
Representing legislative Rules as Code:
Reducing the problems of ‘scaling up’

Andrew	Mowbray,	Philip	Chung	and	Graham	Greenleaf
*

9	December	2021	–	7,277	words

1. Introduction:	Rules	as	Code	(RaC)	
...2

1.1. What	do	we	mean	by	‘Rules	as	Code’?	
..2

1.2. Why	‘Rules	as	Code’	matters	
..3

2. Structure	and	nature	of	legislative	rules	
...4

2.1. Coding	what	rules	say,	or	what	they	do?	
...4

2.2. Paying	attention	to	what	rules	say	
...4

2.3. Ambiguities	in	what	rules	say	
...5

2.4. Example	of	what	rules	say:	Patents	Act	1914,	s.	114	
...6

3. Representation	of	legislative	rules:	yscript	
..7

3.1. Features	of	the	yscript	language	
..8

3.2. Example	of	yscript	code:	Patents	Act	1914,	s.	114	
...9

4. From	legislation	to	code:	(i)	Automating	conversion	of	existing	legislation	to	code	
.........10

4.1. Three	possible	outputs	from	ylegis	
..11

4.2. Input	requirements	for	ylegis	
...12

4.3. Syntax	that	ylegis	does	not	automatically	convert	
...12

4.4. Examples	of	ylegis	conversion:	Crimes	Act	1914,	ss.	15KP	and	15KQ	
........................12

4.5. How	can	ylegis	conversions	from	existing	legislation	be	tested?	
...............................14

5. From	legislation	to	code:	(ii)	Writing	Legislative	Rules	as	Code	
...15

5.1. Formal	mode	of	ylegis	
..15

5.2. Example	of	writing	legislation	as	code:	Crimes	Act	1914,	s.	15KP	
.............................15

5.3. Practicalities	of	implementation:	Authoritative	status	of	code	
..................................18

6. From	legislation	to	code:	(iii)	Converting	existing	legislation	to	authoritative	code	
..........18

7. Conclusions	and	future	work	
...18

7.1. Future	work	..19

	 Andrew	 Mowbray	 is	 Professor	 of	 Law	 &	 Information	 Technology	 at	 UTS	 and	 Co-Director	 of	 AustLII;	 Philip	 Chung	 is	*

Associate	Professor	of	Law	at	UNSW	and	Executive	Director	of	AustLII;	Graham	Greenleaf	is	Professor	of	Law	&	Information	
Systems	at	UNSW	and	Co-Founder	of	AustLII.

Electronic copy available at: https://ssrn.com/abstract=3981161

2

Representing	Legislation	as	Code:	Reducing	the	problems	of	‘scaling	up’

This	paper	outlines	an	approach	 to	modelling	 legal	 rules,	particularly	 legislative	rules,	 that	
focusses	on	 representing	 legislation	as	a	hierarchical	 set	of	propositions	 that	 records	both	
mechanical	and	real	world	meaning.	It	suggests	a	methodology	for	expressing	these	rules	in	
a	way	that	is	machine	consumable.	The	paper	describes	the	progress	that	has	been	made	by	
AustLII’s 	DataLex	project	in	leveraging	this	form	of	representation	in	several	ways	including	1

automated	conversion	of	existing	legislative	rules,	which	can	also	be	described	as	‘scaling	up’	
the	production	of	 ‘Rules	as	Code’.	Based	on	 this	 experience,	 the	paper	also	demonstrates	
how	 the	 drafting	 of	 legislation	 could	 be	 changed	 to	 make	 it	 directly	 readable	 and	
understandable	by	humans	and	also	usable	by	machines.	

We	conclude	by	suggesting	that	there	is	evidence	these	processes	are	potentially	scaleable	
and	able	 to	deal	with	 the	conversion	or	production	of	 large	bodies	of	 legislation.	 	Further	
work	 is	needed	to	 investigate	the	extent	to	which	the	conversion	and	creation	of	 ‘Rules	as	
Code’	can	be	done	at	scale	and	applied	to	different	types	of	legislation	and	other	classes	of	
legal	rules.

1. Introduction: Rules as Code (RaC)

Rules	 as	 Code	 (RaC)	 is	 a	 field	 of	 research	 into	 making	 human-made	 rules	 usable	 by	
machines,	to	perform	useful	results.	The	rules	to	which	RaC	can	be	applied	include	statutes,	
regulations	and	many	other	types	of	law-related	rules,	as	well	as	organisational	rules	such	as	
codes	of	practice,	codes	of	conduct	and	business	procedures.

1.1. What do we mean by ‘Rules as Code’?

‘Rules	as	Code’,	in	our	definition, 	is	the	activity	of	creating	or	converting	a	legal	text	which	is	2

in	a	natural	language	(legislation,	regulations,	or	other	legal	instruments	–	generically,	‘law’	
or	 ‘rules’),	 in	 or	 into	 a	 representation	 in	 a	 computer-processable	 form	 (code).	 	 One	
application	 of	 this	 allows	 a	 human	 user	 to	 input	 data	 on	 a	 particular	 fact	 situation,	 and	
thereby	produce	conclusions	which	are	an	accurate	statement	of	the	legislative	intent	of	the	
legal	 text	when	applied	to	that	data.	Other	applications	 include	the	embedding	of	 rules	 in	
automated	systems	and	to	facilitate	the	communication	between	systems	to	determine	such	
matters	as	design	and	compliance.

The	 ‘conversion’	 into	code	may	be	simultaneous	with	the	creation	of	 the	natural	 language	
text	 (drafting	 law	 as	 code)	 or	 retrospective	 (converting	 existing	 laws	 from	 a	 back-set	 into	
code).	

	 Rules	 as	 Code	 (RaC)	 is	 also	 often	 referred	 to	 as	 the	 creation	 of	 machine-consumable	
(‘executable’)	 versions	 of	 laws	 and	 other	 type	 of	 rules,	 or	 ‘creating	machine-interpretable	
regulation’.
3

	 AustLII	 is	 the	 Australasian	 Legal	 Information	 Institute	 <http://www.austlii.edu.au>,	 a	 joint	 facility	 of	 UTS	 and	 UNSW	1

Faculties	of	Law.	The	DataLex	project	is	at	<http://www.datalex.org>.

	Terminology	in	this	field	is	still	very	unsettled,	with	no	generally	accepted	definitions	for	‘Rules	as	Code’,	‘Law	as	Code’	or	2

‘Code	as	Law’.		

	 Productivity	 Commission	 (Australia)	 Information	 Paper	 on	 Regulatory	 Technology	 (October	 2020),	 p.	 13	 <https://3

www.pc.gov.au/research/completed/regulatory-technology/regulatory-technology.pdf>	

Electronic copy available at: https://ssrn.com/abstract=3981161

https://www.pc.gov.au/research/completed/regulatory-technology/regulatory-technology.pdf
https://www.pc.gov.au/research/completed/regulatory-technology/regulatory-technology.pdf
http://www.austlii.edu.au
http://www.datalex.org

3

Representing	Legislation	as	Code:	Reducing	the	problems	of	‘scaling	up’

Examples	 of	 the	 types	 of	 legal	 rules	 to	 which	 RaC	 can	 be	 applied	 to	 include	 legislation,	
regulations,	 other	 forms	 of	 delegated	 legislation	 (ordinances,	 by-laws	 and	 so	 forth),	 court	
rules,	codes	of	conduct,	treaties	or	technical	standards.
4

There	 are	 broadly	 two	 possible	 approaches	 to	 achieving	 RaC	 in	 the	 context	 of	 legislative	
drafting.	When	rules	are	made	(or	subsequently)	two	versions	can	be	created:	one	in	natural	
language	 (for	humans)	 and	one	 in	executable	 form	 (for	machines).	Alternatively,	 the	 rules	
can	 be	written	 from	 the	 start	 in	 such	 a	way	 that	 they	 are	 both	 intelligible	 and	 usable	 by	
humans	as	well	as	by	machines.	In	this	article	we	discuss	both	approaches.

