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Notation

In this chapter, we introduce acronyms that are frequently used throughout this thesis.

Acronyms

Table 1: Table with acronyms used in the thesis with their meanings.

Acronym Meaning

GLMM Generalized linear mixed model
GVA Gaussian variational approximation
MLE Maximum likelihood estimation

TAP Thouless- Anderson-Palmer
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Abstract

Generalized linear mixed models are an essential group of models for analysing many
present-day complex data sets, especially those that contain non-normal and correlated
response data. Despite the large volume of research concerning this group of models,
there is very little theory concerning the statistical properties of maximum likelihood
estimators for generalized linear mixed models. Existing theoretical results available
for the asymptotic variance-covariance matrix for such estimators contain limits and
expectations over the response distribution, hence such results are not in ready-to-use
forms when carrying out tasks such as constructing studentized confidence intervals
or optimal design determination. In this thesis, we derive precise asymptotic results
for likelihood-based generalized linear mixed model analysis. The novel asymptotic
normality results are derived for both cases involving either a canonical or noncanonical
link function. In our approach, we derive the exact leading term behaviour of the Fisher
information matrix when both the number of groups and number of observations within
each group diverge. This leads to asymptotic normality results with explicit and simple
studentizable forms. The implications of these results in optimal design theory is also
explored, leading to simpler and more direct determination of approximate locally D-
optimal designs. Towards the end of this thesis, a Thouless-Anderson-Palmer approach
is introduced for modern statistical inference for generalized linear mixed models. Such
methods have proven to provide accurate approximations to problems arising in machine
learning contexts. However, statistical applications such as generalized linear mixed
model analysis have not been investigated. Thus, we derive results for implementing
the Thouless-Anderson-Palmer frequentist variational approach to generalized linear

mixed models and analyse the accuracy of its variational estimates.



Chapter 1

Introduction and Background

This chapter serves as an introduction for the thesis and also presents the necessary
background information and theory required for the remaining chapters in this thesis.

Note that the results, definitions and work presented in this chapter are not novel.

1.1 Introduction

In recent developments in statistical analysis, generalized linear mixed models (GLMMs)
have become an essential group of models for analysing many present-day complex
data sets, causing it to become a rapidly growing area of research. These models have
been deemed useful and practical when accounting for overdispersion is necessary, a
common occurrence when working with outcomes that have underlying Poisson or
binomial distributions. In addition, GLMMs can also be applied widely in areas such as

longitudinal data analysis and disease mapping (Breslow and Clayton, 1993).

A popular approach for fitting GLMMs is maximum likelihood estimation (MLE).
Problems however arise as while the log-likelihood of a GLMM can be expressed
mathematically, it involves integration over the random effects component of the model,
which cannot be evaluated as closed form integrals. In some cases, to counter this
hindrance caused by integral intractability and to accurately evaluate these integrals,
standard quadrature techniques such as Gauss-Hermite quadrature can be used. Many
software packages are also available to fit these GLMMs. One such example is the
package 1me4 (Bates et al., 2015) in the R computing environment (R Core Team, 2022)
and contains the function glmer () which is used to fit GLMMs.
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While estimation by maximum likelihood for GLMMs is well and widely established,
asymptotic normality results that can be used for practical purposes such as constructing
confidence intervals and Wald tests via Studentization are currently unavailable in the

existing generalized linear mixed model literature.

With regards to possible developments in methodology used for GLMMs, one may
consider the Thouless-Anderson-Palmer (TAP) paradigm, which was developed in
statistical physics literature for spin glass models (Thouless et al., 1977). Recently, there
has been a realisation that it provides accurate approximations to problems arising in
machine learning learning contexts. The TAP approach is also able to overcome issues
involving intractable integrals, a common problem that hinders frequentist inference
carried out on GLMMSs. However, statistical applications such as longitudinal data
analysis and multilevel models analysis, which may benefit from using TAP methodology,

have not been investigated.

1.2 Thesis Aim

This thesis aims to address some of the gaps currently present in the immense statistical
literature available for GLMMs in the frequentist setting. We firstly aim to develop
novel asymptotic theory for maximum quasi-likelihood estimators for GLMMs. The
goal is to develop such theory for both cases where one may choose to either use a
canonical link or noncanonical link as part of the GLMM, dependent on the type of
data being used. Following that, we aim to assess the efficacy of the confidence intervals
constructed using the newly derived asymptotic normality distribution for maximum
quasi-likelihood estimators for GLMMs. We also aim to explore applications for the
asymptotic results, such as its implications in optimal design theory. Last but not least,
we aim to develop theory for implementing the TAP frequentist variational approach to

generalized linear mixed models and analyse the accuracy of its variational estimates.

1.3 Outline

Following the introductory chapter, Chapter 2 introduces lemmas that serve as essential
statistical tools for carrying out the asymptotic derivations present in this thesis.
Chapter 3 then starts off by dealing with the Gaussian generalized linear mixed model

and presents a theorem concerning the joint asymptotic normality of all of the maximum
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quasi-likelihood estimators for such a model. The theorem is then extended to the
generalized linear mixed model case in Chapter 4. Consequences and applications of
the novel asymptotic normality results are then investigated and discussed in Chapter
5. Chapter 6 then turns to newly developed methodology for GLMMs and develops
theory for usage of the TAP variational method for GLMMs and investigates if there
are improvements in the statistical approximations. Since only canonical links are
considered in Chapters 4 and 6, Chapter 7 further extends the novel asymptotic results
and TAP variational approximation derivations to cater for noncanonical links as well.

The thesis ends off with a discussion and conclusion based on the work presented so far.

1.4 Matrix Theory

In this section, we present some background on the matrix theory required for the

derivations present in this thesis.

1.4.1 Difference Between Two Matrix Inverses

For any two equal-sized invertible matrices A and B, we have,

Al -B'=AYB-AB (1.1)

1.4.2 Other Useful Matrix Identities

Let M and IN be invertible square matrices of the same size. Using an iterative
application of the Sherman-Morrison-Woodbury formula, we have,

o
(M-N)"'=) (M 'N)}FM, (1.2)
k=0

for matrices such that the spectral radius of M 1N is less than 1. Let A and B be
invertible square matrices and I be an identity matrix with all the matrices having the
same size. Using (1.2) and setting M = I and N = —B~!A~! results in the following
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matrix identity
(I+AB)'A=[(AB){(AB)"'+I}] ' A
(I+B lA=hH=1Bp~la~lA
—(I+B'A Y)Y 'B! '
= (

I+B'A '+, . )B!

(1.3)

Let A, B and C be invertible square matrices and I be an identity matrix with all the
matrices having the same size. Using (1.2) and setting M = I and N = —-B~1A~!

results in the following matrix identity
(I+AB)"'C = [(AB){(AB) ' +1}] 'C

(I+B'A Y 'B A~ lC (1.4)
(I+B'A'+. . )B'A™'C.

Let A and B be invertible square matrices and I be an identity matrix with all the
matrices having the same size. Using (1.2) and setting M = A and N = —B~! results
in the following matrix identity
B(I+AB) '=(B ) 'I+AB)!
={I+AB)B}'
={A- (B}
=A'-A'B'AT 4+

1.4.3 Block Matrix Inversion

The following definition instructs how a block matrix can be inverted.

Result 1. Consider the following matriz which has been partitioned into four blocks

A B
C D

where A and D are square blocks of arbitrary size and blocks B and C are conformable
such that the matrix can be properly partitioned. The matriz can then be inverted
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blockwise as follows

-1

A B A+ A"'B(D-CA'B)"'CA~' —-A-'B(D-CA~'B)"!
C D (D-CA'B)"'CA™! (D-CA'B)!
(1.6)
By permuting the blocks, an equivalent result is
—1
A B (A—BD-'C)"! —(A-BD-'C)"'BD"!
C D ~D'C(A-BD-'C)"! D'+D'C(A-BD'C)"'BD'|
(1.7)

Note that matrices A and D — C A~! B must be invertible when using the block
matrix inversion result presented in (1.6). Likewise, matrices D and A — BD~'C must

be invertible when using the block matrix inversion result presented in (1.7).

1.4.4 The vec and vech Operators

Let A be a m x n matrix and let a;; represent the element in the matrix located in the
i-th row and j-th column. For any matrix A, vec(A) is defined as the mn x 1 vector
which is constructed from the columns in A being stacked on top each other, one column
after the other, from left to right. If A is a square d x d matrix, then vech(A) is defined
as a %d(d + 1) x 1 vector, where the entries including and below the diagonal of A, are

stacked on top each other, one column after the other, from left to right.

For example, if A is a 3 x 3 square matrix, then we have the following matrix, vec

and vech operators, where
air a2 a3
A= lay azp asg

azr asz2 as3
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with L
ain
a2 T
an
asi
az
a2
asi
vec(A) = |ayy| and vech(A) =
a2
as2
as2
a13
ass
as3 -
ass

1.4.4.1 The Commutation Matrix

The commutation matriz of order d, denoted by K, allows for the conversion between
the operators vec(A) and vec(AT). It is the d? x d? matrix containing only zeroes and

ones such that
Kvec(A) = vec(AT)

for all d x d matrices A. The following useful property regarding commutation matrices

also exists (Magnus and Neudecker, 1999):

K] =K;'=K,. (1.8)

1.4.4.2 The Duplication Matrix

The duplication matriz of order d, denoted by Dy, allows for the conversion between
the operators vec(A) and vech(A). Dy is the unique d? x 1d(d+ 1) matrix of zeros and

ones such that
vec(A) = Dgvech(A)

for all d x d matrices A. Finally, the Moore-Penrose inverse of Dy is defined as

Dj =(D;Da)”' Dy
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1.4.5 Kronecker Products and Related Properties

Let A be a m x n matrix and let B be a p x ¢ matrix. The Kronecker product of
matrices A and B is denoted as A ® B and it is the mp X ng matrix defined by

(111B e alnB

amB ... amnB

Let A, B, C and D be square matrices. Then some of the properties regarding Kronecker

products are as follows:

(A® B)(C ® D) = AC ® BD,
(A9 B) '=A"19 B,
vec(ABC) = (CT @ A)vec(B) and
tr(ABCD) = vec(D)' (A @ CT)vec(BY).

A®(B+C)=A®B+AC,

1.4.6 Vector and Matrix Norms

In this subsection, we present a few vector and matrix norms and their properties.

1.4.6.1 FEuclidean Norm

Let € R?. Then, the Euclidean Norm of x is
|zlls = VaTx.

1.4.6.2 Frobenius Norm

The Frobenius norm of a general matrix A is

|Allr = \/trace(AT A).
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1.4.6.3 Spectral Norm

For a general symmetric matrix M, let us define the following:
Amin (M) = smallest eigenvalue of M and  Apax (M) = largest eigenvalue of M.

The spectral norm of a general matrix A is such that

|Alls = \/ Amax (AT A).

||A||S = )‘maX(A)'

If A is symmetric then

Also, if A is symmetric and positive definite, then the spectral decomposition of A is
A = Udiag \)UT
where UTU = I and A is the vector containing the eigenvalues of A. We then have
A~ = Udiag(1/A)UT

and therefore
A7 s = 1/Amin(A).

The spectral norm also possesses the following sub-multiplicity property
|AB|s < [|Alls||Blls
for any pair of matrices A and B such that the matrix product AB is defined.

Finally, suppose that A is a d x d matrix and 14 is the vector of ones. Then, using

the sub-multiplicity property of the spectral norm, we can claim that

T T
114 ALalls < [1glls/lAlls[11alls-

Then

117 = \/largest eigenvalue of 1417 = v/d

and

114]ls = \/largest eigenvalue of 171, = V.
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Hence
115 Alylls < d|As.

1.4.7 Eigenvalue Bound Results

Let the eigenvalues of a d x d matrix M be denoted by

Theorem 8.1.5 of Golub and Van Loan (2013) states that, for any d x d matrices A and
FE such that A and A + E are symmetric, we have

Aj(A) + Anin(E) S N(A+ E) < Nj(A) + Anax(E) forall 1<j<d.
In particular, by choosing A; to correspond to Amin, we have

)\min(A + E) > )\min(A) + /\min(E). (19)

1.4.7.1 Matrix Identities from Harville (1977)

For a general linear model
y=XpB+Za+e,

assume that y is a n x 1 response vector, X and Z are n X p and n X ¢ matrices
respectively, B is a p X 1 vector of unobservable fixed effects, a is a ¢ x 1 vector of
unobservable random effects and € is a n x 1 vector of unobservable random errors. In
addition, the following properties apply where E(a) = 0, E(e) = 0 and E(a’¢e) = 0.
Also let D = Cov(a), R = Cov(e) and V = ZDZ"T + R such that Cov(y) = V, where
Cov( ) denotes the covariance function. Harville (1977) then provides the following

matrix identities.

VIi=R'-R'ZDUI+2Z"R'ZD)'Z"R™}, (1.10a)
Z'vi=U+2"R'zZD)'ZT"R . (1.10b)
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1.4.8 Vector Differential Calculus

Let f be a scalar-valued function with a vector & € R? as its argument. Then the 1 x d

derivative vector of f, denoted by D f(x), has entries

Of (x)
8561'

where 1 <1¢ < d. The d x d Hessian matriz of f is then defined as follows

Hf(z) = D{Df(z)"}

with (4, 7) entry equal to
0*f(x)
8xi8xj

where 1 < ¢ < dand 1 < j <d. When vectors and matrices are involved, it is more
appropriate to use vector differential calculus rather than ordinary scalar differential
calculus. In order to compute the derivative vector, we use the following definition
(Magnus and Neudecker, 1999):

Theorem 1. First Identification Theorem: If a and x are 1 x d vectors such that
df(x) = adx

then
a=Df(x).

The Hessian matrix can then be computed as follows:

Theorem 2. Second Identification Theorem: If © is a 1 x d vector and A is a d x d

matriz such that
d’f(x) = (dz)T A dx

then

A=Hf(z).

Further rules regarding vector differential calculus are provided in Magnus and
Neudecker (1999) and Wand (2002).
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1.5 Key Integral Results

In this section, we present key integral results used in this thesis.

1.5.1 Useful Integral Results

Let
a17a27a37b >0

be strictly positive real numbers such that
aijag > b.

Then, from Wolfram Research Inc. (2022), we have the following integral results:

/OO de 7
0o ar+x2  2a;’

/OO dx B T
o (ap +x2)2 dary/ar’

0 dx T
/0 (a1 +2%)(az +22)  2y/aaz(y/ar + v/az)’
/°° dx B m(2y/a1 + /az)
o (a1 +22)2(az +2?)  dararaz(yar + /az)?’

& 2 dx T
/0 (a1 +22)(az +22)  2(/ar +/az)’
/°° dx m(y/ar + a2 + \/a3)
o (a1+2%)(

az + a?)(az +0%) " 2/anands(y/ar + /) (yar + v/as)(Vaz + as)

and

/OO 22 dx
0 (a1 + 3:2)((12 + LUQ) —-b
T

\/5{\/@1—1—612—}— (al—a2)2+4b+\/a1+a2— (al—a2)2+4b}

Also note that,

@+ yam) et @) ™
darJaras(yJas + /@)?  dary/anaa(yar + @)? | 2a1y/aas(y/ar + /)
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which leads to the bound

o0 dx T
L errermr < 2ary/ar (i + va) (L11)

1.5.2 Integral Form of the Matrix Square Root

The integral form of the square root of a matrix, for a matrix A having no eigenvalues

on R, is given by Higham (2008) as

2 o0
A2 = / A(A+ 1) at. (1.12)
T Jo

1.6 Key Expectation Results

In this section, we present some key expectation results used frequently in the derivations

in this thesis.

1.6.1 Law of Total Expectation

Theorem 3. Let X and Y be random variables defined on the same probability space
and where the expected value of X, E(X), is defined. Then the law of total expectation
is defined as follows

E(X)=FE{E(XI|Y)}.

1.6.2 Jensen’s Inequality

Theorem 4. Let f : R — R be a convex function and X be a random variable such that

its expected value, F(X), is finite. Then, Jensen’s inequality states the following

f(E(X)) < E(f(X)).



1.7. EXPONENTIAL FAMILIES 14

1.6.3 Markov’s Inequality

Theorem 5. Let X be a random variable and a be a scalar. Markov’s inequality states
that if X is non-negative and a > 0, then the probability that X is greater than or equal

to a is at most the expectation of X divided by a,

E(X)

a

P(X >a) <

1.6.4 Cauchy-Schwarz Inequality

Theorem 6. Let X and Y be random variables. Then the Cauchy-Schwarz inequality
is defined as follows
|B(XY)* < E(X*)B(Y?).

1.7 Exponential Families

Ezxponential families consist of a set of probability distributions that can be written
in certain parametric forms. These exponential family forms can be used to provide
several parametric families of distributions with alternative parametrizations, in terms
of natural parameters, which possess useful algebraic properties. Several commonly used
probability distributions fall under the umbrella of exponential family density functions,

including but not restricted to the normal, binomial, Poisson and gamma distributions.

1.7.1 One-Parameter Exponential Families
In this subsection, we present the class of one-parameter exponential family probability
distributions.

Definition 1. The class of one-parameter exponential family density, or probability

mass, functions have generic form

p(y;n) = exp{yn — b(n) + c(y)} h(y) (1.13)

where 1 is the natural parameter and the functions b(-), c(-) and h(-) are defined according

to the desired response distribution.
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Explicit examples of the functions b(-), ¢(:) and h(:) for the binomial and Poisson

family of distributions have been provided in Table 1.1.

Family b(n) c(y) h(y)
Binomial | log(1 + e") 0 I(y € {0,1})
Poisson el —log(y!) | I(y € {0} UN)

Table 1.1: Examples of one-parameter exponential families and their b, ¢ and h functions.
Here, I(P) =1 if the condition P is true and I(P) = 0 if P is false.

If the random variable Y has density, or probability mass, function as in (1.13),
then E(Y) = b'(n) and Var(Y) = b”(n). A common modelling extension is to account
for overdispersion. Overdispersion occurs when the variability present in the data is
larger than what the proposed statistical model can account for. To model the variance
flexibly, a dispersion parameter ¢ > 0 is introduced and log{p(y;n)} is replaced by a

quasi-likelihood function as shown in Definition 2.

Definition 2. When accounting for overdispersion, the quasi-likelihood for the class of
one-parameter exponential family density, or probability mass, functions have generic

form

{yn —b(n) +c(y)}/¢ +d(y, ¢) (1.14)

where 1 is the natural parameter, ¢ > 0 is the dispersion parameter and the functions

b(+),c(:) and d(-,-) are defined according to the desired response distribution.

Now, if the random variable Y has quasi-likelihood as in (1.14), then E(Y) = b/(n)
and Var(Y') = @b (n).

Now, let Y be a vector of independent observations, X be a matrix of known
covariates and B be a vector of unknown regression coefficients (fixed effects). In
generalized linear models, it is common to model the mean function p = E(Y') as some

non-linear function of the linear predictor or natural parameter such that

where

1

Here, g is known as the link function. If g=! = ¥/, then g is called the canonical link
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function and the following useful relationship exists

p=g"(n)="bn).

Selecting the link function to be a canonical link leads to simpler likelihood expressions

and provides useful sufficient statistics.

However, one may choose to use a noncanonical link function if, for example, using
a noncanonical link leads to a better data fit. Some examples of noncanonical links are
the probit link (®~1) for binary regression and the log link (log) for Gamma regression.
The following two definitions provide exponential family forms written in terms of the

natural parameter, 1, when noncanonical links are used (Fan et al., 1995).

Definition 3. When using noncanonical links, the class of one-parameter exponential
family density, or probability mass, functions have a generic form in terms of n as

follows
p(y;n) =exp [y(go ')~ (n) —{bo (gob) "' }(n) + c(y)] h(y) (1.15)

where n is the natural parameter, g is the link function and the functions b(-),c(:) and

h(-) are defined according to the desired response distribution.

If the random variable Y has density, or probability mass, function as in (1.15), then
E(Y)=g1(n) and Var(Y) = {b" o (b')"Log~1}(n). As mentioned earlier in this section,
one can apply a modelling extension to account for overdispersion which leads to the
expression for log{p(y;n)} as in (1.15) being replaced by a quasi-likelihood function as

shown in Definition 4.

Definition 4. When accounting for overdispersion and using noncanonical links, the
quasi-likelihood for the class of one-parameter exponential family density, or probability

mass, functions have a generic form in terms of n as follows

[y(got) " (n) —{bo(gob) " }(n) +c(y)] /¢ + dl(y, ) (1.16)

where 1 is the natural parameter, ¢ > 0 is the dispersion parameter and the functions

b(-),c(:) and d(-,-) are defined according to the desired response distribution.

Now, if the random variable Y has quasi-likelihood as in (1.16), then E(Y") = b/(n)
and Var(Y) = ¢{b" o (V) L o g7 }(n).
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1.7.2 Two-Parameter Exponential Families
In this subsection, we present the class of two-parameter exponential family probability
distributions.

Definition 5. The class of two-parameter exponential family density, or probability

mass, functions have generic form

p(y;n, @) = exp [{yn — b(n) +c(y)}/é + d(y, #)] h(y)

where n is the natural parameter and the functions b(-),c(+),d(-,-) and h(-) are defined

according to the desired response distribution.

Explicit examples of the functions b(-),c(-),d(-,-) and h(-) for the Gaussian and

gamma family of distributions have been provided in Table 1.2.

Family b(n) c(y) d(y, ¢) h(y)
Gaussian %172 — %yQ —log(27¢) 1
Gamma | —log(—n) | log(y) | —log(¢I'(1/¢)) —log(y) | I(y > 0)

Table 1.2: Examples of two-parameter exponential families and their b,c,d and h
functions.

1.8 Generalized Linear Mixed Models

We start off with classical linear models, where the mean of the response, often required
to be normally distributed, can be expressed as a linear combination of the unknown
model parameters and the predictor variables. In other words, a linear model has the
mean

E(Y)= X8

where Y is a vector of independent observations, X is a matrix of known covariates and
B is a vector of unknown regression coefficients (fixed effects). These models, however,
fall short when the observations are correlated or when the mean of the response cannot

be written as a linear function of the covariates.

Generalized linear mized models serve as an extension of linear models in two distinct
ways. Firstly, GLMMs allow for the modelling of correlated data through the inclusion

of random effects. Secondly, the mean, u, is linked to the linear predictor through
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a known function, g, known as the link function. With these additional properties,
GLMMs have become an essential group of models for analysing many present-day

complex data sets, which contain non-normal and correlated response data.

A summary of the various linear model effects structures ranging from linear models

to generalized linear mixed models is further detailed in Table 1.3.

Model (conditional) Mean Response
Linear Models (LMs) X3

Linear Mixed Models (LMMs) XB+ZU, U~ (0,%)
Generalized Linear Models (GLMs) g HXP)

Generalized Linear Mixed Models (GLMMs) | ¢~ Y(XB+ ZU), U ~ (0,%)

Table 1.3: Summary of various linear model effects structures.

To specify the structure of a generalized linear mixed model, we first define the
conditional distribution of the response, Y;;, given its associated random effect U;. Let
there be m groups and n; observations within each group. We also assume the random
effects to be independent normally distributed variables and the response Y;;, conditional
on the random effects, to be from an exponential family f. Then the generalized linear

mixed model has the following generic form:

ind.

ind.
YilUi = fy, v, (vijlwi), Ui '~ N(0,%) (1.17)
where " means ‘independently distributed as’ and with natural parameter
nij = X358+ Z5U;,

for 1 <i¢ <mand 1< j < n; Here, X;; is a drp x 1 vector of predictors having
a fixed effects coefficient vector B and Z;; is a dr x 1 vector of predictors having a
dr x 1 random effects coefficient vector U;. For this generalized linear mixed model,
the conditional mean of Yj; is

E(Y35|Ui) = i,

and there is a known link function, g, linking together the conditional mean and natural
parameter such that
T T
9(pij) = nij = X338 + Z;;U;.

Estimation of model parameters in generalized linear mixed models can be carried

out using maximum likelihood estimation, with more details being provided in the next
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section.

A detailed overview of the usefulness and difficulties of GLMM-based analysis can
be found in ? and Jiang and Nguyen (2021). Inferential methods for GLMMs other
than the maximum likelihood approach, such as generalized estimating equations and

penalized quasi-likelihood have also been discussed in these books.

1.9 Maximum Likelihood for Generalized Linear Mixed
Models

In this section, the mazimum likelihood approach to estimating model parameters in a

generalized linear mixed model is presented.

1.9.1 The Likelihood Function

We begin by describing the likelihood function for a general statistical model. Consider
a statistical model, parametrized by a vector of model parameters 8, with probability
density function f(y; @), where y is a vector of random variables. Here, if 6 is assumed
to be known, then f(y; @) is viewed to be the probability density function for y. On
the other hand, when y represents a vector of known observations and 6 is unknown,
then f(y) is simply a function of 8. This is known as the likelihood function of y and
is usually represented as £(0;y) to emphasise that 0 is unknown and y is known. Note

that mathematically, we have that

f(y;0) = L(6;y).

Now let us consider the likelihood for a generic generalized linear mixed model. By
letting @ = (3,3) and using the model description in (1.17), the likelihood can be

written as follows

£8.2i) =TT [ TL v on st fo (). (118)
i=1 VR

These likelihood functions form the basis for maximum likelihood estimation which

is explained in the next subsection.
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1.9.2 Maximum Likelihood Estimation

The maximum likelihood estimation method estimates the values of model parameters
such that under the fitted statistical model, the observed data is most probable. In
order to find these maximum likelihood estimates, one would need to find the values of
0 that maximise the likelihood £(8;y), where the maximization is carried out within
the permissible range of values for 8. For example, if one of the elements of @ represents
a variance or covariance parameter, then its range of permissible values is restricted
to non-negative values. This aspect of maximum likelihood estimation is critical for

estimating variances and covariances of random effects variables.

Note that finding the values of € that maximise the likelihood, £(0;vy), is equivalent
to finding the values of @ that maximise the log-likelihood, log L(0;y), since the log
function is a monotonic increasing function. The log-likelihood, commonly denoted
as £(0), is often a more convenient mathematical expression to work with. Hence the
maximum likelihood estimator for 8°, the true value of the parameter 6, in a general

statistical model can now be expressed as follows

6 = argmax £(6). (1.19)
0

Now, we aim to define the maximum likelihood estimators for generalized linear mixed
models. Taking the log function on both sides of (1.18), we obtain the log-likelihood of

a generic generalized linear mixed model as follows

18.2) =3 [1og /R T v s ) o (s | (1.20)
R

1=1

Then, for any B (drp x 1) and X (dr x dg) that is symmetric and positive definite,
the mazimum likelihood estimator of (3°, %), the true values of the parameters 3 and
3, is

(B, f)) = argmax /(3,X). (1.21)
B.X

Note that mazimum quasi-likelihood estimators for GLMMSs can also be defined if

one works with quasi-likelihoods such as those in (1.14) or (1.16).
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1.9.3 Asymptotic Properties of Maximum Likelihood Estimators for
Generalized Linear Mixed Models

Under certain regularity conditions, the maximum likelihood estimates of 8% obtained
using (1.19) are consistent and asymptotically normally distributed according to the
theorem below (Knight, 2000; 7).

Theorem 7. Let Y be a vector of independently and identically distributed random
variables and let @ denote the vector of model parameters used to parametrize a statistical

model, such that the density function f(y; @) satisfies the following reqularity conditions:

1. The true value 8° of @ is interior to the parameter space ©®, which has finite

dimension and is compact;
2. The set A={y: f(y;0) > 0} does not depend on 6;
3. f(y;0) is three times continuously differentiable with respect to @ for all y in A;

4. E[0'(0)] =0 for all @ and Var{¢'(0)] = —E[¢"(0)] = I1(0) where 0 < I(0) < oo
for all 8;

5. For each 0 and & > 0, there exists |0 (t;y)| < M(y) for |0 —t| < & where
EM(Y)] < oo.

Then, the following asymptotic normality result for mazimum likelihood estimators exists
6 N(6°,1(6°)7") (1.22)

where % means ‘asymptotically distributed as’ and with mean equal to the vector of true
model parameters 8° and asymptotic variance-covariance matriz equal to the inverse of

the Fisher information matrix, 1(6°).

As stated in the theorem above, there are two ways to derive the Fisher information
matrix. The first approach involves computing the first derivative of £(0) with respect

to 0. Then the Fisher information matrix can be defined as follows where

f(ﬁ):E{g‘g(g;)T}.

Alternatively, one could compute the second derivative of ¢(8) with respect to 6 and
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use the following definition of the Fisher information matrix where

o s [0

Despite the large volume of research concerning generalized linear mixed models, there is
very little theory concerning the statistical properties of maximum likelihood estimators

or maximum quasi-likelihood estimators for these models.

Recent related literature published includes Hall et al. (2011), who derive precise
asymptotic normality results for estimators for models that fall under the generalized
linear mixed models framework. In their case, these results are derived for Gaussian
variational approximation (GVA) estimators for a single-predictor Poisson mixed model.
Let m be the number of groups or subjects and let n be the number of observations
within each group. The asymptotic results are derived for the case where both m and
n in the model diverge. The final results obtained give rise to asymptotically valid
statistical inference where Gaussian variational approximations are concerned. In this
case, the aim of this thesis differs as we aim to derive asymptotic normality results for

maximum likelihood estimators and for the general class of GLMMs.

Nie (2007) presents properties of maximum likelihood estimators in generalized
linear and non-linear mixed effects models. In this article, the convergence rates of the
asymptotic variances of these maximum likelihood estimators were investigated in three
cases. In terms of the notation presented in Section 1.8, one of these cases caters to
when both m and n tend to infinity while the other two cases concentrate on either
m or n diverging towards infinity while the other quantity remains finite. By using
the Fisher information matrix, the convergence rates of the MLEs were determined by
finding out the orders of the leading terms and the remainder terms in the asymptotic
variances for each estimator. However, the leading terms involved were not explicitly
derived. This leaves a gap in terms of deriving the asymptotic distributions explicitly
for such GLMMs by investigating the exact expressions of the leading terms involved in

the asymptotic variances of the estimators.

The work presented in this thesis addresses this gap in the current statistical

literature for generalized linear mixed models.
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1.10 Asymptotics

In this section, we present the statistical tools used to carry out the asymptotic

derivations present in this thesis.

1.10.1 Convergence of Random Variables

In this subsection, we look at two different types of convergence for sequences of random
variables. We also consider the properties of these sequences of random variables when

various algebraic operations are applied.

1.10.1.1 Convergence in Probability

The notion of convergence in probability for a sequence of random variables deals with

the convergence of the random variables themselves and is defined below,

Definition 6. Let {X,} be a sequence of random variables. Then {X,} converges in

probability to the random variable X as n — oo, or X, LS X, if for all e > 0,

lim P(|X, — X|>¢) =0.
n—oo

It is common for the limiting random variable X to be a constant ¢, for which we
P
then have X,, — c.

1.10.1.2 Convergence in Distribution

The notion of convergence in distribution for a sequence of random variables deals with
the convergence of the distribution functions of the random variables and is defined

below,

Definition 7. Let {X,} be a sequence of random variables. Then {X,} converges in

distribution to the random variable X as n — oo, or X, B X, if

lim P(X,, <z)=P(X, <z)=F(x)

n—oo
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for each point x € R at which F(x) is continuous, where F(x) is the cumulative

distribution function of the random variable X .

1.10.1.3 Continuous Mapping Theorem

In probability theory, the continuous mapping theorem states that continuous functions

of sequences of random variables preserve limits. A formal definition is provided below.

Theorem 8. Let X be a random variable and {X,} be a sequence of random variables.

If g is a continuous function, then the continuous mapping theorem states the following

X, B x implies  g(X5,) z 9(X) and X, B x implies  g(X,,) Lt 9(X).

1.10.1.4 Slutsky’s Theorem

Slutsky’s theorem, which is partly derived using the continuous mapping theorem,
provides useful results when dealing with algebraic operations involving two sequences
of random variables, where one sequence converges in distribution to a random variable

while the other sequence converges in probability to a constant.

Theorem 9. Let both {X,} and {Y,} be sequences of random variables. If X, B x
and Y, L ¢, then the following properties of algebraic operations involving both {X,}
and {Y,} exist

Xo+Y, B X+e, XY, 3 Xc and X,/Y, 3> X/e.

1.10.1.5 Cramér-Wold Device

The Cramér-Wold device is a useful result that can be used to prove the joint convergence

of random variables. A formal definition is provided below.

Theorem 10. Let X be a random variable and {X,,} be a sequence of random variables,
where X, X, € R Ifa” X, B alx for all @ € R?, then X, 2 x.
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1.10.2 Stochastic Order Notation

It is convenient to have notation that represent sequences of random variables that
converge in probability to zero or sequences of random variables that are bounded
in probability (van der Vaart, 1998). We make use of stochastic order notation such
as op(1) and Op(1) for such purposes. The notation op(1), used for the notion of

convergence in probability to zero, is formally defined below

Definition 8. Let {X,} be a sequence of random variables. It is convenient to write
Xy, = op(1) to represent that X,, converges in probability to zero, or X, i 0, if for
every € > 0 we have,

P(|X,| >¢)—0, asn— oo.

Sequences that are bounded in probability can be represented using the Op(1)

notation, which is formally defined below

Definition 9. Let {X,,} be a sequence of random variables. It is convenient to write
X, = Op(1) to represent that X,, is bounded in probability, if for every ¢ > 0, there
exists M. > 0 such that,

P(|X,| > M.) <e, foralln.

Note that for a sequence of random variables {X,}, if X,, = op(1), then X,, = Op(1)
as well. Using Definitions 8 and 9, we also have the following general results, where for

sequences of random variables {X,,}, {Y,,} and {R,}, we have,
X, =op(R,) ifand onlyif X, =Y,R, and Y, =op(1).

and
X, =0p(R,) ifandonlyif X,=Y,R, and Y, =O0p(1).

Lastly, there are useful rules of calculus concerning op and Op symbols. Some of
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these rules are presented here:

Op(l) + Op(l) = Op(l),
Op(l) + Op(l) = Op(l),

Let {a,} and {b,} be sequences of positive real numbers. Then we also have the

following rules:

op(an)op(by) = op(anby),
op(an)Op(by)

op(an) + op(by) = op(max{an, b, }).

op(anby),

1.10.3 Other Tools for Working with Asymptotic Expansions

The stochastic Taylor formula, inversion formula for an asymptotic series and the
Laplace expansion for evaluating an integral are useful tools for working with asymptotic
approximations and expansions. We will highlight and present the inversion formula for
an asymptotic series while the details regarding the other tools can be found in Pace
and Salvan (1997).

1.10.3.1 Inversion of Asymptotic Series

In this subsubsection, we present an approach for inverting a univariate asymptotic
series. Details regarding the derivation of the inversion formula for both the univariate

and multivariate cases can be found in Pace and Salvan (1997).

Let y = f(z),z € R be a real smooth function which admits the following power
series expansion
y=1x+ax? +aa+.. .. (1.23)

Assume that the terms in (1.23) depend on an asymptotic parameter n. Specifically, let
x=0(n"%),a>0andlet a; = O(1),i = 1,2,.... Suppose that we invert the function
y = f(z) as © = g(y) and wished to express g(y), in the neighbourhood of y =0, as a

power series expansion as follows
_ 2 3 —4a
r =y+bix” + bex® + O(n %), (1.24)

where by and by can be expressed in terms of constants a; and ao. Ignoring terms of
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order O(n~%%), the final expressions for b; and by are as follows

b1 = —aq, bg = —(CLQ — 2a%).

1.11 Frequentist Variational Approximations

Variational approrimations have roots in variational calculus and serve as an approach
for performing approximate inference on model parameters in complex statistical models.
This class of methods is commonly used in Bayesian inference and in recent years, it
has become a popular alternative to existing methods such as Markov chain Monte
Carlo and Laplace approximation methods. It is shown that the same ideas can also be
transferred to frequentist contexts (Ormerod and Wand, 2010). In this section, we will

delve into how variational approximations can be used in frequentist contexts.

In frequentist inferential problems, variational approximation methods mainly ben-
efit inference carried out on statistical models where the vector of observations y is
conditioned on a latent variable vector u. In the context of generalized linear mixed
models, the vector of latent variables essentially corresponds to the vector of random

effects as shown in (1.17).

Let 6 be a vector of model parameters. When conditioning over the vector of latent
variables w is present, the log-likelihood for a general statistical model parametrized by

0 is as follows
0(6) = log p(y: 8) = log / p(y|u; 6)p(u; 0)du. (1.25)

However, the integral in (1.25) may be intractable. Thus, ¢(8) may not have a closed
form and maximum likelihood estimation is hindered. The variational approximation
method works around the intractability issue to provide a variational approximation to

the maximum likelihood estimation approach, explained further below.

Let us define g(u) to be an arbitrary density function in w. Then the expression for
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the log-likelihood satisfies the following mathematical steps

/
_ /q(u) log {W} Ju (1.26)
/

where

£0:0) = [ atw)tog {p“"“‘g)} . (1.27)

The inequality exists since

/q(U) log {p(z(yZ;)m} du >0 (1.28)

across all densities ¢. Equality in (1.28) occurs if and only if

q(u) = p(uly; 0)

almost everywhere. The integral expression in (1.28) is known as the Kullback-Leibler

divergence between g and p(-|y).

One may now select a density ¢, where ¢(u) approximates p(uly; @), such that
£(0;q) is more tractable than ¢(#). One must also simultaneously aim to minimize
the Kullback-Leibler divergence between ¢(u) and p(u|y; @), which can be achieved by

maximizing £(0;q), as shown in (1.26).

Suppose that ¢ is restricted to a family of parametric densities {g(u;€) : £ € E}

parametrized by a vector of variational parameters £. Then, the expression for £(8;q)

in (1.27) becomes
0.6 = [ a(wiroe { "2 (1.29)

One now maximises over the vector of model parameters 8 and the vector of variational
parameters £, in order to maximise the approximate log-likelihood, £(0,&;¢q), and to

minimize the Kullback-Leibler divergence between q(u;&) and p(uly; @) respectively.
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This leads to the following altered maximization problem where

(8,

[y

) = argmasx ((6, € q).
0.¢

Then, é is the variational approximation to the maximum likelihood estimator 0 as
defined in (1.21).

When ¢ is chosen to be a Gaussian density function, then this particular class of
variational approximation methods is known as Gaussian variational approximations.
In GVA, the variational parameters are the mean and variance (or covariance matrix)

parameters of the approximating normal distribution.

1.11.1 Thouless-Anderson-Palmer Variational Approach

The TAP variational framework, which builds on the GVA approach, has recently
surfaced in statistical literature and potentially provides more accurate approximations

as compared to the GVA approach.

The Thouless-Anderson-Palmer paradigm (Thouless et al., 1977) was first developed
in statistical physics literature and gained traction as the authors provided TAP equations
as an alternative approach to the solution for certain spin glass models. The work
was further built on in Plefka (1982) where it is shown that the power expansion of
the Gibbs potential of the infinite-ranged Ising spin glass model of Sherrington and
Kirkpatrick (Sherrington and Kirkpatrick, 1975) up to the second order in the exchange
couplings leads to the TAP equations.

In machine learning contexts, with the help of Plefka’s expansion, it has been shown
that better approximations arise by minimizing the TAP free energy, instead of the

mean field free energy typically used in variational inference (Fan et al., 2021).

Recent theoretical work by Professor Song Mei from University of California, Berke-
ley, U.S.A and Professor Iain Johnstone from Stanford University, U.S.A, compares the
estimates obtained from maximum likelihood estimation, GVA and TAP variational
approaches for GLMMs. Let 8 be a vector of model parameters. Then, under some con-
ditions, recent work by Professors Song Mei and Iain Johnstone (private communication)
shows that

0cva — Omrgl2 ~ Cn~? and ||@rap — Onrgl, ~ Cn~2,
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where C' denotes a constant independent of 6. Note that the approximation error
between the TAP and MLE estimates is smaller than the approximation error between
the GVA and MLE estimates.

Despite the potential improvement in the accuracy of approximations that the TAP
variational method can provide, statistical applications such as longitudinal data analysis
and multilevel models analysis, which may benefit from using TAP methodology, have

not been investigated.

Therefore, towards the end of this thesis, we apply the Thouless-Anderson-Palmer

methodology to GLMMs and evaluate the approach via simulation studies.
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Chapter 2

Preliminary Lemmas and Their
Proofs

Detailed asymptotic analysis is necessary to obtain the asymptotic normality theorems
for the maximum likelihood estimators for Gaussian response linear mixed models and
maximum quasi-likelihood estimators for generalized linear mixed models in Chapters 3,
4 and 7 respectively. In the process of doing so, we deal with working with population
limits of predictor-dependent sample mean quantities and establishing matrix norm
asymptotic negligibility between matrix square roots of inverse Fisher information
matrices and their simpler asymptotic block diagonal forms. Currently, there are no

results available to deal with both these tasks in a simple manner.

Therefore, in this chapter, we introduce three novel lemmas that will act as essential

tools required to solve these two tasks.

The appendix contains the proofs for the lemmas introduced in this chapter.

2.1 Lemmal

Certain population quantities appear in the asymptotic normality theorems in Chapters
3, 4 and 7 respectively. These population quantities correspond to the convergence in
probability limit of two particular predictor-dependent sample mean quantities each. In
this section, we isolate the problem of deriving the population leading term of the first

predictor-dependent sample mean quantity in the form of Lemma 1.
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Lemma 1. Let X = (X}, X{)" and Xy = (X}, X5:)",1 < i <m,1 < j <mn; be
independent and identically distributed (d, + dp) X 1 random vectors, with d, > 1 being
the number of entries of X 4 and the X 4555 and dy > 1 being the number of entries of
Xp and the Xp;;s, with d = d, + dg. Also, let U and Uy, ..., U,, be independent and
identically distributed N(0,I) (da x 1) random wvectors, distributed independently of X
and the X;js, where 3 is symmetric and positive definite. Let f be a Borel measurable,

positive real-valued function on R¥T8 and assume that
E{| X, Xp|f(X,U)} < oo forall1 <k, k' <d

where X}, is the k™ row of X. Then

% > Xy XGE{f(Xi;, U)Xy} = E{XX"f(X,U)} +op(1)1alg
i=1 j=1

where

m
1
m -
=1

2.2 Lemma 2

In this section, we isolate the problem of deriving the population leading term of the
second predictor-dependent sample mean quantity in the form of Lemma 2. Using both
Lemmas 1 and 2 lead to a full expression for the population leading term in the main
Fisher information block, represented by ¥g,, Ag, and AE& in Chapters 3, 4 and 7

respectively.

Lemma 2. Let X = (X1, X5)T and X;; = (Xzij,Xgij)T, 1<i<m,1<j<mny be
independent and identically distributed (d, + dp) X 1 random vectors, with d, > 1 being
the number of entries of X o and the X s;j5 and dp > 1 being the number of entries of
Xp and the Xp;;s, with d = d, + dg.. Also, let U and Uy, ..., Uy, be independent and
identically distributed random vectors, distributed independently of X and the X;;s. Let

f be a Borel measurable, positive real-valued function on R*+48 and assume that

E [max{1, | X ||}® max{1, f(X,U)}*|U]
min{1, Amin(E{X4 X% f(X,U|U)}}?

If m and n; satisfy assumptions that the number of groups m diverges to oo and that the

within-group sample sizes n; diverge to oo in such a way that n;/n — C; for constants
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0<C; <o0,1<i<m, then

-1
n
— I X Xy f (X, Us) p QD X i X ai /(Xiy, Ui)
i=1 | j=1 =1
T

X

Xpij X 4 f (X5, Up)
=1

Xll?' .. aXmTLm

I~

E [E (XpX5 (X, U)|U) {E (XA X5 f(X,0)U)} ' E (XBXif(X,U)|U)T} .

