Exponential Families

Exponential families consist of a set of probability distributions that can be written

in certain parametric forms. These exponential family forms can be used to provide

several parametric families of distributions with alternative parametrizations, in terms

of natural parameters, which possess useful algebraic properties. Several commonly used

probability distributions fall under the umbrella of exponential family density functions,

including but not restricted to the normal, binomial, Poisson and gamma distributions.

1.7.1 One-Parameter Exponential Families

In this subsection, we present the class of one-parameter exponential family probability

distributions.

Definition 1. The class of one-parameter exponential family density, or probability

mass, functions have generic form

p(y; η) = exp {yη − b(η) + c(y)}h(y) (1.13)

where η is the natural parameter and the functions b(·), c(·) and h(·) are defined according

to the desired response distribution.
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Explicit examples of the functions b(·), c(·) and h(·) for the binomial and Poisson

family of distributions have been provided in Table 1.1.

Family b(η) c(y) h(y)

Binomial log(1 + eη) 0 I(y ∈ {0, 1})
Poisson eη − log(y!) I(y ∈ {0} ∪ N)

Table 1.1: Examples of one-parameter exponential families and their b, c and h functions.

Here, I(P) = 1 if the condition P is true and I(P) = 0 if P is false.

If the random variable Y has density, or probability mass, function as in (1.13),

then E(Y ) = b′(η) and Var(Y ) = b′′(η). A common modelling extension is to account

for overdispersion. Overdispersion occurs when the variability present in the data is

larger than what the proposed statistical model can account for. To model the variance

flexibly, a dispersion parameter ϕ > 0 is introduced and log{p(y; η)} is replaced by a

quasi-likelihood function as shown in Definition 2.

Definition 2. When accounting for overdispersion, the quasi-likelihood for the class of

one-parameter exponential family density, or probability mass, functions have generic

form

{yη − b(η) + c(y)}/ϕ+ d(y, ϕ) (1.14)

where η is the natural parameter, ϕ > 0 is the dispersion parameter and the functions

b(·), c(·) and d(·, ·) are defined according to the desired response distribution.

Now, if the random variable Y has quasi-likelihood as in (1.14), then E(Y ) = b′(η)

and Var(Y ) = ϕb′′(η).

Now, let Y be a vector of independent observations, X be a matrix of known

covariates and β be a vector of unknown regression coefficients (fixed effects). In

generalized linear models, it is common to model the mean function µ = E(Y ) as some

non-linear function of the linear predictor or natural parameter such that

g(µ) = η

where

η = Xβ.

Here, g is known as the link function. If g−1 = b′, then g is called the canonical link
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function and the following useful relationship exists

µ = g−1(η) = b′(η).

Selecting the link function to be a canonical link leads to simpler likelihood expressions

and provides useful sufficient statistics.

However, one may choose to use a noncanonical link function if, for example, using

a noncanonical link leads to a better data fit. Some examples of noncanonical links are

the probit link (Φ−1) for binary regression and the log link (log) for Gamma regression.

The following two definitions provide exponential family forms written in terms of the

natural parameter, η, when noncanonical links are used (Fan et al., 1995).

Definition 3. When using noncanonical links, the class of one-parameter exponential

family density, or probability mass, functions have a generic form in terms of η as

follows

p(y; η) = exp
[
y(g ◦ b′)−1(η)− {b ◦ (g ◦ b′)−1}(η) + c(y)

]
h(y) (1.15)

where η is the natural parameter, g is the link function and the functions b(·), c(·) and
h(·) are defined according to the desired response distribution.

If the random variable Y has density, or probability mass, function as in (1.15), then

E(Y ) = g−1(η) and Var(Y ) = {b′′ ◦ (b′)−1 ◦g−1}(η). As mentioned earlier in this section,

one can apply a modelling extension to account for overdispersion which leads to the

expression for log{p(y; η)} as in (1.15) being replaced by a quasi-likelihood function as

shown in Definition 4.

Definition 4. When accounting for overdispersion and using noncanonical links, the

quasi-likelihood for the class of one-parameter exponential family density, or probability

mass, functions have a generic form in terms of η as follows

[
y(g ◦ b′)−1(η)− {b ◦ (g ◦ b′)−1}(η) + c(y)

]
/ϕ+ d(y, ϕ) (1.16)

where η is the natural parameter, ϕ > 0 is the dispersion parameter and the functions

b(·), c(·) and d(·, ·) are defined according to the desired response distribution.

Now, if the random variable Y has quasi-likelihood as in (1.16), then E(Y ) = b′(η)

and Var(Y ) = ϕ{b′′ ◦ (b′)−1 ◦ g−1}(η).
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1.7.2 Two-Parameter Exponential Families

In this subsection, we present the class of two-parameter exponential family probability

distributions.

Definition 5. The class of two-parameter exponential family density, or probability

mass, functions have generic form

p(y; η, ϕ) = exp [{yη − b(η) + c(y)}/ϕ+ d(y, ϕ)]h(y)

where η is the natural parameter and the functions b(·), c(·), d(·, ·) and h(·) are defined

according to the desired response distribution.

Explicit examples of the functions b(·), c(·), d(·, ·) and h(·) for the Gaussian and

gamma family of distributions have been provided in Table 1.2.

Family b(η) c(y) d(y, ϕ) h(y)

Gaussian 1
2η

2 −1
2y

2 − log(2πϕ) 1

Gamma − log(−η) log(y) − log(ϕΓ(1/ϕ))− log(y) I(y > 0)

Table 1.2: Examples of two-parameter exponential families and their b, c, d and h
functions.

1.8 Generalized Linear Mixed Models

We start off with classical linear models, where the mean of the response, often required

to be normally distributed, can be expressed as a linear combination of the unknown

model parameters and the predictor variables. In other words, a linear model has the

mean

E(Y ) = Xβ

where Y is a vector of independent observations, X is a matrix of known covariates and

β is a vector of unknown regression coefficients (fixed effects). These models, however,

fall short when the observations are correlated or when the mean of the response cannot

be written as a linear function of the covariates.

Generalized linear mixed models serve as an extension of linear models in two distinct

ways. Firstly, GLMMs allow for the modelling of correlated data through the inclusion

of random effects. Secondly, the mean, µ, is linked to the linear predictor through
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a known function, g, known as the link function. With these additional properties,

GLMMs have become an essential group of models for analysing many present-day

complex data sets, which contain non-normal and correlated response data.

A summary of the various linear model effects structures ranging from linear models

to generalized linear mixed models is further detailed in Table 1.3.

Model (conditional) Mean Response

Linear Models (LMs) Xβ

Linear Mixed Models (LMMs) Xβ +ZU , U ∼ (0,Σ)

Generalized Linear Models (GLMs) g−1(Xβ)

Generalized Linear Mixed Models (GLMMs) g−1(Xβ +ZU), U ∼ (0,Σ)

Table 1.3: Summary of various linear model effects structures.

To specify the structure of a generalized linear mixed model, we first define the

conditional distribution of the response, Yij , given its associated random effect Ui. Let

there be m groups and ni observations within each group. We also assume the random

effects to be independent normally distributed variables and the response Yij , conditional

on the random effects, to be from an exponential family f . Then the generalized linear

mixed model has the following generic form:

Yij |Ui
ind.∼ fYij |Ui

(yij |ui), Ui
ind.∼ N(0,Σ) (1.17)

where
ind.∼ means ‘independently distributed as’ and with natural parameter

ηij = XT
ijβ +ZT

ijUi,

for 1 ≤ i ≤ m and 1 ≤ j ≤ ni. Here, Xij is a dF × 1 vector of predictors having

a fixed effects coefficient vector β and Zij is a dR × 1 vector of predictors having a

dR × 1 random effects coefficient vector Ui. For this generalized linear mixed model,

the conditional mean of Yij is

E(Yij |Ui) = µij ,

and there is a known link function, g, linking together the conditional mean and natural

parameter such that

g(µij) = ηij = XT
ijβ +ZT

ijUi.

Estimation of model parameters in generalized linear mixed models can be carried

out using maximum likelihood estimation, with more details being provided in the next
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section.

A detailed overview of the usefulness and difficulties of GLMM-based analysis can

be found in ? and Jiang and Nguyen (2021). Inferential methods for GLMMs other

than the maximum likelihood approach, such as generalized estimating equations and

penalized quasi-likelihood have also been discussed in these books.

1.9 Maximum Likelihood for Generalized Linear Mixed

Models

In this section, the maximum likelihood approach to estimating model parameters in a

generalized linear mixed model is presented.

1.9.1 The Likelihood Function

We begin by describing the likelihood function for a general statistical model. Consider

a statistical model, parametrized by a vector of model parameters θ, with probability

density function f(y;θ), where y is a vector of random variables. Here, if θ is assumed

to be known, then f(y;θ) is viewed to be the probability density function for y. On

the other hand, when y represents a vector of known observations and θ is unknown,

then f(y) is simply a function of θ. This is known as the likelihood function of y and

is usually represented as L(θ;y) to emphasise that θ is unknown and y is known. Note

that mathematically, we have that

f(y;θ) = L(θ;y).

Now let us consider the likelihood for a generic generalized linear mixed model. By

letting θ = (β,Σ) and using the model description in (1.17), the likelihood can be

written as follows

L(β,Σ;y) =
m∏
i=1

∫
RdR

ni∏
j=1

fYij |Ui
(yij |ui)fUi(ui)dui. (1.18)

These likelihood functions form the basis for maximum likelihood estimation which

is explained in the next subsection.
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1.9.2 Maximum Likelihood Estimation

The maximum likelihood estimation method estimates the values of model parameters

such that under the fitted statistical model, the observed data is most probable. In

order to find these maximum likelihood estimates, one would need to find the values of

θ that maximise the likelihood L(θ;y), where the maximization is carried out within

the permissible range of values for θ. For example, if one of the elements of θ represents

a variance or covariance parameter, then its range of permissible values is restricted

to non-negative values. This aspect of maximum likelihood estimation is critical for

estimating variances and covariances of random effects variables.

Note that finding the values of θ that maximise the likelihood, L(θ;y), is equivalent
to finding the values of θ that maximise the log-likelihood, logL(θ;y), since the log

function is a monotonic increasing function. The log-likelihood, commonly denoted

as ℓ(θ), is often a more convenient mathematical expression to work with. Hence the

maximum likelihood estimator for θ0, the true value of the parameter θ, in a general

statistical model can now be expressed as follows

θ̂ = argmax
θ

ℓ(θ). (1.19)

Now, we aim to define the maximum likelihood estimators for generalized linear mixed

models. Taking the log function on both sides of (1.18), we obtain the log-likelihood of

a generic generalized linear mixed model as follows

ℓ(β,Σ) =

m∑
i=1

log

∫
RdR

ni∏
j=1

fYij |Ui
(yij |ui)fUi(ui)dui

 . (1.20)

Then, for any β (dF × 1) and Σ (dR × dR) that is symmetric and positive definite,

the maximum likelihood estimator of (β0,Σ0), the true values of the parameters β and

Σ, is

(β̂, Σ̂) = argmax
β,Σ

ℓ(β,Σ). (1.21)

Note that maximum quasi-likelihood estimators for GLMMs can also be defined if

one works with quasi-likelihoods such as those in (1.14) or (1.16).



1.9. MAXIMUM LIKELIHOOD FOR GENERALIZED LINEAR MIXED MODELS 21

1.9.3 Asymptotic Properties of Maximum Likelihood Estimators for

Generalized Linear Mixed Models

Under certain regularity conditions, the maximum likelihood estimates of θ0 obtained

using (1.19) are consistent and asymptotically normally distributed according to the

theorem below (Knight, 2000; ?).

Theorem 7. Let Y be a vector of independently and identically distributed random

variables and let θ denote the vector of model parameters used to parametrize a statistical

model, such that the density function f(y;θ) satisfies the following regularity conditions:

1. The true value θ0 of θ is interior to the parameter space Θ, which has finite

dimension and is compact;

2. The set A = {y : f(y;θ) > 0} does not depend on θ;

3. f(y;θ) is three times continuously differentiable with respect to θ for all y in A;

4. E[ℓ′(θ)] = 0 for all θ and Var[ℓ′(θ)] = −E[ℓ′′(θ)] = I(θ) where 0 < I(θ) < ∞
for all θ;

5. For each θ and δ > 0, there exists |ℓ′′′(t;y)| < M(y) for |θ − t| ≤ δ where

E[M(Y )] <∞.

Then, the following asymptotic normality result for maximum likelihood estimators exists

θ̂
asy.∼ N(θ0, I(θ0)−1) (1.22)

where
asy.∼ means ‘asymptotically distributed as’ and with mean equal to the vector of true

model parameters θ0 and asymptotic variance-covariance matrix equal to the inverse of

the Fisher information matrix, I(θ0).

As stated in the theorem above, there are two ways to derive the Fisher information

matrix. The first approach involves computing the first derivative of ℓ(θ) with respect

to θ. Then the Fisher information matrix can be defined as follows where

I(θ) = E

{
∂ℓ

∂θ

(
∂ℓ

∂θ

)T}
.

Alternatively, one could compute the second derivative of ℓ(θ) with respect to θ and
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use the following definition of the Fisher information matrix where

I(θ) = −E
{

∂2ℓ

∂θ∂θT

}
.

Despite the large volume of research concerning generalized linear mixed models, there is

very little theory concerning the statistical properties of maximum likelihood estimators

or maximum quasi-likelihood estimators for these models.

Recent related literature published includes Hall et al. (2011), who derive precise

asymptotic normality results for estimators for models that fall under the generalized

linear mixed models framework. In their case, these results are derived for Gaussian

variational approximation (GVA) estimators for a single-predictor Poisson mixed model.

Let m be the number of groups or subjects and let n be the number of observations

within each group. The asymptotic results are derived for the case where both m and

n in the model diverge. The final results obtained give rise to asymptotically valid

statistical inference where Gaussian variational approximations are concerned. In this

case, the aim of this thesis differs as we aim to derive asymptotic normality results for

maximum likelihood estimators and for the general class of GLMMs.

Nie (2007) presents properties of maximum likelihood estimators in generalized

linear and non-linear mixed effects models. In this article, the convergence rates of the

asymptotic variances of these maximum likelihood estimators were investigated in three

cases. In terms of the notation presented in Section 1.8, one of these cases caters to

when both m and n tend to infinity while the other two cases concentrate on either

m or n diverging towards infinity while the other quantity remains finite. By using

the Fisher information matrix, the convergence rates of the MLEs were determined by

finding out the orders of the leading terms and the remainder terms in the asymptotic

variances for each estimator. However, the leading terms involved were not explicitly

derived. This leaves a gap in terms of deriving the asymptotic distributions explicitly

for such GLMMs by investigating the exact expressions of the leading terms involved in

the asymptotic variances of the estimators.

The work presented in this thesis addresses this gap in the current statistical

literature for generalized linear mixed models.
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1.10 Asymptotics

In this section, we present the statistical tools used to carry out the asymptotic

derivations present in this thesis.

1.10.1 Convergence of Random Variables

In this subsection, we look at two different types of convergence for sequences of random

variables. We also consider the properties of these sequences of random variables when

various algebraic operations are applied.

1.10.1.1 Convergence in Probability

The notion of convergence in probability for a sequence of random variables deals with

the convergence of the random variables themselves and is defined below,

Definition 6. Let {Xn} be a sequence of random variables. Then {Xn} converges in

probability to the random variable X as n→ ∞, or Xn
P→ X, if for all ε > 0,

lim
n→∞

P (|Xn −X| > ε) = 0.

It is common for the limiting random variable X to be a constant c, for which we

then have Xn
P→ c.

1.10.1.2 Convergence in Distribution

The notion of convergence in distribution for a sequence of random variables deals with

the convergence of the distribution functions of the random variables and is defined

below,

Definition 7. Let {Xn} be a sequence of random variables. Then {Xn} converges in

distribution to the random variable X as n→ ∞, or Xn
D→ X, if

lim
n→∞

P (Xn ≤ x) = P (Xn ≤ x) = F (x)
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for each point x ∈ R at which F (x) is continuous, where F (x) is the cumulative

distribution function of the random variable X.

1.10.1.3 Continuous Mapping Theorem

In probability theory, the continuous mapping theorem states that continuous functions

of sequences of random variables preserve limits. A formal definition is provided below.

Theorem 8. Let X be a random variable and {Xn} be a sequence of random variables.

If g is a continuous function, then the continuous mapping theorem states the following

Xn
D→ X implies g(Xn)

D→ g(X) and Xn
P→ X implies g(Xn)

P→ g(X).

1.10.1.4 Slutsky’s Theorem

Slutsky’s theorem, which is partly derived using the continuous mapping theorem,

provides useful results when dealing with algebraic operations involving two sequences

of random variables, where one sequence converges in distribution to a random variable

while the other sequence converges in probability to a constant.

Theorem 9. Let both {Xn} and {Yn} be sequences of random variables. If Xn
D→ X

and Yn
P→ c, then the following properties of algebraic operations involving both {Xn}

and {Yn} exist

Xn + Yn
D→ X + c, XnYn

D→ Xc and Xn/Yn
D→ X/c.

1.10.1.5 Cramér-Wold Device

The Cramér-Wold device is a useful result that can be used to prove the joint convergence

of random variables. A formal definition is provided below.

Theorem 10. Let X be a random variable and {Xn} be a sequence of random variables,

where X,Xn ∈ Rd. If aTXn
D→ aTX for all a ∈ Rd, then Xn

D→ X.
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1.10.2 Stochastic Order Notation

It is convenient to have notation that represent sequences of random variables that

converge in probability to zero or sequences of random variables that are bounded

in probability (van der Vaart, 1998). We make use of stochastic order notation such

as oP (1) and OP (1) for such purposes. The notation oP (1), used for the notion of

convergence in probability to zero, is formally defined below

Definition 8. Let {Xn} be a sequence of random variables. It is convenient to write

Xn = oP (1) to represent that Xn converges in probability to zero, or Xn
P→ 0, if for

every ε > 0 we have,

P (|Xn| > ε) → 0, as n→ ∞.

Sequences that are bounded in probability can be represented using the OP (1)

notation, which is formally defined below

Definition 9. Let {Xn} be a sequence of random variables. It is convenient to write

Xn = OP (1) to represent that Xn is bounded in probability, if for every ε > 0, there

exists Mε > 0 such that,

P (|Xn| > Mε) < ε, for all n.

Note that for a sequence of random variables {Xn}, if Xn = oP (1), then Xn = OP (1)

as well. Using Definitions 8 and 9, we also have the following general results, where for

sequences of random variables {Xn}, {Yn} and {Rn}, we have,

Xn = oP (Rn) if and only if Xn = YnRn and Yn = oP (1).

and

Xn = OP (Rn) if and only if Xn = YnRn and Yn = OP (1).

Lastly, there are useful rules of calculus concerning oP and OP symbols. Some of



1.10. ASYMPTOTICS 26

these rules are presented here:

oP (1) + oP (1) = oP (1),

oP (1) +OP (1) = OP (1),

oP (1)OP (1) = oP (1).

Let {an} and {bn} be sequences of positive real numbers. Then we also have the

following rules:

oP (an)oP (bn) = oP (anbn),

oP (an)OP (bn) = oP (anbn),

oP (an) + oP (bn) = oP (max{an, bn}).

1.10.3 Other Tools for Working with Asymptotic Expansions

The stochastic Taylor formula, inversion formula for an asymptotic series and the

Laplace expansion for evaluating an integral are useful tools for working with asymptotic

approximations and expansions. We will highlight and present the inversion formula for

an asymptotic series while the details regarding the other tools can be found in Pace

and Salvan (1997).

1.10.3.1 Inversion of Asymptotic Series

In this subsubsection, we present an approach for inverting a univariate asymptotic

series. Details regarding the derivation of the inversion formula for both the univariate

and multivariate cases can be found in Pace and Salvan (1997).

Let y = f(x), x ∈ R be a real smooth function which admits the following power

series expansion

y = x+ a1x
2 + a2x

3 + . . . . (1.23)

Assume that the terms in (1.23) depend on an asymptotic parameter n. Specifically, let

x = O(n−α), α > 0 and let ai = O(1), i = 1, 2, . . . . Suppose that we invert the function

y = f(x) as x = g(y) and wished to express g(y), in the neighbourhood of y = 0, as a

power series expansion as follows

x = y + b1x
2 + b2x

3 +O(n−4α), (1.24)

where b1 and b2 can be expressed in terms of constants a1 and a2. Ignoring terms of
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order O(n−4α), the final expressions for b1 and b2 are as follows

b1 = −a1, b2 = −(a2 − 2a21).

1.11 Frequentist Variational Approximations

Variational approximations have roots in variational calculus and serve as an approach

for performing approximate inference on model parameters in complex statistical models.

This class of methods is commonly used in Bayesian inference and in recent years, it

has become a popular alternative to existing methods such as Markov chain Monte

Carlo and Laplace approximation methods. It is shown that the same ideas can also be

transferred to frequentist contexts (Ormerod and Wand, 2010). In this section, we will

delve into how variational approximations can be used in frequentist contexts.

In frequentist inferential problems, variational approximation methods mainly ben-

efit inference carried out on statistical models where the vector of observations y is

conditioned on a latent variable vector u. In the context of generalized linear mixed

models, the vector of latent variables essentially corresponds to the vector of random

effects as shown in (1.17).

Let θ be a vector of model parameters. When conditioning over the vector of latent

variables u is present, the log-likelihood for a general statistical model parametrized by

θ is as follows

ℓ(θ) = log p(y;θ) = log

∫
p(y|u;θ)p(u;θ)du. (1.25)

However, the integral in (1.25) may be intractable. Thus, ℓ(θ) may not have a closed

form and maximum likelihood estimation is hindered. The variational approximation

method works around the intractability issue to provide a variational approximation to

the maximum likelihood estimation approach, explained further below.

Let us define q(u) to be an arbitrary density function in u. Then the expression for
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the log-likelihood satisfies the following mathematical steps

ℓ(θ) = ℓ(θ)

∫
q(u)du

=

∫
q(u)ℓ(θ)du

=

∫
q(u) log

{
p(y,u;θ)/q(u)

p(u|y;θ)/q(u)

}
du

=

∫
q(u) log

{
p(y,u;θ)

q(u)

}
du+

∫
q(u) log

{
q(u)

p(u|y;θ)

}
du

≥ ℓ(θ; q)

(1.26)

where

ℓ(θ; q) ≡
∫
q(u) log

{
p(y,u;θ)

q(u)

}
du. (1.27)

The inequality exists since ∫
q(u) log

{
q(u)

p(u|y;θ)

}
du ≥ 0 (1.28)

across all densities q. Equality in (1.28) occurs if and only if

q(u) = p(u|y;θ)

almost everywhere. The integral expression in (1.28) is known as the Kullback-Leibler

divergence between q and p(·|y).

One may now select a density q, where q(u) approximates p(u|y;θ), such that

ℓ(θ; q) is more tractable than ℓ(θ). One must also simultaneously aim to minimize

the Kullback-Leibler divergence between q(u) and p(u|y;θ), which can be achieved by

maximizing ℓ(θ; q), as shown in (1.26).

Suppose that q is restricted to a family of parametric densities {q(u; ξ) : ξ ∈ Ξ}
parametrized by a vector of variational parameters ξ. Then, the expression for ℓ(θ; q)

in (1.27) becomes

ℓ(θ, ξ; q) ≡
∫
q(u; ξ) log

{
p(y,u;θ)

q(u; ξ)

}
du. (1.29)

One now maximises over the vector of model parameters θ and the vector of variational

parameters ξ, in order to maximise the approximate log-likelihood, ℓ(θ, ξ; q), and to

minimize the Kullback-Leibler divergence between q(u; ξ) and p(u|y;θ) respectively.
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This leads to the following altered maximization problem where

(θ̂, ξ̂) = argmax
θ,ξ

ℓ(θ, ξ; q).

Then, θ̂ is the variational approximation to the maximum likelihood estimator θ̂ as

defined in (1.21).

When q is chosen to be a Gaussian density function, then this particular class of

variational approximation methods is known as Gaussian variational approximations.

In GVA, the variational parameters are the mean and variance (or covariance matrix)

parameters of the approximating normal distribution.

1.11.1 Thouless-Anderson-Palmer Variational Approach

The TAP variational framework, which builds on the GVA approach, has recently

surfaced in statistical literature and potentially provides more accurate approximations

as compared to the GVA approach.

The Thouless-Anderson-Palmer paradigm (Thouless et al., 1977) was first developed

in statistical physics literature and gained traction as the authors provided TAP equations

as an alternative approach to the solution for certain spin glass models. The work

was further built on in Plefka (1982) where it is shown that the power expansion of

the Gibbs potential of the infinite-ranged Ising spin glass model of Sherrington and

Kirkpatrick (Sherrington and Kirkpatrick, 1975) up to the second order in the exchange

couplings leads to the TAP equations.

In machine learning contexts, with the help of Plefka’s expansion, it has been shown

that better approximations arise by minimizing the TAP free energy, instead of the

mean field free energy typically used in variational inference (Fan et al., 2021).

Recent theoretical work by Professor Song Mei from University of California, Berke-

ley, U.S.A and Professor Iain Johnstone from Stanford University, U.S.A, compares the

estimates obtained from maximum likelihood estimation, GVA and TAP variational

approaches for GLMMs. Let θ be a vector of model parameters. Then, under some con-

ditions, recent work by Professors Song Mei and Iain Johnstone (private communication)

shows that

∥θGVA − θMLE∥2 ≈ Cn−2 and ∥θTAP − θMLE∥2 ≈ Cn−3,
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where C denotes a constant independent of θ. Note that the approximation error

between the TAP and MLE estimates is smaller than the approximation error between

the GVA and MLE estimates.

Despite the potential improvement in the accuracy of approximations that the TAP

variational method can provide, statistical applications such as longitudinal data analysis

and multilevel models analysis, which may benefit from using TAP methodology, have

not been investigated.

Therefore, towards the end of this thesis, we apply the Thouless-Anderson-Palmer

methodology to GLMMs and evaluate the approach via simulation studies.
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Chapter 2

Preliminary Lemmas and Their
Proofs

Detailed asymptotic analysis is necessary to obtain the asymptotic normality theorems

for the maximum likelihood estimators for Gaussian response linear mixed models and

maximum quasi-likelihood estimators for generalized linear mixed models in Chapters 3,

4 and 7 respectively. In the process of doing so, we deal with working with population

limits of predictor-dependent sample mean quantities and establishing matrix norm

asymptotic negligibility between matrix square roots of inverse Fisher information

matrices and their simpler asymptotic block diagonal forms. Currently, there are no

results available to deal with both these tasks in a simple manner.

Therefore, in this chapter, we introduce three novel lemmas that will act as essential

tools required to solve these two tasks.

The appendix contains the proofs for the lemmas introduced in this chapter.

2.1 Lemma 1

Certain population quantities appear in the asymptotic normality theorems in Chapters

3, 4 and 7 respectively. These population quantities correspond to the convergence in

probability limit of two particular predictor-dependent sample mean quantities each. In

this section, we isolate the problem of deriving the population leading term of the first

predictor-dependent sample mean quantity in the form of Lemma 1.
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Lemma 1. Let X ≡ (XT
A ,X

T
B )

T and Xij ≡ (XT
Aij ,X

T
Bij)

T , 1 ≤ i ≤ m, 1 ≤ j ≤ ni be

independent and identically distributed (dA + dB)× 1 random vectors, with dA ≥ 1 being

the number of entries of XA and the XAijs and dB ≥ 1 being the number of entries of

XB and the XBijs, with d = dA + dB. Also, let U and U1, . . . ,Um be independent and

identically distributed N(0, I) (dA × 1) random vectors, distributed independently of X

and the Xijs, where Σ is symmetric and positive definite. Let f be a Borel measurable,

positive real-valued function on RdA+dB and assume that

E {|XkXk′ |f(X,U)} <∞ for all 1 ≤ k, k′ ≤ d

where Xk is the kth row of X. Then

1

mn

m∑
i=1

n∑
j=1

XijX
T
ijE {f(Xij ,U)|Xij} = E

{
XXT f(X,U)

}
+ oP (1)1d1

T
d

where

n ≡ 1

m

m∑
i=1

ni.

2.2 Lemma 2

In this section, we isolate the problem of deriving the population leading term of the

second predictor-dependent sample mean quantity in the form of Lemma 2. Using both

Lemmas 1 and 2 lead to a full expression for the population leading term in the main

Fisher information block, represented by ΣβB
, ΛβB

and Λ∗
β1

in Chapters 3, 4 and 7

respectively.

Lemma 2. Let X ≡ (XT
A ,X

T
B )

T and Xij ≡ (XT
Aij ,X

T
Bij)

T , 1 ≤ i ≤ m, 1 ≤ j ≤ ni be

independent and identically distributed (dA + dB)× 1 random vectors, with dA ≥ 1 being

the number of entries of XA and the XAijs and dB ≥ 1 being the number of entries of

XB and the XBijs, with d = dA + dB.. Also, let U and U1, . . . ,Um be independent and

identically distributed random vectors, distributed independently of X and the Xijs. Let

f be a Borel measurable, positive real-valued function on RdA+dB and assume that

E

[
E
[
max{1, ∥X∥}8max{1, f(X,U)}4|U

]
min{1, λmin(E{XAXT

Af(X,U |U)})}2

]
<∞.

If m and ni satisfy assumptions that the number of groups m diverges to ∞ and that the

within-group sample sizes ni diverge to ∞ in such a way that ni/n→ Ci for constants
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0 < Ci <∞, 1 ≤ i ≤ m, then

E

[
1

mn

m∑
i=1


n∑
j=1

XBijX
T
Aijf(Xij , Ui)




n∑
j=1

XAijX
T
Aijf(Xij , Ui)


−1

×


n∑
j=1

XBijX
T
Aijf(Xij , Ui)


T ∣∣∣∣∣X11, . . . ,Xmnm

]
P→ E

[
E
(
XBX

T
Af(X, U)|U

) {
E
(
XAX

T
Af(X, U)|U

)}−1
E
(
XBX

T
Af(X, U)|U

)T ]
.

2.3 Lemma 3

The asymptotic normality theorems in Chapters 3, 4 and 7 involve replacement of the

matrix square root of the inverse Fisher information matrix by the matrix square root

of the asymptotic expression for the inverse Fisher information matrix. This is due to

the remainder terms (calculated as a difference between the inverse Fisher information

matrix and its asymptotic counterpart) having an asymptotically negligible effect on

the relevant matrix square roots. Lemma 3 provides a formalization of this state of

affairs, which is used in the final steps of the derivation in the asymptotic normality

theorems in Chapters 3, 4 and 7.

Lemma 3. Define the sequences of matrices

Mn ≡

K +Qn1
⊗2
p Rn1p1

T
q

Rn1q1
T
p

1
nL+ Tn1

⊗2
q

 and Mn,∞ ≡

K 0

0 1
nL


where K and L are p× p and q × q symmetric positive definite matrices and Qn, Rn

and Tn are sequences of random variables satisfying Qn = oP (1), Rn = OP (n
−1) and

Tn = oP (n
−1). Also note that ν⊗2 ≡ ννT . Then, as n→ ∞,∥∥∥M−1/2

n,∞ M1/2
n − I

∥∥∥
F

P→ 0.
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2.4 Appendix

2.4.1 Proof of Lemma 1

Let

G ≡ 1

mn

m∑
i=1

n∑
j=1

XijX
T
ijE{f(Xij ,U)|Xij}.

Firstly, note that a more explicit form of G is:

G =
1

mn

m∑
i=1

n∑
j=1

XijX
T
ij(2π)

−dA/2|Σ|−1/2

∫
RdA

f(Xij ,u) exp(−
1

2
uTΣ−1u)du.

Next, let

N ≡ mn =

m∑
i=1

ni,

and Gl, 1 ≤ l ≤ N , be the following “single subscript” re-labelling of the terms inside
the double summation of G. Then we have the following terms where

G1 = X11X
T
11(2π)

−dA/2|Σ|−1/2

∫
RdA

f(Xij ,u) exp(−
1

2
uTΣ−1u)du,

G2 = X12X
T
12(2π)

−dA/2|Σ|−1/2

∫
RdA

f(Xij ,u) exp(−
1

2
uTΣ−1u)du,

...

GN = XmnmX
T
mnm

(2π)−dA/2|Σ|−1/2

∫
RdA

f(Xij ,u) exp(−
1

2
uTΣ−1u)du.

Then,

G =
1

N

N∑
l=1

Gl

is a sample mean of N independent and identically distributed d× d random matrices
with the common distribution

G ≡ XXTE{f(X,U)|X}.

Using the law of total expectation, the mean of G is

E(G) = E[XXTE{f(X,U)|X}]
= E[E{XXT f(X,U)|X}]
= E{XXT f(X,U)}.

Lastly, we need to impose the following first order moment conditions on the entries of
G where

E{|XkXk′ |f(X,U)} <∞ for all 1 ≤ k, k′ ≤ d, (2.1)
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where Xk is the kth entry of X. Therefore, under moment conditions involving the
entries of G as stated in (2.1), we have,

G =
1

mn

m∑
i=1

n∑
j=1

XijX
T
ijE{f(Xij ,U)|Xij} = E{XXT f(X,U)}+ oP (1)1d1

T
d .

2.4.2 Proof of Lemma 2

2.4.2.1 A Fundamental Inequality for the Spectral Norm of a Vectorised
Matrix

Let A be a d1 × d2 matrix. This subsubsection looks into the relationship between

∥A∥S and ∥vec(A)∥S.

We start with the following inequality:

∥A∥S ≤ ∥A∥F ≤
√
rank(A) ∥A∥S. (2.2)

However, since rank(A) ≤ max(d1, d2), we then obtain the following

∥A∥S ≤ ∥A∥F ≤ max
(√

d1,
√
d2

)
∥A∥S. (2.3)

Next note that

∥A∥F =
√

tr(ATA) =
√
vec(A)Tvec(A) = ∥vec(A)∥F . (2.4)

Replacement of A by vec(A) in the first inequality of (2.2) gives

∥vec(A)∥S ≤ ∥vec(A)∥F .

The equality in (2.4) then gives

∥vec(A)∥S ≤ ∥A∥F .

Application of the second inequality of (2.3) leads to

∥vec(A)∥S ≤ max
(√

d1,
√
d2

)
∥A∥S (2.5)

for all d1 × d2 matrices A.

2.4.2.2 Notational Definitions

Let us define the following sample and population type quantities as follows:

N̂i(U) ≡ 1

ni

n∑
j=1

XBijX
T
Aijf(Xij ,U), D̂i(U) ≡ 1

ni

n∑
j=1

XAijX
T
Aijf(Xij ,U),

N (U) ≡ E{XBX
T
A f(X,U)|U} and D(U) ≡ E{XAX

T
A f(X,U)|U}.



2.4. APPENDIX 36

Next, for t ∈ [0, 1], let

N †
it(U) ≡ (1− t)N (U) + tN̂i(U) and D†

it(U) ≡ (1− t)D(U) + tD̂i(U).

Throughout this proof, we also let

Xi ≡ {Xi1, . . . ,Xini}.

In addition, if S is a dB × dA matrix and T is a dA × dA symmetric matrix, define

R

([
S

T

])
≡ vec(ST−1ST )T . (2.6)

In the next subsubsection, we wish to find an explicit expression for

∇vec(S), vec(T )R

([
S

T

])
. (2.7)

2.4.2.3 Derivation of (2.7)

Differentiation with Respect to S

Throughout this subsubsubsection it is assumed that the differential operator d is with
respect to S. Now, noting that T T = T ,

d vec(ST−1ST ) = vec
(
d(ST−1ST )

)
= vec

(
d(ST−1)ST + (ST−1)dST

)
= vec

(
(dS)T−1ST

)
+ vec

(
ST−1(dS)T

)
= vec

(
(dS)T−1ST

)
+KdBvec

(
(dS)T−1ST

)
= (Id2B

+KdB)vec
(
(dS)T−1ST

)
= (Id2B

+KdB)vec
(
IdB(dS)T

−1ST
)

= (Id2B
+KdB)

{
(T−1ST )T ⊗ IdB

}
vec(dS)

= (Id2B
+KdB)

{
(ST−1)⊗ IdB

}
dvec(S).

Hence,
Dvec(S)vec(ST

−1ST ) = (Id2B
+KdB)

{
(ST−1)⊗ IdB

}
.

Since KT
dB

= KdB as in (1.8), we have,

∇vec(S)vec(ST
−1ST )T =

{
(T−1ST )⊗ IdB

}
(Id2B

+KdB).
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Differentiation with Respect to T

Throughout this subsubsubsection it is assumed that the differential operator d is with
respect to T . Now, noting that T T = T ,

d vec(ST−1ST ) = vec
(
S(dT−1)ST

)
= −vec

(
ST−1(dT )T−1ST

)
= −{(T−1ST )T ⊗ (ST−1)}vec(dT )

= −{(ST−T )⊗ (ST−1)}dvec(T ).

Hence,
Dvec(T )vec(ST

−1ST ) = −(ST−T )⊗ (ST−1).

Therefore, we have,

∇vec(T )vec(ST
−1ST )T = −(T−1ST )⊗ (T−1ST ).

Combination of the Two Gradient Vectors

On combining the results of the previous two subsubsubsections, we get an explicit
expression for (2.7) as follows

∇vec(S), vec(T )R

([
S

T

])
=

[
{(T−1ST )⊗ IdB}(Id2B +KdB)

−(T−1ST )⊗ (T−1ST )

]
. (2.8)

2.4.2.4 Expression for (2.6) with Lagrange Form of Remainder

Using (2.8), a Taylor series expansion of R with the Lagrange form of the remainder is

R

([
S

T

])
= R

([
S0 + S − S0

T0 + T − T0

])

= R

([
S0

T0

])
+

[
vec(S − S0)

vec(T − T0)

]T
∇vec(S), vec(T )R

([
S†
t

T †
t

])

= R

([
S0

T0

])
+

[
vec(S − S0)

vec(T − T0)

]T [
[{(T †

t )
−1(S†

t )
T } ⊗ IdB ](Id2B

+KdB)

−{(T †
t )

−1(S†
t )
T } ⊗ {(T †

t )
−1(S†

t )
T }

]

where [
S†
t

T †
t

]
≡ (1− t)

[
S0

T0

]
+ t

[
S

T

]
=

[
(1− t)S0 + tS

(1− t)T0 + tT

]
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and t ∈ [0, 1]. It follows that{
R

([
S

T

])
−R

([
S0

T0

])}T
= (Id2B

+KdB)[{S
†
t (T

†
t )

−1} ⊗ IdB ]vec(S − S0)

− [{S†
t (T

†
t )

−1} ⊗ {S†
t (T

†
t )

−1}]vec(T − T0).

(2.9)

2.4.2.5 Spectral Norm Bounding of (2.9)

It follows from (2.9) that∥∥∥∥∥R
([

S

T

])
−R

([
S0

T0

])∥∥∥∥∥
S

≤ ∥Id2
B
+KdB∥S ∥[{S†

t (T
†
t )

−1} ⊗ IdB∥S ∥S − S0∥F

+ ∥{S†
t (T

†
t )

−1} ⊗ {S†
t (T

†
t )

−1}∥S ∥T − T0∥F

≤
(
∥Id2

B
∥S + ∥KdB∥S

)
∥S†

t (T
†
t )

−1∥S∥IdB∥S∥S − S0∥F

+
{
∥S†

t (T
†
t )

−1∥S
}2∥T − T0∥F

≤ 2∥S†
t ∥S ∥(T †

t )
−1∥S∥S − S0∥F +

{
∥S†

t ∥S ∥(T †
t )

−1∥S
}2∥T − T0∥F .

Now, in terms of the notation given in the previous subsubsections, our goal is to show
that

E

{
1

m

m∑
i=1

ni
n
R

([
N̂i(Ui)

D̂i(Ui)

]) ∣∣∣∣∣Xi
}

P→ E

{
R

([
N (U)

D(U)

])}
. (2.10)

in order to prove Lemma 2.

2.4.2.6 Strategy for Proving (2.10)

Result (2.10) is a consequence of

E

∥∥∥∥∥E
{

1

m

m∑
i=1

ni
n
R

([
N̂i(Ui)

D̂i(Ui)

]) ∣∣∣∣∣Xi
}

− E

{
R

([
N (U)

D(U)

])}∥∥∥∥∥
S

→ 0 (2.11)

asm,n→ ∞, If we bring the second inner expectation inside the i = 1, . . . ,m summation
and replace the U of this term by Ui, then we can replace (2.11) by

E

∥∥∥∥∥ 1

m

m∑
i=1

ni
n
E

{
R

([
N̂i(Ui)

D̂i(Ui)

])
−R

([
N (Ui)

D(Ui)

]) ∣∣∣∣∣Xi
}∥∥∥∥∥

S

. (2.12)

By noting that the left-hand side of (2.12) is bounded above by

1

mn

m∑
i=1

niE

∥∥∥∥∥E
{
R

([
N̂i(Ui)

D̂i(Ui)

])
−R

([
N (Ui)

D(Ui)

]) ∣∣∣∣∣Xi
}∥∥∥∥∥

S

,
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it is sufficient to prove that

1

mn

m∑
i=1

niE

∥∥∥∥∥E
{
R

([
N̂i(Ui)

D̂i(Ui)

])
−R

([
N (Ui)

D(Ui)

]) ∣∣∣∣∣Xi
}∥∥∥∥∥

S

→ 0 (2.13)

as m,n→ ∞. Next, for each 1 ≤ i ≤ m, define the event

Ai ≡
{
∥N̂i(Ui)−N (Ui)∥S ≤ 1, λmin

(
D̂i(Ui)

)
≥ 1

2λmin

(
D(Ui)

)}
. (2.14)

Now, note that

1

mn

m∑
i=1

niE

∥∥∥∥∥E
{
R

([
N̂i(Ui)

D̂i(Ui)

])
−R

([
N (Ui)

D(Ui)

]) ∣∣∣∣∣Xi
}∥∥∥∥∥

S

≤ 1

mn

m∑
i=1

niE

∥∥∥∥∥E
[{

R

([
N̂i(Ui)

D̂i(Ui)

])
−R

([
N (Ui)

D(Ui)

])}
I(Ai)

∣∣∣∣∣Xi
]∥∥∥∥∥

S

+
1

mn

m∑
i=1

niE

∥∥∥∥∥E
[{

R

([
N̂i(Ui)

D̂i(Ui)

])
−R

([
N (Ui)

D(Ui)

])}
I(AC

i )

∣∣∣∣∣Xi
]∥∥∥∥∥

S

.

(2.15)

Then, to prove Lemma 2, it is sufficient to prove that

1

mn

m∑
i=1

niE

∥∥∥∥∥E
[{

R

([
N̂i(Ui)

D̂i(Ui)

])
−R

([
N (Ui)

D(Ui)

])}
I(Ai)

∣∣∣∣∣Xi
]∥∥∥∥∥

S

→ 0 (2.16)

as m,n,→ ∞ and

1

mn

m∑
i=1

niE

∥∥∥∥∥E
[{

R

([
N̂i(Ui)

D̂i(Ui)

])
−R

([
N (Ui)

D(Ui)

])}
I(AC

i )

∣∣∣∣∣Xi
]∥∥∥∥∥

S

→ 0 (2.17)

as m,n→ ∞.

2.4.2.7 Proof of Result (2.16)

Throughout this subsubsection we are considering

(Ui,Xi) such that Ai occurs, 1 ≤ i ≤ m. (2.18)

Since

N †
it(Ui) ≡ (1− t)N (Ui) + tN̂i(Ui) = N (Ui) + t{N̂i(Ui)−N (Ui)}

we have
∥N †

it(Ui)∥S ≤ ∥N (Ui)∥S + t∥N̂i(Ui)−N (Ui)∥S,

and it follows that, for t ∈ [0, 1] and under (2.18), we have,

∥N †
it(Ui)∥S ≤ ∥N (Ui)∥S + 1. (2.19)
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Next, note that

∥D†
it(U)−1∥S = 1

/
λmin

(
D†
it(U)

)
= 1
/
λmin

(
(1− t)D(Ui) + tD̂i(Ui)

)
≤ 1
/{

(1− t)λmin

(
D(Ui)

)
+ tλmin

(
D̂i(Ui)

)}
.

(2.20)

Under (2.18), we have,

∥D†
it(Ui)

−1∥S ≤ 1
/{

(1− t)λmin

(
D(Ui)

)
+ tλmin

(
D̂i(Ui)

)}
≤ 1
/{

(1− t)λmin

(
D(Ui)

)
+ t

2λmin

(
D(Ui)

)}
=

1

(1− t/2)λmin

(
D(Ui)

)
=

(
2

2− t

)
∥D(Ui)

−1∥S.

Since

sup
t∈[0,1]

(
2

2− t

)
= 2

and t ∈ [0, 1], under (2.18), we have,

∥D†
it(Ui)

−1∥S ≤ 2∥D(Ui)
−1∥S. (2.21)

Substituting (2.19) and (2.21) into the above discrepancy in (2.16) involving the R, D̂i,
N̂i, D and N functions we have,∥∥∥∥∥

{
R

([
N̂i(Ui)

D̂i(Ui)

])
−R

([
N (Ui)

D(Ui)

])}
I(Ai)

∥∥∥∥∥
S

≤ 4
(
∥N (Ui)∥S + 1

)
∥D(Ui)

−1∥S∥N̂i(Ui)−N (Ui)∥F

+
{
2
(
∥N (Ui)∥S + 1

)
∥D(Ui)

−1∥S

}2
∥D̂i(Ui)−D(Ui)∥F

= 4
{
W(Ui)∥N̂i(Ui)−N (Ui)∥F +W(Ui)

2∥D̂i(Ui)−D(Ui)∥F
}

where

W(Ui) ≡
(
∥N (Ui)∥S + 1

)
∥D(Ui)

−1∥S =
∥N (Ui)∥S + 1

λmin

(
D(Ui)

) .
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The left-hand side of (2.16) can now be re-written as

1

mn

m∑
i=1

niE

∥∥∥∥∥E
[{

R

([
N̂i(Ui)

D̂i(Ui)

])
−R

([
N (Ui)

D(Ui)

])}
I(Ai)

∣∣∣∣∣Xi
]∥∥∥∥∥

S

≤ 1

mn

m∑
i=1

niE

[
E

∥∥∥∥∥
{
R

([
N̂i(Ui)

D̂i(Ui)

])
−R

([
N (Ui)

D(Ui)

])}
I(Ai)

∣∣∣∣∣Xi
∥∥∥∥∥

S

]

≤ 4

mn

m∑
i=1

niE

(
E

[{
W(Ui)∥N̂i(Ui)−N (Ui)∥F +W(Ui)

2∥D̂i(Ui)−D(Ui)∥F
} ∣∣∣∣∣Xi

])

≤ 4

mn

m∑
i=1

niE

(
E

[
W(Ui)∥N̂i(Ui)−N (Ui)∥F

∣∣∣∣∣Xi
])

+
4

mn

m∑
i=1

niE

(
E

[
W(Ui)

2∥D̂i(Ui)−D(Ui)∥F

∣∣∣∣∣Xi
])

=
4

mn

m∑
i=1

niE
{
W(Ui)∥N̂i(Ui)−N (Ui)∥F

}
+

4

mn

m∑
i=1

niE
{
W(Ui)

2∥D̂i(Ui)−D(Ui)∥F
}
.

(2.22)

For the first term in the final expression of (2.22), note that,

E
{
W(Ui)∥N̂i(Ui)−N (Ui)∥F

}
= E

[
E
{
W(Ui)∥N̂i(Ui)−N (Ui)∥F

∣∣Ui

}]
= E

[
W(Ui)E

{
∥N̂i(Ui)−N (Ui)∥F

∣∣Ui

}]
.

(2.23)

From a conditional version of the Cauchy-Schwarz inequality,

E
{
∥N̂i(Ui)−N (Ui)∥F

∣∣Ui

}
=

([
E
{
∥N̂i(Ui)−N (Ui)∥F

∣∣Ui

}]2)1/2

≤
[
E
{
∥N̂i(Ui)−N (Ui)∥2F

∣∣Ui

}]1/2
.

(2.24)

Using (2.24), observe that

∥∥N̂i(Ui)−N (Ui)
∥∥2
F
=

dB∑
k=1

dA∑
k′=1

[{N̂i(Ui)−N (Ui)}kk′ ]2.

Then note that

[
{N̂i(Ui)−N (Ui)}kk′

]2
=

 1

ni

ni∑
j=1

[
XBijkXAijk′f(Xij ,Ui)− E{XBkXAk′f(X,Ui)|Ui}

]2



2.4. APPENDIX 42

from which it follows that

E
( [

{N̂i(Ui)−N (Ui)}kk′
]2 ∣∣∣Ui

)
= E

 1

ni

ni∑
j=1

[
XBijkXAijk′f(Xij ,Ui)− E{XBkXAk′f(X,Ui)|Ui}

]2 ∣∣∣∣∣Ui


= Var

 1

ni

ni∑
j=1

[
XBijkXAijk′f(Xij ,Ui)− E{XBkXAk′f(X,Ui)|Ui}

] ∣∣∣∣∣Ui


= Var

 1

ni

ni∑
j=1

XBijkXAijk′f(Xij ,Ui)

∣∣∣∣∣Ui


=

1

n2i

ni∑
j=1

Var{XBijkXAijk′f(Xij ,Ui)|Ui}

=
1

ni
Var{XBkXAk′f(X,U)|U}

=
1

ni

(
E{X2

BkX
2
Ak′f(X,U)|U} − [E{XBkXAk′f(X,U)|U}]2

)
≤ 1

ni
E{X2

BkX
2
Ak′f(X,U)|U}.

This implies that

[
E
{
∥N̂i(Ui)−N (Ui)∥2F

∣∣Ui

}]1/2
≤

[
1

ni
E

{
dB∑
k=1

dA∑
k′=1

X2
BkX

2
Ak′f(X,U)|U

}]1/2
. (2.25)

Substituting (2.25) into (2.24) and substituting (2.24) into (2.23) leads to

4

mn

m∑
i=1

niE
{
W(Ui)∥N̂i(Ui)−N (Ui)∥F

}

≤ 4

mn

(
m∑
i=1

√
ni

)
E

W(Ui)

{
E

(
dA∑
k=1

dB∑
k′=1

X2
AkX

2
Bk′f(X,U)|U

)}1/2


≤ 4√
min

1≤i≤m
(ni)

E

[
W(U)

{
E
(
∥XBX

T
A∥2F f(X,U)|U

)}1/2
]

=
4√

min
1≤i≤m

(ni)
E

[
W(U)

{
E
(
∥XA∥2 ∥XB∥2f(X,U)|U

)}1/2
]
.

(2.26)

The final expression in (2.26) convergences to zero provided that we assume the moment
condition

E

[
W(U)

{
E
(
∥XA∥2 ∥XB∥2f(X,U)|U

)}1/2
]
<∞. (2.27)
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If the spectral norm in W(Ui) is replaced by the Frobenius norm, then (2.27) leads to

E


{
∥E{XBX

T
A f(X,U)|U}∥F + 1

}{
E
(
∥XA∥2 ∥XB∥2f(X,U)|U

)}1/2

λmin

(
E{XAXT

A f(X,U)|U}
)

 <∞.

(2.28)
Now note that,

∥E{XBX
T
A f(X,U)|U}∥F ≤ E{∥XBX

T
A∥F f(X,U)|U}

= E{∥XB∥∥XA∥ f(X,U)|U}.

This means that we can replace (2.28) by

E

{E{∥XA∥ ∥XB∥ f(X,U)|U}+ 1}
{
E
(
∥XA∥2 ∥XB∥2f(X,U)|U

)}1/2

λmin

(
E{XAXT

A f(X,U)|U}
)

 <∞.

(2.29)

Next we treat part of the second term in the final expression of (2.22). Note that,

E
{
W(Ui)

2∥D̂i(Ui)−D(Ui)∥F
}
= E

[
E
{
W(Ui)

2∥D̂i(Ui)−D(Ui)∥F
∣∣Ui

}]
= E

[
W(Ui)

2E
{
∥D̂i(Ui)−D(Ui)∥F

∣∣Ui

}]
.

(2.30)

By using a conditional version of the Cauchy-Schwarz inequality, we obtain

E
{
∥D̂i(Ui)−D(Ui)∥F

∣∣Ui

}
=

([
E
{
∥D̂i(Ui)−D(Ui)∥F

∣∣Ui

}]2)1/2

≤
[
E
{
∥D̂i(Ui)−D(Ui)∥2F

∣∣Ui

}]1/2
.

(2.31)

Using (2.31), note that

∥∥D̂i(Ui)−D(Ui)
∥∥2
F
=

dA∑
k=1

dA∑
k′=1

[{D̂i(Ui)−D(Ui)}kk′ ]2.

Then note that

[
{D̂i(Ui)−D(Ui)}kk′

]2
=

 1

ni

ni∑
j=1

[
XAijkXAijk′f(Xij ,Ui)− E{XAkXAk′f(X,Ui)|Ui}

]2

.
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Then we have,

E
{
∥D̂i(Ui)−D(Ui)∥F

∣∣Ui

}
≤
[
E
{
∥D̂i(Ui)−D(Ui)∥2F

∣∣Ui

}]1/2
=

E
 dA∑

k=1

dA∑
k′=1

[{D̂i(Ui)−D(Ui)}kk′ ]2

∣∣∣∣∣Ui


1/2

=

 dA∑
k=1

dA∑
k′=1

E


 1

ni

ni∑
j=1

[
XAijkXAijk′f(Xij ,Ui)− E{XAkXAk′f(X,Ui)|Ui}

]2 ∣∣∣∣∣Ui



1/2

=

 1

ni

dA∑
k=1

dA∑
k′=1

Var{XAkXAk′f(X,U)|U}

1/2

≤

 1

ni

dA∑
k=1

dA∑
k′=1

E{X2
AkX

2
Ak′f(X,U)|U}

1/2

.