1.2. Why ‘Rules as Code’ matters

‘Rules	as	Code’	is	important	to	all	types	of	‘stakeholders’	in	legislation-related	activities:

1. RaC	can	make	the	 law	more	accessible	and	more	understandable,	 if	 implemented	with	
such	goals	in	mind,	by	allowing	anyone	to	see	not	only	what	laws	say,	but	also	how	they	
operate	 in	particular	 situations.	The	effects	of	 rules	 can	be	 tested	against	hypothetical	
fact	 situations.	 RaC	 can	 therefore	 become	 a	 natural	 extension	 of	 free	 access	 to	 legal	
information. 	For	 it	to	do	so,	 implementations	of	RaC	must	be	made	freely	available	to	5

all.	RaC		is	therefore	of	value	to	individual	citizens,	and	to	governments	making	rules.

2. From	 an	 economic	 and	 business	 perspective,	 RaC	 can	 lower	 the	 very	 high	 costs	 of	
compliance	with	 legislation	 or	 other	 rules, 	 and	 is	 therefore	 of	 potential	 value	 to	 the	6

economy	as	a	whole.

No	matter	which	 approach	 to	 adopting	 a	 RaC	 approach	 to	 the	 creation	of	 new	 legislative	
rules,	 there	 needs	 to	 be	 some	way	 of	 dealing	with	 the	 extensive	 current	 sets	 of	 existing	
rules.	 AustLII	 currently	 contains	 28,290	 Australian	 statutes	 and	 40,109	 regulations,	
comprised	of	1,786,600	legislative	sections.	

This	 legislation	affects	 the	 lives	of	all	 citizens	and	regulates	 the	way	 that	business	and	 the	
economy	 function,	 and	 it	 is	 heavily	 used.	 In	 2020	 there	 were	 96,496,797	 accesses	 to	
Australian	legislation	on	AustLII	alone.	To	this	must	be	added	some	comparable	amount	of	
use	 on	 all	 the	 government	 legislation	 services	 combined,	 plus	 the	 commercial	 providers.	
Using	 a	 rough	 estimate	 of	 200	 million	 accesses	 to	 sections,	 each	 of	 the	 nearly	 2	 million	
sections	is	being	accessed	on	average	100	times	per	annum.	Of	course,	actual	usage	would	
have	high	variability.

	The	‘rules’	can	also	include	case	law	which	functions	as	precedents,	but	this	involves	different	considerations	beyond	the	4

scope	of	this	article.

	RaC	is	therefore	of	particular	interest	to	legal	information	institutes	such	as	AustLII.5

	 "According	 to	 industry	estimates,	financial	 institutions	globally	 spend	more	 than	US$70	billion	on	compliance	annually	6

and	 the	 costs	 for	 regulatory	 compliance	 and	 governance	 software	 across	 the	 global	 industry	 are	 expected	 to	 approach	
US$120	billion	by	2020,	more	than	half	of	which	will	occur	in	consulting	and	business	services.	It	is	estimated	that	from	the	
2008	financial	crisis	through	2015,	the	annual	volume	of	regulatory	publications,	changes,	and	announcements	increased	a	
staggering	492	per	cent."	Australian	Prime	Minister	Scott	Morrison,	 	Address	to	the	Fintech	Australia	Summit,	Melbourne	
(November	 2016)	 <https://ministers.treasury.gov.au/ministers/scott-morrison-2015/speeches/address-fintech-australia-
summit-melbourne>

Electronic copy available at: https://ssrn.com/abstract=3981161

https://ministers.treasury.gov.au/ministers/scott-morrison-2015/speeches/address-fintech-australia-summit-melbourne
https://ministers.treasury.gov.au/ministers/scott-morrison-2015/speeches/address-fintech-australia-summit-melbourne

4

Representing	Legislation	as	Code:	Reducing	the	problems	of	‘scaling	up’

2. Structure and nature of legislative rules

2.1. Coding what rules say, or what they do?

At	one	 level,	 legislative	 rules	 can	be	 seen	as	being	prescriptive,	 regulating	 social,	business	
and	 economic	 activities.	 The	 temptation	 is	 to	 simply	 model	 these	 prescriptions,	 but	 this	
leads	to	an	immediate	conceptual	fork	between	what	legislative	rules	“say”	and	what	they	
are	taken	to	“do”.	Once	there	is	an	attempt	to	(for	example)	regard	legal	rules	as	expressing	
obligations	 or	 duties	 (deontic	 expressions)	 or	 to	 impose	 any	 other	 consequential	
interpretation,	then	any	form	of	representation	is	no	longer	describing	the	rules	themselves	
(and	 so	 does	 not	 represent	 them),	 but	 is	 instead	 a	 representation	 of	 an	 interpretation	 of	
what	the	rules	do.

There	 is	a	 long	history	of	 this	 type	of	division	 in	 the	application	of	artificial	 intelligence	 to	
law.	 For	example,	 in	1990,	Thorne	McCarty,	 then	a	 leader	 in	 the	new	field	of	 ‘AI	 and	 law’	
argued	 that	 his	 “deep	 conceptual	 model”	 of	 the	 legal	 domain	 was	 superior	 to	 other	
approaches	 while	 not	 denying	 those	 approaches	 have	 some	 uses.	 But,	 he	 said,	 a	 more	
complex	 representation	 is	 needed:	 "There	 are	many	 common	 sense	 categories	 underlying	
the	 representation	 of	 a	 legal	 problem	 domain:	 space,	 time,	 mass,	 action,	 permission,	
obligation,	causation,	purpose,	intention,	knowledge,	belief,	and	so	on.	The	idea	is	to	select	
a	 small	 set	 of	 these	 common	 sense	 categories,	 the	 ones	 that	 are	most	 appropriate	 for	 a	
particular	 legal	 application,	 and	 then	 develop	 a	 knowledge	 representation	 language	 that	
faithfully	mirrors	the	structure	of	the	selected	categories.” 	
7

In	 the	 thirty	 years	 since	 then,	 many	 other	 approaches	 have	 been	 developed	 to	 the	
representation	of	 legal	 rules	which	 focused	on	what	 rules	 do,	 or	 their	meaning,	 including	
those	associated	with	deontic	logic,	the	semantic	web,	and	legal	ontologies.

2.2. Paying attention to what rules say

AustLII’s	approach	is	to	focus	on	what	rules	literally	say,	and	to	represent	that	in	code.	This	
includes	not	just	references	to	things	that	are	external	to	the	rules,	but	also	includes	internal	
references	to	the	applicability	or	otherwise	of	other	rules	and	sub-parts	of	rules.

Legislative	rules	are	usually	structured	into	clauses	or	sections,	each	of	which	is	then	divided	
into	sub-sections	and	perhaps	even	sub-sub-sections.	This	is	done	so	that	lawyers	and	end-
users	 of	 legal	 rules	 can	 communicate	 about	 which	 specific	 aspect	 of	 a	 rule	 they	 are	
discussing.	The	issues	that	each	rule	component	relates	to	are	various.	Many	of	these	issues	
are	 expressed	propositionally	 or	 the	 issues	 can	be	 reduced	 to	 a	 proposition.	 Some	of	 the	
examples	of	the	types	of	matters	that	legislative	rules	deal	with	include:

• setting	out	principles,	objectives	or	policies

• providing	factors	to	be	taken	into	account	in	determining	an	issue

• making	declarations

	Thorne	McCarty	‘Artificial	Intelligence	and	Law:	How	to	Get	There	From	Here’	(1990)	<https://www.researchgate.net/7

publication/229678099_Artificial_Intelligence_and_Law_How_to_Get_There_from_Here>		

Electronic copy available at: https://ssrn.com/abstract=3981161

https://www.researchgate.net/publication/229678099_Artificial_Intelligence_and_Law_How_to_Get_There_from_Here
https://www.researchgate.net/publication/229678099_Artificial_Intelligence_and_Law_How_to_Get_There_from_Here
https://www.researchgate.net/publication/229678099_Artificial_Intelligence_and_Law_How_to_Get_There_from_Here

5

Representing	Legislation	as	Code:	Reducing	the	problems	of	‘scaling	up’

• imposing	obligations	or	granting	rights

• describing	how	other	sections	apply	or	how	they	are	changed

This	list	is	not	exhaustive	but	is	meant	to	make	the	point	that	the	subject	matter	and	effect	
of	 legislative	provisions	 is	diverse	and	cannot	easily	be	captured	by	any	single	ontology	or	
logical	 system.	 Rather,	 legislation	 is	 better	 characterised	 as	 being	 a	 structured	 set	 of	
statements	about	any	subject	matter	(including	statements	about	how	the	rules	themselves	
should	 operate	 and	 inter-relate)	 and	 is	 generally	 expressed	 using	 formal	 structures	
containing	linked	propositions.