2.3 Lemma 3

The asymptotic normality theorems in Chapters 3, 4 and 7 involve replacement of the
matrix square root of the inverse Fisher information matrix by the matrix square root
of the asymptotic expression for the inverse Fisher information matrix. This is due to
the remainder terms (calculated as a difference between the inverse Fisher information
matrix and its asymptotic counterpart) having an asymptotically negligible effect on
the relevant matrix square roots. Lemma 3 provides a formalization of this state of
affairs, which is used in the final steps of the derivation in the asymptotic normality

theorems in Chapters 3, 4 and 7.

Lemma 3. Define the sequences of matrices

®2 T
M. — K +Qnl; R,1,1; and M. - = K 0
n = n,00 =
R,1,1] 1L+ T,13? 0 1iL

where K and L are p X p and q X q symmetric positive definite matrices and Qn, R,
and T, are sequences of random variables satisfying Q, = op(1), R, = Op(n~1) and

T, = op(n~'). Also note that v®? = vvT. Then, as n — oo,

HM;C%?M,W _ IHF 2o
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2.4 Appendix

2.4.1 Proof of Lemma 1

Let

n

T;ZZX”X B{f(Xi;,U)| Xy}

Firstly, note that a more explicit form of G is:

n

— 1 & _d _ 1 _
G- %gzxwﬂ (2m)~a /2| 5|1/ /R (X w exp(—5u" = u)du.

Next, let
m
N=mn= Z N,
i=1

and Gy, 1 <[ < N, be the following “single subscript” re-labelling of the terms inside
the double summation of G. Then we have the following terms where

1
G = X11X1T1(27r)dA/2|Z\1/2/d F(Xij,u) exp(—iuTzflu)du,
R%A

_ _ 1 _
Gy = X1p X1 (2m) 798 /2| 3] 1/2/d f(Xij,u)eXp(—iuTE lu)du,
R%A

1
GN = Xoun,, XL, (ZW)*dA/Z\Zlflm /Rd f(Xij,u) exp(—§uTZ*1u)du.
A

Then,
1 X
G == N Z_EI Gl

is a sample mean of N independent and identically distributed d x d random matrices
with the common distribution

G=XXTE{f(X,U)|X}.
Using the law of total expectation, the mean of G is
E(G) = E[XX"E{f(X,U)|X}]
= E[B{XXTf(X,U)|X}]
= B{XXTf(X,U)}.

Lastly, we need to impose the following first order moment conditions on the entries of
G where
E{| X X |f(X,U)} < oo forall 1 <k, k' <d, (2.1)
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where X}, is the kth entry of X. Therefore, under moment conditions involving the

entries of G as stated in (2.1), we have,

G = ngZX” LE{f(X;,U)| X} = BE{XXTf(X,U)} + op(1)141].

i=1 j=1

2.4.2 Proof of Lemma 2

2.4.2.1 A Fundamental Inequality for the Spectral Norm of a Vectorised

Matrix

Let A be a d; X dy matrix. This subsubsection looks into the relationship between

|Alls and [lvec(A)[s.

We start with the following inequality:

|Alls < [[AllF < V/rank(A) [[A]s.

However, since rank(A) < max(d;, d2), we then obtain the following

| Alls < 1Al < max (Vi v/a) Al

Next note that

|AllF = \/tr(AT A) = | /vec(A)Tvee(A) = [[vee(A)]|r.
Replacement of A by vec(A) in the first inequality of (2.2) gives
[vec(A)|[s < [lvec(A)]|F.
The equality in (2.4) then gives
[vec(A)|[s < | Allp-

Application of the second inequality of (2.3) leads to

Ivec(A)|s < max (Vi /a2 ) Al

for all di x do matrices A.

2.4.2.2 Notational Definitions

Let us define the following sample and population type quantities as follows:

/\A/;(U = ZXBzJXAz]f(XW U), ﬁz(U = ZXAZJXAzjf(XU7 U),
tj=1 tj=1
N(U) = E{XpX} f(X,U)|U} and D(U)=E{XaX} f(X,U)|U}.

(2.2)

(2.3)

(2.4)
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Next, for ¢ € [0, 1], let

~

NIU) = (1 = )N(U) +tN;(U) and D (U) = (1 —t)D(U) + tD;(U).
Throughout this proof, we also let
X,L' = {Xﬂ, e ,le}

In addition, if S is a dg x d, matrix and T is a d, X d, symmetric matrix, define

S = vec —18TT
o ([f]) <swtsr s -

In the next subsubsection, we wish to find an explicit expression for

) . (2.7)

S
T

vveC(S)7 veC(T)R (

2.4.2.3 Derivation of (2.7)

Differentiation with Respect to S

Throughout this subsubsubsection it is assumed that the differential operator d is with
respect to S. Now, noting that T7 = T,

dvec(STfl.S’T) = vec (d(STAST))

( T4 (ST")as")
= ( 1ST) + vec (ST_l(dS>T>
vee (d5)

1ST) n KdBvec<(dS) 1ST)

= (I + KdB)Vec<(dS)T_1ST>
Iz + Kqyp)vec (IdB (dS)T*lsT)

= (
= (Ipp + Kag ) {(T7'8")" @ Iy, pvec(dS)
(Ig, + Kap){(ST™) ® Ly, pdvec(S).

Hence,
Diccisyvec(ST1ST) = (Ip + Kap){ (ST ™) @ Iy }-

Since KgB = K, as in (1.8), we have,

vveC(S)VeC(STilsT)T = {(TﬁlST) ® IdB}(Id% + KdB)'
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Differentiation with Respect to T

Throughout this subsubsubsection it is assumed that the differential operator d is with
respect to T. Now, noting that TT =T,

dvec(ST8T) = vec (S(dT_l)ST>
- —vec(ST’l(dT)T”ST)

=—{(T 'S ® (ST ) }vec(dT)
= {(ST 1) ® (ST")}dvec(T).

Hence,
D.wciryvee(ST8T) = ~(ST 1) & (ST).

Therefore, we have,

Veeermyvee(ST1STT = (T7718T) o (T7187).

Combination of the Two Gradient Vectors

On combining the results of the previous two subsubsubsections, we get an explicit
expression for (2.7) as follows

S

. (2.8)

) B [{(T—15T> @ Ly, } (I + Kay)

vVeC vec R -
(S)7 (T) ( _(T—IST) ® (T—IST)

2.4.2.4 Expression for (2.6) with Lagrange Form of Remainder

Using (2.8), a Taylor series expansion of R with the Lagrange form of the remainder is

S s, -
R R 0+ S —Sp
T _TO +T — T,
EN vee(S — So) S
vec —
=R ’ + ’ VVEC(S),VBC(T)R tJ[
| 1o | | vec(T' — Tp) | T,
S, [ sl T -1sH™ @ I, 1(Le + K
:R< So )+ vee(S — 5) [[{( D7HSDTY @ L) (L + Kay)
Ty))  |vee(T-To)| |—{(@H(SHT}Ie (T (S)T}
where ;
S S S 1—1)Sy+tS
T, T T (1 —t)Ty +tT
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and t € [0,1]. It follows that

2.4.2.5 Spectral Norm Bounding of (2.9)

S
T

So

T
- )} = (I, + Kap[(S](T) 7} © LigJvee(S - $0)
0

(2.9)
— {SH @)y @ {SH(T)) Y vee(T — Ty).

It follows from (2.9) that

() ()

S
T

So

T, < L, + Ko lls [{SHT) ™1} @ La |15 1S = Soll e

S

+I{SHTH ™Y @ (ST (T s 1T - Tl »

< (a2 lls + 1K ag [15) I1ST(TH) ~lsl a1 518 = Soll
+{ISH@H s} IT — Tol 7

< 2[[8f s 1@ 511 = Sollm + {I1ST s 1T 715} I1T - Toll -

Now, in terms of the notation given in the previous subsubsections, our goal is to show

E {1 i ([JY(U)D XZ} LE {R ([N(U)D } . (2.10)
m i1 n 'Dl(Uz) D(U)

in order to prove Lemma 2.

2.4.2.6 Strategy for Proving (2.10)

Result (2.10) is a consequence of

Bl iy Mg PR Y
mia " D(U)

as m,n — oo, If we bring the second inner expectation inside the s = 1, ..., m summation
and replace the U of this term by U;, then we can replace (2.11) by

1 <= 7 Ni(Uy) |
e )= (o)) )

By noting that the left-hand side of (2.12) is bounded above by
Xi}

LinE sl (O] _ L (V@)
mne Z Di(Us) D(U;)

A~

Ni(U;)

D;(U;)

E -0 (2.11)

S

N(U;)
D(U;)

E (2.12)

S

)

S
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it is sufficient to prove that

mn s Z Di(U;) D(U;)

as m,n — oco. Next, for each 1 < ¢ < m, define the event

—0

4

As = {IWN0) = N (W) s £ 1, Auin (Di(U2) = $Amin(D(T)) }.
Now, note that

LS e E{R( Ni(T)

mn | Di(Ui)
1 & \;

<aceelflfo [ H

e [aien)) - (ten) ) o

1
+— > B
o 2T
Then, to prove Lemma 2, it is sufficient to prove that
Xi]

i=1
TR N;(Uy) N(U;)
—_— niE R ~ -R I 'AZ

as m,n,— oo and

S

E

S

.

— 0

E

S

E

S

2.4.2.7 Proof of Result (2.16)

Throughout this subsubsection we are considering
(U;, X;) such that A; occurs, 1 <i < m.

Since

A~

NLU) = (1 = ON(U) + tN:(U) = N (U;) + N (Uy) — N (Ui}

we have

VLT s < IN(U)]ls + HIN(Us) = N(U3) s,
and it follows that, for ¢ € [0,1] and under (2.18), we have,

INLU) s < IN(U)|s + 1.

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)
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Next, note that
IPL@) s = 1/ Auin(DLO))
- 1/)\min((1 — )D(U;) + tDi(U3)) (2.20)
< 1/{(1 — ) Amin (DU)) + tAmin (D (U7)) }
Under (2.18), we have,
1D s < 1/{@ = Ohin(DUD) + thain (Di(U3)

}
< 1/{(1 — 1) Amin (D(U5)) + £Amin (D(Ui))}
1
- (1 = ¢/2) Amin (D(U;))

_ 2 -1
~ (52 IP@) s
2
sup | —— | =2
te(0,1] <2 - t)

and t € [0, 1], under (2.18), we have,

Since

IDL(U) s < 2IDW:) s (2.21)

Substituting (2.19) and (2.21) into the above discrepancy in (2.16) involving the R, D;,
N;, D and N functions we have,

) |

) I(A;)

e ]}l

(
A(IN@)ls + 1) D) s INGU:) = N (T)l e
+ L2(IN@ s + 1) D@ s} 1B — D)

~

= WO INI(U;) = N (U)|p + WUDID(U) - D) | }

SIG

where

INVU)[ls +1

W) = (INU)ls + 1) IDW) s = N (D)
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The left-hand side of (2.16) can now be re-written as

1 & Ni(Uy) N(U;)
mn ; { [Di(Ui)]> ([D(Ui)D} A ] s
1 Vi (U;) N(U;)
— SN wE|E{R( | ~-R I(A:) | &
= mn; { ([DKUJ]) ( D(U;) )} ) J
< o 2 E (E WO = NI+ W)U - DU} XD
i=1
< %anE (E W(U)||IN;:(U;) = N(Uy) || | X )
i=1
3o (& | ) - ol
i=1
= S B (WU)INU) - NUlr }
=1
+o S WU IBU) - D
i=1 (222)
For the first term in the final expression of (2.22), note that,
E {W(Ui)HJ\Afi(Uz‘) _,/\/(Ui)HF} = E[E {W(Ui)H/\Afz‘(Ui) _N(Ui)‘|F‘Ui}:| (2.23)

= EWO)E {IN(Uy) - NU)Ir| U } .

From a conditional version of the Cauchy-Schwarz inequality,

~ N 9\ 1/2
B {1 - vl =[5 {1 - volefo}])
) Ul (2.24)
< |[E{Wwy) - N F[Ui} |
Using (2.24), observe that

dg da

N = N[ = Z N, U, b2

k=1k'=

Then note that

2
[{/\A@(Uz) —N(Ui)}kk'r = (; Z [ XBije X i [ (Xij, Us) — E{XpXaw f(X, Uz)|Uz}])
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from which it follows that
~ 2
B( (N - N @) |U)

2
=F ! 1 Z XBZ]kXA’L]kJIf(ij,U) E{XBkXAk’f(X,Uz)UZ}])

n; <
7=1
1 &
= Var (n Z [ Xk Xaiji [(Xij, Up) — B{XppXaw f(X, Ui)Ui}]) U
L\ =t

1
— Var ( > Xpije Xaijw f(Xij, Ui)) |Uz'
Z ]:1

ng

1
= Z Var{ Xpjr X asji f (X5, U) Ui}

1
= ;Var{XBkXAk’f(X7 U)‘U}

= (B (X U)UY ~ [B{XnXai /(X U)UY?)
< B3 X% /(X U)U).

This implies that

dp da 1/2
(8w -~} ] < ;E{szakxz\k,ﬂx,ww}] . 22)

v k=1k'=1

Substituting (2.25) into (2.24) and substituting (2.24) into (2.23) leads to

%ZmE{W DN = N (U3 r }

dy  dp 1/2
W) {E (Z > XX XBe f(X, U>|U> } ]

f s 1/2 (2.26)
< IQHIEME [W(U) {E(IIXBXKII%f(X,U”U)} ]
: ;%(”)E {W(U) {B(1%a? 1Xu P (X, U>1U)}1/2] .

The final expression in (2.26) convergences to zero provided that we assume the moment
condition

& ) {E(1xa? 1xair s o) ) < oo (227
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If the spectral norm in W(U;) is replaced by the Frobenius norm, then (2.27) leads to

(e XE X 00+ 1 {B(1X 11X o))}

< 00.

(2.28)

Now note that,
IE{Xs X f(X,U)|[U}||r < E{| XsX\|r f(X,U)[U}
= E{IXs[[Xal f(X,U)|U}.
This means that we can replace (2.28) by
1/2
(E{Xal 1 Xal £X. )0} + B (IXal? Xl X DWW} |
0.
(2.29)

Next we treat part of the second term in the final expression of (2.22). Note that,

E{WUIDiU:) = DU ¢ } = B|E{W(U)*D(U) - DWy)|1r|U:} .
= B E{ 1By - PO |s[U:} ]

By using a conditional version of the Cauchy-Schwarz inequality, we obtain

~ ~ 2\ 1/2
£{1Bw) - pwileloi} = ([E {1510 - pwiiewi}])
A / (2.31)
< |[E{ID.w) - DWH|U} |
Using (2.31), note that

da  da

D) = DWy)|[; = > Y UDu(U. U,) b

k=1k'=1

Then note that

2
[{51(Ui)—p( }kk/rz (IZ XnijeXaiw f(Xij,Ui) — E{XAkXAk’f(Xan)|Ui}]) .

‘jl
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Then we have,

e
& o))

2
dA da n;
- Z Z E (; Z [ Xaije X aije f(Xij, Ui) — B{XapXaw f(X, Uz)|UZ}])

k=1k'=1 b =1

HF\U}

{1B.w) -yl } ]

dy  da
(Z Y {Di(U U:) }ew]?

k=1k'=1

1/2

U;

-1 dn da 1/2

=|= Z > Var{Xap Xap f(X,U)|U}

Y k=1k'=1

- 1/2
dp da /

— Z > B{X}, X1 f(X,U)|U}

Y k=1k'=1

IN

(2.32)
By substituting (2.32) into (2.30), we have that

4 ZmE {W(Uz)2Hﬁz(Uz) - D(UZ)HF}

i dn da 1/2
S —

k=1k'=1
4

. glgnm(m)

- wwy {E(1xat e vw) )

5w {(Ixaxiizix o)}

min
1<i<m

which convergences to zero provided that we assume the moment condition
9 4 1/2
E [W(U) {E(HXAH F(X, U)|U)} } < . (2.33)

If the spectral norm in W(U;) is replaced by the Frobenius norm, then (2.33) leads to

(IEXA XL S DU+ 1) {B(1Xa ) fx o) }

Ain (B XE (X, 0) 0

< oo. (2.34)

Now note that

IE{XsXX [(X, U)|U}|r < E{|| XaXZ|Fr f(X,U)|U}
= B{|Xal? f(X,U)|U}.
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This means that we can replace (2.34) by

[B(1Xa 2 6O+ 1 { B (1) o o)}

2
Auin (E{XAXT (X, U)|U})

< 0. (2.35)

2.4.2.8 Proof of Result (2.17)

In this subsubsection we aim to prove (2.17), which is

1 & Ni(Uy) N(Ui) c
— SN wE|EIR| | -R I(A7) | X

as m,n — oo. Note that throughout this subsubsection, we are considering

—0

S

(U;, &;) such that AY occurs, 1 < i < m. (2.36)

We first start with

el (o)) = ([ien]) |
2( 7 N(Ul)
= (e [ (). o)+ (o[ (i)l
_ Ni(Us) N(U;)
(e eod el (i) o)

1/2

P(AD)Y? +

9 1/2
P(AS)Y2,
S

)

8

e ()

!

first recall that

N(U;) o

S

n

-1
1< 1

{n- Z Xpij XA, f (X, Ui)} {n- Z Xpij XAy f(Xij, Ui)}
(3 i—1 1 J:l

dp

{ T:Lll Z XAleBz_]f(X’L] U)}

Jj=1 S
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Now we appeal to the second-last displayed equation on page 1093 of Chipman (1964),
which is referred to as the generalized Schwarz inequality, to justify:

([
(e (o))

Next, to deal with

2 2

=

1 n
B > Xpii Xty f( X5, Uy)
=1

N

s s

Hence,

2
} ZE{ | X5, X5, (X, U3}
s J=1

= dpE{| Xs]"f(X,U)?}.

note that
< Vi [N UIDWY N,

< Vdp N5 [P0) | IV

AL
)\mln (D(Ul))

2
U ) B { HN(U)HiQ}.
U) s )\mln(D(U))

INO)IIL < || E{XsXT (X, U)U}|
< B{||xs X%} (X, U)|U}
= B{| XAl |1 Xs]* /(X,U)U}

k()|

Hence,

Finally, note that

which implies that

E{ INO)II; } s {E{||XAH4 r|XB||4f<)§,U>|U}}.
)\min (D(U)) )\min (D(U))

From(2.36), note that the following holds

P(AY) < P(IN:(Ui) = N (Uy)||s > 1)

R 2.37
+ P(P\mm(Dz(Uz)) - )\mm(D(Uz))l > %)\mln(D(Uz))> ( )
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Using Markov’s inequality and the Cauchy-Schwarz inequality, we have

i) = NUIIZ>1)
i) = NU)E)
i) = N(

U,
N(U)|}

P(IIN:(U3) = N(Uy)]|s > 1) < P(|N;
N,
(2.38)

E[E{|XA|?| X5l f (X, U)[U}].

Using Markov’s inequality again as well as Theorem 8.1.4 (Wielandt-Hoffman) of Golub
and Van Loan (2013), we obtain the following expression for the second term in (2.37),

P([Min (Di(U1) = Awin(D(T1))] > $2in (D))
= B{P(Auin(Di(U1)) = Ain(D(T1))| > IAuin(DU))|U:) |
= B{P({in (BiU3) — Auin (DU} > %mmw(u@»»?nw)}

(U,
( [{Amm(ﬁ U) - )\min(D(Ui))}Q‘UZ} )
<4FE

Amin(D(Ui))Q

B{|B:w) - )|} [ui}
<4F ( o (D(U))2 )

From earlier calculations, we have that

da  da

(D) - DO 3T} < o3-S BxRXRs (X U)U)

b k=1k'=1

— E(IX X D).

Therefore,

E{| Xall* /(X,U)|U}
Amin(D(U))?

(i (BA(U) ~nin (DU > $uia (D01)) < 5 | 230

Combining (2.38) and (2.39), we obtain

E{||XA||4f<X7U>IU}]> .

PAC) < ni (E [E{”XAH HXBIIf(X,U)IU}} +45 [ Amin(D(U))?

(2
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Using each of the several bounds established in this subsubsection, we have

1 & Ni(Uy) N(U;)
o 2™ {R Qﬁwnb " ([D(UnD}M?) XZ’] .
1/2
Vs [ \ 112 E{XA|* | Xs]* /(X,U)|U}
< mn; z([E{|XB FX U2+ E{ e (D) H )

" {i (E B XAl I Xs]2F(X, U)|UY] +4E [E{IXA||4f<X,U>|U}D}1/2]
dp

E

Amin(D(U))?

2 | ([E{1xsl U2 H )

X {(E[E‘“XA” ||XB||f(X,U)|U}} LA [E{”XM4f(X7U)|U}D}1/2]

Amin DU
. Vi [ E{E{XA||4||XB4f<X,U>|U}H“2
22,0 i (D(O))

«{ (B[EOxANIXa1 X, Y] + 45|

D]

which converges to zero under Theorems 11, 12 and 14 sample size and moment
assumptions.

2.4.2.9 Summary of Moment Assumptions

The moment assumptions used to prove (2.10), are as follows:

(MA1) B{||Xp'f(X,U)*} < oo, D
{E(1XAI2 1Xs]2/(X, 0)U) } T {BEUIXANNIX5] £(X,U)[U} + 1)

(MA2) E
Amin (E{XAXE /(X U)|U})

< 00,

(MA3) E

{E(1xa1t 00 00) ) X 00 D)y 177
L Amin (E{XAXK f(Xa U)|U})2 ’
(MAY) B[ E{| XAl | X5]2/ (X, 0)|U}] < o,

(MA5)E{ B{IXAl*f (X, DU} }<OO

hin (E(XAX] X U)U})’
B XAl Xl S(X,0) U}

(MA6) E -
Auin (E{XA X (X, U)|U})
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2.4.2.10 Succinct Expression for Moment Assumptions

We now attempt to find an alternative way to express the moment assumptions in
Section 2.4.2.9 in a unified fashion.

Inequality to Re-write the Numerator of (MA2)

To re-express the moment assumption (MA2), we intend to apply the following inequality
to the numerator of (MAZ2):

(x+ 1)y <1+a2*4+9* forall z,ycR. (2.40)
One way to prove (2.40) is to write it as
2+ —y—azy+1>0 forallz,yeR. (2.41)
If the left-hand side is then written as
A?+ By’ +Cax+Dy+Exy+F

where

A=1, B=1, C=0, D=-1, E=-1, F=1.

The discriminant-type quantity for the quadratic expression is
4AB—-E?>=4—-(-1)2=3>0
and since A > 0, the left-hand side of (2.41) has a minimum at
(z,y) = (DE — 2BC,CE — 2AD)/(4AB — E*) = (1/3,2/3).
Substitution of this point into the left-hand side of (2.41) leads to
(1/9) 4 (4/9) = (2/3) = (2/9) +1 = (1/9) + (4/9) = (6/9) = (2/9) + (9/9) = 2/3 > 0.

Thus, we have established (2.40).

Inequality to Re-write the Numerator of (MAS3)

Next, to re-express the moment assumption (MA3), we intend to apply the following
inequality to the numerator of (MA3):

(x+1)%y <1422 4+2*4+2y* forall z,y € R. (2.42)
We first start by expanding the term on the left-hand side of (2.42) which leads to

(z+ 1% = (2422 +y)y

2.43
= (2® + 1)y + 22y. (2:43)



2.4. APPENDIX 50

Also note that, by using the inequality (x — y)? > 0, we obtain the following

20y < 22 + . (2.44)
Hence, the result in (2.42) can be obtained using the inequalities in (2.40), (2.43) and
(2.44).

Re-expressing the Complete Set of Moment Conditions

Now we write
My, p, = Mp,p, (U) = E(|| XA | | Xs]" f(X,U)|U) }.
Then the application of (2.40) to (MA2) and application of (2.42) to (MA3) leads to
Moy (Mg +1) < 14 MZ + Mo

and
M (M + 1) < 1+ M2, + My + 2Myo.

Next, noting that
1>min(l,z), > min(l,z) and > {min(1,2)}* for all x >0,

the following inequalities can be applied to the denominators of (MA2)—(MAG6):

1<; l<; and i<; forall z > 0
1~ {min(1,2)}?" =z = {min(1,2)}? s {min(1, z)}? e

Combining all of these facts leads to the following alternative set of moment assumptions:

{E(IXal" | Xs]P2£(X,U)|U) ™
[min {1, Ain (E{X2 XT (X, 0)[U})}]’

for each of (p17p2ap3) € {(07070)7 (4707 1)7 (2> 2> 1)a (4747 1)1 (17 17 2)7 (27 07 2)> (Qa Oa 4)}

2.4.2.11 A Sufficient Condition for the Moment Assumptions

Let X = (Xa,Xg). Then we have || X|| > max (|| Xall, || Xz||). Hence,

{B(IXAIP | X6 £(X. U)U) Y < {B(IX |47 F(X,U0)|U)
< B(|IX |7 (X, U U)
< B (maxc {1, | X 727 max {1, (X, U)}* |U))
< B(max {1, | X[} max {1, (X, U)}* [U)

since p3 < 4 and (p1 + p2)ps < 8 over the set of values that (p1,p2,p3) takes in Section
2.4.2.10.
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It follows that the condition
E(max {1, | X|[}* max {1, f(X,U)}" |U)
[min {1, Auin (E{Xa X7 /(X U)IU})}]’
implies each of (MA2)-(MAG6). Also, recalling that,

oy
{min(1,2)}?> —

(2.45)

we have
E(max {1, ]| X[}’ max {1, f(X,U)}*|U)
[min {1, Amin (E{Xa X1 (X, U)|U})}]”

> E{|X5|*f(X,U)"|U}.

Hence, moment condition (2.45) implies that
E [B{|X5|*f(X,U)"|U}] < o,

which is equivalent to
E[{IXs|*'f(X,U)*}?] < oc. (2.46)

However, since for any random variable Z, it is the case that
E(Z%) < oo implies E(|Z]) < o0

condition (2.46) implies (MA1). Thus, we can claim that (2.45) implies each of (MA1)-
(MAG).

2.4.3 Proof of Lemma 3

2.4.3.1 Matrix Extension of Results Concerning Integrals of Half-Cauchy
Forms

Using (1.12), premultiplication on both sides of the equation by (%Al/ 2)_1 leads to
gI = / AYV2(A 4+ 221) " da. (2.47)
0
Next, note that by using (2.47), we have,
/ (I+2°A)"" do = / {A(A +221)) 7 da
0 0 3
= / (A™'+2%I) " A7 lda
0
= A1/2/ ATV (AT 22T deAT!
0
_ Al (T -1
A (2 I)A

— T p-1/2
5 .
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Therefore,
gI = / (I+2°A)"" A2 dg. (2.48)
0
Combining both (2.47) and (2.48), for A € C"*™ with no eigenvalues on R™, we have,
gz = / AYV2A + 221V de = / (I+22A4)" A2 dy. (2.49)
0 0

From these results, we have,
4 2 g\ —1 27 \—1
I,=— (I, +t°K)" " K(K +u°l,)” dtdu (2.50)
™ Jo Jo

and
e [ e (S (o) () ) e

2.4.3.2 Derivation of Integrand Expressions

An Integral Expression for Mn}l)f = (M_1 )1/2

n,00

Note that
il g
and )
K~ (0]
(Maoo)™! = [ O nL!
Application of (2.49) to M, L leads to
MY = (ML)

_2/00 K" o0 |[K'+# o o
7ho | O L' | O nL~ 4+ 21,
2 [k o |[(K'+eL)" o
:/ | at
mJo | O aL7']| o) (nL~t +¢21,)
_2/00 k' o |[K(I,+#K)" 0] u
7mdo | O Ll | o (Ap){r,+e(i0)}!
_2/m1%+ﬂK)1 o Y
Tho |0 {I+e2GLy ]
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An Integral Fxpression for Mnl/2

Note that
K +Qn13% R,1,17

R,1,11 1L+ T,1%?

where Q,, = 0p(1), R,, = Op(n~1) and T, = o,(n~1). For all n sufficiently large so that
negative eigenvalues are avoided, application of (2.49) to M, leads to

M2 = 3/ M, (M, + 1) " du

™ Jo

-1
) /oo K+Qu1%22 R,1,17 | |K + 4T, + Q,18? R,1,17 ]
_Z U.

™ Jo R,1,1]  LL+T,1%? R,1,17 1L+ WPl + T,157
An Integral Fxpression for Mn_,éfM%/Q
Firstly, note that

(I, + 2K) ™" o) K +Qnly?  Rplp1]
-1
o {I,+# (L)} Ry, 1L 47,182
[+ PE) T (K +Qu182) Ry (I, +2K) T 1,17
= -1 -1
Ro{L,+ ¢ (7L)} 11y {I,+# (SL)} L+ T3
Then
M, 2 M)?
4 /oo /oo (I, + 2K) 7" (K + Q,1%2) R, (I, + 2K) " 1,17
T2 2(1 -1 T 2 (1 -11 2
T o | R {L + 2 (FL)} 11, {I+ (GL)} L+ Tl
-1
K + I, + Q,15? R, 1,17
X dt du.
R,1417 1L + 21, + T,15?
An Integral Fxpression for MTZ%QM%/Q — 1T
For any u > 0 and values of n, K and L, define the (p + q) x (p + ¢) matrix,
-1
K + %I, + Q,1%? R,1,17
Hi(uin,K,L) = P nrd . (2.52)

R,1,1) L+ w1, + T,15?
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Then, for any (t,u) € R?, define the (p + ¢) X (p + ¢) matrix as follows,
Hy(t,u;n, K, L)
(I, + *K) " (K + Q,1%?) R, (I, + ?K)~'1,1T
R {I,+t*(L)} 1,17 {I,+¢*(L)} Y (1L 4 T,19?)
(I, + *K)'K(K +u?I,)~! o
R [ o (I, +#(AL)} L\ (AD{(AL) + uzzq}-l}

H,(u;n,K,L)
(2.53)

Then from (2.50) and (2.51) and according to the definitions above,
4 o0 o
M 2MY? -1, = 2/ / Hy(t,u;n, K, L) dt du. (2.54)
’ ™Jo Jo

Throughout the rest of this subsubsection, we aim to find a more explicit expression for
H2(t7 U3, Ka L)

Inversion of Hy(u;n, K, L) Using Block Matriz Inversion

The upper left p x p block of Hy(u;n, K, L)™' is

-1
1 -1
{K +ull, + QnlY? — R21,17 (nL +u?I, + Tn1?2> 1q1§}

The upper right p x ¢ block of Hy(u;n, K, L)™' is
~1

1 -1
- Ry, {K +ull, + QulS? — R21,17 (nL +ully + Tn1§<’2> 1q1§f}

1 -1
T 2 2
x 1,1, <nL+u I, +To1F > :

The lower left ¢ x p block of Hy(u;n, K, L)' is

1 1
- Ry, <L + I, + Tn1§2> 1,17
n

-1
1 -1
X {K + I, + QnlY? — R21,17 <nL +utl, + Tn1§j>2> 1q1§}

The lower right ¢ x g block of Hy(u;n, K,L) ! is

-1
1 -1
{nL + ULy + To18? — R21,10 (K + u’T, + Q,157) 1,,1qT} :
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The Upper Left p x p Block of Ha(t,u;n, K, L)

The upper left p x p block of Ha(t,u;n, K, L) is
1 -t -
(I, + *K) (K 4 Qn15?) {K + I, + Q197 — R21,17 (nL +u?I, + Tn1§2) 1q1§}

-1
_ 1
—R(I,+ *K)"'1,17 (nL + I, + Tnlfo) 1,17
1 o B
X {K +u’ I, + Qn13? — R21,17 (nL +ul, + Tn1§>2) 1q1§}
1

- (I, + *K)'K (K + v*I,)

-1
1
= {(Ip +K) N (K + Qnl15?) — Ry (I, + °K) 1,17 (nL + I, + Tn1;®2> 1q1§}
1 -t o
X {K + I, + Q197 — R21,17 (nL +u?I, + Tn1;®2) 1q1§f}

— (I, + ?K)"'K (K +v*I,)

=, +t*K)!

-1
1
{K +Qnl? - R21,17 (nL + I, + Tn1§2) 1q1§f}
-1

1 -1
x {K + L, + Qnl1® — R21,17 (L + I, + Tn1;@2> 1q1§}
n

- K (K+ u21p)‘1]

-1
=, +K)'K

-1
1
{K + 0T, + Qu12% — R21,17 (nL +u’T, + Tn1;§92> 1q1§}

- (K + “2110)_1

-1
1
+ (I, +*K)™! {Qn1§2 —R21,17 (nL +ull, + Tn1§2) 1q1§}
1 ! o
X {K + T, + Q197 — R21,17 (nL +u?I, + Tnlfz) 1q1§}

Using (1.1), the first term in the expression can be re-written as

-1
1 -1
(I, + *K) 'K {K + I, + Qnly” — R21,1] (nL T Tn1§2) 1q1§}

1 - -
x {Ri1p1qT (nL +ully + Tn1§2) 1,1) — Qn1§?2} (K +2L,) "
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Putting together the results given so far in this subsubsection, we have that the
upper left p x p block of Ha(t,u;n, K, L) is:
-1

1 —1
(I, + *K) 'K {K + 0PI, + Q157 — R21,17 (nL + Ul + Tn1§2> 1q1§}

1 - _
x {3311,13 <nL + P, + Tn1§2> 1,1] — Qn1§2} (K + L)

1 1
— (I, +*K)™! {R,‘ilplg <nL + I, + Tn1§2) 1,1] — Qn1§2}

-1

1 -1
x {K +ull, + Qu15” — Ra1,1) <nL +ull, + Tn1§2> 1q1§§}

The Lower Left ¢ x p Block of Ha(t,u;n, K, L)

Noting that the lower left g x p block of I is a zero matrix, the lower left ¢ x p block of
Hy(t,u;n, K, L) is

-1
1 -t 1 -t
R, {Iq + 2 <nL> } 1,17 {K + 0T, + Qu15° — R21,17 <nL +ull, + Tn1§>2) 1(,15}
2 1 - 1 ®2 1 2 ®2 - T
—Rn Iq+t ﬁL EL-'—T’,L]_(I EL"—U Iq+T7L1q 1qlp

-1

1 -1
X {K + 0T, + Qu1%° — R21,17 (nL +uI, + Tn1§2) 1q1§}

—1 —1
1 1 1
=R, {Iq+t2 (nL)} {Iq - (nL+Tn1;®2> (nL+u21q+Tn1§2> }1q1§
1 - o
x {K+u21p+Qn1§2 - R21,17 (nL+u2Iq+Tn1;®2> 1q1,{}

1 -1 1 -1
= R,u? {Iq + 2 (nL> } <nL +u?l, + Tn1§’2) 1,1

-1
1
X {K + T, + Q197 — R21,17 (nL +u?I, + Tn1;®2) 1q1§}

-1

The Upper Right p x q Block of Ha(t,u;n, K, L)

Noting that the upper right p x ¢ block of I is a zero matrix, the upper right p x ¢
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block of Hy(t,u;n, K, L) is
— Ry(I, + *K) " (K + Q,1%?)
x {K + 0L, + Q15 — R21,17 (%L L, + T,152) _11,11]{}_1
x 1,17 (%L T, + T,152) -
+ Ro(I, + t2K)_11p1qT{%L + 2T, + 192 — R21,17 (K + 2T, + in]??)—llplg}_1
= R (I, + 2K) ! [1,,1:{{%L + 2T, + T 127 — R21,17 (K + 2T, + ingffﬂ)*ll,,qu}_1
— (K + Qu1g){K + 2L, + Qu15% - Rilplg(%L + 0T, + T 152) 711(,1{}711,)15

1 -1
X (LJruquJrTnl;@z) }
n

The Lower Right q x q Block of Ha(t,u;n, K, L)

The lower right ¢ x ¢ block of Ha(t,u;n, K, L) is

1\ /1
{Iq +t? (L)} <L+Tn1§2>
n n
1 2 ®2 21 17T 2 ®2)~1 T o 2 2 (1 o
x 3oL ut Tl + Tal” - Rilgl, (K+u’l,+Qn15%) 1,1, — Ry I+t L
1 ! o
x 141) {K + 0T, + Qn13? — RA1,17 (nL + I, + T,J?Z) 1q1§}

1 - 1\ /1 1 !
T 2 ®2 2 2
ey (e nnag) = {nee (Lo)) (2e){(2e) 4
-1
1
el
n
1 1 1 -
2 2 2 2 T 2 2\~ T
X KHLJFTTJ? ) {nLJru I, +Ta15% — Rp1,1, (K 4 u’I, + Qn13°) 1p1q}
-1
1 1
AOMCORE)
n n
1 -1
- R1,17 {K +ull, + Qnls? — R21,17 (nL +u’I, +Tn1§’2) 1q1§}

-1

1 -1
x 1,17 <L+u21q+Tn1§>2) }
n
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Therefore, the lower right ¢ x g block of Hy(t,u;n, K, L) is

fuer ()

1 1 B -1
x < <nL> HnL + I, + T,1%2 - R21,17 (K + u*L, + Q,152) ™ 1p1qT}

1 ! 1
- {<L> +u2Iq} } +Tn1§2{L+u21q
n n

-1
+ 1,122 — R21,17 (K + 4L, + Q,152) 7 1p1§}
-1

1 -1
- R21,1) {K +ull, + Qu15? — R21,17 (nL +ull, + Tn1§2> 1q1§}

1 -1
x 1,1] (nL + I, + Tn1§>2> ) :

Application of (1.1) to the first term in the preceding expression leads to

1 1
n n
1 B —1
x {nL + I, 4+ T8 — R21,17 (K + oL, + Q,152) 7 1,,15}
_ 1 -1
x {R21,17 (K + L, + Qu15?) ' 1,17 - 1,152 { <L> + uQIq}
n
The next term of the lower right ¢ x g block of Hy(t,u;n, K, L) is
2 1 - ®2
T L+ (-L); 1
n
1 -1 -1
X {nL + Iy + Tp19% — R211T (K + T, + Qa15?) 1p1qT} :

Hence, the final term of the lower right ¢ x ¢ block of Ha(t,u;n, K, L) is

1 -1
- R? {Iq + 2 (nL) } 1,17

-1
1 -1
X {K +ull, + Qu15% — Ro1,17 (nL +ull, + Tn1;1®2> 1q1§}

1 -1
x 1,17 (L +u?I, + Tn1§2> :
n
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Putting all these expressions together, we have,

foe(())

-1
. 1
x {R211T (K + 'L, + Qu15?) ' 1,17 — 1152 {(nL> + u2Iq}

-1
1) [1 _
(L) {L T, + T 12% — R2117 (K + oI, + Q,182) 7 1,,15}

n n

-1
1 -1
®2 2 ®2 2 T 2 ®2 T
+ T {nL—i—u I, +T,15% - Ri1,1) (K + u’I, + Qu157?) 1p1q}
-1

-1
1
- R21,17 {K + 0T, + Qu12° — R21,17 (nL +u’T, + Tnlfo) 1q1§}

-1
1

x 1,17 (L +uI, + Tn1§92>
n

2.4.3.3 Succinct Expressions for the Components in (2.53)

Define
1 -1
T (u;Th, K, L) = <L +u?I, + Tn1§<>2>
n

Lo (u; Qn, Ry, K, L) = Rilplg (Fln(US Tn, K, L)) 1qlg - Qn1§)2
-1
s (4; Qu, B, T K, L) = R211 (K + 4Ly + Qu1357%) 1,15 — T,157

L (u; Qus Ry, K, L) = { K + I, — (T2, (1; Qn, R, K, L))}il and
1 -1
I‘5n(u; Qn, Ry, Th, K, L) = {TLL + Uqu - (FSn(’IM Qm R, T, K, L))} .

From now on, we write our expressions for Hy(t, u;n, K, L) in terms of T'y,, (u), . .., sy, (u)
and suppress all other arguments. Then,

Hj(t,u;n, K,L)11 = (I, + 1?21(')71 {Kl"4n(u)I‘2n(u) (K + u2Ip)71 - I‘gn(u)l"4n(u)}

—1
1
H,(t,u;n, K,L)y; = R,u? {Iq + 2 (L)} L1 (u) 141 Ty (u)
n
Hy(t,u;n, K, L)1 = Rp(I, + * K) 7' {1,1] T5(u) — (K + Qn15?)T4n (u)1,1] T (u)}  and

1\ /L 1 -
Hy(t,u;n, K, L))oy = {Iq + 2 <nL> } (nL) s, (u)Tsp (w) {nL + u2Iq}

+ Tp12%T5 (u) — Ri1q1§r4n(u)1p1§r1n(u)] :
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2.4.3.4 Simplification of Integrals

It follows from the results in Section 2.4.3.1 that

/ (I, +°K) " dt = JK 12,
0

Also, using (2.49),
o0 1 -1
/ {Iq + 2 (L)} dt
0 n

2.4.3.5 Explicit Expressions for (2.54)

I
o) 3
VR

| —

~
N———
L
~
no

I

3

3

=
[\

&~

L

~

'l\'J

Define
K12 [ Fug(u; K, L)du - K-'2 [ Fiop(u; K, L)du

L~1/2 Jo° Forn(u; K, L)du L Jo© Faon(us K, I(;)du)
2.55

™

9 (M;ééQMﬁ/Q - Ip+q> =

where

Fiin(u; K, L) = KT, ()T (1) (K +u2L,) " — Top(u)Tapn(u)

Fo1n(u; K, L) = n'? Ryu®T1 (w) 1417 T ()

Fio,(u; K, L) = Rn{lpquI‘gm(u) — (K + Qn1§2)1"4n(u)1p1qTI‘1n(u)} and
<1L> L5, (u)T3, () {;L + u2Iq}_1

Fop(u; K, L) = nt/?
n

+ T 12°Ts (u) — Ri1q1g“r4n(u)1p1§r1n(u)] )

2.4.3.6 Convergence in Probability Limits of the Functions in (2.55)

In Appendix 2.4.4, we establish that
o0

plim Fon(u; K, L)du= 0, kk =1,2.

n—o00 J(Q

for u > 0. Hence, the lemma in Section 2.3 is proven.
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2.4.4 Multivariate Integral Limits for the Matrix Square Root Result
2.4.4.1 Overview of this Appendix

In this appendix we deal with the problem of establishing that

plim Fun(u; K, L)du =0, kK =1,2.

n—oo Jo

The approach involves spectral norm bounds on the integrands Fyyr,, (u; K, L) uniformly
over u > 0 and exact integral results over the positive half-line for functions of x with
factors of the form 1/(a; + x2), a; > 0.

2.4.4.2 Computing Spectral Norms

Bounding of ||T1n(u)]s

Recall that

1 —1
T, (u) = (nL + T, + Tn1§92> :

Then, noting that I'1,,(u) is symmetric and positive definite,
r =A 1L 21, + T,1%2 - =1/ A\ 1o 21 o qe2
H 1”(“’)”5_ max g +uly+1n q = / min E +u I, + T, p .

Application of (1.9) leads to

1 1
Amin (TLL + U2Iq + Tn1;®2> > Amin <nL> + Amin (U2Iq) + Amin (Tn1?2)

1
= —Amin (L) + 1" Amin (L) + T Amin (157)
1
> —Amin (L) + u? 4 min (T},,0) .
n

Since T}, = op(n~1), for every 0 < ¢ < 1 we can choose n; € N such that, for all n > ny,
|Th| < 5= Amin (L) with probability exceeding 1 — e. For all such large n we then have

1
T, > _%Amin (L) .

Also,

1
*7)\min L
0> ™ (L)

and therefore we have,

1
min (7},,0) > _%Amin (L).
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Therefore, for all such large n, we then have

Amin (L) + u? forall wu>0.