(2.32)

By substituting (2.32) into (2.30), we have that

4

mn

m∑
i=1

niE
{
W(Ui)

2∥D̂i(Ui)−D(Ui)∥F
}

≤ 4

mn

(
m∑
i=1

√
ni

)
E

W(U)2

{
E

(
dA∑
k=1

dA∑
k′=1

X2
AkX

2
Ak′f(X,U)|U

)}1/2


≤ 4√
min

1≤i≤m
(ni)

E

[
W(U)2

{
E
(
∥XAX

T
A∥2F f(X,U)|U

)}1/2
]

=
4√

min
1≤i≤m

(ni)
E

[
W(U)2

{
E
(
∥XA∥4 f(X,U)|U

)}1/2
]

which convergences to zero provided that we assume the moment condition

E

[
W(U)2

{
E
(
∥XA∥4 f(X,U)|U

)}1/2
]
<∞. (2.33)

If the spectral norm in W(Ui) is replaced by the Frobenius norm, then (2.33) leads to

E


{
∥E{XAX

T
A f(X,U)|U}∥F + 1

}2 {
E
(
∥XA∥4 f(X,U)|U

)}1/2

λmin

(
E{XAXT

A f(X,U)|U}
)2

 <∞. (2.34)

Now note that

∥E{XAX
T
A f(X,U)|U}∥F ≤ E{∥XAX

T
A∥F f(X,U)|U}

= E{∥XA∥2 f(X,U)|U}.
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This means that we can replace (2.34) by

E


[
E{∥XA∥2 f(X,U)|U}+ 1

]2 {
E
(
∥XA∥4 f(X,U)|U

)}1/2

λmin

(
E{XAXT

A f(X,U)|U}
)2

 <∞. (2.35)

2.4.2.8 Proof of Result (2.17)

In this subsubsection we aim to prove (2.17), which is

1

mn

m∑
i=1

niE

∥∥∥∥∥E
[{

R

([
N̂i(Ui)

D̂i(Ui)

])
−R

([
N (Ui)

D(Ui)

])}
I(AC

i )

∣∣∣∣∣Xi
]∥∥∥∥∥

S

→ 0

as m,n→ ∞. Note that throughout this subsubsection, we are considering

(Ui,Xi) such that AC
i occurs, 1 ≤ i ≤ m. (2.36)

We first start with

E

∥∥∥∥∥E
[{

R

([
N̂i(Ui)

D̂i(Ui)

])
−R

([
N (Ui)

D(Ui)

])}
I(AC

i )

∣∣∣∣∣Xi

]∥∥∥∥∥
S

≤ E

(
E

[∥∥∥∥∥R
([

N̂i(Ui)

D̂i(Ui)

])∥∥∥∥∥
S

I(AC
i )

∣∣∣∣∣Xi

])
+ E

(
E

[∥∥∥∥∥R
([

N (Ui)

D(Ui)

])∥∥∥∥∥
S

I(AC
i )

∣∣∣∣∣Xi

])

= E

{∥∥∥∥∥R
([

N̂i(Ui)

D̂i(Ui)

])∥∥∥∥∥
S

I(AC
i )

}
+ E

{∥∥∥∥∥R
([

N (Ui)

D(Ui)

])∥∥∥∥∥
S

I(AC
i )

}

≤

E

∥∥∥∥∥R
([

N̂i(Ui)

D̂i(Ui)

])∥∥∥∥∥
2

S


1/2

P (AC
i )

1/2 +

E

∥∥∥∥∥R
([

N (Ui)

D(Ui)

])∥∥∥∥∥
2

S


1/2

P (AC
i )

1/2.

To deal with the following expression

E


∥∥∥∥∥∥R
 N̂i(Ui)

D̂i(Ui)

∥∥∥∥∥∥
2

S

 ,

first recall that∥∥∥∥∥R
([

N̂i(Ui)

D̂i(Ui)

])∥∥∥∥∥
S

≤
√
dB

∥∥∥N̂i(Ui)D̂i(Ui)
−1N̂i(Ui)

T
∥∥∥
S

=
√
dB

∥∥∥∥∥
 1

ni

n∑
j=1

XBijX
T
Aijf(Xij ,Ui)


 1

ni

n∑
j=1

XAijX
T
Aijf(Xij ,Ui)


−1

×

 1

ni

n∑
j=1

XAijX
T
Bijf(Xij ,Ui)


∥∥∥∥∥
S

.



2.4. APPENDIX 46

Now we appeal to the second-last displayed equation on page 1093 of Chipman (1964),
which is referred to as the generalized Schwarz inequality, to justify:∥∥∥∥∥R

([
N̂i(Ui)

D̂i(Ui)

])∥∥∥∥∥
2

S

≤
√
dB

∥∥∥∥∥∥ 1

ni

n∑
j=1

XBijX
T
Bijf(Xij ,Ui)

∥∥∥∥∥∥
2

S

.

Hence,

E


∥∥∥∥∥R
([

N̂i(Ui)

D̂i(Ui)

])∥∥∥∥∥
2

S

 ≤ dB
ni

n∑
j=1

E
{∥∥XBijX

T
Bijf(Xij ,Ui)

∥∥2
F

}
= dBE

{
∥XB∥4f(X,U)2

}
.

Next, to deal with

E


∥∥∥∥∥R
([

N (Ui)

D(Ui)

])∥∥∥∥∥
2

S


note that ∥∥∥∥∥R

([
N (Ui)

D(Ui)

])∥∥∥∥∥
S

≤
√
dB
∥∥N (Ui)D(Ui)

−1N (Ui)
T
∥∥

S

≤
√
dB ∥N (Ui)∥S

∥∥D(Ui)
−1
∥∥

S
∥N (Ui)∥S

=

√
dB ∥N (Ui)∥2S
λmin

(
D(Ui)

) .

Hence,

E


∥∥∥∥∥R
([

N (Ui)

D(Ui)

])∥∥∥∥∥
2

S

 ≤ dBE

{
∥N (U)∥4

S

λmin

(
D(U)

)2
}
.

Finally, note that

∥N (U)∥4S ≤
∥∥E{XBX

T
A f(X,U)|U}

∥∥4
F

≤ E{
∥∥XBX

T
A

∥∥4
F
f(X,U)|U}

= E{∥XA∥4 ∥XB∥4 f(X,U)|U}

which implies that

E

{
∥N (U)∥4

S

λmin

(
D(U)

)2
}

≤ E

{
E{∥XA∥4 ∥XB∥4 f(X,U)|U}

λmin

(
D(U)

)2
}
.

From(2.36), note that the following holds

P (AC
i ) ≤ P

(
∥N̂i(Ui)−N (Ui)∥S > 1

)
+ P

(∣∣λmin

(
D̂i(Ui)

)
− λmin

(
D(Ui)

)∣∣ > 1
2λmin(D(Ui))

)
.

(2.37)
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Using Markov’s inequality and the Cauchy-Schwarz inequality, we have

P
(
∥N̂i(Ui)−N (Ui)∥S > 1

)
≤ P

(
∥N̂i(Ui)−N (Ui)∥2S > 1

)
≤ E{∥N̂i(Ui)−N (Ui)∥2S}
≤ E{∥N̂i(Ui)−N (Ui)∥2F }
= E

[
E{∥N̂i(Ui)−N (Ui)∥2F |Ui}

]
≤ 1

ni

dB∑
k=1

dA∑
k′=1

E
[
E
{
X2

BkX
2
Ak′f(X,U)|U

}]
=

1

ni
E
[
E
{
∥XA∥2∥XB∥2f(X,U)|U

}]
.

(2.38)

Using Markov’s inequality again as well as Theorem 8.1.4 (Wielandt-Hoffman) of Golub
and Van Loan (2013), we obtain the following expression for the second term in (2.37),

P
(∣∣λmin

(
D̂i(Ui)

)
− λmin

(
D(Ui)

)∣∣ > 1
2λmin(D(Ui))

)
= E

{
P
(∣∣λmin

(
D̂i(Ui)

)
− λmin

(
D(Ui)

)∣∣ > 1
2λmin(D(Ui))

∣∣Ui

)}
= E

{
P
({
λmin

(
D̂i(Ui)

)
− λmin

(
D(Ui)

)}2
> 1

4λmin(D(Ui))
2
∣∣Ui

)}
≤ 4E

E
[{
λmin

(
D̂i(Ui)

)
− λmin

(
D(Ui)

)}2∣∣∣Ui

]
λmin(D(Ui))2


≤ 4E

E
{∥∥D̂i(Ui)−D(Ui)

∥∥2
F

∣∣∣Ui

}
λmin(D(Ui))2

 .

From earlier calculations, we have that

E
{∥∥D̂i(Ui)−D(Ui)

∥∥2
F

∣∣∣Ui

}
≤ 1

ni

dA∑
k=1

dA∑
k′=1

E{X2
AkX

2
Ak′f(X,U)|U}

=
1

ni
E
(
∥XA∥4 f(X,U)|U

)
.

Therefore,

P
(∣∣λmin

(
D̂i(Ui)

)
−λmin

(
D(Ui)

)∣∣ > 1
2λmin(D(Ui))

)
≤ 4

ni
E

[
E{∥XA∥4 f(X,U)|U}

λmin(D(U))2

]
. (2.39)

Combining (2.38) and (2.39), we obtain

P (AC
i ) ≤

1

ni

(
E
[
E{∥XA∥ ∥XB∥f(X,U)|U}

]
+ 4E

[
E{∥XA∥4 f(X,U)|U}

λmin(D(U))2

])
.
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Using each of the several bounds established in this subsubsection, we have

1

mn

m∑
i=1

niE

∥∥∥∥∥E
[{

R

([
N̂i(Ui)

D̂i(Ui)

])
−R

([
N (Ui)

D(Ui)

])}
I(AC

i )

∣∣∣∣∣Xi

]∥∥∥∥∥
S

≤
√
dB
mn

m∑
i=1

[
ni

[E{∥XB∥4f(X,U)2
}]1/2

+

[
E

{
E{∥XA∥4 ∥XB∥4 f(X,U)|U}

λmin

(
D(U)

)2
}]1/2

×
{

1

ni

(
E
[
E{∥XA∥2 ∥XB∥2f(X,U)|U}

]
+ 4E

[
E{∥XA∥4f(X,U)|U}

λmin(D(U))2

])}1/2
]

≤
√
dB√

min
1≤i≤m

(ni)

[([
E
{
∥XB∥4f(X,U)2

}]1/2)

×
{(

E
[
E{∥XA∥ ∥XB∥f(X,U)|U}

]
+ 4E

[
E{∥XA∥4f(X,U)|U}

λmin(D(U))2

])}1/2
]

+

√
dB√

min
1≤i≤m

(ni)

[[E{E{∥XA∥4 ∥XB∥4 f(X,U)|U}
λmin

(
D(U)

)2
}]1/2

×
{(

E
[
E{∥XA∥ ∥XB∥f(X,U)|U}

]
+ 4E

[
E{∥XA∥4f(X,U)|U}

λmin(D(U))2

])}1/2
]
,

which converges to zero under Theorems 11, 12 and 14 sample size and moment
assumptions.

2.4.2.9 Summary of Moment Assumptions

The moment assumptions used to prove (2.10), are as follows:

(MA1) E
{
∥XB∥4f(X,U)2

}
<∞,

(MA2) E


{
E
(
∥XA∥2 ∥XB∥2f(X,U)|U

)}1/2

{E{∥XA∥ ∥XB∥ f(X,U)|U}+ 1}

λmin

(
E{XAX

T
A f(X,U)|U}

)
 <∞,

(MA3) E


{
E
(
∥XA∥4 f(X,U)|U

)}1/2 [
E{∥XA∥2 f(X,U)|U}+ 1

]2
λmin

(
E{XAX

T
A f(X,U)|U}

)2
 <∞,

(MA4) E
[
E{∥XA∥2 ∥XB∥2f(X,U)|U}

]
<∞,

(MA5) E

 E{∥XA∥4f(X,U)|U}

λmin

(
E{XAX

T
A f(X,U)|U}

)2
 <∞,

(MA6) E

 E{∥XA∥4 ∥XB∥4 f(X,U)|U}

λmin

(
E{XAX

T
A f(X,U)|U}

)2
 <∞.
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2.4.2.10 Succinct Expression for Moment Assumptions

We now attempt to find an alternative way to express the moment assumptions in
Section 2.4.2.9 in a unified fashion.

Inequality to Re-write the Numerator of (MA2)

To re-express the moment assumption (MA2), we intend to apply the following inequality
to the numerator of (MA2):

(x+ 1)y < 1 + x2 + y2 for all x, y ∈ R. (2.40)

One way to prove (2.40) is to write it as

x2 + y2 − y − xy + 1 > 0 for all x, y ∈ R. (2.41)

If the left-hand side is then written as

Ax2 +B y2 + C x+Dy + E xy + F

where
A = 1, B = 1, C = 0, D = −1, E = −1, F = 1.

The discriminant-type quantity for the quadratic expression is

4AB − E2 = 4− (−1)2 = 3 > 0

and since A > 0, the left-hand side of (2.41) has a minimum at

(x, y) = (DE − 2BC,CE − 2AD)/(4AB − E2) = (1/3, 2/3).

Substitution of this point into the left-hand side of (2.41) leads to

(1/9) + (4/9)− (2/3)− (2/9) + 1 = (1/9) + (4/9)− (6/9)− (2/9) + (9/9) = 2/3 > 0.

Thus, we have established (2.40).

Inequality to Re-write the Numerator of (MA3)

Next, to re-express the moment assumption (MA3), we intend to apply the following
inequality to the numerator of (MA3):

(x+ 1)2y < 1 + x2 + x4 + 2y2 for all x, y ∈ R. (2.42)

We first start by expanding the term on the left-hand side of (2.42) which leads to

(x+ 1)2y = (x2 + 2x+ y)y

= (x2 + 1)y + 2xy.
(2.43)
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Also note that, by using the inequality (x − y)2 ≥ 0, we obtain the following

2xy ≤ x2 + y2. (2.44)

Hence, the result in (2.42) can be obtained using the inequalities in (2.40), (2.43) and
(2.44).

Re-expressing the Complete Set of Moment Conditions

Now we write

Mp1p2 =Mp1p2(U) ≡ E
(
∥XA∥p1 ∥XB∥p2f(X,U)|U

)}
.

Then the application of (2.40) to (MA2) and application of (2.42) to (MA3) leads to

M
1/2
22 (M11 + 1) ≤ 1 +M2

11 +M22

and
M

1/2
40 (M20 + 1)2 ≤ 1 +M2

20 +M4
20 + 2M40.

Next, noting that

1 ≥ min(1, x), x ≥ min(1, x) and x2 ≥ {min(1, x)}2 for all x > 0,

the following inequalities can be applied to the denominators of (MA2)–(MA6):

1

1
≤ 1

{min(1, x)}2
,

1

x
≤ 1

{min(1, x)}2
and

1

x2
≤ 1

{min(1, x)}2
for all x > 0.

Combining all of these facts leads to the following alternative set of moment assumptions:

E

[ {
E
(
∥XA∥p1 ∥XB∥p2f(X,U)|U

)}p3[
min

{
1, λmin

(
E{XAXT

A f(X,U)|U}
)}]2

]
<∞

for each of (p1, p2, p3) ∈ {(0, 0, 0), (4, 0, 1), (2, 2, 1), (4, 4, 1), (1, 1, 2), (2, 0, 2), (2, 0, 4)}.

2.4.2.11 A Sufficient Condition for the Moment Assumptions

Let X = (XA,XB). Then we have ∥X∥ > max (∥XA∥, ∥XB∥). Hence,{
E
(
∥XA∥p1 ∥XB∥p2f(X,U)|U

)}p3 ≤
{
E
(
∥X∥p1+p2f(X,U)|U

)}p3
≤ E

(
∥X∥(p1+p2)p3f(X,U)p3 |U

)
≤ E

(
max {1, ∥X∥}(p1+p2)p3 max {1, f(X,U)}p3 |U

)
≤ E

(
max {1, ∥X∥}8max {1, f(X,U)}4 |U

)
since p3 ≤ 4 and (p1 + p2)p3 ≤ 8 over the set of values that (p1, p2, p3) takes in Section
2.4.2.10.
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It follows that the condition

E

[
E
(
max {1, ∥X∥}8max {1, f(X,U)}4 |U

)[
min

{
1, λmin

(
E{XAXT

A f(X,U)|U}
)}]2

]
<∞ (2.45)

implies each of (MA2)-(MA6). Also, recalling that,

1

{min(1, x)}2
≥ 1

we have

E
(
max {1, ∥X∥}8max {1, f(X,U)}4 |U

)[
min

{
1, λmin

(
E{XAXT

A f(X,U)|U}
)}]2 ≥ E{∥XB∥8f(X,U)4|U}.

Hence, moment condition (2.45) implies that

E
[
E{∥XB∥8f(X,U)4|U}

]
<∞,

which is equivalent to
E
[
{∥XB∥4f(X,U)2}2

]
<∞. (2.46)

However, since for any random variable Z, it is the case that

E(Z2) <∞ implies E(|Z|) <∞

condition (2.46) implies (MA1). Thus, we can claim that (2.45) implies each of (MA1)-
(MA6).

2.4.3 Proof of Lemma 3

2.4.3.1 Matrix Extension of Results Concerning Integrals of Half-Cauchy
Forms

Using (1.12), premultiplication on both sides of the equation by
(
2
πA

1/2
)−1

leads to

π

2
I =

∫ ∞

0
A1/2(A+ x2I)−1 dx. (2.47)

Next, note that by using (2.47), we have,∫ ∞

0

(
I + x2A

)−1
dx =

∫ ∞

0

{
A
(
A−1 + x2I

)}−1
dx

=

∫ ∞

0

(
A−1 + x2I

)−1
A−1 dx

= A1/2

∫ ∞

0
A−1/2

(
A−1 + x2I

)−1
dxA−1

= A1/2
(π
2
I
)
A−1

=
π

2
A−1/2.
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Therefore,
π

2
I =

∫ ∞

0

(
I + x2A

)−1
A1/2 dx. (2.48)

Combining both (2.47) and (2.48), for A ∈ Cn×n with no eigenvalues on R−, we have,

π

2
I =

∫ ∞

0
A1/2(A+ x2I)−1 dx =

∫ ∞

0

(
I + x2A

)−1
A1/2 dx. (2.49)

From these results, we have,

Ip =
4

π2

∫ ∞

0

∫ ∞

0
(Ip + t2K)−1K(K + u2Ip)

−1 dt du (2.50)

and

Iq =
4

π2

∫ ∞

0

∫ ∞

0

{
Iq + t2

(
1

n
L

)}−1( 1

n
L

){(
1

n
L

)
+ u2Iq

}−1

dt du. (2.51)

2.4.3.2 Derivation of Integrand Expressions

An Integral Expression for M
−1/2
n,∞ =

(
M−1

n,∞
)1/2

Note that

Mn,∞ ≡

[
K O

O 1
nL

]
and

(Mn,∞)−1 ≡

[
K−1 O

O nL−1

]
.

Application of (2.49) to M−1
n,∞ leads to

M−1/2
n,∞ =

(
M−1

n,∞
)1/2

=
2

π

∫ ∞

0
M−1

n,∞
(
M−1

n,∞ + t2I
)−1

dt

=
2

π

∫ ∞

0

[
K−1 O

O nL−1

][
K−1 + t2Ip O

O nL−1 + t2Iq

]−1

dt

=
2

π

∫ ∞

0

[
K−1 O

O nL−1

][(
K−1 + t2Ip

)−1
O

O
(
nL−1 + t2Iq

)−1

]
dt

=
2

π

∫ ∞

0

[
K−1 O

O nL−1

][
K
(
Ip + t2K

)−1
O

O
(
1
nL
) {

Iq + t2
(
1
nL
)}−1

]
dt

=
2

π

∫ ∞

0

[(
Ip + t2K

)−1
O

O
{
Iq + t2

(
1
nL
)}−1

]
dt.
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An Integral Expression for M
1/2
n

Note that

Mn ≡

K +Qn1
⊗2
p Rn1p1

T
q

Rn1q1
T
p

1
nL+ Tn1

⊗2
q


where Qn = op(1), Rn = Op(n

−1) and Tn = op(n
−1). For all n sufficiently large so that

negative eigenvalues are avoided, application of (2.49) to Mn leads to

M1/2
n =

2

π

∫ ∞

0

Mn

(
Mn + u2I

)−1
du

=
2

π

∫ ∞

0

K +Qn1
⊗2
p Rn1p1

T
q

Rn1q1
T
p

1
nL+ Tn1

⊗2
q

K + u2Ip +Qn1
⊗2
p Rn1p1

T
q

Rn1q1
T
p

1
nL+ u2Iq + Tn1

⊗2
q

−1

du.

An Integral Expression for M
−1/2
n,∞ M

1/2
n

Firstly, note that[(
Ip + t2K

)−1
O

O
{
Iq + t2

(
1
nL
)}−1

]K +Qn1
⊗2
p Rn1p1

T
q

Rn1q1
T
p

1
nL+ Tn1

⊗2
q


=

[(
Ip + t2K

)−1 (
K +Qn1

⊗2
p

)
Rn
(
Ip + t2K

)−1
1p1

T
q

Rn
{
Iq + t2

(
1
nL
)}−1

1q1
T
p

{
Iq + t2

(
1
nL
)}−1 1

nL+ Tn1
⊗2
q

]
.

Then

M−1/2
n,∞ M1/2

n

=
4

π2

∫ ∞

0

∫ ∞

0

(Ip + t2K
)−1 (

K +Qn1
⊗2
p

)
Rn
(
Ip + t2K

)−1
1p1

T
q

Rn
{
Iq + t2

(
1
nL
)}−1

1q1
T
p

{
Iq + t2

(
1
nL
)}−1 1

nL+ Tn1
⊗2
q



×

K + u2Ip +Qn1
⊗2
p Rn1p1

T
q

Rn1q1
T
p

1
nL+ u2Iq + Tn1

⊗2
q

−1

dt du.

An Integral Expression for M
−1/2
n,∞ M

1/2
n − I

For any u > 0 and values of n,K and L, define the (p+ q)× (p+ q) matrix,

H1(u;n,K,L) ≡

K + u2Ip +Qn1
⊗2
p Rn1p1

T
q

Rn1q1
T
p

1
nL+ u2Iq + Tn1

⊗2
q

−1

. (2.52)
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Then, for any (t, u) ∈ R2, define the (p+ q)× (p+ q) matrix as follows,

H2(t, u;n,K,L)

≡

(Ip + t2K)−1(K +Qn1
⊗2
p ) Rn(Ip + t2K)−11p1

T
q

Rn{Iq + t2( 1nL)}−11q1
T
p {Iq + t2( 1nL)}−1( 1nL+ Tn1

⊗2
q )

H1(u;n,K,L)

−

(Ip + t2K)−1K(K + u2Ip)
−1 O

O {Iq + t2( 1nL)}−1( 1nL){( 1nL) + u2Iq}−1

 .
(2.53)

Then from (2.50) and (2.51) and according to the definitions above,

M−1/2
n,∞ M1/2

n − Ip+q =
4

π2

∫ ∞

0

∫ ∞

0
H2(t, u;n,K,L) dt du. (2.54)

Throughout the rest of this subsubsection, we aim to find a more explicit expression for
H2(t, u;n,K,L).

Inversion of H1(u;n,K,L) Using Block Matrix Inversion

The upper left p× p block of H1(u;n,K,L)−1 is{
K + u2Ip +Qn1

⊗2
p −R2

n1p1
T
q

(
1

n
L+ u2Iq + Tn1

⊗2
q

)−1

1q1
T
p

}−1

.

The upper right p× q block of H1(u;n,K,L)−1 is

−Rn

{
K + u2Ip +Qn1

⊗2
p −R2

n1p1
T
q

(
1

n
L+ u2Iq + Tn1

⊗2
q

)−1

1q1
T
p

}−1

× 1p1
T
q

(
1

n
L+ u2Iq + Tn1

⊗2
q

)−1

.

The lower left q × p block of H1(u;n,K,L)−1 is

−Rn

(
1

n
L+ u2Iq + Tn1

⊗2
q

)−1

1q1
T
p

×

{
K + u2Ip +Qn1

⊗2
p −R2

n1p1
T
q

(
1

n
L+ u2Iq + Tn1

⊗2
q

)−1

1q1
T
p

}−1

.

The lower right q × q block of H1(u;n,K,L)−1 is{
1

n
L+ u2Iq + Tn1

⊗2
q −R2

n1q1
T
p

(
K + u2Ip +Qn1

⊗2
p

)−1
1p1

T
q

}−1

.
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The Upper Left p× p Block of H2(t, u;n,K,L)

The upper left p× p block of H2(t, u;n,K,L) is

(Ip + t2K)−1(K +Qn1
⊗2
p )

{
K + u2Ip +Qn1

⊗2
p −R2

n1p1
T
q

(
1

n
L+ u2Iq + Tn1

⊗2
q

)−1

1q1
T
p

}−1

−R2
n(Ip + t2K)−11p1

T
q

(
1

n
L+ u2Iq + Tn1

⊗2
q

)−1

1q1
T
p

×

{
K + u2Ip +Qn1

⊗2
p −R2

n1p1
T
q

(
1

n
L+ u2Iq + Tn1

⊗2
q

)−1

1q1
T
p

}−1

− (Ip + t2K)−1K
(
K + u2Ip

)−1

=

{
(Ip + t2K)−1(K +Qn1

⊗2
p )−R2

n(Ip + t2K)−11p1
T
q

(
1

n
L+ u2Iq + Tn1

⊗2
q

)−1

1q1
T
p

}

×

{
K + u2Ip +Qn1

⊗2
p −R2

n1p1
T
q

(
1

n
L+ u2Iq + Tn1

⊗2
q

)−1

1q1
T
p

}−1

− (Ip + t2K)−1K
(
K + u2Ip

)−1

= (Ip + t2K)−1

[{
K +Qn1

⊗2
p −R2

n1p1
T
q

(
1

n
L+ u2Iq + Tn1

⊗2
q

)−1

1q1
T
p

}

×

{
K + u2Ip +Qn1

⊗2
p −R2

n1p1
T
q

(
1

n
L+ u2Iq + Tn1

⊗2
q

)−1

1q1
T
p

}−1

−K
(
K + u2Ip

)−1

]

= (Ip + t2K)−1K

[{
K + u2Ip +Qn1

⊗2
p −R2

n1p1
T
q

(
1

n
L+ u2Iq + Tn1

⊗2
q

)−1

1q1
T
p

}−1

−
(
K + u2Ip

)−1

]
+ (Ip + t2K)−1

{
Qn1

⊗2
p −R2

n1p1
T
q

(
1

n
L+ u2Iq + Tn1

⊗2
q

)−1

1q1
T
p

}

×

{
K + u2Ip +Qn1

⊗2
p −R2

n1p1
T
q

(
1

n
L+ u2Iq + Tn1

⊗2
q

)−1

1q1
T
p

}−1

.

Using (1.1), the first term in the expression can be re-written as

(Ip + t2K)−1K

{
K + u2Ip +Qn1

⊗2
p −R2

n1p1
T
q

(
1

n
L+ u2Iq + Tn1

⊗2
q

)−1

1q1
T
p

}−1

×

{
R2
n1p1

T
q

(
1

n
L+ u2Iq + Tn1

⊗2
q

)−1

1q1
T
p −Qn1

⊗2
p

}(
K + u2Ip

)−1
.
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Putting together the results given so far in this subsubsection, we have that the
upper left p× p block of H2(t, u;n,K,L) is:

(Ip + t2K)−1K

{
K + u2Ip +Qn1

⊗2
p −R2

n1p1
T
q

(
1

n
L+ u2Iq + Tn1

⊗2
q

)−1

1q1
T
p

}−1

×

{
R2
n1p1

T
q

(
1

n
L+ u2Iq + Tn1

⊗2
q

)−1

1q1
T
p −Qn1

⊗2
p

}(
K + u2Ip

)−1

− (Ip + t2K)−1

{
R2
n1p1

T
q

(
1

n
L+ u2Iq + Tn1

⊗2
q

)−1

1q1
T
p −Qn1

⊗2
p

}

×

{
K + u2Ip +Qn1

⊗2
p −R2

n1p1
T
q

(
1

n
L+ u2Iq + Tn1

⊗2
q

)−1

1q1
T
p

}−1

.

The Lower Left q × p Block of H2(t, u;n,K,L)

Noting that the lower left q × p block of I is a zero matrix, the lower left q × p block of
H2(t, u;n,K,L) is

Rn

{
Iq + t2

(
1

n
L

)}−1

1q1
T
p

{
K + u2Ip +Qn1

⊗2
p −R2

n1p1
T
q

(
1

n
L+ u2Iq + Tn1

⊗2
q

)−1

1q1
T
p

}−1

−Rn

{
Iq + t2

(
1

n
L

)}−1(
1

n
L+ Tn1

⊗2
q

)(
1

n
L+ u2Iq + Tn1

⊗2
q

)−1

1q1
T
p

×

{
K + u2Ip +Qn1

⊗2
p −R2

n1p1
T
q

(
1

n
L+ u2Iq + Tn1

⊗2
q

)−1

1q1
T
p

}−1

= Rn

{
Iq + t2

(
1

n
L

)}−1
{
Iq −

(
1

n
L+ Tn1

⊗2
q

)(
1

n
L+ u2Iq + Tn1

⊗2
q

)−1
}
1q1

T
p

×

{
K + u2Ip +Qn1

⊗2
p −R2

n1p1
T
q

(
1

n
L+ u2Iq + Tn1

⊗2
q

)−1

1q1
T
p

}−1

= Rnu
2

{
Iq + t2

(
1

n
L

)}−1(
1

n
L+ u2Iq + Tn1

⊗2
q

)−1

1q1
T
p

×

{
K + u2Ip +Qn1

⊗2
p −R2

n1p1
T
q

(
1

n
L+ u2Iq + Tn1

⊗2
q

)−1

1q1
T
p

}−1

.

The Upper Right p× q Block of H2(t, u;n,K,L)

Noting that the upper right p × q block of I is a zero matrix, the upper right p × q
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block of H2(t, u;n,K,L) is

−Rn(Ip + t2K)−1(K +Qn1
⊗2
p )

×
{
K + u2Ip +Qn1

⊗2
p −R2

n1p1
T
q

( 1
n
L+ u2Iq + Tn1

⊗2
q

)−1

1q1
T
p

}−1

× 1p1
T
q

( 1
n
L+ u2Iq + Tn1

⊗2
q

)−1

+Rn(Ip + t2K)−11p1
T
q

{ 1

n
L+ u2Iq + Tn1

⊗2
q −R2

n1q1
T
p (K + u2Ip +Qn1

⊗2
p )−11p1

T
q

}−1

= Rn(Ip + t2K)−1
[
1p1

T
q

{ 1

n
L+ u2Iq + Tn1

⊗2
q −R2

n1q1
T
p (K + u2Ip +Qn1

⊗2
p )−11p1

T
q

}−1

− (K +Qn1
⊗2
p )
{
K + u2Ip +Qn1

⊗2
p −R2

n1p1
T
q

( 1
n
L+ u2Iq + Tn1

⊗2
q

)−1

1q1
T
p

}−1

1p1
T
q

×
(
1

n
L+ u2Iq + Tn1

⊗2
q

)−1 ]
.

The Lower Right q × q Block of H2(t, u;n,K,L)

The lower right q × q block of H2(t, u;n,K,L) is{
Iq + t2

(
1

n
L

)}−1(
1

n
L+ Tn1

⊗2
q

)
×
{
1

n
L+ u2Iq + Tn1

⊗2
q −R2

n1q1
T
p

(
K + u2Ip +Qn1

⊗2
p

)−1
1p1

T
q

}−1

−R2
n

{
Iq + t2

(
1

n
L

)}−1

× 1q1
T
p

{
K + u2Ip +Qn1

⊗2
p −R2

n1p1
T
q

(
1

n
L+ u2Iq + Tn1

⊗2
q

)−1

1q1
T
p

}−1

× 1p1
T
q

(
1

n
L+ u2Iq + Tn1

⊗2
q

)−1

−
{
Iq + t2

(
1

n
L

)}−1(
1

n
L

){(
1

n
L

)
+ u2Iq

}−1

=

{
Iq + t2

(
1

n
L

)}−1

×
[(

1

n
L+ Tn1

⊗2
q

){
1

n
L+ u2Iq + Tn1

⊗2
q −R2

n1q1
T
p

(
K + u2Ip +Qn1

⊗2
p

)−1
1p1

T
q

}−1

−
(
1

n
L

){(
1

n
L

)
+ u2Iq

}−1

−R2
n1q1

T
p

{
K + u2Ip +Qn1

⊗2
p −R2

n1p1
T
q

(
1

n
L+ u2Iq + Tn1

⊗2
q

)−1

1q1
T
p

}−1

× 1p1
T
q

(
1

n
L+ u2Iq + Tn1

⊗2
q

)−1 ]
.
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Therefore, the lower right q × q block of H2(t, u;n,K,L) is

=

{
Iq + t2

(
1

n
L

)}−1

×

((
1

n
L

)[{
1

n
L+ u2Iq + Tn1

⊗2
q −R2

n1q1
T
p

(
K + u2Ip +Qn1

⊗2
p

)−1
1p1

T
q

}−1

−
{(

1

n
L

)
+ u2Iq

}−1 ]
+ Tn1

⊗2
q

{
1

n
L+ u2Iq

+ Tn1
⊗2
q −R2

n1q1
T
p

(
K + u2Ip +Qn1

⊗2
p

)−1
1p1

T
q

}−1

−R2
n1q1

T
p

{
K + u2Ip +Qn1

⊗2
p −R2

n1p1
T
q

(
1

n
L+ u2Iq + Tn1

⊗2
q

)−1

1q1
T
p

}−1

× 1p1
T
q

(
1

n
L+ u2Iq + Tn1

⊗2
q

)−1
)
.

Application of (1.1) to the first term in the preceding expression leads to{
Iq + t2

(
1

n
L

)}−1( 1

n
L

)
×
{
1

n
L+ u2Iq + Tn1

⊗2
q −R2

n1q1
T
p

(
K + u2Ip +Qn1

⊗2
p

)−1
1p1

T
q

}−1

×
{
R2
n1q1

T
p

(
K + u2Ip +Qn1

⊗2
p

)−1
1p1

T
q − Tn1

⊗2
q

}{( 1

n
L

)
+ u2Iq

}−1

.

The next term of the lower right q × q block of H2(t, u;n,K,L) is

Tn

{
Iq + t2

(
1

n
L

)}−1

1⊗2
q

×
{
1

n
L+ u2Iq + Tn1

⊗2
q −R2

n1q1
T
p

(
K + u2Ip +Qn1

⊗2
p

)−1
1p1

T
q

}−1

.

Hence, the final term of the lower right q × q block of H2(t, u;n,K,L) is

−R2
n

{
Iq + t2

(
1

n
L

)}−1

1q1
T
p

×

{
K + u2Ip +Qn1

⊗2
p −R2

n1p1
T
q

(
1

n
L+ u2Iq + Tn1

⊗2
q

)−1

1q1
T
p

}−1

× 1p1
T
q

(
1

n
L+ u2Iq + Tn1

⊗2
q

)−1

.
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Putting all these expressions together, we have,{
Iq + t2

(
1

n
L

)}−1
[(

1

n
L

){
1

n
L+ u2Iq + Tn1

⊗2
q −R2

n1q1
T
p

(
K + u2Ip +Qn1

⊗2
p

)−1
1p1

T
q

}−1

×
{
R2

n1q1
T
p

(
K + u2Ip +Qn1

⊗2
p

)−1
1p1

T
q − Tn1

⊗2
q

}{( 1

n
L

)
+ u2Iq

}−1

+ Tn1
⊗2
q

{
1

n
L+ u2Iq + Tn1

⊗2
q −R2

n1q1
T
p

(
K + u2Ip +Qn1

⊗2
p

)−1
1p1

T
q

}−1

−R2
n1q1

T
p

{
K + u2Ip +Qn1

⊗2
p −R2

n1p1
T
q

(
1

n
L+ u2Iq + Tn1

⊗2
q

)−1

1q1
T
p

}−1

× 1p1
T
q

(
1

n
L+ u2Iq + Tn1

⊗2
q

)−1
]
.

2.4.3.3 Succinct Expressions for the Components in (2.53)

Define

Γ1n(u;Tn,K,L) ≡
(
1

n
L+ u2Iq + Tn1

⊗2
q

)−1

Γ2n(u;Qn, Rn,K,L) ≡ R2
n1p1

T
q (Γ1n(u;Tn,K,L))1q1

T
p −Qn1

⊗2
p

Γ3n(u;Qn, Rn, Tn,K,L) ≡ R2
n1q1

T
p

(
K + u2Ip +Qn1

⊗2
p

)−1
1p1

T
q − Tn1

⊗2
q

Γ4n(u;Qn, Rn,K,L) ≡
{
K + u2Ip − (Γ2n(u;Qn, Rn,K,L))

}−1
and

Γ5n(u;Qn, Rn, Tn,K,L) ≡
{
1

n
L+ u2Iq − (Γ3n(u;Qn, Rn, Tn,K,L))

}−1

.

From now on, we write our expressions forH2(t, u;n,K,L) in terms of Γ1n(u), . . . ,Γ5n(u)
and suppress all other arguments. Then,

H2(t, u;n,K,L)11 =
(
Ip + t2K

)−1
{
KΓ4n(u)Γ2n(u)

(
K + u2Ip

)−1 − Γ2n(u)Γ4n(u)
}

H2(t, u;n,K,L)21 = Rnu
2

{
Iq + t2

(
1

n
L

)}−1

Γ1n(u)1q1
T
p Γ4n(u)

H2(t, u;n,K,L)12 = Rn(Ip + t2K)−1
{
1p1

T
q Γ5n(u)− (K +Qn1

⊗2
p )Γ4n(u)1p1

T
q Γ1n(u)

}
and

H2(t, u;n,K,L)22 =

{
Iq + t2

(
1

n
L

)}−1
[(

1

n
L

)
Γ5n(u)Γ3n(u)

{
1

n
L+ u2Iq

}−1

+ Tn1
⊗2
q Γ5n(u)−R2

n1q1
T
p Γ4n(u)1p1

T
q Γ1n(u)

]
.
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2.4.3.4 Simplification of Integrals

It follows from the results in Section 2.4.3.1 that∫ ∞

0

(
Ip + t2K

)−1
dt =

π

2
K−1/2.

Also, using (2.49),∫ ∞

0

{
Iq + t2

(
1

n
L

)}−1

dt =
π

2

(
1

n
L

)−1/2

=
πn1/2

2
L−1/2.

2.4.3.5 Explicit Expressions for (2.54)

Define

π

2

(
M−1/2

n,∞ M1/2
n − Ip+q

)
=

K−1/2
∫∞
0 F11n(u;K,L)du K−1/2

∫∞
0 F12n(u;K,L)du

L−1/2
∫∞
0 F21n(u;K,L)du L−1/2

∫∞
0 F22n(u;K,L)du


(2.55)

where

F11n(u;K,L) ≡ KΓ4n(u)Γ2n(u)
(
K + u2Ip

)−1 − Γ2n(u)Γ4n(u)

F21n(u;K,L) ≡ n1/2Rnu
2Γ1n(u)1q1

T
p Γ4n(u)

F12n(u;K,L) ≡ Rn{1p1Tq Γ5n(u)− (K +Qn1
⊗2
p )Γ4n(u)1p1

T
q Γ1n(u)} and

F22n(u;K,L) ≡ n1/2

[(
1

n
L

)
Γ5n(u)Γ3n(u)

{
1

n
L+ u2Iq

}−1

+ Tn1
⊗2
q Γ5n(u)−R2

n1q1
T
p Γ4n(u)1p1

T
q Γ1n(u)

]
.

2.4.3.6 Convergence in Probability Limits of the Functions in (2.55)

In Appendix 2.4.4, we establish that

plim
n→∞

∫ ∞

0
Fkk′n(u;K,L) du = O, k, k′ = 1, 2.

for u > 0. Hence, the lemma in Section 2.3 is proven.
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2.4.4 Multivariate Integral Limits for the Matrix Square Root Result

2.4.4.1 Overview of this Appendix

In this appendix we deal with the problem of establishing that

plim
n→∞

∫ ∞

0
Fkk′n(u;K,L) du = O, k, k′ = 1, 2.

The approach involves spectral norm bounds on the integrands Fkk′n(u;K,L) uniformly
over u > 0 and exact integral results over the positive half-line for functions of x with
factors of the form 1/(aj + x2), aj > 0.

2.4.4.2 Computing Spectral Norms

Bounding of ∥Γ1n(u)∥S

Recall that

Γ1n(u) ≡
(
1

n
L+ u2Iq + Tn1

⊗2
q

)−1

.

Then, noting that Γ1n(u) is symmetric and positive definite,

∥Γ1n(u)∥S = λmax

{(
1

n
L+ u2Iq + Tn1

⊗2
q

)−1
}

= 1/λmin

(
1

n
L+ u2Iq + Tn1

⊗2
q

)
.

Application of (1.9) leads to

λmin

(
1

n
L+ u2Iq + Tn1

⊗2
q

)
≥ λmin

(
1

n
L

)
+ λmin

(
u2Iq

)
+ λmin

(
Tn1

⊗2
q

)
=

1

n
λmin (L) + u2λmin (Iq) + Tnλmin

(
1⊗2
q

)
≥ 1

n
λmin (L) + u2 +min (Tn, 0) .

Since Tn = oP (n
−1), for every 0 < ε ≤ 1 we can choose n1 ∈ N such that, for all n > n1,

|Tn| < 1
2nλmin (L) with probability exceeding 1 − ε. For all such large n we then have

Tn > − 1

2n
λmin (L) .

Also,

0 > − 1

2n
λmin (L)

and therefore we have,

min (Tn, 0) > − 1

2n
λmin (L) .
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Therefore, for all such large n, we then have

λmin

(
1

n
L+ u2Iq + Tn1

⊗2
q

)
>

1

2n
λmin (L) + u2 for all u > 0.

This leads to

∥Γ1n(u)∥S <
1

1
2nλmin (L) + u2

for all n > n1 and u > 0

with probability exceeding 1 − ε.

Bounding of ∥Γ2n(u)∥S

Recall that
Γ2n(u) ≡ R2

n1p1
T
q Γ1n(u)1q1

T
p −Qn1

⊗2
p

=
{
R2
n1

T
q Γ1n(u)1q −Qn

}
1⊗2
p .

Also note that for n large enough and all u > 0

∥Γ1n(u)∥S <
1

1
2nλmin (L) + u2

<
1

1
2nλmin (L)

=
2n

λmin (L)
.

Then
∥Γ2n(u)∥S = ∥

{
R2
n1

T
q Γ1n(u)1q −Qn

}
1⊗2
p ∥S

≤ ∥R2
n1

T
q Γ1n(u)1q −Qn∥S∥1⊗2

p ∥S

≤ p
{
R2
n∥1Tq Γ1n(u)1q∥S + ∥Qn∥S

}
≤ p

{
qR2

n∥Γ1n(u)∥S + |Qn|
}

< p

{
2qnR2

n

λmin (L)
+ |Qn|

}
.

In summary,

∥Γ2n(u)∥S < p

{
2qnR2

n

λmin (L)
+ |Qn|

}
for all u > 0

with probability exceeding 1 − ε.

Bounding of ∥Γ3n(u)∥S

Recall that

Γ3n(u) ≡ R2
n1q1

T
p

(
K + u2Ip +Qn1

⊗2
p

)−1
1p1

T
q − Tn1

⊗2
q .

Then

∥Γ3n(u)∥S ≤ R2
n∥1q∥S∥1Tp ∥S∥

(
K + u2Ip +Qn1

⊗2
p

)−1 ∥S∥1p∥S∥1Tq ∥S + |Tn|∥1⊗2
q ∥S

=
pqR2

n

λmin

(
K + u2Ip +Qn1

⊗2
p

) + q|Tn|.
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Now,

λmin

(
K + u2Ip +Qn1

⊗2
p

)
≥ λmin(K) + λmin(u

2Ip) + λmin

(
Qn1

⊗2
p

)
≥ λmin(K) + u2 +min (Qn, 0) .

Since Qn = oP (1), for every 0 < ε ≤ 1 we can choose n3 ∈ N such that, for all n > n3,
|Qn| < 1

2λmin (K) with probability exceeding 1 − ε. For all such large n we then have

Qn > −1

2
λmin (K) .

Also,

0 > −1

2
λmin (K)

and therefore we have,

min (Qn, 0) > −1

2
λmin (K) .

Therefore, for all such large n, we then have

λmin

(
K + u2Ip +Qn1

⊗2
p

)
>

1

2
λmin (K) + u2.

Therefore,

∥Γ3n(u)∥S <
pqR2

n
1
2λmin (K) + u2

+ q|Tn| for all n > n3 and u > 0.

Bounding of ∥Γ4n(u)∥S

Recall that

Γ4n(u) ≡
{
K + u2Ip − Γ2n(u)

}−1
.

Hence,

∥Γ4n(u)∥S = λmax

{(
K + u2Ip − Γ2n(u)

)−1
}

= 1/λmin

(
K + u2Ip − Γ2n(u)

)
.

Then, from (1.9) we have

λmin

(
K + u2Ip − Γ2n(u)

)
≥ λmin

(
K + u2Ip

)
+ λmin (−Γ2n(u))

≥ λmin (K) + λmin

(
u2Ip

)
− λmin (Γ2n(u))

≥ λmin (K) + u2 − λmax (Γ2n(u))

= λmin (K) + u2 − ∥Γ2n(u)∥S

≥ λmin (K) + u2 − p

{
2qnR2

n

λmin (L)
+ |Qn|

}
.

Since Rn = OP (n
−1) and Qn = oP (1), for every for every 0 < ε ≤ 1 we can choose

n4 ∈ N such that, for all n > n4,

p

{
2qnR2

n

λmin (L)
+ |Qn|

}
<

1

2
λmin (K) .
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This is equivalent to

−p
{

2qnR2
n

λmin (L)
+ |Qn|

}
> −1

2
λmin (K) .

This allows us to claim that for all n > n4,

λmin

(
K + u2Ip − Γ2n(u)

)
>

1

2
λmin (K) + u2 for all u > 0.

Hence, we have,

∥Γ4n(u)∥S <
1

1
2λmin (K) + u2

for all n > n4 and u > 0

with probability exceeding 1 − ε.

Bounding of ∥Γ5n(u)∥S

Recall that

Γ5n(u) ≡
{
1

n
L+ u2Iq − Γ3n(u)

}−1

.

Then,

∥Γ5n(u)∥S = 1/λmin

(
1

n
L+ u2Iq − Γ3n(u)

)
.

Next,

λmin

(
1

n
L+ u2Iq − Γ3n(u)

)
≥ λmin

(
1

n
L

)
+ u2λmin(Iq)− λmin (Γ3n(u))

≥ 1

n
λmin (L) + u2 − λmax (Γ3n(u))

=
1

n
λmin (L) + u2 − ∥Γ3n(u)∥S

>
1

n
λmin (L) + u2 − pqR2

n
1
2λmin (K) + u2

− q|Tn|.

Since Rn = OP (n
−1) and Tn = oP (n

−1), for every for every 0 < ε ≤ 1 we can choose
n5 ∈ N such that for all sufficiently large n,

pqR2
n

1
2λmin (K) + u2

+ q|Tn| <
1

2n
λmin (L) .

This is equivalent to

− pqR2
n

1
2λmin (K) + u2

− q|Tn| > − 1

2n
λmin (L) .

This allows us to claim that for all n > n5,

λmin

(
1

n
L+ u2Iq − Γ3n(u)

)
>

1

2n
λmin (L) + u2.
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Therefore, we have,

∥Γ5n(u)∥S <
1

1
2nλmin (L) + u2

for all n > n5 and u > 0

with probability exceeding 1 − ε.

Bounding of ∥F11n(u;K,L)∥S

Recall that

F11n(u;K,L) ≡ KΓ4n(u)Γ2n(u)
(
K + u2Ip

)−1 − Γ2n(u)Γ4n(u).

Hence

∥F11n(u;K,L)∥S ≤ ∥K∥S∥Γ4n(u)∥S∥Γ2n(u)∥S∥
(
K + u2Ip

)−1 ∥S+∥Γ2n(u)∥S∥Γ4n(u)∥S.

Now,
∥K∥S = λmax(K)

and

∥
(
K + u2Ip

)−1 ∥S =
1

λmin (K + u2Ip)
≤ 1

λmin (K) + u2
.

Hence, for all sufficiently large n and u > 0,

∥F11n(u;K,L)∥S ≤
{

λmax(K)

λmin (K) + u2
+ 1

}
∥Γ2n(u)∥S∥Γ4n(u)∥S.

Therefore, for all sufficiently large n and u > 0,

∥F11n(u;K,L)∥S < p

{
2qnR2

n

λmin (L)
+ |Qn|

}{
λmax(K)

λmin (K) + u2
+ 1

}{
1

1
2λmin (K) + u2

}
(2.56)

with probability exceeding 1 − ε.

Bounding of ∥F21n(u;K,L)∥S

Recall that
F21n(u;K,L) ≡ n1/2Rnu

2Γ1n(u)1q1
T
p Γ4n(u).

Then,
∥F21n(u;K,L)∥S ≤ n1/2|Rn|u2∥Γ1n(u)∥S∥1q∥S∥1Tp ∥S∥Γ4n(u)∥S

=
√
pqn1/2|Rn|u2∥Γ1n(u)∥S∥Γ4n(u)∥S.

Hence, for all sufficiently large n we have,

∥F21n(u;K,L)∥S <

√
pqn1/2|Rn|u2{

1
2nλmin(L) + u2

}{
1
2λmin(K) + u2

} for all u > 0 (2.57)
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with probability exceeding 1 − ε.

Bounding of ∥F12n(u;K,L)∥S

Recall that

F12n(u;K,L) ≡ Rn{1p1Tq Γ5n(u)− (K +Qn1
⊗2
p )Γ4n(u)1p1

T
q Γ1n(u)}.

Then

∥F12n(u;K,L)∥S ≤ |Rn|
{
∥1p∥S∥1T

q ∥S∥Γ5n(u)∥S

+
(
∥K∥S + |Qn|∥1⊗2

p ∥S
)
∥Γ4n(u)∥S∥1p∥S∥1T

q ∥S∥Γ1n(u)∥S

}
= |Rn| {

√
pq∥Γ5n(u)∥S +

√
pq (λmax(K) + p|Qn|) ∥Γ4n(u)∥S∥Γ1n(u)∥S}

=
√
pq|Rn| {∥Γ5n(u)∥S + (λmax(K) + p|Qn|) ∥Γ4n(u)∥S∥Γ1n(u)∥S} .

For all sufficiently large n and u > 0, we have,

∥F12n(u;K,L)∥S <
√
pq|Rn|

{
1

1
2nλmin (L) + u2

+ (λmax(K) + p|Qn|)
(

1
1
2λmin (K) + u2

)(
1

1
2nλmin (L) + u2

)} (2.58)

with probability exceeding 1 − ε.

Bounding of ∥F22n(u;K,L)∥S

Recall that

F22n(u;K,L) ≡ n1/2

[(
1

n
L

)
Γ5n(u)Γ3n(u)

{
1

n
L+ u2Iq

}−1

+ Tn1
⊗2
q Γ5n(u)−R2

n1q1
T
p Γ4n(u)1p1

T
q Γ1n(u)

]
.

We then have

∥F22n(u;K,L)∥S ≤ n1/2

[∥∥∥ 1
n
L
∥∥∥S∥Γ5n(u)∥S∥Γ3n(u)∥S

∥∥∥{ 1

n
L+ u2Iq

}−1 ∥∥∥S
+ |Tn|∥1⊗2

q ∥S∥Γ5n(u)∥S +R2
n∥1q∥S∥1T

p ∥S∥Γ4n(u)∥S∥1p∥S∥1T
q ∥S∥Γ1n(u)∥S

]

= n1/2

[
1

n
λmax(L)∥Γ5n(u)∥S∥Γ3n(u)∥S

∥∥∥{ 1

n
L+ u2Iq

}−1 ∥∥∥S
+ q|Tn|∥Γ5n(u)∥S + pqR2

n∥Γ4n(u)∥S∥Γ1n(u)∥S

]
.

(2.59)



2.4. APPENDIX 67

Next, note that ∥∥∥{ 1

n
L+ u2Iq

}−1 ∥∥∥S ≤ 1/λmin

(
1

n
L+ u2Iq

)
.

Since

λmin

(
1

n
L+ u2Iq

)
≥ 1

n
λmin(L) + u2

we have the bound∥∥∥{ 1

n
L+ u2Iq

}−1 ∥∥∥S ≤ 1
1
nλmin(L) + u2

for all u > 0.

It follows that for all sufficiently large n, the first term on the right-hand side of (2.59)
is bounded above by

n−1/2λmax(L)
1
nλmin(L) + u2

∥Γ5n(u)∥S∥Γ3n(u)∥S

<

{
n−1/2λmax(L)
1
nλmin(L) + u2

}{
1

1
2nλmin (L) + u2

}{
pqR2

n
1
2λmin (K) + u2

+ q|Tn|

}
.

It follows that for all sufficiently large n, the second term on the right-hand side of
(2.59) is bounded above by

qn1/2|Tn|
1
2nλmin (L) + u2

.

Finally, it follows that for all sufficiently large n, the third term on the right-hand side
of (2.59) is bounded above by

pqn1/2R2
n(

1
2nλmin (L) + u2

) (
1
2λmin (K) + u2

) .
Combining all of these bounds, we have

∥F22n(u;K,L)∥S <

{
n−1/2λmax(L)
1
nλmin(L) + u2

}{
1

1
2nλmin (L) + u2

}{
pqR2

n
1
2λmin (K) + u2

+ q|Tn|

}

+
qn1/2|Tn|

1
2nλmin (L) + u2

+
pqn1/2R2

n(
1
2nλmin (L) + u2

) (
1
2λmin (K) + u2

)
(2.60)

for all sufficiently large n and u > 0, with probability exceeding 1 − ε.
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2.4.4.3 Verifying Convergence in Probability Limits of the Functions in
(2.55)

The Convergence in Probability Limit of
∫∞
0 F11n(u;κ,K) du

Noting that ∥∥∥∥∫ ∞

0
F11n(u;κ,K) du

∥∥∥∥
S

≤
∫ ∞

0
∥F11n(u;κ,K)∥S du

and from (2.56) we have, for all sufficiently large n∫ ∞

0
∥F11n(u;κ,K)∥S du

< p

{
2qnR2

n

λmin (L)
+ |Qn|

}∫ ∞

0

{
λmax(K)

λmin (K) + u2
+ 1

}{
1

1
2λmin (K) + u2

}
du

< p

{
2qnR2

n

λmin (L)
+ |Qn|

}{∫ ∞

0

λmax(K)(
1
2λmin (K) + u2

)2 du+

∫ ∞

0

1
1
2λmin (K) + u2

du

}

= p

{
2qnR2

n

λmin (L)
+ |Qn|

}(
πλmax(K)

λmin(K)
√
2λmin(K)

+
π√

2λmin(K)

)

with probability exceeding 1 − ε. Since Rn = OP (n
−1), Qn = oP (1) and ε is arbitrary,

we must have ∥∥∥∥∫ ∞

0
F11n(u;κ,K) du

∥∥∥∥
S

P→ 0 as n→ ∞

and therefore, ∫ ∞

0
F11n(u;κ,K) du

P→ O as n→ ∞.

