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Abstract. Emotion recognition (ER) from speech signals is a robust
approach since it cannot be imitated like facial expression or text based
sentiment analysis. Valuable information underlying the emotions are sig-
nificant for human-computer interactions enabling intelligent machines
to interact with sensitivity in the real world. Previous ER studies through
speech signal processing have focused exclusively on associations between
different signal mode decomposition methods and hidden informative
features. However, improper decomposition parameter selections lead to
informative signal component losses due to mode duplicating and mix-
ing. In contrast, the current study proposes VGG-optiVMD, an empow-
ered variational mode decomposition algorithm, to distinguish meaning-
ful speech features and automatically select the number of decomposed
modes and optimum balancing parameter for the data fidelity constraint
by assessing their effects on the VGG16 flattening output layer. Various
feature vectors were employed to train the VGG16 network on differ-
ent databases and assess VGG-optiVMD reproducibility and reliability.
One, two, and three-dimensional feature vectors were constructed by con-
catenating Mel-frequency cepstral coefficients, Chromagram, Mel spec-
trograms, Tonnetz diagrams, and spectral centroids. Results confirmed
a synergistic relationship between the fine-tuning of the signal sample
rate and decomposition parameters with classification accuracy, achiev-
ing state-of-the-art 96.09% accuracy in predicting seven emotions on the
Berlin EMO-DB database.

Keywords: Speech emotion recognition (SER) · Variational mode
decomposition (VMD) · Sound signal processing · Convolutional neural
network (CNN) · Acoustic features

1 Introduction

Word meaning is often conveyed by the tone of voice, although human emotions
are not solely conveyed through the words used, but also through by modify-
ing facial expressions and vocal tone. Thus, changing voice characteristics is how
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most humans express different emotions [25]. Consequently, considerable human-
computer interaction research has analyzed speech signal emotion recognition
(ER) where using other popular semantic analysis methods like wav2vec2.0 [5]
are not trustworthy. Several applications employed variational mode decompo-
sition (VMD) [11] in different fields such as medical science, structural engineer-
ing, and sound engineering [2,17,23]. Signal based ER employs various instan-
taneous signals, including electrodermal activity, blood volume pulse, galvanic
skin response, electrocardiogram (ECG), Electroencephalography (EEG), and
speech, are commonly categorized into several decomposed modes due to the
complexity and nonstationary nature of them, which allows latent factors and
patterns to be extracted more easily. Nonstationary signal properties and its
components make mean short time Fourier transform (STFTs) are not always
suitable, and previous studies have mostly considered these approaches in isola-
tion [8]. VMD decomposes signals into modes with a narrowband around a cen-
ter frequency; it can overcome STFT limitation and EMD mode mixing effects.
Therefore, we were motivated to apply VMD for speech signal processing.

Acoustic feature selection is essential for SER to describe various voice sig-
nal aspects captured from different features [6]. Acoustic features include time-
frequency, time, and frequency domain representations. Extracted features from
time-frequency domains carry more informative data than the other domains,
and better capture latent emotion content from speech signals [28]. Several pre-
vious studies used VMD method to analyze signals, extracting features from the
decomposed signals. However, we proposed VGG-optiVMD, utilizing a VMD
based feature augmentation method to enrich predictors and maximize emotion
classification accuracy. Results from the proposed VGG-optiVMD approach on
several common publicly available databases confirm significant ER improvement
compared with previous approaches. The main contributions from this study can
be summarized as follows.

– To our best knowledge, this study is the first to employ VMD as a dynamic
acoustic feature augmentation method for SER performance.

– The proposed VGG-optiVMD algorithm automatically selects optimum
decomposition parameters for VMD.

– A robust classification accuracy was achieved with a state-of-art result
96.09%.