The	types	of	propositions	in	legislation	include:

• Substantive	propositions

o Eg	the	applicant	earns	less	than	$20,000	pa

• Definitions

o Eg	“earns”	means	any	form	of	income

• Explicit	‘structural’	propositions

o Eg	Part	II	applies

• Implicit	‘structural’	propositions

o Eg	section	1(a)	applies	and	section	1(b)	applies	

• External	‘structural’	propositions

o Eg	Company	has	 the	 same	meaning	as	 in	 section	6	 of	 the	Corporations	Act	
2001

A	majority	of	provisions	are	usually	non-substantive.	Instead,	most	provisions	describe	how	
the	various	parts,	divisions,	sections	and	sub-sections	relate	to	each	other.	In	our	view,	the	
main	 goal	 of	 any	 form	 of	 representation	 is	 to	 reflect	 the	 structure	 and	 interrelations	 of	
legislative	 rules.	 To	 a	 large	 extent,	 the	 significance	 of	 any	 real-world	 associations	 are	
secondary.	

2.3. Ambiguities in what rules say

The	 leading	 textbook	 in	 the	field	of	AI	 and	 law 	notes	 that	 ‘statutory	 reasoning	should	 be	8

easy’,	 but	 that	 fifty	 years	 of	work	 in	 the	 field	 has	 ‘developed	 an	 appreciation	of	 just	 how	
difficult	the	problem	is’. 	Ashley	identifies	two	main	sources	of	the	problem:
9 10

(i) ‘semantic	 ambiguity,	 and	 its	 cousin,	 vagueness’:	 ‘The	 regulatory	 concepts	 and	
terms	the	legislature	selects	may	not	be	sufficiently	well	defined	to	determine	if	

	Kevin	D.	Ashley	Artificial	Intelligence	and	Legal	Analytics	(Cambridge	University	Press,	2017)	(hereafter	‘Ashley,	2017’)8

	Ashley,	2017,	pp.	38-39.9

	Ashley,	2017,	p.39.10

Electronic copy available at: https://ssrn.com/abstract=3981161

6

Representing	Legislation	as	Code:	Reducing	the	problems	of	‘scaling	up’

or	 how	 they	 apply.’	 The	 relationships	 between	 the	 concepts	 may	 also	 not	 be	
clear.

(ii) ‘syntactic	ambiguity’:	 ‘the	logical	terms	legislatures	use,	such	as	“if,”	“and,”	“or,”	
and	“unless,”	introduce	multiple	interpretations	of	even	simple	statutes.’

The	main	focus	of	the	DataLex	approach	is	the	syntax	of	legislation	(or	other	rules)	and	how	
that	 syntax	 may	 be	 used	 to	 represent	 machine-interpretable	 legislation.	 Although	 most	
syntactic	elements	of	a	piece	of	 legislation	are	not	ambiguous	(for	example,	 in	the	 implicit	
structural	propositions	example	above,	 the	 ‘and’	 can	 safely	be	 replaced	by	a	 logical	 ‘and’)	
there	remain	significant	issues	to	be	addressed	where	there	is	ambiguity.	

Semantic	 ambiguity,	 or	 the	 ‘open	 texture	 of	 legal	 language’,	 on	 the	 other	 hand	 is	 not	
something	 that	 representation	 by	 itself	 can	 easily	 reduce.	 The	 need	 for	 human	
interpretation	 of	 statutory	 terms	 is	 not	 something	 that	 can	 be	 removed	 from	 machine-
interpretable	 legislation,	 although	 well-designed	 computer	 applications	 can	 assist	 human	
users	with	the	task	of	interpretation,	through	actively	assisting	them	to	locate	the	materials	
(cases,	scholarship	etc)	on	which	such	interpretation	must	be	based.
11

2.4. Example of what rules say: Patents Act 1914, s. 114

Consider	the	following	from	the	Australian	Patents	Act	1990:

The	 section	 says	 something	 about	 each	 of	 ten	 different	 concepts	 (that	 is,	 statements	 or	
propositions).	Sub-section	(1)	says	the	section	114	will	apply	only	where	three	subsequent	
conditions	 are	 met.	 The	 first	 of	 these	 (contained	 in	 sub-section	 (1)(a))	 is	 a	 substantive	
proposition,	 namely	 that	 “a	 complete	 specification	 has	 been	 amended”.	 Subsection	 (1)(b)	
relies	upon	an	explicit	structural	proposition	that	“the	amendment	was	not	allowable	under	
subsection	 102(1)”.	 Some	 structural	 elements	 of	 the	 section	 contain	 more	 than	 one	
proposition	(such	as	(1)(c)(i)).

	Greenleaf	G,	Mowbray	A	and	Chung	C,	Building	Sustainable	Free	Legal	Advisory	Systems:	Experiences	from	the	History	of	11

AI	&	Law	(2018)	34(1)	Computer	Law	&	Security	Review	314	

Electronic copy available at: https://ssrn.com/abstract=3981161

7

Representing	Legislation	as	Code:	Reducing	the	problems	of	‘scaling	up’

Conceptually,	the	section	can	be	represented	as	a	directed	graph	as	follows:	

At	 a	 broader	 level,	 the	 entire	 Act	 can	 be	 represented	 in	 a	 similar	 way.	 Acts,	 as	 currently	
drafted,	 are	 seldom	 complete	 and	 will	 require	 the	 insertion	 of	 dependencies	 and	
relationships	between	Act	components.

3. Representation of legislative rules: yscript

yscript	 (pronounced	 ‘why-script’)	 is	 a	 language	 for	 representing	 and	 manipulating	
propositions. 	 It	 can	be	used	 to	 represent	 real-world	 rules	 such	as	 legislation	or	 codes	of	12

practice,	 as	 well	 as	 to	 create	 systems	 based	 around	 less	 formally	 defined	 procedures	 or	
knowledge.