The Convergence in Probability Limit of
∫∞
0 F21n(u;κ,K) du

Noting that ∥∥∥∥∫ ∞

0
F21n(u;κ,K) du

∥∥∥∥
S

≤
∫ ∞

0
∥F21n(u;κ,K)∥S du

and from (2.57) we have, for all sufficiently large n∫ ∞

0
∥F21n(u;κ,K)∥S du

<
√
pqn1/2|Rn|

∫ ∞

0

u2{
1
2nλmin(L) + u2

}{
1
2λmin(K) + u2

} du
=

√
pqπn1/2|Rn|

√
2
(√

λmin(K) +
√
λmin(L)/n

)
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with probability exceeding 1− ε. Since Rn = OP (n
−1) and ε is arbitrary, we must have∥∥∥∥∫ ∞

0
F21n(u;κ,K) du

∥∥∥∥
S

P→ 0 as n→ ∞

and therefore, ∫ ∞

0
F21n(u;κ,K) du

P→ O as n→ ∞.

The Convergence in Probability Limit of
∫∞
0 F12n(u;κ,K) du

Noting that ∥∥∥∥∫ ∞

0
F12n(u;κ,K) du

∥∥∥∥
S

≤
∫ ∞

0
∥F12n(u;κ,K)∥S du

and from (2.58) we have, for all sufficiently large n∫ ∞

0

∥F12n(u;κ,K)∥S du

<
√
pq|Rn|

{∫ ∞

o

1
1
2nλmin (L) + u2

du

+ (λmax(K) + p|Qn|)
∫ ∞

0

(
1

1
2λmin (K) + u2

)(
1

1
2nλmin (L) + u2

)
du

}

=
√
pq|Rn|

 π

2
√

1
2nλmin(L)

+ (λmax(K) + p|Qn|)

 π

2
√(

1
2λmin(K)

) (
1
2nλmin(L)

) (√
1
2λmin(K) +

√
1
2nλmin(L)

)



=
√
pq|Rn|

 n1/2π√
2λmin(L)

+ (λmax(K) + p|Qn|)


√
2n1/2π√

λmin(K)λmin(L)
(√

λmin(K) +
√

1
nλmin(L)

)



with probability exceeding 1 − ε. Since Rn = OP (n
−1), Qn = oP (1) and ε is arbitrary,

we must have ∥∥∥∥∫ ∞

0
F12n(u;κ,K) du

∥∥∥∥
S

P→ 0 as n→ ∞

and therefore, ∫ ∞

0
F12n(u;κ,K) du

P→ O as n→ ∞.
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The Convergence in Probability Limit of
∫∞
0 F22n(u;κ,K) du

Noting that ∥∥∥∥∫ ∞

0
F22n(u;κ,K) du

∥∥∥∥
S

≤
∫ ∞

0
∥F22n(u;κ,K)∥S du

and from (2.60) we have, for all sufficiently large n∫ ∞

0
∥F22n(u;κ,K)∥S du

< λmax(L)pqn−1/2R2
n

∫ ∞

0

1(
1
nλmin(L) + u2

) (
1
2nλmin (L) + u2

) (
1
2λmin (K) + u2

) du
+ n−1/2λmax(L)q|Tn|

∫ ∞

0

1(
1
nλmin(L) + u2

) (
1
2nλmin (L) + u2

) du
+ qn1/2|Tn|

∫ ∞

0

1
1
2nλmin (L) + u2

du

+ pqn1/2R2
n

∫ ∞

0

1(
1
2nλmin (L) + u2

) (
1
2λmin (K) + u2

) du
< λmax(L)pqn−1/2R2

n

∫ ∞

0

1(
1
2nλmin (L) + u2

)2 (1
2λmin (K) + u2

) du
+ n−1/2λmax(L)q|Tn|

∫ ∞

0

1(
1
2nλmin (L) + u2

)2 du
+ qn1/2|Tn|

∫ ∞

0

1
1
2nλmin (L) + u2

du

+ pqn1/2R2
n

∫ ∞

0

1(
1
2nλmin (L) + u2

) (
1
2λmin (K) + u2

) du
<

2
√
2pqπnλmax(L)R2

n

λmin(L)
√
λmin(L)λmin(K)

(√
1
2λmin(L) +

√
λmin(K)

)
+

qπnλmax(K)|Tn|√
2λmin(L)

√
λmin(L)

+
qπn|Tn|√
2λmin(L)

+
pqπn

√
2R2

n√
λmin(L)λmin(K)

(√
1
nλmin(L) +

√
λmin(K)

)
with probability exceeding 1− ε. Since Rn = OP (n

−1), Tn = oP (n
−1) and ε is arbitrary,

it follows that ∥∥∥∥∫ ∞

0
F22n(u;κ,K) du

∥∥∥∥
S

P→ 0 as n→ ∞

and therefore, ∫ ∞

0
F22n(u;κ,K) du

P→ O as n→ ∞.
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2.4.4.4 Conclusion for Multivariate Integral Limits for the Matrix Square
Root Result

Hence, we have shown that

plim
n→∞

∫ ∞

0
Fkk′n(u;K,L) du = O, k, k′ = 1, 2

for u > 0.



Chapter 3

Usable Asymptotic Normality
Results and Inference for
Gaussian Response Linear Mixed
Models

Even though estimation by maximum likelihood for linear mixed models and generalized

linear mixed models is well established, asymptotic normality results that can be used to

construct confidence intervals and Wald tests via Studentization are currently unavailable

in the existing linear mixed model and generalized linear mixed model literature.

Asymptotic normality results for maximum likelihood estimators for Gaussian

response linear mixed models have been presented in literature such as McCulloch et al.

(2008), Miller (1973), Miller (1977), Jiang (1996) and Jiang and Nguyen (2021). As

discussed in Section 1.9.3, Nie (2007) investigated an extension to a generalized linear

mixed model setting, but did not give explicit forms void of limits or expectations with

respect to the response. Hence, the existing generalized linear mixed model literature

lacks asymptotic covariance results that are amenable to practical purposes such as

confidence interval construction.

Other recent related literature by Lyu and Welsh (2022) derive explicit asymptotic

normality results for both maximum likelihood estimators and restricted maximum

likelihood estimators for model parameters in a nested regression model (random

intercept model) for clustered data. The authors, as done in this thesis, considered the

scenario where both the number of independent clusters and number of observations

within each cluster go to infinity. When restricted to Gaussian responses, the work by

Some of the content of this chapter is published in: Bhaskaran, A. and Wand, M.P.(2023), Dispersion

parameter extension of precise generalized linear mixed model asymptotics. Statistics and Probability

Letters, 193, Article 109691.
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Lyu and Welsh (2022) is closely related to the work in this chapter. However, while

Lyu and Welsh (2022) consider regression models with a random intercept, this chapter

considers Gaussian response linear mixed models that allow for both a random intercept

and slope to be included. On the other hand, Westfall (1986) considers a linear mixed

model set-up with vectors of fixed effects, nonerror random effects and error random

effects and develop asymptotic distribution theory for the corresponding analysis of

variance estimates. In contrast, this chapter presents the explicit first order (leading

term) asymptotic approximations used for the asymptotic normality results in this

chapter, serving as a prequel to the results presented for the generalized linear mixed

model case in Chapter 4.

In this chapter, we aim to derive asymptotic normality results that are directly usable

for asymptotically valid confidence intervals and Wald tests for analysis concerning linear

mixed models with Gaussian responses. The main theorem in this chapter concerns

the joint asymptotic normality of all maximum likelihood estimators for a Gaussian

response mixed model and elegantly shows faster rates of convergence of fixed effects

that are not accompanied by a random effect as compared to fixed effects that have

partnering random effects.

The results presented in this chapter will then be extended for generalized linear

mixed models with multivariate fixed and random effects in Chapter 4.

3.1 Model Description

In this section, we study Gaussian response linear mixed models of the following form,

for observations of the random triples (XAij ,XBij , Yij), 1 ≤ i ≤ m, 1 ≤ j ≤ ni,

Yij |XAij ,XBij ,Ui are independent N((β0
A +Ui)

TXAij + (β0
B)
TXBij , σ

2
ε). (3.1)

The Ui are dA × 1 unobserved random vectors for each 1 ≤ i ≤ m. The XAij are dA × 1

random vectors corresponding to predictors that are partnered by both a fixed effect

and a random effect. The XBij are dB × 1 random vectors are predictors that have a

fixed effect only. Let Xij ≡ (XT
Aij ,X

T
Bij)

T denote the combined predictor vectors such

that dA + dB = d. We also assumed that the Xij and Ui, for 1 ≤ i ≤ m and 1 ≤ j ≤ ni

are independent, with the Xij each having the same distribution as the (dA + dB)× 1

random vector X = (XT
A ,X

T
B )

T and the Ui are independent N(0, (Σ)0), each having

the same distribution as the random vector U .
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Then, for any βA(dA × 1), βB(dB × 1), σ2ε and Σ(dA × dA), the maximum likelihood

estimator of (β0
A,β

0
B,Σ

0, (σ2)0) is,

(β̂A, β̂B, Σ̂, σ̂
2) = argmax

βA,βB,Σ,σ
2
ε

ℓ(βA,βB,Σ, σ
2
ε)

where the conditional log-likelihood is

ℓ(βA,βB,Σ, σ
2
ε)

=
m∑
i=1

n∑
j=1

[{
Yij
(
βT
AXAij + βT

BXBij

)
− 1

2
Y 2
ij

}
/σ2

ε −
1

2
log(2πσ2

ε)

]
− m

2
log |2πΣ|

+
m∑
i=1

log

∫
RdA

exp

(
n∑

j=1

[
Yiju

TXAij −
1

2
{(βA + u)TXAij + βT

BXBij}
]
/σ2

ε −
1

2
uTΣ−1u

)
du.

3.2 Notation Required for Fisher Information Calculations

Let

Xi =


XT
i1

...

XT
ini

 and Yi =


Yi1
...

Yin

 .
Also define

n ≡ 1

m

m∑
i=1

ni = average of the within-group sample sizes,

and

ΣβB
= lower right dB × dB block of E

XAX
T
A XAX

T
B

XBX
T
A XBX

T
B

−1

.

3.3 Asymptotic Normality Theorem

The main theoretical contribution of this chapter is an asymptotic normality theorem for

the maximum likelihood estimators for a Gaussian response mixed model as described

in Section 3.1.

The theorem relies on the following assumptions:
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(A1) The number of groups m diverges to ∞.

(A2) The within-group sample sizes ni diverge to ∞ in such a way that ni/n→ Ci

for constants 0 < Ci <∞, 1 ≤ i ≤ m.

(A3) The distribution of X is such that

E(∥X∥8) <∞

and none of the entries in XA are zero degenerate random variables.

Theorem 11. Assume that conditions (A1) - (A3) hold. Then we have the following

√
m


β̂A − β0

A
√
n
(
β̂B − β0

B

)
vech(Σ̂−Σ0)

√
n
(
σ̂2 − (σ2)0

)


D→ N




0

0

0

0

 ,

Σ0 0 0 0

0 (σ2)0ΣβB
0 0

0 0 2D+
dA

(
Σ0 ⊗Σ0

)
D+T

dA
0

0 0 0 2{(σ2)0}2



 ,

where D+
dA

is the Moore-Penrose inverse of DdA .

The proof for Theorem 11 is in the appendix.

3.4 Appendix

3.4.1 Linear Mixed Models with Multivariate Fixed and Random
Effects

Let

Xi =
[
XAi XBi

]
, β =

[
βA

βB

]
and θ =

[
vec(Σ)

σ2ε

]
.

Then the model presented in Section 3.1 can be rewritten in the following form

yi
ind.∼ N(Xiβ,Vθi), (3.2)

with
Vθi = XAiΣXT

Ai + σ2εIni ,

where Vθi is the ni × ni covariance matrix of yi parametrized by θ. The log-likelihood
of (β,θ) can then be expressed as

ℓ(β,θ) = −1

2

m∑
i=1

{
log |Vθi|+ (yi −Xiβ)

TV −1
θi (yi −Xiβ) + ni log(2π)

}
.
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The model in (3.2) is a special case of a general Gaussian variance regression model
presented in Section 4.3 of Wand (2002). Using steps similar to those in Wand (2002),
an expression for the Fisher information matrix for a Gaussian response linear mixed
model with multivariate fixed and random effects can be obtained. Note that the model
in (3.2) belongs to a common class of submodels with

Vθi =

c∑
h=1

θhKh, θ = [θ1, . . . , θc], (3.3)

for a set of ni × ni matrices K1, . . . ,Kc, which leads to considerable simplifications in
obtaining the expression for the Fisher information matrix. An alternative expression
for equation (3.3) is as follows, where

vec(Vθi) = Kiθ, K = [vec(K1)| . . . |vec(Kc)].

It remains to solve for Ki. By making use of the fourth property in Subsection 1.4.5, it
can be done as follows

vec(Vθi) = vec(XAiΣXT
Ai + σ2εIn)

= vec(XAiΣXT
Ai) + vec(σ2εIn)

= (XAi ⊗XAi)vec(Σ) + vec(Ini)σ
2
ε

= (XAi ⊗XAi)DdAvech(Σ) + vec(Ini)σ
2
ε

=
[
(XAi ⊗XAi)DdA vec(Ini)

] [vech(Σ)

σ2ε

]
= Kiθ,

with
Ki =

[
(XAi ⊗XAi)DdA vec(Ini)

]
.

The expression for the full Fisher information matrix is subsequently

I(βA,βB, vech(Σ), σ2ε) =

[
I(βA,βB) 0

0 I(vech(Σ), σ2ε)

]

=
m∑
i=1

[
XT
i V

−1
θi Xi 0

0 1
2K

T
i (V

−1
θi ⊗ V −1

θi )Ki

]

=

[∑m
i=1X

T
i V

−1
θi Xi 0

0 1
2

∑m
i=1K

T
i (V

−1
θi ⊗ V −1

θi )Ki

]
.

(3.4)

To find an explicit expression for I(βA,βB, vech(Σ), σ2ε), it suffices to find explicit
expressions for the block matrices I(βA,βB) and I(vech(Σ), σ2ε) separately.
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3.4.2 Expression for Top Left Block of Fisher Information Matrix

Expanding the current expression for I(βA,βB) leads to

I(βA,βB) =
m∑
i=1

XT
i V

−1
θi Xi

=
m∑
i=1

[
XAi XBi

]T
(XAiΣXT

Ai + σ2
εIni

)−1
[
XAi XBi

]
=

m∑
i=1

[
XT

Ai

XT
Bi

]
(XAiΣXT

Ai + σ2
εIni

)−1
[
XAi XBi

]
=

m∑
i=1

[
XT

Ai(XAiΣXT
Ai + σ2

εIni)
−1XAi XT

Ai(XAiΣXT
Ai + σ2

εIni)
−1XBi

XT
Bi(XAiΣXT

Ai + σ2
εIni)

−1XAi XT
Bi(XAiΣXT

Ai + σ2
εIni

)−1XBi

]
.

(3.5)

It remains to evaluate and simplify the expressions in the matrix, which can be done by
making use of the matrix identities from Harville (1977), highlighted in Subsubsection
1.4.7.1.

3.4.2.1 Top Left Block of (3.5)

Now, we solve a part of the expression of the top left block of I(βA,βB), specifically

XT
Ai(XAiΣXT

Ai + σ2εIni)
−1XAi.

Using (1.10b) and (1.3) by setting A = 1
σ2
ε
XT

AiXAi and B = Σ, we have,

XT
Ai(XAiΣXT

Ai + σ2
εIni)

−1XAi =
{
IdA +XT

Ai(σ
2
εIni)

−1XAiΣ
}−1

XT
Ai(σ

2
εIni)

−1XAi

=

(
IdA +

1

σ2
ε

XT
AiXAiΣ

)−1(
1

σ2
ε

XT
AiXAi

)
=

{
IdA −Σ−1

(
1

σ2
ε

XT
AiXAi

)−1

+ . . .

}
Σ−1

=
{
IdA − σ2

εΣ
−1
(
XT

AiXAi

)−1
+ . . .

}
Σ−1

= Σ−1 − σ2
εΣ

−1
(
XT

AiXAi

)−1
Σ−1 + . . .

= Σ−1 +OP (n
−1)1dA1

T
dA
.

Therefore, the top left block of I(βA,βB) can be computed as
m∑
i=1

(
Σ−1 +OP (n

−1)1dA1
T
dA

)
= mΣ−1 +OP (mn

−1)1dA1
T
dA
.

3.4.2.2 Top Right Block of (3.5)

Now, we solve a part of the expression of the top right block of I(βA,βB), specifically

XT
Ai(XAiΣXT

Ai + σ2εIni)
−1XBi.
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Using (1.10b) and (1.3) by setting A = 1
σ2
ε
XT

AiXAi, B = Σ and C = 1
σ2
ε
XT

AiXBi we

have,

XT
Ai(XAiΣXT

Ai + σ2
εIni

)−1XBi =
{
IdA +XT

Ai(σ
2
εIni

)−1XAiΣ
}−1

XT
Ai(σ

2
εIni

)−1XBi

=

(
IdA +

1

σ2
ε

XT
AiXAiΣ

)−1(
1

σ2
ε

XT
AiXBi

)
= Σ−1(XT

AiXAi)
−1(XT

AiXBi)

− σ2
εΣ

−1(XT
AiXAi)

−1Σ−1(XT
AiXAi)

−1(XT
AiXBi) + . . .

= Σ−1(XT
AiXAi)

−1(XT
AiXBi) +OP (n

−1)1dA1
T
dB
.

Hence, the top right block of I(βA,βB) can be computed as

m∑
i=1

{
Σ−1(XT

AiXAi)
−1(XT

AiXBi) +OP (n
−1)1dA1

T
dB

}
=

m∑
i=1

{
Σ−1(XT

AiXAi)
−1(XT

AiXBi)
}
+OP (mn

−1)1dA1
T
dB
.

= OP (m)1dA1
T
dB
.

3.4.2.3 Bottom Left Block of (3.5)

Subsequently, the expression for the bottom left block of I(βA,βB) can be easily
computed as [

m∑
i=1

{
Σ−1(XT

AiXAi)
−1(XT

AiXBi)
}
+OP (mn

−1)1dA1
T
dB

]T

=
m∑
i=1

{
(XT

BiXAi)(X
T
AiXAi)

−1Σ−1
}
+OP (mn

−1)1dB1
T
dA

= OP (m)1dB1
T
dA
.

3.4.2.4 Bottom Right Block of (3.5)

Now, we solve a part of the expression of the bottom right block of I(βA,βB), specifically

XT
Bi(XAiΣXT

Ai + σ2εIni)
−1XBi.
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Using (1.10a) and (1.5) by setting A = 1
σ2
ε
XT

AiXAi and B = Σ, we have,

XT
Bi

{
XAiΣXT

Ai + σ2
εIni

}−1
XBi

= XT
Bi

[
(σ2

εIni)
−1 − (σ2

εIni)
−1XAiΣ

{
IdA +XT

Ai(σ
2
εIni)

−1XAiΣ
}−1

XT
Ai(σ

2
εIni

)−1
]
XBi

= XT
Bi

{
1

σ2
ε

Ini
−
(

1

σ2
ε

)2

XAiΣ

(
IdA +

1

σ2
ε

XT
AiXAiΣ

)−1

XT
Ai

}
XBi

=
1

σ2
ε

XT
BiXBi −

1

σ2
ε

XT
BiXAi

(
XT

AiXAi

)−1
XT

AiXBi

+XT
BiXAi

(
XT

AiXAi

)−1
Σ−1

(
XT

AiXAi

)−1
XT

AiXBi + . . .

=
1

σ2
ε

XT
BiXBi −

1

σ2
ε

XT
BiXAi

(
XT

AiXAi

)−1
XT

AiXBi +OP (1)1dB1
T
dB
.

Hence, the bottom right block of I(βA,βB) can be computed as
m∑
i=1

{
1

σ2
ε

XT
BiXBi −

1

σ2
ε

XT
BiXAi

(
XT

AiXAi

)−1
XT

AiXBi +OP (1)1dB1
T
dB

}

=
1

σ2
ε

m∑
i=1

XT
BiXBi −

1

σ2
ε

m∑
i=1

XT
BiXAi

(
XT

AiXAi

)−1
XT

AiXBi +OP (m)1dB1
T
dB

=
1

σ2
ε

m∑
i=1

n∑
j=1

XBijX
T
Bij −

1

σ2
ε

m∑
i=1

 n∑
j=1

XBijX
T
Aij

 n∑
j=1

XAijX
T
Aij

−1 n∑
j=1

XAijX
T
Bij


+OP (m)1dB1

T
dB
.

The bottom right block of I(βA,βB) can then be re-expressed as follows

mn

σ2ε

 1

mn

m∑
i=1

n∑
j=1

XBijX
T
Bij


− mn

σ2ε

 1

mn

m∑
i=1

 n∑
j=1

XBijX
T
Aij

 n∑
j=1

XAijX
T
Aij

−1 n∑
j=1

XAijX
T
Bij


+OP (m)1dB1

T
dB
.

Both of the leading terms in the previous expression are of order OP (mn)1dB1
T
dB

but
it remains to determine the overall order of magnitude of the bottom right block of
I(βA,βB). In order to do this, we shall treat both of the leading terms separately.

Treatment of First Leading Term

Note that for a Gaussian mixed model with multivariate fixed and random effects
as described in Section 3.1,

b′′
(
(βA +Ui)

TXAij + βTBXBij

)
= 1, 1 ≤ i ≤ m, 1 ≤ j ≤ ni.

Then from using Lemma 1, we have

1

mn

m∑
i=1

n∑
j=1

XBijX
T
Bij = E(XBX

T
B ) + oP (1)1dB1

T
dB
.
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Finally we obtain

mn

σ2ε

 1

mn

m∑
i=1

n∑
j=1

XBijX
T
Bij

 =
mn

σ2ε
E(XBX

T
B ) + oP (mn)1dB1

T
dB
. (3.6)

Treatment of Second Leading Term

Note that for a Gaussian mixed model with multivariate fixed and random effects
as described in Section 3.1,

f(Xij ,Ui) = 1, 1 ≤ i ≤ m, 1 ≤ j ≤ ni,

where f(Xij ,Ui) is as defined in Lemma 2. Assuming that the conditions and assump-
tions in Lemma 2 are met, in the Gaussian mixed model case, we can simplify the left
side of Lemma 2 as follows

E

[
1

mn

m∑
i=1


n∑

j=1

XBijX
T
Aijf(Xij ,Ui)




n∑
j=1

XAijX
T
Aijf(Xij ,Ui)


−1

×


n∑

j=1

XBijX
T
Aijf(Xij ,Ui)


T ∣∣∣∣∣X11, . . . ,Xmnm

]

= E

 1

mn

m∑
i=1

 n∑
j=1

XBijX
T
Aij

 n∑
j=1

XAijX
T
Aij

−1 n∑
j=1

XBijX
T
Aij

T ∣∣∣∣∣X11, . . . ,Xmnm


=

1

mn

m∑
i=1

 n∑
j=1

XBijX
T
Aij

 n∑
j=1

XAijX
T
Aij

−1 n∑
j=1

XAijX
T
Bij

 .

We can also simplify the right hand side of Lemma 2 as follows

E
[
E
(
XBX

T
Af(X,U)|U

) {
E
(
XAX

T
Af(X,U)|U

)}−1
E
(
XBX

T
Af(X,U)|U

)T ]
= E

[
E
(
XBX

T
A

) {
E
(
XAX

T
A

)}−1
E
(
XBX

T
A

)T ]
= E

(
XBX

T
A

) {
E
(
XAX

T
A

)}−1
E
(
XAX

T
B

)
.

Now we have a simplified version of Lemma 2 for the Gaussian response linear mixed
model which states

1

mn

m∑
i=1

 n∑
j=1

XBijX
T
Aij

 n∑
j=1

XAijX
T
Aij

−1 n∑
j=1

XAijX
T
Bij


P→ E

(
XBX

T
A

) {
E
(
XAX

T
A

)}−1
E
(
XAX

T
B

)
.

(3.7)

Equation (3.7) can also be written as

1

mn

m∑
i=1

 n∑
j=1

XBijX
T
Aij

 n∑
j=1

XAijX
T
Aij

−1 n∑
j=1

XAijX
T
Bij


= E

(
XBX

T
A

) {
E
(
XAX

T
A

)}−1
E
(
XAX

T
B

)
+ oP (1)1dB1

T
dB
.

(3.8)
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Therefore we have,

mn

σ2ε

 1

mn

m∑
i=1

 n∑
j=1

XBijX
T
Aij

 n∑
j=1

XAijX
T
Aij

−1 n∑
j=1

XAijX
T
Bij


=
mn

σ2ε
E
(
XBX

T
A

) {
E
(
XAX

T
A

)}−1
E
(
XAX

T
B

)
+ oP (mn)1dB1

T
dB
.

Hence, from equations (3.6) and (3.7) we have the following expression for the bottom
right block of I(βA,βB)

m∑
i=1

XT
Bi(XAiΣXT

Ai + σ2εIni)
−1XBi

=
mn

σ2ε

[
E
(
XBX

T
B

)
− E

(
XBX

T
A

) {
E
(
XAX

T
A

)}−1
E
(
XAX

T
B

)]
+ oP (mn)1dB1

T
dB
.

Consider the following

E

([
XAX

T
A XAX

T
B

XBX
T
A XBX

T
B

])−1

=

[
E(XAX

T
A) E(XAX

T
B )

E(XBX
T
A) E(XBX

T
B )

]−1

.

Then let

ΣβB
= lower right dB × dB block of E

([
XAX

T
A XAX

T
B

XBX
T
A XBX

T
B

])−1

=
[
E
(
XBX

T
B

)
− E

(
XBX

T
A

) {
E
(
XAX

T
A

)}−1
E
(
XAX

T
B

)]−1
.

The expression for the bottom right block of I(βA,βB) can then be re-defined as

mnΣ−1
βB

σ2ε
+ oP (mn)1dB1

T
dB
.

Putting the expressions obtained for the sub-blocks of I(βA,βB) together, we have

I(βA,βB) =

mΣ−1 +OP (mn
−1)1dA1

T
dA

OP (m)1dA1
T
dB

OP (m)1dB1
T
dA

mnΣ−1
βB

σ2
ε

+ oP (mn)1dB1
T
dB

 . (3.9)
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3.4.3 Expression for Bottom Right Block of Fisher Information Matrix

Using similar steps to Section 3.4.2, an explicit expression for I(vech(Σ), σ2ε) can be
obtained. Expanding the current expression for I(vech(Σ), σ2ε) leads to

I(vech(Σ), σ2
ε)

=
1

2

m∑
i=1

KT
i (V

−1
θi ⊗ V −1

θi )Ki

=
1

2

m∑
i=1

[
(XAi ⊗XAi)DdA

vec(Ini)
]T {

(XAiΣXT
Ai + σ2

εIni)
−1 ⊗ (XAiΣXT

Ai + σ2
εIni)

−1
}
×[

(XAi ⊗XAi)DdA
vec(Ini)

]

=


1
2

m∑
i=1

DT
dA

(
XT

Ai ⊗XT
Ai

){
(XAiΣXT

Ai + σ2
εIni)

−1 ⊗ (XAiΣXT
Ai + σ2

εIni)
−1

}
(XAi ⊗XAi)DdA

1
2

m∑
i=1

{vec(Ini)}
T
{
(XAiΣXT

Ai + σ2
εIni)

−1 ⊗ (XAiΣXT
Ai + σ2

εIni)
−1

}
(XAi ⊗XAi)DdA

1
2

m∑
i=1

DT
dA

(
XT

Ai ⊗XT
Ai

){
(XAiΣXT

Ai + σ2
εIni)

−1 ⊗ (XAiΣXT
Ai + σ2

εIni)
−1

}
vec(Ini)

1
2

m∑
i=1

{vec(Ini)}
T
{
(XAiΣXT

Ai + σ2
εIni)

−1 ⊗ (XAiΣXT
Ai + σ2

εIni)
−1

}
vec(Ini)

 .
(3.10)

Once again, it remains to evaluate and simplify the expressions in the matrix, which
can be done by making use of the matrix identities from Harville (1977) highlighted in
Section 1.4.7.1.

3.4.3.1 Top Left Block of (3.10)

Now, we solve a part of the expression of the top left block of I(vech(Σ), σ2ε), specifically

DT
dA

(
XT

Ai ⊗XT
Ai

) {
(XAiΣXT

Ai + σ2
εIni)

−1 ⊗ (XAiΣXT
Ai + σ2

εIni
)−1
}
(XAi ⊗XAi)DdA .

Using the properties of Kronecker products listed under Subsection 1.4.5 we have,

DT
dA

(
XT

Ai ⊗XT
Ai

) {
(XAiΣXT

Ai + σ2εIni)
−1 ⊗ (XAiΣXT

Ai + σ2εIni)
−1
}
(XAi ⊗XAi)DdA

= DT
dA

[{
XT

Ai(XAiΣXT
Ai + σ2εIni)

−1XAi

}
⊗
{
XT

Ai(XAiΣXT
Ai + σ2εIni)

−1XAi

}]
DdA

= DT
dA

[
{Σ−1 +OP (n

−1)1dA1
T
dA
} ⊗ {Σ−1 +OP (n

−1)1dA1
T
dA
}
]
DdA

= DT
dA

(
Σ−1 ⊗Σ−1

)
DdA +OP (n

−1)1dA(dA+1)/21
T
dA(dA+1)/2.

Therefore, the top left block of I(vech(Σ), σ2ε) can be computed as

1

2

m∑
i=1

{
DT
dA

(
Σ−1 ⊗Σ−1

)
DdA +OP (n

−1)1dA(dA+1)/21
T
dA(dA+1)/2

}
=
m

2

{
DT
dA

(
Σ−1 ⊗Σ−1

)
DdA

}
+OP (mn

−1)1dA(dA+1)/21
T
dA(dA+1)/2.
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3.4.3.2 Top Right Block of (3.10)

Now, we solve a part of the expression of the top right block of I(vech(Σ), σ2ε), specifically

DT
dA

(
XT

Ai ⊗XT
Ai

) {
(XAiΣXT

Ai + σ2
εIni)

−1 ⊗ (XAiΣXT
Ai + σ2

εIni)
−1
}
vec(Ini).

It follows that

DT
dA

(
XT

Ai ⊗XT
Ai

) {
(XAiΣXT

Ai + σ2εIni)
−1 ⊗ (XAiΣXT

Ai + σ2εIni)
−1
}
vec(Ini)

= DT
dA

{
XT

Ai(XAiΣXT
Ai + σ2εIni)

−1 ⊗XT
Ai(XAiΣXT

Ai + σ2εIni)
−1
}
vec(Ini)

= DT
dA
vec
[
XT

Ai(XAiΣXT
Ai + σ2εIni)

−1Ini

{
XT

Ai(XAiΣXT
Ai + σ2εIni)

−1
}T ]

= DT
dA
vec
[
XT

Ai(XAiΣXT
Ai + σ2εIni)

−1
{
XT

Ai(XAiΣXT
Ai + σ2εIni)

−1
}T ]

= DT
dA
vec

[ {
σ2εΣ

−1(XT
AiXAi)

−1 + σ2εΣ
−1(XT

AiXAi)
−1Σ−1(XT

AiXAi)
−1 + . . .

}−1

×
(

1

σ2ε
XT

Ai

)(
1

σ2ε
XAi

){
σ2εΣ

−1(XT
AiXAi)

−1 + σ2εΣ
−1(XT

AiXAi)
−1Σ−1

× (XT
AiXAi)

−1 + . . . }−1

]
.

By expanding and simplifying the last line of the previous expression, we have,

DT
dA

vec

[
σ2
εΣ

−1(XT
AiXAi)

−1

(
1

σ2
ε

XT
Ai

)(
1

σ2
ε

XAi

)
σ2
ε(X

T
AiXAi)

−1Σ−1

− σ2
εΣ

−1(XT
AiXAi)

−1Σ−1(XT
AiXAi)

−1

(
1

σ2
ε

XT
Ai

)(
1

σ2
ε

XAi

)
σ2
ε(X

T
AiXAi)

−1Σ−1

− σ2
εΣ

−1(XT
AiXAi)

−1

(
1

σ2
ε

XT
Ai

)(
1

σ2
ε

XAi

)
σ2
ε(X

T
AiXAi)

−1Σ−1(XT
AiXAi)

−1Σ−1

− σ2
εΣ

−1(XT
AiXAi)

−1Σ−1(XT
AiXAi)

−1

(
1

σ2
ε

XT
Ai

)(
1

σ2
ε

XAi

)
σ2
ε(X

T
AiXAi)

−1Σ−1

× (XT
AiXAi)

−1Σ−1 + . . .

]
= DT

dA
vec
{
Σ−1(XT

AiXAi)
−1Σ−1 − σ2

εΣ
−1(XT

AiXAi)
−1Σ−1(XT

AiXAi)
−1Σ−1

− σ2
εΣ

−1(XT
AiXAi)

−1Σ−1(XT
AiXAi)

−1Σ−1

+ (σ2
ε)

2Σ−1(XT
AiXAi)

−1Σ−1(XT
AiXAi)

−1Σ−1(XT
AiXAi)

−1Σ−1 + . . .
}

= DT
dA

[
vec
{
Σ−1(XT

AiXAi)
−1Σ−1

}
− 2vec

{
σ2
εΣ

−1(XT
AiXAi)

−1Σ−1(XT
AiXAi)

−1Σ−1
}
+ . . .

]
= DT

dA
vec
{
Σ−1(XT

AiXAi)
−1Σ−1

}
+OP (n

−2)1dA(dA+1)/2

= OP (n
−1)1dA(dA+1)/2.

Therefore, the top right block of I(vech(Σ), σ2ε) can be computed as

1

2

m∑
i=1

DT
dA
vec{Σ−1(XT

AiXAi)
−1Σ−1}+OP (mn−2)1dA(dA+1)/2 = OP (mn

−1)1dA(dA+1)/2.
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3.4.3.3 Bottom Left Block of (3.10)

Now, we solve a part of the expression of the bottom left block of I(vech(Σ), σ2ε),
specifically

{vec(Ini)}
T {(XAiΣXT

Ai + σ2εIni)
−1 ⊗ (XAiΣXT

Ai + σ2εIni)
−1
}
(XAi ⊗XAi)DdA .

Using the properties for Kronecker products highlighted in Subsection 1.4.5, we have,

{vec(Ini)}
T {(XAiΣXT

Ai + σ2εIni)
−1 ⊗ (XAiΣXT

Ai + σ2εIni)
−1
}
(XAi ⊗XAi)DdA

=
[
DT
dA

(
XT

Ai ⊗XT
Ai

) {
(XAiΣXT

Ai + σ2εIni)
−1 ⊗ (XAiΣXT

Ai + σ2εIni)
−1
}
vec(Ini)

]T
=
[
DT
dA
vec{Σ−1(XT

AiXAi)
−1Σ−1}+OP (n

−2)1dA(dA+1)/2

]T
=
[
DT
dA
vec{Σ−1(XT

AiXAi)
−1Σ−1}

]T
+OP (n

−2)1TdA(dA+1)/2

= OP (n
−1)1TdA(dA+1)/2.

Therefore, the bottom left block of I(vech(Σ), σ2ε) can be computed as

1

2

m∑
i=1

[
DT

dA
vec{Σ−1(XT

AiXAi)
−1Σ−1}

]T
+OP (mn

−2)1T
dA(dA+1)/2 = OP (mn

−1)1T
dA(dA+1)/2.

3.4.3.4 Bottom Right Block of (3.10)

Now, we solve a part of the expression of the bottom right block of I(vech(Σ), σ2ε),
specifically

{vec(Ini)}
T {(XAiΣXT

Ai + σ2εIni)
−1 ⊗ (XAiΣXT

Ai + σ2εIni)
−1
}
{vec(Ini)} .

Using (1.10a) and (1.5), we have

{vec(Ini
)}T

{
(XAiΣXT

Ai + σ2
εIni

)−1 ⊗ (XAiΣXT
Ai + σ2

εIni
)−1
}
{vec(Ini

)}
= tr

{
(XAiΣXT

Ai + σ2
εIni)

−1(XAiΣXT
Ai + σ2

εIni)
−1
}

= tr

[{
1

σ2
ε

Ini
− 1

σ2
ε

XAi(X
T
AiXAi)

−1XT
Ai + . . .

}{
1

σ2
ε

Ini
− 1

σ2
ε

XAi(X
T
AiXAi)

−1XT
Ai + . . .

}]
= tr

{(
1

σ2
ε

)2

Ini − 2

(
1

σ2
ε

)2

XAi(X
T
AiXAi)

−1XT
Ai

+

(
1

σ2
ε

)2

XAi(X
T
AiXAi)

−1XT
AiXAi(X

T
AiXAi)

−1XT
Ai

}
+ . . .

=

(
1

σ2
ε

)2

tr(Ini)−
(

1

σ2
ε

)2

tr
{
XAi(X

T
AiXAi)

−1XT
Ai

}
+ . . .

=
n

(σ2
ε)

2
+OP (1).

Therefore, the bottom right block of I(vech(Σ), σ2ε) can be computed as

1

2

m∑
i=1

{
n

(σε)2
+OP (1)

}
=

mn

2(σε)2
+OP (m).
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Putting the expressions obtained for the sub-blocks of I(vech(Σ), σ2ε) together, we have

I(vech(Σ), σ2
ε)

=

m
2

{
DT

dA

(
Σ−1 ⊗Σ−1

)
DdA

}
+OP (mn

−1)1dA(dA+1)/21
T
dA(dA+1)/2 OP (mn

−1)1dA(dA+1)/2

OP (mn
−1)1T

dA(dA+1)/2
mn

2(σ2
ε)

2 +OP (m)

 .
(3.11)

3.4.4 The Inverse of the Fisher Information Matrix

Since I(βA,βB, vech(Σ), σ2ε) is a block diagonal matrix, we can invert I(βA,βB) and
I(vech(Σ), σ2ε) separately and put the expressions together to find I(βA,βB, vech(Σ), σ2ε)

−1

as shown below.

I(βA,βB, vech(Σ), σ2ε)
−1 =

[
I(βA,βB)

−1 0

0 I(vech(Σ), σ2ε)
−1

]

3.4.4.1 Expression for Top Left Block of Inverse Fisher Information Matrix

Firstly, let us partition I(βA,βB) as follows

I(βA,βB) =

[
A11 A12

A21 A22

]
where A21 = AT

12.

The expressions for A11, A12, A21 and A22 are currently as follows

A11 = mΣ−1 +OP (mn
−1)1dA1

T
dA
,

A12 = OP (m)1dA1
T
dB
,

A21 = OP (m)1dB1
T
dA
,

A22 =
mnΣ−1

βB

σ2ε
+ oP (mn)1dB1

T
dB
.

Let I(βA,βB)
−1 assume the following form

I(βA,βB)
−1 =

[
A11 A12

A21 A22

]−1

=

[
A11 A12

A21 A22

]
where A21 = (A12)T .

Firstly note that

A−1
11 =

{
mΣ−1 +OP (mn

−1)1dA1
T
dA

}−1

=
[
mΣ−1

{
IdA +OP (n

−1)1dA1
T
dA

}]−1

= mΣ−1
{
IdA −OP (n

−1)1dA1
T
dA

+ . . .
}

= m−1Σ+OP (m
−1n−1)1dA1

T
dA
.

(3.12)
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Also note that

A−1
22 =

{
mnΣ−1

βB

σ2ε
+ oP (mn)1dB1

T
dB

}−1

=

[
mnΣ−1

βB

σ2ε

{
IdB + oP (1)ΣβB

1dB1
T
dB

}]−1

=
σ2εΣβB

mn

{
IdB + oP (1)ΣβB

1dB1
T
dB

}−1

=
σ2εΣβB

mn

{
IdB + oP (1)ΣβB

1dB1
T
dB

+ . . .
}

=
σ2εΣβB

mn
+ oP (m

−1n−1)1dB1
T
dB
.

(3.13)

Using the result for carrying out block matrix inversion presented in Section 1, A11,
A12, A21 and A22 can be calculated as follows. Firstly we have,

A11 = A−1
11 +A−1

11 A12(A22 −A21A
−1
11 A12)

−1A21A
−1
11 .

Note that

(A22 −A21A
−1
11 A12)

−1 = A−1
22 +A−1

22 A21A
−1
11 A12A

−1
22 + . . .

It follows that

A−1
11 A12(A22 −A21A

−1
11 A12)

−1A21A
−1
11 = OP (m

−1n−1)1dA1
T
dA
.

Therefore by making use of (3.12), we get,

A11 = m−1Σ+OP (m
−1n−1)1dA1

T
dA
.

Next we have,
A12 = −(A11 −A12A

−1
22 A21)

−1A12A
−1
22 .

Note that

(A11 −A12A
−1
22 A21)

−1 = A−1
11 +A−1

11 A12A
−1
22 A21A

−1
11 + . . .

Therefore, by making use of (3.12) and (3.13), we have

A12 = OP (m
−1n−1)1dA1

T
dB
.

Note that
A21 = (A12)T .

Therefore, we have
A21 = OP (m

−1n−1)1dB1
T
dA
.

Finally, making use of (3.13), we get

A22 = A−1
22 +A−1

22 A21(A11 −A12A
−1
22 A21)

−1A12A
−1
22 .
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Also note that

A−1
22 A21(A11 −A12A

−1
22 A21)

−1A12A
−1
22 = OP (m

−1n−2)1dB1
T
dB
.

This leads to

A22 =
σ2εΣβB

mn
+ oP (m

−1n−1)1dB1
T
dB

+OP (m
−1n−2)1dB1

T
dB

=
σ2εΣβB

mn
+ oP (m

−1n−1)1dB1
T
dB
.

Using the expressions for A11, A12, A21 and A22, we have the following expression for
I(βA,βB)

−1

I(βA,βB)
−1 =

m−1Σ+OP (m
−1n−1)1dA1

T
dA

OP (m
−1n−1)1dA1

T
dB

OP (m
−1n−1)1dB1

T
dA

σ2
εΣβB
mn + oP (m

−1n−1)1dB1
T
dB

 .

3.4.4.2 Expression for Bottom Right Block of Inverse Fisher Information
Matrix

Similarly, let us partition I(vech(Σ), σ2ε) as follows

I(vech(Σ), σ2ε) =

[
B11 B12

B21 B22

]
where B21 = BT

12.

The expressions for B11, B12, B21 and B22 are currently as follows

B11 =
m

2

{
DT
dA

(
Σ−1 ⊗Σ−1

)
DdA

}
+OP (mn

−1)1dA(dA+1)/21
T
dA(dA+1)/2,

B12 = OP (mn
−1)1dA(dA+1)/2,

B21 = OP (mn
−1)1TdA(dA+1)/2,

B22 =
mn

2(σ2ε)
2
+OP (m).

Let I(vech(Σ), σ2ε)
−1 assume the following form

I(vech(Σ), σ2ε)
−1 =

[
B11 B12

B21 B22

]−1

=

[
B11 B12

B21 B22

]
where B21 = (B12)T .
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Firstly note that

B−1
11 =

[m
2

{
DT

dA

(
Σ−1 ⊗Σ−1

)
DdA

}
+OP (mn

−1)1dA(dA+1)/21
T
dA(dA+1)/2

]−1

=
[m
2

{
DT

dA

(
Σ−1 ⊗Σ−1

)
DdA

}{
IdA(dA+1)/2 +OP (n

−1)1dA(dA+1)/21
T
dA(dA+1)/2

}]−1

=
2

m

{
IdA(dA+1)/2 +OP (n

−1)1dA(dA+1)/21
T
dA(dA+1)/2

}−1 {
DT

dA

(
Σ−1 ⊗Σ−1

)
DdA

}−1

=
2

m

{
IdA(dA+1)/2 +OP (n

−1)1dA(dA+1)/21
T
dA(dA+1)/2 + . . .

}
D+

dA
(Σ⊗Σ)D+T

dA

=
2D+

dA
(Σ⊗Σ)D+T

dA

m
+OP (m

−1n−1)1dA(dA+1)/21
T
dA(dA+1)/2.

(3.14)

Also note that

B−1
22 =

{
mn

2(σ2ε)
2
+OP (m)

}−1

=

[
mn

2(σ2ε)
2

{
1 +OP (n

−1)
}]−1

=
2(σ2ε)

2

mn

{
1 +OP (n

−1) + . . .
}

=
2(σ2ε)

2

mn
+OP (m

−1n−2).

(3.15)

Using the result for carrying out block matrix inversion presented in Section 1, B11,
B12, B21 and B22 can be calculated as follows. Firstly, we have,

B11 = B−1
11 +B−1

11 B12(B22 −B21B
−1
11 B12)

−1B21B
−1
11 .

Note that

(B22 −B21B
−1
11 B12)

−1 = B−1
22 +B−1

22 B21A
−1
11 B12B

−1
22 + . . .

It follows that

B−1
11 B12(B22 −B21B

−1
11 B12)

−1B21B
−1
11 = OP (m

−1n−3)1dA(dA+1)/21
T
dA(dA+1)/2.

Therefore by making use of (3.14), we get,

B11 =
2D+

dA
(Σ⊗Σ)D+T

dA

m
+OP (m

−1n−1)1dA(dA+1)/21
T
dA(dA+1)/2.

Next we have,
B12 = −(B11 −B12B

−1
22 B21)

−1B12B
−1
22 .

Note that

(B11 −B12B
−1
22 B21)

−1 = B−1
11 +B−1

11 B12B
−1
22 B21B

−1
11 + . . .

Therefore, by making use of (3.14) and (3.15), we have

B12 = OP (m
−1n−2)1dA(dA+1)/2.
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Subsequently
B21 = (B12)T .

Therefore we have
B21 = OP (m

−1n−2)1TdA(dA+1)/2.

Finally, making use of (3.15), we get

B22 = B−1
22 +B−1

22 B21(B11 −B12B
−1
22 B21)

−1B12B
−1
22 .

Note that
B−1

22 B21(B11 −B12B
−1
22 B21)

−1B12B
−1
22 = OP (m

−1n−4).

This leads to

B22 =
2(σ2ε)

2

mn
+OP (m

−1n−2) +OP (m
−1n−4)

=
2(σ2ε)

2

mn
+OP (m

−1n−2).

Using the expressions for B11, B12, B21 and B22, we have the following expression for
I(vech(Σ), σ2ε)

−1

I(vech(Σ), σ2ε)
−1

=

2D+
dA

(Σ⊗Σ)D+T
dA

m +OP (m
−1n−1)1dA(dA+1)/21

T
dA(dA+1)/2 OP (m

−1n−2)1dA(dA+1)/2

OP (m
−1n−2)1TdA(dA+1)/2

2(σ2
ε)

2

mn +OP (m
−1n−2)

 .
The resultant expression for I(βA,βB, vech(Σ), σ2ε) is

I(βA,βB, vech(Σ), σ2
ε)

−1

=

[
I(βA,βB)

−1 0

0 I(vech(Σ), σ2
ε)

−1

]

= I(βA,βB, vech(Σ), σ2
ε)

−1
∞

+
1

mn


OP (1)1dA1

T
dA

OP (1)1dA1
T
dB

0 0

OP (1)1dB1
T
dA

oP (1)1dB1
T
dB

0 0

0 0 OP (1)1dA(dA+1)/21
T
dA(dA+1)/2 OP (n

−1)1dA(dA+1)/2

0 0 OP (n
−1)1T

dA(dA+1)/2 OP (n
−1)

 ,
where

I(βA,βB, vech(Σ), σ2ε)
−1
∞ =


Σ
m 0 0 0

0
σ2
εΣβB
mn 0 0

0 0
2D+

dA
(Σ⊗Σ)D+T

dA
m 0

0 0 0 2(σ2
ε)

2

mn

 .
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3.4.5 Derivation of the Final Asymptotic Normality Result for Gaus-
sian Response Linear Mixed Models

For a matrix M let

∥M∥F =
√
tr(MTM)

denote the Frobenius norm of M .

Consider working with the order (βA, vech(Σ),βB, σ
2
ε) rather than the order in

(βA,βB, vech(Σ), σ2ε), when working with the Fisher information matrix for the deriva-
tion of the final asymptotic normality result. From standard results concerning asymp-
totic normality of maximum likelihood estimators we have

{I
(
β0
A, vech(Σ

0),β0
B, (σ

2)0
)−1}−1/2(θ̂ − θ0)

D→ N(0, I)

where θ̂ =
[
β̂TA vech(Σ̂)T β̂TB σ̂2

]T
and θ0 = [(β0

A)
T {vech(Σ0)}T β0

B)
T ((σ2)0)T ]T .

Therefore, for all (dA + dA(dA + 1)/2 + dB + 1)× 1 vectors a ̸= 0 we have

aT {I
(
β0
A, vech(Σ

0),β0
B, (σ

2)0
)−1}−1/2(θ̂ − θ0)

D→ N(0,aTa).

Note that

aT {I
(
β0
A, vech(Σ

0),β0
B, (σ

2)0
)−1}−1/2(θ̂ − θ0)

= aT
[
{I
(
β0
A, vech(Σ

0),β0
B, (σ

2)0
)−1

∞ }−1/2 + {I
(
β0
A, vech(Σ

0),β0
B, (σ

2)0
)−1}−1/2

− {I
(
β0
A, vech(Σ

0),β0
B, (σ

2)0
)−1

∞ }−1/2
]
(θ̂ − θ0)

= aT {I
(
β0
A, vech(Σ

0),β0
B, (σ

2)0
)−1

∞ }−1/2(θ̂ − θ0)

+ aT
[
{I
(
β0
A, vech(Σ

0),β0
B, (σ

2)0
)−1}−1/2

− {I
(
β0
A, vech(Σ

0),β0
B, (σ

2)0
)−1

∞ }−1/2
]
(θ̂ − θ0).

As a consequence

aT {I
(
β0
A, vech(Σ

0),β0
B, (σ

2)0
)−1

∞ }−1/2(θ̂ − θ0) + rmn(a)
D→ N(0,aTa) (3.16)

with

rmn(a)

= aT
[
{I
(
β0
A, vech(Σ

0),β0
B, (σ

2)0
)−1}−1/2 − {I

(
β0
A, vech(Σ

0),β0
B, (σ

2)0
)−1

∞ }−1/2
]
(θ̂ − θ0)

= aT
[
I − {I

(
β0
A, vech(Σ

0),β0
B, (σ

2)0
)−1

∞ }−1/2{I
(
β0
A, vech(Σ

0),β0
B, (σ

2)0
)−1}1/2

]
× {I

(
β0
A, vech(Σ

0),β0
B, (σ

2)0
)−1}−1/2(θ̂ − θ0)

=

(
−
[
{I
(
β0
A, vech(Σ

0),β0
B, (σ

2)0
)−1

∞ }−1/2{I
(
β0
A, vech(Σ

0),β0
B, (σ

2)0
)−1}1/2 − I

]T
a

)T

Z
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where Z ∼ N
(
0, IdA+dA(dA+1)/2+dB+1

)
. Next, note that using the matrix norm

properties ∥ − A∥ = ∥A∥ and ∥AB∥ ≤ ∥A∥∥B∥ for any matrices A and B and
the fact that ∥MT ∥F = ∥M∥ for any matrix M , we have∥∥∥− [{I (β0

A, vech(Σ
0),β0

B, (σ
2)0
)−1

∞ }−1/2{I
(
β0
A, vech(Σ

0),β0
B, (σ

2)0
)−1}1/2 − I

]T
a
∥∥∥
F

≤
∥∥∥[{I (β0

A, vech(Σ
0),β0

B, (σ
2)0
)−1

∞ }−1/2{I
(
β0
A, vech(Σ

0),β0
B, (σ

2)0
)−1}1/2 − I

]T∥∥∥
F
∥a∥F

=
∥∥∥[{I (β0

A, vech(Σ
0),β0

B, (σ
2)0
)−1

∞ }−1/2{I
(
β0
A, vech(Σ

0),β0
B, (σ

2)0
)−1}1/2 − I

]∥∥∥
F
∥a∥F .

(3.17)

Our next aim is to establish that∥∥∥[{I (β0
A, vech(Σ

0),β0
B, (σ

2)0
)−1

∞ }−1/2{I
(
β0
A, vech(Σ

0),β0
B, (σ

2)0
)−1}1/2 − I

]∥∥∥
F

P→ 0

(3.18)
Recall that

I(βA, vech(Σ),βB, σ
2
ε)

−1

= I(βA, vech(Σ),βB, σ
2
ε)

−1
∞

+
1

m


OP (n

−1)1dA
1T
dA

0 OP (n
−1)1dA

1T
dB

0

0 OP (n
−1)1dA(dA+1)/21

T
dA(dA+1)/2 0 OP (n

−2)1dA(dA+1)/2

OP (n
−1)1dB

1T
dA

0 oP (n
−1)1dB

1T
dB

0

0 OP (n
−2)1T

dA(dA+1)/2 0 OP (n
−2)


where

I(βA, vech(Σ),βB, σ
2
ε)

−1
∞ =

1

m


Σ 0 0 0

0 2D+
dA

(Σ⊗Σ)D+T
dA

0 0

0 0
σ2
εΣβB
n 0

0 0 0 2(σ2
ε)

2

n

 ,
so that{

I
(
β0
A, vech(Σ

0),β0
B, (σ

2)0
)−1

∞

}−1/2 {
I
(
β0
A, vech(Σ

0),β0
B, (σ

2)0
)−1
}1/2

= M−1/2
n,∞ M1/2

n

where

Mn,∞ = m
{
I
(
β0
A, vech(Σ

0),β0
B, (σ

2)0
)−1

∞

}
and Mn =

{
I
(
β0
A, vech(Σ

0),β0
B, (σ

2)0
)−1
}
.

Therefore, we can apply Lemma 3 with the following

p = dA + dA(dA + 1)/2, K =

[
Σ 0

0 2D+
dA

(Σ⊗Σ)D+T
dA

]
, q = dB + 1

and

L =

σ2
εΣβB
n 0

0 2(σ2
ε)

2

n


in order to show that (3.18) holds. It then follows from (3.17) and (3.18) that[

{I
(
β0
A, vech(Σ

0),β0
B, (σ

2)0
)−1

∞ }−1/2{I
(
β0
A, vech(Σ

0),β0
B, (σ

2)0
)−1}1/2 − I

]
a

P→ 0.
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Application of Slutsky’s Theorem then gives rmn(a)
P→ 0. From (3.16) and another

application of Slutsky’s Theorem we have

aT {I
(
β0
A, vech(Σ

0),β0
B, (σ

2)0
)−1

∞ }−1/2(θ̂ − θ0)
D→ N(0,aTa).

It then follows from the Cramér-Wold Device and the Continuous Mapping Theorem
that

√
m


β̂A − β0

A√
n
(
β̂B − β0

B

)
vech(Σ̂−Σ0)

√
n
(
σ̂2 − (σ2)0

)

 D→ N



0

0

0

0

 ,

Σ0 0 0 0

0 (σ2)0ΣβB
0 0

0 0 2D+
dA

(
Σ0 ⊗Σ0

)
D+T

dA
0

0 0 0 2((σ2)0)2




as shown in Theorem 11.