1 1
Amin <L +ull, + Tn1§2) > —
n 2n

This leads to

1T (u)|ls < for all n > ny and v > 0

%)\min (L) + u?

with probability exceeding 1 — €.

Bounding of ||Tan(u)||s

Recall that N T 9
Ton(u) = Rylp1 i Tin(u)1,ly — Quly

= {Rp 1T (u)1, — Qn} 157
Also note that for n large enough and all u > 0

IP3n(@)ls < 1 < -
1n U = :
° %Amin (L) + uQ ﬁ)\min (L) Amin (L)

Then o T 9
ITan(w)lls = | {Ra1g Tin(w)1g — Qn} 1,7

<RAL T 1n(u)1g — Qulls|157]]s
< b {RiquTrln(U)qus + HQnHS}
< p{qR%|T1n(w)ls + |@Qnl}

2qnR2

In summary,
2qnR2

Lon T Y o ¢ for all
[ 2(U)Hs<p{/\mm(L)+]Q ]} or all u >0

with probability exceeding 1 — ¢.

Bounding of ||T'sp(u)]|s

Recall that
-1
Ty, (u) = Ro1,17 (K + 0T, + Qu15%) 7 1,17 — 1,122,
Then
-1
[T3n(u)]ls < RiquHsngllsH (K + I, + Qu15?) HslllpllsllquHs + [ Tn 1182
pqRZ

= + q| T, |-
Amin (K+U2Ip+Qn1§?2) | TL’
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Now,
Amin (K + v I, + QnlS?) > Anin(K) + Amin (v”I) + Amin (Qn15?)
> Amin (K) + v? + min (Q, 0)

Since @, = op(1), for every 0 < & < 1 we can choose ng € N such that, for all n > ng,
|Qn| < $Amin (K) with probability exceeding 1 — e. For all such large n we then have

1
Qn > _5)\min (K) .
Also,
1
0> *iAmin (K)

and therefore we have,

min (@Qp,0) > —%)\min (K).

Therefore, for all such large n, we then have
1
Amin (K + v, + Qn157) > 5 Amin (K) + u?.
Therefore,

pqRy
%Amin (K) -+

T3, (u)||s < 3 +q|T,| for all n > ng and u > 0.

Bounding of ||T4n(u)ls

Recall that
Tun(u) = {K +u2T, — Ty, (u)} .
Hence,
2 -1
HF4n(U)HS = )\max{(K+U Ip—an(u)) }
= 1/)\min (K + UQIp — an(u)) .
Then, from (1.9) we have

Amin (K + I, — T2, (1)) > Amin (K + 4*I) + Amin (—T'2,(w))

2qnR?
)\min (L)

Since R, = Op(n~!) and Q, = op(1), for every for every 0 < ¢ < 1 we can choose
n4 € N such that, for all n > ny,
2qnR?

p{Amin(L) + Qn’} < %)‘min (K).

Z)\min(K)+u2p{ +|Qn|}
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This is equivalent to

2qnR? 1
- — n — & \min K .
sy #1901} > 10

This allows us to claim that for all n > ny,
1
Amin (K + v*I, — T, (u)) > 5 Amin (K) + u?  for all u > 0.

Hence, we have,

1
%Amin (K) + u?

1T 4 (w)|ls < for all n > n4 and u > 0
with probability exceeding 1 — €.

Bounding of ||Tsn(u)]|s

Recall that .
1 _
Ts,(u) = {L + I, — an(u)} .
n
Then,
1
ITsn(@)lls = 1/Avmin <nL I, - rgn(@) |

Next,

1 1
)\min (L + U2Iq - FSn(“)) > )\min (L> + U2)\min(Iq) - )\min (FSn(U))
n

n

v

l)\min (L) + U2 - )\max (FSn(u))

=3

= 5>\min (L) + u2 - HI‘?)’VZ(U’)HS

paR;,
%)\min (K) + u?

1
> E)‘min (L) +u? —

_Q|Tn|'

Since R,, = Op(n~!) and T,, = op(n~!), for every for every 0 < ¢ < 1 we can choose

ns € N such that for all sufficiently large n,

pgR?

%/\min (K) +

1
02 +4q|T,| < %Amin (L).
This is equivalent to

qu2 1
— n —q|T| > ——Amin (L) .
Do (K) 1 2 q|Tn| 5y (L)

This allows us to claim that for all n > ns,

1 1
Amin (nL +u?l, — rgn(u)> > %Amm (L) + u?.



2.4. APPENDIX 65

Therefore, we have,

15, (u)]s < for all n > ns and u > 0

2 Amin (L) + u?

with probability exceeding 1 — €.

Bounding of ||Fi1n(u; K, L)||s

Recall that
Fiin(u; K, L) = KT, ()T () (K +u2T,) " = Tap(u)Ta (u).
Hence

-1
1Fiin(u; K, L)|ls < K ||| Tan (w)llsITon(@)l|sll (K + L) [ls+Tan (@) [ Tan(w)]ls.

Now,

1K |[s = Amax (K)

and
1 1

< .
Amin (K + U2Ip) ~ Amin (K) + u?

Hence, for all sufficiently large n and u > 0,

I (K +uL) " ||s =

>\max (K)

: < fmad )
Pt K, D)l < {2l

+ 1} 1P (20) | T 22 .

Therefore, for all sufficiently large n and u > 0,

. QqHR% Amax (K) 1
[ Fiin(u; K, L)||s < p{>\rnm(L) T |Q"|} {)\mm(K)Jru? * 1} {%Amin (K) "”UZ}
(2.56)

with probability exceeding 1 — ¢.

Bounding of ||Faoin(u; K, L)||s

Recall that
Fon(u; K, L) = nl/QRnu2F1n(u)1qlgF4n(u).

Then,
1 Fo1n (u; K, L)||s < 02| R T1n () [ 25 [117 [ I Tan ()5

= VPan'/?| Ryl ||T 1 () ||| T () ]

Hence, for all sufficiently large n we have,

\/]anl/Q‘Rn‘lﬂ
{%)\min(L) + U2} {%)\mm(K) + ’LL2}

| Fo1n(u; K, L)||s < for all u > 0 (2.57)
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with probability exceeding 1 — €.

Bounding of ||Fi2n(u; K, L)||s

Recall that
Fion(u; K, L) = Ry {1,1]T5 (1) — (K + Qn15?)Tyn (u) 1,1 T (u)}.
Then
|Fion (s K, Dlls < 1Rl { I, 15117 1sl1 T ()]s

+ (1K |ls +1Qal115%]1s) ||F4n(u)HsHlplls||1qT||s||F1n(U)||s}

= [Bul {v/PqlTsn(u)lls + vPg (Amax (K) + plQnl) [Tan(w)l|s[[Tr1n(w)lls}
= VPa|Rn [ {50 (u)ls + (Amax (K) + p|@n) [Tan(u)[s]|T1n(w)lls} -

For all sufficiently large n and u > 0, we have,

1
Fion(u; K, L <VPA R T
H 12 ( )”S pq' |{ 1 )\mjn (L)+U2

2n

+ (Amax(K) + p|Qnl) <§/\min (;() T u2> (;nAmm }L) + u2> }

with probability exceeding 1 — €.

(2.58)

Bounding of ||Faan(u; K, L)||s

Recall that

-1
Fyy(u; K, L) = n'/? (iL) s, (1), () {iL + u2Iq}

+ T 1575 (1) — R§1q1§r4n(u)1p1q7’rm(u)] .

We then have

1
|Fozu (s K, D)5 < 02| | L
n

sl1Tsn (@) |51 T3n (W) s

S

1 -1
{L + u2Iq}
n

HITal11% s I Tsn () + RZqullslllgllsIIHn(U)Islllps1qT||s||1“1n(U)||51

1 -1
{L + u2Iq}
n

+ q|Tnl[[Tsn (u)l|s +qui||F4n(U)Islll“m(u)lls] :

—pl/2 <

1
—Amax (L)1 Tsn (u) [T (u) | s

(2.59)
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Next, note that

1 —1
H {L —I—u2Iq}
n

1 1
Amin <nL + U21q> > E)\mm(L) + U2

1
s < 1/Amin <nL + u2Iq> )

Since

we have the bound

1 -1
g
n

It follows that for all sufficiently large n, the first term on the right-hand side of (2.59)
is bounded above by

1

<————— forallu>0.
o= %)\min(L) + u?

12 Xmax (L)
%)\mln(L) + u?

—1/2 2
< ? )\max(L) - 1 . qun + q‘Tn‘ .
ﬁAmln(L) + U2 %)\min (L) + u2 5)\mjn (K) + ’LL2

It follows that for all sufficiently large n, the second term on the right-hand side of
(2.59) is bounded above by

IT5n (W) s Tan ()]s

qn1/2|Tn|
%/\min (L) + u? '

Finally, it follows that for all sufficiently large n, the third term on the right-hand side
of (2.59) is bounded above by

pqn'/*R3
(%Amin (L) + u2) (%)\min (K) + U2) .

Combining all of these bounds, we have

nY2)\ (L) 1 pqRZ
Foop(u; K, L)||s < ) T
| Foon (u s { lAmin(L) + 2 ﬁ)\min (L) + u? %)\min (K) + u? aITnl

qn'/?|T,| pgn'*R;
+ 1 2 1 . 2
%)\min (L) -|—’LL2 (%Amin (L) + u ) (5)\min (K) +u )

_l’_

(2.60)
for all sufficiently large n and u > 0, with probability exceeding 1 — .
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2.4.4.3 Verifying Convergence in Probability Limits of the Functions in
(2.55)

The Convergence in Probability Limit of fooo Fiip(u;k, K) du

and from (2.56) we have, for all sufficiently large n

Noting that

/ Fii,(u; 5, K) du
0

o0
< / | Py (s 0, K)o du
S 0

o0
/ Py (s 5, K| s dut
0

2qnR? o0 Amax (K) 1
<p{Amin @) + IQn\}/O {Amin (K) 1 a2 + 1} {éAmin 3 +u2} du

EAT, N g L -
p{)\min (L) +|Qn‘ {/0 (l)\mln (K)+U2)2 du+/(] %)\min (K)+U2 du}

2
o QQHR% W)\max(K) m
- P { )\min (L) - |Qn|} </\min(K) \/2>\min(K) " \/2/\min(K)>

with probability exceeding 1 —e. Since R, = Op(n™1), Q, = op(1) and ¢ is arbitrary,
we must have ‘

P
=0 asn— o
S

/ an(u;n,K) d’LL
0

and therefore,

o
/ an(u;n,K)du—P> O asn— oo.
0

The Convergence in Probability Limit of [y° Fain(u; k, K) du

and from (2.57) we have, for all sufficiently large n

Noting that

/ Fyi,(u;k, K) du
0

D
< / | Forn(u; &, K)||s du
S 0

/ | Fo1n(u; &, K)|| s du
0

u2

172 = u
<V \Rn|/0 (A D) 02} (Dhain(K) )
\/}Tqﬂnlp‘Rn’
V2 (Vi) + /D L) 1
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with probability exceeding 1 — . Since R,, = Op(n~!) and ¢ is arbitrary, we must have

P
—0 asn— o0
S

/ Foip(u; 6, K) du
0

and therefore,

o
/ Fgln(u;m,K)du—P> O asn— oo.
0

The Convergence in Probability Limit of [y° Fion(u; k, K) du

and from (2.58) we have, for all sufficiently large n

Noting that

/ Flgn(u; K, K) du
0

D
< / | Fion(u; &, K)||s du
S 0

/ (| Fion(u; Ky K)||s du
0

o 1
< v/pq|R, / - du
I |{ ) ﬁ)\min (L) + u?

+ (Amax(K) +p|Q”|>/ooo (éxmm (;f)+u2) <21Mmin 1L) +“2) du}

= VPl Ry | |
%)‘min(L)
+ ()\max(K) +p|Qn|) ul
2\/(%)‘min(K)) (ﬁ)‘min(L)) (\/%/\min(K) + \/Qin)‘min(L))
B " 1/2
a \/pTII "| 2>\min(L)
nt/2x
+ ()\max(K> +p|Qn|) \/i

\/Amin(K)/\min(L) (\//\mm(K) + %Amin(L)>

with probability exceeding 1 —e. Since R, = Op(n™!), Q, = op(1) and ¢ is arbitrary,
we must have ‘

P
-0 asn— oo
S

/ Fiop(u; v, K) du
0

and therefore,

/ Flgn(u;n,K)dui O asn— oo.
0
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The Convergence in Probability Limit of fooo Foop(u; 6, K) du

Noting that

/ Foon(us k, K) du
0

o
< / | Fagn(u; &, K)||s du
S 0

and from (2.60) we have, for all sufficiently large n

o0
JALSry ST
0

oo 1
< Auax (L nl/zR,%/ du
(Llpa 0 Phwin() +02) (Fwin () + ) (Do (K) + )
1
1/2)\111 N T, / d
e e DA ) G ()5 )
1/2 T, / d
+pgn'*R; / N 1 du
"Jo (g Amin (L) + u?) (5Amin (K) +u?)
< )\max(L)pqn 1/2R2 / 1 du
Amin (L) + UQ) (3min (K) + u?)
+n max q|T |/ du
Amin (L) + u2)°
1/2 T, / d
oo 1
i nl/QRi/ du
P 0 (ﬁ)‘min (L) + u2) ( Amin (K) + UQ)
- 2\/§pq7rn/\maX(L)R721
rmn \/)\mm mm K) ( %)\min(L> + )\min(K)>
qﬂ'n)\max( )|T | qﬂ-n’Tn|
mln \/Amln \/2)\111111 (L)
. pqﬂn\/ﬁRi

VAuin(E)hia(E) (1 Awin(L) + /Aurin(K)

with probability exceeding 1 —¢. Since R, = Op(n~'), T, = op(n~!) and ¢ is arbitrary,
it follows that

P
=0 asn— o
S

/ Fyop(u; k, K) du
0

and therefore,

o
/ Fggn(u;&,K)dug O asn— oo.
0
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2.4.4.4 Conclusion for Multivariate Integral Limits for the Matrix Square
Root Result

Hence, we have shown that
o0

plim Fin(u; K, L)du =0, kK =1,2

n—00.J(Q

for u > 0.



Chapter 3

Usable Asymptotic Normality
Results and Inference for

Gaussian Response Linear Mixed
Models

Even though estimation by maximum likelihood for linear mixed models and generalized
linear mixed models is well established, asymptotic normality results that can be used to
construct confidence intervals and Wald tests via Studentization are currently unavailable

in the existing linear mixed model and generalized linear mixed model literature.

Asymptotic normality results for maximum likelihood estimators for Gaussian
response linear mixed models have been presented in literature such as McCulloch et al.
(2008), Miller (1973), Miller (1977), Jiang (1996) and Jiang and Nguyen (2021). As
discussed in Section 1.9.3, Nie (2007) investigated an extension to a generalized linear
mixed model setting, but did not give explicit forms void of limits or expectations with
respect to the response. Hence, the existing generalized linear mixed model literature
lacks asymptotic covariance results that are amenable to practical purposes such as

confidence interval construction.

Other recent related literature by Lyu and Welsh (2022) derive explicit asymptotic
normality results for both maximum likelihood estimators and restricted maximum
likelihood estimators for model parameters in a nested regression model (random
intercept model) for clustered data. The authors, as done in this thesis, considered the
scenario where both the number of independent clusters and number of observations

within each cluster go to infinity. When restricted to Gaussian responses, the work by

Some of the content of this chapter is published in: Bhaskaran, A. and Wand, M.P.(2023), Dispersion
parameter extension of precise generalized linear mixed model asymptotics. Statistics and Probability
Letters, 193, Article 109691.
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Lyu and Welsh (2022) is closely related to the work in this chapter. However, while
Lyu and Welsh (2022) consider regression models with a random intercept, this chapter
considers Gaussian response linear mixed models that allow for both a random intercept
and slope to be included. On the other hand, Westfall (1986) considers a linear mixed
model set-up with vectors of fixed effects, nonerror random effects and error random
effects and develop asymptotic distribution theory for the corresponding analysis of
variance estimates. In contrast, this chapter presents the explicit first order (leading
term) asymptotic approximations used for the asymptotic normality results in this
chapter, serving as a prequel to the results presented for the generalized linear mixed

model case in Chapter 4.

In this chapter, we aim to derive asymptotic normality results that are directly usable
for asymptotically valid confidence intervals and Wald tests for analysis concerning linear
mixed models with Gaussian responses. The main theorem in this chapter concerns
the joint asymptotic normality of all maximum likelihood estimators for a Gaussian
response mixed model and elegantly shows faster rates of convergence of fixed effects
that are not accompanied by a random effect as compared to fixed effects that have

partnering random effects.

The results presented in this chapter will then be extended for generalized linear

mixed models with multivariate fixed and random effects in Chapter 4.

3.1 Model Description

In this section, we study Gaussian response linear mixed models of the following form,

for observations of the random triples (Xaij, XBij, Yij),1 <i <m,1 < j <ny,
Yvij|XAZ'j, XBz'ja U, are independent N((,@% + Ui)TXAij + (,@%)TXBZ'J', 0‘52) (31)

The U; are d, x 1 unobserved random vectors for each 1 <7 < m. The Xj;; are dy x 1
random vectors corresponding to predictors that are partnered by both a fixed effect
and a random effect. The Xp;; are dg x 1 random vectors are predictors that have a
fixed effect only. Let X;; = (X;{i i Xgi j)T denote the combined predictor vectors such
that dy + dy = d. We also assumed that the X;; and U;, for 1 <i <mand 1 <j <n;
are independent, with the X;; each having the same distribution as the (ds 4+ dg) x 1
random vector X = (X1, XZ)T and the U; are independent N (0, (£)?), each having

the same distribution as the random vector U.
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Then, for any Ba(ds x 1), Be(ds x 1), 02 and X(d, x d,), the maximum likelihood
estimator of (3%, 8%, 29, (¢2)?) is,

(Ba,Bp,X,5%) = argmax {(Ba,Bs, %, 0?)
BAvﬁsz7ag

where the conditional log-likelihood is

g(/@Aa/@Ba Ea 0'?)

T 1 1 m
=33 { ¥ (65X + B8 Xn) - 572 | o2 - Jlontzna?)| - B tog 2nx

i=1j=1

+Zlog/ﬂ{dA exp(l

n
i=1 j=

1 1 3
[YijuTXAij - 5{(ﬁA +u) Xy + ﬁgXBij}} Jo? — iuTE 1u> du.
1

3.2 Notation Required for Fisher Information Calculations

Let
X Yi
X; = and Y; =
X, Vi
Also define
m
1 s .
n=— Z n; = average of the within-group sample sizes,
mia
and

XaXT XaXE

Y3, = lower right dg X dp block of E
B T T
XX, XpXj

3.3 Asymptotic Normality Theorem

The main theoretical contribution of this chapter is an asymptotic normality theorem for
the maximum likelihood estimators for a Gaussian response mixed model as described

in Section 3.1.

The theorem relies on the following assumptions:
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(A1) The number of groups m diverges to oco.

(A2) The within-group sample sizes n; diverge to co in such a way that n;/n — C;
for constants 0 < C; < 00, 1 <i < m.

(A3) The distribution of X is such that

E(|X]*) < o0

and none of the entries in X s are zero degenerate random variables.

Theorem 11. Assume that conditions (A1) - (A3) hold. Then we have the following

Ba— B 0| [xo 0 0 0
|V (Bs=8%) | o | |0 |0 @z 0 0 |
vech(Z — X9) 0| |0 0 2D; (2@ x%) D;T 0
Vi (6% = (02)) of |o 0 0 2{(c%)°}?

where DjA is the Moore-Penrose inverse of Dg, .

The proof for Theorem 11 is in the appendix.

3.4 Appendix

3.4.1 Linear Mixed Models with Multivariate Fixed and Random
Effects

Ba

X; = [XM XBZ} . B= [ﬁ vec(X)

2

O¢

B

] and 0 =

Then the model presented in Section 3.1 can be rewritten in the following form
ind.
with
Voi = XaZ X + 021,

where Vj; is the n; X n; covariance matrix of y; parametrized by 8. The log-likelihood
of (8, 0) can then be expressed as

m

((8,0) = —% > {log [Vail + (yi — XiBB)" Vg; ' (yi — XiB) + nilog(2m)} .
=1
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The model in (3.2) is a special case of a general Gaussian variance regression model
presented in Section 4.3 of Wand (2002). Using steps similar to those in Wand (2002),
an expression for the Fisher information matrix for a Gaussian response linear mixed
model with multivariate fixed and random effects can be obtained. Note that the model
in (3.2) belongs to a common class of submodels with

oi = > O0nKn, 6=1[01,...,6c, (3.3)
h=1

for a set of n; x n; matrices K, ..., K., which leads to considerable simplifications in
obtaining the expression for the Fisher information matrix. An alternative expression
for equation (3.3) is as follows, where

vec(Vp;) = K0, IC = [vec(K1)|...|vec(K,)].

It remains to solve for IC;. By making use of the fourth property in Subsection 1.4.5, it
can be done as follows
vec(Ve;) = vee( X 2 XL, + 021,)
= vec(X a2 XT)) + vec(all,)
= (X p; @ Xpi)vee(X) 4 vee(I,,)o?
= (Xa; ® Xai)Dg,vech(X) + vec(Im)ae2

vech(X)
{ Xai ® Xai)Dy, Vec(Im.)] 2

= K0,
with
Ki= [(XAi ® Xai)Da, VeC(Ini)] :
The expression for the full Fisher information matrix is subsequently

I(Ba,BB) 0

I(Ba, B, vech(X), 0%) = [ 0 I(vech(X),02)
[XTVGle 0 ]

Z SICT (Vg ' ©@ Vg DK

_ [Eile? Vi ' Xi 0 ] '
0 I KT (Ve @ Vg DK

To find an explicit expression for I(Ba,Bs, vech(X),02), it suffices to find explicit
expressions for the block matrices 1(8a,3g) and I(vech(X), 02) separately.
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3.4.2 Expression for Top Left Block of Fisher Information Matrix

Expanding the current expression for I(34,3p) leads to

X V' X,

NE

I(Ba,BB) =

=1

s
S

r T
Xa Xp| (XaZXE,+02L,)7" [Xa Xpi|

Q
Il
_

; (3.5)

Xa. _
?f] (XAiEXKi +U§Ini) ! |:XA1' XBi:|
L“*Bi

XT (X7, SXT 4+ 02L,) ' Xa;, XT(Xa,BXT +020,) ' X,
XL (XAZXE, +020,,) ' Xy XE(XAZXK, +021,,) ' Xp;

|
MSI

N
Il
—

I

=1
It remains to evaluate and simplify the expressions in the matrix, which can be done by
making use of the matrix identities from Harville (1977), highlighted in Subsubsection

1.4.7.1.

3.4.2.1 Top Left Block of (3.5)

Now, we solve a part of the expression of the top left block of I(8a, Bp), specifically
X5 (XaiZXE + 020,) " X
Using (1.10b) and (1.3) by setting A = 55 X7, X4; and B = %, we have,

_ _ -1 _
qu;i(XAiEXKi—"_U?Im) 1XAi = {IdA +XZ1‘(U?I’M) 1XAiE} XZi(U?Im) 1XAi

-1
1 1

= (IdA + 2X/Q.XAZ-2> (QXKZ.XAZ)
Us UE

1 -1
- {IdA -3t ((ﬂXXiXAi) +... } =t
g

—{Liy 2= (XL Xn) P
— S e (X X)) S
=271+ 0p(n")1g, 17, .

Therefore, the top left block of I(8a,8p) can be computed as

m
Z (E_l + Op(n_l)ldAlgA) = mE_l + Op(mn_l)ldAlgA.

i=1

3.4.2.2 Top Right Block of (3.5)

Now, we solve a part of the expression of the top right block of I(34,3s), specifically
X3;(XaiZXL; + 021,,) " X
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Using (1.10b) and (1.3) by setting A = X%, Xa;, B =X and C = %X&XBZ- we
have,

_ _ -1 _
XZz(XAzEXZz + 0'?17”) 1XBi = {IdA + XZ1<U?I71@) 1XAiE} XZz(U?Inz) IXBi
-1
1 1
= (IdA + 2XgiXAiz) <2X§iXBZ-)
O'E g

€

= 2_1(X£iXAi)_1(X%:Z‘XBi)
— 2SN (XA, X ) T ST (XA X ) T (XA X)) -
= 2N (XX, XA) T (XA, XBi) + Op(n~")1a, 17, .

Hence, the top right block of I(8a,35) can be computed as

m

S (= XL X)) (XK Xpi) + Op(n 1,15
=1

= Z {Eil(XKiXAi)il(XgiXBi)} + Op(rmfl)ldA 1dTB.

3.4.2.3 Bottom Left Block of (3.5)

Subsequently, the expression for the bottom left block of I(8a,Bp) can be easily
computed as

T
m
> BT HXTXa) (XX} + Op(mn ™)1, 17,

3.4.2.4 Bottom Right Block of (3.5)

Now, we solve a part of the expression of the bottom right block of (34, 8s), specifically

XL (Xa2 X2 4 021,,) X,
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Using (1.10a) and (1.5) by setting A = 5 X{, X,; and B = X, we have,
XEAXASXL, +02L, ) Xp,
_ _ _ -1 _
= X]%:z |:(U§Ini) '— (UgIm) 1XAi2 {IdA +X£i(0.82‘[77wi) 1XAi2} X};i(agIm) ! XB;

2 -1
1 1 1
= XL, { I, — <a2) XpaZ (IdA + JZXXiXAZE) XKZ} XB;

)
¢ € €

1 1 -1
= 5 X5 Xp; — 5 X5, Xa (X4, Xai) X4, Xpi
[ [

+ X5 X (XK Xa) BT (XL X)) XA Xpi
1 1 -1
= 5 X5 Xp; — 5 Xp, Xa: (XA, Xa:) X5, Xpi + Op(1)1ay 14,

g g

Hence, the bottom right block of I(3a,35) can be computed as

Ui 1 1 1
> {nggixgi — g—gXé;XAi (XX Xai) XA, Xp; +O0p(1)1g, 1§B}
=1
1 — 1 — —1
= Z XL Xp,; — = Z X5 X (X5, Xa:) XK, Xp, + Op(m)La, 17
€ =1

€ =1
-1

1 m n - 1 m n - n T n T
=520 XXy — — ) | D XXk | | 2 Xau X4y > Xaii Xy
€ j=1j=1 € =1 Jj=1 Jj=1 J=1
+Op(m)Layl] .

The bottom right block of I(8a,Bp) can then be re-expressed as follows

mn I —w
T
=30 Xy XE,
(o= mn “4 -
=1 j=1
—1
mn 1 — & " "
§ : § : T § T § T
oz | mn “ ; , ,
i=1 \j=1 j=1 7=1

+Op(m)1gy 17 .

Both of the leading terms in the previous expression are of order Op(mn)l,4, 15}3 but
it remains to determine the overall order of magnitude of the bottom right block of
I(Ba,BB). In order to do this, we shall treat both of the leading terms separately.

Treatment of First Leading Term

Note that for a Gaussian mixed model with multivariate fixed and random effects
as described in Section 3.1,

V' ((Ba +Ui)" Xaij + BEXpiy) =1, 1<i<m, 1<j<n,.
Then from using Lemma 1, we have

1 m n
— >N Xpij Xt = E(XsXE) + op(1)1g,17 .
i=1 j=1
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Finally we obtain
mn [ 1 e T mn T T
— %ZZXBUXBU = ?E(XBXB) +op(mn)lg, 1y, . (3.6)

2
ag
€ i=1 j=1 €

Treatment of Second Leading Term

Note that for a Gaussian mixed model with multivariate fixed and random effects
as described in Section 3.1,
[(Xi,U) =1, 1<i<m, 1<j<n,,
where f(X;;,U;) is as defined in Lemma 2. Assuming that the conditions and assump-
tions in Lemma 2 are met, in the Gaussian mixed model case, we can simplify the left
side of Lemma 2 as follows

-1
1 m n n
mZ{ZXBZ-jXLjf(XWU }{ZXAUXKUJ*(XWW} x
i=1

E

j=1 =1

T
{Z Xy XA, f Xij’Ui)} ‘th--menm]
—1 T
ZXBUXA”) (ZXAMX;:CZ-]-) (ZXBW-XJ{M) ’Xu,...,xmnm
j=1

Jj=1

j=1 j=1

S
We can also snnplify the right hand side of Lemma 2 as follows
E [E (Xe XL (X, U)U) {E (XA XLA(X, U)U)}Y ' B (XX (X, U)]U)T}
= BB (xpX]) {E (X, X})} ' B (XpXY)'|

-1
— B (XaX}) (B (Xa X)) B (X, XE).
Now we have a simplified version of Lemma 2 for the Gaussian response linear mixed

model which states
-1

1 m n n n
P Z ZXB@X}CU- ZXAinKij ZXAingij
i=1 \j=1 j=1 j=1 (3.7)
B E(XsXD) {E(XAXD))} ' E(XaXE).

Equation (3.7) can also be written as
-1

n n
— Z ZXBWXA@] ZXAinXij ZXAingij
mn = \ = o (3.8)

— B (XpX) {E(XaXD)} ' E(XaXE) +op(1)14517.
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Therefore we have,

-1
m

n n n
mn 1
T T T
o7 2 | 22 Xea Xy | | 2 Xau Xy | | 2 XauXey
oz | mn “ , , ,
=1 \j=1 7j=1 7j=1

- ?QE (XpXD) {E (XaXD)} " B (XaXE) +op(mn)1g,17 .

Hence, from equations (3.6) and (3.7) we have the following expression for the bottom
right block of I(Ba,BB)

m

Z Xy (XaiZ X3, + 021,,) " X

=1

= 22 [B(XsXE) - E(XpXE) {E(XaXD)} " B (XaXE)| + op(mn) 14,17,

2
O¢

Consider the following
E (

EﬂB = lower right dg x dg block of (

-1
X, xT XAXgD B

T ]t
E(XaX)) E(XaXjp)
XpXT{ XpX} '

E(XsX}) E(XpXE)

Then let

-1
XaXT Xax?t
XpXI XpX%

_ -1
= |B(XsX3) - B (XpX]) {E (X2 XD)} ' B(XaXE)|
The expression for the bottom right block of I(8a,3s) can then be re-defined as

mnEE}l3 T
5 +op(mn)lgly. .
3

Putting the expressions obtained for the sub-blocks of (84, 3s) together, we have

mE~! + Op(mn_l)ldAlgA Op(m)1g, lgB
I(BAa /BB) = T mnEBl | (39)
Op(m)lagly, oz op(mn)ly, 1y,
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3.4.3 Expression for Bottom Right Block of Fisher Information Matrix

Using similar steps to Section 3.4.2, an explicit expression for I(vech(X),o2) can be
obtained. Expanding the current expression for I(vech(X),o?) leads to

I(vech(X), 0?)

Ki (Vo' ® Vg, K

N | =

@
Il
-

T
[(XAi ® Xa;) Dg, VeC(Ini)] {(XAiEXKi + UgI"i)_l ® (XAiEXKi + U?Im)_l} X

I
N | —
[z

@
Il
-

|:(XA7; ® X ;) Day VeC(Im)]
1Y DI, (XA @ X4,) {(XAZXE, +070L,) 7" © (XA, BXE, +021.,) ' } (XA, © Xa,) Day
=1

Y fvee(Ln)} {(XaBXR, +02L) 7 @ (XA BXR, +02L,,) '} (Xa, © X4,) Day
1=1

%ZD?;A (Xlzz ® X/i) {(XAiEXKi + U?Im)_l @ (XAiEXg:i + UEIM)_I} VeC(Ini)
i=1

I fvee(Tn)} {(XaBXE, + 020n) ! @ (XA, BXE, + 02Ln,) ' vee(I,)
i=1

(3.10)
Once again, it remains to evaluate and simplify the expressions in the matrix, which
can be done by making use of the matrix identities from Harville (1977) highlighted in
Section 1.4.7.1.

3.4.3.1 Top Left Block of (3.10)

Now, we solve a part of the expression of the top left block of I(vech(X), 02), specifically
D}, (X}, © X3,) {(XaA:ZX}, +021,,) ' @ (XA ZXR,; +021,,) 7'} (Xa; ® Xa,) D, -
Using the properties of Kronecker products listed under Subsection 1.4.5 we have,

DI (X%, 0 X1) {(XaiZXL, + 02L,) ' @ (XuSXE 4+ 021,) 7'} (Xai ® X i) Da,
= Dj, [{X%,(XaZXE; +02L,) ' Xai} @ { X5, (XaZXE; +02Ln,) ' Xai}] Dy
=Dj, (=" +0p(n 14,15, } @ {=7 + Op(n 14,17, }] Dy,

= Dj, (7' @271 Da, + Op(n™")1a,@as1)/210, (dat1)/2-

Therefore, the top left block of I(vech(X),02) can be computed as
1 m
T (-1 -1 -1 T
9 Z {DdA (E ® 3 )DdA + Op(n )1dA(dA+1)/21dA(dA+1)/2}
i=1

m _ _ —
) {DgA (E lex 1) DdA} + Op(mn 1)ldA(dA+1)/21§A(dA+1)/2'
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3.4.3.2 Top Right Block of (3.10)

Now, we solve a part of the expression of the top right block of I(vech(X), 02), specifically
DI (X%, ® X1,) {(XnZXE, + 021,,) ' @ (XA ZBXE, + 021,,) ) vee(T,).
It follows that
D} (X% ® X1) {(XaZ XK, 4 021,) ' @ (XA B XK, + 02 1,,) '} vee(Iy,)
= D] {X{(XaEXE+02L,) ' @ X (XS XR; + 021,,) ! ) vee(I,)
= D vee | XE(Xa=XT, + 02L,) 7 L, X T (X0 S X, + 021,) 7'} |
= D7 vec [XKZ»(XA,-EXL +02L,,) XL (XA XL, + a?Ini)_l}T}

= DJ, vec[{aQE (XL Xa) " + 022 (XL X ) ' (XL X)L
X (éx{) < XAz> {28 (XK Xa)  + 028 N (XX )2
x (XEXa) 4! ]
By expanding and simplifying the last line of the previous expression, we have,
Dfvee| 22 (X X (XK ) (3%a0) 2 (XE X0

1 1
2 (E Xa)E X0 (53R ) (5% ) 2 (KR X 3
_ (1
o2y N (XE, Xa) ! (02

£

1 e e
X/-T\z) (O_QXAi) o2 (X, Xa) ' ETHXL X)) ST
g
1 1
— 2B (XA, X ) ST (X A X ) (UQX/{i) (UQXAz) o (XA Xa) ' Z!
€ €

X (X3, Xp;) 12! +}

= Dj, vec{ SN (X}, Xp;) ' ST — 028N (XE, X)) TN (XA X))

— 2B (XL X)) ST (X LX) TS

+ (2SN XL X)) T RN (XE X)) T T (X A X)) TR T 4
= D], [vec {SH XL, X 7)) 'S} — 2vec {0 T THXE, X)X X)) I 4+
= DJ, vec {Z7HXL,X) ' 27 + 0p(n?) g, (ap+1) /2

= OP( )1dA(dA+1)/2~

Therefore, the top right block of I(vech(X),02) can be computed as

IR _ e _ _
§ZD3;AV€C{E 1(X£iXAi) 12 1}+Op(mn 2)1dA(dA+1)/2 = Op(mn 1)1dA(dA+1)/2‘
i=1
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3.4.3.3 Bottom Left Block of (3.10)

Now, we solve a part of the expression of the bottom left block of I(vech(X),02),
specifically

{vec(In) Y {(XaiZX L + 02L,,) ' @ (Xai2 XL, + 021,) 7'} (Xai ® Xai) Da, -
Using the properties for Kronecker products highlighted in Subsection 1.4.5, we have,
{vec(L, )} {(Xai=XE, +02L,,) ' @ (XA B X5, + 020,) 7'} (Xai © Xai) Da,
= [D], (XX, ® X1,) {(XaZXE, + 021,,) ' © (XA BX4, +021,,) 7'} Vec(Im)]T
= [DF vec{S U XL, X)) 'S} + Op(n )Ly gy e1)2]
= [D] vee{Z 7 (XL, Xa) =T 4+ 0p(071T, (44 41y
= Op(n Y, (4, s1)/2-

Therefore, the bottom left block of I(vech(X),02) can be computed as

1 m - 7 B T B B
§Z[D5AVGC{E XA X)) 'S 1}} +0p(mn™*)14, (4, y1)72 = Or(mn™")1G, (4, (1) /2
=1

3.4.3.4 Bottom Right Block of (3.10)

Now, we solve a part of the expression of the bottom right block of I(vech(X),o2),
specifically

{vee(Ln)} {(Xai2XE; + 0210,) 7' © (X 2XE; + 02 1,,) '} {vee(In,)} -
Using (1.10a) and (1.5), we have

{VeC(Ini)}T {(XAiEX};Z‘ + Ug[m)_l ® (XAiEX/{i + UgIni)_l} {VeC(Ini)}
=tr {(Xp,2X4; +02L,,) (XA XY, +021,,) "}

1 1 _ 1 1 _
UE UE UE O-E

€

1)° 1)°
:tr{ 0_2) InL -2 <02) XAi(XKiXAi)_lXKi

Therefore, the bottom right block of I(vech(X),0?2) can be computed as

i=1
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Putting the expressions obtained for the sub-blocks of I(vech(X),o2) together, we have
I(vech(X),0?)

? £
2 {DéFA (Ztex) DdA} +O0p(mn™ ) 1ay (ay+1)/210, (@y41y2 OP(MT ) 1ay @y+1)/2

Op(mn™)14, (4,412 otz T Op(m)
(3.11)

3.4.4 The Inverse of the Fisher Information Matrix

Since 1(Ba, s, vech(X),02) is a block diagonal matrix, we can invert I(8a, 3g) and
I(vech(X), 02) separately and put the expressions together to find I(8a, B, vech(X), 02)~!
as shown below.
1(Ba,Bs)"" 0

0 I(vech(X),02)~!

rre

I(Ba, Bg, vech(X),02) ! = [

3.4.4.1 Expression for Top Left Block of Inverse Fisher Information Matrix

Firstly, let us partition I(8a,3s) as follows

A A

I(Ba,BB) = Ay A,

] where Ag = AT,

The expressions for Aj1, A1z, A1 and Ags are currently as follows
All = mE_l + Op(mn_l)ldAlgA,
Ajp = OP(m)ldAlgB,
Az1 = Op(m)14,1],,
mn¥ 3t
Ay = B4 OP(mn)ldglgB-

2
0¢

Let I(Ba,Bs) ! assume the following form

-1
_ A App
I(IBAHBB) ! =
A9 Ay
All A12
= [A21 A22] where A% = (A12)T,

Firstly note that

A ={mZ 7 + Op(mn~")14,17, -
= [mEZ7 {14, + Op(n")14,1] }]
=mX3! {14, - Op(nfl)ldAlg;A +...}
=m 2+ Op(m_ln_l)ldAlgA.

-1
(3.12)
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Also note that

»n-! -1
D '] 1,17
22 — o2 +0P(mn) dptdg

€

1 -1
ngﬁB
O‘ {IdB +Op(1)EBB1dB1dB}]

€

2 (3.13)
g 25 1
— emnB {IdB +0P(1)23B1dB15B}
0225
= EmnB {IdB + Op(l)zﬁBldBlgB + ... }
2
JEEBB
- —|—0p(m n- )1dB1dB

Using the result for carrying out block matrix inversion presented in Section 1, Al
A2 A% and A?? can be calculated as follows. Firstly we have,

A = AT+ AL A (Ag — An A A) A A
Note that
(Ago — At AT Ap) ' = Ay + A Al AT A A +.
It follows that
AT Aa(Ags — At AT Ar) T AR AT = Op(m™In 11,17
Therefore by making use of (3.12), we get,
A" =m 'S+ Op(m'nT 14,17

Next we have,
A2 = (A — Ap AL Ag) T AR A

Note that
(A1 — A Ay Ag) = AT+ AT A A An A+
Therefore, by making use of (3.12) and (3.13), we have
A2 = Op(m~n~ )1dA1

Note that
A21 — (AIQ)T‘

Therefore, we have
A% = Op(m™In~ )ldBl

Finally, making use of (3.13), we get

A% = A2_21 + A2_21A21(A11 - A12A2_21A21)71A12A2_21
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Also note that
A2_21A21(A11 — A12A2_21A21) A12A22 = Op(m n - >1dB1

This leads to

A2 = =B 4 op(mIn” )ldBl +Op(m™'n~ )1dB1£B

Using the expressions for A1, A A2?! and A?2, we have the following expression for

I(Ba,Br)""

m 1+ Op(m~n"1)14,17 Op(m~tn71)14,17
I(ﬁA:BB)il = ATda o EBB ATde

Op(m~tn~ )1d31§A

2 +op(mTtnT 1,17

3.4.4.2 Expression for Bottom Right Block of Inverse Fisher Information
Matrix

Similarly, let us partition I(vech(X),02) as follows

1Y e

B B
I(vech(X),02) = |1 TP
By By

] where By = BE.

The expressions for B11, Bi2, Bs; and By are currently as follows

m _ _ _

By = 9 {Dc:lFA (2 D> 1) DdA} + Op(mn 1)1dA(dA+1)/21£A(dA+1)/2’
By = Op(mn_l)ldA(dA+1)/2,

Bo1 = Op(mn™ Y15, (4, 11y/09

mn
B22 = W + Op(m)

Let I(vech(X),02)~! assume the following form

—1
B B
I(vech(X),02) ! = [B“ B”]
21 22

[Bll Bl2

B2 B22] where B* = (B'2)T.
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Firstly note that

m

2
m _ _ —

= |:§ {DZ;A (E 1 ® 2 1) DdA} {IdA(dA+1)/2 + OP(?’), 1)ldA(dA+1)/21§A(dA+1)/2}i|

2 _ —1 B B —1
% {IdA(dA+1)/2 + OP(’n, l)ldA(dA+1)/21§A(dA+1)/2} {DgA (2 1 ® X 1) DdA}

2 _
E {IdA(dA+1)/2 + OP(’]’L 1)1dA(dA+1)/21§A(dA+1)/2 + “ee } DIA (2 ® E) D;AT
2D; (e x)D;Tl )

— — +O0p(m™"'n" ) ay (da+1)/21 0, (dy +1)/2°

-1
By = [ {DfA (="ex™) DdA} + OP(m”l)1dA<dA+1>/21§A<dA+1)/2]

-1

(3.14)
Also note that .
By - {2(”;;1)2 + op(m)}
—1
- [2725)2 i+ 0pln 1)}] (3.15)
2 2\2 .
= (TZ;) {1+0p(nh)+...}
2\2
_ 2(‘7;) + Op(m_ln_g)

Using the result for carrying out block matrix inversion presented in Section 1, B!,
B2, B?! and B?? can be calculated as follows. Firstly, we have,

B'' = B! + B! B13(By — By B! B12) ' By By
Note that
(Bys — By B! B12) ™! = By,' + By, By A B1oByy' + ...
It follows that
By Bi2(B2z — Ba1By; Bi2) ' BaiByy' = Op(m™'n ") 1y, (4, 11)/21i, (aa 1)
Therefore by making use of (3.14), we get,

2D} (Eox)DT

m

Bll 1

+ OP(mi nil)1dA(dA+1)/21£A(dA+1)/2'

Next we have,
B2 = _(Bll — BlgBilBgl)ilBlgBQ_;.