Syntactically	correct	yscript	rules	are	able	to	be	run	by	the	yscript	interpreter 	to	engage	a	13

user	 in	 a	 consultation,	 and	 to	 produce	 a	 report	 on	 conclusions	 generated	 during	 the	
consultation. 	The	yscript	interpreter	and	library	is	available	under	an	Affero	GPL	licence.	
14 15

	Mowbray	Coding	in	yscript	(AustLII,	May	2021)		 	 <https://austlii.community/foswiki/pub/DataLex/WebHome/ys-12

manual.pdf>

	yscript	is	an	extension	of	the	language	used	by	a	previous	system	called	ysh.	13

	Mowbray	A,	Chung	P	and	Greenleaf	G,	Utilising	AI	 in	the	Legal	Assistance	Sector	–	Testing	a	Role	for	Legal	 Information	14

Institutes	(2020)	38(1)	Computer	Law	and	Security	Review	105407

	An	explanation	of	the	Affero	AGPL	licence	is	at:	https://www.gnu.org/licenses/why-affero-gpl.html	.15

Electronic copy available at: https://ssrn.com/abstract=3981161

http://austlii.community/foswiki/pub/DataLex/WebHome/ys-manual.pdf
https://austlii.community/foswiki/pub/DataLex/WebHome/ys-manual.pdf
https://austlii.community/foswiki/pub/DataLex/WebHome/ys-manual.pdf
https://www.gnu.org/licenses/why-affero-gpl.html

8

Representing	Legislation	as	Code:	Reducing	the	problems	of	‘scaling	up’

3.1. Features of the yscript language

Some	 of	 the	 features	 of	 yscript 	 are	 that	 it	 uses	 a	 quasi-natural-language	 ‘English-like’	16

syntax,	which	is	easy	to	learn	and	use,	supports	declarative	and	imperative	coding,	produces	
natural	 English	 dialogs	 (consultations)	 and	 explanations	 without	 any	 textual	 ‘baggage’	 in	
addition	to	its	rules.	Whilst	yscript	is	a	flexible	general	purpose	language,	it	is	can	be	used	for	
representing	 legislation	 and	 other	 rules	 which	 are	 comprised	 of	 a	 structured	 set	 of	
propositions.	It	allows	isomorphic	(one	to	one)	representation	of	legislation	and	other	types	
of	rules	(important	for	transparency,	explanation	and	maintainability).	yscript	can	be	directly	
created	and	maintained	by	lawyers.	

When	yscript	code	is	executed,	it	results	in	a	dialog	or	consultation.	A	series	of	questions	are	
asked,	and	conclusions	are	made.	Along	the	way,	the	user	can	interrogate	the	system	as	to	
why	questions	are	being	asked,	to	explain	how	conclusions	have	been	reached	and	to	check	
hypothetical	question	answers	(that	is,	what	happens	if	I	answer	this	way?).	When	a	session	
completes,	a	report	is	generated	to	give	an	answer	to	the	original	goals	and	to	explain	why	
this	is	the	case.

Numerous	applications	written	in	yscript	are	on	the	DataLex	web	pages. 	The	yscript	code	17

for	each	application	can	be	 found	there,	and	the	applications	can	be	run	 (‘Consultations’).	
Users	 can	 develop	 and	 run	 their	 own	 test	 applications	 using	 the	 DataLex	 Application	
Developer	Tools.
18

From	 the	outset,	 one	of	 the	 central	 aims	 in	 the	development	of	yscript	was	 to	develop	 a	
form	of	representation	that	looked	as	much	like	natural	language	as	possible.	The	language	
syntax	 manages	 to	 almost	 entirely	 avoid	 the	 use	 of	 symbols	 which	 are	 the	 principal	
structural	elements	of	most	programming	languages.	This	was	done	partly	to	make	it	easier	
to	write	 code	 for	non-programmers,	 but	 also	 to	make	 the	 code	more	 transparent.	 Even	 if	
someone	cannot	write	 code	 in	yscript,	 they	can	probably	understand	what	 it	 is	doing	and	
possibly	 even	 comment	 upon	 whether	 it	 accurately	 encapsulates	 anything	 from	 the	 real	
world	(such	as	the	text	of	legislation)	that	it	is	meant	to	reflect.

In	 formal	 terms,	 yscript	 code	 consists	 of	 rules	 that	 deal	with	 facts.	 Facts	 are	 expressed	 in	
their	 plain	 English-language	 form.	 Individual	 rules	 can	 be	 imperative	 but	 often	 are	 just	
declarative	 and	 describe	 the	 relationships	 between	 facts.	 Once	 a	 rule	 is	 being	 evaluated,	
other	 rules	 that	can	help	determine	a	value	 for	 required	 facts	are	automatically	executed.	
Rules	 are	 used	 in	 a	 goal-oriented	 fashion	 to	 determine	 values.	 Each	time	 that	 a	 new	 fact	
becomes	known,	rules	are	used	to	check	if	other	fact	values	can	be	derived.	When	required,	
rules	can	be	specifically	called	like	procedures	or	functions	in	other	languages.	

	 An	 earlier	 version	 of	 the	 yscript	 language	 was	 originally	 developed	 for	 the	 expert	 systems	 shell	 ysh.	 Prior	 to	 being	16

integrated	into	AustLII’s	DataLex	platform,	yscript	was	also	used	as	the	language	and	code	interpreter	for	a	system	called	
wysh	(short	for	“web-ysh”).

	DataLex	web	pages	<http://datalex.org/>17

	DataLex	Application	Developer	Tools	<http://datalex.org/dev/tools/>18

Electronic copy available at: https://ssrn.com/abstract=3981161

9

Representing	Legislation	as	Code:	Reducing	the	problems	of	‘scaling	up’

yscript	 also	 supports	 examples .	 An	 example	 is	 a	 set	 of	 propositions	 (facts)	 supporting	 a	19

particular	outcome.	This	was	 implemented	 in	yscript	 to	deal	with	 case-based	 reasoning	 in	
law	 but	 probably	 has	 application	 in	 other	 fields.	 Finally,	 yscript	 applications	 can	 generate	
documents.	 A	 document	 is	 built	 procedurally	 but	 can	 take	 advantage	 of	 rule-based	
determination	of	necessary	facts.

One	of	 the	advantages	of	using	a	quasi-natural	 language	 form	of	 coding	 is	 that	 it	 is	 often	
possible	 to	 directly	 adopt	 the	wording	 of	 a	 set	 of	 real-world	 rules	 that	 you	 are	 trying	 to	
represent.	 This	 is	 particularly	 useful	 in	 the	 legal	 domain,	 where	 it	 is	 desirable	 to	 use	
language	 taken	 directly	 from	 statutes	 and	 regulations.	 In	 legal	 documents	 (legislation,	
contracts	etc),	the	exact	form	of	words	is	very	often	crucial.	Specific	words	and	phrases	can	
imply	underlying	complex	meaning	or	act	as	a	point	of	reference	to	a	body	of	interpretative	
documents	and	decisions	which	need	to	be	considered.	

The	 rule-based	structure	of	yscript	encourages	and	supports	 isomorphism	 (that	 is,	one-to-
one	mapping)	of	real-word	rules	(particularly	legislation)	into	yscript	code.	This	makes	it	a	lot	
easier	to	build	applications,	and	of	equal	 importance,	 it	allows	for	simpler	maintenance	of	
the	code	when	source	 legislation	or	other	 rules	change,	and	 for	 legal	experts	 to	audit	 the	
accuracy	of	the	code	without	being	computing	experts.

One	of	the	key	ideas	is	that	code	should	represent	what	rules	say	rather	than	what	they	do.	
yscript	 can	be	used	 to	do	either,	but	 it	 is	more	effective	 in	a	RaC	context	when	 it	used	 to	
represent	what	rules	say.

3.2. Example of yscript	code: Patents Act 1914, s. 114

The	 following	 is	 an	example	of	a	 codebase	 that	 represents	 section	114	of	 the	Patents	Act	
1990	(Cth)	(as	set	out	above)	using	the	yscript	language:			

RULE Section 114 - Priority date of claims of certain amended specifications
PROVIDES
SUBRULE Section 114(1)
SUBRULE Section 114(2)

RULE Section 114(1) PROVIDES
this section applies ONLY IF
 section 114(1)(a) applies AND
 section 114(1)(b) applies AND
 section 114(1)(c) applies

RULE Section 114(1)(a) PROVIDES
section 114(1)(a) applies ONLY IF
 a complete specification has been amended

RULE Section 114(1)(b) PROVIDES
section 114(1)(b) applies ONLY IF
 the amendment was not allowable under subsection 102(1)

RULE Section 114(1)(c) PROVIDES
section 114(1)(c) applies ONLY IF
 section 114(1)(c)(i) applies AND

	The	yscript	library	uses	an	analogous	reasoning	approach	developed	by	Alan	Tyree	called	PANNDA.	This	is	described	in	his	19

book	Expert	Systems	in	Law,	Prentice	Hall,	1990.