Chapter 4

Usable Asymptotic Normality
Results and Inference for
Generalized Linear Mixed Models

In this chapter, we aim to derive asymptotic normality results beyond those that have

been derived in Chapter 3 for Gaussian response linear mixed models. The main

theorem in this chapter concerns the joint asymptotic normality of all of the maximum

quasi-likelihood estimators for a generalized linear mixed model. Once again, it elegantly

shows faster rates of convergence for fixed effects that are not accompanied by a random

effect compared to fixed effects that have a partnering random effect. The results

derived in this chapter can also be used for the construction of asymptotically valid

confidence intervals and Wald tests for generalized linear mixed model analysis, which

will be discussed in the next chapter.

In addition, we extend this theorem under certain circumstances to dispersion

parameters, introduced to account for overdispersion, as well. For the class of two-

parameter exponential families, maximum likelihood estimation is possible for all model

parameters including the dispersion parameter. Thus, we extend Theorem 12 and derive

the asymptotic normality results for the maximum likelihood estimator for a dispersion

parameter in the Gaussian and Gamma response cases.

The appendix contains the proofs for the theorem introduced in this chapter.

The content of this chapter is published as: [1] Jiang, J., Wand, M.P. and Bhaskaran, A. (2022),

Usable and precise asymptotics for generalized linear mixed model analysis and design. Journal of the

Royal Statistical Society, Series B, 84: 55-82. DOI: 10.1111/rssb.12473. [2] Bhaskaran, A. and Wand,

M.P.(2023), Dispersion parameter extension of precise generalized linear mixed model asymptotics.

Statistics and Probability Letters, 193, Article 109691.
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4.1 Model Description

Consider the following density, or probability mass, function for the class of one-

parameter exponential families

p(y; η) = exp {yη − b(η) + c(y)}h(y) (4.1)

where η is the natural parameter. For example, the Bernoulli probability mass function

has b(x) = log(1 + ex), c(x) = 0 and h(x) = I(x ∈ {0, 1}). Whereas for the Poisson

mass function, b(x) = ex, c(x) = − log(x!) and h(x) = I(x ∈ {0} ∪N). Here, I(P) = 1 if

the condition P is true and I(P) = 0 if P is false. If the random variable Y has density,

or probability mass, function as in (4.1), then E(Y ) = b′(η) and Var(Y ) = b′′(η). To

account for overdispersion in data and to allow one to model the variance flexibly, a

common modelling extension is implemented such that Var(Y ) = ϕb′′(η), where ϕ > 0

represents the dispersion parameter. This involves the replacement of log{p(y; η)} by

the following quasi-likelihood function

{yη − b(η) + c(y)}/ϕ+ d(y, ϕ) (4.2)

where d(y, ϕ) is a function of y and ϕ only. Note that for ordinary binomial and Poisson

response models, ϕ is fixed at 1. For Gaussian and gamma response models, (4.2)

corresponds to the expression of log{p(y; η)} for a two-parameter exponential family

density function and ordinary likelihood applies. In this section, we study generalized

linear mixed models of the following form, for observations of the random triples

(XAij ,XBij , Yij), 1 ≤ i ≤ m, 1 ≤ j ≤ ni,

Yij |XAij ,XBij ,Ui are independent having quasi-likelihood function (4.2) with

natural parameter (β0
A +Ui)

TXAij + (β0
B)
TXBij such that the Ui are

independent N(0,Σ0) random vectors.

(4.3)

The Ui are dA × 1 unobserved random vectors for each 1 ≤ i ≤ m. The XAij are dA × 1

random vectors corresponding to predictors that are partnered by both a fixed effect

and a random effect. The XBij are dB × 1 random vectors which are predictors that

have a fixed effect only. Let Xij ≡ (XT
Aij ,X

T
Bij)

T denote the combined predictor vectors

such that dA + dB = d. We also assumed that the Xij and Ui, for 1 ≤ i ≤ m and

1 ≤ j ≤ ni, are independent. The Xij are each assumed as having the same distribution

as the (dA + dB) × 1 random vector X = (XT
A ,X

T
B )

T and the Ui are assumed to be

independent N(0,Σ0), each having the same distribution as the random vector U .
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Then, for any βA(dA×1), βB(dB×1) and Σ(dA×dA) that is symmetric, positive defi-

nite and conditional on the Xij data, the maximum likelihood estimator of (β0
A,β

0
B,Σ

0)

is,

(β̂A, β̂B, Σ̂) = argmax
βA,βB,Σ

ℓ(βA,βB,Σ)

where ℓ(βA,βB,Σ) is the conditional log-likelihood and has the expression

ℓ(βA,βB,Σ) =

m∑
i=1

n∑
j=1

[{
Yij
(
βTAXAij + βTBXBij

)
+ c(Yij)

}
/ϕ+ d(Yij , ϕ)

]
− m

2
log |2πΣ|

+

m∑
i=1

log

∫
RdA

exp

[
n∑
j=1

{
Yiju

TXAij − b((βA + u)TXAij + βTBXBij)
}
/ϕ

− 1

2
uTΣ−1u

]
du.

Note that one-parameter exponential family densities have a variety of desirable

properties, so that the regularity conditions for Theorem 7 are met. For example, in the

class of one-parameter exponential families, the support of f(y|θ) does not depend on

θ. Additional assumptions, for instance, having Σ0 being positive definite, ensures that

the true values for all model parameters are interior to the parameter space. Thus, the

model description above ensures that the regularity conditions required of the density

function is met for the convergence in distribution result for MLEs. Similar explanations

apply for the model descriptions in Chapters 6 and 7 as well.

4.2 Notation

Define

n ≡ 1

m

m∑
i=1

ni = average of the within-group sample sizes,

ΩβB
(U) ≡ E

b′′ ((β0
A +U)TXA + (β0

B)
TXB

)XAX
T
A XAX

T
B

XBX
T
A XBX

T
B

 ∣∣∣U


and

ΛβB
≡
(
E
[{

lower right dB × dB block of ΩβB
(U)−1

}−1
])−1

.
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4.3 Asymptotic Normality Theorem

The main theoretical contribution of this chapter is an asymptotic normality theorem

for the maximum quasi-likelihood estimators for a generalized linear mixed model as

described in Section 4.1.

The theorem relies on the following assumptions:

(A4) The number of groups m diverges to ∞.

(A5) The within-group sample sizes ni diverge to ∞ in such a way that ni/n→ Ci

for constants 0 < Ci <∞, 1 ≤ i ≤ m. Also, n/m→ 0 as m and n diverge.

(A6) The distribution of X is such that

E

[
E
[
max{1, ∥X∥}8max{1, b′′

(
(βA +U)TXA + βTBXB

)
}4|U

]
min{1, λmin(E{XAXT

Ab
′′
(
(βA +U)TXA + βTBXB

)
|U})}2

]
<∞

for all βA ∈ RdA , βB ∈ RdB and Σ that is a dA × dA symmetric and positive

definite matrix.

Theorem 12. Assume that conditions (A4) - (A6) hold. Then we have the following

√
m


β̂A − β0

A
√
n
(
β̂B − β0

B

)
vech(Σ̂)− vech(Σ0)

 D→ N



0

0

0

 ,

Σ0 0 0

0 ϕΛβB
0

0 0 2D+
dA

(
Σ0 ⊗Σ0

)
D+T
dA


 .

Proof of Theorem 12 is in the appendices. Some remarks concerning Theorem 12

are:

1. Firstly, note that the asymptotic variances of the maximum quasi-likelihood

estimator of the fixed effects that are accompanied by random effects and the

maximum quasi-likelihood estimator of the variance and covariance parameters

of the random effects, both have a convergence rate of m−1. On the other hand,

the asymptotic variance of the estimator of the fixed effects unaccompanied by

random effects has a much faster convergence rate of (mn)−1.

2. The off-diagonal entries of the asymptotic variance-covariance matrix of the

maximum quasi-likelihood estimators of the model parameters are zero matrices.

Hence, this implies asymptotic orthogonality between the βA, βB and Σ model

parameters.
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3. In existing literature, results such as Theorem 3 of Nie (2007) contains limits

and expectations over the response distribution in their Fisher information ap-

proximations. In Theorem 12, we avoid such limits and expectations over the

response distribution. The ΛβB
matrix only involves expectations over the simpler

random effects distribution. Therefore the results in this thesis, including Theorem

12, provide expressions that are easy to implement for practical tasks such as

confidence interval construction, making them “usable” in practice compared to

other theoretical asymptotic normality results (rather than results that make use

of observed Fisher information) available for maximum likelihood estimators for

generalized linear mixed models.

4.4 Dispersion Parameter Extension

In Theorem 12, we treat the dispersion parameter ϕ as being fixed. When considering

the Gaussian and Gamma response cases, all of the model parameters in (4.2), including

ϕ, can be estimated using ordinary maximum likelihood. Theorem 12 can then be

extended for maximum likelihood estimation of ϕ0 and involves the addition of

√
mn

(
ϕ̂− ϕ0

)
D→ N(0, v(ϕ0))

where v(x) ≡ 2x2 for Gaussian responses and v(x) ≡ x4/{trigamma(1/x)− x}. Proof
of the asymptotic variance expression for the maximum likelihood estimator of the

dispersion parameter in the Gaussian response case is in Chapter 3 and proof of the

asymptotic variance expression for the maximum likelihood estimator of the dispersion

parameter in the Gamma response case is in the appendix for this chapter.

Note that from our results, for the Gaussian and gamma response cases, we can

conclude that exact orthogonality exists between ϕ and (βA,βB) and asymptotic

orthogonality exists between ϕ and Σ. Thus, the covariance matrices of Theorem

12 still hold for β̂A, β̂B and vech(Σ̂). On the other hand, when implementing the

quasi-likelihood extension of the Binomial and Poisson response cases, ϕ cannot be

estimated via maximum quasi-likelihood and is typically estimated via a method of

moments approach. Note that the values of the maximum quasi-likelihood estimates

of βA, βB and Σ asymptotically do not depend on ϕ. This can be deduced from the

likelihood equations formed using the first-order asymptotic approximations of the scores

that only have ϕ as a constant. Hence, Theorem 12 is unaffected by the estimation of ϕ

for the response cases under the umbrella of one-parameter exponential families too.
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4.5 Appendix

4.5.1 Multivariate Extension of (2.6) of Tierney et al. (1989)

To carry out the derivations in the next appendix, one has to deal with solving ratios
of intractable integrals. In this appendix, we show how to deal with such ratios of
intractable integrals containing d-variate arguments by working with its equivalent
multi-term Laplace’s method expansion instead. This is accomplished by considering
the multivariate extension of (2.6) of Tierney et al. (1989), which follows from results in
Appendix A of Miyata (2004).

4.5.1.1 Overview

For smooth real-valued functions g, c and h, Equation (2.6) of Tierney et al. (1989)
states that∫∞
−∞ bN (x) exp{−nh(x)} dx∫∞
−∞ bD(x) exp{−nh(x)} dx

= g(x∗) +
b′D(x∗)g′(x∗)

nbD(x∗)h′′(x∗)
+

g′′(x∗)

2nh′′(x∗)
− g′(x∗)h′′′(x∗)

2nh′′(x∗)2
+O(n−2).

(4.4)

where
g ≡ bN/bD (4.5)

and
x∗ ≡ value of x that minimises h over R.

Now consider the first two equations in Appendix A of Miyata (2004). Suppose that
in the right-hand side of the first equation we set Θ = Rd, replace the ρ symbol by bD,
replace the hn symbol by h and replace the integral dummy variable θ by x. Then we
get ∫

Rd g(x)bD(x) exp{−nh(x)} dx∫
Rd bD(x) exp{−nh(x)} dx

.

If the function bN is defined according to (7.3.6), then this quantity becomes∫
Rd bN (x) exp{−nh(x)} dx∫
Rd bD(x) exp{−nh(x)} dx

,

which is equivalent to both the right-hand sides of the first and second equations in
Appendix A of Miyata (2004). So the asymptotic expansion is given by the right-hand
side of the second equation in Appendix A of Miyata (2004) with θ̂ replaced by x∗ and
ρ replaced bD.
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4.5.1.2 Multivariate Derivative Notation

Let f be a smooth real-valued d-variate function of the d-variate argument x ≡
(x1, . . . , xd). The gradient vector of f is

∇f(x1, . . . , xd) = d× 1 vector with ith entry
∂f(x1, . . . , xd)

∂xi
.

The Hessian matrix of f is

∇2f(x1, . . . , xd) = d× d matrix with (i, j)th entry
∂2f(x1, . . . , xd)

∂xi∂xj
.

The third derivatives three-dimensional array of f is

∇3f(x1, . . . , xd) = d× d× d array with (i, j, k)th entry
∂3f(x1, . . . , xd)

∂xi∂xj∂xk
.

4.5.1.3 Check of the Miyata (2004) Appendix A Result for the Univariate
Case

We first make sure that the right-hand side of the second equation in Appendix A of
Miyata (2004) matches (2.6) of Tierney et al. (1989) when d = 1. Recall that we have to
replace ρ by bD. We first deal with the term that is the one just before the O(n−2) term.
The author points out that this term is, in fact (with some trivial re-arrangement),

1

2n
tr[{∇2h(x∗)}−1∇2g(x∗)]

In the univariate case this becomes

g′′(x∗)

2nh′′(x∗)

which is one of the terms in (7.3.6).

Consider the second term involving the
∑

ij symbol. Next note that Miyata (2004)

uses hij to denote the components of {∇2h(x∗)}−1. In the univariate case this is simply
1/h′′(x∗). In this univariate case the summation over ij collapses to a scalar and the
first component is

1

n
g′(x∗){1/h′′(x∗)}b′D(x∗)/bD(x∗) =

b′D(x
∗)g′(x∗)

nbD(x∗)h′′(x∗)
,

which is also one of the terms in (7.3.6).

It remains to show that the second component of the main
∑

ij expression reduces
to

−g
′(x∗)h′′′(x∗)

2nh′′(x∗)2
.
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For a general set of model parameters θ, let hj1...jd(θ̂) denote the dth partial derivative

∂dhn(θ)/∂θj1 . . . ∂θjd with respect to θ evaluated θ̂. Then from this definition of hj1...jd
provided in Miyata (2004), it is apparent that, in the d = 1 case, we can replace hrsj by
h111 and then set it to h′′′(x∗). Also, in this d = 1 case the summation of rs collapses
to a scalar. Combining we get

1

n
g′(x∗){1/h′′(x∗)}(−1

2){1/h
′′(x∗)}h′′′(x∗) = −g

′(x∗)h′′′(x∗)

2nh′′(x∗)2

as required.

In summary, the result in Appendix A of Miyata (2004) does reduce to (2.6) of
Tierney et al. (1989) in the d = 1 case.

4.5.1.4 The Multivariate Case

The second equation of Appendix A of Miyata (2004) gives an expansion for∫
Rd g(x)bD(x) exp{−nh(x)} dx∫

Rd bD(x) exp{−nh(x)} dx
.

It is relatively easy to show that∫
Rd g(x)bD(x) exp{−nh(x)} dx∫

Rd bD(x) exp{−nh(x)} dx
= g(x∗) +

∇g(x∗)T {∇2h(x∗)}−1∇bD(x∗)

nbD(x∗)

+
tr[{∇2h(x∗)}−1∇2g(x∗)]

2n
+Υ(x∗) +O(n−2)

for smooth real-valued d-variate functions g, c and h, where Υ(x∗) denotes the term
involving third order derivatives and therefore is more challenging when it comes to
getting succinct matrix algebraic expressions.

In terms of the subscript derivative notation used in Miyata (2004):

Υ(x∗) = − 1

2n

d∑
i=1

d∑
j=1

gih
ij

d∑
k=1

d∑
ℓ=1

hkℓhkℓj

where

gi= ith entry of ∇g(x∗),

hij = (i, j) entry of {∇2h(x∗)}−1

and hijk = (i, j, k) entry of ∇3h(x∗).

Note that if ω(x∗) is the d× 1 vector with kth entry equal to

d∑
i=1

d∑
j=1

hijhijk =
d∑
i=1

d∑
j=1

[{∇2h(x∗)}−1]ij{∇3h(x∗)}ijk
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then we have

Υ(x∗) = −∇g(x∗)T {∇2h(x∗)}−1ω(x∗)

2n
.

We could also define

∇3h(x)[k] ≡ d× d matrix with (i, j) entry equal to the (i, j, k) entry of ∇3h(x)

and then the kth entry of ω(x∗) is

tr[{∇2h(x∗)}−1∇3h(x∗)[k]].

4.5.1.5 Final Expression for the Multivariate Extension of (2.6) of Tierney
et al. (1989)

Putting everything together from the previous subsubsection, the multivariate extension
of (2.6) of Tierney et al. (1989) is:∫

Rd g(x)bD(x) exp{−nh(x)} dx∫
Rd bD(x) exp{−nh(x)} dx

= g(x∗) +
∇g(x∗)T {∇2h(x∗)}−1∇bD(x∗)

nbD(x∗)

+
tr[{∇2h(x∗)}−1∇2g(x∗)]

2n

−∇g(x∗)T {∇2h(x∗)}−1ω(x∗)

2n
+O(n−2)

(4.6)

where

ω(x) ≡


tr
[
{∇2h(x)}−1∇3h(x)[1]

]
...

tr
[
{∇2h(x)}−1∇3h(x)[d]

]


and

∇3h(x)[k] ≡ d× d matrix with (i, j) entry equal to the (i, j, k) entry of ∇3h(x).

4.5.2 Proof of Theorem 12

This appendix contains the details for the derivations leading up to Theorem 12.

4.5.2.1 Constructing the Fisher Information Matrix

In order to compute the asymptotic covariance matrix for the maximum quasi-likelihood
estimators, we would first need to compute the Fisher information matrix for the model
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parameters as per the model description in (4.3). To do so, let

Si ≡


SAi

SBi

SCi

 =


∇βA

log pYi|Xi
(Yi|Xi)

∇βB
log pYi|Xi

(Yi|Xi)

∇vech(Σ) log pYi|Xi
(Yi|Xi)

 (4.7)

denote the ith contribution to the scores for each of the model parameters. Then the
Fisher information matrix can be computed as

I(βA,βB, vech(Σ)) =

m∑
i=1

E(SiS
T
i |Xi).

The next few sections then focus on obtaining the expressions for the scores and
the quadratic conditional expectations that are required to construct the final Fisher
information matrix.

4.5.2.2 Expression for Conditional Density Function

The expression for pYi|Xi
(Yi|Xi) as per the model description in (4.3) is as follows

pYi|Xi
(Yi|Xi)

=

∫
RdA

ni∏
j=1

{
p(Yij |XAij ,XBij ,Ui)

}
p(Ui)dUi

=

∫
RdA

exp

{
n∑

j=1

([
Yij

{
(βA + u)

T
XAij + βT

BXBij

}
− b

(
(βA + u)

T
XAij + βT

BXBij

)

+ c(Yij)

]
/ϕ+ d(Yij , ϕ)

)}
× (2π)−dA/2|Σ|−1/2 exp(−1

2
uTΣ−1u)du

=

∫
RdA

|2πΣ|−1/2 exp

{
n∑

j=1

([
Yij

{
(βA + u)

T
XAij + βT

BXBij

}

− b
(
(βA + u)

T
XAij + βT

BXBij

)
+ c(Yij)

]
/ϕ+ d(Yij , ϕ)

)
− 1

2
uTΣ−1u

}
du

= |2πΣ|−1/2 exp

 n∑
j=1

[{
Yij
(
βT
AXAij + βT

BXBij

)
+ c(Yij)

}
/ϕ+ d(Yij , ϕ)

]
×
∫
RdA

exp

 n∑
j=1

{
Yiju

TXAij − b
(
(βA + u)

T
XAij + βT

BXBij

)}
/ϕ− 1

2
uTΣ−1u

 du.
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4.5.2.3 Introduction of Useful Notation and its Properties

Here we introduce expressions that will be useful in summarising the derivations
throughout this appendix. Firstly,

1d⊞A
≡ 1dA(dA+1)/2

and
1⊗2
dA

≡ 1dA1
T
dA
, 1⊗2

dB
≡ 1dB1

T
dB

and 1⊗2
d⊞A

≡ 1d⊞A
1T
d⊞A
.

Then note that

GAi ≡
n∑
j=1

{Yij − b′
(
(βA +Ui)

TXAij + (βB)
TXBij

)
}XAij ,

GBi ≡
n∑
j=1

{Yij − b′
(
(βA +Ui)

TXAij + (βB)
TXBij

)
}XBij ,

HAAi ≡
n∑
j=1

b′′
(
(βA +Ui)

TXAij + (βB)
TXBij

)
XAijX

T
Aij ,

HABi =
n∑
j=1

b′′
(
(βA +Ui)

TXAij + (βB)
TXBij

)
XAijX

T
Bij ,

HBBi ≡
n∑
j=1

b′′
(
(βA +Ui)

TXAij + (βB)
TXBij

)
XBijX

T
Bij .

H′
AAAi is the dA × dA × dA array with (r, s, t) entry equal to

n∑
j=1

b′′′
(
(βA +Ui)

TXAij + (βB)
TXBij

)
(XAij)r(XAij)s(XAij)t,

and H′
AAAi[t] is the dA × dA matrix with (r, s) entry equal to the (r, s, t) entry of H′

AAAi.
Note that the expressions listed above have the following probabilistic orders where

GAi = OP (n
1/2)1dA , GBi = OP (n

1/2)1dB ,

HAAi = OP (n)1
⊗2
dA
, HABi = OP (n)1dA1

T
dB

and HBBi = OP (n)1
⊗2
dB
.
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The Conditional Expectation of GAi and GBi Given (Xi,Ui)

E(GAi|Xi,Ui) = E

 n∑
j=1

{
Yij − b′

(
(βA +Ui)

T XAij + βTBXBij

)}
XAij

 |Xi,Ui


=

n∑
j=1

{
E (Yij |Xi,Ui)− b′

(
(βA +Ui)

T XAij + βTBXBij

)}
XAij

= 0.

Similarly we also have that
E(GBi|Xi, Ui) = 0.

The Conditional Expectations of GAi GTAi, GAi GTBi and GBi GTBi Given (Xi,Ui)

E(GAi GTAi|Xi,Ui)

= E

( n∑
j=1

{
Yij − b′

(
(βA +Ui)

T XAij + βTBXBij

)}
XAij


×

 n∑
j=1

{
Yij′ − b′

(
(βA +Ui)

T XAij′ + βTBXBij′

)}
XAij′

T |Xi,Ui

)

=
∑∑
j ̸=j′

E

([{
Yij − b′

(
(βA +Ui)

T XAij + βTBXBij

)}
XAij

]

×
[{
Yij′ − b′

(
(βA +Ui)

T XAij′ + βTBXBij′

)}
XAij′

]T
|Xi,Ui

)

+

n∑
j=1

E

([{
Yij − b′

(
(βA +Ui)

T XAij + βTBXBij

)}
XAij

]

×
[{
Yij − b′

(
(βA +Ui)

T XAij + βTBXBij

)}
XAij

]T
|Xi,Ui

)

=
∑∑
j ̸=j′

E

{[{
Yij − b′

(
(βA +Ui)

T XAij + βTBXBij

)}
XAij |Xi,Ui

]

× E

([{
Yij′ − b′

(
(βA +Ui)

T XAij′ + βTBXBij′

)}
XAij′

]T
|Xi,Ui

)}

+

n∑
j=1

Var (YijXAij |Xi,Ui)
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The equation above simplifies to∑∑
j ̸=j′

[{
E (Yij |Xi,Ui)− b′

(
(βA +Ui)

T XAij + βTBXBij

)}
XAij

]
×
[{
E
(
Yij′ |Xi,Ui

)
− b′

(
(βA +Ui)

T XAij′ + βTBXBij′

)}
XAij′

]T
+

n∑
j=1

XAijVar (Yij |Xi,Ui)X
T
Aij

= ϕ

n∑
j=1

b′′
(
(βA +Ui)

T XAij + βTBXBij

)
XAijX

T
Aij

= ϕHAAi.

Similarly we also have that

E(GAi GTBi|Xi, Ui) = ϕHABi and E(GBi GTBi|Xi, Ui) = ϕHBBi.

4.5.2.4 Computing an Asymptotic Approximation for the First Entry in
(4.7)

To overcome the intractability of the ratio of integrals present when deriving the
scores with respect to each of the model parameters, we will work with an asymptotic
approximation of the ratio of integrals by using a multi-term Laplace’s method expansion
as described in the appendix in Subsection 4.5.1. Hence, the ith contribution to the
score of βA is

SAi = ∇βA
log pYi|Xi

(Yi|Xi)

=

∫
RdA b1stN (u) exp{−nhN (u)} du∫
RdA b

1st
D (u) exp{−nhN (u)} du

where

b1stN (u) ≡ exp
(
− 1

2u
TΣ−1u

) 1
ϕ

n∑
j=1

{
Yij − b′

(
(βA + u)TXAij + (βB)

TXBij

)}
XAij ,

b1stD (u) ≡ exp
(
− 1

2u
TΣ−1u

)
and

hN (u) ≡ − 1

nϕ

n∑
j=1

{
Yiju

TXAij − b
(
(βA + u)TXAij + (βB)

TXBij

)}
.

Now define

U∗
i ≡ value of u that minimises hN (u)

= value of u such that ∇uhN (u) = 0

= value of u such that
n∑
j=1

{
Yij − b′

(
(βA + u)TXAij + (βB)

TXBij

)}
XAij = 0.
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However,
b1stN (U∗

i ) = 0.

This violates the condition in Hsu (1948), in the sense that b1stN (U∗
i ) ̸= 0 is required in

order for the Laplace approximation to hold. To counter this issue, firstly note that the
numerator of SAi is ∫

RdA

{∇us(u)} t(u) du (4.8)

where

s(u) ≡ exp

(
n

ϕ

 1

n

n∑
j=1

{
Yiju

TXAij − b
(
(βA + u)TXAij + (βB)

TXBij

)})

and
t(u) ≡ exp

(
− 1

2u
TΣ−1u

)
.

Using an RdA extension of integration by parts, we can replace (4.8) by

−
∫
RdA

s(u) {∇ut(u)} du.

We then obtain that

dt(u) = exp
(
− 1

2u
TΣ−1u

)
d
{
−1

2u
TΣ−1u

}
= − exp

(
− 1

2u
TΣ−1u

)
1
2u

TΣ−1du,

which leads to
∇ut(u) = − exp

(
− 1

2u
TΣ−1u

)
Σ−1u.

Now by rewriting the numerator of SAi, we have,

SAi =

∫
RdA bN (u) exp{−nhN (u)} du∫
RdA bD(u) exp{−nhN (u)} du

where

bN (u) ≡ exp
(
− 1

2u
TΣ−1u

)
Σ−1u

bD(u) ≡ exp
(
− 1

2u
TΣ−1u

)
and

hN (u) ≡ − 1

nϕ

n∑
j=1

{
Yiju

TXAij − b
(
(βA + u)TXAij + (βB)

TXBij

)}
.
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Expansion of U∗
i

Here we find an asymptotic expression for U∗
i . We have that

0 = ∇uhN (u)

=

n∑
j=1

{
Yij − b′

(
(βA +U∗

i )
TXAij + (βB)

TXBij

)}
XAij

=

n∑
j=1

{
Yij − b′

(
(β0

A +Ui)
TXAij + (β0

B)
TXBij

)}
XAij

−
n∑
j=1

b′′
(
(βA +Ui)

TXAij + (βB)
TXBij

)
XAijX

T
Aij(U

∗
i −Ui) + rit

= GAi −HAAi(U
∗
i −Ui) + rit

where rit is the Lagrange form of the remainder and is a quadratic form in U∗
i −Ui

and a smooth function of U †
it ≡ (1 − t)Ui + tU∗

i for some t ∈ [0, 1]. Inversion of this
asymptotic series leads to

U∗
i = Ui +H−1

AAiGAi +OP (n
−1)1dA .

The ek Notation

The following notation is useful for the upcoming calculations. For each 1 ≤ kA ≤ dA,
1 ≤ kB ≤ dB, 1 ≤ kC ≤ d⊞A , let

ekA = the dA × 1 vector with 1 in the kAth entry and all other entries equal to zero,

ekB = the dB × 1 vector with 1 in the kBth entry and all other entries equal to zero

and

ekC = the d⊞A × 1 vector with 1 in the kCth entry and all other entries equal to zero.

The First Term of SAi

For each 1 ≤ kA ≤ dA, the kAth entry of the first term of SAi depends on the function

g(u) =
eTkAbN (u)

bD(u)
= eTkAΣ

−1u,

and is
g(U∗

i ) = eTkAΣ
−1U∗

i = eTkAΣ
−1
(
Ui +H−1

AAiGAi

)
+OP (n

−1).

Therefore, the first term of SAi is

Σ−1
(
Ui +H−1

AAiGAi

)
+OP (n

−1)1dA .
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The Second Term of SAi

For each 1 ≤ kA ≤ dA, the kAth entry of the second term of SAi depends on

∇g(u) = Σ−1ekA

and

dbD(u) = d exp(−1

2
uTΣ−1u) = − exp(−1

2
uTΣ−1u)uTΣ−1du,

∇bD(u) = −bD(u)Σ−1u.

It also depends on ∇2hN (u) which can be evaluated as follows

dhN (u) = − 1

nϕ

n∑
j=1

d
{
Yiju

TXAij − b′
(
(βA + u)TXAij + (βB)

TXBij

)}
= − 1

nϕ

n∑
j=1

d
{
Yiju

TXAij − b′
(
(βA + u)TXAij + (βB)

TXBij

)}T
= − 1

nϕ

n∑
j=1

{
Yijd(u)

TXAij − b′
(
(βA + u)TXAij + (βB)

TXBij

)
d(u)TXAij

}T
= − 1

nϕ

n∑
j=1

d
{
Yij − b′

(
(βA + u)TXAij + (βB)

TXBij

)}
XT

Aijdu,

d2hN (u) =
1

nϕ

n∑
j=1

(du)TXAij

{
b′′
(
(βA + u)TXAij + (βB)

TXBij

)}
XT

Aijdu,

∇2hN (u) =
1

nϕ

n∑
j=1

{
b′′
(
(βA + u)TXAij + (βB)

TXBij

)}
XAijX

T
Aij .

By using a stochastic Taylor series approximation, one can show that

{∇2hN (U
∗
i )}−1 = nϕH−1

AAi +OP (n
−1/2)1⊗2

dA
.

Hence, for each 1 ≤ kA ≤ dA, the kAth entry of the second term of SAi is

∇g(U∗
i )
T {∇2hN (U

∗
i )}−1∇bD(U∗

i )

nbD(U∗
i )

=
−eTkAΣ

−1
{
nϕH−1

AAi +OP (n
−1/2)1⊗2

dA

}
bD(U

∗
i )Σ

−1U∗
i

nbD(U∗
i )

= − 1

n
eTkAΣ

−1
{
nϕH−1

AAi +OP (n
−1/2)1⊗2

dA

}
Σ−1

{
Ui +H−1

AAiGAi +OP (n
−11dA)

}
= −ϕeTkAΣ

−1H−1
AAiΣ

−1Ui +OP (n
−3/2).

Then the leading term behaviour of the second term of SBi is as follows

−ϕΣ−1H−1
AAiΣ

−1Ui +OP (n
−3/2)1dA = OP (n

−1)1dA .



4.5. APPENDIX 109

The Third Term of SAi

For each 1 ≤ kA ≤ dA, the kAth entry of the third term of SAi depends on

∇2g(u) = ∇2(eTkAΣ
−1u) = O,

the dA × dA matrix of zeroes. Since this matrix appears in a trace expression, the third
term of SAi is 0dA .

The Fourth Term of SAi

The contribution from the fourth term of SAi is OP (1)1dA but does not have a concise
matrix algebraic expression. It is of lower order compared to the leading term of SAi.

Overall Leading Term Expression for SAi

Putting the terms of SAi together, we can assert that

SAi = Σ−1
(
Ui +H−1

AAiGAi

)
+OP (n

−1)1dA .

4.5.2.5 Computing an Asymptotic Approximation for the Second Entry in
(4.7)

The ith contribution to the score of βB is

SBi = ∇βB
log pYi|Xi

(Yi|Xi)

=

∫
RdA bN (u) exp{−nhN (u)} du∫
RdA bD(u) exp{−nhN (u)} du

where

bN (u) ≡ exp
(
−1

2u
TΣ−1u

) 1
ϕ

n∑
j=1

[{
Yij − b′

(
(βA + u)TXAij + (βB)

TXBij

)}
XBij

]
bD(u) ≡ exp

(
−1

2u
TΣ−1u

)
and

hN (u) ≡ − 1

ϕn

n∑
j=1

{
Yiju

TXAij − b
(
(βA + u)TXAij + (βB)

TXBij

)}
.

The First Term of SBi

For each 1 ≤ kB ≤ dB, the kBth entry of the first term of SBi depends on the function

g(u) =
eTkBbN (u)

bD(u)
=

1

ϕ

n∑
j=1

eTkB
[{
Yij − b′

(
(βA + u)TXAij + (βB)

TXBij

)}
XBij

]
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and is

g(U∗
i ) =

1

ϕ

n∑
j=1

eTkB
[{
Yij − b′

(
(βA +U∗

i )
TXAij + (βB)

TXBij

)}
XBij

]
=

1

ϕ

n∑
j=1

eTkB

[{
Yij − b′

(
(βA +Ui +U∗

i −Ui)
T XAij + βTBXBij

)}
XBij

]
=

1

ϕ

n∑
j=1

eTkB

[{
Yij − b′

(
(βA +Ui)

T XAij + βTBXBij

)}
XBij

− b′′
(
(βA +Ui)

T XAij + βTBXBij

)
XBijX

T
Aij(U

∗
i −Ui) +OP (n

−1)1dB

]
=

1

ϕ
eTkB

(
GBi −HT

ABiH−1
AAiGAi

)
+OP (1).

Therefore, the first term of SBi is

1

ϕ

(
GBi −HT

ABiH−1
AAiGAi

)
+OP (1)1dB .

The Second Term of SBi

For each 1 ≤ kB ≤ dB, the kBth entry of the second term of SBi depends on

dg(u) =
1

ϕ

n∑
j=1

eTkBXBij

[
d
{
Yij − b′

(
(βA + u)TXAij + (βB)

TXBij

)}]
= − 1

ϕ

n∑
j=1

eTkBXBijb
′′ ((βA + u)TXAij + (βB)

TXBij

)
XT

Aij(du),

∇g(u) = − 1

ϕ

n∑
j=1

b′′
(
(βA + u)TXAij + (βB)

TXBij

)
XAijX

T
BijekB

and
∇bD(u) = −bD(u)Σ−1u.

It also depends on

∇2hN (u) =
1

nϕ

n∑
j=1

{
b′′
(
(βA + u)TXAij + (βB)

TXBij

)}
XAijX

T
Aij .

By using a stochastic Taylor series approximation, note that

{∇2hN (U
∗
i )}−1 = nϕH−1

AAi +OP (n
−1/2)1⊗2

dA
.
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Hence, for each 1 ≤ kB ≤ dB, the kBth entry of the second term of SBi is

∇g(U∗
i )

T {∇2hN (U∗
i )}−1∇bD(U∗

i )

nbD(U∗
i )

=

1
ϕe

T
kB

n∑
j=1

b′′
(
(βA +U∗

i )
TXAij + (βB)

TXBij

)
XBijX

T
Aij

{
nϕH−1

AAi
+OP (n

−1/2)1⊗2
dA

}
nbD(U∗

i )

× bD(U∗
i )Σ

−1U∗
i

nbD(U∗
i )

=
1

nϕ
eTkB

HT
ABi

{
nϕH−1

AAi
+OP (n

−1/2)1⊗2
dA

}
Σ−1

{
Ui +H−1

AAi
GAi +OP (n

−11dA)
}

= eTkB
HT

ABiH
−1
AAi

Σ−1Ui +OP (n
−1/2).

Then the leading term behaviour of the second term of SBi is as follows

HT
ABiH−1

AAiΣ
−1Ui +OP (n

−1/2)1dB = OP (1)1dB .

The Third Term of SBi

The contribution from the third term of SBi is OP (1)1dB but does not have a concise
matrix algebraic expression. It is of lower order compared to the leading term of SBi.

The Fourth Term of SBi

Similarly, the contribution from the fourth term of SBi is also OP (1)1dB and does not
have a concise matrix algebraic expression. It is of lower order compared to the leading
term of SBi.

Overall Leading Term Expression for SBi

Combining all four asymptotic approximations of the terms of SBi together, we have
that

SBi =
1

ϕ

(
GBi −HT

ABiH−1
AAiGAi

)
+OP (1)1dB .
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4.5.2.6 Computing an Asymptotic Approximation for the Third Entry in
(4.7)

First note that,

d log |Σ| = d|Σ|
|Σ|

=
|Σ|tr

(
Σ−1dΣ

)
|Σ

= vec
(
Σ−1

)T
vec (dΣ)

= vec
(
Σ−1

)T
dvec (Σ)

= vec
(
Σ−1

)T
dDdAvech (Σ)

= vec
(
Σ−1

)T
DdAdvech (Σ) .

Next note that,

duTΣ−1u = −uTΣ−1 (dΣ)Σ−1u

= −tr
{
Σ−1uuTΣ−1(dΣ)

}
= −vec

(
Σ−1uuTΣ−1

)T
vec (dΣ)

= −
{(

Σ−1 ⊗Σ−1
)
vec
(
uuT

)}T
DdAdvech(Σ).

With further calculations, the ith contribution to the score of vech(Σ) can be computed
as

SCi = ∇vech(Σ) log pYi|Xi
(Yi|Xi)

= −1

2
DT
dA
vec(Σ−1) +

1

2

∫
RdA bN (u) exp{−nhN (u)} du∫
RdA bD(u) exp{−nhN (u)} du

where

bN (u) ≡ exp
(
− 1

2u
TΣ−1u

)
DT
dA
(Σ−1 ⊗Σ−1) vec(uuT ),

bD(u) ≡ exp
(
− 1

2u
TΣ−1u

)
and

hN (u) ≡ − 1

nϕ

n∑
j=1

{
Yiju

TXAij − b
(
(βA + u)TXAij + (βB)

TXBij

)}
.

The First Term of the Integral Ratio Component of SCi

For each 1 ≤ kC ≤ d⊞A , the kCth entry of the first term of the integral ratio component
of SCi depends on the function

g(u) =
eTkCbN (u)

bD(u)
= eTkCD

T
dA
(Σ−1 ⊗Σ−1)vec(uuT )
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and is

g(U∗
i ) = eTkCD

T
dA
(Σ−1 ⊗Σ−1)vec

{
U∗
i (U

∗
i )
T
}

= eTkCD
T
dA
(Σ−1 ⊗Σ−1)vec

[ {
Ui +H−1

AAiGAi +OP (n
−11dA)

}
×
{
Ui +H−1

AAiGAi +OP (n
−11dA)

}T ]
= eTkCD

T
dA
(Σ−1 ⊗Σ−1)vec

(
UiU

T
i +UiGTAiH−1

AAi +H−1
AAiGAiU

T
i

)
+OP (n

−1).

Therefore, the first term of the integral ratio component of SCi is

DT
dA
(Σ−1 ⊗Σ−1)vec

(
UiU

T
i +UiGTAiH−1

AAi +H−1
AAiGAiU

T
i

)
+OP (n

−1)1d⊞A

= DT
dA
vec
{
Σ−1

(
UiU

T
i +UiGTAiH−1

AAi +H−1
AAiGAiU

T
i

)
Σ−1

}
+OP (n

−1)1d⊞A
.

The Second Term of the Integral Ratio Component of SCi

For each 1 ≤ kC ≤ d⊞A , the kCth entry of the second term of the integral ratio component
of SCi depends on the following function. By making use of the first property in Theorem
12 of Magnus and Neudecker (1999), we have

dg(u) = eTkC
DT

dA
(Σ−1 ⊗Σ−1)dvec

(
uuT

)
= eTkC

DT
dA

(Σ−1 ⊗Σ−1)vec
{
(du)uT + u(du)T

}
= eTkC

DT
dA

(Σ−1 ⊗Σ−1)vec
{
IdA(du)u

T
}
+ eTkC

DT
dA

(Σ−1 ⊗Σ−1)vec
{
u(du)T IdA

}
= eTkC

DT
dA

(Σ−1 ⊗Σ−1)
(
u⊗ IdA

)
vec(du)

+ eTkC
DT

dA
(Σ−1 ⊗Σ−1)

(
IdA ⊗ u

)
vec
{
(du)T

}
= eTkC

DT
dA

(Σ−1 ⊗Σ−1)
{(

u⊗ IdA
)
+
(
IdA ⊗ u

)}
du

= eTkC
DT

dA

{
(Σ−1u⊗Σ−1) + (Σ−1 ⊗Σ−1u)

}
du

= eTkC

{
DT

dA
(Σ−1u⊗Σ−1) +

(
KdADdA

)T
(Σ−1 ⊗Σ−1u)

}
du

= eTkC

{
DT

dA
(Σ−1u⊗Σ−1) +DT

dA
KT

dA
(Σ−1 ⊗Σ−1u)

}
du

= eTkC

{
DT

dA
(Σ−1u⊗Σ−1) +DT

dA
KdA(Σ

−1 ⊗Σ−1u)
}
du

= eTkC

{
DT

dA
(Σ−1u⊗Σ−1) +DT

dA
(Σ−1u⊗Σ−1)

}
du

= 2eTkC

{
DT

dA
(Σ−1u⊗Σ−1)

}
du,

∇g(u) = 2(Σ−1u⊗Σ−1)TDdAekC

and
∇bD(u) = −bD(u)Σ−1u.

It also depends on

∇2hN (u) =
1

nϕ

n∑
j=1

{
b′′
(
(βA + u)TXAij + (βB)

TXBij

)}
XAijX

T
Aij .
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By using a stochastic Taylor series approximation, note that

{∇2hN (U
∗
i )}−1 = nϕH−1

AAi +OP (n
−1/2)1⊗2

dA
.

Hence, for each 1 ≤ kC ≤ d⊞A , the kCth entry of the second term of the integral
component of SCi is

∇g(U∗
i )

T {∇2hN (U∗
i )}−1∇bD(U∗

i )

nbD(U∗
i )

=
−2eTkC

DT
dA

(Σ−1U∗
i ⊗Σ−1)

{
nϕH−1

AAi
+OP (n

−1/2)1⊗2
dA

}
bD(U∗

i )Σ
−1U∗

i

nbD(U∗
i )

= −2ϕeTkC
DT

dA

[
Σ−1

{
Ui +H−1

AAi
GAi +OP (n

−11dA)
}
⊗Σ−1

] {
H−1

AAi
+OP (n

−3/2)1⊗2
dA

}
Σ−1

×
{
Ui +H−1

AAi
GAi +OP (n

−11dA)
}

= −2ϕeTkC
DT

dA

(
Σ−1Ui ⊗Σ−1

)
H−1

AAi
Σ−1Ui +OP (n

−3/2)

= −2ϕeTkC
DT

dA

(
Σ−1Ui ⊗Σ−1

)
vec
(
H−1

AAi
Σ−1Ui

)
+OP (n

−3/2)

= −2ϕeTkC
DT

dA
vec
(
Σ−1H−1

AAi
Σ−1UiU

T
i Σ−1

)
+OP (n

−3/2).

Then the leading term behaviour of the second term of the integral component of
SCi is as follows

−2ϕDT
dA
vec
(
Σ−1H−1

AAiΣ
−1UiU

T
i Σ

−1
)
+OP (n

−3/2)1d⊞A
= OP (n

−1)1d⊞A
.

The Third Term of the Integral Ratio Component of SCi

The leading term behaviour of the third term of the integral component of SCi is

ϕDT
dA
vec
(
Σ−1H−1

AAiΣ
−1
)
+OP (n

−3/2)1d⊞A
= OP (n

−1)1d⊞A
.

The Fourth Term of the Integral Ratio Component of SCi

The contribution from the fourth term of SBi is also OP (n
−1)1d⊞A

but does not have a

concise matrix algebraic expression. It is of lower order compared to the leading term
of the integral ratio component of SCi.

Overall Leading Term Expression for SCi

Combining all four asymptotic approximations of the terms of the integral ratio compo-
nent of SCi together, we have that

SCi =
1

2
DT
dA

[
vec
{
Σ−1

(
UiU

T
i +UiGTAiH−1

AAi +H−1
AAiGAiU

T
i

)
Σ−1

}
− vec

(
Σ−1

)]
+OP (n

−1)1d⊞A
.
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4.5.2.7 The Quadratic Conditional Expectations of the Scores

In this subsubsection we find the conditional expectations required to compute the
Fisher information matrix of (βA,βB, vech(Σ)).

The Expectation of SAiS
T
Ai Given Xi

From the previous sections, we have the following approximation

SAi = Σ−1
(
Ui +H−1

AAiGAi

)
+OP (n

−1)1dA .

Therefore,

E
(
SAiS

T
Ai|Xi

)
= E

[{
Σ−1

(
Ui +H−1

AAi
GAi

)
+OP (n

−1)1dA

}{
Σ−1

(
Ui +H−1

AAi
GAi

)
+OP (n

−1)1dA

}T |Xi

]
= Σ−1E

(
UiU

T
i

)
Σ−1 + E

(
Σ−1UiGT

AiH
−1
AAi

Σ−1|Xi

)
+ E

(
Σ−1H−1

AAi
GAiU

T
i Σ−1|Xi

)
+ E

(
Σ−1H−1

AAi
GAiGT

AiH
−1
AAi

Σ−1|Xi

)
+OP (n

−1)1⊗2
dA

= Σ−1ΣΣ−1 + E
{
Σ−1UiE

(
GT
Ai|Xi,Ui

)
H−1

AAi
Σ−1|Xi

}
+ E

{
Σ−1H−1

AAi
E (GAi|Xi,Ui)U

T
i Σ−1|Xi

}
+ E

{
Σ−1H−1

AAi
E
(
GAiGT

Ai|XI ,Ui

)
H−1

AAi
Σ−1|Xi

}
+OP (n

−1)1⊗2
dA

= Σ−1 + ϕE
{
Σ−1H−1

AAi
Σ−1|Xi

}
+OP (n

−1)1⊗2
dA

= Σ−1 +OP (n
−1)1⊗2

dA
.

The Expectation of SBiS
T
Bi Given Xi

From the previous sections, we have the following approximation

SBi =
1

ϕ

(
GBi −HT

ABiH−1
AAiGAi

)
+OP (1)1dB .

Therefore,

E
(
SBiS

T
Bi|Xi

)
= E

[{
1

ϕ

(
GBi −HT

ABiH
−1
AAi

GAi

)
+OP (1)1dB

}{
1

ϕ

(
GBi −HT

ABiH
−1
AAi

GAi

)
+OP (1)1dB

}T

|Xi

]

=
1

ϕ2

{
E
(
GBiGT

Bi|Xi

)
− E

(
GBiGT

AiH
−1
AAi

HABi|Xi

)
− E(HT

ABiH
−1
AAi

GAiGT
Bi|Xi)

+ E
(
HT

ABiH
−1
AAi

GAiGT
AiH

−1
AAi

HABi|Xi

)}
+OP (1)1

⊗2
dB

=
1

ϕ2

[
E
{
E
(
GBiGT

Bi|Xi,Ui

)
|Xi

}
− E

{
E
(
GBiGT

Ai|Xi,Ui

)
H−1

AAi
HABi|Xi

}
− E

{
HT

ABiH
−1
AAi

E(GAiGT
Bi|Xi,Ui)|Xi

}
+ E

{
HT

ABiH
−1
AAi

E
(
GAiGT

Ai|Xi,Ui

)
H−1

AAi
HABi|Xi

} ]
+OP (1)1

⊗2
dB
.
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Simplifying the previous expression, we have,

1

ϕ2

{
ϕE (HBBi|Xi)− ϕE

(
HT

ABiH−1
AAiHABi|Xi

)
− ϕE

(
HT

ABiH−1
AAiHABi|Xi

)
+ ϕE

(
HT

ABiH−1
AAiHABi|Xi

)}
+OP (1)1

⊗2
dB

=
1

ϕ
E
(
HBBi −HT

ABiH−1
AAiHABi|Xi

)
+OP (1)1

⊗2
dB
.

The Expectation of SCiS
T
Ci Given Xi

From the previous sections, we have the following approximation

SCi =
1

2
DT
dA

[
vec
{
Σ−1

(
UiU

T
i +UiGTAiH−1

AAi +H−1
AAiGAiU

T
i

)
Σ−1

}
− vec

(
Σ−1

)]
+OP (n

−1)1d⊞A

=
1

2
DT
dA

{
vec
(
Σ−1UiU

T
i Σ

−1
)
− vec

(
Σ−1

)}
+

1

2
DT
dA

[
vec
{
Σ−1

(
UiGTAiH−1

AAi +H−1
AAiGAiU

T
i

)
Σ−1

}]
+OP (n

−1)1d⊞A

=
1

2
DT
dA

{(
Σ−1 ⊗Σ−1

)
vec
(
UiU

T
i

)
− vec

(
Σ−1

)}
+

1

2
DT
dA

{(
Σ−1 ⊗Σ−1

)
vec
(
UiGTAiH−1

AAi +H−1
AAiGAiU

T
i

)}
+OP (n

−1)1d⊞A
.

We will deal with each term arising in E
(
SCiS

T
Ci|Xi

)
separately. The first term in

E
(
SCiS

T
Ci|Xi

)
is

1

4
DT

dA
E
[
{(Σ−1 ⊗Σ−1)vec(UiU

T
i )− vec(Σ−1)}{(Σ−1 ⊗Σ−1)vec(UiU

T
i )− vec(Σ−1)}T

]
DdA .

Next note that

E
[
{(Σ−1 ⊗Σ−1)vec(UiU

T
i )− vec(Σ−1)}{(Σ−1 ⊗Σ−1)vec(UiU

T
i )− vec(Σ−1)}T

]
= E

{
(Σ−1 ⊗Σ−1)vec(UiU

T
i )vec(UiU

T
i )T (Σ−1 ⊗Σ−1)

}
− E

{
(Σ−1 ⊗Σ−1)vec(UiU

T
i )vec(Σ−1)T

}
− E

{
vec(Σ−1)vec(UiU

T
i )T (Σ−1 ⊗Σ−1)

}
+ vec(Σ−1)vec(Σ−1)T .

(4.9)

Then note that
E{vec(UiU

T
i )} = vec

(
E(UiU

T
i )
)
= vec(Σ).

With this we can simplify the following

− E
{
(Σ−1 ⊗Σ−1)vec(UiU

T
i )vec(Σ

−1)T
}

= −(Σ−1 ⊗Σ−1)vec(Σ)vec(Σ−1)T

= −vec(Σ−1ΣΣ−1)vec(Σ−1)T

= −vec(Σ−1)vec(Σ−1)T
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and
− E

{
vec(Σ−1)vec(UiU

T
i )

T (Σ−1 ⊗Σ−1)
}

= −vec(Σ−1)vec(Σ)T (Σ−1 ⊗Σ−1)

= −vec
(
Σ−1

)
vec(Σ−1ΣΣ−1)T

= −vec(Σ−1)vec(Σ−1)T .

These calculations lead to the right-hand side of (4.9) to simplify as

(Σ−1 ⊗Σ−1)E
{
vec(UiU

T
i )vec(UiU

T
i )

T
}
(Σ−1 ⊗Σ−1)− vec(Σ−1)vec(Σ−1)T . (4.10)

Next, we appeal to Theorem 4.3 (iv) Magnus and Neudecker (1979) to get

E
{
vec(UiU

T
i )vec(UiU

T
i )

T
}
= E

{
(Ui ⊗Ui)(Ui ⊗Ui)

T
}

= Cov(Ui ⊗Ui) + E(Ui ⊗Ui){E(Ui ⊗Ui)}T

= (Id2A
+KdA)(Σ⊗Σ) + E{vec(UiU

T
i )}E{vec(UiU

T
i )}T

= (Id2A
+KdA)(Σ⊗Σ) + vec(Σ)vec(Σ)T .

(4.11)
Substitution of (4.11) into (4.10) leads to

(Σ−1 ⊗Σ−1)(Id2A
+KdA)(Σ⊗Σ)(Σ−1 ⊗Σ−1)

+ (Σ−1 ⊗Σ−1)vec(Σ)
{
(Σ−1 ⊗Σ−1)vec(Σ)

}T − vec(Σ−1)vec(Σ−1)T

= (Σ−1 ⊗Σ−1)(Id2A
+KdA)(Id ⊗ Id) + vec(Σ−1)vec(Σ−1)T − vec(Σ−1)vec(Σ−1)T

= (Σ−1 ⊗Σ−1)(Id2A
+KdA)(Id ⊗ Id)

= (Σ−1 ⊗Σ−1) + (Σ−1 ⊗Σ−1)KdA(Id ⊗ Id)

= (Σ−1 ⊗Σ−1) + (Σ−1 ⊗Σ−1)(Id ⊗ Id)KdA

= (Σ−1 ⊗Σ−1) + (Σ−1 ⊗Σ−1)KdA

= (Σ−1 ⊗Σ−1) +KdA(Σ
−1 ⊗Σ−1)

= (Id2A
+KdA)(Σ

−1 ⊗Σ−1).

Therefore, we have the first term of E(SCiS
T
Ci|Xi) being equal to

1

4
DT
dA
(Id2A

+KdA)(Σ
−1 ⊗Σ−1)DdA

=
1

4
DT
dA
(Σ−1 ⊗Σ−1)DdA + 1

4(KdADdA)
T (Σ−1 ⊗Σ−1)DdA

=
1

2
DT
dA
(Σ−1 ⊗Σ−1)DdA .

We can then show that the second term of E(SCiS
T
Ci|Xi) is

1

4
DT

dA
E
[
{(Σ−1 ⊗Σ−1)vec(UiU

T
i )− vec(Σ−1)}

× {(Σ−1 ⊗Σ−1)vec(UiGT
AiH

−1
AAi

+H−1
AAi

GAiU
T
i )}T

∣∣Xi]DdA

=
1

4
DT

dA
E

(
{(Σ−1 ⊗Σ−1)vec(UiU

T
i )− vec(Σ−1)}

×
[
(Σ−1 ⊗Σ−1)vec

{
UiE

(
GT
Ai|Xi,Ui

)
H−1

AAi
+H−1

AAi
E (GAi|Xi,Ui)U

T
i

}]T ∣∣Xi

)
DdA

= O.
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Similarly, we can then show that the third term of E(SCiS
T
Ci|Xi) is

1

4
DT
dA
E
[
{(Σ−1 ⊗Σ−1)vec(UiGTAiH−1

AAi +H−1
AAiGAiU

T
i )}

× {(Σ−1 ⊗Σ−1)vec(UiU
T
i )− vec(Σ−1)}T

∣∣Xi]DdA

=
1

4
DT
dA
E

([
(Σ−1 ⊗Σ−1)vec

{
UiE

(
GTAi|Xi,Ui

)
H−1

AAi +H−1
AAiE (GAi|Xi,Ui)U

T
i

}]
× {(Σ−1 ⊗Σ−1)vec(UiU

T
i )− vec(Σ−1)}T

∣∣Xi

)
DdA

= O.