Note that
(B11 — 31232_21321)_1 = Bl_ll + Bl_llBlgB2_21321Bl_11 =+ ...
Therefore, by making use of (3.14) and (3.15), we have

B"? = OP(miln72)1dA(dA+l)/2~
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Subsequently
B21 _ (BIQ)T‘

Therefore we have
—1,-2\4T
B* = Op(m 'n 2)1dA(dA+1)/2’

Finally, making use of (3.15), we get
322 = 32_21 + B2_21321(BH — 31232_21321)_131232_21.
Note that
B521B21 (Bll - BlgBilBgl)_lBlngzl == Op(m_ln_4).
This leads to -
2
2oz)” +O0p(m™*n7%) + Op(m™'n™?)
mn

2\2
— 2(05) 4 OP(mflan).
mn

B2 —

Using the expressions for B!, B2, B2! and B??, we have the following expression for
I(vech(X),02)7!

£

I(vech(X),02)!

rrE

2D} (S9=)D; !

= TA + OP<m71n71)1dA(dA+1)/21,£A(dA+1)/2 OP(T;1n72)1dA(dA+1)/2
OP(milnd)lgA(dAH)/z % + Op(m~tn=2)

The resultant expression for (84, s, vech(X), 02) is

I(BA; ﬁBa VeCh(E)v U?)il
_ | 1(Ba.BB)™ 0
0 I(vech(X),02)7!

rre

= I(Ba, By, vech(X), a?)gol

Op(M)14y 1%, Op(1)14, 17, 0 0
L OP(l)ldBlgA Op(l)ldBlgB 0 0
mn 0 0 OP(l)l(iA(dA+1)/21§A(dA+l)/2 Op(n™")Lay(ay+1)/2 |
0 0 Op(n™")1], (4r11)2 Op(n7!)
where
_2 T
= 2O 0 0
2y,
s, |0 EfB 0 0
I(IBAaIBBaveCh(E)vaa)oo - 2Dt (2@x)DIT
0 2P, (FoWDy,
o o o 2(02)’
. mn J
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3.4.5 Derivation of the Final Asymptotic Normality Result for Gaus-
sian Response Linear Mixed Models

For a matrix M let
[M|F=/tr(MTM)

denote the Frobenius norm of M.

Consider working with the order (Ba,vech(X),3p,02) rather than the order in
(Ba, Br, vech(X), 02), when working with the Fisher information matrix for the deriva-
tion of the final asymptotic normality result. From standard results concerning asymp-
totic normality of maximum likelihood estimators we have

{1 (82, vech(£°), 8%, (03)°) "'} /2(6 - %) B N(0,1)

where 8 = [B4 veeh(£)” 3% 32| and 69 = [(83)7 {vech(20)}T BY)T ((02))7)".
Therefore, for all (dy + da(ds +1)/2 + dy + 1) x 1 vectors a # 0 we have
a” {1 (8%, vech(2°), 83, (6*)°) "'} /28 - 6°) B N(0,a”a).
Note that
a” {1 (8}, vech(X°), B4, (c2)°) }7/%(8 - 6°)
= a” [{1 (8}, vech(3°), 85, (62)°) 1171/ + {1 (B}, veeh(Z), B, (o7)°) '} /2
— {1 (8, vech(3°), BY, ( 02)0) 1126 - 6)
= a"{1 (8}, vech(£%), 8L, (6%)°) '} /%6 - 6°)
o™ [{1 (B}, veeh (=), B8, (o) ) 2
— {1 (B}, vech(=°), 85, (#3)°) [} 1/2] (6 - 8").
As a consequence

a”{I (B3, vech(2°), 83, (6*)°) '} 728 — 0°) + rryn(a) B N(0,a7a)  (3.16)

1

)
= a” [{1 (B}, veeh(3°), B, (03)°) "} /2 — {1 (B}, vech(S°), B, (09)°)
o [1 = {1 (8}, vech(Z°), B, (¢)°) .} /2{1 (8%, veeh (), B8, (03)°) '}/
x {1 (B, vech(2°), 8%, (63)°) "1 71/2(6 — 6°)
1 -1 T \"
( [{I(ﬂA,vech(EO) BY, (0*)°) 1 VI (BY, vech(%0), B3, (02)°) }1/2—1} a) zZ

}12] @ - 6%)
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where Z ~ N (O’IdA+dA(dA+1)/2+dB+1)' Next, note that using the matrix norm
properties || — A|| = ||A| and |AB|| < ||Al|||B] for any matrices A and B and
the fact that | M7 ||p = || M| for any matrix M, we have

|~ [0 (88 veen(s). B (o)1) 721 (8 veen(3) 84, (0)°) 12 1] "
< [[[er (88, veeh(=), 8 (6%)0) 3241 (8%, veeh (), 8, (02)°) 712 1]l

= ([ (8% vee(="). B, (63)) 1721 (BR, veen(°), B, (03)°) "'} ~ 1] || llall.
(3.17)
Our next aim is to establish that

H [{I (ﬁgwech(zo)aﬁ%a (‘72)0);1}71/2{1 (,Bg,vech(EO),,B%, (02)0)_1}1/2 B I} HF =0

(3.18)
Recall that
I(Bp,vech(%), Bg,02) "
= I(Ba, vech(X), ,BB,O'?);OI
Op(n~")1ay1g, 0 Op(n~ )14y 15, 0
L1 0 Op(n™ ") Lay (ap+1)/21dy (ay 11)/2 0 Op(n™*)La, (ap+1)/2
m |Op(n~")lag 13, 0 op(n” ) lap 17, 0
0 Op(71_2)13;A(dA_,r1)/2 0 Op(n™?)
where
b 0 0 0 |
1|0 2D} (Tex)D;T o0 0
I(BAaveCh(z)?IBB7U§)ool = A # 0525 )
m o 0 B0
0 0 0 2(”?)2
- n -
so that

1/2

{I (ﬂ%,vech(EO),ﬁ%, (02)0)001}71/2 {I (ﬁ%,vech(EO),ﬁ%, (02)0)71}
where

M, =m {I (ﬁ%,vech(EO),ﬁ%, (02)0):} and M, = {I (,Bg,vech(EO),ﬂ%, (02)0)71} )

_ M—1/2M1/2

Therefore, we can apply Lemma 3 with the following

=dy+day(dy+1)/2 K——Z 0 =dsg+1
P=dammdatda ’ 0 2D} (zez)D;T]’ 1=
and -,
UezﬁB
—0b 0
L= n 2(02)2
0 £

in order to show that (3.18) holds. It then follows from (3.17) and (3.18) that

{1 (B8R, vech(=°), 85, (03)°) 121 (BR, vech(2°), 84, (+3)°) "'}/ ~ I|a S 0.
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Application of Slutsky’s Theorem then gives 7, (a) £ 0. From (3.16) and another
application of Slutsky’s Theorem we have

a{I (8%, vech(°), 83, (0%)°) 172 — 6°) B N(0,aa).

It then follows from the Cramér-Wold Device and the Continuous Mapping Theorem
that

Ba — B o| [x0 0 0 0
B — B ol |0 (2% 0 0
vim \/ﬁ<ﬁ13 IBB) 3N ’ ) °B + 0 0\ +T
vech(X — XY) 0 0 0 2D; (2° @ x°) Dy 0
Vn (62 — (02)9) 0 0 0 0 2((02)0)2

as shown in Theorem 11.



Chapter 4

Usable Asymptotic Normality
Results and Inference for
Generalized Linear Mixed Models

In this chapter, we aim to derive asymptotic normality results beyond those that have
been derived in Chapter 3 for Gaussian response linear mixed models. The main
theorem in this chapter concerns the joint asymptotic normality of all of the maximum
quasi-likelihood estimators for a generalized linear mixed model. Once again, it elegantly
shows faster rates of convergence for fixed effects that are not accompanied by a random
effect compared to fixed effects that have a partnering random effect. The results
derived in this chapter can also be used for the construction of asymptotically valid
confidence intervals and Wald tests for generalized linear mixed model analysis, which

will be discussed in the next chapter.

In addition, we extend this theorem under certain circumstances to dispersion
parameters, introduced to account for overdispersion, as well. For the class of two-
parameter exponential families, maximum likelihood estimation is possible for all model
parameters including the dispersion parameter. Thus, we extend Theorem 12 and derive
the asymptotic normality results for the maximum likelihood estimator for a dispersion

parameter in the Gaussian and Gamma response cases.

The appendix contains the proofs for the theorem introduced in this chapter.

The content of this chapter is published as: [1] Jiang, J., Wand, M.P. and Bhaskaran, A. (2022),
Usable and precise asymptotics for generalized linear mixed model analysis and design. Journal of the
Royal Statistical Society, Series B, 84: 55-82. DOI: 10.1111/rssb.12473. [2] Bhaskaran, A. and Wand,
M.P.(2023), Dispersion parameter extension of precise generalized linear mixed model asymptotics.
Statistics and Probability Letters, 193, Article 109691.
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4.1 Model Description

Consider the following density, or probability mass, function for the class of one-

parameter exponential families

p(y;n) = exp {yn — b(n) + c(y)} h(y) (4.1)

where 7 is the natural parameter. For example, the Bernoulli probability mass function
has b(x) = log(1 + €*),c(xz) = 0 and h(x) = I(x € {0,1}). Whereas for the Poisson
mass function, b(x) = e, ¢c(z) = —log(x!) and h(z) = I(x € {0} UN). Here, I(P) = 1if
the condition P is true and I(P) = 0 if P is false. If the random variable Y has density,
or probability mass, function as in (4.1), then E(Y) = ¥'(n) and Var(Y) = b"(n). To
account for overdispersion in data and to allow one to model the variance flexibly, a
common modelling extension is implemented such that Var(Y) = ¢b”(n), where ¢ > 0
represents the dispersion parameter. This involves the replacement of log{p(y;n)} by

the following quasi-likelihood function

{yn —bn) +c(y)}/¢ + d(y, ¢) (4.2)

where d(y, ¢) is a function of y and ¢ only. Note that for ordinary binomial and Poisson
response models, ¢ is fixed at 1. For Gaussian and gamma response models, (4.2)
corresponds to the expression of log{p(y;n)} for a two-parameter exponential family
density function and ordinary likelihood applies. In this section, we study generalized
linear mixed models of the following form, for observations of the random triples
(Xaij, XBij, Yij), 1 <i<m,1 <5 <n,,

Yi;j| X aij, XBij, Ui are independent having quasi-likelihood function (4.2) with
natural parameter (8% + U;)" Xy + (B%)" Xpi; such that the U; are (4.3)

independent N (0, X°) random vectors.

The U; are d, x 1 unobserved random vectors for each 1 <7 < m. The X;; are dy x 1
random vectors corresponding to predictors that are partnered by both a fixed effect
and a random effect. The Xp;; are dg x 1 random vectors which are predictors that
have a fixed effect only. Let X;; = (X/{i i X%Z. j)T denote the combined predictor vectors
such that d, + ds = d. We also assumed that the X;; and U;, for 1 < ¢ < m and
1 < j < ny, are independent. The X;; are each assumed as having the same distribution
as the (dy + dg) x 1 random vector X = (X1, X£)? and the U; are assumed to be

independent N (0, X?), each having the same distribution as the random vector U.
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Then, for any Ba(da x 1), Ba(ds x 1) and 3(d, x d,) that is symmetric, positive defi-
nite and conditional on the X;; data, the maximum likelihood estimator of (3%, 3%, =)
is,

(B\Av B\Ba i) = argmax K(IBAa IBB) 2)
Ba,PB,E

where (84, B, ) is the conditional log-likelihood and has the expression

0(Ba.Be, B) =D > [{Yi (BX Xnij + BEXnij) + c(Yij)} /¢ + d(Vij, 0)] — % log [27%]
i=1 j=1
+ Zlog /Rd exp [Z {Yz‘jUTXAij —b((Ba + U)TXAij + ﬁgXBij)} /
i=1 A j=1
— 1uTE_lu du.
2

Note that one-parameter exponential family densities have a variety of desirable
properties, so that the regularity conditions for Theorem 7 are met. For example, in the
class of one-parameter exponential families, the support of f(y|@) does not depend on
0. Additional assumptions, for instance, having 3° being positive definite, ensures that
the true values for all model parameters are interior to the parameter space. Thus, the
model description above ensures that the regularity conditions required of the density
function is met for the convergence in distribution result for MLEs. Similar explanations

apply for the model descriptions in Chapters 6 and 7 as well.

4.2 Notation

Define

Z n; = average of the within-group sample sizes,

XaXT XaXE

Qp,(U) = E 0" (B +U)" Xa + (83)" XB)
XpXT XpXT

‘ U

and
—1

Apy, = ( |{lower right dy x dy block of 24, (1)~} |)
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4.3 Asymptotic Normality Theorem

The main theoretical contribution of this chapter is an asymptotic normality theorem
for the maximum quasi-likelihood estimators for a generalized linear mixed model as

described in Section 4.1.
The theorem relies on the following assumptions:

(A4) The number of groups m diverges to co.

(A5) The within-group sample sizes n; diverge to oo in such a way that n;/n — C;
for constants 0 < C; < 00, 1 <i < m. Also, n/m — 0 as m and n diverge.

(A6) The distribution of X is such that

E [max{1, | X||}* max{1,b" ((8a + U)" X4 + B X3) }'|U]
min{1, Amin (E{ XA X3V ((Ba +U)" XA + BL X3B) |U})}?

for all Ba € R, Bg € R% and X that is a d, x d, symmetric and positive

definite matrix.

Theorem 12. Assume that conditions (A4) - (A6) hold. Then we have the following

Ba— B4 o] | o 0
~ D
v |y (Be-8y) | BN (o[ 0 oA, 0
vech(2) — vech(X0) o] [o o 2Df (=°ex°) DT

Proof of Theorem 12 is in the appendices. Some remarks concerning Theorem 12

are:

1. Firstly, note that the asymptotic variances of the maximum quasi-likelihood
estimator of the fixed effects that are accompanied by random effects and the
maximum quasi-likelihood estimator of the variance and covariance parameters
of the random effects, both have a convergence rate of m~!. On the other hand,
the asymptotic variance of the estimator of the fixed effects unaccompanied by

random effects has a much faster convergence rate of (mn)~!.

2. The off-diagonal entries of the asymptotic variance-covariance matrix of the
maximum quasi-likelihood estimators of the model parameters are zero matrices.
Hence, this implies asymptotic orthogonality between the Ba, g and 3 model

parameters.
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3. In existing literature, results such as Theorem 3 of Nie (2007) contains limits
and expectations over the response distribution in their Fisher information ap-
proximations. In Theorem 12, we avoid such limits and expectations over the
response distribution. The Agy matrix only involves expectations over the simpler
random effects distribution. Therefore the results in this thesis, including Theorem
12, provide expressions that are easy to implement for practical tasks such as
confidence interval construction, making them “usable” in practice compared to
other theoretical asymptotic normality results (rather than results that make use
of observed Fisher information) available for maximum likelihood estimators for

generalized linear mixed models.

4.4 Dispersion Parameter Extension

In Theorem 12, we treat the dispersion parameter ¢ as being fixed. When considering
the Gaussian and Gamma response cases, all of the model parameters in (4.2), including
¢, can be estimated using ordinary maximum likelihood. Theorem 12 can then be

extended for maximum likelihood estimation of ¢° and involves the addition of
Vi (6= ¢") B N(0,0(6")

where v(z) = 222 for Gaussian responses and v(x) = 2*/{trigamma(1/x) — z}. Proof
of the asymptotic variance expression for the maximum likelihood estimator of the
dispersion parameter in the Gaussian response case is in Chapter 3 and proof of the
asymptotic variance expression for the maximum likelihood estimator of the dispersion

parameter in the Gamma response case is in the appendix for this chapter.

Note that from our results, for the Gaussian and gamma response cases, we can
conclude that exact orthogonality exists between ¢ and (8Ba,Bp) and asymptotic
orthogonality exists between ¢ and 3. Thus, the covariance matrices of Theorem
12 still hold for Ba, B and vech(E). On the other hand, when implementing the
quasi-likelihood extension of the Binomial and Poisson response cases, ¢ cannot be
estimated via maximum quasi-likelihood and is typically estimated via a method of
moments approach. Note that the values of the maximum quasi-likelihood estimates
of Ba, B and X asymptotically do not depend on ¢. This can be deduced from the
likelihood equations formed using the first-order asymptotic approximations of the scores
that only have ¢ as a constant. Hence, Theorem 12 is unaffected by the estimation of ¢

for the response cases under the umbrella of one-parameter exponential families too.
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4.5 Appendix

4.5.1 Multivariate Extension of (2.6) of Tierney et al. (1989)

To carry out the derivations in the next appendix, one has to deal with solving ratios
of intractable integrals. In this appendix, we show how to deal with such ratios of
intractable integrals containing d-variate arguments by working with its equivalent
multi-term Laplace’s method expansion instead. This is accomplished by considering
the multivariate extension of (2.6) of Tierney et al. (1989), which follows from results in
Appendix A of Miyata (2004).

4.5.1.1 Overview

For smooth real-valued functions g, ¢ and h, Equation (2.6) of Tierney et al. (1989)
states that

Jobn (@) exp{—nh(@)}dz b (at)g'(a) g"(z*)  g'(z")h" (z7) —2
ffooo bp(z) exp{—nh(z)} dz =9+ nbp(x*)h" (z*) - 2nh" (x*) 2nh" (x*)? O™,
(4.4)
where
g=0bn/bp (4.5)
and

¥ = value of z that minimises h over R.

Now consider the first two equations in Appendix A of Miyata (2004). Suppose that
in the right-hand side of the first equation we set ® = R?, replace the p symbol by bp,
replace the h, symbol by h and replace the integral dummy variable @ by . Then we
get

Jua 9(@)bp(@) exp{—nh(z)} da
Jea (@) exp{—nh()} do

If the function by is defined according to (7.3.6), then this quantity becomes

fRd by (x) exp{—nh(z)} dx
Jra bp(x) exp{—nh(x)} dz’

which is equivalent to both the right-hand sides of the first and second equations in
Appendix A of Miyata (2004). So the asymptotic expansion is given by the right-hand
side of the second equation in Appendix A of Miyata (2004) with 8 replaced by «* and
p replaced bp.
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4.5.1.2 Multivariate Derivative Notation

Let f be a smooth real-valued d-variate function of the d-variate argument x =
(1,...,24). The gradient vector of f is

af(.’I}l, ceey xd) ‘

Vf(x1,...,xq) = d x 1 vector with ith entry 5
X

The Hessian matrix of f is

82]’(:1:1, e ,J}d) .

V2f(x1,...,2q) = d x d matrix with (4, j)th entry didz,

The third derivatives three-dimensional array of f is

B (@i, va)

V2 f(@1,...,2q) = d x d x d array with (i, j, k)th entry 02,01, 021
2 J

4.5.1.3 Check of the Miyata (2004) Appendix A Result for the Univariate
Case

We first make sure that the right-hand side of the second equation in Appendix A of
Miyata (2004) matches (2.6) of Tierney et al. (1989) when d = 1. Recall that we have to
replace p by bp. We first deal with the term that is the one just before the O(n~=2) term.
The author points out that this term is, in fact (with some trivial re-arrangement),

1 oy "
o t{V2h(z)} 7 V()]
n
In the univariate case this becomes
g//(x*)
2n b (z*)

which is one of the terms in (7.3.6).

Consider the second term involving the },, symbol. Next note that Miyata (2004)

uses h/ to denote the components of {V2h(x*)}~1. In the univariate case this is simply
1/h"(x*). In this univariate case the summation over ij collapses to a scalar and the
first component is

LW @) (") = PATIE

which is also one of the terms in (7.3.6).

It remains to show that the second component of the main ), ; expression reduces
to ,
g (x*)h/”(ﬂj*)
2nh”(x*)2
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A

For a general set of model parameters @, let hj,._j,(0) denote the dth partial derivative
6dhn(0)/80j1 ... 004 with respect to  evaluated . Then from this definition of hj, . ja
provided in Miyata (2004), it is apparent that, in the d = 1 case, we can replace h;g; by
hi11 and then set it to A"/ (z*). Also, in this d = 1 case the summation of rs collapses
to a scalar. Combining we get

LU D ) =~

as required.

In summary, the result in Appendix A of Miyata (2004) does reduce to (2.6) of
Tierney et al. (1989) in the d = 1 case.

4.5.1.4 The Multivariate Case

The second equation of Appendix A of Miyata (2004) gives an expansion for
Jra 9(@)bp () exp{—nh(x)} d
Jga bp () exp{—nh(x)} dz
It is relatively easy to show that

Jra 9(2)bp(x) exp{—nh(z)} dx .
Jga bo(x) exp{—nh(x)}dzx g(x®) +

V(@) {V2h(z*)} " Vbp(z*)

an(.’B*)

{V2h(z*)} " V2g(x")]
2n

for smooth real-valued d-variate functions g, ¢ and h, where Y(x*) denotes the term

involving third order derivatives and therefore is more challenging when it comes to
getting succinct matrix algebraic expressions.

. + (@) + O(n™?)

In terms of the subscript derivative notation used in Miyata (2004):
T(x*) = L zd: Zd:g-hij Zd: zd: R* Ry
2n = j=1 l k=1 (=1 *
where
g; = ith entry of Vg(x*),
hid = (i,4) entry of {V2h(x*)} ™"
and  hgji = (i, j, k) entry of V3h(z*).
Note that if w(a*) is the d x 1 vector with kth entry equal to

d d d d
DD kg =30 3 HV(@)} iV b ik
i=1 j=1

i=1 j=1
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then we have
Vg(x*)" {V?h(z*)} w(x*)

T(@") = - 2n

We could also define
V3h(a:)[k] = d x d matrix with (4,7) entry equal to the (i, j, k) entry of V3h(x)
and then the kth entry of w(zx*) is

[{V2h(@")} Vo h(a") )

4.5.1.5 Final Expression for the Multivariate Extension of (2.6) of Tierney
et al. (1989)

Putting everything together from the previous subsubsection, the multivariate extension
of (2.6) of Tierney et al. (1989) is:

Jra 9(2)bp () exp{—nh(z)} dz T Vg(z*)"{V*h(z*)} ' Vbp(z*)
Jra bp(x) exp{—nh(x)} dz nbp(x*)
+tr[{v2h(ﬂ3*)}_1v29(w*)]
2n
_ Vg(a) {Vh(z*)} w(a*)
2n

(4.6)

+0(n7?)

where

t[{V2h(2)} " V()
w(z) = :
t[{V2h(2)} Voh(@) )]

and

V3h(m)[k] = d x d matrix with (i, ) entry equal to the (i, j, k) entry of V3h(z).

4.5.2 Proof of Theorem 12

This appendix contains the details for the derivations leading up to Theorem 12.

4.5.2.1 Constructing the Fisher Information Matrix

In order to compute the asymptotic covariance matrix for the maximum quasi-likelihood
estimators, we would first need to compute the Fisher information matrix for the model
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parameters as per the model description in (4.3). To do so, let

Sai Vi, log py; x, (Yil X))
Si=|8Sgi| = Vg logpy; x, (Yil Xi) (4.7)
Sci Vyech(s) log py; x, (Yi| X:i)

denote the ith contribution to the scores for each of the model parameters. Then the
Fisher information matrix can be computed as

m

I(Ba, By, vech()) = Y E(S;87|X;).

=1

The next few sections then focus on obtaining the expressions for the scores and
the quadratic conditional expectations that are required to construct the final Fisher
information matrix.

4.5.2.2 Expression for Conditional Density Function

The expression for py; x,(Yi|X;) as per the model description in (4.3) is as follows
Py, x, (Yi| Xi)
= /]RdA H {p(YijIXAijvaijvUi)}p(Ui)dUi
j=1

= /RdA exp { Zn: (I:Yij {(Ba+w)" Xni; + BEXpy; } — b ((Ba +w) Xai; + B X))

j=1

+ c(mj)] /¢ + d(Yij, ¢>) } x (2m) A2 B| 12 exp(—%uTE‘lu)du

= /RdA |27T2\_1/2 exp { é ([Yij {(,BA + u)T Xaij + ﬁgXBij}
=0 (B + )" Xagy + BEXyy ) + Vi) /0 + d(¥ig,0)) - iuTz—lu}du

= [27%|7"/? exp (Z [{Yi; (BAX A + BEXBiy) +c(Yij)} /o + d(Yi, ¢)])

j=1

j=1

R RS P AP
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4.5.2.3 Introduction of Useful Notation and its Properties

Here we introduce expressions that will be useful in summarising the derivations
throughout this appendix. Firstly,

Lgm = lay(da+1)/2

and

®2 _ T ®2 _ T ®2 _ T
152 =100, 137 =110, and 13 =115

Then note that

Gai = Z{Yz’j —V((Ba +U;)" Xaij + (Be)" Xbij) } Xaijs
=

Opi = Z{Y%j —V((Ba +U;)" Xasj + (Be)" Xnij) } Xnij,
=

Hani = Z b ((Ba + Ui)" Xaij + (Be)" Xnij) Xai; X Aij»
j=1

Hapi = Z b ((Ba + Ui)" Xaij + (Be)" Xpij) Xai Xij
j=1

HpBi = Z b ((Ba + Ui)" Xaij + (Be)" Xbij) Xpij Xtk
j=1

H'\an; 1s the dy x da x ds array with (r, s, t) entry equal to

Z bm((,@A + Ui)TXAz'j + (HB)TXBU‘)(XAz'j)r(XAij)s(XAij)tv
j=1

and HlAAAz‘[t} is the d, x d, matrix with (7, s) entry equal to the (r, s, t) entry of H', s x;-
Note that the expressions listed above have the following probabilistic orders where

Gai = Op(n'*)14,, Ggi = Op(n'?)14y,

Hani = Op(ﬂ)l?j, Hagi = Op(n)1q, 15, and Hgpg = Op(n)lé@;.
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{ 041X, 0) = ¥ ((Ba + U™ Xaij + B Xnis) | Xaiy

The Conditional Expectation of Ga; and Gp; Given (X;, U;)

i {YZ v ((BA +U)" Xaij + /BgXBij> } Xaij
j=1

E(Gi| X, U;) = E (

|
M:

1

I
S 5

Similarly we also have that
E(Gpi| X, U;) = 0.

The Conditional Ezpectations of Ga; G, Gai G5; and Gpi Gk, Given (X, U;)

E(Gai G5 X, Uy)

:E<

T
X [Z {Yij’ - ((ﬂA +U)” X + BgXBij') } XAij’] | X, Ui>

J=1

i {Yij - ((BA +U)" Xpij + ﬁgXBij) } XAz'j]

=1

— ZZE( HY” - <(,3A +U)" Xaij + ,31€XBij> } XAZ'J}

~4
x [{Yj — ((,eA +U)T Xagy + ﬂ%XBij/) } XAz-jf} "X, Ui)
+ ; E< {Yi =¥ (B +U)" Xaiy + BE X ) | Xy
< [ [ = (B + U Xy + 85 X)L Xai)] 1X: Uz'>
% E ([{Yij/ ¥ ((Ba + U Xy + 85 Xy ) } Xig ] |, Ui) }

n
+ ZVar (Yi; X aij| X, Uy)
i=1
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The equation above simplifies to

Z Z HE (Vi X, Us) =V ((ﬂA +U;)" X+ ﬂgXBij) } XAij}
FoaT

% HE (Yijr | X, Ui) =0 ((/3A +U)" Xagy + 5£XBU/> } XA”/} )

n
+ Z X a5 Var (Yij| X, U;) X1y
j=1
n
=¢> ((BA +U)" Xagj + ,BgXBij) Xnij X kij
j=1

= oHani-

Similarly we also have that

E(Gai G5\ X, Ui) = ¢Hap: and E(Gp; Gr;| Xy, Us) = ¢Hppi.

4.5.2.4 Computing an Asymptotic Approximation for the First Entry in
(4.7)

To overcome the intractability of the ratio of integrals present when deriving the
scores with respect to each of the model parameters, we will work with an asymptotic
approximation of the ratio of integrals by using a multi-term Laplace’s method expansion
as described in the appendix in Subsection 4.5.1. Hence, the ith contribution to the
score of B, is

Sai = Vg, log py; x, (Yi| Xi)
- Jras OR (u) exp{—nhy(u)} du
Taan D5 (a0) cxp (i (a)}

where
st/ \ — L T\ o / T T
by (u) = exp ( —su' X u) p {Y;j —-b ((,BA +u)’ Xai; + (Bp) XBU) }XAZ-j,
i=1
bist(u) = exp ( - %uTE_lu) and
1 n
hy(u) = "o {YijuTXAij —b((Ba +u) " Xai + (BB)TXBij)}'
j=1

Now define

U; = value of u that minimises hy(u)

= value of u such that V,hn(u) =0

= value of u such that Z {Y:L‘j — b ((Ba + w) Xaij + (,BB)TXBij) }XAij =0.
J=1
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However,
b5 (U7) = o.
This violates the condition in Hsu (1948), in the sense that bk*(U;) # 0 is required in
order for the Laplace approximation to hold. To counter this issue, firstly note that the
numerator of Sy; is
{Vus(u)} t(u) du (4.8)
RdA

where

n

% {Y%juTXAij —b((Ba +u)" Xay; + (BB)TXBZ'J')} >

s(u) = exp (

13

j=1

and
t(u) = exp ( — %UTEAu).

Using an R% extension of integration by parts, we can replace (4.8) by

—/ s(u) {Vut(u)} du.
R%A
We then obtain that
dt(u) = exp ( - %uTE_1u>d {—iu"= )
= —exp < - %uTE_lu) tu' 2 du,

which leads to
Vaut(u) = —exp ( - %UTE_lu)E_lu.

Now by rewriting the numerator of Sy;, we have,

_ Jpan b (u) exp{—nhy(u)} du

Sai = Jatn b (w) exp{—nhy(u)} du

where
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Expansion of U}

Here we find an asymptotic expression for U;". We have that

0= VuhN(u)

= Z {Vij =V ((Ba + U Xaij + (Be) Xnij) } Xaij
=1

= Z {Vij =0 (B + U)" Xaij + (BE) Xbij) } Xaij
=1

=) V" ((Ba +U)" Xaij + (Be)" Xnij) Xai X 44 (U = Us) + it
j=1
= Gai — Hani(U —U;) + 1y

where 7 is the Lagrange form of the remainder and is a quadratic form in U;" — U;

and a smooth function of U;t = (1 —t)U; + tU; for some t € [0,1]. Inversion of this
asymptotic series leads to

U =U; +Hyx;Gai + Op(n 1)1y,

The e, Notation

The following notation is useful for the upcoming calculations. For each 1 < kx < d,,
1<kp <ds, 1< ke <dE, let

e, = the dy x 1 vector with 1 in the kath entry and all other entries equal to zero,

er, = the dg x 1 vector with 1 in the kpth entry and all other entries equal to zero

and

e, = the dE‘é x 1 vector with 1 in the koth entry and all other entries equal to zero.

The First Term of Sa;

For each 1 < kg < d,, the kath entry of the first term of Su; depends on the function

T
€k bN(u’) T <«—1
g(U) = gD(’lL) = ekAz u,

and is
o(U;) = e 57U; =l 57 (Ui + M3k ) + Op(n ).

Therefore, the first term of Sy; is

S (U + HypGai) + Op(n™ g,
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The Second Term of Sa;

For each 1 < k4 < d,, the kath entry of the second term of Sp; depends on
Vg(u) = E_lekA

and
1 1
dbp(u) = dexp(—iuTE_lu) =— exp(—§uT2_1u)uTE_ldu,

Vbp(u) = —bp(u) X 1u.

It also depends on V2hy(u) which can be evaluated as follows

th(’U/) = *% Zd{Y;J’U, Xqu —v ((ﬁA + u)TXAij + (ﬁB)TXBij)}
j=1
B _% Zd {Viju" Xaij = ((Ba +w)" Xaij + (ﬁB)TXBij)}T
j=1
1 - T / T T T T
=g Z {Vijd(w) " Xpi; — ' ((Ba +w)" Xas; + (Be) Xpij) d(w)” X}
j=1

1 n
= Thg Z d{Yi; =" ((Ba +u)" Xai; + (BB)" XBij) } XKijdm
j=1
1 n
d*hy(uw) = "o Z(du)TXAij {" ((Ba +uw)" Xai; + (B)" XBij) } X/i}jdu,
j=1
1 n
VZhy(u) = y Z {b" ((Ba +u)" Xai; + (Be)" XByj) } XAinKij'
j=1
By using a stochastic Taylor series approximation, one can show that
{V2ha(UD)} ™ = noyy; + Op(n~ /2152,
Hence, for each 1 < k4 < d,, the kath entry of the second term of Sy; is

Ve(UF)"{V*hn (U})} ' Vop (UY)
nbp(UY)
—ef, = {noH, + 0p(n 152 } b (U)B U
nbp(UY)
1 _ _ _ _ _
= ——el, =7 {noMz}, + Or(n V152 BT {U + Hik Gai + Or(n~'14,)}
= —del STHLETIU; + Op(n¥?).

Then the leading term behaviour of the second term of Sg; is as follows

— ¢S YHL LTI + Op(n ™)1, = Op(n~Y)1g,.
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The Third Term of Sa;

For each 1 < k4 < d,, the kath entry of the third term of S4; depends on
2 o2/, T sy—1,,\ _
Vig(u) = V(e X u) = O,
the dy x d, matrix of zeroes. Since this matrix appears in a trace expression, the third

term of Sp; is Og, .

The Fourth Term of S 4;

The contribution from the fourth term of Sa; is Op(1)14, but does not have a concise
matrix algebraic expression. It is of lower order compared to the leading term of Sh;.

Overall Leading Term Expression for S a;

Putting the terms of Sa; together, we can assert that

Sai = =71 (U; + Hyp,Gai) + Op(n~1H1g,.

4.5.2.5 Computing an Asymptotic Approximation for the Second Entry in
(4.7)

The ith contribution to the score of Bg is
Spi = Vg, log py, x, (Yi| Xi)

_ Jria b (w) exp{—nhy(u)} du
Jria bo(w) exp{—nhy(u)} du

where
1 n
by(u) = exp (—iu’ T w) 5 Z [{Vij = ((Ba +u)" Xaij + (Be) Xpij) } Xnij]
bp(u) = exp (—%uTE_ u) and

hN(u)

_in Z {Viju" Xai; — b ((Ba +u)" Xaij + (Bs) Xpij) } -
=1

The First Term of Spg;

For each 1 < kp < dg, the kpth entry of the first term of Sp; depends on the function

b
g(u) = engN ¢ Z e, [{Yij — b ((Ba+ u)" Xai; + (Bs)" Xpij) } Xnij]



4.5. APPENDIX 110

and is

= Z ety [{Yij = ((Ba +U)" Xai; + (Be)" Xnij) } XBij]

_1 Zn: el [{Yw — ((BA YU+ U —U)" Xai + ﬁ]gXBij) } XBij}
7j=1

S\

;i HY” - ((18A+Ui)T X aij +ﬁgXBij)}XBij

- ((ﬁA +U)" Xaij + ﬂ]jg;XBz’j) Xpi; XA (U = Ui) + OP(n_l)ldB}
1 _
= ge;{B (Gri — HiBiHAzlkigAi) +0p(1).

Therefore, the first term of Sp; is
1 _
g (gBZ — HXBZHAXZQA'L) + OP(l)]-dB'

The Second Term of Sp;

For each 1 < kg < dg, the kpth entry of the second term of Sg; depends on

dg(u) = ; > ety Xnij [d{Yij =V ((Ba + )" Xayj + (Bs) Xnij) }]
j=1

- _; > ety Xnib” ((Ba +w)" Xaij + (Be)" Xnij) X1;5(du),
Vg(u) = _; DV ((Ba +w) Xaij + (Bp)" Xpij) XayXiijers

and
VbD(u) = —bD(u)Z_lu.

It also depends on

VQhN( (b Z {b” ,BA + u) XAz] (BB) XBz]) } XA’L]XAz]

By using a stochastic Taylor series approximation, note that

{V2hy(U7)} = ngHyh, + Op(n Y3152
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Hence, for each 1 < kp < dg, the kpth entry of the second term of Sp; is

Vo(U)T{V2hn (U;)} ' Vbp (U)

Lel, SV ((Ba +US) Xai; + (Bn)" Xpyy) Xy XKy, {noHzh, + Op(n~ 2152}

j=1

nbp (U;)
bp(U)E~U;
nbp (U;)
1
= nTbekT-BngBi {nqﬁ?—[ﬁh + OP(”71/2)1?5} =H{U; + HK}MQA%' +0p(n'1q,)}

= e}, HapHan, 2 Ui+ Op(n~'/?).

Then the leading term behaviour of the second term of Spg; is as follows

HApHaaZ Ui+ Op(n~ /)14, = Op(1)1g,.

The Third Term of Spg;

The contribution from the third term of Sg; is Op(1)14, but does not have a concise
matrix algebraic expression. It is of lower order compared to the leading term of Sg;.

The Fourth Term of Sp;

Similarly, the contribution from the fourth term of Sg; is also Op(1)14, and does not
have a concise matrix algebraic expression. It is of lower order compared to the leading
term of Spg;.

Overall Leading Term Expression for Sp;

Combining all four asymptotic approximations of the terms of Sp; together, we have
that

1
Spi = p (GBi — HApiHanGai) + Op(1)14y.
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4.5.2.6 Computing an Asymptotic Approximation for the Third Entry in
(4.7)

First note that,
d|X|
dlog |¥| = =
b

St (BdE)

Next note that,
du’s iy = -T2 (dE) 2 tu
= —tr {T ' =71 (d%)}
= —vec (X uu"S ™) vec (d)
= —{(="' @3 ) vec (uul)}" Dy, dvech(X).

With further calculations, the ith contribution to the score of vech(3) can be computed

as
SC’L - vvech(E) logp}’l‘Xz (E|X’L)

1 Jran b (w) exp{—nhy(u)} du
2 [gas bp(u) exp{—nhy(u)} du

L o7 -1
= —§DdAvec(E ) +
where
by(u) = exp ( - %uTzflu) DZ[A (=71 @ 27 vec(uul),
bp(u) = exp ( - %uTZ_lu) and
1 n

hn(w) = -2 {Yz’juTXAij —b((Ba +u)" Xaij + (5B)TXBZ‘J')}'
j=1

The First Term of the Integral Ratio Component of S¢;

For each 1 < ko < d7, the koth entry of the first term of the integral ratio component
of Sc; depends on the function

e{c by (u)

g(u) = bo(w)

= e;‘CFCDgA (= @ 2 vec(uu’)
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and is
g(U;) = echgA(Efl ® X vec {Ui*(Ui*)T}
= efkrcDgA (2_1 ® 2_1)Vec [ {U,- + ’HK}MQM + Op(n_lldA)}
x {U; + Hy,Gai + Op(n‘lldA)}T}
=€ D} (27 @ 2 Yvec (UU] + UiGhHyx; + HanGaUl) + Op(n™).
Therefore, the first term of the integral ratio component of S¢; is

D (57" @ X vec (UU] + UiGrHyn; + HaniGaiUl) + Op(n~ )1 #
= Dj, vec {7 (UU]' + UiGiHia,; + HaniGaiUi ) E71} + Op(n ™)1,

The Second Term of the Integral Ratio Component of S¢;

For each 1 < k¢ < d¥, the kcth entry of the second term of the integral ratio component

of S¢; depends on the following function. By making use of the first property in Theorem

12 of Magnus and Neudecker (1999), we have

dg(u) = e} Dj, (T~ @ 27" )dvec (uu )
= efCDgA(E*I ® X vee { (du)u” + u(du)"}
= e . Dj, ('@ X Nvee {1y, (du)u”} +ef DJ (T @ T )vec {u(du)" I, }
= echgA(Z_l ® X (u® Iy, vec(du)
+ e;{cDgA ='e 2_1) (I, ®u)vec{(du)"}
—e; Dj, (T oS Y {(ue ly,) + (1o, ®u)}du
=ei. D {(Z'ues ™)+ (="' o2 u)}du

— el {DI,(E 7w =) + (KuyDay)" (571 @ 37 u) | du
— el
el {
ol
= 2¢! {DdA(E’lu ® 5" )} du,

Vy(u) =2(Z'u@ ) Dy, ex

Y+
D+

S ues )+ D) K (3 e%" u)}du
Y4+ DL Ky (S o % u)}du
Y

D;, (
D}, (T 'u@x”
D, (

S lu@S )+ DL (S lue D" )}du

and
Vbp(u) = —bp(u) X 1u.

It also depends on

n

ST (Ba ) X + (B5) X)) Xai XLy

V2hy(u) = -
j=1
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By using a stochastic Taylor series approximation, note that
2 -1 -1 —1/2y1 ®2
{V2hn(U7)} ! = ngHy), + Op(n™ /2157

Hence, for each 1 < ko < diﬁ, the kcoth entry of the second term of the integral
component of S¢; is

Vg(U) {V?hn (U)}'Vbp(U7)
nbp(U;)
—2ei D, (27U @ 27 {ndﬂig}“ + Op(n““)l?j} bp(U7)271U;
nbp (UY")
= —2¢ei D, [Z7 {Ui+Hy ;00 +Op(n"'14,)} @ 7] {HK}M + op(n—3/2)1§j} »!
< {U; + Hyp;0ai + Op(n 14, }
= —2¢ef D} (Z7'U; @ B7") H )y, 57U + Op(n~*/?)
= —2¢e} D} (Z7'U; ® 27") vec (M 3,5 'U;) + Op(n~%/?)
= —2¢e}. D] vec (S7'H L\ SO UTS ) + Op(n3/2).

Then the leading term behaviour of the second term of the integral component of
Sc; is as follows

—2¢D], vec (ST H L STIUUETY) + Op(n*3/2)1d§ = Op(n~ "1

The Third Term of the Integral Ratio Component of S¢;

The leading term behaviour of the third term of the integral component of S¢; is

nggAvec (2_17{;}“2_1) + Op(n_3/2)1d% = Op(n_l)ld%.

The Fourth Term of the Integral Ratio Component of S¢;

The contribution from the fourth term of Sg; is also O p(n*1)1 dF but does not have a
concise matrix algebraic expression. It is of lower order compared to the leading term
of the integral ratio component of Sc;.

Overall Leading Term Expression for Sy

Combining all four asymptotic approximations of the terms of the integral ratio compo-
nent of Sc; together, we have that

Sci = %DC?A [vec {7 (UU] + UsGRHup; + HanGaU! ) B} — vec (Z71)]

+ Op(n_l)lc@.
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4.5.2.7 The Quadratic Conditional Expectations of the Scores

In this subsubsection we find the conditional expectations required to compute the
Fisher information matrix of (84, 8s, vech(X)).