Electronic copy available at: https://ssrn.com/abstract=3981161

10

Representing	Legislation	as	Code:	Reducing	the	problems	of	‘scaling	up’

 section 114(1)(c)(ii) applies

RULE Section 114(1)(c)(i) PROVIDES
section 114(1)(c)(i) applies ONLY IF
 as a result of the amendment, a claim of the amended specification claims
an invention that was not disclosed by the complete specification as filed in a
manner that was clear enough and complete enough for the invention to be
performed by a person skilled in the relevant art

RULE Section 114(1)(c)(ii) PROVIDES
section 114(1)(c)(ii) applies ONLY IF
 as a result of the amendment, a claim of the amended specification claims
an invention that is disclosed in that manner by the amended specification

RULE Section 114(2) PROVIDES
if this section applies, the priority date of the claim must be determined
under the regulations

4. From legislation to code: (i) Automating conversion of existing
legislation to code

Since	 the	 earliest	 attempts	 to	 use	 AI	 to	 convert	 legislation	 into	 code,	 one	 of	 the	 main	
problems	 impeding	 development	 of	 ‘real	 world’	 applications	 (in	 contrast	 to	 ‘toy’	
applications)	 has	 been	 what	 is	 described	 in	 this	 paper	 as	 the	 problem	 of	 ‘scaling	 up’.	
Australia’s	Productivity	Commission 	gives	a	succinct	description:
20

There	are	a	number	of	factors	that	may	limit	the	benefits	of	machine-interpretable	regulation,	at	
least	 in	 the	 short-term,	 including	 that	 existing	 options	 for	 creating	 such	 code	may	 not	 readily	
scale	 up	 due	 to	 resource	 constraints,	 may	 require	 significant	 levels	 of	 validation	 to	 check	 for	
accuracy	 and	 may	 also	 necessitate	 standardisation	 that	 has	 not	 yet	 been	 developed.	
Nevertheless,	it	could	be	practicable	for	machine-interpretable	text	to	be	developed	for	selected	
components	of	regulation	—	where	coded	rules	would	help	create	service	efficiencies,	automate	
existing	manual	processes,	or	attract	multiple	uses	in	coded	form.

ylegis	 is	 a	 program	 that	 converts	 the	 text	 of	 legislation	 into	 yscript	 rules	 that	 reflect	 the	
legislation’s	structure.	

Until	 recently,	 development	 of	 the	 code	 for	 ‘Rules	 as	 Code’	 applications,	 including	 those	
written	using	yscript,	has	been	a	completely	manual	process,	with	no	automated	assistance	
available,	other	than	some	error-checking	tools.	

To	 make	 the	 coding	 process	 easier,	 the	 DataLex	 project	 has	 developed	 a	 pre-processor	
program	(ylegis),	which	takes	a	section	of	legislation	(or	multiple	sections,	or	even	a	whole	
Act),	 and	 converts	 it	 automatically	 into	 a	 ‘first	 draft’	 of	 yscript	 code	 for	 those	 legislative	
provisions.	The	pre-processed	yscript	code	can	immediately	be	run	by	the	yscript	interpreter,	
to	 test	 (via	 observing	 consultations,	 and	 by	 use	 of	 error-checking	 tools)	 how	 well	 the	
conversion	to	code	has	worked.

	 Productivity	 Commission	 (Australia)	 Information	 Paper	 on	 Regulatory	 Technology	 (October	 2020),	 p.	 13	 <https://20

www.pc.gov.au/research/completed/regulatory-technology/regulatory-technology.pdf>	

Electronic copy available at: https://ssrn.com/abstract=3981161

https://www.pc.gov.au/research/completed/regulatory-technology/regulatory-technology.pdf
https://www.pc.gov.au/research/completed/regulatory-technology/regulatory-technology.pdf

11

Representing	Legislation	as	Code:	Reducing	the	problems	of	‘scaling	up’

ylegis	 can	 take	 legislation	 drafted	 in	 ‘UK/Westminster	 style’	 format	 (as	 used	 in	 many	
Commonwealth	jurisdictions	such	as	Australia),	and	produce	from	it	yscript	rules	that	reflect	
the	 legislation’s	structure.	 It	can	be	used	to	produce	yscript	code	from	unmodified	original	
source	legislation,	with	no	human	intervention.	Technically,	it	can	be	described	as	a	filter,	or	
as	a	pre-processor.	

4.1. Three possible outputs from ylegis

Three	outcomes	of	the	use	of	ylegis	to	convert	existing	legislation	are	possible:	

1. In	many	cases,	depending	on	the	structure	of	the	selected	legislative	provisions,	the	
pre-processed	code	will	need	no	change,	because	it	is	considered	to	accurately	reflect	
the	meaning	of	 the	 legislation.	 In	 these	cases,	 the	goal	of	automated	conversion	of	
‘legislation	into	code’	has	been	achieved.	Examples	are	given	below	of	sections	15KP	
and	15KQ	of	the	Crimes	Act	1914	(Cth).

2. In	many	other	cases,	the	pre-processed	code	will	provide	a	useful	‘first	draft’	of	how	
the	 legislative	 provisions	 can	 be	 converted	 into	 the	 code	 required	 by	 the	 yscript	
interpreter.	Further	human	editing	of	the	pre-processed	code	will	be	necessary	before	
it	will	run	in	a	way	which	accurately	represents	the	legislation.	

3. In	a	minority	of	cases,	 the	pre-processed	code	will	not	be	a	useful	first	draft,	and	 it	
will	 be	more	efficient	 to	 start	 from	 scratch	with	manual	 encoding	of	 the	 legislation	
into	yscript	code.

The	effectiveness	of	ylegis	in	‘scaling	up’	the	conversion	of	existing	legislation	into	code	is,	to	
a	large	extent,	the	question	of	what	percentages	of	all	legislation	tested	fall	into	categories	
1,	2	and	3	respectively.	We	want	a	high	enough	percentage	to	fall	into	category	1	for	it	to	be	
very	clear	that	this	is	a	very	efficient	way	in	which	to	covert	legislation	into	code.	We	do	not	
expect	that	the	percentage	in	category	3	will	be	zero,	but	it	should	be	small	enough	that	the	
use	 of	 ylegis	 is	 not	 considered	 to	 be	 ‘hit	 and	miss’,	 with	 the	 difficulties	 of	 ‘starting	 from	
scratch’	 being	 very	 time-consuming.	 While	 a	 significant	 percentage	 of	 ‘useful	 first	
drafts’	 (category	 2)	 might	 be	 an	 acceptable	 result,	 it	 will	 not	 be	 efficient	 (and	 might	 be	
dangerously	misleading)	if	it	is	difficult	and	time-consuming	to	identify	and	fix	shortcomings	
in	such	drafts.

There	 are	 several	 other	 factors	 which	 must	 also	 be	 taken	 into	 account	 in	 assessing	 the	
effectiveness	of	ylegis:

• The	 scope	 over	 which	 such	 percentage-based	 assessments	 should	 be	 made	 is	
arguable.	 Should	 it	 be	 the	 percentage	 of	 sections	 which	 fall	 into	 each	 category,	
irrespective	of	which	Act	 they	 are	 in?	Alternatively,	 if	 one	 section	 is	 in	 category	 3,	
from	an	Act	with	100	sections,	does	that	mean	the	Act	should	be	in	category	3?	Our	
view	is	that	the	most	objective	measure	is	the	first,	by	individual	sections.

• The	question	of	whether	the	yscript	code	for	a	converted	section	falls	into	category	1	
or	 2	will	 often	be	arguable.	 For	 example,	 as	discussed	below	 in	 relation	 to	 section	

Electronic copy available at: https://ssrn.com/abstract=3981161

12

Representing	Legislation	as	Code:	Reducing	the	problems	of	‘scaling	up’

15KP	 of	 the	Crimes	Act	 1914	 (Cth),	 the	 ylegis	 conversion	 can	 be	 said	 to	 be	 legally	
correct,	but	the	yscript	code	will	be	more	precise	in	what	it	reports,	if	one	change	is	
made	to	the	code.