2 Related Works

Dendukuri et al. [10] decomposed the speech signal into three components sam-
pling 16000 Hz over 20 ms frames, then input various mode central frequency sta-
tistical parameters to a support vector machine (SVM) classifier. Lal et al. [20]
empirically demonstrated VMD advantages to decompose speech signals in the
correct central frequency and subsequently estimated epoch locations from noise
degraded emotional speech signal. Zhang et al. [33] proposed multidimensional
feature extraction for EEG signal emotion recognition combining wavelet packet
decomposition (WPD) with VMD to break down an EEG signals and extract
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wavelet packet entropy, modified multiscale sample entropy, fractal dimension,
and first difference of each emotional variational mode functions as feature com-
ponents. They subsequently demonstrated robust results using a random forest
(RF) classifier on the DEAP dataset [18]. Khare et al. [17] reduced reconstruc-
tion error using meta-heuristic techniques to condensing from 16 to 1 dimension
using eigenvector centrality method channel selection on EEG signals. They sub-
sequently improved Optimized variational mode decomposition (O-VMD) accu-
racy by 5% compared with traditional VMD on the dataset of four emotions
that built by themselves.

Pandey [24] proposed subject-independent emotion recognition using VMD
and deep neural networks (VMD-DNN) on the benchmark DEAP dataset. Two
features, first difference and power-spectral-density used since were sufficient
to recognize calm, happy, sad, and angry emotions. SVM and DNN classifier
accuracy was improved by employing VMD based feature extraction.

Several previous studies considered STFT signal decomposition techniques
for SER. Few previous studies employed VMD to analyze speech signals mainly
processing EEG signals through VMD for ER. To the best of our knowledge,
the current study is the first to employ VMD to enrich multidimensional feature
vectors to enhance VGG-16 network learning.

3 Proposed Methodology

The main aim for decomposition-based speech signal processing via VMD
method is to constrain noise and interference frequencies to enhance signal data
decoding.

3.1 Variational Mode Decomposition

Variational mode decomposition is a popular technique for decomposing non-
stationary signals into sub-signals or modes, where mode contains a specific
meaningful property from the original signal in a narrow bandwidth around the
center frequency. The VMD adaptive algorithm reduces the original signal com-
plexity [11]. The VMD algorithm applies the Wiener filter, Hilbert transform,
analytical signals, and frequency mixing. The two main VMD objects are to con-
strain the bandwidth for each IMF center frequency and reconstruct the original
signal from the sum of all modes. First, the Hilbert transform filters frequencies
on the negative side of the spectrum, and then shifts the obtained bandwidth
to the modes central frequency. Second, the obtained spectrum is shifted to the
baseband region via a modulator function to obtain bandwidth around central
frequency ω. Finally, H1 Gaussian smoothness for the demodulation signal is
used to estimate the bandwidth. Thus, constraining the L2 norm squared gradi-
ent [11] defines the optimization problem (1),

min{gk},{ωk}

{∑K
k=1

∥∥∥ ∂
∂t

[(
δ(t) + j

πt

) ∗ gk(t)
]
e−jωkt

∥∥∥2

2

}
,

subject to:
∑K

k=1 gk(t) = g(t),
(1)
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where the partial derivative ∂
∂t

[.] minimizes variation in the obtained bandwidth;
g(t) is the original speech signal frame; gk(t) is the kth mode for g(t); K is the
total number of modes; ωk = {w1, . . . , wk} is the mode center frequency, and a
convenient way to reference the center frequencies for the set of K modes; e−jωkt

is a modulator function to shift the spectrum for each mode to the baseband.
The analytical signal generated by applying the Hilbert transform j

πt and unit
impulse function δ(t) as shown in equation (1). The δ(t) denotes to the Dirac
delta distribution known as a unit impulse so that its value is zero everywhere and
infinite at original signal. The original voice signal can be reproduced by solving
the constraint optimization (1), which can be simplified using an augmented
Lagrangian multiplier to transform it into an unconstrained problem (2),