The Ezxpectation of SAiS£¢ Given X

From the previous sections, we have the following approximation
Sa; = »-! (UZ + HK}A’LQAZ) + Op(nfl)ldA.
Therefore,
E (SaiSh:|Xi)
— — _ _ _ _ T
—E [{z (U +H A 0ni) + Op(n )1, } {Z7H (Ui + Hy\,0ai) + Op(n )14, } |Xi]
=SB (UUN) 2T+ E(STUGKLHANE X)) + E (7 " 104U =71 X))
+ B (7 H 000098 Han, 21 X0) + Op(n™ 152
=SSN + E{STUE (G4, X, Ui) Hah, B 71X}
+ E{ST "1 0E (Gad X0, Un) U S X )
+ E{Z7 Hy 0 B (GA:G8| X1, Ui) Hyn 27X} + Op(n™1)1572
=X 4 9B {7, X} + Op(n 1R
=3+ 0p(n~ 172

The Expectation of SBiSE- Given X;

From the previous sections, we have the following approximation

1
Sgi = ) (Gri — HApiHANGAi) + Op(1)1ay.

Therefore,
E (SpiSk;|X:)
1

1 T
=F [{(b (9Bi — HApiHan9a:) + OP(l)ldB} { 5 (9B~ HipiHap94:) + op(1)1dB} | X]

- %{E (G5:G5,|X,) — E (GpaGL H 3\ Han Xi) — E(HEpHy L GaiG8,1 X))
+ B (Mhp ik Gai0h Hah Hail X) | +0p (1157

— (BB (00,0810 1X:} — B (B (05,68, 1X0 U) Hih Hasi X:)
— E{HApHan,EB(Ga:G8:1 X, U)X}
+ E{HApHan,E (OaiGh:| X0, Us) Hyh Hanil X} } +0p(1157.
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Simplifying the previous expression, we have,

1
2198 (il X0) — 0B (MRo HahHanil Xi) — 08 (MEn 3k Hani X:)

+ OE (HipiHarHasi| X)) } +0p(1)152

1
=3F (HBB: — Mg HanHabil Xi) + Op(1)152.

The Expectation of S(;isgi Given X;

From the previous sections, we have the following approximation

Sc; = %D(?A [vec {=H(UU] + UG Hin; + HanGaUl ) 271} —vec (B71)]
+ Op(nfl)ldj%

1 _ _ -
= 5D§A {Vec (2 'vul's 1) — vec (E 1)}

1 _ _ _ _ _
+ iD;”A [vee {=71 (UiGhiHah: + HaniGaiU) BT} + Op(n™')1s
= %D?;A {(271 ® 271) vec (UiUiT) — vec (2*1)}
1 _ _ _ _ _
+ 5 Da, {(Z71 @ B71) vee (UiGaH i, + Hani0aUl') } + Op(n™)1gs.

We will deal with each term arising in £ (SCZ-S(TJi]Xi) separately. The first term in

1
zDgAE[{(E_l ® " vec(U;U]) — vee(SHH(E @ 7 Hvec(U;U) — vee(E~ 1)} | Dy, .
Next note that
E[{(E o YvecUU]) — vee(EHH(ET @ T Yvec(U;U]) — vec(Z71)}T]
=E{(Z ' @X Yvec(U;U] JvecU; U (=01}
— E{(=7' @2 Yvec(U;U] )vec(E™ 1T} — E {vec(E™ vec(U;U)T(Z '@ =71}
+ vee(BHvee(Z 1T,
(4.9)
Then note that
E{vec(U;U}")} = vec(E(U;UY)) = vec(Z).
With this we can simplify the following

- F {(2_1 ® E_I)VGC(UZ‘UZ»T)VQC(E_I)T}
= ('@ Hvee(T)vee(Z™HT

= —vec(ZIEZZ Hvec(Z™HT

= —vec(Z )vec(ZHT
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and
— E {vee(S VvecUN (5 @ =71))

= —vec(Z Hvec(D)(Z ez
= —vec (E_l) vec(Zlnx—H)T
= —vec(Z )vec(ZHT.
These calculations lead to the right-hand side of (4.9) to simplify as
(='e 2_1)E{vec(UiUiT)vec(UiUiT)T}(2_1 @271 —vee(E T )vee(ZHT. (4.10)
Next, we appeal to Theorem 4.3 (iv) Magnus and Neudecker (1979) to get
E{Vec(UiUg)vec(UiUiT)T} =E{(U;®U;)(U; ® UZ-)T}
= Cov(U; ® U;) + E(U; @ U){E(U; @ Uy)}
= (Ip + Ka,)(Z®3) + E{vec(UU]" )} E{vec(UU]" )}*
= Iy + Kg,)(Z@X) + vec(X)vec(Z)T.

(4.11)
Substitution of (4.11) into (4.10) leads to

(E o3Iz + K (ZeD) (ST ex)
+ (7' 2_1)vec(2){(2_1 ® 2_1)Vec(2)}T — vee(Z Hvec(ZHT
=1® 2_1)(IdzA + Kg,) (I ® I) + vec(Z  vec(Z™HT — vec(Z ™ )vec(Z™HT
(E o= I + Kay)(La @ 1a)
(Zles )+ (T @S Ky, (Ia© L)
= leh+E e YL I)K,,
( )+ (E o2 Ky,
( )+ Koy (57103
( (Ztexh.

S lex!

Therefore, we have the first term of F (SCiS&|Xi) being equal to
DI (I + Ky (37 237D,
= inA(E_l ® %) Dy, + 3(Kq,Da,)" (37 © 27Dy,
— %DgA(z—l X HDy,.
We can then show that the second term of E(Sc¢;S&;|X;) is
iDdTAE[{(E’l 22 Dveo(U,UT) — vee(S1)}

X {(2_1 ® E_l)veC(UigZiHK}M + HgkigAiUiT)}T|Xi]DdA
1 _ _ N
= 4D§AE<{(2 Yo = Yvec(U;UL) — vec(Z71)}
x [(B7' @ 27 vec {UE (G1,;1X:,Us) Hah, + Han, E (Gasl X, U) UiT}]T |Xi>DdA

=0.
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Similarly, we can then show that the third term of E(Sc;S%;|X;) is

1
TP EH{(ET @ 7 vec(UiGhHan: + HaniGailU] )}
x {(Z7' @ = Yvec(U;UT) — VeC(E_l)}T‘XZ']DdA

1
— 4D§AE< (=7 @ B Yvee {UE (GX:| X, Us) Hani + HaniE (Gadl X, U U}
x {(Z7' @ = Yvec(U; U] - Vec(El)}T‘XZ)DdA
= 0.
Lastly, the fourth term of E(Sc;SE;|X;) can be shown to simplify as follows

1 _ _ _ _
ZDEAE[{(Z '@ BT vee(UiGR Hp; + HanGaU] )}
X {(2_1 (] 2_1)VGC(UZQKZHXXZ + HK;ZQAZUT>}T‘X7,:| DdA
1
- 7D5AE[(Z’1 @ X7 {vec(UiGr;Hah;) + vec(H 100U )}
x {vec(U; QAZ’HAAZ) + ve (’HKAZ-gAiU'T)}T(E_ ® X )|Xl] Da,
= ZDdAE[(Zf ® {(Hpr; ® Ui)vee(GR,) + (Ui @ Hyp;)vec(Gai)}
x {(Han; ® Uivee(GR;) + (Ui @ Hyp,)vee(Gai)} (571 @ 371 X, Dy,
1 _ _
= ZDfAE[(E '@ ZTH{(Han; ® Ui) + (Us @ Hyp,)}GaiGhi
x {Hahi @Us) + Ui @ Hpa )Y (2 e 7YX, Dy,
1 _ _ _ _
= ZD:{AE[(E '@ ZTO{(Han; @ Ui) + (Ui @ Hy ) YE(GaiGA | X4, Us)
< {(Hya, @ Ud) + (Ui @ Hyp)M (271 @ 79| X0] Dy,
o _ _ _ _
= ZD(:{AE[(Z Lo ST {(Han @ Ui) + (Ui @ Hyp,) YHan
<A(Man @ U) + (Ui @ M)} (57 @ 7] X0] Dy,
— Op(nfl)ld%l%.
Putting together all the terms of F(Sc;SE,|X;), we have that

1 _
E(Scis&\Xi)ziDgA(z '@ 2 YYDy, +O0p(n~H1 daﬂdm

The Ezxpectation of SAZ'S%; Given X;

From the previous sections, we have the following approximations
Spi = >t (UZ + fHK}MQAZ) + Op(nfl)ldA,

1
SBi = E (gBl — HZBZHglAZgAZ) + OP(l)]-dB'
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Therefore, by using the law of total expectation,

E (SAiS}:gi)

=F

1 T
{2—1 (Ul + HglAlgAl) + OP(n_l)]_dA} {¢ (ng — /HZBzHX}MgAJ + OP(l)ldB} |X;|

1
= ¢{E(21Uig]§i|xi) + B(S7 My 00081 X)) — B (ST'UGAH, p Hail X))

- E (E_nglAigAiggiHK}%iHABi|Xi) } + OP(l)ldAlgB

1
= LB (5 M Hami X) — B (3G Hanil X))} + 0r(1)1, 1,

= Op(l)ldA1§B

The Expectation of S’Aisa Given X;

From the previous sections, we have the following approximations where
Sai = =71 (Ui + Hyp,Gai) + Op(nH1g,
and
Sci = 5 DI, [vec {57 (UUT + UK Hzh + Hih oaUT) 71} — vee (7))
+0p(n )1z
= %D:;FA {vec (E'UUTE™) —vec (T71)}
+ 5D, [vee {37 (UK Ha + HaAGnUT) 373] 4 On(n 19
= D3 @37 vee (UUT) — vee (371))
+ %DgA {(E =) vee (UiGhHax, + HaaGaiUl) } +Op(n™ ) 1.
We will deal with each term arising in E (Sx;S%;|X;) separately. The first term in

FE (SAZ-S&\Xi) can be simplified as follows

%E [2*1U,~ (57 @ = Yvec(UUT) — vee(= 1} Dy, |XZ}

1
=5E (= Uvec(U;UNT (7 @ 27Dy, — =7 WWivec(EHT Dy, | X5}
= 0.
The second term in (SAiS&|X@-) can be shown to be

1
5B [2—1ﬂg}hgm- {7 © E Hvee(UUL) - vee(=)} DdA|XZ}

1
5B [z—wggiE (Gail X0, U) {(Z7" @ S vee(UUT) — vee(2)} DdA|XZ}
0.
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Similarly, the third term in E (SMS&\Xi) can be shown to be
%E [E_IUZ- {Vec(UiQZi’HK}\i + ’HgLQAiU,-T)}T = '® E_I)DdA’XZ}
- ;E<E_1Ui [vec {UB(GA;| X, Ui) Mk + Han, E(Gas| X, UZ-)UZ-T}]T
x (21w Zl)DdA\XZ)

=0.
Lastly, the fourth term in E (S AiS(TJi]Xi) simplifies as follows
%E (=71 1A G {vee(UiGR HR, + Hah9aUN)} (271 @ 27Dy, X
= 5B [27 A O {vecUiGE HL,) + vee(Hia G4 D)} (571 0 B7) Dy, |X3]
= 5B [27 M4 0a {(M3h: @ Udvee(GR,) + (Us @ Hh,Ivee(Gan)} (57 @ 71Dy, | X

- ) o
B[S, 00K {(Hah, @ U) + (Ui 0 134} (57 @ 571Dy | X

1
2
%E :z-lﬂrz;giE(gAingi, U) {(H3h, 0U) + (U ot 5o 2_1)DdA|XZ}
= O[S M Man {(Hrh, 0 U + U 3k )} (571 2 37Dy, ]

%E (57 {3 0 U) + W o3} )} (57 @ 57D, X

— op(n—1)1dA1§5.3.

Putting together all the terms of E(Sa;S%;|X;), we have that
E(SAzSg@’Xz) = Op(nil)ldAlzl%.

The Ezxpectation of SBZ-S%@- Given X;

From the previous sections, we have the following approximations

1
SBi = g (ng - /Hr/{Bz/nglngAl) + OP(l)ldB

and
Sci = 3 DI, [vee {87 (UUF + UG Hzh, + Hih onUT) 71} — vee (7))
+ Op(n_1)1d§
= LDf, free (50U S ) —vee (51
+ %DgA [vec {2_1 (Uigz{i%/z/lxi + sz/lxz'gAiUiT) 2_1” + OP(n_l)ldf
= %DC{A {(2_1 ® 2_1) vec (UiUiT) — vec (2_1)}

1 _ _ _
1D (27 0 5 ) vee (UGEH5h, + Hah GaUT) } + Op(n g,



4.5. APPENDIX 121

We will deal with each term arising in F (SBiS&\Xi) separately. The first term in
E (SBngZ-|Xi) can be simplified as follows

21¢E (G5 {(27 @ B vee(TUT) — vee(=7)} Dy |X]
_ 1
29
—o.

E | B(Grl X, U) {(Z7" & 57 )vecUUT) — vee(Z ™)} Dy, | X

. The second term in E (SBngi]Xi) can be shown to be

1 . o B
55" [H{Bﬂ{ L0 {(B37 @ B Yvee(UUT) — vee(S: 1)}TDdA]Xz}

1 _ _ _ 4T
=557 {HKBiHA}ME (Gail X5, U {(Z7" @ S vec(UiUT) — vee(S )} DdA\XZ}
- 0.

The third term in F (SBisgi\Xi) can be shown to be

1
2 O {vec@ Gk, + H3L a0} (37 0 =)D, ]

2¢

= 21¢E :gBi {vec(U;GAHar;) + vec(Hg/&igAiUiT)}T =g z_l)DdA’Xi:|

- 21¢E :gBi {(Hari @ Ui)vee(Gh;) + (Ui ® HK}M)VGC(QAZ')}T ='® E’I)DdA|X,}
- QiﬁE :gBig;{i {3k 2U)+ UioHa)} (7@ 2_1)DdA‘Xz}

= 21¢E :E(gBig£i|Xia U) {(H3h, 2 U)+ UieH ) (5 e 2_1)DdA|XZ}

= o [ {3k 0 U) + Wi e 3 (57 @ 27Dy, 1)

= Op(l)ldB1§§.

Lastly, the fourth term in E (SBisgi|Xi) simplifies as follows

B iE MAp A Gas {veeUiGR Mk, + HahGaUD)} (57 @ 27Dy, X

- *iE HApHahGas {vec(UGK HR ) + vee(Hh,9aU07)} (271 @ 271Dy, X

= *ﬁE HEpHahGas {(Hah, @ Unvee(Gh,) + (Us @ H} Jvee(Ga)} (57 @ £71) Dy, | X
= *iE :’HXBiHKRiQAiQKi (M, 0U)+ U eHL)Y (' e 2*1)DdA|XZ—]

= *iE :HgBiHK}uE(QAiQ/{AXu U) {(H3h, 0U) + (UieHL)) (3w Efl)DdA|Xl}

1 _ _ _ T _
= —35E [HiBiﬂAgiﬂAAi{(HA;ie@Ui)+(UZ—®HA}M)} (T 'ex 1)DdA|X1-]
1 _ _ T _
:T&E[HKBZ-{(HA}M@Ui)Jr(Ui@HA}M)} (=7 @ 27Dy, X

= Op(l)ldBldTE.
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Putting together all the terms of E(Sg;SE;|X;), we have that

E(SxiS&| Xi) = Op(1)1ap 1 -

4.5.2.8 Treating the Leading Term of the (2,2)-Entry of the Fisher Infor-
mation Matrix

Note that the leading term of Y"1 | F(Sg;S%.| X;) is

m

1
p z; E (HBBi — HapiHas;Hasil Xi)

_mngl 1
¢ mn

mn 1 1 & _
= ?E {Tnn Z HBBZ‘X % ; HKBlHAi'LHABZ’XZ)} .

=1

(HBBi — HApHaaHani| Xi) } (4.12)

NI NgE

Using Lemma 1 from Chapter 2 with f(X;;,U;) = b"((ﬁA +U)T X5 + (,BB)TXBij),
we have that the first term in (4.12) can be re-expressed as follows

mn 1
?E {mn ; (HBBi|Xi)}

L Sy " .
N %E mn ZZXBUX%UE {b ((/BA + Ui)TXAij + (/BB)TXBU) ’Xz} (4.13)

i=1 j=1

"R (X X5V ((Ba + U)X + BEX5)} + op(mn)152.

¢

Now, using Lemma 2 from Chapter 2 with f(X;,U;) =" ((ﬁA+Ui)TXAij+(BB)TXB,-j),
we have that the second term in (4.12) can be re-expressed as follows

mn 1 & _

mn 1 — "
- ?E [mn Z Z Xgij X ;0" ((Ba + Us)" Xasj + (Be)" Xbij)
i=1 | j=1

-1
X Z Xaij X A0 ((Ba + Ui)" X aij + (Bs)" Xij)

T

X Z Xpi;j X 30" ((Ba + Ui)" Xaij + (Bs)" XBij)
j=1

.
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The previous expression simplifies to
="E (E {XpXLV'((Ba+U)" Xa + BEXp) } [E{XaXE0"((Ba +U) X4 + BEXp)}]

x E{XpXx V" ((Ba +U)" X5 +BLXE) }T> + oP(mn)1§§.
(4.14)
Combining (4.13) and (4.5.2.8), we have
1« _
P > E(Hpi — HapHypHasil X:)
i=1

%E (E {XpXEY ((Ba+U)" XA +BEXp)} — E{XpXAV'((Ba +U)" XA + BLXB)}

x [E{XpXLV"((Ba+U)"Xa+B5Xp)}] " E{XpX{0"((Ba + U)X + BEXp) }T>
+ OP(mn)lgBQ.

Now since

Qe (U)=E {b” ((BR +U)" X4 + (B1)" XB)

Xa X1 XaX[ ‘U
XpXiI XpXZL

and
11\ 1

AﬁB = (E {{lower right dg X dg block of Q,@B(U)fl} 1]) ,

then we have,
—1
1 & N mnAg
P > E (Hepi — HipiHaxHasil Xi) = TB +op(mn)152.
i=1

4.5.2.9 The Fisher Information Matrix

Putting together the expressions for the quadratic conditional expectations of the scores
from the earlier sections, we have

I(/BAa ﬁBa VGCh(E))

m¥~1 + Op(mn_l)lff Op(m)ldA].(j;B Op(mn_l)ldAlg?g
T mnAE}l3 ©2 T
= Op(m)lagly, 5= +op(mn)1;7 Op(m)ldBld?E
_ mDT (27lgez "Dy _
Op(mn 1)10@151; Op(m)ld?glgB A 5 A —|—Op(mn 1)1;853

A

4.5.2.10 The Inverse of the Fisher Information Matrix

To invert the Fisher information matrix, we choose to work with the (8a, vech(X), 3p)
ordering instead of (8a, s, vech(X)). A trivial rearrangement of the matrix entries
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leads to
I(Ba, BB, vech(X))
mx~! +Op(mn_l)1§f Op(rrm_l)ldAlcle;.3 Op(m)ldAlgB
_ mD (27'®@E")Dy _
— | Op(mn 1)1d§1§A s A + Op(mn 1)1%3 Op(m)1d§1§B
mnAB1
Op(m)].dBlgA OP(m)ldB]‘gf % B +0p(mn)1§§
Now, let us partition (8, vech(X), 8p) as follows
A A
I(Ba,vech(E),8) = | | where Ay = AL,
Ay Ay
The expressions for A1y, A2, A21 and Ags are currently as follows
M m¥ 1+ Op(mrfl)lfi2 Op(mn=1H1,4, 1de
1= B mDT (Z-1@E~1)Dy B
Op(mn™")117, D 2+ Op(mn 1)1%2
ldAlglF
A12 = Op(m) TB
11l

Asy = Op(m) [1dB1§A 1417 |

Agy = —"B 4 Op(mn)lf?lf.
Let I(Ba,vech(X), Bg) ! assume the following form

-1
All AlQ] B [All A12

1(Ba, vech(X), = =
(B, vech(E), Bp) [ P R

Firstly note that
Z 4 O]D(Tn*l?“fl)lfi2 Op(m~tn~1)1,, 1%

Al = oDt (zex)DT "
-1,,—1 T N LN
Op(m™'n )1d§ 1,

m

Also note that

A
A521 = +0p(m_1n_1)1§B2.

+ Op(mflnfl)l%g

] where A% = (A12)T,

Using the result for carrying out block matrix inversion under Result 1, the quantities

Al A2 A% and A?? can be calculated as follows. Firstly we have
All = Aﬁl + AI11A12(A22 — A21AI11A12)_1A21A;11.

Note that

(Agp — At AT Ap) = AL+ AL A AT AL A +



4.5. APPENDIX 125

It follows that

®2 T

—1 -1 - —1,-1 Liy ol

A Agg(Agy — An Al Ar) P Ay AL = Op(m ) T a2
11l 15

Therefore, it follows that

Z 4 Op(m~In~ )1®2 Op(m~tn~ )1dA1TEE

All = + + T
2D (2®%)D

Op(mflnfl)ldaalgA i, (ZOX)Dd,
A

+Op(m~tn~ )1®2

m
A

Next we have,
A% = (A — Ap AL Ay TTAR AL

Note that
(Ajg — A1p AL Ag) ™ = A+ A AR AL A AT+

Therefore we have

14,12
4412 = Op(m ln_l) AT
1m1l
A B
Subsequently,
A21 — (A12)T.

Therefore we have
A% = Op(m~n1) [1dB 17, Llaplle

Finally, we obtain
A% = AL+ AL Ay (A — A1 AL Ag) T A AL
Note that
Ay Ag1(An — A Ay Ag) P Ap Ay = Op(m™'n™ )12,

This leads to

A22 — PApy

+ 0p(m_1n_1)1§]32.

Using the expressions for A1, A A2l and A?2, we have the following expression for
I(Ba,vech(X),8g)~! where

I(Ba, vech(X), Bp)
2 4 Op(m~'n~ )1®2 Op(m_ln_l)ldAlgﬁ Op(m™tn=1)14,17

2Dt (zex)DT T
M—FOP( -1 —1)1®2 Op(m_ln_l)ldﬁlgB

= | Op(m™'n~")1m1], -

Op(m_ln_l)ldBlgA Op(m_ln_l)ldBlc@
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The expression for the inverse of the Fisher information matrix can be also written as
follows

I(Ba, vech(X), )~
Op(1)15? Op(N1lay 1z Op(1)lay1g,
= (B, vech(8), Bs) +— [Op(WLgll,  Op(D1E  Op(1g1h |
Op(1)1ay17, Op(l)ldBl% op(1)15?

where
= 0 o
T
I(Ba,vech(X),8e)= = | O QDJA(EiE)DJA o
o (0 #Asp

4.5.2.11 Derivation of the Final Asymptotic Normality Result for General-
ized Response Linear Mixed Models

For a matrix M let
[M|F=/tr(MTM)

denote the Frobenius norm of M.

For regular likelihood situations, from standard results concerning asymptotic
normality of maximum likelihood estimators we have

{1 (8%, vech(x°), %) '}7V/%(8 - 6°) 3 N(0, 1)

where = [BK vech(2)T BE}T and 6° = [(B)T {vech(X%)}T (B%)T]T. On the other
hand, general quasi-likelihood situations require asymptotic normality theory as treated
in, for example, Section 5.3 of the book Asymptotic Statistics (see van der Vaart (1998)).
Therefore, for all (d, + d& + dg) x 1 vectors a # 0 we have

a”{T (8%, vech(2°), 3%) '} /2 — 6°) B N(0,a"a).
Note that
aT{I (8%, vech(x), 8%) "'} 1/2(6 - 6°)
= a” [ {1 (8%, vech("), B) . }7/% + {1 (BR, vech(=°), 8) )7/
— {1 (8% veeh (), 88) 11712 - 6°)
= a"{I (B}, vech(X"), B3) '} 1/2(6 - 6")
+ T [{1 (Y, veeh(S), B3) "}V — {1 (BY, veeh(), B%) '} /2] (6 - 6°).
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As a consequence
a{I (8%, vech(2°), 83) 1 72(0 — 6°) + ryn(a) B N(0,aTa)  (4.15)
with
rn(@) = a” [{I (B3, vech(3°), 8) 171/ = {1 (8}, veeh (=), B3) [} 1/2[ (6 - 6)
= a” [1— {1 (8%, vech(="), B) . }~/{1 (8%, vech(="), 83) ' }/2]
x {1 (8%, vech(x), B5) " }7V/%(8 - 0°)
= (— [{I (B3, vech(E2), B%) '} YVHI (B8R, vech(2°), B5) "'}/ — I}Ta>T z

where Z ~ N (O, 1 datd® +dB)‘ Next note that using the matrix norm properties

| — Al = ||A|l and ||AB] < ||A||||B]| for any matrices A and B and the fact that
|MT||p = || M| for any matrix M, we have

|~ [ (88, veeh (), 38) .} (1 (8 veeh(s"), %) "Y'* ~ 1] a

< || [er (8% veen(s%), %) 32 (1 (8%, veeh(s2), 88) 12 ~ 1] | Jallr (416)
= |[[{1 (8% veen(="), 83) 111 (BR, veeh(2°), 88) /2 1] | llall-

Our next aim is to establish that

| [{2 (8R, veen(x°), B) 1y /2(1 (R, veen(=0), 85) 2 1] || B0 @an)

Recall that
I(Ba, vech(X), Bp) ™"
Op(1)15? Op(N1lay 1z Op(1)lay1g,
:I(ﬂA,vech(E),,BB)gol—i—% Op(1)1m15, OP(l)lfg Op(1)1m14,
Op(1)1ay17, Op(l)ldBl% op(1)15?

)

where
B o o
+ + T
I(BA,VeCh(E)’BB)gol =0 2DdA(EiZ)DdA o
(0 o) Py
so that

1/2
= M, /P M}/?

{I (Bg,vech(ﬁo%ﬁ]%);ol}_lﬂ {I (ﬂg,vech(EO),ﬁ%)fl}
with

My oo = m {1 (8%, vech(), 88) ' b and My, = m {1 (8%, veeh(=°), 83) '}
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Therefore, Lemma 3 from Chapter 2 applies with

3 0

PApg
0 2D} (Xo%)D;T '

n

p=ds+d, K=

], gq=dg and L=

Therefore (4.17) holds. It then follows from (4.16) and (4.17) that
1. _ -1 P
{1 (88, vech(E°), 88) 1} Y/2{1 (8, veeh(29), 88) ' }/2 — 1]a B0,

Application of Slutsky’s Theorem then gives 7, (a) £ 0. From (4.15) and another
application of Slutsky’s Theorem we have

a”{1 (8%, vech(=°), 8%) [} 1/2(6 - 6°) 3 N(0,a"a).

It then follows from the Cramér-Wold Device and the Continuous Mapping Theorem
that

Ba— B} o] [=° o 0
2 D
Jm | va (BB . 5%) BN|lo].|0 ¢Ag, 0
vech(3) — vech(X0) ol |0 o 2D} (=°®x% DS

4.5.3 The Reciprocal Dispersion Parameter Fisher Information Block
for Gamma Responses

In this appendix, we derive the block of the Fisher information matrix for the parameter
1 = 1/¢ where ¢ is the dispersion parameter. We start with the general response
situation and, later, focus on the Gamma case. With notational simplicity in mind we
treat the dy = dy = 1 case with ¥ = 02 and n; = n, 1 < i < m. These restrictions will
not affect the 1 contribution to the Fisher information matrix.

4.5.3.1 The Conditional Density Function
The conditional density function for the ith group is
1 e u? -
Py x; (Yi| X5) = Va2 /_Oo eXp| =55+ ]; {¢<Yz‘j(ﬁo + 1 Xij + u)

— b(Bo + B1 Xij +u) + c(V; -)) +d(Yi, ¢)} du

n

= (2m0?) % exp Z {w {Y3;(Bo + B Xij) + c(Yij) } + d(Yij, w)]

Jj=1

0 w2 n
X / exp ——2+¢Z{Yiju—b(50+51 Xij+u)}| du.
j=1

o 20
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In the Gamma response case,

c(y) =log(y) and d(y,v) =y log(¢) —log{T'(x))} — log(y).

Therefore

&*d(y, )
B2

od(y, )
oY

— q(¢) and — (1/4) — trigamma(u),

where
q(z) =1 + log(x) — digamma(x).

Note that the model is such that

ind.

Y| X, Up = Gamma(y, 9 /b (Bo + b1 Xij + Uy)). (4.18)

Since V/(xz) = —1/x the statement (4.18) is equivalent to

ind.

Yii| X, Uy '~ Gamma(w, —p(Bo + B1 Xij + Uz)) (4.19)
Using the result that
X ~ Gamma(r,\) implies E{log(X)} = digamma(r) — log(\)
and using b(z) = —log(—x), we have,
E{c(Y35)|Ui, Xi} = E{log(Y35)|Ui, X}
= digamma(¢)) — log[{—(8o + B1 Xi; + Ui) })]

= —log{—(Bo + b1 Xij + Ui)} + digamma(y)) — log(¢)
=b(Bo + 1 Xij + Us) + digamma(tp) — log(t)).
Therefore, if we define )
A= b(Bo + 1 Xij + Us)
=1
then "
> E{log(Yi)|Us, X} = Ai — n{log(¢)) — digammal(d))}.
=1
Also, if we define
q(x) = 1 + log(«) — digamma(z)
then
E{log(Yij)|Ui, Xi} = b(Bo + B1 Xij + Ui) + 1 — q(¥)
and

ZE{IOg(YijNUi, X} =Ai +n{l —q(¥)}.

j=1
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In the Gamma case

Ay, ) = ¥ log() — log{T(w)} — log(y) implies 2N%Y) _ gy,

Therefore,

"9
> %d(Yn, ¥) =nq().
j=1

Next consider the problem of obtaining an expression for £ (Y2]Xz, Ui).

E(YZ|X;,Us) = Var(Yij| X3, Us) + {E(Y;;| X5, Up) }

1 1 2
~ (B + b1 Xij + U;)? * <—(50 + 81X + Ui))

1 1
- (1/) * 1> (Bo + 1 Xij + Ui)?
N (3& + 1) {V(Bo + BiXi; + Ui Y.

Later on we also need expressions for
E{Yijlog(Vyy)|X;, U} and  E[{log(Yij)}*| X, Uil.
As a prelude to obtaining these expressions we consider
X ~ Gamma(r, A).
Then note that
E{Xlog(X)} = {kdigamma(r) + 1 — klog(\)}/\

and
E[{log(X)}?] = trigamma(x) + {digamma(x) — log(\)}*.
The first of these results leads to (with k£ =4 and A = —¢(8y + 1.Xs; + Uy)),
E{Y; log(Yz‘;)|Xz,U}

e (Bo+51X Ty (Vdisammay) + 1 - log[b{~(fo + 51X + U)}])
ij

_1/1{ (ﬂO‘f’ﬁlXU"'U }{

1
~ (B + B Xi; + Uy} {”’dlgamma(@ +1 = ¢log(¥) + ¥b(Bo + B1Xi; + Ui)}

=V(Bo+ b1 Xij + Uz){% + digamma(t)) — log(v) + b(Bo + f1 X5 + Uz)}

Ydigammal(y) + 1 - ¥ log(1)) — ¥ log {~(5 + 81 Xy + U)} |

=V (Bo+ b1 Xij + UZ){l

51— a() + b0 + X5 + U
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The second of these results leads to (with x = ¢ and A = —(Bo + 1 Xi; + Ui))

E[{log(Yj)}?| X, U] = trigamma(s)) + <digamma(¢) — log [{—(Bo + 1.Xs; + Ui)}] )2
(1) + [digamma(y) —log(v) — log{—(o + 61 Xsj + U;)}]?
(@) + {1 —a(w) + b(Bo + 1 Xi; + )}
= trigamma(v) + {b(Bo + B1.X;; + U;) +1 — q(w)}Q.

= trigamma

)
)
= trigamma (1))
)
4.5.3.2 The Score of the Reciprocal Dispersion Parameter

The score of v is
_ Ologpy; x, (Yi|X;)

S3i = 8’ll)
=Y [{YU (Bo + B1Xij) +log(Yij)} +a(v)
j=1
/Oo exp | =3y + ¥ {Vigu—b(Bo + A Xig + W)} | S {Yiju — b(Bo + 1 Xi5 + w)} du
—o0 j=1 j=1
+
/ exp |:—21;22 +wz {Yiju —b(Bo + B1 Xij + u)}| du
e e
n /oo by (u) exp{—nhn(u)}du
=> [{Yij(ﬁo + B1Xi5) +1og(Yij)} +a(¥) | + 7=
j=1 / bp(u) exp{—nhn(u)} du
where .
hy(u) = —%Z{Y;ju —b(Bo + 51 Xij + U)}7
j=1
- u? u?
by(u) = Z{Ywu —b(Bo + 51 Xij + u)} exp <_M> and bp(u) = exp <_M> )

Jj=1

The First Term of the Ss3; Integral

The first term on the right-hand side of (2.6) of Tierney et al. (1989) is
9(U;)

where .
g(u) = by (u)/bp(w) = > {Vigu = b(fo + A1 Xij + ) |
j=1
Using steps similar to those given for approximating the score of g in Subsubsection

4.5.2.5, we get
9(U7) = UiYie — A; + Op(1)
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where " n
Yie = ZYij and A; = Zb(ﬁo + 61 Xy + Uy).
j=1 Jj=1
Also define "
A=V (Bo+ B Xij + Un).

=1

4.5.3.3 Computing the Fisher Information Block for the Reciprocal Dis-
persion Parameter

Define .

Bi = Z{Yij(ﬂo + B1Xij) + log(Yij) + Q(lﬁ)}‘

j=1
Then
Szi = Bi + U;Yie — Ai + Op(1).

Therefore,

E(S5X:) ~Ta+Te+Te+Tp+Tp+Tr
where

Ta=E(B}|X:),

Tp = E(UY3| X))
To = B(A7 |1 X5),

Tp =2E(B;U;Yie| X;),
Te = —2E(ABi| X;),

and Tp=—-2E(U;A;Yie| X;).

Treatment of T4

In the Gamma case
V(z)=—1/x and c(z)=log(z).

Also,
0d(Yij, )

Hence

Bi =Y {Yi;(Bo + B1Xi;) +1og(Yij) + a(eh) }

j=1
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and
BI =Y > [ {Vi(Bo+ BiXij) +1og(Yij)} + a(@) | | {Yijr (Bo + B1Xi;) +log(Yijr)} + ()
j=145'=1
n 2
= Z {Yi;(Bo + B1Xij) +log(Yij)} + a(v)
j=1
+ Y [ {Yii(Bo + B1Xi5) +log(YVij)} +a(w) | | { Vi (Bo + B Xijr) +log(Yij)} + a(v)
i#5’
Therefore
Ta = E(B|X;) = v1(X;) + r2(X;)
where
u(Xi)=) F < Yij(Bo + B1Xi5) + log(Yij) + a(¥) | | Yy (Bo + B1Xij) + log(Yij) + a(4)) Xz‘)
i#5’
and

ZE

{ i /BO + /BIXZJ) + log(y ) + q(d})}g

XZ.] |

Treatment of v1(X;)

The (j,7")th term in the v;(X;) summation is

gt
|
><E<

Yijr (Bo + B1Xijr) +log(Yijr) + q(2)
Next note that

=b'(Bo + A1 Xij + Ui)(Bo + B1.Xi5) + b(Bo + B1.Xi5 +Us) + 1 —a() +a(¥)
=b'(Bo + B1Xsj + Us)(Bo + B1Xsj + Ui) — Uib'(Bo + B1Xs5 + Us) +b(Bo + f1Xi; +Usi) + 1
=b(Bo + 1 Xi; + Ui) — U (Bo + 1 Xij + Us).

Hence,

Yij(Bo + B1Xij) +1og(Yij) +q() | | Yijr(Bo + B1Xijr) + log(Yijr) + a(v)

Xi,Uz)
X’iv UZ)

X, Ui)

.

Yi;i(Bo + B1Xij) + log(Yi;) + q(v)

.

Yii(Bo + B1Xi;) + log(Yij) + q(v)

(X)) = Z E[{b(ﬁo + B Xij+ Up) = Ui (Bo + 1 Xi; + Us)}
J#J’
x {b(Bo + 1 Xiy + Us) — Ui (Bo + B Xiy + Us) } X |
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Treatment of to(X;)

The jth term in the t2(X;) summation is

E(E

Next we expand out the inner conditional expectation:

{Yij(ﬁo + (1 Xi;) + log(Yi;) + q(w)}Q‘Xi, U;

X)

E

2
{Yij(ﬂo + B1Xij) + log(Yis) + q(iﬁ)} |X7 Ui

= (Bo + B1Xi;)°E (Y31 X3, Us) + E[{log(Yi;)}?| X3, U] + q(v)?
+2(Bo + £1X:;)E {Yij log(Yi;)| X5, Us }
+2(Bo + B1Xi5)a(V) E (Yij| X, Us) 4 2q(v) E {log(Yi;)| X, Us }
= (Bo + S1Xi;)? (; + 1> {V'(Bo + B1Xij + U}

+trigamma(e) + {b(Bo + S1.Xi; + Ui) + 1 — Q(¢)}2

+a(¥)* +2(8o + B1 XV (Bo + B1Xi; + Uz){i +1—q(¥) +b(Bo + B1Xi; + Uz)}
+2(Bo + B1Xi;)a()b' (Bo + B1Xij + Us) + 2q(¢){b(Bo + B1 Xy + Ui) + 1 — q(¥)}.

The first of these terms is

<; + 1) (Bo + BrXij + Us = Up)*{V'(Bo + B1 Xs5 + Ui)}?

= (; + 1) {(Bo+ 1 Xij + Us)?* = 2U;(Bo + B1Xij + Us) + UZHY (Bo + B1Xi; + Ui)}>.

= (; + 1) {1 + 206 (Bo + 1 Xij + Us) + UV (Bo + B1.X45 + Us) }*|.

The sixth of these terms is
2(80 + S1Xi; + Ui — Up)q()b' (Bo + b1 X + Us) = —2q(0){1 + U;b' (Bo + 1 Xi5 + Us)}-

With similar steps, the fifth of these terms is

-2 {;} +1—q() +b(Bo + B1Xij + Uz)} {1+ U (Bo + 1 X5 + Ui}

The sum of the fifth and sixth terms is then

-2 {; +1+b(Bo + B1Xij + U,-)} {1+Ub'(Bo + B1Xs5 + Us)}
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Assembling the above results we have

Ty = ntrigamma(y) + n{q()}?

+ Z {{b Bo + b1 Xi; + U;) — U (Bo + 1 X + Us) Hb(Bo + B1Xij0 + Us;)
J#5’

—U;b'(Bo + 1 Xij + Ui)}|Xz}
+ (; + 1) S E([1+ 20 (B + BuXis + U) + U (B + BuXis + U] | X )
=1

+§:E<{b(50 + 601X +U)+1— q(¢)}2‘Xl)

_QZE H( +1> +b(Bo + 1 X5 +U)}{1+Ub’(ﬂo+51Xl] +Uy) }‘X]
+2q(w)§n:E [{b(ﬂo + 81 Xij +Ui) +1— q(w)}‘Xi]
J=1

A next useful step (for cancellation purposes) is to expand out the second, third, fourth,
fifth and sixth terms of this expression for T'4.

Ezxpansion of the second term of T's

For the second term of T4 we have

n

™ E[{b(B0 + B1X + U) — U (B + 61 Xis + Ui)}
J#9

x{b(Bo + B Xy + Ui) = Uit (B + 1 Xz + Up) }I X

= Z { (Bo + 81X + Us)b(Bo + b1 Xy + Ui)|X¢}

J#J
S~ B{Ub(B0 + 51Xs; + UV (Bo + B Koy + U X}
i#3’
™ B{UB (8o + 51Xy + Unb(Bo + b1 Xy + U)X }
i#y

+ 3 B{UR (Bo + 61 X5 + UV (B + 51 Xige + Up)| X .
J#3
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Ezxpansion of the third term of Ty

For the third term of T4 we have

(i} + 1) ZE([l + 22U (Bo + Br Xy + Us) + U (Bo + Br Xsj + Ui)}?] ‘X)
j=1

x)

=n (;} + 1) + 2 (i} + 1) ;E{Ulb/(ﬁo + ﬁlXij + Ul)

+ (7}1 + 1) ZE |:U7;2{b/(ﬁ0 + /1 Xij + Ui)}Q‘XZ}.
=

Ezxpansion of the fourth term of Tx

For the fourth term of T4 we have

iE({b(ﬁo + 61X +U;) +1— q(w)}Q‘Xi)

j=1

n

= > B({b(60+ BuXsy + VY| X0 ) + 201 = a()} DB (b(B + BuXey + V)

j=1

x)

+n{l —q(y)}?

=SB ({0 + 51Xy + U)RX.) + 23 B (0 + 51X, + U)X
j=1

J=1

*2q(¢)zE{b(ﬂo + 51X + Us) Xi} +n{q(¥)}* = 2nq(¥) + n.

Ezxpansion of the fifth term of T4

For the fifth term of T4 we have

—QZE H (; + 1) +b(Bo + p1Xi; + Ui)} {14+ U (Bo + b1 X35 + Ui}
=1

x)

g

1 1 - ,

n

—2ZE {b(ﬁo + ﬁlXij + Ul)

Jj=1 Jj=1

X} =23 B {Ub(Bo + i Xis + UV (Bo + i X + Uy)

X}
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Ezxpansion of the sizth term of Ty

For the sixth term of Ty we have

29()>_ B |[{b(Bo + B Xis + Ui) +1 = q(v)

Jj=1

]

=2 w)ZE[b(ﬁo + B1 Xij + Us) | Xa] + 2nq(9){1 — q()}
j=1

= 2q(¥)Y_E[b(Bo + B1 Xij + Ui)| X + 2na(y) — 2n{q()}>.

Jj=1

The fully expanded version of T4 is as follows:

Ta=n {trigamma(w) - ;}

b(Bo + B1Xsj + Us)b(Bo + f1 X + Ui)|Xi}
J#J

™ B{Ub(Bo + B1 X5 + U (Bo + b1 Xy + U X |
J#J

B{U (Bo + 5135 + Ub(Bo + Br Xy + U)| X }
73

<.

n

+ Y BLUY (Bo + B1Xij + UV (Bo + B1Xij + Uz‘)|Xi}
J#y

>
{
|
{

[—

+ )ZE[Uz{b’( Bo + B Xs; + Up)}? ‘X}
XZ-)

_QZE {Uib(ﬂo + ﬁlXij + Uﬂb’(ﬁo -+ BlXij + Ui)
j=1

< \

+ E({b(ﬂo + 81Xy + Uy
j=1

i

Treatment of Ty

We have

<U2Y2

2 10

)= o (e

X, UZ>

Jer{urn(

Xi, Ui)

X}
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Recall that

n n n
Yie = Z Y;; implying that Y= Z Yi;Yiy + Z }/13
j=1 i#5’ J=1

Therefore

BE(Y3| X, Us)

=Y E(YYiy| X, Ui) + > B(YVIX4, Ui)
J#5 =1
n 1 n
=Y V(B0 + B1Xij + U (Bo + b1 X + Us) + <1/1 " 1) > AV (Bo+ BiXy + Uiy
G5 =1

This implies that

Tp =Y  E{U (Bo+ B1Xi; + UV (Bo + p1 Xy + Us) | Xi}
J#J’

+ G} + 1> iE[UE{b’(ﬂo + 155 + Ui Y X

j=1

Treatment of T

We have
Tc = E(A7|X;)

which implies that

n n
To =Y E{b(Bo + B Xij + Ub(Bo + 1 Xijr + Us)| X}
i=1j=1
Breaking this up into “diagonal” and “off-diagonal” components, we get
n
To= Z E{b(Bo + b1 Xij + Ui)b(Bo + B Xijr + Ui)| X}
J#3’

+ 2 B[{b(Bo + 61 Xij + Ui} 1Xi].

Treatment of Tp

First recall that
2E(B;U;Yie| X)
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where

Y3 (Bo + B1Xi5) + log(Yiz)} +q(¥) |-

Therefore

n n

2B,UiYie =2U;» . >
j=1j'=1

n

=2U; )

73’

{Yi(Bo + B1Xiz) +log(Yij) } + q(¥) | Vi

{Yij(Bo + B1Xi5) + log(Yij) } + aq() | Yijr

n

—QUEZ

{ BO + Ble] + 1/z] log 1% } + 1/z]q 7!))]