The	ylegis	pre-processor	is	a	program	that	is	undergoing	rapid	development,	with	the	range	
of	less	standard	legislative	structures	than	are	described	below	coming	within	the	scope	of	
its	 conversion	 abilities.	 This	 makes	 it	 premature	 at	 the	 moment	 to	 make	 any	 definitive	
assessments	of	its	effectiveness,	but	progress	is	sufficiently	positive	to	be	worth	reporting.	

4.2. Input requirements for ylegis

Input	 text	 to	 ylegis	 requires	 no	 special	markup	 other	 than	 that	 sections	 and	 sub-sections	
should	start	at	the	beginning	of	a	line.	Any	HTML	or	XML	tags	are	ignored.	The	emphasis	is	
on	always	producing	some	output	yscript	code.	That	code	can	be	edited	if	not	correct.	

The	 structure	 of	 input	 text	 is	 assumed	 to	 be	 in	 the	 traditional	UK/Westminster	 legislative	
section/sub-section	hierarchy	1(1)(a)(i)(A).	The	second	 level	 (eg	 (4))	 is	optional	and	can	be	
omitted.	

Explicit	 definitions	 are	 also	 recognised	 where	 a	 line	 starts	 with	 a	 “quoted	 term”	 (for	
example,	 ‘	“Prescribed	person”	means	…’	or	 ‘	“Material	 form”	includes	…’).	Each	definition	
can	have	an	associated	hierarchy	that	is	similar	to	a	section.

A	 section	 may	 be	 preceded	 by	 a	 description.	 When	 not	 in	 formal	 mode	 (see	 5.1),	 text	
following	a	section	tag	for	lines	with	no	operator	is	also	treated	as	a	description.

Text	to	be	processed	with	ylegis	can	be	combined	with	traditional	yscript	by	running	ylegis	as	
a	pre-processor	to	the	yscript	interpreter.	Sections	should	start	with	the	keyword	“SECTION”	
and	finish	with	 the	keyword	“END-SECTION”.	Otherwise	 input	 (yscript)	passes	 through	 the	
pre-processor	unchanged.	Text	to	be	processed	as	sections	can	be	in	plain	format	(ie	just	as	
it	is	set	out	in	an	Act	or	Regulation).	

4.3. Syntax that ylegis does not automatically convert

The	ylegis	pre-processor	is	still	being	developed,	and	the	range	of	legislative	structures	that	
it	can	usefully	convert	continues	to	expand.

The	current	version	of	ylegis	does	not	attempt	to	use	natural	language	processing	to	analysis	
syntactic	 elements	 of	 legislation	 which	 indicate	 logical	 components	 which	 are	 below	 the	
structural	 level.	As	Ashley	notes,	the	 ‘the	 logical	 terms	 legislatures	use,	such	as	“if,”	“and,”	
“or,”	 and	 “unless,”	 introduce	 multiple	 interpretations	 of	 even	 simple	 statutes.’ 	 The	21

interpretation	of	these	terms	is	at	present	left	to	the	person	creating	the	rulebase,	who	will	
need	to	decide	whether	to	edit	the	draft	yscript	rules	produced	by	ylegis.

4.4. Examples of ylegis	conversion: Crimes Act 1914, ss. 15KP and 15KQ

An	 example	 of	 the	 type	 of	 provision	which	 ylegis	 can	 now	 successfully	 convert	 is	 section	
15KP	of	the	Crimes	Act	1914	(Cth):

	Ashley,	2017,	p.	39;	see	Allen	and	Engholm,	197821

Electronic copy available at: https://ssrn.com/abstract=3981161

13

Representing	Legislation	as	Code:	Reducing	the	problems	of	‘scaling	up’

CRIMES ACT 1914 - SECT 15KP

Assumed identity may be acquired and used

A person may acquire or use an assumed identity if:

(a) the person is an authorised person (other than an authorised

 civilian) and the acquisition or use is:

 (i) in accordance with an authority; and

 (ii) in the course of duty; or

(b) the person is an authorised civilian and the acquisition or use is

 in accordance with:

 (i) an authority; and

 (ii) any direction by the person's supervisor under the authority.

The	ylegis	pre-processor	automatically	converts	this	section	into	the	following	yscript	code:

RULE Section 15KP - Assumed identity may be acquired and used PROVIDES

the person may acquire or use an assumed identity ONLY IF

 section 15KP(a) applies OR

 section 15KP(b) applies

RULE Section 15KP(a) PROVIDES

section 15KP(a) applies ONLY IF

 section 15KP(a)(i) applies AND

 section 15KP(a)(ii) applies

RULE Section 15KP(a)(i) PROVIDES

section 15KP(a)(i) applies ONLY IF

the person is an authorised person (other than an authorised

civilian) and the acquisition or use is in accordance with an authority

RULE Section 15KP(a)(ii) PROVIDES

section 15KP(a)(ii) applies ONLY IF

the person is an authorised person (other than an authorised

civilian) and the acquisition or use is in the course of duty

RULE Section 15KP(b) PROVIDES

section 15KP(b) applies ONLY IF

 section 15KP(b)(i) applies AND

 section 15KP(b)(ii) applies

RULE Section 15KP(b)(i) PROVIDES

section 15KP(b)(i) applies ONLY IF

the person is an authorised civilian and the acquisition or

use is in accordance with an authority

Electronic copy available at: https://ssrn.com/abstract=3981161

14

Representing	Legislation	as	Code:	Reducing	the	problems	of	‘scaling	up’

RULE Section 15KP(b)(ii) PROVIDES

section 15KP(b)(ii) applies ONLY IF

the person is an authorised civilian and the acquisition or

use is in accordance with any direction by the person's

supervisor under the authority

This	section	has	been	converted	by	ylegis	into	‘accurate’	yscript	code,	in	the	sense	that	the	
code	will	run	and	produce	a	dialogue.	This	can	be	verified	by	copying	the	above	rules,	going	
to	the	DataLex	Application	Developer	Tools, 	pasting	the	rules	in	the	‘Application’	box,	and	22

running	 the	 Consultation.	 Further	 checks	 can	 also	 be	 done	 by	 running	 the	 three	 other	
Checks	that	the	Tools	provide.	

4.5. How can	ylegis	conversions from existing legislation be tested?

The	criteria	against	which	it	would	be	reasonable	to	claim	that	ylegis	does	make	it	possible	
to	 ‘scale	 up’	 the	 creation	 of	 rules	 as	 code	 are	 discussed	 earlier.	 It	 is	 clear	 that	 100%	
successful	conversion	of	existing	legislation	will	not	be	achieved:

• Non-systematic	 examples	 of	 effectiveness	 –	 At	 present,	 we	 are	 providing	 non-
systematic	examples	of	how	well,	or	badly,	the	software	does	convert	legislation	into	
code.

• Systematic	tests	of	a	sample	of	legislation	–	We	could	attempt	to	convert	a	randomly-
selected,	 significant	 sample	 of	 sections	 of	 Australian	 legislation,	 and	 have	 the	
accuracy	of	the	results	of	the	ylegis	conversions	checked	by	independent	parties	with	
sufficient	expertise.	This	has	not	yet	been	done.

• The	eyeballs	test 	–	One	unusual	aspect	of	the	DataLex	approach	is	that	it	provides	23

for	free	access	to	the	software	and	data	by	which	anyone	can	test	the	use	of	ylegis	
and	 yscript	 (via	 the	DataLex	Development	 Tools)	 to	 convert	 any	 existing	Australian	
legislation	(as	provided	via	AustLII).	All	existing	codebases	are	freely	available	and	the	
yscript	 interpreter	 is	 available	 under	 an	 open	 source	 licence.	 If	 anyone	 wishes	 to	
demonstrate	flaws	in	the	ylegis/yscript	approach,	they	can	do	so.	AustLII	is	therefore	
positioning	its	claims	similar	to	open	source	software.	Availability	for	testing	does	not	
guarantee	that	limitations	will	be	found,	but	at	least	it	makes	this	possible.