L (gk, ωk, λ) := α
∑K

k=1

∥∥∥ ∂
∂t

[((
δ(t) + j

πt

) ∗ gk(t)
)
e−jωkt

]∥∥∥2

+
∥∥∥g(t) − ∑K

k=1 gk(t)
∥∥∥2

2
+

〈
λ(t), g(t) − ∑K

k=1 gk(t)
〉

,
(2)

where, λ is a time-dependent Lagrangian multiplier, and α is a bandwidth control
parameter. The unconstrained Lagrangian problem (2) can be solved to obtain
the frequency and the modes using the alternate direction method of multipli-
ers (ADMM) [11,14,27] optimization in spectral domain. However, optimization
outcomes are the same for the frequency and time domains. Hence, mode gk(ω)
can be updated in the spectral domain,

ĝn+1
k (ω) ← ĝ(ω) − ∑

i<k ĝn+1
i (ω) − ∑

i>k ĝn
i (ω) + λ̂n(ω)

2

1 + 2α (ω − ωn
k )2

. (3)

Updating is obtained using the Wiener filter for the current residual using
the signal prior 1/(ω − ωk)2 to restrain variation across the central frequency
minimum, providing the updated mode center frequency ωk as

ω̂n+1
k =

∫ ∞
0

ω
∣∣∣Ĝk(ω)

∣∣∣2 dω

∫ ∞
0

∣∣∣Ĝk(ω)
∣∣∣2 dω

(4)

where Ĝk(ω) is the Fourier transformed for gn+1
k (t). A better decomposed signal

can be obtained by reconstructing the original signal as the sum of modes and
estimating bandwidth using the Wiener filter. Details of the VMD algorithm are
provided in [11]. To leverage VMD effectiveness, we proposed the VGG-optiVMD
algorithm for automatically selecting optimum α and K by analyzing different
decomposition parameter effects on classification accuracy.

3.2 Proposed VGG-optiVMD

Reconstruction error for a decomposed signal can be reduced by selecting opti-
mum K and α. Improper decomposition parameter selection will create dupli-
cate modes, causing signal information losses consequently reduced classifier
performance.
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Algorithm 1. Proposed VGG-optiVMD algorithm
Input: g(t) is a preprocessed speech signal converted to feature vectors.
Output: Decomposes of signal g(t) and Optimum value of α and K

Initialization : The value of modes K and α;
the tolerance of convergence criterion τ ;

{
ĝ1
k

}
,
{
ω̂1
k

}
, λ̂1; n = 0

Repeat:
1: n = n + 1,
2: for k=1 : K do
3: update ĝk for all ω ≥ 0 by Eq. (3) and ωk by Eq. (4)
4: end for
5: Upgrade the Lagrangian multiplier λ for the dual accent ∀ω0:

λn(ω) = λn + τ(g(ω) −
∑

k

gn+1
k (ω))

Until:
6: convergence:

∑K
k=1 ‖ĝn+1

k − ĝn
k ‖2

2/‖ĝn
k ‖2

2 <∈.
7: return {g1(t), g2(t), . . . , gK(t)}= IMFs; subtract of all sub signals
8: Set Parameters τ=0; DC=0; init=1; tol=1e-9; K=2; α=2000
9: Decompose signal g(t)

10: Record training set accuracy, and F1 score in VGG16 classifier.
11: while max(ACC) do
12: if ACC==max; α ≤ 6000; K ≤8 then
13: The optimum value of K and α is obtained.
14: else

K = K + 1; α=α+1000 go to step 9
15: end if
16: end while
17: Identify optimum value of decomposition parameters α and K while tol=1e-9,

DC=0, init=1, and τ=0

One drawback for VMD is that finding decomposition parameters K and α to
provide optimum performance challenging. In contrast, in our method we auto-
mate optimum VMD decomposition parameter selection using a feedback loop
from the VGG16 flattening output layer. Algorithm 1 shows the proposed opti-
mized VMD algorithm (VGG-optiVMD). The key strength for VGG-optiVMD
is generality and reproducibility across different databases for real-world multi-
media applications, e.g., ER for customer satisfaction analysis.