Lastly, the fourth term of E(SCiS
T
Ci|Xi) can be shown to simplify as follows

1

4
DT
dA
E
[
{(Σ−1 ⊗Σ−1)vec(UiGTAiH−1

AAi +H−1
AAiGAiU

T
i )}

× {(Σ−1 ⊗Σ−1)vec(UiGTAiH−1
AAi +H−1

AAiGAiU
T
i )}T

∣∣Xi

]
DdA

=
1

4
DT
dA
E
[
(Σ−1 ⊗Σ−1){vec(UiGTAiH−1

AAi) + vec(H−1
AAiGAiU

T
i )}

× {vec(UiGTAiH−1
AAi) + vec(H−1

AAiGAiU
T
i )}T (Σ−1 ⊗Σ−1)

∣∣Xi

]
DdA

=
1

4
DT
dA
E
[
(Σ−1 ⊗Σ−1){(H−1

AAi ⊗Ui)vec(GTAi) + (Ui ⊗H−1
AAi)vec(GAi)}

× {(H−1
AAi ⊗Ui)vec(GTAi) + (Ui ⊗H−1

AAi)vec(GAi)}T (Σ−1 ⊗Σ−1)
∣∣Xi

]
DdA

=
1

4
DT
dA
E
[
(Σ−1 ⊗Σ−1){(H−1

AAi ⊗Ui) + (Ui ⊗H−1
AAi)}GAiGTAi

× {(H−1
AAi ⊗Ui) + (Ui ⊗H−1

AAi)}
T (Σ−1 ⊗Σ−1)

∣∣Xi

]
DdA

=
1

4
DT
dA
E
[
(Σ−1 ⊗Σ−1){(H−1

AAi ⊗Ui) + (Ui ⊗H−1
AAi)}E(GAiGTAi|Xi,Ui)

× {(H−1
AAi ⊗Ui) + (Ui ⊗H−1

AAi)}
T (Σ−1 ⊗Σ−1)

∣∣Xi

]
DdA

=
ϕ

4
DT
dA
E
[
(Σ−1 ⊗Σ−1){(H−1

AAi ⊗Ui) + (Ui ⊗H−1
AAi)}HAAi

× {(H−1
AAi ⊗Ui) + (Ui ⊗H−1

AAi)}
T (Σ−1 ⊗Σ−1)

∣∣Xi

]
DdA

= OP (n
−1)1d⊞A

1T
d⊞A
.

Putting together all the terms of E(SCiS
T
Ci|Xi), we have that

E(SCiS
T
Ci|Xi) =

1

2
DT
dA
(Σ−1 ⊗Σ−1)DdA +OP (n

−1)1d⊞A
1T
d⊞A
.

The Expectation of SAiS
T
Bi Given Xi

From the previous sections, we have the following approximations

SAi = Σ−1
(
Ui +H−1

AAiGAi

)
+OP (n

−1)1dA ,

SBi =
1

ϕ

(
GBi −HT

ABiH−1
AAiGAi

)
+OP (1)1dB .
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Therefore, by using the law of total expectation,

E
(
SAiS

T
Bi

)
= E

[{
Σ−1

(
Ui +H−1

AAi
GAi

)
+OP (n

−1)1dA

}{ 1

ϕ

(
GBi −HT

ABiH
−1
AAi

GAi

)
+OP (1)1dB

}T

|Xi

]

=
1

ϕ

{
E(Σ−1UiGT

Bi|Xi) + E(Σ−1H−1
AAi

GAiGT
Bi|Xi)− E

(
Σ−1UiGT

AiH
−1
AAi

HABi|Xi

)
− E

(
Σ−1H−1

AAi
GAiGT

AiH
−1
AAi

HABi|Xi

)}
+OP (1)1dA1

T
dB

=
1

ϕ

{
E
(
Σ−1H−1

AAi
HABi|Xi

)
− E

(
Σ−1H−1

AAi
HABi|Xi

)}
+OP (1)1dA1

T
dB

= OP (1)1dA1
T
dB

The Expectation of SAiS
T
Ci Given Xi

From the previous sections, we have the following approximations where

SAi = Σ−1
(
Ui +H−1

AAiGAi

)
+OP (n

−1)1dA

and

SCi =
1

2
DT
dA

[
vec
{
Σ−1

(
UiU

T
i +UiGTAiH−1

AAi +H−1
AAiGAiU

T
i

)
Σ−1

}
− vec

(
Σ−1

)]
+OP (n

−1)1d⊞A

=
1

2
DT
dA

{
vec
(
Σ−1UiU

T
i Σ

−1
)
− vec

(
Σ−1

)}
+

1

2
DT
dA

[
vec
{
Σ−1

(
UiGTAiH−1

AAi +H−1
AAiGAiU

T
i

)
Σ−1

}]
+OP (n

−1)1d⊞A

=
1

2
DT
dA

{(
Σ−1 ⊗Σ−1

)
vec
(
UiU

T
i

)
− vec

(
Σ−1

)}
+

1

2
DT
dA

{(
Σ−1 ⊗Σ−1

)
vec
(
UiGTAiH−1

AAi +H−1
AAiGAiU

T
i

)}
+OP (n

−1)1d⊞A
.

We will deal with each term arising in E
(
SAiS

T
Ci|Xi

)
separately. The first term in

E
(
SAiS

T
Ci|Xi

)
can be simplified as follows

1

2
E
[
Σ−1Ui

{
(Σ−1 ⊗Σ−1)vec(UiU

T
i )− vec(Σ−1)

}T
DdA |Xi

]
=

1

2
E
{
Σ−1Uivec(UiU

T
i )

T (Σ−1 ⊗Σ−1)DdA −Σ−1Uivec(Σ
−1)TDdA |Xi

}
= O.

The second term in E
(
SAiS

T
Ci|Xi

)
can be shown to be

1

2
E
[
Σ−1H−1

AAiGAi

{
(Σ−1 ⊗Σ−1)vec(UiU

T
i )− vec(Σ−1)

}T
DdA |Xi

]
=

1

2
E
[
Σ−1H−1

AAiE (GAi|Xi,Ui)
{
(Σ−1 ⊗Σ−1)vec(UiU

T
i )− vec(Σ−1)

}T
DdA |Xi

]
= O.
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Similarly, the third term in E
(
SAiS

T
Ci|Xi

)
can be shown to be

1

2
E
[
Σ−1Ui

{
vec(UiGTAiH−1

AAi +H−1
AAiGAiU

T
i )
}T

(Σ−1 ⊗Σ−1)DdA |Xi

]
=

1

2
E

(
Σ−1Ui

[
vec
{
UiE(GTAi|Xi,Ui)H−1

AAi +H−1
AAiE(GAi|Xi,Ui)U

T
i

}]T
× (Σ−1 ⊗Σ−1)DdA |Xi

)
= O.

Lastly, the fourth term in E
(
SAiS

T
Ci|Xi

)
simplifies as follows

1

2
E
[
Σ−1H−1

AAi
GAi

{
vec(UiGT

AiH
−1
AAi

+H−1
AAi

GAiU
T
i )
}T

(Σ−1 ⊗Σ−1)DdA |Xi

]
=

1

2
E
[
Σ−1H−1

AAi
GAi

{
vec(UiGT

AiH
−1
AAi

) + vec(H−1
AAi

GAiU
T
i )
}T

(Σ−1 ⊗Σ−1)DdA |Xi

]
=

1

2
E
[
Σ−1H−1

AAi
GAi

{
(H−1

AAi
⊗Ui)vec(GT

Ai) + (Ui ⊗H−1
AAi

)vec(GAi)
}T

(Σ−1 ⊗Σ−1)DdA |Xi

]
=

1

2
E
[
Σ−1H−1

AAi
GAiGT

Ai

{
(H−1

AAi
⊗Ui) + (Ui ⊗H−1

AAi
)
}T

(Σ−1 ⊗Σ−1)DdA |Xi

]
=

1

2
E
[
Σ−1H−1

AAi
E(GAiGT

Ai|Xi,Ui)
{
(H−1

AAi
⊗Ui) + (Ui ⊗H−1

AAi
)
}T

(Σ−1 ⊗Σ−1)DdA |Xi

]
=
ϕ

2
E
[
Σ−1H−1

AAi
HAAi

{
(H−1

AAi
⊗Ui) + (Ui ⊗H−1

AAi
)
}T

(Σ−1 ⊗Σ−1)DdA |Xi

]
=
ϕ

2
E
[
Σ−1

{
(H−1

AAi
⊗Ui) + (Ui ⊗H−1

AAi
)
}T

(Σ−1 ⊗Σ−1)DdA |Xi

]
= OP (n

−1)1dA1
T
d⊞
A
.

Putting together all the terms of E(SAiS
T
Ci|Xi), we have that

E(SAiS
T
Ci|Xi) = OP (n

−1)1dA1
T
d⊞A
.

The Expectation of SBiS
T
Ci Given Xi

From the previous sections, we have the following approximations

SBi =
1

ϕ

(
GBi −HT

ABiH−1
AAiGAi

)
+OP (1)1dB

and

SCi =
1

2
DT
dA

[
vec
{
Σ−1

(
UiU

T
i +UiGTAiH−1

AAi +H−1
AAiGAiU

T
i

)
Σ−1

}
− vec

(
Σ−1

)]
+OP (n

−1)1d⊞A

=
1

2
DT
dA

{
vec
(
Σ−1UiU

T
i Σ

−1
)
− vec

(
Σ−1

)}
+

1

2
DT
dA

[
vec
{
Σ−1

(
UiGTAiH−1

AAi +H−1
AAiGAiU

T
i

)
Σ−1

}]
+OP (n

−1)1d⊞A

=
1

2
DT
dA

{(
Σ−1 ⊗Σ−1

)
vec
(
UiU

T
i

)
− vec

(
Σ−1

)}
+

1

2
DT
dA

{(
Σ−1 ⊗Σ−1

)
vec
(
UiGTAiH−1

AAi +H−1
AAiGAiU

T
i

)}
+OP (n

−1)1d⊞A
.
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We will deal with each term arising in E
(
SBiS

T
Ci|Xi

)
separately. The first term in

E
(
SBiS

T
Ci|Xi

)
can be simplified as follows

1

2ϕ
E
[
GBi

{
(Σ−1 ⊗Σ−1)vec(UiU

T
i )− vec(Σ−1)

}T
DdA |Xi

]
=

1

2ϕ
E
[
E(GBi|Xi,Ui)

{
(Σ−1 ⊗Σ−1)vec(UiU

T
i )− vec(Σ−1)

}T
DdA |Xi

]
= O.

. The second term in E
(
SBiS

T
Ci|Xi

)
can be shown to be

− 1

2ϕ
E
[
HT

ABiH−1
AAiGAi

{
(Σ−1 ⊗Σ−1)vec(UiU

T
i )− vec(Σ−1)

}T
DdA |Xi

]
= − 1

2ϕ
E
[
HT

ABiH−1
AAiE (GAi|Xi,Ui)

{
(Σ−1 ⊗Σ−1)vec(UiU

T
i )− vec(Σ−1)

}T
DdA |Xi

]
= O.

The third term in E
(
SBiS

T
Ci|Xi

)
can be shown to be

1

2ϕ
E
[
GBi

{
vec(UiGTAiH−1

AAi +H−1
AAiGAiU

T
i )
}T

(Σ−1 ⊗Σ−1)DdA |Xi

]
=

1

2ϕ
E
[
GBi

{
vec(UiGTAiH−1

AAi) + vec(H−1
AAiGAiU

T
i )
}T

(Σ−1 ⊗Σ−1)DdA |Xi

]
=

1

2ϕ
E
[
GBi

{
(H−1

AAi ⊗Ui)vec(GTAi) + (Ui ⊗H−1
AAi)vec(GAi)

}T
(Σ−1 ⊗Σ−1)DdA |Xi

]
=

1

2ϕ
E
[
GBiGTAi

{
(H−1

AAi ⊗Ui) + (Ui ⊗H−1
AAi)

}T
(Σ−1 ⊗Σ−1)DdA |Xi

]
=

1

2ϕ
E
[
E(GBiGTAi|Xi,Ui)

{
(H−1

AAi ⊗Ui) + (Ui ⊗H−1
AAi)

}T
(Σ−1 ⊗Σ−1)DdA |Xi

]
=

1

2ϕ2
E
[
HT

ABi

{
(H−1

AAi ⊗Ui) + (Ui ⊗H−1
AAi)

}T
(Σ−1 ⊗Σ−1)DdA |Xi

]
= OP (1)1dB1

T
d⊞A
.

Lastly, the fourth term in E
(
SBiS

T
Ci|Xi

)
simplifies as follows

− 1

2ϕ
E
[
HT

ABiH
−1
AAi

GAi

{
vec(UiGT

AiH
−1
AAi

+H−1
AAi

GAiU
T
i )
}T

(Σ−1 ⊗Σ−1)DdA |Xi

]
= − 1

2ϕ
E
[
HT

ABiH
−1
AAi

GAi

{
vec(UiGT

AiH
−1
AAi

) + vec(H−1
AAi

GAiU
T
i )
}T

(Σ−1 ⊗Σ−1)DdA |Xi

]
= − 1

2ϕ
E
[
HT

ABiH
−1
AAi

GAi

{
(H−1

AAi
⊗Ui)vec(GT

Ai) + (Ui ⊗H−1
AAi

)vec(GAi)
}T

(Σ−1 ⊗Σ−1)DdA |Xi

]
= − 1

2ϕ
E
[
HT

ABiH
−1
AAi

GAiGT
Ai

{
(H−1

AAi
⊗Ui) + (Ui ⊗H−1

AAi
)
}T

(Σ−1 ⊗Σ−1)DdA |Xi

]
= − 1

2ϕ
E
[
HT

ABiH
−1
AAi

E(GAiGT
Ai|Xi,Ui)

{
(H−1

AAi
⊗Ui) + (Ui ⊗H−1

AAi
)
}T

(Σ−1 ⊗Σ−1)DdA |Xi

]
= − 1

2ϕ2
E
[
HT

ABiH
−1
AAi

HAAi

{
(H−1

AAi
⊗Ui) + (Ui ⊗H−1

AAi
)
}T

(Σ−1 ⊗Σ−1)DdA |Xi

]
=

1

2ϕ2
E
[
HT

ABi

{
(H−1

AAi
⊗Ui) + (Ui ⊗H−1

AAi
)
}T

(Σ−1 ⊗Σ−1)DdA |Xi

]
= OP (1)1dB1

T
d⊞
A
.
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Putting together all the terms of E(SBiS
T
Ci|Xi), we have that

E(SAiS
T
Ci|Xi) = OP (1)1dB1

T
d⊞A
.

4.5.2.8 Treating the Leading Term of the (2,2)-Entry of the Fisher Infor-
mation Matrix

Note that the leading term of
∑m

i=1E(SBiS
T
Bi|Xi) is

1

ϕ

m∑
i=1

E
(
HBBi −HT

ABiH−1
AAiHABi|Xi

)
=
mn

ϕ
E

{
1

mn

m∑
i=1

(
HBBi −HT

ABiH−1
AAiHABi|Xi

)}

=
mn

ϕ
E

{
1

mn

m∑
i=1

(HBBi|Xi)−
1

mn

m∑
i=1

(
HT

ABiH−1
AAiHABi|Xi

)}
.

(4.12)

Using Lemma 1 from Chapter 2 with f(Xij ,Ui) = b′′
(
(βA +Ui)

TXAij + (βB)
TXBij

)
,

we have that the first term in (4.12) can be re-expressed as follows

mn

ϕ
E

{
1

mn

m∑
i=1

(HBBi|Xi)

}

=
mn

ϕ
E

 1

mn

m∑
i=1

n∑
j=1

XBijX
T
BijE

{
b′′
(
(βA +Ui)

TXAij + (βB)
TXBij

)
|Xi

}
=
mn

ϕ
E
{
XBX

T
B b

′′((βA +U)TXA + βTBXB

)}
+ oP (mn)1

⊗2
dB
.

(4.13)

Now, using Lemma 2 from Chapter 2 with f(Xij ,Ui) = b′′
(
(βA+Ui)

TXAij+(βB)
TXBij

)
,

we have that the second term in (4.12) can be re-expressed as follows

mn

ϕ
E

{
1

mn

m∑
i=1

(
HT

ABiH−1
AAiHABi|Xi

)}

=
mn

ϕ
E

[
1

mn

m∑
i=1


n∑
j=1

XBijX
T
Aijb

′′((βA +Ui)
TXAij + (βB)

TXBij

)
×


n∑
j=1

XAijX
T
Aijb

′′((βA +Ui)
TXAij + (βB)

TXBij

)
−1

×


n∑
j=1

XBijX
T
Aijb

′′((βA +Ui)
TXAij + (βB)

TXBij

)
T ∣∣∣∣∣Xi

]
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The previous expression simplifies to

mn

ϕ
E

(
E
{
XBX

T
Ab

′′((βA +U)TXA + βT
BXB

)} [
E
{
XAX

T
Ab

′′((βA +U)TXA + βT
BXB

)}]−1

× E
{
XBX

T
Ab

′′((βA +U)TXA + βT
BXB

)}T )
+ oP (mn)1

⊗2
dB
.

(4.14)
Combining (4.13) and (4.5.2.8), we have

1

ϕ

m∑
i=1

E
(
HBBi −HT

ABiH
−1
AAi

HABi|Xi

)
=
mn

ϕ
E

(
E
{
XBX

T
Bb

′′((βA +U)TXA + βT
BXB

)}
− E

{
XBX

T
Ab

′′((βA +U)TXA + βT
BXB

)}
×
[
E
{
XBX

T
Ab

′′((βA +U)TXA + βT
BXB

)}]−1
E
{
XBX

T
Ab

′′((βA +U)TXA + βT
BXB

)}T )
+ oP (mn)1

⊗2
dB
.

Now since

ΩβB
(U) ≡ E

{
b′′
(
(β0

A +U)TXA + (β0
B)
TXB

) [XAX
T
A XAX

T
B

XBX
T
A XBX

T
B

] ∣∣∣U}
and

ΛβB
≡
(
E
[{

lower right dB × dB block of ΩβB
(U)−1

}−1
])−1

,

then we have,

1

ϕ

m∑
i=1

E
(
HBBi −HT

ABiH−1
AAiHABi|Xi

)
=
mnΛ−1

βB

ϕ
+ oP (mn)1

⊗2
dB
.

4.5.2.9 The Fisher Information Matrix

Putting together the expressions for the quadratic conditional expectations of the scores
from the earlier sections, we have

I(βA,βB, vech(Σ))

=


mΣ−1 +OP (mn

−1)1⊗2
dA

OP (m)1dA1
T
dB

OP (mn
−1)1dA1

T
d⊞
A

OP (m)1dB1
T
dA

mnΛ−1
βB

ϕ + oP (mn)1
⊗2
dB

OP (m)1dB1
T
d⊞
A

OP (mn
−1)1d⊞

A
1T
dA

OP (m)1d⊞
A
1T
dB

mDT
dA

(Σ−1⊗Σ−1)DdA
2 +OP (mn

−1)1⊗2

d⊞
A

 .

4.5.2.10 The Inverse of the Fisher Information Matrix

To invert the Fisher information matrix, we choose to work with the (βA, vech(Σ),βB)
ordering instead of (βA,βB, vech(Σ)). A trivial rearrangement of the matrix entries
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leads to

I(βA,βB, vech(Σ))

=


mΣ−1 +OP (mn

−1)1⊗2
dA

OP (mn
−1)1dA1

T
d⊞
A

OP (m)1dA1
T
dB

OP (mn
−1)1d⊞

A
1T
dA

mDT
dA

(Σ−1⊗Σ−1)DdA
2 +OP (mn

−1)1⊗2

d⊞
A

OP (m)1d⊞
A
1T
dB

OP (m)1dB1
T
dA

OP (m)1dB1
T
d⊞
A

mnΛ−1
βB

ϕ + oP (mn)1
⊗2
dB

 .

Now, let us partition I(βA, vech(Σ),βB) as follows

I(βA, vech(Σ),βB) =

[
A11 A12

A21 A22

]
where A21 = AT

12.

The expressions for A11, A12, A21 and A22 are currently as follows

A11 =

mΣ−1 +OP (mn
−1)1⊗2

dA
OP (mn

−1)1dA1
T
d⊞A

OP (mn
−1)1d⊞A

1TdA
mDT

dA
(Σ−1⊗Σ−1)DdA

2 +OP (mn
−1)1⊗2

d⊞A

 ,

A12 = OP (m)

1dA1TdB
1d⊞A

1TdB

 ,
A21 = OP (m)

[
1dB1

T
dA

1dB1
T
d⊞A

]
,

A22 =
mnΛ−1

βB

ϕ
+ oP (mn)1

⊗2
dB
.

Let I(βA, vech(Σ),βB)
−1 assume the following form

I(βA, vech(Σ),βB)
−1 =

[
A11 A12

A21 A22

]−1

=

[
A11 A12

A21 A22

]
where A21 = (A12)T .

Firstly note that

A−1
11 =

Σ
m +OP (m

−1n−1)1⊗2
dA

OP (m
−1n−1)1dA1

T
d⊞A

OP (m
−1n−1)1d⊞A

1TdA
2D+

dA
(Σ⊗Σ)D+

dA

T

m +OP (m
−1n−1)1⊗2

d⊞A

 .
Also note that

A−1
22 =

ϕΛβB

mn
+ oP (m

−1n−1)1⊗2
dB
.

Using the result for carrying out block matrix inversion under Result 1, the quantities
A11,A12,A21 and A22 can be calculated as follows. Firstly we have

A11 = A−1
11 +A−1

11 A12(A22 −A21A
−1
11 A12)

−1A21A
−1
11 .

Note that

(A22 −A21A
−1
11 A12)

−1 = A−1
22 +A−1

22 A21A
−1
11 A12A

−1
22 + . . .
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It follows that

A−1
11 A12(A22 −A21A

−1
11 A12)

−1A21A
−1
11 = OP (m

−1n−1)

 1⊗2
dA

1dA1
T
d⊞A

1d⊞A
1TdA 1⊗2

d⊞A

 .
Therefore, it follows that

A11 =

Σ
m +OP (m

−1n−1)1⊗2
dA

OP (m
−1n−1)1dA1

T
d⊞A

OP (m
−1n−1)1d⊞A

1TdA
2D+

dA
(Σ⊗Σ)D+

dA

T

m +OP (m
−1n−1)1⊗2

d⊞A

 .
Next we have,

A12 = −(A11 −A12A
−1
22 A21)

−1A12A
−1
22 .

Note that

(A11 −A12A
−1
22 A21)

−1 = A−1
11 +A−1

11 A12A
−1
22 A21A

−1
11 + . . .

Therefore we have

A12 = OP (m
−1n−1)

1dA1TdB
1d⊞A

1TdB

 .
Subsequently,

A21 = (A12)T .

Therefore we have
A21 = OP (m

−1n−1)
[
1dB1

T
dA

1dB1
T
d⊞A

]
.

Finally, we obtain

A22 = A−1
22 +A−1

22 A21(A11 −A12A
−1
22 A21)

−1A12A
−1
22 .

Note that

A−1
22 A21(A11 −A12A

−1
22 A21)

−1A12A
−1
22 = OP (m

−1n−2)1⊗2
dB
.

This leads to

A22 =
ϕΛβB

mn
+ oP (m

−1n−1)1⊗2
dB
.

Using the expressions for A11, A12, A21 and A22, we have the following expression for
I(βA, vech(Σ),βB)

−1 where

I(βA, vech(Σ),βB)
−1

=


Σ
m +OP (m

−1n−1)1⊗2
dA

OP (m
−1n−1)1dA1

T
d⊞
A

OP (m
−1n−1)1dA1

T
dB

OP (m
−1n−1)1d⊞

A
1T
dA

2D+
dA

(Σ⊗Σ)D+
dA

T

m +OP (m
−1n−1)1⊗2

d⊞
A

OP (m
−1n−1)1d⊞

A
1T
dB

OP (m
−1n−1)1dB1

T
dA

OP (m
−1n−1)1dB1

T
d⊞
A

ϕΛβB
mn + oP (m

−1n−1)1⊗2
dB

 .
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The expression for the inverse of the Fisher information matrix can be also written as
follows

I(βA, vech(Σ),βB)
−1

= I(βA, vech(Σ),βB)
−1
∞ +

1

mn


OP (1)1

⊗2
dA

OP (1)1dA1
T
d⊞A

OP (1)1dA1
T
dB

OP (1)1d⊞A
1TdA OP (1)1

⊗2
d⊞A

OP (1)1d⊞A
1TdB

OP (1)1dB1
T
dA

OP (1)1dB1
T
d⊞A

oP (1)1
⊗2
dB

 ,
where

I(βA, vech(Σ),βB)
−1
∞ =


Σ
m O O

O
2D+

dA
(Σ⊗Σ)D+

dA

T

m O

O O
ϕΛβB
mn

 .

4.5.2.11 Derivation of the Final Asymptotic Normality Result for General-
ized Response Linear Mixed Models

For a matrix M let

∥M∥F =
√
tr(MTM)

denote the Frobenius norm of M .

For regular likelihood situations, from standard results concerning asymptotic
normality of maximum likelihood estimators we have

{I
(
β0
A, vech(Σ

0),β0
B

)−1}−1/2(θ̂ − θ0)
D→ N(0, I)

where θ̂ =
[
β̂TA vech(Σ̂)T β̂TB

]T
and θ0 = [(β0

A)
T {vech(Σ0)}T (β0

B)
T ]T . On the other

hand, general quasi-likelihood situations require asymptotic normality theory as treated
in, for example, Section 5.3 of the book Asymptotic Statistics (see van der Vaart (1998)).
Therefore, for all (dA + d⊞A + dB)× 1 vectors a ̸= 0 we have

aT {I
(
β0
A, vech(Σ

0),β0
B

)−1}−1/2(θ̂ − θ0)
D→ N(0,aTa).

Note that

aT {I
(
β0
A, vech(Σ

0),β0
B

)−1}−1/2(θ̂ − θ0)

= aT
[
{I
(
β0
A, vech(Σ

0),β0
B

)−1

∞ }−1/2 + {I
(
β0
A, vech(Σ

0),β0
B

)−1}−1/2

− {I
(
β0
A, vech(Σ

0),β0
B

)−1

∞ }−1/2
]
(θ̂ − θ0)

= aT {I
(
β0
A, vech(Σ

0),β0
B

)−1

∞ }−1/2(θ̂ − θ0)

+ aT
[
{I
(
β0
A, vech(Σ

0),β0
B

)−1}−1/2 − {I
(
β0
A, vech(Σ

0),β0
B

)−1

∞ }−1/2
]
(θ̂ − θ0).
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As a consequence

aT {I
(
β0
A, vech(Σ

0),β0
B

)−1

∞ }−1/2(θ̂ − θ0) + rmn(a)
D→ N(0,aTa) (4.15)

with

rmn(a) = aT
[
{I
(
β0
A, vech(Σ

0),β0
B

)−1}−1/2 − {I
(
β0
A, vech(Σ

0),β0
B

)−1

∞ }−1/2
]
(θ̂ − θ0)

= aT
[
I − {I

(
β0
A, vech(Σ

0),β0
B

)−1

∞ }−1/2{I
(
β0
A, vech(Σ

0),β0
B

)−1}1/2
]

× {I
(
β0
A, vech(Σ

0),β0
B

)−1}−1/2(θ̂ − θ0)

=

(
−
[
{I
(
β0
A, vech(Σ

0),β0
B

)−1

∞ }−1/2{I
(
β0
A, vech(Σ

0),β0
B

)−1}1/2 − I
]T

a

)T
Z

where Z ∼ N
(
0, IdA+d⊞A+dB

)
. Next note that using the matrix norm properties

∥ − A∥ = ∥A∥ and ∥AB∥ ≤ ∥A∥∥B∥ for any matrices A and B and the fact that
∥MT ∥F = ∥M∥ for any matrix M , we have∥∥∥− [{I (β0

A, vech(Σ
0),β0

B

)−1

∞ }−1/2{I
(
β0
A, vech(Σ

0),β0
B

)−1}1/2 − I
]T

a
∥∥∥
F

≤
∥∥∥[{I (β0

A, vech(Σ
0),β0

B

)−1

∞ }−1/2{I
(
β0
A, vech(Σ

0),β0
B

)−1}1/2 − I
]T∥∥∥

F
∥a∥F

=
∥∥∥[{I (β0

A, vech(Σ
0),β0

B

)−1

∞ }−1/2{I
(
β0
A, vech(Σ

0),β0
B

)−1}1/2 − I
]∥∥∥

F
∥a∥F .

(4.16)

Our next aim is to establish that∥∥∥[{I (β0
A, vech(Σ

0),β0
B

)−1

∞ }−1/2{I
(
β0
A, vech(Σ

0),β0
B

)−1}1/2 − I
]∥∥∥

F

P→ 0 (4.17)

Recall that

I(βA, vech(Σ),βB)
−1

= I(βA, vech(Σ),βB)
−1
∞ +

1

mn


OP (1)1

⊗2
dA

OP (1)1dA1
T
d⊞A

OP (1)1dA1
T
dB

OP (1)1d⊞A
1TdA OP (1)1

⊗2
d⊞A

OP (1)1d⊞A
1TdB

OP (1)1dB1
T
dA

OP (1)1dB1
T
d⊞A

oP (1)1
⊗2
dB

 ,
where

I(βA, vech(Σ),βB)
−1
∞ =


Σ
m O O

O
2D+

dA
(Σ⊗Σ)D+

dA

T

m O

O O
ϕΛβB
mn

 .
so that{

I
(
β0
A, vech(Σ

0),β0
B

)−1

∞

}−1/2 {
I
(
β0
A, vech(Σ

0),β0
B

)−1
}1/2

= M−1/2
n,∞ M1/2

n

with

Mn,∞ = m
{
I
(
β0
A, vech(Σ

0),β0
B

)−1

∞

}
and Mn = m

{
I
(
β0
A, vech(Σ

0),β0
B

)−1
}
.
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Therefore, Lemma 3 from Chapter 2 applies with

p = dA + d⊞A , K =

[
Σ 0

0 2D+
dA

(Σ⊗Σ)D+T
dA

]
, q = dB and L =

ϕΛβB

n
.

Therefore (4.17) holds. It then follows from (4.16) and (4.17) that[
{I
(
β0
A, vech(Σ

0),β0
B

)−1

∞ }−1/2{I
(
β0
A, vech(Σ

0),β0
B

)−1}1/2 − I
]
a

P→ 0.

Application of Slutsky’s Theorem then gives rmn(a)
P→ 0. From (4.15) and another

application of Slutsky’s Theorem we have

aT {I
(
β0
A, vech(Σ

0),β0
B

)−1

∞ }−1/2(θ̂ − θ0)
D→ N(0,aTa).

It then follows from the Cramér-Wold Device and the Continuous Mapping Theorem
that

√
m


β̂A − β0

A√
n
(
β̂B − β0

B

)
vech(Σ̂)− vech(Σ0)

 D→ N



0

0

0

 ,

Σ0 0 0

0 ϕΛβB
0

0 0 2D+
dA

(
Σ0 ⊗Σ0

)
D+T
dA


 .

4.5.3 The Reciprocal Dispersion Parameter Fisher Information Block
for Gamma Responses

In this appendix, we derive the block of the Fisher information matrix for the parameter
ψ ≡ 1/ϕ where ϕ is the dispersion parameter. We start with the general response
situation and, later, focus on the Gamma case. With notational simplicity in mind we
treat the dA = dB = 1 case with Σ = σ2 and ni = n, 1 ≤ i ≤ m. These restrictions will
not affect the ψ contribution to the Fisher information matrix.

4.5.3.1 The Conditional Density Function

The conditional density function for the ith group is

pYi|Xi
(Yi|Xi) =

1√
2πσ2

∫ ∞

−∞
exp

[
− u2

2σ2
+

n∑
j=1

{
ψ
(
Yij(β0 + β1Xij + u)

− b(β0 + β1Xij + u) + c(Yij)
)
+ d(Yij , ψ)

}]
du

= (2πσ2)−1/2 exp

 n∑
j=1

[
ψ {Yij(β0 + β1Xij) + c(Yij)}+ d(Yij , ψ)

]
×
∫ ∞

−∞
exp

− u2

2σ2
+ ψ

n∑
j=1

{Yiju− b(β0 + β1Xij + u)}

 du.
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In the Gamma response case,

c(y) = log(y) and d(y, ψ) = ψ log(ψ)− log{Γ(ψ)} − log(y).

Therefore

∂d(y, ψ)

∂ψ
= q(ψ) and

∂2d(y, ψ)

∂ψ2
= (1/ψ)− trigamma(ψ),

where
q(x) ≡ 1 + log(x)− digamma(x).

Note that the model is such that

Yij |Xi, Ui
ind.∼ Gamma

(
ψ,ψ/b′(β0 + β1Xij + Ui)

)
. (4.18)

Since b′(x) = −1/x the statement (4.18) is equivalent to

Yij |Xi, Ui
ind.∼ Gamma

(
ψ,−ψ(β0 + β1Xij + Ui)

)
. (4.19)

Using the result that

X ∼ Gamma(κ, λ) implies E{log(X)} = digamma(κ)− log(λ)

and using b(x) = − log(−x), we have,

E{c(Yij)|Ui,Xi}=E{log(Yij)|Ui,Xi}

=digamma(ψ)− log[{−(β0 + β1Xij + Ui)}ψ]

=− log{−(β0 + β1Xij + Ui)}+ digamma(ψ)− log(ψ)

= b(β0 + β1Xij + Ui) + digamma(ψ)− log(ψ).

Therefore, if we define

Ai ≡
n∑
j=1

b(β0 + β1Xij + Ui)

then
n∑
j=1

E{log(Yij)|Ui,Xi} = Ai − n{log(ψ)− digamma(ψ)}.

Also, if we define
q(x) ≡ 1 + log(x)− digamma(x)

then
E{log(Yij)|Ui,Xi} = b(β0 + β1Xij + Ui) + 1− q(ψ)

and
n∑
j=1

E{log(Yij)|Ui,Xi} = Ai + n{1− q(ψ)}.
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In the Gamma case

d(y, ψ) = ψ log(ψ)− log{Γ(ψ)} − log(y) implies
∂d(y, ψ)

∂ψ
= q(ψ).

Therefore,
n∑
j=1

∂

∂ψ
d(Yij , ψ) = nq(ψ).

Next consider the problem of obtaining an expression for E(Y 2
ij |Xi, Ui).

E(Y 2
ij |Xi, Ui) =Var(Yij |Xi, Ui) + {E(Yij |Xi, Ui)}2

=
1

ψ(β0 + β1Xij + Ui)2
+

(
1

−(β0 + β1Xij + Ui)

)2

=

(
1

ψ
+ 1

)
1

(β0 + β1Xij + Ui)2

=

(
1

ψ
+ 1

)
{b′(β0 + β1Xij + Ui)}2.

Later on we also need expressions for

E{Yij log(Yij)|Xi, Ui} and E[{log(Yij)}2|Xi, Ui].

As a prelude to obtaining these expressions we consider

X ∼ Gamma(κ, λ).

Then note that

E{X log(X)} = {κ digamma(κ) + 1− κ log(λ)}/λ

and
E[{log(X)}2] = trigamma(κ) + {digamma(κ)− log(λ)}2.

The first of these results leads to (with κ = ψ and λ = −ψ(β0 + β1Xij + Ui)),

E{Yij log(Yij)|Xi, Ui}

=
1

ψ{−(β0 + β1Xij + Ui)}

(
ψdigamma(ψ) + 1− ψ log [ψ{−(β0 + β1Xij + Ui)}]

)
=

1

ψ{−(β0 + β1Xij + Ui)}

[
ψdigamma(ψ) + 1− ψ log(ψ)− ψ log {−(β0 + β1Xij + Ui)}

]
=

1

ψ{−(β0 + β1Xij + Ui)}

{
ψdigamma(ψ) + 1− ψ log(ψ) + ψb(β0 + β1Xij + Ui)

}
= b′(β0 + β1Xij + Ui)

{ 1

ψ
+ digamma(ψ)− log(ψ) + b(β0 + β1Xij + Ui)

}
= b′(β0 + β1Xij + Ui)

{ 1

ψ
+ 1− q(ψ) + b(β0 + β1Xij + Ui)

}
.
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The second of these results leads to (with κ = ψ and λ = −ψ(β0 + β1Xij + Ui))

E[{log(Yij)}2|Xi, Ui] = trigamma(ψ) +
(
digamma(ψ)− log [ψ{−(β0 + β1Xij + Ui)}]

)2
= trigamma(ψ) +

[
digamma(ψ)− log(ψ)− log{−(β0 + β1Xij + Ui)}

]2
= trigamma(ψ) +

{
1− q(ψ) + b(β0 + β1Xij + Ui)

}2
= trigamma(ψ) +

{
b(β0 + β1Xij + Ui) + 1− q(ψ)

}2
.

4.5.3.2 The Score of the Reciprocal Dispersion Parameter

The score of ψ is

S3i ≡
∂ log pYi|Xi

(Yi|Xi)

∂ψ

=

n∑
j=1

[
{Yij(β0 + β1Xij) + log(Yij)}+ q(ψ)

]

+

∫ ∞

−∞
exp

[
− u2

2σ2 + ψ

n∑
j=1

{Yiju− b(β0 + β1Xij + u)}

]
n∑

j=1

{Yiju− b(β0 + β1Xij + u)} du

∫ ∞

−∞
exp

[
− u2

2σ2 + ψ

n∑
j=1

{Yiju− b(β0 + β1Xij + u)}

]
du

=

n∑
j=1

[
{Yij(β0 + β1Xij) + log(Yij)}+ q(ψ)

]
+

∫ ∞

−∞
bN (u) exp{−nhN (u)} du∫ ∞

−∞
bD(u) exp{−nhN (u)} du

where

hN (u) ≡ −ψ
n

n∑
j=1

{
Yiju− b(β0 + β1Xij + u)

}
,

bN (u) ≡
n∑
j=1

{
Yiju− b(β0 + β1Xij + u)

}
exp

(
− u2

2σ2

)
and bD(u) ≡ exp

(
− u2

2σ2

)
.

The First Term of the S3i Integral

The first term on the right-hand side of (2.6) of Tierney et al. (1989) is

g(U∗
i )

where

g(u) ≡ bN (u)/bD(u) =
n∑
j=1

{
Yiju− b(β0 + β1Xij + u)

}
.

Using steps similar to those given for approximating the score of βB in Subsubsection
4.5.2.5, we get

g(U∗
i ) = UiYi• −Ai +OP (1)
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where

Yi• ≡
n∑
j=1

Yij and Ai ≡
n∑
j=1

b(β0 + β1Xij + Ui).

Also define

A′
i ≡

n∑
j=1

b′(β0 + β1Xij + Ui).

4.5.3.3 Computing the Fisher Information Block for the Reciprocal Dis-
persion Parameter

Define

Bi ≡
n∑
j=1

{
Yij(β0 + β1Xij) + log(Yij) + q(ψ)

}
.

Then
S3i = Bi + UiYi• −Ai +OP (1).

Therefore,
E(S2

3i|Xi) ≈ TA + TB + TC + TD + TE + TF

where

TA=E(B2
i |Xi),

TB =E(U2
i Y

2
i•|Xi)

TC =E(A2
i |Xi),

TD =2E(BiUiYi•|Xi),

TE =−2E(AiBi|Xi),

and TF =−2E(UiAiYi•|Xi).

Treatment of TA

In the Gamma case
b′(x) = −1/x and c(x) = log(x).

Also,
∂d(Yij , ψ)

∂ψ
= q(ψ).

Hence

Bi =
n∑
j=1

{
Yij(β0 + β1Xij) + log(Yij) + q(ψ)

}
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and

B2
i =

n∑
j=1

n∑
j′=1

[
{Yij(β0 + β1Xij) + log(Yij)}+ q(ψ)

][
{Yij′(β0 + β1Xij) + log(Yij′)}+ q(ψ)

]

=
n∑

j=1

[
{Yij(β0 + β1Xij) + log(Yij)}+ q(ψ)

]2

+
n∑

j ̸=j′

[
{Yij(β0 + β1Xij) + log(Yij)}+ q(ψ)

][
{Yij′(β0 + β1Xij′) + log(Yij′)}+ q(ψ)

]
.

Therefore
TA = E(B2

i |Xi) = r1(Xi) + r2(Xi)

where

r1(Xi) ≡
n∑

j ̸=j′

E

([
Yij(β0 + β1Xij) + log(Yij) + q(ψ)

][
Yij′(β0 + β1Xij′) + log(Yij′) + q(ψ)

]∣∣∣∣∣Xi

)
and

r2(Xi) ≡
n∑
j=1

E

[{
Yij(β0 + β1Xij) + log(Yij) + q(ψ)

}2
∣∣∣∣∣Xi

]
.

Treatment of r1(Xi)

The (j, j′)th term in the r1(Xi) summation is

E

{
E

([
Yij(β0 + β1Xij) + log(Yij) + q(ψ)

][
Yij′(β0 + β1Xij′) + log(Yij′) + q(ψ)

]∣∣∣∣∣Xi, Ui

)∣∣∣∣∣Xi

}

= E

{
E

([
Yij(β0 + β1Xij) + log(Yij) + q(ψ)

]∣∣∣∣∣Xi, Ui

)

×E

([
Yij′(β0 + β1Xij′) + log(Yij′) + q(ψ)

]∣∣∣∣∣Xi, Ui

)∣∣∣∣∣Xi

}
Next note that

E

([
Yij(β0 + β1Xij) + log(Yij) + q(ψ)

]∣∣∣∣∣Xi, Ui

)
= b′(β0 + β1Xij + Ui)(β0 + β1Xij) + b(β0 + β1Xij + Ui) + 1− q(ψ) + q(ψ)

= b′(β0 + β1Xij + Ui)(β0 + β1Xij + Ui)− Uib
′(β0 + β1Xij + Ui) + b(β0 + β1Xij + Ui) + 1

= b(β0 + β1Xij + Ui)− Uib
′(β0 + β1Xij + Ui).

Hence,

r1(Xi) =

n∑
j ̸=j′

E
[
{b(β0 + β1Xij + Ui)− Uib

′(β0 + β1Xij + Ui)}

× {b(β0 + β1Xij′ + Ui)− Uib
′(β0 + β1Xij′ + Ui)}|Xi

]
.
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Treatment of r2(Xi)

The jth term in the r2(Xi) summation is

E

(
E

[{
Yij(β0 + β1Xij) + log(Yij) + q(ψ)

}2
∣∣∣∣∣Xi, Ui

] ∣∣∣∣∣Xi

)
.

Next we expand out the inner conditional expectation:

E

[{
Yij(β0 + β1Xij) + log(Yij) + q(ψ)

}2
∣∣∣∣∣Xi, Ui

]
= (β0 + β1Xij)

2E
(
Y 2
ij |Xi, Ui

)
+ E

[
{log(Yij)}2|Xi, Ui

]
+ q(ψ)2

+2(β0 + β1Xij)E {Yij log(Yij)|Xi, Ui}

+2(β0 + β1Xij)q(ψ)E (Yij |Xi, Ui) + 2q(ψ)E {log(Yij)|Xi, Ui}

= (β0 + β1Xij)
2

(
1

ψ
+ 1

)
{b′(β0 + β1Xij + Ui)}2

+trigamma(ψ) +
{
b(β0 + β1Xij + Ui) + 1− q(ψ)

}2
+q(ψ)2 + 2(β0 + β1Xij)b

′(β0 + β1Xij + Ui)
{ 1

ψ
+ 1− q(ψ) + b(β0 + β1Xij + Ui)

}
+2(β0 + β1Xij)q(ψ)b

′(β0 + β1Xij + Ui) + 2q(ψ){b(β0 + β1Xij + Ui) + 1− q(ψ)}.

The first of these terms is(
1

ψ
+ 1

)
(β0 + β1Xij + Ui − Ui)

2{b′(β0 + β1Xij + Ui)}2

=

(
1

ψ
+ 1

)
{(β0 + β1Xij + Ui)

2 − 2Ui(β0 + β1Xij + Ui) + U2
i }{b′(β0 + β1Xij + Ui)}2.

=

(
1

ψ
+ 1

)[
1 + 2Uib

′(β0 + β1Xij + Ui) + U2
i {b′(β0 + β1Xij + Ui)}2

]
.

The sixth of these terms is

2(β0 + β1Xij + Ui − Ui)q(ψ)b
′(β0 + β1Xij + Ui) = −2q(ψ){1 + Uib

′(β0 + β1Xij + Ui)}.

With similar steps, the fifth of these terms is

−2

{
1

ψ
+ 1− q(ψ) + b(β0 + β1Xij + Ui)

}
{1 + Uib

′(β0 + β1Xij + Ui)}.

The sum of the fifth and sixth terms is then

−2

{
1

ψ
+ 1 + b(β0 + β1Xij + Ui)

}
{1 + Uib

′(β0 + β1Xij + Ui)}.
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Assembling the above results we have

TA = n trigamma(ψ) + n{q(ψ)}2

+
n∑

j ̸=j′

E
[
{b(β0 + β1Xij + Ui)− Uib

′(β0 + β1Xij + Ui)}{b(β0 + β1Xij′ + Ui)

−Uib
′(β0 + β1Xij′ + Ui)}|Xi

]
+

(
1

ψ
+ 1

) n∑
j=1

E
([

1 + 2Uib
′(β0 + β1Xij + Ui) + U2

i {b′(β0 + β1Xij + Ui)}2
]∣∣∣Xi

)

+
n∑

j=1

E
({
b(β0 + β1Xij + Ui) + 1− q(ψ)

}2∣∣∣Xi

)

−2
n∑

j=1

E

[{(
1

ψ
+ 1

)
+ b(β0 + β1Xij + Ui)

}
{1 + Uib

′(β0 + β1Xij + Ui)}
∣∣∣Xi

]

+2q(ψ)
n∑

j=1

E
[
{b(β0 + β1Xij + Ui) + 1− q(ψ)}

∣∣∣Xi

]
.

A next useful step (for cancellation purposes) is to expand out the second, third, fourth,
fifth and sixth terms of this expression for TA.

Expansion of the second term of TA

For the second term of TA we have

n∑
j ̸=j′

E
[
{b(β0 + β1Xij + Ui)− Uib

′(β0 + β1Xij + Ui)}

×{b(β0 + β1Xij′ + Ui)− Uib
′(β0 + β1Xij′ + Ui)}|Xi

]
=

n∑
j ̸=j′

E
{
b(β0 + β1Xij + Ui)b(β0 + β1Xij′ + Ui)|Xi

}
−

n∑
j ̸=j′

E
{
Uib(β0 + β1Xij + Ui)b

′(β0 + β1Xij′ + Ui)|Xi

}

−
n∑

j ̸=j′
E
{
Uib

′(β0 + β1Xij + Ui)b(β0 + β1Xij′ + Ui)|Xi

}

+
n∑

j ̸=j′
E
{
U2
i b

′(β0 + β1Xij + Ui)b
′(β0 + β1Xij′ + Ui)|Xi

}
.
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Expansion of the third term of TA

For the third term of TA we have(
1

ψ
+ 1

) n∑
j=1

E
([

1 + 2Uib
′(β0 + β1Xij + Ui) + U2

i {b′(β0 + β1Xij + Ui)}2
]∣∣∣Xi

)

= n

(
1

ψ
+ 1

)
+ 2

(
1

ψ
+ 1

) n∑
j=1

E
{
Uib

′(β0 + β1Xij + Ui)
∣∣∣Xi

}
+

(
1

ψ
+ 1

) n∑
j=1

E
[
U2
i {b′(β0 + β1Xij + Ui)}2

∣∣∣Xi

]
.

Expansion of the fourth term of TA

For the fourth term of TA we have

n∑
j=1

E
({
b(β0 + β1Xij + Ui) + 1− q(ψ)

}2∣∣∣Xi

)

=

n∑
j=1

E
({
b(β0 + β1Xij + Ui)}2

∣∣∣Xi

)
+ 2{1− q(ψ)}

n∑
j=1

E
(
b(β0 + β1Xij + Ui)

∣∣∣Xi

)
+n{1− q(ψ)}2

=
n∑

j=1

E
({
b(β0 + β1Xij + Ui)}2

∣∣∣Xi

)
+ 2

n∑
j=1

E
(
b(β0 + β1Xij + Ui)

∣∣∣Xi

)
−2q(ψ)

n∑
j=1

E
{
b(β0 + β1Xij + Ui)

∣∣∣Xi

}
+ n{q(ψ)}2 − 2nq(ψ) + n.

Expansion of the fifth term of TA

For the fifth term of TA we have

−2
n∑

j=1

E

[{(
1

ψ
+ 1

)
+ b(β0 + β1Xij + Ui)

}
{1 + Uib

′(β0 + β1Xij + Ui)}
∣∣∣Xi

]

= −2n

(
1

ψ
+ 1

)
− 2

(
1

ψ
+ 1

) n∑
j=1

E
{
Uib

′(β0 + β1Xij + Ui)
∣∣∣Xi

}

−2
n∑

j=1

E
{
b(β0 + β1Xij + Ui)

∣∣∣Xi

}
− 2

n∑
j=1

E
{
Uib(β0 + β1Xij + Ui)b

′(β0 + β1Xij + Ui)
∣∣∣Xi

}
.
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Expansion of the sixth term of TA

For the sixth term of TA we have

2q(ψ)
n∑
j=1

E
[
{b(β0 + β1Xij + Ui) + 1− q(ψ)}

∣∣∣Xi

]

= 2q(ψ)

n∑
j=1

E
[
b(β0 + β1Xij + Ui)

∣∣Xi

]
+ 2nq(ψ){1− q(ψ)}

= 2q(ψ)

n∑
j=1

E
[
b(β0 + β1Xij + Ui)

∣∣Xi

]
+ 2nq(ψ)− 2n{q(ψ)}2.

The fully expanded version of TA is as follows:

TA= n

{
trigamma(ψ)− 1

ψ

}

+

n∑
j ̸=j′

E
{
b(β0 + β1Xij + Ui)b(β0 + β1Xij′ + Ui)|Xi

}
−

n∑
j ̸=j′

E
{
Uib(β0 + β1Xij + Ui)b

′(β0 + β1Xij′ + Ui)|Xi

}

−
n∑

j ̸=j′
E
{
Uib

′(β0 + β1Xij + Ui)b(β0 + β1Xij′ + Ui)|Xi

}

+

n∑
j ̸=j′

E
{
U2
i b

′(β0 + β1Xij + Ui)b
′(β0 + β1Xij′ + Ui)|Xi

}
+

(
1

ψ
+ 1

) n∑
j=1

E
[
U2
i {b′(β0 + β1Xij + Ui)}2

∣∣∣Xi

]

+
n∑
j=1

E
({
b(β0 + β1Xij + Ui)}2

∣∣∣Xi

)
−2

n∑
j=1

E
{
Uib(β0 + β1Xij + Ui)b

′(β0 + β1Xij + Ui)
∣∣∣Xi

}
.

Treatment of TB

We have

E
(
U2
i Y

2
i•

∣∣∣Xi

)
= E

{
E
(
U2
i Y

2
i•

∣∣∣Xi, Ui

) ∣∣∣Xi

}
= E

{
U2
i E

(
Y 2
i•

∣∣∣Xi, Ui

) ∣∣∣Xi

}
.
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Recall that

Yi• =
n∑
j=1

Yij implying that Y 2
i• =

n∑
j ̸=j′

YijYij′ +
n∑
j=1

Y 2
ij .

Therefore

E(Y 2
i•|Xi, Ui)

=
n∑

j ̸=j′
E(YijYij′ |Xi, Ui) +

n∑
j=1

E(Y 2
ij |Xi, Ui)

=
n∑

j ̸=j′
b′(β0 + β1Xij + Ui)b

′(β0 + β1Xij′ + Ui) +

(
1

ψ
+ 1

) n∑
j=1

{b′(β0 + β1Xij + Ui)}2.

This implies that

TB =
n∑

j ̸=j′
E
{
U2
i b

′(β0 + β1Xij + Ui)b
′(β0 + β1Xij′ + Ui)|Xi

}
+

(
1

ψ
+ 1

) n∑
j=1

E
[
U2
i {b′(β0 + β1Xij + Ui)}2|Xi

]
.

Treatment of TC

We have
TC = E(A2

i |Xi)

which implies that

TC =

n∑
j=1

n∑
j′=1

E{b(β0 + β1Xij + Ui)b(β0 + β1Xij′ + Ui)|Xi}.

Breaking this up into “diagonal” and “off-diagonal” components, we get

TC =

n∑
j ̸=j′

E
{
b(β0 + β1Xij + Ui)b(β0 + β1Xij′ + Ui)|Xi

}

+

n∑
j=1

E
[
{b(β0 + β1Xij + Ui)}2|Xi

]
.

Treatment of TD

First recall that
2E(BiUiYi•|Xi)
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where

Bi ≡
n∑
j=1

[
{Yij(β0 + β1Xij) + log(Yij)}+ q(ψ)

]
.

Therefore

2BiUiYi• =2Ui

n∑
j=1

n∑
j′=1

[
{Yij(β0 + β1Xij) + log(Yij)}+ q(ψ)

]
Yij′

=2Ui

n∑
j ̸=j′

[
{Yij(β0 + β1Xij) + log(Yij)}+ q(ψ)

]
Yij′

+2Ui

n∑
j=1

[{
Y 2
ij(β0 + β1Xij) + Yij log(Yij)

}
+ Yijq(ψ)

]
.

It follows that
2E(BiUiYi•|Xi) = r3(Xi) + r4(Xi)

where

r3(Xi) ≡ 2
n∑

j ̸=j′
E

(
Ui

[
{Yij(β0 + β1Xij) + log(Yij)}+ q(ψ)

]
Yij′

∣∣∣∣∣Xi

)

and

r4(Xi) ≡ 2
n∑
j=1

E

(
Ui

[{
Y 2
ij(β0 + β1Xij) + Yij log(Yij)

}
+ Yijq(ψ)

]∣∣∣∣∣Xi

)
.