• Comparison	 with	 alternatives	 –	 Do	 any	 other	 approaches	 demonstrate	 that	 they	
produce	 superior	 results	 in	accurately	 representing	 legislation,	and/or	 that	 they	do	
scale	up	to	any	significant	extent?	We	are	not	aware	of	examples.

For	 this	 first	method	 of	 using	 ylegis	 to	 convert	 legislation	 to	 code,	we	 can	 therefore	 only	
make	modest	claims	based	on	successful	examples.

	DataLex	Application	Developer	Tools	<http://datalex.org/dev/tools/>22

	Attributed	to	Linus	Torvald	(Linux)	is	the	assertion	that	"given	enough	eyeballs,	all	bugs	are	shallow".	Eric	Raymond	The	23

Cathedral	and	the	Bazaar	(1999,	O’Reilly)

Electronic copy available at: https://ssrn.com/abstract=3981161

15

Representing	Legislation	as	Code:	Reducing	the	problems	of	‘scaling	up’

5. From legislation to code: (ii) Writing Legislative Rules as Code

The	second	and	perhaps	a	more	significant	use	for	ylegis	is	for	writing	legislation	in	a	natural	
language	format	that	can	be	also	executed	as	code.	

5.1. Formal mode of ylegis

ylegis	can	be	used	to	write	legislation	in	a	form	which	is	close	to	that	used	in	conventional	
legislative	drafting,	but	which	can	be	converted	 into	executable	yscript	 code.	This	 requires	
that	 the	 relationship	 between	 separate	 propositions	 be	 defined	 by	 a	 formal	 set	 of	
connectors	(operators)	such	as	"and:"	and	"or:".	 In	this	mode,	text	can	use	a	set	of	formal	
operators	 to	 connect	 sub-sections	 and	 sub-clauses	 each	 of	 which	 contains	 a	 single	
proposition	(be	it	a	requirement	or	a	conclusion).	Each	sub-clause	of	a	section	is	assumed	to	
be	in	the	format:

	 tag [fact] [operator]

For	example:	

	 15KP the person may acquire an identity if:

In	formal	mode,	the	following	five	operators	are	recognised	by	ylegis:

The	formal	mode	of	ylegis	has	some	similarities	to	the	systematic	‘normalization’	process	for	
identifying	syntactic	ambiguities	in	a	statute,	developed	by	Layman	Allen.
24

5.2. Example of writing legislation as code: Crimes Act 1914, s. 15KP

The	following	is	an	example	from	the	Crimes	Act	1914	(Cth)	as	it	appears	in	the	original	Act:

 
CRIMES ACT 1914 - SECT 15KP
Assumed identity may be acquired and used
A person may acquire or use an assumed identity if:
(a) the person is an authorised person (other than an authorised civilian)
and the acquisition or use is:
(i) in accordance with an authority; and
(ii) in the course of duty; or

and: “fact”	is	AND'd	with	following	fact

and/or: “fact”	is	AND/OR'd	with	following	fact

if: sub-clauses	are	a	condition	for	“fact”

or: “fact”	is	OR'd	with	following	fact

provides: sub-clauses	should	just	be	considered	in	sequence

	Described	in	Ashley,	2017,	p.	41.24

Electronic copy available at: https://ssrn.com/abstract=3981161

16

Representing	Legislation	as	Code:	Reducing	the	problems	of	‘scaling	up’

(b) the person is an authorised civilian and the acquisition or use is
in accordance with:
(i) an authority; and
(ii) any direction by the person's supervisor under the authority.

The	same	section	might	be	expressed	using	formal	mode	and	 included	 in	a	 larger	piece	of	
yscript	code	using	pre-processor	mode	(-p)	as:

 Assumed identity may be acquired and used
 15KP the person may acquire or use an assumed identity under
 section 15KP if:
 (a) the person is an authorised person and the person is not
 an authorised civilian and:
 (i) the acquisition or use is in accordance with an authority and:
 (ii) the acquisition or use is in the course of duty or:
 (b) the person is an authorised civilian and:
 (i) the acquisition or use is in accordance with an authority and:
 (ii) the acquisition or use is at the direction by the person's
 supervisor under the authority

As	can	be	seen	from	the	above,	this	ylegis	mode	of	presenting	the	codification	of	a	section	is	
even	closer	to	how	legislation	normally	appears	than	are	the	equivalent	set	of	rules	written	
using	yscript.	

If	 legislation	was	drafted	in	this	manner,	 it	would	be	both	 legislation	and	code.	For	a	more	
detailed	 example,	 the	 complete	 NSW	 Hairdressers	 Act	 2003	 can	 be	 written	 in	 ylegis	 as	
follows:

1. Name of Act
This Act is the Hairdressers Act 2003.

2. Commencement
This Act commences on a day or days to be appointed by proclamation.

3. Hairdressers must be qualified
An individual may not act as a hairdresser in New South Wales if—
 (a) the individual receives a fee, gain or reward for hairdressing
 services; and
 (b) the individual is not qualified to act as a hairdresser; and
 (c) section 3 applies.

4. When is an individual "qualified to act as a hairdresser"?
(1) An individual is qualified to act as a hairdresser if—
 (a) the individual has been awarded an authorised qualification by a
 registered training organisation; or
 (c) a determination has been made under section 37 of the Apprenticeship
 and Traineeship Act 2001 that the individual is adequately trained
 to pursue the recognised trade vocation of hairdressing (because the
 hairdresser has acquired the competencies of the recognised trade
 vocation); or
 (d) the individual has held, or been taken to have held, a licence under
 Part 6 (Regulation of the hairdressing trade) of the Shops and
 Industries Act 1962 and the licence was limited to carrying out beauty
 treatment only.
(2) An individual has been awarded an authorised qualification by a registered
 training organisation if—
 (a) the individual holds a Certificate III in Hairdressing and: the
 Certificate III in Hairdressing is nationally endorsed; or

Electronic copy available at: https://ssrn.com/abstract=3981161

17

Representing	Legislation	as	Code:	Reducing	the	problems	of	‘scaling	up’

 (b) the individual holds a qualification prescribed by the regulations.

5. Prohibition on unqualified hairdressers does not apply to apprentices,
health care professionals or certain others
Section 3 does not apply if—
 (a) the individual is acting as an apprentice hairdresser under the direct
 control and supervision of qualified hairdresser; or
 (b) the individual is acting as a hairdresser when engaged in their
 practice as a medical or health care professional; or
 (c) the individual is acting as a hairdresser when providing care for
 elderly or disabled people; or
 (d) the individual is acting as a hairdresser in accordance with other
 circumstances as prescribed by the regulations.

6. Apprenticeship and Traineeship Act 2001 not affected
The operation of the Apprenticeship and Traineeship Act 2001 is not affected
by this Act.

7. Information and documents may be required
(1)(a) The authorised officer may serve a notice requiring the individual
 to produce specified documents for inspection or copying at any
 place nominated in the notice.
 (b) The authorised officer may serve a notice requiring the individual
 To provide the information specified in the notice.
(2) the individual is guilty of an offence under section 7(2) if:
 an authorised officer has served a notice under section 7 and:
 the individual has not complied with the notice and:
 the time for compliance specified in the notice has expired.
 If: the individual is guilty of an offence under section 7(2) then:
 the individual is liable to a penalty of 20 penalty units under
 section 7
(3) 'authorised officer' means an investigator appointed under section 18
 of the Fair Trading Act 1987 or an officer of a Government Department
 who is authorised by the Minister for the purposes of this section.