3.3 Feature Extraction, Data Augmentation, and Classification

Essential and informative acoustic features in the time-frequency domain include
the Mel spectrogram, chromograms, spectral contrasts, tonnetz, and Mel-
frequency cepstral coefficients (MFCCs) [1,13] are extracted and subsequently
employed in various combinations to generate multidimensional feature vectors.
Figure 1 shows the proposed framework to train CNN-VGG16 [29] to extract
enriched feature vectors and classify seven emotions: anger, boredom, happy, neu-
tral, disgust, sadness, and fear on two databases EMODB [7] and RAVDESS [21].
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Fig. 1. Proposed model development workflow: extracted features are enriched using
the VGG-optiVMD to automatically identify K and α.

Figure 1 shows the model development proceeds. First, the voice signal is sam-
pled 88400 Hz and five well-known acoustic features extracted and reshaped into
a single (128 × 128 × 3) feature vector and second the SMOTE [21] oversam-
pling strategy is applied to compensate for minority classes and reduce model
bias. Furthermore, the testing and training features are randomly partitioned
into 20% and 80% sets, respectively. Subsequently, the proposed VGG-optiVMD
algorithm is applied to decode frequency statistical properties at specific times
that distinguish emotions within the feature vector. Finally, the VGG network is
trained on the augmented feature vector to classify emotions into seven classes.

4 Experiment Setup

Several experiments were performed on nine different feature vectors to iden-
tify the proposed VGG-optiVMD algorithm effectiveness using. The details of
network implementations are available in our GitHub repository1.

4.1 Modelling

The aim of modeling was to enhance informative data within the feature vec-
tors and avoid overfitting. Augmentation effects on classification accuracy were
assessed using diverse K and α sets. Optimal K and α was assessed iteratively
until robust classification accuracy was achieved or the break loop condition
reached. K and α were set to a wide range of 3–8 and 1000–6000, respectively,
based on empirical experiments since there was no significant improvement in
prediction accuracy outside those ranges. The VGG16 architecture used the
ADAM optimizer with learning rate = 0.0001; six fully connected hidden layers
with ReLU, SELU, and TanH activation functions; epochs = 50, batch size = 4;
and SoftMax function for the output layer.
1 https://github.com/DavidHason/VGG-optiVMD.

https://github.com/DavidHason/VGG-optiVMD
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5 Result and Discussion

To assess the effectiveness of our VMD-based feature augmentation method sev-
eral evaluation metrics were employed including F1 score, training set accuracy,
and confusion matrix. Analyzing the results of the baseline model, which is built
with the same framework simply without VMD-based feature vector augmenta-
tion, helps us to justify the power of the VGG-optiVMD in SER. Therefore, we
attempted to evaluate the model performance through variation of sample rate,
window size, K and α without using VMD (baseline model) and with VMD (pro-
posed model). As shown in Fig. 2, unlike the baseline model, the proposed model
performed better with a larger sampling rate and window size. Moreover, the
highest train set accuracy and F1 score were obtained via VGG-optiVMD, prov-
ing that our VMD-based feature augmentation method significantly improved
the classification accuracy.