It follows that
2E(BiU;Yie| Xi) = t3(Xi) + ta(X)

where

{Y3;(Bo + B1Xi5) + log(Yij)} + a(x)

tﬂXﬂEQEZE(M
J#y

Yij Xi)

{Yi3(Bo + B1Xij) + Yijlog(Yij) } + Yijq(i/f)] ‘Xz> :

and

t4(Xi) = QZH:E (Ui
j=1

Treatment of t3(X;)

The (j,7')th term in the t3(X;) summation is

E(U

=2F {Uz < Yii(Bo + B1Xij) + log(Yij) + q(v) | Yijr

i 50 + 51X’LJ> + log(Y;J) + Q(¢) Yi]"

Xi;Ui> ‘Xz}
Xian) |Xz}
Xi,Ui> E (Yij’ Xi;Ui> X

X, Ui) =b(Bo + 1 Xi; + U;) — Ub' (Bo + b1 Xij + Us).

=2F {Ui E ( Yij(Bo + B1Xij) +log(Yij) + q(x)

As stated earlier in this document,

E ([Yi(Bo + 81 Xi5) +10g(¥iy) + a(v)]
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Also,
E (Y

X, Ui) = V(o + b1 X + Uy)

from which it follows that the (j,j’)th term in the v3(X;) summation is

2F Xl .

Ui{b(Bo + B1.Xij + Ui) — Ut (Bo + B1.X45 + Us) }V' (Bo + b1 Xiy + Us)

Hence,

J#3’

Ui{b(Bo + B1Xij + Us) — Ui (Bo + B1Xij + Us) }o' (Bo + B Xiy + Ui)| X

Treatment of t4(X;)

The jth term in the t4(X;) summation is

2K (E

=2F (UiE

Uz‘{Yi?(ﬁo + B1Xi5) + Yijlog(Yij) + Yz‘jCIW)}‘Xu Ui

g

Xian

{ng(ﬁo + B1Xiy) + Yijlog (Vi) + Yijq(w)}

‘Xi> |
Next note that

E Yg(ﬁo + 51X4)| X5, Ui | = (1 + 1) (Bo + B1Xi;){V'(Bo + B1 X + Uy)}?

(4

(1

+ 1) (Bo + B1Xij + U){V (Bo + B1 Xij + Ui}

A/~
<
—_

- ( + 1) Uit (Bo + B1 X5 + Us)}?

o

E{Yi;log(Yi;)| X3, Ui} = b'(Bo + B1.Xi5 + Uz){; +1—q(¥)+b(Bo + L1 X5 + Uz)}

; 1) [¥/(Bo + 81X + Us) + Uit (Bo + Bi Xoy + Ui)Y?).

<=

Also, remember that

and
a(V)E{Y| Xy, Ui} = a()b'(Bo + B1.Xi5 + Us),

which means that

E{Yi;log(Yij) + a(¥)Yiy| X, Ui} = V' (Bo + B1Xij + Ui){i +1+b(Bo + 1 Xij + Ui)}.
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This means that

E

{ (ﬂO + B1Xij) + Yijlog(Yij) + qu(@b)}‘xiu Ui

( )b/ /30+61X11+U) <11p

1> UV (Bo + B1Xi5 + Us) Y

(; ) V(8o + $1Xi; + Us) + b(Bo + BiXs; + U (Bo + B1Xi; + Us)

1
= b(Bo + S1Xij + UV (Bo + 1 Xij + Us) — <¢ + 1) Ub' (Bo + B1Xs5 + Us) 1.
Hence, the jth term in the v4(X;) summation is

QE{Uib(ﬂo + 81X+ Ui)b' (Bo+ B1.X45 +Us)

Fo2 (1) BURw o+ s+ 0P X1

Putting all of this together, we arrive at

TD:2zn:E

J#5’

Ui{b(Bo + B1.Xij + Ui) — Ut/ (Bo + B1.X45 + Us) }0'(Bo + b1 Xiy + Us) | X

d

+2 Z E{Uz‘b(ﬁo + B1Xi; + Ui)b' (Bo + B1.Xs5 + Us)
=

1 n
—2 <¢ + 1> ZE[UE{I)’(BQ + b1 X5 + Ui)}2‘Xz}-
j=1
However, note that the first term is

J#5!

Ui{b(Bo + B1Xij + Us) — Uib' (Bo + B1.Xi5 + Ui) }o'(Bo + BuXijr + Ui) | X

=23 BE{Ub(Bo + 1 X5 + U (Bo + B Xy + Ui)| X
J#3’

-2 Z E {Ufbl(/@o + S1X,j + UV (Bo + B1 Xy + Us)
J#5’
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Therefore
)Ki}
-2 Z E {Ufb'(ﬁo + S1X,j + U)V (Bo + B1 Xy + Us)

%5
)Ki}

Tp=2 Z E {Uib(ﬁo + 1 Xij 4+ U)b' (Bo + 1 Xiy + Ui)
J#5’

,}

+2 Z E{Uz'b(ﬁo + B1Xi; + Up)b' (Bo + B1Xi5 + Us)
=1

2 (1) X B{vrt s+ sux v | xi).
j=1

Treatment of Tg

Recall that
Ty = —2E(A;B;| X5)

where
A = Zb(ﬁo +B81Xi; +U;) and B; = Z{Yij(ﬂo + B1X55) + log(Yi;) + CIW)}-
j=1 i=1

Therefore

Tp=—23" 3" E[b(f+ b1 Xig + Ud){ iy (B0 + B1Xiy) + log(Yiy) +a(v) | | Xi]

j=1j'=1

= _22 Z E E BO + Bl Xzy +U; ){Yij’(ﬂo + Ble’j’) + log(Yij/) + q(T/J)} XZ', UZ}

Jj=1j'=1

s
)

=—2ZZE b(Bo + B1 Xij + U {b(Bo + 1 Xijr + U;) — Uib'<ﬁo+ﬁlxijf+m>}‘xi>

Jj=1j'=1

j=14/=1

:_22322E<b Bo+ b1 Xij + Ui E [13W0+6p&]y+bg Yij) + q(¢ ‘X%UJ

x)

2% B{Ub(B0 + B1 Xij + Us)b/ (B + By Xige + Us)| X

j=15'=1

_ 23y B {680 + 81 X + Ub(Bo + 1 Xiyr + U

j=1j'=1

}
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Simplifying the previous expression, we have,

=2 E[b(fo + B1X5 + Un)b(Bo + BiXy + Us)| Xi]
J#3'

X

+2 Z E[Ub(Bo + B1Xs5 + UV (Bo + B1Xij + Us)
J#J’

—2) E [{b(ﬁo + /i Xi; + Ui)}2‘X¢}
j:

X,

+2 Z E[Ub(Bo + p1Xi; + UV (Bo + B1Xij + Us)
=1

Treatment of Tg

Using steps similar to those given above for T we have

Tr = =2 E(U; A A XG).
Therefore,

TF = —22 Z E{Uib(ﬂo + ,BlXij + Ui)bl(ﬂo + BlXij’ + Uz)’Xz}
j=1j'=1
Breaking this up into “diagonal” and “off-diagonal” components, we get
Tp=-2  E{Ub(Bo + p1Xi; + UV (Bo + B1 X + Uy)| Xi}
J#y

=2 " E{Ub(Bo + B1Xij + UV (Bo + b1 X5 + Us)| X}
j=1

The Sum of Tg and Tr

Inspection of the fully expanded versions of Tg and T reveals that

T+ Tr = —2 Z E[b(Bo + B1Xi5 + U)b(Bo + p1Xij + Us) | X,

J#3’

o3 s o]

=1
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Combining Ta, Tg, Tc, Tp, Te and Tr

We now combine the T4, T, T, Tp, Tk and TF terms to get the full approximation
of E(S%]X;).

E(S5:]X1)
~Ta+Teg+Tc+1Tp +1Tr+1TF
. 1 -
=n {trlgamma(w) — E} + Z E{b(ﬁo =+ leij + Ul)b(ﬂo + BlXij/ + Ul)‘Xl}
J#3’
— Z E{Uib(ﬂo + 1 Xi; + Ui)b/(ﬁo + 81X, + Ul)|X1}
J#5’

-3 E{Uib’(ﬂo + B1Xi; + Ui)b(Bo + Br Xijr + Ui)IXz'}
J#3’

+ Z E{U?b/(ﬁo + B1 X5 + U)b'(Bo + 1 Xij0 + Ui)|Xi}
i3
+ (i + 1) D E[UHY B+ 51X + UV ] + 3B ({000 + X + UDY[x:)
j=1 =t

x)

+ > E{UY (Bo + BrXs; + UV (Bo + B1 Xy + Ui)| X}
i3’

—QZE {Uib(ﬂo + B1Xi5 + U)b' (Bo + B1 X5 + Us)
=1

+ (5 1) B0 6o+ 61X + UYIX
j=1

n

+ Z E{b(ﬂo + f1 Xij + Us)b(Bo + B1 Xijr + U1)|X1} + Z E[{b(ﬂo + p1 Xij + Uz)}2|Xz}

5 i=1

x)
x)
x)

+2 Z E {Uib(ﬁo + 81X + Ui)b' (Bo + B1 X5 + Us)
J#5’

-2 Z E {Uzzb/(ﬂo + 81X + UV (Bo + B1Xsy + Us)
VEM

n

+QZ E{Uib(ﬁo + B1Xij + U)b' (Bo + B1 Xij + Us)

Jj=1

-9 <i + 1) iE{Uf{b/(ﬂo + 51X + Uz)}2‘Xz}

-2 Z E[b(Bo + p1Xi; + Ui)b(Bo + 1 Xiy + Us)
J#3’

Xz} -2 iE[{b(ﬁo + 651X + Uz)}Q‘Xz:|

Many of the terms cancel with each other, and we are left with

E(S%|X;)~n {trigamma(w) - ;} .
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4.5.3.4 Asymptotic Normality and Variance Results for the Maximum
Likelihood Estimator of the Reciprocal Dispersion Parameter

We can show that (using results given in Wand (2007))) ¢ is orthogonal to the other
model parameters. Therefore, results in the previous sections of this document lead to

m@—wgfv(o ! 1>

" trigammaf(t)) — 7

and we have )
Asy.Var(y) =

=

;

4.5.3.5 Asymptotic Normality and Variance Results for the Maximum
Likelihood Estimator of the Dispersion Parameter

mn {trigamma(w) —

It
¢=1/p=g(¢) and g(z)=a""

then using the delta method leads to

M{g@—g(w)}%zv(o AC )

" trigamma(v) —

<=

Noting that

d(x)=—-2"2 and ¢(z)?=2z2""*

, we have

g @) _ =t _ ¢!
trigammal(v)) — i trigamma/(v)) — i trigamma(1/¢) — ¢

Hence

. D ¢
Vmn(é - ¢) > N <07 trigammal(1/¢) — ¢> '

Lastly, we have that,
¢4
mn {trigamma(1/¢) — ¢}

Asy.Var(quﬁ) =



Chapter 5

Consequences and Applications of
Asymptotic Normality Results

In this chapter, we discuss the consequences and applications of the novel asymptotic

normality results presented under Theorem 12.

Firstly, we present how Theorem 12 can be used to carry out asymptotically valid
statistical inference in generalized linear mixed model analysis. This is done using
confidence intervals constructed via the studentization process. Following that, to assess
the efficacy of the Theorem 12-based confidence intervals, we ran two simulation studies

and investigated the performance of our confidence intervals when the samples are finite.

Next, we move onto the implications of Theorem 12 on optimal design theory. Opti-
mal designs contain values of the covariates in the design matrix such that these designs
give the smallest standard errors of the estimators of the model parameters. These in
turn lead to narrower confidence intervals and result in higher powers for hypothesis
tests as compared to non-optimal designs. However, when dealing with generalized
linear mixed models, choosing optimal designs can be complicated with most optimality
criteria being based on the Fisher information matrix, which is computationally ex-
pensive to compute. Therefore, we then demonstrate how the derivations leading to
Theorem 12 that involve large sample approximations of the Fisher information can be

used in approximate optimal design settings.

This chapter is broken up into two main parts. Section 5.1 details how Theorem
12-based confidence intervals can be constructed using the studentization process. Next,
Section 5.2 applies the derivations leading up to Theorem 12 in the design setting and

briefly demonstrates how approximate locally D-optimal designs can be constructed

Some of the content of this chapter is published in: Jiang, J., Wand, M.P. and Bhaskaran, A. (2022),
Usable and precise asymptotics for generalized linear mixed model analysis and design. Journal of the
Royal Statistical Society, Series B, 84: 55-82. DOI: 10.1111/rssb.12473.
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using the D-optimality criterion as presented in Theorem 13.

5.1 Asymptotically Valid Inference

In the first part of this section, we present details regarding the construction of asymp-
totically valid confidence intervals using Theorem 12. It is followed up by two simulation
studies that are used to assess the efficacy of these asymptotically valid confidence

intervals.

5.1.1 Construction of Asymptotically Valid Confidence Intervals

The asymptotic normality results for maximum quasi-likelihood estimators presented
in Theorem 12 can be used to construct asymptotically valid 100(1 — a)% confidence
intervals. The confidence intervals for Bg, 5% and X0 are developed using the studenti-
zation process, which involve replacing the true quantities in the asymptotic variances

in Theorem 12 by their consistent estimators.

100(1 — ) % Confidence Interval for the Entries of ,891

For B A, its asymptotic covariance matrix only involves X°. Hence, studentization simply

involves replacing 2° by S which leads to the following asymptotic normality result
VSTV (By - 8}) B N, ).

Let 32 denote the kth diagonal entry of f], 1 <k < d,. It follows that the asymptotically
valid 100(1 — )% confidence interval for the kth entry of 8% is

Bz (1-9) /2, (5.1

m

where ® represents the standard normal cumulative distribution function.

100(1 — ) % Confidence Intervals for the Entries of 3%

Constructing asymptotically valid confidence intervals for the entries of ﬂ% is less

straightforward compared to constructing confidence intervals for 8% or £Y. Studentiza-
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tion involves replacing Ag, by ./AX[;B which leads to the following asymptotic normality

result

vinn (68s,) " (Bs - 83) B NO.D),

where ./AXBB is defined as follows

Apy = [|2772| Y2 /RdA {lower right di x di block of Qg (w) '} exp <—2uT21u) du}

and

3

m R XA-'XT~ XA--XT‘-
(0= 1 3310 (B X o) X | T
i=1 j=1 XBinAij XBinBij

Then, the asymptotically valid 100(1 — )% confidence interval for the kth entry of 33

is

100(1 — )% Confidence Intervals for the Entries of X0

For f], in a similar manner to the case involving ,@A, its asymptotic covariance matrix
only consists of X%, We apply the studentization process and replace X° by S which

leads to the following asymptotic normality result

~1/2

m{w;A (2 ® 2) D;;AT} vech (i - 20) B N(0,I).

It then follows that the asymptotically valid 100(1 — «)% confidence interval for the
(k, k)th entry of XV is

52+ ¢! (1 - 9) M (5.3)

5.1.2 Simulation Study

Two simulation studies were run to assess the efficacy of the confidence intervals
constructed using the asymptotic normality results presented in Theorem 12. In this

study, confidence intervals for the following d, = dz = 1 Poisson mixed model were
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generated
Y| Xij, Ui ' Poisson (exp (8 + B3 X5 + Uy))

ind.

U; " N(0,(6%)%), 1<i<m, 1<j<n,

with ¢ = 1. To simplify the notation involved, 84,3 and 3 have been replaced by
the scalar parameter symbols By, S and 2. The values for the true parameter vector

(B3, 8%, (62)Y) were chosen from the following possible set of pre-determined values
{(—0.3,0.2,0.5), (2.2, —0.1,0.16), (1.2,0.4,0.1), (0.02,1.3, 1), (—0.3,0.2,0.1)},

such that the data was well-behaved and led to fewer singularity issues. The distribution
for X;; was also chosen to be either N(0,1) or Uniform(—1,1). The number of groups
in the simulated data, m, varied over the set {100,200, ...,1000} and the number
of observations present within each group, n, was fixed at m/10. A total of 1000
replications were simulated for every possible combination of the true parameter vector,

chosen Xj; distribution and value of (m,n) pair.

— Exact Likelihood — Theorem 2
200 400 600 800 1000 200 400 600 800 1000
X;~N(0,1) X; ~N(0,1) X;~N(0, 1) X;~N(0, 1) X;~N(0,1)
(8B (%) =(=3,2,5) | (B3, B3, (0)°)=(22-1,16) (8, BY, (6)°)=(12,.4.1) | (B3B3, (6)°)=(02,1.31) | (BS,BR, (67)°)=(~3,2.1)

9% ~— = ~ ~7
90 - H
(0]
(@]
K 854 L
C
8
5 Xij ~ Uniform(-1, 1) X;; ~ Uniform(-1, 1) X;j ~ Uniform(-1, 1) Xij ~ Uniform(-1, 1) Xij ~ Uniform(-1, 1)
Q.
o (B3, B3, (69)°) =(-3,2,5) | (B3, By, (6°)°)=(22,-1,.16)| (B, By, (69)°)=(1.2,4,.1) | (B3, BY, (69)°)=(.02,1.3,1) | (B, BR, (6)°)=(~3,2,.1)
(@]
[
—_
(0] —\ 95
8 7 ~ N ~
[&]
. + 90
. -85
200 400 600 800 1000 200 400 600 800 1000 200 400 600 800 1000

value of m (n is fixed at m/10)

Figure 5.1: Actual coverage percentage of nominally 95% confidence intervals for 3)
in a dg = dg = 1 Poisson mixed model. The confidence intervals are obtained using
the exact observed Fisher information computations provided by the function glmer ()
in the R package 1me4 (blue lines) and Theorem 12 with studentization according to
(5.1) (red lines). The nominal percentage is shown as a thick grey horizontal line. The
percentages are based on 1000 replications. The values of m are 100,200, ...,1000. The
value of n is fixed at m/10.
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Using the glmer () function in the R package Ime4 (Bates et al., 2015), maximum
likelihood estimates of 83, 3% and (02)° were obtained for every sample of simulated
data generated. 95% confidence intervals based on (5.1) and (5.2) were computed
using the maximum likelihood estimates obtained. 95% confidence intervals based on
exact observed Fisher information were also obtained using glmer(). The coverage
percentages corresponding to the percentage of times the true value landed in the

confidence intervals were also calculated for both approaches.

— Exact Likelihood — Theorem 2
200 400 600 800 1000 200 400 600 800 1000
X;~N(0, 1) X;~N(0, 1) X;~N(0, 1) X;~N(0, 1) X;~N(0, 1)

(85, By, (69)°) =(=3,2,5) | (B3, By, (6°)°)=(22,-1,.16)| (B, By, (69)°)=(1.2.4,.1) | (B3, BY, (69)°)=(.02,1.3,1) | (B, BR, (6)°)=(~3,2,.1)

05 — A o o \/l\,’\ PN
o
g 90 1 r
8
c
8
6 Xij~ Uniform(-1, 1) Xij ~ Uniform(-1, 1) X;j ~ Uniform(-1, 1) Xij ~ Uniform(-1, 1) Xij~ Uniform(-1, 1)
a
o (8B (%) =(=3,2,5) | (B3, B3, (6)°)=(22-1,16)| (B, BR, (6)°)=(12,.4.1) | (BB} (6)°)=(02,1.31) | (BS,BR. (67)°)=(~3,2.1)
o
5
8 /\‘7 L~ —~ P =\ 95
8 W x— / = N
b r 90
T T T T T T T T T T T T T T T T
200 400 600 8001000 200 400 600 800 1000 200 400 600 8001000

value of m (n is fixed at m/10)

Figure 5.2: Actual coverage percentage of nominally 95% confidence intervals for B%
in a dqg = dp = 1 Poisson mixed model. The confidence intervals are obtained using
the exact observed Fisher information computations provided by the function glmer ()
in the R package 1me4 (blue lines) and Theorem 12 with studentization according to
(5.2) (red lines). The nominal percentage is shown as a thick grey horizontal line. The
percentages are based on 1000 replications. The values of m are 100,200, ...,1000. The
value of n is fixed at m/10.

Figure 5.1 displays the coverage percentages for the 95% confidence intervals com-
puted using the two approaches for various simulation settings. Both the Theorem
12-based approach and the approach based on exact observed Fisher information give
almost identical coverage percentages for all response distribution and sample size
combinations across all values of m, for the first four true parameter vector settings. For
the last setting, while the Theorem 12-based asymptotic approach does not perform well

for smaller values of m, the asymptotic properties it is based on gives similar coverage
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percentages to that of the exact observed Fisher information approach once the value of
m exceeds 500 and continues to get larger. This suggests that the asymptotic variance
of B\o being 02/m is a very good approximation to the variance of B\o that arises from

using exact observed Fisher information, especially with larger values of m.

In Figure 5.2, once again, both the Theorem 12-based approach and the approach
based on exact observed Fisher information, for most of the true parameter vector
settings, give almost identical coverage percentages for all response distribution and
sample size combinations across all values of m. For the fourth setting, when the Xj;s
are generated from a standard normal distribution, the Theorem 12-based approach
does not perform well for smaller values of m as compared to the exact observed Fisher
information approach. However, both approaches have similar performances for larger
values of m. This suggests that the asymptotic variance of B B being Ag, /mn is a very

good approximation to the variance of [/S\B that arises from using exact observed Fisher

information.
— Exact Likelihood — Theorem 2
200 400 600 800 1000 200 400 600 800 1000
X;~N(0, 1) X;~N(0, 1) X;~N(0, 1) X;~N(0, 1) X~ N(0, 1)

(B, BE, (6°)°) = (:2,-.1,.25) (B, By, (67)°) = (-.3,1.2,.6) (B, Ba. (67)°) =(1.6..2,.7)| (B3, B3, (67)°) = (.15,~.5,1)| (BY, B, (69)°) =(~1.3,.1,.8

95
90 1 /\/\/ |
()
(@]
S 85+ L
[
8
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o
o (BS. BY: (6% = (2,-1,.25) (B, B, (69)°) =(=3,1.2,6) (BY, BY, (6)°)=(1.6,:2,7)| (B, B, (69)°) =(15,-5,1)| (B, BR. (6))) =(-1.3,1,.8
(@]
o
Q A 95
Q
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| /\/\/\ /\ﬂ '
R r 85
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200 400 600 8001000 200 400 600 800 1000 200 400 600 8001000

value of m (n is fixed at m/10)

Figure 5.3: Actual coverage percentage of nominally 95% confidence intervals for ﬁg
in a d4 = dg = 1 logistic mixed model. The confidence intervals are obtained using
the exact observed Fisher information computations provided by the function glmer ()
in the R package 1me4 (blue lines) and Theorem 12 with studentization according to
(5.1) (red lines). The nominal percentage is shown as a thick grey horizontal line. The
percentages are based on 1000 replications. The values of m are 100,200, ...,1000. The
value of n is fixed at m/10.
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In the next study, confidence intervals for the following d, = dg = 1 logistic mixed

model were generated

Yii| Xij, Us S Bernoulli (expit (68 + B%Xz‘j + Uz)) )

with ¢ = 1.

ind.

U, ~ N

(0,0, 1<i<m, 1<j<n,

The values for the true parameter vector (58, 5%, (02)0) were chosen from the

following possible set of pre-determined values

coverage percentage

{(0.2,-0.1,0.25), (—0.3,1.2,0.6), (1.6,0.2,0.7), (0.15, —0.5,1), (—1.3,0.1,0.8)} .

— Exact Likelihood

200 400 600 800 1000
L L L L L

— Theorem 2

200 400 600 800 1000
L L L L L

Il Il Il
Xij~N(0, 1)

Xij~N(0, 1)

x;j~ N(‘O, 1) ‘

Xij~N(0, 1)

Il Il Il
Xij~N(0, 1)

(8%, BY, (69)%) = (:2,-1,.25)

(8%, BY, (69)%) = (-3,1.2,.6)

(B3, B3, (62)%) = (16,.2,.7)

(8, By (69)°) =(-15,-5,1)

(8%, BY, (69)%) = (-1.3,.1,.8),
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(B3, B. (69)°) = (:2,-.1,.25)

(83, B3, (6°)°) = (-3,1.2,6)

(83, B3, (6%)%) = (1.6,.2,.7)

(8%, S, (69)%) = (.15,-.5,1)

(83, B3, (6°)°) =(-1.3,1,.8)
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Figure 5.4: Actual coverage percentage of nominally 95% confidence intervals for 3%
in a dqg = dg = 1 logistic mixed model. The confidence intervals are obtained using
the exact observed Fisher information computations provided by the function glmer ()
in the R package 1me4 (blue lines) and Theorem 12 with studentization according to
(5.2) (red lines). The nominal percentage is shown as a thick grey horizontal line. The
percentages are based on 1000 replications. The values of m are 100, 200, ...,1000. The
value of n is fixed at m/10.

The remaining simulation settings match that of the Poisson simulation study

conducted. Once again, the maximum likelihood estimates of 37, 3% and (02)? were
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obtained and 95% confidence intervals based on both Theorem 12 and exact observed

Fisher information were computed.

In Figure 5.3, using exact observed Fisher information leads to better coverage
percentages across all values of m. While the confidence intervals constructed using
Theorem 12 do not perform as well for lower values of m, their performances match

those of exact observed Fisher information when the values of m grows beyond m = 500.

In Figure 5.4, both approaches give almost identical coverage percentages for all
response distribution and sample size combinations across all values of m, for all five true
parameter vector settings. Note that the asymptotic variance of B 5 has a convergence
rate of (mn)~! while the asymptotic variance of BO has a slower convergence rate of m .
This attributes to why the coverage percentages computed from Theorem 12-based
confidence intervals achieve percentages closer to 95% for smaller values of m and n in
Figure 5.4 as compared to the results shown in Figure 5.3 in the simple logistic mixed

model simulation study.

Across all four figures, the simulation results indicate that sometimes, certain true
values of the model parameters and the chosen distribution of X may result in Theorem
12 performing worse in comparison to the other simulation cases presented. This is
particularly evident in Figures 5.3 and 5.4. To explain this, we need to look beyond the
first-order asymptotic covariances presented in this thesis and analyse the second-order
asymptotic covariances instead (Maestrini et al., 2023). Let X = {X;; : 1 <i<m, 1 <
Jj <n;}. As an example, for the d, = 1, dg = 1 Poisson quasi-likelihood special case
of (4.3), a solution to the two-term asymptotic covariance problem can be expressed

relatively simply with parameters

1
Ba=0, Bp=p and X =02 and predictor variable X =

X

for a scalar random variable X. Define
a1 (Bo. B1,0%) = Pt R [B(X M) B(eMY) — {B(X M)

and
¢’ B(X2e5X) B(eh1X) + (1 e7”) B{ (X1 X))2

az(fy,0%) = E(ef1X)
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Then the two-term asymptotic covariance matrix of (B\o, 31) is

cor[| P[] o0 o140,y | (%)) —B(XNY)
B g o | @@L @A) m | pyestx)  p(esix)
(5.4)

As is apparent from (5.4), the differences between one-term and two-term asymptotic
variances depend on m, n, 0’% and particular moments of the X distribution in a
complicated way. Theoretically speaking, it is possible to make these differences
arbitrarily small or large by appropriate choices of m, n, 03 and the distribution of X.
The 4th column of Figure 5.2 contrasts with the other columns in terms of the empirical
coverage because the one-term and two-term approximations differ more, with exact

likelihood being closer to the two-term approximation.

Therefore, for certain chosen values of the true model parameters and distribution
of X, the first order asymptotic variance terms are insufficient to obtain good coverage
percentages as the second term in the asymptotic variance is also significant, especially for
small values of m and n. In these cases, the confidence intervals should be constructed
using two-term asymptotic variances instead rather than the asymptotic variances

presented in Theorem 12, which will lead to better coverage percentages.

With regards to computing these confidence intervals, the Theorem 12 and stu-
dentization based approach provides the analyst with a quicker and simpler option,
especially for large m. When computing asymptotically valid confidence intervals using
the exact approach, numerical integration is required to compute the ratios of integrals
involved when computing the exact observed Fisher information matrix. Note that
for d4 > 1, multivariate numerical integration is needed for the exact approach. On
the other hand, for constructing asymptotically valid confidence intervals for ﬁg using
Theorem 12, when m is in the several hundreds or thousands, the closed form confidence
interval arising from Theorem 12 and studentization is an attractive alternative to
the numerical integration-based exact approach. For constructing asymptotically valid
confidence intervals for B% using Theorem 12, the logistic case requires simple numerical
integration as compared to the exact approach while the Poisson case does not require

any numerical integration.
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5.2 Approximate Optimal Design

In this section, we demonstrate how the derivations leading to Theorem 12 involving
large sample approximations of the Fisher information can be used in approximate

optimal design settings.

5.2.1 Background and Model Description

In previous sections, we assumed that the data was observed in accordance to the model
described in (4.3). Now, let us consider the use of a generalized linear mixed model
as in (4.3) with dq = 1, X4 = 1, Ba = fo, X = 02 and with the same number of
observations in each group. Also consider the case where the data is yet to be observed.

This simplifies to a random intercept generalized linear mixed model as follows

Y;;|U; are independent having quasi-likelihood function (4.2) with
natural parameter 3] + (8%)” @pi; + U; such that the U; are independent (5.5)

N(0, (¢%)?) random variables,

where 1 <7 <m and 1 < j < N. The unique values of the non-random xg;; predictor
vectors in the ith group can be viewed as a finite set of points in R?® and can be denoted

as x1,...,xs. Here, s denotes the number of unique predictor vectors.

In optimal design, with the help of an optimality criterion, one is firstly required to
select the possible values of & at which the observations of Y;; will be made. One also
has to determine the fraction of occurrences of independent observations made at each
value of & (Russell, 2018). Each « used in the design is a support point. Hence, there

are s unique support points included in the design.

Now let X C R%2 denote the set to which the support points are restricted to. For
example, if dg = 2 with the first predictor being binary and the second predictor being
a proportion then X = {(z1,x2) : 1 € {0,1},0 < 25 < 1}. Also, denote the number of

independent observations made at @, 1 < k < s, as nj and define
0 = —, 1<k <s,

where N = nj + --- + ns. Hence, the §; are known as design weights and represent
the fraction of data in the ith group associated to each support point. Note that
61+ ...d0s = 1. Our working assumption throughout the rest of this section is that the
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asymptotically valid D-optimal designs are such that each of the m groups have exactly

the same support points and design weights.

In this thesis, we restrict our attention to approximate optimal designs, which are
common when the design weights are represented as decimals or fractions if there are
recurring decimals. For example, a design could contain 4 support points with the
design weights for (d1, d2,d3,d4) being {0.127,0.2378,0.452,0.1832}. This is an example
of an ideal design that is rarely exactly attainable. In such cases, exact designs with
all ng € Z™ are not always possible, especially for small values of N, and approximate

designs are achievable instead.

Out of the optimality-criteria available, we also restrict our attention to D-optimality.
This involves choosing the design that maximises the determinant of the Fisher infor-
mation matrix. The derivations leading to Theorem 12 involve large sample expressions
for the Fisher information for the class of generalized linear mixed models. By using
the D-optimality criterion, these analogous large sample approximations of the Fisher
information allow for approximate locally optimal design determination. Since the
approximations of the Fisher information matrix are asymptotic approximations, we

only considered designed experiments for which large sample sizes are feasible.

In addition, note that in non-Gaussian generalized linear mixed models, the Fisher
information matrix contains entries dependent on the model parameters. Hence, we
work with designs that maximise the determinant of the Fisher information matrix with

fixed values for the model parameters, known as locally D-optimal designs.

5.2.2 Approximate Locally D-Optimal Design Determination

Define
ng = average of the support point replication sizes within each group.
k=1
The theorem relies on the following assumption:
(A7) The design sample sizes ny diverge to co in such a way that ng/(sn) — o
for constants 0 < ;1 < 1,1 <k <s.

Theorem 13. Consider the random intercept generalized linear mized model described in
(5.5) with design weights &, and corresponding support points xj, € X C R 1 < k < s.
Assume that condition (A7) holds. Then, based on the exact leading term behaviour of
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the determinant of the Fisher information matriz, approximate locally D-optimal designs

at the parameter vector (8o, B, 02) are those for which

1y -1
00 s xT !
/ lower right dg x dg block of Z 51b" (Bo + Bhay +u) F
> k=1 Tk wsz

x exp{—u?/(20%)}du
is mazimal over {0 : 0k, > 0,Y 7 _10, =1,1 <k <s} and {zx, € X : 1 < k < s}.

The proof of Theorem 13 is in the appendix. Some remarks regarding Theorem 13

are as follows:

1. Existing literature that consider the selection of optimal designs using the D-
optimality criterion for classes of generalized linear mixed models similar to
those considered in this thesis include Waite and Woods (2015) and Zhang et al.
(2017). Waite and Woods (2015) used generalized estimating equations to obtain
approximations of the mixed model Fisher Information Matrix. On the other
hand, Zhang et al. (2017) explored three methods to approximate the Fisher
information matrix, namely importance sampling, Laplace approximation and
joint sampling. In contrast, Theorem 13 facilitates approximate locally D-optimal
design determination in a more direct manner and is based on the precise leading

term behaviour of the Fisher information matrix.

2. In this chapter, the theory and discussion has been restricted to D-optimality.
Other optimality criteria such as A-optimality, which requires minimization of
the trace of the inverse of the information matrix, also benefit from our precise
asymptotic approximations of the Fisher information matrix for generalized linear

mixed models.

3. Note that in the Gaussian case, b”(x) = 1, and the determinant in Theorem 13 is

proportional to

5 1 xl
> o ’“T (5.6)
k=1 | Tk TRT}

Since the expression above does not depend on any of the model parameters,

designs that maximize (5.6) are globally D-optimal.

4. In the Poisson linear mixed model case, b”(z) = exp(z) leads to the simplification
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of Theorem 13. The D-optimality criterion then reduces to

1 az% 5 -
T Zék eXp(ﬂB:Bk).

LTk Ly k=1

> ok exp(Bha)
k=1

Note that generating approximate locally D-optimal designs for the Poisson linear

mixed model case is only dependent on Bp.

5. When considering logistic mixed models, b”(x) = 1/[2{1 + cosh(x)}] and Theorem
13 does not simplify further. Hence, in the logistic mixed model case, approximate
locally D-optimal designs depend on By, B and ¢2. Although Theorem 13 does
not admit an explicit form in this case, each of the entries of the approximate

Fisher information matrix can be computed using univariate numerical integration.

5.2.3 Illustration of Theorem 13

In this section, we illustrate the use of Theorem 13 in determining the approximate
optimal design when dp = 2 and both predictors are binary, taking on values of either 0
or 1. In this scenario, there are at most s = 4 support points with the only possible
support points being x; € {(0,0), (0,1),(1,0),(1,1)}. Since all the possible support
points are known, one would only need to maximise the expression in Theorem 13 over
the design weights. Figure 5.5 shows the approximate locally D-optimal designs, for
the situation where By = —0.3, B = (1.7,2.1) and the values of o take on a value
from {0.6,0.76,0.97,1.24,1.57,2.00}, by displaying the optimal design weights for the
possible corresponding support points. To obtain Figure 5.5, we used code similar to
that provided in Section 4.5 of Russell (2018), which is based on the optim() function
in R (R Core Team (2022)) and Nelder-Mead searches with 100 random initial values.

We noted that the choices for the initial values of the design weights did not impact
the results. From Figure 5.5, we see that for the two lowest values of o, the optimal
designs have only three support points, with the point (1,1) being excluded from the
design. However, as the value of ¢ increases, the corresponding design weight for the

support point (1, 1) becomes positive and larger.
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o =0.60 c=0.76 o =0.97
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Figure 5.5: Approximate locally D-optimal designs for logistic mixed models with two
binary predictors when Sy = —0.3, B = (1.7,2.1) and the values of o take on a value
from {0.6,0.76,0.97,1.24,1.57,2.00}.

5.3 Appendix

This appendix contains the details for the derivations leading up to Theorem 13.

5.3.1 Model Description

Our working assumption throughout this section is that the asymptotically D-optimal
designs have exactly the same support points and design weights for each of the m
groups. Let xg, 1 < k < s, be the support points that are common to each group. For
each 1 <i < m, let

ny = number of x; values in the design, 1 < k < s.
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Following that, the full data for the ith group can be expressed as:

(a0, 30). (0. ¥ (0121,

(o032, (22 72). o (2 E2).
(20 3). (20 V). ().

Then, the conditional quasi-probability mass function or quasi-density function of YZ[Jk]
given Uj; is

Py, (y|Ui = u;) = exp [; {y(Bo+ BE @k +us) — b(Bo + Bh @i + i) } +c(y)|

where U; ~ N(0,0%),1<i<m,1<j<ngand 1<k <s. Also, for each 1 < i < m,
conditional on U; the

Y 1<j<m, 1<k<s

are independent. Therefore, the quasi-likelihood of (By, Bp,0?) is

£(Bo, B, 0° H / HHPY[HW VI =) § = exp(~()/ (207}

k=1j=1

and the conditional quasi-log-likelihood is

o, B, 0 Zlog / {Hpr[kU g |Uu>} V%exp{%u?)/(w)}du

k=1j=1
e 1 : o

— WP+ B ) + c(Y““])} (w?)/ (202)1 du> |

Note that,

| ew 5 {760+ Bh w0~ b + B+ 0} - 55|

- k=1 j=

—_
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Hence
00 s Nk 1 [k] u2
log |~ exp 5 G+ B+ 0~ b(Bo+ B a0} - 55 | du
—© k=1 j=1
o~ L T
=> > Yy (Bo+Bp i)
k=1 j=1

2

+1og/ ep 3301 S —v+ et} - 5 | du

kl]l

Therefore, by rewriting the conditional quasi-log-likelihood, we have,

m S

5(50,53702):—*1%27“7 +ZZZ Yk] (Bo + BE =)

'lel]l
2

Jrzlog/OOeXp{ZZ;{ U*b50+,63113k+’u)} ;7 du
i=1

k=1j=1

+C,

where C' denotes a constant term independent of (3o, Bg,02).

5.3.2 Asymptotic Assumption for Support Point Sample Sizes

Define

—_

n=- ng = average of the support point replication sizes within each group.
k=1

V)

For the upcoming asymptotic analysis we assume:

(A4) The design sample sizes ny diverge to oo in such a way that
ng/(sn) — 0y for constants 0 < o < 1,1 <k <.

The §; correspond to the so-called design weights.

5.3.3 Useful Notation

Let v be a generic d x 1 vector. Then for » = 0, 1,2 we define

1 for =0
= v for r=1

vvl for r=2.
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Note that, according to this notation, for all (r,’) € {(0,0),(1,0),(1,1)},
@ (v®)T = P,

For r =0,1 and 1 < ¢ < m, also define

QM_ZZ:L' (Y (Bo+Bh @ +U:)} and Hy = anm@”“b” Bo+B% i, +Us).
k=1 j=1

Also, let 7?[;7, be the same as H,;, but with b” replaced by b

5.3.4 Key Moment Results

In this subsection, we present some key moment results required for the asymptotic
derivations in the subsections to follow.

The Expectation of @i Given U;

Note that for r,r’ =0, 1:
Elaf (@) (Y —¥'(80 + BE xi + U} U
= &P (& ) TE{Y — ¥ (Bo + BF v + U3)|U)
= &2 (@) E{Y (B0 + Bhax + Ui) — V(B0 + Bh ey + U)}

= 0.
Hence §
Elaf" (@) (Y — v/ (8 + B a4 + U} U] = O. (5.7)
It follows immediately from (5.7) that
E(§01|U1) = 0, E(§11|U1) =0 and E(§21|U1) = O

The Ezxpectation of ém- 551 Given U;

Note that for all (r,7") € {(0,0), (1,0),(1,1)},

B(Gri GL,|U; —E( ZZw%’“{Y“ﬂ V(8o + Bh @k + Ui)}

k=1 j=1

T
s My

SN a6 (8o + B @ + Ui}

k'=14'=1

Ui) (5.8)
S ng Nps

-3 S Y e E[ ¥  + B+ )

k=1k'=1 j=1 j/=1
<{Y = b'(Bo + BF mw + Ui)}\UZ}.
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First consider those terms for which
k=K and j=j' (5.9)
Such terms have the form
"z )" Var [{Yz[]k] — V(B + B xk + Uz)}|Uz] = ob"(Bo + B xk + Us).

Therefore, the contribution to (5.8) from the terms satisfying (5.9) is
0 Z may " (Bo + B @+ Ui) = GHir

Next consider those terms for which
k=K and j#j'. (5.10)
Since
BV ¥ (B0 + B @+ UDHY — V(80 + B i + U HUI
= E[{Y}f V(B + B i + UD}UI ELY,S) = ¥ (B + Bh v+ U}U]
=0,

the contribution to (5.8) from the terms satisfying (5.10) is 0. Next consider those terms
for which
kK. (5.11)

Then ngk] and Yigkl] must be distinct random variables, which implies that
EYYI — ¥ (5o + Bh i + UDHYE ¥/ (8o + Bh @y + U} U =0 for all k # K.
Therefore, for (r,r") € {(0,0),(1,0),(1,1)} we have
E(GriGli|Ui) = ¢H )i
Lastly, there is the issue when (r,7") = (0,1). Note the special case
E(GuiG&|U;) = ¢Hai.
Taking the transpose on each side of this equation we obtain
E(GuGLi|Ui) = ¢H1;.
Then, the full set of results for E (gm ;|Ui) is:
E(GoiGL|U) = ¢Hoi,  E(GuiGh|U:) = ¢HT,,
E('QVMQE\UJ = ¢Hu, E(éuéﬂ\%) = ¢Ho;.
But since g~0i is a scalar, these results can be simplified to

B(G|U:) = ¢Hoi,  E(GoiGui|Us) = ¢Hi; and  B(GuGL|U;) = ¢Hai. (5.12)
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5.3.5 The Fisher Information Matrix

To construct an asymptotic approximation of the Fisher information matrix, we require
asymptotic expansions of the scores and their quadratic expectations. Hence, we follow
steps similar to those detailed under the proof for Theorem 12 for these computations
as well. Putting together the resultant expressions from these computations, we have
the following expression for the Fisher information

1(Bo, B, ?)

5.3.6 The Asymptotic D-Optimality Criterion

Next, we change the ordering of the parameters from (8o, 85, 0?) to (8o, 02, Bg). Then
partition I(S3y, 0%, 31) according to

Avll AJ,{Z
1(507027BB) = ~ ~
A Ag
where
m -1 —
N 2 +O(mn™") O(mn~1) N
A= m 5 A = O(m)[ldB 1dB]’
_ 1
O(mn=1) oy +O(mn™")
and

Ay = EE (Hm 7-[01) +O0(m)1;".

Now, we apply a standard result concerning the determinant of a 2 x 2 block-partitioned
matrix (e.g. Harville, 2008; Theorem 13.3.8) to obtain

180, B3,0%)| = | An|| Az — AL AL Ava.

It is easily verified that )Avn) = m2/(20%) + O(mn~') and AT, AT Aj5 = O(m)l?j. It

follows that
~
(7’[21 H ) —l—O( )1®2
H

01

2¢8 56
mdB+2 ’ (507637 ‘ -

- ’\Ifn+0( 152 (5.13)
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where ¥,, = E (ﬁgl — ﬁ?f/ﬁm). Since Ho, = Op(n), Hy = Op(n)lg, and Hoy =

Op(ﬂ)l?j, we have ¥, = O(n)lffj. Let M (M), ..., A, (M) denote the eigenvalues of
a generic dg X dg matrix M. Then

‘\Izn + 0(1)1;?;‘ - j]f[l A (\I/n + 0(1)1;?32) .