8. Proceedings for offences
(1) Proceedings for an offence under this Act may be dealt with summarily
 before the Local Court.
(2) Proceedings for an offence under this Act may be instituted only by the
 Minister or by a person duly authorised by the Minister in that behalf,
 either generally or in a particular case.

9. Regulations
The Governor may make regulations, not inconsistent with this Act, for or
with respect to any matter that by this Act is required or permitted to be
prescribed or that is necessary or convenient to be prescribed for carrying
out or giving effect to this Act.

11. Repeal of Hairdressing Regulation 1997
The Hairdressing Regulation 1997 is repealed.

12. Review of Act
(1) The Minister is to review this Act to determine whether the policy
 objectives of the Act remain valid and whether the terms of the Act
 remain appropriate for securing those objectives.
(2) The review is to be undertaken as soon as possible after the period
 of 5 years from the date of assent to this Act.
(3) A report on the outcome of the review is to be tabled in each House of
 Parliament within 12 months after the end of the period of 5 years.	

Electronic copy available at: https://ssrn.com/abstract=3981161

18

Representing	Legislation	as	Code:	Reducing	the	problems	of	‘scaling	up’

ylegis	 can	 process	 this	 version	 of	 the	 Hairdressers	 Act	 without	 further	 modification	 and	
produce	equivalent	executable	yscript	code.
25

5.3. Practicalities of implementation: Authoritative status of code

The	 issues	 involved	 in	 having	 legislative	 drafting	 offices	 adopt	 this	 style	 of	 drafting,	
simultaneously	as	legislation	and	code,	and	the	advantages	that	could	be	obtained	from	so	
doing,	are	beyond	the	scope	of	this	article.	

Legislation	provided	 in	online	official	databases	usually	now	has	authoritative	status. 	For	26

this	 approach	 of	 ‘drafting	 rules	 as	 code’	 to	 have	 its	 full	 effect,	 the	 authoritative	 status	 of	
legislation	would	have	 to	extend	 to	when	 it	 is	 used	as	 code.	Governments	would	have	 to	
commit	 to	 standing	 by	 such	 conclusions	 as	 authoritative	 statements	 of	 the	 effect	 of	 the	
legislation.	At	the	least	there	would	need	to	be	provision	that	any	person	who	relied	upon	
such	 an	 authoritatively-generated	 conclusion	 could	 not	 be	 prejudiced	 because	 of	 that	
reliance.

6. From legislation to code: (iii) Converting existing legislation to
authoritative code

A	hybrid	of	the	two	previous	approaches,	the	conversion	of	existing	legislation	(as	discussed	
in	 (i))	 into	 authoritative	 code	 (as	 discussed	 in	 (ii))	 would	 be	 most	 likely	 to	 apply	 only	 to	
selected	 existing	 statutes,	 where	 governments	 saw	 very	 large-scale	 benefits	 arising	 from	
making	 a	 code	 version	 authoritative	 and	 were	 willing	 to	 give	 a	 converted	 version	 the	
authoritative	status	discussed	above.	This	 could	occur	with	 legislation	on	which	 there	was	
very	high	consumer	reliance,	and	very	high	levels	of	consultation	could	be	expected.
27

7. Conclusions and future work

In	this	paper	we	have	proposed	an	approach	to	analysing	the	nature	of	existing	legal	rules,	
particularly	 legislative	 rules	 that	 regards	 legislation	 as	 being	 fundamentally	 just	 a	 set	 of	
related	propositions.

Taking	that	approach,	we	propose	a	method	for	representing	these	rules,	using	the	yscript	
language,	 that	 allows	 the	 yscript	 program	 to	 process	 these	 rules	 so	 as	 to	 produce	
‘consultations’	 to	 determine	 the	 values	 of	 goals	 which	 the	 legislation	 is	 capable	 of	
determining.

We	have	described	progress	that	has	been	made	in	automating	this	process	to	create	yscript	
rules	from	existing	legislation,	using	the	ylegis	program.	

	This	can	be	tested	with	the	DataLex	Application	Development	Tools	<http://datalex.org/dev/tools/>.25

	For	example,	see	<https://pco.nsw.gov.au/accessing-legislation.html>.26

	 For	 example,	 this	 could	 be	 done	 with	 the	 NSW	 Government	 Community	 Gaming	 app	 <https://27

www.fairtrading.nsw.gov.au/community-gaming>.	The	DataLex	version	of	the	same	legislation	is	explained	at	AustLII	Media	
Release	 ‘Smart	 AI:	 AustLII’s	 DataLex	 turns	 NSW	 gaming	 Regulations	 into	 code	 in	 24	 hours,’	 2	 October	 2020	 <http://
classic.austlii.edu.au/austlii/announce/2020/1.pdf>.

Electronic copy available at: https://ssrn.com/abstract=3981161

http://datalex.org/dev/tools/
https://www.fairtrading.nsw.gov.au/community-gaming
https://www.fairtrading.nsw.gov.au/community-gaming
http://classic.austlii.edu.au/austlii/announce/2020/1.pdf
http://classic.austlii.edu.au/austlii/announce/2020/1.pdf

19

Representing	Legislation	as	Code:	Reducing	the	problems	of	‘scaling	up’

Based	 on	 this	 experience,	we	 also	 demonstrated	 how	 the	 drafting	 of	 legislation	 could	 be	
changed	 such	 that	 appropriately	 drafted	 legislation	 is	 readable	 and	 understandable	 by	
humans	and	also	usable	by	machines.	

We	 conclude	by	 suggesting	 that	 there	 is	 now	 some	evidence	 that	 these	processes	 can	be	
generalised	 (‘scaled	 up’)	 to	 deal	 with	 the	 conversion	 or	 production	 of	 large	 bodies	 of	
legislation,	and	that	this	has	considerable	value.

7.1. Future work

The	 ylegis	 software	 is	 evolving	 rapidly,	 in	 terms	 of	 the	 variety	 of	 structural	 forms	 of	
legislation	that	it	can	convert	into	yscript	code,	and	this	work	will	continue.	

The	 overall	 methodology	 for	 dealing	 with	 existing	 legislation	 will	 continue	 to	 improve	 to	
make	the	conversion	of	existing	material	faster	and	more	efficient.	This	will	facilitate	larger-
scale	 legislative	 conversions	 (a	 whole	 single	 statute,	 or	 a	 set	 of	 statutes)	 and	 potentially	
make	 a	 significant	 contribution	 that	 will	 help	 realise	 the	 potential	 of	 Rules	 as	 Code	 as	 a	
technology	generally.

In	relation	to	new	legislation,	it	is	hoped	that	the	approaches	set	out	in	this	paper	may	also	
assist	in	drafting	laws	that	are	simultaneously	authoritative	legislative	rules	and	code.

Electronic copy available at: https://ssrn.com/abstract=3981161

	Introduction: Rules as Code (RaC)
	What do we mean by ‘Rules as Code’?
	Why ‘Rules as Code’ matters

	Structure and nature of legislative rules
	Coding what rules say, or what they do?
	Paying attention to what rules say
	Ambiguities in what rules say
	Example of what rules say: Patents Act 1914, s. 114

	Representation of legislative rules: yscript
	Features of the yscript language
	Example of yscript code: Patents Act 1914, s. 114

	From legislation to code: (i) Automating conversion of existing legislation to code
	Three possible outputs from ylegis
	Input requirements for ylegis
	Syntax that ylegis does not automatically convert
	Examples of ylegis conversion: Crimes Act 1914, ss. 15KP and 15KQ
	How can ylegis conversions from existing legislation be tested?

	From legislation to code: (ii) Writing Legislative Rules as Code
	Formal mode of ylegis
	Example of writing legislation as code: Crimes Act 1914, s. 15KP
	Practicalities of implementation: Authoritative status of code

	From legislation to code: (iii) Converting existing legislation to authoritative code
	Conclusions and future work
	Future work