Fig. 2. The model performance is assessed by different signal sampling rates and VMD
parameters K and α. Graph (a) The VGG-optiVMD identified the set of K = 6 and α
= 2000 as optimum value. Graph(b) represents the effect of various ranges of sample
rate and window size on the proposed and baseline model in EMODB. The highest
accuracy can be achieved by SR = 88200 and WS = 2048.
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Based on the experiment results shown in Table 1, there is a correlation
between the number of modes K, bandwidth control parameter α and classifi-
cation accuracy. The different acoustic features are enriched with various sets of
decomposition parameters. Results indicated that higher accuracy was obtained
for K (4–6) and α (2000– 4000) in both datasets, although VGG-optiVMD
is set to a limited range of α (1000–10000) and K (2–8) due to increasing a
heavy computational load when K value is over 8 with sample rate 88400. This
limitation can be considered a functional constraint of VGG-optiVMD. Nev-
ertheless, a state-of-the-art result was achieved with the accuracy of 96.09%
with K=6 and α=2000 as demonstrated in Table 1. The Fig. 3 shows the effi-
cient functionality of VGG-optiVMD on the feature vector 3D-Mel Spectro-
gram+MFCCs+Chromagram. Figure (a) represents the feature before applying
VMD based data augmentation, and figure (b) clearly shows that the informa-
tive frequencies are distinguished on the feature vector by acquiring higher dis-
tinction energies represented in time-frequency domain after applying the data
augmentation method. Therefore, the implications of this finding can improve

Table 1. Empirical results (%) of emotion classification accuracy (ACC) and F1-score
(F1) are demonstrated through different sets of decomposition parameters α and K,
that are selected automatically by the VGG-optiVMD algorithm.

Features: VMD Decomposition Parameters

Databases K=4, α=2000 K=4, α=4000 K=6, α=2000 K=6, α=3000 K=6, α=4000

EMO/RAV Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

CH EMODB 68.54 68.37 81.63 81.47 94.05 94.88 94.90 91.10 95.41 95.11

RAVDESS 70.23 70.55 82.73 82.96 85.21 85.92 79.81 79.79 47.49 46.53

MS EMODB 91.84 91.86 93.15 93.07 95.19 95.07 95.34 94.98 95.92 94.89

RAVDESS 64.21 64.69 71.36 71.55 75.28 75.95 84.19 84.68 87.25 88.11

MF EMODB 48.1 46.92 65.16 64.42 64.87 65.18 56.12 56.57 67.64 66.9

RAVDESS 42.64 41.77 53.29 52.14 55.61 56.80 51.81 51.44 41.86 40.46

SP EMODB 94.27 93.11 93.01 92.95 93.88 93.07 93.44 93.37 94.02 93.87

RAVDESS 89.25 90.11 78.48 79.21 91.28 92.88 90.70 90.10 92.14 93.55

TZ EMODB 74.93 75.11 91.25 90.89 88.92 88.91 91.84 91.12 92.44 92.10

RAVDESS 48.21 48.26 51.04 51.67 52.07 52.12 49.06 49.12 51.98 52.23

MS+SP EMODB 89.62 90.85 88.76 89.08 88.2 88.13 95.92 96.11 95.41 95.12

RAVDESS 78.33 78.12 74.37 74.79 78.52 78.78 81.38 81.42 81.84 81.91

MF+SP EMODB 58.1 58.2 66.91 66.98 65.16 65.11 62.54 62.13 67.64 67.21

RAVDESS 53.08 53.12 56.25 56.68 60.28 60.94 58.21 58.14 54.7 54.06

MF+CH EMODB 85.21 85.2 84.35 84.36 90.14 90.13 87.41 87.52 90.82 90.82

RAVDESS 51.29 51.35 54.25 54.89 53.65 54.66 55.13 55.12 56.08 56.84

M+M+C EMODB 86.56 86.42 87.41 87.35 96.09 96.04 93.54 93.42 94.73 95.98

RAVDESS 60.28 60.11 60.28 60.84 61.55 62.36 59.25 60.87 57.70 57.56

Features abbreviation: M+M+C: 3D-Mel Spectrogram+MFCCs+Chromagram;
MS+SP: 2D-Mel Spectrogram+Spectral; CH: Chromagram; MF: MFCCs; TZ: 1D-
Tonnetz;
The best results on both databases are indicated in bold font.
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Table 2. Visualization of the model performance with confusion matrix (%) for the 3D-
Mel Spectrogram+MFCCs+Chromagram with test accuracy = %96.09 on the Berlin
EMO-DB dataset.