As a consequence of Theorem 8.1.4 (Wielandt-Hoffman) of Golub and Van Loan (2013),
A (Bn + O(1)157) = A; (¥n) +0(1)
for each 1 < j < dp. Hence

dp
@0+ O] = (%] +O(1) D 1@ /(). (5.14)
j=1

To obtain the order of magnitude of the \;(¥,,) we appeal to Theorem 8.1.3 (Gershgorin)
of Golub and Van Loan (2013). Since all entries of ¥,, are O(n), the same is true for
the lower and upper limits of each of the Gershgorin discs of W,,. Since each eigenvalue
of ¥, is inside at least one Gershgorin disc, we have A\;j(¥,) =O(n), 1 < j <dp. It
follows from this fact and (5.14) that

]xpn + 0(1)13@32] = || {1+ o(1)}.

In view of (5.13), the determinant of ‘I (Bo, BB, 02)} is proportional to a quantity with
leading term |¥,| as n — oo. Recalling that n; = nsd; and dividing through by ns
we can assert that approximate locally D-optimal designs, based on the exact leading
term behaviour of the determinant of the Fisher information matrix, are those which
maximize

) . 92-
. (Zékmkb"(ﬁo + 8Lz + U)>
E Z(Skail?rb”(ﬁo + ,Bg T + U) — k=l 3 , U~ N(O, 0'2),
k=l > ok (Bo + BE i+ U)
k=1

over the design weights d; and support points xg, 1 < k < s.

The following quantity can then be used to obtain asymptotic D-optimal designs:

s ®2
s <Z5kb”(5o + BLwy + U)$k>
S S E{Y (8o + Bl + U)}ad? — B =L (5.15)

k=1 Z(Skb”(ﬁo + Bgmk + U)
k=1
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where U ~ N(0,02). An equivalent integral form is:

dea: / b (8o + Bhak + u) exp{—u?/(202)} du
®2
/OO (Zékb”(ﬁo + BLxy + u)mk> exp{—u2/(202)} du |- (5.16)
B k=1
- > ok (Bo + Bhay + u)
k=1

5.3.7 Alternative Final Asymptotic D-optimality Criterion

Consider the matrix-valued function €2(u) given by

S mk‘
u) = okb"(Bo+ BE +u)
T T
k=1 Ly Tp
Then 5 s
> 0t (Bo+Bh+u) Y Sk (Bo+ Bf +u)
Qu) = k=1 b=t
> orxl b (Bo+ B +u) Y Spwraid”(Bo + BE +u)
k=1 k=1

and the lower right dg x dp block of Q(u)~!

-1

s ®2
(Zfskivkb"(ﬁo + B + U))

k=1

> okmrai b’ (Bo + B + u) —
k=1 > ok (Bo + B + u)

The inverse of this function is the function of u that is multiplied by exp{—u?/(20%)}
in the determinant of (5.16). Therefore, an alternative expression for (5.16) is

—1
[es} s 1 T —1
/ lower right d x d block of [ > 6xb" (8o + Bk + u)
—0o0 mf :ck:cf

k=1
x exp{—u?/(202%)} du

and is the form of the asymptotic D-optimality criterion presented in Theorem 13.
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5.3.8 Special Distribution Cases

Poisson Special Case

In the Poisson special case, b” = exp and therefore, we have,

b"(Bo + Bpwi + U) = exp(U + Bo) exp(Bpxs).

We can show that exp(U + f3p) comes out as a multiplicative factor in (5.15). This is the
only random factor in the expectation expression. Therefore, an equivalent D-optimality

s ®2
(Z&f eXP(ngk)‘I’k)
=1

criterion is

> bk exp(Bhmi ey’ — ; (5.17)
k=1 Zék exp(BLxy)
k=1
Define
s m%
A= Z S exp(BLxy)
T
k=1 L TRy
Then

Z&k exp(BLxy) Z5k exp(BLaxy)zl
A= k=1 k=1

Zék exp(BLxy) s, Zék exp(BLay)zy?
k=1 k=1

From the result concerning the determinant of a 2 x 2 block partitioned matrix, we
obtain

s ®2
(Z(Sk exp(,@gwk)xk>

k=1

> o exp(Bhai e — P
k=1 > “op exp(Bhay)

k=1

Al =

[zak expwz;m]

k=1

It follows that (5.17) is equivalent to

\A[/Z(Sk exp (BT xy,).
k=1

In other words, an equivalent asymptotic D-optimality criterion for Poisson mixed

models is
T
Li

) 6 exp(Bhs) o > o exp(Bhms).

k=1 Ty T k=1
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Note that, in the Poisson case, this means that the asymptotic locally D-optimal designs
do not depend on Sy or o2. They only depend on Bp. Also, for Poisson regression
models, the D-optimality criterion is

S T
T Lk

> 6k exp(Bhak) o
k=1 T mk

Therefore, asymptotic D-optimality for Poisson mixed models involves maximisation of
a quantity that is similar, but not identical, to that for Poisson regression models.

Logistic Special Case

In the logistic mixed model special case, after taking out multiplicative factors, the
quantity (5.16) becomes:

St [ oL u/eo) b
Pt k) oo1+ cosh(By + BLxy + u)

s ®2
. <Z(5ka:k/{1 + cosh(Bo + BLx, + u)}) exp{—u?/(202)} du

_/ k=1
—o

> 0k/{1 + cosh(Bo + Bhmk + u)}

k=1
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Chapter 6

Thouless-Anderson-Palmer
Enhancement of Generalized

Linear Mixed Models

Frequentist inference for GLMMs is hindered by integral intractability problems. In
machine learning contexts, Thouless-Anderson-Palmer approaches, highlighted in Sub-
section 1.11.1 in Chapter 1, can not only help overcome issues involving intractable
integrals but theoretically also provide better approximations. However, statistical
applications such as longitudinal data analysis and multilevel models analysis have not
been investigated at all. Therefore, in this chapter, the goal is to apply the Thouless-
Anderson-Palmer frequentist variational approach to generalized linear mixed models

with canonical links.

Firstly, the TAP enhancement approach is explained and we obtain a result detailing
the explicit form of the TAP approximate negative log-likelihood expression for GLMMs
with canonical links, which can then be locally minimized to obtain TAP estimates of

the true model parameters.

We then carry out simulation studies to investigate the use of the TAP enhancement
approach in practical settings and compare it to the popular Gaussian variational

approximation approach for simplified Poisson generalized linear mixed model set-ups.

This chapter is broken up into several parts. Section 6.1 details the model set-up
used throughout sections 6.2 to 6.4. Section 6.2 then provides an explicit expression
for the GVA log-likelihood. Following that, Section 6.3 provide details regarding the
TAP enhancement approach which builds on the GVA approach. An explicit result
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for the TAP negative approximate log-likelihood for GLMMs with canonical links is
then provided in Section 6.4. Lastly, Section 6.5 delves into two simulation studies
constructed for Poisson GLMMs and compares the quality of estimates obtained from
the TAP approach against the GVA approach.

6.1 Model Description

Consider the use of a simple canonical link generalized linear mixed model as follows

where

Yi;|Xij, Ui are independent having density function (4.1) with
natural parameter 58 + 6?Xij + U; such that the U; are independent (6.1)
N (O, (02)0> random variables.

Here, the values of (Xj;,Y;;) are observed for 1 < ¢ < m and 1 < j < n. We have
assumed that the X;; and U; are independent random variables. In addition, the X;;
are each assumed as having the same distribution as the random vector X. The U;
are the unobserved random effects variables and are assumed to be having the same

distribution as the random vector U.

Let B = (Bo, f1) be the vector of fixed parameters. Then the model parameters for
this set-up are (3, 02).

6.2 The Gaussian Variational Approximate Log-Likelihood

Using the model description in (6.1), one can then obtain £(3,0?), the conditional
log-likelihood of (3, 0?), where

£(8,0%) = 3. Y {¥i (Bo + BiXyy) + e(Yy)} — 5 log(2mo?)

i=1 j=1

m
+ Z log/
i=1

(e 9]
—00

: ; (6.2)

exp Z (Yiju — b(Bo + B1Xij +u)) — .

J=1

Maximum likelihood estimation is hindered due to the m intractable integrals arising in

the expression in (6.2). However, each of the m integrals can be re-written to overcome
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this obstacle by re-expressing the ith integral as follows (Hall et al., 2011)

- - u2 e_(1/2)(U—#i)2>\i/m
exp (Yiju — b(Bo + B1Xij +u)) — - - du
/oo ; ’ ! 202 [ e=(/2)(w=ni)*Xi [\ /27 \;
= /27N E; - VU —b X4 T U2 (Ui — pa)*
= TAi L, | €Xp Z(” i — b(Bo + 1 Xi; + Z))_202+T

j=1

where EUZ- denotes the expectation with respect to the random variable U; ~ N (1iy Ai)
with A; > 0, for 1 < i < m. Here, (i, A) are known as the variational parameters where
= (11, m) and X = (A1,..., Ay ). Using Jensen’s inequality, one can then obtain

the following lower bound

n

_ - U? UZ — Mg 2
log By, |expq (YijUi = b(Bo + £1Xi5 + Ui)) T2 T (2)\H)
j=1 Z
. - U2 (U — p)®
> Ep (D (YijUi —b(Bo + P1Xi; + Ui)) BT v
=1 l

which is now tractable. Then, the Gaussian variational approximation to (3, c?) is

derived as,
ﬁGVA(ﬁ? 027 22 A)

= Z Z{K:j(ﬁo + 51X55) + c(Yij)} — % log(270?) + Z log(\/27\;)

i=1 j=1 i=1
m n _ B 01'2 (Ul o Hi)2
+ ZEU«; Z <Y;]Uz - b(BO + BlXij + UZ)) - 952 + 72)\' (6 3)
=1 ]:1 ) .
=> By (> {Yij(ﬁo + B1Xij + Ui) = b(Bo + 51 Xi5 + Ui) + C(Yij)}
i=1 j=1
Uz o1 N
— 55— 5 los(2mo?)| + 5 ;{1 + log(27\)} -
Note that

6(167 02) Z EGVA(B? 027 M, A)

for all vectors p and A.
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6.3 Overview of Thouless-Anderson-Palmer Enhancement

In this section, we provide details on how the TAP enhancement approach builds upon

the GVA approach. Firstly, for each 1 < i < m, define the following data vectors:
}fi = (Ygl, e va) and Xz = (Xily .. in) .

The GVA negative log-likelihood can then be expressed as follows (Johnstone, 2022)

1 — = -
—Lava(By % i, A) = 3 > {1 +log(2mA)} + > By, {‘l’i(Ui)\Yz‘,Xi} ;
i=1 i=1

where
B n _ B 012 1 )
U(U) =) {—Yij(ﬁo + 61X55 + Ui) +b(Bo + B1.Xi5 + Ui) — C(Yz‘j)} to,213 log(270”).
=1

The TAP enhancement approach theoretically obtains better approximations than the
GVA approach by enhancing the expression in —fgya (3,02, i, A) through the addition
of the Onsager’s correction term to —fqya (3,02, , A), which was first introduced in

Thouless et al. (1977). The Onsager’s correction term is defined as follows

—-1/2 Z& (1is Mis X4, Y5, Bo, Br, 0%)

=1

with
& (i, i3 Yi, X, Bo, B, %)

~ N 2 (6.4)
= Var{0;(T;)|Y;, Xi} — \i [E{\Ilg(Ui)\Y;, Xi}]

22

~ 2
- S B )IY, X

where (6.4) was obtained based on personal communication with Professor Song Mei
(University of California, Berkeley, U.S.A) and Professor lain Johnstone (Stanford
University, U.S.A). They derived a working expression for the main quantity in the

Onsager’s correction term for density functions from exponential families.
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Following that, the TAP approximate negative log-likelihood can be obtained as,
1 m
—Lrap(B,0°, 1, A) = —Laya (B, 0%, 1, A) — 3 Z§i (1, Mi3 X3, Y5, Bo, B, 07)

:—72{1+log27r)\ }—l—ZE{ |Y17X}

(6.5)
- 2
-z Z <Var{w IYe Xi} = A [B{W(05)|Y:, X}
A2 1
-5 [Bter @y, x| )
Now define " "
Yie = ZY;;J- and  A;(0;) = Zb(ﬂo + (11X + U;).
j=1 j=1
Then, we can re-express \IIZ(Uz) as
\I,’L(U’L) = - Zng(ﬂo + ﬂlXZ] + U + -A ZC z] 2 2 lOg(Qﬂ'O’ )
j=1 j=1
It follows that ~
. -0
and )
W0 = AT +

Also note that

n

Z (Bo+ A1Xiyj +U;) and  AY(U;) =Y b"(Bo + B1Xij + Uy).

j=1

6.4 The Thouless-Anderson-Palmer Approximate Nega-
tive Log-Likelihood

In this section, we present a result detailing the Thouless-Anderson-Palmer approximate
negative log-likelihood expression for canonical link GLMMs after having solved for the
equation in (6.5). First, for p,q € {0,1,2},7 > 0 and s,t € R, define

00 2
Q(p,q,r,s,t) = (271)1/2/ (s + rz)Pb\D (t 4+ rz) exp <_532> dx. (6.6)
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Also, for r > 0 and s,t € R, define

2

R(r,s,t) = (2m)"1/? /OO b(s +ra)b(t + ra)exp (-a;) dz. (6.7)

—o
We then have the following result.
Result 2. Consider the model set-up as in (6.1). Then the Thouless-Anderson-Palmer
approrimate negative likelihood is

1 m
_gTAP(ﬁ7U2Jp’7 A) = _EGVA(I@7027M‘7A) - 5 Zfz (Nza Ai;Xia}/’;aﬁ()thaz) ’
=1

where

m

EGVA(ﬁaaza M, >‘) = ZEﬁl

n

S {Yid(Bo + 81 X5+ Ti) = b(Bo + 51 Xij + Ui) + e(¥ig) }

i=1 j=1
Uz o1 ) 1 &
~ 5.3 5 los2ma®) | + 5 Zl {1+ log(27);)}

and
& (i, M3 Yi, X5, Bo, B1,07)

- Ai + pd
= Z 2Yiepti — 5 Q(0,0, v/ Ai, i, Bo + B1Xij + pi)
=1

g
+ 2\ (Yi. — %) Q(0, 1, v/ N, i, Bo + B1Xij + i)
—2Y;0O(1,0, v/ N, i, Bo + B Xij + i)
_ 2122 (0,2, v/ N, i Bo + 1 Xij + i) + %Q(Q, 0, v/ Ais 1, Bo + B1Xij + pi)
— (0,0, v/ Ai, i, Bo + B1Xij + i) — XiQ(0,1, v/ i i, Bo + B1Xij + i)’

22
- ?Z (0,2, v/, i, Bo + B1Xij + p1)?

+ Z R(VNi, Bo + BiXej + i, Bo + B1Xij + m’)}-

=1

The proof for Result 2 is provided in the appendix under Subsection 6.6.1.



6.5. THOULESS-ANDERSON-PALMER ENHANCEMENT FOR POISSON
GENERALIZED LINEAR MIXED MODELS 175

6.5 Thouless-Anderson-Palmer Enhancement for Poisson
Generalized Linear Mixed Models

In the Poisson case, when b(x) = exp(z), Q(p,q,7,s,t) and R(r,s,t) admit exact
expressions when evaluating Result 2. However, for general b functions, numerical
integration is required for evaluating (6.6) and (6.7). Hence in this section, we work
with a Poisson generalized linear mixed model and capitalize on having exact expressions

to work with. Here we consider the model set-up of Hall et al. (2011) where

Yi;|Xi;, Ui independent Poisson with mean exp(BY + B?Xij +U,),

(6.8)
such that the U; are independent N (0, (0)°).

In Subsection 6.5.1, we detail the expression for the Gaussian variational approximate
log-likelihood for the model set-up in (6.8). Similarly, in Subsection 6.5.2, the expression
for the Thouless-Anderson-Palmer approximate negative log-likelihood is presented.
Subsection 6.5.3 moves on to study the optimisation issues present when using the
TAP approach by exploring a simpler version of the set-up in (6.8) with m = 1. Lastly,
in Subsection 6.5.4, a full simulation study is carried out to assess and compare the
accuracy of the estimates of the model parameters across the GVA and TAP approaches

for the model set-up in (6.8).

6.5.1 The Gaussian Variational Approximate Log-Likelihood for Sim-
ulation Set-Up

Substituting b(z) = exp(z) and ¢(z) = —log(z!) into (7.7), the Gaussian variational
approximate log-likelihood for the model set-up in (6.8) is

Lova(B, 0%, ) = Z Eg, Z {Yz’j(ﬂo + B1Xij + U;) — eforPutl log(Yl-j!)}
i=1 j=1
Uz o1 5 1
— 5l — 5 log(2mo?) | + 2;{1 + log(2mA;)}

m n
. o1y
=> > {Ym’(ﬁo + B X + i) — €B°+61X”+’“+2AZ}

i=1 j=1

m 2 m
_ ; e LG B ;log(/\i) +C,
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with vectors p = (p1,...,m) and A = (A1,..., Ay) as the variational parameters.
Also, note that C' denotes the constant term independent of any model or variational

parameters.

6.5.2 The Thouless-Anderson-Palmer Negative Approximate Log-
Likelihood for Simulation Set-Up

We start out with the following result:

Result 3. Consider the model set-up as in (6.8). Then the Onsager’s correction term

in the Thouless-Anderson-Palmer negative approximate likelihood is

1 m
—3 Zfi (1i, Mis X4, Y5, Bo, Br, o)
=1
2

1 & 1 n
=3 Z {exp()\i) —1-X- 2)\?} exp(2ui + A;) Zexp(ﬂo + B1Xij)
i=1 =

The details for the derivations leading to Result 3 is in the appendix under Subsection
6.6.3. By using Results 2 and 3 together, we have that the TAP negative approximate
log-likelihood for the model set-up in (6.8) is

- ETAP(B7U2a M, A)

i=1j

13 +
202

L. L1y - /\i m
{—Yij(ﬁo + B1Xij + i) + eﬁ°+ﬁlx”+‘“+é’\"} +)° +5 log(o?)
1 i=1

m

2
_ %Zlog()\i) — %Z {exp()\i) —1=X\ - ;)\?} exp(2u; + ;) {Zexp(ﬁo + 51Xij)}
i=1 i=1 j=1

+C,

where C' denotes a constant term independent of any model or variational parameters.

6.5.3 Optimisation Issues

In this section, we look into the problem of obtaining a local minimum for the Thouless-
Anderson-Palmer approximate negative log-likelihood. We have chosen to focus on a
simplified version of the model set-up in (6.8) to highlight the optimisation problems

encountered.
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6.5.3.1 A Simplified Version of the Optimisation Problem

First, consider the case where

2 2
B1 =0, 0°=0feqs m=1

This situation corresponds to the following simplified Poisson mixed model:
Y1;|U1 ~ Poisson (eﬁOJrUl) , 1<j<n, U~ N(0,08.q) (6.9)

It follows that in this case, the Thouless-Anderson-Palmer approximate negative log-

likelihood can be simplified to

n 2
1 +A 1
—Lyap(Bos 1, M) = —(Bo + 1) Y Yij + nefotmtadn M21 — — 5 log(A1)
j=1 Ofixed
1 1.5] o
—3 exp(A1) —1— A1 — R exp (21 + A1+ 260) + C
where C' denotes a constant term independent of any model or variational parameters.

To facilitate the optimization process, we compute the partial derivatives required
for minimising the Thouless-Anderson-Palmer approximate negative log-likelihood. The
first order partial derivatives are as follows:

—0lrap (507 H1, A (
E Y, +nex + w1 + )\
960 p j p | Bo H1

1
-n {exp()q) —1-X - 5)& exp(2u1 + A1 + 280),

_|_

—o0 s 11, A L
Lrap (Bos 1 1) ZY” + nexp (/30 +pr+ M

8/141 j=1 2 Uhxcd
1
—n? {exp()q) —1—=X - 2)\?} exp(2p1 + A1 +26p) and
—0lpap(Bo, 1, A1) 1 1 1 1
— A - =
N 5 &P (fo+ i+ 5A )+ 207

2
n
-5 {exp(A1) =1 — A1} exp(2u1 + A1+ 200)

n? 1
-y {exp()\l) —1—=X - 2/\%} exp(2u1 + A1 + 260)
n 1 1 1
== A - =
5 &P (ﬂo +p1+ 5 1) + 202 . 2N

2 1
- % {2 exp(A1) —2 —2X; — 2)&} exp(2p1 + A1 + 26o).
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Next, the second order partial derivatives in the diagonal of the Hessian matrix are as

follows:

—0Lrap(Bo, p1, A1)
o83

1
= nexp <ﬁo + 1+ 2/\1>

1
— 2n? {exp()\l) —1—-X - 2)\%} exp(2u1 + A1+ 20o),

1 1
= nexp (/80 + p1 + >\1> + —5
2 Ofixed

—0lrpp(Bos pi1, A1)
ot

1
_on2 {exp()\l) - 2)\%} exp(2u1 + A\ +26p) and

1
N2

—O0lrap(Bo, w1, A1) n 1
N2 =P (Botmtgh )+
2

1
) {46XP()\1) —4-3\ — 2)\%} exp(2u1 + A1 + 200).

Lastly, the second order partial derivatives in the off-diagonals of the Hessian matrix

are as follows:

—0lrpap(Bos pi1, A1)
B0

1
= nexp <Bo + p1 + 2/\1>

1
— 2n? {exp()\l) —1—X - QA%} exp(2m + M+ 250),

—0lrap(Bo, pi1, A1)
0Bo0A

n 1
= 5 &Xp (ﬁo + A1>

—n? {2 exp(A1) — 2 — 2\ — )\1} exp(2u1 + A1 +268p) and

—0Lrap(Bo, pi1, A1)
010X

n
=5 exp <ﬁo + p1 + >\1>

—n? {2 exp(A1) —2—2A; — f)\ }exp(2u1 + A1+ 206p).

6.5.3.2 Simplified Simulation Study

A simplified simulation study with the model set-up in (6.9) was run with the following

settings where
ﬁg =—0.2, 0Ofxeda =03, and n =20

with 10000 replications. The search for a local minimiser of —fpap (5o, 11, A1) in a three-
dimensional space can be challenging. Hence, we use the following strategy involving

the optim() function in R:
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1. First, initialise values for (o, 11, A\1)-

2. Next, based on the initial values specified in (1), carry out a large number of

Nelder-Mead iterations, via optim(), to search for a local minimiser of

—Lrap(Bo, 1, A1)-

3. Lastly, use the results from step 2 to obtain starting values for the Broyden-
Fletcher-Goldberg- Shanno quasi-Newton approach, via optim(), to improve on

the result from implementing step 2.

Whilst this strategy may seem reasonable, it turns out that it is prone to erratic
behaviour if the initial value in step 1 is a poor choice. For the simplified model set-up
in (6.9), the expressions for the partial derivatives can be analysed to develop stationary

point equations and determine suitable starting values.

6.5.3.3 Results and Conclusion

Gaussian Variational Approximation
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Figure 6.1: Histograms of the Gaussian variational approximation estimates of 5y and
the Thouless-Anderson-Palmer enhancement estimates of Jy.



6.5. THOULESS-ANDERSON-PALMER ENHANCEMENT FOR POISSON
GENERALIZED LINEAR MIXED MODELS 180

After having found finite local minima of the Thouless-Anderson-Palmer approximate
log-likelihood surface for this simulation study, the estimates of 5y were gathered from
implementing both the GVA and TAP approaches. Figure 6.1 displays the histograms of
the estimates of By obtained from the GVA approach and TAP enhancement approach.
Note that the vertical red line is situated at the true value of 8§ = —0.2. We see that

for both approximation approaches, the estimates are distributed about the true value.

We then computed the absolute error values for the estimates. For a generic estimate

B(], the absolute error is computed as
B0 — B3-

Applying this definition to the vectors of the estimates of 5y obtained from both the
GVA and TAP enhancement approaches, we obtain vectors of the GVA absolute errors
and the TAP enhancement absolute errors of length 10000 each. Next, we obtained the

pairwise differences with ordering as follows:
Pairwise difference = (TAP enhancement absolute error) — (GVA absolute error).

Figure 6.2 shows a histogram of the pairwise differences.

Density
15000 20000 25000
1 1 |

10000
1
|

5000

mmﬂﬂ H

I T T T T T 1
-0.00012 -0.00010 -0.00008 -0.00006 -0.00004 -0.00002 0.00000 0.00002
(TAP absolute error) — (GVA absolute error)

0

Figure 6.2: Histogram of the pairwise differences between the TAP enhancement absolute
errors and GVA absolute errors.
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Figure 6.2 suggests a statistically significant improvement due to using the TAP
enhancement. However, the improvement seems to be quite slight from a practical
standpoint. On the positive side, the results from this simulation study shows that with
some care it is possible to get estimates of Poisson mixed model parameters that are
improved by the TAP enhancement. On the negative side, the numerical problem is quite
challenging even for the m = 1 and o2 = UfQixed case. In the more practically relevant
case where m is in the hundreds and o? is estimated instead of being fixed, obtaining
local minima for the Thouless-Anderson-Palmer approximate negative log-likelihood

could be quite challenging. We will investigate this further in the next subsection.

6.5.4 Simulation Study

A full simulation study was run to investigate and compare the accuracy of approxima-
tions from the GVA approach and the TAP enhancement approach. In this simulation
study, a Poisson linear mixed model was used following the set-up in (6.8). The values
for the true parameter vector (33, 37, (6%)°) were chosen from the following possible set

of pre-determined values
{(-0.3,0.2,0.5), (2.2,-0.1,0.16),(1.2,0.4,0.1), (0.02,1.3, 1), (—0.3,0.2,0.1) } .

and the distribution of the X;; was taken to be either N(0,1) or Uniform (—1,1). The
number of groups in the simulated data, m, varied over the set {100,200, ...,1000}
and the number of observations present within each group, n, was fixed at m/10. 100
replications were simulated for every possible combination of the true parameter vector,
chosen X;; distribution and value of (m,n) pair. For each sample, estimates for the true
parameter vector (33, 87, (62)°), were obtained using similar steps to those outlined in
Section 6.5.3.2 for the TAP enhancement approach. Estimates for (53, 8, (62)°) via the
GVA approach were also obtained. For generic estimates Bo, Bl and &2, their absolute

error values were computed as
Bo =551, 1B —Bi| and |52 — (a%)°]

respectively. Applying this definition to the vectors of the estimates of Sy, 1 and o2
obtained from both the GVA and TAP enhancement approaches, we obtain vectors
of the GVA absolute errors and the TAP enhancement absolute errors of length 100

each. Like in the previous simulation study, we obtained the pairwise differences with
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ordering as follows:
Pairwise difference = (TAP enhancement absolute error) — (GVA absolute error).

Grouped boxplots for each model parameter were then produced to graphically demon-

strate the mean and spread for each vector of pairwise differences.

(83, B, (69)°) =(=3,2,.5) (B, BY. (69)°) =(=3,2,.5)
X; ~N(0, 1) X; ~ Uniform(-1, 1)
0.001 |
0.000
-0.001 | ‘
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Figure 6.3: Grouped boxplots representing the pairwise difference in absolute errors
(TAP enhancement absolute error - GVA absolute error) in estimating fy. The values
of m are 100, 200,..., 1000 while the value of n is fixed at m/10.

Figure 6.3 shows that for values of m in the lower hundreds, if there is a difference in

accuracy in estimating Sy between the GVA approach and TAP enhancement approach,
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the TAP enhancement approach seems to give slightly better estimates in most of
those cases. There seems to be a more significant improvement when the true value
Y is close to 0 coupled with a large (02)? value. However, as the value of m increases,
the difference in absolute errors between the TAP enhancement approach and GVA

approach diminishes.

Inspection of Figure 6.4 reveals almost no observable difference in the accuracy of
estimates of 1 between the GVA approach and TAP enhancement approach, for all

values of m.
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Figure 6.4: Grouped boxplots representing the pairwise difference in absolute errors
(TAP enhancement absolute error - GVA absolute error) in estimating 8;. The values
of m are 100, 200,. .., 1000 while the value of n is fixed at m/10.
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Figure 6.5: Grouped boxplots representing the pairwise difference in absolute errors
(TAP enhancement absolute error - GVA absolute error) in estimating o2. The values
of m are 100, 200,..., 1000 while the value of n is fixed at m/10.

In Figure 6.5, for values of m in the lower hundreds, there are 6 subplots where

a visible difference in the accuracy in estimating 02 between the GVA approach and

TAP enhancement approach is present. The TAP enhancement approach seems to give

slightly better estimates in 4 out of 6 such cases. In contrast to Figure 6.3, the TAP

estimates are worse when the true value 3 is close to 0 coupled with a large (02)? value.

Once again, as the value of m increases, there is no significant difference in the absolute

errors between the TAP enhancement approach and GVA approach.
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To conclude, the Thouless-Anderson-Palmer enhancement approach suggests a slight
yet statistically significant improvement as compared to using the Gaussian variational
approximation approach for small datasets (m < 200). However, although the TAP
estimates for 58 fare better than the GVA estimates when the true value 68 is close to
0 coupled with a large (02)? value, that is not the case for the TAP estimates of (02)°.
It is also worth exploring how the TAP approach performs against the GVA approach
for generalized linear mixed models with response distributions other than the Poisson

family.

6.6 Appendix

6.6.1 Proof of Result 2

This appendix contains the details for the derivations leading up to Result 2.

6.6.1.1 Main Quantity in Onsager’s Correction Term

Note that the main quantity in the Onsager’s correction term is
& (i, M; i, X, Bo, B1,0°)
22

- ~ 2 ~ 2
= Var{W,(00)|¥:. X3} - X [ BAWLO)| Y X3} | = 5 [ E(W/(0)]Y: X3

(6.10)

This quantity consists of three terms which we will work with in the next three subsub-
sections.

6.6.1.2 An Explicit Expression for the First Term in (6.10)

In this subsubsection, we find an explicit expression for Var{\Ili(f]i)\Y;, X;}. Firstly,

note that
Y, X i)

U? - 2 . N
= Var 27’ — Y. U;|Y;, X; | +2Cov L —Y; Ui,Ai(Ui)

U2 . .
= Var | 25— YV, U; + Ai(0;
ar | o5 + A(U;)

Y Xi).

1@
o2 202

K’ Xi> + Var (AZ(Uz)

Now we treat each term in the expression for Var{®;(U;)|Y;, X;} individually.
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72 ~
Treatment of the Var (2[% —Y.U;

Y;, XZ) Term

We first obtain an expression for
Var(aU? + bU; + ¢) = Var(aU? + bUj;)

for general a, b, ¢ € R. Then, note that

. N 2
varg, (0F) = £ (0¢) - {2 (77)}
= (ui + 6N +307) — (uF + Xi)°
=207 +4u? )
= 2)\1(2/% + )\z)
and o . . 3
Covy, (U, UF) = E (UE) _E (U) E (UE)
= (i + 3pai) — (i) (1 + M)
Then we have
Var(aU? + bU;) = aVar(U?) + 2abCov (U2, U;) + b2Var(U;)
=202\ (202 + ;) + dabX;p; + 62N
= 4a2)\m? + 20.2)\? + dab;u; + b2\,
Setting
1
a= ﬁ and b= — 'L.,
we get

+ Xi(Yie)% (6.11)

U2 2)\zu + )\2 2}/1'.)\7;[1,2‘
Var (2 Y;.U Y;,X) 210_4 2

Treatment of the 2Cov < — Y5 Uy, Ai(U;)

Y., X,-) Term

Next, we obtain an expression for
COV(aU + 6U;, Ai (U DY, X)) = aCOV(U Ai(U)Y;, X;) + bCov(U;, A (U )Y, X))

for general a,b € R. Next note that, for k € {1,2},

cov(U AT )m,x>

_Zcov( (o + B1 Xis + U)X )

= Z E (ka(ﬂo + B1Xij + Uz‘)|Xz‘) — BE(U}) Z E (b(ﬁo + f1Xi; + 01‘)IX¢) :

j=1 j=1
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Therefore,

I
[
&=
Qt
=
S
+
o
>
+
&
>
N
-
~—
=
S
+
RS
>
+
=
>
N~—

and

]

Qw(UanmnXg

= ZE UZb(Bo + B1Xij + Ui)|Xi) — (N + ) ZE (b(ﬁo + f1Xi; + Ui)|Xi) .
j=1 J=1

It follows from these results that

Cov(aU? + bU;, A;(U;)]Y;, X)

_2aZE<U2 (Bo+61XU+U)]X) +2bZE( 50+51X,j+U)|X)

7j=1
—2{a(\ + 12) +buZ}ZE( ,Bo+,6’1XZ]+U)\X>
7j=1
Setting
1
a = @ and b= 1.,
we obtain

72
2QW<U YT, (D)
202

E7X1>

= % Z E (Uizb(ﬁo + /1 X + Ui)\Xz‘) —2Ye Z E (Uib(ﬁo + /1 X + f]z‘)\Xi)
=1 =1

NEAR . =
+ (2}/;.,1% - 02'UJ ) ZE (b(ﬁo + 61Xij + Ul)|Xz> .
j=1

(6.12)
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Treatment of the Var (AZ(Ul)

Yi,Xi) Term

It follows that

Var (Al(ﬁl)

= Var (Z b(Bo + B1Xij + Uz) i)
=1

Y., X; )

n

= ZV&I‘ (b(ﬂo + ﬂlXij + Uz)|X1) + ZCOV (b(ﬁo + BlXij + Ul)a b(ﬁO + BlXij’ + ﬁ?)|X1)

j=1 J#3’
x)}

:ZE( (B + 1 X5 + U2|) — i{ E (b(8o + A1 X5+ 03)| X

J=1

+ ZE (b(ﬁo + B X + U)b(Bo + Br X + Ui)|Xi>
J#5’

= > { B (080 + 8155 + T:)1X:) B (080 + 51 Xz + 00)I X }
J#3’

The previous expression then simplifies to

iE (b(ﬂo + B1Xij + f]i)2’Xl> M E ( (Bo + B1Xij + Us)b(Bo + Br Xy + Uz‘)\Xz‘)
j=1 J#3’
2
)}

The Resultant Var{V;(U;)|Y;, X;} Expression

(6.13)

{ZE( ﬁ0+ﬂ1X1]+U)

Putting together the expressions from (6.11), (6.12) and (6.13), we have

2P+ A7 2Vl i 1
- B 7 T A 7

Zn: (U b/60+ﬂ1X”+U)|X>

204 o

2Yioi ( ﬁ0+51X1]+U)|X)
j=1

+ <2Y¢.ui A ) ZE( 0+ B1Xij + Uz‘)|Xz')

Z (ﬁowlxmw | X.) + SE (6o + 51.X; + U)b(Bo + Bi Xy + U)X
J#3’

0}

{Z ( ﬁ0+ﬁ1XU+U)
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However, note that,
ZE( Bo+ Bi Xy + U2 X)) + DB (0080 + B X + Ub(Bo + Bu Xy + U)IX:)
J#7

_ZZE( (B + 61 X35 + Di)b(Bo + b1 Xiyr + 0)| X )

)

Jj=1j'=1
Therefore,
Var{¥;(U,)|Y;, X}
- DN Piehi Z (2680 + 51, + D10
7)1X:) + (am.ui - “2“2) 5B (460 + 51X, + )
o =
2
)}

(Ub Bo + 61 Xi; +Us)
{ZE( 60+61XZ]+U)

—QK.iE
j=1
303 B (680 + 81X + Us)b(Bo + B Xy + 0)| X )

1

Jj=1j

6.6.1.3 An Explicit Expression for the Second Term in (6.10)

QM‘SI

In this subsubsection, we find an explicit expression for —X; | E{¥(0;)|Y;, X; }]

First note that
{(Ui) = —Yie + Ai(U))

Hence,
E{W(0)Y;, Xi} = ~Yie + 3 B (V(Bo+ 12Xy + D) X;) + 25

j=1
Then we have,
2
! (1T 2 = ~ 1273
_>‘i E{\I’z(UZ)thXZ} :)\i —Yie + E(b ﬁo—l-ﬁlXij-f—Ui)‘X)—l—ﬁ
j=1
2
=\ NGB (VB0 + 51X + U)X
j=1
A ~
_ Nz+2/\Y E (V0 + 515 + Up)|X:)
7j=1
2Yzo>\z 1 2 1\ -
i “ ZE(b’Bg—FﬁlX”qLU)\X)
j=1

o2



6.6. APPENDIX 190

6.6.1.4 An Explicit Expression for the Third Term in (6.10)

In this subsubsection, we find an explicit expression for —/\—2 [E{\I’” (Uy)|Y:, X; } . Note

that 1
\I/”( ) A//( ) + .

Therefore,
1
" //
E{W/(0)|Yi, X} = JZlE(b (Bo+ Xy + U)X +
Following that, we have,
2
)\2 " >\12 u /! 1
5 [etwi@ )|Y,,X}} -S| X b ,80+51XU+U)\X> 5
j= 1
P :
=5 S E (VB0 + 51X + U)X )
7j=1
)\Z2 & b// X 2
_JQ;E (Bo+ BiXes +00)|1X:) = 25

6.6.1.5 The Resultant Expression for the Main Quantity in the Onsager’s
Correction Term

Based on the results from the previous three subsections, we have the following
& (1i, My Y3, X3, Bo, B, 02)

202 + 27 2V e RN 2p
= T —22 (U Bo+61XzJ+U)|X)

n _ B + 2 n
—2Yia > B (Oib(Bo + BrXi; + U0 X)) + (2Yi.m i ) > E (80 + 81X + 0)IX;
j=1 Jj=1

Ai(Yie)?

M:

+ 3257 B (b(Bo + BiXi; + Ua)b(Bo + 1 Xyr + 0)|X,) — {Z E (b(Bo + B1Xs5

1j/=1 =1

<.

J

2}/zo>\zﬂz

2
Z (b/ /BOJFBlXZJ +U)X)} - )\’“ul +2>\ }/zo {ZE<b/(60 +ﬁ1XZ] +U )lX } +—

j=1

2
n 2 n
- s {ZE (b (B0 + B1.Xi; + U)X )} — b3 (ZE (b (B0 + 15 + Ui)|Xi)>

j=1 j=1

2 n
% Z <b//(/30 + B1Xij + UZ)|X1> }
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By simplifying this expression further, we have,
&i (Mz', )\z';YE,Xi,ﬁo,ﬁl,UQ)

> ZE (U2 Bo + B1Xi; + U3)| X ) ~ .Y E (Uib(ﬁo +B1X + Ui)yxlj
j=1

Ai + 12 - -
+ <2Y2.ui - UQM > > E (b(ﬁo + B1Xi; + Uz’)|Xi)
i=1

+ Z Z E (b(ﬁo + B1Xij + U)b(Bo + B1 Xy + Ui)|Xi)

J=1j—1
2
> } -\ {Z E (b/(ﬁo + A1 X5 + Ui)‘Xz) }
=1

{ZE< (Bo + L1 Xy + Us) | X
+ 2\ (YE. - %) EH:E (b/(ﬁo + (1.Xij + f]z‘)|Xi)
=1

2

2
2 N ~
ZE (b" Bo + BLXij + U)| X ) - % S E (b”(ﬁo +BIXG + Ui)\XZ) .

j=1 j=1

)\2

For any n x 1 random vector X; = (X;1,..., X;,) and p,q € Z*, define

B(p. q, Bos Br, pis Xiy Xi) ZE (U”b (Bo + B1Xi; + U)X, )
for 1 <4 < m. Also define

C(Bo, B, pin X, Xi) =Y Y (b(ﬂo + B1Xij + Ui)b(Bo + B1 Xy + Ui)|Xi> ;
=1 =1

for 1 <4 < m. We then have

& (1> M3 Yi, X, Bo, B, 07)

Ai + p?
- <2Y;0Mz - O_QILL’L > B(Oa 07 607/817lu’ia Aiv XZ)
+ 2)\ (ifzo - MZ) (07 17507/817/1’27>\17X) 2}/7:08(1707/807/817Mi7)‘i7-xi)
)\2 o’ (6.14)

(0 2 /807517N17A2,X ) + §8(230750>B1a/‘6i7)‘iaxi)
- B(O 0, Bo, B1, iy \is Xi)* — NiB(0, 1, Bo, Br, i, Aiy Xi)?

)\2
(07 2, 607 517 His )‘17 X ) + 0(607 617 My )‘i7 X’L)
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6.6.2 Expressing the Main Quantity in the Onsager’s Correction Term
Using Integral Families

The aim of this final section in this appendix is to obtain an expression for the quantity
& (,ui, A3 Y, X5, Bo, B, 02) that does not involve any expectation operators. Rather, we
use specially tailored families of integrals for the desired expressions.

We first define the integral family definitions that we will work with. For p,q €
{0,1,2},7 > 0 and s,t € R, define

00 2
Q(p,q,r,s,t) = (2#)1/2/ (s +rz)Pb\D (t + ra) exp (—2) dx. (6.15)
Also, for r > 0 and s,t € R, define
) 2
R(r,s,t) = (2m) "1/ / b(s + rx)b(t + rx)exp (—2) dx. (6.16)

In the Poisson special case, since b(x) = exp(x), Q(p, q,7, s,t) and R(r, s,t) admit exact
expressions. However, for general b functions, we are stuck with expressions as in (6.15)
and (6.16). Thus, numerical integration is required for evaluation purposes. Then note
that in (6.14),

B(p, q, Bo, B, i, i, Xi)

_ZE<U% (Bo + B1.X; —I—U)]X)
= Z /_OO uPH@ (Bo + L1 X35 + u)(QW)\i)—l/z exp { (u;)\/:l)} "

2
_Zzw 1/2/ (i + VXiz)PbD(Bo + B1 X5 + i + VAi2) exp<—22>dz

= Z Q(p, q, V Nis i, Bo + P1Xij + pi)-
Also note that
(ﬁ()aBla/*Liv)\i?Xi)
= ZE ( (Bo + B1Xi; + U)b(Bo + B1Xij + Ui)|Xi)

2
—ZZ/ b(Bo + L1 Xi; +w)b(Bo + L1 Xij +u)(2mA;) ™ 1/2exp{ (Z)fjl)}du

Jj=1j5'=1

= Z Z 27T 1/2/ (60 + 61Xz] + i + \/72: /80 + Ble] + i + \/72

Jj=1j'=1

2
X exp (—;) dz

= Z Z R(\/A»u Bo + B1Xij + i, Bo + B1Xijr + pa).

i=15=1
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Hence, the final expression for &; (,u,i, A Y, X, Bo, B, 02) used in Result 2 is as follows
& (wis Nis Y, Xi, Bo, B1,0?)

" A+ 12
= Z { <2Yioﬂi — UQ'M > Q(0,0, v/ i, i, Bo + B1Xij + i)

Jj=1

+2); (Yio - %) Q(0, 1,/ A, i, Bo + B1Xij + 1)
- QY;'Q(L 07 V )\ivuivﬁo + BIX’Lj + /J/Z)

A2 1
- U*ZQ (0,2, v/ Ni, iy Bo + P1Xij + 1) + pQ(Q, 0, v/ i, i, Bo + B1Xij + ps)

— (0,0, v/ N, i, Bo + BrXij + i) — XiQ(0, 1, v/ N, i, Bo + BrXij + i)

\2
- EZ (0727 \% Ais iy Bo + BlXij + ,Ui)2

+Y RN, Bo + Bi1Xij + i, Bo + 51 Xij +,U'i)}~
=1

i'=

6.6.3 Proof of Result 3

This appendix contains the details leading to Result 3. In the Poisson case, b(z) = exp(z).
Hence for p,q € {0,1,2}, each term in (6.14) can be simplified greatly, leading to a
reduced expression for &; (,ui, 2 Y, X, Bo, B, 02) .