Treatment of r3(Xi)

The (j, j′)th term in the r3(Xi) summation is

2E

{
E

(
Ui

[
Yij(β0 + β1Xij) + log(Yij) + q(ψ)

]
Yij′

∣∣∣∣∣Xi, Ui

)∣∣∣∣∣Xi

}

= 2E

{
UiE

([
Yij(β0 + β1Xij) + log(Yij) + q(ψ)

]
Yij′

∣∣∣∣∣Xi, Ui

)∣∣∣∣∣Xi

}

= 2E

{
UiE

([
Yij(β0 + β1Xij) + log(Yij) + q(ψ)

]∣∣∣∣∣Xi, Ui

)
E

(
Yij′

∣∣∣∣∣Xi, Ui

)∣∣∣∣∣Xi

}
.

As stated earlier in this document,

E
([
Yij(β0 + β1Xij) + log(Yij) + q(ψ)

]∣∣∣Xi, Ui

)
= b(β0 + β1Xij + Ui)− Uib

′(β0 + β1Xij + Ui).
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Also,

E
(
Yij′
∣∣∣Xi, Ui

)
= b′(β0 + β1Xij′ + Ui)

from which it follows that the (j, j′)th term in the r3(Xi) summation is

2E

[
Ui
{
b(β0 + β1Xij + Ui)− Uib

′(β0 + β1Xij + Ui)
}
b′(β0 + β1Xij′ + Ui)

∣∣∣∣∣Xi

]
.

Hence,

r3(Xi) = 2
n∑

j ̸=j′

E

[
Ui

{
b(β0 + β1Xij + Ui)− Uib

′(β0 + β1Xij + Ui)
}
b′(β0 + β1Xij′ + Ui)

∣∣∣∣∣Xi

]

Treatment of r4(Xi)

The jth term in the r4(Xi) summation is

2E

(
E

[
Ui

{
Y 2
ij(β0 + β1Xij) + Yij log(Yij) + Yijq(ψ)

}∣∣∣∣∣Xi, Ui

] ∣∣∣∣∣Xi

)

= 2E

(
UiE

[{
Y 2
ij(β0 + β1Xij) + Yij log(Yij) + Yijq(ψ)

}∣∣∣∣∣Xi, Ui

] ∣∣∣∣∣Xi

)
.

Next note that

E

[
Y 2
ij(β0 + β1Xij)

∣∣∣∣∣Xi, Ui

]
=

(
1

ψ
+ 1

)
(β0 + β1Xij){b′(β0 + β1Xij + Ui)}2

=

(
1

ψ
+ 1

)
(β0 + β1Xij + Ui){b′(β0 + β1Xij + Ui)}2

−
(
1

ψ
+ 1

)
Ui{b′(β0 + β1Xij + Ui)}2

=−
(
1

ψ
+ 1

)[
b′(β0 + β1Xij + Ui) + Ui{b′(β0 + β1Xij + Ui)}2

]
.

Also, remember that

E{Yij log(Yij)|Xi, Ui} = b′(β0 + β1Xij + Ui)
{ 1

ψ
+ 1− q(ψ) + b(β0 + β1Xij + Ui)

}
and

q(ψ)E{Yij |Xi, Ui} = q(ψ)b′(β0 + β1Xij + Ui),

which means that

E{Yij log(Yij) + q(ψ)Yij |Xi, Ui} = b′(β0 + β1Xij + Ui)
{ 1

ψ
+ 1 + b(β0 + β1Xij + Ui)

}
.
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This means that

E

[{
Y 2
ij(β0 + β1Xij) + Yij log(Yij) + Yijq(ψ)

}∣∣∣∣∣Xi, Ui

]

= −
(
1

ψ
+ 1

)
b′(β0 + β1Xij + Ui)−

(
1

ψ
+ 1

)
Ui{b′(β0 + β1Xij + Ui)}2

+

(
1

ψ
+ 1

)
b′(β0 + β1Xij + Ui) + b(β0 + β1Xij + Ui)b

′(β0 + β1Xij + Ui)

= b(β0 + β1Xij + Ui)b
′(β0 + β1Xij + Ui)−

(
1

ψ
+ 1

)
Ui{b′(β0 + β1Xij + Ui)}2.

Hence, the jth term in the r4(Xi) summation is

2E
{
Uib(β0+β1Xij+Ui)b

′(β0+β1Xij+Ui)
∣∣∣Xi

}
−2

(
1

ψ
+ 1

)
E
[
U2
i {b′(β0+β1Xij+Ui)}2

∣∣∣Xi

]
.

Putting all of this together, we arrive at

TD =2
n∑

j ̸=j′
E

[
Ui
{
b(β0 + β1Xij + Ui)− Uib

′(β0 + β1Xij + Ui)
}
b′(β0 + β1Xij′ + Ui)

∣∣∣∣∣Xi

]

+2
n∑
j=1

E
{
Uib(β0 + β1Xij + Ui)b

′(β0 + β1Xij + Ui)
∣∣∣Xi

}

−2

(
1

ψ
+ 1

) n∑
j=1

E
[
U2
i {b′(β0 + β1Xij + Ui)}2

∣∣∣Xi

]
.

However, note that the first term is

2
n∑

j ̸=j′
E

[
Ui
{
b(β0 + β1Xij + Ui)− Uib

′(β0 + β1Xij + Ui)
}
b′(β0 + β1Xij′ + Ui)

∣∣∣∣∣Xi

]

= 2
n∑

j ̸=j′
E
{
Uib(β0 + β1Xij + Ui)b

′(β0 + β1Xij′ + Ui)
∣∣∣Xi

}

−2

n∑
j ̸=j′

E
{
U2
i b

′(β0 + β1Xij + Ui)b
′(β0 + β1Xij′ + Ui)

∣∣∣Xi

}
.
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Therefore

TD =2

n∑
j ̸=j′

E
{
Uib(β0 + β1Xij + Ui)b

′(β0 + β1Xij′ + Ui)
∣∣∣Xi

}

−2

n∑
j ̸=j′

E
{
U2
i b

′(β0 + β1Xij + Ui)b
′(β0 + β1Xij′ + Ui)

∣∣∣Xi

}

+2

n∑
j=1

E
{
Uib(β0 + β1Xij + Ui)b

′(β0 + β1Xij + Ui)
∣∣∣Xi

}

−2

(
1

ψ
+ 1

) n∑
j=1

E
{
U2
i {b′(β0 + β1Xij + Ui)}2

∣∣∣Xi

}
.

Treatment of TE

Recall that
TE ≡ −2E(AiBi|Xi)

where

Ai ≡
n∑
j=1

b(β0 + β1Xij + Ui) and Bi ≡
n∑
j=1

{
Yij(β0 + β1Xij) + log(Yij) + q(ψ)

}
.

Therefore

TE =−2

n∑
j=1

n∑
j′=1

E
[
b(β0 + β1Xij + Ui)

{
Yij′(β0 + β1Xij′) + log(Yij′) + q(ψ)

}∣∣∣Xi

]

=−2
n∑
j=1

n∑
j′=1

E

(
E
[
b(β0 + β1Xij + Ui)

{
Yij′(β0 + β1Xij′) + log(Yij′) + q(ψ)

}∣∣∣Xi, Ui

]∣∣∣∣∣Xi

)

=−2

n∑
j=1

n∑
j′=1

E

(
b(β0 + β1Xij + Ui)E

[
Yij′(β0 + β1Xij′) + log(Yij′) + q(ψ)

∣∣∣Xi, Ui

]∣∣∣∣∣Xi

)

=−2

n∑
j=1

n∑
j′=1

E

(
b(β0 + β1Xij + Ui){b(β0 + β1Xij′ + Ui)− Uib

′(β0 + β1Xij′ + Ui)}

∣∣∣∣∣Xi

)

=−2

n∑
j=1

n∑
j′=1

E
{
b(β0 + β1Xij + Ui)b(β0 + β1Xij′ + Ui)

∣∣∣Xi

}

+2

n∑
j=1

n∑
j′=1

E
{
Uib(β0 + β1Xij + Ui)b

′(β0 + β1Xij′ + Ui)
∣∣∣Xi

}
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Simplifying the previous expression, we have,

−2

n∑
j ̸=j′

E
[
b(β0 + β1Xij + Ui)b(β0 + β1Xij′ + Ui)

∣∣∣Xi

]

+2

n∑
j ̸=j′

E
[
Uib(β0 + β1Xij + Ui)b

′(β0 + β1Xij′ + Ui)
∣∣∣Xi

]

−2

n∑
j=

E
[
{b(β0 + β1Xij + Ui)}2

∣∣∣Xi

]

+2

n∑
j=1

E
[
Uib(β0 + β1Xij + Ui)b

′(β0 + β1Xij + Ui)
∣∣∣Xi

]
.

Treatment of TF

Using steps similar to those given above for TB we have

TF = −2E(UiAiA′
i|Xi).

Therefore,

TF = −2
n∑
j=1

n∑
j′=1

E{Uib(β0 + β1Xij + Ui)b
′(β0 + β1Xij′ + Ui)|Xi}.

Breaking this up into “diagonal” and “off-diagonal” components, we get

TF =−2
n∑

j ̸=j′
E{Uib(β0 + β1Xij + Ui)b

′(β0 + β1Xij′ + Ui)|Xi}

−2
n∑
j=1

E{Uib(β0 + β1Xij + Ui)b
′(β0 + β1Xij + Ui)|Xi}.

The Sum of TE and TF

Inspection of the fully expanded versions of TE and TF reveals that

TE + TF = −2
n∑

j ̸=j′
E
[
b(β0 + β1Xij + Ui)b(β0 + β1Xij′ + Ui)

∣∣∣Xi

]

−2

n∑
j=1

E
[
{b(β0 + β1Xij + Ui)}2

∣∣∣Xi

]
.
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Combining TA, TB, TC , TD, TE and TF

We now combine the TA, TB, TC , TD, TE and TF terms to get the full approximation
of E(S2

3i|Xi).

E(S2
3i|Xi)

≈ TA + TB + TC + TD + TE + TF

= n

{
trigamma(ψ)− 1

ψ

}
+

n∑
j ̸=j′

E
{
b(β0 + β1Xij + Ui)b(β0 + β1Xij′ + Ui)|Xi

}
−

n∑
j ̸=j′

E
{
Uib(β0 + β1Xij + Ui)b

′(β0 + β1Xij′ + Ui)|Xi

}

−
n∑

j ̸=j′

E
{
Uib

′(β0 + β1Xij + Ui)b(β0 + β1Xij′ + Ui)|Xi

}

+

n∑
j ̸=j′

E
{
U2

i b
′(β0 + β1Xij + Ui)b

′(β0 + β1Xij′ + Ui)|Xi

}
+

(
1

ψ
+ 1

) n∑
j=1

E
[
U2

i {b′(β0 + β1Xij + Ui)}2
∣∣∣Xi

]
+

n∑
j=1

E
({
b(β0 + β1Xij + Ui)}2

∣∣∣Xi

)
−2

n∑
j=1

E
{
Uib(β0 + β1Xij + Ui)b

′(β0 + β1Xij + Ui)
∣∣∣Xi

}

+

n∑
j ̸=j′

E
{
U2

i b
′(β0 + β1Xij + Ui)b

′(β0 + β1Xij′ + Ui)|Xi

}

+

(
1

ψ
+ 1

) n∑
j=1

E
[
U2

i {b′(β0 + β1Xij + Ui)}2|Xi

]

+

n∑
j ̸=j′

E
{
b(β0 + β1Xij + Ui)b(β0 + β1Xij′ + Ui)|Xi

}
+

n∑
j=1

E
[
{b(β0 + β1Xij + Ui)}2|Xi

]

+2

n∑
j ̸=j′

E
{
Uib(β0 + β1Xij + Ui)b

′(β0 + β1Xij′ + Ui)
∣∣∣Xi

}

−2

n∑
j ̸=j′

E
{
U2

i b
′(β0 + β1Xij + Ui)b

′(β0 + β1Xij′ + Ui)
∣∣∣Xi

}

+2

n∑
j=1

E
{
Uib(β0 + β1Xij + Ui)b

′(β0 + β1Xij + Ui)
∣∣∣Xi

}

−2

(
1

ψ
+ 1

) n∑
j=1

E
{
U2

i {b′(β0 + β1Xij + Ui)}2
∣∣∣Xi

}

−2

n∑
j ̸=j′

E
[
b(β0 + β1Xij + Ui)b(β0 + β1Xij′ + Ui)

∣∣∣Xi

]
− 2

n∑
j=1

E
[
{b(β0 + β1Xij + Ui)}2

∣∣∣Xi

]
.

Many of the terms cancel with each other, and we are left with

E(S2
3i|Xi)≈ n

{
trigamma(ψ)− 1

ψ

}
.
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4.5.3.4 Asymptotic Normality and Variance Results for the Maximum
Likelihood Estimator of the Reciprocal Dispersion Parameter

We can show that (using results given in Wand (2007))) ψ is orthogonal to the other
model parameters. Therefore, results in the previous sections of this document lead to

√
mn(ψ̂ − ψ)

D→ N

(
0,

1

trigamma(ψ)− 1
ψ

)

and we have

Asy.Var(ψ̂) =
1

mn
{
trigamma(ψ)− 1

ψ

} .

4.5.3.5 Asymptotic Normality and Variance Results for the Maximum
Likelihood Estimator of the Dispersion Parameter

If
ϕ = 1/ψ = g(ψ) and g(x) = x−1

then using the delta method leads to

√
mn{g(ψ̂)− g(ψ)} D→ N

(
0,

g′(ψ)2

trigamma(ψ)− 1
ψ

)
.

Noting that
g′(x) = −x−2 and g′(x)2 = x−4

, we have

g′(ψ)2

trigamma(ψ)− 1
ψ

=
ψ−4

trigamma(ψ)− 1
ψ

=
ϕ4

trigamma(1/ϕ)− ϕ
.

Hence
√
mn(ϕ̂− ϕ)

D→ N

(
0,

ϕ4

trigamma(1/ϕ)− ϕ

)
.

Lastly, we have that,

Asy.Var(ϕ̂) =
ϕ4

mn {trigamma(1/ϕ)− ϕ}
.



Chapter 5

Consequences and Applications of
Asymptotic Normality Results

In this chapter, we discuss the consequences and applications of the novel asymptotic

normality results presented under Theorem 12.

Firstly, we present how Theorem 12 can be used to carry out asymptotically valid

statistical inference in generalized linear mixed model analysis. This is done using

confidence intervals constructed via the studentization process. Following that, to assess

the efficacy of the Theorem 12-based confidence intervals, we ran two simulation studies

and investigated the performance of our confidence intervals when the samples are finite.

Next, we move onto the implications of Theorem 12 on optimal design theory. Opti-

mal designs contain values of the covariates in the design matrix such that these designs

give the smallest standard errors of the estimators of the model parameters. These in

turn lead to narrower confidence intervals and result in higher powers for hypothesis

tests as compared to non-optimal designs. However, when dealing with generalized

linear mixed models, choosing optimal designs can be complicated with most optimality

criteria being based on the Fisher information matrix, which is computationally ex-

pensive to compute. Therefore, we then demonstrate how the derivations leading to

Theorem 12 that involve large sample approximations of the Fisher information can be

used in approximate optimal design settings.

This chapter is broken up into two main parts. Section 5.1 details how Theorem

12-based confidence intervals can be constructed using the studentization process. Next,

Section 5.2 applies the derivations leading up to Theorem 12 in the design setting and

briefly demonstrates how approximate locally D-optimal designs can be constructed

Some of the content of this chapter is published in: Jiang, J., Wand, M.P. and Bhaskaran, A. (2022),

Usable and precise asymptotics for generalized linear mixed model analysis and design. Journal of the

Royal Statistical Society, Series B, 84: 55-82. DOI: 10.1111/rssb.12473.
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using the D-optimality criterion as presented in Theorem 13.

5.1 Asymptotically Valid Inference

In the first part of this section, we present details regarding the construction of asymp-

totically valid confidence intervals using Theorem 12. It is followed up by two simulation

studies that are used to assess the efficacy of these asymptotically valid confidence

intervals.

5.1.1 Construction of Asymptotically Valid Confidence Intervals

The asymptotic normality results for maximum quasi-likelihood estimators presented

in Theorem 12 can be used to construct asymptotically valid 100(1 − α)% confidence

intervals. The confidence intervals for β0
A,β

0
B and Σ0 are developed using the studenti-

zation process, which involve replacing the true quantities in the asymptotic variances

in Theorem 12 by their consistent estimators.

100(1− α)% Confidence Interval for the Entries of β0
A

For β̂A, its asymptotic covariance matrix only involves Σ0. Hence, studentization simply

involves replacing Σ0 by Σ̂ which leads to the following asymptotic normality result

√
mΣ̂−1/2

(
β̂A − β0

A

)
D→ N(0, I).

Let σ̂2k denote the kth diagonal entry of Σ̂, 1 ≤ k ≤ dA. It follows that the asymptotically

valid 100(1− α)% confidence interval for the kth entry of β0
A is

(β̂A)k ± Φ−1
(
1− α

2

)√ σ̂2k
m
, (5.1)

where Φ represents the standard normal cumulative distribution function.

100(1− α)% Confidence Intervals for the Entries of β0
B

Constructing asymptotically valid confidence intervals for the entries of β0
B is less

straightforward compared to constructing confidence intervals for β0
A or Σ0. Studentiza-
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tion involves replacing ΛβB
by Λ̂βB

which leads to the following asymptotic normality

result
√
mn

(
ϕΛ̂βB

)−1/2 (
β̂B − β0

B

)
D→ N(0, I),

where Λ̂βB
is defined as follows

Λ̂βB
≡
[∣∣2πΣ̂∣∣−1/2

∫
RdA

{
lower right dB × dB block of Ω̂βB

(u)−1
}−1

exp

(
−1

2
uT Σ̂−1u

)
du

]−1

and

Ω̂βB
(u) ≡ 1

mn

m∑
i=1

n∑
j=1

b′′ ((β̂A + u)TXAij + (β̂B)
TXBij

)XAijX
T
Aij XAijX

T
Bij

XBijX
T
Aij XBijX

T
Bij

 .

Then, the asymptotically valid 100(1 − α)% confidence interval for the kth entry of β0
B

is

(β̂B)k ± Φ−1
(
1− α

2

)√√√√(ϕΛ̂βB

)
kk

m
. (5.2)

100(1− α)% Confidence Intervals for the Entries of Σ0

For Σ̂, in a similar manner to the case involving β̂A, its asymptotic covariance matrix

only consists of Σ0. We apply the studentization process and replace Σ0 by Σ̂ which

leads to the following asymptotic normality result

√
m
{
2D+

dA

(
Σ̂⊗ Σ̂

)
D+
dA

T
}−1/2

vech
(
Σ̂−Σ0

)
D→ N(0, I).

It then follows that the asymptotically valid 100(1 − α)% confidence interval for the

(k, k)th entry of Σ0 is

σ̂2k ± Φ−1
(
1− α

2

)√2
(
σ̂2k
)2

m
. (5.3)

5.1.2 Simulation Study

Two simulation studies were run to assess the efficacy of the confidence intervals

constructed using the asymptotic normality results presented in Theorem 12. In this

study, confidence intervals for the following dA = dB = 1 Poisson mixed model were
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generated

Yij |Xij , Ui
ind.∼ Poisson

(
exp

(
β00 + β0BXij + Ui

))
,

Ui
ind.∼ N

(
0, (σ2)0

)
, 1 ≤ i ≤ m, 1 ≤ j ≤ n,

with ϕ = 1. To simplify the notation involved, βA,βB and Σ have been replaced by

the scalar parameter symbols β0, βB and σ2. The values for the true parameter vector

(β00 , β
0
B, (σ

2)0) were chosen from the following possible set of pre-determined values

{(−0.3, 0.2, 0.5), (2.2,−0.1, 0.16), (1.2, 0.4, 0.1), (0.02, 1.3, 1), (−0.3, 0.2, 0.1)} ,

such that the data was well-behaved and led to fewer singularity issues. The distribution

for Xij was also chosen to be either N(0, 1) or Uniform(−1, 1). The number of groups

in the simulated data, m, varied over the set {100, 200, . . . , 1000} and the number

of observations present within each group, n, was fixed at m/10. A total of 1000

replications were simulated for every possible combination of the true parameter vector,

chosen Xij distribution and value of (m,n) pair.
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Figure 5.1: Actual coverage percentage of nominally 95% confidence intervals for β00
in a dA = dB = 1 Poisson mixed model. The confidence intervals are obtained using
the exact observed Fisher information computations provided by the function glmer()

in the R package lme4 (blue lines) and Theorem 12 with studentization according to
(5.1) (red lines). The nominal percentage is shown as a thick grey horizontal line. The
percentages are based on 1000 replications. The values of m are 100, 200, . . . , 1000. The
value of n is fixed at m/10.

0 0(β0, βB, (σ2)0) = (−.3,.2,.5) 0 0(β0, βB, (σ2)0) = (2.2,−.1,.16) 0 0(β0, βB, (σ2)0) = (1.2,.4,.1) 0 0(β0, βB, (σ2)0) = (.02,1.3,1) 0 0(β0, βB, (σ2)0) = (−.3,.2,.1)

0 0(β0, βB, (σ2)0) = (−.3,.2,.5)

Xij ~ Uniform(− 1, 1)
0 0(β0, βB, (σ2)0) = (2.2,−.1,.16)

Xij ~ Uniform(− 1, 1)
0 0(β0, βB, (σ2)0) = (1.2,.4,.1)

Xij ~ Uniform(− 1, 1)
0 0(β0, βB, (σ2)0) = (.02,1.3,1)

Xij ~ Uniform(− 1, 1)
0 0(β0, βB, (σ2)0) = (−.3,.2,.1)

Xij ~ Uniform(− 1, 1)
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Using the glmer() function in the R package lme4 (Bates et al., 2015), maximum

likelihood estimates of β00 , β
0
B and (σ2)0 were obtained for every sample of simulated

data generated. 95% confidence intervals based on (5.1) and (5.2) were computed

using the maximum likelihood estimates obtained. 95% confidence intervals based on

exact observed Fisher information were also obtained using glmer(). The coverage

percentages corresponding to the percentage of times the true value landed in the

confidence intervals were also calculated for both approaches.
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Figure 5.2: Actual coverage percentage of nominally 95% confidence intervals for β0
B

in a dA = dB = 1 Poisson mixed model. The confidence intervals are obtained using
the exact observed Fisher information computations provided by the function glmer()

in the R package lme4 (blue lines) and Theorem 12 with studentization according to
(5.2) (red lines). The nominal percentage is shown as a thick grey horizontal line. The
percentages are based on 1000 replications. The values of m are 100, 200, . . . , 1000. The
value of n is fixed at m/10.

Figure 5.1 displays the coverage percentages for the 95% confidence intervals com-

puted using the two approaches for various simulation settings. Both the Theorem

12-based approach and the approach based on exact observed Fisher information give

almost identical coverage percentages for all response distribution and sample size

combinations across all values of m, for the first four true parameter vector settings. For

the last setting, while the Theorem 12-based asymptotic approach does not perform well

for smaller values of m, the asymptotic properties it is based on gives similar coverage

0 0(β0, βB, (σ2)0) = (−.3,.2,.5) 0 0(β0, βB, (σ2)0) = (2.2,−.1,.16) 0 0(β0, βB, (σ2)0) = (1.2,.4,.1) 0 0(β0, βB, (σ2)0) = (.02,1.3,1) 0 0(β0, βB, (σ2)0) = (−.3,.2,.1)

0 0(β0, βB, (σ2)0) = (−.3,.2,.5)

Xij ~ Uniform(− 1, 1)
0 0(β0, βB, (σ2)0) = (2.2,−.1,.16)

Xij ~ Uniform(− 1, 1)
0 0(β0, βB, (σ2)0) = (1.2,.4,.1)

Xij ~ Uniform(− 1, 1)
0 0(β0, βB, (σ2)0) = (.02,1.3,1)

Xij ~ Uniform(− 1, 1)
0 0(β0, βB, (σ2)0) = (−.3,.2,.1)

Xij ~ Uniform(− 1, 1)
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percentages to that of the exact observed Fisher information approach once the value of

m exceeds 500 and continues to get larger. This suggests that the asymptotic variance

of β̂0 being σ2/m is a very good approximation to the variance of β̂0 that arises from

using exact observed Fisher information, especially with larger values of m.

In Figure 5.2, once again, both the Theorem 12-based approach and the approach

based on exact observed Fisher information, for most of the true parameter vector

settings, give almost identical coverage percentages for all response distribution and

sample size combinations across all values of m. For the fourth setting, when the Xijs

are generated from a standard normal distribution, the Theorem 12-based approach

does not perform well for smaller values of m as compared to the exact observed Fisher

information approach. However, both approaches have similar performances for larger

values of m. This suggests that the asymptotic variance of β̂B being ΛβB/mn is a very

good approximation to the variance of β̂B that arises from using exact observed Fisher

information.
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Figure 5.3: Actual coverage percentage of nominally 95% confidence intervals for β00
in a dA = dB = 1 logistic mixed model. The confidence intervals are obtained using
the exact observed Fisher information computations provided by the function glmer()

in the R package lme4 (blue lines) and Theorem 12 with studentization according to
(5.1) (red lines). The nominal percentage is shown as a thick grey horizontal line. The
percentages are based on 1000 replications. The values of m are 100, 200, . . . , 1000. The
value of n is fixed at m/10.

0 0(β0, βB, (σ2)0) = (.2,−.1,.25) 0 0(β0, βB, (σ2)0) = (−.3,1.2,.6) 0 0(β0, βB, (σ2)0) = (1.6,.2,.7) 0 0(β0, βB, (σ2)0) = (.15,−.5,1) 0 0(β0, βB, (σ2)0) = (−1.3,.1,.8)

0 0(β0, βB, (σ2)0) = (.2,−.1,.25)

Xij ~ Uniform(− 1, 1)
0 0(β0, βB, (σ2)0) = (−.3,1.2,.6)

Xij ~ Uniform(− 1, 1)
0 0(β0, βB, (σ2)0) = (1.6,.2,.7)

Xij ~ Uniform(− 1, 1)
0 0(β0, βB, (σ2)0) = (.15,−.5,1)

Xij ~ Uniform(− 1, 1)
0 0(β0, βB, (σ2)0) = (−1.3,.1,.8)

Xij ~ Uniform(− 1, 1)
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In the next study, confidence intervals for the following dA = dB = 1 logistic mixed

model were generated

Yij |Xij , Ui
ind.∼ Bernoulli

(
expit

(
β00 + β0BXij + Ui

))
,

Ui
ind.∼ N

(
0, (σ2)0

)
, 1 ≤ i ≤ m, 1 ≤ j ≤ n,

with ϕ = 1.

The values for the true parameter vector
(
β00 , β

0
B,
(
σ2
)0)

were chosen from the

following possible set of pre-determined values

{(0.2,−0.1, 0.25), (−0.3, 1.2, 0.6), (1.6, 0.2, 0.7), (0.15,−0.5, 1), (−1.3, 0.1, 0.8)} .
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Figure 5.4: Actual coverage percentage of nominally 95% confidence intervals for β0
B

in a dA = dB = 1 logistic mixed model. The confidence intervals are obtained using
the exact observed Fisher information computations provided by the function glmer()

in the R package lme4 (blue lines) and Theorem 12 with studentization according to
(5.2) (red lines). The nominal percentage is shown as a thick grey horizontal line. The
percentages are based on 1000 replications. The values of m are 100, 200, . . . , 1000. The
value of n is fixed at m/10.

The remaining simulation settings match that of the Poisson simulation study

conducted. Once again, the maximum likelihood estimates of β00 , β
0
B and (σ2)0 were

0 0(β0, βB, (σ2)0) = (.2,−.1,.25) 0 0(β0, βB, (σ2)0) = (−.3,1.2,.6) 0 0(β0, βB, (σ2)0) = (1.6,.2,.7) 0 0(β0, βB, (σ2)0) = (.15,−.5,1) 0 0(β0, βB, (σ2)0) = (−1.3,.1,.8)

0 0(β0, βB, (σ2)0) = (.2,−.1,.25)

Xij ~ Uniform(− 1, 1)
0 0(β0, βB, (σ2)0) = (−.3,1.2,.6)

Xij ~ Uniform(− 1, 1)
0 0(β0, βB, (σ2)0) = (1.6,.2,.7)

Xij ~ Uniform(− 1, 1)
0 0(β0, βB, (σ2)0) = (.15,−.5,1)

Xij ~ Uniform(− 1, 1)
0 0(β0, βB, (σ2)0) = (−1.3,.1,.8)

Xij ~ Uniform(− 1, 1)
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obtained and 95% confidence intervals based on both Theorem 12 and exact observed

Fisher information were computed.

In Figure 5.3, using exact observed Fisher information leads to better coverage

percentages across all values of m. While the confidence intervals constructed using

Theorem 12 do not perform as well for lower values of m, their performances match

those of exact observed Fisher information when the values of m grows beyond m = 500.

In Figure 5.4, both approaches give almost identical coverage percentages for all

response distribution and sample size combinations across all values of m, for all five true

parameter vector settings. Note that the asymptotic variance of β̂B has a convergence

rate of (mn)−1 while the asymptotic variance of β̂0 has a slower convergence rate of m−1.

This attributes to why the coverage percentages computed from Theorem 12-based

confidence intervals achieve percentages closer to 95% for smaller values of m and n in

Figure 5.4 as compared to the results shown in Figure 5.3 in the simple logistic mixed

model simulation study.

Across all four figures, the simulation results indicate that sometimes, certain true

values of the model parameters and the chosen distribution of X may result in Theorem

12 performing worse in comparison to the other simulation cases presented. This is

particularly evident in Figures 5.3 and 5.4. To explain this, we need to look beyond the

first-order asymptotic covariances presented in this thesis and analyse the second-order

asymptotic covariances instead (Maestrini et al., 2023). Let X ≡ {Xij : 1 ≤ i ≤ m, 1 ≤
j ≤ ni}. As an example, for the dA = 1, dB = 1 Poisson quasi-likelihood special case

of (4.3), a solution to the two-term asymptotic covariance problem can be expressed

relatively simply with parameters

βA = β0, βB = β1 and Σ = σ2 and predictor variable X =

 1

X


for a scalar random variable X. Define

a1
(
β0, β1, σ

2
)
≡ eβ0+σ

2/2
[
E(X2eβ1X)E(eβ1X)− {E(Xeβ1X)}2

]
and

a2(β1, σ
2) ≡

eσ
2
E
(
X2eβ1X

)
E
(
eβ1X

)
+
(
1− eσ

2)
E{
(
Xeβ1X

)
}2

E
(
eβ1X

) .
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Then the two-term asymptotic covariance matrix of (β̂0, β̂1) is

Cov


 β̂0

β̂1

 ∣∣∣∣∣X
 =

1

m

 (σ2)0 0

0 0

+ ϕ{1 + op(1)}
a1
(
β0
0 , β

0
1 , (σ

2)0
)
mn

 a2
(
β0
1 , (σ

2)0
)

−E
(
Xeβ

0
1X
)

−E
(
Xeβ

0
1X
)

E
(
eβ

0
1X
)

 .
(5.4)

As is apparent from (5.4), the differences between one-term and two-term asymptotic

variances depend on m, n, σ20 and particular moments of the X distribution in a

complicated way. Theoretically speaking, it is possible to make these differences

arbitrarily small or large by appropriate choices of m, n, σ20 and the distribution of X.

The 4th column of Figure 5.2 contrasts with the other columns in terms of the empirical

coverage because the one-term and two-term approximations differ more, with exact

likelihood being closer to the two-term approximation.

Therefore, for certain chosen values of the true model parameters and distribution

of X, the first order asymptotic variance terms are insufficient to obtain good coverage

percentages as the second term in the asymptotic variance is also significant, especially for

small values of m and n. In these cases, the confidence intervals should be constructed

using two-term asymptotic variances instead rather than the asymptotic variances

presented in Theorem 12, which will lead to better coverage percentages.

With regards to computing these confidence intervals, the Theorem 12 and stu-

dentization based approach provides the analyst with a quicker and simpler option,

especially for large m. When computing asymptotically valid confidence intervals using

the exact approach, numerical integration is required to compute the ratios of integrals

involved when computing the exact observed Fisher information matrix. Note that

for dA > 1, multivariate numerical integration is needed for the exact approach. On

the other hand, for constructing asymptotically valid confidence intervals for β00 using

Theorem 12, when m is in the several hundreds or thousands, the closed form confidence

interval arising from Theorem 12 and studentization is an attractive alternative to

the numerical integration-based exact approach. For constructing asymptotically valid

confidence intervals for β0B using Theorem 12, the logistic case requires simple numerical

integration as compared to the exact approach while the Poisson case does not require

any numerical integration.
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5.2 Approximate Optimal Design

In this section, we demonstrate how the derivations leading to Theorem 12 involving

large sample approximations of the Fisher information can be used in approximate

optimal design settings.

5.2.1 Background and Model Description

In previous sections, we assumed that the data was observed in accordance to the model

described in (4.3). Now, let us consider the use of a generalized linear mixed model

as in (4.3) with dA = 1, XA = 1, βA = β0, Σ = σ2 and with the same number of

observations in each group. Also consider the case where the data is yet to be observed.

This simplifies to a random intercept generalized linear mixed model as follows

Yij |Ui are independent having quasi-likelihood function (4.2) with

natural parameter β00 + (β0
B)
TxBij + Ui such that the Ui are independent

N(0, (σ2)0) random variables,

(5.5)

where 1 ≤ i ≤ m and 1 ≤ j ≤ N . The unique values of the non-random xBij predictor

vectors in the ith group can be viewed as a finite set of points in RdB and can be denoted

as x1, . . . ,xs. Here, s denotes the number of unique predictor vectors.

In optimal design, with the help of an optimality criterion, one is firstly required to

select the possible values of x at which the observations of Yij will be made. One also

has to determine the fraction of occurrences of independent observations made at each

value of x (Russell, 2018). Each x used in the design is a support point. Hence, there

are s unique support points included in the design.

Now let X ⊆ RdB denote the set to which the support points are restricted to. For

example, if dB = 2 with the first predictor being binary and the second predictor being

a proportion then X = {(x1, x2) : x1 ∈ {0, 1}, 0 ≤ x2 ≤ 1}. Also, denote the number of

independent observations made at xk, 1 ≤ k ≤ s, as nk and define

δk ≡
nk
N
, 1 ≤ k ≤ s,

where N ≡ n1 + · · · + ns. Hence, the δk are known as design weights and represent

the fraction of data in the ith group associated to each support point. Note that

δ1 + . . . δs = 1. Our working assumption throughout the rest of this section is that the
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asymptotically valid D-optimal designs are such that each of the m groups have exactly

the same support points and design weights.

In this thesis, we restrict our attention to approximate optimal designs, which are

common when the design weights are represented as decimals or fractions if there are

recurring decimals. For example, a design could contain 4 support points with the

design weights for (δ1, δ2, δ3, δ4) being {0.127, 0.2378, 0.452, 0.1832}. This is an example

of an ideal design that is rarely exactly attainable. In such cases, exact designs with

all nk ∈ Z+ are not always possible, especially for small values of N , and approximate

designs are achievable instead.

Out of the optimality-criteria available, we also restrict our attention to D-optimality.

This involves choosing the design that maximises the determinant of the Fisher infor-

mation matrix. The derivations leading to Theorem 12 involve large sample expressions

for the Fisher information for the class of generalized linear mixed models. By using

the D-optimality criterion, these analogous large sample approximations of the Fisher

information allow for approximate locally optimal design determination. Since the

approximations of the Fisher information matrix are asymptotic approximations, we

only considered designed experiments for which large sample sizes are feasible.

In addition, note that in non-Gaussian generalized linear mixed models, the Fisher

information matrix contains entries dependent on the model parameters. Hence, we

work with designs that maximise the determinant of the Fisher information matrix with

fixed values for the model parameters, known as locally D-optimal designs.

5.2.2 Approximate Locally D-Optimal Design Determination

Define

n ≡ 1

s

s∑
k=1

nk = average of the support point replication sizes within each group.

The theorem relies on the following assumption:

(A7) The design sample sizes nk diverge to ∞ in such a way that nk/(sn) → δk

for constants 0 ≤ δ1 ≤ 1, 1 ≤ k ≤ s.

Theorem 13. Consider the random intercept generalized linear mixed model described in

(5.5) with design weights δk and corresponding support points xk ∈ X ⊆ RdB , 1 ≤ k ≤ s.

Assume that condition (A7) holds. Then, based on the exact leading term behaviour of
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the determinant of the Fisher information matrix, approximate locally D-optimal designs

at the parameter vector (β0,βB, σ
2) are those for which

∣∣∣∣∣
∫ ∞

−∞

lower right dB × dB block of

 s∑
k=1

δkb
′′(β0 + βTBxk + u)

 1 xTk

xk xkx
T
k

−1


−1

× exp{−u2/(2σ2)}du

∣∣∣∣∣
is maximal over {δk : δk ≥ 0,

∑s
k=1 δk = 1, 1 ≤ k ≤ s} and {xk ∈ X : 1 ≤ k ≤ s}.

The proof of Theorem 13 is in the appendix. Some remarks regarding Theorem 13

are as follows:

1. Existing literature that consider the selection of optimal designs using the D-

optimality criterion for classes of generalized linear mixed models similar to

those considered in this thesis include Waite and Woods (2015) and Zhang et al.

(2017). Waite and Woods (2015) used generalized estimating equations to obtain

approximations of the mixed model Fisher Information Matrix. On the other

hand, Zhang et al. (2017) explored three methods to approximate the Fisher

information matrix, namely importance sampling, Laplace approximation and

joint sampling. In contrast, Theorem 13 facilitates approximate locally D-optimal

design determination in a more direct manner and is based on the precise leading

term behaviour of the Fisher information matrix.

2. In this chapter, the theory and discussion has been restricted to D-optimality.

Other optimality criteria such as A-optimality, which requires minimization of

the trace of the inverse of the information matrix, also benefit from our precise

asymptotic approximations of the Fisher information matrix for generalized linear

mixed models.

3. Note that in the Gaussian case, b′′(x) = 1, and the determinant in Theorem 13 is

proportional to ∣∣∣∣∣∣
s∑

k=1

δk

 1 xTk

xk xkx
T
k

∣∣∣∣∣∣ . (5.6)

Since the expression above does not depend on any of the model parameters,

designs that maximize (5.6) are globally D-optimal.

4. In the Poisson linear mixed model case, b′′(x) = exp(x) leads to the simplification
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of Theorem 13. The D-optimality criterion then reduces to∣∣∣∣∣∣
s∑

k=1

δk exp(β
T
Bxk)

 1 xTk

xk xkx
T
k

∣∣∣∣∣∣
/

s∑
k=1

δk exp(β
T
Bxk).

Note that generating approximate locally D-optimal designs for the Poisson linear

mixed model case is only dependent on βB.

5. When considering logistic mixed models, b′′(x) = 1/[2{1 + cosh(x)}] and Theorem

13 does not simplify further. Hence, in the logistic mixed model case, approximate

locally D-optimal designs depend on β0,βB and σ2. Although Theorem 13 does

not admit an explicit form in this case, each of the entries of the approximate

Fisher information matrix can be computed using univariate numerical integration.

5.2.3 Illustration of Theorem 13

In this section, we illustrate the use of Theorem 13 in determining the approximate

optimal design when dB = 2 and both predictors are binary, taking on values of either 0

or 1. In this scenario, there are at most s = 4 support points with the only possible

support points being xk ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}. Since all the possible support

points are known, one would only need to maximise the expression in Theorem 13 over

the design weights. Figure 5.5 shows the approximate locally D-optimal designs, for

the situation where β0 = −0.3, βB = (1.7, 2.1) and the values of σ take on a value

from {0.6, 0.76, 0.97, 1.24, 1.57, 2.00}, by displaying the optimal design weights for the

possible corresponding support points. To obtain Figure 5.5, we used code similar to

that provided in Section 4.5 of Russell (2018), which is based on the optim() function

in R (R Core Team (2022)) and Nelder-Mead searches with 100 random initial values.

We noted that the choices for the initial values of the design weights did not impact

the results. From Figure 5.5, we see that for the two lowest values of σ, the optimal

designs have only three support points, with the point (1, 1) being excluded from the

design. However, as the value of σ increases, the corresponding design weight for the

support point (1, 1) becomes positive and larger.
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Figure 5.5: Approximate locally D-optimal designs for logistic mixed models with two
binary predictors when β0 = −0.3, βB = (1.7, 2.1) and the values of σ take on a value
from {0.6, 0.76, 0.97, 1.24, 1.57, 2.00}.

5.3 Appendix

This appendix contains the details for the derivations leading up to Theorem 13.

5.3.1 Model Description

Our working assumption throughout this section is that the asymptotically D-optimal
designs have exactly the same support points and design weights for each of the m
groups. Let xk, 1 ≤ k ≤ s, be the support points that are common to each group. For
each 1 ≤ i ≤ m, let

nk = number of xk values in the design, 1 ≤ k ≤ s.

σ = 0.60 σ = 0.76 σ = 0.97

σ = 1.24 σ = 1.57 σ = 2.00
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Following that, the full data for the ith group can be expressed as:(
x1, Y

[1]
i1

)
,
(
x1, Y

[1]
i2

)
, . . . ,

(
x1, Y

[1]
in1

)
,(

x2, Y
[2]
i1

)
,
(
x2, Y

[2]
i2

)
, . . . ,

(
x2, Y

[2]
in2

)
,

...(
xs, Y

[s]
i1

)
,
(
xs, Y

[s]
is

)
, . . . ,

(
xs, Y

[s]
ins

)
.

Then, the conditional quasi-probability mass function or quasi-density function of Y
[k]
ij

given Ui is

p
Y

[k]
ij |Ui

(y|Ui = ui) = exp

[
1

ϕ

{
y(β0 + βTB xk + ui)− b(β0 + βTB xk + ui)

}
+ c(y)

]
,

where Ui ∼ N(0, σ2), 1 ≤ i ≤ m, 1 ≤ j ≤ nk and 1 ≤ k ≤ s. Also, for each 1 ≤ i ≤ m,
conditional on Ui the

Y
[k]
ij , 1 ≤ j ≤ nk, 1 ≤ k ≤ s

are independent. Therefore, the quasi-likelihood of (β0,βB, σ
2) is

L(β0,βB, σ2) =
m∏
i=1

∫ ∞

−∞


s∏

k=1

nk∏
j=1

p
Y

[k]
ij |Ui

(Y
[k]
ij |Ui = u)

 1√
2πσ2

exp{−(u2)/(2σ2)} du,

and the conditional quasi-log-likelihood is

ℓ(β0,βB , σ
2) =

m∑
i=1

log

∫ ∞

−∞


s∏

k=1

nk∏
j=1

p
Y

[k]
ij |Ui

(Y
[k]
ij |Ui = u)

 1√
2πσ2

exp{−(u2)/(2σ2)} du

=
m∑
i=1

log

(
1√
2πσ2

∫ ∞

−∞
exp

[
s∑

k=1

nk∑
j=1

{ 1

ϕ
Y

[k]
ij (β0 + βT

B xk + u)

− 1

ϕ
b(β0 + βT

B xk + u) + c(Y
[k]
ij )
}
− (u2)/(2σ2)

]
du

)
.

Note that,

∫ ∞

−∞
exp

 s∑
k=1

nk∑
j=1

1

ϕ

{
Y

[k]
ij (β0 + βTB xk + u)− b(β0 + βTB xk + u)

}
− u2

2σ2

 du
= exp

 s∑
k=1

nk∑
j=1

1

ϕ

{
Y

[k]
ij (β0 + βTB xk)

}
×
∫ ∞

−∞
exp

 s∑
k=1

nk∑
j=1

1

ϕ

{
Y

[k]
ij u− b(β0 + βTB xk + u)

}
− u2

2σ2

 du.
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Hence,

log

∫ ∞

−∞
exp

 s∑
k=1

nk∑
j=1

1

ϕ

{
Y

[k]
ij (β0 + βTB xk + u)− b(β0 + βTB xk + u)

}
− u2

2σ2

 du
=

s∑
k=1

nk∑
j=1

1

ϕ
Y

[k]
ij (β0 + βTB xk)

+ log

∫ ∞

−∞
exp

 s∑
k=1

nk∑
j=1

1

ϕ

{
Y

[k]
ij u− b(β0 + βTB xk + u)

}
− u2

2σ2

 du.
Therefore, by rewriting the conditional quasi-log-likelihood, we have,

ℓ(β0,βB , σ
2) =−m

2
log(2πσ2) +

m∑
i=1

s∑
k=1

nk∑
j=1

1

ϕ
Y

[k]
ij (β0 + βT

B xk)

+
m∑
i=1

log

∫ ∞

−∞
exp

 s∑
k=1

nk∑
j=1

1

ϕ

{
Y

[k]
ij u− b(β0 + βT

B xk + u)
}
− u2

2σ2

 du
+ C,

where C denotes a constant term independent of (β0,βB, σ
2).

5.3.2 Asymptotic Assumption for Support Point Sample Sizes

Define

n ≡ 1

s

s∑
k=1

nk = average of the support point replication sizes within each group.

For the upcoming asymptotic analysis we assume:

(A4) The design sample sizes nk diverge to ∞ in such a way that
nk/(sn) → δk for constants 0 < δk < 1, 1 ≤ k ≤ s.

The δk correspond to the so-called design weights.

5.3.3 Useful Notation

Let v be a generic d× 1 vector. Then for r = 0, 1, 2 we define

v⊗ r ≡


1 for r = 0

v for r = 1

vvT for r = 2.
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Note that, according to this notation, for all (r, r′) ∈ {(0, 0), (1, 0), (1, 1)},

v⊗r(v⊗r′)T = v⊗(r+r′).

For r = 0, 1 and 1 ≤ i ≤ m, also define

G̃ri ≡
s∑

k=1

nk∑
j=1

x⊗r
k {Y [k]

ij −b′(β0+βTB xk+Ui)} and H̃ri ≡
s∑

k=1

nkx
⊗r
k b′′(β0+βTB xk+Ui).

Also, let H̃′
ir be the same as H̃ir but with b

′′ replaced by b′′′.

5.3.4 Key Moment Results

In this subsection, we present some key moment results required for the asymptotic
derivations in the subsections to follow.

The Expectation of G̃ri Given Ui

Note that for r, r′ = 0, 1:

E[x⊗r
k (x⊗r′

k )T {Y [k]
ij − b′(β0 + βTB xk + Ui)}|Ui]

= x⊗r
k (x⊗r′

k )TE{Y [k]
ij − b′(β0 + βTB xk + Ui)|Ui}

= x⊗r
k (x⊗r′

k )TE{b′(β0 + βTB xk + Ui)− b′(β0 + βTB xk + Ui)}

= O.

Hence
E[x⊗r

k (x⊗r′
k )T {Y [k]

ij − b′(β0 + βTB xk + Ui)}|Ui] = O. (5.7)

It follows immediately from (5.7) that

E(G̃0i|Ui) = 0, E(G̃1i|Ui) = 0 and E(G̃2i|Ui) = O.

The Expectation of G̃ri G̃Tr′i Given Ui

Note that for all (r, r′) ∈ {(0, 0), (1, 0), (1, 1)},

E(G̃ri G̃Tr′i|Ui) = E

( s∑
k=1

nk∑
j=1

x⊗r
k {Y [k]

ij − b′(β0 + βTB xk + Ui)}


×

 s∑
k′=1

nk′∑
j′=1

x⊗r′
k′ {Y [k′]

ij′ − b′(β0 + βTB xk′ + Ui)}

T ∣∣∣∣∣Ui
)

=

s∑
k=1

s∑
k′=1

nk∑
j=1

nk′∑
j′=1

x⊗r
k (x⊗r′

k′ )TE
[
{Y [k]

ij − b′(β0 + βTB xk + Ui)}

×{Y [k′]
ij′ − b′(β0 + βTB xk′ + Ui)}|Ui

]
.

(5.8)
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First consider those terms for which

k = k′ and j = j′. (5.9)

Such terms have the form

x⊗r
k (x⊗r′

k )TVar
[
{Y [k]

ij − b′(β0 + βTB xk + Ui)}|Ui
]
= ϕb′′(β0 + βTB xk + Ui).

Therefore, the contribution to (5.8) from the terms satisfying (5.9) is

ϕ
s∑

k=1

nkx
⊗(r+r′)
k b′′(β0 + βTB xk + Ui) = ϕH̃(r+r′)i.

Next consider those terms for which

k = k′ and j ̸= j′. (5.10)

Since

E[{Y [k]
ij − b′(β0 + βTB xk + Ui)}{Y [k]

ij′ − b′(β0 + βTB xk + Ui)}|Ui]

= E[{Y [k]
ij − b′(β0 + βTB xk + Ui)}|Ui]E[{Y [k]

ij′ − b′(β0 + βTB xk + Ui)}|Ui]

= 0,

the contribution to (5.8) from the terms satisfying (5.10) is 0. Next consider those terms
for which

k ̸= k′. (5.11)

Then Y
[k]
ij and Y

[k′]
ij must be distinct random variables, which implies that

E[{Y [k]
ij − b′(β0 + βTB xk + Ui)}{Y [k′]

ij − b′(β0 + βTB xk′ + Ui)}|Ui] = 0 for all k ̸= k′.

Therefore, for (r, r′) ∈ {(0, 0), (1, 0), (1, 1)} we have

E(G̃riG̃Tr′i|Ui) = ϕH̃(r+r′)i.

Lastly, there is the issue when (r, r′) = (0, 1). Note the special case

E(G̃1iG̃T0i|Ui) = ϕH̃1i.

Taking the transpose on each side of this equation we obtain

E(G̃0iG̃T1i|Ui) = ϕH̃T
1i.

Then, the full set of results for E(G̃riG̃Tr′i|Ui) is:

E(G̃0iG̃T0i|Ui) = ϕH̃0i, E(G̃0iG̃T1i|Ui) = ϕH̃T
1i,

E(G̃1iG̃T0i|Ui) = ϕH̃1i, E(G̃1iG̃T1i|Ui) = ϕH̃2i.

But since G̃0i is a scalar, these results can be simplified to

E(G̃2
0i|Ui) = ϕH̃0i, E(G̃0iG̃1i|Ui) = ϕH̃1i and E(G̃1iG̃T1i|Ui) = ϕH̃2i. (5.12)
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5.3.5 The Fisher Information Matrix

To construct an asymptotic approximation of the Fisher information matrix, we require
asymptotic expansions of the scores and their quadratic expectations. Hence, we follow
steps similar to those detailed under the proof for Theorem 12 for these computations
as well. Putting together the resultant expressions from these computations, we have
the following expression for the Fisher information

I(β0,βB, σ
2)

=



m

σ2
+O(mn−1) O(m)1TdB O(mn−1)

O(m)1dB
1

ϕ

m∑
i=1

E

(
H̃2i −

H̃⊗2
1i

H̃0i

)
+O(m)1⊗2

dB
O(m)1dB

O(mn−1) O(m)1TdB
m

2σ4
+O(mn−1)


.

5.3.6 The Asymptotic D-Optimality Criterion

Next, we change the ordering of the parameters from (β0,βB, σ
2) to (β0, σ

2,βB). Then
partition I(β0, σ

2,β1) according to

I(β0, σ
2,βB) =

 Ã11 ÃT
12

Ã12 Ã22


where

Ã11 ≡


m

σ2
+O(mn−1) O(mn−1)

O(mn−1)
m

2σ4
+O(mn−1)

 , Ã12 ≡ O(m)[1dB 1dB ],

and

Ã22 ≡
m

ϕ
E

(
H̃21 −

H̃⊗2
11

H̃01

)
+O(m)1⊗2

dB
.

Now, we apply a standard result concerning the determinant of a 2× 2 block-partitioned
matrix (e.g. Harville, 2008; Theorem 13.3.8) to obtain

|I(β0,βB, σ2)| =
∣∣∣Ã11

∣∣∣∣∣∣Ã22 − ÃT
12Ã

−1
11 Ã12

∣∣∣.
It is easily verified that

∣∣∣Ã11

∣∣∣ = m2/(2σ6) +O(mn−1) and ÃT
12Ã

−1
11 Ã12 = O(m)1⊗2

dB
. It

follows that

2ϕdBσ6

mdB+2

∣∣∣I(β0,βB, σ2)∣∣∣ =
∣∣∣∣∣E
(
H̃21 −

H̃⊗2
11

H̃01

)
+O(1)1⊗2

dB

∣∣∣∣∣ = ∣∣∣Ψn +O(1)1⊗2
dB

∣∣∣ (5.13)
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where Ψn ≡ E
(
H̃21 − H̃⊗2

11 /H̃01

)
. Since H̃01 = OP (n), H̃11 = OP (n)1dB and H̃21 =

OP (n)1
⊗2
dB

, we have Ψn = O(n)1⊗2
dB

. Let λ1(M), . . . , λdB (M) denote the eigenvalues of
a generic dB × dB matrix M . Then

∣∣∣Ψn +O(1)1⊗2
dB

∣∣∣ = dB∏
j=1

λj

(
Ψn +O(1)1⊗2

dB

)
.

As a consequence of Theorem 8.1.4 (Wielandt-Hoffman) of Golub and Van Loan (2013),

λj
(
Ψn +O(1)1⊗2

d

)
= λj (Ψn) +O(1)

for each 1 ≤ j ≤ dB. Hence

∣∣∣Ψn +O(1)1⊗2
dB

∣∣∣ = |Ψn|+O(1)

dB∑
j=1

|Ψn| /λj(Ψn). (5.14)

To obtain the order of magnitude of the λj(Ψn) we appeal to Theorem 8.1.3 (Gershgorin)
of Golub and Van Loan (2013). Since all entries of Ψn are O(n), the same is true for
the lower and upper limits of each of the Gershgorin discs of Ψn. Since each eigenvalue
of Ψn is inside at least one Gershgorin disc, we have λj(Ψn) = O(n), 1 ≤ j ≤ dB. It
follows from this fact and (5.14) that∣∣∣Ψn +O(1)1⊗2

dB

∣∣∣ = |Ψn| {1 + o(1)}.

In view of (5.13), the determinant of
∣∣I(β0,βB, σ2)∣∣ is proportional to a quantity with

leading term |Ψn| as n → ∞. Recalling that nk = nsδk and dividing through by ns
we can assert that approximate locally D-optimal designs, based on the exact leading
term behaviour of the determinant of the Fisher information matrix, are those which
maximize∣∣∣∣∣∣∣∣∣∣∣
E


s∑

k=1

δkx
⊗r
k b′′(β0 + βTB xk + U)−

(
s∑

k=1

δkxkb
′′(β0 + βTB xk + U)

)⊗2

s∑
k=1

δkb′′(β0 + βTB xk + U)



∣∣∣∣∣∣∣∣∣∣∣
, U ∼ N(0, σ2),

over the design weights δk and support points xk, 1 ≤ k ≤ s.