Emotion: Anger Boredom Disgust Fear Happiness Neutral Sadness

Anger 95.24 0 0 0 4.76 0 0

Boredom 0 95.24 0 0 0 0 4.76

Disgust 0 0 100.00 0 8 0 0

Fear 0 0 0 94.05 0 0 0

Happiness 8.33 0 0 0 91.67 0 0

Neutral 0 2.38 0 0 1.19 96.43 0

Sadness 0 0 0 0 0 0 100

Fig. 3. The efficient functionality of VGG-optiVMD on the feature vector 3D-Mel
Spectrogram+MFCCs+Chromagram clearly shows a higher distinction in the energy
magnitude of frequencies in (b).

the learning process in VGG16 and result in better prediction accuracy. The con-
fusion matrix in Table 2 demonstrates the high performance of the classification
model with accuracy above 90% for all classes. Nevertheless, the model performs
poorly when predicting happiness and anger emotions due to the similarity of
signal attributes such as intensity, frequency and harmonic structure. The VGG-
optiVMD method is compared with the most recent works, shown in Table 3, that
our method outperforms previous models and achieves a state-of-the-art result
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Table 3. Comparison of the proposed method with previous works on the EMODB
and RAVDESS databases.

Method proposed by Feature extraction strategy Learning Net. Acc(%)

Badshah et al. [3] log Mel spectrogram CNN 52

Dendukuri et al. [10] 45d- Mode statistical+MFCCs+Spectral SVM-VMD 61.2

Zamil et al. [32] 13 MFCCs Tree Model 70

Popova et al. [26] Mel spectrograms VGG16 71

Hajarol. et al. [12] Mel spectrograms+MFCCs CNN 72.21

Wang et al. [30] Fourier Parameter+MFCCs SVM 73.3

Kown et al. [19] Spectrogram Deep SCNN 79.50

Badsha et al. [4] Spectrogram CNN 80.79

Huang et al. [15] Spectrogram CNN 85.2

Issa et al. [16] MFCCs+Chroma.+Mel spec.+Contrast+Tonnetz VGG16 86.10

Meng et al. [22] log Mel spec.+1st & 2nd delta(log Mel spec.) CNN-LSTM 90.78

Wu et al. [31] Modulation Spectral Features (MSFs) SVM 91.60

Rudd et al. [28] Harmonic-Percussive (HP)+log Mel spec VGG16-MLP 92.79

Demircan et al. [9] LPC+MFCCs SVM 92.86

Zhao et al. [34] log Mel spectrogram CNN-LSTM 95.89

VGG-optiVMD 3D-Mel spectrogram+MFCCs+Chromagram VGG16-VMD 96.09

in terms of accuracy. Moreover, the main advantage of the VGG-optiVMD is its
generality, which can be employed independently for other acoustic features and
different databases.

6 Conclusion

Speech signal processing is employed in some applications when we only have
access to speech voice to detect emotions which is the first aim of this study, the
second aim of this study is to introduce specific data augmentation techniques to
enrich the extracted acoustic features by design of VGG-optiVMD, an extended
VMD algorithm to improve SER performance.

The findings provide solid empirical confirmation of the key role of the sam-
pling rate, the number of the decomposed mode, K and the balancing param-
eter of the data-fidelity constraint, α, in the performance of the emotion clas-
sifier. Taken together, these findings suggest that VMD decomposition param-
eters K (2–6) and α (2000–6000) are and EMODB databases. The proposed
VGG-optiVMD algorithm improved the emotion classification to a state-of-the-
art result with a test accuracy of 96.09% in the Berlin EMO-DB and 86.21%
in the RAVDESS datasets. Further work needs to be done to establish whether
extracting acoustic features only from informative decomposed modes can reduce
computational load constraints. Therefore, the study should be repeated using
the VMD algorithm before acoustic feature extraction process.
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