6.6.3.1 Simplifications in Poisson Case

When p =0,q € {0, 1,2},

3

B(Ov q, BO? ﬁb Hi, )\’L'a Xl) = E (b(q) (BO + BIXU + f]l)|X1)
7=1

M-

—_

E {exp(ﬁo + /1 X + Ui)|Xi}
=

=E {exp(Ui)} zn: exp(Bo + B1Xi5)

j=1

(6.17)

1 n
= exp(p; + 5/\0 ]; exp(fBo + B1Xij).
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When p=1,¢ =0,

B(1,0, 8o, B1, i Ni» Xi) = Y _E (Uib(ﬂo + B1Xij + Ui)\Xi)
i=1

= Z FE {ﬁ, exp(ﬂo + ,BlXij + 0Z)|X,}
j=1

= {UZ eXp(Ui)} zn: exp(Bo + Ble'j)

Jj=1

(6.18)

1 n
= (i + M) exp(pi + M) Y exp(Bo + FrX).
j=1

When p=2,¢=0,

6(2? 07 607517,U/ia Ai; Xz) = ZE

e

UZb(Bo + B1Xij + Uz‘)\Xz)

— Z E { 72 exp(Bo + B1Xi; + 0@')|Xi}
) (6.19)
=F {UE exp(Ui)} Z exp(Bo + B1Xi;5)
j=1

= it G+ 207} oo+ 500 D exp(Bo + r i),
j=1

Substituting (6.17), (6.18) and (6.19) into (6.14), several terms cancel with each other
and we have

& (i, \is Yi, X3, Bo, B1, %)
2

n 6.20
= {exp()\i) —1-XN— ;)\f} exp(2ui + Ai) § > exp(Bo + B1Xij) p (0:20)
j=1

leading to Result 3.
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Chapter 7

Extensions to Noncanonical Link
Generalized Linear Mixed Models

In some situations, for a better data fit, using a noncanonical link might be beneficial
over using a canonical link. To cater for these situations, we present an extension of
the asymptotic normality results derived in Chapter 4 for generalized linear mixed
models with noncanonical links. Thus, this chapter presents the final asymptotic
normality theorem in this thesis, that concerns the joint asymptotic normality of all
of the maximum quasi-likelihood estimators for a generalized linear mixed model with
noncanonical links. As in Chapter 4, it elegantly shows faster rates of convergence for
fixed effects that are not accompanied by a random effect compared to fixed effects that

have a partnering random effect.

Finally, to wrap up the thesis, we build on the theory presented in Chapter 6 and
present some details concerning the Thouless-Palmer-Anderson enhancement approach
for improving statistical inference for generalized linear mixed models when noncanonical

links are involved.

This chapter starts off by providing asymptotic normality results concerning general-
ized linear mixed models with noncanonical links in Section 7.1. Section 7.1.1 presents
the model being used while Section 7.1.2 presents the notation required for the asymp-
totic normality theorem presented in Section 7.1.3. The chapter concludes with Section
7.2 which presents an introduction into the usage of the Thouless-Anderson-Palmer
enhancement approach when noncanonical links are involved. Section 7.2.1 provides the
model description for this section. Section 7.2.2 then provides an explicit expression

for the GVA log-likelihood. Finally, Section 7.2.3 provide some introductory details
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regarding the TAP enhancement approach for noncanonical links.

7.1 Asymptotic Normality Results Involving Noncanonical
Links

In this section, we present asymptotic normality results for maximum quasi-likelihood

estimators for a generalized linear mixed model with noncanonical links.

7.1.1 Model Description

To accommodate the use of noncanonical links, consider the following density, or
probability mass, function for the class of one-parameter exponential families as in Fan
et al. (1995) where

p(y;n) = exp [y(go ')~ (n) —{bo (g0 )" }(n) + c(y)] h(y) (7.1)

where ¢ is the link function and 7 is the natural parameter. Here, I(P) = 1 if
the condition P is true and I(P) = 0 if P is false. If the random variable Y has
density, or probability mass, function as in (7.1), then E(Y) = ¢g~'(n) and Var(Y) =
{b" o (')~ o g1}(n). To account for overdispersion in the data and to allow one to
model the variance flexibly, a common modelling extension is implemented such that
Var(Y) = ¢{b" o (b')"Log~1}(n), where ¢ > 0 represents the dispersion parameter. This
involves replacement of log{p(y : )} by the following quasi-likelihood function

[y(g o) (n) —{bo (g o)} (n) +c(y)] /6 +d(y, 9) (7.2)

where d(y, ¢) is a function of y and ¢ only. Note that for ordinary Binomial and Poisson
response models, ¢ is fixed at 1. For Gaussian and Gamma response models, (7.2)
corresponds to the expression of log{p(y;n)} for a two-parameter exponential family
density function and ordinary likelihood applies. In this section, we study generalized
linear mixed models of the following form, for observations of the random pairs (X, Yi;),
1<i<m,1<j<n,

Yi;|Xi;,U; are independent having quasi-likelihood function (7.2) with
natural parameter Sy + ﬁlTXij + U; such that the U; are independent (7.3)

N(0,0?) random vectors.
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The U; are unobserved random effects variables. We assumed that the X;; and U;, for
1 <i<mand 1 <j<n;, are totally independent, with the X;; each having the same
distribution as the d x 1 random vector X and the U; each having the same distribution

as the random variable U.

Then, for any By € R, 81 € R? and 02 > 0, the conditional log-quasi-likelihood is

the joint density function of the Yj;, given the Xj;, as a function of the parameters
(69,87, (62)°) s,

(/807 1617 82) = argmax E(BOa 1617 02)
Bo,B1,02

where £(f39, B1,02) is the conditional log-likelihood and has the expression

£<ﬁ07:8170'2) = _%log 27TU +ZZ ’Lj /¢+d 1]7¢)>

i=1 j=1
+ > log / e (Z Yilgo )™ (B + BT Xy +w)  (T4)
i=1 - j=1

u?
—{bo(go b/) 1}(50 +,@1 X + u)} /o — >du

7.1.2 Notation

Define
1 m
n=— Z = average of the within-group sample sizes.
m
Also define
XT
Qp,(U)=E{w(Bo+B1+U) Uy,
X XxT
where )
_ {ehy
- {b" o (b/)—l o) gfl}
and let

Ap

1

= (E [{1ower right d x d block of Q};l(U)_l}_ID_1
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7.1.3 Asymptotic Normality Theorem

The main theoretical contribution of this chapter is an asymptotic normality theorem
for the maximum quasi-likelihood estimators for a generalized linear mixed model with

noncanonical links as described in Section 7.1.1.
The theorem relies on the following assumptions:

(A8) The number of groups m diverges to oco.
(A9) The within-group sample sizes n; diverge to oo in such a way that n;/n — C;
for constants 0 < C; < 00, 1 <i < m. Also, n/m — 0 as m and n diverge.
(A10) The distribution of X is such that

E [max{1, || X ||}® max{1,w (8 + B X + U)}*|U]
min{1, Amin (E{w(fo + B X + U)|U})}?

for all By € R, B1 € R% and o2 > 0.

Theorem 14. Assume that conditions (A8) - (A10) hold. Then we have the following

Bo — B89 0 (@) 0 0
vin | (Bi-80) | BN [ {o|.| 0 oAy, 0
o2 — (02)° 0 0 o0 2{(0?°}

The proof of Theorem 14 is in the appendix. A remark concerning Theorem 14 is as

follows:

1. When working with binary responses, there are two common alternative noncanon-
ical link functions used to the canonical logit link, namely the probit link and
the complementary log-log link. Both noncanonical links map the mean response
restricted to the (0, 1) interval to the (—oo, 00) interval. Also in both cases, w(z)
in Section 7.1.2 can be expressed as an explicit function to work with. Note that
b(x) = log{1+exp(z)} for binary responses. Then the usage of a probit link where

g(z) = ®!(x) leads to w(x) taking on the following expression

902

(1 — @)’

w =

where ¢ represents the standard normal density function.
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Meanwhile, the usage of a complementary log-log link where

g(z) =In{—In(1 —x)}

results in
exp(2z)

~ exp{exp(a)} — 1

w(z)

7.2 Thouless-Anderson-Palmer Approach Involving Non-

canonical Links

In this section, we present a primer for those who wish to carry out the Thouless-
Anderson-Palmer approach for generalized linear mixed models with noncanonical

links.

7.2.1 Model Description

Now, consider the use of a simple noncanonical link generalized linear mixed model as

follows

Yi;|Xij, Ui are independent having density function (7.1) with
natural parameter ﬁg + B?Xij + U; such that the U; are independent (7.5)
N (0, (02)0> random variables.

Here, the values of (Xij,Y;j) are observed for 1 < ¢ <mand 1 < j < n. We have
assumed that the X;; and U; are independent random variables. In addition, the Xj;
are each assumed as having the same distribution as the random vector X. The U;
are the unobserved random effects variables and are assumed to be having the same

distribution as the random vector U.

Let 8 = (Bo, f1) be the vector of fixed parameters. Then the model parameters for
this set-up are (3, 0?). Following that £(3, %), the conditional log-likelihood of (3, 02),
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is

7j=1
+ Z log /OO exp ( [Yij(g o b/)—l(ﬁo + 51 Xij + u) (7.6)

u2
—{bo(gob) " }H(Bo + AL X + U)} - %2>du'

7.2.2 The Gaussian Variational Approximate Log-Likelihood

Following steps similar to those in Section 6.2, the Gaussian variational approximation
to £(B,0?) is derived as,

EGVA(/B> 027 M, A)

m
=> By,
=1

n

Z {Yij (go ) (Bo+ Bi1Xij + Ui) — {bo(got) " }(Bo + B1Xij + Us)
=

Uz 1
L — —log(2mo?)

+C(Y2‘)} T 5,2 5

1 m
+3 z;{1 +log(2mA)}

(7.7)
where EUZ- denotes the expectation with respect to the random variable U;~N (1iy Ai)
with \; > 0, for 1 < i < m. The variational parameters are (@, A) where p =
(U1, -y o) and X = (A1,..., \p). Note that

E(ﬁ? 02) > EGVA(ﬂ? 0-2) K, )‘)

for all vectors p and A.

7.2.3 Overview of Thouless-Anderson-Palmer Enhancement

Next, we provide details on how the TAP enhancement approach builds upon the GVA
approach when using noncanonical links. Firstly, for each 1 < ¢ < m, define the following
data vectors:

Y. = Ya,...Y) and X; = (X, ... Xin) -
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The Gaussian variational approximate negative log-likelihood can then be expressed as
follows

_EGVA(/B7 0-27 M, A

= _% > {1 +log(2mA)} + > By, {qu((}i)m, Xi} :
i=1 i=1

where

n

|: }/z] gOb (60+61X13+U)+{b0(gob/) 1}(60+61X1]+U)
j=1

(Ysy)]
U2

1
01'2 + B log(27ma?).

+

Using theory detailed in Section 6.3, the TAP approximate negative log-likelihood
can be obtained as,

1 m
—Lrap(B,0°, 1, A) = —Laya (B, 0%, 1, A) — 3 Zfi (i, Xi3 X4, Y5, Bo, B, 07)

—72{1+log (27A,) }+ZE{

0)IYi X}
, (7.8)
Z(Var{\p DY, X5} — N\ [E{\P;(ﬁi)‘lfini}}
B [E{\DN( )m,X}] )

Now define

ZYU gob) N Bo+ /X +U;) and

FilUi) = Z{b o (gob) " }(Bo + L1 Xy + Ui).

J=1

Then, we can re-express ¥;(U;)

It follows that

Vi(0;) = —ENT;) + FUU;) + —
and )
v () = —€/(0) + F(U:) + —.

By solving for and the substituting explicit expressions for ¥;(U;), Wi(U;) and ¥/(

Qz

i)
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into (7.8), the TAP approximate negative log-likelihood can be obtained. This expression
can then be optimized to find a local minima and obtain TAP estimates of the model

parameters.

7.3 Appendix

This appendix contained the details for the derivations leading up to Theorem 14.

7.3.1 Constructing the Fisher Information Matrix

In order to compute the asymptotic covariance matrix for the maximum quasi-likelihood
estimators, we would first need to compute the Fisher information matrix for the model
parameters as per the model description in 7.1.1. To do so, let

Soi %logpyi\xi(YﬂXi)
Si= | S| = | Vg, logpy; x,(Yi|X:) (7.9)
So; %logpmxi(Yi\Xi)

denote the ith contribution to the scores for each of the model parameters. Then the
Fisher information matrix can be computed as

m

I(Bo, B1,0%) = > E(S:87|X:).

=1

The next few sections then focus on obtaining the expressions for the scores and
the quadratic conditional expectations that are required to construct the final Fisher
information matrix.

7.3.2 Expression for Conditional Density Function

The expression for py;| x,(Yi|X;) as per the model description in (7.3) is
Py, x, (Yl Xi)

= [~ Tttt vob s

—o0 1

-/ exp{z ([Yisloo8) ™ (B0 + BT X +u) = {bo (g0 ) ™} (B0 + BT Xy +u)
&

Fe(y)] /o + dmj,as))} x (270%)"1/2 exp (;;) du
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The previous expression can be further simplified as follows

n

/_0;(27m2)_1/2 exp { Z ([Yij(g ob)! (Bo + B Xij + u)

j=1

g

—{bo(god)” }(50+ﬂ1X1J +U)+C( zj)}/ﬁb"‘d( ij7¢)) —;Z}du

z] /¢++d( z]a¢))}

;BTD
Q,
E
’U

——
M:

x /_OO exp [Z {Yislg o)™ (Bo+ BT Xiy +u) —{be (g0 b)) (B0 + BT Xy +u) } /o

7.3.3 Deriving Expressions for the Expectation and Variance of the
Response Variable

Next, using the Bartlett identities, we can obtain expressions for E(Y') and Var(Y').
Firstly let,
ai(n) = (go )~ (n) and ax(n) = {bo(go)""}(n).

Then note that the noncanonical extension of the one-parameter exponential family of
density, or probability mass, functions takes on the following form

[y(g o) (n) —{bo(go ) }(n) +cly)
o

= o J @1y — az(n) + c(y)

N p{ ¢ }

where 7 is the natural parameter. Then, we have the following

p(y;n, ) X exp

log p(y: n, &) = a1(n)y — az(n) + c(y) Lo
Y ¢

where C' is a constant independent of 7. Let £(n) = logp(y;n, ¢). Then,

0l(n) _ ay(n)y — ay(n) (7.10)

o ¢
The first Bartlett identity states that
ot
< (n )) 0
an

Hence, by substituting (7.10) into the first Bartlett identity, we have,
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This leads to , ,
ay (M E(y) — ay(n)

¢

Hence, now we have an initial expression for E(Y') which is as follows

=0.

B(y) = 2 (7.11)

Now note that,

9 aj(n)(y) - aj(n)
on? ¢ '
The second Bartlett identity states that

024 ar\?
E|— Ed|=— =0.
(0772) i {(077) }
Using the first Bartlett identity, we can re-write the second Bartlett identity as follows
ol ol
EFl|— Var| — | =0.
<8n2> I <3n)

Substituting (7.10) and (7.12) into the second Bartlett identity, we have,

E{a’{(n)(y)qs— ay(n) } + Var {W} _0. (7.13)

(7.12)

This leads to

al(E() —aj(n) (@) (n)?
o $?

Therefore, the initial expression for Var(Y) is as follows

a;'<n>aa'<n>{3%§23}“ r ]
{a

Var(y) = 0.

¢ {ai(n)ag(n) — af(n)ay(n)} (7.14)

_ o{ab(m)/ai(m)}’
ay (1)
Now let us simplify the expressions for E(Y') and Var(Y). Note that

az(n) = {bo (gob) ™} (n) = (boar)(n)
ay(n) = (boar)'(n) = (V' oa1)(n) x aj(n).

Hence, the expression for F(Y') simplifies to

ay(n)
B = ay(n)
= (b oa1)(n)
={t o(gob) " }n)
={t' o) og '} n)
=g '(n).
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The expression for Var(Y') simplifies to

Var(Y) =

(
=¢{b" o (go /)" }(n)
{b" o (V) og T }n).

7.3.4 Introduction of Useful Notation and Its Properties

Let v be a generic d x 1 vector. Then for r = 0, 1,2 we define

1 for r=0
= v for r=1

vvl for r=2.

For r € {0, 1,2}, let

Q;ZEZX@" {Vijai( Bo + BT Xij + Ui) — (60+B1TXU+U@')} and

Hyi = ZX@" 5(Bo + BT Xij + Ui) = Yiga{ (o + BT X5 + Ui) } -
Note that the expressions listed above have the following probabilistic orders where

Gri = OP(nl/Q)lffr and H}; = Op(n)15".

7.3.5 Key Conditional Moment Results

We now compute the conditional expectations of Gj; and Gj; given (X;,U;). Note that,
E(G| X, Us)

n
=L [Z {Yijai(Bo + BT X, + Ui) — ab(Bo + B Xij + Ui)} ‘Xi, Ui
=1

= {E(Y;|X:,Ua) (8o + B Xij + Us) — ah(Bo + BT X5 + Us) }

j=1
—Z{G/Z (Bo + BT X5 + Us)
ay(Bo + B Xij + Ui)

ay (Bo + B Xij + Us) — as(Bo + BT Xij + Uz‘)}

=0.
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Similarly, we have that

E(Gy;1X;,U;) = 0.
Next, we compute the conditional expectations of G;;%, Gi.Gr; and Gi,% given (X, Uj).
Note that,

E(G5%1 X4, Us)
Z {Yijrai(Bo + BT Xij + Ui) — ab(Bo + B Xijr + Ui) } 'Xz', Ui)

> {Vijai(Bo + B Xij + Us) — ab(Bo + B Xij + Ui) }
j=1

_ E(
=1

=X F [ {Yija1(Bo + B Xij + Us) — aj(Bo + B Xij + Us) }
i
x {Yiya) (Bo + B Xijr + Us) — ab(Bo + BT Xijr + Us) } ’Xz', Uz}

+> E [ {Vijal (Bo + B Xij + Us) — as(Bo + B X + Ui) }
7j=1

x {Yi;a}(Bo + B Xij + Us) — ab(Bo + BT Xij + Us) } ‘Xz‘, UZ}

= Z Z <E [{Y%ja/l (Bo + BT Xij + U;) — ah(Bo + BL X5 + Ui) } ’Xi; Uz}
J#i’

X E [{Yij/@ﬁ(ﬁo + B8] X,y + Ui) — ay(Bo + B Xijy + Ui) } ‘Xi, Uz} >

X, UZ>

I3

+ZVar{ jai ( 504—,6'1TXU+U)

3

= 3" i (Bo + BT Xy + Ui)?Var (Y
7=1

Now let n;; = fo + ﬁlTXij + U;. By substituting the expression for Var(Y) in line 2 of
(7.14), we have,

* 2 X U) = n a (i 2 {all(nij)ag(mj)—a’ll(nij)aé(mj)}]
E(QOZ ’ ,U) QS; 1(77]) [ {a’l(mj)}?’

— ¢Zn: {a’é(my) - a/f(nz‘/j)a"z'(mj) }

a’y (nij)

= ¢Z {a2 Nij) n%y (Y:ij‘XivUi”

Similarly, we have that

E(G3:G1:|1 X, Ui) = 9E(M;,| X3, Us) and  E(G1%| X, Us) = o E(H3| X, Uy).
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Now let us simplify the expression for E(H};|X;, U;) for r € {0,1,2}. Note that,

n

(sz|Xl7UZ ZX@)T {a2 Th] al 77%]) (Y;j’X’LaUZ)}
j=1

n " /
a’ (r:)ab (0
— E Xz {a/2'<mj) _ 1(771/1)2(771])}
j=1 al(Tlij)

- / {ai (nij)ag (mij) — af (mij)ay(nij) }
= N XE G ()2 | 10 \3) 92 i 1\Mig) A2 ("ij
2 X [ {ah ()’ ]

Z X®Ta1 771] b” o(go b,)_l}(nij)-

The term @} (1;;)? can be simplified as follows

S
1 2
- { (gob) o(gold)~t } (7:5)
i 1 2
" H{lgo b o {(¥) "o 9—1}} (1i5)

1 2
= _(g/ o gfl) {b” o (b/)fl ° gl}] (nij)

| (g ') ’
- _{b” o (b’)*l o gl}:| (771‘]‘)'

Hence,

—1\/12
E(HY| X, U;) = ZX [ - {1} ] 1s)

(0)"tog~'} r15)
= X;?Tw( i),

where )
{71}
b o (b/)fl o gfl'

w

7.3.6 Computing an Asymptotic Approximation for the First Entry
n (7.9)

Once again, to overcome the intractability of the ratio of integrals present when deriving
the scores with respect to each of the model parameters, we will work with an asymptotic
approximation of the ratio of integrals by using a multi-term Laplace’s method expansion.
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For smooth real-valued functions b, g and h, Equation (2.6) of Tierney et al. (1989)

states that
S v @) exp{—nh(@)}dzr = bp(at)g (@) | g'@)  g@)h" (@)
[ bp(z) exp{—nh(z)}dz 9t) + nbp (x*)h" (x*) + 2nh (x*) 2nh (x*)?

+0(n72).

where
g=bn/bp

and
z* = value of x that minimises h over R.

Hence, the ith contribution to the score of 3y can be expressed as
_ Ologpy, x, (Yil Xi)
0i =
9Bo
S5 bRt (u) exp{—nhy (u) }du
7 bt (w) exp{—nhy(u) }du

bRt (u) = exp (—02> ;Z{Yijai (Bo + BT X5 +u) — ar(Bo + BT X5 +u)},
j=1

u2
bt (u) = exp <_%12> and

hiv(u) = _nl¢ > {Yija1(Bo + BT Xij +u) — aa(Bo + B Xij +u)} -
j=1

Now define

U; = value of u that minimises hy(u)

= value of u such that Lhy(u) =0

n
= value of u such that Z {Yi;a}(Bo + B Xij +u) — ah(Bo + BT X5 +u)} = 0.
j=1
However,
b}\?t(Ui*) =0.

This violates the necessary condition in Hsu (1948), in the sense that by(U}) # 0 is
required in order for the Laplace approximation to hold. To counter this issue, firstly
note that the numerator of Sy; is

/ W)t (w)du

—00

> (Yo (o + BT Xis + ) — ax(fo + A7 X+ )}
j=1

n
¢
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and

oo (~22)

Application of integration by parts leads to the integral being equal to
oo
—/ s(u)t' (u)du.
—00
Note that
u?
t'(u) = (—u/oP) exp [ —— | .
202
Now by rewriting the numerator of Sy;, we have,
_ Ologpy; x, (Y3l X5)
" 9po
B I b (u) exp{—nhy(u)}du
[ bp(u) exp{—nhy(u)}du

where
w2
b(w) = (o/o%) exp (355 )
w2
bp(u) = exp <_%r2> and

hn(u) = —nl¢ Z {Yija1(Bo + BT Xij +u) — a2(Bo + BL X5 +u) } -
j=1

Expansion of U}

Here we find an asymptotic expression for U’. We have that
d

=—h
0 du ~(u)

= Z {Yija (Bo + BT Xij + U;) — ay(Bo + BT Xij + U;) }
j=1

=" {Vijal (Bo + BT Xij + Us) — dh(Bo + BT Xi; + Up)}
j=1

— (U = Uy) Z {a5(Bo + Bf Xij + Us) — Yija{ (Bo + BT Xij + Ui) } + 1t
=1

=G0 — (U = Ui)Hp; + it
where 7 is the Lagrange form of the remainder and is a quadratic form in U — U;

and a smooth function of UiTt = (1 —t)U; + tU; for some t € [0, 1]. Inversion of this
asymptotic series leads to

U =U; + g—o +Op(nH).
HOi
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7.3.6.1 The First Term of the First Score

The first term of Sy, is

o O _ U _ 1 (o G 1

7.3.6.2 The Other Terms of the First Score

The second, third and fourth terms of Sp; are Op(n~1), 0 and Op(n~!) as in the
canonical case in Chapter 4.

7.3.6.3 Overall Leading Term Expression for the First Score

The first term of Sp; is Op(1), the second term of Sp; is Op(n~!), the third term of
Soi is 0 and the fourth term of Sp; is Op(n_l). Putting these together we obtain the
following asymptotic expansion for Sp; such that

Yo
Hos

1 -1
Soi = 2 <UZ‘ + ) + Op(n )

7.3.7 Computing an Asymptotic Approximation for the Second Entry
in (7.9)

The ith contribution to the score of 3 is
S1i = Vg, log py; | x, (Yi| X;)

_ Jos b (w) exp{—nhy (u)}du
ffooo bp(u) exp{—nhny(u)}du

where

u2
202

by (u) = exp < > ; > {Viid (Bo + BT Xij + u) — ab(Bo + BT Xij + u)} X5,
=1

() = —nl¢ >~ {¥igon(Bo + BT Xis +10) — aa(fo + A7 X+ )}
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7.3.7.1 The First Term of the Second Score

The first term of Sy; is

by (U})

7

~ bp(U7)

)

9(U7)
1 & . N
=$§HEWW%+ﬁXﬁ+%)—%WwaXM+@HXM
j=1

Next note that,

Yijai (Bo + B X + UF) — as(Bo + B Xij + UY)
= Yija (Bo + B Xij + Us) — a5 (Bo + B Xij + Uy)
+ (U = Us) {Yija{ (Bo + B Xij + Us) — a5 (Bo + B1 Xij + Ui)} + Op(n™).
Therefore,
_1 Goi i

o) = 5 (05~ B )+ 0pay1s

7.3.7.2 The Other Terms of the Second Score

The second, third and fourth terms are Op(1)14 as in the canonical case in Chapter 4.

7.3.7.3 Overall Leading Term Expression for the Second Score

Putting the terms of the score together, we obtain the following asymptotic expansion
for S1; where

1 Ty
Sui=~ <ng _ Yot : 12) +O0p(1)14.
¢ 0

7.3.8 Computing an Asymptotic Approximation for the Third Entry
in (7.9)

The ith contribution to the score of o2 is
_ Ologpy;x,(Yi| X;)
Soi =
Oo?
1 N 75 b () exp{—nhy (u) }du
202 75 bp(u) exp{—nhy(u)}du
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where

B () = _nld) S {Vigar (Bo + BT X5 + u) — as(fo + BT X5 + )}
j=1

7.3.8.1 The First Term of the Third Score

The first term of Sy; is

v (UF) _ (UF)°

g(U’L ) = bD(UZ*) = 204
_ 1 (. Y 1)
by <Ul + HSZ —I—Op(n ))

1 < 2, 2UiGg; 1
= (v 220 opm ).
204 oi

7.3.8.2 The Other Terms of the Third Score

The second, third and fourth terms of Sy; are all Op(n_l) as in the canonical case in
Chapter 4.

7.3.8.3 Overall Leading Term Expression for the Third Score

The first term of Sy; is Op(1), the second term of Sy; is Op(n~1), the third term of Sy;
is Op(n~1) and the fourth term of Sy; is Op(n~!). Putting these together we obtain
the following asymptotic expansion for So; such that

G — = i
2 202 + 204 + oVH,

+0p(n7Y).

7.3.9 The Quadratic Conditional Expectations of the Scores

In this section we find the conditional expectations required for the diagonal entries of
the Fisher information matrix of (3o, B1,0?).
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7.3.9.1 The Conditional Expectation of the Square of the First Score

From the previous sections, we have the following approximation where
Ui; _
Soi = % + Op(n 1/2).
o

Therefore,

Ui _ 2 1 3
E(ng’|Xi) =FK { <02 + Op(n 1/2)> ‘Xl} =3 + Op(n 1).

7.3.9.2 The Conditional Expectation of the Square of the Second Score

We have the following approximation

Therefore,

Gk ®2
¢’ E(S1S];| Xi) = {(gfi 2 l“rO (1)1 )

Oz

.

07

2 2
g& H* ®

*®2
- X,)+E
Bl + 1 (B0

XZ.>
g*‘ *‘g*‘T
—E( 0 li 17
0i

We will now solve for the conditional expectations occurring in ¢2FE(S1;S%|X;). Firstly,

X,) + Op(l)]_?2

B(G57|1X) = E{ B(G1,71X,, U)| X, }

= E{oE(H5| X, Ui)| X}
= B {E(H5| X, Ui)| X}

Next,

*®2
< H;;f >

_ {E <g622/’|_[* ®2

Xl,U> ‘X}
HOZ
—E(E

Go 2 {E(H|1 X, Us) + My, — E(M3,| X, Up) Y2
{E(H| X, Us) + Hg, — E(HE|1 X, U;)}?

2

)
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The previous expression can be further evaluated as follows

Go 2 {E(Hy | X, Us) + Hy — E(HL X, U}

X 2 E(Mg,|X:,Ui)—H, | 2
(B X, Uy {1 - 2o st |

X, U;

E|E
Go AE(H| X0, Us) + My — E(HG|1 X5, Ui}
=FE|E 01 13 1) H1 13 > 14 1y Usg
{EHG! X, Ui}
{1  BMyIX0,Ui) — My, } Z,
E(Hg| X, Ui)
* 2 * . N1®2
_E<E Gs” (B, X,.U) ’X> R,
{EHG| X, Ui}
* U X 7) 192
— ¢E E(HOZ|X'L7UZ)*{E( 12|‘X;L?U7/)} X
{EHG] X, Ui}

{B(H;;|1 X, Ui) }*?
E(H81|X“ Ui)

[

2

+Ri

=¢E Xi —|—’R,i

where R; comprises of remainder terms that are of lower order as compared to the
leading terms in the final steps of the derivation. Now note that,

. (9&%%# )
Jic

Ho
:E{E<%ﬂﬁ%f
Ho
Q’mgh{E 1IXa U + Hy — B(HG X0, U}
‘XZvU)‘i'HOz E(Hy;| X3, Ui)}

9

d¢
o
o

I3

X, Ui]

.
3

gmgu{E 51X, Up) + 1Y — E(HL| X, U

E(HS | X:,Ui)—H,
’Xu Ul)} { E(()Hgi\XivUi) ‘ }

gOzglz {E |XZ>U’L) +/HL _E( L|Xz>Uz)}T
{E(Hy| X, Us)}

HO |XZ,U1) HO
‘ ¢ X'L? KA
X{l “ X, 0)) Ui
G091 ( X, U)T H ]
=FE|E ol Ui p | Xi| + R
[ { {E(Ho@\XuUz)}
{E(H;,|1 X, Ui)}*?
=oF v X; Ri.
S e N7 e
Similarly,
GoHLG" {BE(H}| X3, Ui) }*?
Joll IELIUSTEITERD O RPN i X;| + R,
( 0i E(HG;| X3, Ui)
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where R; comprises of remainder terms that are of lower order as compared to the
leading term in the expression. Combining the results so far in this subsection, we
obtain

B X U
E(HG| X, Us)

1
E(Squ;\Xi):gE E(H5 | X, U) X;| +R.

7.3.9.3 The Conditional Expectation of the Square of the Third Score

We have the following approximation

= ——— 7 O —1 )
52 202 + 204 + oVH}, +0p(n™)
Therefore,
plufles 2
40E(S3,|X;) = E { (Uf —o’ + Zgo + Op(n1)> X,}
0i
4 4 U'?gng 2 2
0i
U3Gx. U, G
o2F | 120 X, | — 402 0X> Op(n~h).
! <Ha~ ) U(%& +Opln™)

Now note that,

2% 2
()
Ho

20% 2
H

x 2
07

Xian> ’Xz}

U12g8i2
{E(HG| X, Us) + Hi; — E(He| X, U;)}?

20% 2
=F (E UG X, Ui | | X

. E(Hg, XU~ \ 2
(B X, U))? {1 - B0t

=F

Xi7Ui

U’i goi 5 {1 o E(%Oi|fﬂUZ) %OZ} X“UZ
{E(Hg| X, Ui)} E(H|1 X, Us)
2% 2

= F (E U*vz gOi 5

{E(Hy1 X0, Us)
U E(Hyil X3, Us)
{EMy] X3, Ui)}?

U?

= Op(n_l).

X, U;

XZ> + R;

)

+ R;

X,] + R
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X,) =o.

468E(5%|X;) = E(U}) + o* — 20°E(U?) + Op(n™!)
=30% + 0% =20 + Op(n7Y)
=20% + Op(n_l).

Also, for k=1, 3,

Hoi

Hence,

Therefore we have,
1
2 _ -1

7.3.10 The Fisher Information Matrix

The conditional expectations for the off-diagonal entries of the Fisher information matrix
of (Bo, B1,02) expressed in terms of order notation are the same as in the canonical
case. Putting together the expressions for the quadratic conditional expectations of the
scores from the earlier three subsections, we have

I(ﬂ07ﬂ1a02)
2+ Op(mn~1) Op(m)1} Op(mn~—1)
* . )1®2
— Op(m)1y 2E | E(My | X, Us) - % Xi] +R Op(m)1y
Op(mn=1) Op(m)17 2 + Op(mn™1)

However note that by using (7.15), we can rewrite the expression below as follows,

1] E(H:|X;, U;) )82
E(Sh-Sﬂ\XZ-):gE E(H;i]Xi,Ui)—{ (7| )} X,|+R

E(H61|XZ7 Ui)

{Z}Ll Xz'jw(nij)}®2
> j—1w(nij)

= ;E ZX®2 (M)

‘Xi + R.

It follows that the leading term in (2,2) block of I(Bo, B1,0?) is,

@ ZE ZX {2?21 Xijw(nij)}®2 X
mn wlng) > =1 w(mij)

‘ B mnig,
’ ¢
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where
®2
1 & " {Z}; Xz‘jw(mj)}
g, =— > E X 22w (nij) — - X;
A= mn ; ; ! ’ Zj:l w(1;5)
= ZZX 2E{w(ni;)| X} (7.16)
=1 j=1

-1 T
- FE %Z {Z Xijw(mij) } {Zw (1i5) } {ZXz‘jw(mj)}
i—1 | j=1 = =

Using Lemma 1 from Chapter 2 with f(X;;,U;) = w(7n;;), we have that the first term
in (7.16) can be re-expressed as follows

—ZZX 2E{w(nij)|X;} = E{XX"w(Bo + B1 + U)} + op(1)15%
=1 j=1

Now, using Lemma 2 from Chapter 2 with f(X;;, U;) = w(n;;), we have that the second
term in (7.16) can be re-expressed as follows

Z {ZX”w U] } {Zw(mj)} {Z ijw(mj)}
i=1 j=1 j=1

= B (B{Xuw(fo+ B1 + U)|U} [E {w(fo + 61 + D)UY E{Xw(fo+ 61 + U)|U}")
+op(1)152.

Now,
®2
Y5 =B |E{XXTw(fo+ B+ U)|U} - E {E)izgg‘; igi i Zg}g{ +op(1)152.
Let
Qﬁl(U)EE{w(ﬁo+ﬁl+U) xxT U}-

The inverse of the lower right d x d block of Qg, (U)™! is

E{Xw(fo+ B +U)U}**
E{w(Bo+ B+ U)|U}

Therefore, we conclude that that the (2,2) block of I(B, B1,0?) is as follows

E{XXTw(By+ B +U)|U} -

mn(AEl)*1
¢

+ op(mn)15?

where

A,’gl = (E {{lower right d x d block of Q*ﬁl(U)ﬂ}—lD—l
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Hence, the final Fisher information matrix can be expressed as

2%+ Op(mn~1) Op(m)1% Op(mn=1)
mn(A% )71
1(60.81,0%) = | Opmts "ol L opmmi®  Op(m)1,
Op(mn~1) Op(m)17 32 + Op(mn™1)

7.3.11 The Inverse of the Fisher Information Matrix

To invert the Fisher information matrix, we choose to work with the (3, 02, 31) ordering
instead of (3o, B1,02). A trivial rearrangement of the matrix entries leads to

o+ Op(mn™1) Op(mn~1) Op(m)1%
I(By, B1,0°%) = Op(mn~1) 32 + Op(mn™1) Op(m)17
mn(A% )1
Op(m)1y Op(mty 2B op (182

Following similar steps to that in Subsubsection 4.5.2.10, we obtain the following
expression for I(8y,02,31)~! where

I(507U2a/81)_1

< +0p(m~n7Y)  Op(m~'n) Op(m~'n=1)17
= Op(m~in=1) E%—Op(m*ln*l) Op(m~tn=H17
Op(m~tn=1)14 Op(m~In=1)1y ¢Aﬁ1+0p(m n~1)1%?

The expression for the inverse of the Fisher information matrix can be also written as
follows

) Op(1) Op(1)  Op(1)1]
1(5070’2,51)7121(507027/31)714'% Op(1) Op(1)  Op(1)1}
Op(1)1g4 Op(1)14 op(1)15?
where ,
w o o0
I(Bo,0%B1) " = |0 22 0
A*
0 0 ¢m51

7.3.12 Final Asymptotic Normality Result

The derivations leading to the final asymptotic normality result follows steps similar to
those in Subsubsection 4.5.2.11j. It follows that

Bo — ) o] [(e?° o 0
vin |V (Bi-gt) | BN [ lo].| 0 Ay 0
0% — (0?) 0 0 0 2{(0?°}
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Chapter 8

Discussion and Conclusion

The aim of this thesis was to address some of the current gaps present in the literature
available for GLMMs. Specifically, we aimed to develop asymptotic theory for maximum
likelihood and maximum quasi-likelihood estimators for GLMMs. Once these results were
derived, we wished to assess the efficacy of the studentized confidence results constructed
based upon these asymptotic normality results and also explore the implications of such
results on optimal design theory. Lastly, with regards to methodology for GLMMs, we
aimed to implement the Thouless-Anderson-Palmer approach and analyse the accuracy

of the variational estimates obtained.

In order to carry out detailed asymptotic analysis on maximum likelihood estimators
and maximum quasi-likelihood estimators for GLMMs, we first required results for two
important tasks. The first of which required deriving population limits of particular
predictor-dependent sample mean quantities. The second task involved establishing
matrix norm asymptotic negligibility between matrix square roots of inverse Fisher
information matrices and their simpler asymptotic block diagonal forms. Currently,
there are no results available to deal with either of these tasks in a simple manner.
Hence in Chapter 2, we provided the necessary tools and results in the forms of Lemmas
1, 2 and 3.

Next, in Chapter 3, we derived asymptotic normality results for GLMMs involving
Gaussian responses. Existing theory for Gaussian linear mixed models by Wand (2002)
and Harville (1977) provided base expressions for the required Fisher information
matrix. Thereafter, the leading terms in the entries of the Fisher information matrix
were retained, as the number of groups and the number of observations within each

group diverged. (This approach was repeated throughout Chapters 4 and 7 in this thesis
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as well). The resulting theorem as a result of our work concerns the joint asymptotic
normality of all maximum likelihood estimators for a Gaussian response mixed model
and elegantly shows faster rates of convergence of fixed effects unaccompanied by random

effects as compared to fixed effects that have partnering random effects.

The results in Chapter 3 were extended to the class of all GLMMSs, including a model
extension for overdispersion, in Chapter 4. However, frequentist inference for GLMMs is
hindered by the existence of intractable integrals due to the inclusion of random effects
in these models. To overcome this obstacle, we used a multi-term Laplace’s method
expansion for ratios of intractable integrals (Miyata, 2004; Tierney et al., 1989). The
resulting asymptotic normality theorem concerns the joint asymptotic normality of all of
the maximum quasi-likelihood estimators, for fixed values of the dispersion parameter,
for a generalized linear mixed model. Once again, the results derived in this chapter
show faster rates of convergence for fixed effects that are not accompanied by random
effects as compared to fixed effects accompanied by random effects. We also noted that
for the class of two-parameter exponential families, maximum likelihood estimation is
possible for all model parameters including the dispersion parameter. Based on this, we
also derived asymptotic normality results for the maximum likelihood estimator for the

dispersion parameter in the Gaussian and Gamma response cases.

Chapter 5 presents the consequences and applications of the asymptotic normality
results derived in Chapter 4. First, we present how studentized confidence intervals can
be constructed based on our asymptotic normality results in order to carry out asymptot-
ically valid inference. The efficacy of the confidence intervals were then assessed, which
showed that the Theorem 12-based approach in Section 4.3 as an attractive alternative
to the exact observed Fisher information approach. The Theorem 12-based approach
required simpler or no numerical integration at all compared to the exact observed
Fisher information approach and gave similar coverage properties, especially for larger
values of the number of groups and number of observations within each group. Next, we
looked into the implications of Theorem 12 on optimal design theory. Most optimality
criteria are based on the Fisher information matrix, which is computationally expensive
to evaluate. Hence, we presented a simple approach to constructing approximate locally
D-optimal designs based on large sample approximations of the Fisher information

matrix.

In Chapter 6, we tackle the implementation of the Thouless-Anderson-Palmer
approach for GLMMSs. First, we presented a general result for deriving the Thouless-
Anderson-Palmer approximate negative log-likelihood for GLMMs. This expression can

then be locally minimized to obtain TAP estimates of the true model parameters. Then,
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we carried out several simulation studies using a simple Poisson linear mixed model
and analysed the Thouless-Anderson-Palmer variational estimates obtained against the
estimates obtained from implementing Gaussian variational approximation. Based on
the simulation studies, the Thouless-Anderson-Palmer enhancement approach suggests
a slight yet statistically significant improvement as compared to using the Gaussian

variational approximation approach, especially for small datasets.

Last but not least, in Chapter 7, we developed theory to consider the usage of
noncanonical links for both the development of asymptotic normality results for max-
imum quasi-likelihood estimators for GLMMs and also the implementation of the

Thouless-Anderson-Palmer approach for GLMMs.

In conclusion, this thesis presents important theoretical and methodological work
that concerns the asymptotic distributions of maximum quasi-likelihood estimators for
GLMMs and the implementation of the Thouless-Anderson-Palmer variational method
for GLMMs. We believe that the work in this thesis will make a significant and novel
contribution to the area of GLMMSs, which have been a mainstay of regression-type
statistical analyses in important areas such as longitudinal data analysis, multilevel

modelling, panel data analysis and small area estimation.

Potential future work involves deriving second-order asymptotic approximations
of the Fisher information matrix. In this thesis, we only retained the leading terms
in the entries of the Fisher information matrix, hence leading to a first-order asymp-
totic approximation. Deriving second-order asymptotic approximations can give more
accurate expressions for the asymptotic variance-covariance matrix for the maximum
quasi-likelihood estimators for GLMMs, which is especially useful when implementing
such results for smaller finite samples. For example, with second-order approximations,
better coverages can be achieved when constructing studentized confidence intervals for
smaller values for the number of groups and number of observations within each group
as compared to those in the simulation study in Subsection 5.1.2. Deriving second-order
approximations will also allow us to determine approximate locally D-optimal designs
when considering multivariate random effects, which is not met by the theory presented

in this thesis.

The techniques used in this thesis could also be used to study statistical models other
than GLMMSs. An example of a potential class of such models would be generalized
additive mixed models. This class of models extends the GLMM framework by allowing
for continuous predictors impacting the mean response to be modelled by additive

non-parametric functions. This provides additional flexibility for modelling the actual



222

relationship between the response (specified by an exponential family distribution) and
predictors, It also potentially provides better fits to the data as well. The techniques
used in this thesis could be used to derive the first-order asymptotic approximations of
the ratios of intractable integrals that arise when calculating the scores required for the

Fisher information matrix, and subsequently the asymptotic variance-covariance matrix.

Last but not least, we can explore how the TAP approach performs against the GVA
approach for GLMMs with response distributions other than the Poisson family.
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