The following quantity can then be used to obtain asymptotic D-optimal designs:∣∣∣∣∣∣∣∣∣∣∣
s∑

k=1

δkE{b′′(β0 + βTBxk + U)}x⊗2
k − E



(
s∑

k=1

δkb
′′(β0 + βTBxk + U)xk

)⊗2

s∑
k=1

δkb′′(β0 + βTBxk + U)



∣∣∣∣∣∣∣∣∣∣∣
(5.15)
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where U ∼ N(0, σ2). An equivalent integral form is:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

s∑
k=1

δkx
⊗2
k

∫ ∞

−∞
b′′(β0 + βTBxk + u) exp{−u2/(2σ2)} du

−
∫ ∞

−∞

(
s∑

k=1

δkb
′′(β0 + βTBxk + u)xk

)⊗2

exp{−u2/(2σ2)} du

s∑
k=1

δkb′′(β0 + βTBxk + u)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (5.16)

5.3.7 Alternative Final Asymptotic D-optimality Criterion

Consider the matrix-valued function Ω(u) given by

Ω(u) ≡
s∑

k=1

δkb
′′(β0 + βTB + u)

 1 xk

xTk xkx
T
k

 .
Then

Ω(u) =


s∑

k=1

δkb
′′(β0 + βTB + u)

s∑
k=1

δkxkb
′′(β0 + βTB + u)

s∑
k=1

δkx
T
k b

′′(β0 + βTB + u)

s∑
k=1

δkxkx
T
k b

′′(β0 + βTB + u)


and the lower right dB × dB block of Ω(u)−1 is

s∑
k=1

δkxkx
T
k b

′′(β0 + βTB + u)−

(
s∑

k=1

δkxkb
′′(β0 + βTB + u)

)⊗2

s∑
k=1

δkb′′(β0 + βTB + u)



−1

.

The inverse of this function is the function of u that is multiplied by exp{−u2/(2σ2)}
in the determinant of (5.16). Therefore, an alternative expression for (5.16) is∣∣∣∣∣∣∣∣∣∣

∫ ∞

−∞

{
lower right d× d block of

 s∑
k=1

δkb
′′(β0 + βT

1 xk + u)

 1 xk

xT
k xkx

T
k

−1 }−1

× exp{−u2/(2σ2)} du

∣∣∣∣∣∣∣∣∣∣
and is the form of the asymptotic D-optimality criterion presented in Theorem 13.
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5.3.8 Special Distribution Cases

Poisson Special Case

In the Poisson special case, b′′ = exp and therefore, we have,

b′′(β0 + βTBxk + U) = exp(U + β0) exp(β
T
Bxk).

We can show that exp(U +β0) comes out as a multiplicative factor in (5.15). This is the
only random factor in the expectation expression. Therefore, an equivalent D-optimality
criterion is ∣∣∣∣∣∣∣∣∣∣∣

s∑
k=1

δk exp(β
T
Bxk}x⊗2

k −

(
s∑

k=1

δk exp(β
T
Bxk)xk

)⊗2

s∑
k=1

δk exp(β
T
Bxk)

∣∣∣∣∣∣∣∣∣∣∣
. (5.17)

Define

Λ ≡
s∑

k=1

δk exp(β
T
Bxk)

 1 xTk

xk xkx
T
k

 .
Then

Λ =


s∑

k=1

δk exp(β
T
Bxk)

s∑
k=1

δk exp(β
T
Bxk)x

T
k

s∑
k=1

δk exp(β
T
Bxk)xk

s∑
k=1

δk exp(β
T
Bxk)x

⊗2
k

 .
From the result concerning the determinant of a 2 × 2 block partitioned matrix, we
obtain

|Λ| =

∣∣∣∣∣
[

s∑
k=1

δk exp(β
T
Bxk)

]∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣
s∑

k=1

δk exp(β
T
Bxk}x⊗2

k −

(
s∑

k=1

δk exp(β
T
Bxk)xk

)⊗2

s∑
k=1

δk exp(β
T
Bxk)

∣∣∣∣∣∣∣∣∣∣∣
It follows that (5.17) is equivalent to

|Λ|
/ s∑
k=1

δk exp(β
T
1 xk).

In other words, an equivalent asymptotic D-optimality criterion for Poisson mixed
models is ∣∣∣∣∣∣

s∑
k=1

δk exp(β
T
Bxk)

 1 xTk

xk x⊗2
k

∣∣∣∣∣∣
/

s∑
k=1

δk exp(β
T
Bxk).
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Note that, in the Poisson case, this means that the asymptotic locally D-optimal designs
do not depend on β0 or σ2. They only depend on βB. Also, for Poisson regression
models, the D-optimality criterion is∣∣∣∣∣∣

s∑
k=1

δk exp(β
T
Bxk)

 1 xTk

xk x⊗2
k

∣∣∣∣∣∣ .
Therefore, asymptotic D-optimality for Poisson mixed models involves maximisation of
a quantity that is similar, but not identical, to that for Poisson regression models.

Logistic Special Case

In the logistic mixed model special case, after taking out multiplicative factors, the
quantity (5.16) becomes:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

s∑
k=1

δkx
⊗2
k

∫ ∞

−∞

exp{−u2/(2σ2)} du
1 + cosh(β0 + βTBxk + u)

−
∫ ∞

−∞

(
s∑

k=1

δkxk/{1 + cosh(β0 + βTBxk + u)}

)⊗2

exp{−u2/(2σ2)} du

s∑
k=1

δk/{1 + cosh(β0 + βTBxk + u)}

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.
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Chapter 6

Thouless-Anderson-Palmer
Enhancement of Generalized
Linear Mixed Models

Frequentist inference for GLMMs is hindered by integral intractability problems. In

machine learning contexts, Thouless-Anderson-Palmer approaches, highlighted in Sub-

section 1.11.1 in Chapter 1, can not only help overcome issues involving intractable

integrals but theoretically also provide better approximations. However, statistical

applications such as longitudinal data analysis and multilevel models analysis have not

been investigated at all. Therefore, in this chapter, the goal is to apply the Thouless-

Anderson-Palmer frequentist variational approach to generalized linear mixed models

with canonical links.

Firstly, the TAP enhancement approach is explained and we obtain a result detailing

the explicit form of the TAP approximate negative log-likelihood expression for GLMMs

with canonical links, which can then be locally minimized to obtain TAP estimates of

the true model parameters.

We then carry out simulation studies to investigate the use of the TAP enhancement

approach in practical settings and compare it to the popular Gaussian variational

approximation approach for simplified Poisson generalized linear mixed model set-ups.

This chapter is broken up into several parts. Section 6.1 details the model set-up

used throughout sections 6.2 to 6.4. Section 6.2 then provides an explicit expression

for the GVA log-likelihood. Following that, Section 6.3 provide details regarding the

TAP enhancement approach which builds on the GVA approach. An explicit result
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for the TAP negative approximate log-likelihood for GLMMs with canonical links is

then provided in Section 6.4. Lastly, Section 6.5 delves into two simulation studies

constructed for Poisson GLMMs and compares the quality of estimates obtained from

the TAP approach against the GVA approach.

6.1 Model Description

Consider the use of a simple canonical link generalized linear mixed model as follows

where

Yij |Xij , Ui are independent having density function (4.1) with

natural parameter β00 + β01Xij + Ui such that the Ui are independent

N
(
0,
(
σ2
)0)

random variables.

(6.1)

Here, the values of (Xij , Yij) are observed for 1 ≤ i ≤ m and 1 ≤ j ≤ n. We have

assumed that the Xij and Ui are independent random variables. In addition, the Xij

are each assumed as having the same distribution as the random vector X. The Ui

are the unobserved random effects variables and are assumed to be having the same

distribution as the random vector U.

Let β ≡ (β0, β1) be the vector of fixed parameters. Then the model parameters for

this set-up are (β, σ2).

6.2 The Gaussian Variational Approximate Log-Likelihood

Using the model description in (6.1), one can then obtain ℓ(β, σ2), the conditional

log-likelihood of (β, σ2), where

ℓ
(
β, σ2

)
=

m∑
i=1

n∑
j=1

{Yij (β0 + β1Xij) + c(Yij)} −
m

2
log(2πσ2)

+

m∑
i=1

log

∫ ∞

−∞
exp


n∑
j=1

(Yiju− b(β0 + β1Xij + u))− u2

2σ2

 du.

(6.2)

Maximum likelihood estimation is hindered due to the m intractable integrals arising in

the expression in (6.2). However, each of the m integrals can be re-written to overcome
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this obstacle by re-expressing the ith integral as follows (Hall et al., 2011)

∫ ∞

−∞
exp


n∑
j=1

(Yiju− b(β0 + β1Xij + u))− u2

2σ2

 e−(1/2)(u−µi)2λi/
√
2πλi

e−(1/2)(u−µi)2λi/
√
2πλi

du

=
√
2πλiEŨi

exp


n∑
j=1

(
YijŨi − b(β0 + β1Xij + Ũi)

)
− Ũ2

i

2σ2
+

(Ũi − µi)
2

2λi




where EŨi
denotes the expectation with respect to the random variable Ũi ∼ N(µi, λi)

with λi > 0, for 1 ≤ i ≤ m. Here, (µ,λ) are known as the variational parameters where

µ = (µ1, . . . , µm) and λ = (λ1, . . . , λm). Using Jensen’s inequality, one can then obtain

the following lower bound

logEŨi

exp


n∑
j=1

(
YijŨi − b(β0 + β1Xij + Ũi)

)
− Ũ2

i

2σ2
+

(Ũi − µi)
2

2λi




≥ EŨi


n∑
j=1

(
YijŨi − b(β0 + β1Xij + Ũi)

)
− Ũ2

i

2σ2
+

(Ũi − µi)
2

2λi

 ,

which is now tractable. Then, the Gaussian variational approximation to ℓ(β, σ2) is

derived as,

ℓGVA(β, σ
2,µ,λ)

=

m∑
i=1

n∑
j=1

{Yij(β0 + β1Xij) + c(Yij)} −
m

2
log(2πσ2) +

m∑
i=1

log(
√
2πλi)

+
m∑
i=1

EŨi


n∑
j=1

(
YijŨi − b(β0 + β1Xij + Ũi)

)
− Ũ2

i

2σ2
+

(Ũi − µi)
2

2λi


=

m∑
i=1

EŨi

[
n∑
j=1

{
Yij(β0 + β1Xij + Ũi)− b(β0 + β1Xij + Ũi) + c(Yij)

}

− Ũ2
i

2σ2
− 1

2
log(2πσ2)

]
+

1

2

m∑
i=1

{1 + log(2πλi)} .

(6.3)

Note that

ℓ(β, σ2) ≥ ℓGVA(β, σ
2,µ,λ)

for all vectors µ and λ.
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6.3 Overview of Thouless-Anderson-Palmer Enhancement

In this section, we provide details on how the TAP enhancement approach builds upon

the GVA approach. Firstly, for each 1 ≤ i ≤ m, define the following data vectors:

Yi ≡ (Yi1, . . . Yin) and Xi ≡ (Xi1, . . . Xin) .

The GVA negative log-likelihood can then be expressed as follows (Johnstone, 2022)

−ℓGVA(β, σ
2,µ,λ) = −1

2

m∑
i=1

{1 + log(2πλi)}+
m∑
i=1

EŨi

{
Ψi(Ũi)|Yi,Xi

}
,

where

Ψi(Ũi) =
n∑

j=1

{
−Yij(β0 + β1Xij + Ũi) + b(β0 + β1Xij + Ũi)− c(Yij)

}
+
Ũ2
i

2σ2
+

1

2
log(2πσ2).

The TAP enhancement approach theoretically obtains better approximations than the

GVA approach by enhancing the expression in −ℓGVA(β, σ
2,µ,λ) through the addition

of the Onsager’s correction term to −ℓGVA(β, σ
2,µ,λ), which was first introduced in

Thouless et al. (1977). The Onsager’s correction term is defined as follows

−1/2

m∑
i=1

ξi
(
µi, λi;Xi,Yi, β0, β1, σ

2
)
,

with

ξi
(
µi, λi;Yi,Xi, β0, β1, σ

2
)

≡ Var{Ψi(Ũi)|Yi,Xi} − λi

[
E{Ψ′

i(Ũi)|Yi,Xi}
]2

− λ2i
2

[
E{Ψ′′

i (Ũi)|Yi,Xi}
]2
,

(6.4)

where (6.4) was obtained based on personal communication with Professor Song Mei

(University of California, Berkeley, U.S.A) and Professor Iain Johnstone (Stanford

University, U.S.A). They derived a working expression for the main quantity in the

Onsager’s correction term for density functions from exponential families.
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Following that, the TAP approximate negative log-likelihood can be obtained as,

−ℓTAP(β, σ
2,µ,λ) = −ℓGVA(β, σ

2,µ,λ)− 1

2

m∑
i=1

ξi
(
µi, λi;Xi,Yi, β0, β1, σ

2
)

= −1

2

m∑
i=1

{1 + log(2πλi)}+
m∑
i=1

E
{
Ψi(Ũi)|Yi,Xi

}
− 1

2

m∑
i=1

(
Var{Ψi(Ũi)|Yi,Xi} − λi

[
E{Ψ′

i(Ũi)|Yi,Xi}
]2

− λ2i
2

[
E{Ψ′′

i (Ũi)|Yi,Xi}
]2)

.

(6.5)

Now define

Yi• ≡
n∑
j=1

Yij and Ai(Ũi) ≡
n∑
j=1

b(β0 + β1Xij + Ũi).

Then, we can re-express Ψi(Ũi) as

Ψi(Ũi) = −
n∑
j=1

Yij(β0 + β1Xij + Ũi) +Ai(Ũi)−
n∑
j=1

c(Yij) +
Ũ2
i

2σ2
+

1

2
log(2πσ2).

It follows that

Ψ′
i(Ũi) = −Yi• +A′

i(Ũi) +
Ũi
σ2

and

Ψ′′
i (Ũi) = A′′

i (Ũi) +
1

σ2
.

Also note that

A′
i(Ũi) =

n∑
j=1

b′(β0 + β1Xij + Ũi) and A′′
i (Ũi) =

n∑
j=1

b′′(β0 + β1Xij + Ũi).

6.4 The Thouless-Anderson-Palmer Approximate Nega-

tive Log-Likelihood

In this section, we present a result detailing the Thouless-Anderson-Palmer approximate

negative log-likelihood expression for canonical link GLMMs after having solved for the

equation in (6.5). First, for p, q ∈ {0, 1, 2}, r > 0 and s, t ∈ R, define

Q(p, q, r, s, t) ≡ (2π)−1/2

∫ ∞

−∞
(s+ rx)pb(q)(t+ rx) exp

(
−x

2

2

)
dx. (6.6)
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Also, for r > 0 and s, t ∈ R, define

R(r, s, t) ≡ (2π)−1/2

∫ ∞

−∞
b(s+ rx)b(t+ rx) exp

(
−x

2

2

)
dx. (6.7)

We then have the following result.

Result 2. Consider the model set-up as in (6.1). Then the Thouless-Anderson-Palmer

approximate negative likelihood is

−ℓTAP(β, σ
2,µ,λ) = −ℓGVA(β, σ

2,µ,λ)− 1

2

m∑
i=1

ξi
(
µi, λi;Xi,Yi, β0, β1, σ

2
)
,

where

ℓGVA(β, σ
2,µ,λ) =

m∑
i=1

EŨi

[
n∑

j=1

{
Yij(β0 + β1Xij + Ũi)− b(β0 + β1Xij + Ũi) + c(Yij)

}

− Ũ2
i

2σ2
− 1

2
log(2πσ2)

]
+

1

2

m∑
i=1

{1 + log(2πλi)}

and

ξi
(
µi, λi;Yi,Xi, β0, β1, σ

2
)

=

n∑
j=1

{(
2Yi•µi −

λi + µ2i
σ2

)
Q(0, 0,

√
λi, µi, β0 + β1Xij + µi)

+ 2λi

(
Yi• −

µi
σ2

)
Q(0, 1,

√
λi, µi, β0 + β1Xij + µi)

− 2Yi•Q(1, 0,
√
λi, µi, β0 + β1Xij + µi)

− λ2i
σ2

Q(0, 2,
√
λi, µi, β0 + β1Xij + µi) +

1

σ2
Q(2, 0,

√
λi, µi, β0 + β1Xij + µi)

−Q(0, 0,
√
λi, µi, β0 + β1Xij + µi)

2 − λiQ(0, 1,
√
λi, µi, β0 + β1Xij + µi)

2

− λ2i
2
Q(0, 2,

√
λi, µi, β0 + β1Xij + µi)

2

+
n∑

j′=1

R(
√
λi, β0 + β1Xij + µi, β0 + β1Xij′ + µi)

}
.

The proof for Result 2 is provided in the appendix under Subsection 6.6.1.
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6.5 Thouless-Anderson-Palmer Enhancement for Poisson

Generalized Linear Mixed Models

In the Poisson case, when b(x) = exp(x), Q(p, q, r, s, t) and R(r, s, t) admit exact

expressions when evaluating Result 2. However, for general b functions, numerical

integration is required for evaluating (6.6) and (6.7). Hence in this section, we work

with a Poisson generalized linear mixed model and capitalize on having exact expressions

to work with. Here we consider the model set-up of Hall et al. (2011) where

Yij |Xij , Ui independent Poisson with mean exp(β00 + β01Xij + Ui),

such that the Ui are independent N(0, (σ2)0).
(6.8)

In Subsection 6.5.1, we detail the expression for the Gaussian variational approximate

log-likelihood for the model set-up in (6.8). Similarly, in Subsection 6.5.2, the expression

for the Thouless-Anderson-Palmer approximate negative log-likelihood is presented.

Subsection 6.5.3 moves on to study the optimisation issues present when using the

TAP approach by exploring a simpler version of the set-up in (6.8) with m = 1. Lastly,

in Subsection 6.5.4, a full simulation study is carried out to assess and compare the

accuracy of the estimates of the model parameters across the GVA and TAP approaches

for the model set-up in (6.8).

6.5.1 The Gaussian Variational Approximate Log-Likelihood for Sim-

ulation Set-Up

Substituting b(x) = exp(x) and c(x) = − log(x!) into (7.7), the Gaussian variational

approximate log-likelihood for the model set-up in (6.8) is

ℓGVA(β, σ
2,µ,λ) =

m∑
i=1

EŨi

[
n∑
j=1

{
Yij(β0 + β1Xij + Ũi)− eβ0+β1Xij+Ũi − log(Yij !)

}

− Ũ2
i

2σ2
− 1

2
log(2πσ2)

]
+

1

2

m∑
i=1

{1 + log(2πλi)}

=
m∑
i=1

n∑
j=1

{
Yij(β0 + β1Xij + µi)− eβ0+β1Xij+µi+

1
2
λi
}

−
m∑
i=1

µ2i + λi
2σ2

− m

2
log(σ2) +

1

2

m∑
i=1

log(λi) + C,
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with vectors µ = (µ1, . . . , µm) and λ = (λ1, . . . , λm) as the variational parameters.

Also, note that C denotes the constant term independent of any model or variational

parameters.

6.5.2 The Thouless-Anderson-Palmer Negative Approximate Log-

Likelihood for Simulation Set-Up

We start out with the following result:

Result 3. Consider the model set-up as in (6.8). Then the Onsager’s correction term

in the Thouless-Anderson-Palmer negative approximate likelihood is

− 1

2

m∑
i=1

ξi
(
µi, λi;Xi,Yi, β0, β1, σ

2
)

= −1

2

m∑
i=1

{exp(λi)− 1− λi −
1

2
λ2i

}
exp(2µi + λi)


n∑
j=1

exp(β0 + β1Xij)


2 .

The details for the derivations leading to Result 3 is in the appendix under Subsection

6.6.3. By using Results 2 and 3 together, we have that the TAP negative approximate

log-likelihood for the model set-up in (6.8) is

− ℓTAP(β, σ
2,µ,λ)

=
m∑
i=1

n∑
j=1

{
−Yij(β0 + β1Xij + µi) + eβ0+β1Xij+µi+

1
2λi

}
+

m∑
i=1

µ2
i + λi
2σ2

+
m

2
log(σ2)

− 1

2

m∑
i=1

log(λi)−
1

2

m∑
i=1

{exp(λi)− 1− λi −
1

2
λ2i

}
exp(2µi + λi)


n∑

j=1

exp(β0 + β1Xij)


2


+ C,

where C denotes a constant term independent of any model or variational parameters.

6.5.3 Optimisation Issues

In this section, we look into the problem of obtaining a local minimum for the Thouless-

Anderson-Palmer approximate negative log-likelihood. We have chosen to focus on a

simplified version of the model set-up in (6.8) to highlight the optimisation problems

encountered.
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6.5.3.1 A Simplified Version of the Optimisation Problem

First, consider the case where

β1 = 0, σ2 = σ2fixed, m = 1.

This situation corresponds to the following simplified Poisson mixed model:

Y1j |U1 ∼ Poisson
(
eβ0+U1

)
, 1 ≤ j ≤ n, U1 ∼ N(0, σ2fixed). (6.9)

It follows that in this case, the Thouless-Anderson-Palmer approximate negative log-

likelihood can be simplified to

−ℓTAP(β0, µ1, λ1) = −(β0 + µ1)

n∑
j=1

Yij + neβ0+µ1+
1
2
λ1 +

µ21 + λ1
2σ2fixed

− 1

2
log(λ1)

− 1

2

{
exp(λ1)− 1− λ1 −

1

2
λ21

}
n2 exp(2µ1 + λ1 + 2β0) + C,

where C denotes a constant term independent of any model or variational parameters.

To facilitate the optimization process, we compute the partial derivatives required

for minimising the Thouless-Anderson-Palmer approximate negative log-likelihood. The

first order partial derivatives are as follows:

−∂ℓTAP(β0, µ1, λ1)

∂β0
= −

n∑
j=1

Yij + n exp

(
β0 + µ1 +

1

2
λ1

)

− n2
{
exp(λ1)− 1− λ1 −

1

2
λ21

}
exp(2µ1 + λ1 + 2β0),

−∂ℓTAP(β0, µ1, λ1)

∂µ1
= −

n∑
j=1

Yij + n exp

(
β0 + µ1 +

1

2
λ1

)
+

µ1

σ2
fixed

− n2
{
exp(λ1)− 1− λ1 −

1

2
λ21

}
exp(2µ1 + λ1 + 2β0) and

−∂ℓTAP(β0, µ1, λ1)

∂λ1
=
n

2
exp

(
β0 + µ1 +

1

2
λ1

)
+

1

2σ2
fixed

− 1

2λ1

− n2

2
{exp(λ1)− 1− λ1} exp(2µ1 + λ1 + 2β0)

− n2

2

{
exp(λ1)− 1− λ1 −

1

2
λ21

}
exp(2µ1 + λ1 + 2β0)

=
n

2
exp

(
β0 + µ1 +

1

2
λ1

)
+

1

2σ2
fixed

− 1

2λ1

− n2

2

{
2 exp(λ1)− 2− 2λ1 −

1

2
λ21

}
exp(2µ1 + λ1 + 2β0).
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Next, the second order partial derivatives in the diagonal of the Hessian matrix are as

follows:

−∂ℓTAP(β0, µ1, λ1)

∂β20
= n exp

(
β0 + µ1 +

1

2
λ1

)
− 2n2

{
exp(λ1)− 1− λ1 −

1

2
λ21

}
exp(2µ1 + λ1 + 2β0),

−∂ℓTAP(β0, µ1, λ1)

∂µ21
= n exp

(
β0 + µ1 +

1

2
λ1

)
+

1

σ2fixed

− 2n2
{
exp(λ1)− 1− λ1 −

1

2
λ21

}
exp(2µ1 + λ1 + 2β0) and

−∂ℓTAP(β0, µ1, λ1)

∂λ21
=
n

4
exp

(
β0 + µ1 +

1

2
λ1

)
+

1

2λ21

− n2

2

{
4 exp(λ1)− 4− 3λ1 −

1

2
λ21

}
exp(2µ1 + λ1 + 2β0).

Lastly, the second order partial derivatives in the off-diagonals of the Hessian matrix

are as follows:

−∂ℓTAP(β0, µ1, λ1)

∂β0∂µ1
= n exp

(
β0 + µ1 +

1

2
λ1

)
− 2n2

{
exp(λ1)− 1− λ1 −

1

2
λ21

}
exp(2µ1 + λ1 + 2β0),

−∂ℓTAP(β0, µ1, λ1)

∂β0∂λ1
=
n

2
exp

(
β0 + µ1 +

1

2
λ1

)
− n2

{
2 exp(λ1)− 2− 2λ1 −

1

2
λ21

}
exp(2µ1 + λ1 + 2β0) and

−∂ℓTAP(β0, µ1, λ1)

∂µ1∂λ1
=
n

2
exp

(
β0 + µ1 +

1

2
λ1

)
− n2

{
2 exp(λ1)− 2− 2λ1 −

1

2
λ21

}
exp(2µ1 + λ1 + 2β0).

6.5.3.2 Simplified Simulation Study

A simplified simulation study with the model set-up in (6.9) was run with the following

settings where

β00 = −0.2, σfixed = 0.3, and n = 20

with 10000 replications. The search for a local minimiser of −ℓTAP(β0, µ1, λ1) in a three-

dimensional space can be challenging. Hence, we use the following strategy involving

the optim() function in R:
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1. First, initialise values for (β0, µ1, λ1).

2. Next, based on the initial values specified in (1), carry out a large number of

Nelder-Mead iterations, via optim(), to search for a local minimiser of

−ℓTAP(β0, µ1, λ1).

3. Lastly, use the results from step 2 to obtain starting values for the Broyden-

Fletcher-Goldberg- Shanno quasi-Newton approach, via optim(), to improve on

the result from implementing step 2.

Whilst this strategy may seem reasonable, it turns out that it is prone to erratic

behaviour if the initial value in step 1 is a poor choice. For the simplified model set-up

in (6.9), the expressions for the partial derivatives can be analysed to develop stationary

point equations and determine suitable starting values.

6.5.3.3 Results and Conclusion
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Figure 6.1: Histograms of the Gaussian variational approximation estimates of β0 and
the Thouless-Anderson-Palmer enhancement estimates of β0.
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After having found finite local minima of the Thouless-Anderson-Palmer approximate

log-likelihood surface for this simulation study, the estimates of β0 were gathered from

implementing both the GVA and TAP approaches. Figure 6.1 displays the histograms of

the estimates of β0 obtained from the GVA approach and TAP enhancement approach.

Note that the vertical red line is situated at the true value of β00 = −0.2. We see that

for both approximation approaches, the estimates are distributed about the true value.

We then computed the absolute error values for the estimates. For a generic estimate

β̂0, the absolute error is computed as

|β̂0 − β00 |.

Applying this definition to the vectors of the estimates of β0 obtained from both the

GVA and TAP enhancement approaches, we obtain vectors of the GVA absolute errors

and the TAP enhancement absolute errors of length 10000 each. Next, we obtained the

pairwise differences with ordering as follows:

Pairwise difference = (TAP enhancement absolute error) − (GVA absolute error).

Figure 6.2 shows a histogram of the pairwise differences.
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Figure 6.2: Histogram of the pairwise differences between the TAP enhancement absolute
errors and GVA absolute errors.
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Figure 6.2 suggests a statistically significant improvement due to using the TAP

enhancement. However, the improvement seems to be quite slight from a practical

standpoint. On the positive side, the results from this simulation study shows that with

some care it is possible to get estimates of Poisson mixed model parameters that are

improved by the TAP enhancement. On the negative side, the numerical problem is quite

challenging even for the m = 1 and σ2 = σ2fixed case. In the more practically relevant

case where m is in the hundreds and σ2 is estimated instead of being fixed, obtaining

local minima for the Thouless-Anderson-Palmer approximate negative log-likelihood

could be quite challenging. We will investigate this further in the next subsection.

6.5.4 Simulation Study

A full simulation study was run to investigate and compare the accuracy of approxima-

tions from the GVA approach and the TAP enhancement approach. In this simulation

study, a Poisson linear mixed model was used following the set-up in (6.8). The values

for the true parameter vector (β00 , β
0
1 , (σ

2)0) were chosen from the following possible set

of pre-determined values

{(−0.3, 0.2, 0.5), (2.2,−0.1, 0.16), (1.2, 0.4, 0.1), (0.02, 1.3, 1), (−0.3, 0.2, 0.1)} .

and the distribution of the Xij was taken to be either N(0, 1) or Uniform (−1, 1). The

number of groups in the simulated data, m, varied over the set {100, 200, . . . , 1000}
and the number of observations present within each group, n, was fixed at m/10. 100

replications were simulated for every possible combination of the true parameter vector,

chosen Xij distribution and value of (m,n) pair. For each sample, estimates for the true

parameter vector (β00 , β
0
1 , (σ

2)0), were obtained using similar steps to those outlined in

Section 6.5.3.2 for the TAP enhancement approach. Estimates for (β00 , β
0
1 , (σ

2)0) via the

GVA approach were also obtained. For generic estimates β̂0, β̂1 and σ̂2, their absolute

error values were computed as

|β̂0 − β00 |, |β̂1 − β01 | and |σ̂2 − (σ2)0|

respectively. Applying this definition to the vectors of the estimates of β0, β1 and σ2

obtained from both the GVA and TAP enhancement approaches, we obtain vectors

of the GVA absolute errors and the TAP enhancement absolute errors of length 100

each. Like in the previous simulation study, we obtained the pairwise differences with
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ordering as follows:

Pairwise difference = (TAP enhancement absolute error)− (GVA absolute error).

Grouped boxplots for each model parameter were then produced to graphically demon-

strate the mean and spread for each vector of pairwise differences.
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Figure 6.3: Grouped boxplots representing the pairwise difference in absolute errors
(TAP enhancement absolute error - GVA absolute error) in estimating β0. The values
of m are 100, 200,. . . , 1000 while the value of n is fixed at m/10.

Figure 6.3 shows that for values of m in the lower hundreds, if there is a difference in

accuracy in estimating β0 between the GVA approach and TAP enhancement approach,
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the TAP enhancement approach seems to give slightly better estimates in most of

those cases. There seems to be a more significant improvement when the true value

β0
0 is close to 0 coupled with a large (σ2)0 value. However, as the value of m increases,

the difference in absolute errors between the TAP enhancement approach and GVA

approach diminishes.

Inspection of Figure 6.4 reveals almost no observable difference in the accuracy of

estimates of β1 between the GVA approach and TAP enhancement approach, for all

values of m.
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Figure 6.4: Grouped boxplots representing the pairwise difference in absolute errors
(TAP enhancement absolute error - GVA absolute error) in estimating β1. The values
of m are 100, 200,. . . , 1000 while the value of n is fixed at m/10.
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Value of m (n is fixed at m/10)
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Figure 6.5: Grouped boxplots representing the pairwise difference in absolute errors
(TAP enhancement absolute error - GVA absolute error) in estimating σ2. The values
of m are 100, 200,. . . , 1000 while the value of n is fixed at m/10.

In Figure 6.5, for values of m in the lower hundreds, there are 6 subplots where

a visible difference in the accuracy in estimating σ2 between the GVA approach and

TAP enhancement approach is present. The TAP enhancement approach seems to give

slightly better estimates in 4 out of 6 such cases. In contrast to Figure 6.3, the TAP

estimates are worse when the true value β0
0 is close to 0 coupled with a large (σ2)0 value.

Once again, as the value of m increases, there is no significant difference in the absolute

errors between the TAP enhancement approach and GVA approach.
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To conclude, the Thouless-Anderson-Palmer enhancement approach suggests a slight

yet statistically significant improvement as compared to using the Gaussian variational

approximation approach for small datasets (m ≤ 200). However, although the TAP

estimates for β00 fare better than the GVA estimates when the true value β00 is close to

0 coupled with a large (σ2)0 value, that is not the case for the TAP estimates of (σ2)0.

It is also worth exploring how the TAP approach performs against the GVA approach

for generalized linear mixed models with response distributions other than the Poisson

family.

6.6 Appendix

6.6.1 Proof of Result 2

This appendix contains the details for the derivations leading up to Result 2.

6.6.1.1 Main Quantity in Onsager’s Correction Term

Note that the main quantity in the Onsager’s correction term is

ξi
(
µi, λi;Yi,Xi, β0, β1, σ

2
)

= Var{Ψi(Ũi)|Yi,Xi} − λi

[
E{Ψ′

i(Ũi)|Yi,Xi}
]2

− λ2i
2

[
E{Ψ′′

i (Ũi)|Yi,Xi}
]2
.

(6.10)

This quantity consists of three terms which we will work with in the next three subsub-
sections.

6.6.1.2 An Explicit Expression for the First Term in (6.10)

In this subsubsection, we find an explicit expression for Var{Ψi(Ũi)|Yi,Xi}. Firstly,
note that

Var{Ψi(Ũi)|Yi,Xi}

= Var

(
Ũ2
i

2σ2
− Yi•Ũi +Ai(Ũi)

∣∣∣Yi,Xi

)

= Var

(
Ũ2
i

2σ2
− Yi•Ũi

∣∣∣Yi,Xi

)
+ 2Cov

(
Ũ2
i

2σ2
− Yi•Ũi,Ai(Ũi)

∣∣∣Yi,Xi

)
+Var

(
Ai(Ũi)

∣∣∣Yi,Xi

)
.

Now we treat each term in the expression for Var{Ψi(Ũi)|Yi,Xi} individually.
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Treatment of the Var
(
Ũ2
i

2σ2 − Yi•Ũi

∣∣∣Yi,Xi

)
Term

We first obtain an expression for

Var(aŨ2
i + bŨi + c) = Var(aŨ2

i + bŨi)

for general a, b, c ∈ R. Then, note that

VarŨi

(
Ũ2
i

)
= E

(
Ũ4
i

)
−
{
E
(
Ũ2
i

)}2

= (µ4i + 6µ2iλi + 3λ2i )− (µ2i + λi)
2

= 2λ2i + 4µ2iλi

= 2λi(2µ
2
i + λi)

and
CovŨi

(Ũi, Ũ
2
i ) = E

(
Ũ3
i

)
− E

(
Ũi

)
E
(
Ũ2
i

)
= (µi + 3µiλi)− (µi)(µ

2
i + λi)

= 2µiλi.

Then we have

Var(aŨ2
i + bŨi) = aVar(Ũ2

i ) + 2abCov(Ũ2
i , Ũi) + b2Var(Ũi)

= 2a2λi(2µ
2
i + λi) + 4abλiµi + b2λi

= 4a2λiµ
2
i + 2a2λ2i + 4abλiµi + b2λi.

Setting

a =
1

2σ2
and b = −Yi•,

we get

Var

(
Ũ2
i

2σ2
− Yi•Ũi

∣∣∣Yi,Xi

)
=

2λiµ
2
i + λ2i
2σ4

− 2Yi•λiµi
σ2

+ λi(Yi•)
2. (6.11)

Treatment of the 2Cov
(
Ũ2
i

2σ2 − Yi•Ũi,Ai(Ũi)
∣∣∣Yi,Xi

)
Term

Next, we obtain an expression for

Cov(aŨ2
i + bŨi,Ai(Ũi)|Yi,Xi) = aCov(Ũ2

i ,Ai(Ũi)|Yi,Xi) + bCov(Ũi,Ai(Ũi)|Yi,Xi)

for general a, b ∈ R. Next note that, for k ∈ {1, 2},

Cov
(
Ũki ,Ai(Ũi)|Yi,Xi

)
=

n∑
j=1

Cov
(
Ũki , b(β0 + β1Xij + Ũi)|Xi

)
=

n∑
j=1

E
(
Ũki b(β0 + β1Xij + Ũi)|Xi

)
− E(Ũki )

n∑
j=1

E
(
b(β0 + β1Xij + Ũi)|Xi

)
.
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Therefore,

Cov
(
Ũi,Ai(Ũi)|Xi

)
=

n∑
j=1

E
(
Ũib(β0 + β1Xij + Ũi)|Xi

)
− µi

n∑
j=1

E
(
b(β0 + β1Xij + Ũi)|Xi

)
,

and

Cov
(
Ũ2
i ,Ai(Ũi)|Xi

)
=

n∑
j=1

E
(
Ũ2
i b(β0 + β1Xij + Ũi)|Xi

)
− (λi + µ2i )

n∑
j=1

E
(
b(β0 + β1Xij + Ũi)|Xi

)
.

It follows from these results that

Cov(aŨ2
i + bŨi,Ai(Ũi)|Yi,Xi)

= 2a
n∑
j=1

E
(
Ũ2
i b(β0 + β1Xij + Ũi)|Xi

)
+ 2b

n∑
j=1

E
(
Ũib(β0 + β1Xij + Ũi)|Xi

)
− 2

{
a(λi + µ2i ) + bµi

} n∑
j=1

E
(
b(β0 + β1Xij + Ũi)|Xi

)
.

Setting

a =
1

2σ2
and b = −Yi•,

we obtain

2Cov

(
Ũ2
i

2σ2
− Yi•Ũi,Ai(Ũi)

∣∣∣Yi,Xi

)

=
1

σ2

n∑
j=1

E
(
Ũ2
i b(β0 + β1Xij + Ũi)|Xi

)
− 2Yi•

n∑
j=1

E
(
Ũib(β0 + β1Xij + Ũi)|Xi

)
+

(
2Yi•µi −

λi + µ2i
σ2

) n∑
j=1

E
(
b(β0 + β1Xij + Ũi)|Xi

)
.

(6.12)
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Treatment of the Var
(
Ai(Ũi)

∣∣∣Yi,Xi

)
Term

It follows that

Var
(
Ai(Ũi)

∣∣∣Yi,Xi

)
= Var

 n∑
j=1

b(β0 + β1Xij + Ũi)
∣∣∣Xi


=

n∑
j=1

Var
(
b(β0 + β1Xij + Ũi)|Xi

)
+
∑
j ̸=j′

Cov
(
b(β0 + β1Xij + Ũi), b(β0 + β1Xij′ + Ũi)|Xi

)
=

n∑
j=1

E
(
b(β0 + β1Xij + Ũ2

i

∣∣∣Xi

)
−

n∑
j=1

{
E
(
b(β0 + β1Xij + Ũi)

∣∣∣Xi

)}2

+
∑
j ̸=j′

E
(
b(β0 + β1Xij + Ũi)b(β0 + β1Xij′ + Ũi)|Xi

)
−
∑
j ̸=j′

{
E
(
b(β0 + β1Xij + Ũi)|Xi

)
E
(
b(β0 + β1Xij′ + Ũi)|Xi

)}
The previous expression then simplifies to

n∑
j=1

E
(
b(β0 + β1Xij + Ũi)

2
∣∣∣Xi

)
+
∑
j ̸=j′

E
(
b(β0 + β1Xij + Ũi)b(β0 + β1Xij′ + Ũi)|Xi

)

−


n∑

j=1

E
(
b(β0 + β1Xij + Ũi)

∣∣∣Xi

)
2

.

(6.13)

The Resultant Var{Ψi(Ũi)|Yi,Xi} Expression

Putting together the expressions from (6.11), (6.12) and (6.13), we have

Var{Ψi(Ũi)|Yi,Xi}

=
2λiµ

2
i + λ2i
2σ4

− 2Yi•λiµi

σ2
+ λi(Yi•)

2 +
1

σ2

n∑
j=1

E
(
Ũ2
i b(β0 + β1Xij + Ũi)|Xi

)
− 2Yi•

n∑
j=1

E
(
Ũib(β0 + β1Xij + Ũi)|Xi

)
+

(
2Yi•µi −

λi + µ2
i

σ2

) n∑
j=1

E
(
b(β0 + β1Xij + Ũi)|Xi

)
+

n∑
j=1

E
(
b(β0 + β1Xij + Ũi)

2
∣∣∣Xi

)
+
∑
j ̸=j′

E
(
b(β0 + β1Xij + Ũi)b(β0 + β1Xij′ + Ũi)|Xi

)

−


n∑

j=1

E
(
b(β0 + β1Xij + Ũi)

∣∣∣Xi

)
2

.
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However, note that,

n∑
j=1

E
(
b(β0 + β1Xij + Ũi)

2
∣∣∣Xi

)
+
∑
j ̸=j′

E
(
b(β0 + β1Xij + Ũi)b(β0 + β1Xij′ + Ũi)|Xi

)
=

n∑
j=1

n∑
j′=1

E
(
b(β0 + β1Xij + Ũi)b(β0 + β1Xij′ + Ũi)|Xi

)
.

Therefore,

Var{Ψi(Ũi)|Yi,Xi}

=
2λiµ

2
i + λ2i
2σ4

− 2Yi•λiµi

σ2
+ λi(Yi•)

2 +
1

σ2

n∑
j=1

E
(
Ũ2
i b(β0 + β1Xij + Ũi)|Xi

)
− 2Yi•

n∑
j=1

E
(
Ũib(β0 + β1Xij + Ũi)|Xi

)
+

(
2Yi•µi −

λi + µ2
i

σ2

) n∑
j=1

E
(
b(β0 + β1Xij + Ũi)|Xi

)

+
n∑

j=1

n∑
j′=1

E
(
b(β0 + β1Xij + Ũi)b(β0 + β1Xij′ + Ũi)|Xi

)
−


n∑

j=1

E
(
b(β0 + β1Xij + Ũi)

∣∣∣Xi

)
2

.

6.6.1.3 An Explicit Expression for the Second Term in (6.10)

In this subsubsection, we find an explicit expression for −λi
[
E{Ψ′

i(Ũi)|Yi,Xi}
]2
.

First note that

Ψ′
i(Ũi) = −Yi• +A′

i(Ũi) +
Ũi
σ2
.

Hence,

E{Ψ′
i(Ũi)|Yi,Xi} = −Yi• +

n∑
j=1

E
(
b′(β0 + β1Xij + Ũi)|Xi

)
+
µi
σ2
.

Then we have,

−λi
[
E{Ψ′

i(Ũi)|Yi,Xi}
]2

= λi

−Yi• +
n∑
j=1

E
(
b′(β0 + β1Xij + Ũi)|Xi

)
+
µi
σ2


2

= −λi(Yi•)2 − λi


n∑
j=1

E
(
b′(β0 + β1Xij + Ũi)|Xi

)
2

− λiµ
2
i

σ4
+ 2λiYi•


n∑
j=1

E
(
b′(β0 + β1Xij + Ũi)|Xi

)
+

2Yi•λiµi
σ2

− 2µiλi
σ2


n∑
j=1

E
(
b′(β0 + β1Xij + Ũi)|Xi

) .



6.6. APPENDIX 190

6.6.1.4 An Explicit Expression for the Third Term in (6.10)

In this subsubsection, we find an explicit expression for −λ2i
2

[
E{Ψ′′

i (Ũi)|Yi,Xi}
]2
. Note

that

Ψ′′
i (Ũi) = A′′

i (Ũi) +
1

σ2
.

Therefore,

E{Ψ′′
i (Ũi)|Yi,Xi} =

n∑
j=1

E
(
b′′(β0 + β1Xij + Ũi)|Xi

)
+

1

σ2
.

Following that, we have,

−λ
2
i

2

[
E{Ψ′′

i (Ũi)|Yi,Xi}
]2

= −λ
2
i

2

 n∑
j=1

E
(
b′′(β0 + β1Xij + Ũi)|Xi

)
+

1

σ2

2

= −λ
2
i

2

 n∑
j=1

E
(
b′′(β0 + β1Xij + Ũi)|Xi

)2

− λ2i
σ2

n∑
j=1

E
(
b′′(β0 + β1Xij + Ũi)|Xi

)
− λ2i

2σ4
.

6.6.1.5 The Resultant Expression for the Main Quantity in the Onsager’s
Correction Term

Based on the results from the previous three subsections, we have the following

ξi
(
µi, λi;Yi,Xi, β0, β1, σ

2
)

=
2λiµ

2
i + λ2i
2σ4

−
2Yi•λiµi

σ2
+ λi(Yi•)

2 +
1

σ2

n∑
j=1

E
(
Ũ2
i b(β0 + β1Xij + Ũi)|Xi

)

− 2Yi•

n∑
j=1

E
(
Ũib(β0 + β1Xij + Ũi)|Xi

)
+

(
2Yi•µi −

λi + µ2i
σ2

) n∑
j=1

E
(
b(β0 + β1Xij + Ũi)|Xi

)

+

n∑
j=1

n∑
j′=1

E
(
b(β0 + β1Xij + Ũi)b(β0 + β1Xij′ + Ũi)|Xi

)
−


n∑

j=1

E
(
b(β0 + β1Xij + Ũi)

∣∣∣Xi

)
2

− λi(Yi•)
2

− λi


n∑

j=1

E
(
b′(β0 + β1Xij + Ũi)|Xi

)
2

−
λiµ

2
i

σ4
+ 2λiYi•


n∑

j=1

E
(
b′(β0 + β1Xij + Ũi)|Xi

)+
2Yi•λiµi

σ2

−
2µiλi

σ2


n∑

j=1

E
(
b′(β0 + β1Xij + Ũi)|Xi

)−
λ2i
2σ4

−
λ2i
2

 n∑
j=1

E
(
b′′(β0 + β1Xij + Ũi)|Xi

)2

−
λ2i
σ2

n∑
j=1

E
(
b′′(β0 + β1Xij + Ũi)|Xi

)
.
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By simplifying this expression further, we have,

ξi
(
µi, λi;Yi,Xi, β0, β1, σ

2
)

=
1

σ2

n∑
j=1

E
(
Ũ2
i b(β0 + β1Xij + Ũi)|Xi

)
− 2Yi•

n∑
j=1

E
(
Ũib(β0 + β1Xij + Ũi)|Xi

)
+

(
2Yi•µi −

λi + µ2i
σ2

) n∑
j=1

E
(
b(β0 + β1Xij + Ũi)|Xi

)
+

n∑
j=1

n∑
j′=1

E
(
b(β0 + β1Xij + Ũi)b(β0 + β1Xij′ + Ũi)|Xi

)

−


n∑
j=1

E
(
b(β0 + β1Xij + Ũi)

∣∣∣Xi

)
2

− λi


n∑
j=1

E
(
b′(β0 + β1Xij + Ũi)|Xi

)
2

+ 2λi

(
Yi• −

µi
σ2

)
n∑
j=1

E
(
b′(β0 + β1Xij + Ũi)|Xi

)
− λ2i

2

 n∑
j=1

E
(
b′′(β0 + β1Xij + Ũi)|Xi

)2

− λ2i
σ2

n∑
j=1

E
(
b′′(β0 + β1Xij + Ũi)|Xi

)
.

For any n× 1 random vector Xi = (Xi1, . . . , Xin) and p, q ∈ Z+, define

B(p, q, β0, β1, µi, λi,Xi) ≡
n∑
j=1

E
(
Ũpi b

(q)(β0 + β1Xij + Ũi)|Xi

)
,

for 1 ≤ i ≤ m. Also define

C(β0, β1, µi, λi,Xi) ≡
n∑
j=1

n∑
j′=1

E
(
b(β0 + β1Xij + Ũi)b(β0 + β1Xij′ + Ũi)|Xi

)
,

for 1 ≤ i ≤ m. We then have

ξi
(
µi, λi;Yi,Xi, β0, β1, σ

2
)

=

(
2Yi•µi −

λi + µ2i
σ2

)
B(0, 0, β0, β1, µi, λi,Xi)

+ 2λi

(
Yi• −

µi
σ2

)
B(0, 1, β0, β1, µi, λi,Xi)− 2Yi•B(1, 0, β0, β1, µi, λi,Xi)

− λ2i
σ2

B(0, 2, β0, β1, µi, λi,Xi) +
1

σ2
B(2, 0, β0, β1, µi, λi,Xi)

− B(0, 0, β0, β1, µi, λi,Xi)
2 − λiB(0, 1, β0, β1, µi, λi,Xi)

2

− λ2i
2
B(0, 2, β0, β1, µi, λi,Xi)

2 + C(β0, β1, µi, λi,Xi).

(6.14)
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6.6.2 Expressing the Main Quantity in the Onsager’s Correction Term
Using Integral Families

The aim of this final section in this appendix is to obtain an expression for the quantity
ξi
(
µi, λi;Yi,Xi, β0, β1, σ

2
)
that does not involve any expectation operators. Rather, we

use specially tailored families of integrals for the desired expressions.

We first define the integral family definitions that we will work with. For p, q ∈
{0, 1, 2}, r > 0 and s, t ∈ R, define

Q(p, q, r, s, t) ≡ (2π)−1/2

∫ ∞

−∞
(s+ rx)pb(q)(t+ rx) exp

(
−x

2

2

)
dx. (6.15)

Also, for r > 0 and s, t ∈ R, define

R(r, s, t) ≡ (2π)−1/2

∫ ∞

−∞
b(s+ rx)b(t+ rx) exp

(
−x

2

2

)
dx. (6.16)

In the Poisson special case, since b(x) = exp(x),Q(p, q, r, s, t) and R(r, s, t) admit exact
expressions. However, for general b functions, we are stuck with expressions as in (6.15)
and (6.16). Thus, numerical integration is required for evaluation purposes. Then note
that in (6.14),

B(p, q, β0, β1, µi, λi,Xi)

=
n∑
j=1

E
(
Ũpi b

(q)(β0 + β1Xij + Ũi)|Xi

)
=

n∑
j=1

∫ ∞

−∞
upb(q)(β0 + β1Xij + u)(2πλi)

−1/2 exp

{
−(u− µi)

2

2λi

}
du

=
n∑
j=1

(2π)−1/2

∫ ∞

−∞
(µi +

√
λiz)

pb(q)(β0 + β1Xij + µi +
√
λiz) exp

(
−z

2

2

)
dz

=

n∑
j=1

Q(p, q,
√
λi, µi, β0 + β1Xij + µi).

Also note that

C(β0, β1, µi, λi,Xi)

=
n∑

j=1

E
(
b(β0 + β1Xij + Ũi)b(β0 + β1Xij′ + Ũi)|Xi

)
=

n∑
j=1

n∑
j′=1

∫ ∞

−∞
b(β0 + β1Xij + u)b(β0 + β1Xij′ + u)(2πλi)

−1/2 exp

{
− (u− µi)

2

2λi

}
du

=
n∑

j=1

n∑
j′=1

(2π)−1/2

∫ ∞

−∞
b(β0 + β1Xij + µi +

√
λiz)b(β0 + β1Xij′ + µi +

√
λiz)

× exp

(
−z

2

2

)
dz

=
n∑

j=1

n∑
j′=1

R(
√
λi, β0 + β1Xij + µi, β0 + β1Xij′ + µi).
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Hence, the final expression for ξi
(
µi, λi;Yi,Xi, β0, β1, σ

2
)
used in Result 2 is as follows

ξi
(
µi, λi;Yi,Xi, β0, β1, σ

2
)

=

n∑
j=1

{(
2Yi•µi −

λi + µ2i
σ2

)
Q(0, 0,

√
λi, µi, β0 + β1Xij + µi)

+ 2λi

(
Yi• −

µi
σ2

)
Q(0, 1,

√
λi, µi, β0 + β1Xij + µi)

− 2Yi•Q(1, 0,
√
λi, µi, β0 + β1Xij + µi)

− λ2i
σ2

Q(0, 2,
√
λi, µi, β0 + β1Xij + µi) +

1

σ2
Q(2, 0,

√
λi, µi, β0 + β1Xij + µi)

−Q(0, 0,
√
λi, µi, β0 + β1Xij + µi)

2 − λiQ(0, 1,
√
λi, µi, β0 + β1Xij + µi)

2

− λ2i
2
Q(0, 2,

√
λi, µi, β0 + β1Xij + µi)

2

+

n∑
j′=1

R(
√
λi, β0 + β1Xij + µi, β0 + β1Xij′ + µi)

}
.

6.6.3 Proof of Result 3

This appendix contains the details leading to Result 3. In the Poisson case, b(x) = exp(x).
Hence for p, q ∈ {0, 1, 2}, each term in (6.14) can be simplified greatly, leading to a
reduced expression for ξi

(
µi, λi;Yi,Xi, β0, β1, σ

2
)
.

6.6.3.1 Simplifications in Poisson Case

When p = 0, q ∈ {0, 1, 2},

B(0, q, β0, β1, µi, λi,Xi) =
n∑
j=1

E
(
b(q)(β0 + β1Xij + Ũi)|Xi

)
=

n∑
j=1

E
{
exp(β0 + β1Xij + Ũi)|Xi

}
= E

{
exp(Ũi)

} n∑
j=1

exp(β0 + β1Xij)

= exp(µi +
1

2
λi)

n∑
j=1

exp(β0 + β1Xij).

(6.17)
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When p = 1, q = 0,

B(1, 0, β0, β1, µi, λi,Xi) =

n∑
j=1

E
(
Ũib(β0 + β1Xij + Ũi)|Xi

)
=

n∑
j=1

E
{
Ũi exp(β0 + β1Xij + Ũi)|Xi

}
= E

{
Ũi exp(Ũi)

} n∑
j=1

exp(β0 + β1Xij)

= (µi + λi) exp(µi +
1

2
λi)

n∑
j=1

exp(β0 + β1Xij).

(6.18)

When p = 2, q = 0,

B(2, 0, β0, β1, µi, λi,Xi) =
n∑
j=1

E
(
Ũ2
i b(β0 + β1Xij + Ũi)|Xi

)
=

n∑
j=1

E
{
Ũ2
i exp(β0 + β1Xij + Ũi)|Xi

}
= E

{
Ũ2
i exp(Ũi)

} n∑
j=1

exp(β0 + β1Xij)

=
{
λi + (µi + λi)

2
}
exp(µi +

1

2
λi)

n∑
j=1

exp(β0 + β1Xij).

(6.19)

Substituting (6.17), (6.18) and (6.19) into (6.14), several terms cancel with each other
and we have

ξi
(
µi, λi;Yi,Xi, β0, β1, σ

2
)

=

{
exp(λi)− 1− λi −

1

2
λ2i

}
exp(2µi + λi)


n∑
j=1

exp(β0 + β1Xij)


2

,
(6.20)

leading to Result 3.
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Chapter 7

Extensions to Noncanonical Link
Generalized Linear Mixed Models

In some situations, for a better data fit, using a noncanonical link might be beneficial

over using a canonical link. To cater for these situations, we present an extension of

the asymptotic normality results derived in Chapter 4 for generalized linear mixed

models with noncanonical links. Thus, this chapter presents the final asymptotic

normality theorem in this thesis, that concerns the joint asymptotic normality of all

of the maximum quasi-likelihood estimators for a generalized linear mixed model with

noncanonical links. As in Chapter 4, it elegantly shows faster rates of convergence for

fixed effects that are not accompanied by a random effect compared to fixed effects that

have a partnering random effect.

Finally, to wrap up the thesis, we build on the theory presented in Chapter 6 and

present some details concerning the Thouless-Palmer-Anderson enhancement approach

for improving statistical inference for generalized linear mixed models when noncanonical

links are involved.

This chapter starts off by providing asymptotic normality results concerning general-

ized linear mixed models with noncanonical links in Section 7.1. Section 7.1.1 presents

the model being used while Section 7.1.2 presents the notation required for the asymp-

totic normality theorem presented in Section 7.1.3. The chapter concludes with Section

7.2 which presents an introduction into the usage of the Thouless-Anderson-Palmer

enhancement approach when noncanonical links are involved. Section 7.2.1 provides the

model description for this section. Section 7.2.2 then provides an explicit expression

for the GVA log-likelihood. Finally, Section 7.2.3 provide some introductory details



7.1. ASYMPTOTIC NORMALITY RESULTS INVOLVING NONCANONICAL
LINKS 196

regarding the TAP enhancement approach for noncanonical links.

7.1 Asymptotic Normality Results Involving Noncanonical

Links

In this section, we present asymptotic normality results for maximum quasi-likelihood

estimators for a generalized linear mixed model with noncanonical links.

7.1.1 Model Description

To accommodate the use of noncanonical links, consider the following density, or

probability mass, function for the class of one-parameter exponential families as in Fan

et al. (1995) where

p(y; η) = exp
[
y(g ◦ b′)−1(η)− {b ◦ (g ◦ b′)−1}(η) + c(y)

]
h(y) (7.1)

where g is the link function and η is the natural parameter. Here, I(P) = 1 if

the condition P is true and I(P) = 0 if P is false. If the random variable Y has

density, or probability mass, function as in (7.1), then E(Y ) = g−1(η) and Var(Y ) =

{b′′ ◦ (b′)−1 ◦ g−1}(η). To account for overdispersion in the data and to allow one to

model the variance flexibly, a common modelling extension is implemented such that

Var(Y ) = ϕ{b′′ ◦ (b′)−1 ◦g−1}(η), where ϕ > 0 represents the dispersion parameter. This

involves replacement of log{p(y : η)} by the following quasi-likelihood function

[
y(g ◦ b′)−1(η)− {b ◦ (g ◦ b′)−1}(η) + c(y)

]
/ϕ+ d(y, ϕ) (7.2)

where d(y, ϕ) is a function of y and ϕ only. Note that for ordinary Binomial and Poisson

response models, ϕ is fixed at 1. For Gaussian and Gamma response models, (7.2)

corresponds to the expression of log{p(y; η)} for a two-parameter exponential family

density function and ordinary likelihood applies. In this section, we study generalized

linear mixed models of the following form, for observations of the random pairs (Xij , Yij),

1 ≤ i ≤ m, 1 ≤ j ≤ ni,

Yij |Xij ,Ui are independent having quasi-likelihood function (7.2) with

natural parameter β0 + βT1 Xij + Ui such that the Ui are independent

N(0, σ2) random vectors.

(7.3)
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The Ui are unobserved random effects variables. We assumed that the Xij and Ui, for

1 ≤ i ≤ m and 1 ≤ j ≤ ni, are totally independent, with the Xij each having the same

distribution as the d× 1 random vector X and the Ui each having the same distribution

as the random variable U .

Then, for any β0 ∈ R, β1 ∈ Rd and σ2 > 0, the conditional log-quasi-likelihood is

the joint density function of the Yij , given the Xij , as a function of the parameters

(β00 ,β
0
1, (σ

2)0) is,

(β̂0, β̂1, σ̂
2) = argmax

β0,β1,σ2

ℓ(β0,β1, σ
2)

where ℓ(β0,β1, σ
2) is the conditional log-likelihood and has the expression

ℓ(β0,β1, σ
2) = −m

2
log(2πσ2) +

m∑
i=1

n∑
j=1

(c(Yij)/ϕ+ d(Yij , ϕ))

+

m∑
i=1

log

∫ ∞

−∞
exp

( n∑
j=1

[
Yij(g ◦ b′)−1(β0 + βT1 Xij + u)

− {b ◦ (g ◦ b′)−1}(β0 + βT1 Xij + u)
]
/ϕ− u2

2σ2

)
du.

(7.4)

7.1.2 Notation

Define

n ≡ 1

m

m∑
i=1

ni = average of the within-group sample sizes.

Also define

Ω∗
β1
(U) ≡ E

w(β0 + β1 + U)

 1 XT

X XXT

 ∣∣∣∣∣U
 ,

where

w ≡
{
(g−1)′

}2
{b′′ ◦ (b′)−1 ◦ g−1}

and let

Λ∗
β1

≡
(
E
[{

lower right d× d block of Ω∗
β1
(U)−1

}−1
])−1

.
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7.1.3 Asymptotic Normality Theorem

The main theoretical contribution of this chapter is an asymptotic normality theorem

for the maximum quasi-likelihood estimators for a generalized linear mixed model with

noncanonical links as described in Section 7.1.1.

The theorem relies on the following assumptions:

(A8) The number of groups m diverges to ∞.

(A9) The within-group sample sizes ni diverge to ∞ in such a way that ni/n→ Ci

for constants 0 < Ci <∞, 1 ≤ i ≤ m. Also, n/m→ 0 as m and n diverge.

(A10) The distribution of X is such that

E

[
E
[
max{1, ∥X∥}8max{1, w(β0 + βT1 X + U)}4|U

]
min{1, λmin(E{w(β0 + βT1 X + U)|U})}2

]
<∞

for all β0 ∈ R, β1 ∈ Rd and σ2 > 0.

Theorem 14. Assume that conditions (A8) - (A10) hold. Then we have the following

√
m


β̂0 − β00

√
n
(
β̂1 − β0

1

)
σ̂2 − (σ2)0

 D→ N



0

0

0

 ,

(σ2)0 0 0

0 ϕΛ∗
β1

0

0 0 2
{
(σ2)0

}2

 .

The proof of Theorem 14 is in the appendix. A remark concerning Theorem 14 is as

follows:

1. When working with binary responses, there are two common alternative noncanon-

ical link functions used to the canonical logit link, namely the probit link and

the complementary log-log link. Both noncanonical links map the mean response

restricted to the (0, 1) interval to the (−∞,∞) interval. Also in both cases, w(x)

in Section 7.1.2 can be expressed as an explicit function to work with. Note that

b(x) = log{1+exp(x)} for binary responses. Then the usage of a probit link where

g(x) = Φ−1(x) leads to w(x) taking on the following expression

w =
φ2

Φ(1− Φ)
,

where φ represents the standard normal density function.
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Meanwhile, the usage of a complementary log-log link where

g(x) = ln{− ln(1− x)}

results in

w(x) =
exp(2x)

exp{exp(x)} − 1
.

7.2 Thouless-Anderson-Palmer Approach Involving Non-

canonical Links

In this section, we present a primer for those who wish to carry out the Thouless-

Anderson-Palmer approach for generalized linear mixed models with noncanonical

links.

7.2.1 Model Description

Now, consider the use of a simple noncanonical link generalized linear mixed model as

follows

Yij |Xij , Ui are independent having density function (7.1) with

natural parameter β00 + β01Xij + Ui such that the Ui are independent

N
(
0,
(
σ2
)0)

random variables.

(7.5)

Here, the values of (Xij , Yij) are observed for 1 ≤ i ≤ m and 1 ≤ j ≤ n. We have

assumed that the Xij and Ui are independent random variables. In addition, the Xij

are each assumed as having the same distribution as the random vector X. The Ui

are the unobserved random effects variables and are assumed to be having the same

distribution as the random vector U.

Let β = (β0, β1) be the vector of fixed parameters. Then the model parameters for

this set-up are (β, σ2). Following that ℓ(β, σ2), the conditional log-likelihood of (β, σ2),
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is

ℓ(β, σ2) = −m
2
log(2πσ2) +

m∑
i=1

n∑
j=1

c(Yij)

+

m∑
i=1

log

∫ ∞

−∞
exp

( n∑
j=1

[
Yij(g ◦ b′)−1(β0 + β1Xij + u)

− {b ◦ (g ◦ b′)−1}(β0 + β1Xij + u)
]
− u2

2σ2

)
du.

(7.6)

7.2.2 The Gaussian Variational Approximate Log-Likelihood

Following steps similar to those in Section 6.2, the Gaussian variational approximation

to ℓ(β, σ2) is derived as,

ℓGVA(β, σ
2,µ,λ)

=

m∑
i=1

EŨi

[
n∑
j=1

{
Yij(g ◦ b′)−1(β0 + β1Xij + Ũi)− {b ◦ (g ◦ b′)−1}(β0 + β1Xij + Ũi)

+ c(Yij)

}
− Ũ2

i

2σ2
− 1

2
log(2πσ2)

]
+

1

2

m∑
i=1

{1 + log(2πλi)} ,

(7.7)

where EŨi
denotes the expectation with respect to the random variable Ũi ∼ N(µi, λi)

with λi > 0, for 1 ≤ i ≤ m. The variational parameters are (µ,λ) where µ =

(µ1, . . . , µm) and λ = (λ1, . . . , λm). Note that

ℓ(β, σ2) ≥ ℓGVA(β, σ
2,µ,λ)

for all vectors µ and λ.

7.2.3 Overview of Thouless-Anderson-Palmer Enhancement

Next, we provide details on how the TAP enhancement approach builds upon the GVA

approach when using noncanonical links. Firstly, for each 1 ≤ i ≤ m, define the following

data vectors:

Yi ≡ (Yi1, . . . Yin) and Xi ≡ (Xi1, . . . Xin) .
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The Gaussian variational approximate negative log-likelihood can then be expressed as

follows

−ℓGVA(β, σ
2,µ,λ) = −1

2

m∑
i=1

{1 + log(2πλi)}+
m∑
i=1

EŨi

{
Ψi(Ũi)|Yi,Xi

}
,

where

Ψi(Ũi) =
n∑

j=1

[
−Yij(g ◦ b′)−1(β0 + β1Xij + Ũi) + {b ◦ (g ◦ b′)−1}(β0 + β1Xij + Ũi)− c(Yij)

]
+
Ũ2
i

2σ2
+

1

2
log(2πσ2).

Using theory detailed in Section 6.3, the TAP approximate negative log-likelihood

can be obtained as,

−ℓTAP(β, σ
2,µ,λ) = −ℓGVA(β, σ

2,µ,λ)− 1

2

m∑
i=1

ξi
(
µi, λi;Xi,Yi, β0, β1, σ

2
)

= −1

2

m∑
i=1

{1 + log(2πλi)}+
m∑
i=1

E
{
Ψi(Ũi)|Yi,Xi

}
− 1

2

m∑
i=1

(
Var{Ψi(Ũi)|Yi,Xi} − λi

[
E{Ψ′

i(Ũi)|Yi,Xi}
]2

− λ2i
2

[
E{Ψ′′

i (Ũi)|Yi,Xi}
]2)

.

(7.8)

Now define

Ei(Ũi) ≡
n∑
j=1

Yij(g ◦ b′)−1(β0 + β1Xij + Ũi) and

Fi(Ũi) ≡
n∑
j=1

{b ◦ (g ◦ b′)−1}(β0 + β1Xij + Ũi).

Then, we can re-express Ψi(Ũi) as

Ψi(Ũi) = −Ei(Ũi) + Fi(Ũi)−
n∑
j=1

c(Yij) +
Ũ2
i

2σ2
+

1

2
log(2πσ2).

It follows that

Ψ′
i(Ũi) = −E ′

i(Ũi) + F ′
i(Ũi) +

Ũi
σ2

and

Ψ′′
i (Ũi) = −E ′′

i (Ũi) + F ′′
i (Ũi) +

1

σ2
.

By solving for and the substituting explicit expressions for Ψi(Ũi), Ψ
′
i(Ũi) and Ψ′′

i (Ũi)
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into (7.8), the TAP approximate negative log-likelihood can be obtained. This expression

can then be optimized to find a local minima and obtain TAP estimates of the model

parameters.

7.3 Appendix

This appendix contained the details for the derivations leading up to Theorem 14.

7.3.1 Constructing the Fisher Information Matrix

In order to compute the asymptotic covariance matrix for the maximum quasi-likelihood
estimators, we would first need to compute the Fisher information matrix for the model
parameters as per the model description in 7.1.1. To do so, let

Si ≡


S0i

S1i

S2i

 =


∂
∂β0

log pYi|Xi
(Yi|Xi)

∇β1 log pYi|Xi
(Yi|Xi)

∂
∂σ2 log pYi|Xi

(Yi|Xi)

 (7.9)

denote the ith contribution to the scores for each of the model parameters. Then the
Fisher information matrix can be computed as

I(β0,β1, σ
2) =

m∑
i=1

E(SiS
T
i |Xi).

The next few sections then focus on obtaining the expressions for the scores and
the quadratic conditional expectations that are required to construct the final Fisher
information matrix.

7.3.2 Expression for Conditional Density Function

The expression for pYi|Xi
(Yi|Xi) as per the model description in (7.3) is

pYi|Xi
(Yi|Xi)

=

∫ ∞

−∞

ni∏
j=1

{p(Yij |Xij , Ui)} p(Ui)dUi

=

∫ ∞

−∞
exp

{
n∑

j=1

([
Yij(g ◦ b′)−1

(
β0 + βT

1 Xij + u
)
− {b ◦ (g ◦ b′)−1}

(
β0 + βT

1 Xij + u
)

+ c(Yij)
]
/ϕ+ d(Yij , ϕ)

)}
× (2πσ2)−1/2 exp

(
− u2

2σ2

)
du
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The previous expression can be further simplified as follows∫ ∞

−∞
(2πσ2)−1/2 exp

{
n∑

j=1

([
Yij(g ◦ b′)−1

(
β0 + βT

1 Xij + u
)

− {b ◦ (g ◦ b′)−1}
(
β0 + βT

1 Xij + u
)
+ c(Yij)

]
/ϕ+ d(Yij , ϕ)

)
− u2

2σ2

}
du

= (2πσ2)−1/2 exp


n∑

j=1

(c(Yij)/ϕ++d(Yij , ϕ))


×
∫ ∞

−∞
exp

[
n∑

j=1

{
Yij(g ◦ b′)−1

(
β0 + βT

1 Xij + u
)
− {b ◦ (g ◦ b′)−1}

(
β0 + βT

1 Xij + u
)}
/ϕ

− u2

2σ2

]
du.

7.3.3 Deriving Expressions for the Expectation and Variance of the
Response Variable

Next, using the Bartlett identities, we can obtain expressions for E(Y ) and Var(Y ).
Firstly let,

a1(η) ≡ (g ◦ b′)−1(η) and a2(η) ≡ {b ◦ (g ◦ b′)−1}(η).

Then note that the noncanonical extension of the one-parameter exponential family of
density, or probability mass, functions takes on the following form

p(y; η, ϕ) ∝ exp

[
y(g ◦ b′)−1(η)− {b ◦ (g ◦ b′)−1}(η) + c(y)

ϕ

]
= exp

{
a1(η)y − a2(η) + c(y)

ϕ

}
where η is the natural parameter. Then, we have the following

log p(y; η, ϕ) =
a1(η)y − a2(η) + c(y)

ϕ
+ C

where C is a constant independent of η. Let ℓ(η) ≡ log p(y; η, ϕ). Then,

∂ℓ(η)

∂η
=
a′1(η)y − a′2(η)

ϕ
. (7.10)

The first Bartlett identity states that

E

(
∂ℓ(η)

∂η

)
= 0.

Hence, by substituting (7.10) into the first Bartlett identity, we have,

E

{
a′1(η)y − a′2(η)

ϕ

}
= 0.
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This leads to
a′1(η)E(y)− a′2(η)

ϕ
= 0.

Hence, now we have an initial expression for E(Y ) which is as follows

E(Y ) =
a′2(η)

a′1(η)
. (7.11)

Now note that,
∂2ℓ

∂η2
=
a′′1(η)(y)− a′′2(η)

ϕ
. (7.12)

The second Bartlett identity states that

E

(
∂2ℓ

∂η2

)
+ E

{(
∂ℓ

∂η

)2
}

= 0.

Using the first Bartlett identity, we can re-write the second Bartlett identity as follows

E

(
∂2ℓ

∂η2

)
+Var

(
∂ℓ

∂η

)
= 0.

Substituting (7.10) and (7.12) into the second Bartlett identity, we have,

E

{
a′′1(η)(y)− a′′2(η)

ϕ

}
+Var

{
a′1(η)y − a′2(η)

ϕ

}
= 0. (7.13)

This leads to
a′′1(η)E(y)− a′′2(η)

ϕ
+

(a′1(η))
2

ϕ2
Var(y) = 0.

Therefore, the initial expression for Var(Y ) is as follows

Var(Y ) =

a′′2(η)− a′′1(η)
{
a′2(η)
a′1(η)

}
ϕ

[ ϕ2

{a′1(η)}
2

]

=
ϕ {a′1(η)a′′2(η)− a′′1(η)a

′
2(η)}

{a′1(η)}
3

=
ϕ {a′2(η)/a′1(η)}

′

a′1(η)
.

(7.14)

Now let us simplify the expressions for E(Y ) and Var(Y ). Note that

a2(η) = {b ◦ (g ◦ b′)−1}(η) = (b ◦ a1)(η)
a′2(η) = (b ◦ a1)′(η) = (b′ ◦ a1)(η)× a′1(η).

Hence, the expression for E(Y ) simplifies to

E(Y ) =
a′2(η)

a′1(η)

= (b′ ◦ a1)(η)
= {b′ ◦ (g ◦ b′)−1}(η)
= {b′ ◦ (b′)−1 ◦ g−1}(η)
= g−1(η).
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The expression for Var(Y ) simplifies to

Var(Y ) =
ϕ{a′2(η)/a′1(η)}′

a′1(η)

=
ϕ{(b′ ◦ a1)′(η)}

a′1(η)

=
ϕ{(b′′ ◦ a1)(η)}{a′1(η)}

a′1(η)

= ϕ{b′′ ◦ (g ◦ b′)−1}(η)
= ϕ{b′′ ◦ (b′)−1 ◦ g−1}(η).

7.3.4 Introduction of Useful Notation and Its Properties

Let v be a generic d× 1 vector. Then for r = 0, 1, 2 we define

v⊗ r ≡


1 for r = 0

v for r = 1

vvT for r = 2.

For r ∈ {0, 1, 2}, let

G∗
ri ≡

n∑
j=1

X⊗r
ij

{
Yija

′
1(β0 + βT1 Xij + Ui)− a′2(β0 + βT1 Xij + Ui)

}
and

H∗
ri ≡

n∑
j=1

X⊗r
ij

{
a′′2(β0 + βT1 Xij + Ui)− Yija

′′
1(β0 + βT1 Xij + Ui)

}
.

Note that the expressions listed above have the following probabilistic orders where

G∗
ri = OP (n

1/2)1⊗rd and H∗
ri = OP (n)1

⊗r
d .

7.3.5 Key Conditional Moment Results

We now compute the conditional expectations of G∗
0i and G∗

1i given (Xi, Ui). Note that,

E(G∗
0i|Xi, Ui)

= E

 n∑
j=1

{
Yija

′
1(β0 + βT1 Xij + Ui)− a′2(β0 + βT1 Xij + Ui)

} ∣∣∣∣Xi, Ui


=

n∑
j=1

{
E(Yij |Xi, Ui)a

′
1(β0 + βT1 Xij + Ui)− a′2(β0 + βT1 Xij + Ui)

}
=

n∑
j=1

{
a′2(β0 + βT1 Xij + Ui)

a′1(β0 + βT1 Xij + Ui)
a′1(β0 + βT1 Xij + Ui)− a′2(β0 + βT1 Xij + Ui)

}
= 0.
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Similarly, we have that
E(G∗

1i|Xi, Ui) = 0.

Next, we compute the conditional expectations of G∗
0i
2,G∗

0iG∗
1i and G∗

1i
2 given (Xi, Ui).

Note that,

E(G∗
0i
2|Xi, Ui)

= E

( n∑
j=1

{
Yija

′
1(β0 + βT1 Xij + Ui)− a′2(β0 + βT1 Xij + Ui)

}
×

 n∑
j′=1

{
Yij′a

′
1(β0 + βT1 Xij′ + Ui)− a′2(β0 + βT1 Xij′ + Ui)

} ∣∣∣∣Xi, Ui

)

=
∑∑
j ̸=j′

E
[ {
Yija

′
1(β0 + βT1 Xij + Ui)− a′2(β0 + βT1 Xij + Ui)

}
×
{
Yij′a

′
1(β0 + βT1 Xij′ + Ui)− a′2(β0 + βT1 Xij′ + Ui)

} ∣∣∣Xi, Ui

]
+

n∑
j=1

E
[ {
Yija

′
1(β0 + βT1 Xij + Ui)− a′2(β0 + βT1 Xij + Ui)

}
×
{
Yija

′
1(β0 + βT1 Xij + Ui)− a′2(β0 + βT1 Xij + Ui)

} ∣∣∣Xi, Ui

]
=
∑∑
j ̸=j′

(
E
[{
Yija

′
1(β0 + βT1 Xij + Ui)− a′2(β0 + βT1 Xij + Ui)

} ∣∣∣Xi, Ui

]
× E

[{
Yij′a

′
1(β0 + βT1 Xij′ + Ui)− a′2(β0 + βT1 Xij′ + Ui)

} ∣∣∣Xi, Ui

])
+

n∑
j=1

Var
{
Yija

′
1(β0 + βT1 Xij + Ui)

∣∣∣Xi, Ui

}
=

n∑
j=1

a′1(β0 + βT1 Xij + Ui)
2Var

(
Yij

∣∣∣Xi, Ui

)
.

Now let ηij ≡ β0 + βT1 Xij + Ui. By substituting the expression for Var(Y ) in line 2 of
(7.14), we have,

E(G∗
0i
2|Xi, Ui) = ϕ

n∑
j=1

a′1(ηij)
2

[
{a′1(ηij)a′′2(ηij)− a′′1(ηij)a

′
2(ηij)}

{a′1(ηij)}
3

]

= ϕ
n∑
j=1

{
a′′2(ηij)−

a′′1(ηij)a
′
2(ηij)

a′1(ηij)

}

= ϕ

n∑
j=1

{
a′′2(ηij)− a′′1(ηij)E(Yij |Xi, Ui)

}
= ϕE(H∗

0i|Xi, Ui).

Similarly, we have that

E(G∗
0iG∗

1i|Xi, Ui) = ϕE(H∗
1i|Xi, Ui) and E(G∗

1i
2|Xi, Ui) = ϕE(H∗

2i|Xi, Ui).
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Now let us simplify the expression for E(H∗
ri|Xi, Ui) for r ∈ {0, 1, 2}. Note that,

E(H∗
ri|Xi, Ui) =

n∑
j=1

X⊗r
ij

{
a′′2(ηij)− a′′1(ηij)E(Yij |Xi, Ui)

}
=

n∑
j=1

X⊗r
ij

{
a′′2(ηij)−

a′′1(ηij)a
′
2(ηij)

a′1(ηij)

}

=

n∑
j=1

X⊗r
ij a

′
1(ηij)

2

[
{a′1(ηij)a′′2(ηij)− a′′1(ηij)a

′
2(ηij)}

{a′1(ηij)}
3

]

=

n∑
j=1

X⊗r
ij a

′
1(ηij)

2{b′′ ◦ (g ◦ b′)−1}(ηij).

The term a′1(ηij)
2 can be simplified as follows

a′1(ηij)
2 =

[{
(g ◦ b′)−1

}′]2
(ηij)

=

{
1

(g ◦ b′)′ ◦ (g ◦ b′)−1

}2

(ηij)

=

[
1

{(g ◦ b′)b′′} ◦ {(b′)−1 ◦ g−1}

]2
(ηij)

=

[
1

(g′ ◦ g−1) {b′′ ◦ (b′)−1 ◦ g−1}

]2
(ηij)

=

[
(g−1)′

{b′′ ◦ (b′)−1 ◦ g−1}

]2
(ηij).

Hence,

E(H∗
ri|Xi, Ui) =

n∑
j=1

X⊗r
ij

[ {
(g−1)′

}2
{b′′ ◦ (b′)−1 ◦ g−1}

]
(ηij)

=
n∑
j=1

X⊗r
ij w(ηij),

(7.15)

where

w ≡
{
(g−1)′

}2
b′′ ◦ (b′)−1 ◦ g−1

.

7.3.6 Computing an Asymptotic Approximation for the First Entry
in (7.9)

Once again, to overcome the intractability of the ratio of integrals present when deriving
the scores with respect to each of the model parameters, we will work with an asymptotic
approximation of the ratio of integrals by using a multi-term Laplace’s method expansion.
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For smooth real-valued functions b, g and h, Equation (2.6) of Tierney et al. (1989)
states that∫∞

−∞ bN (x) exp{−nh(x)} dx∫∞
−∞ bD(x) exp{−nh(x)} dx

= g(x∗) +
b′D(x

∗)g′(x∗)

nbD(x∗)h′′(x∗)
+

g′′(x∗)

2nh′′(x∗)
− g′(x∗)h′′′(x∗)

2nh′′(x∗)2

+O(n−2).

where
g ≡ bN/bD

and
x∗ ≡ value of x that minimises h over R.

Hence, the ith contribution to the score of β0 can be expressed as

S0i ≡
∂ log pYi|Xi

(Yi|Xi)

∂β0

=

∫∞
−∞ b1stN (u) exp{−nhN (u)}du∫∞
−∞ b1stD (u) exp{−nhN (u)}du

where

b1stN (u) = exp

(
− u2

2σ2

)
1

ϕ

n∑
j=1

{Yija′1(β0 + βT1 Xij + u)− a′2(β0 + βT1 Xij + u)},

b1stD (u) = exp

(
− u2

2σ2

)
and

hN (u) = − 1

nϕ

n∑
j=1

{
Yija1(β0 + βT1 Xij + u)− a2(β0 + βT1 Xij + u)

}
.

Now define

U∗
i ≡ value of u that minimises hN (u)

= value of u such that d
duhN (u) = 0

= value of u such that
n∑
j=1

{
Yija

′
1(β0 + βT1 Xij + u)− a′2(β0 + βT1 Xij + u)

}
= 0.

However,
b1stN (U∗

i ) = 0.

This violates the necessary condition in Hsu (1948), in the sense that b1stN (U∗
i ) ̸= 0 is

required in order for the Laplace approximation to hold. To counter this issue, firstly
note that the numerator of S0i is ∫ ∞

−∞
s′(u)t(u)du

where

s(u) ≡ exp

n
ϕ

 1

n

n∑
j=1

{
Yija1(β0 + βT1 Xij + u)− a2(β0 + βT1 Xij + u)

}
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and

t(u) ≡ exp

(
− u2

2σ2

)
.

Application of integration by parts leads to the integral being equal to

−
∫ ∞

−∞
s(u)t′(u)du.

Note that

t′(u) = (−u/σ2) exp
(
− u2

2σ2

)
.

Now by rewriting the numerator of S0i, we have,

S0i ≡
∂ log pYi|Xi

(Yi|Xi)

∂β0

=

∫∞
−∞ bN (u) exp{−nhN (u)}du∫∞
−∞ bD(u) exp{−nhN (u)}du

where

bN (u) = (u/σ2) exp

(
− u2

2σ2

)
,

bD(u) = exp

(
− u2

2σ2

)
and

hN (u) = − 1

nϕ

n∑
j=1

{
Yija1(β0 + βT1 Xij + u)− a2(β0 + βT1 Xij + u)

}
.

Expansion of U∗
i

Here we find an asymptotic expression for U∗
i . We have that

0 =
d

du
hN (u)

=
n∑
j=1

{
Yija

′
1(β0 + βT1 Xij + U∗

i )− a′2(β0 + βT1 Xij + U∗
i )
}

=

n∑
j=1

{
Yija

′
1(β0 + βT1 Xij + Ui)− a′2(β0 + βT1 Xij + Ui)

}
− (U∗

i − Ui)

n∑
j=1

{
a′′2(β0 + βT1 Xij + Ui)− Yija

′′
1(β0 + βT1 Xij + Ui)

}
+ rit

= G∗
0i − (U∗

i − Ui)H∗
0i + rit

where rit is the Lagrange form of the remainder and is a quadratic form in U∗
i − Ui

and a smooth function of U †
it ≡ (1 − t)Ui + tU∗

i for some t ∈ [0, 1]. Inversion of this
asymptotic series leads to

U∗
i = Ui +

G∗
0i

H∗
0i

+OP (n
−1).
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7.3.6.1 The First Term of the First Score

The first term of S0i is

g(U∗
i ) =

bN (U
∗
i )

bD(U∗
i )

=
U∗
i

σ2
=

1

σ2

(
Ui +

G∗
0i

H∗
0i

)
+OP (n

−1).

7.3.6.2 The Other Terms of the First Score

The second, third and fourth terms of S0i are OP (n
−1), 0 and OP (n

−1) as in the
canonical case in Chapter 4.

7.3.6.3 Overall Leading Term Expression for the First Score

The first term of S0i is OP (1), the second term of S0i is OP (n
−1), the third term of

S0i is 0 and the fourth term of S0i is OP (n
−1). Putting these together we obtain the

following asymptotic expansion for S0i such that

S0i =
1

σ2

(
Ui +

G∗
0i

H∗
0i

)
+OP (n

−1).

7.3.7 Computing an Asymptotic Approximation for the Second Entry
in (7.9)

The ith contribution to the score of β1 is

S1i ≡ ∇β1 log pYi|Xi
(Yi|Xi)

=

∫∞
−∞ bN (u) exp{−nhN (u)}du∫∞
−∞ bD(u) exp{−nhN (u)}du

where

bN (u) = exp

(
− u2

2σ2

)
1

ϕ

n∑
j=1

{Yija′1(β0 + βT1 Xij + u)− a′2(β0 + βT1 Xij + u)}Xij ,

bD(u) = exp

(
− u2

2σ2

)
and

hN (u) = − 1

nϕ

n∑
j=1

{
Yija1(β0 + βT1 Xij + u)− a2(β0 + βT1 Xij + u)

}
.
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7.3.7.1 The First Term of the Second Score

The first term of S1i is

g(U∗
i ) =

bN (U
∗
i )

bD(U∗
i )

=
1

ϕ

n∑
j=1

{Yija′1(β0 + βT1 Xij + U∗
i )− a′2(β0 + βT1 Xij + U∗

i )}Xij .

Next note that,

Yija
′
1(β0 + βT1 Xij + U∗

i )− a′2(β0 + βT1 Xij + U∗
i )

= Yija
′
1(β0 + βT1 Xij + Ui)− a′2(β0 + βT1 Xij + Ui)

+ (U∗
i − Ui)

{
Yija

′′
1(β0 + βT1 Xij + Ui)− a′′2(β0 + βT1 Xij + Ui)

}
+OP (n

−1).

Therefore,

g(U∗
i ) =

1

ϕ

(
G∗
1i −

G∗
0iH∗

1i

H∗
0i

)
+OP (1)1d.

7.3.7.2 The Other Terms of the Second Score

The second, third and fourth terms are OP (1)1d as in the canonical case in Chapter 4.

7.3.7.3 Overall Leading Term Expression for the Second Score

Putting the terms of the score together, we obtain the following asymptotic expansion
for S1i where

S1i =
1

ϕ

(
G∗
1i −

G∗
0iH∗

1i

H∗
0i

)
+OP (1)1d.

7.3.8 Computing an Asymptotic Approximation for the Third Entry
in (7.9)

The ith contribution to the score of σ2 is

S2i ≡
∂ log pYi|Xi

(Yi|Xi)

∂σ2

= − 1

2σ2
+

∫∞
−∞ bN (u) exp{−nhN (u)}du∫∞
−∞ bD(u) exp{−nhN (u)}du
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where

bN (u) ≡
u2

2σ4
exp

(
− u2

2σ2

)
,

bD(u) ≡ exp

(
− u2

2σ2

)
and

hN (u) ≡ − 1

nϕ

n∑
j=1

{
Yija1(β0 + βT1 Xij + u)− a2(β0 + βT1 Xij + u)

}
.

7.3.8.1 The First Term of the Third Score

The first term of S2i is

g(U∗
i ) =

bN (U
∗
i )

bD(U∗
i )

=
(U∗

i )
2

2σ4

=
1

2σ4

(
Ui +

G∗
0i

H∗
0i

+OP (n
−1)

)2

=
1

2σ4

(
U2
i +

2UiG∗
0i

H∗
0i

+OP (n
−1)

)
.

7.3.8.2 The Other Terms of the Third Score

The second, third and fourth terms of S2i are all OP (n
−1) as in the canonical case in

Chapter 4.

7.3.8.3 Overall Leading Term Expression for the Third Score

The first term of S2i is OP (1), the second term of S2i is OP (n
−1), the third term of S2i

is OP (n
−1) and the fourth term of S2i is OP (n

−1). Putting these together we obtain
the following asymptotic expansion for S2i such that

S2i = − 1

2σ2
+
U2
i

2σ4
+
UiG∗

0i

σ4H∗
0i

+OP (n
−1).

7.3.9 The Quadratic Conditional Expectations of the Scores

In this section we find the conditional expectations required for the diagonal entries of
the Fisher information matrix of (β0,β1, σ

2).
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7.3.9.1 The Conditional Expectation of the Square of the First Score

From the previous sections, we have the following approximation where

S0i =
Ui
σ2

+OP (n
−1/2).

Therefore,

E(S2
0i|Xi) = E

{(
Ui
σ2

+OP (n
−1/2)

)2 ∣∣∣Xi

}
=

1

σ2
+OP (n

−1).

7.3.9.2 The Conditional Expectation of the Square of the Second Score

We have the following approximation

ϕS1i = G∗
1i −

G∗
0iH∗

1i

H∗
0i

+OP (1)1d.

Therefore,

ϕ2E(S1iS
T
1i|Xi) = E

{(
G∗
1i −

G∗
0iH∗

1i

H∗
0i

+OP (1)1d

)⊗2 ∣∣∣∣Xi

}

= E(G∗
1i
⊗2|Xi) + E

(
G∗
0i
2H∗

1i
⊗2

H∗
0i
2

∣∣∣∣Xi

)
− E

(
G∗
0iG∗

1iH∗
1i
T

H∗
0i

∣∣∣∣Xi

)

− E

(
G∗
0iH∗

1iG∗
1i
T

H∗
0i

∣∣∣∣Xi

)
+OP (1)1

⊗2
d .

We will now solve for the conditional expectations occurring in ϕ2E(S1iS
T
1i|Xi). Firstly,

E(G∗
1i
⊗2|Xi) = E

{
E(G∗

1i
⊗2|Xi, Ui)|Xi

}
= E {ϕE(H∗

2i|Xi, Ui)|Xi}
= ϕE {E(H∗

2i|Xi, Ui)|Xi} .

Next,

E

(
G∗
0i
2H∗

1i
⊗2

H∗
0i
2

∣∣∣∣Xi

)
= E

{
E

(
G∗
0i
2H∗

1i
⊗2

H∗
0i
2

∣∣∣∣Xi, Ui

) ∣∣∣∣Xi

}
= E

(
E

[
G∗
0i
2 {E(H∗

1i|Xi, Ui) +H∗
1i − E(H∗

1i|Xi, Ui)}⊗2

{E(H∗
0i|Xi, Ui) +H∗

0i − E(H∗
0i|Xi, Ui)}2

∣∣∣∣Xi, Ui

] ∣∣∣∣Xi

)
.
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The previous expression can be further evaluated as follows

E

E
G∗

0i
2 {E(H∗

1i|Xi, Ui) +H∗
1i − E(H∗

1i|Xi, Ui)}⊗2

{E(H∗
0i|Xi, Ui)}2

{
1− E(H∗

0i|Xi,Ui)−H∗
0i

E(H∗
0i|Xi,Ui)

}2

∣∣∣∣∣Xi, Ui

 ∣∣∣∣∣Xi


= E

(
E

[
G∗
0i
2 {E(H∗

1i|Xi, Ui) +H∗
1i − E(H∗

1i|Xi, Ui)}⊗2

{E(H∗
0i|Xi, Ui)}2

×
{
1− E(H∗

0i|Xi, Ui)−H∗
0i

E(H∗
0i|Xi, Ui)

}2 ∣∣∣∣Xi, Ui

]∣∣∣∣Xi

)

= E

(
E

[
G∗
0i
2 {E(H∗

1i|Xi, Ui)}⊗2

{E(H∗
0i|Xi, Ui)}2

∣∣∣∣Xi, Ui

] ∣∣∣∣Xi

)
+Ri

= ϕE

[
E(H∗

0i|Xi, Ui) {E(H∗
1i|Xi, Ui)}⊗2

{E(H∗
0i|Xi, Ui)}2

∣∣∣∣Xi

]
+Ri

= ϕE

[
{E(H∗

1i|Xi, Ui)}⊗2

E(H∗
0i|Xi, Ui)

∣∣∣∣Xi

]
+Ri

where Ri comprises of remainder terms that are of lower order as compared to the
leading terms in the final steps of the derivation. Now note that,

E

(
G∗
0iG∗

1iH∗
1i
T

H∗
0i

∣∣∣∣Xi

)

= E

{
E

(
G∗
0iG∗

1iH∗
1i
T

H∗
0i

∣∣∣∣Xi, Ui

)∣∣∣∣Xi

}

= E

(
E

[
G∗
0iG∗

1i {E(H∗
1i|Xi, Ui) +H∗

1i − E(H∗
1i|Xi, Ui)}T

{E(H∗
0i|Xi, Ui) +H∗

0i − E(H∗
0i|Xi, Ui)}

∣∣∣∣Xi, Ui

] ∣∣∣∣Xi

)

= E

E
G∗

0iG∗
1i {E(H∗

1i|Xi, Ui) +H∗
1i − E(H∗

1i|Xi, Ui)}T

{E(H∗
0i|Xi, Ui)}

{
1− E(H∗

0i|Xi,Ui)−H∗
0i

E(H∗
0i|Xi,Ui)

} ∣∣∣∣∣Xi, Ui

 ∣∣∣∣∣Xi


= E

(
E

[
G∗
0iG∗

1i {E(H∗
1i|Xi, Ui) +H∗

1i − E(H∗
1i|Xi, Ui)}T

{E(H∗
0i|Xi, Ui)}

×
{
1− E(H∗

0i|Xi, Ui)−H∗
0i

E(H∗
0i|Xi, Ui)

} ∣∣∣∣Xi, Ui

]∣∣∣∣Xi

)

= E

[
E

{
G∗
0iG∗

1iE(H∗
1i|Xi, Ui)

T

{E(H∗
0i|Xi, Ui)}

∣∣∣∣Xi, Ui

} ∣∣∣∣Xi

]
+Ri

= ϕE

[
{E(H∗

1i|Xi, Ui)}⊗2

E(H∗
0i|Xi, Ui)

∣∣∣∣Xi

]
+Ri.

Similarly,

E

(
G∗
0iH∗

1iG∗
1i
T

H∗
0i

∣∣∣∣Xi

)
= ϕE

[
{E(H∗

1i|Xi, Ui)}⊗2

E(H∗
0i|Xi, Ui)

∣∣∣∣Xi

]
+Ri,
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where Ri comprises of remainder terms that are of lower order as compared to the
leading term in the expression. Combining the results so far in this subsection, we
obtain

E(S1iS
T
1i|Xi) =

1

ϕ
E

[
E(H∗

2i|Xi, Ui)−
{E(H∗

1i|Xi, Ui)}⊗2

E(H∗
0i|Xi, Ui)

∣∣∣∣Xi

]
+R.

7.3.9.3 The Conditional Expectation of the Square of the Third Score

We have the following approximation

S2i = − 1

2σ2
+
U2
i

2σ4
+
UiG∗

0i

σ4H∗
0i

+OP (n
−1).

Therefore,

4σ8E(S2
2i|Xi) = E

{(
U2
i − σ2 +

2UiG∗
0i

H∗
0i

+OP (n
−1)

)2 ∣∣∣∣Xi

}

= E(U4
i ) + σ4 + 4E

(
U2
i G∗

0i
2

H∗
0i
2

∣∣∣∣Xi

)
− 2σ2E(U2

i )

+ 2E

(
U3
i G∗

0i

H∗
0i

∣∣∣∣Xi

)
− 4σ2

(
UiG∗

0i

H∗
0i

∣∣∣∣Xi

)
+OP (n

−1).

Now note that,

E

(
U2
i G∗

0i
2

H∗
0i
2

∣∣∣∣Xi

)
= E

{
E

(
U2
i G∗

0i
2

H∗
0i
2

∣∣∣∣Xi, Ui

) ∣∣∣∣Xi

}
= E

(
E

[
U2
i G∗

0i
2

{E(H∗
0i|Xi, Ui) +H∗

0i − E(H∗
0i|Xi, Ui)}2

∣∣∣∣Xi, Ui

] ∣∣∣∣Xi

)

= E

E
 U2

i G∗
0i
2

{E(H∗
0i|Xi, Ui)}2

{
1− E(H∗

0i|Xi,Ui)−H∗
0i

E(H∗
0i|Xi,Ui)

}2

∣∣∣∣∣Xi, Ui

 ∣∣∣∣∣Xi


= E

(
E

[{
U2
i G∗

0i
2

{E(H∗
0i|Xi, Ui)}2

}{
1− E(H∗

0i|Xi, Ui)−H∗
0i

E(H∗
0i|Xi, Ui)

}2 ∣∣∣∣Xi, Ui

]∣∣∣∣Xi

)

= E

(
E

[
U2
i G∗

0i
2

{E(H∗
0i|Xi, Ui)}2

∣∣∣∣Xi, Ui

] ∣∣∣∣Xi

)
+Ri

= ϕE

[
U2
i E(H∗

0i|Xi, Ui)

{E(H∗
0i|Xi, Ui)}2

∣∣∣∣Xi

]
+Ri

= ϕE

[
U2
i

E(H∗
0i|Xi, Ui)

∣∣∣∣Xi

]
+Ri

= OP (n
−1).
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Also, for k = 1, 3,

E

(
Uki G∗

0i

H∗
0i

∣∣∣∣Xi

)
= 0.

Hence,
4σ8E(S2

2i|Xi) = E(U4
i ) + σ4 − 2σ2E(U2

i ) +OP (n
−1)

= 3σ4 + σ4 − 2σ4 +OP (n
−1)

= 2σ4 +OP (n
−1).

Therefore we have,

E(S2
2i|Xi) =

1

2σ4
+OP (n

−1).

7.3.10 The Fisher Information Matrix

The conditional expectations for the off-diagonal entries of the Fisher information matrix
of (β0,β1, σ

2) expressed in terms of order notation are the same as in the canonical
case. Putting together the expressions for the quadratic conditional expectations of the
scores from the earlier three subsections, we have

I(β0,β1, σ
2)

=


m
σ2 +OP (mn

−1) OP (m)1T
d OP (mn

−1)

OP (m)1d
m
ϕ E

[
E(H∗

2i|Xi, Ui)− {E(H∗
1i|Xi,Ui)}⊗2

E(H∗
0i|Xi,Ui)

∣∣∣∣Xi

]
+R OP (m)1d

OP (mn
−1) OP (m)1T

d
m
2σ4 +OP (mn

−1)

 .
However note that by using (7.15), we can rewrite the expression below as follows,

E(S1iS
T
1i|Xi) =

1

ϕ
E

[
E(H∗

2i|Xi, Ui)−
{E(H∗

1i|Xi, Ui)}⊗2

E(H∗
0i|Xi, Ui)

∣∣∣∣Xi

]
+R

=
1

ϕ
E

 n∑
j=1

X⊗2
ij w(ηij)−

{∑n
j=1Xijw(ηij)

}⊗2∑n
j=1w(ηij)

∣∣∣∣∣Xi

+R.

It follows that the leading term in (2, 2) block of I(β0,β1, σ
2) is,

mn

ϕ

 1

mn

m∑
i=1

E

 n∑
j=1

X⊗2
ij w(ηij)−

{∑n
j=1Xijw(ηij)

}⊗2∑n
j=1w(ηij)

∣∣∣∣∣Xi


 =

mnΣβ1

ϕ
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where

Σβ1 ≡ 1

mn

m∑
i=1

E

 n∑
j=1

X⊗2
ij w(ηij)−

{∑n
j=1Xijw(ηij)

}⊗2∑n
j=1w(ηij)

∣∣∣∣∣Xi


=

1

mn

m∑
i=1

n∑
j=1

X⊗2
ij E{w(ηij)|Xi}

− E

 1

mn

m∑
i=1


n∑
j=1

Xijw(ηij)




n∑
j=1

w(ηij)


−1

n∑
j=1

Xijw(ηij)


T
 .

(7.16)

Using Lemma 1 from Chapter 2 with f(Xij ,Ui) = w(ηij), we have that the first term
in (7.16) can be re-expressed as follows

1

mn

m∑
i=1

n∑
j=1

X⊗2
ij E{w(ηij)|Xi} = E

{
XXTw(β0 + β1 + U)

}
+ oP (1)1

⊗2
d .

Now, using Lemma 2 from Chapter 2 with f(Xij ,Ui) = w(ηij), we have that the second
term in (7.16) can be re-expressed as follows

E

 1

mn

m∑
i=1


n∑
j=1

Xijw(ηij)




n∑
j=1

w(ηij)


−1

n∑
j=1

Xijw(ηij)


T


= E
(
E {Xw(β0 + β1 + U)|U} [E {w(β0 + β1 + U)|U}]−1E {Xw(β0 + β1 + U)|U}T

)
+ oP (1)1

⊗2
d .

Now,

Σβ1 = E

[
E
{
XXTw(β0 + β1 + U)|U

}
− E {Xw(β0 + β1 + U)|U}⊗2

E {w(β0 + β1 + U)|U}

]
+ oP (1)1

⊗2
d .

Let

Ω∗
β1
(U) ≡ E

{
w(β0 + β1 + U)

[
1 XT

X XXT

] ∣∣∣∣∣U
}
.

The inverse of the lower right d× d block of Ωβ1(U)−1 is

E
{
XXTw(β0 + β1 + U)|U

}
− E {Xw(β0 + β1 + U)|U}⊗2

E {w(β0 + β1 + U)|U}
.

Therefore, we conclude that that the (2, 2) block of I(β0,β1, σ
2) is as follows

mn(Λ∗
β1
)−1

ϕ
+ oP (mn)1

⊗2
d

where

Λ∗
β1

≡
(
E
[{

lower right d× d block of Ω∗
β1
(U)−1

}−1
])−1

.
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Hence, the final Fisher information matrix can be expressed as

I(β0,β1, σ
2) =


m
σ2 +OP (mn

−1) OP (m)1Td OP (mn
−1)

OP (m)1d
mn(Λ∗

β1
)−1

ϕ + oP (mn)1
⊗2
d OP (m)1d

OP (mn
−1) OP (m)1Td

m
2σ4 +OP (mn

−1)

 .

7.3.11 The Inverse of the Fisher Information Matrix

To invert the Fisher information matrix, we choose to work with the (β0, σ
2,β1) ordering

instead of (β0,β1, σ
2). A trivial rearrangement of the matrix entries leads to

I(β0,β1, σ
2) =


m
σ2 +OP (mn

−1) OP (mn
−1) OP (m)1Td

OP (mn
−1) m

2σ4 +OP (mn
−1) OP (m)1Td

OP (m)1d OP (m)1d
mn(Λ∗

β1
)−1

ϕ + oP (mn)1
⊗2
d

 .
Following similar steps to that in Subsubsection 4.5.2.10, we obtain the following
expression for I(β0, σ

2,β1)
−1 where

I(β0, σ
2,β1)

−1

=


σ2

m +OP (m
−1n−1) OP (m

−1n−1) OP (m
−1n−1)1Td

OP (m
−1n−1) 2σ4

m +OP (m
−1n−1) OP (m

−1n−1)1Td

OP (m
−1n−1)1d OP (m

−1n−1)1d
ϕΛ∗

β1
mn + oP (m

−1n−1)1⊗2
d

 .
The expression for the inverse of the Fisher information matrix can be also written as
follows

I(β0, σ
2,β1)

−1 = I(β0, σ
2,β1)

−1 +
1

mn

 OP (1) OP (1) OP (1)1
T
d

OP (1) OP (1) OP (1)1
T
d

OP (1)1d OP (1)1d oP (1)1
⊗2
d

 .
where

I(β0, σ
2,β1)

−1 =


σ2

m 0 0

0 2σ4

m 0

0 0
ϕΛ∗

β1
mn

 .

7.3.12 Final Asymptotic Normality Result

The derivations leading to the final asymptotic normality result follows steps similar to
those in Subsubsection 4.5.2.11j. It follows that

√
m


β̂0 − β00√
n
(
β̂1 − β0

1

)
σ̂2 − (σ2)

 D→ N



0

0

0

 ,

(σ2)0 0 0

0 ϕΛ∗
β1

0

0 0 2
{
(σ2)0

}2

 .
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Chapter 8

Discussion and Conclusion

The aim of this thesis was to address some of the current gaps present in the literature

available for GLMMs. Specifically, we aimed to develop asymptotic theory for maximum

likelihood and maximum quasi-likelihood estimators for GLMMs. Once these results were

derived, we wished to assess the efficacy of the studentized confidence results constructed

based upon these asymptotic normality results and also explore the implications of such

results on optimal design theory. Lastly, with regards to methodology for GLMMs, we

aimed to implement the Thouless-Anderson-Palmer approach and analyse the accuracy

of the variational estimates obtained.

In order to carry out detailed asymptotic analysis on maximum likelihood estimators

and maximum quasi-likelihood estimators for GLMMs, we first required results for two

important tasks. The first of which required deriving population limits of particular

predictor-dependent sample mean quantities. The second task involved establishing

matrix norm asymptotic negligibility between matrix square roots of inverse Fisher

information matrices and their simpler asymptotic block diagonal forms. Currently,

there are no results available to deal with either of these tasks in a simple manner.

Hence in Chapter 2, we provided the necessary tools and results in the forms of Lemmas

1, 2 and 3.

Next, in Chapter 3, we derived asymptotic normality results for GLMMs involving

Gaussian responses. Existing theory for Gaussian linear mixed models by Wand (2002)

and Harville (1977) provided base expressions for the required Fisher information

matrix. Thereafter, the leading terms in the entries of the Fisher information matrix

were retained, as the number of groups and the number of observations within each

group diverged. (This approach was repeated throughout Chapters 4 and 7 in this thesis



220

as well). The resulting theorem as a result of our work concerns the joint asymptotic

normality of all maximum likelihood estimators for a Gaussian response mixed model

and elegantly shows faster rates of convergence of fixed effects unaccompanied by random

effects as compared to fixed effects that have partnering random effects.

The results in Chapter 3 were extended to the class of all GLMMs, including a model

extension for overdispersion, in Chapter 4. However, frequentist inference for GLMMs is

hindered by the existence of intractable integrals due to the inclusion of random effects

in these models. To overcome this obstacle, we used a multi-term Laplace’s method

expansion for ratios of intractable integrals (Miyata, 2004; Tierney et al., 1989). The

resulting asymptotic normality theorem concerns the joint asymptotic normality of all of

the maximum quasi-likelihood estimators, for fixed values of the dispersion parameter,

for a generalized linear mixed model. Once again, the results derived in this chapter

show faster rates of convergence for fixed effects that are not accompanied by random

effects as compared to fixed effects accompanied by random effects. We also noted that

for the class of two-parameter exponential families, maximum likelihood estimation is

possible for all model parameters including the dispersion parameter. Based on this, we

also derived asymptotic normality results for the maximum likelihood estimator for the

dispersion parameter in the Gaussian and Gamma response cases.

Chapter 5 presents the consequences and applications of the asymptotic normality

results derived in Chapter 4. First, we present how studentized confidence intervals can

be constructed based on our asymptotic normality results in order to carry out asymptot-

ically valid inference. The efficacy of the confidence intervals were then assessed, which

showed that the Theorem 12-based approach in Section 4.3 as an attractive alternative

to the exact observed Fisher information approach. The Theorem 12-based approach

required simpler or no numerical integration at all compared to the exact observed

Fisher information approach and gave similar coverage properties, especially for larger

values of the number of groups and number of observations within each group. Next, we

looked into the implications of Theorem 12 on optimal design theory. Most optimality

criteria are based on the Fisher information matrix, which is computationally expensive

to evaluate. Hence, we presented a simple approach to constructing approximate locally

D-optimal designs based on large sample approximations of the Fisher information

matrix.

In Chapter 6, we tackle the implementation of the Thouless-Anderson-Palmer

approach for GLMMs. First, we presented a general result for deriving the Thouless-

Anderson-Palmer approximate negative log-likelihood for GLMMs. This expression can

then be locally minimized to obtain TAP estimates of the true model parameters. Then,
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we carried out several simulation studies using a simple Poisson linear mixed model

and analysed the Thouless-Anderson-Palmer variational estimates obtained against the

estimates obtained from implementing Gaussian variational approximation. Based on

the simulation studies, the Thouless-Anderson-Palmer enhancement approach suggests

a slight yet statistically significant improvement as compared to using the Gaussian

variational approximation approach, especially for small datasets.

Last but not least, in Chapter 7, we developed theory to consider the usage of

noncanonical links for both the development of asymptotic normality results for max-

imum quasi-likelihood estimators for GLMMs and also the implementation of the

Thouless-Anderson-Palmer approach for GLMMs.

In conclusion, this thesis presents important theoretical and methodological work

that concerns the asymptotic distributions of maximum quasi-likelihood estimators for

GLMMs and the implementation of the Thouless-Anderson-Palmer variational method

for GLMMs. We believe that the work in this thesis will make a significant and novel

contribution to the area of GLMMs, which have been a mainstay of regression-type

statistical analyses in important areas such as longitudinal data analysis, multilevel

modelling, panel data analysis and small area estimation.

Potential future work involves deriving second-order asymptotic approximations

of the Fisher information matrix. In this thesis, we only retained the leading terms

in the entries of the Fisher information matrix, hence leading to a first-order asymp-

totic approximation. Deriving second-order asymptotic approximations can give more

accurate expressions for the asymptotic variance-covariance matrix for the maximum

quasi-likelihood estimators for GLMMs, which is especially useful when implementing

such results for smaller finite samples. For example, with second-order approximations,

better coverages can be achieved when constructing studentized confidence intervals for

smaller values for the number of groups and number of observations within each group

as compared to those in the simulation study in Subsection 5.1.2. Deriving second-order

approximations will also allow us to determine approximate locally D-optimal designs

when considering multivariate random effects, which is not met by the theory presented

in this thesis.

The techniques used in this thesis could also be used to study statistical models other

than GLMMs. An example of a potential class of such models would be generalized

additive mixed models. This class of models extends the GLMM framework by allowing

for continuous predictors impacting the mean response to be modelled by additive

non-parametric functions. This provides additional flexibility for modelling the actual
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relationship between the response (specified by an exponential family distribution) and

predictors, It also potentially provides better fits to the data as well. The techniques

used in this thesis could be used to derive the first-order asymptotic approximations of

the ratios of intractable integrals that arise when calculating the scores required for the

Fisher information matrix, and subsequently the asymptotic variance-covariance matrix.

Last but not least, we can explore how the TAP approach performs against the GVA

approach for GLMMs with response distributions other than the Poisson family.
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